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Abstract. Motivated by challenges in pangenomic read alignment, we
propose a generalization of Wheeler graphs that we call Wheeler maps.
A Wheeler map stores a text T [1..n] and an assignment of tags to the
characters of T such that we can preprocess a pattern P [1..m] and then,
given i and j, quickly return all the distinct tags labeling the first char-
acters of the occurrences of P [i..j] in T . For the applications that most
interest us, characters with long common contexts are likely to have the
same tag, so we consider the number t of runs in the list of tags sorted by
their characters’ positions in the Burrows-Wheeler Transform (BWT) of
T . We show how, given a straight-line program with g rules for T , we can
build an O(g + r + t)-space Wheeler map, where r is the number of runs
in the BWT of T , with which we can preprocess a pattern P [1..m] in
O(m logn) time and then return the k distinct tags for P [i..j] in optimal
O(k) time for any given i and j.

1 Introduction

For years, geneticists have been worried about the fact that using a single ref-
erence for the human genomes biases scientific studies and medical diagnoses,
undermining the potential of personalized medicine, particularly for people from
under-represented groups. To address this bias, researchers [18] recently pub-
lished a pangenome consisting of nearly complete genomes from 47 people from
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diverse origins and took, according to the New York Times [8], “a major step
toward a deeper understanding of human biology and personalized medicine for
people from a wide range of racial and ethnic backgrounds”. Eventually, the plan
is to include 350 genomes, but even this many genomes cannot fully capture hu-
manity’s genetic diversity. As the Guardian [34] put it, “as long as the reference
contains only a subset, arguably someone will not make the cut”. Ultimately,
there will be pressure for a reference of at least thousands of genomes.

One of the primary use of a reference is during read alignment. As a DNA
sample passes through a sequencing machine, the machine records the genome in
short substrings called reads. The length and accuracy of the reads vary depend-
ing on the sequencing technology used. Next, software called a read aligner uses
an index of a reference to find seeds, sections of the reads that exactly match
sections in the reference, and uses dynamic programming to extend those seeds
to approximate matches of the whole read. These approximate matches form
alignments, which are used in many subsequent bioinformatics analyses.

Indexing 47 human genomes is feasible even with standard read aligners
such as Bowtie [16] and BWA [17], and even indexing 350 may be possible on
supercomputers, but indexing thousands will require new algorithmic insights.
The emerging consensus is that we should represent the combined reference
sequences as a pangenome graph [6] that shows variation between genomes as
detours on an otherwise shared path. The necessity of mapping reads to the
version of the path that best fits the sample leads to the question of how to
index pangenome graphs.

Equi et al. [9] showed that, unless the strong exponential-time hypothesis is
false, one cannot index a graph in polynomial time such that pattern match-
ing can run in sub-quadratic time, so several groups have tried constraining
pangenome graphs to have a particular structure, such as Wheeler graphs [12],
p-sortable graphs [7], elastic degenerate strings [1] or founder block graphs [19].
Unfortunately, merging reference sequences into a graph hides certain variations’
tendencies to co-occur, known as linkage disequilibrium [30], and creates chimeric
paths whose labels are not in any of the original sequences. Indexing and using
such a graph can result in false-positive matches to these chimeric paths.

The more variations are represented, the noisier the graph becomes and the
more possibilities there are for spurious matches. The number of false positives
can be reduced by excluding rare variations, but sacrificing inclusivity for the
sake of computational convenience goes against the spirit of pangenomics, and
the pressure to include more genomes will probably force bioinformaticians to in-
dex all the variations. Moreover, excluding variations could be viewed as trading
false positives for false negatives. Another approach is to filter out false positives
by checking matches against the reference sequences represented as strings, but
then the overall query time cannot be bounded in terms of the patterns and
the true matches reported. Furthermore, the number of false positives will likely
grow as the pangenome does.

Some researchers have eschewed using a pangenome graph altogether and in-
dexed the genomes in the pangenome as a set of strings. This approach allowed



them to draw on a rich history of indexing compressible texts: the Burrows-
Wheeler Transform [4] (BWT) and FM-indexes [10], for which Burrows, Ferrag-
ina and Manzini recently shared the Paris Kanellakis Award and which underpin
Bowtie and BWA; RLCSA [20]; the r-index [13], subsampled r-index [5] and r-
index-f [29]. Recently, Rossi et al. [32] and Boucher et al. [3] showed how, given
a straight-line program with g rules for a text T [1..n], they can build an O(g+r)
space index, where r is the number of runs in the BWT of T , with which they
can find the maximal exact matches (MEMs) of a given pattern P [1..m] with
respect to T in O(m log n) time and list the occurrences of each MEM in con-
stant time per occurrence. This result means they can index the pangenome
compactly with no chance of false positives, find good seeds reasonably quickly,
and list the occurrences of those seeds in constant time per occurrence.

The main practical problem with those results is that if there are thousands
of genomes in the pangenome, then a MEM can occur thousands of times in
those genomes, even if all those occurrences map to only one place in the stan-
dard single reference genome. This observation makes extending the seeds and
combining the approximate matches of the reads much slower. In this paper, we
show how we can combine Rossi et al.’s result with a pangenome graph such that
we can still find seeds quickly, with no chance of false positives, but then report
their non-chimeric occurrences in the graph in constant time per occurrence.
Moreover, we put no constraints on the graph.

A set of genomes can be annotated so that for each character in the genomes,
we know at which vertex in a pangenome graph that character occurs. Then,
our idea is that if someone gives us a set of genomes and the corresponding
annotation, we can store them in a small space so we can later quickly report for
each seed its starting positions in the graph. The seeds of a read with respect to
the set of genomes can be MEMs, but also f -MEMs [25, 35] (maximal substrings
that occur at least f times in the genomes) or other kinds of substrings.

We can formalize this problem as follows: we want to store a text T [1..n]
and an assignment of tags to the characters of T such that we can preprocess
a pattern P [1..m] and then, given i and j, quickly return all the distinct tags
labeling the first characters of the occurrences of P [i..j] in T . In a pangenome,
characters with long common contexts are more likely to have the same tag, so
we consider the number of runs t in the list of tags sorted by their characters’
positions in the Burrows-Wheeler Transform (BWT) of T .

Our contribution. In this paper, we show how, given a straight-line program
with g rules for T , we can build an O(g+ r+ t) space data structure, where r is
the number of runs in the BWT of T , with which we can preprocess a pattern P
in O(m log n) time and then return the k distinct tags for P [i..j] in the optimal
O(k) time for any given i and j.

We call our data structure a Wheeler map since it resembles a Wheeler
graph [12] but with less structure. One reason Wheeler graphs were introduced
was to provide a model for alignment with a pangenome graph: we start with
a string dataset, build a graphical representation, and index that graph; the
graphical representation is inherently lossy but, to filter out chimeric matches,



we can verify matches against the original dataset. (Even before Wheeler graphs
were defined, software for indexing variation graphs [15] used a procedure for
making them Wheeler or almost Wheeler, falling back on unwinding the graph
and indexing substrings when that procedure failed.) Our idea is to reverse that
approach of indexing a graph and then filtering out false positives using the
strings. Instead, we index the strings, and then map occurrences onto a graph
— but without considering all the occurrences in the strings.

Some researchers (see, e.g., [31] and references therein) argue that having
a graph index return matches not found in the original strings is a feature,
not a bug, since it allows the index to find matches that can be obtained by
recombination. As computer scientists, however, it is not our place to decide
what combination of alleles are reasonable and which not, and so we should
offer the option of indexing the datasets we are given and nothing else. Indexing
the strings means we index all the variations they contain, so we can presumably
capture most reasonable combinations by increasing the number of genomes in
our dataset. Scaling to larger datasets is thus a solution for us, whereas it is a
problem for graphical indexes, which tend to produce more false positives when
they include all the variations in large datasets.

From Rossi et al. [32], we know r and g are reasonably small for the datasets
in which we are most interested. To check that t is comparable, we computed
it for the chromosome-19 component in a Minigraph-Cactus graph based on
90 human haplotypes from the Human Pangenome Reference Consortium [18].
This component was built from 1100 contigs with total length n = 5,070,072,154
and t was 208,649,680, almost 25 times smaller than n. For comparison, r was
71,512,609, just over 70 times smaller than n and not quite 3 times smaller than
t.

Roadmap. In Section 2 we describe the basic concepts that will be used through-
out the rest of the work, together with a preliminary method of computing the
tags for the occurrences of a pattern P . In Section 3 we show how extended
matching statistics can be computed O(m log n) time without the need for buffer-
ing that Rossi et al. [32] used, and extend the method for computing the tag
statistics. In Section 4 we describe how the tag statistics together with range
successor queries on the tag array can be used to get the k distinct tags for the
occurrences of P [i..j] in O(logϵ t + k) time for any ϵ > 0. Using more sophis-
ticated techniques, we improve this time to the optimal O(k) in Section 5. We
conclude in Section 6 with some future work directions.

2 Preliminaries

Our model of computation throughout is the standard word-RAM with Θ(log n)-
bit words. For the sake of brevity, we assume the reader is familiar with suffix ar-
rays (SAs), the Burrows-Wheeler Transform (BWT), FM-indexes, LF-mapping
and straight-line programs (SLPs); otherwise, we refer them to appropriate sur-
veys [24, 26]. We recall only that LCP(S1, S2) denotes the length of the longest



L
B W tag BWT context

1 0 9 T $AGATACA
2 9 T $GATACA
3 0 9 T $GATTACA
4 9 T $GATTAGA
5 0 0 10 A $GATTAGAT
6 0 1 9 T A$GATTAGA
7 1 4 T ACAT$AGA
8 4 4 T ACAT$GA
9 4 5 T ACAT$GAT

10 1 5 T AGAT$GAT
11 5 T AGATA$GAT
12 5 8 0 $ AGATACAT

13 1 7 C AT$AGATA
14 7 C AT$GATA
15 2 7 C AT$GATTA
16 7 G AT$GATTA
17 7 G ATA$GATTA

L
B W tag BWT context

18 3 2 G ATACAT$A
19 2 G ATACAT$
20 2 2 G ATTACAT$
21 2 G ATTAGAT$
22 2 G ATTAGATA$
23 0 6 A CAT$AGAT
24 6 A CAT$GAT
25 0 6 A CAT$GATT
26 6 A GAT$GATT
27 6 A GATA$GATT
28 4 1 A GATACAT$
29 1 $ GATACAT

30 3 1 $ GATTACAT

31 1 $ GATTAGAT

32 1 $ GATTAGATA

L
B W tag BWT context

33 0 8 A T$AGATAC
34 8 A T$GATAC
35 1 8 A T$GATTAC
36 8 A T$GATTAG
37 8 A TA$GATTAG
38 2 3 A TACAT$AG
39 5 3 A TACAT$G
40 5 4 T TACAT$GA
41 2 4 T TAGAT$GA
42 4 T TAGATA$GA
43 1 3 A TTACAT$G
44 3 3 A TTAGAT$G
45 3 A TTAGATA$G

A G A T T A C

G

A T A
0 1 2 3 4 5 6 7 8 9 10A

Fig. 1. Tables (top) for a set of toy genomes GATTACAT$, AGATACAT$, GATACAT$,
GATTAGAT$ and GATTAGATA$ and a pangenome graph (bottom). The BWT column
shows the characters sorted by their contexts, which are the rest of the genomes (con-
sider to be cyclic) and shown in the right column. The tag array is shown in the column
to the left of the BWT, with each entry identifying the source in the pangenome graph
of the edge labelled by the first character in the context in the same row (not the BWT
character). The leftmost two columns (together called L) show the LCP values for the
runs in the tag array, discussed in Section 3: column B contains the LCP value between
each run in the tag array and the preceding run (so the LCP value at the beginning of
the run), while column W contains the LCP value within each run (the length of the
longest prefix common to all the contexts in the run). LCPs extend only up to and not
including the terminators $ because they are not searchable. Due to space constraints,
the tables are displayed split into three pieces (at the end of runs).

common prefix of two strings S1 and S2 (which need not be lexicographically
consecutive suffixes of a text), and of the bounds for Muthukrishnan’s [23] classic
document-listing data structure:

Theorem 1 (Muthukrishnan, [23, Thm. 3.1]). Given an array A[1..h], we
can build an O(h)-space data structure with which, given i and j, we can return
the k distinct elements in A[i..j] in O(k) time.

In our model, each text suffix T [i..] is labeled with a “tag”, which can also
be seen as labeling the position i. The tags of T are collected in a so-called “tag
array”; see Figure 1.

Definition 1. Let T [1..n] be a labeled text, such that the label for the ith position
is T [i].lab. The tag array Tag[1..n] of T is then defined as Tag[j] = T [SA[j]].lab.



We say that an occurrence T [i..i + |P | − 1] of a pattern P in T is labeled
by the tag that labels T [i..]. Consequently, the labels of all the occurrences of P
in T are listed in Tag[s..e], where SA[s..e] is the suffix array interval for P . For
example, in Figure 1 the range for P = A is SA[6..22], and Tag[6..22] contains
the tags 9, 4, 5, 0, 7, and 2. Those are the labels with which P appears in the
graph.

For convenience, we first extend the standard definition of matching statis-
tics to include the lexicographic ranks of the suffixes of T starting with the
occurrences we consider, and then further extend it to mention the tag array.

Definition 2. The extended matching statistics of a pattern P [1..m] with re-
spect to a text T [1..n] are an array XMS[1..m+1] of (len,pos, rank) triples such
that

– XMS[i].len is the length of the longest prefix of P [i..m] that occurs in T ,
– XMS[i].pos is the starting position of one occurrence of P [i..i+XMS[i].len−1]

in T ,
– XMS[i].rank is the lexicographic rank of T [XMS[i].pos..n] among the suffixes

of T .

We emphasize that we expect the tag array to have long runs of equal con-
secutive symbols. The following definition considers those runs in the process of
matching P in T .

Definition 3. The tag statistics of a pattern P [1..m] with respect to a text
T [1..n] and its tag array Tag[1..n] are an array TS[1..m + 1] of
(len,pos, rank, run,up,down) sextuples such that TS[i].len, TS[i].pos and TS[i].rank
are the same as in the XMS array and

– TS[i].run is the index of the run Tag[u..d] in the tag array that contains
position TS[i].rank,

– TS[i].up = LCP(P [i..m], T [SA[u]..n]),
– TS[i].down = LCP(P [i..m], T [SA[d]..n]).

Finally, although we know of no previous work specifically addressing tag
arrays, we note a solution that follows directly from the work by Mäkinen et
al. [21]:

Theorem 2 (Mäkinen et al., [21, Thm 17.]). Given a text T [1..n] whose
BWT has r runs, we can build an O(r)-space data structure called RLBWT
such that later, given a pattern P [1..m], we can return the lexicographic range
of suffixes of T starting with P in O(m log log n) time.

Corollary 1. Given a text T [1..n] whose BWT has r runs, and a tag array with
t runs, we can build an O(r + t)-space data structure such that later, given a
pattern P [1..m], we can return the k distinct tags of P ’s occurrences in T in
O(m log log n+ k) time.



Proof. We store an O(r)-space RLBWT for T , an O(t)-space predecessor struc-
ture storing where the runs start in Tag, and an O(t)-space instance of Muthukr-
ishnan’s data structure from Theorem 1 for the array A[1..t] obtained from Tag
by replacing each run by a single copy of the same tag. Given P , we first use the
RLBWT to find the lexicographic range SA[s..e] of suffixes of T starting with P ,
in O(m log log n) time. We then use predecessor queries to find the range A[s′..e′]
of the tag run indices overlapping Tag[s..e], in O(log log n) time. Finally, we use
Muthukrishnan’s data structure to report the distinct tags in A[s′..e′], in O(k)
time. ⊓⊔

Our main concern with Corollary 1 is that if we want the distinct tags for
a set of substrings of P that can overlap—such as the maximal exact matches
(MEMs) of P with respect to T—and we apply this corollary to each one, then
we can use Ω(m2) total time even when the number of tags we return is small.
Our plan is then to preprocess P in a first stage, so that in a second stage we
can more quickly answer (many) questions about substrings of the form P [i..j].

3 Computing tag statistics

We rely on results about straight-line programs (SLPs), which we can encapsu-
late in the following lemma.

Lemma 1. Given an SLP with g rules for T [1..n], in O(n log n) expected time
we can build an O(g)-space data structure with which we can preprocess any
pattern P [1..m] in O(m) time such that later, given i, j and q, we can return
LCP(P [i..j], T [q..n]) in O(log n) time and with no chance of error as long as
P [i..j] occurs somewhere in T .

Proof. Bille et al. [2] showed how to build, in O(n log n) expected time, a Karp-
Rabin hash function with no collisions between substrings of T . If S = S′ · S′′

and we have the hashes of two of those strings, we can compute the hash of the
third in constant time, as soon as we store some precomputed values that can
also be maintained in constant time (see, e.g., [27]).

If necessary, we use Ganardi et al.’s [14] construction to balance the SLP such
that it has O(g) rules and height O(log n). We then label each symbol x in the
SLP with the length and hash of x’s expansion. This takes O(g) time because
we compute in constant time the hash of the left-hand side of a rule from those
of the right-hand side.

When P arrives, we compute the hashes of its suffixes in O(m) total time.
The hash of any P [i..j] can then be computed in constant time from the hashes
of P [i..m] and P [j + 1..m].

Given i, j and q, we descend to the qth leaf of the parse tree in O(log n) time.
We then re-ascend toward the root in O(log n) time, keeping track of the length
and hash of T [q..e], where e is the index of the rightmost leaf in the subtree of
the node we are currently visiting.



When we reach a node such that T [q..e] is either longer than P [i..j] or the
hash of T [q..e] does not match the hash of the corresponding prefix of P [i..j], we
re-descend in O(log n) time. At each step in the re-descent, we go left if T [q..e]
is either longer than P [i..j] or the hash of T [q..e] does not match the hash of the
corresponding prefix of P [i..j], where e is now the index of the rightmost leaf in
the subtree of the left child. Otherwise, we go right.

We then find LCP(P [i..j], T [q..n]) in O(log n) time. As long as P [i..j] occurs
somewhere in T , no hash of a prefix of P [i..j] collides with the hash of a different
substring of T , so we have no chance of error. ⊓⊔

We now show how to preprocess the tag array. Let U [1..t] and D[1..t] be
the arrays such that U [q] and D[q] are the indices of the first and last tags,
respectively, in the qth run in the tag array. Let W [1..t] be the array with

W [q] = min
U [q]+1≤p≤D[q]

{LCP(T [SA[p− 1]..n], T [SA[p]..n])}

= LCP(T [SA[U [q]]..n], T [SA[D[q]]..n])

for 1 ≤ q ≤ t, and let B[1..t− 1] be the array with

B[q] = LCP(T [SA[D[q]]..n], T [SA[U [q + 1]]..n])

for 1 ≤ q ≤ t − 1—so W [q] is the LCP computed within run q and B[q] is the
LCP computed between runs q and q + 1. Finally, let

L[0..2t] = 0,W [1], B[1],W [2], B[2], . . . ,W [t− 1], B[t− 1],W [t], 0 .

From now on we will only use L, and we will not refer to U , D, W or B again.
We recall that Figure 1 shows the L array on an example text.

We now describe our preprocessing of the pattern. Our results in this sec-
tion can be viewed as mainly extending Rossi et al.’s [32] work on computing
(extended) matching statistics to computing tag statistics:

Theorem 3 (cf. [32]). Given an SLP with g rules for a text T [1..n] whose
BWT has r runs, we can build an O(g+ r)-space data structure such that later,
given a pattern P [1..m], we can compute the extended matching statistics XMS
of P with respect to T in O(m log n) time.

Proof. We apply Lemma 1 to the SLP to obtain an O(g)-space LCP data struc-
ture with O(log n) query time. We also store SA[u] and SA[d], for each run
BWT[u..d], in an O(r)-space data structure supporting predecessor and succes-
sor queries on the keys u and d. Finally, we use the O(r)-space RLBWT of
Theorem 2, which can also compute any BWT[j] and LF[j]. These functions
and the predecessor queries can run in O(log log n) time, but O(log n) time is
enough for our purposes.

As usual, for technical convenience we add to T a special symbol T [n +
1] = $ that is lexicographically smaller than all the other symbols in T (and in
potential patterns P ). This implies BWT[1] = $. For a start, then, considering



P [m + 1..m] = ϵ, we set XMS[m + 1].len = 0, XMS[m + 1].rank = 1 and
XMS[m+ 1].pos = n+ 1.

Now, suppose we have already computed the suffix XMS[i+ 1..m+ 1] of the
extended matching statistics and want to compute XMS[i]. If BWT[XMS[i +
1].rank] = P [i] then

XMS[i].len = XMS[i+ 1].len + 1 ,

XMS[i].pos = XMS[i+ 1].pos− 1 ,

XMS[i].rank = LF[XMS[i+ 1].rank] .

Otherwise, let BWT[u] and BWT[d] be the occurrences of P [i] immediately
preceding and following BWT[XMS[i+1].rank]. We find u and d with predeces-
sor/successor queries.

By the definition of the BWT, at least one of T [SA[u]..n] and T [SA[d]..n]
has the longest common prefix with P [i+1..m] of any suffix of T preceded by a
copy of P [i]. Since BWT[u] is the last character in a run and BWT[d] is the first
character in a run, we have SA[u] and SA[d] stored. Therefore, we can compute

ℓu = LCP(P [i+ 1..i+XMS[i+ 1].len− 1], T [SA[u]..n]) ,

ℓd = LCP(P [i+ 1..i+XMS[i+ 1].len− 1], T [SA[d]..n]) ,

in O(log n) time, since P [i+1..i+XMS[i+1].len−1] occurs in T , with no chance
of error.

If ℓu ≥ ℓd then

XMS[i].len = ℓu + 1 ,

XMS[i].pos = SA[u]− 1 ,

XMS[i].rank = LF[u] ,

and, symmetrically, if ℓu < ℓd then

XMS[i].len = ℓd + 1 ,

XMS[i].pos = SA[d]− 1 ,

XMS[i].rank = LF[d] .

⊓⊔

Corollary 2. Suppose we are given an SLP with g rules for a text T [1..n] whose
BWT has r runs, and a tag array for T with t runs. Then we can build an
O(g+r+ t)-space data structure such that later, given a pattern P [1..m], we can
compute the tag statistics of P with respect to T in O(m log n) time.

Proof. We store an O(t)-space predecessor data structure on the starting posi-
tions of the runs in Tag. For each run Tag[u..d], we also store SA[u] and SA[d].
Given P , we start by applying Theorem 3 to compute the extended match-
ing statistics XMS[1..m + 1] of P with respect to T in O(m log n) time. For



1 ≤ i ≤ m+ 1, we then set

TS[i].len = XMS[i].len ,

TS[i].pos = XMS[i].pos ,

TS[i].rank = XMS[i].rank ,

and TS[i].run to the index of the run Tag[u..d] in the tag array containing posi-
tion TS[i].rank (computed with a predecessor query). Further, we use the LCP
data structure to compute

TS[i].up = LCP(P [i..m], T [SA[u]..n]) ,

TS[i].down = LCP(P [i..m], T [SA[d]..n]) .

This also takes a total of O(m log n) time. ⊓⊔

4 Using tag statistics

Once we have the tag statistics of P with respect to T , we no longer need
Lemma 1, or even the SA samples or BWT, to find out which tags label the
occurrences of any P [i..j]. We use Muthukrishnan’s document-listing data struc-
ture in the same way as in the proof of Corollary 1: once we know which runs
in the tag array overlap the BWT interval for P [i..j], we use Muthukrishnan’s
structure to list the k distinct tags in O(k) time. In this section we explain how
we find which runs in the tag array overlap the BWT interval for P [i..j], with-
out computing the interval itself (which we do not know how to do quickly in
O(g + r + t) space).

Lemma 2. Suppose we are given a text T [1..n] and a tag array for T with t runs.
Then, for any constant ϵ > 0, we can build an O(g+ t)-space data structure such
that later, given the tag statistics of a pattern P [1..m] with respect to T and i
and j, we can find which runs in the tag array overlap the BWT interval for
P [i..j] in O(logϵ t) time.

Proof. We store O(t)-space range-predecessor/successor data structures over L
with O(logϵ t) query time [28] (we call them collectively range-successor queries
at times). With these data structures and given values ℓ and q, we can find the
largest position of a value less than ℓ in L[0..2q − 2] and the smallest position
of a value less than ℓ in L[2q..2t] in O(logϵ t) time. We note that ϵ can be
made arbitrarily small for the cost of a larger constant multiplying the space
consumption.

Given the tag statistics TS[1..m+ 1] of P with respect to T and i and j, we
can check that P [i..j] occurs in T at all by verifying that TS[i].len ≥ j − i+ 1.
Assuming it does, we can look up the index q = TS[i].run of the run in the tag
array containing Tag[TS[i].rank] and we can check in constant time whether

TS[i].up ≥ j − i+ 1 ,

TS[i].down ≥ j − i+ 1 .



If TS[i].up < j−i+1 then L[2q−1] < j−i+1 (note L[2q−1] is the LCP within
run q) and run q is the first in the tag array to overlap the BWT interval for
P [i..j]. Otherwise, we use a range-predecessor query to find the largest position
in L[0..2q − 2] with value less than j − i + 1. This tells us the first run in
the tag array to overlap the BWT interval for P [i..j]: If the range-predecessor
query returns p, then the index of this first run is 1 + ⌊p/2⌋; the run is covered
completely if p is even and partially if p is odd.

Symmetrically, if TS[i].down < j− i+1 then L[2q−1] < j− i+1 and run q is
the last one in the tag array to overlap the BWT interval for P [i..j]. Otherwise,
we use a range-successor query to find the smallest position in L[2q..2t] of a value
less than j − i + 1, which tells us the last run in the tag array to overlap the
BWT interval for P [i..j]. If the range-successor query returns p, then the index
of this last run is ⌈p/2⌉, and it is covered completely iff p is even.

Notice we never compute the BWT interval for P [i..j]. ⊓⊔

Corollary 3. Suppose we are given an SLP with g rules for a text T [1..n] whose
BWT has r runs, and a tag array for T with t runs. Then, for any constant ϵ > 0,
we can build an O(g + r + t)-space data structure with which we can preprocess
any pattern P [1..m] in O(m log n) time such that later, given i and j, we can
return the k distinct tags labeling occurrences of P [i..j] in T in O(logϵ t + k)
time.

Proof. We store instances of the data structures from (i) Corollary 2, (ii) Lemma 2,
and (iii) Corollary 1. Given P , we use the data structures (i) to compute the tag
statistics of P with respect to T in O(m log n) time. Given i and j, we use the
data structures (ii) to find the indices s and e of the runs in Tag that are con-
tained in or overlap the BWT range of P [i..j], in time O(logϵ t). Finally, using
the array A[1..t] (iii) we run Muthukrishnan’s algorithm on A[s..e] to find the k
distinct tags labeling occurrences of P [i..j] in T , in O(k) time. ⊓⊔

5 Optimal-time tag reporting

The time in Corollary 3 for reporting the k distinct tags labeling occurrences of
P [i..j] in T—that is, O(logϵ t+ k)—is optimal if k ∈ Ω(logϵ t). We do not know
k in advance, however, and if we always want optimal reporting time we cannot
afford range-successor queries right away.

We start with an important property of the ranges we find in L in the proof
of Corollary 3.

Lemma 3. Let q, q′ be positions in L with respective thresholds ℓ, ℓ′, from which
the predecessor/successor queries result in ranges [u, d], [u′, d′]. Then [u, d], [u′, d′]
can be equal, disjoint or nested, but cannot overlap.

Proof. Consider L[u..d] (L[u′..d′]), which is as large as possible around q (q′)
not containing any values less than ℓ (ℓ′), and that u < u′ ≤ d < 2t. It follows
that ℓ ≤ L[u′ − 1] < ℓ′, therefore, since L[d + 1] < ℓ < ℓ′, it must be d′ ≤ d, so
L[u′..d′] is contained in L[u..d]. The case u ≤ d′ < d is analogous. ⊓⊔
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Fig. 2. The array L of Figure 1 and the sets of segments forming F3 (above) and F2

(below). The larger range of F3 contains the smaller, and thus they represent the same
set of tags.

Consider the distinct ranges we can find in L such that the correspond-
ing range in Tag (including both contained and overlapped runs) contains k′

distinct tags, for some k′. If two of these ranges in L are nested, then their
corresponding ranges in Tag contain exactly the same k′ distinct tags—possibly
with different multiplicities, but that does not concern us here. Let Fk′ be the
O(t)-bit balanced-parentheses representation [22] of these distinct ranges in L,
where every range is an ancestor of those it contains. With O(t) further bits, we
can find in O(1) time the lowest node of Fk′ that contains any given entry L[q]
[33, Sec. 4.1]. Figure 2 gives an example.

While querying the data structure from Lemma 2, if we somehow guess cor-
rectly that our range-successor queries will return a range in L whose corre-
sponding range in Tag contains exactly k′ distinct tags, then we can replace
those range-successor queries by the constant-time method described above to
find the corresponding node in Fk′ .

This node may correspond to a range nested strictly inside the one we would
obtain from the range-successor queries but, as we noted above, that makes no
difference to our final answer. In fact, the node of Fk′ we find has the smallest
range—corresponding to the largest value of j − i + 1—we could obtain from
our range-successor queries, while still returning k′ distinct tags. If we store an
O(t)-bits range-minimum data structure [11] over L—which we can reuse for all
values of k′—then we can find that largest value j− i+1 in constant time, as it
is the minimum value of L in the range.

Of course, we cannot assume we will guess correctly the number k′ of dis-
tinct tags we will eventually return. Instead, we keep an O(t)-bits representa-

tion Fk′ for every k′ ≤ lgϵ t, which takes O
(

t lgϵ t
log t

)
⊂ O(t) space. We query

F1, F2, F3, . . . , Flgϵ t in turn, using constant time for each. If, for some Fk′ , the
range-minimum data structure returns a value smaller than j − i + 1, then we
know that P [i..j] is labeled by k = k′ − 1 distinct tags, so we use the formulas
of Section 4 to convert the range in L given by Fk to a range A[s..e], and use
Muthukrishnan’s algorithm (Corollary 1) to return the distinct tags in A[s..e].
Otherwise, after we query Flgϵ t, we know that k > lgϵ t, so we can perform the
range-successor queries safely as in Section 4. In both cases, we use O(k) total
time.



Theorem 4. Suppose we are given an SLP with g rules for a text T [1..n] whose
BWT has r runs, and a tag array for T with t runs. Then we can build an
O(g + r + t)-space data structure that can preprocess any pattern P [1..m] in
O(m log n) time such that later, given i and j, it returns the k distinct tags
labeling occurrences of P [i..j] in T in optimal O(k) time.

6 Discussion and future work

This paper lays out the theoretical basis for Wheeler maps. We have shown
how using compressed space, we can preprocess a pattern P such that later,
given any i and j, we report the distinct tags labeling the occurrences of P [i..j]
in the optimal constant time per tag reported. To the best of our knowledge,
Wheeler maps are the first data structure allowing for an efficient tag listing
of subpatterns. Further results on prioritizing and constraining the query tag
frequencies will be included in the extended version of this article.

As a future work, we plan to address the question of whether mixing Wheeler
graphs with Wheeler maps — to allow some kinds of recombinations while ex-
cluding others — is useful and viable. Besides pangenomics, we plan to explore
the versatile nature of Wheeler maps and look for other applications. We also
believe that for certain cases we can prove analytical bounds on the number of
runs in the tag array by relating them to the repetitiveness of the input.

We are now investigating our approach experimentally. Together with the
full implementations of the data structures described here, we also still need
efficient algorithms for extracting tag arrays from pangenome graphs for large
genomic datasets, and good compression schemes for those tag arrays. A tag
could contain a lot of information, so representing it explicitly for every run of
that tag in the tag array might be very wasteful. It is likely more space-efficient
to store each distinct tag only once, separated from the tag array by one or more
levels of indirection. Once we can build and store Wheeler maps well in practice,
we intend to integrate them into current pangenomics pipelines.
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24. G. Navarro and V. Mäkinen. Compressed full-text indexes. ACM Computing
Surveys, 39(1):article 2, 2007.

25. Gonzalo Navarro. Compact data structures: A practical approach. Cambridge
University Press, 2016.

26. Gonzalo Navarro. Indexing highly repetitive string collections, part II: Compressed
indexes. ACM Computing Surveys, 54(2):article 26, 2021.

27. Gonzalo Navarro and Nicola Prezza. Universal compressed text indexing. Theo-
retical Computer Science, 762:41–50, 2019.

28. Yakov Nekrich and Gonzalo Navarro. Sorted range reporting. In Proc. 13th Scan-
dinavian Symposium on Algorithmic Theory (SWAT), pages 271–282, 2012.

29. Takaaki Nishimoto and Yasuo Tabei. Optimal-time queries on BWT-runs com-
pressed indexes. In Proc. International Colloquium on Automata, Languages, and
Programming (ICALP), pages 101:1–101:15, 2021.

30. David E. Reich, Michele Cargill, Stacey Bolk, James Ireland, Pardis C. Sabeti,
Daniel J. Richter, Thomas Lavery, Rose Kouyoumjian, Shelli F Farhadian, Ryk
Ward, et al. Linkage disequilibrium in the human genome. Nature, 411(6834):199–
204, 2001.
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