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Costs and Operating Dynamics of Integrating Distributed Energy Resources in Commercial and 
Industrial Buildings with Electric Vehicle Charging 
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Growing concerns over greenhouse gas and pollutant emissions have increased the 

pressure to shift energy conversion paradigms from current forms to more sustainable methods, 

such as through the use of distributed energy resources (DER) at industrial and commercial 

buildings. This dissertation is concerned with the optimal design and dispatch of a DER system 

installed at an industrial or commercial building. An optimization model that accurately captures 

typical utility costs and the physical constraints of a combined cooling, heating, and power 

(CCHP) system is designed to size and operate a DER system at a building. The optimization 

model is then used with cooperative game theory to evaluate the financial performance of a 

CCHP investment. The CCHP model is then modified to include energy storage, solar powered 

generators, alternative fuel sources, carbon emission limits, and building interactions with public 

and fleet PEVs. Then, a separate plugin electric vehicle (PEV) refueling model is developed to 

determine the cost to operate a public Level 3 fast charging station.  

The CCHP design and dispatch results show the size of the building load and consistency 

of the thermal loads are critical to positive financial performance. While using the CCHP system 

to produce cooling can provide savings, heat production drives positive financial performance. 
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When designing the DER system to reduce carbon emissions, the use of renewable fuels can 

allow for a gas turbine system with heat recovery to reduce carbon emissions for a large 

university by 67%. Further reductions require large photovoltaic installations coupled with 

energy storage or the ability to export electricity back to the grid if costs are to remain relatively 

low. 

When considering Level 3 fast charging equipment, demand charges at low PEV travel 

levels are sufficiently high to discourage adoption. Integration of the equipment can reduce 

demand charge costs only if the building maximum demand does not coincide with PEV 

refueling. Electric vehicle refueling does not typically affect DER design at low PEV travel 

levels, but can as electric vehicle travel increases. However, as PEV travel increases, the 

stochastic nature of PEV refueling disappears, and the optimization problem may become 

deterministic.
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1 Introduction 

1.1 Overview 

Concerns over increasing greenhouse gas and pollutant emissions associated with energy 

conversion has caused our society to evaluate how we convert energy. Because of these concerns 

many are attempting to find efficient and effective methods of reducing these emissions in the 

energy conversion sectors for which the greatest impact can be made. 

During the year 2012, the U.S. commercial and industrial sectors consumed 

approximately 2323 terawatt-hours of delivered electricity and 3038 terawatt-hours of natural 

gas [1–3]. In the past, technical and economic limitations have restricted how commercial and 

industrial buildings can meet this electrical and natural gas. Building operators relied on energy 

provided by utilities, on lower efficiency onsite sources, or small amounts of photovoltaic (PV) 

sources for energy. Today, alternative developing and some mature technologies and methods 

are available to commercial and industrial buildings that allow for a reduction in emissions while 

possibly maintaining positive economic performance. 

Concurrently, the light duty transportation sector consumes approximately 4396 terawatt-

hours of fuel (primarily gasoline), and is considered as a primary source of poor urban air 

quality. Increased availability of alternative fuel vehicles has allowed for customers to reduce 

their contribution to pollution and greenhouse gas emissions. In particular, the plug-in electric 

vehicle (PEV), can potentially reduce or eliminate any associated emissions, depending upon the 

source of electricity. While PEVs are typically refueled at home, prior work has shown that some 

public PEV refueling infrastructure is required if drivers are to maintain typical travel patterns 
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[4].  If some of this infrastructure is located at commercial or industrial buildings, the amount of 

electricity passing through these buildings could rise as PEV use increases. 

Taking into account the tremendous amount of energy consumed onsite, the potential of 

supplying electricity to the transportation sector, and the emergence of clean and renewable 

technologies, commercial and industrial buildings are a potential location where the greenhouse 

gas and pollutant emissions associated with society’s activities can be reduced. This research is 

concerned with determining what technologies are best suited to realizing a reduction in 

emissions while maintaining positive economic performance. 

Ideally, research in this area would consider technologies and methods that provide 

access to managing energy demand, reducing energy intensity of building operations, and 

producing energy onsite and elsewhere. Also, realistically, the first two options would 

traditionally be considered before the production of energy is addressed. However, if it assumed 

that a building operator has already evaluated and possibly installed some of these technologies, 

reducing both cost and emissions, then the next option is to determine if installing onsite 

generation can further improve building performance. Onsite generation, or as commonly 

referred to as distributed generation (DG), can be coupled with other ancillary technologies that 

convert waste produced by generators into useful products, such as heating or cooling for a 

building, and energy storage. The combination of all of these technologies is known as 

distributed energy resources (DER). 

The following work contributes to the understanding of optimal design of DER systems 

installed at commercial and industrial buildings with environmental constraints and PEV 

refueling. This is accomplished by: 
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1. Building an optimization model capturing the decision to purchase and operate DER and 

PEVs when environmental constraints apply. 

2. Evaluation of Level 3 or direct current fast charging technology for refueling PEVs. 

3. Economic and environmental analysis of different ancillary devices coupled with DG to 

improve understanding of the benefits of different types of CCHP energy products. 

4. Determining the effect on optimal DER design when emission reduction goals are 

established. 

5. Evaluating the impact of including the option of adopting public refueling infrastructure 

at a building on the design of optimal DER design. 

6. Evaluating the impact of adopting PEV fleet vehicles at a building on the design of 

optimal DER design. 

1.2 Literature Review 

1.2.1 Distributed Generation and Distributed Energy Resources 

Distributed generation involves the use of small-scale electrical generators to provide 

power at the point of use.  Shifting from centralized generation to distributed generation provides 

numerous benefits to individual customers, utilities, and society as a whole, including the 

potential for increased system efficiency, reliability, and power quality, as well as reduced grid 

demand, delivery losses, central generation investment, maintenance, expansion, and emissions 

[5]. Despite these benefits, it is estimated that distributed generation accounts for less than three 

percent of all installed generation capacity in the United States, with distributed generation 

smaller than 1 MW accounting for less than one percent [6]. 
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It has been argued that this may be due to utility-imposed electrical standby charges 

associated with DG, which can effectively increase the cost of utility-supplied electricity 

whenever a customer installs DG [7] and potentially limit the long term benefits of DG [8].  

However, any decrease in profitability caused by such rate structures has only been shown to be 

prohibitive for those serviced by utilities with moderate to low congestion grids [9].  It has also 

been argued that the small DG market may be due to mandatory regulatory and interconnection 

requirements that must be satisfied before DG may be utilized [10].  Regardless of the specific 

causes of the small current market size, the primary barrier for DG installation and use is cost; as 

a practical matter, customers will not consider DG in the first instance if it is not shown to be 

profitable [9,10], and the relative capital cost of smaller energy conversion systems has typically 

been much higher than similar (i.e., same technology) larger energy conversion systems. 

DG is currently not a practical option for all commercial and industrial buildings, even if it 

appears to be profitable on average.  The practicality of DG depends upon the magnitude and 

dynamic coincidence of electric and thermal demand as compared to the dispatch and control 

capabilities of available DG systems. DG is typically a more attractive option for commercial 

and industrial sectors that may be subject to relatively high electric rates and may have 

coincident heat and power demand.  For example, despite the significant variation in rates 

between regions and providers[6], in California, commercial and industrial customers paid an 

average of $0.131 per kWh and $0.098 per kWh respectively in 2010 [11].  Under these 

circumstances, DG has the potential to reduce the amount spent on electric energy when properly 

matched to the needs of a customer.   
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Numerous forms of DG that use natural gas are available today. These technologies 

include small gas turbines (GT), microturbine generators (MTG), and fuel cells (FC) [12]. These 

technologies can also be operated using renewable biogas [13,14]. In addition to electricity, 

many of these technologies can provide a source of high grade heat for combined heat and power  

via heat recovery units (CHP) [15–17] and absorption chillers for combined cooling, heating, and 

power (CCHP) [18–20]. They are also capable of providing base load and load-following power 

[21,22].  They can also provide power quality support when used in conjunction with proper 

power electronics [23].  Renewable DG systems that use photovoltaic panels (PV), which absorb 

and convert solar energy to direct current electricity, are popular today[5].  Energy storage can 

be used with or without DG and ancillary devices to store electrical or thermal energy for later 

use in a building [24,25].  DG, all ancillary devices, and energy storage are all considered to be 

distributed energy resources (DER). 

Investment risks associated with natural gas fired DG include the high volatility of natural 

gas prices. Predictably, studies concerning the impact of fuel price uncertainty show that the risk 

of investment increases as the volatility of fuel price increases [26].  It has also been shown that 

payback is more likely to increase than decrease when faced with electric rate, fuel price, or 

capital cost volatility, particularly when the price of electricity may decrease suddenly while fuel 

price increase [27].  

Multiple business models have been developed and presented by Siler-Evans et al. and 

Verbruggen et al.  take advantage of DER technology in an attempt to create business prospects, 

including demand shifting, demand response, providing reserve power capacity, and grid 

balancing [28,29].  The same work also suggested that the ability to sell and trade on a power 
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exchange market, feed in tariffs, and stable regulations may further improve the business 

prospects of DG [28,30]. 

Studies on the economics of DG and CHP establish that detailed information regarding the 

dynamics of the electrical load, thermal load, characteristics of the DG source, and applicable 

electric rate structures are necessary to estimate the profitability of a project [29]. Further studies 

demonstrate that both FCs and MTGs are best suited for situations with a large and consistent 

electrical and thermal load as they take full advantage of all the products of the FC or MTG, and 

that for situations without a consistent thermal load, it is better to employ a generator with higher 

electrical efficiency [31] or to abandon attempts to recover heat in the DG system design [32]. It 

was also shown that buildings with low electrical load factors and large heating demand were 

well suited for GT installation [31]. 

A variety of methods to design and operate CCHP systems have been presented in the 

literature. Broadly, the studies can be grouped into work that dispatched predesigned systems 

under desired operating strategies (or “simple dispatch” strategies) and work that used 

optimization methods to design and/or operate a system. “Simple dispatch” strategies for the 

purpose of this work are defined as any operating strategy that is predefined or uses a heuristics 

based approach. 

Research of DER systems controlled using “simple” dispatch strategies have studied 

various topics regarding CCHP applications. Some studies by Nanaeda et al. and Becker et al., 

for example, have incorporated physics-based models in order to determine physical as was as 

economic feasibility [17,33]. Other studies (e.g., Wang et al., Ziher and Poredos, Naimaster and 

Sleiti, Medrano et al., Maidment et al., Lai and Hui, and Knizley et al.) have examined pre-sized 
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CCHP systems for which desired operation strategies are already defined [34–40], or where a 

criteria such as cost is used to decide between predefined dispatch strategies (e.g., Flores et al., 

and Flores et al.) [41,42]. Simple models have also been used to define when certain types of 

technology become economically attractive [43,44]. 

Numerous optimization tools have been presented in the literature. Typically, the goal of 

the optimization studies have been to adopt a CCHP system that minimizes cost, CO2, emissions, 

primary energy consumption, or some combination of all three metrics. Cardona et al. and Aki et 

al. both presented a linear program that attempts to minimize cost and environmental impact 

showing that these goals are sometimes in conflict with one another [45,46]. Linear programs 

built by Fang et al, Lozano et al., and Wang et al. have also been used to determine the operation 

of a pre-sized CCHP system [47], to explore the marginal costs of changing different parameters 

associated with the constraints of the system [48], and size DER systems that included a CHP 

system with thermal energy storage [49]. Mixed integer linear programs (MILP) building by 

Collazos et al. and Bozchalui and Sharma have been presented with the goal of being used to 

control predesigned systems [50,51] while Keirstead et al.  presented a MILP to determine the 

optimal design of a CCHP system in which planning restrictions [52], Liu et al. presented a 

MILP that includes environmental impacts [53], Lozano et al. presented a MILP that included  

legal constraints [54], and Liu et al. presented a MILP that accounted for economies of scale 

associated with purchasing multiple generators [55]. Other MILPs proposed by Wakui and 

Yokoyama, and Bracco et al. have included optimization of electrical energy storage [56] and 

renewables [57] in addition to CCHP systems. Other non-linear optimization problems have been 

proposed by Wang et al., Li et al., and Zeng et al. for a CCHP system powered by solar thermal 
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collectors [58], a CCHP system that includes thermal energy storage for both residential and 

commercial buildings [59], a CCHP system that incorporates a ground source heat pump for 

producing heat [60]. 

Probably the most famous of DER optimization tools is the Distributed Energy Resource 

Customer Adoption Model (DER-CAM) [61] developed and supported by researchers at 

Lawrence Berkeley National Laboratory (LBNL), which produces an optimal set of DER 

technologies and dispatch schedules for a given building energy demand. The DER-CAM model 

was used in research performed by Firestone et al., Siddiqui et al., Siddiqui et al., Marnay et al., 

Stadler et al., Marnay et al., and Stadler et al. [9,32,62–66]. However, research performed by 

Pruitt et al. using a nonlinear mixed integer program that considered part load efficiencies of DG 

and quality of recovered heat showed that a program similar to the DER-CAM model is limited 

in its ability to optimally size CCHP systems [61].  Further research using DER-CAM by Milan 

et al. has shown how improving optimization model accuracy can produce different results, 

depending on the level of detail included [67]. 

Many models have been built to determine an optimal configuration (system design) and 

financial performance of DER systems. However, important characteristics that affect the 

decision to invest in these technologies are not present in many of the state-of-the-art models. 

These missing characteristics include detailed and realistic electrical and natural gas utility cost 

structures, absorption chiller physics, and flexible design of heat recovery equipment.  

In addition, the value of individual components of DER systems or the different energy 

products are not typically determined or assessed in the current literature. While the return on 

investment for the whole DER system is the driving factor for making an investment decision, 
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how individual technologies or types of energy conversion considered add to or subtract from the 

overall economic performance is hidden. This can result in a model finding that maximum value 

occurs when a set of technologies are adopted, ignoring that suggested components add little to 

no value while increasing investment risk. 

1.2.2 Refueling Plug-in Electric Vehicles 

Three major perceived disadvantages of plug-in electric vehicles (PEV) are limited range, 

slow recharging time [68], and availability of charging infrastructure [69,70] . Numerous 

research efforts have been made towards improving PEV range and charging infrastructure in an 

effort to overcome these perceived barriers to widespread PEV adoption [71]. Improvements to 

infrastructure have led to the installation of three types of electric vehicle supply equipment 

(EVSE) across the United States: the Level 1 (3.3 kW output), Level 2 (up to 14.4 kW output but 

typically 6.6 kW), and Level 3 EVSE (up to 240 kW output but typically 44 kW – 120 kW) [72]. 

Research focused on Level 1 and 2 type chargers has shown that while increasing battery size 

may assuage concerns regarding PEVs, some public EVSE capable of providing power beyond 

what is available from a typical electric socket (i.e., Level 3 charging) can increase the feasibility 

of widespread PEV adoption [4]. As a result, many aspects of Level 3 EVSE are currently being 

investigated. 

Dharmakeerthi et al. showed that the integration of EVSE with the electrical grid 

introduces new challenges to operating and maintaining the electrical grid [73]. According to 

Sadeghi-Barzani et al., grid reliability must be considered when selecting locations for EVSE 

installation [74]. Once the EVSE is installed, Eising et al. and Salah et al. showed that electric 

grid reliability may be reduced for densely populated areas as PEV adoption increases [75,76], 
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while Dharmakeerthi et al. showed voltage stability may also be reduced in areas of high PEV 

use [77]. In distribution circuits, Dubey et al. showed that losses are greater for secondary 

voltages than primary voltages [78].  However, other work performed by Razeghi et al. has 

shown that charging plug-in hybrid vehicles within residential distribution circuits has little 

effect on residential transformer life unless drivers start charging as soon as they arrive at home 

with Level 2 EVSE [79].  Also, Harris and Webber [80] showed that unscheduled PEV charging 

will only increase peak demand by 1% for some regions in the United States if moderate grid 

growth and improvement occurs. 

The optimization of PEV charging is another area that has received significant research 

attention. Research performed by Foley et al. that was based on the Ireland grid has shown that 

charging PEVs at night versus during the day can result in lower greenhouse gas emissions and 

cost [81]. When controlled properly, Zhang et al., Zakariazadeh et al., Clement-Nyns et al., and 

Soares et al. show that PEV charging can also be used to improve overall grid performance  [82–

85]. Electricity cost to charge PEVs can also be minimized according to Iversen et al., Su et al., 

Xu et al., and Tushar et al. [86–89], while also minimizing emissions (Zakariazadeh et al.) [90] 

or grid losses (Yang et al.) [91]  with smart PEV charging. Other work performed by Momber et 

al. has looked at the possibility of utilizing PEVs connected to EVSE to help minimize building 

energy costs through peak shaving and load shifting [92].  

The optimal siting of EVSE has also been explored in the current literature. This problem 

has been formulated as a mixed integer nonlinear program that minimizes initial investment cost 

and grid losses by Sadeghi- Barzani et al. [74], and both investment and operational cost by Jia et 

al. [93]. Several integer programs have been proposed by Su et al., Gimènez-Gaydou et al., 
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Wagner et al., Xi et al., and Xu et al. that optimize EVSE placement such that total power losses 

in the grid are minimized [94], customer coverage is maximized [95,96], PEV refueling is 

maximized subject to an EVSE investment limit  [97], and transportation distance to the EVSE is 

minimized [98]. Corresponding work has focused on evaluating the economics and feasibility of 

public EVSE. Research performed by Petersen et al. focused on plug-in hybrid vehicles found 

that making public EVSE ubiquitous increases the overall cost of PEV operation substantially 

[99]. However, Zhang et al. showed that some public EVSE is required to maintain high 

feasibility for PEVs [4]. Other work performed by Ghavami and Kar, Bayram et al., and 

Williams and DeShazo has focused on developing pricing methods for public EVSE to minimize 

cost of operation [100] while reducing congestion at individual charge points [101], or to recover 

investment cost while remaining cost-competitive with conventional gasoline vehicles [102]. 

As of 2015, approximately 70% of all public PEV charging outlets are Level 2, 21.5% are 

Level 1, and 8.5% are Level 3 [103].   Despite being the least adopted charger type, Level 3 

EVSE are capable of charging a PEV battery up to 80% state of charge quickly [72]. Schroeder 

and Traber showed that the currently high investment cost and uncertainty associated with PEV 

adoption rates make investment in fast charging equipment risky [104]. If this risk can be 

reduced and the number of Level 3 EVSE increases, it is important to understand the costs 

associated with operating a Level 3 charger in addition to understanding optimal placement, 

charging strategy, grid impacts, and pricing methods.  

Current research on electric vehicle charging has focused on the macroscopic impact of 

fueling PEVs, such as the overall cost to society or grid impacts. While some work has been 

performed on the charging behavior and economic performance of individual public EVSE, 
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operation costs and accompanying feasibility studies on Level 3 charging equipment have not 

been presented in the literature. Similarly, the cost of charging individual PEVs has not been 

delineated. 

From the perspective of integration with the built environment, little research has been 

performed on examining how electric vehicle charging affects the decision to invest in DG or 

CCHP. While work has been performed on using electric vehicles as a form of energy storage for 

buildings, the simple question of how does PEV charging impact how building operators should 

meet their energy demands has not been answered.  

1.2.3 Electric Vehicles and Distributed Energy Resources 

Research on electric vehicle integration with the built environment has focused primarily 

on optimal refueling schedules and the possibility of using PEVs as a form of energy storage for 

the buildings at which they are parked or will travel to [105–107]. Other work has focused on 

integrating the refueling of vehicles within a microgrid powered using renewable technology 

[108].  

So far, some of the only work that has addressed the possible effects that PEV refueling 

may have on the optimal design of DER was performed by Cardoso et al. [109]. In this work, the 

DER-CAM model was reformulated as a stochastic mixed integer linear program and coupled 

with an aggregated PEV travel model to simulate the arrival and departure of vehicles. This work 

considered the possibility of vehicle to grid power delivery in addition to PEV refueling. This 

work suggests that the inclusion of PEV refueling will have little to no impact on the decision to 

purchase and operate DER.  
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Keep in mind that Cardoso et al. [109] focused on a single energy demand load profile. 

Prior work performed on DER system optimization has always shown that while equipment 

capital costs and fuel versus electricity prices have always been critical to determining optimal 

technology adoption, the size and shape of the building profile also has an impact on 

optimization results. As a result, it is almost certain that the refueling of PEVs in some likely 

scenarios will affect optimal DER adoption. While the results of [109] suggest that the public 

refueling of PEVs will not affect DER adoption, further work in this area is required to ensure 

that this statement is true across all scenarios.  

Almost all of the work in the current literature has been concerned with the refueling of 

PEVs used by individual drivers. Many other paths towards PEV adoption exist other than 

through purchase by individual drivers. For example, Green et al. [71] has suggested that the 

adoption of electric fleet vehicles by businesses, organizations, and agencies would increase PEV 

adoption and support improvements to public refueling infrastructure. Prior research by Erodĝan 

and Miller-Hools, Lin et al., Juan et al., and Hiermann et al. on the electric fleet vehicles has 

focused on the routing of green vehicles [110–113]. The vehicle routing problem is a well-

known and well-studied problem that is typically formulated as a mixed integer linear program, 

as done by Desrosiers et al., Bektas, Miller et al., Laporte et al., and Christofides et al. [114–

118]. Different variations on the vehicle routing problem have included determining optimal 

fleet mix and size (Golden et al. and Braysy et al.) [119,120], operation of a predetermined 

mixed fleet of vehicles (Yuan and Mehrez.) [121], and optimal routing when multiple starting 

and ending locations exist (Chan and Baker) [122]. Since many DER adoption models are also 

formulated as a MILP, there is potential for integration of the two problems. Such a combined 
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problem would allow for the interactions between the purchase and refueling of fleet PEVs and 

the purchase and operation of DER to be understood simultaneously. 

1.2.4 Optimization  

Optimization is a powerful mathematical tool that can provide solutions to complex 

problems providing that a sufficiently accurate mathematical model of the problem can be 

formulated. Numerous methods have been developed for tackling many different problems, both 

linear and nonlinear [123–129]. Many of these methods have been used in the work previously 

mentioned and each type has benefits to certain types of optimization problems. One type of 

problem typically used for both DER system sizing is mixed integer linear programming. This 

method is particularly attractive due to the types of decisions that must be made during DER 

optimization and the extensive number of commercially available solvers capable of reliably 

solving MILP problems, such as CPLEX [130], Gurobi [131], Xpress [132], FortMP [133], and 

through the MATLAB Optimization Toolbox [134]. 

1.2.4.1 Mixed Integer Linear Programming 

The software listed above used proprietary algorithms to solve MILP problems. Almost 

all solvers, however, use some combination of the brand and bound algorithm and the cutting 

plane method, or, when combined, the brand and cut method [135]. In order to find a solution to 

a MILP problem, the branch and bound algorithm first relaxes all integrality constraints imposed 

on the problem and solves the MILP as if it were a linear program. Once the solution to the linear 

program has been found, additional constraints are added to restrict and integer variables that 

were assigned non-integer values during the integrality relaxation, and the additional linear 
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programs are solved. This process is repeated until a linear program with additional constraints is 

found where an optimal solution is found and all integer variables retain their integrality [135].  

The cutting plane method is applied before any integer relaxation occurs. Through 

application of this method, any difference between the feasible solution space between the linear 

program and the MILP program is determined. If the integer feasible set is a smaller subspace of 

the linear feasible set, additional constraints are added to restrict the problem only to the integer 

feasible set. These additional constraints are known as cutting planes [135]. 

1.2.4.2 Stochastic Optimization 

Stochastic optimization is a branch of optimization that deals with making decisions 

when the future is unknown. At their core, all optimization problems are stochastic in the sense 

that the future on which current decisions are being based off of is not known [136]. For 

example, if a DER system is optimized for a particular building using past building data, the 

system is only optimized for the past. If future building operations change or energy efficiency 

and management technology is adopted such that the building energy profiles change in either 

dynamics or amplitude, the DER system cannot be considered optimal for the future. A common 

assumption made during DER optimization is that prior building improvements have been made 

such that the energy demand profiles cannot be considerably reshaped or reduced to decrease 

cost and that building operations will remain similar to the past for the next five to ten years. By 

making this assumption, the stochastic DER optimization problem can be reduced to a 

deterministic problem. However, sometimes this simplifying assumption cannot be made and the 

stochastic nature of the problem must be addressed. 
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Stochastic optimization has been used numerous times with regards to DER and energy 

systems [137–143]. Each of these formulations relies upon the assumption that the stochastic 

processes that define the problem can be described by some sort of probability distribution [136]. 

These distributions can be used to develop likely or representative scenarios for future behavior 

[136]. Once the likely future scenarios have been determined along with their probability of 

occurring, the stochastic problem can be formulated as a two stage problem where first a 

decision is made that impacts the second stage of the problem [144,145]. An applicable example 

of this would be the decision to purchase EVSE to supply electricity to publicly refueled PEVs. 

The first stage would be to decide if EVSE should be purchased, and if so, what type and how 

many. Once purchased, the second stage would be to wait and see how many vehicles show up, 

refuel, and pay the EVSE investor for the provided service. If the PEV traffic to the EVSE can be 

probabilistically modeled, then an expected high, average, and low number of vehicles visiting 

the station can be estimated, along with the corresponding revenue and operating costs. This 

model provides the information needed to model the second stage of the problem. 

Stochastic optimization is not specific to any particular linear or non-linear method. 

Formulations can be made for linear, mixed integer linear, and non-linear models. The stochastic 

method dictates how the model is constructed, stating that the initial decision to perform a certain 

action occurs while taking into account all possible stochastic scenarios. As a result, the number 

of variables used to model a specific problem increases in total by the number of possible 

scenarios. For example, if a DER optimization problem containing a single investment variable 

and ten operational variables, the size of the deterministic problem would be 1+10, or 11. If the 

problem was reformulated as a stochastic problem with X scenarios, the number of variables 
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would increase by 1+10X. This may not be a problem for smaller linear problems, but becomes 

untenable as problems increase in size and complexity (i.e., a linear problem becomes a MILP). 

Care and consideration must be taken when designing a problem to ensure that the size and 

accuracy are balanced such that the problem can actually be solved while providing useful results 

[136]. 

1.3 Goals 

The two goals of this work are to: 

1. Determine and evaluate the optimal mix and operation of distributed energy resources for 

a commercial or industrial building while also taking into account possible environmental 

constraints and the presence of plug-in electric vehicles, and 

2. Determine the feasibility of public Level 3 refueling equipment.  

Goal 2 is created to determine the feasibility of Level 3 refueling, but also to determine if 

it is reasonable to include Level 3 EVSE in the analysis of PEV refueling interaction with a 

building. For the purposes of this dissertation, the work will focus upon CO2 emissions as the 

environmental metric associated with building and EVSE operation.  

1.4 Objectives 

In order to reach the goals of determining and evaluating the optimal mix and operation 

of DER at a commercial or industrial building while accounting for environmental constraints 

and the presence of PEVs, and determining the feasibility of public Level 3 refueling equipment 

the following objectives were established: 
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1. Develop models to capture the cost of energy as supplied by local electrical and natural 

gas utilities, 

2. Develop models of energy demand for various commercial and industrial buildings, 

3. Develop a model of public Level 3 charging equipment, 

4. Exercise PEV refueling models to determine the cost to operate public Level 3 EVSE 

either as a standalone system or integrated with a building and evaluate the results, 

5. Develop a model that optimally sizes distributed energy resource systems for a building, 

6. Exercise models to assess the value of different types of energy produced by a DER 

system that is adopted to meet the energy demand of a building and evaluate the results, 

7. Exercise models to evaluate the effects of environmental constraints of selected DER 

systems at a building, 

8. Modify a DER optimization model to include uncontrolled refueling of PEVs using 

public EVSE, and the purchase and subsequent refueling of fleet PEVs when vehicle 

routes are either determined or to be optimized, and 

9. Exercise models that explore how the integration of PEV refueling affects the decision to 

invest in DER systems for a building and evaluate the results. 
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2 Approach 

The following tasks have been defined in order to accomplish the objectives listed in 

Section 1.4.  One task is established for each of the objectives. 

Task 1: Utility Cost Models 

This task is established to develop models to capture the cost of energy as supplied by 

local utilities.  The two types of utilities that have the largest effect on building energy costs and 

PEV charging are electrical and natural gas utilities. Utilities located in Southern California will 

be used due to a relatively high cost of electricity that together with state policies support DER 

use. In addition, the largest markets for fuel cells and PEVs are located in California [146,147]. 

The largest electrical utility in Southern California is Southern California Edison (SCE) and the 

largest natural gas utility is Southern California Gas (SCG). The models of this dissertation will 

be developed using applicable SCE and SCG rates used for commercial and industrial buildings, 

and public PEV charging. 

Task 2: Building Energy Models 

Prior work has shown the importance of using time resolved building data that captures 

electrical, heating, and cooling load dynamics. Building models based on measured and 

dynamically resolved data will be developed that showcase a variety of building loads.  

Task 3: Level 3 Refueling Behavior Model 

Since Level 3 charging data is not readily available, a model based on travel patterns to 

public spaces and public EVSE charging scenarios must be built. This objective will be 

accomplished by producing two models.  
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The first model will use travel data collected by the U.S. National Household Travel 

Survey [148] to produce a set of probability density functions that define typical travel 

parameters (day and time of travel, time spent at destination, distance traveled). This will be 

combined with sales data of Level 3 capable PEVs to produce a set of demand at public charging 

facilities. 

The second model will capture typical operation of public charging facilities. Numerous 

different strategies are in operation today, ranging from time limits to text message alerts that 

notify a driver to move their PEV once charging is complete. While future charging strategies 

and charging technologies may not resemble how public charging is operated today, the model 

will attempt to span how public charging equipment is operated today. 

Task 4: Level 3 Refueling Model Simulation  

Travel patterns for the most common types of trips will be used to analyze the cost to 

operate and refuel using Level 3 charging equipment. A range of commercial and industrial 

building models will also be used to explore the result of integrating the equipment with a 

building. The results of the models will then be used to accomplish Goal 2. 

Task 5: DER Optimization Model 

Many optimization methods for sizing DER systems (system design) are present in the 

literature. One of the most prevalent is mixed integer linear programing. This type of 

programming allows for many of the various parameters that define the cost of building energy 

and physical characteristics of DER to be included. A combination of both integer, binary, and 

continuous variables can be used to define a problem, increasing the accuracy and power of the 
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model at the expense of increased computational time. Despite this drawback, an optimal or near 

optimal solution can be found for many complex mixed integer linear programs. 

A mixed integer linear program will be built that includes all relevant constraints 

presented in the current literature, with the addition of new constraints that improve the modeling 

of the cost of utility energy and the operation of heat recovery devices, such as an absorption 

chiller.  

Task 6: DER System Evaluation 

Applicable technologies will be selected to span possible distributed generators, 

absorption chillers, heat recovery units, and forms of energy storage. Possible operating costs 

and characteristics will be selected in order to project the performance of these systems assuming 

current performance capabilities and projected capabilities. Once the models have been run, the 

data will be analyzed to partially accomplish Goal 1.  

Task 7: Environmental Constraint Effect on DER System Performance 

The optimization model built for Task 5 will be executed with an additional constraint 

that limits the amount of carbon emitted during operation. The constraint will initially allow for 

unlimited carbon emissions, and will then be decreased until the minimum feasible level of 

carbon emissions are found. This approach will show how adopted technologies and fuel source 

change as carbon emission constraints become more stringent. 

Task 8: Addition of PEV Refueling to DER System Optimization 

The integration of PEV refueling into the DER optimization can occur under many 

different scenarios. The three scenarios that will be examined in this work are uncontrolled 
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refueling of PEVs, the design and operation of a fleet of vehicles when the routes to be travelled 

are predetermined, and the design and operation of a fleet of vehicles when only the destinations 

along the routes are known. 

The first scenario will require a stochastic formulation of the DER optimization model 

built in Task 5. Using the PEV travel model built in Task 3, representative refueling patterns will 

be generated and integrated with the stochastic formulation of the DER optimization model, 

allowing for the optimal DER design to be determined while taking into account the public 

refueling of PEVs. 

The second scenario applies to businesses where specific routes are required. An example 

of this would be a transportation business or agency with predetermined bus routes. Assuming 

that the routes are defined not only by specific locations that must be visited but also a schedule, 

the problem of determining the optimal fleet composition consisting of PEVs and conventional 

vehicles while also designing the optimal DER system can be viewed as deterministic. The 

extension of the optimal DER system design problem to a pre-routed fleet design problem will 

maintain the mixed integer linear programing structure, requiring only accounting for additional 

constraints regarding the fleet design and operation. 

The third scenario applies to businesses where specific locations must be visited, but the 

routes between the locations are to be determined through optimization. This problem would 

combine an optimal fleet sizing and mix while considering route design with the optimal DER 

system problem. This problem is also deterministic, with the typical optimal fleet sizing and mix 

problem having mixed integer linear characteristics. As a result, this problem can be integrated 
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with the optimal DER system design by including a formulation of the fleet sizing and mix 

problem. 

Task 9: Evaluate DER Optimization with PEV Refueling 

Using the model created in Task 8, the impact of PEV refueling on CCHP adoption and 

operation decisions will be examined. 
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3 Model Development 

The following sections describe the various models created to satisfy the objective 

discussed in Section 1.4. 

3.1 Utility Models 

3.1.1 Electrical Rate Model 

Electric rate structures are typically broken down into fixed, energy (aka volumetric), and 

demand charges. The methods by which these charges are calculated vary amongst utilities and 

rate structures (e.g., time of use, declining block, and fixed rate). As a result, the calculation of 

utility costs can vary significantly between utilities and depend strongly upon the specific tariffs 

that are applied.  It is therefore important to capture the general characteristics of an electric rate 

structure and how it functions as a whole, in addition to the specific individual charges 

associated with a particular rate structure.  

The electrical rate structures used in this work were based upon the rate structures that 

are currently used by Southern California Edison (SCE).  SCE rate structures for commercial and 

industrial buildings are broken down by maximum yearly customer demand.  These rates use the 

same types of charges with variations in the exact cost of each charge. There are three charges 

that can be summarized by examining TOU-8, the rate structure applicable for customers with a 

maximum demand of 500 kW or greater [149].  Under TOU-8 rates, demand and energy charges 

vary between summer and winter season. In addition, charges have both a time of use (TOU) 

component that depends upon the time during which the energy or demand is purchased, and 

non-time of use components (non-TOU) that do not vary with time. 
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SCE defines “summer” as June 1st through October 1st, and “winter” as all other times.  

During the summer, the on-peak hours are 12:00 p.m. to 6:00 p.m., the mid-peak hours from 8:00 

a.m. to 12:00 p.m. and 6:00 p.m. to 11:00 p.m., and off-peak hours are all other hours.  During 

the winter, on-peak hours do not exist, mid-peak hours are from 8:00 a.m. to 9:00 p.m., and off-

peak hours are all other hours. Energy charges versus time of day for summer and winter season 

are shown in Figure 3-1. Figure 3-2 shows the percentage of a year for which each peak period is 

applicable. A non-TOU demand charge of $14.88 per KW is applicable for all months and is 

determined by the highest 15 minute average demand in a month. During the summer, TOU 

demand charges exist for both on-peak and mid-peak, and are $23.74 per KW and $6.55 per KW 

respectively. These are determined by the highest 15 minute average demand during the peak 

period in a month. 

 

Figure 3-1: Southern California Edison Energy Charges versus Time of Day for Summer and 

Winter Seasons 
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Figure 3-2: Percentage of year for Southern California Edison Peak Periods 

For public PEV charging, two separate rates apply if maximum load is not greater than 

500 kW. TOU-EV-3 applies if maximum demand is under 20 kW [150] and TOU-EV-4 if 

maximum demand is between 20 kW and 500 kW [151]. Otherwise, the TOU-8 rate is 

applicable. These two rates include an on-peak time for winter from 12:00 p.m. to 6:00 p.m., 
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Table 3-1 shows Southern California Edison energy and demand charges for electric 

vehicle refueling and both commercial and industrial buildings. 

Table 3-1: Electrical energy and demand charges for TOU-EV-3, TOU-EV-4, and TOU-8 rate 
structures for Southern California Edison for 2015 

 
Rate 

TOU-
EV-3 

TOU-
EV-4 

TOU-8-
A 

TOU-8-B 

E
n
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gy
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h
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ge

s 
 

($
/k

W
 h

) 

Summer On-
Peak 

0.36386 0.29033 0.40067 0.13711 

Summer Mid-
Peak 

0.17469 0.12248 0.13597 0.08308 

Summer Off-
Peak 

0.09485 0.05356 0.05938 0.05938 

Winter On-
Peak 

0.16221 0.10763 N/A N/A 

Winter Mid-
Peak 

0.14291 0.09402 0.08487 0.08487 

Winter Off-
Peak 

0.10374 0.06244 0.06473 0.06473 

D
em

an
d

 C
h

ar
ge

s 
($

/k
W

) 

Summer On-
Peak 

N/A N/A N/A 23.74 

Summer Mid-
Peak 

N/A N/A N/A 6.55 

Summer non-
TOU 

N/A 13.2 14.88 14.88 

Winter non-
TOU 

N/A 13.2 14.88 14.88 
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3.1.2 Natural Gas Rate Model 

Natural gas utilities usually sell their gas in a block structure.  These block structures can 

have a single price for all gas used in each block or comprise up to a three-tiered declining block 

structure, with gas typically becoming progressively cheaper as the customer reaches each new 

tier.  The standard charge is in dollars per therm (unit of heat equivalent to 100,000 BTUs or 

1.055 × 108 joules).  Southern California Gas Company (SCG) is a major provider of natural gas 

to most customers in southern California, providing a declining block structure for commercial 

and industrial users.  Like many natural gas utilities, SCG’s rates take into account the 

distribution and fuel costs.  While distribution costs have been observed to be relatively stable 

for SCG, fuel costs regularly change depending upon the market price of natural gas.  As a result, 

while natural gas rate structures are relatively simple, changes in fuel cost cause regular 

variations and introduce uncertainty in customer prices.  Prior work has shown that fuel price has 

a large impact on distributed generation economics.  However, due to increased reserves and 

high production of natural gas recently, prices have been “depressed… to the lowest levels in a 

decade”[152], leading to price projections that remain low in the near future[153].  While energy 

price projections have been shown to be inaccurate [154], a distributed generation investment 

that pays back in a reasonable time period should reduce the risk of exposure to natural gas price 

volatility.  As a result, the natural gas rate model used in the current work will follow SCG prices 

effective March 1st, 2015.  This rate structure is as follows: $0.8787/therm for the first 250 

therms, $0.62284/therm for the next 3,917 therms, and $0.45129/therm for all subsequent 

therms. 
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3.2 Building Energy Model 

Building models were developed using measured electrical load data showing energy 

consumption in 15 minute increments acquired from 39 buildings throughout southern 

California; 12 of which had corresponding heating and cooling loads [155]. All 12 buildings had 

a minimum of 12 months of data collected. 

The building data cannot be directly used in the planned mixed integer linear program 

proposed to study CCHP systems due to computational constraints; there is simply too much data 

to be included in a full scale optimization model. As a result, a filtering method was adopted to 

reduce the collected data set for each building down to a representative set that captures the 

dynamics and level of consumption present in the captured data. The k-medoids method 

presented in [156] was adopted. This method is desirable because the representative data set is 

formed by parts of the original data set. The operation of the method is as follows:  Each day 

consists of 96 time resolved data points for electricity, heating, and cooling. The days are 

arranged in the row of a matrix with electricity occupying columns 1 through 97, heat occupying 

columns 97 through 192, and cooling occupying columns 193 through 288. All subsequent days 

occupy the remaining rows in the same manner. This is shown in Equation 1 

ܮ	 ൌ

ۏ
ێ
ێ
ێ
ۍ
݈ଵ,ଵ ⋯ ݈ଵ,ଽ଺
⋮ ⋮
݈௜,ଵ ⋯ ݈௜,ଽ଺

݈ଵ,ଽ଻ ⋯ ݈ଵ,ଵଽଶ
⋮ ⋮
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⋮ ⋮
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  (Eq. 1) 

The dissimilarity between the days is calculated using Equation 2, where i and j 

correspond to two different days in the year. Equation 2 is calculated for every combination of 
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two days in the data set, with the results being arranged in a dissimilarity matrix shown in 

Equation 3. 

݀ሺ݅, ݆ሻ ൌ ቀ∑ ൫݈௜,௞ െ ௝݈,௞൯
ଶଶ଼଼

௞ୀଵ ቁ
ଵ/ଶ

       (Eq. 2) 

ܦ ൌ ൦

0 ݀ሺ1,2ሻ
0

⋱

݀ሺ1,365ሻ

݀ሺ364,365ሻ
݉݅ݏ 0

൪      (Eq. 3) 

The dissimilarity matrix is then used in a binary program to determine the representative 

days. The binary program is analogous to the optimal plant location problem, where n stores 

need to be supplied by k plants, and the goal is to minimize the total distance between every store 

and the closest plant. The n stores can be considered the days in the full data set and the k plants 

are the number of representative days that for the reduced building demand data set. The binary 

program uses Equation 2 as the “distance” between days to determine representative days. The 

decision variables y and z are binary (limited to either 0 or 1). The binary program is as follows: 

݁ݖ݅݉݅݊݅݉ ∑ ∑ ݀ሺ݅, ݆ሻ	ݖ௜,௝
௡
௝ୀଵ

௡
௜ୀଵ        (Eq. 4) 

such that 

∑ ௜,௝ݖ ൌ 1௡
௜ୀଵ           (Eq. 5) 

௜,௝ݖ ൑  ௜          (Eq. 6)ݕ

∑ ௜ݕ ൌ ݇௡
௜ୀଵ           (Eq. 7) 

,௜ݕ ௜,௝ݖ ∈ ሼ0, 1ሽ,				݅, ݆ ൌ 1,2,… , ݊       (Eq. 8) 
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Equation 5 ensures that each day is assigned to a representative day while Equation 6 

ensures that a day can only be assigned to a single representative day. Equation 7 limits the 

number of representative days selected to k. Equation 8 establishes the decision variables as 

binary. Using the binary program presented above, the total annual building data set is reduced to 

a representative set that can be used in mixed integer programing with reasonable computational 

time. Two examples of the filtered data are shown in Figure 3-3.  

 
Figure 3-3: Representative week of electrical, cooling, and heating demand for the Hyatt Hotel 

in Irvine and UCI Natural Science 1 (Nat Sci 1) buildings 

This method is also used to determine a representative month of building data to be used 

for Goal 2. Instead of building a model to integrate Level 3 charging equipment for an entire 

year, the building data can be broken down to a representative summer and winter month. Using 
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the reduced data set, the general behavior of charging for a single month can be examined, 

reducing the amount of time that must be explored to a single month or two. 

3.3 PEV Refueling Model 

Models were developed to determine the monthly electrical demand and cost of 

electricity for a Level 3 fast charging station. These models consisted of a travel model, an 

electric utility cost model, and a Level 3 charging station model. Using these models, the cost of 

the total load supplied to all PEVs and the cost incurred by each individual PEV can be 

calculated. Figure 3-4 shows a flowchart describing the simulation approach used in this study. 

Obround shapes represent model inputs using real data, squares represent built models or data 

selection processes, and diamonds represent model outputs. 

 
Figure 3-4: Flowchart of Level 3 EVSE electrical utility cost and cost allocation model 

3.3.1 Travel Model 

The purpose of the travel model is to determine the amount of electricity used by each 

PEV during travel. Since data on Level 3 charging stations was not readily available, the travel 

model was produced by generating vehicle travel profiles using probability density functions 

based upon PEV sales information and travel survey data. The PEV sales information was used 

to determine the model of PEV used for travel. The travel survey data was also used to determine 
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day of travel, time of arrival, time spent at destination (or dwell time), and vehicle miles traveled. 

This information was then used to determine the battery state of charge.  

3.3.1.1 Type of PEV 

Four PEV models capable of fast charging that are available today are the Nissan Leaf, 

the Tesla Model S, the Chevy Spark, and the Mitsubishi i-MiEV. The battery size [157], vehicle 

range [158], and cumulative sales in the United States since 2010 [159] for these four vehicles 

are shown in Table 3-2.   

Table 3-2: Battery size [157],  vehicle range [158], and cumulative sales since 2010 [159] for 

PEVs compatible with Level 3 charging 

PEV Model 
Vehicles Sold Since 

2010 
Battery Size (kW 

h) 
Range 
(Miles) 

Nissan Leaf 47306 24 84 
Tesla Model S 25141 60 208 
Mitsubishi i-

MiEV 1721 16 62 
Chevrolet Spark 832 20 82 

 

It was assumed that any car utilizing a Level 3 charger would be one of these four cars, 

and that the chance of any of these cars using the station could be determined using the 

probability distribution created by the number of each model sold in the United States.  Using 

PEV sales, a probability density function was created to determine what type of PEV arrived at a 

Level 3 charging station to be charged.  

For a given number of total PEVs visiting the Level 3 charging state, the probability 

density function was then used to determine the model of each vehicle to be charged. Using the 

battery size and range information associated with each PEV, the trip parameters (as are 



34 

 

described in Section 3.3.1.2) were used to determine how much electricity was used during 

travel. 

For many of the PEVs listed in Table 3-2, Level 3 EVSE compatibility is optional and 

typically increases purchase cost. The cumulative sales data presented in Table 3-2 undoubtedly 

include PEVs purchased without the Level 3 option. However, since sales data cannot be 

conveniently differentiated between PEVs capable and incapable of Level 3 charging, this work 

assumes that the sales data is representative of all purchased PEVs that are Level 3 compatible.   

3.3.1.2 Travel information 

The 2009 U.S. National Household Travel Survey (NHTS) was used to determine the 

travel information [148]. The NHTS data was filtered so that only trips occurring in California 

were considered. Level 3 charging is not typically associated with PEV charging at home and 

approximately 92% of all Level 3 chargers are located at public locations [103], so all travel data 

that listed “home” as the destination were excluded. Finally, the travel data were separated by 

destination. Of the remaining travel data, the four most common trips in order of most to least 

common were for shopping (30.1%), work (15.7%), getting or eating a meal (12%), and pick up 

or drop off someone (11.7%). For these four data sets, the following parameters were extracted: 

day of travel, time of arrival at destination, time spent at destination (or dwell time), and vehicle 

miles traveled from the beginning of the day on all trips leading to the destination. These four 

parameters are shown, separated by season (winter and summer), for shopping travel in Figure 

3-5 and for work travel in Figure 3-6. The individual parameters have little-to-no correlation 

with all other parameters and were considered to be independent of each other for all types of 

travel. 
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Figure 3-5: NHTS arrival time, day of travel, dwell time, and distance travelled data for 

shopping trips in Southern California 

 
Figure 3-6: NHTS arrival time, day of travel, dwell time, and distance travelled data for work 

trips in Southern California 
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As shown in Figure 3-5, travel for shopping primarily occurs between 8 A.M. and 6 P.M., 

occurs frequently throughout the week, results in short dwell times, and involves travel close to 

the drivers origin. As seen in Figure 3-6, travel for work occurs primarily in the morning, occurs 

during the work week with few weekend trips, results in long dwell times, and involves travel 

that is further from a driver’s origin than shopping travel.  

Qualitatively, the distance travelled and dwell time properties of the travel data to pick or 

drop off someone are similar to shopping travel data, while the day of travel property is similar 

to work travel with an increase in weekend day of travel. Data for getting or eating a meal travel 

are also similar to shopping data except for increasing travel during the weekend and an 

increased number of trips resulting in a dwell time between 30 and 60 minutes. In this case, day 

of arrival for travel to get or eat a meal occurs most frequently during the weekend. However, 

since all travel to pick up or drop off someone and three of the four getting or eating a meal 

parameters are similar to either shopping or work travel and to simplify the analysis, only 

shopping and work travel were used in the travel model. 

The NHTS data for shopping and work travel were used to create probability density 

functions for the four independent parameters. These probability density functions were then 

used to create travel information for each PEV model that arrives at the Level 3 EVSE. Coupling 

the vehicle miles traveled with the type of PEV, the amount of electricity used during travel was 

determined. If the vehicle miles traveled produced by the probability density function was ever 

greater than the range of the vehicle model, the vehicle miles travelled were reduced to the range 

of the PEV (i.e., assuming some refueling must have previously taken place).  



37 

 

3.3.2 Level 3 Charging Station Operation Model 

While much research is focused on developing optimal charging strategies for public 

EVSE, PEV charging is typically determined by availability of charging equipment and systems 

or rules used to increase the number of PEVs charged. These systems and rules include, but are 

not limited to, valet operations, charging time limits, and text messaging services that notify 

customers when PEV charging is finished.  

Instead of attempting to capture any single type of system or EVSE operation strategy, 

two forms of EVSE operations are used to span the potential impacts of all systems or sets of 

rules that typically govern PEV charging. The “conventional parking” and “valet parking” forms 

of operation are selected and described below.  The “valet parking” form could be accomplished 

by one or more of the strategies outlined above (e.g., text messaging) to make sure that fully 

charged PEVs are removed from the charger in a timely fashion increasing EVSE availability.  

A typical gasoline fuel dispenser works with most conventional vehicles, regardless of 

brand or model, Level 3 EVSE is not necessarily compatible with all Level 3 capable PEVs. 

Numerous types of Level 3 EVSE exist, each with a unique power rating, PEV connector, and 

set of PEV models that are compatible. Even though adaptors that allow connection between 

previously incompatible PEVs and Level 3 EVSE are being introduced, a typical PEV can only 

be charged with a single type of Level 3 EVSE. As a result, any specific Level 3 EVSE can only 

provide charging to a fraction of Level 3 compatible PEVs. 

Despite this compatibility issue, the following operation strategies assume that either a 

standard PEV connection has been adopted or EVSE adapters are available, allowing for all 

Level 3 compatible PEVs to charge using the Level 3 EVSE examined. This assumption allows 
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for the full fleet of Level 3 EVSE compatible PEVs to have access to the tested refueling station 

configurations. Two different EVSE power ratings are explored (44 kW and 120 kW) 

corresponding to the range of Level 3 charging rates for vehicles currently available in the 

market. This work considers EVSE powered by a dedicated utility meter (electrical demand is 

determined only by PEV refueling). 

3.3.2.1 Conventional Parking Operation 

Conventional parking assumes that no rules or systems are implemented regarding EVSE 

operation. If a PEV arrives at an available EVSE equipped parking spot, the PEV will be parked 

and the battery charged to the desired level. If the driver returns to leave before the PEV is 

finished charging, the PEV is partially charged and the EVSE parking spot is vacated. Otherwise, 

the PEV is fully charged and the EVSE equipped parking spot is occupied until the drivers dwell 

time is finished. All other PEVs that arrive while the EVSE parking spot is occupied leave to 

find another spot and are not charged using the EVSE at that particular charging station. 

3.3.2.2 Valet Parking Operation 

Valet parking assumes that some system or technology is used to remove a PEV once 

charging is complete. According to this form of operation, if a PEV arrives at an available EVSE 

equipped parking spot, the PEV will be parked and the battery charged until either the battery is 

charged to the desired level or the driver returns to leave. If another PEV arrives while the EVSE 

equipped parking spot is occupied, the new PEV is queued and connected to the EVSE as soon 

as the currently charging PEV finishes charging or leaves. However, if the dwell time of the 

queued PEV is shorter than the time to charge the current PEV, the queued PEV leaves without 

being charged.  Partial charges are also allowed under the valet parking scenario.  Note that the 
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assumptions of this valet parking scenario maximize the potential use of the EVSE installed, thus 

spanning the other potential methods of EVSE and PEV charging operations. 

3.4 DER Optimization Model 

Mixed integer linear programming is selected as the method for modeling and 

determining the optimal DER system for a building. Due to the mixture of integer and 

continuous variables, a mixed integer linear programing formulation captures the decisions 

created while deciding if investment in DER is wise. For example, a building operator is capable 

of purchasing a generator only in discrete quantities. However, the decision to purchase the 

generator is informed by how the generator will be operated. If the generator is capable of part 

load operation, then each individual decision of how much energy to produce using the generator 

can change through time. As a result, the integer decision of purchasing a generator is mixed 

with the continuous decision of how much energy to produce at each time step. 

The mixed integer linear program is designed to find the least expensive combination of 

utility energy purchases, CCHP investment, and CCHP system operation while meeting the 

electrical, heating, and cooling demand of a building. Operational and physical limitations of the 

CCHP technology is taken into account along with electrical and utility rate models. A schematic 

of the system being sized is shown in Figure 3-7. The schematic presents a building with a 

legacy vapor compression and boiler system installed to meet cooling and heating demands. The 

decision to be made is whether or not a generator (either a fuel cell or gas turbine) and 

photovoltaic panels should be adopted with a heat recovery unit, absorption chiller, electrical 

energy storage (EES), and thermal energy storage (TES), to meet part or all of the building 

energy demand. Additional decisions on the layout of the heat recovery unit and absorption 
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chiller must be made by deciding if duct work connecting the heat recovery unit to the generator 

and/or to the absorption chiller is to be installed. The labeling of this duct work is made relative 

to the absorption chiller, with a connection directly from the generator being a device in parallel 

with the absorption chiller (duct-parallel or duct-p) and a connection from the absorption chiller 

being in series with the chiller (duct-series or duct-s). In addition to DER adoption, the option of 

purchasing renewable natural gas to power fossil fuel fired DG and the option of 

exporting/selling electricity back to the grid are also included in the formulation. The parameters 

and decision variables that define this problem are shown in Table 3-3 and Table 3-4. 

 
Figure 3-7: Schematic of the modeled system 
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Table 3-3: Parameters that define the DER system optimization 

Sets Description 
n ∈ N Set of all months 
m ∈ M Set of all summer months (M ⊂ N) 
h ∈ Hn Set of all 60 min increments in month n 
t ∈ Tn Set of all 15 min increments in month n 
o ∈ Om Set of all 15 min increments during on-peak in summer month m 

(O ⊂ T) 
p ∈ Pm Set of all 15 min increments during mid-peak in summer month 

m (P ⊂ T) 
k ∈ K Set of all generator types 
Building Parameters  
EBldg Elec,t Building electrical demand at time t (kWh) 
EBldg Heat,t Building heating demand at time t (kWh) 
EBldg Cool,t Building cooling demand at time t (kWh) 
Bldg Area Area available for a photovoltaic installation (m2) 
esolar,t Available insolation at the building at time t (kW/m2) 
ΔTbldg.-1 Difference in temperature between the heat exchanger providing 

cooling to the building and the temperature of the used storage 
working fluid (oC) 

ΔT2-bldg Difference in temperature between the charged thermal energy 
storage working fluid and the heat exchanged providing cooling 
to the building (oC) 

Utility Cost Parameters  
Cgrid,t Electrical utility energy charge at time t ($/kW h) 
CDC,n Non-TOU demand charge in month n ($/kW) 
ConDC,m On-peak demand charge in summer month m ($/kW) 
CmidDC,m Mid-peak demand charge in summer month m ($/kW) 
CNG,n,i i component of piece-wise function of natural gas cost for month 

n ($) 
Crng,n Cost of renewable natural gas during month n ($/therm) 
Cex,t Price at which electrical utility purchases energy from the 

building at time t ($/kWh) 
CCO2 Grid,t Carbon emissions associated with utility electricity at time t (lbs 

CO2/kWh) 
DG Parameters  
Com DG,k O&M cost for DG of type k ($/kWh) 
Ccap DG,k Capital cost for DG of type k ($) 
Cstart DG,k Startup cost for DG of type k ($/start) 
ηDG,k Electrical efficiency for DG of type k (%) 
 (%) DG,k Maximum efficiency for DG of type kߟ̅
SDG,k Rated power for DG of type k (kW) 
δDG,k Minimum turndown for DG of type k (%) 
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 DG,k Maximum ramp up rate for DG of type k (%/15 minutes)ߤ̅
 DG,k Maximum ramp down rate for DG of type k (%/15 minutes)ߤ

Absorption Chiller 
Parameters 

 

Ccap AC Capital cost for absorption chiller ($/kW) 
Com AC O&M cost for absorption chiller output ($/kWh) 
Com AC Charge O&M cost to charge absorption chiller output ($/kWh) 
COPAC Coefficient of performance for absorption chiller  
ΔAC Heat input for absorption chiller for 1 kW h of cooling out (kWh 

heat in / kWh cool out) 
ϒ Thermal storage required for 1 kWh of cooling out (kWh stored / 

kWh cool out) 
β Stored energy retained from prior time step (%) 
δAC Minimum turndown for absorption chiller (%) 
ECOOL MAX Maximum cooling load for building (kWh) 
Heat Recovery Unit / 
Duct Parameters 

 

Ccap HRU Capital cost for heat recovery unit ($/kW) 
Ccap duct-p Capital cost for duct in parallel with absorption chiller ($/kW) 
Ccap duct-s Capital cost for duct in series with absorption chiller ($/kW) 
Com HRU O&M cost for heat recovery unit ($/kWh) 
Com duct-p O&M cost for duct in parallel with absorption chiller ($/kWh) 
Com duct-s O&M cost for duct in series with absorption chiller ($/kWh) 
εHRU Effectiveness of heat recovery unit (%) 
εduct-p Effectiveness of duct in parallel with absorption chiller recovery 

unit (%) 
εduct-s Effectiveness of duct in series with absorption chiller recovery 

unit (%) 
Photovoltaic Parameters  
Ccap PV Capital cost for photovoltaic system ($/kW) 
Com PV O&M Cost for photovoltaic system ($/kWh) 
ηPV Photovoltaic efficiency at nominal conditions 
Electrical Energy Storage 
Parameters 

 

Ccap EES Capital cost for EES ($/kWh) 
Com EES chrg O&M cost to charge EES ($/kWh) 
Com EES dchrg O&M cost to discharge EES ($/kWh) 
 (%) EES Retained EES storage between 15 minute time periodsߙ
ηEES chrg EES charging efficiency (%) 
ηEES dchrg EES discharging efficiency (%) 
 (%) ா̅ாௌ Maximum EES state of chargeߜ
 (%) ாாௌ Minimum EES state of chargeߜ
 (%) ாாௌ Maximum EES charging rateߤ̅
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 (%) ாாௌ Maximum EES discharging rateߤ

Thermal Energy Storage 
Parameters 

 

Ccap TES Capital cost for TES ($/kWh) 
Com TES chrg O&M cost to charge TES ($/kWh) 
Com TES dchrg O&M cost to discharge TES ($/kWh) 
 (%) TES Retained TES storage between 15 minute time periodsߙ
ηTES chrg TES charging efficiency (%) 
ηTES dchrg TES discharging efficiency (%) 
்̅ߜ ாௌ Maximum TES state of charge (%) 
 (%) ாௌ Minimum TES state of charge்ߜ
 (%) ாௌ Maximum TES charging rate்ߤ̅
 (%) ாௌ Maximum TES discharging rate்ߤ

Legacy System 
Parameters 

 

Com VC O&M cost for vapor compression chiller output ($/kWh) 
COPVC Coefficient of performance for vapor compression chiller  
Com Boil O&M cost for boiler ($/kWh) 
ηBoil Boiler efficiency (%) 

 

Table 3-4: Decision variables that define the DER system optimization 

Utility Decision Variables Description  Variable Type 
egrid,t Electricity purchased from grid at 

time t (kWh) 
Continuous 

Pmax,n Maximum demand during month n 
(kW) 

Continuous 

Pon max,m Maximum on-peak demand during 
summer month m (kW) 

Continuous 

Pmid max,m Maximum mid-peak demand 
during summer month m (kW) 

Continuous 

Cng,n Cost of natural gas purchased 
during month n ($) 

Continuous 

λi,n i component of piece-wise function 
of natural gas cost for month n 

Continuous 

δj,n j component to impose special 
order set type 2 constraint of 
natural gas piece-wise function for 
month n (n/a) 

Binary 

erng Renewable natural gas purchased 
(kWh) 

Continuous 
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eex,t Electricity sold back to the grid at 
time t (kWh) 

Continuous 

Generator Decision 
Variables 

Description  Variable Type 

NDG,k Number of DG of type k 
purchased 

Integer 

nDG on,k,h Number of DG of type k active 
during hour h 

Integer 

nDG Start,k,h Number of DG of type k starting 
during hour h 

Integer 

eDG,k,t Aggregated power output from DG 
of type k during time t (kWh) 

Continuous 

gDG,k,t Aggregated fuel consumption of 
DG of type k during time t (kWh) 

Continuous 

grDG,k,t Aggregated renewable fuel 
consumption of DG of type k 
during time t (kWh) 

Continuous 

Absorption Chiller 
Decision Variables 

  

Pmax AC Absorption chiller capacity 
purchased (kW) 

Continuous 

eAC,t Absorption chiller output at time t 
(kWh) 

Continuous 

eAC Store,t Absorption chiller thermal storage 
at time t (kWh) 

Continuous 

eAC Charge,t Absorption chiller charging at time 
t (kWh) 

Continuous 

eAC Cool,t Absorption chiller output due to a 
charge system at time t (kWh) 

Continuous 

eAC Dcharge,t Absorption chiller discharging at 
time t (kWh) 

Continuous 

NAC,t Absorption chiller operational state 
at time t 

Binary 

Heat Recovery Unit / 
Duct Decision Variables 

  

Pmax HRU Heat recovery unit size purchased 
(kW) 

Continuous 

Pmax duct-p Parallel duct size purchased (kW) Continuous 
Pmax duct-s Series duct size purchased (kW) Continuous 
eHRU,t Heat recovery unit output during 

time t(kWh) 
Continuous 

educt-p,t Parallel duct output during time t 
(kWh) 

Continuous 
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educt-s,t Series duct output during time t 
(kWh) 

Continuous 

Photovoltaic Decision 
Variables 

  

PPV Photovoltaic system size 
purchased (kW) 

Continuous 

epv,t Photovoltaic system output during 
time t (kWh) 

Continuous 

Electrical Energy Storage 
Variables 

  

eEES size EES purchased (kWh) Continuous 
eEES chrg,t Electricity stored during time t 

(kWh) 
Continuous 

eEES dchrg,t Electricity discharged from storage 
during time t (kWh) 

Continuous 

Thermal Energy Storage 
Variables 

  

eTES size TES purchased (kWh) Continuous 
eTES chrg,t Thermal energy stored during time 

t (kWh) 
Continuous 

eTES dchrg,t Thermal energy discharged from 
storage during time t (kWh) 

Continuous 

Legacy System Decision 
Variables 

  

eVC,t Vapor compression chiller output 
at time t (kWh) 

Continuous 

eboil,t Boiler output at time t (kWh) Continuous 
eboil rng,t Boiler output using renewable 

natural gas at time t (kWh) 
Continuous 
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3.4.1 DER MILP Formulation 

The proposed cost function for the MILP formulation is shown in Equation 9. 
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௧
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௧

 

All decision variables must be equal to or greater than zero. Equation 10 through 

Equation 42 present the constraints that must be satisfied by the optimal solution.  Equations 10 
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through 12 ensure that the electrical, heating, and cooling demand of the building is always met. 

Equation 10 also ensures that the vapor compression system is powered by either electrical utility 

energy or energy produced onsite, and that the changes in the electrical energy storage state of 

charge are accounted for in addition to electrical energy production and consumption. 

(Eq. 10) 

  

          (Eq. 11)  

஺݁஼,௧ ൅ ݁௏஼,௧ ൅ ்݁ாௌଶ	ௗ௖௛௥௚,௧ ൌ ஼௢௢௟,௧	஻௟ௗ௚ܧ ൅ ்݁ாௌଶ	௖௛௥௚,௧ ൬1 ൅
∆்್೗೏೒షభ
∆்మష್೗೏೒

൰   (Eq. 12) 

As seen in Equation 9, the only natural gas cost is already associated with the total cost of 

natural gas per month. This is because the natural gas cost is modeled as a piece-wise continuous 

function. Figure 3-8 shows the piece-wise function for total cost versus total consumption for a 

single month. The start and stop of each line segment occurs at the different natural gas cost tiers 

as outlined in Section 3.1.2. Equation 13 shows the monthly consumption of natural gas due to 

boiler and generator operation equal to sum of the tier limits (natural gas cost starts at 0 therms 

and changes when 250 and 4167 therms have been consumed) and total consumption limit (set to 

150,000 therms) times λi,n, or the piece-wise function variables. Equation 14 shows the same 

variables multiplied by the cumulative costs associated with the tier limits. Equation 15 through 

20 ensure that only two adjacent λi, n can be non-zero and that the λi, n must sum to zero.  
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Figure 3-8: Piece-wise function that captures the total monthly cost of natural gas versus total 

consumption 
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ఎ್೚೔೗

௧ ൅ ∑ ∑ ଵ݃஽ீ,௞,௧௧௞ܥ  (Eq. 13) 

௡௚,௡ܥ ൌ ଵ,௡ߣ0 ൅ ଶ,௡ߣ௡௚,௡,ଵܥ ൅ ଷ,௡ߣ௡௚,௡,ଶܥ ൅  ସ,௡    (Eq. 14)ߣ௡௚,௡,ଵܥ
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Equations 21 through 27 govern the operation of any set of adopted generators. Equation 

21 limits active generators to generators purchased. Equation 22 sets fuel consumption to be 

proportional to the aggregated electricity produced. Equation 23 establishes when a generator is 

started. Equation 24 sets the maximum power that can be produced with the active generators 

while Equation 25 sets the minimum power that must be produced with the active generators. 

Equations 26 and 27 limit the ability of the generators to change power settings to the maximum 

ramp up and down capabilities of the active generator.  

         (Eq. 21) 

      (Eq. 22) 

      (Eq. 23) 

        (Eq. 24) 

       (Eq. 25) 

      (Eq. 26) 

      (Eq. 27) 

݊஽ீ	௢௡,௞,௛ ൑ 	 ஽ܰீ,௞ 

஽ீ,௞݃஽ீ,௞,௧ߟ ൅ ஽ீ,௞݃௥஽ீ,௞,௧ߟ ൌ ݁஽ீ,௞,௧ 

݊஽ீ	௢௡,௞,௛ െ ݊஽ீ	௢௡,௞,௛ିଵ ൑ 	݊஽ீ	௦௧௔௥௧,௞,௛ 

݁஽ீ,௞,௧ ൑ ܵ஽ீ݊஽ீ	௢௡,௛ 

	௢௡,௞,௛	஽ீ,௞ܵ஽ீ,௞݊஽ீߜ ൑ ݁஽ீ,௞,௧ 

݁஽ீ,௞,௧ െ ݁஽ீ,௞,௧ିଵ ൑  ௢௡,௞,௛	݊஽ீ	஽ீ,௞ܵ஽ீ,௞ߤ̅	

݁஽ீ,௞,௧ିଵ െ ݁஽ீ,௞,௧ ൑  ௢௡,௞,௛	݊஽ீ	஽ீ,௞ܵ஽ீ,௞ߤ	
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Equations 21 through 27 do not explicitly require that a generator to be operated for a 

certain period of time when started or remain turned off for an extended period before being 

reactivated. However, the aggregated power variable is on a 15 minute time scale while the 

active generator variable is on an hourly time scale. As a result, behavior that resulted in rapid 

on-off operation can be partially eliminated. Mandatory on- or off-time constraints have been 

presented in the literature for determining optimal operation after a CCHP system has been sized, 

but require triple the number of integer variables associated with the state of each generator at 

each time step [51].  By keeping active generator and aggregated power variables on different 

time scales, an increase in integer decision variables can be avoided while implementing a partial 

constraint on minimum generator up and down time. In addition, by setting the active generator 

variable to an hourly time scale, the number of integer variables can be reduced, decreasing 

computational time. While some optimality is sacrificed due to this approach, the program 

benefits from partially incorporating desired operating characteristics while reducing integer 

variables. 

Equations 28 through 33 govern the absorption chiller operation. Since the vapor 

generation process in an absorption chiller is thermally activated, the solution must be heated and 

maintained at a high temperature in order to operate. This can be modeled by considering the 

energy storage that occurs within the absorption chiller during start up and operation. Equation 

28 is an energy balance for the absorption chiller system. Equation 29 states that the maximum 

amount of energy stored at any time is limited by the size of the absorption chiller, or by the 

amount of solution in the chiller. Likewise, Equation 30 limits the cooling output of the chiller 

by the extent to which the chiller has been thermally activated. Equation 31 sets the total output 
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of the absorption chiller to energy input into a thermally activated absorption chiller and any 

energy extracted from storage. Equations 32 and 33 are used to establish a minimum cooling 

output during operation, allowing for operation to be restricted where performance of the chiller 

can be approximated by a linear system. 

஺݁஼	ௌ௧௢௥௘,௧ ൅ ஺݁஼	஽௖௛௔௥௚௘,௧ െ ߚ ஺݁஼	ௌ௧௢௥௘,௧ିଵ െ ஺݁஼	஼௛௔௥௚௘,௧ ൌ 0   (Eq. 28) 

஺݁஼	ௌ௧௢௥௘,௧ ൑ ϒ ୫ܲୟ୶஺஼         (Eq. 29) 

஺݁஼,௧ ൑
௘ಲ಴	ೄ೟೚ೝ೐,೟

ϒ
         (Eq. 30) 

஺݁஼,௧ ൌ
∆ಲ಴

஼ை௉ಲ಴
஺݁஼	஽௖௛௔௥௚௘,௧ ൅ ஺݁஼	஼௢௢௟,௧      (Eq. 31) 

஺݁஼,௧ ൑ ெ஺௑	஼ைை௅ܧ ஺ܰ஼,௧        (Eq. 32) 

஺஼ߜ ୫ܲୟ୶஺஼ ൑ ஺݁஼,௧ ൅ ൫1ߙ െ ஺ܰ஼,௧൯       (Eq. 33) 

 

Equations 34 and 35 limit the output of the heat recovery unit to the installed size and to 

the energy transferred through the different ducts. Equations 36 and 37 limit the output of the 

ducts to the installed size.  

݁ுோ௎,௧ ൑ ୫ܲୟ୶ுோ௎         (Eq. 34) 

௘ಹೃೆ,೟
ఢಹೃೆ

ൌ ݁ௗ௨௖௧ି௣,௧ ൅ ݁ௗ௨௖௧ି௦,௧        (Eq. 35) 

݁ௗ௨௖௧ି௣,௧ ൑ ୫ܲୟ୶ௗ௨௖௧ି௣        (Eq. 36) 

݁ௗ௨௖௧ି௦,௧ ൑ ୫ܲୟ୶ௗ௨௖௧ି௦        (Eq. 37) 
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Equation 38 limits the amount of heat that can be recovered to heat available from the 

generators. Equation 39 limits the amount of heat that can be passed to the heat recovery unit 

through the duct in series with the absorption chiller to heat rejection from the chiller. 

௘೏ೠ೎೟ష೛,೟
ఢ೏ೠ೎೟ష೛

൅ ∆
௘ಲ಴	಴೚೚೗,೟
஼ை௉ಲ಴

൅ ݁஺஼	஼௛௔௥௚௘,௧ ൑ ∑ ఎഥವಸ,ೖିఎವಸ,ೖ
ఎವಸ,ೖ

݁஽ீ,௞,௧௞     (Eq. 38) 

௘೏ೠ೎೟షೞ,೟
ఢ೏ೠ೎೟షೞ

	 ൑ 	 ∆ିଵ

஼ை௉ಲ಴
஺݁஼,௧        (Eq. 39) 

Equations 40 through 42 govern the adoption and operation of a photovoltaic system. 

Equation 40 limits the output of the PV system to the available insolation that falls on the PV 

panels. Since Equation 40 is formulated as an inequality, the PV output can be lower than the 

available insolation. This considers the PV as curtailable, or that the building operator can 

choose to leave or take the renewable power produced by the PV depending upon the state of 

other DER systems. If Equation 40 were changed to an equality constraint, then all power 

produced by the PV system would be considered “must-take” power. Equation 41 limits the 

output of the PV system by the installed capacity. Equation 42 limits the size of the installed PV 

system to the available space for such a system at the building.  

 ݁௣௩,௧ ൑ ݁௦௢௟௔௥,௧
௉೛ೡ
ఎ೛ೡ

         (Eq. 40) 

 4݁௣௩,௧ ൑ ௣ܲ௩          (Eq. 41) 

 
௉೛ೡ
ఎ೛ೡ

൑  (Eq. 42)         ܽ݁ݎܣ	݈݃݀ܤ
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Equations 43 through 47 govern the operation of any adopted EES. Equation 43 is the 

EES energy balance, ensuring that any charging or discharging are linked to the prior and current 

EES states of charge. Equations 44 and 45 limit the EES state of charge to reside between the 

limits required to maintain the EES. Equations 46 and 47 limit the rate at which the EES can be 

charged or discharged. 

݁ாாௌ	௦௧௢௥௘,௧ ൌ ௦௧௢௥௘,௧ିଵ	ாாௌ݁ாாௌߙ ൅ ௖௛௥௚,௧	௖௛௥௚݁ாாௌ	ாாௌߟ െ
௘ಶಶೄ	೏೎೓ೝ೒,೟
ఎಶಶೄ	೏೎೓ೝ೒,೟

   (Eq. 43) 

݁ாாௌ	௦௧௢௥௘,௧ ൑  ௦௜௭௘        (Eq. 44)	ா̅ாௌ݁ாாௌߜ

݁ாாௌ	௦௧௢௥௘,௧ ൒  ௦௜௭௘        (Eq. 45)	ாாௌ݁ாாௌߜ

݁ாாௌ	ௗ௖௛௥௚,௧ ൑  ௦௜௭௘        (Eq. 46)	ாாௌ݁ாாௌߤ̅

݁ாாௌ	௖௛௥௚,௧ ൑  ௦௜௭௘        (Eq. 47)	ாாௌ݁ாாௌߤ

Equations 48 through 52 govern the operation of any adopted TES. Equation 48 is the 

TES energy balance, ensuring that any charging or discharging are linked to the prior and current 

TES state of charge. Equation 49 and 50 limit the TES state of charge to reside between the 

limits required to maintain the TES. Equations 51 and 52 limit the rate at which the TES can be 

charged or discharged. 

்݁ாௌ	௦௧௢௥௘,௧ ൌ ௦௧௢௥௘,௧ିଵ	ாௌ்݁ாௌ்ߙ ൅ ௖௛௥௚,௧	௖௛௥௚்݁ாௌ	ாௌ்ߟ െ
௘೅ಶೄ	೏೎೓ೝ೒,೟
ఎ೅ಶೄ	೏೎೓ೝ೒,೟

  (Eq. 48) 

்݁ாௌ	௦௧௢௥௘,௧ ൑ ்̅ߜ ாௌ்݁ாௌ	௦௜௭௘        (Eq. 49) 

்݁ாௌ	௦௧௢௥௘,௧ ൒  ௦௜௭௘        (Eq. 50)	ாௌ்݁ாௌ்ߜ
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்݁ாௌ	ௗ௖௛௥௚,௧ ൑  ௦௜௭௘        (Eq. 51)	ாௌ்݁ாௌ்ߤ̅

்݁ாௌ	௖௛௥௚,௧ ൑  ௦௜௭௘        (Eq. 52)	ாௌ்݁ாௌ்ߤ

Equations 53 through 55 set all demand charges equal to the maximum demand drawn 

from the electrical utility during all months, and on-peak and mid-peak during summer months. 

Since the energy purchased from the grid variable is on a 15 minute increment, multiplying the 

variable by four-per-hour (four 15 minute periods per hour) converts the variable to power, 

allowing the demand charges to be calculated. 

4݁ீ௥௜ௗ,௧ ൑ 	 ௠ܲ௔௫,௡         (Eq. 53) 

4݁ீ௥௜ௗ,௢ ൑ 	ܲ௢௡	௠௔௫,௠         (Eq. 54) 

4݁ீ௥௜ௗ,௣ ൑ 	ܲ௠௜ௗ	௠௔௫,௠        (Eq. 55) 

3.4.2 Environmental Constraints 

The general DER adoption problem described in Section 0 describes the components of 

the model required to design and operate a DER system based solely on cost. As described in 

Section 1, the development of recent DER technologies has allowed for a building operator to 

control the greenhouse gas or pollutant emissions associated with a building. The desire to 

control building emissions can be factored into the optimization model. One method of including 

the building environmental impact is to include emissions in the cost function, resulting in the 

optimization routine attempting to minimize emissions. Another approach is to constrain the 

emissions. Under an environmental constraint, the goal of the optimization is still to minimize 
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cost, but with the additional requirement that a certain reduction of emissions occurs. The later 

approach is selected for this work.  

Legislation in California limiting carbon emissions place future goals in terms of a 

reduction from prior year’s levels [160]. As a result, the most likely application of the 

optimization presented in this paper is to determine the optimal DER mix such that cost is 

minimized while also reducing total carbon emissions. Carbon emissions associated with a 

building are tied to the utility electricity imported and utility fuel that is purchased and used 

onsite. One option that is consistently used as a way to reduce the carbon associated with fuel 

combustion is to switch from a non-renewable fuel to a renewable fuel. This option is considered 

in the optimization. However, most renewable fuels have a carbon signature associated with the 

cleanup of a dirtier version of the gas in order to eliminate potential pollutants. As a result, the 

use of renewable fuel still is associated with a small carbon signature. In addition, it export is 

allowed during the optimization, then the other grid production is offset by the electricity sold 

back to the grid. Therefore, carbon emissions associated with the grid are avoided. Keep in mind 

that if the exported electricity was produced by inefficient generation onsite, then the total 

carbon emissions will increase due to increased fuel consumption. 

Equation 56 shows the carbon constraint as formulated in the DER optimization problem. 

C1 and C1,rng are constants that account for the amount of carbon released per unit of fuel 

consumed for both non-renewable and renewable fuels respectively used at the building. 

∑ ௚௥௜ௗ,௧	஼ைమܥ ௚݁௥௜ௗ,௧௧ ൅ ∑ ଵ,௡ߣଵ൫0ܥ ൅ ଶ,௡ߣ250 ൅ ଷ,௡ߣ4167 ൅ ସ,௡൯௡௡ߣ150,000 ൅ ଵ,௥௡௚݁௥௡௚ܥ െ

∑ ௚௥௜ௗ,௧݁௘௫,௧௧	஼ைమܥ ൑  (Eq. 56)        ݐ݅݉݅ܮ	ଶܱܥ
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 As mentioned prior, the carbon emission constraint is typically coupled with an option of 

purchasing renewable fuel. The total renewable natural gas consumed per month is accounted for 

in the constraint shown in Equation 57. Equation 57 is typically omitted from the optimization 

and the renewable fuel variables associated with DG and boiler operation are not included 

because renewable fuel cost is typically higher than purchased natural gas. In this case, the 

additional scenarios add unneeded complexity since it is known that no renewable fuel will be 

purchased during the optimization. 

∑ ∑ ݃௥஽ீ,௞,௧௧ ൅ ∑ ݁௕௢௜௟	௥௡௚,௧௧௞ ൌ ݁௥௡௚       (Eq. 57) 

3.4.3 PEV Integration 

PEV integration with the DER problem will change depending upon the specific 

problem. The two general problems addressed in this work are the uncontrolled refueling of 

PEVs at a building and the purchase and refueling of fleet PEVs. 

The first problem is concerned with whether or not the building operator should purchase 

and install EVSE at the building. The second problem is concerned with whether or not the 

building operator should purchase PEVs or conventional vehicles to meet a given set of business 

transportation requirements. These requirements can come in many different forms. The two 

forms examined in this work are for when vehicles are being purchased to operate along pre-

selected routes and along routes that are to be determined to specific nodes or customers.  

3.4.3.1 Uncontrolled PEV Refueling 

PEV traffic to and from the building is an approximately deterministic process from the 

perspective of the individual driver. The driver knows the final destination, is assumed to be 

fairly familiar with the travel time to the final destination, the vehicle miles travelled, and the 
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approximate dwell time at the final destination. None of this information is known by the 

building operator about any individual driver. 

Despite this lack of information, the travel of vehicles to a building typically can be 

described by using probability density functions based off of information such as the National 

Household Travel Survey. Using this information in conjunction with a PEV refueling station 

model similar to what is described in Section 3.3 coupled with a rate at which PEV refueling 

customers will be charged, the expected revenues associated with installing different EVSE types 

and configurations can be estimated.  

For this work, the DER optimization model presented in Section 0 is reformulated as a 

stochastic problem. The stochastic process is assumed to only be the PEV traffic to the building. 

Using the PEV refueling model described in Section 3.3, likely travel scenarios can be generated 

along with the probability of each scenario occurring. Using these scenarios, the electrical 

demand profile associated with different types and number of installed EVSE can be generated, 

along with the projected revenue created by charging PEV drivers to refuel. These projected 

refueling profiles and associated revenues are implemented into the stochastic formulation of the 

DER optimization model. 

The stochastic formulation of the MILP presented in 0 is limited to only non-renewable 

CCHP systems (no form of energy storage is currently modeled). The constraints regarding DG, 

HRU, and AC operation are all the same. The only difference is that each set of constraints exist 

for each possible PEV refueling scenario. For example, if three likely scenarios exist, three sets 

of each technology constraints exist for the individual scenarios. As such, the individual 



58 

 

constraints will not be relisted unless a modification occurs as a result of the stochastic 

formulation.  

Table 3-5 list the additional sets and parameters required for the stochastic formulation. 

The two additional decision variables are nev chargers,j, which defines the option of purchasing the 

EVSE configuration j, and nev option,ω, which ensures that the purchased EVSE configuration j is 

operated in each of the possible scenarios. Both variables are binary.  

Table 3-5: Additional parameters that define the stochastic DER and EVSE system optimization 

Sets Description 
ω ∈ Ω Set of possible PEV refueling scenarios that are likely to occur 
j ∈ J Set of possible EVSE types and configurations 
Parameters  
p ω Probability that PEV refueling scenario ω will occur (%) 
Cev,j Capital cost of purchasing EVSE type and configuration j ($) 
Dj, ω,t Electrical demand associated with EVSE type and configuration 

j under PEV refueling scenario ω at time t 
 

Equation 58 is the modified cost function for the stochastic formulation. The first set of 

variables represents possible investment that will occur. The second set of variables defines the 

operation occurring in each of the possible scenarios. 



59 

 

 (Eq. 58) 

Equation 59 ensures that any selected EVSE configuration j is operated during all scenarios. 

Equation 60 ensures that, at most, only a single EVSE configuration is purchased. Equation 60 

shows the modified energy balance equation (originally shown in Equation 10) that states that 

the additional PEV refueling load must be met at all times for all scenarios. 

݊௘௩	௖௛௔௥௚௘௥௦,௝ ൌ ݊௘௩	௢௣௧௜௢௡,ఠ         (Eq. 59) 

∑ ݊௘௩	௖௛௔௥௚௘௥௦,௝௝ ൑ 1          (Eq. 60) 

௚௥௜ௗ,௧,ఠܧ ൅ ∑ ݁஽ீ,௞,௧,ఠ௞ ൅ ݁௣௩,௧,ఠ ൅ ݁௕௔௧௧	ௗ௖௛௥௚,௧,ఠ ൌ ா௟௘௖,௧,ఠ	஻௟ௗ௚ܧ ൅
௘ೇ಴,೟,ഘ
஼ை௉ೇ಴

൅ ݁௕௔௧௧	௖௛௥௚,௧,ఠ ൅

∑ ௢௣௧௜௢௡,ఠ௝	௝,ఠ,௧݊௘௩ܦ           (Eq. 61) 

3.4.3.2 Fleet PEV Purchase and Refueling 

Under some scenarios, the decision to purchase and refuel fleet PEVs can remain a 

stochastic problem. However, many other scenarios exist where the problem is reduced to a 

deterministic problem. The extension of the DER optimization problem to fleet PEV purchasing 
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and refueling falls under the latter category. If the vehicles being purchased are to travel along 

pre-specified routes, depart from, and arrive back at the building being optimized, the problem 

can be viewed as deterministic. Similarly, if the vehicles are leaving the building at a specific 

time to travel to specific nodes and are guaranteed to arrive no later than a given time, the 

problem remains deterministic despite not knowing the particular routes to be traveled. Both of 

these problems are modeled for the full DER optimization problem. 

Unlike the uncontrolled PEV refueling problem, the fleet PEV problems require the 

purchase of vehicles. As such, the competing potential purchase of conventional vehicles must 

be included, resulting in the possibility of PEVs never being adopted. 

3.4.3.2.1 Optimal Purchase of Pre-routed PEV and Conventional Vehicles 

If the building operator is to purchase a new set of vehicles to meet some transportation 

requirement when the vehicle routes are already determined, the additional constraints described 

in this section are applicable. One possible application of this problem is determining bus fleet 

mix for public transportation. This formulation assumes that there are r routes. Each route r 

requires nreq,r vehicles to be purchased. The additional sets and parameters included in this 

formulation are shown in Table 3-6, and additional decision variables in Table 3-7. 

Table 3-6: Parameters that define the pre-routed fleet mix optimization 

Sets Description 
r ∈ R Set of routes 
l ∈ L Set electric vehicles that can be purchased 
m ∈ M Set of conventional vehicles that can be purchased 
n ∈ N Set of EVSE that can be purchased  
Route Parameters  
nreq,r Number of vehicles required to be purchased for route r 
 ௘௩,௟ Miles travelled on route r by a vehicle (miles)ݎ̅
PEV Parameters   
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 ($) ௘௩,௟ Capital and operations cost of PEV lܥ
 ($) ௘௩௦௘,௡ Capital cost of EVSE nܥ
 ௠௣௞ௐ௛,௟ Electricity used during PEV travel (Miles/kWh)	௘௩ߟ

ܵ௘௩,௟ Number of refueling ports for PEV l (number of refueling ports) 
ܵ௘௩௦௘,௡ Power rating of EVSE n (kW) 
Conventional Vehicle 
Parameters 

 

 ($) ௖௢௡,௠ Capital and operations cost of conventional vehicle mܥ
 

Table 3-7: Decision variables that define the pre-routed fleet mix optimization 

PEV Decision Variables Description  Variable Type 
݊௘௩,௟,௥  Number of purchased PEVs of type l for route r Integer 
݊௘௩௦௘,௡ Number of purchased EVSE of type n Integer 
PEV Decision Variables Description  Variable Type 
݊௖௢௡,௠,௥ Number of conventional vehicles of type m for route 

r 
Integer 

 

The cost function is modified to include the additional cost of purchasing vehicles and 

EVSE, as presented in Equation 62 to include the additional cost associated with the purchase of 

convention vehicles, PEVs, and EVSE. The cost for the vehicles includes both the capital cost 

and the operation cost of each vehicle over the length of the simulation. Equation 63 is the 

modified energy balance, showing that the refueling of PEVs must be accounted for when 

electricity is procured or generated. Equation 64 ensures that the proper number of vehicles for 

each route is purchased. Equation 65 states that the amount of electricity delivered to any 

purchased PEVs must equal the amount required to complete the route the following day. 

Equation 66 aggregated the refueling of all PEVs for all routes into a single variable that is input 

into Equation 62. Equation 67 ensures that the aggregated refueling of PEVs is limited by the 

number and size of EVSE purchased. Equation 68 limits the number of purchased EVSE by the 

number of refueling ports on the purchased PEVs. 

ܿ݊ݑ݂	ݐݏ݋ܿ ൅ ∑ ൫∑ ௘௩,௟݊௘௩,௟,௥௟ܥ ൅ ∑ ௖௢௡,௠݊௖௢௡,௠,௥௠ܥ ൯ ൅ ∑ ௘௩௦௘,௡݊௘௩௦௘,௡௡௥ܥ    (Eq. 62) 
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௚௥௜ௗ,௧,ఠܧ ൅ ∑ ݁஽ீ,௞,௧,ఠ௞ ൅ ݁௣௩,௧,ఠ ൅ ݁ாாௌ	ௗ௖௛௥௚,௧,ఠ ൌ ா௟௘௖,௧,ఠ	஻௟ௗ௚ܧ ൅
௘ೇ಴,೟,ഘ
஼ை௉ೇ಴

൅ ݁ாாௌ	௖௛௥௚,௧,ఠ ൅

 ௥,௔௚௚,,௧          (Eq. 63)ݒ݁

∑ ݊௘௩,௟,௥௟ ൅ ∑ ݊௖௢௡,௠,௥௠ ൌ ݊௥௘௤,௥       (Eq. 64) 

∑ ௥,௧௧ఢௗ௔௬ݒ݁ ൌ ∑ ௥̅೐ೡ,೗
ఎ೐ೡ	೘೛ೖೈ೓,೗

݊௘௩,௟௟        (Eq. 65) 

௥,௔௚௚,,௧ݒ݁ ൌ ∑ ௥,௧௥ݒ݁          (Eq. 66) 

௥,௔௚௚,,௧ݒ݁ ൑ ∑ ܵ௘௩௦௘,௡݊௘௩௦௘,௡௡       (Eq. 67) 

∑ ݊௘௩௦௘,௡௡ ൑ 	∑ ∑ ௟ݎݎ,݈,ݒ݈݁݊,ݒ݁ܵ       (Eq. 68) 

3.4.3.2.2 Optimal Fleet Size and Mix Vehicle Routing Problem 

If the building operation includes some delivery component that requires vehicles to 

travel to specific locations or nodes, then the business owner may elect to purchase PEVs, 

conventional vehicles, or a mix of both, and design the routes of the vehicles such that cost is 

minimized. This problem, as discussed before, is known as the fleet size and mix vehicle routing 

problem. This problem has been studied extensively [114], and the extensions of the vehicle 

routing to electric vehicle travel have been formulated [110]. As a result, instead of a new 

formulation, the formulations from these two cited works will be adopted directly as the fleet 

size and mix vehicle routing problem that takes into account PEVs and integrated into the DER 

optimization formulation.   

In the problem formulation, n number of customers or nodes must be visited. The 

distance between each customer and all other customers and the building are known. Each 
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customer must be visited within a certain time limit. The assigned routes to any vehicle, 

including travel back to the building, must be within the range of that specific vehicle.  

Table 3-8: Parameters that define the pre-routed fleet mix optimization 

Sets Description 
n ∈ N Set of nodes to be visited 
i ∈ I Set of trips that result in arrive from node i 
j ∈ J Set of trips that depart from node j 
v ∈ V Set of all conventional and electric vehicles  
r ∈ R Set of PEVs that can be purchased 
Route Parameters  
Ai Time at which delivery at node i can start to occur (Time) 
Bi Time at which delivery at node i has to occur (Time) 
Ti,j  Time required to travel from node i to node j  (Time) 
di,j Distance between node i and node j (Miles) 
Vehicle Parameters  
Qv Range of vehicle v (Miles) 
 ($) ௩ Capital cost of vehicle vܥ
ܿ௜,௝,௩ Operational cost of vehicle v to travel from node i to node j ($) 
PEV Parameters   
 ($) ௘௩௦௘,௠ Capital cost of EVSE mܥ
 ௠௣௞ௐ௛,௥ Electricity used during PEV travel (Miles/kWh)	௘௩ߟ

ܵ௘௩,௟ Number of refueling ports for PEV l (number of refueling ports) 
ܵ௘௩௦௘,௠ Power rating of EVSE m (kW) 

 

Table 3-9: Decision variables that define the pre-routed fleet mix optimization 

Vehicle/Travel Decision 
Variables 

Description  Variable Type 

௜,௝,௩ݔ  Selection of route between node i 
and j using vehicle v 

Binary 

ti Time of arrival at node i Continuous 
yi,v Remaining range of vehicle v after 

arriving at node i 
Continuous 

PEV Decision Variables Description  Variable Type 
݁௔௚௚,௧ Aggregated energy delivered to 

purchased PEVs (kWh) 
Continuous  
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The problem formulation uses the constraints developed in [110,114] to describe the fleet 

mix and size vehicle routing problem with PEVs. Equation 69 through Equation 80 define the 

fleet mix and size vehicle routing problem. Equation 69 shows the modified Equation 9 cost 

function to include the cost of purchasing the different vehicles and EVSE and the cost to travel 

between the different nodes. The cost to travel between the different nodes for conventional 

vehicles includes maintenance and fuel cost. For PEVs, the cost to travel between nodes only 

considers maintenance cost since the cost to fuel the PEVs will be determined by the cost of 

purchasing electricity for the building. 

ܿ݊ݑ݂	ݐݏ݋ܿ ൅ 	∑ ൫∑ ଴,௝,௩ݔ௩ܥ
௡
௝ୀଵ ൅ ∑ ∑ ܿ௜,௝,௩ݔ௜,௝,௩

௡
௝ୀ଴

௡
௜ୀ଴ ൯௩ ൅ ∑ ௘௩௦௘,௠݊௘௩௦௘,௠௠ܥ  (Eq. 69) 

 Equation 70 ensures that all nodes are visited while Equation 71 forces a vehicle arriving 

at a node to depart from the same node. Equation 72 ensures that all nodes are visited within a 

specific time window. Equation 73 ensures that travel from node to node occurs in sequential 

order. This constraint also suppresses any subtour formation where an optimal solution suggests 

that a vehicle travels between the nodes and never returns to the building. A subtour is a routing 

solution between nodes that does not start or end with travel back to the base. Equation 74 

reduces the vehicle range as a result of traveling between nodes while Equation 75 states that 

each vehicle leaves the building after being completely refueled. Equation 76 ensures that all 

vehicles traveling always have enough range to return to the building. 

∑ ∑ ௜,௛,௩ݔ ൌ 1௡
௝ୀ଴ 							݅ ൌ 1,… . , ݊௩         (Eq. 70) 

∑ ௜,௟,௩ݔ ൌ ∑ ௟,௝,௩ݔ
௡
௝ୀ଴ 		݈ ൌ 1,… , ݊௡

௜ୀ଴         (Eq. 71) 

௜ܣ ൑ ௜ݐ ൑ ݅	௜ܤ ൌ 1,… , ݊         (Eq. 72) 



65 

 

௜ݐ ൅ ௜ܶ,௝ െ ௝ݐ ൑ ∑ ௜ܤ൫ݔܽ݉ ൅ ௜ܶ,௝ െ ,௝ܣ 0൯൫1 െ ௜,௝,௩൯௩ݔ 	݅, ݆ ൌ 1, … , ݊   (Eq. 73) 

௝,௩ݕ ൑ ௜,௩ݕ െ ݀௜,௝ݔ௜,௝,௩ ൅ ܳ௩൫1 െ ݅	௜,௝,௩൯ݔ ൌ 1,… , ݊      (Eq. 74) 

ଵ,௩ݕ ൌ ܳ௩           (Eq. 75) 

௝,௩ݕ ൒ ௝݀,଴           (Eq. 76) 

Equation 77 through 80 only relate to any purchased PEVs. Equation 77 is Equation 10 with the 

addition of the refueling requirements. Equation 78 ensures that all purchased PEVs are refueled 

after arriving back at the building based on the route performed during the day. Equation 79 

limits the refueling rate to the number and size of the EVSE purchased and Equation 80 limits 

the number of purchased EVSE to by the PEVs purchased times the number of refueling sockets 

per PEV. 

௚௥௜ௗ,௧,ఠܧ ൅ ∑ ݁஽ீ,௞,௧,ఠ௞ ൅ ݁௣௩,௧,ఠ ൅ ݁௕௔௧௧	ௗ௖௛௥௚,௧,ఠ ൌ ா௟௘௖,௧,ఠ	஻௟ௗ௚ܧ ൅
௘ೇ಴,೟,ഘ
஼ை௉ೇ಴

൅ ݁௕௔௧௧	௖௛௥௚,௧,ఠ ൅

 ௔௚௚,,௧           (Eq. 77)ݒ݁

∑ ݁௔௚௚,௧௧ఢௗ௔௬ ൌ ∑ ∑ ∑
ௗ೔,ೕ

ఎ೘೛ೖೈ೓,ೝ
௜,௝,௥ݔ

௡
௝ୀ଴

௡
௜ୀ଴௥        (Eq. 78) 

݁௔௚௚,௧ ൑ ∑ ܵ௘௩௦௘,௡݊௘௩௦௘,௡௡          (Eq. 79) 

∑ ݊௘௩௦௘,௡௡ ൑ 	∑ ∑ ௟ݎݎ,݈,ݒ݈݁݊,ݒ݁ܵ       (Eq. 80)  

3.5 Cost and Emission Allocation 

3.5.1 Cost to Fuel PEVs 

The total electrical utility cost can easily be calculated by using the applicable rate 

structure model as described in Section 3.1. The cost produced by this model is the aggregated 
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cost to charge a set of PEVs during a winter or summer month with Level 3 EVSE. This total 

cost model, however, does not resolve the marginal cost to charge each of the individual PEVs in 

each scenario.  

Determining the cost of charging individual PEVs using pubic Level 3 EVSE can be 

viewed as a cooperative game with all utility costs being allocated to the charging of the 

individual vehicles. While individual drivers may not work together to minimize total electricity 

cost for the refueling station, they may cooperate so that they each pay a fair price to refuel. No 

customer wishes to subsidize the charging of another customer’s PEV, so a method that 

efficiently and fairly allocates electric utility cost must be used. One possible solution to this 

problem is the Shapley value [161]. The Shapley value is not applied in real time. Rather, it is 

applied a posteriori to determine the fair share of total electricity charges for each customer. This 

method can be used to assist with the design and evaluation of PEV customer refueling rates 

used to charge drivers to use public Level 3 EVSE by determining if a rate fairly allocates 

electric utility charges.  

The Shapley value is a method to determine the “fair” allocation to a coalition of players. 

In the case of PEVs charged using public EVSE, the coalition of players, as defined by set N of n 

players, are all of the PEVs that are charged.  S is any coalition of PEVs that form a subset of N. 

The function v(S) is the characteristic function, which determines the cost incurred by the subset 

S. The characteristic function for this work is either the utility demand or energy charge. With 

these definitions, the Shapley value can be found using the following equation to find the 

allocation ߮௜ of player (or PEV) i: 

߮௜ሺ݅ሻ ൌ ∑ |ௌ|!ሺ௡ି|ௌ|ିଵሻ!

௡!
൫ݒሺܵ ∪ ሼ݅ሽሻ െ ሺܵሻ൯ௌ⊆ே\ሼ௜ሽݒ       (Eq. 81) 
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3.5.1.1 Allocation for Standalone Level 3 EVSE 

The Shapley value is deemed a fair allocation due to all costs being allocated, any two 

participants with the same contribution (same total electric energy used to recharge their PEV) 

receive the same allocation, participants who contribute nothing receive no allocation, and 

scaling the cooperative game up by any real number a results in the Shapley value of each 

member being scaled by a. Note that the allocation of demand charges is analogous to the 

runway problem explored by Littlechild and Owen [162], resulting in a simplified calculation of 

the Shapley value that is determined by the following solution: 

1. Divide the cost of providing the minimum power for which a demand charge is incurred 

(20 kW) by all PEVs that incur a demand of 20 kW or greater. 

2. Divide the incremental cost of providing power to the next smallest power demand 

incurred by all PEVs that draw at the next smallest power demand or greater. 

Step two is repeated until the incremental cost created by the PEVs that create the largest 

power demand is divided equally among all PEVs that create this level of demand. Note that 

while the Level 3 charging creates a demand of over 20 kW, any PEV or group of PEVs that are 

fueled by Level 3 EVSE but do not create an aggregated demand that averages 20 kW or greater 

for a 15 minute period receives no allocation for the given 15 minute period because this level of 

charging would fall under TOU-EV-3, which has no demand charge.  

3.5.1.2 Allocation for Level 3 EVSE Integrated with a Building 

The Shapley value for the building and aggregated PEV load can be found directly by 

using Equation 81.  This type of analysis is useful in determining the fair cost incurred by PEVs 

refueling at a building.  While the rate that is applicable to the aggregated PEV and building load 
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is determined by the utility, the Shapley value will show any value created by EVSE integration 

and assign the cost fairly. For example, if PEVs experience a lower cost of energy due to 

integration, the building should experience a benefit due to providing access to the lower cost 

utility rate. Also, if the aggregation of building and PEV loads does not significantly increase 

overall demand charges, both parties should experience a cost reduction as a result of being able 

to split a demand charge that did not increase as a result of integration.  

3.5.2 Cost to Purchase and Operate DER 

A DER system is considered a single resource that is used to make multiple products. All 

utility and equipment purchases and subsequent operation are made to produce multiple types of 

energy. The interactions between these different types of building energy can be separated 

through cost allocation. Similar to PEV charging, the allocation of building energy costs can be 

viewed as a cooperative game. This allows for the Shapley value to be used. 

If the set of players is considered to be the different types of energy demand (electricity, 

heating, cooling, and transportation), the Shapley value can be determined for all costs by 

determining the optimal DER and PEV configuration of all possible coalitions formed by 

players, or combinations of energy types. This is accomplished by using the DER optimization 

model to size a system for meeting each individual and all possible combinations of energy 

demand types and transportation requirements. This answers the question of if only one or two 

types of energy were to be produced using a CCHP system in conjunction with the legacy 

technology, what would the optimal system configuration be? With this known, the marginal 

costs associated with meeting the other types of energy can be determined. 
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Once the investment and operational costs have been allocated, the value of each type of 

energy can be determined. This will allow for the performance of the investment made into 

meeting different types of building energy to be made. The metric used to determine energy 

value will be levelized cost of energy. The metric used to determine investment performance will 

be marginal internal rate of return. Marginal internal rate of return is similar to the internal rate 

of return with the primary difference being that any positive cash flow is reinvested using a 

separate interest rate. Both metrics are discussed in further detail in Section 3.7. 

This method can also be used to determine the sources of any emissions. By determining 

the emissions produced by each combination of energy conversion technology use, the 

contribution to the overall emissions can be determined. Particularly when a reduction in 

emissions are desired, the energy type for which reductions are easiest or least expensive can be 

determined. 

3.6 Utility Emission Model 

Operation of a building using non-renewable forms of energy produce CO2 emissions. 

For any fuel used onsite, the emissions are simply traced to the carbon content of the fuel. The 

same is for carbon emissions associated with an electrical utility. However, from the perspective 

of the building, it is unknown the types of generators producing the electricity and the types and 

quantities of fuels being burned. In addition, generator dispatch varies throughout the day, 

resulting in a changing CO2 emission factor throughout the day. 

Instead of tracking down the dispatch of each individual generating plant that produces 

power for California, the California Independent System Operator (CAISO) website [163] was 

used to determine the percent of total power delivered to California customers produced by 
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carbon free generating sources (renewable, geothermal, nuclear, hydro, etc.) for each one hour 

period for the year 2015. By making the assumption that the rest of the electricity was produced 

using natural gas fired combined cycle power plants, a time resolved emissions factor was 

produced for California. This time resolved emissions factor was then normalized to the average 

emission factor for the State of California reported in the Department of Energy eGrid report 

[164].  The emissions factor was then reduced to a representative set of winter and summer 

emissions using the clustering method described in Section 0 for filtering building data. The 

resulting emission factor profile for electricity purchased from a utility in California is shown in 

Figure 3-9. 

 
Figure 3-9: Time resolved CO2 emissions factor for the State of California in 2015 during two 

winter and one summer months 

Figure 3-10 shows two typical winter and summer weeks as presented in Figure 3-9. By 

focusing on a smaller time period than three months, the dynamics of the time resolved grid 

emissions factor can be better understood. The X axis tick marks in Figure 3-10 correspond to 

noon each day. It is clear from Figure 3-10 that grid electrical energy during the early to middle 
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part of each day is the least carbon intensive, with carbon emissions per unit of energy increasing 

at night. 

 
Figure 3-10: Time resolved CO2 emissions factor for the State of California in 2015 during two 

winter weeks and two summer weeks 

3.7 DER Financial Metrics 

Many of the cost components associated with the installation and operation of a DER 

system can be easily determined based on manufacturer provided information, information in the 

current literature, or from projections on costs into the future. This information is critical to 

determining the total cost of operation for a DER system. Some costs, such as operations and 

maintenance (O&M), can be either presented in terms of or converted to cost per unit of energy 

produced or stored. With the O&M cost simplified to a single variable O&M cost, the total cost 

of operating and maintaining a DER technology can be easily found by multiplying the variable 

O&M cost by the total amount of energy produced or stored.  
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Capital cost for a purchased piece of equipment must be converted from the initial total 

cost of purchase and installation into the equity supplied by the investor and the loan supplied by 

a borrower to assist with the financing of the equipment. This work assumes that the investor 

will always pay for 20% of all equipment purchased, with the remaining 80% supplied in the 

form of a loan. The loan details are assumed to be as follows: yearly interest rate is 8%, the life 

of the loan is 10 years, and monthly debt payments occur. The monthly debt payment required 

for the loan can be determined using Eq. 82, where i is the interest rate, n is the life of the loan in 

months, and Principal is the borrowed 80% of the DER system cost. 

       Eq. 82 

Once the amount invested, debt payments, O&M costs, and utility purchase costs have 

been determined, a valuation of the investment can be made versus if the energy load met by a 

new DER system had been met using traditional energy sources, such as an electrical utility. The 

metrics selected for comparison in this work are the modified internal rate of return (MIRR) and 

the levelized cost of energy (LCOE).  

The MIRR for any particular investment weights the savings produced by any specific 

investment versus the cost of investment. Specifically, any savings that are produced are 

discounted forward to their future value (FV) in time using a reinvestment rate j associated with 

the business or organization investing in the DER technology. Any losses are discounted 

backward to their present value (PV) at the borrowing rate i, or loan rate, as if the loss were to be 

originally borrowed from a lender. The MIRR is determined for n number of periods. The 

equation used to determine the MIRR is shown in Eq. 83. 
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ܴܴܫܯ ൌ ට
ி௏ሺௌ௔௩௜௡௚௦,௝ሻ

௉௏ሺ௅௢௦௦௘௦,௜ሻ

೙
െ 1       Eq. 83 

The LCOE relates the cost to invest in a particular DER technology or to meet a type of 

energy demand over an extended period of time. Typically, the LCOE is determined over the 

entire lifetime of a specific piece of technology or system. By determining the LCOE, multiple 

types of generators and energy sources can be compared on an economic basis using the same 

scale. The equation for the LCOE is shown in Eq. 84. In Eq. 84, It is the investment cost at time 

period t, Mt is the O&M cost at time t, Ft is the fuel cost at time t, Et  is the energy produced or 

consumed during time t , r is the discount rate over the time period, and n is the number of time 

periods. 

ܧܱܥܮ ൌ
∑ ಺೟శಾ೟శಷ೟

ሺభశೝሻ೟
೙
೟సభ

∑ ಶ೟
ሺభశೝሻ೟

೙
೟సభ

        Eq. 84 
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4 Operational Data Sets 

4.1 Building Data 

Two separate sets of building data are used in this work. The first set is the prior 

mentioned building data set collected in [155]. The second set is for the campus energy demand 

for the University of California at Irvine (UCI). UCI currently uses a combination of a CCHP 

plant local PV systems and utility electricity to meet all campus energy demand. The CCHP 

system consists of a 13.5 MW gas turbine, a heat recovery steam generator used to convert gas 

turbine waste heat to steam, and a 4.5 MW steam turbine. Approximately 4 MW of photovoltaic 

systems, seven electric chillers, one steam chiller, and a 4.5 million gallon cold thermal energy 

storage tank that provides 60,000 ton-hours of cooling storage [165] are also installed. In order to 

operate the CCHP central plant, extensive monitoring is used to determine the operational state 

of all installed technologies, providing a dataset from which the time resolved campus energy 

demand can be determined. Prior work by McLarty resolved this set of data to three years of 15-

minute resolved electrical, cooling, and heating demand associated with the campus [166].  

Direct use of the building data is either difficult or unnecessary for this current work. For 

DER optimization, including a years’ worth of building energy demand produced an intractable 

MILP problem that cannot be solved quickly enough using a typical computer. For EVSE 

integration evaluation, by focusing upon the cost of electricity associated with Level 3 operation, 

the maximum data length required is set by the length of a utility billing period, or typically one 

month. As a result, the building energy data sets either must or should be filtered to create a 

representative building energy data set. This is accomplished by filtering the building energy 

data using the clustering method described in Section 3.2.  
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4.1.1 Commercial and Industrial Buildings 

4.1.1.1 CCHP System Design 

The 12 buildings that have a complete set of electrical, cooling, and heating demand are 

used for the CCHP system design. The results of processing the building data are shown in 

Figure 4-1 through Figure 4-12.  

Table 4-1 through Table 4-3 contain general information about the building electrical, 

heating, and cooling demand, respectively.  The buildings are arranged from smallest average 

electrical demand to largest. A wife variety of behavior is experienced across the buildings. For 

example, the Long Beach and Loma Linda VA Hospital building, shown in  Figure 4-12 and 

Figure 4-11 respectively,  both have relatively flat electrical demand and thermal loads that 

coincide with the middle of the day and are similar in size to the electrical demand. The Patton 

Hospital Building, St. Regis Hotel, and Hyatt Irvine Hotel , shown in Figure 4-10, Figure 4-9, 

and Figure 4-7 respectively, have a diurnal electrical and cooling load matched with a consistent 

thermal load. The SCAQMD and UCI Croul buildings, as seen in Figure 4-8 and Figure 4-2 

respectively, has an electrical demand that is highly dynamic during the early morning, a cooling 

load that is large but only occurs during the day, and a heating load that occasionally appears to 

be consistent, but experiences periods where it only coincides with the cooling demand. Both the 

UCI Natural Sciences 1 and 2 buildings, shown in Figure 4-5 and Figure 4-6 respectively, have a 

combination of relatively flat electrical demand with transient electrical behavior. This is mixed 

with transient thermal loads. The UCI Cal IT2 has a relatively flat electrical demand that is 

paired with a diurnal cooling load and a consistently inconsistent heating demand, as seen in 

Figure 4-4. The US Navy Palmer Hall building has a diurnal electrical and cooling load, as seen 
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in Figure 4-3. The thermal loads, however, are relatively small compared to the electrical load. 

Finally, the smallest building included is the UCI Bren building, which has a diurnal electrical 

and cooling load with an inconsistent heating load, as seen in Figure 4-1. 

 
Figure 4-1: Filtered UCI Bren building (university ) energy demand data 
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Figure 4-2: Filtered UCI Croul building (university) energy demand data 

 
Figure 4-3: Filtered US Navy Palmer Hall building (hotel) energy demand data 

 
Figure 4-4: Filtered UCI Cal IT2 building (university) energy demand data 
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Figure 4-5: Filtered UCI Natural Sciences 1 building (university) energy demand data 

Figure 4-6: Filtered UCI Natural Sciences 2 building (university) energy demand data 
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Figure 4-7: Filtered Hyatt Irvine building (hotel) energy demand data 

 
Figure 4-8: Filtered SCAQMD building (regulatory agency, office/laboratory) energy demand 

data 
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Figure 4-9: Filtered St. Regis building (hotel) energy demand data 

 
Figure 4-10: Filtered Patton Hospital building energy demand data 
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Figure 4-11: Filtered Loma Linda VA building energy demand data 

 
Figure 4-12: Filtered Long Beach VA building energy demand data 

Table 4-1: Summary of electrical demand for the 12 filtered building energy demand data sets 

Building Name 
Avg. Elec Demand 

(kW) 
Max Elec Demand 

(kW) 
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UCI Bren 157 349 
UCI Croul 188 253 

US Navy Palmer Hall 195 281 
UCI Cal IT2 323 688 

UCI Nat Sci 2 397 888 
UCI Nat Sci 1 431 865 
Hyatt Irvine 552 996 
SCAQMD 781 1920 
St Regis 1212 1790 

Patton Hospital 1400 2374 
Loma Linda VA 2570 3871 
Long Beach VA 2893 4832 

 

Table 4-2: Summary of heating demand for the 12 filtered building energy demand data sets 

Building 
Name 

Avg. Heat 
Demand 

(kW) 

Max Heat 
Demand 

(kW) 

Heating 
Coincidence w/ 

Elec 
Heat/Elec 

Ratio 

UCI Bren 74 1252 0.40 0.47 
UCI Croul 84 457 0.68 0.45 
US Navy 
Palmer 

Hall 56 199 0.89 0.29 
UCI Cal 

IT2 189 1208 0.17 0.58 
UCI Nat 

Sci 2 477 2579 0.39 1.20 
UCI Nat 

Sci 1 253 1325 0.93 0.59 
Hyatt 
Irvine 531 1477 1.00 0.96 

SCAQMD 1280 6721 0.62 1.64 
St Regis 594 1313 1.00 0.49 
Patton 

Hospital 1488 4409 0.87 1.06 
Loma 

Linda VA 3253 8512 0.93 1.27 
Long 

Beach VA 2251 8508 0.63 0.78 
 

Table 4-3: Summary of cooling demand for the 12 filtered building energy demand data sets 
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Building 
Name 

Avg Cool 
Demand 

(kW) 

Max Cool 
Demand 

(kW) 

Cooling 
Coincidence w/ 

Elec 
Cool/Elec 

Ratio 

UCI Bren 175 499 0.86 1.11 
UCI Croul 88 507 0.46 0.47 
US Navy 

Palmer Hall 29 187 0.76 0.15 
UCI Cal IT2 344 1465 0.81 1.06 
UCI Nat Sci 

2 212 1380 0.38 0.53 
UCI Nat Sci 

1 336 1545 0.61 0.78 
Hyatt Irvine 591 1641 1.00 1.07 
SCAQMD 742 5012 0.49 0.95 
St Regis 554 1524 0.91 0.46 
Patton 

Hospital 1204 3738 0.98 0.86 
Loma Linda 

VA 1806 7490 0.61 0.70 
Long Beach 

VA 2251 10093 0.65 0.78 
 

4.1.1.2 Level 3 EVSE Integration  

The primary interest of this part of the study is the cost of refueling PEVs using Level 3 

EVSE charging at these types of buildings. However, the impact of EVSE integration into a 

preexisting building will alter the load profile serviced by a utility, and possibly the resulting cost 

of electricity for both the refueled PEVs and the building. No two buildings are identical in either 

load dynamics of quantity of electricity consumed. A robust building model is required to 

capture the majority of behavior that can be commonly found in the built environment. 

Since the only applicable building energy demand required for this analysis is the 

electrical demand created by the combined electrical and cooling load, different buildings can be 

selected from the set of 39 buildings for which building data exists. Not all 39 buildings are 
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required to perform this study, so ten buildings from the set of 39 that span high and low load 

factor were selected to be used in this work. Since the study is interested in the cost of electricity, 

and the typical billing period for a utility is a calendar month, only a summer and winter month 

of building data was required. Instead of using averaged building data, the k-medoids clustering 

method described by Domínguez-Muño in [156] was used to filter the building data to one 

representative summer and winter month. The filtered summer and winter month are shown in 

Figure 4-13 and Figure 4-14 respectively. Note that the demand profiles for summer and winter 

were built using data from the respective seasons only, with the season being defined by the 

utility as described in Section 3.1.1. As a result, all representative months are different for each 

of the buildings in each season. 

 

 

Figure 4-13 Representative electrical demand during the summer for the 10 buildings 
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Figure 4-14: Representative electrical demand during the winter for the 10 buildings 
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4.1.2 UCI Energy Demand 

The UCI energy demand data for 2012 was filtered, producing the energy demand profile 

shown in Figure 4-15. Table 4-4 contains summary values of the UCI campus electrical, cooling, 

and heating demand for the filtered data set. 

 
Figure 4-15: Filtered UCI campus energy demand data 

Table 4-4: Summary of electrical, heating, and cooling demand for the filtered UCI Campus 

energy demand data set 

Season All Summer Winter 
Average Electrical Demand 

(MW) 8.69 6.33 9.84 
Max Electrical Demand 

(MW) 15.74 12.50 15.74 
Electrical Load Factor 0.55 0.51 0.63 

Average Heating Demand 
(MW) 9.84 7.18 11.14 

Max Heating Demand (MW) 27.03 14.74 27.03 
Heating Load Factor 0.36 0.49 0.41 
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Ratio of Heating to Electrical 
Load 1.13 1.14 1.13 

Average Cooling Demand 
(MW) 13.17 20.16 9.75 

Max Cooling Demand (MW) 45.08 45.08 44.70 
Cooling Load Factor 0.29 0.45 0.22 

Ratio of Cooling to Electrical 
Load 1.52 3.19 0.99 

 

4.2 Fleet Vehicle Travel Behavior and Electric Vehicles 

The building energy profiles described above include the relevant information to study 

the interactions between a DER system and a building. This information, however, is not 

sufficient to make informed decisions on whether electric vehicles should be adopted for use by 

the business operator to perform certain required tasks. Addition information governing either 

the vehicle routes or locations that must be visited is required. 

Fleet vehicle behavior for some applications (e.g., a taxi fleet) is similar to the 

uncontrolled vehicle behavior described in the travel model discussed in Section 3.3.1. Other 

applications, however, have more regular travel patterns and can be described as nearly 

deterministic. Two examples of this are the operation of public buses traveling along specific 

routes on a schedule and the use of delivery vehicles that leave an origin at a specified time and 

travel to a set number of customers or locations. The information describing these two types of 

travel is unique to each application. This work uses data sets that are defined for each type of 

travel and specific to the buildings examined. 

4.2.1 UCI Operations Fleet and Anteater Express Bus System 

The University of California, Irvine maintains a fleet of vehicles to support university 

operations. The travel of much of the UCI fleet is specific to the individual daily tasks required 
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of the employees, and can be viewed as stochastic from the perspective of the work. One portion 

of the fleet (the Anteater Express bus system) provides public transportation around the UCI 

campus and surrounding neighborhoods to UCI students. A map of the system provided by UCI 

is shown in Figure 4-16. The Anteater Express route travel information for each bus is shown in 

Table 4-5.  Any pre-routed fleet optimization will use the information displayed in Table 4-5 as 

the basis for the transportation system to be optimized. 

 
Figure 4-16:  System map of Anteater Express public transportation system at UCI for 2015 

through 2016 [167] 

Table 4-5: Travel behavior for busses used by the Anteater Express System 

Route 

Miles per 
Day (M-

Th) 

Miles 
per Day 

(F) 

Quarters in 
Service (F, W, 

Sp, Su) 
Service Schedule 

(M-Th) 

Service 
Schedule 

(F) 



89 

 

AV Bus 1 156.8 118.4 
Fall, Winter, 

Spring 
7:17am - 
11:21pm 

7:17am - 
7:21pm 

AV Bus 2 115.2 115.2 
Fall, Winter, 

Spring 7:27am - 7:00pm 
7:27am - 
7:11pm 

Main Bus 1 178 135 
Fall, Winter, 

Spring 
7:25am - 
11:31pm 

7:25am - 
7:17pm 

Main Bus 2 131.25 131.25 
Fall, Winter, 

Spring 7:35am - 6:52pm 
7:35am - 
7:07pm 

Newport 271.2 220.35 
Fall, Winter, 

Spring 
7:20am - 
11:15pm 

7:20am - 
8:00pm 

Park West - 
Carlson 195.2 152.5 

Fall, Winter, 
Spring 

6:58am - 
10:48pm 

6:58am - 
7:18pm 

Vista del 
Campo Bus 

1 112 60 
Fall, Winter, 

Spring 7:21am - 6:53pm 
7:21am - 
1:45pm 

Vista del 
Campo Bus 

2 112 60 
Fall, Winter, 

Spring 7:30am - 7:02pm 
7:30am - 
1:37pm 

Vista del 
Campo Bus 

3 112 56 
Fall, Winter, 

Spring 7:38am - 7:10pm 
7:38am - 
1:20pm 

Vista del 
Campo 

Norte Bus 1 119 61.2 
Fall, Winter, 

Spring 7:27am - 7:00pm 
7:27am - 
1:20pm 

Vista del 
Campo 

Norte Bus 2 119 61.2 
Fall, Winter, 

Spring 7:34am - 7:06pm 
7:34am - 
1:30pm 

Vista del 
Campo 

Norte Bus 3 119 61.2 
Fall, Winter, 

Spring 7:41am - 7:15pm 
7:41am - 
1:40pm 

Camino del 
Sol Bus 1 122.4 64.6 

Fall, Winter, 
Spring 7:22am - 7:15pm 

7:22am - 
1:35pm 

Camino del 
Sol Bus 2 119 61.2 

Fall, Winter, 
Spring 7:32am - 7:05pm 

7:32am - 
1:25pm 

Morning 
Overflow 20 20 

Fall, Winter, 
Spring 7:15am - 11:15am 

7:15am - 
11:15am 

Evening 
Overflow 24 24 

Fall, Winter, 
Spring 4:30pm - 9:00pm NA 

ACC 
Combined 

Bus 1 36.9 49.2 
Fall, Winter, 

Spring 
7:00pm - 
11:16pm 

1:20pm - 
7:06pm 

ACC 
Combined 

Bus 2 36.9 36.9 
Fall, Winter, 

Spring 
7:15pm - 
11:31pm 

1:25pm -
5:41pm 
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ACC 
Combined 

Bus 3 0 49.2 
Fall, Winter, 

Spring NA 
1:30pm - 
7:16pm 

ACC 
Combined 

Bus 4 0 36.9 
Fall, Winter, 

Spring NA 
1:35pm - 
5:51pm 

ACC 
Combined 

Bus 5 0 49.2 
Fall, Winter, 

Spring NA 
1:40pm - 
7:26pm 

ACC 
Combined 

Bus 6 0 32.8 
Fall, Winter, 

Spring NA 
1:45pm - 
5:31pm 

Summer 
Combined 

Bus 1 121.5 121.5 Summer 7:10am - 8:24pm 
7:10am - 
8:24pm 

Summer 
Combined 

Bus 2 139.5 108 Summer 
7:18am - 
10:09pm 

7:18am - 
7:04pm 

Summer 
Combined 

Bus 3 103.5 103.5 Summer 7:25am - 6:44pm 
7:25am - 
6:44pm 

Summer 
Combined 

Bus 4 36 36 Summer 7:33am - 11:17am 
7:33am - 
11:17am 

Summer 
Overflow 18 18 Summer 

8:15am - 
12:15pm 

8:15am - 
12:15pm 

 

4.2.2 Node Set for Fleet Vehicle Travel  

The optimization formulation presented in Section 3.4.3.2.2 allows for a building or 

business operator that also manages a fleet of vehicles used to travel to a set of nodes or locations 

to determine the optimal fleet size and composition while taking into account the delivery or 

travel requirements created by the fleet. The interaction with the building is created if electric 

vehicles are adopted and are refueled at the building. If this occurs, then the cost of electricity at 

the building can impact the decision to route a specific electric vehicle such that overall energy 

and transportation costs are minimized. If the building or business operator is also deciding to 
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adopt and operate a DER system, the interaction between the electric vehicles and DER system 

may affect the adoption and operation of the other. 

The set of nodes a building or business operator is concerned with is specific to the 

individual application. For example, a small business may provide a mobile service that requires 

for the adoption of a vehicle to travel relatively close to the business building. On the other hand, 

large delivery depot may service thousands of nodes near and far from the business, requiring for 

the adoption of a large fleet of vehicles. 

For this current work, a random set of nodes is generated using geographic information 

system software to produce a set of locations to be visited that are relatively close to a specified 

origin such that an electric vehicle theoretically can be used to travel from the origin to each 

node and back to the origin. Including nodes with a resulting round trip distance greater than any 

available electric vehicle range is not included in the current work, although such a scenario does 

occur in actual application.  

The origin in this case is assumed to the University of California at Irvine. Fourteen 

locations were randomly selected from retail locations and shopping centers surrounding UCI, 

with the only constraint being that no location could be farther than 60 miles from the university. 

In addition to the distance between the 14 nodes and the UCI, the distance between all node 

combinations was also determined. The corresponding travel time between all nodes was also 

determined using geographic information system software. The information associated with the 

distance and time to travel between all nodes can be arranged in matrix form, and is called the 

origin-destination distance matrix and origin-destination time matrix respectively. 
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Table 4-6: Origin-destination distance matrix for travel between the UCI origin and all 14 nodes 
with all distances in miles 

Nodes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0 32 37 40 9 21 58 63 25 52 10 7 57 47 24
2 32 0 43 50 26 22 45 48 13 31 35 26 45 56 26
3 36 43 0 7 34 39 37 41 39 31 33 32 36 16 45
4 40 50 8 0 40 46 43 47 46 37 35 39 35 10 51
5 9 26 34 41 0 9 56 60 10 50 17 5 55 46 15
6 21 23 40 46 9 0 61 66 10 48 26 14 60 54 6 
7 58 45 37 43 56 61 0 6 53 19 58 54 6 43 67
8 63 48 41 47 60 65 7 0 55 21 63 58 12 48 70
9 25 14 40 47 10 10 52 56 0 38 28 14 52 54 14
10 52 31 31 37 50 47 19 22 38 0 52 48 19 43 53
11 11 35 34 34 17 28 61 66 29 55 0 16 60 40 34
12 7 26 32 39 4 14 54 58 14 48 16 0 53 44 20
13 58 44 36 34 55 60 6 12 52 18 58 53 0 37 66
14 45 57 17 10 46 53 44 48 54 44 39 44 38 0 59
15 24 26 45 52 15 6 67 71 14 53 31 20 66 59 0 
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Table 4-7: Origin-destination time matrix for travel between the UCI origin and all 14 nodes 
with all time to travel in minutes 

Nodes 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 0 38 45 49 16 29 66 71 33 60 18 12 68 54 36
2 38 0 54 60 35 30 55 57 19 40 41 31 57 68 35
3 43 52 0 11 42 44 44 48 48 38 38 38 46 21 51
4 50 59 13 0 50 52 50 54 56 44 42 45 44 15 58
5 16 35 44 50 0 14 65 70 17 59 25 8 67 54 20
6 29 31 46 52 14 0 69 74 15 57 34 20 71 60 9 
7 66 54 46 51 66 70 0 9 61 24 71 61 11 58 76
8 70 56 49 54 69 73 9 0 62 25 75 65 17 63 79
9 33 20 51 57 17 14 61 63 0 46 35 24 63 63 19
10 59 39 39 44 58 56 25 26 46 0 64 54 27 53 62
11 18 41 40 41 25 34 71 75 36 65 0 21 73 47 41
12 12 32 39 45 8 20 61 65 24 55 21 0 63 49 27
13 68 56 48 43 68 71 11 18 62 26 73 63 0 50 78
14 55 68 23 15 54 60 58 62 63 54 48 50 50 0 66
15 35 36 52 58 20 9 76 80 19 63 41 27 78 66 0 
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5 Optimal Design and Operation of CCHP Systems with Heat 

Recovery 

The primary barrier to the widespread adoption of DER technologies is a high investment 

cost of many of the associated technologies. As these technologies begin to mature, and the cost 

to purchase and install DER systems begins to decrease, careful matching of technology to 

energy demand must be made to ensure that the goals of an investor are met in an economically 

efficient manner. Much of the work presented in Section 1.2.1 has been focused on developing 

optimization models to design DER systems such that some goal is met. The most common goal 

is to minimize energy cost. 

From the perspective of the investor hoping to minimize energy costs, one of the most 

important metrics associated with the design of a DER system is the rate of return on the 

investment made. Achieving a high rate of return on an investment indicates an efficient and 

desirable investment of limited resources, and can propel an investor to purchase a DER system. 

If the DER system produces multiple types of energy, such as heating and cooling in addition to 

electricity, a single rate of return fails to determine the benefit or hindrance created by creating 

these different types of energies.  

Determining the value created by producing multiple types of energy can be useful prior 

to and after investment. From the investors perspective, this knowledge can determine what type 

of energy production is driving the system economic performance, risk associated with any 

specific technology of projected energy demand, and the critical components of the system. 

From the perspective of an equipment manufacturer, this knowledge can establish what types of 

technologies pair together well and the exact value provided by the manufacturer’s products. 
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From a subsidizers perspective, such as a government entity providing incentives for the 

purchase of DER technology, this knowledge can show which technologies perform well and 

which need some additional economic assistance to improve financial performance. Many of 

these concerns can be reduced to the following question: how much does it cost to supply 

cooling or heating using a DER system?  

This current work is concerned with determining the cost to produce electricity, cooling, 

and heating using a CCHP system operated using utility supplied natural gas, acting in parallel 

with an electrical utility. Numerous DER technologies could be included in this work. However, 

initially, this study will focus on a reduced system consisting of a fuel cell or gas turbine 

producing electricity for a building and waste heat that can be captured using an absorption 

chiller or heat recovery unit. A CCHP system consisting of the above listed technologies will be 

designed for a building already equipped with a vapor compression and boiler system properly 

sized to meet the associated cooling and heating load. The particular buildings are selected from 

the set of buildings described in Section 4.1.1.1. Using the DER optimization model described in 

Section 3.4 and cost allocation method described in Section 3.5, the investment made in, cost to 

produce, and financial performance associated with electricity, cooling and heating for each 

building can be determined. 

The process of DER system optimization will occur for three separate CCHP systems. 

The first system will consist of a fuel cell and microturbine supplying heat to a heat recovery 

unit. The second will consist of the same system as the first configuration, plus an absorption 

chiller with investment and operating costs comparable to currently available absorption chillers. 

The final CCHP system includes the same technology as the second configuration, with the only 
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difference being that the absorption chiller operations and maintenance cost is the same as a 

vapor compression system.  

A typical DER system is based on DG providing a heat to a heat recovery unit, the first 

system captures what a baseline DER system will look like for each building. Adding an 

absorption chiller to the technology mix in the second system introduces the question of what is 

the best use of heat produced by DG. Since a heat recovery unit is in the most basic terms just a 

heat exchanger, the cost to purchase and operate a HRU is low relative to the price of other 

components in a DER system. It is unlikely that future developments to heat recovery technology 

(or heat exchangers) will reduce either capital or operation cost substantially. Likewise, the 

capital cost of an absorption chiller is relatively small compared to the DG producing heat. 

However, the operations and maintenance cost for an absorption chiller can be nearly twice the 

cost as a vapor compression chiller [168,169]. As a result, the third system is the same as the 

second, only with a reduced absorption chiller O&M cost. 

5.1 Optimization Parameters and Assumptions 

The three separate technology scenarios are denoted using the following titles: 

 HRUo (Heat recovery unit only): Consists of fuel cells, microturbines, and a heat 

recovery unit 

 AC-h (Absorption chiller with high O&M cost): HRUo with an absorption chiller 

at current capital and O&M costs 

 AC-l (Absorption chiller with low O&M cost): HRUo with an absorption chiller 

at current capital costs. O&M costs are reduced to the same O&M cost as a vapor 

compression system 
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The capital and O&M cost parameters for the heat recovery unit, absorption chiller, vapor 

compression chiller, and boiler were taken from Hosford, and DiMola [168,169]. The fuel cell 

O&M costs were also taken from [168,169]. All other fuel cell and microturbines cost 

parameters were taken from [12]. Current capital costs for both fuel cells and microturbines 

proved to be prohibitive to DG adoption. As a result, future projected values for these 

technologies were adopted for this work. By using these projected cost values, it is assumed that 

future events will occur that reduce the cost of DG for the end user or investor. The technical 

parameters for the fuel cells, microturbine, and heat recovery unit were taken from [170–172] 

and the absorption chiller technical parameters were derived from the work performed on a 

double effect absorption chiller studied in [173]. Table 5-1 shows the parameters and values used 

in the optimization work for all included technology. 

Table 5-1: Parameters of CCHP system optimization for determining the value of heat recovery 
in an absorption chiller and heat recovery unit 

DG Parameters Description Value (Microturbine/Fuel Cell) 
Com DG,k O&M cost for DG of type k ($/kWh) 0.02 / 0.023 
Ccap DG,k Capital cost for DG of type k ($/kW) 1600 / 2200 
Cstart DG,k Startup cost for DG of type k ($/start) 10 / 10 
ηDG,k Electrical efficiency for DG of type k 

(%) 
25 / 47 

 DG,k Maximum efficiency for DG of type kߟ̅
(%) 

90% / 90% 

SDG,k Rated power for DG of type k (kW) 65 / 100 
δDG,k Minimum turndown for DG of type k 

(%) 
80% / 50% 

 DG,k Maximum ramp up rate for DG ofߤ̅
type k (%/15 minutes) 

50% / 10% 

 DG,k Maximum ramp down rate for DG ofߤ
type k (%/15 minutes) 

50% / 10% 

Heat Recovery 
Unit / Duct 
Parameters 

Description Value 
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Ccap HRU Capital cost for heat recovery unit 
($/kW) 

100 

Ccap duct-p Capital cost for duct in parallel with 
absorption chiller ($/kW) 

10 

Com HRU O&M cost for heat recovery unit 
($/kWh) 

0.001 

Com duct-p O&M cost for duct in parallel with 
absorption chiller ($/kWh) 

0 

εHRU Effectiveness of heat recovery unit 
(%) 

90% 

εduct-p Effectiveness of duct in parallel with 
absorption chiller recovery unit (%) 

90% 

Absorption 
Chiller 
Parameters 

Description Value (AC-h / AC-l) 

Ccap AC Capital cost for absorption chiller 
($/kW) 

170 / 170 

Com AC O&M cost for absorption chiller 
output ($/kWh) 

0.0266 / 0.014 

Com AC Charge O&M cost to charge absorption 
chiller output ($/kWh) 

0.001 / 0.001 

COPAC Coefficient of performance for 
absorption chiller  

1 / 1 

ΔAC Heat input for absorption chiller for 1 
kW h of cooling out (kWh heat in / 
kWh cool out) 

1.4 / 1.4  

ϒ Thermal storage required for 1 kWh 
of cooling out (kWh stored / kWh 
cool out) 

1.5 / 1.5 

β Stored energy retained from prior 
time step (%) 

95% / 95% 

δAC Minimum turndown for absorption 
chiller (%) 

50% / 50% 

ECOOL MAX Maximum cooling load for building 
(kWh) 

(Max Building Cooling 
Load)x(1.15) 

Legacy System 
Parameters 

Description Value 

Com VC O&M cost for vapor compression 
chiller output ($/kWh) 

0.014 

COPVC Coefficient of performance for vapor 
compression chiller  

3.4 

Com Boil O&M cost for boiler ($/kWh) 0.001 
ηBoil Boiler efficiency (%) 90% 
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The two primary assumptions made during this work are that a) the building electrical, 

heating, and cooling demand have already been reduced and managed through energy efficiency 

measures, and b) future building demand will be similar to the building data used to perform the 

current optimization. One of the least expensive ways to decrease the cost of building energy is 

to implement energy efficiency technologies or techniques. These types of building 

improvements are typically carried out prior to the installation of a DER system, and can 

significantly reduce energy cost. This work assumes that any financially desirable energy 

efficiency measures have already been implemented, meaning that no additional improvements 

can be made that reduce building energy demand and the next set of technologies to be evaluated 

are DER technologies. 

The first assumption of minimum building energy demand is coupled with the second 

assumption that building energy use in the future will be similar to that of the past. In order for 

the optimal DER system to remain optimal, building energy consumption in the future must 

exhibit approximately the same dynamics and magnitude in the future. While a DER system in 

the future may continue to be optimal even if building energy profiles change, this cannot be 

guaranteed. If the building energy profile does not change, then the DER system will remain 

optimal and can perform as indicated by the optimization results. 

5.2 Building Results 

Five buildings were selected for close examination in this study. A total of twelve 

buildings are available for study, as described in Section 4.1.1.1. However, a full discussion of 

each building is not necessary as the trends shown in the four selected buildings are indicative of 

all available buildings. The four selected buildings are US Navy Palmer Hall, UCI Cal IT2, 
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SCAQMD, St. Regis Hotel, and Patton Hospital. The buildings are presented from the lowest to 

highest average electrical demand. Results for the seven other buildings fall within the range of 

the buildings included in this study, and are not included. 

For the sake of clarity, the term “combined electrical demand” will be defined as the 

electrical demand created when the electrical load and the electrical demand created by vapor 

compression chiller operation occurring to meet the cooling demand at any given moment are 

added together. Also, fuel utilization for a CCHP system will be defined as the sum of all useful 

energy produced either directly from the generator, or from thermally activated devices 

downstream of the generator, divided by the energy content of the fuel used. When a DG system 

is combined with an absorption chiller and heat recovery unit, the electricity, heating, and 

cooling are all considered useful and are included in determining CCHP fuel utilization. Finally, 

the environmental impact considered only deals with CO2 emissions. The terms CO2 and carbon 

are used interchangeably throughout this work and are intended to represent the total CO2 

emissions released in order to produce all types of energy required bythe building. This work 

does not take into account CO2 equivalent emissions, such as the equivalent carbon emissions 

associated with a natural gas leak in a connection between an adopted type of DG and the utility 

gas pipe. All results are presented in terms of “tonnes” or metric tons. 

All presented results are produced using the CCHP optimization model. For each 

technology combination, the adopted system and resulting operation is optimal from the 

perspective of minimizing total energy cost for a building. While specific to each building, the 

results show how a DER system is designed and operated in order to achieve minimum energy 
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cost with the available options. No non-optimal DER system designs or resulting dispatch is 

presented for any building or technology scenario. 

5.2.1 US Navy Palmer Hall 

The US Navy Palmer Hall (USN) building has an average electrical demand of 195 kW 

and an electrical load factor of 0.69. The ratio of the total heating load to the total electrical load 

of 0.29 and the heating load coincides with the electrical load 89% of the time. When the cooling 

demand is met through the use of electricity, the combined electrical and cooling demand 

produce a combined average electrical demand of 203 kW, with a load factor of 0.65.The ratio of 

the total cooling load to the electric load is 0.15, and the cooling load is coincidence with the 

electric load 76% of the time. From the perspective of integrating a CHP or CCHP system with 

the building, the high level of coincidence between the two thermal loads and the electrical load 

allow for the use of waste head produced by any onsite DG. However, both the heating and 

cooling loads are small relative to the electrical load, possibly reducing the amount of waste heat 

that is utilized during heat recovery.  

Prior to DER system integration, the cost of electricity, cooling, and heating can each be 

individually determined. Assuming that the electrical and cooling load are both powered through 

the purchase of electrical imports from the local utility, the combined cost of both loads can be 

determined using the electrical utility rate structure modeled in Section 3.1.1. Then, using the 

cost allocation method described in Section 3.5, the cost of the individual electrical and cooling 

load can be determined. The cost of the heating load is determined by assuming that a boiler 

fired with natural gas purchased from the local utility that charges customers under the rate 

structure described in Section 3.1.2. The resulting cost to provide electricity, cooling and heating 
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are as follows: $0.0891 per kWh for electricity, $0.0541 per kWh for cooling, and $0.0265 per 

kWh for heating. Note that the cooling cost includes the cost of purchasing electricity to power a 

vapor compression chilling system. Also, the heating cost is relatively high due to the limited 

natural gas consumption associated with the USN building. When a declining block natural gas 

utility rate structure is in effect, as in this case, buildings will relatively small heating loads pay 

more per therm of natural gas purchased than buildings with higher heating loads. 

The USN building was optimized for the three DER technology scenarios, and the 

technology adopted during optimization is shown in Table 5-2. Two 100 kW fuel cells are 

adopted under every technology scenario. When allowed, a 60 kW absorption chiller is adopted, 

and a 132 kW heat recovery unit is adopted during every technology scenario. 

Table 5-2: Optimal CCHP system design for all technology scenarios operating at the USN 

building 

Technology 
Scenario 

Fuel Cell 
(100 kW) 

Microturbine 
(65 kW) 

AC 
(kW) 

HRU 
(kW) 

Duct - 
Parallel 

(kW) 

Duct - 
Series (kW)

HRUo 2 0 n/a 133 148 n/a 

AC-h 2 0 61 132 147 13 
AC-l 2 0 60 132 147 23 

5.2.1.1 CCHP System Operation 

The average electrical demand of the combined electrical and cooling demand is 203 kW, 

and the capacity of the installed fuel cell system is 200 kW. Figure 5-1 shows the source of 

electrical energy for the three technology scenarios. As expected, the fuel cell system provides 

the majority of electricity consumed onsite. Not shown in Figure 5-1 is the decrease in total 

electrical consumption onsite as a result of adopting an absorption chiller. Since it is assumed 
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that a legacy vapor compression system is used to meet the building cooling load, shifting a 

portion of the cooling load to the newly adopted absorption chiller system results in a reduction 

in total electricity consumed onsite. Total electrical consumption decreases by 2.5% under the 

AC-h technology scenario and 2.6% under the AC-l scenario. The reduction in electrical 

consumption is primarily due to absorption chiller operation, which meets the cooling load 

through the utilization of waste heat instead of through the use of electricity in a vapor 

compression chiller. The decrease in total electrical energy is accomplished by decreasing 

electrical imports by 19% when moving from the HRUo scenario to the AC-h scenario, and 22% 

when moving from the HRUo scenario to the AC-l scenario. 

 
Figure 5-1: Source of electricity for the three optimal CCHP systems adopted at the USN 

building 

Figure 5-2 shows the source of cooling. The HRUo scenario is not shown since the entire 

load is met by the vapor compression chiller system. Once installed, the absorption chiller 

provides the majority of the cooling load. When the AC O&M is reduced to the same cost as VC 
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O&M, the portion of the cooling load that is optimally met by the absorption chiller increases 

slightly. 

 
Figure 5-2: Source of cooling to meet the USN building cooling demand for all technology 

scenarios 

Figure 5-3 shows the source of heating. Since the total heating load is a fraction of the 

electrical load, and the heating load is highly coincident with the electrical demand, the vast 

majority of all heating is provided by the heat recovery unit powered by captured waste heat 

produced by the two fuel cells. 
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Figure 5-3: Source of heating to meet the USN building heating demand for all technology 

scenarios 

Due to the high coincidence of both the heating and cooling load with the electrical load, 

the majority of both thermal loads can both be met using captured waste heat provided by the 

fuel cells. However, utilization of the fuel energy released during fuel cell operation is 61% for 

the HRUo scenario, and 65% for both AC-h and AC-l scenarios.  

Figure 5-4 shows electrical operation over the course of a week for the three technology 

scenarios. When the building electrical demand exceeds 200 kW, the fuel cells are operated at 

full power, and electricity is imported from the utility to provide the remaining load. When the 

electrical demand dips below 200 kW, the fuel cells perform load following, and grid imports are 

eliminated. In Figure 5-4, the thin black line represents the electrical demand, including cooling, 

met by the grid prior to CCHP system integration. Adoption of an absorption chiller reduces the 

overall electrical demand slightly, but the difference in operation between the overall electrical 

operation under the AC-h and AC-l technology scenarios is marginal. 
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Figure 5-4: Winter electrical operation for all technology scenarios adopted at the USN building 

Figure 5-5 and Figure 5-6 show the heating and cooling operation respectively over the 

same winter week as Figure 5-4. The HRU supplies the majority of the heating demand during 

the entire week except for one instance occurring early in the morning of Tuesday. Figure 5-5 

also shows when the HRU is powered using waste heat directly from the fuel cells or from the 

absorption chiller. As suggested by Figure 5-3, the base and much of the dynamic heating load is 

met using heat directly supplied from the fuel cells.  Simultaneously, the absorption chiller is 

also used to provide a base cooling load, with the vapor compression system being used to meet 

the cooling load dynamics. Waste heat from the fuel cells is always provided first to the 

absorption chiller, with the heat recovery unit being powered by a mix of heat from between the 

fuel cells and absorption chiller. 
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Figure 5-5: Winter heating operation for all technology scenarios adopted at the USN building 

 
Figure 5-6: Winter cooling operation for all technology scenarios adopted at the USN building 

Figure 5-7 shows the absorption chiller operation during the same week as shown during 

the cooling operation in Figure 5-6. In order to provide the base cooling load, the absorption 
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chiller is nearly always maintained in an operational state, with reduced operation only occurring 

when the building cooling load is low. 

 
Figure 5-7: Winter absorption chiller operation for all technology scenarios adopted at the USN 

building 

Figure 5-8, Figure 5-9, Figure 5-10, and Figure 5-11 show the electrical, heating, cooling, 

and absorption chiller operation respectively during a summer week. The primary difference 

between summer and winter operation is how the fuel cells are operated during the summer off-

peak period During the winter off-peak period, the fuel cells are continuously operated at the 

maximum possible load, with the fuel cell only being turned down to a lower than maximum 

power setting when the building electrical demand is lower than 200 kW, or the capacity of the 

two fuel cells. During winter, the fuel cells are turned down and grid imports increase. The fuel 

cells provide a form of electrical load following, but continuously import electricity. Fuel cell 

operation also increases when the building heating load increases, as seen during late Saturday 
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evening. The corresponding cooling load is relatively small, allowing for the absorption chiller to 

meet nearly the entire cooling load. However, with the output of the absorption chiller limited by 

the small cooling load, little heat is provided to the heat recovery unit through the absorption 

chiller. Throughout most of this week, the absorption chiller is maintained in a barely operational 

state, with enough heat being directed to the system to maintain the cooling fluid generation 

process. 

Since the operation of an absorption chiller offsets vapor compression chiller operation, 

an absorption chiller can be used to reduce the maximum combined electrical demand created by 

supplying both the electrical and cooling load with electricity. For the USN building, the 

maximum combined demand is reduced by approximately 18 kW for both the AC-h and AC-l 

technology scenarios. 

 
Figure 5-8: Summer electrical operation for all technology scenarios adopted at the USN 

building 
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Figure 5-9: Summer heating operation for all technology scenarios adopted at the USN building 

 
Figure 5-10: Summer cooling operation for all technology scenarios adopted at the USN 

building 
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Figure 5-11: Summer absorption chiller operation for all technology scenarios adopted at the 

USN building 

5.2.1.2 Financial Performance 

The overall financial performance of the three technology scenarios is presented in Figure 

5-12, which shows the modified internal rate of return over the course of 20 years, assuming that 

the CCHP system is able to maintain both operation and the savings predicted during the 

optimization process over the length of time at which the rate of return is calculated. The rate of 

return is determined by weighing the savings produced by adopting and operating a CCHP 

system versus how the building energy demand would traditionally be met (through the use of 

utility electricity and natural gas exclusively). As discussed in Section 3.7, the reinvestment rate 

is 8%. None of the technology scenarios produce a return above 8% until after ten years have 

passed, or the loan has been paid off in full. Allowing for an absorption chiller to be adopted 

improves the financial performance of the overall system, and reducing absorption chiller O&M 
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increases the rate of return further. However, since none of the investments result in a rate of 

return higher than 8%, an investment in another area would provide more financial benefit. 

 
Figure 5-12: Modified internal rate of return for all three technology scenarios when adopted 

and operated at the USN building 

Figure 5-12 provides enough information for an investor to decide if an investment in the 

optimal CCHP system should be made. However, since the financial performance may not be 

desirable, investment in this type of system is unlikely. Qualitatively, it is easy to state that the 

initial investment cost created by high equipment capital cost or operations cost is too high due 

to high fuel cost, but no additional quantitative information is provided in Figure 5-12. If 

investment in such a system as what has been suggested for the USN building is desirable, it is of 

great interest to quantitatively determine what components of the investment are holding the 

financial performance of the system back. 
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One path to quantitative understanding of the investment components is through the 

application of the Shapley value, as described in Section 3.5.2. By viewing the CCHP system as 

a shared system that is cooperating to provide multiple products or energies at the lowest cost 

possible, the Shapley value can be determined for each type of energy. This method of cost 

allocation can be used to determine which types of energy are driving CCHP investment, and  

how the individual cost components (i.e., utility energy and demand charge cost, natural gas cost, 

CCHP system O&M, and CCHP system investment costs, etc.) are incurred while meeting the 

building energy demand. By determining the Shapley value, the invidious cost components can 

be broken down into the portion of the total cost created by meeting an individual building 

energy demand. If the cost allocation is positive, the result suggests that the individual energy 

demand has incurred a cost. If the cost allocation is negative, the result suggests that a particular 

type of energy has helped avoid the incursion of a specific cost during CCHP system integration. 

By allowing for this individual energy type to be met during CCHP system integration, a service 

is provided to the entire building in the form of a cost reduction, for which the individual type of 

energy driving the cost reduction is compensated. The actual cost incurred for each cost 

component is the sum of the cost allocated individually to electricity, cooling, and heating. 

Figure 5-13 shows the utility costs allocated to electricity, cooling, and heating for the 

three technology scenarios. A positive utility energy cost is allocated to both electrical and 

cooling loads, while a negative allocation is assigned to the heating load. This result shows that 

the electrical and cooling allocation are responsible for the import of electrical energy. However, 

the heating load results in the operation of the two fuel cells, offsetting imported electrical 

energy. This service provided by shifting the electrical demand from imported utility electricity 
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to the fuel cells is compensated by providing the heating load a negative utility energy cost 

allocation. While the cooling load always experiences a positive utility energy allocation, the 

allocation shrinks when an absorption chiller is adopted, showing that the reduced electrical 

demand required to meet the cooling load has been reduced. 

 

 
Figure 5-13: Utility costs allocated to the production of electricity, cooling, and heating for the 

three technology scenarios at USN building 

Utility demand charges are also positively allocated to the electrical and cooling load and 

negatively allocated to the heating load. The negative amount allocated to the cooling load is a 

fraction of the negative utility energy allocation. While the heating demand is in part responsible 

for the shift in electrical energy from the utility to the two fuel cells, the heating load does not 

assist with demand charge reduction to the same degree. Referring to Figure 5-8 and Figure 5-9, 

fuel cell operation is reduced during summer off-peak, with the fuel cell ramping up when 
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heating demand is high. However, even though the heating demand is met entirely through the 

capture of waste heat from the two fuel cells, the heating demand is not sufficiently high enough 

to continually increase fuel cell operation, and the utility demand charge increases during this 

peak. As a result, the heating demand can be found responsible only for a small decrease to 

utility demand charge. 

Utility natural gas is allocated to both electrical and heating demand. Since the cooling 

demand is relatively small, a small natural gas allocation is assigned to this energy type. This 

result also suggests that, even though the absorption chiller is used to meet over 50% of the 

cooling demand in the AC-h and AC-l technology scenarios, the primary driver for fuel cell 

operation (and the corresponding consumption of natural gas) is not driven by cooling, but by the 

electrical and heating load. 

Figure 5-14 shows the O&M cost allocation for fuel cells and microturbines. The fuel cell 

O&M cost is evenly distributed between the electrical and heating load, with the cooling load 

receiving a marginal cost allocation. The small O&M allocation received by cooling further 

supports the result found in Figure 5-13 that the cooling load does not drive fuel cell operation. 

Concurrently, the O&M allocation result suggests that fuel cell operation would not occur if 

either only the electrical or heating load were present. In order for fuel cell operation to occur, 

the coincidence of the electrical and heating load is required and the waste heat produced by the 

fuel cell must be used to meet the building heating load. 
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Figure 5-14: Fuel cell and microturbine O&M costs allocated to the production of electricity, 

cooling, and heating for the three technology scenarios at USN building 

Figure 5-15 shows the O&M associated with the vapor compression and absorption 

chiller systems operating at the USN building under the three technology scenarios. Under the 

HRUo scenario, only the cooling load received a vapor compression O&M allocation since this 

type of energy is solely responsible for VC operation. However, when an absorption chiller is 

adopted, and vapor compression operation is curtailed, both the electrical and heating load 

receive a negative allocation. While the electrical and heating load simultaneously drive fuel cell 

operation, excess heat is available for use in the absorption chiller. Vapor compression operation 

is reduced as a result, and the financial benefit is attributed to the electrical and heating load.  
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Figure 5-15: Vapor compression and absorption chiller O&M costs allocated to the production 

of electricity, cooling, and heating for the three technology scenarios at USN building 

Figure 5-16 shows the allocated boiler and heat recovery unit O&M cost for the three 

technology scenarios. The cooling demand receives a maximum allocation on the order of $0.05, 

also suggesting that cooling load does not impact the overall fuel cell system operation. The 

electrical load receives a negative boiler and positive HRU O&M allocation, showing that fuel 

cell operation occurring to meet the electrical demand reduces boiler operation while increasing 

HRU operation. The heating load receives a positive allocation for both technologies. 
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Figure 5-16: Boiler and heat recovery unit  O&M costs allocated to the production of electricity, 

cooling, and heating for the three technology scenarios at USN building 

Since fuel cell operation is attributed to both the electrical and heating load, allowing for 

excess waste heat to be captured by the absorption chiller, the electrical and heating loads are 

equally responsible for absorption chiller operation, and receive an equal AC O&M cost 

allocation as cooling for both the AC-h and AC-l technology scenarios. Note that the allocated 

absorption chiller O&M cost is not completely offset by the negative vapor compression O&M 

cost received by the electrical and heating load. 

Figure 5-17 and Figure 5-18 show the allocated loan costs for the different adopted 

CCHP technologies. Figure 5-17 shows the loan payments associated with the adopted DG while 

Figure 5-18 shows the loan payments for the adopted heat recovery devices. Using the 

information provided in both figures allows for the investment made in each energy stream to be 
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determined. When the loan payment cost is allocated, the loan portion has an associated capital 

investment component, which is the amount invested in the individual energies.  

 
Figure 5-17: Fuel cell and microturbine loan costs allocated to the production of electricity, 

cooling, and heating for the three technology scenarios at USN building 

Figure 5-17 shows that the fuel cell capital loan payments should be equally allocated 

across the three different energy types under HRUo technology scenario. This suggests that all 

three types of energy are necessary for fuel cell adoption to occur. Under the same technology 

scenario, the electrical and heating allocation receive a positive microturbine loan payment 

allocation, while the cooling load receives a negative and offsetting loan allocation. If the 

electrical and heating loads were to exist without the cooling load, investment in a microturbine 

system would have occurred. However, the inclusion of cooling blocks microturbine adoption, 

and cooling receives a negative allocation under this cost component. Including the option of 
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adopting an absorption chiller results in the fuel cells only being adopted as a result of the 

electrical and heating load, with the cooling load receiving no allocation.  

 
Figure 5-18: Absorption chiller, heat recovery unit, and duct-parallel  loan costs allocated to the 

production of electricity, cooling, and heating for the three technology scenarios at USN 

building 

Figure 5-18 shows that the adoption of an absorption chiller only occurs when all three 

energy types are present, resulting in the equal allocation of AC loan payments between 

electrical, cooling, and heating load. Under the HRUo scenario, the same behavior is experienced 

for the heat recovery unit. Once the absorption chiller is made available, the cooling load stops 

supporting the adoption of the HRU, and receives no cost allocation.  Under the AC-h and AC-l 

scenarios, the HRU cost is shared equally between the electrical and heating load. The same is 

true for the duct connecting the HRU to the two fuel cells. Cooling, however, receives a negative 

allocation in this category. Since some heat is still available in the exhaust stream exiting the 
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absorption chiller, the cooling load supports the adoption of a duct in between the absorption 

chiller and heat recovery unit, reducing the size of the duct in parallel with the absorption chiller 

(or directly from the fuel cells to the HRU). 

The allocated costs form a basis from which a more detailed analysis can be made for 

each type of energy. As discussed before, the allocated loan payments can be used to determine 

the investment associated with each type of energy. Then, savings for each type of energy can be 

determined by comparing the allocated costs to the cost if the building energy demand had been 

met using traditional methods. Using the combined investment and subsequent savings, a rate of 

return for each type of energy can be determined. In addition, the levelized cost of energy can 

also be determined, showing if the adoption of a CCHP system increased or decreased energy 

costs. The CCHP system is compared to the baseline scenario, where building demand is met 

through the use of utility electricity and natural gas. Under this scenario, the cost to provide 

electricity, cooling and heating are as follows: $0.0891 per kWh for electricity, $0.0541 per kWh 

for cooling, and $0.0265 per kWh for heating. 

Figure 5-19 shows the difference in levelized cost of energy between the cases when a 

CCHP system is adopted and when the baseline scenario applies at year five, seven, and nine for 

the three technology scenarios. Figure 5-19 also shows to associated rate of return for the three 

technology scenarios across electricity, cooling, and heating. 
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Figure 5-19: Levelized cost of energy difference at years five, seven, and nine and corresponding 

modified internal rate of return for electricity, cooling, and heating when CCHP systems are 

adopted according to the three technology scenarios at the USN building 

For a single technology scenario, the levelized cost of energy decreases with time due to 

the reduced effect of capital costs. The levelized cost at year five and nine take into account the 

same capital payments. However, energy production after year nine is 40% greater than year 

five. Even after taking into account the discounting factor associated with the additional energy, 

the effects of capital cost towards increasing levelized energy cost decrease as time moves along. 

Since Figure 5-19 only shows the difference in LCOE between a CCHP and baseline scenario, 

the decrease in LCOE is manifested by a difference decreasing. For example, for the HRUo 

scenario, the cost of electricity is increased by approximately $0.01 per kWh at year five, but is 

only increased by approximately $0.001 per kWh at year nine.  
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According to Figure 5-19 the adoption of the optimally designed CCHP system always 

increases the cost of electricity and heating. At year five, electricity is increased by 

approximately $0.01 for all technology scenarios, while heating is increased by nearly $0.04 per 

kWh for the HRUo scenario. Adopting an absorption chiller always decreases the CCHP system 

levelized cost of electricity or heating, especially when the AC can operate at the same cost as 

the competing vapor compression system. If the system can be maintained for nine years, then 

the cost of electricity and heating nearly approaches the baseline scenario.  

The large increase to heating is due to a relatively high capital cost allocation and high 

fuel costs. Despite being small relative to the electrical load, the heating load is required for 

adoption of the two fuel cells. As a result, the high capital cost is partially allocated to the 

heating. For this particular building, the total heating load is 70% smaller than the electrical load. 

Even though the fuel cell capital cost component in the numerator of the levelized cost of 

electricity and heating equations are the same, the denominator for the heating is 70% smaller for 

the heating calculation.  

Despite the high capital cost, fuel costs are also high due to the small size of the building. 

Operational costs remain high as a result, allowing for the electrical and heating levelized cost to 

approach parity with the baseline scenario at best. Since no reduction to either electricity or 

heating is achieved, no positive rate of return is observed for either type of energy (electricity or 

heating). 

Cooling, on the other hand, is reduced for every technology scenario. Under the HRUo 

scenario, no capital investment is made in the cooling production since the fuel cell investment is 

balanced by the avoidance of microturbine investment. No rate of return exists under this 
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scenario since an investment of $0 that yields positive savings has an infinite rate of return. 

Slight savings are realized by producing electricity onsite to power the vapor compression 

system, and the levelized cost of cooling is the same in all years. 

Investment is preferred under the AC-h and AC-l scenarios, primarily due to the purchase 

of an absorption chiller. Again, no capital investment in either fuel cells or gas turbines occurs, 

reducing the initial investment substantially. As a result, a reduction to levelized cost of cooling 

can be realized by year 5. These savings increases, with the cost of cooling under the AC-l 

scenario being reduced by nearly $0.005 per kWh in year nine. Note that the drop in levelized 

cost for cooling is not nearly as large as for electricity and heating since the capital cost invested 

for the sake of cooling is small. With a small investment occurring, the effects of stretching the 

capital cost over more years is muted for cooling. 

5.2.1.3 Building Carbon Emissions 

Using the same method to allocate the different cost components, CO2 emissions 

associated with the import of electrical energy and the use of natural gas in a CCHP system or 

boiler can be allocated to electricity, cooling and heating. A baseline carbon emissions scenario 

can be built using information about the electrical utility and the fuel combusted in the legacy 

boiler for heating. Assuming that the electrical utility produces carbon emissions at a time 

resolved rate as described in Section 3.6, and heating is met through the combustion of natural 

gas, the baseline carbon emissions can be determined. The resulting baseline carbon emissions 

associated with the building is shown in Figure 5-20 for an entire year. In total, the USN building 

energy use results in the emission of 633 tonnes of CO2 per year.  
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Figure 5-20: Yearly baseline carbon emissions for the USN building 

At the USN building, integration of a CCHP system designed to minimize total cost 

always results in an increase to carbon emissions, as seen in Figure 5-21. The HRUo system 

experiences the largest increase to carbon emissions, while the other two scenarios experience 

roughly the same increase.  
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Figure 5-21: Change in yearly carbon emissions for the USN building as a result of CCHP 

system adoption 

The energy type that causes the carbon emissions increase can be determine by 

calculating the Shapley value for carbon emissions. Figure 5-22 shows the increase in emissions 

allocated to the three types of energy supplied to the building for the three technology scenario. 

Figure 5-22 shows that the electricity and heating loads are equally responsible for increasing 

carbon emissions. These two energy loads are responsible for the adoption and operation of the 

two fuel cells, and are also responsible for the additional emissions generated during CCHP 

adoption. The cooling load, however, reduces carbon emissions. Under the HRUo technology 

scenario, the inclusion of the cooling load blocked the adoption of a microturbine. Under the 

AC-h and AC-l scenarios, the absorption chiller was used to capture waste heat that would not 
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have been used, increasing fuel utilization in the CCHP system while reducing the amount of 

vapor compression operation required.  

 
Figure 5-22: Change in yearly carbon emissions for individual types of energy for the USN 

building as a result of CCHP system adoption 

5.2.2 UCI Cal IT2 

The UCI Cal IT2 building has an average electrical demand of 323 kW and an electrical 

load factor of 0.47. The ratio of the total heating load to total electrical load is 0.58, and the 

heating load is coincident with the electrical load 17% of the time. The ratio of the total cooling 

load to electric load is 1.06, and the cooling load is coincident with the electrical load 81% of the 

time. Prior to CCHP system integration, the cost to meet the building energy demand is $0.095 

per kWh for electricity, $0.0477 per kWh for cooling, and $0.0239 per kWh for heating. 

Table 5-3 shows the optimal CCHP system for all technology scenarios when designed 

for the UCI Cal IT2 building. Four fuel cells are always adopted, with a single under scenario C. 

As absorption chiller O&M cost decreases, the size of the adopted chiller increases slightly. The 
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HRU decreases in size as an AC is adopted and AC O&M decreases. The duct directly from the 

DG to the HRU (duct-parallel or duct-p) decreases in size along with the HRU. As the AC 

increases in size, the duct connecting the HRU to the AC also increases in size. 

Table 5-3: Optimal CCHP system design for all technology scenarios operating at the UCI Cal 

IT2 building 

Technology 
Scenario 

Fuel Cell 
(100 kW) 

Microturbine 
(65 kW) 

AC 
(kW) 

HRU 
(kW) 

Duct - 
Parallel 

(kW) 

Duct - 
Series (kW)

HRUo 4 0 n/a 326 362 n/a 
AC-h 4 0 261 295 306 99 
AC-l 4 1 275 238 264 110 

 

5.2.2.1 DER System Operation 

Figure 5-23, Figure 5-24, and Figure 5-25 show the source of energy for the electrical, 

cooling, and heating demand respectively. Figure 5-23 shows that the fuel cell is the primary 

source of electrical energy for all system types. Note that the electrical consumption is the 

combined demand created by all electrical usage plus electricity used to operate the building 

vapor compression systems to produce cooling. Since an absorption chiller is not included in 

HRUo, the cooling demand under this technology scenario is met entire through the use of an 

electrically powered vapor compression system. By adopting and operating an absorption chiller, 

the total amount of electricity required to power the cooling demand decreases as a result of 

shifting part of the cooling load from an electrically operated vapor compression system to a 

thermally activated absorption chiller. The difference in electrical consumption as a result of 

absorption chiller adoption for AC-h versus HRUo and AC-l versus HRUo is 8.5% and 10.2%, 
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respectively. These reductions are solely due to a decrease in the purchase of utility supplied 

electricity. This type of electricity is reduced from the HRUo level by 31% for the AC-h scenario 

and 72% for the AC-l scenario. Total electrical energy produced by the fuel cell decreases by 3% 

for AC-h and increases by 2.7% under AC-l. A single microturbine is adopted. 

 
Figure 5-23: Source of electricity to meet the UCI Cal IT2 electrical demand for all technology 

scenarios 

This reduction in electrical consumption is matched with an increase in absorption chiller 

cooling production, as seen in Figure 5-24. While electrical imports decrease by 31% and 72 

percent for AC-h and AC-l respectively, vapor compression operation does not decrease at the 

same rate. Instead, additional fuel cell operation and production from the single microturbine 

supplant additional grid imports, allowing for the vapor compression system to continue 

operation while imports decrease. 
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Figure 5-24: Source of cooling to meet the UCI Cal IT2 cooling demand for all technology 

scenarios 

The amount of heat supplied from the adopted DG into the heat recovery unit initially 

supplies 26% of the building heating demand, but decreases as an absorption chiller is adopted 

and operated more frequently.  

 
Figure 5-25: Source of heating to meet the UCI Cal IT2 heating demand for all technology 

scenarios 
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 Electrical operation over the course of a week is shown for the three technology scenarios 

in Figure 5-26. In Figure 5-26, the combined electrical demand created when meeting the full 

cooling load using only a vapor compression system is shown by the black line in all three 

subplots. The four fuel cells provide baseload power for the building for all three technology 

scenarios. In both AC-h and AC-l, the adoption of an absorption chillers allows for the electrical 

demand to be decreased in both instances. When a microturbine is adopted under the AC-l 

technology scenario, the turbine is operated to provide peak power only, with operation 

occurring only during the middle of the day. 

 
Figure 5-26: Winter electrical operation for all technology scenarios adopted at the UCI Cal IT2 

building 

The heating operation is shown in Figure 5-27. Due to the transient nature of the heating 

demand, the actual energy demanded at any given moment is nearly twice the corresponding 

electrical demand. Even though the four fuel cells (and single microturbine under AC-l), are 
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capable of producing the total heating energy demanded by the building, the adopted CCHP 

systems for the three technology scenarios are incapable of providing the heating power required, 

leading to continual boiler operation throughout the week. This mismatch of the heating to the 

electrical demand results in an overall fuel utilization under HRUo of 54%. Note that the adopted 

fuel cells each have an electrical efficiency of 47%, suggesting that only a fraction of the 

available waste heat is captured from the fuel cells for actual operation. 

 
Figure 5-27: Winter heating operation for all technology scenarios adopted at the UCI Cal IT2 

building 

Allowing for an absorption chiller to be adopted helps to increase fuel utilization. As 

discussed earlier and seen in in Figure 5-26, fuel cell operation between the all technology 

scenarios experiences minimal changes. Due to continuous fuel cell operation, a nearly constant 

stream of waste heat is available for use in an absorption chiller, leading to the adoption of 
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similar sized systems for both the AC-h and AC-l scenarios. The operation of these systems in 

conjunction with the legacy vapor compression system for the same winter week can be seen in 

Figure 5-28.  

 
Figure 5-28: Winter cooling operation for all technology scenarios adopted at the UCI Cal IT2 

building 

The steady stream of unused waste heat allows for the base cooling load to be shifted 

from the vapor compression system to the newly adopted absorption chiller. Under the AC-h 

scenario, when heating demand does occur, heat is directed to the HRU in order to meet as much 

of the heating demand as possible, resulting in a dip in absorption chiller cooling output. Under 

the AC-l scenario, this behavior still occurs, but with a smaller impact to the overall amount of 

cooling produced. Both scenarios increase fuel utilization from 54% under the HRUo scenario to 

71% and 70% under the AC-h and AC-l scenario respectively. 
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Note that the extremely transient behavior of the heating demand forces the absorption 

chiller to also operate in an extremely transient manner Figure 5-29. Figure 5-29 shows the 

charging of the absorption chiller (AC Charging), the discharging of any stored thermal energy 

in the form of cooling (AC Discharging), the heat passed to a thermally activated chiller and 

directly turned into cooling (Direct Cooling), and the resulting absorption chiller state of charge 

(AC Storage). The combined Direct Cooling and AC Discharging form the absorption chiller 

cooling output seen in Figure 5-28. While the total cooling output is relatively constant, Figure 

5-29 shows constant charging and discharging of the absorption chiller. When heating demand 

does occur, waste heat supply to the absorption chiller is reduced and the stored heat in the 

chiller is converted to cooling. This results in the absorption chiller state of charge to decrease. In 

subsequent time steps, when heating demand is nonexistent, the waste heat from the fuel cells is 

diverted back to the absorption chiller, recharging the system so that cooling can continually 

produce. This behavior is not as extreme under the AC-l scenario, indicating that as cooling can 

be produced using an absorption chiller at lower cost, it becomes more valuable to continually 

provide waste heat to the absorption chiller in lieu of providing heat to the HRU. 
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Figure 5-29: Winter absorption chiller operation for all technology scenarios adopted at the 

UCI Cal IT2 building 

As more waste heat is passed through the absorption chiller, less heat is available for use 

by the HRU. However, the fuel cell exhaust stream still has some useful heat content after 

passing through the absorption chiller, which can be used by the HRU. The leftover thermal 

energy can be directed through a duct in series with the absorption chiller into the HRU. Under 

the AC-h scenario, approximately 19% of the total heating production from the HRU is produced 

using energy captured from the exhaust stream exiting the absorption chiller. This percentage 

increases to 26% in the AC-l scenario. 

Figure 5-30, Figure 5-31, Figure 5-32, and Figure 5-33 show the electrical, heating, 

cooling, and absorption chiller operation during the summer for the UCI Cal IT 2 building. 

Comparing these figures to the winter counterparts shows that in general, winter and summer 
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operation are similar, except that the fuel cell system experiences greater turndown during off-

peak period. 

Absorption chiller operation reduced the maximum combined electrical demand created 

by the combination of the electrical and cooling load by 75 kW for the AC-h scenario and 81 kW 

for the AC-l scenario. 

 
Figure 5-30: Summer electrical operation for all technology scenarios adopted at the UCI Cal 

IT2 building 
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Figure 5-31: Summer heating operation for all technology scenarios adopted at the UCI Cal IT2 

building 

 
Figure 5-32: Summer cooling operation for all technology scenarios adopted at the UCI Cal IT2 

building 
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Figure 5-33: Summer absorption chiller operation for all technology scenarios adopted at the 

UCI Cal IT2 building 

5.2.2.2 A Note on UCI Cal IT2 Suggested Operation 

One of the primary assumptions made prior to optimization is that the building energy 

demand has already been modified such that energy consumption has been minimized in an 

economically efficient manner. While this may be true of a building like UCI Cal IT2, the 

transient behavior exhibited by the heating load suggests that this is not the case. Also, the 

optimization results produced for the UCI Cal IT2 building present obvious operational issues, 

particularly for the fuel cells and absorption chillers. Some portions of the suggested fuel cell 

operation require a sharp increase in electrical power output, followed by a sharp decline. While 

a fuel cell may be capable of following such transients, it is most likely not desirable from the 

perspective of maintaining the durability (lifetime) of the fuel cell systems. This behavior would 
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not even be acceptable for a more mechanically robust device, such as a microturbine.   

Combined with the thermal cycling of the absorption chiller, the suggested operation may lead to 

premature degradation of the adopted technologies. 

 It would be desirable to implement additional constraints into the CCHP system 

optimization model limiting the behavior of the adopted technologies. From an optimization 

perspective, such a modification is most likely undesirable unless it reduces the number of active 

constraints or decision variables included in the optimization. If the opposite is true, it is unlikely 

that an optimal or near optimal solution to what technologies should be adopted in a reasonable 

amount of time. It is obvious that the suggested fuel cell and absorption chiller operation are 

most likely undesirable and would not be implemented in real life. Instead of abandoning the 

overall optimization results and optimization model, the optimal system suggestion should be 

tested with a more realistic dispatch to determine if the resulting cost of realistic operation 

continues to reduce the cost of energy. For example, the fuel cell cycling appears to primarily 

occur during summer off-peak periods when the transient heating demand occurs. If the fuel cell 

cycling is performed for the sake of providing heat to the HRU, and the increased operation 

results in a marginal savings, then this behavior may be ignored while maintaining the financial 

integrity of an investment in the CCHP system. Similar analysis can be carried out for the other 

adopted technology, such as the absorption chiller. 

Considering all of this, it important to note that this particular building will most likely 

need some additional improvements, especially to modify the heating dynamics, prior to CCHP 

system integration. From the perspective of this work, the UCI Cal IT2 provides a relatively 

small building with inconsistent thermal loads, providing insight into how the utilization of waste 
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heat to produce heat and cooling can improve overall fuel utilization, which is one of the largest 

primary benefits associated with CHP and CCHP systems. 

5.2.2.3 Financial Performance 

The overall financial performance of the three technology scenarios can be seen in Figure 

5-34, which shows the modified internal rate of return over the course of 20 years, assuming that 

the CCHP system is able to maintain operation over the length of time at which the rate of return 

is calculated. The rate of return is determined by weighing the savings produced by adopting and 

operating a CCHP system versus how the building energy demand would traditionally be met 

(through the use of utility electricity and natural gas exclusively). As discussed in Section 3.7, 

the reinvestment rate is 8%. Neither of the HRUo and the AC-h technology scenarios produce 

above an 8% return until after ten years, or after the loan associated with the CCHP purchase, 

has been paid off. From the perspective of a business, the funds invested in a CCHP system with 

the characteristics the same as either the HRUo or AC-h scenarios would result in an undesirable 

investment since the same funds could be invested elsewhere with an 8% return. 
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Figure 5-34: Modified internal rate of return for all three technology scenarios when adopted 

and operated at the UCI Cal IT2 building 

The AC-l scenario does achieve over an 8% return at year ten, with the system producing 

a 10% return. If the system in question were capable of consistent operation over the course of 

ten years, then investment in this CCHP system could be deemed desirable by a business or 

organization operating within the UCI Cal IT2 building. 

Most importantly, however, is the improvement in the rate of return, first, by providing 

another type of technology that can be adopted, and second, by reducing the operating cost of the 

new technology to parity with the other competing option. Particularly for the UCI Cal IT2 

building, the ability to meet part of the building load using an absorption chiller allows for the 

utilization of an unused stream of energy; the waste head produced by the fuel cells. In total, the 

absorption chiller is able to meet only 43% of the total cooling demand. This level of absorption 

chiller operation is leveraged to decrease utility imports, adopt a microturbine, and power the 

legacy vapor compression system primarily using electricity generated onsite. For the bottom 
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line, the addition of a low O&M cost absorption chiller appears to singlehandedly make an 

undesirable investment desirable. 

The cost to purchase and operate the different adopted CCHP systems can be broken 

down to determine the cost contribution of each type of energy to the individual cost categories 

by using the method described in Section 3.5 and Section 3.5.2. Figure 5-35 shows the utility 

costs allocated to electricity, cooling, and heating production for the three technology scenarios. 

The actual cost incurred by operation using the system would compose of the sum of the 

individual electrical, cooling, and heating allocation. For example, for the HRUo scenario, the 

electrical energy cost incurred would be the sum of the blue bar from each of the subplots that 

belong to the utility energy portion of each subplot. This plot, and all other cost allocation plots 

similar to Figure 5-35 should be interpreted as each individual energy stream either results in the 

purchase or avoidance of a particular cost. For example, the electrical utility energy cost is 

increased naturally by the electrical load since the electrical utility energy can be used directly to 

meet the building demand. The heating load, however, encourages the use of other sources for 

supplying energy to the building (such as the adoption of four fuel cells). Since the heating 

demand supports the purchase of electricity from other sources other than the electrical utility, 

the heating portion of the utility energy cost is negative. By shifting the electrical energy use 

away from the electrical utility, the heating load has performed a “service” by reducing the utility 

energy demand and is compensated as a result.  
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Figure 5-35: Utility costs allocated to the production of electricity, cooling, and heating for the 

three technology scenarios at UCI Cal IT2 

For both utility energy and demand charges, total cost for all three types of energy 

decrease as the technology scenarios change from HRUo, to AC-h, to AC-l. Simultaneously, 

natural gas cost increases as electrical production is shifted from imported electricity to 

generation onsite using fuel cells. Note that the negative allocation to heating for utility energy 

balances out a large portion of the utility energy allocation to electricity and cooling, but not for 

utility demand charge, suggesting that the heating load is responsible for shifting a large portion 

of the overall energy procurement to onsite sources, but is unable to significantly reduce overall 

demand charges. Coupled with the knowledge of the transient nature of the UCI Cal IT2 heating 

load, the heating load cannot continually drive fuel cell operation in a way that significantly 

reduces demand charges, resulting in a small negative allocation. 
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The cooling utility energy allocation only turns negative under the AC-l technology 

scenario. This suggests that absorption chiller operation does not drive fuel cell operation until 

absorption chiller O&M costs reach parity with vapor compression O&M. Prior to this 

occurrence, electrical energy is still imported in order to produce cooling onsite. 

Figure 5-36 shows the allocated fuel cell and microturbine operations and maintenance 

costs. Since a microturbine is used to supply only a fraction of the overall building energy 

demand, the microturbine O&M cost is marginal compared to fuel cell O&M cost. The allocation 

to the three types of energy show that fuel cell operation does not change significantly across the 

technology scenarios, a fact already shown by the small different in overall fuel cell output. The 

primary driver for fuel cell operation is shown to be the electrical load due to the large size of the 

fuel cell O&M cost allocated to electricity relative to both cooling and heating. 

 
Figure 5-36: Fuel cell and microturbine O&M costs allocated to the production of electricity, 

cooling, and heating for the three technology scenarios at UCI Cal IT2 
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Figure 5-37 shows the vapor compression and absorption chiller costs allocated for the 

three technology scenarios to the electrical, cooling and heating load. As expected, vapor 

compression and absorption chiller O&M costs are allocated to the cooling load.  Both the 

electrical and heating load receive a negative vapor compression O&M allocation. This suggest 

that both loads drive a shift away from vapor compression operation. Since the electrical load is 

the primary driver for fuel cell operation, the electrical load can be viewed as responsible for the 

production of the waste heat used to power the absorption chiller, which offsets vapor 

compression operation. Likewise, the heating load is also responsible for the adoption and 

operation of the fuel cells, also assisting in shifting the cooling load away from the vapor 

compression system to the absorption chiller. Due to the role played in increasing absorption 

chiller use, both the electrical and heating loads are allocated a portion of the total absorption 

chiller O&M cost. 

 
Figure 5-37: Vapor compression and absorption chiller O&M costs allocated to the production 

of electricity, cooling, and heating for the three technology scenarios at UCI Cal IT2 
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Figure 5-38 shows the cost allocation for boiler and heat recovery unity O&M cost. 

Similar to cooling, the legacy system O&M costs are primarily allocated to the applicable type of 

energy, or boiler costs are primarily allocated to heating. Notice, however, that cooling receives a 

small boiler O&M allocation under the AC-l technology scenario. Due to the increased 

absorption chiller operation under this scenario, heat that normal is provided to the heat recovery 

unit under the other two technology scenarios is diverted to the absorption chiller, resulting in 

increased boiler operation and a slight boiler O&M cost allocation to cooling (although the actual 

allocation is on the order of less than one dollar). Heat recovery unit O&M cost is almost equally 

shared by all three energy types, suggesting that any HRU operation is driven not primarily by 

heat, but simultaneously by all types of energy. Similar to the absorption chiller, HRU operation 

occurs due to the presence of an electrical and cooling load in addition to a heating load. 

 
Figure 5-38: Boiler and heat recovery unit  O&M costs allocated to the production of electricity, 

cooling, and heating for the three technology scenarios at UCI Cal IT2 
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Figure 5-39 shows the fuel cell and microturbine loan allocation for the electrical, 

cooling, and heating load for the three technology scenarios. Another way to view Figure 5-39 is 

as which type of energy drives the adoption of the different available technology. For the HRUo 

scenario, only the electrical and cooling loads are responsible for the adoption of the four fuel 

cell systems. Under this scenario, the electrical and heating load combined would adopt a 

microturbine. However, the cooling load blocks this investment in favor of more fuel efficient 

fuel cell systems.  

 
Figure 5-39: Fuel cell and microturbine loan costs allocated to the production of electricity, 

cooling, and heating for the three technology scenarios at UCI Cal IT2 

Under the AC-h scenario, where an absorption chiller can be purchased, all types of 

energy support the purchase and operation of four fuel cell systems. The decision to purchase a 

fuel cell, however, is driven primarily by the electrical load. The cooling load actually supports 

the purchase of a smaller set of fuel cells. Since the absorption chiller can offset the use of 
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electricity provided to the vapor compression system, the absorption chiller system reduces the 

overall electrical load created by the building, reducing the number of fuel cells that need to be 

purchased. In fact, the absorption chiller option drives the decision to invest in a microturbine, 

with the heating load blocking this decision in the AC-h scenario. 

Figure 5-40 shows the absorption chiller, heat recovery unit, and duct-parallel loan 

payment allocations to the three types of energy for the three technology scenarios. When 

available for adoption, the absorption chiller loan payment cost is shared equally by all three 

energy types. The heat recovery loan payment cost is shared equally across all three types of 

energy under the HRUo technology scenario, but only across electrical and heating load under 

any scenario that includes an absorption chiller. The duct-parallel loan payment is supported by 

the electrical and heating load but receives a negative allocation towards the cooling load. Since 

some heat is still available in the exhaust stream exiting the absorption chiller, the cooling load 

supports the adoption of a large duct-series instead of duct-parallel. The duct-series allocations 

are not shown because they are small compared to the allocations associated with all other 

technologies shown in Figure 5-40. 



149 

 

 
Figure 5-40: Absorption chiller, heat recovery unit, and duct-parallel loan costs allocated to the 

production of electricity, cooling, and heating for the three technology scenarios at UCI Cal IT2 

The results presented in Figure 5-35 through Figure 5-40 represent the cost of meeting 

the UCI Cal IT2 building energy demand. Figure 5-35 through Figure 5-38 show the operational 

cost and Figure 5-39 and Figure 5-40 show the financing cost for a CCHP system. The same 

method used to allocate the CCHP system operation costs can be used to determine the cost of 

meeting all building energy demand through the purchase of utility electricity and natural gas 

exclusively. With the cost to meet building energy using local utilities only established, the 

difference in cost for each type of energy as a result of CCHP adoption can be assessed. Finally, 

the results presented in Figure 5-40 and Figure 5-41 also indicate the energy type responsible for 

the adoption, or investment, in any particular CCHP technology, allowing for the initial 

investment made to be allocated across the three types of energy. With a defined investment and 

resulting savings associated with each type of energy, the financial performance of the 

investment in each type of energy can be evaluated. 
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The case against which the CCHP investment is compared is the scenario where the 

building electrical and cooling loads are met through the purchase of utility electricity and the 

heating load is met through the use of a boiler fired using natural gas. This baseline scenario 

produces a baseline levelized cost for the three types of energy as follows: $0.095 per kWh for 

electricity, $0.0477 per kWh for cooling, and $0.0239 per kWh for heating. 

Using the allocated costs and associated investment made in each type of energy, the 

financial performance versus the baseline scenario can be determined. The resulting difference to 

the levelized cost of energy and modified internal rate of return is shown in Figure 5-41 for the 

three types of energy and the three technology scenarios analyzed. For all scenarios, the 

investment in electricity results almost always in an increased cost of electricity, with the 

levelized cost of electricity at five years increasing by over $0.01 per kWh. If the CCHP system 

remains operational, the levelized cost of electricity shrinks, reducing the loss associated with 

producing electricity onsite. If the CCHP system remains operational for nine years, near parity 

with the baseline system is achieved. While the adoption of a CCHP system almost always 

increases the cost of electricity, allowing for other technologies, such as an absorption chiller 

reduces the cost of electricity. If that absorption chiller can be maintained at a cost comparable to 

the baseline scenario (or a vapor compression system), then the cost of electricity can be reduced 

to the point of actually reducing the cost of electricity, as seen in year nine for the AC-l system. 

With nearly all systems increasing the cost of electricity, no rate of return occurs, signifying that 

the investment results in an increased cost of electricity.  
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Figure 5-41: Levelized cost of energy difference at years five, seven, and nine and corresponding 

modified internal rate of return for electricity, cooling, and heating when CCHP systems are 

adopted according to the three technology scenarios 

The levelized cost of cooling and heating both experience similar behavior to electricity. 

Increasing the years over which the system is operational results in a decreased levelized cost. 

Also, allowing for the adoption of an absorption chiller (especially if the chiller can be 

maintained at a cost comparable to a vapor compression system) reduces the cost of each type of 

energy at each year. Similar to electricity, cooling is also initially produced at a loss for all 

technology scenarios. The cost of cooling never reaches parity with the baseline scenario, while 

the AC-h reaches parity at year nine. The AC-l scenario, however, reaches near parity with 

baseline cooling costs in year seven followed by a decrease in cost of cooling in year nine. As a 
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result, the only cooling investment that produces a positive return is the AC-l scenario, with a 

return of over 8% being realized in year nine. 

Unlike electricity and cooling, the investment associated with heating always produces a 

lower cost of heating by year nine. While a loss is still realized in year five under the HRUo 

technology scenario, the AC-h scenario reaches parity with the baseline scenario, and the AC-l 

scenario produces a savings. Increasing the time over which the CCHP system remains 

operational only improves the financial performance associated with heating. As a result of the 

reduction to heating costs, the corresponding rates of return are incredibly high. The highest rate 

of return experienced is for the HRUo system, which achieves a modified internal rate of return 

over 51% by year three. Under this scenario, the heating load is allocated no fuel cell investment 

cost, and the heat recovery unit cost is split between electricity, heating and cooling. With a low 

initial investment cost associated with heating, relatively large savings are produced, resulting in 

a large rate of return. Note that since any savings are reinvested at 8% while calculating the 

modified internal rate of return, the rate of return associated with heating decreases as the effect 

of large savings are muted by a more reasonable return from reinvestment.  

Allowing for the adoption of an absorption chiller results in the allocation of a portion of 

the fuel cell investment cost to heating. With a larger initial investment, the rate of return 

decreases from the HRUo technology scenario to the AC-h scenario. Despite the larger 

investment, heating reaches parity with the baseline scenario faster under the AC-h scenario. 

While saddled with a larger investment cost, excess heating can be provided from the absorption 

chiller to the heat recovery unit for capture. This waste heat only has a portion of the original 

heat content remaining. In addition, much of the cost associated with the production of the waste 
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heat is absorbed by the cooling load, allowing the HRU access to an even lower cost source of 

heat than a fuel cell or absorption chiller. Heating enjoys even better performance under the AC-l 

technology scenario, where the absorption chiller utilizes waste heat from the four fuel cells and 

microturbine first more consistently, increasing the amount of low cost waste heat available to 

the HRU. 

5.2.2.4 Building Carbon Emissions 

Using the same method to allocate the different cost components, CO2 emissions 

associated with the import of electrical energy and the use of natural gas in a DER system or 

boiler can be allocated to electricity, cooling and heating. Assuming that the baseline scenario is 

where all electrical energy required by the building to meet any electrical or cooling load is met 

using a utility with a CO2 emissions profile as described in Section 3.6, and all heating is met 

using a natural gas fired boiler, the carbon emissions associated with the baseline energy supply 

to the building is shown in Figure 5-42 for an entire year. In total, UCI Cal IT2 energy use results 

in the emission of 1,445 tonnes of CO2 per year.  
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Figure 5-42: Yearly baseline carbon emissions for the UCI Cal IT2 building 

The adoption of DER systems affects total CO2 emissions. In the case of UCI Cal IT2, the 

adoption of a DER system increases carbon emissions for all technology scenarios, as seen in 

Figure 5-43. Note that CO2 emissions were not constrained during optimization. Also, the utility 

grid from which electricity is imported operates with one of the lowest carbon emissions factors 

in the United States [174]. The result that carbon emissions increase as a result of DER system 

adoption is due primarily to the reduced carbon emissions emitted while producing utility 

electricity, not low efficiency associated with onsite generation. 
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Figure 5-43: Change in yearly carbon emissions for the UCI Cal IT2 building as a result of DER 

system adoption 

The source of carbon emissions increase can be traced back to the individual type of 

energy producing an increase in emissions. Figure 5-44 shows the increase in emissions allocated 

to the three types of energy supplied to the building for the three technology scenario. Figure 

5-44 clearly shows that carbon emissions increase greatest for electrical energy. Heating also 

always produces an increase in carbon emissions, while cooling produces an increase when an 

absorption chiller is not available under the HRUo technology scenario, but decreases carbon 

emissions when the absorption chiller is available.  
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Figure 5-44: Change in yearly carbon emissions for individual types of energy for the UCI Cal 

IT2 building as a result of DER system adoption 

Under the HRUo technology scenario, only 54% of fuel energy used in the DER system 

is utilized in the form of electricity and heat supplied to the building. Combined with the low 

carbon emission factor associated with grid electricity, this scenario experiences the greatest 

increase to carbon emissions. Allowing for absorption chiller adoption tempers the increase to 

carbon emissions due to electricity and heating, while producing a decrease in cooling emissions 

from baseline carbon emissions. Under the AC-h technology scenario, total fuel cell electrical 

energy output is reduced by 3.1% from output under the HRUo scenario while grid imports also 

decrease by 30.1%. While an overall increase to carbon emissions are experienced under the AC-

h scenario, the combined attributes of reducing both onsite generation output and grid imports 

allows for this scenario to achieve the lowest total carbon emissions for any of the DER 

technology scenarios. Shifting to the AC-l scenario reduces grid imports by 72% from the HRUo 
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scenario, but fuel cell operation increases by 2.7%. As a result, carbon emissions increase over 

AC-h scenario levels. 

5.2.3 SCAQMD Building 

The South Coast Air Quality Management District (SCAQMD) building has an average 

electrical demand of 781 kW and an electrical load factor of 0.41. The heating load is coincident 

with the electrical load 62% of the time and the ratio of the total heating load to the electrical 

load is 1.64. The cooling load is coincident with the electrical load 49% of the time, and the ratio 

of the total cooling load to the electrical load is 0.95. When the electrical, cooling, and heating 

loads are met by traditional utility sources, the cost of energy is $0.0986 per kWh for electricity, 

$0.0486 per kWh for cooling, and $0.0193 per kWh for heating. 

Table 5-4 shows the optimal DER system design for SCAQMD under the three 

technology scenarios. A combination of fuel cells and microturbines are always adopted. 

Absorption chiller adoption also always occurs when allowed, and increases significantly when 

absorption chiller O&M is reduced during the AC-l technology scenario. When moving from the 

HRUo to AC-h scenario, heat recovery unit adoption increases, then decreases when moving to 

the AC-l scenario. 

Table 5-4: Optimal CCHP system design for all technology scenarios operating at the SCAQMD 

building 

Technology 
Scenario 

Fuel Cell 
(100 kW) 

Microturbine 
(65 kW) 

AC 
(kW) 

HRU 
(kW) 

Duct - 
Parallel 

(kW) 

Duct - 
Series (kW)

HRUo 7 3 n/a 1033 1147 n/a 
AC-h 6 4 150 1102 1225 60 
AC-l 6 5 531 741 823 213 
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5.2.3.1 DER System Operation 

Figure 5-45 shows the source of electrical energy for the three technology scenarios. The 

total amount of electricity consumed onsite under the HRUo scenario is the same as the baseline 

scenario. Total electricity consumption falls by 0.5% under the AC-h scenario and by 6.5% 

under the AC-l scenario. Across these three scenarios, the installed fuel cells provide the 

majority of the power. While producing 59% of the total electricity consumed at the SCAQMD 

building, fuel cell output falls by 12% when moving from the HRUo to AC-h scenario, and 9.2% 

when moving from the HRUo to AC-l scenario. These reductions are primarily due to the 

number of fuel cells installed changing from seven to six once an absorption chiller is made 

available for adoption. Electrical imports increase by 11% when moving from the HRUo to AC-

h scenario, and then decrease by 20% when moving from the HRUo to the AC-l scenario. 

Moving across the same scenarios, microturbine output increases by 34% and 41% respectively, 

increasing as more microturbines are adopted. 
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Figure 5-45: Source of electricity to meet the SCAQMD electrical demand for all technology 

scenarios 

Figure 5-46 shows the source of cooling for the AC-h and AC-l technology scenario. 

When first adopted under the AC-h technology scenario, the absorption chiller is used to meet a 

fraction of the total cooling load. As the absorption chiller O&M is reduced to parity with vapor 

compression O&M, the size of the absorption chiller increases 354%, and the total amount of 

cooling produced by the absorption chiller increases by 1,342%. Despite the increase, the 

majority of the cooling load is met by the legacy vapor compression chiller. 

 
Figure 5-46: Source of cooling to meet the SCAQMD cooling demand for all technology 

scenarios 

Figure 5-47 shows the source of heating for the three technology scenarios installed at 

SCAQMD. For all three technology scenarios, the legacy boiler is sued to meet the majority of 

the building heating load. The heat recovery unit meets a large portion of the heating demand, 

but this portion decreases as absorption chiller operation increases. Overall, the DER system 
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achieves a relatively high DER system fuel utilization, with, the HRUo, AC-h, and AC-l systems 

achieving fuel utilizations of 73%, 75%, and 75% respectively. 

 
Figure 5-47: Source of heating to meet the SCAQMD heating demand for all technology 

scenarios 

Figure 5-48 shows a week of electrical operation during the winter for all three 

technology scenarios at the SCAQMD building. Similar to the prior buildings studied, the 

installed fuel cells perform load following, producing the maximum amount of electricity 

possible across the three scenarios. The microturbines are only operated during the middle of the 

day. A single instance where all fuel cells shut down while the microturbines continue to provide 

power occurs during the Wednesday morning under the HRUo scenario.  
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Figure 5-48: Winter electrical operation for all technology scenarios adopted at the SCAQMD 

building 

Figure 5-49 shows the heating operation for the same week as the electrical operation. 

The particular instance where the fuel cells shut down correspond to a period where heating 

demand is high. The fuel cells are shut off so that the microturbines can meet the electrical 

demand while supplying a large stream of waste heat to be captured using the heat recovery unit. 

Under the HRUo and AC-h scenario, the HRU is used to provide a base heating load. The 

majority of the heating load continues to be met using the legacy boiler. HRU operation 

decreases under the AC-h scenario, and HRU output decreases occasionally throughout the day. 

This reduction in HRU output is due to fuel cell operation occurring during the Wednesday 

morning when the electrical demand decreases. Under this scenario, the microturbines are not 

operated, resulting in a reduced waste heat stream for use in the HRU. 
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Figure 5-49: Winter heating operation for all technology scenarios adopted at the SCAQMD 

building 

Figure 5-50 shows the cooling operation that corresponds to the electrical and heating 

operation during the winter week shown in Figure 5-48 and Figure 5-49. Figure 5-51 shows the 

corresponding absorption chiller operation during the winter week for the AC-h and AC-l 

technology scenarios. Cooling demand only occurs during the middle of the day. When an 

absorption chiller is first adopted under the AC-h scenario, the chiller is only operated during 

Sunday. Comparing Figure 5-50 to Figure 5-48 shows that microturbine operation does not occur 

during the first Sunday. During this instance, the absorption chiller is used to reduce the total 

electrical demand, reducing demand charges incurred during building operation.  

Under the AC-l scenario, the absorption chiller is operated whenever a cooling demand 

exists. The cooling produced, however, depends on the combined electrical and cooling demand. 

During the days where the combined demand is high, the absorption chiller is used to produce 
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the maximum possible amount of cooling, shifting the cooling load from the electrically operated 

vapor compression system to the thermally activated absorption chiller. However, on 

Wednesday, when the combined electrical and cooling demand is relatively low, the absorption 

chiller is operated at a lower setting, producing cooling. The waste heat is instead used in the 

heat recovery unit.  

 
Figure 5-50: Winter cooling operation for all technology scenarios adopted at the SCAQMD 

building 
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Figure 5-51: Winter absorption chiller operation for all technology scenarios adopted at the 

SCAQMD building 

Electrical, cooling, and absorption chiller operation during a summer week is shown in 

Figure 5-52, Figure 5-53, and Figure 5-54 respectively. Summer electrical operations differs in 

the same way from winter operation as the USN and UCI Cal IT2 buildings, with the adopted 

fuel cells and microturbines producing the maximum amount of electricity during on-peak and 

mid-peak, and turning down to the minimum power output during off-peak. Heating operation 

during the summer is similar to operation during the winter, and is not shown. The largest 

difference between the SCAQMD building operation during the summer and winter is the 

absorption chiller operation under the AC-h technology scenario. During the winter, the AC-h 

absorption chiller is periodically operated to assist with reducing the demand charge associated 

with electrical utility imports. In addition to reducing the peak utility demand, the absorption 

chiller is also operated when utility imports occur during mid-peak and on-peak periods. During 
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these periods, the import of grid electricity may not increase demand charges, but the absorption 

chiller is operated so that the purchase of expensive grid electricity is avoided. An example of 

this is seen during Tuesday morning, where absorption chiller operation occurs while grid 

imports are low. During the winter, the absorption chiller would not have been operated in the 

same situation, but the summer cost of grid electricity is more expensive during the middle of the 

day, and the absorption chiller is dispatched to reduce the amount of imported grid electrical 

energy. 

While the absorption chiller has the potential to reduce the maximum combined electrical 

demand created by the combined electrical and cooling load, no reduction is experienced under 

the AC-h scenario. The maximum demand is reduced by 64 kW for the AC-l technology 

scenario. 

 
Figure 5-52: Summer electrical operation for all technology scenarios adopted at the SCAQMD 

building 
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Figure 5-53: Summer cooling operation for all technology scenarios adopted at the SCAQMD 

building 

 
Figure 5-54: Summer absorption chiller operation for all technology scenarios adopted at the 

SCAQMD building 
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5.2.3.2 Financial Performance 

Figure 5-55 shows the overall financial performance of the three adopted DER systems at 

the SCAQMD building. While the adoption of an absorption chiller continues to improve the 

overall investment performance, the improvements experienced at the SCAQMD building are 

smaller than as experienced in either the USN or UCI Cal IT2 building. 

 
Figure 5-55: Modified internal rate of return for all three technology scenarios when adopted 

and operated at the SCAQMD 

Figure 5-56 shows the allocated utility costs associated with DER systems operation at 

the SCAQMD building. The overall results presented in Figure 5-56 are similar to the 

corresponding USN results. However, the USN building uses utility imports to meet between 

11% and 13% of the total building electrical demand, whereas the SCAQMD building imports 

between 25% and 32% of the total electrical demand. Also, Figure 5-48 and Figure 5-52 both 

show that the majority of grid imports occur during the middle of the day, when the cost of 

electricity is highest. As a result, the heating load receives a relatively small negative allocation 
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for both utility energy and demand charges. DER system adoption reduces the amount of 

exported electricity, by the portion of the building demand met onsite is the electrical and 

cooling base load. The more expensive dynamic load is still met primarily through the import of 

grid electricity, reducing the savings generated by DER system adoption.

 

Figure 5-56: Utility costs allocated to the production of electricity, cooling, and heating for the 

three technology scenarios at the SCAQMD building 

Figure 5-57 shows the allocated fuel cell and microturbine cost allocation. The electrical 

load receives the largest fuel cell O&M cost allocation. Although the cooling load also receives a 

fuel cell O&M cost allocation, the size of the allocation combined with the relatively large utility 

and demand charge allocations show that the cooling load is primarily met through the import of 

grid electricity even after DER system adoption. Similarly, the heating load receives a small fuel 

cell O&M allocation, even receiving a negative allocation under the AC-l technology scenario. 

At the same time, the heating load receives approximately half of the microturbine O&M cost. 

The other half is shared by the electrical load, showing that the combined electrical and heating 
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load is required for the adoption and operation of microturbines to occur. The cooling load 

receives either a negative or small microturbine O&M allocation, suggesting the cooling load 

either suppresses or is indifferent to microturbine operation. 

 
Figure 5-57: Fuel cell and microturbine O&M costs allocated to the production of electricity, 

cooling, and heating for the three technology scenarios at SCAQMD building 

From the perspective of system design, the results shown in Figure 5-57 indicate that the 

microturbines are used to meet the electrical and heating loads only. The fuel cells are used to 

meet a small part of the heating load except under the AC-l scenario, where the heating load 

actively reduces fuel cell operation. Instead of designing an actual system where ducting between 

all generators and heat recovery technologies needs to be installed, the systems can be separated 

such that the microturbines and heat recovery unit are connected, and the fuel cells and 

absorption chiller are connected, but the systems are viewed as separate DER systems. This 

result is reflected in Figure 5-47, which shows that only a fraction of the building heating load is 
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met through the capture of waste heat provided to the heat recovery unit from the absorption 

chiller. 

Figure 5-58 shows the vapor compression and absorption chiller O&M cost allocations 

for the three technology scenarios. The allocation of these two types of cost are dissimilar to the 

previously studied buildings. Like the other two buildings, the vapor compression cost is 

allocated primarily to the cooling load. DER system operation due to the electrical load reduces 

vapor compression operation due to the generation of heat that can be used to power the 

absorption chiller. The heating load, however, receives a positive vapor compression allocation 

cost under the AC-h and AC-l scenario. In the prior two buildings, a negative vapor compression 

O&M cost was allocated to the heating load. Those two buildings also had heating and cooling 

loads that were small relative to the electrical load. In addition, the DG operation for both 

buildings resulted in excess production of waste heat that could not be fully utilized by the 

adopted DER systems. The SCAQMD has the opposite problem, where each individual thermal 

load is sufficiently large during the middle of the day where either load could fully utilize the 

waste heat produced by the fuel cells and microturbines. As a result, the heating load encourages 

the use of the legacy vapor compression chiller to meet the cooling load, while suppressing 

absorption chiller operation. 
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Figure 5-58: Vapor compression and absorption chiller  O&M costs allocated to the production 

of electricity, cooling, and heating for the three technology scenarios at SCAQMD building 

This behavior is not completely reciprocated by the cooling load with respect to heat 

recovery unit operation. Figure 5-59 shows the boiler and heat recovery unit cost allocation for 

the three technology scenarios. The boiler and HRU O&M cost allocation is similar to the 

allocation experienced for the UCI Cal IT2 building for the same technologies. While the cooling 

load does suppress HRU operation under the AC-l technology scenario, the cooling load actually 

encourages HRU operation under the AC-h scenario. While the heating load desires to utilize all 

of the available heat produced by the adopted DG, the cooling load derives some benefit from 

passing waste heat stream used by the absorption chiller to the heat recovery unit in order to fully 

capture the available heat. 
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Figure 5-59: Boiler and heat recovery unit  O&M costs allocated to the production of electricity, 

cooling, and heating for the three technology scenarios at SCAQMD building 

Figure 5-60 shows the fuel cell and microturbine loan allocation for the three technology 

scenarios. The primary difference between Figure 5-60 and the results for the USN building and 

UCI Cal IT2 building is the negative or nonexistent fuel cell loan allocation received by the 

heating load. Contrary to all prior results, the SCAQMD heating load discourages the adoption of 

fuel cells in favor of microturbines. Microturbines can be purchased at a lower capital cost and 

produce more heat per kWh of electricity generated. From the perspective of the electrical and 

heating load only, microturbine technology appears well suited to assist with meeting the 

building electrical base load while also supplying all of the heating load simultaneously. The 

overall DER system optimization elects to adopt fuel cells in addition to microturbines, but the 

resistance shown by the heating load to fuel cells is manifested in a negative fuel cell loan 

allocation, reducing the investment associated with the heating load. 
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Figure 5-60: Fuel cell and microturbine loan costs allocated to the production of electricity, 

cooling, and heating for the three technology scenarios at SCAQMD 

Figure 5-61 shows the allocated absorption chiller, heat recovery unit, and duct-parallel 

loan payments for the three technology scenarios. Nearly all allocations are similar to what is 

seen for the previous two buildings. Due to the competitive nature for the use of available waste 

heat between the cooling and heating load at SCAQMD, the heating load receives either a 

negative or nearly zero absorption chiller loan payment allocation. 
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Figure 5-61: Absorption chiller, heat recovery unit, and duct-parallel loan costs allocated to the 

production of electricity, cooling, and heating for the three technology scenarios at SCAQMD 

The levelized cost of energy and rate of return for the three technology scenarios are 

shown for the electrical, cooling, and heating loads in Figure 5-62. The financial performance of 

the different products is similar to the same energy types at the UCI Cal IT2 building, with the 

levelized cost being consistently reduced for heating only. The best financial performance is seen 

by the AC-l technology scenario, which experiences the highest return. However, the reduction 

to the levelized cost of heating is similar between the HRUo and AC-l scenario. The difference 

in financial performance is created by the cooling operation under the AC-l scenario. Despite 

requiring a higher initial investment due to the adoption of the largest absorption chiller, savings 

can be generated for the cooling load by year nine, resulting in the realization of a small rate of 

return of approximately 0.2% at year ten. 
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Figure 5-62: Levelized cost of energy difference at years five, seven, and nine and corresponding 

modified internal rate of return for electricity, cooling, and heating when DER systems are 

adopted according to the three technology scenarios at the SCAQMD building 

5.2.3.3 Building Carbon Emissions 

Approximately 4,986 tonnes of CO2 per year are emitted due to SCAQMD building 

energy use. The allocation between electricity, heating, and cooling is similar to what has been 

presented for the USN and UCI Cal IT2 building. Adopting a DER system with the goal of 

minimizing cost of energy results in an increase to emissions, as seen in Figure 5-63.  
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Figure 5-63: Change in yearly carbon emissions for the SCAQMD building as a result of DER 

system adoption 

Figure 5-64 shows the increase in carbon emissions shown in Figure 5-63 allocated 

between electricity, heating, and cooling. The energy type responsible for an increase to carbon 

emissions for every technology scenario is electricity. The high utilization of waste heat to meet 

both the heating and cooling reduces carbon emissions for both loads. The AC-h technology 

scenario experiences the smallest increase to carbon emissions. Under this scenario, the HRU is 

sued to meet the largest portion of the building heating load. Under this scenario, the cooling 

load receives the largest carbon emissions reduction, suggesting that the adoption and infrequent 

operation of the absorption chiller allows for the utilization of additional waste heat, even if the 

largest increase in overall DER system operation is experienced through the increased capture of 

waste heat in the heat recovery unit.  
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Figure 5-64: Change in yearly carbon emissions for individual types of energy for the SCAQMD 

building as a result of DER system adoption 

5.2.4 St. Regis Hotel 

The St. Regis hotel has an average electrical demand of 1212 kW and an electrical load 

factor of 0.677. The heating load is coincident with the electrical demand 100% of the time and 

the ratio of the heating to electrical load is 0.49. The cooling load is coincident with the electrical 

load 91% of the time and the ratio between the cooling and electrical load is 0.46. The baseline 

cost of energy is $0.0906 per kWh for electricity, $0.0455 per kWh for cooling, and $0.0202 per 

kWh for heating. 

Table 5-5 shows the optimal DER system design for the St. Regis building for the three 

DER system technology scenarios. Fuel cells and a heat recovery unit is always adopted. An 

absorption chiller is adopted whenever allowed along with one or two microturbines. 
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Table 5-5: Optimal CCHP system design for all technology scenarios operating at the St. Regis 

building 

Technology 
Scenario 

Fuel Cell 
(100 kW) 

Microturbine 
(65 kW) 

AC 
(kW) 

HRU 
(kW) 

Duct - 
Parallel 

(kW) 

Duct - Series 
(kW) 

HRUo 14 0 0 844 938 0 

AC-h 13 1 375 809 899 150 
AC-l 13 2 610 750 834 244 

 

5.2.4.1 DER System Operation 

Figure 5-65, Figure 5-66, and Figure 5-67 show the source of electricity, cooling, and 

heating respectively for the three DER systems adopted by the St. Regis Hotel. Total electrical 

usage decreases by 5.5% and 7.8% under the AC-h and AC-l technology scenarios respectively. 

Shifting from the HRUo scenario to the AC-h results in electrical imports dropping by 6.4% and 

total fuel cell electrical output by 5.7%. Shifting from the HRUo to AC-l scenario results in 

electrical imports dropping by 66% and fuel cell output by 1.6%.Microturbine operation 

contributes a marginal amount of electricity to the overall electrical production. 
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Figure 5-65: Source of electricity to meet the St. Regis electrical demand for all technology 

scenarios 

Similar to the USN building, when adopted, the absorption chiller is used to provide a 

large portion of the total cooling demand. The heat recovery unit is used to provide nearly the 

entire heating demand for the building. As absorption chiller operation increases, the boiler is 

used more frequently, but the combination of waste heat from the fuel cells, microturbines, and 

absorption chiller allow for the heat recovery unit to provide 95% of the building heating 

demand. Overall utilization of the fuel energy used in the DER system is 70% for the HRUo 

scenario, 81% for the AC-h scenario, and 82% for the AC-l scenario. 

 
Figure 5-66: Source of cooling to meet the St. Regis electrical demand for all technology 

scenarios 
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Figure 5-67: Source of heating to meet the St. Regis electrical demand for all technology 

scenarios 

Winter operation of the different systems is similar to DER system operation occurring at 

the previous buildings studied, as seen for St. Regis in Figure 5-68. Figure 5-69 and Figure 5-70 

show the heating and cooling operation respectively. When adopted, the absorption chiller is 

operated to reduce electrical imports as much as possible. During Monday, the combined 

electrical and cooling load is sufficiently large that electrical imports are unavoidable. During 

this day, the fuel cells and absorption chiller are operated at maximum capacity. During the 

following Tuesday, the combined electrical and cooling load produces a combined load that can 

be met entirely onsite. During this day, the absorption chiller is used to produce enough cooling 

such that the combined electrical load is low enough to be met entirely using the adopted DG. 

The heating demand throughout these two days is nearly completely met using the heat recovery 

unit. As absorption chiller operation increases, so does the amount of heat captured from the 

waste heat exiting the absorption chiller. When both the heating and cooling loads are high (for 

example, mid-day Saturday), the cooling load is given priority and the absorption chiller is 

operated before the heat recovery unit. 
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Figure 5-68: Winter electrical operation for all technology scenarios adopted at the St. Regis 

building 

 
Figure 5-69: Winter heating operation for all technology scenarios adopted at the St. Regis 

building 
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Figure 5-70: Winter cooling operation for all technology scenarios adopted at the St. Regis 

building 

 
Figure 5-71: Winter absorption chiller operation for all technology scenarios adopted at the St. 

Regis building 
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Operation during the summer changes from the winter in the same ways as the DER 

operation changes at the other studied buildings, as seen in Figure 5-72. The adopted fuel cells 

are turned down to part load during off-peak. Load following occurs, but instead of supplying the 

entire building demand, a constant supply of electricity is imported, with the fuel cells operated 

to maintain the demand charge at a certain level. Cooling and heating operation during the 

summer mirror operation during the winter, and are not shown. 

 
Figure 5-72: Summer electrical operation for all technology scenarios adopted at the St. Regis 

building 

As a result of absorption chiller adoption, the maximum combined electrical demand for 

the St. Regis building is reduced by 110 kW under the AC-h scenario and 179 kW under the AC-

l scenario. Compared to the generator sizes included in this study, the level of demand reduction 
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created by absorption chiller operation is the equivalent to having an additional fuel cell 

operating under the AC-h scenario and two fuel cells operating under the AC-l scenario. 

5.2.4.2 Financial Performance 

The DER systems adopted at the St. Regis building produce savings sufficiently large to 

produce a desirable return on DER investment, as seen in Figure 5-73. The HRUo system nearly 

achieves a rate of return of 8% by year ten. When an absorption chiller is adopted, a return of 8% 

is achieved by year eight under the AC-h scenario, and between four and six years under the AC-

l scenario. 

 
Figure 5-73: Modified internal rate of return for all three technology scenarios when adopted 

and operated at the St. Regis building 

Even with objectively desirable financial performance for the two systems that include an 

absorption chiller, allocating the different cost components will allow for an investor to 
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understand how a better return can be obtained or which loads are critical to positive financial 

performance.  

Figure 5-74 shows the allocated utility costs for the three technology scenarios. The 

general results are similar to prior buildings analyzed, with electricity and cooling receiving a 

positive allocation for all utility costs, and heating receiving a negative allocation for electrical 

utility costs and a positive allocation for natural gas cost. The main difference presented in these 

results is seen for the electrical load allocations, particularly in the relative size of the three types 

of costs. The St. Regis and USN buildings are similar in the sense that after DER adoption, only 

a fraction of the combined electrical demand is met using grid imports. However, the USN 

building electrical load utility energy and demand charges cost allocations are twice the size of 

the natural gas cost allocation. Note that the cost allocation for the USN building revealed that 

both the electrical and heating load were both required for fuel cell adoption and operation to 

occur. This requirement appears to disappear for the St. Regis building, where the electrical load 

produces DER system operation that incurs a large natural gas fuel cost. 
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Figure 5-74: Utility costs allocated to the production of electricity, cooling, and heating for the 

three technology scenarios at the St. Regis building 

Figure 5-75, which shows the allocated fuel cell and microturbine O&M cost, confirms 

the result that the electrical load singlehandedly drives fuel cell operation. The majority of fuel 

cell O&M cost across the three technology scenarios is allocated to the electrical load. Cooling 

allocation also receives a positive fuel cell O&M cost allocation. However, the heating load 

receives a small allocation under the HRUo technology scenario, a negative allocation under the 

AC-h scenario, and no allocation under the AC-l scenario. Instead, the heating load receives the 

largest microturbine O&M cost allocation. The cooling load receives a slightly smaller 

microturbine allocation, but the electrical load receives a negative microturbine O&M cost 

allocation for all three technology scenarios. 
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Figure 5-75: Fuel cell and microturbine O&M costs allocated to the production of electricity, 

cooling, and heating for the three technology scenarios at the St. Regis building 

Allocating the different cost components associated with O&M for technologies that 

produce heating and cooling are similar in shape to the allocation for the same technologies 

when adopted at the UCI Cal IT2 building. In general, the allocation of the thermal energy 

producing technologies operating at the UCI Cal IT2 building (and the St. Regis building) show 

that the electrical load drives a shift in thermal energy from production from the legacy systems 

to production from the technologies that operate off of the waste heat generated by the adopted 

DG. 

Figure 5-76 shows the allocated loan payments for the three technology scenario. Since 

the prior results showed that the electrical load is primarily responsible for fuel cell operation, it 

is a natural result that the electrical load is also responsible for fuel cell adoption.  



188 

 

 
Figure 5-76: Fuel cell and microturbine loan costs allocated to the production of electricity, 

cooling, and heating for the three technology scenarios at the St. Regis building 

The allocation of absorption chiller, heat recovery unit, and duct-parallel loan payments 

are similar to the allocation for the same technologies for the UCI Cal IT2 building. The results 

for the UCI Cal IT2 building, as seen in Figure 5-40, showed that the adoption of an absorption 

chiller was due to the combination of all three energy loads, and the corresponding loan payment 

was split across the three energy types. Under the HRUo technology scenario, the heat recovery 

unit cost allocation was due to presence of all three energy loads, and the loan payment 

associated with the HRU was split evenly across the three energy loads. When an absorption 

chiller is available for adoption, the HRU was adopted due to the electrical and heating load 

only, and the HRU loan payment was split among the two loads.  

Using the allocated costs, the levelized cost of energy and corresponding rate of return 

for the three types of energy was calculated and is shown in Figure 5-77. The levelized cost of 

electricity increases due to the high investment cost associated with driving the purchase of the 
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fuel cells. However, the impact of the investment is reduced over time, with parity with the 

baseline scenario being achieved in year nine. Under the AC-l scenario, a small decrease in the 

levelized cost of electricity is produced, resulting in a rate of return of 1% being achieved in year 

ten. 

 
Figure 5-77: Levelized cost of energy difference at years five, seven, and nine and corresponding 

modified internal rate of return for electricity, cooling, and heating when DER systems are 

adopted according to the three technology scenarios at the St. Regis building 

The cooling load also initially experiences an increase in cost of cooling for the HRUo 

and AC-h scenario. While the HRUo scenario only reaches parity with the baseline cost of 

cooling (resulting in no positive rate of return), the AC-h scenario produces cooling at a lower 



190 

 

cost than the baseline scenario by year seven, producing a rate of return approaching 13% by 

year ten. Cooling under the AC-l scenario immediately produces lower cost cooling in year five. 

As the investment cost effects are reduced by time, the savings produced under the AC-l scenario 

increase to a reduction of $0.005 per kWh cooling in year ten, and the corresponding rate of 

return exceeds 26%.  

Unlike the electrical and cooling loads, the heating load immediately achieves lower cost 

after DER system adoption. Since minimal investment occurred due to the heating load, it is not 

hard for heating operation to produce savings. With savings produced almost immediately, the 

rate of return on heating investment is higher for the St. Regis building than any other tested 

building. The HRUo building has no rate of return due to a lack of initial investment associated 

with the heating load, resulting in an infinite rate of return.  

Both the UCI Cal IT2 and SCAQMD experience good performance on any heating load 

investments. These buildings, however, do not have an electrical load which can absorb the cost 

of DG adoption. The primary investment cost allocated to both the heating and cooling loads are 

associated with the corresponding technology. During daily operation, fuel cell operation is 

driven by the electrical load, which receives the bulk of the fuel cell O&M cost. From the 

perspective of the thermal loads, the waste heat provided to the absorption chiller and heat 

recovery is supplied free of charge, with the only cost incurred being associated with converting 

the waste heat into a usable product. As a result, both cooling and heating loads experience 

reduced cost when an absorption chiller is available for adoption, driving the positive financial 

performance of the entire DER system. 
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5.2.4.3 Building Carbon Emissions 

Meeting the St. Regis energy loads produces 4,661 metric tons of CO2 per year. While all 

other DER systems have increased carbon emissions up until this point, the St. Regis building 

provides one technology scenario where the adoption of a DER system that was selected to 

minimize overall cost of energy reduces total carbon emissions, as seen in Figure 5-78. Carbon 

emissions under the AC-h scenario experience a reduction as a result of DER system adoption. 

 
Figure 5-78: Change in yearly carbon emissions for the St. Regis building as a result of DER 

system adoption 

Figure 5-79 shows the impact of the different energy loads on changing overall carbon 

emissions per year for the three different technology scenarios. As seen in all other scenarios, 

DER system operation due to the electrical load decrease carbon emissions. The carbon emission 

associated with both cooling and heating are reduced due to DER system operation. The 

reduction in carbon emissions associated with the AC-h technology scenario associated with the 
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largest reduction in carbon emissions for both the cooling and heating load. Note that the 

reduction in carbon emissions for heating decreases as a result of reducing absorption chiller 

O&M. Reducing AC O&M resulted in a slight reduction to heat recovery unit operation and a 

large increase in absorption chiller operation. 

 
Figure 5-79: Change in yearly carbon emissions for individual types of energy for the St. Regis 

building as a result of DER system adoption 

5.2.5 Patton State Hospital 

The Patton State Hospital (Patton) building has an average electrical demand of 1400 kW 

and an electrical load factor of 0.59. The cooling load is coincident with the electrical load 95% 

of the time and the ratio of cooling to electrical load is 0.86. The heating load is coincident with 

the electrical load 100% of the time, and the ratio of heating to electrical load is 1.06. The 

baseline cost of energy for the Patton building is $0.094 per kWh for electricity, $0.0492 per 

kWh for cooling, and $0.0192 per kWh for heating.  
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Table 5-6 shows the adopted DER systems under the three different technology 

scenarios. The Patton building is the first building studied where a shift in adopted generation 

capacity away from fuel cells towards microturbines. Also, unlike all other studied buildings, the 

size of the adopted HRU increases along with the absorption chiller when shifting from the AC-h 

to the AC-l technology scenario. 

Table 5-6: Optimal CCHP system design for all technology scenarios operating at the Patton 

building 

Technology 
Scenario 

Fuel Cell 
(100 kW) 

Microturbine 
(65 kW) 

AC 
(kW) 

HRU 
(kW) 

Duct - 
Parallel 

(kW) 

Duct - 
Series (kW)

HRUo 17 4 0 1400 1555 0 

AC-h 17 5 1262 1400 1555 505 
AC-l 11 13 1850 1732 1925 740 

 

5.2.5.1 DER System Operation 

Figure 5-80 shows the source of electricity for the three technology scenarios at the 

Patton building. Overall, total electricity consumption decreases by 4.2% under the AC-h 

scenario and 10% under the AC-l scenario. Grid imports are reduced by 53% when moving from 

the HRUo to AC-h scenario, and 63% when moving from the HRU to AC-l scenario. Fuel cells 

provide the bulk of the consumed electricity, with microturbine operation increasing significantly 

under the AC-l scenario. The reduction in total electricity consumed onsite is due to absorption 

chiller operation, which is used to meet 24% of the cooling load under the AC-h scenario, and 

50% of the cooling load under the AC-l scenario. 
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Figure 5-80: Source of electricity to meet the Patton building electrical demand for all 

technology scenarios 

Waste heat is used to meet the majority of the heating load through the use of a heat 

recovery unit. Figure 5-81 shows that the amount of heat supplied from the HRU under the 

HRUo and AC-h scenario is roughly the same, but increases under the AC-l scenario. The high 

level of coincidence between the two thermal loads and the electrical load coupled with the size 

of the loads allows for the technology scenarios to achieve the following fuel utilizations: 78% 

for HRUo, 82% for AC-h, and 81% for AC-l. 
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Figure 5-81: Source of heating to meet the Patton building electrical demand for all technology 

scenarios 

Figure 5-82, Figure 5-83, and Figure 5-84 show electrical, heating, and cooling operation 

respectively for the same winter week for the Patton building. Electrical operation for the HRUo 

and AC-h scenario is similar to all other buildings previously studied, with the fuel cell providing 

baseload or load following power while the microturbine is used to perform peak shaving, 

particularly during the winter mid-peak period. Heat recovery unit operation mirrors fuel cell 

operation, with the HRU being used to meet the entire heating load when possible. Under the 

AC-h scenario, the absorption chiller is dispatched to manage electrical imports, with operation 

only occurring during the day. The maximum electrical load produced by the combined electrical 

and cooling demand is reduced by 322 kW under the AC-h technology scenario. 
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Figure 5-82: Winter electrical operation for all technology scenarios adopted at the Patton 

building 

Electrical operation under the AC-l scenario differs from winter operation seen in 

previously studied buildings. Since approximately 43% of the installed capacity is due to 

microturbine adoption, microturbine operation expands from dispatch during the middle of the 

day to continuous operation. The coordination of fuel cell and microturbine operation depends on 

more than the building electrical load at any given moment, but relies on the thermal loads as 

well. For example, the relatively low electrical load occurring Sunday night decreases through 

time. Instead of reducing microturbine operation while maintaining fuel cell operation, the fuel 

cells are turned down since the extra waste heat produced by the microturbines can be utilized by 

the heating load. Later, during early Wednesday morning, the electrical demand drops, and 
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microturbine operation is again maintained, favoring the additional production of waste heat for 

use to meet thermal loads. 

 
Figure 5-83: Winter heating operation for all technology scenarios adopted at the Patton 

building 

During the two instances occurring mid-day Tuesday and Wednesday where electrical 

and cooling loads are high while the heating load is low, both fuel cells and microturbines are 

operated at near power, with the waste heat being first diverted to the absorption chiller in order 

to reduce the overall electrical demand. During this period, the heat recovery unit is still used to 

meet the majority of the heating demand, but the capture of waste heat from the absorption 

chiller is greatest during these two time periods. 
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Figure 5-84: Winter cooling operation for all technology scenarios adopted at the Patton 

building 

Summer electrical, heating, cooling, and absorption chiller operation are shown in Figure 

5-85, Figure 5-88, Figure 5-86, and Figure 5-87 respectively. Similar to winter operation, 

summer electrical operation is similar to how similar systems are operated at the other studied 

buildings. Operation under the AC-l scenario is similar to operation of the same system during 

the winter, with the operation of all systems being managed to reduce utility imports while 

meeting the waste heat requirements of the adopted HRU and absorption chiller. 
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Figure 5-85: Summer electrical operation for all technology scenarios adopted at the Patton 

building 

Absorption chiller at other buildings are operated continuously during the summer for 

both the AC-h and AC-l technology scenarios. AC operation at the Patton building differs in that 

dispatch only occurs during the middle of the day, with the load occurring during off peak being 

met using the vapor compression system. Shifting to the AC-l scenario, absorption chiller 

operation increases, with a large portion of off-peak cooling being met through AC operation. 

Under this scenario, the maximum combined electrical demand is reduced by 544 kW due to 

absorption chiller operation. 
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Figure 5-86: Summer cooling operation for all technology scenarios adopted at the Patton 

building 

 
Figure 5-87: Summer absorption chiller operation for all technology scenarios adopted at the 

Patton building 
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Instead of being dispatched to continuously provide cooling, the absorption chiller output 

is managed to reduce the electrical demand associated with the cooling load while also providing 

enough waste heat to the heat recovery unit, as seen in Figure 5-88.  Note that heating operation 

between the AC-h and AC-l scenario does not change significantly, with the HRU providing 

more of the heating load under the AC-l scenario. 

 
 

Figure 5-88: Summer heating operation for all technology scenarios adopted at the Patton 

building 
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Overall, the additional operation of the absorption chiller allows for more of the heating 

load to be met by the heat recovery, and also reduced the maximum combined electrical demand 

by 544 kW. 

5.2.5.2 Financial Performance 

All three DER systems adopted at the Patton State Hospital experience good financial 

performance, as seen in Figure 5-89. In particular, the adoption of a low O&M cost absorption 

chiller improves the rate of return from approximately 9% under the HRUo scenario to above 

14% under the AC-l scenario at year ten. Adoption and operation of an absorption chiller is not 

responsible for the increase alone. HRU operations increase under the AC-l scenario, but more 

importantly, a shift from fuel cells to a mix between fuel cells and microturbines occur, reducing 

the initial investment cost associated with the purchase of the DER system. As seen in the figures 

showing DER system operation, the management of fuel cells and microturbines to continuously 

meet or reduce the electrical demand while supplying nearly all of the heating load and 

managing the cooling load during mid-peak and on-peak periods, the flexibility of changing the 

available waste heat to meet the current thermal demand added flexibility in operation that has 

not been seen in any of the smaller buildings examined. 
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Figure 5-89: Modified internal rate of return for all three technology scenarios when adopted 

and operated at the Patton building 

Allocating the cost components reveals more information on the financial performance of 

the DER systems. Figure 5-90 shows the allocated utility costs. The allocated costs for the AC-h 

and AC-l scenario are similar to results for prior buildings, and do not require further discussion. 

All past results have shown that the heating load typically receives a large negative utility energy 

and demand cost allocation. This does not occur under the Patton building. A negative allocation 

for these costs suggest that DG operation occurs in part due to the ability to recover waste heat 

through the use of a HRU to meet the building heating load. For this particular building, this is 

not the case, and the heating load does not drive the shift from supplying electricity using 

imported electricity to onsite generation. Similar financial behavior is experienced under all 

technology scenarios for the St. Regis hotel building, suggesting that under the HRUo scenario, 

the electrical load is the primary driver for the adoption and operation of multiple fuel cells. 
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Figure 5-90: Utility costs allocated to the production of electricity, cooling, and heating for the 

three technology scenarios at the Patton building 

This result is further confirmed by the allocation of fuel cell and microturbine O&M 

costs, as seen in Figure 5-91. Under the HRUo scenario, the majority of fuel cell O&M cost is 

allocated primarily to the electrical load. However, under any scenario where an absorption 

chiller may be adopted, fuel cell O&M is shared by both the electrical and heating load. 

Meanwhile, the cooling load suppresses fuel cell operation in favor of increased microturbine 

operation. Similar behavior can be seen at the SCAQMD building, where the different thermal 

loads prefer the operation of different generators. Under the AC-h and AC-l scenarios, both the 

cooling and heating load receive large portions of DG O&M cost.  
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Figure 5-91: Fuel cell and microturbine O&M  costs allocated to the production of electricity, 

cooling, and heating for the three technology scenarios at the Patton building 

Despite supporting different types of power generation, the cooling and heating loads 

both support a mutual switch from the traditional methods of thermal energy generation towards 

the methods powered by the use of waste heat. Figure 5-92 and Figure 5-93 show O&M 

associated with technology used to produce cooling and heating respectively. The heating load 

receives a negative vapor compression allocation when an absorption chiller is available as an 

option, while the cooling load receives a negative boiler O&M allocation. The scenario in which 

the absorption chiller produces 50% of the building cooling load is also the scenario in which the 

cooling load is allocated the largest reduction in boiler O&M. 
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Figure 5-92: Vapor compression and absorption chiller O&M  costs allocated to the production 

of electricity, cooling, and heating for the three technology scenarios at the Patton building 

 
Figure 5-93: Boiler and heat recovery unit O&M  costs allocated to the production of electricity, 

cooling, and heating for the three technology scenarios at the Patton building 

Using the allocated costs, the corresponding levelized cost of energy and modified 

internal rate of return were calculated for electricity, cooling and heating, and are shown in 

Figure 5-94. The same levelized cost of electricity increase is seen for the three technology 
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scenarios during year five. However, both scenarios that include an absorption chiller are able to 

produce savings and generate a positive rate of return by year eight for the AC-h scenario and 

year 6 for the AC-l scenario. Parity with the baseline scenario is achieved in year nine for the 

cost of cooling under the HRUo scenario. If an absorption chiller is available for adoption, then 

the cooling load suppressed the addition of additional fuel cells in favor of microturbines. The 

resulting change in investment results in a reduced initial investment cost and a negative 

allocation investment cost for cooling. In other words, the cooling load deserves to be 

compensated by electricity and heating loads as an investment, the cooling load is still allowed to 

adopt an absorption chiller and take advantage of produced waste heat from the adopted fuel 

cells, and savings are realized. This results in an infinite rate of return for both the AC-h and AC-

l scenarios, and an instant reduction to the levelized cost of cooling. The heating load is allocated 

a portion of the fuel cell investment cost, resulting in a positive investment associated with 

cooling. However, savings are significant enough that a reduction in levelized cost of heating is 

realized for all scenarios by year seven. By year nine, the levelized cost of heating has been 

reduced by at least $0.005 per kWh for all three technology scenarios. 
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Figure 5-94: Levelized cost of energy difference at years five, seven, and nine and corresponding 

modified internal rate of return for electricity, cooling, and heating when DER systems are 

adopted according to the three technology scenarios at the Patton building 

5.2.5.3 Building Carbon Emissions 

Under baseline operations, 7,350 tonnes of CO2 per year is emitted in order to meet the 

energy loads of the Patton building. Adopting a DER system results in an overall reduction in the 

HRUo and AC-h technology scenarios and an increase in the AC-l scenario, as seen in Figure 

5-95. Figure 5-96 shows the difference broken down by the change in carbon emissions due to 

the electrical, cooling, and heating loads. 
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Figure 5-95: Change in yearly carbon emissions for the Patton building as a result of DER 

system adoption 

When total carbon emissions are reduced, both the heating and cooling load contributed 

to the overall reduction. One reason why the cooling load is capable of achieving an associated 

reduction is that the operation of the adopted DG occurs due to a combination of the electrical 

and heating load. As a result, the carbon emissions are attributed to these two loads (primarily to 

the electrical load), allowing for the absorption chiller to have access to waste heat for which the 

associated carbon has already been assigned to another load. In essence, the same mechanisms 

that result in extremely good financial performance for both cooling and heating (or the fact that 

the electrical load drives DG operation) also benefit both thermal loads in being assigned less 

carbon. 
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Figure 5-96: Change in yearly carbon emissions for individual types of energy for the Patton 

building as a result of DER system adoption 

5.3 Discussion 

The buildings included in this study range in average electrical demand from 195 kW to 

1400 kW. The size and dynamics of the thermal loads includes small but consistent (USN 

building), average size but inconsistent (UCI Cal IT2), large and coinciding with maximum 

electrical demand (SCAQMD), average and consistent (St. Regis), and large and consistent 

(Patton). By no means are all types of building operation captured in this study. For example, the 

most dynamic electrical load tested has an electrical load factor of 0.41 (SCAQMD) much more 

dynamic load profiles exist, particularly for industrial operations. However, many buildings have 

operation within the range of the buildings evaluated, or should have similar results to the 

buildings evaluated. 
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One of the most commonly determined results in the literature is also found through this 

work. Reducing fuel cell capital cost to approximately around $2,000 per kW results in large 

scale adoption at many building types. Despite having higher capital and O&M cost than the 

other competing option (a microturbine), the high electrical efficiency propels the fuel cell into 

being selected by the optimization routine as the primary provider of electrical energy for all 

buildings investigated. 

Another common finding in the literature is that fuel costs are important to the financial 

success of an investment in a CCHP system. This work agrees with this finding, but extends it to 

how real world natural gas utility rates impact the adoption and performance of a CCHP or DER 

system. From a practical perspective, the amount of fuel consumed by any installed system is 

limited by the amount of electrical energy demanded by the building. Due to the structure of the 

declining block rate structure, any DG operating at a building with a relatively small electrical 

load will never convert enough natural gas into electricity to reach the lower cost natural gas 

blocks, as seen for the USN building. On the other hand, a building like Patton State Hospital 

easily consumed enough natural gas through DG operation to quickly reach the least expensive 

natural gas block, and the cost to purchase a therm of natural gas was reduced by 13% from the 

rate paid by the USN building. Even if the electrical load dynamics and ratios between total 

thermal loads and the electrical load were similar, a smaller building will always have higher fuel 

costs. This inherent advantage provides a boost to financial performance for large buildings. 

From the perspective of comparing the financial usefulness of using heat to power a heat 

recovery unit or absorption chiller, there is no clear winner. In the situation in which the best 

financial performance was achieved (Patton State Hospital), the supply of waste heat was 
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managed in a way that improved operation of all systems. Under the scenario with the best 

financial performance (the AC-l scenario), the absorption chiller operation was leveraged to 

increase heat recovery unit capacity and operation, and vice versa. In addition, the composition 

of the installed DG system changed, with numerous fuel cells being replaced with microturbines. 

The overall installed DG capacity barely changed versus the installed capacity under the AC-h 

scenario. However, the mix of DER technologies allowed for the overall system to respond 

differently depended upon the particular load requirements at any given time. When thermal 

loads were high but the electrical load was low, fuel cells were turned down in favor of 

microturbine operation that produced sufficient heat to maintain operation of all thermally 

activated technologies. When the thermal loads were low, microturbine operation was reduced in 

favor of the more efficient fuel cell systems. The best attributed of the different technologies 

could be realized, improving overall system performance. Note that this level of operation was 

not achieved until the absorption chiller O&M cost was reduced to parity with vapor 

compression O&M. Prior to this scenario, fuel cells dominated the adopted DG capacity, the 

absorption chiller was primarily used to reduce the electrical load in order to manage the utility 

demand charge, and cooperation between the absorption chiller and heat recovery unit was rare. 

While waste heat from the absorption chiller was still captured downstream in the heat recovery 

unit, the systems operated independently of each other. 

The scenario presented by the Patton State Hospital is obviously CCHP friendly since the 

thermal loads are consistent and large, providing great opportunity for the capture of waste heat 

produced by adopted DG. Notice that the key to unlocking the synergistic CCHP operation was 

not low fuel cell capital cost or low natural gas cost, but low absorption chiller O&M cost. Prior 
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to reaching party with vapor compression chiller systems, the absorption chiller at Patton State 

Hospital was dispatched to manage the electrical demand such that demand charges did not 

increase or the electrical demand of the building could be met using the installed DG system. 

Whenever the cooling demand either was low or did not coincide with a large electrical load 

demand, absorption chiller operations ceased. The value created by the absorption chiller was 

limited to reducing demand charges since every kWh of cooling produced increased O&M costs 

above what it would cost to simply use the legacy vapor compression system. Under this 

scenario, the economic potential of the absorption chiller is limited. Lowering absorption chiller 

O&M cost not only expands the chiller economic value, but provides new avenues through 

which a CCHP system can collectively operate to increase energy savings. Allowing for 

absorption chiller adoption to occur expands the flexibility of the CCHP system and creates new 

ways in which the building energy loads can be managed to increase savings. Achieving a low 

absorption chiller O&M only increases this flexibility, improving the financial performance in 

every scenario tested.  

The flexibility of a DER system is heavily dependent on the building energy loads. For 

example, the St. Regis building is also able to provide low cost natural gas, but the economic 

performance of any adopted system is not as attractive as the optimal systems adopted by Patton 

State Hospital. Even though the thermal loads are consistent and are not small (the ratio of 

heating to electrical and cooling to electrical load is 0.49 and 0.46 respectively), the loads are 

small enough to discourage the adoption of a large set of microturbines. The installed fuel cells 

are capable of meeting the majority of the electrical load while also supplying waste heat to meet 

both thermal loads. 
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The SCAQMD building presents a case where a mixed CCHP system is adopted, but the 

opportunistic behavior exhibited during AC-l operation at the Patton State Hospital does not 

occur. Since the cooling load primarily only occurs during the day, and is large, the value of an 

absorption chiller is limited. Microturbine operation also only occurs during the middle of the 

day, as if the sole purpose of the turbines were to power the vapor compression and absorption 

chiller system. In this respect, the microturbine and absorption chiller system operate in a nearly 

independent state away from the fuel cell and heat recovery unit system. Of course some transfer 

of waste heat from the fuel cell to absorption chiller and microturbine to heat recovery unit does 

occur, but the limited time over which the cooling load occurs limits the economic usefulness of 

any connection between the absorption chiller and heat recovery unit.  

Both the UCI Cal IT2 and USN buildings have associated energy loads that appear to 

integrate well with a CCHP system. The UCI Cal IT2 building, however, has an inconsistent 

heating load that is unable to capture large amounts of waste heat in an economically efficient 

manner. The USN building is simply too small for the adoptable generators. While the thermal 

loads are consistent, the available generators cannot operate at a part load low enough to tailor 

CCHP operation to follow either the heating or cooling load. AS a result, the USN building 

experiences the lowest fuel utilization of any building except for under the HRUo technology 

scenario. 

Note that the primary benefit provided by an absorption chiller is not the supply of 

cooling, but the augmentation of the electrical demand created by the combined electrical and 

cooling load. By shifting the cooling load from a vapor compression chiller system to an 

absorption chiller, the original electric demand can be reduced. If this reduction occurs when the 
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electrical load is high, then the size of the combined electrical demand can be reduced in a 

manner that resembles the adoption of additional DG. The buildings that experience the greatest 

reduction in combined electrical demand also experience the greatest savings and best economic 

results. For example, the adoption and operation of an absorption chiller at the Patton building 

reduces the maximum combined electrical demand being reduced by 10% (or 322 kW) under the 

AC-h scenario, and 17% (or 544 kW) under the AC-l scenario. This electrical demand is 

equivalent to the purchase and operation of 322 kW or 544 kW of photovoltaic panels at that 

given moment, only at a fraction of the initial investment cost. The combined electrical demand 

reduction occurring at the other four buildings are as follows: St. Regis: 5% under AC-h and 

9%under AC-l, SCAQMD: 0% under AC-h, and 3% under AC-l, UCI Cal IT2: 10% under AC-h, 

and 11% under AC-l, and USN: 5.7% under both. The inability of a DER system to reduce the 

combined electrical demand through the dispatch of an absorption chiller contributed to the poor 

economic performance of CCHP systems at both the SCAQMD and USN building. The savings 

created by an absorption chiller at these buildings is muted, since the large benefit of reducing 

combined electrical demand does not exist to counteract and increased cost, such as O&M costs, 

incurred as a result of absorption chiller operation. 

In addition, the building with the highest electricity cost (SCAQMD at $0.0986 per 

kWh), was not able to achieve the best financial performance as a result of DER system 

integration. On the contrary, this building experienced the poorest financial buildings other than 

the small USN building. Despite having access to relatively low cost fuel, having a consistent 

heating load, and a cooling load that coincided nicely with desired microturbine operation, the 

financial performance of the adopted DER systems suffered from not being able to sue the 
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absorption chiller to reduce the combined electrical demand. Instead, two buildings with a lower 

baseline cost of electricity and smaller overall thermal loads (which would suggest less room to 

produce savings), were able to achieve better financial performance. Particularly, the attributes 

of the Patton building energy loads allowed for the adopted DER systems to excel financially. 

Breaking down the financial performance into an investment and savings associated with 

each type of energy product provided additional insight into the overall financial performance. 

Of all the buildings studied, desirable financial performance did not occur unless the cost of the 

building heating load was reduced. The savings generated through the use of waste heat in a heat 

recovery unit form a basis from which additional savings derived from the cooling and electricity 

load can increase financial performance. For the scenarios where good financial performance 

occurs, the heating load was never the primary driver for DG adoption. Instead, the electrical or 

cooling load supported DG adoption, allowing waste heat to be provided to a heat recovery unit 

with little or no DG investment or O&M cost to the heating load. In order for this to happen, DG 

adoption must be desirable at the building even without the capture of waste heat. When this 

scenario occurs, and the thermal loads are not required for DG operation, the operation of the 

waste heat recovery technologies is allowed to produce savings without needing to offset any 

increased cost to the electrical load as a result of DG adoption.  

Naturally, the buildings for which electricity producing DG would be most desirable 

would be at large buildings due to the combined factors of possibly achieving economies of scale 

as a result of adopting a large DG system, while also providing access to low cost fuel. Reducing 

the size of the building, even if the building has relatively large and consistent thermal loads, will 

reduce the economic performance of any installed CCHP system. In other words, buildings that 
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have traditionally been accepted as desirable locations for CCHP system integration, such as 

supermarkets or schools, may not be the best candidates for CCHP adoption. Likewise, large 

buildings with relatively small thermal loads may prove to be very desirable locations for CCHP 

system integration. 

The optimization of CCHP system at the five buildings almost always resulted in an 

increase to CO2 emissions. This result, however, is not an indictment of CCHP technology in 

general, but is more a product of the carbon emissions associated with the baseline scenario. The 

California electric grid produced electricity with one of the lowest carbon signatures in the 

country. In addition, current boiler technology is able to combust a low carbon content fuel like 

natural gas, and capture upwards of 90% of the released thermal energy. Likewise, currently 

available vapor compression chillers are capable of operation with a coefficient of performance 

much greater than the 3.4 value using in this current work. 

In fact, the ability of any CCHP system to reduce carbon emissions overall without 

explicitly including either a cost or constraint limiting carbon emissions are impressive. These 

scenarios only occurred when high fuel utilization occurred, although high fuel utilization did not 

always correspond to reduced carbon emissions. In fact, the systems for which a carbon 

emissions reduction occurred had a combination of high fuel utilization, extensive HRU system 

operation, and an absorption chiller O&M cost higher than vapor compression O&M cost. For all 

buildings, carbon emissions increased with absorption chiller operation.  

Two separate reasons create this result. The first reason is that an absorption chiller is not 

able to fully utilize the entire energy content provided in a waste heat stream. Due to the elevated 
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operating temperature of the refrigerant generator in an absorption chiller, heat transfer from the 

waste heat stream to the absorption chiller will not occur after a certain point.  

The second, and more important, reason is that the competing option of a vapor 

compression system powered by grid electricity operates with a very small carbon signature. For 

example, if a vapor compression system with a COP of 3.4 operates in the middle of the day 

when the electrical grid carbon emissions factor is relatively low (600 lbs. CO2 per MWh of 

electricity), carbon emissions per unit of cooling are extremely low (176 lbs. CO2 per MWh of 

cooling). Taking this into account, the chances of reducing carbon emissions are slim-to-none 

when an absorption chiller is used to provide a large portion of a building cooling load because 

the baseline option already has a low carbon signature to begin with. 

As stated before, these results are indicative of the relatively low carbon signature 

associated with baseline operation. If this analysis were to take place in almost any other state, 

where the carbon content of the primary electrical utility fuel source is higher (e.g., coal), then a 

carbon reduction would certainly occur as a result of installing a fuel cell and absorption chiller 

system. 
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6 Optimal DER System Design with a CO2 Emission Constraint 

The purpose of Section 5 is to explore the decision to install a CCHP system and use the 

DG waste heat to produce either heating, cooling, or both. The optimal CCHP adoption model 

did not include any environmental constraints. From a practical perspective, the environmental 

impact of a CCHP system located in California can be ignored if two conditions are met. First, if 

carbon dioxide emissions associated with building activity are less than 25,000 metric tons, then 

the building does not need any carbon emission permits [175]. Second, if the generators selected 

during optimization produce oxides of nitrogen, carbon monoxide, and volatile organic 

compounds at rates lower than the levels required by the California Air Resource Board (CARB) 

for generators of their size [176], the generators may be installed and operation. By limiting the 

optimization to buildings that have associated carbon emissions lower than 25,000 metric tons 

and optimizing only for generators that meet the CARB pollutant emission requirements, the 

applicable environmental constraints are implicitly satisfied. Any decrease to the carbon or 

pollutant emissions are voluntary and would only occur if the building operator places a priority 

on reducing carbon or pollutant emissions.  

If the focus is shifted from smaller to larger buildings, total carbon emissions will most 

likely increase and must be accounted for during optimization. Under the current carbon cap and 

trade market used in California, a carbon emitter (such as a building operator) must purchase a 

permit to emit a certain amount of carbon if total yearly carbon emissions are estimated to be 

more than 25,00 metric tons [175]. This additional cost of purchasing the permit can be included 

in the optimization by increasing fuel cost to include the cost associated with the carbon content 
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of the fuel. Unless the total permitted amount of carbon emissions for all of California is 

reduced, a carbon constraint is not required during DER optimization. 

For some institutions and businesses, objectives other than cost may motivate the desire 

to reduce carbon. One institution, the University of California, has committed “…to emitting net 

zero greenhouse gases from its buildings and vehicle fleet by 2025…” in order to remain a world 

leader in sustainability [177]. This commitment requires that the ten campuses, five medical 

centers, and three national laboratories that make up the university system collectively reduce 

carbon emissions. Such a reduction can be accomplished in part by purchasing utility electricity 

from renewable electricity providers or purchasing carbon offsets, but will also include the 

adoption of on-site and off-site renewable energy technology at/for individual campuses [178].  

Ideally, the path towards carbon neutrality would simultaneously consider all University 

of California campuses, medical centers, and national laboratories. However, the resolution 

required by some of these decisions, such as how much solar energy capacity should be installed 

at each campus, can require that a more granular approach be used to evaluate each individual 

institution. From the perspective of what renewable or sustainable DER systems can be used to 

help achieve the carbon neutral goal, the DER optimization model presented in Section 3.4, 

including the carbon emission constraint presented in Section 3.4.2, can be used to find the path 

required to achieve carbon neutrality at the lowest cost possible. 

 It is unlikely that the final set of decisions that will lead to carbon neutrality will be 

implemented overnight. In addition, prior carbon reduction goals have been placed in terms of 

specific emission reduction goals throughout time [178]. In addition, from a broader perspective, 

other institutions other than the University of California may adopt similar goals that do not 
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include full carbon neutrality. With these considerations, it is important to understand how the 

optimal design of a DER system and subsequent operation will change as carbon emission 

constraints become tighter. While this work is particular to the University of California, Irvine 

energy demand profile developed in Section 4.1.2, the process of reducing carbon emissions 

through adopting progressively more sustainable DER systems is illustrated. 

6.1 Optimization Parameters and Assumptions 

The analyses on DER adoption with a carbon constraint focuses on the UCI campus 

demand shown in Section 4.1.2. While UCI is a campus with numerous buildings at which a 

DER system could potentially be installed, the optimization will assume that a central DER plant 

will be optimized to meet the energy demand of the whole campus. This work also assumes that 

the campus demand profile used during the optimization is representative of future energy 

demand during the summer and winter. 

The DER technologies included in the optimization are a 13.5 MW gas turbine, one MW 

fuel cell, a heat recovery unit, photovoltaic system, thermal energy storage, and electrical energy 

storage. The optimization assumes that a legacy vapor compression and boiler system exists that 

is large and flexible enough to meet the UCI campus cooling and heating demand. All applicable 

parameters are shown in Table 6-1. 

Another option included in the optimization is the ability to export electricity from UCI 

back to the utility operated grid. This work assumes that the campus will be compensated to 

export electrical energy at a rate comparable to the rate at which electrical energy is imported. 

According to SCE, the cost to transmit and distribute electrical energy is approximately two 

cents [149]. Since the campus is only providing production of electrical energy, not transmission 
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or distribution services, this work assumes that the campus is compensated at a rate of the energy 

charges for TOU-8 Option B energy charges shown in Table 3-1 less two cents. 

The optimization will occur with multiple sets of technology options in order to show the 

effect of allowing for certain combinations to be adopted. The baseline optimization scenario 

will include gas turbine, fuel cell, photovoltaic, and heat recovery units. An EES scenario will 

include all baseline technologies with the additional option of purchasing EES. A TES scenario 

will include all baseline technologies with the additional option of purchasing TES. An EES and 

TES scenario will include all baseline technologies with the additional option of purchasing EES 

and TES. Finally, an export scenario will include only baseline technologies (no energy storage 

options) but will be allowed to export electricity. All scenarios are labeled based on the 

additional technology that can be adopted beyond the baseline scenario (GT, FC, PV, and HRU). 

For example, the TES scenario includes all baseline technologies and a TES option. In total, five 

technology scenarios are included in this work. 

The prior Section 5 assumed that the capital cost of certain technologies, such as fuel 

cells, would be reduced according to future system cost projections [12]. The current analyses on 

DER system adoption for UCI shifts the focus from future systems with projected costs to 

current systems. As a result, the parameters used for optimization change, particularly for the 

capital cost associated with fuel cells.  

The optimization also assumes that the electric and natural gas utility rate models 

developed in Section 3.1 are applicable. In the current work on the UCI campus, it is assumed 

that the campus has an unlimited supply of renewable natural gas at a price of $1 per therm. It is 

also assumed that some non-renewable carbon emissions were produced during the production of 
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the renewable natural gas, resulting in the renewable natural gas emitting two pounds of CO2 per 

therm converted. Note that if the procurement process of the renewable natural gas were to be 

powered using renewable energy also, then the carbon associated with renewable fuel production 

would disappear.  

Since the current formulation of the DER system optimization allows for the heating 

demand to be met only from thermal energy produced from firing a boiler or from recovering gas 

turbine or fuel cell waste heat using a heat recovery unit, and it is assumed that some carbon 

emissions are associated with renewable natural gas production, it  is infeasible to design a DER 

system that is carbon neutral without including other technologies or carbon reduction options 

that are available to the actual campus. As a result, the carbon constraint will be continually 

applied until a further reduction results in an infeasible formulation of the problem.   

In particular, a required carbon reduction will be based on the amount of carbon emitted 

if the UCI campus energy demand shown in Figure 4-15 was met only using utility electricity 

with a time resolved carbon emission rate described by Figure 3-9 and non-renewable natural 

gas. Under this scenario, approximately 12,932 metric tons of CO2 are emitted over the year. 

While the first optimization will not include a carbon emissions constraint, subsequent DER 

system optimizations that include a carbon constraint will base the amount of allowable carbon 

compared to 12,932 metric tons. The first optimization to include a carbon constraint will ensure 

that the adoption of a DER system does not result in the emissions of no more than the baseline 

emissions. Subsequent optimizations will state that carbon emissions must be reduced by some 

percentage (33%, 66%, 80%, etc.). The carbon emission constraint will be reduced for the 

baseline technology scenario until further reductions are infeasible. 
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An arbitrarily large amount of area is allowed for a PV installation. In actual practice, this 

area would be limited to space on top of buildings, parking structures, and other developed or 

open areas. The actual area allowable may be much smaller in reality, but the current work 

assumes a large area is available in order to establish the unconstrained land use level of PV 

installation required at each level of CO2 reduction. 

Table 6-1: Parameters of DER system optimization for the UCI campus when a carbon 

constraint applies 

Building 
Parameters 

Description Value 

Bldg Area Area available for a photovoltaic 
installation (m2) 

10,000,000,000 

ΔTbldg.-1 Difference in temperature between 
the heat exchanger providing cooling 
to the building and the temperature of 
the used storage working fluid (oC) 

3 

ΔT2-bldg Difference in temperature between 
the charged thermal energy storage 
working fluid and the heat exchanged 
providing cooling to the building (oC) 

5 

DG Parameters Description Value (Gas Turbine/Fuel Cell) 
Com DG,k O&M cost for DG of type k ($/kWh) 0.01 / 0.023 
Ccap DG,k Capital cost for DG of type k ($) 1400 / 4000 
Cstart DG,k Startup cost for DG of type k ($/start) 100 / 100 
ηDG,k Electrical efficiency for DG of type k 

(%) 
32 / 47 

 DG,k Maximum efficiency for DG of type kߟ̅
(%) 

90% / 90% 

SDG,k Rated power for DG of type k (MW) 13.5 / 1 
δDG,k Minimum turndown for DG of type k 

(%) 
60% / 50% 

 DG,k Maximum ramp up rate for DG ofߤ̅
type k (%/15 minutes) 

50% / 10% 

 DG,k Maximum ramp down rate for DG ofߤ
type k (%/15 minutes) 

50% / 10% 
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Heat Recovery 
Unit / Duct 
Parameters 

Description Value 

Ccap HRU Capital cost for heat recovery unit 
($/kW) 

100 

Ccap duct-p Capital cost for duct in parallel with 
absorption chiller ($/kW) 

10 

Com HRU O&M cost for heat recovery unit 
($/kWh) 

0.001 

Com duct-p O&M cost for duct in parallel with 
absorption chiller ($/kWh) 

0 

εHRU Effectiveness of heat recovery unit 
(%) 

90% 

εduct-p Effectiveness of duct in parallel with 
absorption chiller recovery unit (%) 

90% 

Photovoltaic 
Parameters 

Description Value 

Ccap PV Capital cost for photovoltaic system 
($/kW) 

2000 

Com PV O&M Cost for photovoltaic system 
($/kWh) 

0.001 

ηPV Photovoltaic efficiency at nominal 
conditions 

20% 

Electrical Energy 
Storage 
Parameters 

Description Value 

Ccap EES Capital cost for EES ($/kWh) 200 
Com EES chrg O&M cost to charge EES ($/kWh) 0.001 
Com EES dchrg O&M cost to discharge EES ($/kWh) 0.001 
 EES Retained EES storage between 15ߙ

minute time periods (%) 
99.5% 

ηEES chrg EES charging efficiency (%) 95% 
ηEES dchrg EES discharging efficiency (%) 95% 
 ா̅ாௌ Maximum EES state of charge (%) 95%ߜ
 ாாௌ Minimum EES state of charge (%) 30%ߜ
 ாாௌ Maximum EES charging rate (%) 25%ߤ̅
 ாாௌ Maximum EES discharging rate (%) 25%ߤ

Thermal Energy 
Storage 
Parameters 

Description Value 

Ccap TES Capital cost for TES ($/kWh) 50 
Com TES chrg O&M cost to charge TES ($/kWh) 0.0001 
Com TES dchrg O&M cost to discharge TES ($/kWh) 0.0001 
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 TES Retained TES storage between 15ߙ
minute time periods (%) 

99.9% 

ηTES chrg TES charging efficiency (%) 95% 
ηTES dchrg TES discharging efficiency (%) 95% 
்̅ߜ ாௌ Maximum TES state of charge (%) 99% 
ாௌ்ߜ  Minimum TES state of charge (%) 5% 
 ாௌ Maximum TES charging rate (%) 25%்ߤ̅
 ாௌ Maximum TES discharging rate (%) 25%்ߤ

Legacy System 
Parameters 

Description Value 

Com VC O&M cost for vapor compression 
chiller output ($/kWh) 

0.0139734 

COPVC Coefficient of performance for vapor 
compression chiller  

3.4 

Com Boil O&M cost for boiler ($/kWh) 0.001 
ηBoil Boiler efficiency (%) 90% 

 

UCI also operates a public bus system as described in Section 4.2.1. Since a component 

of the carbon neutrality commitment includes a reduction to carbon emissions associated with 

transportation, the current work will also include the optimization of the Anteater Express bus 

system in the optimization. The bus route data described in Section 4.2.1 are used to build a set 

of routes for which fleet vehicles will be adopted for. The set of routes input into the model are 

shown in Table 6-2. All summer routes and ACC Combined Bus 3 through 5 were omitted from 

the aggregated bus data. It is assumed that the routes listed in Table 6-2 occur daily throughout 

the entire year. 

Table 6-2: Aggregated Anteater Express bus route data for input into DER optimization model 

Route 
Range 
(Miles) 

Required 
Vehicles 

Time of Arrival at Base 
(Time) 

Time at Base 
(Hours) 

AV 136 2 21:00 10 
Main 153 2 21:00 10 

Newport/Park 
West 150 2 23:00 8 
VDC 101 3 19:00 12 
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VDC Norte 107 3 19:00 12 
CdS 108 2 19:00 12 
ACC 

Combined 38 2 23:00 8 
 

While a full fleet of vehicles are currently in operation, this work assumes that a new 

fleet is to be adopted. Three separate vehicles can potentially be adopted: a conventional vehicle, 

a conventional vehicle operated using a renewable fuel source, and an electric vehicle. The 

parameters for all three vehicle types are shown in Table 6-3. The electric vehicle parameters are 

based on a commercially available bus produced by BYD Company [179]. The seven routes 

listed in Table 6-3 are included in the optimization of the five technology scenarios. 

Table 6-3: Parameters for fleet vehicles for DER system optimization at the UCI campus when a 

carbon constraint applies 

PEV Parameters
  

Description Value 

 ௘௩,௟ Capital and operations cost of PEV lܥ
($) 

1,200,000 

 ௘௩௦௘,௡ Capital cost of EVSE n ($) 10,000ܥ
 ௠௣௞ௐ௛,௟ Electricity used during PEV travel	௘௩ߟ

(Miles/kWh) 
2.1 

ܵ௘௩,௟ Number of refueling ports for PEV l 
(number of refueling ports) 

2 

ܵ௘௩௦௘,௡ Power rating of EVSE n (kW) 30 
Conventional 
Vehicle 
Parameters 

Description Value 
(Conventional/Renewable 
Conventional) 

 ௖௢௡,௠ Capital and operations cost ofܥ
conventional vehicle m ($) 

500,000 / 750,000 
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6.2 DER System Optimization Results for UCI 

The DER systems optimization model was executed with no carbon emission constraint. 

Following optimization simulations included a carbon constraint limiting total carbon emissions 

produced while meeting campus energy demand by the following percentages of 12,932 metric 

tons of CO2 associated with campus operation if the only sources of energy are from an electrical 

and non-renewable natural gas utility: 0%, 33%, 66%, 80%, and 85%.  Further carbon emission 

reductions beyond 85% are difficult to achieve under the baseline technology scenario, and 

further tightening to the emissions constraint resulted in an infeasible optimization problem.  

DER systems optimization for all other technology scenarios occurred using the same 

emissions reduction constraints used for the baseline technology scenario. For all technology 

scenarios, carbon emissions increased by approximately 28% when the carbon constraint was not 

implemented. When the carbon constraint was implemented, the minimum cost was always 

achieved when carbon emissions were reduced by the required amount only.  

 The optimization results suggested what type and how much of tech technology should 

be adopted in order to minimize total cost while meeting a carbon emissions target. The 

technologies adopted during the optimizations are shown below.   

Table 6-4 shows the number of gas turbines and fuel cells and size of PV and HRU 

systems adopted for all technology scenarios and carbon emission reductions.   
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Table 6-5 shows the amount of electrical and thermal energy storage adopted for the 

scenarios that included either EES and/or TES technologies. Table 6-6 show the vehicles adopted 

for the Anteater Express fleet.  

Table 6-4: DER optimization results for adopted energy producing technologies for the UCI 

campus 

Technology Gas Turbine (13.5 MW) Fuel Cell (1 MW) 

CO2 Reduction 
U
C 

0
% 

33
% 

67
% 

80
% 

85
% UC 0% 

33
% 

67
% 

80
% 

85
% 

Baseline 1 1 1 1 1 1 0 0 0 0 0 11 
EES 1 1 1 1 1 1 0 0 0 0 0 0 
TES 1 1 1 1 1 1 0 0 0 0 0 1 

EES + TES 1 1 1 1 1 1 0 0 0 0 0 0 
Export 1 1 1 1 1 1 0 0 0 0 0 0 

Technology PV (MW) HRU (MW) 

CO2 reduction 
U
C 

0
% 

33
% 

67
% 

80
% 

85
% UC 0% 

33
% 

67
% 

80
% 

85
% 

Baseline 0.0 2.8 2.8 2.8 8.0 31.6
14.
5 

14.
8 14.8 15.6 17.1 17.2

EES 0.2 2.5 2.5 2.5 8.5 20.4
14.
6 

15.
4 15.4 15.4 16.7 17.1

TES 0.0 3.0 3.0 3.0 7.4 19.8
14.
5 

15.
3 15.3 15.3 16.7 16.8

EES + TES 0.0 3.0 3.0 3.0 8.4 20.8
14.
6 

15.
4 15.4 15.4 16.7 16.1

Export 0.4 2.8 2.8 2.8 11.9 17.2
14.
6 

15.
4 15.4 15.4 16.7 16.6
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Table 6-5: DER Optimization results for adopted energy storage technologies for the UCI 

campus 

Technology EES (MWh) TES (MWh) 

CO2 Reduction UC 0% 33% 67% 80% 85% UC 0% 33% 67% 80% 85% 

EES 3.9 3.6 3.6 3.6 7.8 20.5 n/a n/a n/a n/a n/a n/a 

TES n/a n/a n/a n/a n/a n/a 18.8 7.5 7.5 7.5 21.8 44.3 

EES + TES 0.9 0.8 0.8 0.8 4.4 16.8 18.0 4.8 5.0 5.0 7.9 31.8 
 

Table 6-6: DER Optimization results for adopted vehicles for Anteater Express bus system 

Vehicle 
Type 

Electric Renewable - Conventional Conventional 
CO2 

Reduction UC 0% 33% 67% 85% UC 0% 33% 67% 85% UC 0% 33% 67% 85%
Baseline 0 0 0 0 0 14 14 14 14 3 0 0 0 0 11 

EES 0 0 0 0 0 14 14 14 14 0 0 0 0 0 14 
TES 0 0 0 0 0 14 14 14 14 0 0 0 0 0 14 

EES + 
TES 0 0 0 0 0 14 14 14 14 5 0 0 0 0 9 

Export 0 0 0 0 0 14 14 14 14 14 0 0 0 0 0 
 

Table 6-4 shows that a 13.5 MW gas turbine was adopted for every technology scenario 

optimization across all carbon constraints tested. Fuel cells were not purchased except under the 

baseline and TES technology scenario and a required 85% reduction in carbon emissions with 

the current capital cost assumption ($4,000/kW). When carbon emissions are unconstrained, little 

to no PV was adopted. As a carbon constrain limit was implemented and tightened up to a 66% 

reduction, approximately three MW’s of PV was adopted under every scenario. The PV system 

size increased for every technology scenario as the carbon constraint was tightened beyond a 

66% reduction.  A HRU sized to the heat output of the selected generators was always purchased 
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for every technology scenario and carbon constraint tested. The size of the HRU increased 

slightly as the carbon constraint was tightened for every scenario. 

Under the applicable technology scenarios, EES was always adopted. Between 3.6 and 

3.9 MWh for the EES scenario and 0.8 and 0.9 MWH for the EES and TES scenario of EES was 

adopted when carbon emissions were unconstrained or constrained by up to a 66% reduction. 

Increasing the carbon reduction resulted in an adoption of a larger EES system that mirrors the 

increase seen for the PV system size. 

 Under the applicable technology scenarios, TES was also always adopted. When no 

carbon constraint was enforced, 18 and 19 MWh of TES was adopted for the TES and EES and 

TES technology scenarios respectively. Once a carbon constraint was implemented, the TES size 

was reduced to 7.5 MWh for the TES scenario and 4.8 for the EES and TES scenario for a 

carbon reduction between 0% and 66%. Once the carbon reduction increased beyond 66%, TES 

size increased with the corresponding PV system. 

 All scenarios in which energy storage is an option, once a carbon constraint has been 

implemented, storage size increases with the size of the PV system. For both EES and TES, the 

increase in storage size corresponds to an increase in renewable energy production. However, 

since the PV output is dictated only by the available insolation, not the present UCI campus 

energy demand, both forms of storage are used to manage any mismatch between the PV 

production and the campus demand. Otherwise, any excess renewable energy production would 

be curtailed. The EES is used directly to store electrical energy for later use, while the TES is 

sued to store chilled water produced by any vapor compression chillers operated using excess 

renewable electricity. By storing excess renewable energy in the form of electricity or chilled 
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water produced using electrically fired vapor compression chillers, future energy demand can be 

met using renewable energy even when the adopted PV system produces little or no electricity. 

Table 6-6 shows that conventional vehicles were always adopted over renewable fuel or 

electric vehicles except when carbon emissions were reduced by 80% for the baseline technology 

scenario or 85% for all technology scenarios except the Export scenario. 

6.3 Optimal DER System Operation 

In addition to selecting a set of technologies, each optimization simulation provides the 

dispatch schedule of all adopted technologies and import schedule for electrical and natural gas 

utilities such that the optimal DER system is operated to minimize cost while meeting the carbon 

emission constraint. While the operation of each technology scenario under each carbon 

emission constraint case differs from other scenarios, some overall characteristics can be 

elucidated from the dispatch results of the optimization simulations. 

The first optimization that occurred for each technology scenario occurred without a 

carbon constraint. As a result, the installed DER system was free to increase carbon emissions if 

the resulting system was able to reduce overall costs. Coupled with the higher cost associated 

with the purchase of renewable fuel, only non-renewable natural gas is purchased for any natural 

gas fired DG purchased.  Renewable gas was only purchased when a carbon constraint was 

applied. 

 The adoption and subsequent operation of a gas turbine for every scenario resulted in an 

increase to total carbon emissions by approximately 28% for all technology scenarios, despite the 

use of a heat recovery unit to provide heating to the campus. Note that this result is more 

indicative of the carbon emissions associated with the California grid and not the operation of a 
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combined heat and power system. According to the United States Department of Energy, the 

average carbon emission factor associated with the California electricity grid is 43% lower than 

the national average emission factor [174]. In other words, electricity produced in California is 

generated through methods that produce, on average, less carbon than the typical methods used 

elsewhere in the United States. In order to ensure that the adoption of a DER system results in 

reduced, or at least does not increase carbon emissions, the carbon emission constraint must be 

activated. 

Once activated, the carbon emission constraint results in different behavior for the 

procurement of natural gas. Figure 6-1 shows the portion of total fuel purchases that are from 

renewable natural gas. As stated earlier, no renewable natural gas is purchased when the carbon 

emission constraint is inactive. Activating the carbon constraint results in the purchase of 

renewable natural gas, starting with purchasing a small quantity when a 0% reduction is required 

and increasing until nearly all purchased fuel is renewable at a 67% CO2 reduction constraint. 

Only renewable natural gas is purchased past a 67% reduction in carbon emissions. 
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Figure 6-1: Percent of total fuel use that is renewable for all technology scenarios and carbon 

emission limits 

The subsequent DER system operation also changes depending on the carbon emission 

constraint, as seen in Figure 6-2 and Figure 6-4. Figure 6-3 shows the capacity factor for gas 

turbines and fuel cells versus the carbon reduction and Figure 6-4 shows the percent of total 

produced electricity by all generation technologies and purchased from the electrical utility. The 

highest gas turbine capacity factor is experienced when carbon emissions are not constrained. 

Virtually all of the UCI electrical and cooling load is met by the gas turbine, with any additional 

load being supplied using utility electricity. As a carbon constraint is instituted, gas turbine 

operation is reduced for a 0%, 33%, and 67% carbon reduction while utility electricity purchases 

increase. PV systems are consistently installed when the carbon constraint is active, with the 

percent of the total load being met using solar power increasing as the carbon constraint requires 
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larger emission reductions. However, the amount of total energy produced by an adopted PV 

system remains a fraction of the total electrical energy produced unless carbon emissions are to 

be reduced by 85%. At this level of carbon reduction, solar energy is responsible for 

approximately one quarter of all electrical energy generation and procurement for the UCI 

campus. 

 
Figure 6-2: Gas turbine and fuel cell capacity factors for all technology scenarios and carbon 

emission limits 
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Figure 6-3: Source of electrical production for all technology scenarios and carbon emission 

limits 

Utility electricity is virtually eliminated when carbon emissions are unconstrained, but 

increases when carbon emissions are reduced by 0% (or not increased by DER adoption), 33%, 

and 67%. At an 80% to 85% carbon emissions reduction, PV power increases, supplanting 

imported utility electricity.  

When fuel cells are adopted for the baseline and TES technology scenario, the installed 

systems are operated at a high capacity factor, as seen in Figure 6-2. However, the contribution 

to total generation depends on the size of the installed system, with the TES technology scenario 

system providing approximately 6% of the overall amount of generation. 
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Under the export scenario, gas turbine capacity factor and contribution to total energy 

generated stays relatively constant across the different levels of carbon emissions reduction. The 

remaining energy is met using a combination of solar energy and the utility, with solar 

generation increasing as the carbon emission reduction increases.  

With the majority of the electrical demand being supplied by the gas turbine or fuel cells 

for nearly all technology scenarios and carbon emission reduction levels, sufficient waste heat is 

produced to supply nearly all of the campus heating demand. Figure 6-4 shows the percent of the 

total heating load that was met using either the heat recovery unity used to capture waste heat 

produced by the adopted gas turbine or fuel cells, and the natural gas fired boiler. Boiler 

operation is virtually eliminated until the carbon emissions reduction reaches 85%. Gas fired 

generator operation is reduced at this level of carbon reduction in favor of electricity produced 

using the large PV system. At this point, the boiler is fired much more frequently, using only 

renewable natural gas as the fuel. The export technology scenario is the exception to this 

behavior, with gas turbine operation remaining high even when an 85% carbon emissions 

reduction is required. Since gas turbine operation remains high, sufficient waste heat is available 

to satisfy the campus heating demand. 
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Figure 6-4: Source of heat production for all technology scenarios and carbon emission limits 

 and Figure 6-3 both show that PV system size and solar generation increase as carbon 

emissions are reduced. The optimization model that determines the PV system size is to allow 

curtailment whenever economically desirable considering the level of required carbon emissions. 

Figure 6-5 shows for all technology scenarios when PV is adopted the percent of available solar 

energy that is actually used by the campus. As expected, the technology scenarios that allow for 

some form of storage or electrical energy export utilize nearly all available solar energy, 

resulting virtually no curtailment to PV system output. The baseline system also experiences full 

PV system utilization when carbon emissions are reduced by up to 67%. However, reducing 

carbon further results in the progressively lower PV system utilization. Curtailment for the 80% 

carbon reduction case occurs rarely, but further reduction results in significant curtailment, with 

less than 50% of the available solar power being captured and used.  
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Figure 6-5: PV utilization for baseline and all other technology scenarios for the various carbon 

emission limits with the corresponding PV utilization for two days for the baseline scenario with 

maximum carbon reduction tested 

The time resolved curtailment for the baseline technology scenario when carbon 

emissions are reduced by 85% is also shown in Figure 6-5. Another day when the all energy 

produced by the same PV system is also shown in the bottom right. Clearly, the bottom right 

subfigure presents the day for which the PV system is sized in order to ensure that carbon 

emissions for the entire simulation are reduced by 85%. On this day, the available insolation is 

reduced from a typical sunny day, resulting in the requirement for an oversized system in order 

to meet the carbon reduction goal. Since no form of storage exists, excess solar from prior days 

where available insolation is more similar to what is presented in the bottom left subfigure 

cannot be captured and stored for days when insolation is reduced. As a result, the PV system 
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size required to meet the 85% carbon reduction goal must be sized to continually reduce carbon 

every day, even when other factors result in a reduced yield in useable solar energy. The optimal 

system design in this case is generally oversized, resulting in significant curtailment. 

6.3.1 Baseline operation 

Figure 6-6 shows the electrical dispatch during a winter month for the technology 

scenario when carbon emissions are unconstrained, reduced by 33%, and reduced by 85%. The 

dispatch profiles for when carbon emissions are reduced by 0%, 67%, and 80% are similar to 

when emissions are reduced by 33%. The main difference between the 33% reduction operation 

and other levels of carbon reduction is the amount of renewable fuel purchased to operate the gas 

turbine and boiler, as seen in Figure 6-1. The campus electrical demand in this figure and all 

proceeding electrical operations figures consists of the electrical demand and resulting electrical 

consumption produced by using vapor compression chillers to meet the cooling demand. The 

total electrical load assumes that all electrical and cooling demand is met instantaneously. 

Obviously, the resulting electrical load may be altered if technologies such as TES are adopted. 
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Figure 6-6: Electrical operation during the winter for the baseline technology scenario when 

CO2 is uncontrolled, reduced by 33%, and reduced by 85% 

Figure 6-6 shows that the gas turbine follows the UCI electrical demand when carbon 

emissions are unconstrained. Whenever the campus load is greater than the capacity of the gas 

turbine, electrical energy is imported from the local utility. Also, two short periods can be seen 

during the first Sunday and Figure 6-6 where the campus electrical demand is too low for the gas 

turbine to remain operational, resulting in a shutdown of the turbine. As a result of incurring a 

large demand charge during this forced shutdown, it becomes economical to shut down for a 

brief period of time during the following Monday. 

When carbon emissions are reduced by 33%, the gas turbine is continuously operated. 

However, instead of load following, the turbine is operated at the lowest possible power setting. 

The PV system is able to produce power during the day, but electrical imports increase, 

particularly during the middle of the day. According to Figure 3-9, grid carbon emissions are 
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lowest in the middle of the day, providing UCI energy with lower carbon intensity than at night 

despite the higher cost of electricity during the day. 

Reducing carbon emissions virtually eliminates gas turbine operation in Figure 6-6 

except during the second Monday, Tuesday, and Wednesday, when the gas turbine is operated to 

provide peak power. The 11 adopted fuel cells provide the majority of the demanded electricity. 

During the night, the fuel cells perform electrical load following, but are turned down to the 

minimum power setting during the day when solar power is available from the PV system. 

Utility imports are commonplace in the late afternoon as the sun sets and PV output is reduced. 

Heating operation for the same time period as Figure 6-6 is shown in Figure 6-7. For both 

the uncontrolled carbon emissions and 33% reduction case, waste heat from the gas turbine is 

captured using the heat recovery unit and used to supply the entire campus heating demand 

except for the two instances occurring on the first Sunday and Monday when the gas turbine 

must shut down due to insufficient electrical demand. At 85% reduction, the heating demand is 

nearly completely satisfied during the evenings when fuel cell operation is highest. However, 

during the day, when the fuel cells are turned down in favor of solar energy, the boiler must be 

fired using renewable natural gas in order to meet the campus heating demand. 
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Figure 6-7: Heating operation during the winter for the baseline technology scenario when CO2 

is uncontrolled, reduced by 33%, and reduced by 85% 

Figure 6-8 shows the electrical operation of the adopted DER systems and electrical 

utility imports for two weeks during the summer when carbon emissions are uncontrolled, 

reduced by 33%, and reduced by 85%. Operation for the 0%, 67%, and 80% reduction case are 

similar to the 33% reduction case with the difference being the amount of renewable natural gas 

purchased. During the summer, gas turbine during off-peak periods is reduced to the minimum 

power output due to the low cost of utility electricity. During on-peak and mid-peak periods, the 

turbine performs load following operations, importing electricity whenever the campus electrical 

demand is greater than the maximum output of the gas turbine. 
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Figure 6-8: Electrical operation during the summer for the baseline technology scenario when 

CO2 is uncontrolled, reduced by 33%, and reduced by 85% 

When carbon emissions are reduced by 33%, the gas turbine is operated at the lowest 

possible power setting during mid-peak and off-peak. However, during on-peak, the turbine is 

turned up to full power, with part load operation only occurring when the campus electrical 

demand is low or when solar energy is available, as seen during the first Friday. Electrical 

operations when emissions are reduced by 85% are similar to winter operations for the same 

level of carbon reduction. 

Similar to the winter, any available waste heat is captured from the gas turbine or fuel 

cells. When the gas turbine is operated, the recovered heat is sufficient to meet the entire campus 

heating load, with the boiler needing to be fired whenever a gas turbine shutdown occurs. When 

carbon emissions are reduced by 85%, the fuel cells perform load following during off-peak, 

producing sufficient heat to meet the entire campus demand. During the day, the fuel cells are 
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turned down in favor of solar energy, resulting in the firing of the boiler using renewable natural 

gas. 

 
Figure 6-9: Heating operation during the summer for the baseline technology scenario when 

CO2 is uncontrolled, reduced by 33%, and reduced by 85% 

The only technology scenario for which PV curtailment is an issue is the baseline 

technology scenario when carbon emissions are reduced by 85% as seen in Figure 6-5. This 

occurs primarily because no EES or export can be adopted in the baseline scenario.  A brief 

example of curtailment under this scenario is shown in Figure 6-5. Figure 6-10 shows how the 

curtailment fits in with the electrical operation of other purchased resources and imported 

electrical energy. Figure 6-10 presents the same dispatch profiles for the baseline technology 

scenario with an 85% carbon emissions reduction as seen in Figure 6-6 during the winter and 
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Figure 6-8 during the summer. Figure 6-10 includes the possible solar energy that could be 

captured with the installed PV system, but is curtailed due to an inability to store or sell the 

excess renewable energy. As discussed earlier, the sizing of the PV system was based to produce 

carbon free energy even on days when relatively little insolation is available, such as during the 

second summer week where no curtailment occurs. Note that the presented scenario is the only 

scenario for which a large fuel cell system is adopted. With no ability to consistently provide 

carbon free energy, fuel cells were selected in order to produce a more efficient form of energy 

conversion for meeting the UCI campus electrical demand. 

 
Figure 6-10: Electrical operation including curtailed PV power for summer and winter 

operation for the baseline scenario when CO2 emissions are reduced by 85% 

The heating operation for all other technology scenarios is nearly identical to the baseline 

scenario for the heat recovery unit and boiler fired using both renewable and non-renewable 

natural gas. 
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6.3.2 Energy Storage Technology 

An obvious technology that will help reduce the curtailment of solar energy is energy 

storage. Figure 6-5 shows that curtailment can be avoided while reducing carbon emissions by 

up to 67% for all technology scenarios. However, curtailment for the baseline technology 

scenario appears to exponentially increase as carbon emissions are reduced further. This issue is 

unique only to the baseline technology scenario. For the scenarios where energy storage is an 

option, the PV system and energy storage can be sized to simultaneously meet part of the campus 

demand while the sun is shining while storing excess solar energy for later use after the sun has 

set. 

If any adopted form of storage is to be used in this manner, then it is safe to assume that a 

larger portion of the total campus electrical or cooling load will pass through storage. Figure 

6-11 shows the amount of energy generated onsite or procured using utility electricity that is 

stored for the EES, the TES, and the EES and TES technology scenarios and every level of 

carbon reduction. Figure 6-12 shows the percent of the campus electrical or cooling demand that 

is pulled from energy storage for the same technology scenarios and level of carbon reduction. 

As expected, Figure 6-11 and Figure 6-12 appear to be nearly identical in shape and magnitude. 

Simply put, whatever amount of energy that is stored is eventually used, so the two figures 

should be nearly identical.  
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Figure 6-11: Amount of energy purchased from a utility or produced on-site that is stored for the 

technology scenarios that include some form of energy storage for all carbon emission limits 
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Figure 6-12: Percent of total electrical or Amount of energy purchased from a utility or 

produced on-site that is stored for the technology scenarios that include some form of energy 

storage for all carbon emission limits 

For both Figure 6-11 and Figure 6-12, any energy passing through storage is fraction of 

the total energy consumed by the campus. It is not until carbon emissions are reduced by up to 

80% and 85% that storage begins to play a larger role for the campus. However, even at an 85% 

reduction, less than 12% of either the campus electrical or cooling load passes through storage. 

While this is still a relatively small percentage of the total campus demand, the increase in 

storage use coincides with an increase in solar energy production relative to cases with greater 

carbon emissions with smaller PV systems relative to the baseline technology scenario at an 85% 

carbon reduction. By allowing for energy storage to be adopted, the same carbon reduction goals 

can be met with a smaller PV system that experiences better utilization. 
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6.3.2.1 EES Operation 

Figure 6-13 shows the electrical operation during a two week period in the winter for the 

EES technology scenario when carbon emissions are unconstrained, reduced by 33%, and 

reduced by 85%. Figure 6-14 shows the corresponding EES operation, including state of charge, 

for the same time period and carbon emission reduction levels as seen in Figure 6-13. Note that 

EES modeled in the optimization can have a maximum and minimum state of charge of 95% and 

5% respectively. Figure 6-14 only includes the usable portion of the EES, ignoring the EES 

capacity that is unusable due to a desire to maintain safe EES operation and EES integrity. Also, 

charging of the EES is represented as negative power, meaning that generation technologies 

produce electricity beyond what is currently demanded by the campus, with the excess being 

subtracted from the overall generation by being stored in EES for later use.  

 
Figure 6-13: Electrical operation during the winter for the EES technology scenario when CO2 

emissions are uncontrolled, reduced by 33%, and reduced by 85% 
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When carbon emissions are unconstrained, overall system operation is similar to the 

corresponding baseline technology scenario operation. A slight difference can be seen as a result 

of EES adoption. First, the addition of EES technology allows for the gas turbine to remain 

operational during the first Sunday when the campus load is low. Instead of shutting down, the 

turbine is operated at the minimum power setting, with the excess power being used to charge 

the EES up to full state of charge. Shortly after the campus electrical demand begins to increase, 

the EES is discharged to meet the campus demand. Second, the EES performs peak shaving, as 

seen on the second Monday of Figure 6-13. Off peak electricity is imported from the local utility, 

charging the EES up to full state of charge. The EES is then slowly discharged when campus 

demand is highest, shaving the maximum utility demand and reducing the demand charge. Third, 

the EES is used to perform cost arbitrage, as seen during the second Tuesday, Wednesday, and 

Thursday. During the morning of these days, excess off-peak utility energy is purchased, stored 

in the EES, and immediately discharged when the mid-peak arrives. The discharge of the energy 

does not occur when the campus demand is highest, suggesting that the point of EES dispatch at 

that time was not to reduce demand charges, but to procure a portion of the daily electrical 

demand earlier when electrical energy costs are lower. 
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Figure 6-14: EES discharging, charging, and state of charge during the winter for the EES 

technology scenario when CO2 emissions are uncontrolled, reduced by 33%, and reduced by 

87.5% 

Operation for the EES scenario with a 33% carbon emissions reduction is similar to the 

baseline scenario. Gas turbine operation is reduced, the PV system is used to provide a portion of 

the energy during the day, and utility imports increase. The EES performs a similar function as 

for the unconstrained carbon emissions case, and EES operation does not appear to correspond to 

PV system operation. Charging of the EES during the off-peak period still occurs in order to 

perform arbitrage and peak shaving. While total carbon emissions must be reduced by 33% in 

this simulation, the purchase of off-peak electricity for the purposes of peak shaving and cost 

arbitrage actually increase total CO2 emissions associated with the UCI campus load due to an 

increase carbon emissions factor during off-peak (night) associated with electricity purchased 

from a California utility, as seen in Figure 3-10. However, this must be offset by either running 
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the gas turbine using renewable natural gas or importing utility electricity when the grid carbon 

emission factor is low. 

The gas turbine is still used to provide the majority of the campus power when carbon 

emissions are reduced by 85%. However, during the middle of the day, when solar generation is 

greatest, the gas turbine is routinely shut down and the entire campus electrical load is met using 

the PV system.  

EES operation also changes. Instead of primarily being used for peak shaving, arbitrage, 

and to provide an energy dump for the gas turbine when campus demand is low, the EES is 

charged using excess solar energy produced by the PV system. This allows for the full utilization 

of the PV system, allowing for excess PV generation during the middle of the day to be stored 

and used during the evening and night. Utility imports at this level of carbon reduction are 

virtually eliminated. 

Figure 6-17 and Figure 6-18 show electrical system and EES operation over a two week 

period in the summer. Electrical operation is similar to the baseline technology scenario for the 

uncontrolled carbon emissions and 33% emission reduction case, with the gas turbine operating 

at near or full power during on-peak and the minimum power during off-peak. However, under 

the baseline technology scenario with a 33% reduction to carbon emissions, gas turbine operation 

during the mid-peak period is reduced to the minimum power outlet for the baseline technology 

scenario. Under the EES technology scenario, gas turbine power output is increased during mid-

peak period, but continues to produce less than the allowable maximum power (either the 

campus electrical demand or the maximum output of the turbine, whichever is lower). Instead 

grid imports continue consistently. Similar to winter EES operation, EES during the summer is 
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used to provide peak shaving, arbitrage, and a dump for excess electricity produced by the gas 

turbine when campus electrical demand is low. Operation at the 85% carbon emission reduction 

level is similar to operation during the winter. 

 
Figure 6-15: Electrical operation during the summer for the EES technology scenario when CO2 

emissions are uncontrolled, reduced by 33%, and reduced by 87.5% 
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Figure 6-16: EES discharging, charging, and state of charge during the summer for the EES 

technology scenario when CO2 emissions are uncontrolled, reduced by 33%, and reduced by 

87.5% 

6.3.2.2 TES Operation 

Figure 6-17 shows electrical operation for the TES scenario system and electrical imports 

for two winter months. Figure 6-18 and Figure 6-19 show the cooling system and TES operation, 

respectively, for the same two weeks as Figure 6-17. The gas turbine, PV system, and electrical 

import operation shown in Figure 6-17 is similar to the same technologies and resources under 

the EES scenario, as seen in Figure 6-13. The single fuel cell adopted to help reduce carbon 

emissions by 85% operates in a similar fashion to the gas turbine, where operation occurs 

primarily when the PV system is not producing electricity. However, instead of operating at a 

reduced capacity during night hours, like the turbine, the single fuel cell produces at the 

maximum power setting. 
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Figure 6-17: Electrical operation during the winter for the TES technology scenario when CO2 

emissions are uncontrolled, reduced by 33%, reduced by 66%, and reduced by 85% 

The primary difference with the EES technology scenario, besides the form of energy 

storage included in this scenario, is that by having TES as an adoptable option, the actual campus 

load can be changed while still meeting the full cooling and electrical demand. Since the 

electrical campus load shown in Figure 6-17 is a combination of the electrical demand and the 

cooling demand assuming that all cooling is met at time of demand, the expected combined 

electrical demand may be altered through use of TES. For example, in the unconstrained carbon 

emissions case, the expected electrical demand during the second Monday is decreased. This is 

accomplished by charging the TES storage prior to the peak electrical and cooling demand, 

allowing for the cooling peak demand to be reduced, resulting in a reduction to overall electrical 

demand. This type of peak shaving is also seen for the same peak in the EES technology scenario 

shown in Figure 6-13.  
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The optimization results show that the TES system adopted when carbon emissions are 

unconstrained is larger than systems adopted when carbon emissions are required to be reduced 

by 0%, 33%, and 67%. As a result, the impact TES has on changing the combined electrical 

demand is marginal, as seen in Figure 6-17. Since the output of the adopted PV system for the 

case where carbon emissions are constrained is small enough that there is never any risk of 

curtailment, thermal storage is not required to ensure full utilization of available solar power. 

Considering that thermal energy is lost when cooling is passed through the TES from a vapor 

compression system, into a storage tank, and then to the campus to meet demand, storage will 

increase the carbon emissions if the cooling is produced using an energy source other that solar 

power. As a result, TES size shrinks when instituting a carbon constraint reducing total 

emissions up to 67% versus if carbon emissions are not constrained. 

TES size does start to increase when carbon emissions are to be reduced by 80% or 85%. 

This increase is coupled with an increase in size for the PV system. With an increased PV system 

size, excess renewable energy is available, resulting in the adoption of a large TES. The excess 

solar energy is used to operate vapor compression systems to charge the TES, as seen when 

comparing Figure 6-17, Figure 6-18, and Figure 6-19 for the 85% carbon emission reduction 

case. When the desired carbon reduction results in an increase in PV system size, TES is 

operated in a manner that has the greatest impact of the resulting combined electrical demand. In 

particular, the combined electrical and cooling load is augmented in the early evening as the sun 

is setting, PV system production drops, and the controllable DG are being turned back on. While 

combined electrical and cooling demand is dropping, the TES is dispatched to reduce the 

combined load so that the fuel cell and gas turbine can continue to operate at part load. This style 
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of operation is not always possible, especially when available insolation is low, resulting in 

reduced PV system output. When insolation is low, the TES system is not utilized since sources 

of energy that produce carbon emissions are required to charge the TES. Instead of producing 

additional carbon to produce cooling that will lose energy content as it is stored in the TES, the 

cooling demand is continuously met using electricity produced by the gas turbine. 

 

Figure 6-18: Cooling operation during the winter for the TES technology scenario when CO2 is 

uncontrolled, reduced by 33%, reduced by 66%, and reduced by 85% 



259 

 

 
Figure 6-19: TES operation during the winter for the TES technology scenario when CO2 is 

uncontrolled, reduced by 33%, reduced by 66%, and reduced by 85% 

Figure 6-20, Figure 6-21, and Figure 6-22 show the electrical, cooling, and TES system 

operation respectively for the TES scenario during two weeks in the summer. The operation of 

all electricity producing systems is similar to operation experienced for the EES technology 
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scenario. Also, cooling and TES operation over the two summer weeks is similar to operation 

during the winter. 

 
Figure 6-20: Electrical operation during the summer for the TES technology scenario when CO2 

is uncontrolled, reduced by 33%, reduced by 66%, and reduced by 85% 
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Figure 6-21: Cooling operation during the summer for the TES technology scenario when CO2 is 

uncontrolled, reduced by 33%, reduced by 66%, and reduced by 85% 

 
Figure 6-22: TES operation during the summer for the TES technology scenario when CO2 is 

uncontrolled, reduced by 33%, reduced by 66%, and reduced by 85% 
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6.3.2.3 EES and TES 

When both EES and TES are allowed to be adopted, both forms of energy storage are 

adopted for every level of carbon reduction.  EES system size when carbon emissions are 

unconstrained or reduced by 0%, 33%, or 67% shrinks by approximately 76%. TES system size 

also shrinks, but only by 4% when carbon emissions are unconstrained and 33% to 36% when 

carbon emissions are reduced by 0%, 33%, and 67%. While the quantity of each individual 

storage is reduced, the potential for supplying the cooling demand using stored energy is 

increased for all carbon reduction cases while adding some additional flexibility of keeping some 

of the stored energy in the form of electricity. 

Since the source of cooling production during the optimization is assumed to be only 

electrically powered vapor compression systems, the electricity stored in EES can be discharged 

to produce cooling. The assumed coefficient of performance for the installed vapor compression 

system is 3.4, meaning that every kWh of electrical energy input into the vapor compression 

system produces 3.4 kWh of cooling out. This conversion effectively allows a single MWh of 

electrical energy storage to be equivalent to approximately 3.4 MWh of cooling. So by allowing 

for the selection of both EES and TES, overall cooling storage is increased for all carbon 

reduction scenarios while also providing the flexibility of storing some energy in the form of 

electricity, which can be used for purposes other than cooling. 

Figure 6-23 shows electrical operation for the EES and TES technology scenario during 

two winter weeks when carbon emissions are uncontrolled and reduced by 33% and 85%.  Figure 

6-24, Figure 6-25, and Figure 6-26 show the EES operation, cooling dispatch, and TES operation 

respectively for the same two winter weeks. Electrical operation for the uncontrolled and 33% 
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reduction case are similar to the TES technology scenario operation for the same two weeks, as 

shown in Figure 6-17. When carbon emissions are unconstrained, the TES is used to increase the 

load during the morning of the first Monday to allow for gas turbine operation to occur. Later, 

the TES tank is again used to shave the peak demand. Throughout the two weeks, the EES is 

used to perform arbitrage. However, the size of the EES is small relative to the total load, 

reducing the ability of the EES to impact overall operations. 

 
Figure 6-23: Electrical operation during the winter for the EES and TES technology scenario 

when CO2 is uncontrolled, reduced by 33%, and reduced by 80% 

 DER system operation when carbon emissions are reduced by 33% is also similar to the 

TES technology scenario operation with the same level of carbon reduction. Despite a difference 

in system size, TES operation for the EES and TES technology scenario is nearly identical in 

shape during these two weeks as with the TES only technology scenario. While EES operation is 
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similar also to the EES only scenario, the size of the EES system in the current technology 

scenario is much smaller, resulting in a reduced impact on the campus demand. 

Operation with an 85% carbon emissions reduction under the EES and TES scenario is 

similar to the individual energy storage technology scenarios. The gas turbine performs load 

following when PV production is zero, turns down as solar energy becomes available, and shuts 

off when the PV system is able to meet the full UCI campus electrical and cooling demand. 

Excess solar energy is then stored in either the EES or TES. As seen in Figure 6-23 and Figure 

6-24, the EES is regularly charged during the day with excess solar energy, and later discharged 

as PV system production ramps down as the sun sets. While the TES is regularly charged to full 

capacity, TES charging tends to occur after EES charging. Intuitively, the EES should be 

charged first since the stored electricity is more flexible in its end use than stored cooling. While 

a vapor compression chiller can easily convert electricity into cooling, no technology that 

converts cooling back to electricity can be adopted during the optimization. Regardless, both the 

EES and TES appear to be discharged to either meet or reduce the combined electrical demand 

as solar power production decreases at the end of each day. 



265 

 

 
Figure 6-24: EES operation during the winter for the EES and TES technology scenario when 

CO2 is uncontrolled, reduced by 33%, and reduced by 80% 

 
Figure 6-25: Cooling operation during the winter for the EES and TES technology scenario 

when CO2 is uncontrolled, reduced by 33%, and reduced by 80% 
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Figure 6-26: TES operation during the winter for the EES and TES technology scenario when 

CO2 is uncontrolled, reduced by 33%, and reduced by 80% 

Figure 6-27, Figure 6-28, Figure 6-29, and Figure 6-30 show the electrical, EES, cooling, 

and TES operation respectively during two summer weeks when CO2 emissions are 

uncontrolled, reduced by 33%, and reduced by 85%. Electrical operation is similar to the EES 

technology scenario. As seen in Figure 6-30, TES use is sparse during the two week period. 

During the first week, the solar energy production is sufficiently large enough to meet the 

campus combined electrical and cooling demand while charging the EES. During the next week, 

PV production is limited, and the EES experiences some charging when excess solar energy 

exists, but no useful energy is sent to the TES for storage. 
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Figure 6-27: Electrical operation during the summer for the EES and TES technology scenario 

when CO2 is uncontrolled, reduced by 33%, and reduced by 80% 

 
Figure 6-28: EES operation during the summer for the EES and TES technology scenario when 

CO2 is uncontrolled, reduced by 33%, and reduced by 80% 
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Figure 6-29: Cooling operation during the summer for the EES and TES technology scenario 

when CO2 is uncontrolled, reduced by 33%, and reduced by 80% 

 
Figure 6-30: TES operation during the summer for the EES and TES technology scenario when 

CO2 is uncontrolled, reduced by 33%, and reduced by 80% 
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6.3.3 Export Scenario 

The export technology scenario optimizes the same set of technology available under the 

baseline technology, but with the ability of selling any excess energy generated onsite back to the 

utility. All of the electricity exported back to the utility is assumed to be exported under a net 

metering agreement similar to what is currently available to solar PV systems today.  That is, 

power is exported to the utility at the retail price it would be charged to the customer at that same 

time of day and year.  This work, however, assumes that the rate the DER system operator in this 

case receives is only the utility energy rate associated with generation, and does not include 

transmission and distribution charges. The applicable utility rates can be seen in Table 3-1. Note 

that transmission and distribution charges for the applicable SCE rate structure are approximately 

$0.02 per kWh, resulting in the revenue generated by exporting electrical energy at any time is 

the cost to purchase utility electrical energy minus the approximate $0.02 per kWh charge 

associated with transmission and distribution.  

In addition to providing an additional revenue stream, the export of electricity generated 

onsite theoretically offsets utility generation, reducing carbon emissions produced by the grid. 

Figure 6-31 shows the percent of electricity generated onsite that is sold back to the grid. When 

carbon emissions are uncontrolled or reduced by 0%, 33%, and 67%, only a fraction of onsite 

generation is exported. As the carbon emission reduction increases from 67% to 80% and 85%, 

the size of the PV system increases. Under the baseline scenario, the renewable energy produced 

by the larger PV size exceeds the campus demand, and curtailment occurs. Under the export 

scenario, the excess energy is sold to the grid, reducing total costs while also decreasing the net 

carbon emissions associated with the UCI campus. Reducing carbon emissions past 67% results 
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in the installation of increasingly larger PV systems. As the PV system size increases, so does the 

amount of electricity sold back to the grid. 

 
Figure 6-31: Percent of onsite generated electricity that is exported for all carbon reduction 

cases 

Figure 6-32 shows electrical operation for the DER system optimized for the export 

technology scenario when carbon emissions are uncontrolled, reduced by 33%, and reduced by 

85%. Electrical operation when carbon emissions are unconstrained is nearly identical to the 

baseline technology scenario. The only primary difference is when the campus electrical demand 

is low during the first Sunday, the gas turbine continues operation, with the excess electricity 

being sold back to the grid. No additional export occurs during the next two weeks, suggesting 

that the little to no value exists for selling electricity back to the grid during the winter using a 

gas turbine. The one instance where export does occur allows for demand charges to be avoided, 

which would be substantially larger if incurred versus any losses created by selling electricity 

back to the grid. 
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Figure 6-32: Electrical operation during the winter for the export technology scenario when 

CO2 is uncontrolled, reduced by 33%, and reduced by 87.5% 

System operation when carbon emissions are reduced by 33% are also similar to the 

baseline scenario. However, since the gas turbine is allowed to remain operational during the 

first Sunday under the export scenario, and demand charges are avoided, the gas turbine is 

operated dynamically in the late noon and evening each day in order to ensure that demand 

charges do not increase. Under the baseline scenario, the utility imports required while the gas 

turbine is shut down during the first Sunday create demand charges large enough such that the 

gas turbine does not need to be operated dynamically to keep maximum utility demand low. 

When carbon emissions are reduced by 85%, gas turbine operations are maintained 

throughout the day. This is the only example of a controllable form of DG (either a fuel cell or 

gas turbine) where sustained operations occur throughout the day. Like all other technology 

scenarios, the largest PV system installed occurs for the 85% carbon reduction case. However, 
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whereas the baseline scenario required a large PV system to produce renewable energy on low 

insolation days and all energy storage scenarios stored solar energy for later use in the day, the 

export technology scenario leverages the renewable energy generated onsite using the sun to 

offset gas turbine operation. As long as the carbon reduction goal is in terms of net carbon 

reduction, the ability to produce and export solar energy creates leverage that the campus can use 

to maintain gas turbine operation while meeting the overall carbon emission reduction goal. 

Figure 6-33 shows electrical operation for the export technology scenario during the 

summer. For both the uncontrolled and 33% carbon reduction cases, the ability to export once 

again allows the gas turbine to operate during the first Sunday and not shut down due to low 

campus demand. Later, whenever campus demand is low during the middle of the day (on-peak), 

the gas turbine can be operated at full capacity, with any excess electricity being exported back 

to the grid. While dynamic operation still occurs during the mid-peak period, operation during all 

of on-peak and for much of off-peak have been simplified, with the gas turbine operating at full 

capacity during on-peak and near or at the minimum power setting during off-peak. 
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Figure 6-33: Electrical operation during the summer for the export technology scenario when 

CO2 is uncontrolled, reduced by 33%, and reduced by 87.5% 

Similar to operation during the winter, gas turbine operation is maintained throughout all 

days during the summer except for the first Saturday. Unlike the winter time period, the gas 

turbine is operated at full capacity during all on-peak days, even though sufficient solar power 

exists to meet the portion of the UCI campus demand that is now met by the increase gas turbine 

power. On-peak electricity is the most valuable electricity, and the campus experiences the 

greatest compensation per unit energy for exporting electricity during this period. As a result, the 

ability to export creates an opportunity to produce additional revenue while meeting the 85% 

carbon emissions reduction. 

6.4 DER System Cost and Carbon Reduction 

Figure 6-34 shows the yearly operating cost for all technology scenarios and carbon 

reduction cases without the monthly debt payment associated with the purchase of the DER 
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system on top and with the monthly debt payment on bottom. While the cost to operate the DER 

system increases carbon emissions decrease, the cost increase is primarily due to the purchase of 

more expensive renewable natural gas, and the cost increases are small relative to the increase in 

yearly cost due to the additional loan payments. In other words, the cost to operate a DER system 

increases as carbon emissions are reduced, but the additional operations and maintenance costs 

are relatively small compared to financing cost. Also, as a result of an increased use of solar 

energy, operating costs actually decrease when moving from an 80% reduction to 85%. 

However, the loan payment associated with the increase in PV system size results in an overall 

large increase to the size of the loan payment required, erasing any potential benefit created by 

using energy sources with low operating costs. 

 
Figure 6-34: Yearly operating cost without and with debt payment required for optimal DER 

system for all technology scenarios and carbon emission limits 
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Figure 6-35 shows the initial investment required when 20% of the total install cost is 

covered by the investor for all technology scenarios for all carbon reduction cases. In general, the 

initial investment cost tends to increase as carbon emissions are reduced. However, since the set 

of adopted technology between the 0% reduction and 67% reduction case are nearly identical, 

the investment costs are the same. If another source of renewable natural gas with a lower carbon 

signature associated with gas clean up were to be made available to the UCI campus, further 

carbon emission reduction would be possible beyond 67% without installing any additional 

technology or increasing the initial investment. 

 
Figure 6-35: Initial investment cost required by an investor for all technology scenarios and 

carbon emission limits 

Further emission reductions beyond 67% occur due to the installation of larger PV 

systems. This results in an increase to the initial capital investment cost. Initial investment cost at 

an 80% carbon emission reduction is similar across all technology scenarios. The export 

technology scenario experiences the adoption of the largest PV system, resulting in the largest 
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initial investment. However, as the carbon emission reduction increases from 80% to 85%, the 

baseline technology scenario is forced to adopt the largest PV system in order to provide solar 

energy every day, even on days when sunlight is diminished.  The resulting initial investment for 

the optimal DER system is 50% larger under the baseline technology scenario than the next 

largest scenario (the EES and TES technology scenario). Note that if export to the grid is 

allowed, the resulting initial investment is the lowest of all technology scenarios even though the 

physical technology options are the same as the baseline technology scenarios. 

Figure 6-36 shows the modified internal rate of return for all technology scenarios and 

carbon reduction cases.  As discussed in Section 3.7, the MIRR assumes that any savings 

produced by DER operation are reinvested by the business or organization. The reinvestment rate 

is the rate at which a business or organization produced returns at during normal operations, and 

is assumed to be 8% for this work. A return of 0% is equivalent to the statement that DER 

investment and operation results in a financial loss.  The extent of this loss is not quantified by 

the MIRR since an overall loss would result in the root of a negative number being determined, 

resulting in a non-real rate of return in the number of periods is an even number.  
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Figure 6-36: Marginal internal rate of return for all technology scenarios when carbon 

emissions are uncontrolled and reduced by 0%, 33%, and 67% 

From an investment perspective, the best return on money invested is obtained when 

carbon emissions are uncontrolled. Under this case, all technology scenarios produce extremely 

positive returns on the initial investment, with the TES technology scenario providing the 

greatest return on investment. If carbon emissions are constrained to not increase when a DER 

system is adopted, the economic performance deteriorates for all scenarios, and a positive return 

is not seen until ten years, of the loan has been paid off. Reducing carbon emissions results in an 

even smaller on no positive return associated with the DER system. 

Other considerations must be made when attempting to reduce carbon emissions. Earlier, 

it was argued that other motivations may exist that create the desire to reduce carbon emissions. 

If this is the case, other metrics must be used to evaluate the performance of a DER system. The 

simplest metric is to determine the additional cost incurred above the baseline cost divided by the 



278 

 

amount of carbon emissions that were eliminated by DER system purchase and operation, or the 

cost per unit mass of carbon reduction. Figure 6-37 shows the cost to reduce carbon for all 

technology scenarios when emissions are reduced by 33%, 67%, 80%, and 85%. The initial 

investment cost is included in Figure 6-37 by determining the payment required to be made to 

the initial investor such that the initial investment is paid back in ten years at an interest rate of 

8%. 

 
Figure 6-37: Cost of CO2 reduction for all technology scenario and carbon emission limit 

Figure 6-37 shows that the cost to reduce carbon decreases from 33% to 67% reduction. 

Since the technology purchased at these levels of reduction are identical for all technology 

scenarios, and the additional carbon reduction from 33% to 67% is achieved by switching from a 

non-renewable to renewable fuel, the initial investment and loan payments do not increase as a 
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result of reducing carbon emissions further. Reducing carbon emissions beyond 67% requires for 

the set of purchased technology to change, with a shift to higher efficiency or solar technology 

driving the increase in total cost. As a result, the cost to carbon begins to increase in an 

exponential fashion as it becomes more difficult to reduce carbon emissions. 

When carbon emissions are reduced by 85%, the technology scenario with the highest 

cost versus reduced carbon emissions are the baseline technology scenario. Allowing for the 

adoption of energy storage decreases the cost to reduce carbon by 41%. Allowing for export of 

electrical energy and by determining total carbon reduction on a net carbon emissions basis, the 

cost to reduce carbon can be reduced from the baseline technology scenario by approximately 

50%. 

6.5 Discussion 

With the set of technologies and energy source options included in the current work, 

attempting to reduce carbon emissions always results in a cost increase. How the cost is 

increased depends on the desired level of carbon reduction. The particular parameters of the 

renewable natural gas explored in this current work showed that a system designed to minimize 

cost of energy regardless of carbon emissions can be slightly modified with some additional PV 

and achieve a carbon emissions reduction of up to 67%. When the reduction to carbon emissions 

are at or below 67%, the DER system adopted and style of operation under every technology 

scenario is nearly identical. Obviously, energy storage and export ability increase the flexibility 

of the overall system, but the economic performance and cost to reduce carbon are similar across 

all technology scenarios. It is not until carbon emissions have been reduced to 67% that the 

economic performance and cost to reduce carbon start to diverge. 
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If the carbon emissions associated with the production of renewable fuel can be reduced, 

then the same system that was adopted across all technology scenarios for a carbon reduction of 

0%, 33%, and 67% could achieve even greater emissions reduction. From an economic 

perspective, this would allow the campus to put off investment in other expensive technologies 

until later while reducing the amount of ancillary technology required to support the future 

operation of uncontrollable but carbon free PV.  

Reducing carbon emissions beyond what can be achieved by switching to renewable fuel 

increases cost significantly. Predictably, the cost increase is greatest when excess energy 

production cannot be accommodated through the use of storage or export back to the grid. Of 

these two options, the option that achieved an 85% reduction to carbon emissions at the lowest 

cost was the export technology scenario. Realistically, the rate at which an individual can sell 

electricity back to the grid would most likely be lower than the rates used in this current work, 

and the economic benefit created by exporting electricity presented in the current results may be 

overstated. At the same time, electricity exported back to the grid is likely to supplant energy 

generated from fossil fuel fired power plants, resulting in a greater reduction in carbon emissions 

compared to that assumed in this work. Further model refinement would likely result in an 

optimal DER system adopting a smaller PV system with worse financial performance but 

improved environmental impact.  

Note that renewable fuel was modeled as an infinite resource in the sense that there was 

no limit to how much could be purchased. If this source does not exist, and there is a limit to the 

amount of renewable fuel that can be purchased, then PV system size will start to increase in 

order to actually achieve any carbon emissions reduction. With this taken into consideration, the 
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cost to reduce carbon presented in Figure 6-37 are likely lower than what can be actually 

achieved. Coupled with the currently low price to purchase a permit to emit carbon (according to 

[180], a permit to emit carbon has never been sold at a price higher than $23 per tonne and is 

currently being sold at approximately $12 per tonne), a carbon constraint will always need to be 

included in any DER optimization that desires carbon emissions reductions.  Or else, outside 

carbon market factors must increase the cost of carbon to accurately reflect the true cost of 

reducing emissions. These carbon emission costs could be readily included in the optimization.  

Other factors may reduce the cost to reduce carbon, such as by installing utility size PV systems 

in a central location instead of many small PV systems at the point of use or by using renewable 

fuel in a more efficient central power plant. However, unless the price to emit carbon increases 

or the cost of renewable generation sources and energy storage plummets, no DER optimization 

model that minimizes cost will suggest the adoption of a system that significantly reduces carbon 

emissions without enforcing a constraint that requires such an action.  
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7 Cost of Electricity for Public Level 3 EVSE Operation 

When a Level 3 EVSE charger is purchased for public use, the equipment can be 

connected to the utility in two different ways: a dedicated utility meter can be installed and used 

to supply electricity to the EVSE exclusively, or the EVSE can be integrated with a building by 

connecting the equipment to the building electrical system. Under this second scenario, the 

EVSE and building receive electric utility service under a single utility meter, and the utility bill 

is determined by the combined building and EVSE refueling load. PEV refueling cost depends 

upon whether the EVSE is serviced by a dedicated utility meter (or the “Standalone” scenario) or 

has been integrated with a building (or the “Integrated” scenario).  

7.1 Standalone Level 3 EVSE Analysis 

The travel model described in Section 3.3.1 was used to produce a set of trips made by 

Level 3 compatible PEVs. The number of trips considered per simulation ranged from 50 PEV 

trips per month to 10,000 PEV trips per month. Using the assumption that the PEVs started each 

day with a fully charged battery, the end state of charge was determined. The trips were then 

separated between PEVs with a battery state of charge greater than and less than 80%. All PEVs 

with less than an 80% state of charge were charged according to the Level 3 EVSE operation 

model as described in Section 3.3.2. The resulting electricity demand profile was used with the 

utility rate model described in Section 3.1.1 and cost allocation model described in Section 

3.5.1.1 to determine the total utility cost and demand charge cost incurred by each individual 

PEV. 

These simulations and calculations, described above, were performed for Level 3 EVSE 

with two power ratings; 44 kW and 120 kW. For both the 44 kW and 120 kW chargers, one, two, 
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four, and eight EVSE supplied by a single utility meter were evaluated. Under these scenarios, 

the applicable utility rate structure is either TOU-EV-3 or TOU-EV-4, depending upon the 

maximum power demand.  

The results of this work are the averaged results of numerous simulations. At each given 

number of PEV trips per month, the probability density functions described in section 3.3.1 are 

used to generate a randomly selected set of trips performed by PEVs. Using the randomly 

generated set of PEV trips, a charging profile is then determined using the Level 3 charging 

station operation model described in section 3.3.2. The resulting electrical load profile is then 

combined with the utility rate model as described in Section 3.1.1 to find the cost of electricity. 

This process is repeated until the average cost of electricity of all simulations performed at the 

given number of PEV trips per month experiences negligible changes due to an additional 

simulation. At this point, no additional simulations are performed for a given number of PEV 

trips per month. Variation in energy and demand charge cost results across the different 

simulations is presented in Section 7.1.3. 

The results presented in this section have been published in a paper by Flores et al. [181]. 

7.1.1 Single 44 kW EVSE Results 

A single Level 3 44 kW charger servicing either shopping or work trip types is examined 

in Section 7.1.1.1 and 7.1.1.2, respectively. Increasing both charger power and number of 

chargers per electricity meter is explored in 7.1.2. 

7.1.1.1 Shopping Travel 

Assuming that all PEVs start each day with a full battery, approximately 28% of all 

winter and summer shopping trips result in arriving with less than an 80% state of charge. Figure 
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7-1 shows example load profiles for a Level 3 charging station using both conventional and valet 

parking. The same set of PEV trips were used to simulate demand profiles for conventional and 

valet operations. The load profiles range from 27 to 2787 PEV shopping trips serviced per month 

by the charging station. These values correspond to a total number of PEV trips of 100 to 10,000 

per month. The allocated cost for each time step is also included in Figure 7-1. The total cost 

includes the demand charge allocation as well as the energy charge cost using the cost of energy 

at the time of purchase. At low levels of PEV use, the demand profiles are similar between 

conventional and valet operations. However, as the number of PEV cars increases, the electrical 

demand for valet operations increases due to the queuing and subsequent refueling PEVs that 

arrive while the EVSE is occupied. This is apparent in the demand profiles at 696 PEV trips 

serviced per month. The total cost of operation also decreases as the number of PEV trips 

serviced increases.   
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Figure 7-1: Example load profiles and resulting cost allocations for 27, 140, 278, 696, 1,392, 

and 2,787 shopping trips per month using PEVs 
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Figure 7-2 shows the percent of PEVs with a state of charge below 80% that are fully 

refueled, partially refueled, or unfueled for both conventional and valet parking scenarios. 

Predictably, valet parking provides greater access to the EVSE.  The valet results show that 

approximately 20 % of all shopping travel has a corresponding dwell time that is shorter than 

what is required to completely refuel.  While valet parking significantly increases the percent of 

PEVs refueled at moderate to high levels of traffic, additional EVSE is required if all Level 3 

eligible PEVs are to be refueled.  

 
Figure 7-2: Percent of cars that are fully charged, partially charged, or uncharged by the 44 kW 

Level 3 charger after a shopping trip type for conventional and valet parking scenarios 

The average energy charge costs for both the summer and winter seasons versus the 

number of chargeable PEVs per month are shown in Figure 7-3.  The average energy cost for 

valet parking remains stable regardless of the number of PEVs refueled per month. While an 

increase in PEV traffic increases the number of PEVs refueling during on-peak times, PEV use 

during the weekend also increases. As a result, the increased EVSE utilization during summer 

and winter on-peak times due to increased PEV use is counter-balanced by increased usage 

during mid-peak and during the weekend (off-peak) leading to relatively stable energy costs. 
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With conventional parking, the average energy cost decreases as PEV traffic increases due to 

arrival of PEVs during off- and mid-peak, decreasing the access that PEVs have to the EVSE 

when arriving during on-peak.  

 
Figure 7-3: Average energy charge cost versus number of chargeable PEVs per month for 

shopping trips occurring during the summer and winter 

On the other hand, Figure 7-4 shows the average demand charge cost for the winter 

season versus number of chargeable PEVs per month. Since summer and winter demand charges 

are the same and the difference between summer and winter shopping travel is small, the average 

demand charge cost versus chargeable PEVs for summer is nearly identical in amplitude and 

dynamics as that shown in Figure 7-4 for the winter demand charge costs. While it is clear from 

Figure 7-4 that the demand charge cost is the dominant electrical energy cost, increasing the 

number of PEVs charging per month can quickly reduce cost.  



288 

 

 
Figure 7-4: Average demand charge cost versus number of chargeable PEVs per month for 

shopping trips occurring during the winter 

The demand charge cost shown in Figure 7-4 is the average demand charge cost that a 

Level 3 EVSE operator must pay the utility. This curve is the product of an aggregated refueling 

load produced by supplying electricity to numerous PEVs. The actual cost incurred by each 

individual PEV can be allocated using the method described in Section 3.5.1.1. The results of 

this analysis can be separated into the two categories of PEVs that do and those that do not 

receive demand charge allocations. PEVs that receive no demand charge allocation are PEVs 

that, when aggregated with all other refueled PEVs, do not produce an EVSE demand greater 

than 20 kW for any 15 minute period, or the electrical demand required to shift the EVSE from 

the utility rate TOU-EV-3 to TOU-EV-4. Figure 7-5 shows the percent of all refueled PEVs that 

received no demand charge allocation. PEVs that receive a demand charge allocation either 

directly produced or were aggregated with other vehicles to produce a maximum 15 minute 

average demand greater than 20 kW. Figure 7-6 shows the distribution of allocated demand 

charge costs for all simulations performed across various amounts of PEVs charged per month. 

This figure displays the percent of PEVs that receive an allocation that results in a specific 
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$/kWh cost for all simulations. The distribution shows the percent of vehicles that incur a 

specific demand charge cost for all simulations performed at each level of PEV trips per month. 

Figure 7-5 shows that, under conventional parking, the majority of PEVs do not 

contribute to an EVSE demand greater than 20 kW and are not allocated any demand charge 

cost. If valet parking is implemented, the percent of vehicles contributing to a demand greater 

than 20 kW increases with PEV use, reducing the number of vehicles receiving no allocation. 

Figure 7-6 shows that the demand charge allocation can vary greatly depending upon the number 

of PEVs charged per month. At a low number of PEVs charged per month, allocations can vary 

drastically. As the number of PEVs refueled per month increases, this variability in allocation 

starts to disappear as the demand charge is allocated across a greater number of PEVs. This 

variability can be reduced even further if valet operations occur since more vehicles can be 

refueled through this method than through conventional parking. Although costs are lowest and 

cost allocation spread is the tightest at high PEV use, the EVSE is unable to meet the full 

demand as some PEVs remain uncharged regardless of operation type. As seen in Figure 7-2, at 

the highest levels of PEV use examined, 20% of PEVs receive no charging.  Figure 7-6 also 

shows that, at low PEV use, some PEVs may deserve to pay a price of up to $20 per kWh for the 

demand charge incurred during recharging, and, on average, a PEV receiving a cost allocation 

averages approximately $4 per kWh. At the highest levels of PEV use tested, the cost allocation 

range shrinks to between no allocation and $0.50 per kWh for conventional parking and no 

allocation to $0.10 per kWh for valet parking.  
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Figure 7-5: Percent of PEVs that are refueled but do not receive a demand charge allocation for 

shopping type travel during the winter 

 
Figure 7-6: Distributions of demand charge cost allocations to individual PEVs used for 

shopping type travel during the winter 
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7.1.1.2 Work Travel 

Assuming that PEVs start the day with a fully charged battery, approximately 37% of all 

work related travel results in a PEV with less than 80% state of charge. In addition to an increase 

in the number of PEVs that are eligible for Level 3 refueling, the long dwell time associated with 

work travel can have a significant impact on the resulting demand supplied to the EVSE. Figure 

7-7 shows example load profiles for Level 3 EVSE under conventional and valet operations for 

various levels of PEV use and the corresponding refueling cost. The 37 and 3,711 PEVs per 

month correspond to approximately 100 and 10,000 total work trips per month made by Level 3 

compatible PEVs. Figure 7-8 shows the percent of Level 3 eligible vehicles that are completely 

refueled or not fueled at all. Simulations using work type travel resulted in PEVs being either 

completely refueled or not fueled with virtually no PEVs receiving partial refueling. 
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Figure 7-7: Example load profiles and resulting cost allocations for 37, 185, 371, 928, 1,855, 

and 3,711 work trips per month using PEVs 
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Figure 7-8: Percent of cars that are fully charged, or uncharged by the 44 kW Level 3 charger 

after a work trip type for conventional and valet parking scenarios 

It is clear from Figure 7-7 that there is little difference between the demand produced by 

a small number of PEVs versus a large number for conventional operations. This is due to a long 

dwell time associated with work travel, resulting in PEVs occupying the EVSE long after 

refueling is complete. This also results in only a small fraction of Level 3 eligible PEVs having 

access to the EVSE. Compared with shopping type travel, a much smaller percent of PEVs used 

for work travel that are refueled even at a low number of total PEVs visiting the station, which 

results in and refueling costs that are high regardless of the number of eligible PEVs. 

In contrast to conventional operations, valet operations benefit from the long dwell time. 

Even though the number of eligible PEVs is increased for work type travel, the extended dwell 

time ensures that a single 44 kW EVSE can refuel the majority of PEVs. As a result, total cost is 

reduced from approximately $10 per kWh at low number of PEVs to below $0.15 per kWh at a 

high number of PEVs if valet operations are implemented. However, as PEV use increases, so 

does the percent of unfueled PEVs. 
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Figure 7-9 shows the average energy charge cost versus number of chargeable PEVs per 

month. During summer and winter, a drop in average energy cost can be seen for conventional 

parking and low levels of PEV use. This is due to a switch in electric rate structure from TOU-

EV-3 to TOU-EV-4.  Referring to Table 3-1, energy charges are higher for TOU-EV-3 than 

TOU-EV-4. At low levels of PEV use, it is possible that the few eligible PEVs do not create an 

electrical demand of greater than 20 kW. In addition, the long dwell time associated with work 

travel coupled with low PEV use can result in a maximum monthly demand lower than 20 kW 

and the selection of TOU-EV-3 as the utility rate. If valet parking is implemented or PEV use 

increases beyond 100 total PEVs per month, EVSE demand surpasses 20 kW and TOU-EV-4 is 

selected as the utility rate. 

With conventional parking, the early arrival and long dwell time associated with work 

type travel results in early arriving PEVs being refueled using off-peak electricity, but occupying 

the station through mid-peak and on-peak, resulting in the EVSE only using low cost utility 

energy. Conversely, the long dwell time results in a higher cost of energy for valet parking due to 

an increased use in mid-peak and on-peak electricity. While PEVs may arrive early in the 

morning, increasing the number of vehicles that are queued increases the amount of electricity 

purchased during mid-peak and on-peak, resulting in a higher overall cost of electrical energy. 

Between 2,500 and 3,000 PEVs refueled per month, the EVSE is constantly utilized during on-

peak. If additional PEVs arrive, refueling occurs during the later mid-peak, reducing the average 

energy cost at high levels of PEV use. This behavior can also be seen in Figure 7-7 at 3,711 PEV 

trips per month, where the additional PEV traffic results in increased PEV refueling after the on-

peak period. 
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Figure 7-9: Average energy charge cost versus number of chargeable PEVs per month for work 

trips in the summer and winter 

Similar to shopping type trips, there is negligible difference between summer and winter 

demand charge costs as a result of similar seasonal travel patterns and no difference in demand 

charge rates from summer to winter (for the rate structures considered). Figure 7-10 shows the 

average demand charge costs incurred for using Level 3 EVSE to refuel PEVs. Similar to 

shopping type travel, a low number of PEV trips per month results in a large demand charge 

cost. For conventional parking, demand charge cost remains high regardless of the number of 

PEVs available to be charged due to the long dwell time associated with work type travel. 

However, for valet parking, demand charge costs are reduced to being on the same order of 

magnitude as energy charge costs once a moderate number of PEV trips to the Level 3 EVSE 

occur (around 650 Level 3 eligible PEVs per month).  
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Figure 7-10: Average demand charge cost versus number of chargeable PEVs per month for 

work trips occurring during the winter 

Using the method described in Section 3.5.1.1, the cost to fuel individual PEVs can be 

determined. Figure 7-11 shows the percent of PEVs that would receive no demand charge cost 

allocation. Figure 7-12 shows the resulting demand charge cost for PEVs that do receive an 

allocation. The density plot in Figure 7-12 represents the total percentage of cars that receive a 

demand charge allocation that results in the specified $/kWh cost. Similar to shopping type 

travel, the electrical demand incurred by most PEVs is not large enough to produce a demand 

charge allocation, as seen from the conventional parking results in Figure 7-11. With 

conventional parking, increasing the number of PEVs that can be charged using Level 3 EVSE 

has almost no impact on reducing demand charge cost once a small number of PEVs are 

available to be charged each month. As a result, only a small number of PEVs are responsible for 

incurring a demand charge, resulting in both a high cost to refuel those particular PEVs, but a 

large distribution of incurred costs. Under valet parking, the increase in eligible PEVs can be 

accommodated using the single EVSE, increasing the aggregated load while also increasing the 

number of vehicles that receive a demand charge allocation. More PEVs share the demand 
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charge, thus reducing the average cost of operation and the cost allocated to each PEV.  Similar 

to the cost allocation for shopping travel, incurred demand charges are expensive at low PEV 

use, sometimes reaching up to $20 per kWh delivered to the PEV. As PEV use increases, the 

range of demand charge allocation shrinks for valet operations to between no allocation and 

$0.07 per kWh. Costs also decrease under conventional operations, but typically range between 

no allocation and $2 per kWh, with some vehicles incurring ng upwards of $5 per kWh to 

recharge.   

 
Figure 7-11: Percent of PEVs that are refueled but do not receive a demand charge allocation 

for work type travel during the winter 
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Figure 7-12: Distribution of demand charge cost allocations to individual PEVs used for work 

type travel during the winter 

7.1.2 Increased Charger Power and EVSE Number 

The 44 kW Level 3 charger considered in Sections 7.1.1.1 and 7.1.1.2 is the baseline for 

all other Level 3 charging analyses in this work. All scenarios presented can be expanded by 

increasing the number of EVSE supplied by a single utility meter and/or by selected Level 3 

EVSE with higher power output. Both options are explored in this section. EVSE with a power 

output of 120 kW will be considered, and the number of EVSE per utility meter is increased 

from one to two, four, and eight for both 44 kW and 120 kW Level 3 EVSE. 

Under valet operations, the increase in number of chargers and the increase of charger 

power output increases the number of PEVs that can be charged for both shopping and work trip 



299 

 

types. Figure 7-2 and Figure 7-8 show that, for the range of PEV use tested, a single 44 kW 

Level 3 charger is capable of refueling the majority of PEVs that are eligible for Level 3 

refueling. However, at high levels of PEV use, either additional Level 3 EVSE must be installed 

or refueling power must be increased to satisfy the demand of all vehicles. Figure 7-13 and 

Figure 7-14 show the amount of PEVs that are fully refueled, partially refueled, or not refueled 

for shopping and work respectively when increasing refueling power and number of available 

EVSE. Both figures show that increasing the refueling power increases the number of vehicles 

that have access to the EVSE, nearly reducing the percent of unfueled PEVs to zero for all levels 

of PEV use tested. Increasing the number of EVSE has the same effect for 44 kW EVSE. At high 

levels of PEV use, either multiple 44 kW EVSE or higher power EVSE must be adopted if all 

eligible PEVs are to have access to being refuel. 

 
Figure 7-13: Percent of vehicles that are fully charged, partially charged, or uncharged during 

shopping trips to locations with one, two, and four Level 3 chargers with a power output of 44 

kW or 120 kW under valet operations. 
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Figure 7-14: Percent of vehicles that are fully charged, partially charged, or uncharged during 

work trips to locations with one, two, and four Level 3 chargers with a power output of 44 kW or 

120 kW under valet operations. 

Figure 7-2 and Figure 7-8 also show that more than a single 44 kW EVSE is required to 

refuel the majority of PEVs if conventional parking occurs and PEV use is moderate.  The 

impacts of increased EVSE power and number of available EVSE on the percent of PEVs 

refueled, partially refueled, or unfueled for conventionally operated EVSE servicing PEVs used 

for shopping travel are presented in Figure 7-15. This figure shows that increasing the number of 

EVSE reduces the percentage of Level 3 eligible PEVs that are unfueled. At the highest level of 

PEV use tested, installing two chargers reduces the percentage of unfueled PEVs from 80% to 

65%, while installing four chargers reduces unfueled vehicles to 40%, and installing eight 

chargers reduces unfueled vehicles to 11%. At moderate levels of PEV use, additional EVSE 

must be installed if all eligible PEVs are to have access to being refueled. Increasing EVSE 

power only increases the rate at which PEVs are refueled, ensuring that more PEVs are fully 

refueled, not partially refueled. The number of PEVs unfueled does not decrease when EVSE 

power is increased.   
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Figure 7-15: Percent of vehicles that are fully charged, partially charged, or uncharged during 

shopping trips to locations with one, two, four, and eight Level 3 chargers with a power output of 

44 kW or 120 kW under conventional operations. 

Likewise, increased EVSE power does not reduce the number of uncharged PEVs used 

for work travel. In addition, as a result of the extended dwell time associated with work travel, 

the number of PEVs refueled when using 44 kW and 120 kW EVSE is nearly identical across all 

ranges of PEV use, with any difference due to random variations in travel patterns (results fall on 

top of each other in Figure 7-16). Figure 7-16 shows the number of PEVs that are either charged 

or uncharged for the various numbers of EVSE station size tested for 44 kW EVSE. The results 

presented in Figure 7-16 are nearly identical to results produced using 120 kW EVSE and have 
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therefore have been omitted for the sake of brevity. Increasing the number of EVSE improves the 

number of PEVs serviced. However, due to the extended dwell time associated with work travel, 

the majority of PEVs do not have access to EVSE once a moderate amount of PEV traffic is 

present, and even eight EVSE is insufficient to refuel the majority of PEVs.  These results 

suggest that increasing refueling rate is not necessary or useful for work travel. 

 
Figure 7-16: Percent of vehicles that are fully charged, partially charged, or uncharged during 

work trips to locations with one, two, four, and eight Level 3 chargers with a power output of 44 

kW or 120 kW under conventional operations. 
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While increasing EVSE power has little to no effect on increasing the number of PEVs 

refueled over the range of PEV use tested, the demand charge cost increases. Figure 7-17 shows 

the change in demand charge due to increasing EVSE power output for both shopping and work 

travel. For all scenarios considered, increasing the refueling rate from 44 kW to 120 kW 

increases cost without providing either additional fast charging access or extent of recharge 

gains.  

 
Figure 7-17: Average demand charge cost for 44 kW and 120 kW Level 3 EVSE used to service 

shopping and work type trips. 

The impacts of increasing the number of EVSE supplied through a single electrical utility 

meter is not as clear as simply increasing EVSE power. Figure 7-18 and Figure 7-19 show the 

demand charge cost incurred by use of multiple EVSE behind a single utility meter to refuel 

PEVs for both shopping and work travel. As seen in both figures, if a charging station uses 

conventional parking, the impact ranges between a slight decrease in cost to negligible cost 

impact.  Increasing the number of EVSE serviced by a single meter may potentially result in the 
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simultaneous refueling of multiple PEVs, leading to an increased demand charge. However, 

conventional operation results in EVSE being occupied by PEVs that are fully charged. As a 

result, the maximum power demand achieved by a single charger is typically not surpassed 

despite the presence of multiple EVSE. The demand charge is maintained at a low level relative 

to the maximum possible demand created by all EVSE refueling a group of PEVs. The number 

of PEVs refueled increases while not substantially increasing the maximum demand, and no 

change to the average demand charge cost. 

Conversely, demand charge costs increase as the number of EVSE is increased under 

valet operations. Due to the instant availability of EVSE after refueling any individual PEV, the 

demand supplied through the electric meter can be maintained if another PEV either arrives or 

has been queued for refueling. As PEV use increases, arrival and dwell times of the individual 

PEVs start to coincide with the arrival and dwell time of other PEVs, resulting in sustained 

refueling. Without any additional management of when PEVs are refueled, the maximum utility 

demand is easily increased along with the average demand charge cost.  Both shopping and work 

travel results shows that as more Level 3 eligible PEV vehicles arrive at a refueling station with 

multiple EVSE and valet operations, demand charge cost increases for the EVSE operator, and 

ultimately, for the individual PEV drivers. 
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Figure 7-18: Average demand charge cost for multiple 44 kW EVSE to refuel PEVs used for 

shopping travel 

 
Figure 7-19: Average demand charge cost for multiple 44 kW EVSE to refuel PEVs used for 

work travel 

Installing multiple 120 kW EVSE results in similar trends as seen in Figure 7-18 and 

Figure 7-19 for 44 kW EVSE and have therefore have been omitted for the sake of brevity. 

However, due to the increased power, the results are shifted up on the average demand charge 
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cost versus PEVs plot for all scenarios due to the higher demand charge incurred by using the 

higher power 120 kW EVSE. 

Energy costs experience little to no change as a result of increasing either EVSE power or 

multiple EVSE because energy cost is determined by PEV time of refueling, not the maximum 

demand supplied during the refueling process. 

7.1.3 Sensitivity of Utility Costs 

The results presented in Section 7.1.1 and 7.1.2 are the averaged results of numerous 

simulations using the applicable model described in Section 0. Each individual simulation 

stochastically produces different energy and demand charge costs that are averaged to produce 

the results presented in Section 7.1.1 and 7.1.2. This section presents the variation of individual 

simulations versus the average results. 

Figure 7-20 and  

 

Figure 7-21 show the standard deviation of average energy charge during the summer 

versus number of chargeable PEVs per month for shopping and work travel respectively for one, 
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two, four, and eight 44 kW EVSE. For both shopping and work travel, the standard deviation 

decreases as PEV traffic increases. A high deviation is due to the arrival of PEVs at different 

utility peak periods during the day. With little PEV traffic, arrivals at unexpected times produce 

results that vary significantly from the average. As PEV traffic increases, and arrival time at 

expected hours becomes more common and then begins to dominate travel behavior, the effect of 

a PEV arriving at an unexpected hour is reduced and variation across simulations decreases 

except for work with conventional parking. Under this scenario, a PEV that arrives at an 

unexpected time may have a long dwell time. When this occurs during a peak period when PEV 

refueling does not typically occur, the simulation cost differs from the average energy cost. 

However, as more EVSE are installed, expected arrival behavior begins to dominate all of the 

simulations, reducing variation between simulations.  

 
Figure 7-20: Standard deviation of average energy charge cost for shopping travel during the 

summer for one, two, four, and eight 44 kW EVSE  
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Figure 7-21: Standard deviation of average energy charge cost for work travel during the 

summer for one, two, four, and eight 44 kW EVSE 

Winter results are similar to summer results, only shifted down due the elimination of the 

on-peak period, reducing the number of peak periods to two (summer has three). As a result, the 

cost difference between a PEV arriving during an expected peak period versus an unexpected 

peak period is reduced. Increasing EVSE power does not affect variations in the simulation 

results. 

Figure 7-22 and Figure 7-23 show the standard deviation of average demand charge 

during the summer versus number of chargeable PEVs per month for shopping and work travel 

respectively for one, two, four, and eight 44 kW EVSE. Similar to the energy charge statistics, 

the standard deviation decreases as PEV traffic increases.  

When considering a single EVSE and low levels of PEV traffic, the 20 kW threshold may 

not be exceeded during some simulations. This creates a large variation when compared to 

simulations that do surpass the 20 kW threshold. As PEV traffic increases and a demand charge 

occurs consistently, the standard deviation decreases, and any variation in demand charge is due 
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to differences in the total number of kWh delivered to the PEVs (which changes depending upon 

the randomly selected PEV trips). 

 
Figure 7-22: Standard deviation of average demand charge cost for shopping travel during the 

summer for one, two, four, and eight 44 kW EVSE 

 
Figure 7-23: Standard deviation of average demand charge cost for work travel during the 

summer for one, two, four, and eight 44 kW EVSE 

For all scenarios except work with conventional parking, increasing EVSE increases the 

number of PEVs required to consistently reach the new maximum demand charge, increasing 
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variation in demand charge cost between simulations. Once the demand charge is increased 

consistently across the simulations, variations are caused by differences in the total energy 

delivered to the PEVs. 

Due to the typically long dwell time associated with work travel, a single EVSE operated 

under conventional parking can be occupied indefinitely by a PEV that does not incur a demand 

charge. With low PEV traffic levels, it is possible to have an entire simulation with no demand 

charge, increasing variation in the average demand charge across all simulations. 

Increasing EVSE in this situation to two further increases variation in the simulation 

results, as shown in Figure 7-23, because multiple EVSE must arrive at approximately the same 

time to use available EVSE and refuel at the maximum power during the entire time window 

over which the demand charge is determined. When this occurs for some simulations, but not 

others, the standard deviation increases. However, increasing EVSE beyond two allows for a 

higher demand charge to be produced more consistently across the different simulations, 

reducing variation in simulation results. This increased demand charge can still vary between 

simulations, resulting in a permanently high standard deviation across all levels of PEV traffic.  

7.1.4 Discussion 

It is clear from the results that Level 3 EVSE can be prohibitively expensive with little 

PEV use. Average utility rates for these scenarios range from $0.08 to $7.90/kWh. For all 

scenarios tested, between 100 and 150 trips per month must be made by PEVs that are 

compatible with Level 3 EVSE and have a battery state of charge below 80% to reduce average 

demand charge costs below $1.00 per kWh. In some instances, such as for conventionally 

operated EVSE refueling PEVs used for work travel, average demand charge cost cannot be 
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reduced below $1.00 per kWh. If the EVSE is operated using valet parking, approximately 550 

refueling events during the winter (or 1500 total PEV trips), and 800 charging events during the 

summer (or 2000 total PEV trips) must take place in order to reduce the average total utility cost 

below $0.25 per kWh. For shopping travel and valet operations, 670 refueling events per month 

during the winter (or 2400 total PEV trips), and 1400 refueling events per month during the 

summer (or 5000 total PEV trips) are required in order to reduce total average utility cost below 

$0.25 per kWh. Under conventional operations at shopping centers, costs never fall below $0.27 

per kWh during the winter and $0.33 per kWh during the summer. If a goal of installing the 

Level 3 EVSE is to provide an economically competitive transportation fueling option, Level 3 

compatible PEV use must significantly increase, and in some instances, parking management is 

required.  Only in scenarios when both of these facts were considered (valet parking and high 

PEV use) did utility rates drop below $0.25 per kWh. 

If PEV use does increase, certain types of travel are more conducive to improving EVSE 

availability and operational costs. The relatively small difference in average demand charge cost 

between conventional and valet operations for shopping travel suggest that trips resulting in a 

short dwell time do not need as much parking management as trips that result in a long dwell 

time, such as work travel. As dwell time increases (e.g., work travel), parking management must 

be implemented to maintain a driver satisfaction and keep utility costs low. The benefit of a long 

dwell time is the potential to fully refuel all PEVs that arrive at any particular charging station, 

regardless of the amount of PEV use. As such, the most attractive scenario is the situation where 

numerous PEVs arrive with below an 80% state of charge, stay near the EVSE for an extended 

period of time (e.g., work travel), and a system is enacted that follows the valet parking strategy. 
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This combination has the potential to reduce total average cost, including demand charge cost, to 

$0.13 per kWh during the winter and $0.21 per kWh for summer with shopping travel and $0.12 

per kWh during the winter and $0.19 per kWh during the summer for work travel. 

The results also clearly show that while increasing the number of available EVSE can 

improve access to refueling, using a “valet” system can significantly increase PEV refueling 

throughput and reduce cost of electricity while limiting the number of required EVSE. Increasing 

EVSE power, however, does not improve access while increasing cost of electricity. 

When multiple Level 3 EVSE on a single utility meter, additional management beyond 

the simple “valet” system must be implemented in order to ensure that demand charges are not 

unnecessarily increased. Much work has been done on the optimal refueling of PEVs [86–89]. 

Including demand charge costs in PEV refueling optimization would ensure that PEVs are 

refueled while maintaining as low of a demand charge as possible. 

The cost allocation analysis illustrates the challenge of rate design for PEV refueling. At 

low to moderate levels of PEV use, it is impossible to design a simple rate (fixed fee, time of use, 

$ per kWh) that fairly chargers drivers to refuel; the demand charge cost incurred by a few is 

borne by all. This task becomes easier as the number of PEV trips resulting in a battery state of 

charge below 80% increases. However, if the average trip length to the charger remains short, as 

with shopping travel, and only a fraction of the refueled PEVs will have incurred a demand 

charge, fair rate design will remain difficult. A shift towards rates that allocate costs fairly would 

help to eliminate this problem, which could be assisted by sharing information with incoming 

PEV drivers allowing them to opt out of charging if such would incur increased demand charges. 
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But such a system may create another barrier to increasing PEV adoption due to increased public 

confusion as to how much it costs to charge a PEV using public charging infrastructure.  

The results presented in this paper are specific to utilities that have rate structures for 

PEV charging similar to Southern California Edison. If the EVSE were located within the 

territory of a different utility that did not apply demand charges to public PEV refueling in favor 

of increased energy charges, the high costs faced by charging stations when PEV use is low 

and/or conventional parking is in effect may be eliminated. For example, if the EVSE were 

located within the service territory of Pacific Gas and Electric, the second largest utility in 

California, the applicable rate structure would be either the A-1, A-1 TOU, or A-6 TOU rate 

structure if the maximum demand stayed below 200 kW. None of these three rates include 

demand charges, and with the exception of summer on-peak under A-6 TOU, feature energy 

charges that are between $0.14 per kWh and $0.28 per kWh. While the high capital cost 

associated with Level 3 EVSE may still block an investment decision, the issue of electricity 

being too expensive may be significantly reduced in this case. 

7.2 Integrated Level 3 EVSE Analysis 

Since the shopping and work trips are randomly produced using the NHTS data, the 

applicable models described in Section 0 are run multiple times for a given number of PEV trips 

per month to produce the averaged results presented in the current section. The total simulation is 

repeated until the averaged results experience marginal changes due to additional simulations. 

The number of trips considered in this work range from 50 to 10,000 trips per month. Scenarios 

with one, two, four, and eight EVSE integrated with a building are considered. The EVSE power 

levels considered are 44 kW and 120 kW. 
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The results are separated in this section by trip type and by season. EVSE integration 

under the winter utility rate will show the effects of PEV fueling at a building with time of use 

energy and demand charges. Summer results will also show the impact of time of use rates, but 

will also show the effect of when PEV refueling changes the utility rate that the building receives 

electrical service under. 

The results presented in this work are concerned only with the cost implications to both 

the PEV drivers and building. The EVSE operation effect on driver accessibility to the EVSE for 

both conventional and valet operation was studied in [181]. The results in [181]predictably 

showed that conventional parking refuels a fraction of the vehicles that can be refueled when 

valet operation occurs. For a full discussion of the differences in EVSE accessibility between 

conventional and valet operations, as well as analyses of EVSE serviced by a dedicated utility 

meter (or not integrated with a building), please refer to [181]. 

Many of the results are in terms of a difference in cost.  

 For EVSE operation, the difference in cost is between EVSE integrated with a building 

and EVSE serviced by a dedicated utility meter.  

 For the building, the difference in cost is between the cost of electricity before and after 

EVSE integration occurs. 

7.2.1 Shopping Travel 

7.2.1.1 Winter Season and 44 kW EVSE 

Results from [181] showed that approximately 28% of all Level 3 compatible PEVs used 

for shopping trips will arrive with less than an 80% state of charge. The minimum and maximum 
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number of trips tested per month (50 to 10,000 PEV trips per month) correspond to 14 and 2787 

trips that can be serviced using Level 3 EVSE respectively.  

EVSE integration into a building potentially provides access to lower cost of electricity, 

potentially leading to reduced cost of electricity. Figure 7-24 shows the average energy charge 

allocated to the individual PEVs (based on Shapley values) using one, two, four, and eight 44 

kW EVSE during the winter. Since the price of electrical energy only depends on time of 

purchase, the results for Figure 7-24 are independent of building type or size and the presented 

results are consistent across all buildings included in this study. For valet parking, the cost of 

energy is the same regardless of number of vehicles serviced and number of EVSE since a single 

EVSE is capable of meeting almost any demand under valet parking, and the majority of PEV 

refueling occurs during the middle of the day, or mid-peak during the winter,. Under 

conventional parking, the cost of energy increases as more EVSE are installed. Since a single 

PEV can occupy an EVSE indefinitely and vehicles are more likely to arrive early as PEV traffic 

increases, a PEV that arrives during off-peak time can refuel before mid-peak prices become 

applicable and block other PEVs from refueling later, effectively lowering the cost of energy. 

Increasing the number of EVSE reduces the impact of first to arrive PEVs, allowing for later 

arriving PEVs to refuel using mid-peak electricity. Also, while the cost of energy is reduced for 

all PEV traffic levels and operating scenarios, the energy charge reduction is only on the order of 

$0.001 per kWh. 
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Figure 7-24: Energy charges for refueling PEVs performing shopping travel using one, two, 

four, and eight 44 kW EVSE for both conventional and valet parking during the winter 

EVSE integration with a building provides PEV drivers access to lower energy charges 

during the winter. This implies that the building is providing a service in the form of creating 

access to lower cost electricity. Therefore, according to the Shapley value, the building receives 

some compensation for the benefit provided to PEV drivers in the form of slightly reduced 

energy costs. Figure 7-25 shows the difference in energy cost for the buildings as a result of 

integrating one, two, four, and eight 44 kW EVSE during the winter for a 100 kW  average 

demand. The savings provided to the building appears as the inverted amount of energy 

purchased for EVSE operation, as shown in Figure 7-26. The benefit provided by the building to 

the PEVs depends only on the amount of energy consumed by the vehicles. An increase in 

energy delivered produced by either increased PEV traffic or additional EVSE increases the 

amount of energy that can be sold for refueling PEVs, which increases savings. However, since 

the savings are tied to the amount of energy sold to PEV drivers, not the building size, the total 

savings produced by EVSE integration is fixed across all building size. On a savings per energy 

sold basis, as Figure 7-25 is presented, savings are reduced as building size increase since 
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savings do not increase while building size does. Keep in mind that while a cost reduction does 

occur, the maximum benefit shown using multiple EVSE and valet operations results in an 

energy charge savings of $14.40 total for all building profiles and sizes. 

 
Figure 7-25: Building energy charge difference for a 100 kW average  demand as a result of 

integration one, two, four, and eight 44 kW EVSE using conventional and valet parking 

operation during the winter 

 

 
Figure 7-26: Energy delivered to the PEVs during refueling using one, two, four, and eight 44 

kW EVSE operated using conventional and valet operations 
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When EVSE integration occurs, the demand charge cost associated with refueling PEVs 

according to the Shapley value is a combination of splitting already incurred demand charges 

between the building and PEVs as well as any increase to the overall demand serviced by the 

utility. The lowest cost achievable will occur when EVSE integration does not increase 

maximum utility demand, allowing for the demand charge already incurred by the building to be 

shared by multiple users. Deviation from this ideal situation is tied to any increases in maximum 

utility demand. Figure 7-27 shows the increase in maximum demand for all ten winter buildings 

when a single 44 kW EVSE is integrated. The ten buildings are characterized by the 

corresponding load factor. For both conventional and valet parking, buildings with the highest 

load factor consistently experience the largest increase to maximum demand. However, a 

decrease in load factor does not guarantee a small increase to maximum demand, as seen by the 

0.66 load factor building having a smaller demand increase than the 0.29 load factor building.  

 
Figure 7-27: Increase to the 15 minute average maximum building demand for conventional and 

valet parking during the winter for a single 44 kW EVSE 

Interestingly, the 0.35 load factor building experiences the smallest increase to maximum 

demand. Referring to Figure 4-14, the maximum demand for the 0.35 load factor building is 
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established during three instances late in the month. Each of these three instances result in the 

maximum or near maximum demand being achieved and maintained for a short duration of time. 

The other low load factor buildings (particularly the 0.40 and 0.29 load factor buildings) have a 

maximum demand established multiple times through the month and maintained for extended 

periods of time when shopping demand occurs most frequently. As a result, the 0.35 load factor 

building is less likely than the other low load factor buildings to have a PEV arrive and start 

refueling at the same time as when the building demand is highest. So while a high load factor 

typically translates to an increase in maximum utility demand on the order of the installed EVSE 

size, the best way to avoid an increase to maximum demand is to ensure that PEV refueling does 

not coincide with the maximum building demand.  

Figure 7-28 and Figure 7-29 show the demand charge cost for all ten buildings 

normalized to a 100 kW average  demand and the cost difference between EVSE integrated with 

a building and EVSE not integrated with a building (or standalone EVSE) for a single 44 kW 

EVSE. The demand charge costs used for the standalone EVSE were taken from [181]. For both 

Figure 7-28 and Figure 7-29, demand charges are high when PEV traffic is low, and decrease as 

PEV traffic increases. Comparing Figure 7-28 and Figure 7-29 to Figure 7-27 also shows that the 

buildings with the lowest PEV demand charge cost experience the smallest increase to maximum 

demand.  For conventional parking, integrating a single 44 kW EVSE with a building almost 

always reduces overall cost to refuel a PEV. The building with the highest load factor provides 

almost no cost benefit for reducing demand charges unless there is little PEV traffic. The same is 

true under valet operations. For all scenarios, the greatest cost reductions occur when PEV 
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refueling does not coincide with the maximum building demand, reducing any increase to the 

maximum demand provided by the utility. 

 

 
Figure 7-28: Winter demand charge cost and difference with a non-integrated EVSE system for a 

single 44 kW EVSE operated under conventional parking  

 
Figure 7-29: Winter demand charge cost and difference with a non-integrated EVSE system for a 

single 44 kW EVSE operated under valet parking when integrated with then ten building demand 

profiles normalized to 100 kW average  demand 
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Since demand charges under TOU-8 are more expensive than TOU-EV-4, an increase in 

maximum utility demand as a result of EVSE integration can increase the building demand 

charge. Figure 7-30 shows any difference in demand charge cost that the ten buildings 

experience when a single 44 kW EVSE is integrated and the average  demand of the buildings is 

100 kW.  Comparing Figure 7-30 to Figure 7-28 and Figure 7-29 shows both the refueled PEVs 

and the building simultaneously experience a cost increase or decrease. When the maximum 

utility demand is not increased by the full capacity of the installed EVSE, a benefit to both the 

building and EVSE is seen. However, when the maximum demand is increased by the full 

capacity, both the building and the PEVs experience higher cost. The PEVs experience a higher 

cost due to paying higher demand charge rates, and the building pays a higher demand charge 

cost due to being responsible for the increase in PEV demand charge rate. In other words, the 

additional demand charge savings cost incurred by EVSE integration is shared by all parties 

involved.  

 
Figure 7-30: Building demand charge difference for a 100 kW average  demand as a result of 

integrating a single 44 kW EVSE using conventional and valet parking operation during the 

winter 
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Figure 7-31 shows the demand charges for conventional and valet parking when one, 

two, four, and eight 44 kW EVSE are integrated with the 0.52 load factor building demand 

profile normalized to 100 kW average  demand. For conventional operations, Figure 7-31 shows 

that increasing the number of EVSE increases demand charge cost slightly at low levels of PEV 

traffic, but decreases cost at high levels of PEV traffic. This occurs because the refueling of 

PEVs using multiple EVSE operated with conventional parking typically do not coincide with 

each other. As a result, while an increase in EVSE may result in increased demand, the increase 

does not increase linearly with the number of EVSE installed. Under valet parking, refueling of 

any queued PEVs begins as soon as a prior PEV is finished fueling, ensuring that multiple EVSE 

are refueled simultaneously and the full capacity of the EVSE station is achieved. This increased 

demand translates to an increase in maximum utility demand, resulting in increased demand 

charge cost when multiple EVSE are installed and operated using valet parking. The results 

presented in Figure 7-31 are for the 0.52 load factor building only. However, the results are 

similar for all other buildings with the difference being the absolute level of the demand charge 

cost. Buildings with higher or lower cost for a single EVSE respectively experience higher or 

lower cost with multiple EVSE than what is presented in Figure 7-31.  
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Figure 7-31: Winter demand charge cost for one, two, four, and eight 44 kW EVSE operated 

using conventional and valet parking while integrated with the 0.52 load factor building demand 

profile normalized to 100 kW average  demand  

An increase to maximum utility demand due to EVSE integration does not necessarily 

correlate to increased demand charges for the building. Figure 7-32 shows the difference in 

demand charge cost for the 0.29, 0.52, and 0.74 load factor buildings with 100 kW average  

demand when one, two, four, and eight 44 kW EVSE are installed. Under conventional 

operations, installing additional EVSE always reduced building demand charge costs. For the 

0.29 and 0.52 load factor buildings, installing additional EVSE allows for demand charge 

savings when PEV traffic is low to be maintained or improved upon as PEV traffic increases. 

Referring back to Figure 7-27, the maximum utility demand is increased less under conventional 

parking. This result is also representative of the fact that the full capacity of the installed EVSE 

may not be fully utilized during the entire month if all arriving vehicles can be refueled in less 

than 15 minutes (or the time scale on which demand charges are applied). If PEV refueling 

produces a 15 minute average demand less than the full capacity of the installed EVSE, then the 
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only portion of the building demand charge that can be shared with the EVSE is reduced. 

Increasing the number of EVSE increases the load created by PEV refueling, increasing the 

amount of demand charge that can be shared between the building and EVSE load. As a result, 

increasing the number of EVSE also increases the savings that can be realized by the building by 

allowing for a larger portion of the demand charge to be shared with those refueling PEVs. 

 

 
Figure 7-32: Building demand charge difference for the 0.29, 0.52, and 0.74 load factor building 

with 100 kW average  demand one, two, four, and eight integrated 44 kW EVSE operated using 

conventional and valet parking during the winter 

Increasing EVSE can also increase savings for valet parking. Figure 7-32 shows an 

increase in cost when two EVSE are installed, which is produced by increased maximum utility 

demand of the aggregated PEV and building load. However, cost is reduced at four and eight 
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EVSE. When multiple EVSE are installed for shopping travel, most PEVs begin refueling at time 

of arrival. While this increases demand charge cost for PEVs when multiple vehicles are 

simultaneously refueled, this may occur when building demand is relatively low. As a result, the 

peak refueling demand and building demand are not coincident, and the PEV refueling is 

primarily responsible for the increase to maximum demand. When this occurs, the building cost 

is reduced even though PEV demand charge cost increases. 

Prior results have shown that costs for both the building and PEVs can be reduced by 

ensuring that refueling of PEVs is not coincident with maximum building demand. This may be 

accomplished by integrating EVSE with larger buildings. Figure 7-33 shows the demand charge 

for one and eight 44 kW EVSE integrated with the 0.52 load factor building normalized to 100 

kW, 500 kW, 1000 kW, and 2000 kW average  demand for both conventional and valet 

operations. By integrating the 44 kW EVSE with larger buildings, the relative size of the PEV 

refueling load is reduced compared to the building and the chances of the combined building and 

PEV load increasing the maximum utility is reduced. When this is accomplished, PEV demand 

charge cost is reduced. Keep in mind that once a building size has been increased sufficiently 

such that the additional PEV refueling load does not increase maximum utility demand, the 

largest demand charge cost reduction benefit has been realized and no further demand charge 

benefit can be realized as a result of increasing the building size. This is seen in Figure 7-33 as a 

decrease in improved savings as the size of the building increases beyond 500 kW. 



326 

 

 
Figure 7-33: Winter demand charge cost for one and eight 44 kW EVSE operated while using 

conventional and valet operations while integrated with the 0.52 load factor building demand 

profile normalized to 100 kW, 500 kW, 1000, kW, and 2000 kW average  demand  

Contrary to some prior results, an increase in demand charge savings for PEVs is not 

coupled with an increase in demand charge savings for buildings. Figure 7-34 shows the building 

demand charge difference when a single 44 kW EVSE is integrated with the 0.52 load factor 

building with a 100, 500, 1000, and 2000 kW average  demand. As discussed earlier, if the 

EVSE load can be integrated without increasing demand charges and the maximum amount of 

demand charge is shared between the building and EVSE, no further reduction in demand charge 
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cost can be realized. Clearly, an increase in building size naturally allows for EVSE integration 

to occur without an increase to maximum utility demand, possible realizing the maximum 

benefit. However, once the maximum benefit to the building has been realized, and any building 

demand increase yields no further savings, demand charge cost savings on a per unit energy basis 

decrease because the savings remain the same as the building size increases. From the 

perspective of the building, this is representative of sharing only a portion of the entire building 

demand charge with the EVSE load, indicating that the possible value created by EVSE 

integration is dwarfed by the sheer size of the building. 

 
Figure 7-34: Building demand charge difference for a single EVSE integrated with the 0.52 load 

factor building with an average  demand of 100, 500, 1000, and 2000 kW during the winter. 

7.2.1.2 Summer Season and 44 kW EVSE 

The two primary differences between summer and winter seasons are possible on-peak 

and mid-peak demand charges if the applicable rate under TOU-8 is rate B, and the possibility of 

EVSE integration resulting in a rate switch from the original rate to the other rate. The results for 

the number of simulations that did and did not result in a rate switch will be presented, followed 
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by the results for when a rate switch does and does not occur. Keep in mind that while the end 

user can select which rate (A or B) their building will operate under, this work assumes that the 

lower cost rate will always be adopted. 

Of the ten buildings tested during the summer season, five originally took service under 

rate A and the other five took service under rate B. For a switch from A to B to occur, sufficient 

energy must be consumed without increasing the maximum utility demand in order to increase 

energy cost such that the more expensive demand charges used by rate B provide lower cost 

service. Since the purpose of Level 3 fast charging is to deliver a relatively small amount of 

energy quickly, the increase in energy consumption without an increase in maximum utility 

demand does not occur and no simulation of a building that previously preferred rate A resulted 

in a switch to B. However, the converse, where a building operating under rate B switches to rate 

A, does occur when the building profiles tested were sized to 100 and 500 kW average demand. 

A rate switch from B to A does not occur for the 1000 or 2000 kW buildings. 

This type of rate switch is most common in the smallest building tested; that with 100 kW 

average demand. The percent of total simulations for which a rate switch occurred when EVSE is 

integrated with a 100 kW average demand is shown in Figure 7-35 for one and two EVSE. 

Information for four and eight EVSE is not shown because the results are the same as for two 

EVSE, with nearly every simulation for both operational strategies resulting in a rate change. 

The results show that the lower load factor buildings are more prone to a rate switch. Also, since 

valet parking results in more energy being sold to PEVs when only one or two EVSE are 

considered, a rate switch from B to A is not as common at moderate PEV traffic for the high load 

factor buildings and high PEV traffic for lower load factor buildings.  
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Figure 7-35: Percent of simulations in which a rate switch from B to A occurred for the five 

buildings with a 100 kW average  demand that originally took service under rate B during the 

summer for one and two 44 kW EVSE 

The rate switch from B to A occasionally occurs at 500 kW, but with less frequency than 

the 100 kW building. Also, rate switches only occur for the 0.68 and 0.66 load factor buildings. 

No rate switch occurs when only one 44 kW EVSE is integrated and when PEV traffic is low 

across all other scenarios. As PEV traffic increases, a rate switch is more common under valet 

operations for the 500kW average demand buildings. The maximum number of simulations for 

which a rate switch occurs is for 8 EVSE using valet operations, for which approximately a third 

of all simulations for both buildings resulted in rate switches. The cost results for both the 

buildings and PEVs are similar to what is presented for the 100 kW buildings. Keep in mind that 
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a rate switch only occurs when the maximum possible demand from the integrated EVSE is 

comparable to the building load. By simply integrating EVSE with large buildings, a rate switch 

will not occur. In fact, a rate switch is a relatively rare occurrence that was manifested in only a 

portion of the model runs when the tested average demand was relatively similar in size to the 

maximum capacity of the integrated EVSE. When a rate change does not occur, the aggregated 

PEV refueling and building demand remain on the same rate as the original building.  

Since PEV travel does not significantly change between the winter and summer season, 

the energy cost associated with refueling PEVs during the summer is similar in shape to 

refueling PEVs in the winter. While having the same shape as winter energy charges, the 

summer energy charges are more expensive due to the increase in cost to purchase electricity 

during the middle of a summer day. For buildings that select A, PEV energy costs under 

conventional parking start at $0.194 per kWh at low traffic levels, and decrease linearly to $0.17 

per kWh at the highest PEV traffic levels tested. Under valet parking, PEV energy costs are 

approximately $0.194 across all PEV traffic levels tested. EVSE integration with a building that 

operates under rate A results in an increase in electrical energy cost of approximately $0.03 per 

kWh versus if the EVSE received utility service under a single utility meter.  For buildings that 

select B, PEV energy costs under conventional parking start at $0.125 per kWh at low traffic 

levels, and decrease linearly to $0.12 per kWh at the highest PEV traffic levels tested. Under 

valet parking, PEV energy costs are approximately $0.125 across all PEV traffic levels tested. 

EVSE integration with a building that operates under rate B results in a decrease in electrical 

energy cost of between $0.025 and $0.03 per kWh versus if the EVSE received utility service 

under a single utility meter 
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PEV demand charges during the summer have the same shape as during the winter. 

However, since half the buildings operate under rate A and the other half under rate B, the 

demand charge profile versus PEV traffic splits into an A and B group, as seen in Figure 7-36 for 

conventional parking and Figure 7-37 for valet parking. Both figures show results when a single 

EVSE is integrated with a 100 kW building. Since the rate A demand charge during the summer 

is the same as the winter, the results in terms of cost and difference versus a standalone EVSE 

system are virtually identical. The buildings that take service under rate B, however, have 

additional on-peak and mid-peak demand charges that increase costs to the point where demand 

charge cost increases are greater than the case of connecting the EVSE to a dedicated utility 

meter.  

 
Figure 7-36: Demand charge cost and difference in cost with a standalone EVSE station 

operated using conventional parking when a single EVSE is integrated with 100 kW average  

building demand during the summer 
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Figure 7-37: Demand charge cost and difference in cost with a standalone EVSE station 

operated using valet parking when a single EVSE is integrated with 100 kW average  building 

demand during the summer 

Buildings operating under rate A experience a similar demand charge cost difference, as 

seen in Figure 7-38. Buildings operating under rate B, however, can experience a larger increase 

to demand charge costs. The increased cost grows along with PEV traffic, and is consistently 

high or highest for the high load factor buildings. Keep in mind that some buildings always 

switched rates at an average demand of 100 kW, and do not have results for some levels of PEV 

traffic, resulting in only line segments appearing in Figure 7-38.   



333 

 

 
Figure 7-38: Building demand charge difference for a single EVSE integrated with 100 kW 

average demand during the summer 

Increasing building size can help to reduce cost when rate B is applicable, as seen during 

the winter. However, for all buildings except the 0.76 load factor building, average demand must 

be increased to 2000 kW before savings can consistently be produced across most PEV traffic 

levels. Figure 7-39 shows only the difference in cost between multiple EVSE integrated with the 

2000 kW 0.84 load factor building for both conventional and valet operations. The results show 

that the increase in cost due to EVSE integration can be significantly reduces and turned into a 

savings. Under conventional operations, these savings can be maintained unless eight EVSE are 

installed and under valet operations until PEV traffic reaches the highest levels tested in this 

work when four and eight EVSE are installed and moderate traffic levels when one or two EVSE 

are installed. Results for all other buildings are similar in shape. The values are also similar 

except for the prior mentioned 0.76 load factor building, which experiences a demand charge 

savings for all number of EVSE and operational strategies tested at 2000 kW and up until the 

highest PEV traffic levels tested for 1000 kW. Additionally, for all buildings, whenever a 
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demand charge savings can be realized for PEVs, a reduction in overall demand charge cost can 

be realized by the building as well, further indicating the importance of integrating EVSE in such 

a way that the maximum utility demand is not increased. 

 
Figure 7-39: Difference in PEV demand charge cost when multiple EVSE are integrated with the 

0.84 load factor building with an average demand of 2000 kW during the summer 

A rate switch from B to A occurs when the maximum utility demand has been increased 

during peak periods such that the peak demand charges become overly expensive. As already 

discussed, this economic phenomena only occurs when the installed EVSE is similar in size to 

the building demand. In particular, the buildings with an average demand of 100 kW are prone to 

switching rates as a result of EVSE integration. Note that since the rate switch is driven by an 

increase in maximum utility demand, the exact PEVs that cause the increase can be determined 

and separated into a “switching” PEV group. The remaining PEVs belong to the “non switching” 

group. By separating between these two groups, the true cost of refueling the switching PEVs (or 

refueling vehicles during peak periods when building demand is highest) can be determined. 

Under conventional parking, the percent of vehicles creating the rate switch is between 5% and 
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15% of all refueled vehicles. Under valet parking, the percent of vehicles creating the rate switch 

is between 5% and 15 % for the 0.84, 0.76, and 0.66 load factor buildings and 5% and 30% for 

the 0.68 and 0.69 load factor buildings.  

After the two groups of PEVs have been determined, the demand produced by refueling 

the two groups can be produced, and the cost to refuel the individual groups determined. Figure 

7-40 shows the energy charges for both groups of PEVs when integrated with the five buildings 

that originally took service under rate B. For the group of PEVs that did not contribute to the rate 

switch, energy charges lie between the rate A and rate B charges, signifying that if only these 

PEVs had been refueled, the lower rate B energy rates would have applied, but the actual cost is 

greater due to the application of rate A energy rates. Energy rates for the group of PEVs that 

caused the rate switch are extremely high. Since the switching PEV group are responsible for all 

other participants (the building and the non-switching PEV group) paying higher energy charges, 

the switching group must bear some of the increased cost of every other kWh purchased by the 

building and other PEV group. Since the group of switching PEVs is a fraction of the total 

refueled PEVs, and the PEV load is a small portion of the total load, the resulting cost of energy 

ranges from the hundreds to the tens of dollars per kWh. 
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Figure 7-40: Energy cost for PEVs that did and did not cause a rate switch from B to A when 1 

EVSE is integrated with a 100 kW average  demand building during the summer 

While the group of switching PEVs is responsible for an increase in energy cost for every 

kWh purchased, the same group is also responsible for the elimination of on-peak and mid-peak 

demand charges. Figure 7-41 shows the summer demand charge for both groups of PEVs under 

conventional and valet operations. While the non-switching PEV group experiences typical 

demand charges, the switching group experiences a significant demand charge savings as a result 

of eliminating peak demand charges. The combination of the energy charges and demand 

charges results in a more palatable cost to refuel this group of PEVs ranging between one to two 

dollars per kWh under conventional operations and between 0.35 and 0.65 dollars per kWh under 

valet operations. 
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Figure 7-41: Demand cost for PEVs that did and did not cause a rate switch from B to A when 1 

EVSE is integrated with a 100 kW average  demand building during the summer 

The total cost for the buildings with an average demand throughout the month of 100 kW 

and a single integrated 44 kW EVSE also changes, as shown in Figure 7-42. The results show 

that all buildings, except for the 0.68 load factor building under conventional operations or at 

low traffic levels under valet operations, experience an increase to cost. Similar to the situation 

where no rate switch occurs, reducing load factor may or may not create a cost reduction. 
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Figure 7-42: Difference in total building cost for the buildings with a 100 kW average  demand 

that experience a rate switch from B to A during summer months 

7.2.1.3 Difference between 44 kW and 120 kW EVSE 

Prior work on non-building-integrated EVSE has shown that increasing the EVSE power 

output from 44 kW to 120 kW increases the number of PEVs that leave the EVSE station fully 

charged, increasing demand charges, but does not necessarily improve access to the station, 

especially if conventional parking is implemented [181]. When integrating EVSE with a 

building, the move to 120 kW also increases demand charges. Figure 7-43 shows the difference 

in demand charges between when a 120 kW and 44 kW EVSE are integrated with a 100 kW 

building during the winter. Increasing EVSE power output from 44 kW to 120 kW effectively 

doubles the demand charges for all buildings, operational scenarios, and PEV traffic levels. 
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Figure 7-43: Difference in PEV demand charges between a single 44 kW and 120 kW EVSE 

integrated with 100 kW building during the winter 

The increase in PEV demand charges is not always coupled with an increase in building 

demand charges, as seen in Figure 7-44. Figure 7-44 shows the difference in cost when a 100 kW 

building integrates a single 120 kW EVSE versus a 44 kW EVSE. Under conventional 

operations, the switch to a 120 kW EVSE always increases demand charge costs for the building 

as well. Under valet operations, cost increases except for the buildings that experienced either the 

largest cost increase or smallest savings when integrating 44 kW EVSE. These buildings, which 

also experienced the largest increase in maximum demand as a result of 44 kW EVSE 

integration, experience a reduction in cost because of faster refueling during off-peak times. 

Since the EVSE operates at 120 kW, demand charges would already be high prior to integration, 

and when the maximum utility demand is increased significantly when the building demand is 

relatively low, the increase in demand charge is due primarily to the EVSE only, resulting in a 

reduction in cost for the building. Keep in mind that any savings produced are on the order of 

$0.0001 per kWh. Also note that the buildings with the largest cost increases are the buildings 

that experience the greatest savings as a result of integrating 44 kW EVSE (versus 120 kW 
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EVSE). Switching to 120 kW EVSE eliminates any possible benefit of splitting the demand 

charge cost between multiple loads for these specific buildings. 

 
Figure 7-44: Difference in building demand charges produced by integrating either a single 120 

kW or 44 kW EVSE with 100 kW building during the winter 

Integrating multiple EVSE across any type of building demand will always increase PEV 

demand charges. Building demand charges will generally increase except when the switch from 

44 kW to 120 kW creates a large increase in demand when the building demand is relatively low. 

During the summer, demand charges are increased for both PEVs and buildings except for the 

aforementioned scenario of an increase in utility demand during low building load periods. For 

the 100 kW building, rate switching from rate B to A occurs across all number of installed EVSE 

scenarios, all operation strategies, and all PEV traffic levels, and the resulting costs are similar to 

what is presented in Section 7.2.1.2. 

7.2.2 Work Travel 

The primary differences between work and shopping travel is the dwell time at work can 

be considerably longer than while shopping, the drivers arrive more frequently in the morning, 



341 

 

and the average vehicle miles travelled to work is higher. Due to the increase in vehicle miles 

traveled, approximately 38% of all vehicles arrive with a state of charge below 80% and can be 

refueled using Level 3 EVSE.  

Just as with shopping travel, PEV energy charges are associated only with time of energy 

purchase, not with building shape or size. Figure 7-45 shows the PEV energy cost incurred when 

multiple EVSE are integrated and operated using conventional and valet operations. Since more 

vehicles arrive early in the morning during off-peak, electricity cost actually increases for all of 

conventional operations and valet operations when PEV traffic is low. If multiple EVSE are 

integrated, refueling of most arriving vehicles can be accomplished before mid-peak, increasing 

cost across all PEV traffic levels. If one or two EVSE are integrated and operated using valet 

operations, refueling of all queued vehicles extends into the mid-peak and on-peak, resulting in a 

reduction in energy cost only at high PEV traffic levels. PEV energy cost is increased by 

between $0.0015 and $0.002 per kWh for conventional operations and by $0.0005 per kWh for 

four and eight EVSE operated under valet operations. If one or two EVSE are installed and 

operated under valet operations, the cost increase at low PEV traffic is $0.005 per kWh, but turns 

into a savings of between $0.0006 and $0.001 per kWh at high PEV traffic. 
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Figure 7-45: Energy charges for refueling PEVs performing shopping travel using one, two, 

four, and eight 44 kW EVSE for both conventional and valet parking during the winter 

Predictably, any increase or decrease to PEV energy cost is coupled respectively with an 

increase or decrease to building energy cost. Figure 7-46 shows the difference in building energy 

cost when multiple 44 kW EVSE are integrated with a 100 kW building. 

 
Figure 7-46: Building energy charge difference for a 100 kW average demand as a result of 

integration one, two, four, and eight 44 kW EVSE using conventional and valet parking 

operation during the winter and work travel 
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Figure 7-47 shows the difference in demand charge created by taking a standalone 44 kW 

EVSE and integrating the system with a 100 kW building. Clearly, cost can be significantly 

reduced under conventional parking. Note that the building that provided the greatest demand 

charge reduction for shopping travel continues to provide the greatest savings for work travel. 

Since work travel results in early arrivals, conventional operation results in PEV refueling 

occurring during off-peak times, which is commonly associated with low building demand. 

However, since work travel results in an increase in Level 3 eligible vehicles, valet operations 

result in an PEV refueling occurring consistently throughout the entire day, ensuring the 

maximum utility demand is increased and PEV demand charge cost is increased at nearly every 

building. 

 
Figure 7-47: Difference in PEV demand charge cost for a single 44 kW EVSE servicing work 

travel integrated with a 100 kW building during the winter 

The difference in PEV demand charge cost is correlated to the difference in building 

demand charge cost. Whenever EVSE integration produces savings for PEV customers, building 

demand charge cost is decreased. Whenever costs are increased for PEV customers, cost for the 

building is also increased.  
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The results presented for multiple EVSE, different building size, and season are all 

similar for work travel. In summary, increasing EVSE can reduce demand charge cost under 

conventional operations but increase cost under valet operations, increasing building size tends 

to reduce PEV demand charge cost and reduces any building impact, demand and energy charges 

increase significantly during the summer, and rate switches occur frequently for small buildings 

with a high load factor. 

7.2.3 Discussion 

The most obvious result of this work is that if EVSE integration provides lower cost 

energy for PEVs, then integration will reduce costs. However, for many of the scenarios 

presented in this work, the solution to the question of should we integrate EVSE with buildings 

is not clear cut. In the particular example of Southern California Edison rate structures, 

integration leads to increased demand charges that complicate the analysis. Clearly, when the 

maximum utility demand of the combined building and PEV load is increased by the capacity of 

all EVSE installed, cost is increased for both parties. Valet parking leads to the greatest increase 

for both shopping and work travel. Valet parking also leads to the overall lowest demand charge 

cost for PEVs, suggesting that any valet station in Southern California should not be integrated 

with a building. If conventional operations are to be used, then the opposite is true, where 

integration with a building can produce lower costs. 

The most consistent cost reductions are achieved when integrating with larger buildings. 

While a building with a high load factor provides the least amount of opportunity to reduce cost, 

a building with a low load factor may not provide much more opportunity if the maximum 

building demand regularly coincides with PEV refueling. In addition, if building operations 
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change in the future, a previously attractive building for EVSE integration may cease to be 

attractive. From the perspective of reducing risk due to future uncertainty, integration with a 

larger building definitely reduces any variation in future performance. 

The largest cost savings for PEVs and buildings is due to the sharing of demand charges. 

Even during the summer under rate B, savings can be produced for both parties. However, as the 

difference in demand charges from the EV to the building rate increases, the importance of PEV 

refueling not coinciding with maximum building demand becomes paramount to maintaining 

consistent savings. Whenever this is accomplished, EVSE integration with a building can 

continue to provide value.  Controlled or smart charging could be used to assure PEV charging 

that does not coincide with building peak demand. 

One important result of this work is the scale of savings or costs for both the PEV and 

building operators. While building integration can lead to savings of up to 50% for PEVs, the 

cost impact to a building is marginal. Even for the smallest building load evaluated with the 

highest load factors, total cost increases were within the range of hundreds of dollars. While this 

is not desirable from the perspective of a building operator, the other potential benefits 

associated with public EVSE may outweigh this potential cost. Keep in mind though that 

typically, a cost increase for the building is also coupled with a cost increase for PEVs as well. If 

the goal is the maximize the cost of refueling PEVs, and integration with a large building occurs, 

then the actual portion of the demand charge that is split is only a fraction of the total building 

demand charge, eliminating much of the benefit for the building. However, by integrating with a 

larger building, the impact of any cost increase is also reduced due to the sheer size of the 

building and corresponding total cost of electricity. 
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To add even more incentive to avoid integration with high load factor, low power 

demand buildings, the increase in cost for a building due to a possible rate switch can actually 

significantly increase the cost of electricity for a building, with a cost increase of nearly $0.01 

per kWh being observed for the 0.84 load factor building with 100 kW average demand. This 

result is not necessarily specific to the Southern California Edison rates since other large utilities, 

such as Florida Power and Light, Georgia Power, and Xcel Energy all have multiple rates for 

commercial and industrial customers to select from. Such a rate switch is not automatic and 

would only occur under the direction of the utility customer. However, the rate switch always 

results in a reduced cost of electricity for the aggregated PEV refueling and building load, even if 

the PEVs or buildings may experience a higher allocated utility cost. 

In addition, when a small number of PEVs are responsible for the rate switch, the cost 

associated with refueling those specific vehicles is very high. If the rate structure used to charge 

PEV drivers to refuel does not take into account the additional cost at refueling when building 

demand is high and a rate switch may occur, then the majority of drivers will be forced to 

subsidize the additional cost incurred by a few drivers. This can be avoided by electing to remain 

on the same rate, but at a higher total cost than the other available rates. 

Much of the current research on PEV refueling treats the additional load as controllable 

in the sense that some operator can adjust the demand to meet some objective. This work further 

lends credence to the need for robust control of PEV refueling. When uncontrolled PEV 

refueling occurs (particularly for high load factor buildings), the cost benefits provided by 

building integration are reduced or eliminated, particularly when a rate switch occurs. By 

introducing some control of EVSE into the overall building system, the maximum benefits may 
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be retained regardless of the size and shape of the building load profile. However, for this level 

of control to be attractive for PEV drivers, rates charged for refueling PEVs would most likely 

need to be tied to energy delivered to the vehicle, not time spent at the EVSE (unless the PEV 

has been fully refueled) in order for future refueling rates to be acceptable to drivers. 
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8 Impact of PEV Refueling on Optimal DER System Design and 

Operation 

The integration and operation of EVSE at a building to refuel electric vehicles will 

augment the electrical demand created by building operations. If the adoption of both DER and 

EVSE systems occurs simultaneously, the adoption and operation of one set of technology may 

influence the adoption and resulting operation of the other set of technology. 

The problem of considering both DER and EVSE system adoption and operation has 

been formulated for three simple scenarios in this section of the current work. Section 3.4.3.1 

presents a stochastic formulation of the DER system optimization model designed to also capture 

the decision to invest in and operate EVSE for the uncontrolled public refueling of PEVs or 

hybrid electric vehicles. Section 3.4.3.2.1 presents a deterministic formulation of the DER 

system optimization model designed to also capture the decision to invest in and operate vehicles 

(including electric vehicles) where the routes are already known. Finally, Section 3.4.3.2.2 

further modified the DER system optimization to address the decision to invest in and operate 

vehicles when a set of destinations, or nodes, is known, but the routes to the different nodes is 

unknown and to also be optimized. 

Countless scenarios and applications exist where the optimization models may be 

applied. The current work cannot consider all possible options of how electric vehicles impact 

building operations and the decision to invest in and operate a DER systems. These models can 

be used to begin to shed light into how the refueling of electric vehicles may affect DER system 

design and operation. In addition, as seen in Section 0, current PEV and EVSE prices are high 

enough to block the adoption if the goal is to minimize overall cost and conventional vehicle 
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options exist. With this in mind, the focus of this section will be on determining the capital cost 

at which electric vehicle technologies are adopted. For uncontrolled public refueling of PEVs, 

the focus will be on determining the capital cost at which a building operator may decide to 

invest in public EVSE, and will use the model described in Section 3.4.3.1. For fleet vehicles, the 

focus will be on determining the capital cost at which the adoption of PEVs occurs when a 

conventional vehicle option exists, and will use the model described in Section 3.4.3.2.2.  

8.1 Adoption of Public EVSE 

As discussed earlier, the decision to install and operate public EVSE depends upon the 

probability of certain scenarios occurring. This decision depends upon the expected number of 

vehicles that will show up to be refueled. The vehicle behavior can vary as the total number of 

electric vehicles on the road changes, or driving patterns change. Even if these parameters stay 

the same, random travel behavior may result in different operation from week to week or month 

to month. As a result, the stochastic formulation presented in Section 3.4.3.1 is designed to 

include any possible scenario that a building operator expects to occur, considering the 

probability that each event will occur. 

Due to the uncertainty associated with travel patterns and future PEV adoption, as well as 

the different EVSE technology options available, a nearly infinite number of EVSE operation 

scenarios exist. Many of these scenarios can be eliminated from consideration prior to 

optimization. For example, the results presented in Section 0 suggest that the electricity demand 

profile created by Level 3 EVSE is undesirable. Coupled with the currently high capital cost 

associated with Level 3 EVSE, the decision to omit this technology from consideration can be 

made. Also, considering that Level 1 EVSE refuels electric vehicles slowly (perhaps too slowly 
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for public refueling), the technology scenarios evaluated in this section will be limited to those 

that consider Level 2 EVSE. 

Within Level 2 EVSE, multiple power levels exist. The most commonly used power level 

associated with Level 2 EVSE is 6.6 kW. However, despite potential problems associated with 

demand charges, EVSE with higher power output may be desired in order to refuel electric 

vehicles more quickly. As a result, an additional set of Level 2 EVSE operating at 14.4 kW will 

be considered in the current analyses. 

Considering the available technology, two different scenarios are considered. The first is 

6.6 kW Level 2 EVSE operated using conventional parking installed at a building that 

experiences primarily shopping traffic. It is assumed that PEV traffic is low. The second scenario 

considers 14.4 kW Level 2 EVSE operated using valet parking installed at the same building 

considered during the first scenario. In this scenario, it is assumed that PEV traffic level is high.  

These two scenarios somewhat span the range of possibilities for consideration of adopting level 

2 EVSE for integration with this particular building. 

The building considered in this work is the UCI Natural Sciences 1 building. This 

building has an average electrical demand of 431 kW with an electrical load factor of 0.50. The 

heating demand is coincident with the electrical demand 93% of the time, and the ratio of the 

total heating load to the electrical load is 0.59. While other buildings exist with larger electrical 

demand, this building has a load small enough that EVSE may affect DER system optimization, 

while remaining large enough to adopt a DER system. 

Note that the projected electrical demand as a result of EVSE adoption is determined 

using the EVSE operation model described in Section 3.3.2. This model assumes that any 
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electric vehicle arriving at this station that can be refueled, will be refueled, regardless of the cost 

to refuel. This is an overly optimistic model that most likely exaggerates the resulting EVSE 

operation for a given traffic level. However, the benefit of this model is that it establishes the 

most supportive scenario for EVSE adoption. In other words, if EVSE adoption does not occur 

under the conditions produced using the EVSE operation model at a given traffic level, it is 

unlikely that adoption would occur under more realistic conditions. 

The current work does not attempt to resolve the probability that PEV adoption or traffic 

to a certain area will increase or decrease over time. Instead a specific probability associated with 

the set of PEVs and travel patterns considered or certain scenario is assumed for each case. Both 

the 6.6 and 14.4 kW scenarios have an assumed high, average, and low PEV traffic level from 

which a charging profile is generated. The assumed probability for these traffic levels are as 

follows: high traffic occurs 30% of the time, average traffic occurs 50% of the time, and low 

traffic occurs 20% of the time.  

The stochastic model only considers the adoption of a CHP system consisting of a DG, 

HRU, and EES. The parameters used for the DG and CHP are the same as used in Section 5 and 

are described in Table 5-1. The parameters used for the EES are the same as used in Section 0 

and are shown in Table 6-1. Three DER system scenarios are considered. They consist of 1) fuel 

cells, microturbines, and a heat recovery unity, 2) electrical energy storage only, and 3) fuel 

cells, microturbines, a heat recovery unit, and electrical energy storage. The optimization results 

for these three scenarios without an option to adopt public EVSE is shown in Table 8-1. 

Table 8-1: Optimal DER system adoption for the three technology scenarios at the UCI 

Natural Sciences 1 building 
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Technology 
Scenario 

Fuel Cell 
(100 kW) 

Microturbine 
(65 kW) 

HRU 
(kW) 

EES 
(kWh) 

FC/MTG/HRU 6 4 320 n/a 
EES n/a n/a n/a 115 

FC/MTG/HRU/EES 6 3 320 66 
 

The purpose of this part of the study is to determine the capital cost at which EVSE is 

adopted. The adoption of EVSE at a certain capital cost must balance the initial investment and 

cost of supplying electricity to the EVSE against the revenue generated by the equipment. Prior 

work performed by White has suggested that charging a customer $0.50 per kWh to refuel their 

PEV would cover operating costs and recoup the initial investment associated with Level 2 

EVSE [182]. Assuming that a customer is charged $0.50 per kWh delivered, the EVSE capital 

cost will be reduced from an initial investment cost of $30,000 per EVSE by $1,000 until 

adoption occurs when no DER system is considered, and when all three of the DER system 

configurations are considered. 

8.1.1 6.6 kW Level 2 EVSE 

The assumed traffic levels for the 6.6 kW Level 2 EVSE analysis are 1000 PEVs per 

month (low traffic), 1500 PEVs per month (average traffic), and 2000 PEVs per month (high 

traffic).  The travel and EVSE operation models were used to produce refueling profiles when 

one, two, three, and four 6.6 kW EVSE are operated under conventional parking. Three days of 

Level 2 EVSE operation are shown for all EVSE configurations in Figure 8-1. 



353 

 

 
Figure 8-1: Refueling profiles generated by the three traffic scenarios when one, two, three, or 

four 6.6 kW EVSE are adopted and operated using conventional operations. 

When no DER system was considered, adoption of 6.6 kW Level 2 EVSE did not occur 

until the capital cost of an individual 6.6 kW Level 2 EVSE was reduced to $4,000 per charger 

installed. Once capital cost had been reduced to this level, a single EVSE was adopted. This cost 

was then used in determining optimal DER and EVSE system adoption.  

The resulting optimal DER and EVSE systems for the three technology scenarios is 

shown in Table 8-2. Note that the only difference in DER adoption occurs under the scenario 

where all technologies are considered. Under this scenario, the size of the EES is reduced from 

66 kWh to 64 kWh. Also, under the EES scenario, Level 2 EVSE adoption did not occur. 
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Table 8-2: DER system adoption for the three technology scenarios at the UCI Natural Sciences 

1 building when considering 6.6 kW Level 2 EVSE at $4,000 per charger 

Technology 
Scenario 

EVSE 
(6.6 
kW) 

Fuel Cell 
(100 kW) 

Microturbine 
(65 kW) 

HRU 
(kW) 

EES 
(kWh)

FC/MTG/HRU 1 6 4 320 0 
EES 0 0 0 0 115 

FC/MTG/HRU/EES 1 6 3 320 64 
 

In addition to adopting virtually the same systems, the operation of the DER systems 

remains nearly unchanged as a result of EVSE adoption. This results from the fact that the EVSE 

load is relatively small when compared to the load of the building. Figure 8-2 shows electrical 

demand for the UCI Natural Sciences 1 building for a single day with the three EVSE demand 

profiles shown in Figure 8-1 for a single 6.6 kW Level 2 EVSE. Since only a single 6.6 kW 

EVSE is adopted, the overall impact experienced by the building is very slight. These results 

suggest that low capital cost is required in order for 6.6 kW Level 2 EVSE adoption to occur 

when PEV traffic is low, and that the resulting impact on overall building operations is 

negligible. 
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Figure 8-2: UCI Natural Sciences 1 electrical demand for a single day when a single 6.6 kW 

EVSE is adopted and experiences three separate PEV traffic level scenarios 

8.1.2 14.4 kW Level 2 EVSE 

The assumed traffic levels for the 14.4 kW Level 2 EVSE analyses are 6000 PEVs per 

month (low traffic), 8000 PEVs per month (average traffic), and 10000 PEVs per month (high 

traffic). The travel and EVSE operation models were used to produced refueling profiles when 

one, two, three, four, five, and six 14.4 kW Level 2 EVSE are operated under valet parking. 

Three days of Level 2 operation are shown for all EVSE configurations in Figure 8-3.  Note that 

under valet operations, at high PEV traffic levels, the difference between the different scenarios 

begins to disappear. 
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Figure 8-3: Refueling profiles generated by the three traffic scenarios when one, two, three, four, 

five, or six 14.4 kW EVSE are adopted and operated using valet operations. 

When no DER system was considered, adoption of a single 14.4 kW Level 2 EVSE 

occurred at a capital cost of $24,000 per EVSE. At this cost level, a single charger was adopted. 

This cost was then used in determining optimal DER and EVSE system adoption. 

The resulting optimal DER and EVSE systems for the three technology scenarios are 

shown in Table 8-3. The EES only scenario experiences no difference in adopted technology. 

However, at a cost of $24,000 per EVSE, not only are additional EVSE adopted under both CHP 

scenarios, but additional generators are also adopted. An additional fuel cell is adopted under the 

CHP only scenario, and an additional microturbine is adopted under the CHP and EES scenario. 
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Table 8-3: DER system adoption for the three technology scenarios at the UCI Natural Sciences 

1 building when considering a 14.4 kW Level 2 EVSE at $24,000 per charger 

Technology 
Scenario 

EVSE 
(14.4 kW)

Fuel Cell 
(100 kW) 

Microturbine 
(65 kW) 

HRU 
(kW) 

EES 
(kWh)

FC/MTG/HRU 4 7 3 324 0 

EES 1 0 0 0 115 

FC/MTG/HRU/EES 3 6 4 324 45 
 

Figure 8-4 shows the combined building and EVSE electrical demand for one, three, and 

four EVSE. All three traffic scenarios are shown.  For one EVSE, there is no difference between 

the three traffic scenarios. A slight difference is observed for three and four EVSE during the 

early morning and in the late evening. However, during the majority of the day, there no 

difference in operation between the different traffic levels.  
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Figure 8-4: UCI Natural Sciences 1 electrical demand for a single day when one, three, and four 

EVSE are adopted  

Under the EES only scenario, the dispatch of the EES does not experience any significant 

changes as a result of adopting a single EVSE. Operation for the CHP only and CHP with EES 

scenarios change as a result of adopting different technologies. Figure 8-5 and Figure 8-6 show 

DER system operation over the course of a week for the CHP and CHP with EES technology 

scenarios when EVSE is and is not included as an option respectively.  
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Figure 8-5: CHP system dispatch with and without EVSE adoption at the UCI Natural Sciences 

1 building 

Under the CHP only technology scenario, an additional fuel cell is adopted in lieu of a 

microturbine. As a result, microturbine operation decreases and the seven fuel cells are used to 

meet the majority of the building demand. Microturbine operation continues to only occur when 

the building and EVSE demand surpasses the maximum capacity of the fuel cell system. A side 

effect of the adoption of an additional fuel cell is increased dynamic operation of the entire set of 

fuel cells. Since the fuel cells are used to meet the majority of the building demand, the fuel cells 

are required to perform load following more frequently.  Under this scenario, overall fuel 

utilization (electrical and thermal energy produced divided by fuel energy consumed) for the 

CHP system increases from 62.5% to 63.2% as a result of allowing for EVSE adoption. 
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Figure 8-6: CHP and EES system dispatch with and without EVSE adoption at the UCI Natural 

Sciences 1 building 

Under the CHP and EES technology scenario, an additional microturbine is adopted 

when EVSE is available for adoption. Fuel cell operation remains nearly the same regardless of 

EVSE adoption, with the largest change occurring to an increase in microturbine operation. 

Under this scenario, fuel utilization in the CHP system decreases from 63.6% to 61.8%. 

8.1.3 Discussion 

Currently, plug-in electric and hybrid vehicles make up a small portion of the overall 

vehicle fleet. Unless the EVSE installation is in a high electric vehicle traffic area, the resulting 

electrical demand created by refueling electric vehicles may resemble the intermittent profile 

shown in Figure 8-1. At these traffic levels, the electrical demand associated with EVSE is most 
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stochastic. However, the demand is also relatively small relative to the size of any building that 

would be a suitable candidate for DER system integration. As a result, the randomness associated 

with refueling electric vehicles may not matter simply because the additional electrical demand 

is so small relative to the DER system adopted. In this case, the decision to adopt a DER system 

can be uncoupled from the decision to adopt an EVSE system, with each being accepted based 

on the individual merit of the proposed system.  

As PEV traffic increases and vehicle or parking technology improves such that valet 

parking becomes a realistic parking scenario, the resulting EVSE demand profiles become 

similar regardless of travel level. If a high level of PEV traffic to a certain area can be 

guaranteed, then the stochastic behavior associated with drivers begins to disappear from the 

perspective of the resulting refueling demand profile created by public EVSE. As a result, the 

problem appears to collapse from a problem governed by stochastic processes to a deterministic 

problem. Note that at this high level of PEV traffic, the resulting PEV refueling demand does 

affect the optimal design of a DER system and resulting operation. The actual problem of 

designing the optimal DER system, however, may be predictable enough to be accurately 

modeled using a deterministic model. 

The travel model and probabilities associated with different travel levels were selected in 

part in order to demonstrate overall model performance. The optimization of DER and EVSE 

systems for two relatively fictitious scenarios does shed some light on the overall interplay (or 

lack of) the current need to take into account the public refueling of electric vehicles when 

designing a DER system for a building. The two scenarios, however, are only two points and do 

not define the entire space. At most, the model results show the importance of being able to 
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predict the resulting electrical demand associated with installing public EVSE. With some idea 

of how a potential EVSE system will behave, a building operator can determine if a stochastic or 

deterministic problem formulation is appropriate, or if the two systems will interact in a way that 

influences the design of each other. 

8.2 Optimal DER System and Vehicle Fleet Design 

Similar to the stochastic formulation for uncontrolled refueling of electric vehicles, the 

current state of the optimal DER and vehicle fleet design model is not well suited to analyze all 

options or scenarios for the integration of a DER system and electric fleet vehicles at a building. 

The primarily limitation is the solution method. The program used to solve the mixed integer 

linear program utilizes the branch and cut method. While well-suited for many optimization 

problems, the branch and cut method is limited to being useful only for small vehicle routing 

problems [115].  Increasing the problem size to beyond 20 nodes is impractical. For example, 

one simulation performed during this work included 25 nodes, allowed for only the adoption of 

electric vehicles, and did not include an option of adopting any DER technologies, could not 

converge to an optimal solution after five days of simulation. 

Despite this shortcoming of the current solution method, the small set of nodes presented 

in Section 4.2.2 is small enough that an optimal solution can be found for the overall 

optimization problem presented in Section 3.4.3.2.2. Such an analysis provides the opportunity 

to showcase the potential benefit created by integrating the DER system and fleet design 

problems. 

Using the UCI Natural Sciences 2 building and the node data set presented in Section 

4.2.2, optimal DER system and fleet composition can be determined. This optimization took 



363 

 

place for a CHP system consisting of fuel cells, microturbines, and a heat recovery unit with cost 

and performance parameters defined in Table 5-1. All vehicle parameters, except for PEV capital 

cost, were assumed to be the same as the vehicle parameters used in Section 0 and shown in 

Table 6-3. No PEV adoption occurred with the PEV capital cost assumed in Table 6-3, so that 

the cost was step-wise reduced until PEV adoption occurred. The capital cost was reduced to 

$500,000 per PEV, or the same as a conventional vehicle, before adoption occurred. Note that 

this cost is the same as the electric bus included in the optimization occurring in Section 6. A 

single 30 kW EVSE was also adopted to refuel the PEV. The other adopted technologies 

included five 100 kW fuel cells, one 65 kW microturbine, a 320 kW heat recovery unit, and one 

conventional vehicle in addition to the adopted PEV. 

Figure 8-7 shows the combined building demand and EVSE operation. The additional 

demand created by EVSE operation only occurs at night and does not increase building demand. 

The resulting DER system operation can be seen in Figure 8-8. DER system operation appears to 

be unaffected by EVSE operation, with the microturbine operation occurring only during the on-

peak period, and the fuel cell performing thermal load following at night and base load 

production during the day. 
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Figure 8-7: UCI Natural Sciences 2 building electrical demand with EVSE operation to refuel 

the adopted PEV 

 
Figure 8-8: DER system operation and EVSE refueling at the UCI Natural Sciences 2 building 
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9 Summary, Conclusions, and Future Work 

9.1 Summary 

The goals of this dissertation were to 1) determine and evaluate the optimal mix and 

operation of distributed energy resources for a commercial or industrial building taking into 

account possible environmental constraints and the presence of plug-in electric vehicles, and 2) 

to determine the feasibility of public Level 3 refueling equipment.  In order to accomplish these 

goals, numerous models were developed in order to perform qualitative analyses on the systems 

in question.  

With regards to DER system design, a mixed integer linear program was developed based 

upon improving similar optimization models presented in the literature by including utility rate 

details and DER physical and operational characteristics that have been typically omitted. 

Additional constraints were added to take into account a desire to limit carbon emissions 

associated with building energy conversion. This model was further modified to resolve the 

stochastic nature created by considering the adoption of public EVSE, as well as the 

deterministic decision created by deciding to invest in a fleet of electric vehicles used to operate 

on pre-determined routes, or to travel to a series of nodes for which the overall trip is to be 

optimized in conjunction with routes travelled between the nodes. 

The basic DER system formulation was used to design a CCHP system for numerous 

commercial and industrial buildings. The CCHP optimization results were then analyzed using 

cooperative game theory to evaluate the decision to use waste heat to meet either building 

heating or cooling demand. This analysis explored both the operational, economic, and 

environmental impacts created by deciding to install a CCHP system. 
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The DER system was then reformulated to explore the decision to use onsite power 

generation to help reduce carbon emissions at a university campus. This formulation included the 

option of adopting both electrical and thermal energy storage, photovoltaic panels, a renewable 

fuel source to power DG, and the ability to export excess electricity generated onsite. 

The DER system model formulation that included electric vehicles was then executed for 

a small handful of cases in order to establish the viability of using such methods to fully evaluate 

the interaction between the decision to invest in a DER system and either EVSE or electric 

vehicles.  

The primary contribution of this work is the DER optimization model developed for the 

first goal. The results produced by this model are the most valuable product of this work. The 

integration of typically neglected components, physical constraints, and rate structure parameters 

adds a level of detail that is needed for developing trust that any suggested system will perform 

as predicted and as expected from an economic and environmental perspective. 

The analyses performed using this model have improved upon the state-of-the-art 

understanding of how DER systems make money when installed and operated in the built 

environment, or how these systems can be operated to assist with reducing carbon emissions 

associated with a building energy demand. The limited simulations that included electric vehicle 

interactions with the building dynamics have also shed light onto how future simulations can be 

used to more effectively capture the seemingly separate decisions to invest in a DER system and 

in electric vehicles or EVSE. 

With regards to Level 3 EVSE evaluation, a PEV travel model was developed and 

combined with two different EVSE operation scenarios that span how EVSE are operated today.  
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These models were executed and used to assist with determining the cost of electricity to 

maintain EVSE operation when installed as a standalone system or integrated with a building. 

Cooperative game theory was used during this analysis, as well, in order to fairly allocate 

electrical utility costs between a building and integrated EVSE, and between individual drivers 

that use the EVSE. 

9.2 Conclusions 

The following conclusions are the primary findings of this dissertation: 

 Large buildings with consistent heating demand are the most attractive 

candidates for CCHP system integration. 

This type of building provides numerous benefits when deciding to adopt a DR 

system. First, a large building is easily capable of consuming sufficient natural 

gas that the lowest cost natural gas is achieved when a declining block rate 

structure (the most common type of gas rate structure) is applied. Second, the size 

of the building energy loads allow for each of the individual components to 

behave in a flexible manner that maximizes the output of each system. Third, a 

large heating demand can be leveraged to create opportunities for increased 

absorption chiller operation during periods when the absorption chiller operation 

would otherwise be uneconomical. This allows for a large absorption chiller to be 

adopted and operated in such a way that the overall building electrical demand is 

reduced while not reducing potential savings during other times. Finally, the 

capture of waste heat in order to supply heating to the building provides an 

opportunity to reduce overall carbon emissions. On the other hand, meeting the 
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building cooling load through the use of an absorption chiller is likely to increase 

carbon emissions for a building in the state of California because the California 

grid has low carbon emissions and electric powered vapor compression chiller 

systems have a high coefficient of performance. 

 The export of electricity from a building to the electrical grid is key to 

finding the least expensive route to significant carbon emission reductions at 

a building. 

Numerous technologies and options exist for reducing the carbon emissions 

associated with building operations. If the energy consumption of a building 

located in California has been minimized, and a DER system is to be adopted to 

further reduce carbon emissions, then the use of renewable fuel is necessary if the 

least expensive technologies are to be adopted. Further carbon reductions require 

the adoption of large photovoltaic systems. Without the ability to either store any 

excess energy produced by photovoltaics that cannot be used instantaneously, the 

cost to reduce carbon emissions are extremely high. While allowing for multiple 

storage options along with the ability to export excess solar energy to the utility 

grid network all reduce the cost of reducing carbon emissions.  The ability to 

export excess solar power is particularly attractive due to the reduced overall DER 

system complexity and initial capital cost. While the system performance may 

become more difficult to manage from a utility grid network perspective, the 

ability to export excess solar power provides the lowest cost path to reducing 

carbon emissions. 
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 Typical current demand charges are sufficiently high to singlehandedly block 

the adoption of Level 3 EVSE for any application other than possibly range 

extension or emergencies. 

The demand charges associated with using Level 3 EVSE to refuel PEVs after 

performing common types of travel are on the order of $1 to $10 per kWh when 

PEV traffic is low. Increasing the EVSE power exacerbates demand charge costs 

while providing no additional improvements to customer access to EVSE. 

Integrating the equipment with a building can reduce cost substantially, 

particularly when PEV traffic is low. However, EVSE operation cannot occur 

when building electrical demand is high without risking increased overall costs 

for both the building and the PEVs refueling at the station. While demand charge 

costs decrease with increasing PEV traffic levels, the current number of PEVs on 

the road today that are Level 3 EVSE compatible result in the likelihood that 

demand charges will remain high. 

 A stochastic formulation may not be necessary for capturing the interactions 

between a building, DER system, and public EVSE. 

PEV traffic patterns are stochastic from the perspective of a building. However, 

current PEV traffic levels are likely low enough at a typical building that the 

resulting EVSE demand profile is small enough to marginally impact the overall 

building operation. In this scenario, the decision to adopt and operate public 

EVSE does not impact the decision to adopt and operate a DER system.  If PEV 

traffic increases and EVSE technology improves to increase access to a single 

EVSE, then the resulting demand profile becomes more predictable and may be 
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viewed as deterministic. In this scenario, EVSE operation does impact the 

decision to invest in and operate a DER system. In this case, the EVSE behavior 

is similar from week to week, month to month, and year to year. As a result, the 

stochastic problem can most likely be reduced to a deterministic problem. Note 

that a stochastic formulation may be required for PEV traffic between the high 

and low levels. 

9.3 Future Work 

As stated before, the primary contribution of this dissertation is the DER system 

optimization model developed for this work. Further work needs to be performed in order to 

validate the ability of the model to capture the physical characteristics of the different modeled 

components. In particular, the absorption chiller formulation in this current work should be 

compared to typical absorption chiller models presented in the literature by using the 

optimization model outputs to dictate how a physical absorption chiller model is operated. 

The cooperative game theory analysis should be repeated. However, instead of 

determining the cost of each type pf energy produced by a CCHP system, the Shapley value for 

each cost component can be determined for each individual piece of technology in order to 

determine the associated savings. Such an analysis would allow for a DER system operator to 

determine the exact savings produced by each piece of technology. If energy storage were to be 

included in the analysis, then the value of including storage can be determined exactly. 

Further work is required for the DER system and fleet vehicle optimization problem in 

order to extend the ability of the model to handle larger sets of nodes to be visited. In particular, 

decomposing the problem between the DER system and vehicle routing problem may provide a 
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promising route to allowing for the current branch and cut method to be used to solve the DER 

systems problem while using a more appropriate method for solving the vehicle routing problem. 

Such a decomposition would allow for large problems, such as DER system and electric vehicle 

adoption by a large courier service, to be solved. 

With regards to the evaluation of different types of EVSE, a more realistic travel model is 

required. The largest missing piece is concerned with an individual driver’s decision to refuel 

their PEV based upon competing options and the overall energy demand required by an 

individual’s travel patterns. One potential model is the combination of a Markov chain to 

determine the discrete travel behavior of an individual driver coupled with an optimization that 

determines the location at which a vehicle driver will refuel their vehicle in order to minimize 

cost while maintaining their travel pattern. Resolving the driver’s decision to refuel using public 

EVSE would create a more realistic demand at the public EVSE and also allow for a realistic 

evaluation of potential rates charged to customers who refuel their PEVs using public EVSE. 
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