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Abstract

A Smoothed Particle Hydrodynamics Model for the Simulation of Laser Fusion Additive
Manufacturing Processes

by

Marc Russell
Doctor of Philosophy in Engineering-Mechanical Engineering

University of California, Berkeley

Professor Tarek Zohdi, Chair

Additive Manufacturing (AM), aka 3D-Printing, is a broad class of rapidly emerging
manufacturing technologies that build-up parts layer-by-layer through the addition of
raw materials, under the guidance of a digital model. They are set to revolutionize the
manufacturing world by allowing for rapid production of net-shape, customizable, ready-
to-use parts in a variety of novel materials and designs. The development of numerical
methods suited to the simulation of AM processes to aid in the optimization of current
technologies and in the creation of new methods is of prime importance to industry and
academia.

In this work, the Smoothed Particle Hydrodynamics (SPH) method, a Lagrangian
mesh-free numerical scheme, is adapted for the first time to resolve thermal-mechanical-
material fields in a range of Laser Fusion Additive Manufacturing processes. The method
is capable of simulating large-deformation, free-surface melting, flow, and re-solidification
of metallic materials with complex physics and material geometries. A novel SPH for-
mulation for modeling isothermally-incompressible fluids, which allows for the accurate
simulation of thermally driven liquid metal expansion/contraction, is presented and ver-
ified. Fundamental validation of the methodology is performed via comparison with real
world, spot laser welding experiments. The methodology is then used to investigate the
the specific Additive Manufacturing Process of the Selective Laser Melting of Metallic,
micro-scale Particle Beds. The physics of a track deposition process is explored through
numerical experiments and the influence of processing parameters on the finished laser
weld track quality is investigated. The unique abilities of using a Lagrangian mesh-free
method, as opposed to continuum numerical schemes, to model this process is highlighted.
The SPH method is found to be a viable and promising numerical tool for simulating laser
fusion driven Additive Manufacturing processes.
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1.1 Overview of Numerical Modeling in Engineering
In industry, broadly speaking an engineer can be classified as holding one of three

roles: a Designer, an Analyzer, or a Builder/Tester. A designer’s job is to create a
design of a process/part/etc., an analysis engineer’s job is to evaluate the design an
ensure its functionality, and a build/test engineer will manufacture the design and ensure
its correctness. Of particular interest to this body of work is the role of the Analysis
Engineer. There are many tools for an Analyst to call upon in their work; from text-book
equations to physical experimentation, or even gut experience. However for the modern
engineer, the most ubiquitous tool is that of a Computer Model/Simulation.

A computer model allows an engineer to simulate/predict a real world event solely
in the digital realm of a computer. A computer simulation replicates reality by solving
mathematics formulae that model natural laws; a basic example being solving the motion
of an apple falling from a tree using Newton’s Law, Force = Mass ú Acceleartion. As
with a physical experiment, data can be obtained from these computational experiments.
This data can be analyzed, results obainted, and ultimately real world design choices
made. A diagram of this process is shown in Figure 1.1for the case of a 3D printed part.
Analysis of a 3D printing machine/process is desired to make real world improvements;
for example a smooth part finish. A numerical model, which is composed both of math-
ematical formulae that describe the natural laws governing the physics of 3D printing as
well as computer models (aka numerical models) that can be used to solve these highly
complicated mathematical equations, are used to create a computer simulation of the
process, in this case extruding hot plastic out of a nozzle. Data can be gathered from
this process, analyzed, and then used to suggest real world changes that can lead to real
world process improvements.

There are numerous reasons why numerical modeling is used/preferred over traditional
physical experimentation. (1) It can be significantly cheaper. Computational expenses
are much lower then real-world expenses; e.g. it is cheaper to crash test a digital vehicle
model then a real vehicle. (2) It allows for greater insight and data collection then a
real world experiment. In a digital model one has precise information throughout the
problem domain at all times, for example; its possible to know the temperature inside
a digital model of cast part while this would be impossible to obtain in the real world.
(3) Optimization processes are faster when using numerical models as several iterations
of design can be tested with minimal e�ort. (4) Finally, numerical models can simulate
processes that are just impossible to experiment on in the real world; for example the
collision of two stars or the landing of a rover on Mars.

Numerical modeling is of course not without faults. Simulations are not perfect repli-
cations of the real world, they are merely very close approximations. They must be
validated heavily by comparison with physical experiments before they can be trusted. In
addition, they are incapable of simulating everything. For some physical phenomena, we
don’t have the necessary mathematical or numerical models to model them. For others,
the computational resources to solve existing numerical models are too great. However,
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Figure 1.1: Flow chart indicating role of computer simulation in Engineering Analysis of
a real world process, in this case 3D printing.

with more and more research being undertaken in the field and the development of ever
better computer technologies, the range of real world events that are possible to simulate
will only grow.

The goal of this work is provide another tool in the toolbox of an Engineering Ana-
lyst. A numerical method capable of simulating the real world Additive Manufacturing
processes will be developed, validated, and implemented to suggest real-world process
improvements.

1.2 Application of Interest: Additive Manufacturing
Additive Manufacturing (AM) is a set of rapidly emerging manufacturing technologies

that will revolutionize the manufacturing world by allowing for rapid production of net-
shape, customizable, ready-to-use parts. The umbrella term Additive Manufacturing
covers a broad range of novel manufacturing processes that build-up of parts layer-by-
layer through the addition of raw materials, under the guidance of a digital model. This
is in opposition to traditional manufacturing processes in which material is removed, e.g.
milling, or a fixed net shape is created in a single process, e.g. injection molding/casting.
AM development has been spurred on by the need in the engineering industry for rapid
prototyping, flexible design options to create more complex part geometries, and to build
with novel materials. AM techniques have many benefits over traditional manufacturing
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methods including: (a) single step processing of complex parts (b) creation of functionally
gradient and novel designs (c) reduction of production time, and (d) minimized material
waste[44]. For these reasons and many more, AM methods are rapidly gaining interest in
industry, government, and academia.

The American Society for Testing and Materials group (ASTM) categorizes the various
AM processes into seven classes: (1) vat photo-polymerization, (2) binder jetting, (3)
material extrusion, (4) material jetting, (5) sheet lamination, (6) powder bed fusion, and
(7) direct energy deposition[1, 26]. A complete decscitption of each of the classes is given
below:

• VAT Photo-polymerization: Selective curing of liquid resin in a vat via a heat source,
usually UV/laser

• Binder Jetting: Selective addition of bonding agent droplets to join deposited raw
materials

• Material Extrusion: Selective deposition of heated raw material through a scanning
nozzle, later cooling into a solid body

• Material Jetting: Selective deposition of raw material droplets onto a surface.

• Sheet Lamination: Layer by layer deposition of raw material sheets upon one-
another.

• Powder Bed Fusion: Selective melting/sintering of fine powders in a bed layer-by-
layer using a controlled heat source, e.g. a laser

• Direct Energy Deposition: Selective simultaneous deposition and heating of raw
material, usually in powder or wire form, using a controlled heat source attached to
the novel head.

In general, these processes involve extremely complicated, rapid thermo-mechano-material-
chemical fields acting on complex geometries with length scales from the micrometers to
meters. In addition they can be implemented on a wide range of materials; ceramics,
metals, plastics, organics, as well as hybrids of these. They have been adopted by sev-
eral industries from aerospace (3D printed rocket engines), to the automotive industry
(customized engine components), to biology/medical (e.g. 3D printed organs and custom
medical implants), and even the food industry(3D printed food). The field is growing
rapidly and with its expansion, there is a growing need to be able to understand the com-
plex phenomena occurring in these processes to both improve existing AM technologies
as well as develop news ones.

A strong tool in accomplishing this goal are numerical simulations. Numerical models
are capable of providing insight into physics of these processes as they allow for precise
data collection of the thermo-mechano-material-chemical fields through-out the entire
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process domain. This will allow researchers/developers to precisely identify controlling
features in these process and appropriately adjust process inputs to optimize the final
part design. In addition the ability to run hundreds of models simultaneously make
optimization of process parameters trivial.

Of particular interest to this thesis is the numerical modeling of AM process that in-
volve the heating, liquifying, and subsequent cooling of deposited raw material to create
a finalized part(Material Extrusion and Powder bed fusion process in particular). These
processes often involve extreme cooling/heating rates, extremely volatile liquid free sur-
faces, rapidly evolving material/state boundaries, and large material movement and as
such are di�cult to adequately and e�ciently model using traditional numerical meth-
ods. In this work, a relatively new numerical method, the Smooth Particle Hydrodynamics
Method, which is typically used for large scale fluid flows will be applied to the simulation
of these types of AM process, in particular the selective laser melting of metallic particles
bed.

1.3 Motivation of Work
Selective Laser Melting (SLM) is a particularly promising AM technique for producing

complex, 3D, metallic structures through a repetitive process of deposition and guided
laser melting of an atomized metallic particle bed (Figure 1.2}). Subsequent layers are
melted into previously deposited layers to produce 99.9% density parts with feature sizes
of 200µm[29]. Applications for the process are widespread including customizable porous
bone implants and die tooling for one-o� runs, with the aerospace and defense industry
particularly interested in using the method to cut production times and cost for complex
metallic components. Use of SLM parts however, currently requires a lengthy process
of part qualification and certification to detect processing flaws including high residual
stresses, porosity, disconnected layers, and undesired microstructures[29]. A better un-
derstanding of SLM is required to minimize these defects and allow for its full adoption
by industry.

Powder bed SLM, however, involves extremely complex and coupled physical-metallurgical
processes (melting and solidification, inter-particle conduction and radiation, laser heat-
ing, material expansion/contraction, recoil pressure, mechanical stresses, wetting and
dewetting, sintering, Marangoni convection, capillary forces, vaporization, etc.) occurring
at micro time-and-length scales. Relying on physical experimentation alone to understand
and improve the process would be too costly, time consuming, and complex. Numerical
simulation, validated by physical experimentation, provides a means of both e�ectively
understanding and optimizing the process by allowing for in-situ analysis as well as e�-
cient optimization of process parameters.

While traditional (continuum) based numerical methods (FEM, FVM) are capable of
producing high fidelity solutions and have been adapted to AM modeling, and SLM in
particular[37], they are ill-suited (computationally expensive) for simulating AM processes
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4

AM: Selective Laser Melting

What	is	Additive	Manufacturing	(AM)?

– 3D parts built up layer-by-layer 
through the addition of raw 
material under computer control

[5]

SLM	Demonstration

SLM	Process	Schematic
[3] [5]

Beam

Melt

Substrate

Particle	Bed

Motive Model Valid ResultIntro
Figure 1.2: Schematic of SLM process.

which typically involve free-surfaces and material interfaces with significant and complex
movement. It is believed the Smooth Particle Hydronamics (SPH) method, a mesh-free
Lagrangian particle method, can o�er approximate solutions at a fraction of the cost of
traditional numerical methods.

In the present work, the SPH method is adapted to accurately resolve thermal, me-
chanical, and material fields in a wide range of AM process with particular focus on the
SLM process. Fundamental validation of the proposed methodology as well as, for the
first time, application of the SPH methodolgoy to simulating to practical, real-world AM
processes will be preformed.
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Chapter 2

Background Theory
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2.1 Smooth Particle Hydrodynamics Method
The Smooth Particle Hydrodynamics (SPH) is a numerical method for obtaining ap-

proximate solutions to systems of physically inspired di�erential equations over a problem
domain. It was developed by Gingold and Monaghan in 1977[27] as a hydrodynamic code
to simulate astronomical motions. Since then, its simulation capabilities have been ex-
panded to a wider range of thermal-mechanical-material-chemical problems. SPH is a
meshless (mesh-free) numerical method which discretizes the problem domain into a set
of Lagrangian numerical particles with no a-priori connectivity. Interpolation between
these sets of particles is used to discretize the governing di�erential equations and deter-
mine the thermal-mechanical-material fields existing over each particle (e.g. their motion,
temperature, material properties...etc). The particles represent distinct entities of mass
and hence the scheme is Lagrangian in nature. Various analytical forms of the interpolant
exist, and their forms have a variety of impacts on the solution, as will be discussed later.
Spatial derivatives of the interpolated values, used to discretize the governing di�erential
equations, are obtained using methods of calculus and statistical approximation of values
over the particles.

Meshed vs Mesh-Free Methods In meshed methods, a continuum domain is di-
vided(or discretized) into a discrete subdomains where the nodes (or grid points) of these
subdomains are connected in a pre-defined manner(the mesh). The governing equations
are converted to a set a algebraic equations that solve for the field variables the the nodal
locations. The methods have been proven very e�cient and useful for a wide range of
numerical problems. However, the need to maintain the physical compatibility condition(
in the case of Eulerian meshes across the nodal boundaries) or the need to maintain a well
defined mesh(the case of of Lagrangian meshes) can create significant computational ex-
penses in problems dealing with free surfaces, deformable boundaries, moving interfaces,
and large deformations.

Meshfree methods, such as SPH, on the other hand rely on the discretization of gov-
erning physical equations over a set of randomly distributed nodes with no apriori connec-
tivity. Connectivity is established in each time step through a neighbor search in a region
of influence. Connectivity is fluid and ever-changing allowing for reliable simulation of
problems with large deformations, splits, and moving interfaces.

2.1.1 Derivation of the Fundamental SPH Discretization
2.1.1.1 Integral Kernel Approximation, Smoothing Function, and Particle

Approximation

The derivation of the SPH numerical discretization is a three step process. (1) The
value of a primary variable is exactly represented by an integral interpolation of the form;
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f (x) =
⁄

�
f (xÕ) ” (x ≠ xÕ) dV Õ (2.1)

where f (x) is the primary variable, � the entire problem domain, ”(x) the Dirac delta,
and dV Õ a di�erential volume element. This integral smoothing form is the basis of the
method and is similar to the weak form of certain continuum methods. (2) The infinite
domain integral is next reduced to a finite domain integral by approximating the Dirac
delta function by a smoothing function W (x ≠ xÕ, h) that exists over a finite smoothing
domain �S,

f (x) ¥ Èf (x)Í =
⁄

�S

f (xÕ) W (x ≠ xÕ, hsml) dV Õ (2.2)

where hsml is the smoothing length, and È·Í indicates an integral approximation of a
value. The smoothing length controls the size of the compact support domain, also known
as the domain of influence of the smoothing function. This compactness ensures that
the approximation of f(x) is given only by local neighboring values, allows for practical
implementation of the method, and as will be shown increases the order of accuracy of
the method. The compactness requirement is generally formulated as.

W (x ≠ xÕ, h) = 0 for (x ≠ xÕ) Ø 2hsml (2.3)
The smoothing length is chosen as a factor of the initial mesh spacing, dx,

hsml ¥ – · dx

where the factor – is commonly chosen to be in the range of 1.1 to 1.5.
Sometimes W (x ≠ xÕ, h)) is referred to as the smoothing kernel and Eq. 2.2the kernel

approximation.
Smoothing kernels, in general, should also preserve unity over the smoothing domain,

⁄

�S

W (x ≠ xÕ, h) dxÕ = 1 (2.4)

, therefore guaranteeing that a constant function can be recovered, C0 consistency, as
well as be smooth, symmetric, positive, and decay away from x. Various analytical forms
for the smoothing function that meet these requirements can be found in the literature.
The choice of smoothing kernel can significantly impact the accuracy and stability of an
SPH simulation([17]). Specifically, the shape of the first and second derivatives of the
smoothing function are important in ensuring the physicality of the smoothing function.
For this work the Wendland C2 kernel[69] was used,

WC2 =
Y
]

[
– (DIM)

1
1≠q

2

24
(2q + 1) q Æ 2

0 q > 2
(2.5)

where – is the normalization factor for the 2D and 3D forms of the kernel,
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–(DIM) =
;

(≠), 7
4fih2 ,

21
16fih3

<

and where q = (x ≠ xÕ) /hsml .
The first derivates of WC2 are given as,

ˆWC2
ˆx = ≠5–

3
1 ≠ q

2

43
q

(x ≠ xÕ)
|x ≠ xÕ| hsml

.

A recent comparison of a variety of popular kernel functions by W. Dehnen and H.
Aly[17] showed the Wendland C2 to be the optimal kernel for preserving simulation sta-
bility, hence its use in this work.

(3)The third and final step in deriving the SPH discretization is to transform the
kernel approximation, Eq. 2.2, into a summation over neighboring particles. First, note
that Eq. 2.2 can be re-written as an integral over masses instead of volume,

Èf (x)Í =
⁄

�S

f (xÕ)
fl (xÕ) W (x ≠ xÕ, h)fl (xÕ) dV Õ =

⁄

�S

f (xÕ)
fl (xÕ) W (x ≠ xÕ, h) dmÕ.

Recalling that SPH particles are Lagrangian we can therefore approximate this integral
as a summation over distinct mass elements, in this case neighboring SPH particles,

Èf (x)Í ¥
Nÿ

j=1

f (xj)
flj

W (x ≠ xj, h) mj, (2.6)

where N is the total number of neighboring particles within the compact radius and (·)j

the value of (·) at particle j. This final equation is referred to as the particle approximation
or summation approximation, and is the fundamental discretization used within SPH.

Figure 2.1 shows the smoothing function profile and neighboring particles for a given
location, in this case particle i ,

The calculation of primary variable values in SPH is simply a matter of summing
over the values of neighboring particle scaled by the smoothing function value at their
locations. For example the temperature at x can be given as;

T (x) ¥
Nÿ

j=1

mj

flj

TjW (x ≠ xj, h) .

2.1.1.2 First Derivative Discretizations

Particle approximations for the derivatives of a function can be obtained using the
divergence theorem and the product rule. We start with the kernel approximation for the
derivative of the function;
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Figure 2.1: Schematic of SPH smoothing function.

ÈÒf (x)Í =
⁄

�S

Òf (xÕ) W (x ≠ xj, h) dV Õ.

We can expand this using the product rule ,

ÈÒf (x)Í =
⁄

�S

Ò (f (xÕ) W (x ≠ xj, h)) dV Õ ≠
⁄

�S

f (xÕ) ÒW (x ≠ xÕ, h) dV Õ,

and using the divergence theorem, re-write the first term as a surface integral with
normal n

ÈÒf (x)Í =
⁄

ˆ�S

f (xÕ) W (x ≠ xj, h) ndV Õ ≠
⁄

�S

f (xÕ) ÒW (x ≠ xÕ, h) dV Õ.

Due to the compact support requirement on the smoothing function, Eq. 2.3, in
general W (x ≠ xj, h) æ 0 on ˆ�s and hence the first term disappears leaving,

ÈÒf (x)Í = ≠
⁄

�S

f (xÕ) ÒW (x ≠ xÕ, h) dxÕ (2.7)

which can be written in the particle approximation form,

ÈÒf (x)Í ¥
Nÿ

j=1

mj

flj

f (xj) ÒW (xi ≠ xj, h) . (2.8)

This is the fundamental SPH discretization for the first derivative of a function. The
SPH discretization transfers the derivative requirement from the primary function to the
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Figure 2.2: Loss of support of smoothing function near the problem boundary.

smoothing function making its calculation trivial. The assumption that W (x ≠ xj, h) æ 0
on ˆ�s , however, only holds true in the interior of the domain. On the domain boundaries,
W ”= 0 and hence

s
�S

WdxÕ ”= 1 and
s

ˆ�s
f (x) WndxÕ ”= 0 , as demonstrated in Figure

2.2. This leads to errors in the approximation which will be discussed in more detail later.
Using the first derivative particle approximation, we can discretize many of the governing
di�erential equations, for example the continuity equation,

Dfl

Dt
= ≠flÒ · v

can be discretized as;

Dfl

Dt
= ≠fli

Nÿ

j=1

mj

flj

vj
ˆWij

ˆxi

.

2.1.1.3 Second Derivative Discretizations

There are numerous methods for SPH discretization of second order derivatives. As a
first approach, second order derivatives can be derived much in the same manner as the
first order derivatives, removing the di�erentiations o� the primary variable and placing
them on the smoothing function;

e
Ò2f (x)

f
¥

Nÿ

j=1

mj

flj

f (xj) Ò2W (xi ≠ xj, h) �Vj

. This form however is known to have several undesirable issues including sensitivity to
particle disorder and a lack of positivity[53]. The sign of Ò2W (xi ≠ xj, h) can flip with
increasing particle separation leading to unphysical behavior in a system, for example,
heat flow from colder to warmer regions[53].
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A second method of discretizing second derivatives in the SPH methodology is through
nested first derivatives;

ÈÒ (Òf (x))Í ¥
Nÿ

j=1

mj

flj

Òf (xj) ÒW (xi ≠ xj, h)

where,

ÈÒf (x)Í ¥
Nÿ

j=1

mj

flj

f (xj) ÒW (xi ≠ xj, h) .

This scheme is easy to implement and maintains positivity of the kernel, however it
can lead to oscillating instabilities( checker-boarding) in sti� problems and can rapidly
increase the computational costs of the scheme as now two sets of neighbor summations
must be preformed[22, 45].

A final, and the most popular, method of handling second derivatives is to preform
both derivative operations in the same kernel but to implement one of the derivative
operations on the smoothing function algebraically;

e
Ò2f (x)

f
¥

Nÿ

j=1

mj

flj

(f (xj) ≠ f (xi))
ÒW · (xi ≠ xj)

|xi ≠ xj|2
. (2.9)

This method is more stable then the previous two and in addition maintains a low
computational cost. While this is the most basic form, numerous variations of the alge-
braic discretizations exists for the various second derivative terms that appear in physical
models, e.g. heat conduction, di�usivity; etc.. These variations have more desirable
properties and will be covered in more detail in the next Chapter.

2.1.2 Accuracy and Stability of SPH methods
The SPH method is considered to a be a lower order numerical method. Its theoretical

limit on the order of accuracy is approximately O (h2). As I will discuss, this order of
accuracy is often di�cult to guarantee in practice. When considering the accuracy of
the method care must be taken to distinguish between the consistency guaranteed by
the Integral Form of the method, Eq. 2.2&2.7, and the consistency of the subsequent
Particle Approximation, Eqs. 2.6&2.8. It possible to analytically derive the consistency
of the integral form, however outside of a regular structured grid (rarely preserved in
practice) the consistency of the particle approximation is impossible to guarantee in an
analytical manner. However, confirmation of adequate consistency in practice via mesh-
refinement studies or comparison with validation problems has proven the accuracy of the
SPH method[53].



14

2.1.2.1 Consistency of the Integral Form

In the ideal case, the regular Smoothed Particle Hydrodynamics method (SPH) can
be considered to have accuracy of O (h2), or 1st order consistency, i.e. it can accurately
model polynomials up order 1. The proof is as follows:

We begin with the standard SPH kernel approximation for a function f(x):

Èf(x)Í =
⁄

f (xÕ) W (xÕ ≠ x, h)dxÕ

Taking the taylor series expansion we get

Èf(x)Í =
⁄ ËÓ

f(x) + f Õ(x) (x ≠ x

Õ) + O
1
h2

2Ô
W (xÕ ≠ x, h)

È
dxÕ

Recalling the conditions on the smoothing function of unity, Eq. 2.4, and of symmetry,
or evenness; and that (x ≠ x

Õ) is an odd function we can show:

Èf(x)Í = f(x)
⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠:1⁄

W (› ≠ x, h) d› + f Õ(x)
⁄

⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠:0
[(x ≠ ›) W (› ≠ x, h)] d› + O

1
h2

2

Èf(x)Í = f(x) + O
1
h2

2
∆ 2nd Order

Likewise for the derivative of f , taking the product rule, applying the divergence
theorem, and recalling our condition of compactness on the smoothing function we get:

ÈÒf (›)Í =
⁄

Òf (›) W (x ≠ ›, h) d›

=
⁄

Ò · [f (›) W (x ≠ ›, h)] d›

=
⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠⇠:0 ; compact
⁄

”�
f (›) W (x ≠ ›, h) · ndA ≠

⁄

�
f (›) Ò · W (x ≠ ›, h) d›

= ≠
⁄

�
f (›) Ò · W (x ≠ ›, h) d›

To which we can apply the same proof as before to establish O (h2) accuracy. Similar
proofs are available for higher order derivatives. In practice, however, the standard SPH
formulation fails to achieve the stated second order accuracy due to a failure to meet
the conditions that were set on the smoothing function. Truncation of the smoothing
function on any open boundary can lead to: (1) Failure to meet unity ( guarantee C0 of
Èf(x)Í) , (2) Failure to meet symmetry (guarantee C1 of Èf(x)Í) , and (3) Failure to meet
compactness requirement (guarantee C1 of ÈÒf(x)Í). Inaccuracies on the boundary can
propagate into the interior of the domain a�ecting accuracy everywhere.

To overcome these failings, novel forms of the integral approximation have been de-
veloped to restore consistency to the SPH formulation on boundaries to at least O (h).
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These sometimes have specific forms related to the physical nature of the quantity (or its
derivative) which is being derived. A commonly used technique for restoring consistency
is the Shepard Kernel[62]. It involves a renormalization of the integral approximation
using the integral of the kernel;

WS (x ≠ xÕ, h) = W (x ≠ xÕ, h)
� (x) (2.10)

where the renormalization factor � (x) is the integral of the smoothing function;

� (x) =
⁄

�
W (x ≠ xÕ, h) dV Õ. (2.11)

This methods uses the inconsistency error in calculating � (x) to o�set the error in the
calculation of the integral approximation of a function. Randles & Libersky [58], re-
derived this kernel form, and used it for restoring the first order consistency of the Èf(x)Í
discretization on a free surface boundary[45],

Èf(x)ÍS = 1
� (x)

⁄
f (xÕ) W (x ≠ xÕ, h) dV Õ. (2.12)

Collagrossi [11] showed that for case where a physical property is known to be zero on
the boundary (e.g. pressure on a free surface) the Shepard Kernel restores O (h) accuracy
to the integral approximation to the gradient on the boundary;

ÈÒf(x)ÍS = ≠ 1
� (x)

⁄
f (xÕ) ÒW (x ≠ xÕ, h) dV Õ. (2.13)

.
More complex methods exists for restoring the consistency of a wider variety of SPH

kernel operators on the boundary including the Moving Least Squares-SPH method de-
veloped by Dilts[18, 19], Randles and Libersky renormalization scheme for the calculation
of divergence[59], and the integral kernel correction proposed by Bonet and Lok[5]. These
methods are very successful at restoring the consistency of SPH operators however they
come at extra, not insignificant, numerical costs which makes there use only viable in
simulations that require extreme accuracy on the boundary.

2.1.2.2 Consistency of the Particle Approximation

While its possible to satisfy the requirements for full consistency at the integral ap-
proximation level, there is no guarantee that consistency will hold when these integral
approximations are translated to to the particle/summation approximation( Eqs. 2.8 &
2.6). In fact, in general the particle approximation forms of the consistency requirements;

Nÿ

j=1

mj

flj

(x ≠ xj) Wij = 0; symmetry (2.14)
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and

Nÿ

j=1

mj

flj

Wij = 1; unity (2.15)

are not satisfied due to the presence of particle disorder. For a regularly spaced mesh,
these requirements are met, but in any practical simulation, the relation of particles to
one another will fluctuate and evolve making it impossible to guarantee the satisfaction
of Eqs2.15&2.14. Some particles may have unsymmetric neighboors or not enough/too
many neighbors to satisfy unity. This has led many authors to declare the classical SPH
method unusable as a numerical method[45]. However in practice the order of errors
resulting from a disorderly mesh are often much lower then predicted[53]. This is because
the particles will often maintain some amount of order, due to the physics they are being
used to model, while overall their positioning may seem disordered. In general the error
from a lack of consistency is often much lower then assumed.

2.1.2.3 Accuracy of Practical Simulations

In classical mesh based methods, were some level of mesh order is preserved, its possible
to devise closed form estimations on the order of error of the method. This is not possible
for mesh-free methods such as SPH. The randomness of the particles motion and the
every evolving connectivities of particle make such estimations impossible. Instead, SPH
practitioners have had to rely on comparison of results to analytical solutions or physical
experiments, or mesh convergence studies to ascertain the order of accuracy. This method
of practical verification of the method has proven the SPH method to be significantly more
accurate then one would expect from the hypothesized lack of consistency. The reasons for
this have been proposed to be two fold[53]. First, as mentioned above, the level of disorder
in an SPH mesh is often smaller then expected meaning errors in accuracy are minimal.
Secondly, the use of conservative forms of the SPH formulas, those that conserve physical
properties like momentum and energy, minimize the e�ects of discretization errors. The
model can still track the correct solution due to the conservative nature of the method
even if discretization errors exists. In this author’s opinion, the numerous examples of
the practical and accurate application of the SPH method to physical problems prove its
accuracy to a su�cient degree.

2.1.3 SPH Simulation of Incompressible Fluids
All material flows in AM processes are incompressible. There are two main methods

for the simulation of incompressible fluids using SPH, the Incompressible SPH method
(ISPH) and the Weakly-Compressible SPH method (WCSPH).

The ISPH method, developed by Cummins et al.[14], is an adaption of the classical
projection-scheme for the solving of the incompressibility constraint on the fluid. Its
a two step process where the velocity is advanced in time by ignoring the constraint
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pressure, and then corrected by projecting it onto an incompressible space (usually a
velocity divergence free space). The method requires the solution of the matrix Poisson-
Pressure Equation(PPE) which can be computationally intensive.

The WCSPH method, first introduced by Monaghan[52], solves the compressible
Navier-Stokes equations with a very sti� equation of state to maintain nearly constant
density. Small fluctuations in density produce large corrective pressures which maintain
pseudo-incompressability. The sti�ness is generally a function of the max velocity in
the fluid and is chosen to keep density fluctuations less then 1%. WCSPH fluids have a
corresponding strict CFL condition.

In general the WCSPH method is more popular then the ISPH method. The WC-
SPH is more reliable and stable when compared to ISPH as it only weakly enforces the
incompressibility requirement. In terms of speed of computation, the ISPH method can
allow for larger time steps to be taken then WCSPH but it has the added computational
e�ort of solving the pressure-poisson matrix equation which is not insignificant. For most
problems, the CFL conditions on WCSPH are not strict enough to render the method
significantly slower then ISPH (however this is not always true). Most importantly, unlike
ISPH, the WCSPH method is trivially parallelizable significantly increasing its speed of
operation and is easier to implement.

An early noted downside of the WCSPH method however was that the use of the
method resulted in small, locally fluctuating density errors. These local errors could
lead to globally incorrect values . The ” ≠ SPH method was developed to remove these
fluctuations and preserve the accuracy of the WCSPH formulation. The method works
by smoothing out the fluctuations in the density field via the addition of a di�usion term
to the continuity equation. A more in-depth description of the method will be provided
later in this work. A ” ≠ SPH WCSPH scheme was used in this work.

2.2 Selective Laser Melting Process
2.2.1 Process Overview

The metallic Selective Laser Melting (SLM) process is a powder bed fusion Addi-
tive Manufacturing process for producing full density, complex, 3D, metallic/metallic-
composite parts through a repetitive process of deposition and guided laser melting of an
atomized metallic particle bed. A schematic of a typical SLM machine is shown in Figure
2.3. The SLM process is as follows:

1. Setup

(a) A digital part file is “sliced” using manufacturing algorithms into a series of
2D scan profiles.

(b) A sca�olding is secured to the part bed and the apparatus filled with inert gas.
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2. Build

(a) Microscale spherical material powders (metallic/composite) are evenly dis-
tributed in a single layer(multiple particles in thickness) onto the part bed
from a powder reserve, with either a wiper blade, roller, or alternative system.

(b) A scanner systematically directs a laser beam over the surface of the particle
bed in the profile of the 2D “slice” for that layer. The laser melts the particles
into a melt pool that penetrates into the previously solidified under-layers,
joining the two upon cooling.

(c) Once the 2D profile for a layer is completed, the particle bed is incrementally
lowered one layer thickness.

(d) The process is repeated until all layers are completed.

3. Post processing

(a) Upon completion, the un-melted powder left in the part bed is removed and
potentially recycled.

(b) Thermal cycling, surface polishing/milling can be used to improve the state of
the finalized part

Figure 2.3: Schematic of a typical SLM machine is given on the left. A top view of a
ringed slice being printed on the particle bed is shown on the right.

The result of this process is a fully dense (99.9% density) part with resolution in the
range of 200µm[29]. Typical particle diameters used in the process are in the range of
20µm ≠ 60µm. Laser powers can vary on the order of 10W ≠ 1000W with scan speeds
from 0.5m

s
≠ 5m

s
. A variety of laser types are used including Ytterbium fibre laser, Nd :
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YAG laser, Continuous wave fibre laser[29]. In addition a variety of material types can
be used with SLM including Al, Fe, Cu, Ni, and Ti alloys in addition to Ceramic-Matrix-
Composites[29].

SLM is highly desired by a variety of industries for numerous reasons. First it re-
duces time and cuts the cost of manufacturing small-run, high complexity 3D metallic
components. For example, a full-scale aerospace engine component printed by Lawrence
Livermore National Labs in 8 days using SLM at a fraction of the cost of traditional man-
ufacturing methods is shown in Figure 2.4. Cost and time reductions are mainly achieved
via minimization of labor/machining time through single step processing of parts elim-
inating the need for multiple machine/setups. For example, the eyelets on the engine
component in Figure 2.4would traditionally need to be a�xed separately as weldments
and the component remounted to complete machining. Such a process is time consuming
and expensive while for SLM they can be added directly during the single build process.
In the future, further cost reductions can be achieved through a minimization of material
waste as AM process only place material where it is needed. The SLM engine component
in Figure 2.4 highlights an additional, highly-desirable unique feature of SLM , the ability
to easily create novel part designs that are un-manufacturable with traditional techniques.
The engine component features internal cooling pores down the length of the interior of
the nozzle. These pores would be impossible to create using for example a casting process
but are trivial to produce using SLM. A second unique attribute of the SLM processes is
the ability to functionalize a component by altering the composition of the component as
its printed. For example the thermal conductivity of the rocket engine could be increased
towards the base while lowered towards the tip via the inclusion or exclusion of highly
conductive particles in the powder bed. A final unique benefit of SLM is that it allows
for on-site manufacturing of a wide variety of components due to its small machine foot-
print(current machines are about the size of two refrigerators) and its ability to create
any component shape. On-site manufacturing can lower transportation time/costs as well
as allowing for parts to be manufactured previously impossible locations, e.g. at sea or
in space.

Beyond the afore mentioned utilization by aerospace/military industries, the mold
making industry and medical industry are also very interested in using SLM technology.
SLM can be used to make custom molds for plastic extrusion processes cheaper and quicker
then current methods. The medical industry could use SLM to improve orthopedic-
implants by customizing them each patient. A patient specific metallic skull implant is
shown in Figure 2.4. The use of SLM printed implants can increase the success of medical
operations without signifiacntly increasing cost.

However, the current use of SLM parts by industry is limited due to the existence
of hidden processing flaws in the components(voids, cracks, etc.) and low manufactur-
ing reliability, accuracy/tolerance, functionality, and reproducibility of the process. At
the moment the SLM process is not “plug and play” and extra-e�orts (machine tuning,
multiple prints, extensive post-processing, etc.) are required to successfully produce com-
ponents. In order for complete adoption of SLM by industry, a greater understanding of



20

(a) SLM aerospace engine component[34].

828

were standardized previously in the planning
process and the selected areas to make the
screw insertion. The customization simplified
the surgical procedure, reduced surgical time,

Fig 3. Frontal view showing frontal customization
with satisfactory rehabilitation, realized with virtual
planning.

Fig 4. Lateral view showing frontal customization with
satisfactory rehabilitation, realized with virtual
planning.

and offered pre-visualization of the post surgical results compared to
what was virtually planed, obtaining an excellent anatomy. After 2 years,
the implant is in position, without complications, infections or
deficiencies in the position (Fig. 6).

Fig 5. Frontal customized implant made with Selective Laser
Melting Technology as identical replica of the software planning.

Fig 6. Radiographic (postero-anterior) showing the position and
stabilization of the implant 2 year later. Symmetry in width and
orbital size is obtained.

DE MORAES, P. H.; OLATE, S.; CANTIN, M.; ASSIS, A. F.; SANTOS, E.; SILVA, F. O.; SILVA, L. O. Anatomical reproducibility through 3D printing in cranio-maxillo-facial defects.
Int. J. Morphol., 33(3):826-830, 2015.

(b) SLM skull implant for facial

reconstruction[16].

Figure 2.4: Two applications of SLM use by industry.

the complex link between the process parameters, the physical processes they induce, and
the outcome of the manufactured part (accuracy, flaws, etc.) must be made. This is the
goal of current research e�orts in the area, including this work.

2.2.2 SLM Physical Processes Overview
Powder bed SLM involves complex thermal-mechanical-material physical processes

occurring at multiple length scales: part, feature, and powder-melt scale. The success of
a print is heavily influenced by these processes and a thorough understanding of them
is necessary to devleop a proper numerical model. A description of the relevant physics,
as they are currently understood, will be presented below. Focus will be placed on the
powder-melt scale as this is the scale of interest for this thesis however it should be
understand the the SLM process is a multi-scale problem, occurring at the part level,
feature level, and the powder/melt scale.

Powder-Melt Scale Fundamental to SLM is the conversion of microscale powders of
material into a continuous solid part using a laser-source. A laser is usually scanned in
a semi-continuous manner to melt adjacent lines of powder, which upon cooling, form
into a continuous track of solid material. Track width is controlled by the physics of
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the process and process parameters, predominantly the laser power/scan speed, and is
usually on the order of 50 ≠ 200µm. A schematic of a typical process of creating a melt
track is shown in Figure 2.5. (A) The laser beam is scanned over a section of newly
deposited particles heating them to their melting point. (B) The powders melt forming
a melt-pool that penetrates into the previously deposited substrate layer. The laser
beam is then advanced in the track direction and a combination of laser and melt-pool
conductive/convective heating melts oncoming powder material. (C) As the laser beam
sources passes on a region, the liquid melt pool there cools through heat conduction into
the substrate and radiation, eventually solidifying. Voids can occur if vapor is trapped
within the melt pool upon solidification.

(a) (b) (c)

Figure 2.5: Schematic of an SLM track lasering process.

The shape and depth of this melt track is heavily controlled by numerous coupled
thermal-mechanical-material phenomena. These are listed by field in Table 2.1.

The mechanical field is dominated by a highly complex melt flow motion, strongly
driven by Marangoni convection and thermal expansion of the fluid. Velocities in the
melt pool can be on the order of 1m/s over a diameter of ≥ 100µm. The liquid melt
is inviscid and incompressible. High normal surface tension forces result from the high
surface tension coe�cient for liquid metals, ‡ ¥ 1.500N

m
, and small curvature of the

melt pool. In addition extreme Marangoni convection is induced by significant thermal
gradients and large ˆ‡

dT
values for liquid metal. The Marangoni convection drives the melt

flow from the laser spot (hottest location) to the rear of the melt pool (coolest location).
The shape of the free surface, which is highly volatile due to the low fluid viscosity
influences the direction of the Marangoni convection motion. At high-enough rates of
laser heating a switch from a conductive melt pool to a laser “keyhole” type melt pool
can occur[39]. Keyholing occurs when the melt pool reaches vaporization temperatures.
The vaporizations leaves a cavity in the melt pool and produces significant vapor-recoil
pressure. This results in an opening of the melt pool as fluid is pushed to the edges
allowing for deeper laser “drilling” and a greater melt pool penetration. Extreme cooling
rates, on the order of 103 ≠ 108 K/s, can result in significant thermal/residual stresses
and mechanical failure(cracking/disbonding)[29]. The cooling solid can experience elasto-
plastic strains and residual stresses. Finally, the melt pool and oncoming powders can be
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Field Phenomena
Mechanical · Viscous-Incompressible Fluid Flow

· Capillary Forces
· Marangoni Convection
· Thermal Expansion
· Powder Flow/Ejection
· Recoil Pressure
· Buoyancy
· Elasto-Plastic Solid Deformation of Substrate
· Residual/Thermal Stresses
· Mechanical Failure (cracking, disbonding)

Thermal · Particle Bed (PB )laser absorption/ scattering
/emmitance
· Melt Laser Absorbtion
· Melt Radiation
· Convective & Conductive Heating Melt
· Convective & Conductive Heating PB
· Conduction Substrate
· Solid Work Heating
· External Convective Cooling

Material · Melting-Solidification
· Thermal Dependence
· Vaporization
· Ablation
· Microstructure Formation
· Mushy Zone properties

Table 2.1: A list of the mechanical-thermal-material field phenomena occurring in the
melt pool. Listed in bold are the phenomena modeled in this work.
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ejected ahead of the melt pool resulting in splattering.
The thermal field is a complex mix of laser surface heating, surface radiative cooling,

melt convection/conduction, conduction in the particle bed, and conduction into the sub-
strate layer. The laser absorption process varies spatially and temporally. In the particle
bed, laser ablation, scattering, and emission among the particles determine the rate of
laser absorbtion. Material absorptivity is a function of material state and temperature
and evolves significantly over the process. However, unfortunately little data is available
for the material absorptivity of the liquid state as function of temperature due to the
di�cultly in obtaining it. Finally, work heating can occur in the melt flow. Even though
the fluid viscosity is low, the melt speeds are significant and shear heating is possible.

The material state is extremely complicated as-well. The extreme rate of laser heating
and subsequent cooling induces rapid phase changes from solid to liquid to gas over minute
time scales. In addition a large mushy zone can occur between the melt and substrate.
Thermal dependence in combination with the vast temperature ranges of the SLM process
(around 293K ≠ 6000K) result in significant variation of the material properties over the
SLM process. Significant density changes and material hardening and softening can occur.
The strength, and for steel materials the sign, of the Marangoni convection coe�cient
is dependent on temperature. Extreme rates of cooling of the melt pool can lead to
anisotropic microstructures and hence directionally oriented material properties. These
microstructures can evolve over subsequent heating cycles as layers are added upon each
other further complicating the material state.

Overall within each field, several forms of phenomena exist and influence the physics
of the track formation process. A strong coupling between the fields, also complicates the
situation.

Feature Scale Several tracks can be combined to create part features using SLM, for
example overhangs, holes, or even flat regions. The layering of tracks can create thermal
cycling and a complex thermal-material-mechanical history for the part. Of primary
importance are the interactions of the thermal and mechanical fields to create residual
stresses in the part. Extreme cooling through the track substrate causes rapid contraction
of the newly deposited layer and high residual stresses, and potentially micro cracking, at
this scale. Material microstructure is ever evolving as subsequent heating of layers through
deposition of new material on top of them leads to an ever evolving microstructure.

Part Scale At the part scale, the thermal state is controlled by conduction through
the part geometry, conduction through the surrounding unmelted particle bed, and heat
addition at the source location. The distribution of temperatures at this scale can lead
to significant thermal/residual stresses developing and cracking at the part scale. The
material properties are influenced by the feature scale processes.



24

2.2.3 SLM Process Improvement: The Need for Numerical Mod-
eling

While several industries have already adopted SLM technology, the current use of SLM
manufactured parts requires significant part qualification post manufacturing to detect
hidden processing flaws: (1) micro-cracking, (2) disbonded/discontinuous layers, (3) voids,
(4) undesirable microstructures, (5) residual stresses, (6) and macro-cracks. Micro-cracks
form at the feature/track scale of the part. They are the result of thermally induced
localized residual stresses. While they may not be visible post-manufacturing, they can
cause premature failure of SLM parts by serving as initiation sites for fatigue induced
macrocracks. Disbonded/discontinuous layers and voids are also sources of fatigue failure
(Figure 2.6a). They can result from a lack a melt pool penetration, violent melt pool
motion creating trapped vapor pockets or unmelted particles, and the spheroidisation of
long liquid melt tracks from Rayliegh-Taylor instabilities commonly referred to as balling
(Figure 2.6b). Prevention of the balling process is a major focus of research e�orts. The
high rate of cooling in SLM can result in anisotropic microstructures making prediction of
part properties di�cult[29]. Residual stresses are possible due to extreme thermal activity
and state changes that occur during SLM. They can occur at all scales of the SLM process
from the micro-scale track level to the macro-scale part level (Figure 2.6c).

In addition to these flaws, current SLM technologies are unable to reliably produce
parts to 100% accuracy of a CAD model design. Each part may require several print
iterations, and an intuition based tuning of the machine process to be produced correctly
and to the desired tolerance. This hands-on tuning requirement hampers the ability of
the SLM process to produce highly customizable components on demand and in short
time frames.

(a) Microscale defects in a Ti SLM

part [7].

(b) Balling defect between track

layers in a steel SLM part [29].

10/12/2017 image011_u5ttow.jpg (640×362)

https://res.cloudinary.com/engineering-com/image/upload/w_640,h_640,c_limit,q_auto,f_auto/image011_u5ttow.jpg 1/1

(c) Part scale cracking of a steel

SLM manufactured part[21].

Figure 2.6: Examples of flaws/defects in SLM parts.

The goal of current SLM research e�orts is to provide a fundamental understanding of
how to overcome these flaws and successfully print components through optimization of
process parameters. This is challenging due to the significant number of process parame-
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ters involved in the SLM process. A list of them is provided by Sun et al. [64], shown in
Figure 2.7.

Figure 2.7: A list of SLM process parameters compiled by Sun et al. [64].

The significant number of parameters involved makes tuning and improvement of the
SLM process di�cult. Relying on physical experimentation alone to understand and opti-
mize the process would be too costly, time consuming, and complex. Numerical simulation
has two significant benefits over traditional physical experimentation for researching the
SLM process. First, it allows for in-situ analysis of the microscale laser melting process
and the gathering of data that is impossible with physical experiments. For example, in
a physical experiment it would be impossible to know precisely the size and temperature
of the melt pool during a given lasering experiment. This information is generated for
all time and at every location within a numerical method and could be easily gathered
and analyzed. Secondly, optimization is significantly easier and cheaper with numerical
methods as opposed to physical experiments. Through parallelization and optimization
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algorithms, hundreds of digital models can be run and a processes tuned for a given ma-
chine, part design, and material choice at a fraction of the time and cost it would take
to do so in the physical world. For these reasons and more, there have been significant
research e�orts in the area of computer modeling of the SLM process.

2.3 State of the Art: SLM Numerical Modeling
As SLM is a multi-scale phenomena, a variety of numerical methods operating at

multiple scales(part, feature, and track/melt) are necessary to fully capture the process.
Any complete simulation tool used to model SLM would need to be a multi-scale, multi-
methodology model that feeds information between the part-feature-track scales to ade-
quately capture the process. Most methods at the part and feature scale are continuum-
mesh based methods. There have been several promising e�orts using FEM to model the
physical process at these scales, e.g. Hodge et al. [33]. The focus of this current work
however is the track/melt scale, an arguably harder problem with more complex physics
and material/state movement. A summary of current research e�orts at this scale will
be given and argument for the use of the SPH method to address simulation will be pre-
sented. Finally a review of past research e�orts in the SPH community that are simmillar
to the research e�orts in this work will be covered.

State of the Art in SLM Simulation Over the past few years, several e�orts have
been made to model SLM at the particle and melt scale using continuum mesh-based
numerical methods. Initial work focused on using homogenized models with analytical
equations for powder bed heating and melting. These models were inherently ine�ective
at modeling the flow mechanics of physically in-homogenous powder beds. More recent
works solved continuum discretization of physical laws on a meshed particle bed geom-
etry. One of the earliest of these e�orts was that of Khariallah et al. [37] in 2014 at
Lawrence Livermore National Lab. They simulated the problem using an in-house Eule-
rian FEM package (Diablo) developed for thermo-mechano-material simulation e�orts at
the national lab. They used an analytical laser absorption scheme developed by Gusarov
et al [30] and solved for the deformation of the solid substrate layer. They included
most of the relevant physics but neglected Marangoni convection. While highly-accurate
their simulation time for a 1mm ◊ .3mm ◊ .3mm section of material was on the order
of 100, 000 CPUhrs . They noted this was the result of the CFL condition imposed by
solution of the mechanical field in the body as we well as the need to track the complex
free-surface and solidification surfaces with the Eulerian scheme. Khariallah et al.[38]
(2016) increased the fidelity of their model through the inclusion of additional physical
phenomena. They included Marangoni convection, recoil pressure, and a simplified (no
reflection) ray tracing scheme. They argued the inclusion of these phenomena is necessary
in order to correctly simulate the SLM process at the track scale. They validated their
code through comparison with experimental track melt geometries. They are able to pro-
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vide great insight into the physical processes occurring at the microscale during an SLM
process and confirm experimental findings. No information on the computational cost
was provided. A recent work by Lee & Zhang [42] used a commercial FD-VOF code to
simulate the laser beam melting of a particle bed geometry similar to that of Khariallah
et al.. A DEM scheme was used to place the particles in the bed and the FLOW-3D
VOF code used to solve their melting and flow. They reported significant e�ciency in-
creases over the FEM code of Khariallah et al, solving a similar sized problem in 40 CPU
hrs. However they appeared to implement less physics, failed to report information about
their numerical scheme and the chosen time step conditions, and failed to validate against
physical experiments. In addition their results were counter to some of the findings of
Khariallah et al. [38]. Complete reviews of research e�ort into the computer modeling of
SLM were preformed by Schoinochoritis et al. [61] and King et al. [40].

In addition to continuum methods, there have also been attempts to use microscale
mesh-based numerical methods, such as the Lattice Boltzmann (LBM), with e.g. Korner
et al. [41]} using LBM to model the laser melting processes specifically. However LBM
has numerous limitations for such problems including the need for a fine lattice-mesh to
accurately capture the melt motion as well as an unclear methodology for modeling some
of the thermal e�ects in the energy equation [41]}.

Finally, in addition, alternative mesh-free methods have been applied to laser-particle
bed AM applications, with Ganeriwala & Zohdi [25] and Zohdi [72]using the Discrete
Element Method (DEM) to model the process. It was observed that the DEM method
was useful for modeling the powder deposition and heating process prior to melting but
was unable to accurately model the liquid-melt pool motion.

Motivation for SPH /Current Work It is proposed that the application of mesh-
less techniques to the study of the SLM process can provide results at a fraction of the
computational cost of mesh-based methods and serve as a design-tool for industry. The
SPH method is a natural and e�ective means for modeling SLM, and AM processes in
general, as free surfaces, mass conservation, material state boundaries, and large material
movement are handled implicitly by the methodology. SPH methods are easily paralleliz-
able and can complete with traditional numerical methods in simulating a wide variety
of free surface fluid motion situations. SPH discretizations of fundamental physical laws,
e.g. Balance of Linear Momentum and the First Law of Thermodynamics, for a number
of materials and phases have been implement and verified. In addition SPH formulations
for the wide variety of physical phenomena apparent in the SLM process (phase change,
surface tension, etc.) have been implemented to some degree.

There have even been some e�orts in the SPH community to model laser based man-
ufacturing processes. Hu et al. [35] modeled the melting process in laser spot melting
of Aluminum with SPH. In another work, they also considered metal vaporization as a
consequence of the laser induced heating [35]. Although these works are relevant, they
lacked the full physics required to simulate AM process as well as validation by compar-
ison with physical experiments. Another interesting work by Alshaer et al. [3]focused
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on the ablation of metal layer with pulsed laser. However this work mostly focused on
the ablation component and didn’t seek to preform melt pool simulations. SPH has been
applied to other manufacturing processes as well with varying degrees of success includ-
ing high pressure die casting (Cleary et al. 2007 [10]) and thermal spray coatings (Zhang
et al. [70]). Its believed that enough numerical groundwork exists to adapt the SPH
methodology to the simulation of AM processes and in particular the SLM process. This
adaption is covered in the following chapter.
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Chapter 3

AM-SPH Methodology
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A novel SPH methodology capable of simulating thermal-mechanical Additive Man-
ufacturing(AM) processes (in particular the Selective Laser Melting(SLM) of metallic
particle beds) was developed in this work. It combines previously established SPH dis-
cretizations from disparate fields for the first time while supplementing them with novel
formulations necessary for laser based AM simulations. While this author believes the
current rampant use of acronyms in the SPH field is inappropriate, for the sake of suc-
cinctness, and to reflect its intent, the proposed methodology of this work will be referred
to as AM-SPH within this thesis.

As covered in Section 2.2.2, numerous physical phenomena occur at the microscale
during the SLM process. Simulating all these phenomena would be well outside the scope
of this thesis as well as unnecessarily increase model complexity and reduce e�ciency.
Only the most relevant of the numerous physical phenomena will be modeled. These are
highlighted in bold in Table 2.1.

Referring to the mechanical field phenomena in Table 2.1, of primary importance to
this work is the flow, shape, and properties of the melt pool. These directly determine
the quality of the melt track and the success of track depositions. Powder flow/ejection
is incapable of being simulated by the current model but could be modeled e�ciently
using a coupled Discrete Element Method scheme[71]. Buoyancy is di�cult to model
accurately using the Weakly Compressible formulation in SPH and is negligible over the
time scale of the problem so it excluded. Elasto-Plastic solid deformation is ignored
because of the strict CFL condition required for simulating solid mechanics. Its also
assumed that the deformation of the solid body is minimal compared to the liquid flow
and as such can be neglected. The modeling of solid deformation is only relevant for
predicting material failure from thermal/residual stresses which is outside the scope of
this work. Other researchers have addressed this problem and note the prohibitive time
step that modeling the solid phase puts on the simulation[37]. Not bolded in Table 2.1 but
of importance at higher laser powers is the recoil pressure caused by material vaporization.
The temperatures of the melt under the laser source exceed the boiling point of steel and
the energy loss from vaporization has been noted by Khariallah et al [38] as primary source
of heat loss in the melt. The vaporization phenomena was not included in this model due
to time constraints but can be implemented through a material damage parameter and
vaporization energy sink term.

Referring to the thermal field phenomena in Table 2.1, of prime importance is the heat
flow in the melt pool and conduction into the substrate. Such information can determine
the extent of material heating and be fed into macroscale models. Solid work heating is
minimal for SLM and is ignored as the solid deformation is minute. External convective
cooling could be easily added but real world values are unavailable to this author and are
ignored. Laser heating of the particle bed is of prime importance to the thermal field. A
precise calculation of this phenomena would require a ray-tracing algorithm. Although
straightforward to implement, such algorithms are computationally expensive and avoided
in this work. Instead a uni-directional Beer-Lambert type laser absorption model is used.

Referring to the material field phenomena in Table 2.1, of prime importance is cap-
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turing the melting/re-solidification of the powder bed material as well as the thermal
dependence of properties. While the microstructural phase and direction has a significant
e�ect on determining property values, such calculations are more suitable to grain growth
specific numerical methods and are left out of this model. Ablation and vaporization can
be easily simulated by including a damage parameter for the individual SPH particles but
are not included in this work.

The following description of the methodology has been subdivided into the three main
fields; mechanical, thermal, and material; with an additional section to cover a novel
Isothermal incompressible WCSPH formulation. Derivation of the governing mathemati-
cal models will be will be presented first followed by SPH discretizations.

3.1 Mechanical Field
3.1.1 Mechanical Mathematical Model

The scope of this research covers free-surface incompressible viscous flow. It is com-
mon in numerical simulation literature to define liquid metals as incompressible as their
compressibility is an order of magnitude greater then that of water[63]. While liquid
metals are generally inviscid, viscous forces can play an important factor in their flow,
especially at lower temperatures, where the material thickens, or high velocities. The flow
of liquid metals therefore may be modeled by the general Navier-Stokes(NS) equations:

0 =dfl

dt
+ flÒ · u

fl
du

dt
=flg ≠ ÒpI + Ò · (2µ (T ) D) + Ò (⁄ (Ò · u)) + FB

dr

dt
= u

(3.1)

where u is the fluid velocity, r the displacement, fl the fluid density, µ the fluid shear
viscosity (a function of temperature), p the pressure, and ⁄ the bulk viscosity. D is
the rate of deformation tensor, D = (Òu + Òu

Õ) /2, and Fb volumetric external body
forces, in this case surface tension, F st . The incompressibility constraint is enforced by
assuming the fluid to be weakly-compressible. This assumption is generally used in order
to avoid the solution of a matrix Poisson equation for the pressure field, which can be
computationally expensive and comes with the strict enforcement of incompressibility.
Weak-Incompressibility is formulated through the use of a sti� EOS. A typical EOS is

p = c2
0 (fl ≠ fl0) (3.2)

where p is the pressure, c0 the sound speed, and fl0 a reference density. The compress-
ible Navier Stoke’s equations, 3.1 implemented with Eq 3.2 and discretized with the SPH
method are referred to as Weakly Compressible SPH (WCSPH). The standard weakly
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compressible EOS assumes the fluid to be baratopic. While this assumption is acceptable
for most fluids solved with SPH, it is unsuitable for simulating the SLM process where
there is significant thermal expansion of the melt. To model this, a novel isothermally
WCSPH that is not baratopic was developed. This will be detailed later in this chapter.

In the weakly compressible regime, the compressible viscosity term is negligible for
the flows studied in this work (see e.g. [46] and [13]) and it is not further considered. A
benefit of the SPH formulation as opposed to the Finite Volume or Eulerian FEM method
is that its Lagrangian in nature eliminating the non-linearity components of the velocity
material derivative in Eq. 3.1:

d (·)
dt

= ˆ (·)
dt

.

Under these conditions, and with the additional hypothesis of constant dynamic vis-
cosity, the weakly-compressible Navier Stokes equations to be solved become

ˆfl

ˆt
+ flÒ · u = 0,

flg ≠ ÒpI + 2µÒ2
u + Fst = fl

ˆu

ˆt

p = c2
0 (fl ≠ fl0) , u = ˆr

ˆt

(3.3)

ˆfl

ˆt
+ flÒ · u = 0,

flg ≠ ÒpI + 2µÒ2
u + Fst = fl

ˆu

ˆt

u = ˆr

ˆt

(3.4)

The value of c0 is chosen such that density variations are minimized[52];

100 ú
A

fl ≠ fl0
fl0

B

< 1% (3.5)

A priori estimates for the sound speed can be made through non-dimensional comparison
of the pressure force term with other terms in in the Balance of Linear Momentum(BLM)
equation, second line of Eq. 3.3. With a weakly compressible EOS, the pressure term in
the BLM, can be approximated as

1
fl

Òp ¥ c2
0�fl

fl
.

Equating this to the vicious di�usion term one can derive an estimate for the max sound
speed required to balance the viscous forces,
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1
fl

Òp ≥2µÒ2
u

c2
0�fl

flL)
≥2µ

U0
L2

0

solving for c0,

cvisc
0 ≥

Û

µ
U0p

�flL0
(3.6)

where U0 the problem velocity scale, and L0 the problem length scale.
Similar estimates can be made for the advection term:

1
fl

Òp ≥ˆu

ˆt
c2

0�fl

flL
≥U0

t

cadv
0 ≥

Û
U2

0
fl

�fl

(3.7)

and the body force term,

cbody
0 ≥ Ffl

L�fl
(3.8)

where F is the magnitude of the body force. These equations can be used for initial
estimates of the required sound speed and refined upon once simulation data is available.

The deformation of the solid phase is not modeled in this work. Its assumed that the
motion of the solid phase is negligible compared to that of the liquid phase and has no
e�ect on the fluid motion. The solution of the mechanical field in the solid phase is only
necessary for the calculation of thermal residual stresses and material failure. Although
these are important aspects of the SLM process, they are outside the current scope of
this work due to the added complexity of implementing a solid framework and the very
restrictive time step restrictions imposed by a solid phase simulation([37]). In addition
the simulation of solid deformation is more suited to continuum methods such as the
Finite Element Method.

Although the rigid body motion of solids is possible within the SPH framework, it
is not implemented in the current work, therefore all solid bodies are assumed to act as
fixed-rigid bodies. It is desired to simulate their motion in future work to investigate their
e�ect on flaw formation (voids, unmelted particles, ejected particles, etc.)

The continuum surface force (CSF) model proposed by Brackbill [14] is used to model
the normal and tangential surface tension forces in the AM-SPH method. The CSF
method transforms the surface tension traction into a volumetric force via a delta function
that acts in a finite interface region,
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F st = (‡Ÿn̂ + Òs‡) ”f , (3.9)
where, ‡ is the surface-tension coe�cient, Ÿ the interfacial curvature, n̂ the interface

unit normal, Òs (·) the tangential surface gradient, and ”f the interface delta function.
It is assumed that the surface tension coe�cient is a function solely of temperature.
Therefore the second term of Eq. 3.9 can be re-written as

Òs‡ = d‡

dT

dT

ds
(3.10)

where d‡
dT

, the surface-tension-temperature coe�cient, controls the magnitude of the Marangoni
convection. A color function, cf , is used to track the position of the interface where

c(i)
f =

Y
]

[
1 if in phase i

0 otherwise.
(3.11)

The surface normal and curvature can be calculated via the gradient of cf ,

n = Òcf

[cf ] , (3.12)

Ÿ = ≠Ò · n̂, (3.13)
where [cf ] is the jump in the color function across the interface. Finally, while inter-

particle surface tension formulations (e.g. Tartakovksy & Meakin [15]) have been imple-
mented within SPH, they are unable to accurately capture Marangoni convection and
therefore were not used in this work.

3.1.2 Mechanical SPH Discretization
Navier-Stokes Discretization The well known ” ≠SPH scheme proposed by Antuno
et al. [4] is adopted in the numerical discretization of the continuity equation in the
Weakly Compressible NS equations (Eq. 3.3). The ” ≠ SPH framework smooths out
localized spatial fluctuations in the density/pressure fields that are often apparent in
SPH simulations of violent free-surface flows and can lead to inaccurate results. It does
so by augmenting the continuity equation with a di�usion term;

K
dfl

dt

L

¥ dfla

dt
= fl

Nneighÿ

b=1

1
uab + Fdiff

ab

2
· ÒaWabVb (3.14)

where (·)a is the value at the a ≠ th SPH particle, the summation is performed over
Nneigh neighboring particles, Òa indicates the gradient with respect to the a ≠ th SPH
particle, Fdiff the is the ” ≠ SPH di�usion term, and the notation (·)ab © (·)a ≠ (·))b.
Various forms of the density di�usion term have been proposed and formulated. For
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example a form proposed by Molteni and Collagrossi [49] and later modified by Antuono
et al. [?] relies on density di�erences,

FAn
ij = ≠2”hc0

A

(flj ≠ fli)
rij

|rij|2
+ fl (fli, flj)

B

(3.15)

where ” is smoothing parameter and fl an optional renormalization term. A second
form proposed by Fatehi and Manzari[23] as well as Hashemi et al.[23][23] relies on pressure
di�erences between neighboring particles,

FHa
ij = ≠≠�tfli

fl0

A

(pj ≠ pi)
rij

|rij|2
B

. (3.16)

A description of the various forms of the density di�usion term and their impact on the
solution is covered in-depth by Ceros Pita [8]. The form chosen for this methodology will
be discussed later in this chapter as it is tied to the novel Isothermal WCSPH formulation
devloped in this thesiss. All forms of the di�usion term are designed to be of a higher
order then the spatial resolution and disappear under mesh-refinement.

A variety of SPH formulations exists for discretizing the pressure gradient and viscosity
terms of the NS equation. For this work, low complexity SPH formulations that are
consistent on the free surface or globally convergent were chosen. For the pressure gradient
term, a free surface formulation developed by Collagrossi et al. [19] is used,

K
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ÿ

b
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flaflb

3
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�a
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�b

4
ÒaWab (3.17)

where �a = q
b WabVb is a renormalization factor. Eq. 3.17 is a symmetrized form of the

Shepard’s Kernel. It is first order consistent as well as conservative on the free surface.
The Monaghan and Gingold [50] viscous term formulation, adapted by Marrone et al.[47]
for multi-phase fluids, is used in this work;

K
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fl

2µÒ2
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µaµb

µa + µb

B
mb

flaflb

fiab (ub ≠ ua) · ÒaWab (3.18)

where,
fiab = 2 (DIM + 2) (ub ≠ ua) · (rb ≠ ra)

||rb ≠ ra||2
.

Eq. 3.18 was found found by Collagrossi et al. to be locally inconsistent on the
boundary but globally convergent. Due to its symmetry it exactly conserves momenta and
energy[?]. Locally consistent formulations of the viscous term were reported by Collagrossi
but they require computationally expensive matrix inversions to restore consistency and
are only necessary when highly accurate shear formulations are desired.
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Boundary Conditions Boundary conditions are implemented via ghost particles. A
layer of three ghost particles were placed around the limits of the computational domain.
The ghost particles take upon the pressure of the interacting fluid particles to prevent
penetration. In addition they reflect the velocity of interacting fluid particles to induce a
no slip boundary condition[12].

Solid-Liquid Interaction As mentioned above, solid material is treated as a fixed-rigid
body. As such calculation of pressure with the WCSPH EOS is meaningless. In order to
prevent flow penetration of the solid particles, the same pressure treatment applied to the
ghost particles on the boundary was applied to solid SPH particles interacting with fluid
particles. This methods prevent fluid solid particle penetration and separations except
under extreme conditions.

Surface Tension Several SPH discretization of the Brackbill CSF method for modeling
surface tension (Eqs.3.9-3.13) have been suggested in literature. All however were devel-
oped for multi-phase interfaces, and are for the most part free surface incompatible. The
first implementation of CSF in SPH was preformed by Morris in 2002[54]. His method
succinctly discretizes the CSF method using standard SPH formulations. However, as
will be discussed shortly in more detail, his method requires a truncation of erroneous
normalized normals that can appear in interior of the interface. Unless cut-o�, these
normals produce incorrect curvature values when calculated using Eq. 3.13. Adami et
al.[2] claim to have developed an improved SPH formulation for the curvature calculation
which doesn’t require a normal truncation. Their method however is unclear about how
they avoid this issue and there are several inconsistencies in the reported results of their
paper[2]. Their method has been successfully implemented in following works([66]and
[35, 36]) however its unclear to this author how. For these reasons, the Morris implemen-
tation, with modifications to allow it to be used on a free surface, was implemented in
the AM-SPH methodology.

The standard Morris method is as follows:

1. Smooth the color function, to allow for a more accurate calculation of normals:

ca =
ÿ mb

flb

cbWab (3.19)

2. Calculate the normals as the gradient of the color function:

n = Òc =
ÿ

VbcbaÒWab (3.20)

3. Truncate normal if not within a cuto� value to avoid the use of erroneous interior
normals in the curvature calculation:

n̂a =
Y
]

[

na

|na|
na

|na| > 0.1hsml

0 otherwise
(3.21)
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4. Calculate a new re-normalization factor, �ú
a using only particles with non-zero n̂a:

�ú
a =

ÿ

b

mb

flb

Wab · ceil(n̂a) (3.22)

5. Calculate the curvature using a re-normalized, consistent formulation:

ÈÒ · n̂aÍ = 1
�ú

a

ÿ
Vbn̂ba · ÒWab (3.23)

6. Calculate the normal surface tension force:

fs = ≠‡b (Ò · n̂)a na (3.24)

Three flaws were found in this method and corrected:

1. The smoothing of the color functions assumes the existence of a second phase, if
this is not the case, for example on a free surface, the smoothing function only
serves to reduce the color function value towards the boundary and give erroneously
depreciated values of n and hence lower values of surface tension. The smoothing
of the color function is not preformed in this methodology. This was found to have
a minimal e�ect on the correct calculation of the normals.

2. The SPH operator used to calculate the normal, Òc, is inconsistent on the free
surface. Following the work of Collagrossi [11] for a consistent form of the pressure
gradient on the free surface, a free-surface compatible SPH discretization for Òc was
used in this work:

ÈÒcÍ =
ÿ mb

flb

3
cb

�a

+ ca

�b

4
ÒWab (3.25)

3. The original Morris method was found to become unstable under deformation. In-
terior normalized interface normals at the edge of the cuto� values were found to
switch on or o� triggering unsmooth increases in the curvature of the region and
hence jumps in the surface tension force This was noted to destabilize the system
in several simulations. To prevent this, a free-surface consistent smoothing of the
curvature is preformed to smooth the curvature into bordering regions on the edge
of triggering and prevent jumps in the surface tension.

4. There was no means to prevent the calculation of erroneously high curvatures. For
example if a small region of particles(2-3 particles in diameter) protrudes o� the in-
terface surface, extremely high levels of curvature can be estimated even though this
region is finer then what should be resolved by the mesh. It is reasoned the max-
imum predictable curvature should be on the order of the radius of the smoothing
region. For the Wendland Kernel used in this work, that radius is 2hsml. Therefore
the maximum curvature should be: Ÿmax = 1

2hsml
.
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Therefore the final proposed modified SPH-CSF methodology is:

1. Calculate the normals as the gradient of the color function:

na = ÈÒcÍa =
ÿ mb

flb

3
cb

�a

+ ca

�b

4
ÒWab (3.26)

2. Truncate the normal if not within a cuto� value to avoid the use of erroneous interior
normals in the curvature calculation:

n̂a =
Y
]

[

na

|na|
na

|na| > 0.1hsml

0 otherwise
(3.27)

3. Calculate the new normalization, value �ú
a using only particles with non-zero n̂a:

�ú
a =

ÿ

b

mb

flb

Wab · ceil(n̂a) (3.28)

4. Calculate the curvature using a re-normalized, consistent formulation:

ÈŸaÍ = ÈÒ · n̂aÍ = 1
�ú

a

ÿ
Vbn̂ba · ÒWab (3.29)

5. Ceiling curvature values that are higher then the method-discretization resolution:

Ÿa = min (Ÿmax, Ÿa) ; Ÿmax = 1
2hsml

6. Smooth the curvature:

Ÿa = 1
�ú

a

ÿ mb

flb

ŸbWab (3.30)

7. Calculate the normal surface tension force:

fs = ≠‡b (Ÿa) na (3.31)

Simple validations of the modified CSF methodology were preformed by ensuring the
correct pressure was calculated inside a droplet of fluid using the Young-Laplace Equation
(Section 4.2). It was found that using a smoothing radius of 1.5 times larger then the
standard smoothing radius, hsml = 1.5 ú hsml0, is necessary to accurately calculate the
curvature and hence the surface tension for the droplet. This significantly increases the
computational cost of calculating the surface tension.

The Marangoni convection component was calculated using the formulation from Tong
and Browne[66];
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Òs‡ = Ò‡ ≠ (Ò‡ · n̂) n̂ (3.32)
and if ‡ varies linearly with temperature, this becomes,

FMarangoni
st = d‡

dT

-----
T

A

ÒT ≠
A

ÒT · Òc

|Òc|

B
Òc

|Òc|

B

|ÈÒcÍa| . (3.33)

where the notation |·| indicates vector magnitude. Tong and Browne found this formu-
lation to be accurate for two-phase boundaries however the formulation for ÒT was not
free-surface compatible. The free surface, first order consistent Shepard Kernel was used
in this work,

ÈÒT ÍS = ≠ 1
�A

ÿ

b

ma

fla

TAWab. (3.34)

FMarangoni
st = d‡

dT

-----
T,a

(ÈÒT Ía ≠ (ÈÒT Ía · n̂a) n̂a) |Òc| . (3.35)

Surface tension forces were solved throughout the domain and solid and fluid particles
were considered to be of the same color function.

3.2 Thermal Field
3.2.1 Thermal Mathematical Model

The thermal field is governed by the local form of the internal energy balance equation
(First Law of Thermodynamics), which equates the rate of internal energy change of the
body, flÁ̇, to the applied external thermal power, W , and mechanical power, P ;

flÁ̇ = P + W (3.36)
As the fluid is incompressible, the internal energy is assumed to be solely a linear

function of temperature, flÁ̇ = flcṪ , where c is the specific heat capacity of the material.
The mechanical power is given by the inner product of the stress and the velocity gradient,
where for incompressible materials the spherical component of the stress power is zero,
leaving only a viscous heating term. While liquid metals are considered inviscid, this term
is still relevant due to the high velocity gradients that can occur in the SLM process:

P = ‡ : Òu = · : Òu (3.37)
The thermal power contribution is composed of a conductive term and volumetric

source terms for the laser heating (slaser), and radiation e�ects (srad):

W = Q + H = Ò (k · ÒT ) + slaser + srad, (3.38)
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where k is the isotropic thermal conductivity. Radiation, normally a surface boundary
condition, is approximated as a volumetric source term to allow its implementation with
the SPH method. The standard Stefan-Boltzmann law is given as:

srad = ‡BÁ(T 4 ≠ T 4
Œ)/�z. (3.39)

where ‡B is the Boltzmann Constant, Á the emissivity, TŒ the background tempera-
ture(assumed to be TŒ = 293K), and �z the nodal spacing.

A Beer-Lambert laser absorption scheme is used to model the laser penetration into
the body, where the laser intensity at some depth, z , positive into the body, is

I (z, r) = I0 (r) e≠
s z

0 –(z)dz (3.40)
where I0 (r) is the initial intensity at the surface of the body and – the absorption

coe�cient. The power absorbed by a volume of the body, V , can be calculated as Pabs =
–IV . Therefore we can define the volumetric laser source term as

slaser = –I (r, z) . (3.41)
The laser beam is modeled with a Gaussian profile, where Plaser is the total laser power

and rl is the 2‡ spot radius of the laser. The intensity as a function of radial distance
from the laser center is therefore:

I0 (r) = 2Plaser

fir2
l

e

3
≠ 2r2

r2
l

4

. (3.42)

More complex options exists for modeling the laser penetration into the body including
ray-tracing schemes. These schemes track individual rays of the laser as they move into
the body, are absorbed/reflected, and emitted. While ray-tracing schemes model laser
penetration with high fidelity they are significantly more computationally intensive then
the Beer-Lambert scheme. In addition, the values of coe�cients for absorption, reflec-
tion, and emission of metallic materials at high temperatures are hard to experimentally
measure and are not well known. With such high-levels of uncertainty the use of a ray-
tracing scheme would not even garantee correct modeling of the actual phenomena. For
this work, a homogenized absorption coe�cient that encompasses all these phenomena
was considered accurate enough. For the particle bed, phenomenological and closed form
analytical models for laser absorption have also been suggested and could be applied if
applicable[30].

The final thermal PDE to be solved is :

flcṪ = · : Òu + Ò (k · ÒT ) + slaser + srad. (3.43)
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3.2.2 Thermal SPH Discretization
SPH formulations for the first two terms of the thermal equation, Eq. 3.43, have been

proposed in previous works. An SPH formulation for the viscous heating of a multiphase
material with varying conductivity was given by Marrone et al. [46],

1
fl

· : Òv =
ÿ

A
µiµj

µi + µj

B
mi

fliflj

fiij (vj ≠ vi) · ÒiWj (3.44)

with,

fiij = 2 (ndim + 2) (vj ≠ vi) · (rj ≠ ri)
Îrj ≠ riÎ2 .

This formulation while not first order consistent on the free-surface is conservative
guaranteeing global convergence[46].

Cleary and Monaghan [9] give a SPH formulation for thermal conduction in a multi-
phase material,

1
fl

Ò · (kÒT ) =
ÿ

b

4mb

flaflb

kakb

(ka + kb)
(Tab)

rabÒW

rab · rab + ÷2 . (3.45)

It is unknown how accurate or conservative this formulation is on the free surface. The
development of a free-surface compatible SPH discretization of the temperature Laplacian
will be a goal of future works.

A novel scheme for applying the Beer-Lambert model for laser penetration to an SPH
framework was developed in this work. The scheme uses a binning algorithm to partition
the particle masses onto a grid framework that can be e�ciently navigated. A 2-D version
of the algorithm is as follows:

1. Overlay a grid onto the laser a�ected regions of the SPH domain.

2

Figure 3.1
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2. Loop over all e�ected SPH particles and calculate the weight fraction of the parti-
cle in each neighboring bin, wbin

p , using a Particle-In-Cell weighting scheme, where
(Px, Py) is the SPH particle center and (Cx, Cy)t he nearest bin grid point;

wbin
p = (1 ≠ |Cx ≠ Px|) (1 ≠ |Cy ≠ Py|)

1

(	Px ,	Py )

(	Cx ,	Cy	)

Figure 3.2

3. Sum all particle contributions to a given bin to calculate the total volume/weight
fraction of particles in the bin:

wbin
total =

ÿ

p

wbin
p

V bin
f =

q
p wbin

p Vp

V bin
tot

4. Loop over columns of bins, from top down, applying a discretized Beer-Lambert
Scheme to calculate the laser power absorbed by a bin, where �zbin

i is the height of
the ith bin and the volume fraction of the bin, is used to scale the thickness of the bin.

I (zcol) = I0e
≠

q
i

ai�zbin
i Vf,bin

Pbin = –I (zbin)
ÿ

p

wbin
p Vp

5. Transfer the power absorbed by a bin to its constituents particles in a weighted
fashion:

Pp =
ÿ

bins

Pbin

wbin
pq

p wp
bin

6. Calculate the volumetric power contribution to a particle.

slaser,p = Pp

Vp
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2

Figure 3.3

3.3 Material Field
The material field is dominated by the thermal-and-state variance of material prop-

erties. The Apparent Heat Capacity method, developed by Hashemi & Sliepcevich [31] ,
was implemented to model the significant latent-heat release and absorbtion during the
melting and re-solidification processes respectively. The method accounts for this energy
via a modification of the heat capacity during a phase change using the latent heat of
melting, L,

c =

Y
__]

__[

cS T < TM ≠ ”T
2

cs+cL

2 + L
2�T

Tm ≠ ”T
2 Æ T Æ Tm + ”T

2
cL Tm + ”T

2 < T

(3.46)

where ”T is the phase change temperature bandwidth and Tm the melting temperature.
This method can be interpreted as introducing a barrier to the melting process requiring
extra heat input to pass through the bandwidth region. The material state is determined
by:

s =

Y
___]

___[

0 T < TM ≠ ”T
2

(T ≠(Tm≠ ”T
2 ))

”T
Tm ≠ ”T

2 Æ T Æ Tm + ”T
2

1 Tm + ”T
2 < T

(3.47)

where s = 0 indicates a liquid state, s = 1 a solid state, and 0 < s < 1 the fraction of
transition between a solid and liquid phase. As a section of material undergoes a phase
change, its material properties are linearly varied from those of one state to the other.
During the transition from solid to liquid phases the viscosity is lowered from a high
viscosity to that of the fluid to simulate the mushy zone mechanics.

The Apparent Heat Capacity method can be trivially applied implemented in an SPH
formulation on a SPH particle-SPH particle basis.
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3.4 Novel Isothermal Incompressible WCSPH For-
mulation

In 3D printing type Additive Manufacturing process where rapid heating and cooling
are ubiquitous(e.g. in the SLM of stainless steels density changes can be on the order of
25%, in a millisecond), the thermal expansion of the fluid can have a significant impact on
material motion and therefore a general SPH framework for modeling it would be highly
desired. While not necessary for the given process, modeling buoyancy forces accurately
can be important for simulating other manufacturing processes and would be desired,
albeit not necessary. In addition material flows in AM processes can often be violent and
involve free surfaces, adding more di�culty to the model. Any method proposed must be
cable of handling these two conditions. A modification to the ” ≠ SPH framework, which
is the state of the art for stable simulation of volatile-free surface flows, to implement
these phenomena is proposed and investigated.

3.4.1 Theory
In order to begin an investigation of the simulation of these phenomena a basic under-

standing of the volumetric expansion of an incompressible flow and the resulting buoyancy
driven e�ects is needed.

3.4.1.1 Isothermal-incompressibility

It is common in numerical simulation literature to define liquid metals as incompress-
ible as their compressibility is an order of magnitude greater then that of water[63]. The
definition of an incompressible material is one in which the Jacobian of the deformation
gradient is 1, or in other words, dv = dV for all motions. However liquid metals expe-
rience significant thermal expansion/contractions when undergoing heating/cooling. A
plot of the density of stainless steel as a function of temperature is given in Figure 3.4.
The density changes over 25% from the onset of the fluid state to the vaporization point.
Therefore more care should be taken in describing liquid metals as in general incompress-
ible. Instead they shcold be described as incompressible under isothermal conditions; i.e.
incompressible only at a fixed temperature.

For isothermally incompressible fluids the common measure of incompressibility, div (u) =
0, does not hold, instead a new measure needs to be derived. Continuity of mass for a
Lagrangian discretization is given as

ˆfl

ˆt
= fldiv (u)

If it assumed that the density varies linearly with temperature via a volumetric expansion
coe�cient, –V , then we can write the partial time derivative of the density as,
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3.48
Figure 3.4: 304 steel density as a function of density for the solid and liquid phases.
Data taken from Mills [48] (solid phase) , Dubberstein et al. [20](liquid phase), and
extrapolated to the vaporization point.

ˆfl

ˆt
= –V

ˆT

ˆt
. (3.48)

Inserting this into the material time derivative we can derive an equation for div (u)
for an isothermally incompressible fluid;

div (u)|T = –V

fl(T )
ˆT

ˆt

-----
T

. (3.49)

This relation will be useful in confirming the ability of the proposed formulation to accu-
rately enforce the isothermal incompressibility constraint.

3.4.1.2 Buoyancy

When density gradients exist in a fluid, buoyancy driven motion can occur. Buoyancy
flows are commonly split into Boussinesq and Non-boussinesq flows. Boussinesq flows are
one in which density changes have no e�ect on the flow fluid other then to give rise to
buoyancy forces and are valid for �fl(T ) π fl0. In these flows the buoyancy force can be
explicitly included in the balance of linear momentum as FB = (fl ≠ fl0) g.

However for our problem �fl π fl0 is not satisfied and a Non-boussinesq flow is needed.
In this model the buoyancy forces come into the balance of linear momentum through
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the gradient of pressure via uneven hydrostatic pressure fields resulting from varying
fluid densities. The correct implementation of this methodology therefore requires the
correct calculation of the hydrostatic pressure fields. Ensuring this is the case in a weakly
compressible SPH formulation in which the pressure fields are also used to maintain
incompressibility will be di�cult.

3.4.2 Isothermal WCSPH Methodology
3.4.2.1 Previous Related Works

To this author’s knowledge no previous work has been undertaken to develop an SPH
scheme cable of simulating volume expansion of incompressible fluids. A novel methodol-
ogy will be presented and qualified in this work.

A few investigations have been preformed to model buoyancy forces with SPH in both
Boussinesq [43, 67] and Non-Boussinesq flows [65, 28]. While these schemes produce
accurate results they are not suitable for simulating AM processes. They were either
developed for multiphase flows with distinct phases(i.e. not density gradients), use a
summation methodology for the density(undesirable when simulating free surface flows),
or if they were developed for single phase flow (with density gradients) require the use
of a background mesh (undesirable for a mesh-free method such as SPH and di�cult to
implement for a free surface problem). Only one of these schemes , Szewc et al. [65]
couples the density of the fluid to its temperature.

The goal of this work is to develop a method capable of simply and e�ciently simulat-
ing the expansion/contraction of a volatile, free-surface isothermally incompressible fluid
with varying density. In addition the correct evaluation of buoyancy e�ects is desirable.
To do so I propose using a modified WCSPH equation of state in conjunction with a
specific form the of the ” ≠ SPH framework.

3.4.2.2 Isothermal-WCSPH Modified EOS

I propose a simple modification to the traditional WCSPH EOS to allow for thermal (or
concentration) induced density changes while maintaining fluid incompressibility. Most
WCSPSH EOS are either functions of density;

p = f̂ ((fl ≠ fl0)“ , c) (3.50)

or the spatial distribution of particles

p = f̂ ((� ≠ �0)“ , c) (3.51)
where fl is the fluid density, fl0 the reference density, “ some constant, c the fluid

sound speed, � the particle volume, and �0 the reference particle volume. The di�erence
of the fluid density from its reference value (or particle volume from its reference volume)
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creates a restoring pressure field that maintains incompressibility and ensures that fl ¥ fl0
or (� = �0).

In most thermal-material numerical schemes the density field is directly coupled to
the thermal field, i.e. fl = fl̂ (T ). Szewc et al. [65] proposed a WCSPH framework of
this form where they compute the density of the fluid via a summation particle density
scheme and then correct it for the thermal expansion of the material

flcor = fl (1 ≠ —”T ) .

The EOS is a function of the particle volume and ensures constant SPH particle volume
(general incompressability)

p = c2
0fl0
“

AA
�0
�

B“

≠ 1
B

This numerical scheme however is undesirable for the simulation of AM processes. First,
it is incompatible with free surface flows due to the use of a summation particle density
scheme which su�ers on the boundaries. In addition this scheme is incapable of inducing
particle expansion as the EOS is a function only of particle spacing, not density, keeping
the particle volumes constant. Finally the method is incompatible with the ” ≠ SPH
framework, due to the use of the summation density scheme, and thus could potentially
su�er from localized pressure fluctuations.

Therefore, instead of modifying the density directly as Szewc et al. does, I propose
instead to directly couple the reference density, as opposed to the density, to the temper-
ature field; fl0 = fl̂0 (T ), and use the EOS to drive the density of the fluid to its thermal
equilibrium state. The EOS for pressure therefore becomes;

p = c2
0 (fl ≠ fl0 (T ))

where

fl0 = flref ≠ –T (T ≠ Tref ) (3.52)
The fluid density is then calculated using the mass continuity equation, a free surface

compatible method, with the ” ≠ SPH smoothing scheme, Eq. 3.14.
There are many benefits of the proposed scheme. First it is a more natural means for

implementing the incompressibility constraint then correcting the calculated density field
thermal variations as suggested by Szewc et al. The density calculated via the EOS and
continuity equation is the correct density for the fluid and doesn’t require post-processing.
It can also be easily implemented within existing WCSPH frameworks with little work.
Secondly, it allows for the volumetric expansion/contractions of the SPH particles and
hence is able to create volumetric expansion/contraction driven fluid motion. Finally,
it is viable for simulating violent free surface flows as it uses a continuity formulation to
calculate the density and can be implemented within a ”≠SPH framework. The ”≠SPH
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framework smooths out oscillations in the density/pressure fields that are often apparent
in these types of flows and can lead to inaccurate results. Unlike the previously mentioned
schemes, it is therefore capable of accurately simulating the SLM additive manufacturing
process.

Care is needed when selecting a form for the density di�usion term within the ”≠SPH
framework that is compatible with the simulation of density varying flows. Di�usion
terms that are functions of density di�erences between neighboring particles, such as the
Antuono scheme Eq. 3.15, can lead to a failure of the proposed methodology. Take for
example the case of a high density fluid resting alongside a low density fluid. The ”≠SPH
scheme of Antuono is meant to smooth out fluctuations in the density field but in this
case will lead to large density di�usion between the two fluids, lowering the density of the
heavier fluid and raising the density of the lighter fluid. However the, reference densities
of the values will remain the same resulting in large pressure values being calculated via
the weakly compressible EOS. If one however uses a pressure based formulation, such as
the Hashemi formulation Eq. 3.16, or a formula involving the di�erence of the density
from its reference, fl ≠ fl0, the di�usion term will remain of an appropriate size resulting
in a smoothing of the pressure field. A modification of the Antuono equation renders it
compatible with the proposed methodology:

FMa
ij = ≠2”hcs

A

(fl̄j ≠ fl̄i)
rij

|rij|2
+ fl (fl̄i, fl̄j)

B

(3.53)

where,

fl̄i = fli ≠ fl0i

This was the chosen ” ≠ SPH formulation used in this work. To account for large
particle volume changes, the smoothing radius of the particles must also be altered to
ensure full support is maintained. The updated smoothing length value can be calculated
as

hsml = hsml,0

3
V

V0

4 1
DIM

. (3.54)

.In addition particle remeshing schemes can be used as well to ensure a regular distri-
bution of SPH particles is maintained.

3.5 Numerical Methods
Time Integration Schemes A second order explicit leap-frog time integration scheme
is used to solve the Navier Stokes equations. The method is conservative, in contrast
to the RK4 method,and is therefore preferred for its stability. A separated form of the
leap-frog scheme which allows for time step adaptation is used:
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t

(3.55)

The thermal field PDE (Eq. 3.43) is solved using an fixed-point iterative solving of
the implicit, midpoint scheme. The iterative solve allows for matrix free operations which
are trivially parallelizable. This is a key necessity when working with low order particle
methods. The scheme is as follows:

Algorithm 3.1 Fixed-Point Iterator SchemeAlgorithm 1 Fixed-Point Iterator Scheme

1: while

�
(T (t+�t)i+1�T (t+�t)i)

T (t)

�
> tol do

2: T (t + �t)i+1 = T (t) + �t
2

�
G

�
T (t + �t)i , t + �t

�
+ G (T (t) , t)

�

3: G
�
T (t + �t)i+1 , t + �t

�
=

�
1
�c (� : �u + � (k · �T ) + slaser + srad.)

�

t+�t
4: i = i + 1
5: end while

The adaptive-time stepping framework described by Zohdi [39] was not
used in this work but will be implemented in future models.

Appendix C. Code Implementation

The numerical method described in this work was implemented in C++
using an object-oriented framework for easier method development. Simula-
tions were preformed on a MacBook Pro Laptop (2012) with 2.9GHz Intel
Core i7 processor and 8GB of RAM. A flow-chart of the computer imple-
mentation of the numerical model developed in this work is shown in Figure
C.17. ParaView[40] was used for data visualization.
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This integration scheme for the thermal di�erential equation is used for convenience
but is not ideal, as it doesn’t garantee convergence and is only a fixed point iterator. As
such it will be updated in future works.

Time Step Constraints The simulation time step size can be determined by the ad-
vective/di�usive CFL conditions. The standard advective CFL condition suggested by
Monaghan et al. [51]for the leap-frog time integration scheme is used in this work:

”tC Æ Cf
h

cs

; 0.05 < Cf < 0.5 (3.56)

where cs is the sound speed of the fluid and Cf the CFL factor. The condition ensures
the numerical domain of dependence remains within the physical domain of dependence
and the simulation remains stable. Additional constraints can be imposed by the physics
of the problem. For stability of the viscous di�usion term, Morris et al. [55]suggests using
the constraint from Finite Di�erence methods:

”tvisc Æ 0.125h2

‹
(3.57)

where ‹is the kinematic viscosity.
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For the surface tension force, Brackbill [6]suggests a time step constraint formulated
using the estimated max capillary wave speed:

�tsurf Æ 0.25min(flminh3

2fi‡
)2 (3.58)

Additionally, body force time step constraints can be imposed by estimating the max
velocity from a body force as the acceleration from the body force multiplied by time
length obtained from the CFL condition,

umax = ab · �t ¥ ab · Cf
h

cs

.

This velocity can be reapplied to the CFL condition resulting in body force time step
restriction of,

�tbody Æ cS

ab

. (3.59)

Finally a time step constraint on the the thermal field is imposed by the thermal
di�usion CFL condition:

�ttdiff Æ 0.125 ú flch2

k
(3.60)

The minimum of the above time steps is used in the simulation,

�t = min (�tC , �tvisc, �tsurf , �tbody, �ttdiff ) (3.61)
The velocity CFL is usually the most restrictive in SPH schemes, with the surface

tension a close second. To improve the simulation times, it is desirable to implement
an adaptive time stepping scheme were the sound speed of the fluid, a function of the
and fluid velocity, is adjusted based o� the measured max velocity in the simulation at a
previous time step. In this way, when a system is moving slowly, a less restrictive time
step can be used while still meeting the CFL condition. Obviously the time step would
still need to meet the requirements of Eq. 3.61. Finally, it should be noted that no CFL
condition imposed by Marangoni convection was found in literature. As will be discussed
later, it is hypothesized that this condition could be more restrictive then the advection
CFL condtion and should be derived and used in future works.

Neighbor Searches Core to the SPH method is the detection of neighboring particles.
Unlike with meshed methods, meshless methods must preform these connectivity searches
repeatedly throughout the course of the simulation. As such, its highly desirable to
implement an e�cient search algorithm. In this work an O (N) binning algorithm [56]
is used in conjunction with a verlet list update scheme. A description of the binning
algorithm can bound in appendix A.
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Code Structure A schematic of the code structure for implementing the AM-SPH
method is shown in Figure A.1 in Appendix A. The mechanical and thermal fields are
solved separately to modularize the code. The method was implemented in C++ in an
object-oriented manner. This was chosen to allow for easy code development however
the use of classes prevents easily parallelization of the code and should be avoided once
experimental work needs to be preformed.
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Chapter 4

Model Verification and Validation
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4.1 Fundamental SPH Formulations Validation
Validation of the fundamental SPH formulations given above (heat conduction, fluid

flow phase change, etc.) was preformed. This was necessary both to ensure the correct
implementation of the methodologies but also to ascertain the e�ect of the free surface
on the formulations.

Thermal validation was preformed for various fundamental heat flow problems (2D
heat conduction on a square domain with varying material properties and boundary con-
ditions as well as Poisuelle and Couette flows) following the work of Cleary & Monaghan
[9]. It was found that the methodology while valid for closed domain problems, su�ered
near the interface for free surface problems. Free surface compatible formulations of the
heat conduction Laplacian will be needed in future works. One means of doing so could
be using MLS formulations of the smoothing function and its derivatives near the free
surface [18, 19].

Validity of the application of the Apparent Heat Capacity method to SPH was con-
firmed using the classical 1-D Stefan problem for solidification of single phase fluid as
described by Davis [15]. The method was found to be su�ciently accurate.

4.2 Verification of Free Surface Adaptation of Morris
SPH-CSF Formulation

As covered in Section 3.1.2, an adaptation of the Morris SPH-CSF methodology for
simulating surface tension on a free surface was used in this work. As all the validation
studies preformed by Morris [54] were for cases involving surface tension on an interface
between two-phases, and not a free surface, the method had to be re-validated. A simple
method for validating surface tension is to simulate a 2D circle of fluid only under surface
tension forces and confirming the correct pressure value predicted by Young-Laplace’s
equation, which relates the pressure in a fluid bubble to the surface tension on its bound-
ary, is measured. For a 2D circle of fluid with a free surface, Laplace’s equation gives:

p = ‡

2R
(4.1)

A circle of fluid, R = 1, under no-external forces other then surface tension, with ‡ = 10,
was simulated and the pressure value in the interior measured after a period of time.
The mesh resolution was dx = 0.05. The measured EOS pressure as a function of radial
distance is plotted in Figure 4.1. Young-Laplace’s equation predicts a pressure value of
pr=1 = 5. The measured value, pmeas = 6, is higher then the predicted value. The pressure
values are scattered along the interface region as particle movement in this region, due to
the vibration of the interface, requires fluctuating EOS pressures to ensure incompress-
ibility is maintained. The higher then expected interior EOS pressure value results form
a discrepancy in the ideal radius of curvature of the problem and the actual radius of
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curvature in the numerical model. The ideal radius of curvature, R = 1, assumed the
interface to have infinitesimal thickness. Because the CSF formulation transforms the
surface tension traction into a volumetric force, the numerical interface region has finite
thickness. As seen in Figure 4.2, which shows the surface tension acceleration, the inter-
face region has about a 2 particle thickness meaning the numerical radius of curvature
is closer to r = 0.9 which results in a predicted pressure of pr=0.9 = 0.55 , closer to the
measured value. While not perfect, it is believed that the method is su�cient enough.

From this validation study, it was also found that a smoothing radius of hsml ¥ 1.8údx,
where h0 = 1.2 ú dx is the standard smoothing radius, was necessary to obtain stable
surface tension forces for a two-phase fluid. Morris used as smoothing length value of
hsml = 1.5 ú dx in their work. It was found that this value was insu�cient and would to
lead to the calculation of erroneously high surface tension forces resulting in a break-up
of the fluid. Unfortunately, the need for such a large smoothing length, hsml = 1.8 ú dx,
leads to increased neighbor pairings growing the computational burden of the CSF-SPH
scheme. The development of a more accurate and e�cient free surface, SPH formulation
for surface tension would be highly desirable but is outside of the scope of this work.

Figure 4.1: Plot of EOS pressure vs radial distance for a Young-Laplace equation valida-
tion test.
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Figure 4.2: The surface tension acceleration contribution for a 2D circle of fluid under
surface tension forces.

4.3 Isothermal WCSPH Formulation Verification
A variety of validation simulations were preformed to ascertain the viability of the

proposed Isothermal WCSPH formulation in simulating an isothermally-incompressible
fluid. The primary goal for developing the methodology was to allow for the modeling
of thermally driven expansion/contraction with a second desired outcome being to ade-
quately capture buoyancy forces from the resulting density field gradients. Isothermally
incompressible fluids are not a well studied field and as such, no standard validation prob-
lems were found by the author in the literature with which to verify the method. Instead
novel validation problems to confirm the accuracy and stability of the method in both
idealistic and realistic (free surface) environments needed to be developed. Buoyancy on
the the other hand is a well studied problem and several standard validation problems
were found in literature and implemented.

4.3.1 Isothermal Incompressible Fluid Contraction/Expansion
Verification

Test 1: Load-Free Expansion and Contraction of a Circle of Fluid The first
verification problem was designed to ascertain the accuracy of the isothermal-WCSPH
model in absence of all external forces or constraints. The proposed problem is as follows.
A droplet of fluid, with a temperature-dependent reference density, is thermally cycled
in open-space(gravity is removed). It is expected that the density of fluid will track
the cycled reference density via expansions/contractions of the fluid volume. The fluid
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density is guaranteed to track the reference density via the EOS and momentum-balance
equation. However, volume in an SPH discretization is a free-variable, determined through
particle motion and spacing, and the correct degree of expansion/contraction to satisfy
isothermal-incompressibility is not guaranteed. Therefore, by measuring the volume of
the simulated fluid and comparing with expected values, a verification of the accuracy of
the isothermal-WCSPH model, in absence of all-other phenomena, can be made.

The measurment of volume is troublesome within the SPH formulation. While each
particle has a specific mass and density, one cannot just directly divide the two to de-
termine the actual volume of a particle. Because of the use of a Weakly Compressible
formulation, numerical errors in the solution of continuity equation, usually from a poor
particle approximations resulting from poor particle distributions, can produce slight dif-
ferences between the volume change of a particle and its corresponding change of density.
This can be compounded over time by the use of a pressure di�usion scheme such as
” ≠ SPH. Under large, directional forces its been observed that over time the “true
volume” of a particle may not be equal to its mass over density. Therefore, in this ex-
periment, the volume of the fluid was measured by preforming a Voronoi tessellation of
the particle positions, and calculating the average volume of the Voronoi cells in a region.
Voronoi tessellations provide an easy means for calculating the volume occupied by a
particle distribution.

For the test case shown is this work, a sinusoidal temperature field was imposed
homogeneously on the fluid droplet, T (t) = Tref +50úsin(2fit). The density was updated
through Eq.(3.48) with –T = 1, resulting in density fluctuations of ±5%. An inter-particle
spacing of dx/R = 0.05, where R is the droplet radius, was used. The droplet motion was
simulated for 10 cycles at which point no further changes were noted in the system.

The average volume of the simulated fluid, V , was calculated using a Voronoi tessella-
tion of the particle positions at a given time[24]. The volume percent error is calculated
as,

Error = 100 ú
-----
(V true ≠ V )

V true

-----

where V true = m
fl0(T ) is the expected volume. Figure 4.3 shows a plot of the volume

error values over time for both a region of interior particles(ri < 0.5R) and a region of
particles near the surface (0.8R < ri < 0.9R). Free-surface regions are a known source of
error in the SPH method so the use of both regions is necessary to fully verify the method.
Voronoi tessellation is not unique on a free-surface requiring the use of a restricted sub-
region which does not include the fluid boundary. Figure 4.4, shows the Voronoi cells
selected for the two regions. The results are very positive. The measured average volume
of the SPH particles closely matched the expected volume ( less than 0.4% error in the
interior and 0.8% on the surface) throughout the length of the simulation indicating the
methodology is accurately simulating isothermal incompressibility. In addition, the error
didn’t grow over the length of several cycles proving the method to be stable as well.
A comparison of the boundary and interior plots reveal the error to be only minimally
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higher on the boundaries. This is promising and points to the free surface having minimal
impact on the scheme.

The regularized fluctuations of the volume error can be interpreted as a lag time in
the fluid’s tracking of the reference density values. This lag results from using a weakly
compressible formulation. Recall that change of reference density produces a pressure
increase in the fluid which drives fluid motion(expansion/contraction) and hence a density
change. The speed at which this occurs determines how fast the fluid can track the correct
density field value and is directly related to the sti�ness of the fluid. Much like a spring-
damper system where in this case the spring is the fluid sti�ness and the dampener the
fluid viscosity/delta-sph term. Low sti�ness values will result in a slow tracking of the fluid
reference density while higher sti�ness values can overshoot the desired pressure value. A
means of predicting the necessary fluid sti�ness for given fluid viscosity/” ≠ term values
to accurately track the density would be ideal but would require significant additional
investigation which is outside the current scope of this wok.

Figure 4.3: Volume error over time for an interior and surface region of the fluid for the
validation test of cyclically expanding fluid under no external loading.

As noted in Sub-Section 3.4.1.1 the standard check of incompressibility, Ò · u = 0, is
no longer valid in the case of isothermal incompressibility, and a new standard relation
was derived, Eq. 3.49. To confirm the accuracy of this derivation, measured velocity
divergence values were compared against values predicted by Eq. 3.49. The results of this
comparison are presented in Figure 4.5, which contains plots of the percent error of the
velocity divergence over the length of the simulation for a region of interior particles and a
region of boundary particles. The results are very promising and while the velocity diver-
gence error values are larger than the volume error values, probably due to discretization
error in the SPH discretization used to calculate the velocity divergence term, they are
small enough confirm that the derivation of Eq. 3.49 is valid. Eq. 3.49 can therefore be
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Figure 4.4: Interior and surface regions used for Voronoi area calculations.

used as a new metric for checking the correct enforcement of the isothermal incompress-
ibility constraint. Initial, large inaccuracies in the simulated volume, at t < 0.4sec, are
mostly like the result of a poor initial SPH particle configuration. After t = 0.4sec the
SPH particles have settled into a optimal configuration lowering the discretization error.

Figure 4.5: Volume divergence error over time for an interior and surface region of the
fluid for the validation test of cyclically expanding fluid under no external loading.

Test 2: Cyclic Expansion of a Fluid with Increasing Amplitude After con-
firming the accuracy and stability of the Isothermal WCSPH framework under simplistic
conditions, it was next desired to identify the max allowable compression/expansion range
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of the formulation. To do this a variation of the cyclic loading test with increasing am-
plitude was preformed. The same sinusoidal temperature field as Test 1 was imposed but
the density temperature coe�cient was linearly increased in time

–T = 10 t

Ttot

.

As significant volume change was expected, it was necessary to evolve the smoothing
length to ensure correct support was maintained,

hsml = hsml,ref

A
flref

fl0

B 1
DIM

.

A plot of the average density and reference density values for a section of interior
fluid over time are shown in Figure 4.6. At low amplitudes the fluids density matched
the reference value quite well. The fluid was able to simulate up to approximately a
140% increase in density before failing, through a splitting apart of neighboring SPH
particles. This density increase is well within range necessary for the simulation of most
physical processes including SLM. However if necessary, its believed greater expansion
can be achieved by using particle remeshing schemes to preserve the mesh quality after a
given amount of expansion. This would also preserve the discretization accuracy of the
simulation.

In this simulation, an interesting failure mode was observed at higher fluid sti�nesses.
A checker-boarding of density field appeared at high amplitudes, Figure 4.8. The checker-
boarding was an unstable state and eventually the fluid density leveled out. At high
rates of expansion however, failure of the fluid from large EOS pressures in the checker
boarding would occur. This indicates that further investigation of the links between the
fluid sti�ness, the ”≠SPH term, and the allowable rate/amounts of fluid expansion needs
to be preformed.

Test 3: Expansion of an Isothermally Incompressible Fluid Underneath a Con-
stant Density Fluid: Accuracy of isothermal-incompressible constraint under
external forces and in a multi-phase fluid Gravity, solid boundaries, and a two-
fluid system are introduced in a second verification problem to confirm the correct work-
ing of the isothermal-WCSPH model under practical (real-world) conditions. The second
verification problem is as follows. An open topped column of fluid, consisting of two
vertically-stacked fluids with identical properties, is initially at rest, Figure 4.9. At t = 0,
the reference density of the lower fluid in the column, Fluid 1, is decreased at constant
rate, fl̇0, until t/t0 = 0.5 at which point it is held constant. The reference density of the
upper fluid of the column, Fluid 2, is held constant throughout the simulation. It is ex-
pected that Fluid 1 will expand, pushing up the entire column of fluid, while the volume
of Fluid 2 will remain constant. The presence of gravity and boundaries will introduce
forces in addition to those from the isothermal-WCSPH EOS. The presence of two fluids
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Figure 4.6: Plot of density and reference density over time for a cyclically expanding fluid
with increasing amplitude.

with varying densities will evaluate the viability of the method in the presence of a density
discontinuity.

For the case chosen in this work, a 10% reduction in density is achieved in Fluid 1
through the application of a non-dimensionalized reference density rate of fl̇0 = ≠0.4.
Each fluid is of size L0 ◊2L0 and an initial discretization spacing of dx/L0 = 0.05 is used.
A constant gravity force of g = 10m/s2 is applied.

The measured average density of Fluid 1 and Fluid 2 over time are compared to their
expected values in Figure 4.10 The volume error over time for Fluid 1 and Fluid 2 is
given in Figure 4.11. The fluid density neatly tracks the reference density value for both
the expanding fluid and constant density fluid. As with Test 1, the volume error remains
low (Error < 1%) indicating correct enforcement of the isothermal-incompressibility
constraint. The addition of external loadings, gravity and boundary forces, from the
first validation experiment resulted in the appearance of oscillations in the density field
and a spike in the volume error at the beginning (t/t0 = 0) and end (t/t0 = 0.5) of the
density shift. The sudden changes in the reference density rate at these times requires
a period equilibration of the density field to the reference value. The length of time
for this equilibration is minimal and can be reduced through increased fluid sti�ness or
shortening of the numerical time step. No measurable density di�usion was observed
across the interface between the upper and lower fluids and the interface remained stable.
This indicates the robustness of the methodology in being able to capture volume changes
of isothermally-incompressible,variable density flows in practical conditions.

Test 4: Sinking Fluid, ” ≠ SPH vs Standard SPH Finally, a simple problem of
a heavy fluid settling inside a lighter fluid is chosen to demonstrate the usefulness of
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Figure 4.7: Plot of volume error from ideal for the increasing amplitude fluid expansion
test.

having a methodology that is ” ≠ SPH compatible. A 2000 kg
m3 fluid, initially at rest,

is placed inside a 1000 kg
m3 fluid near the free surface. Over time the heavier fluid sinks

into the lighter fuid. Figure 4.12 shows snapshots of the pressure field, generated using
a Dealauny Triangulation, for the case using the standard WCSPH formulation and the
case of using the modified ” ≠ SPH scheme. The white line highlights the boundary
between the two schemes. The case of no ” ≠SPH works well enough but has oscillations
in the pressure/density field as expected. The case of the modified ” ≠ SPH scheme
shows smooth pressure fields and density fields(not shown). Also not shown here is case
of using an incompatible ” ≠ SPH scheme, which leads to large pressure fluctuations
and a failure of the simulation for reasons discussed in the prior section. This simple
test validates the need for utilizing a (compatible) ” ≠ SPH scheme when simulating
isothermally-incompressible fluids with varying densities.

4.3.2 Buoyancy Driven Flows Validation
Two test problems were used to ascertain the viability of the proposed methodology to

simulate density buoyancy driven flows, a Rayleigh-Taylor Instability and a Di�erentially
Heated Square Cavity.

Test 1: Rayleigh-Taylor Instability A Rayleigh-Taylor instability is created by plac-
ing a higher density fluid above a lower-density fluid in a column. In the absence of surface
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Figure 4.8: Checker-boarding of the pressure field at high rates of fluid expansion with a
sti� fluid EOS.

tension, mixing will occur. Details of the reference problem are given by Szewc et al. [65].
Snapshots of the simulated fluid profile at several instances of time are given in Figure
4.13and compared against the results presented by Szewc et al.. As it can be seen, the
flow simulated with the given methodology has a retarded motion compared to Swexce
et al’s results. While the fluid profile is qualitatively close to what is expected for the
simulations it is about 1s behind the Szewc. results. This implies that the magnitude
of the buoyancy force is lower then expected. Since the buoyancy force is not explicitly
solved with this methodology this really is implying that the pressure force was lower then
expected.
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Figure 4.13: Comparison of fluid profile snapshots for Rayliegh-Taylor instability test
with results from Szewc et al.[65]

It was initially believed this was due to the incorrect calculation of the EOS pressure
leading to lower pressure gradients in the fluid. The EOS pressure field was verified for
a hydrostatic test of a heavier fluid resting on top of a lighter fluid. The EOS profile as
a function of depth is shown in Figure 4.14. It matches the predicted hydrostatic field
quite well.
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Figure 4.14: Comparison of the measured hydrostatic fluid profile to the expected value.

An examination of the pressure force profile for the fluid in motion however reveals the
source of the sluggish motion of the fluid. As seen in Figure 4.15, striations occur in the
EOS pressure field along the boundary between the two fluids. This leads to oscillations
in the direction of the pressure force leading to a decreased overall buoyancy force at the
boundary and a retarding of the motion. Its unclear what is causing the occurrence of
these striations but one possibility is the use of the continuity equation to calculate the
density field. These striations could possibly be the result of a lower potential fluid state
that satisfies the continuity equations but leads to incorrect pressure calculations.
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Figure 4.15: Pressure field striations visible at boundary between the two fluids.

Test 2: Di�erentially Heated Square Cavity It was initially believed that the
pressure striations and retarded buoyancy motion were the result of having a sharp density
discontinuity in the fluid and the method would be capable of simulating a problem in
which the density variations were smoothed. Therefore it was attempted to simulate the
flow in a di�erentially heated square cavity. A description of the problem formulations
is again given by Szewc. et al.[65] Unfortunately a similar retardation of the flow is
apparent in this simulation as well, Figure 4.16 . An inspection of the pressure force field,
Figure4.17, reveals the same striations apparent in the the Rayleigh-Taylor instability.
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regime of the Boussinesq approximation, we have: the Prandtl (Pr),
the Rayleigh (Ra), and additionally the Gay-Lussac number (Ga).

We decided to simulate a differentially heated square cavity at
Ra = 105 for selected Gay-Lussac numbers: Ga = 0.071, 0.284,
0.568, with Pr = 0.71. In the initial state the fluid is discretized with
3600 homogeneously distributed particles. Fig. 10 shows calculated

steady-state velocity and temperature profiles. In comparison to
the velocity profiles obtained by Wan et al. [4], both the new ap-
proach with Ga = 0.071 and the standard Boussinesq formulation
behave similarly (small underestimation). As expected, the temper-
ature profiles obtained with the standard Boussinesq approxima-
tion (SPH and DSC) are close to each other. For Ga = 0.284, 0.568

Fig. 6. Horizontal velocity (left plots), vertical velocity (middle plots) and temperature field (right plots) for horizontally-heated square cavity at Ra = 103 and Pr = 0.71
(steady-state solution). Top plots: SPH with Boussinesq approximation; bottom plots: SPH with the new approach (Ga = 0.071).

Fig. 7. Horizontal velocity (left plots), vertical velocity (middle plots) and temperature field (right plots) for horizontally-heated square cavity at Ra = 104 and Pr = 0.71
(steady-state solution). Top plots: SPH with Boussinesq approximation; bottom plots: SPH with the new approach (Ga = 0.071).

K. Szewc et al. / International Journal of Heat and Mass Transfer 54 (2011) 4807–4816 4813

Szewc et	al.	2011

Figure 4.16: Comparisons of velocity and temperature fields for di�erentially heated cavity
problem.

Figure 4.17: Pressure force field striations.
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4.3.3 Conclusion
The proposed methodology works well for simulating the expansion/contractions of

isothermally incompressible fluids but is incapable of accurately resolving buoyancy driven
flows. It maintains incompressibility in the presence of sharp density discontinuities, when
exposed to external forces(e.g. another expanding fluid), and over time as well. However it
under predicts the expected buoyancy forces in buoyancy driven flows due to the presence
of spatial oscillations in the pressure field(temporal oscillations are muted by the ”≠SPH
method). It is therefore suitable for simulating AM processes that involve rapid volume
changes driven by thermal transitions but which do not require accurate simulation of
buoyancy driven flows.

4.4 Spot Laser Weld Pool Validation Study
A validation case incorporating most of the physics considered in this research is set

up by taking as reference the laser-welding experiments conducted by He et al. [32].
They made millisecond (3ms, 4ms), milimeter diameter pulsed laser spot welds on 304
stainless steel plates. By comparing the final weld pool dimensions from the He et al.
experiment with those predicted by this numerical model, a check on the proposed AM-
SPH methodology can be performed. Ideally, a track-weld experiment would be used
to validate the methodology, as was preformed by Khariallah et al. [37], as it most
similarly matches the motion of the SLM process, however the computational expense
of such a simulation is outside of the capability of the currently implemented numerical
code. Optimization of the code through more e�cient function implementation and data
structures combined with parallelization will make such a validation possible in the future.

Thermo-Mechanical Properties of 304 Stainless Steel Values for the thermally
variable material properties of 304 steel used in this simulation were obtained from K.
Mills [48] , Dubberstein et al. [20], and Valencia et al. [68]. The melting temperature is
Tmelt = 1723K with a melting bandwidth of ”T = 100K (Eq. 3.47). While all material
properties are functions of temperature, and not just material phase, for simplicity only
the density, the surface tension, and ˆ‡

ˆT
are fully functions of temperature in this work.

All other material properties are linearly interpolated between their solid and liquid phase
values by the following equations;

◊ =

Y
__]

__[

◊solid s = 0
(◊solid ≠ ◊liquid) s + ◊solid 0 < s < 1
◊liquid s = 1

where ◊ is a representative material property and s the state variable. The solid and
liquid values of all relevant material properties are given in Table 4.1. The liquid thermal
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Material Property Solid Value Liquid Value Units
µ 1.0 0.01 kg

m·s
cp 711.17 937.35 J

kg·K
kthermal 20 209.3 J

m·s·K
Surface Absorbtion Coefficient[32] 0.27 0.27 -

Table 4.1: Material property values for 304 Steel

conductivity is scaled by a factor of 10. This is a common practice in welding simulations
and takes into account additional heat transfer due to turbulence in the flow[57, 32].

The material absorptivity was set so that all non-refelcted laser power was abosrbed
by the SPH particles on the surface of the weld.

The density is a function of temperature and is given by:

fl =

Y
__]

__[

8020 kg
m3 ≠ 0.501 kg

m3K
(T ≠ 298K) s = 0 (solid)

7443 kg
m3 ≠ 6.03 kg

m3K
(T ≠ 1673K) 0 < s < 1 (transition)

6840 kg
m3 ≠ 0.70 kg

m3K
(T ≠ 1773K) s = 1 (liquid)

The solid density equation is obtained from the experimental work of Mills [48], the
liquid density equation from Dubberstein et al. [20], and because of a lack of experimental
data the mushy zone is a linear fit between the two. The density of liquid steel is only
experimentally measured by Dubberstein et al. up to 1923K. In this model, a linear
extrapolation is made for temperatures above this. The surface tension of 304 steel is
both a function of temperature and the concentration of alloying Sulfur. In this work
that concentration is assumed to be constant, as = 0.0022wt%. The surface tension as a
function of temperature is given by Sahoo et al.[60] as;

‡ (T ) = ‡0 ≠ A (T ≠ Tm) ≠ R · T · �slog

A

1 + kl · as · e

1
≠�H0

R·T

2B
N

m
(4.2)

where ‡0 = 1.943N
m

, A = 0.5 ú 10≠3 N
mK

, R = 8.3145, �s = 1.3 ú 10≠8, kl = 0.0032, and
�H0 = ≠166 ú 103. An equation for ˆ‡

ˆT
as a function of temperature is obtained by

taking the derivative of Eq. 4.2 with respect to temperature. A unique property of the
Marangoni forces in stainless steels is the direction of the force switches from opposite of
ÒT at low temperatures, to parrallel to ÒT at high temperatures. Numerous numerical
works ignore this phenomena and assume a constant ˆ‡

ˆT
coe�cient as this increases model

stability. This is not done in this work in order to fully capture the physics of the process.
The viscosity of the fluid was linearly ramped in the transition between liquid and solid

state, and ramped down in the vice versa, to simulate the mushy region melt dynamics.
While ideally, the viscosity would be ramped to infinity as the mushy region became solid,
this is numerically impossible. It was discovered that a viscosity of 100 times the fluid
viscosity was the max allowable for the solidified mushy region while still maintaining
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Property Value
c0 50m

s

Kernel Wedland C2
h/dxreg, 1.2

h/dx(surf.ten.), 1.8
dim 3
dx 0.05mm

total particles 19000
dt 6E ≠ 08s

sim. time ¥ 200hrs

Table 4.2: Simulation parameters for laser weld validation test.

model stability. Its unclear why this was the maxed allowed value as the viscosity CFL
condition was still lower then the simulation time step. Why stable simulation of larger
viscosity ramps was unobtainable will be investigated in future works.

Model Parameters and Assumptions The SPH parameters used in the simulation
are given in Table 4.2.

It was assumed that no surface tension existed between the solid and liquid phases of
the material. It is believed that the contact interface between the two would have a smooth
transition between states and thus no surface tension would result. In addition, thin layers
of fluid (1-2 particles in thickness) were prevented from developing surface tension forces.
The CSF-SPH formulation requires significant support to operate correctly and thin fluid
layers were found to have erroneously high surface tension values. A third assumption
in the model is that the sound speed of a particle was lowered by a factor of 5 when
melting. This was done to prevent rapid expansion forces from ejecting the particles o�
the solidified body it was attached too. The solid-liquid pressure relation used in this
methodology is unable to prevent seperation if the volumetric expansion is rapid enough.
By lowering the sti�ness, the rate of expansion is also lowered. This was necessary for
model stability and its e�ects on the simulation outcome are thought to be minimal.

When a perfect grid-lattice was used as initial placements for the SPH particles in the
simulation, un-natural motion of the SPH particles due to symmetrically opposed forces
was observed. For example, a particle placed on the surface in the center of the laser
profile would experience equally opposed surface tesnion forces and be prevented from
moving. In order to avoid any influence from the initial placement of the SPH particles,
the z-height of vertical columns of particles was randomized and the entire mesh was
o�set from center in the x-y plane by �x = 0.33hsml and �y = 0.33hsml. This o�setting
and randomization of the height prevented any unphysical motion of the particles and the
z-height randomness can be further reasoned as a roughening of the surface.

It should be noted that typically when a laser welding experiment is numerically
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simulated (e.g. [57, 32]), an assumption of a flat weld-pool surface is enforced (i.e. uy = 0).
It is claimed that this assumption comes from an observation that the final weld-pool
surface is relatively flat, however its use is more than likely due to the use of fixed-
grid numerical methods (FVM) where a deformable free surface is di�cult to model.
In the above experiment, it was noted that significant weld pool surface deformation
occurred during the melt phase, and it is believed that neglecting this deformation and
the mechanism that keeps the weld pool surface from spilling over (the normal surface
tension on the edge of the weld pool) is necessary to accurately model this type of problem.

A Dirchlet temperature boundary condition of T = 293K was enforced on the bot-
tom of the weld-substrate using a layer of three boundary particles. A zero conduction
boundary flux condition was imposed on the surface. This is easily accomplished in SPH
by leaving the boundary on the surface as free(no boundary particles). A radiative flux
and convective flux was imposed on the surface SPH particles. The substrate layer was
chosen to be thick-enough such that the e�ect of the boundary condition on temperature
field in the field was minimized.

4.4.1 Results
A simulation of the 3ms-microsale laser weld pulse experiment preformed in He et

al. [32] was carried out. The simulation was run until the weld-pool fully solidified. The
experiment parameters are listed in Table 4.3. A side-by-side comparison of the simulated
weld pool at max dimensions is compared against the melted region micrograph given in
the work of He et al. in Figure 4.18. The numerical weld-pool dimensions and those of the
physical experiment along with the precent error are given in Table 4.3. As one can see
the measured values are roughly close to those of the physical experiment(Error < 0.4%),
however the shape of the weld pool is di�erent then that of the micrograph. The weld
pool in the numerical simulation is more rounded. A perfect hemisphere is expected if no
fluid convection occurs and the laser heat is only dispersed via conduction. This implies
that the model is not accurately capturing the re-circulative weld pool motion.
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Property SPH Exp He et al. Percent Error
radius 0.46mm 0.48mm 4.3%
depth 0.25mm 0.26mm 3.8%

Table 4.3: Laser welding validation test results. A comparison of the simulated weld pool
dimensions with that of the work of He et al.

Figure 4.18: Maximum dimensions of the simulated weld pool as compared to micrograph
from He et al. experiments.

Discrepancy between the two weld pools can be the result of numerous factors. (1)
The material properties used in the simulation do not match those of the 304 Steel used
in the experiment. A noted above, the surface tension is a function of alloying Sulfur
concentration. It is unknown at what purity the tested 304 steel sample is. In addition, a
constant surface laser absorbtion coe�cient of 0.33 was used. However this value is only
just the known value of surface absorption for the solid phase at lower temperatures. The
surface absorptivity of liquid or elevated temperature solid 304 steel is not well known due
to the di�culty in measuring it. Having a higher or lower surface absorbtion coe�cient
would significant influence the amount of thermal energy transmitted into the weld pool
and hence its size. (2) A second source of error is insu�cient mesh resolution. A higher
mesh resolution is most likely necessary to fully capture the re-circulating flow of the weld
pool. This recirculation would influence the shape of the weld pool by redistributing the
heat flow in the weld pool. However, this simulation alone took approximately 300hrs of
simulation time. Higher-resolution simulations can only be carried out once optimization
of the code has been performed. (3) A third source of inaccuracy could be having too
insu�cient of a sound speed for the fluid phase. The predicted max fluid velocity speed
for the weld pool was given by He et al. as 1m/s. The standard sound speed for the WC-
SPH method would therefore be c0 = 10 ◊ 1m/s [52]. However, even when using a sound
speed of c0 = 50m/s fluid splitting was observed and incompressibility was not main-
tained. Using a higher sound-speed is impossible as the simulation time would become
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un-attainable. A better means for predicting the maximum required sound speed needs
to be formulated. It is believe it needs to be linked to the dominate force in the model,
that of the Marangoni surface tension. However no CFL conditions for Marangoni forces
were found in literature. (4) A fourth source error, could be the observed separation of
neighboring solid and liquid SPH particles. The method for simulating the pressure force
between solid and liquid particles was found to be insu�cient to prevent lift-o� of SPH
liquid particles from their solid neighbors. This is completely unphysical and occurred at
lower force values then the splitting noted in point (3) indicating its not entirely result-
ing from the choice of material sti�ness. It is believed that a better formulation for the
interaction between solid and liquid SPH particles is necessary for future works.

Overall, the results of this laser spot welding validation test are promising but are
insu�cient to declare the method fully validated. It is recommend that future validation
attempts should use a di�erent validation problem then that of the He et al. laser spot
welding experiments. It was noted that the time and length scale of the problem was
insu�cient to establish a steady state re-circulation of the weld pool. A steady-state
laser spot welding experiment like that given by Pitschender et al [57] where the lasering
times are in seconds, not milliseconds, would provide a better verification of the AM-SPH
model. However again, simulating a seconds long, millimeter scale lasering pulse is outside
the computational capabilities of the current implementation of the method.
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Figure 4.9: Schematic of the bi-fluid column simulated in isothermal-WCSPH verification
Test 2.
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Figure 4.10: Non-dimensionalized density vs time of Fluid 1 and Fluid 2 for isothermal-
WCSPH verification Test 2. Dotted lines give the value of the reference density for the
fluid.
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Figure 4.11: Volume Percent Error vs time for Fluid 1 and Fluid 2 for isothermal-WCSPH
verification Test 2.

Figure 4.12: Pressure fields for the simulation of a heavier fluid, outlined in white, sinking
in a lighter fluid using the modified ” ≠ SPH formulation and the standard WCSPH
formulation (no ” ≠ SPH).
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Chapter 5

Numerical Experiments
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5.1 Laser Melting of a Particle Bed
The Particle Bed Selective Laser Melting process, described in detail in Section 2.2,

was chosen as the first application of interest to apply the AM-SPH methodology devel-
oped in this work too. The goals of developing the AM-SPH methodology were to be able
to provide insight into the physical processes occurring during the laser melting of a single-
track along the particle bed as well as to o�er process improvements through parameters
studies of varying processing parameters(laser power, laser width, particle diameter, etc.).
While this work is merely an initial e�ort into developing an industry/research viable AM-
SPH methodology, with improvements of various SPH discretizations(surface tension for
example) as well the inclusion of additional physics(e.g. vaporization and recoil pressure)
still necessary, an attempt at satisfying these two goals will still be made in this work.
However given, the relatively large computational burden of the current implementation of
this methodology, a tradeo� must be made between the dimensionality of the simulation
and the resolution/scale of the simulated problem. To balance these competing factors
both high-resolution, full-track scale 2D simulations as well as a lower resolution, smaller
scale 3D simulations were preformed. 2D simulations significantly reduce the computa-
tional burden allowing for larger domain and higher resolution simulations. In the future
it will be desirable to conduct high-resolution full scale 3D simulations, but this is outside
the scope of the current e�ort. 2D simulations will be used to preform parameter studies
of the methodology while the 3D studies will shows its extension to the dimensions of the
real world.

5.1.1 Laser Melting of a 2D Particle Bed
A 2D simulation of the laser melting of a real-scale particle bed track was preformed.

The material properties and model assumptions were the same as the spot laser validation
test, Section 4.4. A regular distribution of powder particles was used as the problem
geometry. In actuality, the spacing between particles would be more irregular due to the
randomized nature of a real world particle bed. The simulation parameters used are given
in Table 5.2. To prevent overheating of ejected SPH particles if an ejected SPH particle’s
temperature reached 6000K it was removed from the simulation. A no-conduction/no-
convection flux boundary condition was imposed on the top surface. The bottom surface
of the substrate had a Dirchlet temperature condition of T = 293K that was implemented
using a layer of boundary particles. The substrate layer was chosen to be thick-enough
such that the e�ect of the Dirchlet boundary condition on the temperature field was
minimized.

As a starting point, the process parameters and physical dimensions were taken from
the 3D-FEM simulation work of Khariallah et al. [37]. The laser power and scan speed
where the same as Khariallah et al. but a constant particle radius of rp = 25µm, rather
then the radii range of rp = 27±5µm used by Khariallah et al, was used in this experiment.
The experiment parameters are listed below in Table 5.1. The simulation was carried out
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Property Value
Laser 2‡ Wdith 54µm

Laser Power 150W
Scan V elocity 2m/s
Laser Profile Gaussian

Particle Radius 25µm
Track Length 1.2mm
Track Depth 0.33mm

Table 5.1: Process parameters for 2D laser melting of a powder bed track.

until the track had fully solidified, around tfinal = 1.125ms.
Snapshots of the state-field with temperature contours overlaid at several time points

over the course of the simulation are shown below in Figure 5.1. The particle bed is
completely solidified(T = 293K) at t = 0ms when the laser is turned on. The Gaussian-
laser power distribution and penetration into the particle-bed are shown in Figure 5.1-A.
The initial melt pool shape is highly volatile upon formation (Figure 5.1-B). The high
laser-heating rate places heat into the body at a faster rate then it can di�use into the
substrate leading to high-thermal gradients. These thermal gradients result in strong
Marangoni convection in both the +x and ≠x directions and to a deepening of the melt
pool as particles under the laser are wicked away. Midway through the lasering process,
the melt pool has reached a more-steady state(Figure 5.1-C). Mid-lasering a semi-steady
state occurs where three zones can be visibly demarcated; a highly dynamic melt pool
directly under the laser region, a slower moving melt-pool tail, and the solidified newly
deposited track. These same zones and the occurrence of a “steady-state” are also noted
by Khariallah et al. in their work. The melt pool penetrates into the substrate layer,
completely melting the deposited particles, and providing a solid connection between the
two. Interestingly, the melt pool extends in front of the moving laser heat source, propelled
by the Marangoni convection in the +x direction. The melt pool surface is relatively flat
as the strong Marangoni convection away from the melt region smooths out any balling
of the surface from normal surface tension forces. However, at certain locations necking
of the melt-tail can occur, indicated by the arrow in Figure 5.1-D leading to the so called
“balling-e�ect”. This e�ect is reasoned to be the result of Rayliegh-taylor instabilities
which would be much less pronounced in a 2D model. The strength of the Marangoni
convection is apparent in the melt fluid ejected o� the end of the substrate in the ≠x
direction. The melt pool remains liquid after the passing of the laser-beam with a long
melt pool tail, around 400µm in length. The material remains in a mushy-state even long
after the laser has passed. This is due to lower-thermal gradients, the energy released in
the solid-liquid phase change, as well as the lower thermal conductivity of the solid phase.
The final profile of the melt-track is relatively flat (Figure 5.1-F) although a pinching of
the melt pool results in the solidification front separating two melt sections leading to the
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Property Value
c0 20m

s

Kernel Wedland C2
h/dxreg, 1.2

h/dx(surf.ten.), 1.8
dim 2
dx 4µm

total particles 13000
dt 1.2E ≠ 08s

sim. time ¥ 36hrs

Table 5.2: Simulation parameters for 2D laser melting of particle track.

formation of humps(the 2D version of balling).
A closer look at the steady-state melt-pool (Figure 5.1-C) provides insight into the

complex interactions between vying physical phenomena at the microscale during the
SLM process. Focused views of the temperature , velocity, and surface tension fields are
provided in Figure 5.2. As seen in Figure 5.2-A the highest temperatures occur directly
beneath the laser beam although the melt-region extends out in front of the moving
source(i.e. particles are being melted in front of the moving beam). The source of this is
the strong Marangoni convection currents pushing fluid out in front of the moving laser
source as well as back behind it. As seen in Figure 5.2-B&C the highest Marangoni forces
and highest velocities in the melt pool are actually in the positive x direction moving
out in front of the beam. The thermal gradients are highest here propelling the fluid
forward. The fluid moving forward rapidly heats the oncoming powders, melting them
before they come in contact with the laser beam. Its is believed that pre-heating/melting
of the oncoming fluid allows for a smoother melt flow as the rate of thermal expansion
is minimized. In addition, at high enough laser powers/slow enough scan speeds, this
e�ect can leads to the ejection of some fluid o� the front of the melt pool, referred to
in the field as spattering. This same “bow-wave” e�ect was noted by Khariallah et al.
[38]in their FEM simulation however they concluded it was the result of recoil vapor
pressure in the melt(a phenomena not models in this work). Inertia from the initial high
Marangoni forces propel the fluid the laser source backwards along the track. Close to
the melt-pool these surface flows lead to re-circulation vortices as seen in Figure 5.2-C.
Re-circulation is known to extend the depth of melt pools and is desirable for penetrating
into the substrate layer. Khariallah et al. also reasoned that re-circulation can result in
trapped voids however this e�ect was not seen in this work The e�ect of the volumetric
expansion is not as visible in these simulations. It could be contributing to the flow
outward under the laser beam however a direct measurment of its value is di�cult to
obtain as its impossible to separate the pressure from volumetric expansion and that
required to maintain incompressibility. It is apparent from these simulations that the
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Figure 5.1: Snapshots of the material state and temperature contours at very times for the
laser melting of a 2D particle bed with the experimental parameters described in Table
5.1.
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driving motion for the growth and propagation of the melt pool is Marangoni forces
emanating out under the translating laser beam sources. The competing e�ects of the
rate of melt-pool solidification, surface melt inertia, minor marangoni convection, and
normal surface tension determine the resulting roughness of the track surface.
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Figure 5.2: Snapshots temperature, velocity, and surface tension acceleration field at
t = 0.24ms.

Due to the Lagrangian nature of the SPH method its possible to track the motion of
specific sections of the particle bed over the process. The motion of a few powder particles
was tracked during the lasering process. The results are shown below in Figure 5.3. The
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tracked particles are colored red. As it can be seen the powder mass is sheared over
the newly formed tracked. The shearing results from the strong Marangoni convection
force being a surface phenomena. The top fluid layer is strongly accelerated while the
low viscosity of the melt fails to accelerate the lower levels of fluid. Some of the powder
mass is mixed into the substrate layer with the majority remaining in the new track layer.
Most of the mass form a powder particles remains close together although some is ejected
further in front of the bulk of particle mass. This information is useful in determining
how 2-component powder mixture might mix and distribute during a lasering process.
It indicated that strong mixing is not achieved and striated material microstructures are
likely to appear.

Figure 5.3: Motion of tracer powder particles over the course of a track deposition process.

5.1.1.1 Parameter Studies

Several parameter studies were preformed to show the applicability of the AM-SPH
methodology to SLM process optimization. The results from these simulations should be
understand to only be valid in the 2D sense. Any extension to real-world 3D simulations
is not absolute.

Laser Power Variation A initial parameter study was preformed the e�ects of vary-
ing the laser power. A laser with a beam width of 54µm laser was scanned over a
particle bed composed of 25µm radius powder particles. Scans with laser powers of
50W, 100W, 150W, and 200W were preformed. The powder bed geometry was the same
as the previous experiment. Snapshots of the particle bed state over the course of the
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scan for every power level are given in Appendix B.0.1. For succinctness only the particle
bed state at t = 0.26ms, mid-lasering , and t = 1.25ms, fully resolidified bed, for all the
laser powers are presented below in Figure 5.4 and Figure 5.5respectively.

The qualitative e�ects of the varying laser power on the melt pool state mid-lasering,
Figure5.4, are quite pronounced. At 50W , the laser is incapable of fully melting the
powder bed and penetrating into the substrate layer. The melt pool is driven by direct
heating under the laser beam and is minimal in size. At 100W , the laser is capable of fully
melting the deposited particles as well as penetrating into the previous substrate layer.
The Marangoni convection is significant enough to propagate the melt pool in advance of
the laser beam melting oncoming particles. The melt pool motion is relatively calm and
smooth. At 150W , significant penetration into the previous substrate region is achieved.
The melt pool is larger in size and protrudes well in advance of the oncoming laser
beam. The higher laser powers, result in higher melt-surface temperatures and greater
Marangoni-forces. These forces manifest themselves in a more volatile melt surface profile
then the 100W case and significant material ejection out of the front and rear of the melt
pool. Finally at 200W , extreme laser heating results in extreme temperature gradients
and a highly volatile melt motion. The extreme Marangoni convection ejects fluid out of
the front of the advancing lasers and leads to a highly unstable melt surface.

Qualitatively its clear that using a lower laser power results in a smoother melt-profile.
Its rationalized that higher laser powers, the melt pool is both larger and more volatile.
The volatility increases the chance of melt-trail break up and the formation of humps.
The melt-pool size determines the rate of cooling of the melt-surface. Smaller melt-pools
cool much quicker, as they have significantly less thermal mass, reducing the amount of
time available for surface tension forces to neck the melt tail forming humps. Khariallah
et al. came to the same conclusion in their work noting that “less heat content” gave
the surface tension forces less time to break up the flow because solidification occurred
faster[38]. Its argued that using the lowest laser power cable of producing an acceptable
depth of penetration is preferred.
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Figure 5.4: Snapshots of the material state and temperature contours for varying laser
powers at t = 0.26ms.
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Figure 5.5: Snapshots of the material state and temperature contours for varying laser
powers at t = 1.25ms.

Quantitatively the varying laser powers can be compared on a number of performance
metrics specific to the SLM process: (1) penetration into the substrate layer, (2) max-
height variation of the deposited track profile, (3) rate of solidification of the top layer of
the melt pool, (4) maximum temperature of the melt pool, (5) maximum velocity of the
melt pool. Penetration is important to ensure su�cient bonding of the newly deposited
track with the substrate layer. Smoothness is desired to keep track deposition even and
ensure z-height variation across the part is minimized. High-rates of cooling as well as
steep temperature gradients are sources of thermally induced residual stresses and micro-
cracking and should be minimized. The maximum temperature of the melt pool should be
kept below the vaporization of the material. These metrics were calculated for the varying
laser power and are tabulated below in Table .5.3 Metrics (1) and (3-5) were calculated
at t = 0.26ms, mid-lasering. Penetration was measured from the initial surface of the
substrate layer. The max-height variation was taken along the interior of the sample,
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from x = ≠0.3mm to x = +0.33mm to minimize edge e�ects.

Metric 50W 100W 150W 200W
Subtrate Penetration 0µm 6µm 30µm 42µm

Track Max-Height Variaton 15µm 25µm 72µm
Rate of Solidificaton 0.09ms 0.153ms 0.18ms
Max Temperature 2700K 3833K 4600K 6100K

Max Velocity 1.2m
s

2.8m
s

3.5m
s

6.0m
s

Table 5.3: Results for laser power parameter study.

As expected the maximum fluid velocity corresponds with the maximum fluid tem-
perature(greater temperature gradients results in larger Marangoni forces) and the melt
penetration with inverse of the rate of solidification(the larger the melt pool, the longer it
takes to cool). Interestingly however, the four do not correspond together. The maximum
temp of the 150W case is much closer to the maximum temperature of the 100W case then
that of the200W case, however the penetration of the 150W case is closer to the penetra-
tion of the 200W case then the 100W case. Counter intuitively, this implies that higher
maximum melt fluid surface temperatures don’t necessarily correspond to greater melt
penetration. These results indicate a that melt phenomena can’t be easily predicted and
need to be further investigated in-detail using a 3D code.

Finally, the maximum melt temperatures for the 150W and 200W case exceed the
vaporization temperature of steel and indicate the need for a vaporiation framework within
the AM-SPH method. In addition, the rate of solidification of the melt surface in the 100W
laser is significantly lower then the 150 ≠ 200W cases. This was qualitatively mentioned
above but is confirmed by the data here.

Particle Radius Variation A second parameter study was preformed varying the
particle diameters. A 150W laser with a 2-‡ width of 54µm was scanned across a 2D
particle bed. Scans with particle radius of 25µm, 15µm, 30µm, and a mix of 30µm and
15µm were preformed. Mixed particle radii powder beds are commonly used in industry
to obtain high packing ratios. Snapshots of the particle bed state over the course of
the scan for every power level are given in Appendix B.0.2. For succinctness only the
particle bed state at t = 0.26ms, mid-lasering, and t = 1.25ms, fully resolidified bed, are
presented below in Figure 5.6 and Figure 5.7respectively.

Qualitatively, several conclusions can be drawn. First, the smaller the powder par-
ticles, the less influence they have on the melt pool motion. The small mass of the
rp = 15µm particles allows them to be fully melted well in advance of the oncoming laser
beam. This results in a smoother melt pool motion that is less disrupted by the particles
masses. However this does not necessarily translate into a smoother track profile. The
smoothest profile corresponds to the largest powder radius. Its not clear to the author
why this is the case.
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-Laser	

Final State: t=0.26ms

Figure 5.6: Snapshots of the material state and temperature contours for varying particle
bed powder radii at t = 0.26ms.
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Figure 5.7: Snapshots of the material state and temperature contours for varying laser
powers at t = 1.25ms.

Laser Width Variation A third parameter study was preformed varying laser beam
width. A 150W laser beam with varying widths of w2‡ = 27µm, 54µm, and 81µm was
scanned for a 2D particle bed with powder radius of rp = 25µm . The particle bed state
at t = 0.26ms, mid-lasering, and t = 1.25ms, full resolidified bed, are presented below in
Figure 5.8 and Figure 5.9respectively.

Qualitatively, several conclusions can be drawn. Its clear that smaller the laser beam
the more violent and the larger the melt pool motion. This is the result of higher local-
ized heating and hence the higher localized Marangoni convection. The smoothest final
melt profile corresponds to the largest beam width. This intuitively makes sense as the
temperature gradients are minimized and hence the Marangoni convection minimized as
well. This minimizes the overall motion of the melt pool and the chance for the surface
to break up and roughen on cooling. In addition the melt pool is significantly smaller for
the w2‡ = 81µm. A smaller melt pool minimizes the chance of the melt pool to break up
and form a rough surface. These results indicate using a larger laser width is preferable.
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However, the larger the laser width the lower the resolution from the build. Its believed
that a smaller laser spot size in combination with preheating of the powder bed can min-
imize the undesirable temperature gradients seen with the w2‡ = 27µm experiment while
maintaining a high resolution.

w2σ=	27µm

w2σ=	54µm

w2σ=	81µm

t=0.026ms

t=0.026ms

t=0.026ms

-Laser	

State: t=0.26ms

Figure 5.8: Snapshots of the material state and temperature contours for varying particle
bed powder radii at t = 0.26ms.
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Figure 5.9: Snapshots of the material state and temperature contours for varying laser
powers at t = 1.25ms.

Thermal Conduction Variation Study As mentioned previously, a major benefit of
the Lagrangian nature of the SPH method, is the ability to easily simulate multi-phase
problems. Boundary tracking is implicitly handled by the the numerical schemes as each
SPH particles is associated with a specific phase. To demonstrate the capabilities of
this method, an experiment based around the the proposed capability of the SLM to
functionally dope a material was developed. In this study, every third particle was given
twice conductivity of the other powder particles and substrate. The results of the track
laser melting of the doped particle bed along with a control particle bed are given in
Figure 5.10. A 100W laser with a width of w2‡ = 54µm was used. The powder radii was
25µm.

The distribution of the thermally enhanced particles is apparent in the initial con-
figuration snapshot. From the final time snapshot its apparent that the e�ect of the
enhanced thermal conductivity particles is minimal. The only di�erences between the
solidified state of the doped bed and the control appears to be the development of peri-
odic humps on the final surface profile. These humps are directly the result of the higher
thermal conductivity particles. As seen in the mid-lasering snapshots, when a higher ther-
mally conductive particle is melted, it leads to the development of a shorter-deeper melt
pool. This makes sense as the higher thermal conductivity would transfer heat deeper
into the material, deepening the melt pool, while increasing the rate of solidification of
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the laser-pool surface, shortening the melt pool. These periodic periods of thermal pool
shortening correspond to the location of the humps on the final surface profile.

A second interesting feature of this simulation is that the thermally conductive mate-
rial becomes stratified in the track layer. This stratification could lead to an anisotropic
thermally conductivity through the track and alter the macro-scale properties of the part.
Discovering how multi-phase particle beds melt and coalesce could be a prime use for the
AM-SPH method.
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Figure 5.10: Plots of the state and thermal conductivity over time for both a doped
particle bed with enhanced thermal conductivity and a control powder bed.
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5.1.2 Laser Melting of a 3D Particle Bed
A 3D simulation of the laser melting of a shortened particle bed track was preformed.

The material properties were the same as the spot laser validation test, Section 4.1.
A regular distribution of particles was used. In actuality, the spacing would be more
irregular due to the 3D nature of the particle bed The simulation parameters are given
in Table 5.2. In order to prevent the overheating of ejected SPH particles, if an ejected
SPH particles temperature reached 6000K it was removed from the simulation. A no-
conduction/convection flux boundary condition was imposed on the top surface. The
bottom surface of the substrate had a dirchlet temperature condition of T = 293K that
was implemented using a layer of boundary particles. The substrate layer was chosen to
be thick-enough such that the e�ect of the boundary condition on temperature field was
minimized. A laser with a power of 150W and a width of w2‡ = 54µm was scanned over
the particle bed. The scan speed was 2m/s and the powder particle radii 25µm. The
scale of the powder bed was only 6 particles, too small to gather quantitative data from,
however large enough to confirm the capability of the AM-SPH method to simulate 3D
problems.

Plots of the powder bed state over time are displayed in Figure 5.11. The 3D nature of
the particle bed melt pool is apparent. Marangoni convection not only disturbs particles
along the track direction but also moves the fluid laterally as well, evenly coating the
melt surface. Contrary to the 2D simulations, the melt pool doesn’t develop in advance
of the laser beam. Melting of oncoming material is primarily from laser heating. The
rate conduction is more extreme in the 3D model as compared to the 2D model as the
meltpool is distrubuted over a wider area preventing the development of an advancing
weldpool. This also reduced length of the weldpool tail. The higher rates of conduction
may become less aparent with the simulation of a fully filled particled bed.

Overall the simulation is stable and appears physically accurate and capable of sim-
ulating 3D particled bed problems. However again the temperature of the surface SPH
particles directly under the laser sources exceeded the vaporization temperature of the
steel material. This indicates that a vaporization model with resulting recoil pressures
needs be added to the model.
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t=0.18ms

t=0ms t=0.06ms
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Figure 5.11: Snapshots of the material state over the length of the scan process for a 3D
powder bed with a 150W laser and 25µm radius powder particles.
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Figure 5.12: Vertical slices of the temperature, state, and laser field mid-lasering for the
3D powder bed experiment.
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Chapter 6

Conclusion
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In this work, an SPH methodology capable of simulating the thermal-mechanical-
material fields in Additive Manufacturing processes was developed, validated, and used
to conduct numerical experiments on the laser melting of a microscale metallic powder
bed. Additive Manufacturing is set to revolutionize the manufacturing sector by allowing
for the production of 3D, net-shape, customizable components in a fraction of the time
and at a fraction of the time of traditional manufacturing methods. Numerical simula-
tion, validated by physical experiments, is an extremely useful tool for optimizing and
understanding existing AM technologies as well as developing novel ones.

In this work the applicability of the Smooth Particle Hydrodynamics Method, a La-
grangian mesh-free numerical scheme that is traditionally used for simulating large-scale
fluids mechanics, to simulating AM processes was investigated. A novel AM-SPH method-
ology was developed, combining and adapting discretizations from disparate SPH fields
as well developing necessary novel formulations, to be able to simulate AM processes us-
ing the SPH methodology for the first time. In particular an isothermally-incompressible
formulation was developed to simulate the thermal-volumetric expansion of incompress-
ible fluids undergoing extreme temperature changes. The AM-SPH methodology was
validated using a spot-laser weld pool experiment. The results were promising with the
method capable of closely replicating the melt pool dimension obtained from physical
experimentation. However it was determined that a more e�cient implementation of the
code capable of higher resolution, longer time scale simulations was required to fully vali-
date the method. In addition the novel isothermally-incompressible SPH formulation de-
veloped in this work was shown to be capable of accurately simulating thermal-volumetric
expansion and contraction but incapable of simulating buoyancy flows.

To show the applicability of the AM-SPH methodology to simulating a real-world AM
process, the track scale simulation of the Selective Laser Melting of a metallic Particle Bed
was preformed. Due to the high computational expense of the current implementation of
the AM-SPH methodology, only high resolution, full scale simulations in 2D were possible.
Parameter studies were preformed, the physical phenomena of the process examined, and
produced. They were only limited to 2D and hence not necessarily reflective of the real
world process, however they confirmed the findings in literature([38]) that the dominant
driving force of melt pool motion is Marangoni convection. A small scale simulation
of the melting of a collection of 3D powder particles was also preformed to show the
applicability of the method to 3D. The method was found to be capable of the simulating
the 3D process.

The viability of SPH for simulating AM process was one of the overall goals of this
work. In general, the method was found to be adequate and applicable to modeling AM
process. The SPH method was hypothesized to be naturally suited for the simulation of
AM process, with SLM in particular, because unlike mesh based method, it inherently
tracks free-surfaces as well as boundary interfaces. This was found to be true as the
solidification front and free-surface profile of the melt-pool were trivial to simulate with
the SPH method. In addition, the lasering, melting, and flow of multi-phase particle beds
was easy to simulate within the SPH method as well. However, it was noted that further
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development needs to be preformed on the thermal and surface tension SPH discretizations
to render them consistent on the free surface before the method can be used to its full
potential

The e�ciency of the SPH method as compared to traditional numerical methods(e.g.
FEM, FDM) that have been applied to simulating AM process however is unclear. The
current implementation of the code was ine�cient, and serial, written more for research
flexibility then pure speed making comparison with the few sources of literature that give
simulation times impossible. However, one major setback noted by this author of the SPH
method when simulating the SLM process was the need for smaller then expected time
steps. At issue is the weakly-compressible formulation used in SPH. The method requires
a sti� equation of state, high sound speed, to ensure the material remains incompressible
and the simulation discretization remains stable with SPH particles that remain equally
spaced and do not collapse on each other. The sound speed is typically set to be 10
times the max velocity experienced in the simulation and usually a Courant number
between 0.15 ≠ 0.25 is necessary to achieve stability. For the lasering simulations these
conditions were found to be inadequate. A courant condition of C0 Æ 0.05 was found to
be necessary for stability and sometimes a sound speed of up to 50 times the maximum
velocity required. It was believed that the limiting factor in these cases was the massive
forces placed on the SPH particles by the Marangoni surface tension. These significant
forces compromise the incompressibility constraint and can lead to an unstable collapse
of SPH particles upon one another. High fluid sti�ness and hence small time steps are
necessary to mitigate these e�ects. No CFL condition for Marangoni convection was
found in literature but based on the size of the Marangoni forces, its believed to be more
restrictive then the other conditions used in the model. Such restrictions may make the
simulations of the SLM process out of reach of the AM-SPH method. Further work needs
to be performed to confirm this.

However, the applicability of SPH to lower-force AM process is still viable. For ex-
ample, the plastic 3D printing process. The simplicity of the SPH method in handling
a wide range of geometries and fluid motions certainly sets it apart from the continuum
method of FEM and FVM and its possible that other AM applications are more suited to
it use. At the moment, its unlearn if SPH will be able compete with traditional numerical
methods in simulating AM applications, however this preliminary work certainly shows
the promise of the method and that it warrants future investigation.

Future Work In order to fully validate and utilize the developed AM-SPH methodol-
ogy, its needs to be parallelized and optimized. Trivial parallelization is a main benefit
of the SPH methodology and necessary for its use in industry. Optimization can be im-
plemented through more e�cient coding structures and routines. After an e�cient code
is implemented, the SLM process can be properly investigated in 3D and the AM-SPH
method validated. As noted previously, SLM is truly a 3D process and many of the pro-
cesses phenomena that of our interest to researchers(void entrapment, particle ejection,
partial melting of powders) can only be investigated with a 3D model. Finally it would
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be desirable to link the SPH methodology with the Discrete Element Method and a con-
tinuum method to reduce the computational cost. The continuum method could be used
to simulate the substrate layer with the DEM used to capture the heating and motion of
unmelted powder particles to reduce computational costs.
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Appendix A

Code Layout
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Figure A.1
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Appendix B

2D Particle Bed Parameter Studies
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2D particle bed laser melting parameter studies were performed as described in Section
5.1.1. Additional results from those studies are presented below.

B.0.1 Laser Power Parameter Studies
Plots of the particles bed state at various stages of the scan process for Laser Power =

50W, 100W, 150W, 200W are presented below.
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Figure B.1: Plots of the particle bed state at various statges of of the scan process for
Laser Power = 50W .
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Figure B.2: Plots of the particle bed state at various statges of of the scan process for
Laser Power = 100W .
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Figure B.3: Plots of the particle bed state at various statges of of the scan process for
Laser Power = 150W .
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Figure B.4: Plots of the particle bed state at various statges of of the scan process for
Laser Power = 200W .

B.0.2 Powder Particle Radius Parameter Studies
Plots of the powder bed-track state at various stages of a laser scan process for powder

particle radii of rp = 15µm, 30µm, and mixed 30µm & 15µm. The rp = 25µm results
can be found for the 150W laser from the laser power parameter study results.
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Figure B.5: Plots of the particle bed state at various statges of the scan process for
rP = 15µm.
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Figure B.6: Plots of the particle bed state at various statges of the scan process for
rP = 30µm.
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Figure B.7: Plots of the particle bed state at various statges of the scan process for
rP = 30µm & 15µm.
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