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ABSTRACT
Motivation: Standard statistical techniques often assume
that data are normally distributed, with constant variance
not depending on the mean of the data. Data that violate
these assumptions can often be brought in line with the
assumptions by application of a transformation. Gene-
expression microarray data have a complicated error
structure, with a variance that changes with the mean
in a non-linear fashion. Log transformations, which are
often applied to microarray data, can inflate the variance
of observations near background.
Results: We introduce a transformation that stabilizes the
variance of microarray data across the full range of expres-
sion. Simulation studies also suggest that this transforma-
tion approximately symmetrizes microarray data.
Contact: bpdurbin@wald.ucdavis.edu
Keywords: cDNA array; microarray; statistical analysis;
transformation; normalization.

INTRODUCTION
Many traditional statistical methodologies, such as regres-
sion or ANOVA, are based on the assumptions that the
data are normally distributed (or at least symmetrically
distributed), with constant variance not depending on the
mean of the data. If these assumptions are violated, the
statistician may choose either to develop some new sta-
tistical technique which accounts for the specific ways in
which the data fail to comply with the assumptions, or to
transform the data. Where possible, data transformation
is generally the easier of these two options (see Box and
Cox, 1964; Atkinson, 1985).

Data from gene-expression microarrays, which allow
measurement of the expression of thousands of genes
simultaneously, can yield invaluable information about
biology through statistical analysis. However, microarray
data fail rather dramatically to conform to the canonical
assumptions required for analysis by standard techniques.
Rocke and Durbin (2001) demonstrate that the measured

expression levels from microarray data can be modelled as

y = α + µeη + ε, (1)

where y is the measured raw expression level for a
single color, α is the mean background noise, µ is
the true expression level, and η and ε are normally-
distributed error terms with mean 0 and variance σ 2

η and
σ 2

ε , respectively.
At low expression levels (i.e., µ close to 0) the measured

expression can therefore be written as

y ≈ α + ε, (2)

implying that the measured expression is approximately
normally distributed with mean α and constant variance
σ 2

ε .
This phenomenon is demonstrated using the example

data, which were collected from an experiment in which
male Swiss Webster mice were injected with a toxin
(Bartosiewicz et al., 2000). The treated mouse received
0.15 mg/kg of β-napthoflavone and the control mouse
received an equal amount of the corn-oil carrier. Each
cDNA clone on the slide was replicated, usually 8 times.

Figure 1 shows robust estimates of the replicate mean
and standard deviation for low level data. (As in the
remaining plots, the robust estimates location.m and
scale.a from the S-Plus statistical software package
were used to estimate the mean and variance in order
to minimize the impact of outliers.) Notice that when
the robustly-estimated mean is close to 0, the standard
deviation remains essentially constant, although it begins
to increase for larger values of the mean.

When µ is large, the middle term in (1) dominates the
others and the measured expression may be modelled as

y ≈ µeη. (3)

Here the variance of y is approximately µ2S2
η , where

S2
η = eσ 2

η (eσ 2
η − 1). The measured expression y is

c© Oxford University Press 2002 S105
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Fig. 1. Robust location of replicates versus robust scale of the
replicates for raw (untransformed) data for low levels of expression.
The line is the theoretical scale from the two-component model.
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Fig. 2. Robust location of replicates versus robust scale of the
replicates for raw (untransformed) data. The line is the theoretical
scale from the two-component model.

here distributed approximately as a lognormal(ln(µ), σ 2
η )

random variable. Notice that the standard deviation of
y, µSη, varies linearly with µ. This can be seen in
Figure 2, which shows robust estimates of the replicate
mean and standard deviation of high level data. The linear
asymptotic standard deviation is shown by the regression
line through the plot.

On the log scale, (3) can be written as

log(y) = log(µ) + η, (4)

which implies that log(y) has constant variance for µ

sufficiently large. This behaviour can be observed in
Figure 3, which shows robust estimates of the replicate
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Fig. 3. Robust location of replicates versus robust scale of the
replicates for data that has been mean centered (background
correction) and log transformed. The line is the theoretical scale
from the two-component model.

mean and standard deviation of the background-corrected
log-transformed data. For values of the robustly-estimated
mean greater than about 13, the estimated replicate
standard deviation remains constant.

When µ falls in between these two extremes, all terms
in (1) play a significant role. The measured expression y
is distributed as a linear combination of a normal and a
lognormal random variable and has variance

Var(y) = µ2S2
η + σ 2

ε . (5)

This also depends on µ, but in a more complicated
fashion than high-level data. In essence, the distribution of
the measurement error changes depending on µ, making
the error structure of microarray data quite complicated.
Microarray data therefore require transformation before
standard statistical methodologies may be applied.

Chen et al. (1997), Ideker et al. (2000), and Newton
et al. (2001) have proposed alternative models for the
measurement error in microarray data. Chen et al. (1997)
suggest that the measurement error is normally distributed
with constant coefficient of variation (CV). The constant
CV assumption is in accord with much experience, but of
course cannot be correct for zero or near-zero expression
as it would imply negligible measurement error. Ideker
et al. (2000) introduce a model similar to (1), but
with a multiplicative error component that is normally
distributed, rather than lognormal. However, plots of the
skewness coefficient of replicated observations show that
while the replicates are symmetrically distributed about
their mean for low expression levels, they display positive
skewness above a cutoff point. If the multiplicative error
were normally distributed, one would expect to see
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replicates symmetrically distributed about their mean over
the full range of expression. Finally, Newton et al. (2001)
propose a gamma model for measurement error. We have
not compared the performance of this model with (1).

TRANSFORMING MICROARRAY DATA
Log transformations
Although microarray data may clearly benefit from trans-
formation, it is not immediately apparent which transfor-
mation should be used. Speed (2000) recommends the use
of log transformations, but this approach is subject to a
number of problems.

First, suppose that the data have been background
corrected so that analysis is performed on µ̂ = y − α̂,
where α̂ is an estimate of α, the mean background level.
Then ln (µ̂) = ln (y − α̂) is not defined for y ≤ α̂, and
observations where y − α̂ < 0 must be removed from the
data prior to transformation. However, since α is the mean
of the unexpressed genes, y − α̂ may be negative for as
many as half of the unexpressed genes, which in turn may
constitute a large part of the data. While the large quantity
of data generated by a single array often means that one
may discard half of the data with seeming impunity, this
approach is clearly not optimal.

Furthermore, a straightforward delta-method approach
shows that the asymptotic variance of ln(µ̂), AV(ln(µ̂), is

AV(ln (µ̂)) = σ 2
η + σ 2

ε

µ2
(6)

which is approximately constant for large µ but which
approaches infinity as µ → 0 (Rocke and Durbin, 2001).
The asymptotic variance of log-transformed background-
corrected observations is thus greatly inflated for small µ.

Figure 3 shows robust estimates of the replicate mean
and standard deviation of log background-corrected data.
The solid line on the plot shows the asymptotic standard
deviation, which is the square root of (6). The estimated
standard deviation is essentially constant for large mean
values, but increases dramatically as the mean approaches
0. Note that the 142 of 276 observations where y < α̂

were excluded from this plot.
An alternative approach would be to consider transfor-

mations of the form ln(µ̂ + c), where c is some positive
constant. If we let c = α̂ we arrive at the transformation
ln(µ̂ + α̂) = ln(y − α̂ + α̂) = ln(y), which has the ad-
vantage of being defined over the full range of the data.
However, delta-method calculations show that the asymp-
totic variance of ln(y) is

AV(ln(y)) = µ2σ 2
η + σ 2

ε

(µ + α)2
(7)

≈ µ2σ 2
η + σ 2

ε

y2
, (8)
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Fig. 4. Robust location of replicates versus robust scale of the
replicates for data that has been log transformed. The line is the
theoretical scale from the two-component model.

which is again approximately constant at high levels but
increases as µ → 0, although not as dramatically as
AV(ln(µ̂)) (Rocke and Durbin, 2001).

Figure 4 shows robust estimates of the replicate mean
and standard deviation of log-transformed uncorrected
data. The solid line on the plot shows the asymptotic
standard deviation, which is the square root of (8). As
mentioned above, the standard deviation is approximately
constant for large mean values, but as the mean ap-
proaches 0, the standard deviation dips and then increases
substantially. The variance, however, appears to be much
more constant than for log(µ̂). Should one insist on using
a log transformation, transformation of data that have not
been background-corrected appears to give better results.

Though log transformations approximately stabilize
the variance of data expressed at high levels, their
performance on data at or near background leaves much
to be desired. A common approach is to eliminate
observations at or near background, but a transformation
that would allow all of the data to be used in an analysis
would certainly be preferable.

A variance-stabilizing transformation
Given the shortcomings of the log transformation, one
might wish to find a transformation for microarray data
which stabilizes the asymptotic variance over the full
range of the data. Delta-method calculations allow us to
derive such a transformation:

Let g(·) be a smooth function. Then the asymptotic

variance of g(y) as y
p→ θ is

AV(g(y)) = ġ(θ)2Var(y),

where ġ(θ) = ∂g
∂t

∣∣∣∣
t=θ

.
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Table 1. Variance and skewness of simulated data transformed using the variance-stabilizing transformation

µ Variance 95% CI for Variance Skewness 95% CI for Skewness

0 0.0530 (0.0487, 0.0574) 0.0011 (−0.1382, 0.1404)
5 000 0.0533 (0.0487, 0.0579) −0.1308 (−0.2651, 0.0035)

10 000 0.0538 (0.0491, 0.0584) −0.2110 (−0.3493, −0.0726)
15 000 0.0541 (0.0493, 0.0588) −0.2449 (−0.4013, −0.0884)
20 000 0.0540 (0.0493, 0.0588) −0.2401 (−0.4001, −0.0802)
25 000 0.0540 (0.0490, 0.0590) −0.2159 (−0.3767, −0.0550)
30 000 0.0537 (0.0488, 0.0586) −0.2040 (−0.3745, −0.0335)
40 000 0.0533 (0.0483, 0.0583) −0.1489 (−0.3112, 0.0133)
50 000 0.0529 (0.0483, 0.0574) −0.1121 (−0.2755, 0.0512)
60 000 0.0524 (0.0476, 0.0572) −0.0842 (−0.2475, 0.0791)
65 000 0.0525 (0.0479, 0.0571) −0.0764 (−0.2359, 0.0831)
70 000 0.0523 (0.0475, 0.0571) −0.0637 (−0.2205, 0.0931)
80 000 0.0521 (0.0474, 0.0568) −0.0522 (−0.2091, 0.1048)

100 000 0.0519 (0.0474, 0.0565) −0.0347 (−0.1908, 0.1215)
200 000 0.0517 (0.0471, 0.0562) −0.0112 (−0.1732, 0.1508)
300 000 0.0515 (0.0470, 0.0561) −0.0028 (−0.1548, 0.1493)
500 000 0.0516 (0.0470, 0.0562) −0.0008 (−0.1586, 0.1571)

1 000 000 0.0515 (0.0470, 0.0560) 0.0027 (−0.1490, 0.1545)

Suppose we wish to find a transformation g(·) for y =
α + µeη + ε such that AV(g(y)) is constant. Setting

AV(g(y)) = ġ(µ + α)2Var(y) = k,

where k is some constant, and solving for g(·) we find

ġ(µ + α)2 = k

Var(y)

= k

µ2S2
η + σ 2

ε

⇐⇒ ġ(µ + α) = k√
µ2S2

η + σ 2
ε

⇐⇒ ġ(y) = k√
(y − α)2S2

η + σ 2
ε

⇐⇒
∫

ġ(y)dy =
∫

k√
(y − α)2S2

η + σ 2
ε

dy.

One solution is

g(y) = ln(y − α +
√

(y − α)2 + c), (9)

where c = σ 2
ε

S2
η

. This transformation, which was first

introduced by Hawkins (2001) in the context of another
application, exactly stabilizes the asymptotic variance of
data distributed according to (1), making the asymptotic
variance of the transformed data equal to S2

η .

This transformation is defined and monotonically
increasing for all values of y, positive or negative. It is
approximately the natural logarithm for large values of y
and is approximately linear at y = 0.

Performance on simulated data The variance-stabilizing
transformation was tested on data simulated from (1),
for values of µ ranging from 0 to 1 000 000. For each
value of the true expression level µ, 1000 samples of
size 1000 were simulated. The parameters used were
α = 24 800, ση = .227, and σε = 4800, which were
the values estimated from the control example data. The

data were then transformed using (9), where c = σ 2
ε

S2
η

=
413 822 950. For each transformed sample, the sample
variance and sample skewness were calculated, and the
mean and standard deviation of these quantities over all
1000 samples were then used to create asymptotically-
normal 95% confidence intervals.

Table 1 shows the variance and skewness of the trans-
formed simulated data for various values of µ, along
with confidence intervals for these quantities. Tables 2
and 3 show, for the purposes of comparison, estimates
of these statistics for the same simulated data following
transformation using log(µ̂) and log(y), respectively.
(Negative observations were removed from the data prior
to log transformation).

For the data transformed using the variance-stabilizing
transformation, the confidence intervals for the variance
all include S2

η = 0.0557, indicating that the variance
has been stabilized across the full range of the data. In
contrast, the variance of log background-corrected data
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Table 2. Variance and skewness of log(µ̂), simulated data

µ Variance 95% CI for Variance Skewness 95% CI for Skewness

0 1.2348 (0.9730, 1.4967) −1.4774 (−1.9993, −0.9555)
5 000 0.8526 (0.6879, 1.0174) −1.8583 (−2.4329, −1.2837)

10 000 0.4648 (0.3613, 0.5683) −2.2024 (−3.1295, −1.2753)
15 000 0.2394 (0.1839, 0.2948) −2.0297 (−3.2916, −0.7679)
20 000 0.1430 (0.1175, 0.1685) −1.3945 (−2.5418, −0.2472)
25 000 0.1048 (0.0884, 0.1212) −0.9218 (−1.8641, 0.0205)
30 000 0.0865 (0.0761, 0.0968) −0.6551 (−1.1323, −0.1779)
40 000 0.0703 (0.0630, 0.0775) −0.3748 (−0.5970, −0.1525)
50 000 0.0632 (0.0575, 0.0690) −0.2512 (−0.4429, −0.0595)
60 000 0.0594 (0.0539, 0.0650) −0.1784 (−0.3582, 0.0013)
65 000 0.0584 (0.0532, 0.0636) −0.1561 (−0.3302, 0.0180)
70 000 0.0574 (0.0521, 0.0627) −0.1313 (−0.2966, 0.0340)
80 000 0.0559 (0.0508, 0.0611) −0.1028 (−0.2660, 0.0603)

100 000 0.0544 (0.0495, 0.0592) −0.0669 (−0.2263, 0.0926)
200 000 0.0523 (0.0476, 0.0569) −0.0190 (−0.1816, 0.1436)
300 000 0.0518 (0.0472, 0.0564) −0.0062 (−0.1586, 0.1461)
500 000 0.0517 (0.0471, 0.0563) −0.0020 (−0.1599, 0.1559)

1 000 000 0.0515 (0.0470, 0.0560) 0.0024 (−0.1493, 0.1542)

Table 3. Variance and skewness of log(y), simulated data

µ Variance 95% CI for Variance Skewness 95% CI for Skewness

0 0.0418 (0.0372, 0.0464) −0.6867 (−0.9944, −0.3791)
5 000 0.0294 (0.0263, 0.0324) −0.5400 (−0.7631, −0.3170)

10 000 0.0246 (0.0221, 0.0270) −0.4335 (−0.6316, −0.2353)
15 000 0.0228 (0.0207, 0.0250) −0.3324 (−0.5251, −0.1398)
20 000 0.0225 (0.0205, 0.0245) −0.2350 (−0.4160, −0.0540)
25 000 0.0230 (0.0208, 0.0251) −0.1515 (−0.3229, 0.0199)
30 000 0.0237 (0.0215, 0.0259) −0.1039 (−0.2787, 0.0709)
40 000 0.0256 (0.0232, 0.0280) −0.0161 (−0.1779, 0.1456)
50 000 0.0275 (0.0251, 0.0298) 0.0275 (−0.1331, 0.1881)
60 000 0.0292 (0.0265, 0.0318) 0.0529 (−0.1086, 0.2145)
65 000 0.0301 (0.0275, 0.0327) 0.0584 (−0.0972, 0.2140)
70 000 0.0308 (0.0280, 0.0336) 0.0677 (−0.0883, 0.2236)
80 000 0.0322 (0.0293, 0.0351) 0.0716 (−0.0832, 0.2264)

100 000 0.0346 (0.0316, 0.0376) 0.0766 (−0.0778, 0.2310)
200 000 0.0412 (0.0375, 0.0448) 0.0578 (−0.1029, 0.2185)
300 000 0.0440 (0.0402, 0.0479) 0.0466 (−0.1040, 0.1972)
500 000 0.0468 (0.0427, 0.0509) 0.0307 (−0.1264, 0.1877)

1 000 000 0.0490 (0.0447, 0.0533) 0.0191 (−0.1322, 0.1705)

decreases steadily as µ increases, while the variance
of the log uncorrected data decreases initially and then
increases again before stabilizing at around µ = 200 000.
It should be noted that the log uncorrected data appear
to perform nearly as well as the variance-stabilized data,
and that these data have a much more constant variance
than the log background-corrected data. However, the
variance-stabilizing transformation produces transformed
observations with the most constant error variance, as
would be expected. Furthermore, the intensity values have

no natural zero scale, and may have already been ‘cor-
rected’ for pixel background, so that the good behaviour
of the log intensity may be dependent on the zero scaling
of the intensity. If the log intensity transformation is to be
used, the behaviour over the range of the data needs to
be examined by producing a fitted variance curve like the
one in Figure 3.

Confidence intervals for skewness from Table 1 indicate
that the variance-stabilizing transformation symmetrizes
the data as well, except for values of µ between 10 000
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Fig. 5. Robust location of replicates versus robust scale of the
replicates for data that has been transformed using the new
procedure outlined in this paper. The line is the theoretical scale
from the two-component model.

and 30 000, where the data are slightly skewed to the left.
(Outside of this range, the confidence intervals include 0,
which is the skewness of data distributed symmetrically
about its mean.) This result appears on first examination
to be equivalent to that for the log uncorrected data, which
are symmetric except for values of µ between 0 and
20 000, where they are left-skewed. However, the degree
of skewness is rather less for the variance-stabilized data.
Both transformations exhibit much greater symmetry than
the log background-corrected data, which is left-skewed
for µ < 50 000.

Performance on microarray data Figure 5 shows robust
estimates of the replicate mean and standard deviation of
data transformed using the variance-stabilizing transfor-
mation. The parameters σ 2

ε and σ 2
η , which are needed to

calculate the shift constant c, were estimated using the pro-
cedure described in Rocke and Durbin (2001). (It should
be noted that, although σ 2

ε may be estimated from un-
replicated data, replicated observations from several genes
expressed well above background are needed to estimate
σ 2

η .) Notice that the standard deviation remains constant
across the full range of the data. The asymptotic standard
deviation, which is the square root of (9), is shown on the
plot as a solid horizontal line. The variance having been
approximately stabilized, further analysis may now be per-
formed on the these data without needing to cull any of the
observations.

CONCLUSION
Microarray data, with their complicated error structure,
need to be transformed prior to analysis using standard
statistical methods. Log transformations provide good
variance stabilization at high levels, but inflate the vari-
ance of near-background observations, particularly in data
that have been background-corrected. We have introduced
a transformation which stabilizes the asymptotic variance
of microarray data across the full range of the data, as
well as making the data more symmetric. This allows
further analysis to be performed on these data without
violation of assumptions and without needing to remove
low-level observations.
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