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Abstract

Argument Facets in Social Media Dialogue

by

Amita Misra

Argumentation is an interactive process and frequently occurs in conversations. So-

cial networks and online debates provide a two-way communication platform with a huge

amount of opinion and argument rich information. However, the massive amount of information

available today is overwhelming to our brain and its ability to efficiently absorb and compre-

hend. Identifying and integrating arguments across these discussions requires computational

methods that can facilitate users to systematically search, analyze and summarize arguments as

well as reason about the relationship among arguments. We develop techniques to recognize the

specific arguments and counter arguments people tend to advance and group them across dis-

cussions as Facets. This entails two sub-tasks: (i) Extract and summarize important arguments,

and (ii) Discover similar repeated argument aspects that appear across multiple dialogues on a

topic. We present a systematic approach to leverage pyramid based summarization framework

to identify central propositions as those arguments that people find most salient, and then rank

and select arguments in social media dialogue, which is a novel method for ranking arguments

in conversational data. Our results show that adding contextual knowledge from a dialogue

improves argument extraction. We introduce a new task of Argument Facet Similarity (AFS),

where we develop a new corpus aimed at identifying various facets across opinionated dialogue.

A graded argument similarity model was defined that takes as input two sentential arguments

x



and returns a scalar value that categorizes their similarity (AFS). The prediction output ob-

tained from the proposed model improves the results obtained from previous work that defines

similarity of short texts as Semantic Textual Similarity (STS).
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Chapter 1

Introduction

Argumentation is a verbal, social, and rational activity aimed at convincing a

reasonable critic of the acceptability of a standpoint by putting forward a constellation

of propositions justifying or refuting the proposition expressed in the standpoint.

(Van Eemeren and Grootendorst, 2004)

As a verbal activity, argumentation includes some form of communication (words and sen-

tences) to state, deny, accept, or reject a proposition. Argumentation is also a social process, as

arguments are usually directed towards other people, and are exchanged when people differ on

a standpoint. Thus, argumentation presupposes a controversial standpoint about which the par-

ticipants disagree. It can be seen as a means of resolving differences of opinion. It involves two

or more individuals responding to one another’s claim to justify their position or to contradict

someone else’s. The constellation of propositions advanced in argumentation is often referred

to by the term argument (Van Eemeren and Grootendorst, 2004). Arguments unfold based on

the contributions of participants. Since the aim is to convince another person of the acceptabil-
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ity of the standpoint, a reasonable critic is assumed; otherwise, it does not make sense to further

advance the argumentation. The goal is to either prove or disprove that particular standpoint.

Closely related to the Van Eemeren and Grootendorst’s view on argumentation is

Jacobs and Jackson’s position based on conversational approach: argumentation in everyday

conversations. They describe an argument as a “disagreement managing device in conversa-

tions.” Specific speech acts can be paired into adjacency pairs such as question-answer, offer-

accept/decline, and request grant/refuse. Arguments are characterized by the projection, pro-

duction, suppression, or resolution of disagreement to regulate the occurrence of disagreeable

speech acts (Jacobs and Jackson, 1982). Walton’s conception of argumentation takes into ac-

count the language use, dialogical context, and the original intention of the speaker (i.e., the

illocutionary force of a speech act) (Walton, 1992). Based on a dialogic model of communi-

cation ‘pro’ and ‘con’ arguments that resemble zero-sum games in which one participant wins

and the other loses, receive more attention from the audience (Salmon and Zeitz, 1995).

As per Van Eemeren et al. (2014), a plethora of argumentation theories exist. It is

an interdisciplinary field pervaded by insights from philosophy, logic, psychology, commu-

nications studies, linguistics, with different interpretations, analyses, and uses of arguments.

Theorists working mainly within Artificial Intelligence developed formal computational mod-

els of argumentation over complex argumentation structures, and made substantial progress in

providing abstract and structured formal models to represent and reason over argumentation

structures. However, there has been very limited research applying these computational models

to naturally occurring argumentation in text (Cabrio et al., 2016). It is still a challenge to under-

stand how humans reason and argue in debates, a vital issue in cognitive science. Identifying

2



and weighing “pro” and “con” arguments, via cognitive processes involve persuasions and emo-

tions, which are inherently harder to formalize from a computational perspective (Villata et al.,

2017). A desirable characteristic of intelligent machines is to find arguments in an automated

way in human discourse (Moens et al., 2007). An increasing amount of diverse textual data

is now available from a variety of sources including social networks, online debate dialogues,

newspaper comments, and blogs generating a significant resource of dynamic natural language

conversations from where arguments can be identified and analyzed. The enormous volume and

the breadth of data available today, together with advances in computational techniques created

fertile ground for the investigation of the computational aspects of human argumentation in a

holistic manner. This led to the rise of a new research area called ‘Argumentation Mining’,

or ‘Argument Mining’, also referred to as ‘Computational Argumentation’, defined as The

detection of an argumentative discourse structure in text or speech, and the identification and

the functional classification of its composing components (Moens, 2013).

It involves automated extraction of natural language arguments and their relations from generic

textual corpora, e.g., the premises, conclusion, argumentation scheme of each argument, as well

as relationships between pairs of arguments in a given document. Interest in this field rapidly

increased over the past few years, as evident by a number of events like, Frontiers and Connec-

tions between Argumentation Theory and Natural Language Processing in 2014; workshops on

Argumentation Mining at Association of Computational Linguistics (ACL) 2014, ACL 2016 and

Conference on Empirical Methods in Natural Language Processing (EMNLP) 2017; Dagstuhl

Seminar on Debating Technologies in 2015, and on Natural Language Argumentation: Mining,

Processing, and Reasoning over Textual Arguments in 2016. Applications of argumentation
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mining include improved argument search and retrieval, summarizing complex decisions along

with underlying grounds, counterarguments, and automatic argument construction for debating.

Qualitative analysis of discussions, online comments, and newspaper articles can also provide

user-friendly guidance tools for policy-makers to understand citizen needs and desires, as well

as help business by understanding customers. Being a young research domain, argumenta-

tion mining approaches vary considerably, both in their problem definition and target domains

(Lippi and Torroni, 2015a). Initial works focused on well-structured and edited text, such as

legal text (Moens et al., 2007) or scientific publications (Teufel et al., 2009), and then expanded

to other domains: persuasive essays (Stab and Gurevych, 2014b; Song et al., 2014; Persing and

Ng, 2015), news articles (Sardianos et al., 2015), Wikipedia articles and blog posts (Biran and

Rambow, 2011; Rosenthal and McKeown, 2012; Levy et al., 2014; Aharoni et al., 2014), and

social media (Goudas et al., 2014; Boltuzic and Šnajder, 2014; Habernal and Gurevych, 2015;

Swanson et al., 2015; Misra et al., 2015).

Given this variety of work on argumentation mining, a range of tasks have been ad-

dressed by several studies including identifying argumentative segments in text (Moens et al.,

2007; Park and Cardie, 2014; Goudas et al., 2014; Levy et al., 2014; Swanson et al., 2015; Sar-

dianos et al., 2015; Misra et al., 2017), classification of argument components (i.e., premise vs.

conclusion) (Stab and Gurevych, 2014a; Nguyen and Litman, 2015), determining argumentation

structure (i.e., support vs. attack) (Cabrio and Villata, 2012; Ghosh et al., 2014), and modeling

similar arguments (Boltuzic and Šnajder, 2015; Misra et al., 2015, 2016). Some recent works

go more in-depth than analyzing argument components or structure and target qualitative prop-

erties. For example, Persing and Ng (2015) scored the argument strength of persuasive essays,
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(Tan et al., 2016; Lukin et al., 2017) studied belief change, Habernal and Gurevych (2016a) in-

vestigated a pair of arguments for convincingness, Wachsmuth et al. (2017) adapted PageRank

to determine relevant arguments.

1.1 Argumentation in Social Media

The amount of time spent on various social networking sites is increasing every year.

The computer networks are the modern Agora, a virtual place for exchange of comments, opin-

ions, arguments, and all types of debates. The scale of participation and exposure to other views

in the virtual community is much larger than in the past. These debates can be documented and

revisited. People can use it to make more informed decisions about important arguments of an

issue, and convey them to the policy-makers. Conversations in forums on topics such as health

and education, public policy, social issues, as well as on consumer interests such as technical

products, and entertainment are quite popular. These forums have a number of discussions go-

ing on, where each discussion is used for a conversation on a particular topic or subject area.

Users typically take a stance and argue in support or opposition to the debate topic in an inter-

active discussion. A conversation thread is a place where a particular discussion about a given

topic takes place. An initial proposition is stated by a single creator, then argued by support-

ing propositions or counter-propositions from other contributors (Groza et al., 2008). Online

debates are very different from discussions in traditional media settings. Online debaters are

highly involved and often use informal, emotional, and colorful language to make their points.

Natural, informal debates exhibit a much broader range of argumentative styles (Oraby et al.,
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2015). Indirect modes of communication, such as sarcasm and irony are also common. Previ-

ous work that models these different aspects include tasks such as stance classification (Walker

et al., 2012b; Hasan and Ng, 2013b), sarcasm detection (Lukin and Walker, 2013; Ranade et al.,

2013b; Oraby et al., 2016), and dis/agreement classification (Abbott et al., 2011; Misra and

Walker, 2013). Though these tasks are highly useful in making decisions about an issue, a

summary of the entire chain of reasoning is more informative. People need to go beyond such

classifications to understand how statements are justified, the sources of disagreement, which

facts are correct or which opinions are most relevant to them.

Consistency is another key factor in these debates. To assert their opinion, users some-

times ignore discourse coherence required for the logical integrity of the conversation (Ranade

et al., 2013b). The arguments may not be well organized or structured, and may even deviate

from the exact topic. Receiving so much information along with difficulty in judging the valid-

ity can lead to information overload - i.e., having far higher information than one’s cognitive

abilities to assimilate. In such situations, debate summarization approaches are helpful as users

need not go through the entire debate. Text and opinion summarization of product reviews had

been studied extensively in the past (Kim et al., 2011; Liu, 2015) but summarizing online ideo-

logical debates was a relatively an under-explored area. Opinion summarization tends to focus

on product aspect identification and sentiment polarity classification. For example, an opinion

summary about ‘iPod’ may discuss the common aspects such as ‘battery life’, ‘camera quality’,

and ‘screen size’. When it comes to summarizing general online political dialogic discussions

on controversial policies or social issues, the challenges can be very different as the aspects

may not be known in advance. Information is often partial and inconsistent concerning matters
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of fact and opinion. The arguments that are under discussion for a particular topic may evolve

over time, and people often repeat information that may not be veridical.

PostID:Turn

S1:1 That’s the best you could do? There’s the other three and here’s a bonus one : ‘ To disarm the people is the best, most

effectual way, to enslave them. ’ - George Mason

S2:1 Is George Mason some kind of anarchist? It seems to me that the por-gun people are more and more pushing towards

the ‘every man for himself, the government can’t protect us, we have to defend our property and way of life’. Shouldn’t the

government be improved instead? Besides, where I live we have very restrictive gun-laws and I ve never feeled ‘enslaved’ in

any way. Ok, a comment to these ‘myths ’. First of all, where did you get these facts? Second of all, no matter how you try,

now matter how much statistics you dig forth, no matter how many references to the constitution you do, you can never, ever

convince me that harsh gun-restrictions would not reduce the amount of murders and the amount of armed crime. Besides,

all people doesn’t share your attitude of : a good criminal is a dead criminal, so those arguments get a bit meaningless.

S1:2 Nope. He was a great man who didn’t believe in your cradle to grave liberalism. The founding fathers did not envision

or want the all-seeing, all-knowing Federal government that you worship today. Nope. That government is best which governs

the least, because its people discipline themselves. - Thomas Jefferson Restrictive? Where do you live? Britain? That would

explain a lot. The people there are used to being ‘subjects’ rather than ‘citizens’.“When the people fear the government you

have tyranny. When the government fears the people you have liberty” - Thomas Jefferson Again.. if you’re so convinced that

gun-control works, then why don’t you place a sign in your front yard or on your door that reads :“ DOING MY PART FOR

GUN-CONTROL : THIS IS A GUN-FREE HOME! ” You’d be wrong. MOST people are NOT coddlers of criminals like

yourself.

S2:2 A sign like that would hardly be nessecary where I live. We have very restrictive gun-laws and hardly anyone owns a gun.

And no, people does not discipline themselves. You might claim I have to much trust in the government, I would claim you

have to much trust in your fellow man. When you give freedom to the people you give freedom to criminals too. I don’t

trust guns to only be used in ‘selfdefense’. I want my government to uphold justice and to protect me from criminals. That’s

one of their purposes. And that is impossible without a certain amount of control over the citizens.

Figure 1.1: Excerpt from a Gun Control Dialogue-1.

In our approach, we are interested in finding nonveridical arguments, thus our meth-
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ods find things that multiple people are saying, e.g. “Its cheaper to kill someone with the death

penalty than to keep them in prison for life”, even though the actual evidence suggests that this

is not true due to the costs of public defenders and the court system. The intuition behind our

approach is that the there are similarities present in the way human beings reason and argue and

these commonalities can be identified to extract arguments. For example, in debates concerning

Gay Marriage, arguments are exchanged on both sides, with religious themes more typically

appearing on one side, and economic benefits on the other. For a debate on Gun Control, we

may find crime and safety aspect on one side and constitutional rights on the other. For in-

stance, consider two back and forth dialogue exchanges in Figure 1.1 and Figure 1.2 for the

topic Gun Control from the debate website 4Forums1. Though these two dialogue snippets are

from two separate discussion threads with non-overlapping author pairs and different lexical

realizations, they still present similar issues and concerns, as depicted in bold. Systematically

extracting these arguments could provide an overview of the topics and arguments represented

in the debate.

1.2 Thesis Objective

Debate websites such as Procon.org list arguments for controversial issues. Figure 1.3

shows a sample for the topic of Gay Marriage. The arguments on various sides of an issue are

organized as top “pro” and “con” points. Each point contains the main proposition, reasons to

support a viewpoint, and counter-arguments for the opposing views. This set is manually cu-

rated by editors to summarize the main points of the debate. A deep understanding and analysis
1http://www.4forums.com/political/
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PostID:Turn

S1:1 To reduce the numer of shootings associated with crime of course. Your strident claim that “Gun Control is Not

Crime Control!” is specious. Countries with few guns still have crime. Whoever argued differently? My argument is more

like “ gun control is shooting control”. Guess what? Countries with fewer guns, especially handguns, have fewer people shot.

Short of banning, how can we reduce the number of shootings we have every year? That’s my interest. I’m not looking to

rewrite the Constitution or disarm law-abiding citizens. Stop mischaracterizing my motives.

S2:1 It’s a little hard to stop when you continue to support ideas that don’t work, and have proven unconstitutional and

thus illegal. Who exactly are the people responsible for most of the shootings that take place in America? I would suggest

trying to find out anything about their backgrounds, see what records they have with the police. Are these shooters individuals

with records of criminal actions, felony arrests, parole violations, drug dependency, etc? Or are the people responsible for the

shootings everyday individuals who have clean records and absolutely no indication that something might be wrong. We already

have the link showing that 80% of America’s crimes are directly connected to gang members with criminal records. To

me that suggests something, it suggests that the ones who’re doing the most killing are the ones who are breaking the

laws and paying no heed to the various rules and regulations that you demand we follow. So unless you have conclusive

evidence that the vast majority of shootings in the USA are directly the fault of the law-abiding gun owners, all your suggestions

amount to saying that you need more laws to deal with those who break the laws.

S1:2- Your high school diploma doesn’t qualify you as a legal scholar. Assuming you completed high school. I’m in no position

to make demands. And yes, laws only affect those that abide by them. Gun laws, traffic laws, theft laws. Laws do give society

a way to punish the transgressors if they can be identified and apprehended. This whole argument that gun laws only affect

the law-abiding is stupidity itself IMO. Maybe just better laws, but the idea of more laws seems to work with lots of other

societal problems. Ask a deadbeat dad.

Figure 1.2: Excerpt from a Gun Control Dialogue-2.

of beliefs and ideas is required to create such argument summaries. To enable computational

systems to explain and justify their choices is challenging, and the current work takes a step in

that direction. We envision a system that supports discovery, extraction, and eventually group-

ing of similar arguments that gives a concise summary of the vast variety of viewpoints across

threaded discussions. As a process, argumentation involves to support and defend one’s claim or
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Figure 1.3: A sample Pro Con Argument Summary for Gay Marriage

refute the opponent’s and hence evolves with a dialogue among the contributors. The proposed

thesis aims to automatically extract meaningful information from these dialogues that reflect

the arguments exchanged in a debate that can be used to summarize the issues under discussion.

10



Bearing the challenges presented above in the field of argument mining, this research

will investigate the following research questions:

• Q1: What are the central propositions associated with different stances on an issue?

• Q2: What are the most important arguments that can be used to summarize an argumen-

tative dialogue?

• Q3: Can we develop computational tools to extract the most important arguments in an

argumentative dialogue in an online debate?

• Q4: What are the abstract objects under discussion in an online debate?

1.2.1 Argument Dialogue Corpus

An argument mining pipeline with machine learning and AI techniques typically in-

volves building a corpus, defined as

A systematic collection of naturally occurring texts of both written and spoken language. It

is systematic for two reasons: (1) the structure and contents of the corpus follow certain ex-

tralinguistic principles (the principles on the basis by which the texts included were chosen);

(2) the exact composition of the corpus including the sampling process is available (Nesselhauf,

2004). The corpus is manually annotated, relevant to the task, and contains training instances

for a predictor. Inter-annotator agreement measures are typically employed to demonstrate con-

sistency and measure the quality of the obtained annotations provided by multiple annotators.

This is a hard task for the argument mining problems as fuzziness of argument components,

their boundaries, and how they relate to each other can be quite complicated and controversial
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even for humans (Mochales and Ieven, 2009). Another consideration is the cost and the time

required for annotations, limiting the amount of data that can be annotated for training.

Since there are two sides to an argument, the purpose and its characteristics may be

well understood when given in dialogue. For building a corpus for our research, we utilized

the publically available Internet Argument Corpus, a collection of corpora for research in a

political debate (Walker et al., 2012c). To create dialogue chains between a pair of authors,

we selected a subset of the corpus from an internet forum called 4forums.com. The website is

tailored to US audience, and some US-centric topics are brought up frequently. People initiate

discussions (threads) and respond to others posts. Each thread has a tree-like dialogue structure.

Figure 1.2 shows a snippet of a dialogue chain depicting alternate turns. Our basis of selection

of these dialogues was the number of turns in a dialogue, author of the dialogue, and the word

length focusing on the topics of Gun control, Gay Marriage, and Abortion. Having these lin-

guistic features as a stimulus to our task of dialogue selection led to an interesting and diverse

collection.

With the dialogue corpus resource in hand, we investigate our first research question

Q1 about central propositions for a given dialogue and define the term central propositions as:

Central Propositions: Debate propositions that are most important in a dialogue. These propo-

sitions in a dialogic debate connect to the subject matter of the debate in general, including

arguments for or against a position as well as data and/or anecdotes used to justify a position.

Central propositions exclude factors related to the dialogic context itself, such as insults toward

the other party, phatic communication, and metadialogic conversation about the dialogue itself.

The next task was to label the central propositions in a dialogue, but how? No one
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really knows how to get the central propositions for a given dialogue. The notion of important

argument is subjective to begin with. Hence, we do not ask annotators to select central proposi-

tions for a dialogue. Instead, we use salience as a proxy for centrality. An important assumption

towards seeking central propositions serves as a starting point for this thesis and can be stated

as:

Central propositions in a dialogue are exactly those arguments that people find most salient in

a dialogue.

We adapt the Pyramid method of summary evaluation to find salience (Nenkova and Passon-

neau, 2004; Nenkova et al., 2007). In this method, the content units are organized in tiers based

on their frequency in multiple human summaries. The intuition is that higher the frequency,

more important it is, and thus belongs to higher tiers in the pyramid. We hope that pyramid

method is a more objective and reliable way to find central propositions as compared to what

has been done in related work (spam filtering by hand or first getting rid of non-argumentative

material, as defined by a theory). For instance, Aharoni et al. (2014) introduced an argument

structure to label claims and evidence from 33 controversial topics from the website Idebate.org,

and reported an inter-annotator agreement (IAA) of Cohen’s kappa 0.39. The high degree of

subjectivity in the argument and claim recognition task leads to low IAA and reliability. Instead,

we use pyramid method for our annotation task. This reduces the subjectivity in the task, thus

improving the overall reliability.

We used human summarization as a probe to discover saliency and conducted a series

of summary collection experiments using crowdsourcing. Multiple summaries were collected

for each dialogue. We trained undergraduate linguistics to perform pyramid annotation of sum-
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maries, giving a ranked set of summary labels. Repeated elements in the summaries end up in

the higher tiers as the central propositions for individual dialogues.

Our first hypothesis H1 addresses the next research question Q2 about most important

arguments in the dialogue and can be stated as:

H1: It is possible to map the ranked labels from the pyramid annotation back to the dialogue

with good reliability.

1.2.2 Argument Extraction and Quality

In Social media argumentative discussions, subjective perspectives or differences of

opinion are exchanged on a much larger scale with a broader audience as compared to formal

settings. Anyone can initiate and participate in that conversation. Arguments are made sponta-

neously, are implicit and even wordy, a characteristic of natural dialogue. As every conversation

can be significantly different regarding context or purpose, every conversation thread may not

have the same quality level or the number of arguments. We explored two different methods

that help to assess the argument quality in social media argumentative discussions:

1. A definition of important argument based on the text segments that a majority of readers

are attentive to. This is captured by summarizing a dialogue and then linking each sen-

tence to the best-mapped label in the pyramid structure. Each sentence gets a rank based

on the rank of the pyramid label it gets mapped to indicating the quality. Higher the rank,

better is the argument quality.

2. Improved upon the argument quality definition from Swanson et al. (2015). The Argu-
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ment Quality (AQ) is based on the notion of argument clarity and is used to find text

segments that clearly express an argument facet.

Both these methods can be used to extract high quality arguments. The first method

ranks sentences within a dialogue using pyramid scheme. The second method gives a ranking

across all conversations based on contextual knowledge and inference required to determine if

the sentence expressed a clear argument for a given topic.

The next hypothesis addresses the research question Q3 of automatic extraction of

arguments from a dialogue. We will investigate the effectiveness of linguistic and contextual

features and evaluate the prediction output of our computational model using the training data

obtained from H1.

The computational model by Palau and Moens (2009) captured the general charac-

teristics of argumentation using features such as punctuations, number of tokens, number of

sub-clauses, and modal verbs for legal domain. Ranade et al. (2013a) showed that features re-

lated to topic and sentiment information are useful for ranking debate sentences. (Levy et al.,

2014; Rinott et al., 2015) showed that the discussion topic is an important feature when distin-

guishing relevant claims/evidence from the irrelevant. Topic features such as cosine similarity

using Word2Vec (Mikolov et al., 2013b) and WordNet (Miller, 1995) were employed. Using

surrounding text as the context-rich representation of the input for feature extraction has been

studied by Biran and Rambow (2011). They considered the discourse relations using Rhetori-

cal Structure Theory (Mann and Thompson, 1988) within the context segment to characterize

contextual features, while other works enrich the feature space by extracting features separately

from surrounding text spans. Bex and Walton (2016) discuss the role of dialogical context in
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argumentation, where the context can be determined by speech acts. Based on these observa-

tions, we state our next hypothesis as:

H2: Adding linguistic and contextual features improves argument extraction.

We used features based on topic, context and overall sentence structure. Topic fea-

tures are represented using words from the lexical resource named Linguistic Inquiry Word

Count (LIWC) (Pennebaker et al., 2001). Features that are characteristic of dialogical contexts

are recognized using the dialogue act classifier from NLTK (Loper and Bird, 2002). We used

Readability metrics to determine text quality. The readability score is calculated using surface

characteristics such as the average number of syllables or the average number of words per sen-

tence. These measures approximate the difficulty levels of the text, for example, vocabulary or

syntax.

We then formulated a binary classification task to identify argumentative sentences

and conducted experiments to investigate which feature and classification models are effective,

using F-score, a standard evaluation metric based on precision and recall. We also examined

the performance of the traditional document summarization approaches using several off the

shelf summarizers, as our baselines. The final experimental setup runs a statistical analysis to

determine which feature combinations make a significant improvement.

1.2.3 Argument Facet Similarity

A computational model for argument extraction gives a ranked set of arguments for a

particular dialogue, giving a large collection of arguments, but how do we determine the central

concepts across dialogues which drive the discussion? Concepts which manifest in a majority of
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dialogues represent important aspects of the debate. It would be more useful to organize these

important arguments according to these concepts and present this information to the reader,

leading us to the last research question Q4: the abstract objects under discussion in an online

debate.

Predefined Arguments Stance

It is discriminatory to refuse gay couples the right to marry. Pro

Gay couples should be able to take advantage of the fiscal and legal benefits of marriage. Pro

Marriage is about more than procreation, therefore gay couples should not be denied the right to marry due to

their biology.

Pro

Gay couples can declare their union without resort to marriage. Con

Gay marriage undermines the institution of marriage, leading to an increase in out of wedlock births and divorce

rates.

Con

Major world religions are against gay marriages. Con

Marriage should be between a man and a woman. Con

Figure 1.4: Pre-defined Argument list from Boltuzic and Šnajder (2014).

Boltuzic and Šnajder (2014) introduced an argument recognition task of mapping

user comments to a predefined set of arguments. These predefined arguments sets, also called

as ‘Aspects’ or ‘Frames’ or ‘Argument tags’ in related work are similar to our abstract objects

in research question Q4 as they highlight the issues under discussion in a debate.

However, the authors assume that this topic-dependent set of arguments has been pre-

pared in advance. The Corpus CompArg2 contains user comments compiled from the website

Procon.org, and predefined argument set from Idebate.org. The task is framed as a multi-class

classification problem using entailment-based features and an off the shelf tool for Seman-
2http://takelab.fer.hr/data/comarg/.
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tic Textual Similarity (STS), defined as the degree of semantic equivalence between two texts

(Agirre et al., 2012). Boltuzic and Šnajder (2015) used only the argumentative sentences dataset

from Hasan and Ng (2014) and presented an unsupervised approach to recognize these aspects.

They grouped similar arguments into clusters using hierarchical clustering based on STS. Naderi

and Hirst (2016) used a similar term, namely ‘Frame’, to refer to this predefined argument list.

The authors used word and sentence vector representations to measure STS between the state-

ments and the frames in parliamentary speeches.

A principal problem with the approach of the predefined argument list is that, in

general, these aspects of a given topic are not known in advance. A change in the political

or social environment may change these aspects. These are multifaceted issues where facets

evolve with changing scenarios.

Much of the previous work concerned with modeling aspects uses a notion of similar-

ity based on STS or entailment. Similarity can have many levels of granularity such as lexical,

structural, or conceptual. The features and relations establishing similarity could be application-

specific. For argumentation domain, we have people on same sides of an issue discussing the

same aspect but different stance. To measure argument similarity, we first defined the term ar-

gument facet as:

Facet: A facet is a low-level issue that often reoccurs in many arguments in support of the au-

thor’s stance or in attacking the other author’s position. There are many ways to argue for your

stance on a topic. For example, in a discussion about the death penalty, you may argue in favor

of it by claiming that it deters crime. Alternatively, you may argue in favor of the death penalty

because it gives victims of the crimes closure. On the other hand, you may argue against the
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death penalty because some innocent people will be wrongfully executed or because it is a cruel

and unusual punishment. Each of these specific points is a facet.

Our argument similarity measure, which we call as Argument Facet Similarity (AFS) reflects

both the aspects and the stance. Two tasks similar to AFS are Semantic Textual Similarity and

Entailment (TE). TE is a binary decision and directional while AFS is graded. For instance,

consider these two example pairs for the AFS annotation for the Gun Control topic.

• There is no reason law-abiding citizens need to defend themselves as they are untrained,

do not have full knowledge of the law and eventually cause more harm than good by

owning such weapons.

• Gee, maybe if the law abiding had guns, they could defend themselves?

These two statements are discussing the same facet that may be stated as, “guns and self de-

fense by law abiding citizens”. One argument is in favor while the other is against. These two

statements contradict each other, none entails the other and may not be equivalent as per STS.

However, AFS would label them as roughly equivalent as both the arguments are discussing the

same facet but have opposite stance. This indicates that the task we want to address, AFS, is

different from other textual similarity based problems, like STS, and calls for a need for defin-

ing this new task for identifying whether two sentences, like the ones shown above, discuss the

same argument facets. For this purpose, we used a 6 point graded scale to characterize sentence

similarities and collected annotations for this task using crowdscourcing. The level of agree-

ment between workers would indicate the quality of the annotations obtained, and whether the

definition can be transformed to a computational model that can predict argument similarity.
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We formulated AFS as a supervised regression task and showed that the prediction output of

our proposed AFS model improved the output obtained using STS. We used a combination of

features such as ROUGE (Lin, 2004), Ngramoverlap, Word2Vec representations and LIWC to

predict AFS. We state our next hypothesis as:

H3: The proposed features yield better performance on AFS than those used for STS.

1.3 Overview of Contributions

The work presented in this thesis is focused on inducing the recurring facets in a par-

ticular topic domain via supervised learning over several dialogic interactions. Many different

threads of recent research on argument mining have a strong parallel with this goal. However,

they differ from our approach as they all assume a finite set of topic-specific labels that are de-

termined in some form by the researchers themselves. In contrast, we seek to uncover popular

facets via clustering similar central propositions across the dialogues. This research contributes

to the current state of the knowledge in the following ways:

• The first corpus of summaries, pyramids, and central propositions of spontaneously-

produced written dialogue of high social and political importance. The pyramid labels

back-linked to the original dialogue sentences with high reliability among human anno-

tators used as “ground truth” for training and testing the summarization framework.

• A pyramid based summarization to arrive at a well-motivated and theoretically grounded

definition of important argument that also reflects the argument quality in social media

20



dialogue, which is a novel method for ranking arguments in conversational data.

• A computational method for an end-to-end argument summarization of dialogue ex-

changes from social media debates significantly beating the traditional summarization

baselines. We observed that using contextual and linguistic information with support vec-

tor machines (SVM) and neural network-based models achieved better performance for

argument summarization. Both topic-specific and topic-neutral features provided useful

knowledge. LIWC categories were helpful in conveying the topic of the communication.

Word categories such as death, money, and religion reveal the topical content of the in-

put. On the other hand, the complexity of a given text, as measured by Readability, can

be used to recognize important arguments in a topic-independent way. We further find

that adding contextual knowledge derived from LIWC categories of previous sentences

and coreference resolution enhances the model’s predictive power.

• For the first time, we presented an application of the pyramid summarization scheme to

the task of Facet induction; and introduced a new task of Argument Facet Similarity

(AFS) aimed at identifying Facets across opinionated dialogues. A new corpus of paired

arguments with human-annotated AFS scores using crowdsourcing. The average score

over all the annotators correlated at a high value of 0.7 with our gold standard annotation

indicating that the AFS similarity task is well-defined, and understandable by minimally

trained annotators on Mechanical Turk. Our experimental results showed that we can

identify AFS with a higher correlation as opposed to a baseline Semantic Textual Simi-

larity (STS) using a combination of features based on distributional similarity, Word2Vec,
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LIWC, and dependency parser. Our results also demonstrated that using concatenation

for learning similarity with vector representations works much better than reducing a pair

of vectors to a single score using cosine similarity.

1.4 Thesis outline

The remaining thesis is organized as follows: Chapter 2 discusses the related litera-

ture. We start by presenting the various corpora and the subtasks in argument mining. Since we

compare our work to STS, we present the work related to STS. We further investigate previous

work in summarization and describe how it is limited for the current task. Chapter 3 describes

in detail the argumentative dialogue corpus. We start with the dialogue collection experiments

from IAC. This is followed by summarization, pyramid annotations, and mapping pyramid la-

bels to dialogue text. Chapter 4 describes the computational method to summarize dialogic

arguments from the above corpus. It describes the machine learning framework, the perfor-

mance of baseline summarizers, the experimental set up using LSTM and SVM models. We

demonstrate how adding contextual and linguistic features improves the performance of LSTM

and SVM. Chapter 5 begins with a description of the AFS task, guidelines for the crowdsourced

corpus annotation (includes the number of workers per task, annotator agreements and task

quality). We run AFS on two different types of argument sets. The first one contains data from

the pyramid annotations. For the second set of experiments, we use the argument corpus from

Swanson et al. (2015). Chapter 6 concludes with a summary of our contributions, limitations,

and future work.
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Chapter 2

Previous Work

Argumentation is an interactive process and frequently occurs in conversations. It

involves making and explaining the choices and the decisions we make. Each choice may have

its pros and cons. With the use of social networking sites such as Twitter, Facebook, Forums,

and Blogs, the options are nearly unlimited. Through dissemination of thoughts, opinions and

extensive exchange of arguments on the social media, we now contribute to popular opinion.

However, the massive amount of information available today is overwhelming to our brain and

its ability to efficiently separate relevant information from the irrelevant. Concise, easy to read

summaries of this argumentative text can help us to efficiently absorb and comprehend this

content.

The overarching goal of this thesis is to develop techniques to recognize the specific

arguments and counterarguments people tend to advance, and group them across discussions as

Facets. This entails the sub-tasks:

(i) Extract and summarize important arguments.
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(ii) Discover similar repeated argument aspects that appear across multiple dialogues on a topic.

Moens et al. (2007) introduced argument mining as a research area aimed at detec-

tion of all the arguments involved in the argumentation process, their structure, argumentative

relationships between their propositions, and the interactions between them. There are many

formalisms for argument description with multiple framings (e.g. separating argumentative

content, argument component identification, relation identification, argument similarity, and

argument summarization).

Summarization is a widely researched problem in natural language processing, which

entails eliminating any superfluous text and fillers, and identifying essential points that preserve

the core meaning of the original input. Many summarization tasks have been studied in the past

in multiple domains including single document, multi document, and conversational speech.

The framework and the methods in this research lie at the intersection of semantic

textual similarity (STS), summarization and argument mining, which we discuss and compare

with our work. We first describe STS in Section 2.1. Next, we present the various sub-tasks

and existing corpora in argument mining in Section 2.2 . This is followed by related work in

summarization in Section 2.3. Finally, the chapter concludes in Section 2.4 by pointing out the

limitations in the existing literature and affirming the need for a new approach to address the

goal of facet identification.

2.1 Semantic Textual Similarity

Agirre et al. (2012) presented a pilot shared task on Semantic Textual Similarity (STS)
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Compare Two Similar Sentences

Score how similar two sentences are to each other according to the following scale. The sentences are

(5) Completely equivalent, as they mean the same thing.

(4) Mostly equivalent, but some unimportant details differ.

(3) Roughly equivalent, but some important information differs/missing.

(2) Not equivalent, but share some details.

(1) Not equivalent, but are on same topic.

(0) On different topics.

Figure 2.1: Semantic Textual Similarity Scale.

as a part of the First Joint Conference on Lexical and Computational Semantics (SemEval) 2012.

It measured the degree of semantic equivalence between two sentences and was based on the

symmetric graded equivalence between a pair of texts. The similarity was rated on a 0-5 scale

(low to high similarity) by human judges using Amazon Mechanical Turk. A value of 0 meant

unrelated, and 5 was a complete semantic equivalence. See the definition given in Figure 2.1.

The computational approaches usually entailed recognizing and aligning semantically similar

or related words across the pair, followed by an aggregated overall similarity score (Majumder

et al., 2016). Pearson correlation between predicted and human similarity scores was used to

determine the system’s performance. Most of the top performing systems for the STS shared

task employed a vast range of features, including lexical similarity, Latent semantic analysis

(LSA) word similarity, and WordNet knowledge (Han et al., 2013). Since then, the STS shared

task has been held annually leading to new approaches that model sentence level similarity.
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STS is related to Textual Entailment (TE) as both are based on semantic equivalence. (TE) is

asymmetric and binary, while STS is symmetric and graded.

2.2 Argument Mining

Although several corpora have been annotated with the goal of identifying arguments

and relations, the annotation guidelines and schemes differ due to many theories of argumenta-

tion that might apply to a task (Jackson and Jacobs, 1980; Reed and Rowe, 2004; Walton et al.,

2008; Gilbert, 1997; Toulmin, 1958; Dung, 1995). One single definition of argument structure

may not work for every NLP task. What constitutes an argument may depend upon whether

we are in a literary domain, legal domain, or a social media discussion. Factors such as writer

intent and reader knowledge also have an impact, and hence argument recognition is a complex

problem. It has been addressed at several levels of granularity: clause, sentence, within and

across documents. Therefore, most of the argument corpora are task and domain specific. Next,

we survey the argument subtasks performed and the associated corpora.

• Argument Extraction and Quality: Section 2.2.1.

• Argument Relations and Tagging: Section 2.2.2.

2.2.1 Argument Extraction and Quality

As already mentioned, several theories of argumentation exist, and each of them

makes explicit assumptions about the argument structure, generation, identification, and qual-

ity evaluation. However, the definition of an argument is more controversial. Because there are
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many proposals for argumentation, it is impossible to give a single, formal, universally accepted

definition of argument or argument quality. There are some methods that explicitly define and

measure the ‘argument quality’ using measures such as convincingness or persuasion while

others assess quality largely as a byproduct of the argument definition, structure or schemes.

Below, we describe the related work considering both ‘argument definition and structure’ and

‘explicit quality dimensions’.

Identification, Segmentation, and Structure: These are mostly formulated as classification

problems and include tasks like separating argumentative from non-argumentative text units,

identifying argument components (e.g., claims, premises, conclusion), and classification using

argument schemes.

Argument identification is the task of recognizing or extracting segments of text that

can be classified as argumentative. Argument extraction is a quite complex procedure, and

in many cases, it may be difficult for even humans to reliably annotate an argument segment,

thus making it even more challenging for machines. Splitting of a given text segment into its

argumentative segments and their non-argumentative counterparts is a first important step and

is based on the argument definition followed.

Conceptually, an argument unit may span a clause, a complete sentence, multiple

sentences, or something in between. The size of the unit depends on the domain of an argumen-

tative text, but can also vary within a text. Formal texts, such as legal documents, usually have

longer sentences and usually present premise and conclusion in subordinate sentences or in-

dependent sentences instead of subclauses and hence a minimum two proposition requirement
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for an argument seems reasonable for them (Palau and Moens, 2009). Many works classify

argument at sentence level (Goudas et al., 2014; Habernal and Gurevych, 2015). Argument

definition by Stab and Gurevych (2014b) includes a claim that is supported or attacked by at

least one premise and spans multiple sentences. (Levy et al., 2014; Lippi and Torroni, 2015b)

label exact claim boundaries, which do not necessarily match a whole sentence or even a clause

in the text. In contrast, dialogue or informal text in social media may contain shorter sentences

where conclusion and premise can be together in a single sentence or can be implicit (i.e., en-

thymemes). Habernal and Gurevych (2017) showed, for instance, that 48% of the claims in

user-generated web discourse are implicit.

There is no consensus yet on an annotation scheme for argument components, or on

the minimal textual units to be annotated. A number of frameworks including lexical, syntactic,

semantic, and discourse structure have been used to guide the selection of an argument.

Palau and Moens (2009) presented one of the first computational approaches by fram-

ing argument mining as a three-step process: (i) detection of the argumentative proposition, (ii)

proposition function classification, and (iii) detection of the argumentation structure. At least

two propositions are required to classify a text unit as argumentative. They work on the legal

domain in the Araucaria corpus (Reed and Rowe, 2004) and the European Court of Human

Rights (ECHR) corpus (Palau and Moens, 2008). The Araucaria corpus contains 641 docu-

ments, 1899 argumentative sentences, and 827 sentences without arguments. It includes data

from various sources such as newspapers, parliamentary records, judicial summaries, and dis-

cussion boards. Arguments are annotated in an XML-based format called “AML” (Argument

Markup Language). The ECHR contains 47 documents, 1449 non-argumentative sentences,
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763 premises, and the number of conclusions is 304. Palau and Moens (2009) reported an ac-

curacy of 73.75% when detecting arguments in the Araucaria corpus using a multinomial Naive

Bayes classifier and a maximum entropy model. The accuracy increases to 80% when the task

is performed on the ECHR corpus. In the second step, a support vector machine is used to clas-

sify each argumentative proposition found into a premise or a conclusion, with an F-measure

of 68.12% and 74.07% respectively. The classifiers employ a rich set of features including n-

grams, POS tags, list of keywords indicative of argumentative discourse, and parse trees. To

determine the argumentation structure, manually derived rules tailored to a legal domain are

grouped into a context-free grammar giving an accuracy of 60%.

Rooney et al. (2012) applied kernel methods and classified each proposition as a

claim, a premise or non-argumentative, in Araucaria and reported an overall accuracy of 65%.

In subsequent work on the Araucaria, Feng and Hirst (2011) proposed an approach

for identifying the five most commonly used argumentation schemes, which are templates for

various kinds of arguments (e.g., argument from example, argument from cause to effect, prac-

tical reasoning, argument from consequences and argument from verbal classification) using

Walton et al. (2008)’s scheme set. They experimented with different combinations of general

and scheme-specific features. However, reliable identification of argument components is a pre-

requisite for the features used. Depending upon the particular scheme, they report an accuracy

between 63-91% for one-against-others classification and 80-94% for pairwise classification.

Florou et al. (2013) constructed a corpus of Greek text segments and annotated them

as argumentative or not. As only 69 segments were argumentative, 345 positive examples were

obtained by oversampling. 332 samples were manually annotated as non-argumentative giving

29



a final corpus of 677 segments. They employed decision trees, used morpho-syntactic features

such as mood and tense of the verb along with discourse markers, and achieved an F1 score of

0.76.

Goudas et al. (2014) and Sardianos et al. (2015) performed binary classification to

identify argumentative sentences followed by a structured prediction task to identify clause-

level argument segments (premises and claims) using BIO encoding for Greek language texts.

Goudas et al. (2014) annotated 16,000 sentences from 204 social media documents about re-

newable energy and found only 760 of them to be argumentative. Employing a rich feature

set, they reported an accuracy of 0.774 using logistic regression for argument identification.

Boundaries of argument components were determined with a conditional random field model

that achieved an F1 score of 0.42. Sardianos et al. (2015) annotated a dataset of 1191 argument

segments from a variety of sources such as news, blogs, and social media. The inter-annotator

agreement using the F1 measure was 75.50%. With part-of-speech tags, and distributed rep-

resentations of words, their best system achieved an accuracy of 0.32 for the task of boundary

detection of a text segment that encloses a claim or a premise.

Biran and Rambow (2011) investigated the use of discourse relations for identifying

justifications for subjective claims in interactive written dialogues. 309 blog threads from Live-

Journal.com were annotated for claims and premises (justifications) with an inter-rater agree-

ment of kappa value 0.69. The authors show that the discourse contribution from multiple

discourse relations in the justifications characterizes the argumentation in support of a given

claim. Because the instances being classified are a pair of textual units, features usually involve

information from both elements (i.e., source and target) of the pair (e.g., word pair, discourse
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indicators in source and target) and the relative location.

Rosenthal and McKeown (2012) examined methods for identifying opinionated claims

expressing a belief. A corpus of 285 blog posts from LiveJournal.com and 51 Wikipedia dis-

cussion pages was annotated by two annotators at the sentence level to identify claims. The

average agreement was reported using kappa, 0.50 on LiveJournal, and 0.557 on Wikipedia

discussion forums. For classification, features based on sentiment and committed belief (Prab-

hakaran et al., 2010) were used along with n-grams and POS tags. Whereas sentiment and POS

tags were more important for LiveJournal, committed belief and n-grams features worked better

for Wikipedia discussion forums.

Roitman et al. (2016) described a claim-oriented document retrieval approach to ex-

tract relevant Wikipedia articles that support or contest a given controversial topic. A two-step

retrieval approach was used first to create an initial pool of articles that were relevant to the

topic using a state of the art information retrieval method. At the second step, articles in the

initial pool were re-ranked according to their potential to contain as many relevant claims as

possible using a lexicon based set of handcrafted claim discovery features (e.g., controversy

related terms such as dispute and criticism, or special Wikipedia annotations that indicate a

controversial content). An overall improvement of 10% in claim recall was achieved by the

re-ranking.

Aharoni et al. (2014) introduced an argument structure comprising only two compo-

nents: a claim, and the associated supporting evidence used to support or contest a controversial

topic. 33 controversial topics were selected from the website Idebate.org to create a dataset for

context-dependent claim detection. 1,392 related claims from 321 Wikipedia articles were an-
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notated by trained annotators with an inter-annotator agreement of Cohen’s kappa 0.39. Levy

et al. (2014) proposed a context-dependent claim detection on this corpus, while a context-

independent approach was applied in Lippi and Torroni (2015b) to the same dataset. Levy

et al. (2014) identified the most probable claim and the exact boundaries of the claim within

the sentence for a given topic. The system pipelines a cascade of classifiers, each trained by

exploiting a set of highly engineered features, incorporating knowledge coming from lexical

databases such as WordNet, sentiment analysis tools, and a module to score sentence subjectiv-

ity. An initial classifier detects sentences that contain a relevant claim for the given topic. To

detect the boundaries of a claim, each sentence is segmented into different sub-sentences, and a

logistic regression classifier selects the most probable claim from a list of several candidate sub-

sentences. The last component ranks all the identified claims using another logistic regression

classifier giving the most relevant claims for the given topic. Lippi and Torroni (2015b) ex-

ploited structured parsing to detect claims without using any contextual information. An SVM

classifier was trained using a tree kernel that measures the similarity between two sentence-level

parse trees. An F1 of 0.168 is reported, a slight improvement from an F1 of 0.16 by Levy et al.

(2014).

Rinott et al. (2015) expanded the dataset to 58 topics, 2,294 claims, and 4,960 associ-

ated evidences. Each evidence is further classified as study (quantitative analysis), expert (tes-

timony by a person) or anecdotal (specific events). The evidence can include several sentences.

All consecutive segments up to three sentences within a paragraph are considered as evidence

candidates. Information from the topic of the debate and a given claim are used in order to rank

the retrieved evidence. The proposed system achieved macro averaged mean reciprocal ranks
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between .03 and 0.20 depending on the type of evidence.

Another corpus from user-generated web content following a variant of the Toulmin

(1958) model was developed by Habernal et al. (2014) to model arguments and their compo-

nents. This dataset included 990 English comments to articles, blog posts, and forum posts. 524

samples were labeled as argumentative by three annotators with an inter-annotator agreement

of Cohen’s kappa 0.59. A final smaller corpus of 345 samples was annotated with finer-grained

tags (claims, premises, backings, rebuttals, and refutations). The inter-annotator agreement

was measured using Krippendorf’s alpha. It ranged from 34.6 (distinguishing all classes and

non-argumentative) to 42.4 (distinguishing between premises, claims, and non-argumentative).

Habernal and Gurevych (2015) performed component identification on this dataset. The task

was formulated as a sequence labeling task, and a BIO (beginning, inside, outside) tagset was

used to identify the boundaries of components. The authors experimented with several feature

sets including lexical, syntactic, topic, sentiment, discourse, and unsupervised embeddings. For

separating argumentative from non-argumentative documents, the system achieved an F1 score

of 0.69. However, the task of boundary recognition of various types of argument components

achieved a comparatively low score in the range of 0.31-0.40.

Our Work. Social media arguments do not follow any specific rules, and most of the mes-

sages are simple and may even lack proper syntax or spelling. As opposed to formalized debates

and structured documents, social media argument is informal, vague, and verbose. Inferring the

unsaid information is natural for humans as we have access to a vast array of common sense

knowledge that includes general information about the world. Additionally, conversants in a
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dialogue exchange have some sort of common ground. This world knowledge is used by hu-

mans to determine the context in which an utterance or argument is made in a dialogue and

to determine its meaning. Computers, however, are not privy to that same world knowledge.

Therefore, we need to reflect the text properties and granularity to define an argument in social

media dialogue. We propose an alternative view and define an argument as a single sentence that

clearly expresses an argument facet in a dialogue and we are interested in identifying identical

but differently expressed argument facets across dialogues (Misra et al., 2015, 2017).

Argument Quality: Substantial research has been dedicated to argument evaluation theory to

determine what constitutes a good argument. Is a strong argument an effective argument which

gains the adherence of the audience, or is it a valid argument, which ought to persuade the

audience (Perelman and Olbrechts-Tyteca, 1969)? Walton (1989) discusses the strengths and

weakness of arguments in informal logic, while as per Johnson and Blair (2006) relevance, ac-

ceptability, and sufficiency (RAS) are appropriate criteria for evaluating arguments in the sense

of reasons offered in support of a claim. Correlation between argument quality perception and

actual persuasiveness is studied by Hoeken (2001). Siegel (2015) states that good-making fea-

tures of arguments vary by context and purpose. The criteria for a good argument in a scientific

context differs in some respects from what makes an argument good in a court of law, a friendly

conversation, or a public debate. People argue for different purposes such as persuasion, the

epistemic development, or consensus, with each having its criteria for goodness. Blair (2004)

construe argument evaluation relative to its use (persuasion, inquiry, collaboration). As a re-

sult of these varying goals of argumentation, quality is viewed from different perspectives such
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as the logic of arguments, style and rhetorical effect of argumentation, or its contribution to

a discussion. A convincing argument from the point of view of an argumentation theorist is

not always convincing from a layperson’s point of view (Van Eemeren, 1995). Since neither a

general consensus on argumentation quality nor a clear measure of its evaluation exists, practi-

cal assessment approaches are based on simple measurable quantities rather than on theoretical

framework (Habernal and Gurevych, 2016b), for example, how many premises support a claim

(Stegmann et al., 2012), or the complexity of the analyzed argument scheme (Garcia-Mila et al.,

2013). Next, we describe a few attempts in computational argumentation that go beyond ana-

lyzing argument structure and role to evaluate argument quality. Measures such as relevance,

persuasion, convincingness, and context have been used.

Habernal and Gurevych (2016b,a) empirically compared informal social media argu-

ments in terms of convincingness. A dataset is annotated to determine which argument is more

convincing, along with the reasons given by annotators for its convincingness. These reasons

were used to derive a hierarchical annotation scheme. 9111 argument pairs were labeled with 17

reason labels, including (attacking/abusive language/grammar issues/no credible evidence/no

facts/sticks to the topic). The authors tested different models for predicting convincingness: An

SVM with engineered linguistic features, and a BLSTM. Both the models performed similarly

and obtained an accuracy in the range 0.76-0.78.

Wachsmuth et al. (2017) adapted the PageRank algorithm to objectively assess the

relevance of an argument at web scale using commonly referred to arguments for a given con-

clusion. Expert annotators ranked the arguments and achieved an average Kendall’s correlation

τ of 0.36. Ranking based on page rank achieved a value of 0.28, better than frequency or
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similarity.

A few studies have explored persuasiveness of arguments as a quality measure. Wei

et al. (2016) ranked arguments by predicting the persuasiveness of debate posts written in re-

sponse to a preceding comment in the conversation. They acquired discussion threads from

the ChangeMyView subreddit. Users of this subforum state their views on specific topics, re-

ply with counter-arguments to challenge a view and can vote on different replies to indicate

which one is more persuasive than others. A pair-wise learning-to-rank model was used for

ranking. In addition to argumentation features, they captured social interaction features. Since

it becomes harder to understand an argument without understanding the (preceding) context,

the effectiveness of social interaction based features increases when the number of comments

in the thread grows. However, the interaction features are similarity-based and do not model

persuasion behaviors.

Tan et al. (2016) examined the effectiveness of arguments where people challenge

others to change their views expressed in Reddit’s subforum ChangeMyView discussions. A

logistic regression model is used for prediction. Successful arguments are less similar to the

original post in content words but more similar in stop words. Use of first-person pronouns and

formatted text were other characteristics of persuasive arguments. Authors relate singular vs.

plural first person pronouns to the personality trait of Openness to Experience.

Swanson et al. (2015) extended the Internet Argument Corpus (IAC) with dialogues

from createdebate.com to create a larger corpus consisting of 109,074 posts on the topics Gay

Marriage, Gun Control, Death Penalty, and Evolution. They address argument extraction at the

sentence level and train a regressor to predict an argument quality (AQ) score for each sentence.
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The AQ score is intended to reflect how easily the speaker’s argument can be understood from

the sentence without any context. The annotators rated the argument quality using a continuous

slider ranging from hard (0.0) to easy to interpret (1.0). They compared the sentence extraction

to multi-document summarization where sentences that clearly represent an argument facet are

identified. Their work is based on the hypothesis that the best candidates for high-quality argu-

ments are marked by high semantic density cues such as POS tags, specificity as measured by

Speciteller (Li and Nenkova, 2015), lexical n-grams, sentence length, word length, and certain

discourse relations.

Our Work. In this era of instant communication, social media provides a major venue for

argument and dialogue exchange. Arguments are exchanged back and forth in extended con-

versations providing a rich resource for capturing and analyzing the vast variety of viewpoints

across these conversations. We employed two different methods to separately evaluate argu-

ment quality in social media dialogue. The first used common elements across summaries as

indicators of argument quality (Misra et al., 2015, 2017). For the second method, we improved

upon the argument quality definition from Swanson et al. (2015) for ranking arguments based

on contextual knowledge needed to understand an argument (Misra et al., 2016).

2.2.2 Argument Relations and Tagging

Arguments (and their components) are usually embedded in a particular situation and

cannot be understood in isolation (Peldszus and Stede, 2013). An argument seeks to establish or

challenge a controversial proposition and refers to an explicitly mentioned or at least supposed
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opponent. Van Eemeren and Grootendorst (2004) claim that an argument always has two sides,

a proponent, and an opponent and both support and attack relations are necessary to represent

realistic knowledge.

In this section, we review existing works that focus on the identification of argumen-

tative relations between arguments and analyzing their interactions.

Cabrio and Villata (2012) trained an existing textual entailment (TE) platform, Edit

Distance Textual Entailment Suite (EDITS) (Kouylekov and Negri, 2010), to infer a support

or an attack relation between two arguments to determine a set of acceptable arguments in a

debating portal. Dung (1995) framework is used to evaluate their acceptability. The dataset

consists of 200 Text-Hypothesis pairs (entailment and contradiction). An argument is accepted

if it is not attacked in the debate, i.e., all the arguments attacking it are rejected, and an argument

is rejected if it has at least an argument attacking it which is accepted. The system can be used by

the participants to get an overview of the debate and the accepted arguments, with an accuracy

of 0.75.

Peldszus and Stede (2016) introduced an annotation scheme based on the work of

Freeman’s theory (Freeman, 1991) and collected 112 very short texts in a controlled text gen-

eration experiment. Each text contains roughly five argumentative relevant segments written in

response to a question on some potentially controversial topic (e.g., Should intelligence services

be regulated more tightly by parliament?). Writers were asked to include a direct statement of

their central claim and at least one objection to that claim. The texts were annotated using

Freeman’s theory of using the moves of proponent and challenger in a dialectical situation. In

addition to distinguishing between claims and premises, support and attack, it is also labeled
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with additional properties of argument components like proponent-opponent, normal-example,

and rebut-undercut relations. The texts were first written in German and then professionally

translated into English. An inter-annotator agreement of Fleiss k=0.83 among three expert an-

notators was obtained. Using this dataset, Peldszus and Stede (2015) jointly linked several

argument components in a single tree structure using a Minimum Spanning Tree model. It has a

central claim as the root node connected by relations including support or attack, proponent or

opponent. The edge weights are determined based on the features extracted from each compo-

nent including lemma, verb morphology, POS-tags, discourse connectives and some statistics

such as the relative position of the components and length. The system achieved an F-1 score

of 0.720 for identifying argumentative relations and 0.869 for recognizing claims in the above

micro-text corpus. However, a significant limitation is a presupposition that the components of

an argument are already known in advance. Moreover, the texts in the corpus were created in

a controlled setting to promote one opposing argument component in each text. Therefore, it

remains mostly unknown if the results obtained can be reproduced when working with real data

sets.

Argument Tagging: So far, we have studied models and relations between a pair of argu-

ments based on structure and role, but what are the issues that are being discussed? For a given

topic, a number of important arguments emerge in the debate, representative of the various

aspects of the debate. A majority of users will support their stance or refute an opponent by

arguing about these sub-issues, aspects, or facets. As we have a plethora of information in so-

cial media and readers are often faced with information overload, merely finding arguments in
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isolation is not particularly useful. An aggregation at a higher level such as some correlation be-

tween the arguments by different people about the same topic may be more useful to get a quick

overview of the various argument aspects (facets). Next, we discuss argument tagging where ar-

guing expressions are extracted and labeled with tags reflecting the conceptual argument being

made.

Conrad et al. (2012) constructed an argument mining system on monologic weblog

and news data about universal healthcare. One component of their system identified arguing

segments and the second component labeled the segments with the relevant stance-specific

argument tags. They showed that distributional similarity features help identify arguments

that belong to the same tag set and reported an accuracy of 0.522 for the tagging task. An

argument tag is similar to our definition of facet since it represents a controversial abstract

belief, expressed through arguing subjectivity. However, these subjectivity tags were manually

identified by expert annotators after rigorous training.

Boltuzic and Šnajder (2014) proposed a multi-classification approach to tag argu-

ments with a set of predefined labels. Instead of hand-generating argument tags like Conrad

& Wiebe, they selected short sentential summaries of the key arguments for a given topic from

a debate website, and then labeled comments on the same topic from a different website with

the most closely matching summary. They compiled a corpus of user comments from online

discussions (Procon.org 1) on two specific topics and manually paired them with arguments

from Idebate.org 2, with a Cohen’s kappa of 0.49. Afterwards, they used a supervised model to

match user-created comments to a set of predefined topic-based arguments. The final task was
1http://procon.org
2http://idebate.org
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to predict the extent to which the author of the post supports or opposes the reason as measured

on a five-point ordinal scale (strong attack, attack, strong support, support, none). Using tex-

tual entailment (TE) features, semantic text similarity (STS) features, and a stance alignment

(SA) feature, the best models achieved a micro-averaged F1-score in the range 70.5% to 81.8%,

depending on the task formulation.

Naderi and Hirst (2016) explored the tagging framework in parliamentary discourse

for the Gay Marriage topic to determine the aspects of an issue. The task is formulated as ‘frame

identification’. Political debates were tagged with pre-existing argument-list by three annotators

with an inter-annotator agreement of 0.46. An SVM classifier was trained using distributed word

representations, similarity, and stance as features. An overall accuracy of 68.9% was reported.

Ghosh et al. (2014) annotated a corpus of blog comments for argument mining about

technical topics and applied a theory of argument structure that is based on identifying targets

and callouts, where the callout is basically an argumentative attack against a particular target

proposition in another speaker’s utterance. Inter-rater reliability estimates yielded a Krippen-

dorff’s alpha in the range 0.64 - 0.87.

The same problem on debate posts is tackled as a ‘reason classification’ problem

(Hasan and Ng, 2014), with a probabilistic framework for argument recognition (reason classi-

fication) that operates jointly with the related task of stance classification. Each post is split up

into sentences and each sentence is manually labeled with one argument from a predefined set

of arguments. An inter-annotator agreement between 0.61 and 0.67 is reported.

A major limitation of these prior tagging approaches is that annotators have to look

through and filter a lot of irrelevant content and construct a manually curated list. A change
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in political or social environment or external events could change thinking. New aspects could

emerge as different sides respond to each other and raise new points.

Our Work. We envisioned a bottom-up approach. Arguments in various discussions can

spontaneously arise as the conversation moves forward. These arguments are only later con-

solidated and grouped based on similarity. We do not work with a preexisting inventory of

tags.

Boltuzic and Šnajder (2015) worked in a similar vein and performed cluster analysis

using semantic textual similarity to detect similar arguments. Analysis of clustering quality and

errors on manually matched cluster-classes revealed that there are difficult cases that textual

similarity cannot capture and it is difficult to draw clear-cut boundaries between arguments. In

contrast, we adopted a 2-step principled approach in (Misra et al., 2015, 2016):

• Step1: A classification model for Argument Extraction.

• Step2: A regression model for Argument Similarity.

2.2.3 Correlation between Argument, Disagreement, and Stance

2.2.3.1 Argument and Disagreement

In ordinary discourse, the word “argue” often means “to disagree” insistently or ag-

gressively (Groarke, 2017). Arguments in a dialogue often involve responding and reacting

to current contexts. As the conversation progresses, the participants of the discussion are not

only interested in conveying their beliefs, but they are also speculating whether the other person
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believes the same. When a debate arises over any issue, the participants ask questions to deter-

mine the level of agreement and then may give counter-arguments for defending or attacking

the areas of disagreement. To detect agreement or disagreement can often help to understand

how conflicts originate and get resolved, and the role of each participant in the conversation.

Identifying these interactions can be particularly helpful in inferring controversial decisions,

which can be useful for summarization. (Dis)agreement has also been linked to Speech Act

Theory to indicate a participant’s intention. Sentences have both a propositional content and

a functional intent (Searle, 1975; Jacobs, 1989). The problem has been previously studied in

transcribed speech, e.g., in meeting discussions (Hillard et al., 2003; Galley et al., 2004; Hahn

et al., 2006), congressional floor-debates (Thomas et al., 2006), and broadcast conversations

(Wang et al., 2011; Germesin and Wilson, 2009). Given the increasing interest in ideological

dual-sided debates, a lot of research studies in recent years have been carried out on classifying

disagreements. A similar task is proposed in Abbott et al. (2011) to recognize disagreement in

online political forums between quoted text and a given response. By using discourse markers,

generalized dependency features, punctuation, and structural features, the best system achieved

an accuracy of 68%. Yin et al. (2012) focused on global (dis)agreement between a post and

the root post of the discussion. Allen et al. (2014) used Rhetorical Structure Theory (RST)

to build a relation graph suggesting that it captured the essential aspects of the conversational

argumentative structure. Rosenthal and McKeown (2015) performed a 3-way classification

(agreement/disagreement/none) between quote-response posts and showed that using conversa-

tional aspects (e.g., sentence similarity) significantly improved the results as compared to using

lexical features alone.
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As we are interested in finding out why people disagree and what are the reasons be-

hind disagreement, we performed an initial pilot study to determine the effectiveness of topic

independent features, e.g., discourse cues indicating agreement or negative opinions (Misra and

Walker, 2013). In a similar vein, Skeppstedt et al. (2016) annotated a debate forum corpus for

topic-independent expressions conveying (dis)agreement. Among the 175 annotated expres-

sions (43 for agreement and 132 for disagreement), 163 were unique, which showed that there

is a considerable variation in expressions used.

2.2.3.2 Argument and Stance

A task complementary to argument recognition is that of stance classification as users

often back up their stance with arguments. It involves identifying a holistic subjective dispo-

sition towards a particular topic (Walker et al., 2012b). Stance is similar to a point of view or

a perspective and identifies the “side” that a speaker is on, e.g., for or against Gun Control.

There has been considerable previous work on stance classification in online forums and in

congressional debates. Context and meta information such as author constraints have shown to

be useful for stance classification (Walker et al., 2012a; Rajendran et al., 2016; Hasan and Ng,

2013a, 2014).

Somasundaran and Wiebe (2009) presented an unsupervised approach using integer

linear programming paradigm while Somasundaran and Wiebe (2010) implemented a super-

vised classification using support vector machine. They explored the utility of sentiment and

argumentation trigger lexicons as well as opinion-target pairs to classify stance in online de-

bates on political and social topics. Discourse relations such as concessions and argumentation

44



triggers improve performance over sentiment features alone. For ideological debates, the best

performance was approximately 64% accuracy.

(Agrawal et al., 2003; Murakami and Raymond, 2010) investigated social network

structure of the debates. Agrawal’s work assumed that adjacent posts always disagree, and did

not use any of the information in the text. Murakami and Raymond (2010) showed that rules for

identifying agreement defined on the textual content of the post can improve previous results of

Agarwal’s obtained with reply structures alone.

Anand et al. (2011) used relational information and dialogic structure between users

and posts and worked with debates that have rebuttal links between posts. Augmenting an

n-gram feature set with meta post, contextual and dependency features, they achieved accu-

racies ranging from 54% to 69%. Walker et al. (2012a) showed that capturing the dialogic

structure between posts using information related to agreement relations between speakers im-

proved results obtained using contextual features. Several others have modeled dialogic struc-

ture in more sophisticated ways (capturing users intent, SentiWordNet (Baccianella et al., 2010),

frame-semantics, quotations and position information), reporting further improvements from

such strategies (Ranade et al., 2013b; Hasan and Ng, 2013a; Sridhar et al., 2015).

More recently, Chen and Ku (2016) employed neural networks that incorporate user,

topic, content, and comment information. They achieved an average accuracy of 0.842 sig-

nificantly beating the previous results from (Hasan and Ng, 2013b; Sridhar et al., 2015) on

ideological debates.

In our data, the opinion sharing dialogues were also characterized in terms of the

stance participants hold towards the central propositions of these discussions. The dialogue
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summaries that we collected also reflected the positions taken by the stance holder and the

particular aspects on which speakers agree or disagree. To effectively characterize the dia-

logue, both the central propositions and the stance towards these propositions should be iden-

tified. However, for the purpose of this research, we do not address stance classification or

dis(agreement) detection. We assumed that our dialogues are labeled with the stance annota-

tions for each of the writers of the debate.

2.3 Summarization

Summarization is a mature research area with a range of tools and algorithms avail-

able. It has gained significantly increased attention in the last few years. In general, much of the

recent progress can be attributed to the availability of large public datasets, increased computing

power, and new machine learning models, such as neural network architectures (Serban et al.,

2015). Based on their input type (media, genre) and expected output, many summarizations

tasks have been defined.

2.3.1 Extractive Summarization

Traditional extractive summarizers produced a summary in two steps: sentence rank-

ing and sentence selection. Human engineered features such as sentence position, length, word

frequency and importance, among others, have been used to rank a sentence. The former con-

sists of selecting most relevant units (sentences, paragraphs) from the original document while

maintaining a low redundancy and then concatenating them into a new shorter document. The
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later requires a deeper understanding of the concepts and is more similar to a human-written

abstract. It has been observed that longer sentences score higher on metrics that rate them

for importance in extractive systems (McKeown et al., 2005). Statistical metrics (e.g., word

frequencies and key phrases), cluster centroids, sentence position and discourse structure have

been used in the past for extractive systems.

2.3.2 Abstractive Summarization

Abstractive summarization uses natural language generation to compress the main

contents of the document by using a different vocabulary from the original source document.

Abstractive summarization is generally considered more difficult as it involves sophisticated

techniques for meaning representation, content planning, surface realization, etc. The earlier

abstractive systems determined the “importance” of a sentence constituent based on shallow

features, such as syntactic role, vocabulary and it’s relation to surrounding sentences.

2.3.3 Multi-Document Summarization (MDS)

Early summarization systems produced a summary of one document (news article,

lectures, scientific abstracts). As the number of documents on the web increased, multi-document

summarization attracted attention. It would be useful to get a brief overview of a set of docu-

ments containing similar content on the same topic or the same event. The goal was to reduce

redundancy by extracting sentences that are both “central” and “diverse”.
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2.3.4 Speech Summarization

It includes tasks such as summarizing spontaneously spoken dialogues from meetings,

voicemail messages, and broadcast news. Spoken language is often less formal than written

communication. Fragmented utterances, disfluencies and errors resulting from speech recog-

nition make speech summarization a much harder task than text summarization. Thus systems

used for text summarization cannot be directly applied to speech summarization (McKeown

et al., 2005). These systems exploit additional information derived from speech signals and

dialogue structure (acoustic, prosodic, turn taking and dialogue acts).

2.3.5 Traditional Document Summarization

Document summarization is an automatic procedure aimed at producing fluent and

coherent summaries that extract salient information and minimize redundancy. The Document

Understanding Conference (DUC) provided the benchmark datasets for comparing and evalu-

ating summarization systems (Harman and Over, 2002). This stimulated the development of

computational methods for generating compressed document summaries. Both unsupervised

and supervised approaches were explored. Many previous summarization systems employed

an extractive approach by identifying and concatenating the most salient text units (often whole

sentences) in the document. Most of the extractive systems computed salient scores of sentences

and ranked them to form a summary. The important parts were often retrieved by using a range

of algorithms, such as graph centrality, constraint optimization via integer linear programming,

submodular functions, or support vector regression.

One of the initial methods was Maximal Marginal Relevance used by Carbonell and
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Goldstein (1998). A greedy search is used to consider the trade-offs between relevance and

redundancy. McDonald (2007) replaced the greedy approach with a dynamic one and used

a modified objective function in order to consider whether the selected sentence is globally

optimal.

Marcu (1999) developed a discourse-based approach. A relationship between the seg-

ments of the text was defined by using Rhetorical Structure Theory (RST) (Mann and Thomp-

son, 1988). More important segments (nucleus) occupy the upper level of the tree, whereas

less important segments reside deeper (satellite) in the tree. Christensen et al. (2013) jointly

optimized coherence and salience by using an approximate discourse graph that represents dis-

course relationship between two sentences.

Cluster centroids were exploited by Radev et al. (2004) for summarization of mul-

tiple news articles. TF-IDF vector representations of the documents were used as input for

clustering. Sentences central to the topic of the cluster were identified using cluster centroids.

Both relevance and redundancy were taken into consideration. Graph-based representation that

can capture interrelated information into the ranking component has been successfully used to

determine the centrality of a sentence in LexRank (Erkan and Radev, 2004) and TextRank (Mi-

halcea and Tarau, 2004), with sentences as nodes and similarity as edges. DivRank (Mei et al.,

2010) based on reinforced random walk in an information network balanced the prestige and

diversity of the top-ranked vertices and achieved improved results on MDS. Since these meth-

ods considered the intrinsic structure of the texts instead of treating texts as simple aggregations

of terms, they were able to capture and express richer information in determining important

concepts (Ouyang et al., 2009).

49



Gillick and Favre (2009) developed an ILP model under the assumption that the value

of a summary is the sum of values of the unique concepts, subject to a length constraint. Con-

cepts are approximated by the bigrams, weighted by the number of input documents in which

they appear. In subsequent work, Berg-Kirkpatrick et al. (2011) extended this model by includ-

ing sentence compression using parse trees. Woodsend and Lapata (2012) jointly optimized

different aspects including content selection and surface realization.

Summarization has also been formulated as a submodular maximization problem and

shown promising results. Several different functions that combine coverage of relevant units

and minimize redundancy have been proposed. Sipos et al. (2012) formulated the learning

problem as a structured prediction problem and derived a maximum margin algorithm using the

structural support vector machine framework. Lin and Bilmes (2011) used pairwise similarity

to combine importance and diversity while Morita et al. (2013) formalized it using subtree

extraction.

In the last few years, neural network-based methods have been developing extremely

rapidly. A vast majority of the work has concentrated on extractive summarization as it is less

complex and usually generates grammatically and semantically correct summaries. The earlier

works explored deep networks to project sentences onto distributed representations but em-

ployed traditional frameworks for extraction (Yin and Pei, 2015; Kobayashi et al., 2015). More

recent works have used deep networks in a more direct data-driven way to predict the extraction

of sentences. Cheng and Lapata (2016) modeled it using an encoder-decoder framework while

Nallapati et al. (2016) used a recurrent neural network (RNN)-based sequence classifier, and

applied it to CNN/Daily Mail corpus (Hermann et al., 2015). Yasunaga et al. (2017) applied a
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Graph Convolutional Network (GCN) and showed that unlike traditional RNN models, it can

capture sentence relations across documents, thus better salience prediction and summarization

for a multi-document summarization task. Progress in text-to-text generation boosted interest in

abstractive summarization to generate novel text. Filippova et al. (2015) used word embeddings

and Long Short Term Memory models (LSTMs) for sentence compression. Encoder-aligner-

decoder models from machine translation, convolution-based encoders, and hierarchical atten-

tion models were used for compressing a document (Rush et al., 2015; Nallapati et al., 2016).

These methods were able to generate summaries with high ROUGE (Lin, 2004) scores. How-

ever, these systems have typically focused on the task of headline generation and summarizing

short input sequences (one or two sentences) to generate further compressed summaries. A

critical issue with these models is that for longer documents and summaries they often generate

unnatural summaries including repetitive and incoherent text (Paulus et al., 2017).

2.3.6 Conversational Summarization

Spontaneous conversations are more closely related to everyday experience and of

more personal interest than news or scientific documents, e.g., telephone/email conversations,

social media debates, and comment threads. Businesses can also benefit from summarizing

meeting and call-center service dialogue and leverage the data to make better decisions. Ear-

lier works on conversation summarization mainly focused on summarizing transcribed spo-

ken conversations and text-based dialogues. Much work on transcribed conversation has fo-

cused on speaker identification, speech disfluencies, and filler particles (Zechner, 2001; Zhu

and Penn, 2006). A wide range of methods employed, with many of them relying on notions
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of salience and semantic similarity, such as Maximum-Marginal Relevance (MMR) (Zechner,

2002; Gurevych and Strube, 2004), Latent Semantic Analysis (LSA) (Murray et al., 2005), and

topic modeling (Hazen, 2011). Wang and Cardie (2011) explored dialogue act and clustering

for summarizing decisions in spoken meetings. (Rambow et al., 2004; Oya and Carenini, 2014)

used dialogue act modeling in email thread summarization. Several studies also evaluated the ef-

fect of speech-specific acoustic/prosodic features. Murray et al. (2006) explored the usefulness

of incorporating speaker and discourse information using features related to speaker activity,

listener feedback, discourse cues and dialogue act length. Maskey and Hirschberg (2005) found

that the best results were obtained by combining prosodic, lexical, and structural features in the

broadcast news domain.

While there has been some previous work on debate summarization, these methods

do not consider the dialogic nature of argumentation. Ranade et al. (2013a) summarized on-

line debates using topic and sentiment rich features, but their unit of a summary is a single

debate post, rather than an extended conversation. Wang and Ling (2016) generated abstractive

one-sentence summaries for opinionated arguments from debate websites using an attention-

based neural network model, but the inputs were well-structured arguments and a central claim

constructed by the editors, rather than user-generated conversations.

2.4 Chapter Summary

Social media arguments are often informal, and do not necessarily follow logical rules

or schemas of argumentation. Therefore, in social media, segments of text that are argumenta-
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tive must first be identified. Much of the previous work does this task manually (Goudas et al.,

2014; Hasan and Ng, 2014; Boltuzic and Šnajder, 2014; Habernal et al., 2014). However, a

manual approach does not scale well as argument density can be low. Arbitrarily selected ut-

terances are unlikely to be high quality arguments as users may express their arguments in a

confusing or ungrammatical manner. The language is not always explicit as conversants can

always clarify misunderstandings. As there are no specific rules to be followed, there are often

off-topic informal discussions. For instance, Goudas et al. (2014) annotated 16,000 sentences

from social media documents and found only approx. 4.8% to be argumentative.

Another close parallel with our research is the work on argument tagging that aims to

identify argument aspects across discussions (Conrad et al., 2012; Boltuzic and Šnajder, 2014;

Hasan and Ng, 2014; Naderi and Hirst, 2016). However, all these works assume that a prede-

fined aspect list already exist and perform a classification task of mapping aspects to arguments.

Our approach differs in two ways. First, we do believe that a Facet should be independent of

stance: the same facet can appear on both sides of an argument. Second, we do not believe it is

possible to enumerate all the possible facets for a discussion topic in advance. Rather, we are

attempting to construct the facets bottom-up from a corpus of discussions. Similar arguments

can be paraphrased and expressed in infinitely different ways. Grouping similar arguments on

a given topic in online debates can potentially help users formulate opinions by presenting a

richer picture of the controversial issues involved. Detecting similar arguments that convey the

same information is our approach to finding argument facets.

Another key aspect that distinguishes our problem formulation from previous work

is that we for the first time work from human summaries of dialogue, while all the previous
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work in argument mining work from the source text itself. It was an open question whether

the central propositions for a dialogue as obtained from pyramid of human summaries are

identifiable as continuous spans of text in the dialogue itself. (Indeed, our Argument Dialogue

corpus (described in Chapter 3) will allow us to determine how true that assumption is, and if

we can reliably back-link these pyramid labels to original dialogue for argument extraction).

Work on summarization has mostly focused on monologic data and summarizing

written texts, where the notion of an abstract of the text was well defined. Most previous work

on summarizing spontaneously-written dialogue aimed only to extract phenomena specific to

meetings, such as action items or decisions (Murray et al., 2006; Galley et al., 2004; Wang and

Cardie, 2011). Other approaches, like our work, use semantic similarity metrics to identify the

most central or important utterances of a spoken dialogue (Gurevych and Strube, 2004), but do

not attempt to find the facets of a set of arguments across multiple dialogues. Work in open do-

main argumentative dialogue summarization was limited - partly because such a model should

be able to capture both argumentation properties and dialogical context, and partly due to un-

availability of large argumentative dialogue corpora. This had impacted the dialogue research

community’s ability to develop better theories, as well as good off the shelf tools for dialogue

processing. Happily, an increasing amount of argument exchange occur in natural dialogue in

online forums, where people share their opinions about a vast range of topics. The phenomenal

growth of social networking media led to a massive amount of conversation and debate online.

This data deluge yields an unprecedented opportunity to create vast datasets of naturally oc-

curring argumentation than would otherwise be possible. These, in turn, opened new research

lines for corpora based approaches for argumentative dialogue modeling. Automatic detection
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and summarization of argument aspects from a dialogue was the next important step towards a

better understanding of argumentative dialogue.

In the next three chapters of this thesis, we describe a novel annotated argument di-

alogue corpus, new methods for identifying important arguments, argument facets, as well as

summarizing arguments in a written dialogue in a social media domain.
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Chapter 3

Argument Dialogue Corpus

This chapter addresses the first two research questions to be answered in this thesis,

Q1: Identifying central propositions in a dialogue, and Q2: The most important arguments in a

dialogue.

The proliferation of online social media forums gives a wealth of new opportunities

for processing dialogic conversations. As the dialogue evolves, salient arguments may emerge

over time depending on the context. While some of these dialogues may be a little more than

flame wars, a significant portion involves contentful, reasoned disputes on important social and

political topics, as exemplified by the forum snippets in the Figure 3.1. Studying data like

this will undoubtedly help us to understand dialogic and informal argumentative language in

general.

Disagreement in these dialogues is frequent, ranges from 80% to 90% across topic

(Misra and Walker, 2013). This data provides a useful resource for examining and modeling the

arguments that flow in these disagreements. Previous work on this kind of data (Somasundaran
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S1:1 Agreed She is ignoring my religious freedom and trying to institute her religion into law. The law that will bar my
family from legal protections. It won’t protect her marriage but will bar me and my people from from being full citizens.
She isn’t protecting marriage but bf perserving her heterosexual privledge.
S2:1 How on earth is she impeding on you religious freedom? She isn’t trying to take away your right to any religious
ceremony. With such a wide-open standard of what constitutes religious freedom that you seem to have, any legislation could
be construed as imposing on religious freedom.
S1:2 Because it is her religious belief that marriage is between a man and a woman. My religious belief is that marriage is
between two people that love each other regardless of sex. She is tying to place her religious belif into law over mine. Who
gets hurt here? If my religious belief is put into law she can still marry the person of her choice. If her religious belief gets put
into law she can still marry the person of her choice but I do not get to. So I and my people are hurt by codifing her religious
belief into law. She is trying to keep gay people out of marriage and thus preserve her heterosexual privledge.
S2:2 But by that definition, either one could be viewed as impeding on religious freedom, including your view impeding on
hers ! We don’t define imposing on religious freedom on the basis of having different ideals. It doesn’t effect your religion or
religious freedom if you don’t get benefits under gay marriages. You can argue in other ways, on other basis, but the idea
that not giving gays marriage benefits is imposing on religious freedom is an empty ” argument ”.
S1:3 But you have not shown how she would be harmed by equal marriage? I have shown that her definition infringes upon my
religious freedom. If gay marriage becomes a reality then in no way does it infringe upon her in any way. Would you care to
explain how gay marriage infringes upon her in any way? It is her heterosexual privledge and her sence of entitlement that she
is protecting not marriage.
S2:3 You may ( or may not ) can show harm in another sense, but you certainly have NOT shown how your religious rights
are taken away or harmed, to begin with. That’s the point. You certainly have not shown how her definition infringes upon
your religious freedom – you are still free to be just as religious in practice and belief as ever if Musgrave’s views became law.
You’re trying to use a religious freedom argument here and it just doesn’t fit.
S1:4 Yes I have. Haven’t you been poaying attention? Because it is her religious belief that marriage is between a man and
a woman. My religious belief is that marriage is between two people that love each other regardless of sex. She is tying
to place her religious belif into law over mine. Who gets hurt here? If my religious belief is put into law she can still marry
the person of her choice. If her religious belief gets put into law she can still marry the person of her choice but I do not get to.
So I and my people are hurt by codifing her religious belief into law. She is trying to keep gay people out of marriage and thus
preserve her heterosexual privledge.
S2:4 Ok! My religious belief says that it’s important to smoke in public non-smoking areas. My religious belief says that
it’s important to drive cars as fast as one can on city streets. My religious belief says that the death penalty should never be
enforced. Gee, this it fun, using religion as an excuse and means to an end to fight legislation! Too bad for you it doesn’t
work that way. What you don’t get is that, by your standard, EITHER would be placing one religion over another. The same
justification could be made against your view because your view goes against MY religious belief. And then if you say ” but
your view causes harm and mine doesn’t ” then it’s no longer a religious issue so the point is moot to begin with.
S1:5 YOu missed the point here she is trying to turn her religious belief into law that bars me from from getting married. How
is she hurt if it is my religious belief of equal marriage is turned into law?
S2:5 You have no idea whether or not she is truly trying to turn her religious belief into law. She may just happen to believe
that way religiously, but be pushing for the law because she thinks that’s best for socety. IOW, you have no idea if religion is
her real motivation for the law. There’s no way to know or to police someone’s real motivations.
S1:6 I am part of society and her belief is not in my best intrest. How does my being able to marry a man hurt her in any way?

Figure 3.1: Gay Marriage Dialogue-1.

and Wiebe, 2010; Abbott et al., 2011) has examined the structure of these discussions - e.g.,

the argumentative discourse relation a post bears to its parent (agreeing or disagreeing), or

the stance that a person takes on an issue. But this data also has the promise of revealing the

argumentative topography for a given issue. In particular, we aim to develop tools to summarize

what various disagreement arguments are used to support or oppose the issue under debate.

We begin with our efforts to systematically create and curate a dialogue corpus with
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a range of different properties in Section 3.1. Regarding the central proposition detector, we

first focus on the question of extracting reliable data for central propositions, the most impor-

tant propositions in a dialogue. This is notably tricky, given the subjectivity of judgments of

both importance and the natural size of a central proposition. To reduce the annotator bias,

we operationalized “salience” as “central proposition”, and then used human summarization to

discover saliency. Dialogue collection is followed by a summarization task on Mechanical Turk

in Section 3.2. We demonstrate how summarization by many human summarizers can be ex-

ploited to index salience. We propose to use pyramid annotation of summaries (Nenkova et al.,

2007) to find salient propositions in a dialogue. The pyramid method is a content evaluation

metric for extractive document summarization. We describe the process of pyramid annotation

in Section 3.3. Once a set of reference summaries are collected, the pyramid evaluation scheme

provides a useful way to calculate global salience (Nenkova and Passonneau, 2004; Nenkova

et al., 2007), thereby allowing us to identify central propositions in any dialogue.

The knowledge of central propositions helps us move towards the next goal of the

thesis to summarize important arguments. Though we have identified the main propositions,

these are human generated abstractive labels. In order to train a supervised model, we trans-

form these labels to ground truth sentences in the dialogue, representing their importance in the

summary. The motivation behind this approach is to provide an annotation scheme that mini-

mizes the subjective opinions and annotator bias. We do not ask annotators to explicitly mark

or rank argumentative sentences in the dialogue. We define an argument objectively rather than

purely based on the annotator’s intuition or judgment of an important argument. Once these

annotations are performed, the argumentative sentences in the dialogue get a rank by virtue of
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the annotation process. The transformation process and annotations are discussed in Section

3.5. The entire annotation process consists of the following steps:

S1: Dialogue data sources and selection criteria (Section 3.1).

S2: Mechanical Turk summarization of dialogues selected in S1 (Section 3.2).

S3: Pyramid annotation of summaries produced by S2 (Section 3.3).

S4: Select top-tier pyramid labels as the central propositions for individual dialogues (Sec-

tion 3.4).

S5: Pyramid labels linked to dialogue sentences identify important arguments in the dialogue,

which can be then utilized as the ground truth for supervised training (Section 3.5).

The goals of the above annotation process are to determine how reliably the annotators can link

central propositions to sentences in dialogue, H1. This is essential to establish the validity of

the argumentative dialogue corpus and set a human upper bound.

3.1 Dialogue Data Sources and Selection Criteria

For this study, we started with the publicly available Internet Argument Corpus (IAC), an anno-

tated collection of 109,553 forum posts (11,216 discussion threads) (Walker et al., 2012c). We

used the portion of the IAC containing dialogues from the website http://4forums.com.

4Forums Structure: On 4forums, a person starts a discussion by posting a topic or a question

in a particular category, such as society, politics, or religion. Forum participants can then post

their opinions, choosing whether to respond directly to a previous post or to the top level topic
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Figure 3.2: A sample Quote Response pair from 4 Forums showing the reply structure.

(start a new thread). Conversants may just agree or disagree with an earlier post or they may

provide a reasoned argument. The corpus contains posts on topics such as Abortion, Evolution,

Existence of God, Gay Marriage, and Gun control along with a range of useful annotations.

First, there are annotations that collapse different discussions into a single topic for 14 topics.

For example, the Evolution and Gun Control topics include discussions initiated with the range

of titles in Table 3.1, which guarantees variation in the focus of the discussions even within

topic. Each discussion is threaded so that we can identify direct responses. Discussions may

have a tree-like structure, so a post may have multiple direct responses. In addition to the

adjacency pairs yielded by threading, 4forums also provides a quote/response (Q/R) mechanism

where a post may include a quote of part or all of a previous post.

4Forum Affordances: 4Forums provide additional meta information which includes partici-

pant supplied dialogue annotations. For example, an important type of affordance from 4Forums
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Evolution Evolution in school, Dinosaurs and Human Footprints, Can Evolution & Religion Coexist,

Did Charles Darwin Recant, Shrinking Sun, Bombardier beetle, Moon Dust, Second Law

of Thermodynamics, Magnetic Field, Nebraska Man

Gun Control Gun Control, Trigger Locks, Guns in the Home, Right to Carry, Assault Weapons, One

gun a month, Gun Buy Back, Gun-Seizure Laws, Plastic Guns, Does gun ownership deter

crime, Second Amendment, Enforced Gun Control Laws, Gun Registration, Armor pierc-

ing bullets, Background Checks at Gun Shows

Table 3.1: Discussions Mapped to the Evolution and Gun Control Topics.

is the support for quoting another person’s post. These represent critical dialogic information,

showing explicit efforts by the conversant to focus their response on a particular aspect of an-

other’s turn. The site has additional affordances that have been captured such as Quote Text,

Post Id associated with each post, Date, and Quote Author.

We used the links as shown in Figure 3.2 in the meta-data to extract a sequence of

turns to build two-party dialogue chains like those in Figure 3.1. We have multiple topics in the

dataset. Gay Marriage was used as a topic of exploration to provide an empirical basis for the

data selection criteria.

• Number of turns per contributor: To gain a deeper understanding on the structure of

these dialogues, we extracted all dialogue chains and varied the number of turns in a

dialogue chain to see the effect in terms of number of dialogues. The graph in Figure

3.3 explains this phenomenon. We wanted dialogues in which substantive issues were

discussed, so we extracted dialogues with at least three turns per conversant that present

61



Figure 3.3: Variation in the number of dialogues as compared to the number of turns

in the dialogue for the topic Gay Marriage.

at least two different perspectives on an issue.

• Author: Some authors post frequently and would dominate the corpus if we use random

selection. To examine this trend, we plotted the number of posts by author, see Figure 3.4.

To get richer, more diverse dialogues expressing different perspectives, we only select a

single dialogue between any particular pair of authors from a discussion thread.

• Word Count in a post: Some posts are long. To make it practical to collect dialogue

summaries, we extract dialogues where the number of words per turn is less than 250.

We then extracted dialogues from three controversial issues using the above-mentioned criteria.

The final dialogue corpus consists of 61 dialogues on the topic of Gay Marriage, 50 on Abortion,
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Figure 3.4: Variation in the number of posts for each author for the topic Gay Marriage.

and 50 on Gun Control.

3.2 Summarization

As discussed in Chapter 2, there was a lack of resources and corpora annotated for argumen-

tative dialogue on the controversial ideological issues. There is no prior work on summarizing

important arguments from noisy, argumentative dialogues. The few corpora annotated for ar-

gument mining do not train end-to-end summarization framework for dialogic arguments. We

created a unique corpus of human-written summaries of argumentative dialogue on social media

annotated with the pyramid labels.

A priori, it is not even clear what form such a summary should take. The two con-

versants in Figure 3.5 put forward opposing views: Should a summary give preference to one
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S1:1 Certainly not yours. You should know that I am for no marriage in government. It should be left to a religious institution
where it will actually mean something. The states should then go back to doing something that actually makes sense and doesn’t
reward people like Britney Spears for being white trash.
S2:1 That is all well and good, but it is not the religious ceremony and sanction that gays are looking for. They already have
that ; there are churches that perform same-sex marriages. It is the civil benefits that are at issue. Are you saying you would
be in favor of foregoing ALL the legal rights and benefits you are afforded by marriage? For example : * Assumption of
Spouse s Pension * Automatic Inheritance * Automatic Housing Lease Transfer * Bereavement Leave * Burial Determination
* Child Custody * Crime Victim s Recovery Benefits * Divorce Protections * Domestic Violence Protection * Exemption from
Property Tax on Partner s Death * Immunity from Testifying Against Spouse * Insurance Breaks * Joint Adoption and Foster
Care * Joint Bankruptcy * Joint Parenting ( Insurance Coverage, School Records ) * Medical Decisions on Behalf of Partner
* Certain Property Rights * Reduced Rate Memberships * Sick Leave to Care for Partner * Visitation of Partner s Children *
Visitation of Partner in Hospital or Prison * Wrongful Death ( Loss of Consort ) Benefits What do you say?
S1:2 yeah I know. I’m saying that there should be a better system. For example, if you had a best friend who you are
roommates with... both hetero for the sake of argument... and never wish to get married then could they get some of the benefits
you described? My Uncle actually was single until he died but he had a female friend who he was best friends with... why
couldn’t they get some kind of benefits if they so choose? Hospital vistiation rights and things of that nature are obviously the
most important in this kinda situation. It just seems the single folks are the ones getting screwed over in the marriage deal :)
S2:2 But gay folks are not? To the single folks, I say get married.
S1:3 Ok, lets use that logic.... To the gay folks I say marry a woman. Bet you aren’t happy with that :)
S2:3 If you want the benefits of marriage, get married. But you ought to be able to marry a person of your choice. Your
suggestion would be to marry someone I don’t want to me married to, that is a different thing. It is not using ” that logic
”. I thought marriage was supposed to mean something to you. Isn’t it supposed to mean a commitment with rights and
responsibilities? I am not proposing that anyone enters into that commitment lightly. I happen to think that’s a bad idea. People
get married for many reasons, some of which I would feel are not good reasons, but I would not make it illegal to do so. I am
talking about the right to marry a person of your choosing.

Figure 3.5: Gay Marriage Dialogue-2.

person’s views? Should a summary be based on decisions about which argument is higher

quality, well structured, more logical, or which better follows theories of argumentation?

A primary objective of this research was to determine what aspects of these dialogues

people are oriented to? If asked to summarize these dialogues, what would people decide to

mention as important? Is it the dialogic nature or the social aspect or the stance that participants

hold towards a topic?

In general, summarization provides an efficient, open-ended mechanism for deter-

mining the central aspects of a dialogue: at the individual level, each reader conveys what they

subjectively deem the central or most salient aspects of the dialogue. Ranking schemes from

the summarization literature can then provide a objectivity score over these summary extracts.

We thus pursued a summarize-and-collate strategy: human workers would summarize each
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dialogue, and then the common elements across those summaries would serve as our central

propositions.

As exemplified in Figures 3.1 and 3.5 these dialogues are clearly different from tradi-

tional media. They are participative and collaborative but uncontrolled and unregulated. These

dialogues can be viewed from three different perspectives. First, it is a social interaction be-

tween two or more individuals, who may be highly involved and often using emotional and

colorful language to make their points. These debates are also personal, giving a strong sense

of the individual making the argument, and whether s/he favors emotive or factual modes of

expression, e.g. (I’m saying that there should be a better system in S1:2 in Figure 3.5). Then,

there is the dialogic aspect, a sequence of utterances, linked to particular speakers with particu-

lar dialogic goals (such as advice giving, argument, recommendation, and persuasion). Besides,

there is also, the propositional level, indicating the stance people hold for a general issue.

3.2.1 Mechanical Turk Summarization Task

Summarization is something that any native speaker can do; it does not require train-

ing. Thus, as an annotation of salience, it is highly amenable to crowd sourcing. The summa-

rization task was run on Mechanical Turk. To get good quality summaries, workers completed

a qualification test involving summarizing a sample dialogue. Workers were instructed to sum-

marize according to dialogue length: dialogues under 750 words in 125 words, and those above

750 in 175 words. We collected 5 summaries for each dialogue resulting in a dataset of 305 sum-

maries for Gay Marriage, 250 each for Abortion and Gun Control topics. Figure 3.6 provides

all of the 5 summaries collected for the dialogue in Figure 3.1. Our analysis of the summaries
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This is about gay marriage. S1 seems to believe that someone is making religion into law by saying marriage should be between
a heterosexual couple. S2 is arguing that S1’s point is not very valid because S1 is not understanding that they are not using the
persons perspective. S1 believes that that person is trying to hurt them, while S2 is saying that the person may not necessarily
be that way and that the person may be arguing for what they believe to be greater for society, based on their own perspective.
S1’s religious view of marriage is based on two people’s love for each other, while the other person believes its between a man
and woman. S2 says S1’s argument is empty and that S1 is not showing how the other person is being hurt by gay marriage. S2
thinks S1 is not understanding the overall perspectives and just focusing on their own needs. S1 states that the person’s religion
put into law affects peoples ability to marry if they are gay, but that S1’s religion on marriage put into law would not affect
marriage for anyone.
S1 and S2 are discussing gay marriage in the context of an unknown ”she” that is pushing a law to ban gay marriage. S1
believes that her religious freedom is being persecuted from people against gay marriage. S1 believes this will result in her
family not having legal protection. S2 doesn’t believe that S1’s religious freedom is being persecuted because she is still bale to
hold religious ceremonies. S2 believes the same argument can be made fro m her perspective. S1’s believe of marriage is that
it should be based on love and not on sex. S2 argues that the religious freedom argument could be used in any format to justify
any action. S1 is angered that the religious freedom of another person will go into law and bar her from marriage so she can
sustain her heterosexual privilege. S2 disagrees and thinks ”she” is doing what she thinks is before society. S1 and S2 seem to
get annoyed with each other by the end of dialog.
(S1) says that his religious freedom is being ignored by a politician attempting to make her religious beliefs law. This law
limits legal protection of gay couples and it is not use to protect marriage but heterosexual privilege. (S2) questions how the
politicians view is imposing on (S1) religious freedom. (S1) responds that he believes that marriage should be between two
people who love each other and not her/politicians belief that marriage should be between man and woman. However, (S2) says
that the argument surrounding religious freedom is an empty argument because anyone can argue for his or her beliefs using
religion. (S1) says that gay marriage doesn’t violate her/politicians rights of heterosexual privilege, entitlement since she is not
protecting marriage but her beliefs. (S2) questions how (S1) religious rights are taken away or harmed. (S1) and (S2) discuss
about whose religious belief is better for society. (S1) responds that the her/politicians interest is not part of his interests and or
society’s and does not hurts him in any way.
S1 says that someone, ”her”, is trying to put their religious beliefs into law that goes against the religious beliefs of S1. The
law would bar the family of S1 from legal protections but would not affect her. S1 believes that she isn’t protecting marriage
but preserving her heterosexual privilege. Her religious belief is that marriage should be between a man and a woman but S1
believes that marriage should be between two people in a loving relationship regardless of sex. If she put her religious belief
into law it would hurt S1 but if the religious views of S1 are put into law she would still be able to choose who she wanted
and S1 would be able to choose whomever. She is trying to keep gay people out of marriage. S2 understands the perspective
of S1 but does not think it is a valid argument. S2 holds that either if either religious belief were put into law that it would
infringe on the other’s beliefs. S2 claims that S1 has not shown how the religious beliefs would be taken away from such a law.
It can be argued in other ways but the idea of not giving gays marriage benefits is imposing on religious freedom is an empty
argument. S2 counters S1 by saying that it is impossible to know whether or not she is trying to turn religious belief into law.
It is impossible to know or to police someone’s real motives.
S1 is talking about a female who is ignoring S1’s religious freedom and barring his family from legal protections. S2 questions
to how she is impeding S1 from his religious freedom and argues that she isn’t trying to take away his right from a religious
ceremony. S1 says the woman’s religious belief is that marriage should be between a man and a woman, and S1’s religious
belief is that marriage can be between any two people that love each other regardless of their gender. If the woman’s religious
belief gets incorporated in to the law, S1 will not be able to marry the person of his choice but she will still be able to marry
regardless of the law. The woman is just trying to keep gay people out of marriage to preserve her heterosexual privilege. S2
argues that either one of them can be impeding on the others religious freedom. S1 does not give in and keeps arguing that she
is trying to turn her religious belief into law and bar him from getting married.

Figure 3.6: 5 Summaries for dialogue in Figure 3.1.

supported our expectation that listeners would be oriented to ‘content’ properties that are not

strictly propositional. The summaries do express a conversant’s stance and the particular aspects

on which speakers agree or disagree. In other words, the summaries in addition to pointing out

particular beliefs (central propositions) also show the attribution of these beliefs to someone. At
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the social level, summarizers were sensitive to the quality of interpersonal interaction of partic-

ipants, commenting on levels of coordination (S2 understands the perspective of S1) vs. (S2 is

arguing) vs. ( (S1) and (S2) discuss whose religious belief is better for society.) vs. (S1 and S2

seem to get annoyed with each other by the end of dialog) and emotional states of participants

during the discussion (S1 is angered).

(S1) says that his religious freedom is being ignored by a politician attempting to make her religious beliefs law. This law

limits legal protection of gay couples and it is not use to protect marriage but heterosexual privilege. (S2) questions how the

politicians view is imposing on (S1) religious freedom. (S1) responds that he believes that marriage should be between two

people who love each other and not her/politicians belief that marriage should be between man and woman. However, (S2) says

that the argument surrounding religious freedom is an empty argument because anyone can argue for his or her beliefs using

religion. (S1) says that gay marriage doesn’t violate her/politicians rights of heterosexual privilege, entitlement since she is not

protecting marriage but her beliefs. (S2) questions how (S1) religious rights are taken away or harmed. (S1) and (S2) discuss

about whose religious belief is better for society. (S1) responds that the her/politicians interest is not part of his interests and or

society’s and does not hurts him in any way.

Figure 3.7: Sample ‘play by play’ summary for the dialogue in Figure 3.1

Summarizers also paid attention to the dialogic structure of the discussion in different

ways. First, a majority of the summaries included explicit reference to who said what; play by

play devices characterizing the utterances in temporal succession. Figure 3.7 shows a play-by-

play summary for the dialogue in Figure 3.1. Moreover, summarizers frequently went beyond

the text itself to characterize participant emotions, and subjective characterizations of dialogue

acts such as S1 is angered, S2 questions, S1 responds.

At the propositional level, many summaries contained explicit statements of the cen-
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tral propositions on the table (e.g., S1 and S2 are discussing gay marriage in the context of

an unknown “she” that is pushing a law to ban gay marriage). They also frequently convey

the stance that participants bear towards the propositions that are introduced by their fellow

participants (e.g., Her religious belief is that marriage should be between a man and a woman).

3.3 Pyramid Annotation

The pyramid method was developed for content coverage quality assessment for sum-

marization evaluation by analyzing the distribution of content over a pool of human-generated

reference summaries (Nenkova and Passonneau, 2004). The annotation of pyramids seeks to

uncover the common elements, across several reference summaries. To create a pyramid, anno-

tators identify semantically defined clusters of similar phrases in reference summaries, referred

to as Summary Content Units (SCU). An SCU consists of a label, its contributors, and tier

rank. The label assigned by the annotator indicates the semantic meaning of the content unit.

The contributors retain the actual text snippets to depict the original words used in a particular

summary that express the label. The SCU tier rank is based on its frequency in the corpus of

reference summaries. It is equal to the number of reference summaries that express that SCU

and represents the relative importance of the SCU. The number of contributors per SCU thus

ranges from a minimum of one to a maximum equal to the number of reference summaries. The

rational behind manual identification of semantic equivalence is to combat human variability in

content selection and that multiple maximally informative summaries are possible. An ideal

maximally informative summary would express a subset of the most highly weighted SCUs
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(Louis and Nenkova, 2013).

Contributor S1 points to the trend to legalize gay marriage in western countries such as Nether-

lands, Belgium, and most of Canada.

Contributor S1 refutes this assertion, citing a number of countries which recognize same-sex mar-

riage.

Contributor He states the US is more similar to Anglo nations and in many of those gay marriage

is legal.

Label A number of countries recognize same-sex marriage.

Table 3.2: A sample label after removing the attributions from the SCU contributors.

To more systematically index the salient elements of an opinion sharing dialogue, we

conducted a pyramid evaluation. We trained linguistic undergraduates to annotate summaries

to produce pyramids. The label was subject to revision throughout the annotation process and

reflected the semantic meaning shared by all the contributors. Because our aim here was to

focus on argument propositional content, the annotators were instructed to keep only the main

proposition in the SCU as the label, ignoring any attributions or other types of content. Table

3.2 shows the summary contributors and the corresponding label given by the annotator.

Once the annotation process was complete, final SCUs were partitioned into a pyra-

mid based on their frequency across all of the summaries as indicated by tier rank. Each tier

contained all the SCUs with same rank. Since we used annotations from five summaries, our

pyramid contained five tiers. SCUs with higher tiers are placed at the top. Table 3.3 shows some

of the summary contributors, pyramid labels, and the corresponding tier ranks for Gun Control.
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Summary Contributors Human Label from

Pyramid Annotations

Tier

Rank

• S1 says that no one can prove that gun owners are safer than non gun owners.

• S1 says no one has been able to prove gun owners are safer than non-gun owners.

• S1 points out there is no empirical data suggesting that gun owners are safer than non-

gun owners.

• S1 states there are no statistics proving owning a gun makes people safer.

• S1 believes that there is no proof that gun owners are safer than non-gun owners.

Nobody has been able

to prove that gun

owners are safer than

non-gun owners.

5

• They say that if S2 had a family member die from gun violence it might be more

significant to them,

• He says if S1 had a personal or family encounter with gun violence, he would feel

differently.

• That people who have had relatives die from gun violence have a different attitude.

Family encounters with

gun violence changes

significance.

3

• Pro-gun perspective is: on 9/11, 3000 people died without the ability to defend them-

selves.

On 9/11, 3000 people

died without the ability

to defend themselves.

1

Table 3.3: Example summary contributors, pyramid labels and tier rank in Gun Control dia-

logues

3.4 Central Propositions from Pyramid

The pyramid in Table 3.4 includes data from all the summaries in Figure 3.6. It is

evident from the pyramid that higher tier labels express the key arguments that can be used to

support a stance for a given topic as compared to lower tiers. SCU labels in Tiers 3-5 give the

central propositions of the dialogue.
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SCU Label Tier
Law would bar the families from legal protections. 5
Religious view of marriage is based on two people’s love for each other. 5
Someone is making religion into law. 5
Religious freedom is not being persecuted. 5
Law affects peoples ability to marry if they are gay. 4
Preservation of heterosexual privilege. 4
Marriage should be between a heterosexual couple. 4
Gay marriage laws would not affect marriage for anyone. 4
Religious freedom is being persecuted. 3
What is believed to be greater for society 3
Points not valid 3
Impeding on the others religious freedom. 2
Not protecting marriage. 2
Religious belief gets incorporated in to the law, some will not be able to marry. 2
Same argument can be made from different perspective. 2
Not trying to take away his right from a religious ceremony. 2
Religious freedom argument could be used in any format to justify any action. 2
This is about gay marriage. 2
Two people annoyed with each other by the end of dialog. 1
Politicians interest is not part of his interests. 1
people against gay marriage. 1
It is impossible to know whether or not she is trying to turn religious belief into law. 1
Not understanding that the persons perspective is being used. 1
The her/politicians interest is not part of societys interests. 1
Focusing on one’s own needs. 1
Not giving in. 1
Law that goes against the religious beliefs. 1
Person may not necessarily be that way. 1
Understanding perspectives. 1

Table 3.4: Pyramid for the summaries in Figure 3.6 and dialogue 3.1.

3.5 Pyramid Labels Linked to Dialogue Sentences

Repeated elements of the five summaries end up on higher tiers of the pyramid and

indicate the most important content. This results in a ranking of the most important arguments

(abstract objects) in a dialogue, but the linguistic representation of these arguments is based on

the language used in the summaries themselves. To identify the spans of text in the dialogue

itself that correspond to the important arguments, we must link the ranked labels from the

summaries back to the dialogue text.

We recruited two graduate and two undergraduate students to back-link each sentence
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of the dialogue with the best set of human labels from the pyramids, if exists.

In this task, you will carefully read part of a dialog where two people are discussing the issue of

gun control. Several previous workers have each summarized this dialogue, and we have related those

summaries by grouping together parts of their summaries that roughly describe the same actions in the

dialogue. In this task, you will link these action description groups to sentences in the dialogue. Each

dialogue is automatically divided into sentences. Your job is to provide the best action description

group for each sentence.

The action description groups are sets of sentences from several summaries that essentially describe

the same action in the dialogue in different words. Each group has a unique label and you will select

the label that best approximates what is happening in the sentence and select a label using the radio

button provided with each sentence.

Please especially note:

• More than one sentence can map to same group. For example, two people may say virtually the

same thing multiple times.

• Not all sentences will have a good group, so if you cannot find any similar set for a sentence, then

select None of the labels match in the radio button option.

• You are expected to read and comprehend the sentence. Since these come from summaries, the

action summaries may use very different words from those used in the dialogues.

Table 3.5: Directions for mapping pyramid labels to sentences.

Table 3.5 shows the HIT design and directions for this task. The SCU and it’s label

were grouped together and annotators were asked to select the most representative group for a

given sentence, if exists. As we were primarily interested in the content that bubbles to the top
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S.No ID Dialogue sentence Pyramid label selected by annotators Tier rank
1 GM If gays are allowed to marry then any

kind of marriage between consenting adults
should be allowed.

If homosexuals are allowed to marry then
any kind of marriage should be allowed.

5

2 GC One state can not regulate the activities of
another state or city, despite what some
mayors may believe to the contrary.

Other states cannot be controlled by the rul-
ings of a different state.

5

3 AB and while the physical damage reasons are
valid , they are apparently not what women
consider when making their choice .

Physical damage is not a reason for abor-
tion.

4 GM Unless you are a beleiver in a religion, then
the whole Earthquake thing is irrelevant and
if you are then this is n’t the debate for you.

Earthquakes have nothing to do with human
behavior.

5

5 GC In other words your argument is that those
who are female, or under 18, or over 46,
who were no longer physically able to serve
in the militia, were barred from ever pos-
sessing a firearm, because their status of be-
ing armed wasn’t in the interest of the gov-
ernment.

(i) People who cannot serve the state should
not own firearms. (ii) The right to keep and
bear arms only applies to the militia.

Avg(4,5) 4.5

6 GM Do you not think that we are a family that
deserves all the same protections of hetero-
sexual couples?

The family should be afforded the same
rights as a heterosexual couple.

4

7 AB I know for a fact that my wife ’s pregnancy
was not ” unbelievably hard to go through ”
– she ’s told me otherwise and I believe her.

Not all pregnancies are hard to go through,
but some might be.

3

8 GC You have made this argument a number of
times before , suggesting the rest of the
United States should adopt California stan-
dards as national standards.

Propose that the U.S. adopt California’s
standards.

3

9 GM Please tell me who forced you into out-
sourcing children?

Gay couples who have children through sur-
rogates have outsourced their children.

3

10 GM Do you need to marry your partner to re-
cieve these benefits?

None <3

11 AB These are the reasons women give why they
choose to have abortions.

None <3

12 GC Being the known apologist and unConstitu-
tional advocate , you also misse Danny Rhe-
berg ’s amendment to defund any such gath-
ering of information.

None <3

Table 3.6: Dialogue sentences mapped to pyramid label by the human annotators (gold stan-
dard). The table is sorted by the tier rank. GC=Gun Control, AB=Abortion, GM=Gay Marriage.

across all the dialogues, we restricted the label set to top 3 tiers. The sentences that map either

to a lower tier or were not present in the summary would be marked as ‘None’. This saved a lot

of annotation effort and also gave better quality annotations as it restricted the number of labels

to be looked at simultaneously for the back-linking task. Each sentence was annotated by a pair

of annotators.
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We now had one or more labels for each sentence in a dialogue, but we were primarily

interested in the tier rank of the sentences. A sentence is given the average rank of the tier

labels it was linked to by the two annotators. Table 3.6 shows the example sentences mapped

to pyramid labels for each of the three topics of Gun control, Abortion, and Gay Marriage and

the corresponding rank of each sentence. The sentence ranks give the ground truth labels for a

supervised training task for finding the most important arguments in a dialogue.

Reliability: The assessment of inter-annotator reliability quantifies the degree of agreement

among corpus annotators. The goal is to demonstrate consistency as well as repeatability among

scores provided by multiple annotators. To calculate reliability of the annotations, we calculated

the Cohen’s kappa between the annotators based on tier rank selected for a sentence. The

Cohen’s kappa among the annotators was 0.68 for Gun Control, 0.63 for Abortion, and 0.62 for

Gay Marriage, which is respectable based on previous studies in argumentation domain. The

final corpus with sentence distribution is given in Table 3.7.

Tier Rank <3 3-4 >4

Topic Not Important Important

Gun Control 1041 786 224

Gay Marriage 1195 957 354

Abortion 1203 688 161

Table 3.7: Sentence distribution in each domain.

Getting a reliable annotated corpora was a significant step and showed that the ap-

proach of extracting central propositions and important arguments from the pyramid structure
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is feasible, validating H1, and the next task of building computational models based on above

corpora could be further explored.

3.6 Chapter Summary

In this chapter, we presented the development of an annotated corpus that aims to

summarize dialogic arguments from social media debates on ideological topics. Unlike pre-

vious works in the field, we employed an objective measure for central proposition detector

rather than an annotator’s perceived importance. We have demonstrated, for the first time, a

central proposition extraction method in an argumentative dialogue based on tier rank labels

from pyramid annotation.

In the second part of this chapter, we proposed the first annotation study for extracting

important arguments using pyramid labels. We introduced a novel corpus with 161 argumen-

tative dialogues on three popular topics: Abortion, Gay Marriage, and Gun Control from on

line debate forums. Each dialogue in the corpus is annotated with 5 summaries, pyramid struc-

ture and argumentative rank of every sentence. We showed that human annotators substantially

agree when back-linking pyramid labels to argumentative sentences in the dialogue. In partic-

ular, we obtained an average kappa of 0.64 for the linking task. In fact, it had been mostly

unknown at the beginning of this research whether human annotators would be able to perform

the linking task as there may not always be substantial word overlap between a label text and

the dialogue sentence. The labels are concise, short, and abstracted from the summary while

the original dialogue sentences may be redundant and verbose. Therefore, linking sentences to
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pyramid labels required a thorough understanding of the meaning and concepts discussed in the

dialogue and all the summaries.

Based on this study, we concluded that the central propositions and important argu-

ments in a dialogue as presented in this thesis could be identified reliably by trained annotators.

The next step is to generate a computational model based on the above corpus.

In the next chapter, we describe our end-to-end argument summarization framework

and the machine learning set up to extract important arguments from social media dialogue.
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Chapter 4

Summarizing Important Arguments in a

Dialogue

The previous chapter presented a novel corpus of human-written summaries annotated

with the pyramid scheme, and pyramid labels linked to dialogue sentences. The top tier pyramid

labels were used to reliably rank argumentative sentences in the dialogue. This set of top-ranked

sentences can be used as the gold standard set of important arguments in the original dialogues.

This paved the way for testing and evaluating the next hypothesis H2 that aims to identify the

features useful for automatic extraction.

As discussed in Chapter 2, the existing summarization frameworks did not test di-

alogic argument extraction as the labeled dialogue corpora were not available. This chapter

addresses that limitation in the following ways:

1. Review the corpus statistics and properties to formalize the argument extraction as a clas-

sification task, Section 4.1.
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2. Use the ranked set of sentences to explore extractive methods of summarization with

sentences as the basic units of summarization, and evaluate the performance of several

existing summarizers as baselines, Section 4.2.1.

3. Present new features based on linguistic knowledge and dialogic context to train two

different machine learning models, namely an SVM and a Bidirectional LSTM classifier,

Section 4.2.2 and Section 4.2.3.

4. Evaluate the model robustness using standard measures of evaluation (F-measure, which

is the harmonic mean of precision and recall) showing that our models are better than the

baselines in terms of accuracy, Section 4.2.4.

5. Build ablated models with pairwise testing to prove the hypothesis H2 about contextual

features, Section 4.2.4.

6. We conclude with a discussion of results, Section 4.3

4.1 Problem Formulation

The histogram in Figure 4.1 shows the tier rank-frequency distribution of sentences

for each of the three topics, Gun Control, Gay Marriage, and Abortion. The proportion of

argumentative sentences (“top tier”) units in our corpus amounts to 0.48. These numbers are

comparable with previous observations that these conversations are interspersed with irrele-

vant segments, many messages are simple and informal, and claims made by the users may

be unclear, ambiguous, vague, or poorly worded. As a consequence, the probability of find-
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Figure 4.1: Frequency distribution of sentence tier rank distribution.

ing an argumentative sentence in these conversations is low. Indeed, Toni and Torroni (2012)

used the term ‘bottom-up argumentation’ to capture the emergence of arguments and opinions

stemming from these types of exchanges. Therefore, it is necessary to first remove these non-

argumentative sentences from dialogue, and the problem can be transformed to the selection

of the most important argumentative sentences from the dialogue that best represent the issue

under discussion. We designated any sentence with an average tier score of 3 or higher as im-

portant. Thus, we exploit human summarization and human mapping of labels to sentences to

get a well-grounded definition of important argument, and the task we address here is binary

classification applied to dialogues to select sentences that are important. Table 4.1 shows the

resulting number of important sentences for each topic.

We reserved 13 random dialogues in each topic for our test set, using the rest as

training. Sentences were automatically split. This led to several sentences consisting essentially
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Topic Important Not Important

Gun Control 1010 1041

Gay Marriage 1311 1195

Abortion 849 1203

Table 4.1: Sentence distribution in each domain.

of punctuation or numerals, and were without any content. Such sentences were removed by

filtering for sentences without a verb and at least three dictionary words. For learning, we

created a balanced training and test set by randomly selecting an equal number of sentences for

each class, giving the following combinations: 1236 train and 462 test sentences for Abortion,

1578 training and 534 test for Gay Marriage , and 1352 training and 476 test for Gun Control.

4.2 Experimental Method

We first define several baselines using off-the-shelf summarizers such as LexRank and

SumBasic (Erkan and Radev, 2004; Nenkova and Vanderwende, 2005). Our experiments ex-

plore the effectiveness of combining traditional linguistic and contextual features with Word2Vec

in both SVMs and Bidirectional LSTMs. We show that applying coreference, and representing

the context improves performance. Performance is overall better for the Bidirectional LSTM,

but both the models perform better when linguistic features and contextual features are com-

bined with word embeddings. We achieve a best F-measure of 0.74 for Gun Control, 0.71 for

Gay Marriage, and 0.67 for Abortion.
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4.2.1 Baseline Performance

We used several off-the-shelf extractive summarization engines (frequency, probabil-

ity distribution, and graph-based) from the python package sumy 1 to provide a baseline for

comparison with our models. To enable direct comparison, we defined a sentence as important

if it appears in the top n sentences in the output of the baseline summarizer, where n is the

number of important sentences for the dialogue as defined by our method.

SumBasic: Nenkova and Vanderwende (2005) showed that content units and words that are

often repeated are likely to be mentioned in a human summary, and that frequency is a powerful

predictor of human choices in content selection for summarization. SumBasic uses a greedy

search approximation with a frequency-based sentence selection component, and an additional

component to re-weight the word probabilities in order to minimize redundancy. Each sentence

is assigned a weight equal to the average probability (n/N ) of the content words in the sentence,

where n is the number of times the word appeared in the input, and N is the total number of

content word tokens in the input. SumBasic then selects the best scoring sentence that contains

the word with the highest probability. In the next step, the probability of each word that appears

in the chosen sentence is reduced to the square of the original probability to reflect the idea that

a summary is more likely to contain distinct words. This procedure is repeated until the desired

summary length is reached.

KL-SUM: KL divergence is a measure that quantifies the difference between two probability

distributions. Using KL divergence, important sentences are ranked based on the ‘similarity’

between probability distribution of the documents and their summaries. The idea is that the KL
1https://pypi.python.org/pypi/sumy
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divergence of the original input and a good summary will be low. KL-SUM greedily adds a

sentence to a summary as long as it decreases the KL Divergence (Kullback and Leibler, 1951;

Haghighi and Vanderwende, 2009; Lin et al., 2011).

LexRank: It uses a ranking approach similar to Page Rank. It is based on the notion that

sentences endorse other similar sentences. The importance of a sentence is determined by the

importance of the sentences endorsing it. Thus, if a sentence has a high similarity score to

other sentences, it is probably of greater importance. It is a graph-based method, where every

sentence represents a vertex in the graph, and the edges represent the intra-sentence cosine

similarity of TF-IDF vectors. The salience of each vertex in the graph is computed based on

the weights of the edges that are connected to it after applying a threshold to the cosine values

(Erkan and Radev, 2004).

ID Classifier Gun Control Gay Marriage Abortion

1 KL-SUM ( KL ) 0.51 0.52 0.47

2 SumBasic ( SB ) 0.53 0.57 0.49

3 Lex-Rank (LR ) 0.58 0.58 0.59

Table 4.2: Baselines performance, best model in bold.

The evaluation results of each baseline model are shown in Table 4.2. The results in-

dicate that graph-based centrality outperformed the frequency based methods for argumentative

dialogue. In an attempt to better understand the error sources, we compared our gold standard

summary and the summary sentences selected by Lex Rank as shown in Figure 4.2. LexRank

identifies many of the important sentences, but it also includes a number of sentences which
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Summary Sentences selected by human annotators

Nobody has been able to prove that gun owners are safer

than non-gun owners.

You can play around with numbers to make the problem

seem insignificant.

I suppose you could also say that only 3,000 people died

in 9/11 and use your logic to say that it ’s only a small

problem.

Perhaps if somebody in your family had died of gun vio-

lence you would have a different attitude.

Nobody has been able to prove that non-gun owners are

safer than gun owners.

So if you can not prove things one way or the other why

try to infringe on my rights?

I did n’t say that it ca n’t be proven one way or the other.

I just said you ca n’t prove that gun owners are safer.

Using illogic , skewed statistics , revisionist history all in

an attempt to violate my constitutional rights , that would

be you and other gun grabbers who are trying to infringe

on law abiding citizens rights.

Show me in the Constitution where it says that making an

illogical argument is a violation of somebody ’s rights.

You and your ilk are doing everything in your power to

implement your ” victim disamament ” program in ” vi-

olation ” of my civil rights.

No different than ” jim crow ” laws and other unconsti-

tutional drivel.

(a) Human selected summary sentences.

Summary sentences selected by LexRank

Show me in the Constitution where it says that mak-

ing an illogical argument is a violation of somebody

’s rights.

Nobody has been able to prove that gun owners are

safer than non-gun owners.

I just said you ca n’t prove that gun owners are safer.

Wow that is easy.

At least have the courage to say it ... .

Witch hunt.

No different than ” jim crow ” laws and other uncon-

stitutional drivel.

So if you can not prove things one way or the other

why try to infringe on my rights?

Oh, stop your witch hunt.

You can play around with numbers to make the prob-

lem seem insignificant.

Using illogic, skewed statistics, revisionist history

all in an attempt to violate my constitutional rights,

that would be you and other gun grabbers who are

trying to infringe on law abiding citizens rights.

I suppose you could also say that only 3,000 people

died in 9/11 and use your logic to say that it ’s only

a small problem.

(b) Lex Rank selected sentences.

Figure 4.2: A comparison of Human Annotator and Lex Rank.
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cannot be used to construct a summary such as ‘Wow that is easy’.

Recently there has been a surge in data-driven approaches to summarization based on

neural networks and continuous sentence features. An encoder-decoder architecture is the main

framework used in these types of models. However, one major bottleneck to applying neural

network models to extractive summarization is that the generation systems need a tremendous

amount of training data, i.e., documents with sentences labeled as summary-worthy. (Nallapati

et al., 2016; Rush et al., 2015; See et al., 2017) used models trained on the annotated version

of the Gigaword corpus and paired the first sentence of each article with its headline to form

sentence-summary pairs. Iyer et al. (2016) trained an end-to-end neural attention model using

LSTMs to summarize source code from online programming websites. Pairing the post title

with the source code snippet from accepted answers gives a significant amount of training data

that can be used to generate summaries. Such newswire models did not work well here; the neu-

ral summarization model from OpenNMT framework (Klein et al., 2017) very often generated

<UNK> tokens for our dialogue data. Neural machine translation frameworks use restricted

vocabularies. Word embeddings may not capture words that are not frequent in training data.

Unknown words are usually replaced with the same symbol such as <UNK>. This may be

especially more common with the social media text where words are sometimes misspelled,

hence generating these <UNK> tokens.

The baseline outputs, in general, suggest that frequency or graph similarity alone

leave room for improvement when predicting important sentences in user-generated argumen-

tative dialogue.
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4.2.2 Features

Most formal models of argumentation have focused on carefully crafted debates or

face-to-face exchanges. However, the ‘bottom-up’ argumentative dialogues in online social

networks are far less logical (Gabbriellini and Torroni, 2013; Toni and Torroni, 2012), and the

serendipity of the interactions yields less rule-governed conversational turns, ones that violate

even the rules of naturalistically grounded argument models (Walton and Krabbe, 1995). This

makes it difficult to construct useful theoretically-grounded features. In place of that enterprise,

we exploit more conventional summarization, sentiment, word class, and sentence complexity

features.

We also construct features sensitive to dialogic context. The theoretical literature dis-

cusses the ways in which dialogic argumentation shows different speech act uses than in less

argumentative genres (Budzynska and Reed, 2011; Jacobs and Jackson, 1992), including the

fact that arguments in these conversations are frequently smuggled in via non-assertive speech

acts (e.g., hostile questions). Levy et al. (2014) showed that contextual information is crucial

to the performance of state-of-the-art argumentation mining tools. Inspired by this, we imple-

mented three basic methods for dialogic context: we extracted the dialogue act tag and some

word class class information from the previous sentence; we extracted a rough-grained measure

of a sentence’s position within a turn; and we used coreference chains to resolve anaphora in a

sentence to acquire a (hopefully) more contentful antecedent. Below, we describe these features

in more detail.

Word2Vec embeddings: Unsupervised word embeddings are used to learn distributed word
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representations and have been successfully used in numerous NLP tasks in recent years. The

representation is learned based on the distributional hypothesis: words that occur in the same

contexts tend to have similar meaning (Harris, 1954). This enables words that share simi-

lar meanings to have similar representations, thus capturing the semantic relationship between

words. Mikolov et al. (2013a,b) proposed two efficient techniques, the continuous bag-of-words

(CBOW) and Skipgram, to induce unsupervised learning of word representations from large-

scale text corpora. Skipgram predicts context words around an input word, while the objective

in CBOW is to predict a word given the context words surrounding it across a window of size k.

A neural network language model trained on a large corpus captures the semantic and syntactic

characteristics of words.

We used the pre-trained word vectors from Google Word2Vec, which are 300 di-

mensional vectors trained on Google News dataset (about 100 billion words)2. Previous work

on argument mining has developed methods using Word2Vec that are effective for argument

recognition (Habernal and Gurevych, 2015). We created a 300-dimensional vector by filtering

stopwords and punctuation and then averaging the word embeddings from Google’s Word2Vec

model for the remaining words. This vector is then directly used as a feature vector.

Readability Grades: Readability provides quantitative measures to determine quality and text

complexity (i.e., vocabulary and syntax). It measures how easily a text is understood by readers

of a certain level using surface characteristics. Standard measures were developed that could be

easily calculated using factors such as word frequency and length. These could be considered as

rough approximations to the linguistic factors that determine text quality (Pitler and Nenkova,
2https://code.google.com/archive/p/word2vec/
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2008). We hypothesized that contentful sentences were more likely to be complex. To measure

that, we used readability grades, which calculate a series of linear regression measures based on

the number of words, syllables, and sentences. The readability3 measures used were: Flesch-

Kincaid Score, Automated Readability Index, Coleman-Liau Index, SMOG Index, Gunning

Fog Index, Flesch Reading Ease, LIX, and RIX.

LIWC: The Linguistics Inquiry Word Count (LIWC) (Pennebaker et al., 2001) tool has been

useful in previous work on stance detection, and we suspected it would help to distinguish

personal conversation from substantive analysis. It classifies words into different categories

based on thought processes, emotional states, intentions, and motivations. For each LIWC

category, we computed an aggregate frequency score for a sentence. Using these categories, we

aim to capture both the style and the content types in the argument. Style words are linked to

measures of people’s social and psychological worlds while content words are generally nouns

and regular verbs that convey the content of a communication. To capture additional contextual

information, we computed the LIWC score of the previous sentence.

Sentiment: Sentiment features have shown to be useful for argumentative quality assessment

and here too we suspected that name-calling and the like could be flagged by sentiment features.

We used the Stanford sentiment analyzer from Socher et al. (2013) to compute five sentiment

categories (very negative to very positive) per sentence.

Dialogue Act of Previous Sentence (DAC): We hypothesized that important sentences may

be more likely in response to particular dialogue acts, like questions, e.g., a question might be

followed by an explanation or an answer. To identify if a previous sentence was a question,
3https://pypi.python.org/pypi/readability
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we combined the tags into two categories indicating whether the previous sentence was a ques-

tion type or not. We implemented a binary PreviousSentAct feature which used Dialogue Act

Classification from NLTK (Loper and Bird, 2002).

Sentence position: Position of a sentence in a document has been used as an indicator of sen-

tence importance for sentiment and email summarization (Beineke et al., 2004; Rambow et al.,

2004). Hence, it follows that relative sentence position could benefit the argument extraction

process as well. We included features that encode the absolute position of the sentence within

the document. We divide a turn into thirds and create an integral feature based on which third a

sentence is located in the turn.

Coref: Interpretation of many language expressions in a conversation depends upon entities

in context, i.e., previous parts of the text. In the hope that coreference resolution would help

ground utterance semantics, we replaced anaphoric words with their most representative men-

tion obtained using Stanford coreference chain resolution (Manning et al., 2014).

4.2.3 Machine Learning Models

Numerous machine learning algorithms have been applied to prediction or classifica-

tion task of identifying argumentative segments in the text. These include, but are not limited to,

Naive Bayes, Logistic Regression, Support Vector Machines. Feature engineering plays a vital

role in determining the performance of these systems and hence a significant effort is invested

in deriving features that represent the text.

Recently, neural network based approaches have lead to major breakthroughs and

successes in tasks related to text classification. One of the key advantages of these deep net-
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works is end-to-end learning manner and the ability to automatically learn and train itself from

the information provided, and optimize its weights, thus alleviating the need for hand-crafted

features. The two most common deep learning frameworks are Convolutional Neural Network

(CNN) and Recurrent Neural Network (RNN).

A (CNN) is a feed-forward neural network with convolution layers interleaved with

pooling layers. Pooling reduces the output dimensionality but keeps the most salient infor-

mation, analogous to feature detection. Kim (2014) experimented with CNN trained on top of

pre-trained word vectors for sentence-level classification tasks. The model achieved remarkable

results on multiple benchmarks, improved upon the state of the art on 4 out of 7 tasks, including

sentiment analysis and question classification.

RNNs have been proven to be efficient in constructing sentence representations and

perform well for a broad range of tasks including sentiment classification, relation classifica-

tion, and paraphrase detection (Socher et al., 2011a,b; Yin et al., 2017). RNN is sensitive to

word order as compared to CNN, which is invariant to location. RNNs can preserve historical

information and are better at handling variable-length sequences. However, RNNs suffer from

the problem that later words make more influence on the final text representation than former

words. We used two machine learning models, the first is a traditional SVM, while the other is

a combination Bidirectional LSTM based on deep networks.

SVM. We used Support Vector Machines with a linear Kernel from Scikit-learn (Pedregosa

et al., 2011) with our manually engineered features based on linguistic knowledge and contex-

tual information, which are speculated to be useful for representing an argument. SVM is highly

sensitive to the choice of the regularization parameter C. Therefore, in order to find the optimal
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parameters, we performed a grid search using cross-validation set. The reason why we choose

linear SVM for this purpose is that they are robust against noise and outliers, considered one of

the state-of-the-art algorithms for text classification systems, and are very fast to train.

CNN + BiLSTM with Glove embeddings. CNN can learn spatial features from a local group

of neighbors but lacks the history sensitivity required to learn sequential correlations; on the

other hand, RNN is specialized for sequential modeling but incapable of extracting features in

a parallel (Zhou et al., 2015). A combination of a CNN and an RNN has been used for sentence

representations (Wang et al., 2016) where CNN is able to learn the local features from words

or phrases in the text, and the RNN learns long-term dependencies. The model utilizes CNN to

extract a sequence of higher-level phrase representations, which are fed into a long short-term

memory RNN (LSTM). Using this as a motivation, we include a convolutional layer and max

pooling layer before the input is fed into an RNN.

GloVe Embeddings: Word embeddings are often used as the first data processing layer

in a deep learning model. A GloVe is an unsupervised algorithm for obtaining vector represen-

tations for words. It is based on global word-word co-occurrence statistics. The co-occurrence

matrix of words and contexts are factorized into a lower dimensional matrix to extract represen-

tations for each word in the vocabulary (Pennington et al., 2014). We used GloVe embeddings

to initialize our Long Short-Term Memory (LSTM) models as GloVe embeddings have been

trained on web data, and in some cases work better than Word2Vec (Stojanovski et al., 2015).

Figure 4.3 shows the deep learning model architecture. It is based on a combination

of Convolutional Neural Network and Bidirectional LSTM. The convolution layer takes as input

the GloVe embeddings. These pre-trained word embeddings are 100-dimensional vectors, and
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1D Convolution Layer
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Dropout Layer

Merge using concatenation

Feature Vector (Context representation)

Max Pooling Layer

Binary Classification Output

BiLSTM Layer
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W1 W2 W3 ………......Wn

Dropout Layer

Figure 4.3: CNN-BiLSTM Architecture

each sentence is represented as a concatenation of word vectors. To prevent overfitting we use

a dropout layer with a dropout rate of 0.2. The model consists of a 1D convolution layer of

window size 3 and 32 different filters. Padding is set to a value same so that size of output is

same as that of input. A 1-max pooling is performed i.e., the largest number from each feature

map is recorded giving a fixed-sized feature vector. A bidirectional LSTM layer is stacked

on the convolution layer and then concatenated with another layer of bidirectional LSTM to
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encode the features and feature combinations. The merged outputs are fed through a sigmoid

layer for binary classification. LSTM creates a validation set by a 4 to 1 random selection on

the training set. The model is optimized using the Adam (Kingma and Ba, 2014) optimizer. The

deep network was implemented using the Keras package (Chollet, 2015).

4.2.4 Evaluation

We use standard classification evaluation measures based on Precision/Recall and F-

score. Performance evaluation uses weighted average F-score on test set. We first evaluate

simple models based on a single feature.

Simple Ablation Models. Table 4.3, Row 1 show the results for Lex Rank, the best base-

line system across all topics. Overall the F-score is low, indicating that summarizers aimed

at newswire or monologic data do not work on argumentative dialogue. Row 2 shows that

Dialogue Act Classification works better than the random baseline for Gun Control and Gay

Marriage, but not for Abortion. Row 3 shows that Word2Vec improves over the baseline, but

this did not work as well as it did in previous research (Habernal and Gurevych, 2015). One

reason could be that averaged Word2Vec embeddings for each word lose too much information

in long sentences. Interestingly, Row 6 shows that sentiment by itself beats LexRank across

all topics, suggesting a relationship of sentiment to argument that could be further explored.

Each Row has an additional column for each topic indicating what happens when we first run

Stanford Coreference replacing each pronoun with its most representative mention. The re-

sults show that coreference improves the F-score for both Gun Control and Abortion. LIWC

categories and Readability perform well across topics.
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Gun Control Gay Marriage Abortion

ID Classifier Features F-score. F-score

Coref

F-score F-score

Coref

F-score F-score

Coref

1 Baseline Lex-Rank (LR ) 0.58 0.58 0.59

2 SVM Dialog Act (DAC) 0.61 0.60 0.58 0.58 0.42 0.41

3 SVM Word2Vec 0.65 0.65 0.63 0.56 0.58 0.58

4 SVM Readability (R) 0.64 0.67 0.68 0.68 0.63 0.64

5 SVM LIWC current sen-

tence (LC)

0.72 0.74 0.69 0.66 0.64 0.63

6 SVM Sentiment (SNT) 0.66 0.62 0.61

7 SVM Sentence Turn (ST) 0.61 0.61 0.40 0.40 0.33 0.33

8 Bi LSTM 0.68 0.69 0.63 0.58 0.64 0.65

Feature Combinations

9 SVM LIWC current + pre-

vious (LCP)

0.73 0.72 0.66 0.67 0.61 0.61

10 SVM LCP + R 0.73 0.73 0.70 0.68 0.61 0.60

11 SVM R+DAC 0.65 0.66 0.68 0.68 0.63 0.63

12 SVM LCP + DAC + R 0.72 0.73 0.69 0.68 0.61 0.61

13 Bi LSTM DAC 0.67 0.68 0.69 0.65 0.65 0.66

14 Bi LSTM ST 0.66 0.66 0.61 0.67 0.64 0.52

15 Bi LSTM LCP 0.70 0.68 0.52 0.52 0.65 0.67

16 Bi LSTM R 0.70 0.70 0.59 0.63 0.65 0.66

17 Bi-LSTM LCP+ DAC 0.70 0.71 0.69 0.68 0.61 0.62

18 Bi-LSTM R+ DAC 0.70 0.68 0.63 0.62 0.60 0.64

19 Bi-LSTM R+ LCP 0.69 0.68 0.71 0.67 0.64 0.66

20 Bi-LSTM LCP+R +DAC 0.73 0.74 0.70 0.69 0.62 0.63

Table 4.3: Results for classification on test set for each topic. Best performing model in bold.
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Feature Combination Models. We first evaluate SVM with different feature combinations,

with details on results in Table 4.3. For the Gun Control topic, LIWC categories on the current

sentence give an F-score of 0.72. Adding LIWC from the previous sentence improves it to 0.73

(rows 5 and 9, without coref column). In contrast, just doing a coref replacement improves

LIWC current sentence score to 0.74 (row 5 for Gun Control, with and without coref columns).

A paired t-test on the result vectors shows that coref replacement provides a statistically sig-

nificant improvement at (p <0.04). For the Abortion topic, the overall performance is low as

compared to the other two topics suggesting that arguments used for Abortion are harder to

identify. Both DAC, Word2Vec scores are quite low, but Readability and LIWC do better.

The LSTM models on their own do not perform better than SVM across topics, but adding fea-

tures to the LSTM models improves them beyond the SVM results. We paired only LSTM (row

8) separately with the best performing model in bold for each topic in Table 4.3 to evaluate if

the combination is significant. Paired t-tests on the result vectors show that the differences in

F-score are statistically significant when we compare LSTM to LSTM with features for each

topic (p <0.01) for all topics, indicating that adding contextual features makes a significant

improvement. Adding LIWC categories from current and previous utterances to LSTM also

improves performance for Gun Control and Abortion. For the Gay Marriage topic, LSTM com-

bined with LIWC and readability works better than LSTM alone. This proves the hypothesis

H2 that adding contextual information from neighboring sentences and linguistic knowledge

derived from LIWC categories improves argument extraction.
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4.3 Analysis and Discussion

To qualitatively gain some insight into the limitations of some of the systems, we

examined random predictions from different models. One reason that a Graph-based system

such as LexRank performs well on DUC datasets might be that DUC data sets are clustered

into related documents by human assessors. To observe the behavior of the method on noisy

data, the authors of LexRank added random documents to each cluster to show that LexRank is

insensitive to some limited noise in the data. However, topic changes are more frequent in these

debate dialogues and they contain content that is not necessarily related to the argumentative

purpose of the dialogue.

Many previous summarization algorithms such as LexRank have been developed

based on the idea that sentences reinforce other similar sentences. Thus, if something is written

twice, it is likely to be more important. This may be true for well-edited documents such as

newswire domain but not for dialogue, which is naturally more redundant. For example, based

on lexical overlap, LexRank highly ranked the following two irrelevant sentences. These sen-

tences do not provide any useful information about the topic.

(i) Well it’s not going to work.

(ii) Get to work!

One reason that SVM with sentiment features performs well is that positive sentiment

predicts the not-important class. Phatic communication and conversational fillers are often used

in everyday dialogue exchanges and represent a social function of language rather than any

contentful information. Sentiment analyzers predict phatic features of dialogues as positive

whereas negative sentiment identified the more argumentative class, as shown by the following
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examples:

Positive sentiment

• Here ya go.

• Yes it does.

• Sounds right to you?

Negative sentiment

• Otherwise you are discriminating against the person wanting to enter into the marriage , however

distasteful it appears to you.

• The 10th Amendment says that those rights not specifically given to the Feds belong to the State

or individuals.

• If we want to talk about the world the over 90% of the world doesn’t recognize homosexuality.

The results show that LIWC performs well and that LIWC used to represent context

performs even better, ( H2). To understand which LIWC features were important, we performed

chi-square feature selection over LIWC features on the training set. Content categories were

highly ranked across topics, suggesting that the LIWC features were being exploited as a form of

within-topic topic detection; this suggests that more general topic modeling could help results.

Table 4.4 shows the top 5 LIWC categories for each topic based on chi-square based

feature selection on the training set for all the three topics. Unsurprisingly, across all topics,

the LIWC marker of complexity (Words Per Sentence) appears. In addition, many other topics

link commonsense with important facets of these debates – the opposition to Abortion between

questions of the sanctity of life (biological processes), and the health of individuals involved.
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Similarly, with Gay Marriage, we see sides of the debate between personal relationships (fam-

ily, affiliation) and questions of sexual practice (sexual, drives). The case of Gun Control is

somewhat surprising, since one might expect to see LIWC categories relating to life and safety.

Instead, we see the money category coming from discussions about gun buy back and gun

prices.

To understand better why coreference resolution was helping, we also examined cases

where coreference matters. Coreference resolution can also interact with different features such

as LIWC, where it can change the frequency distribution of categories in the text. Performing

a corefence resolution moves a word from the pronoun to some other category. For example,

replacing ‘it’ by ‘Government’ decreases Impersonal Pronouns and Total Pronouns, while in-

creasing Six Letter Words. In several cases, these replacements produce correct predictions,

e.g.

Only if it is legal to sell it.

Topic LIWC Categories

Abortion Biological Processes, Health, Second Person, Sexual, Words

Per Sentence.

Gun Control First Person Singular, Money, Second Person, Third Person

Plural, Words Per Sentence.

Gay Marriage Family, Sexual, Words Per Sentence, Affiliation, Drives.

Table 4.4: Top 5 LIWC categories by chi-square for each topic
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4.4 Chapter Summary

The annotated argument dialogue corpus introduced in Chapter 3 enabled us to test

the validity of our proposed models using linguistic and contextual features, and compare our

results to existing summarization frameworks. In this chapter, we presented a novel method

for argument summarization of dialogue exchanges from social media debates with our results

significantly beating the traditional summarization baselines. The core idea is based on using in-

formation from both current and neighboring sentences in the dialogue for argument extraction

and importance rather than traditional document-oriented frequency assessment.

The argument extraction task was modeled as a binary classification task, and evalu-

ated using the standard measure of weighted F-score. We tested two different models, an SVM

and a BiLSTM, and conducted experiments with different feature combinations to infer which

feature combinations are the most predictive. Both the models perform better than the baseline

approaches, indicating the robustness of the proposed method. Feature ablation experiments

showed that categories from LIWC were most effective for extracting the most important argu-

ments from a dialogue, across all topics. Some generic features as captured by readability and

sentiment were also useful. This direction can be further explored in future work to develop

cross-domain models. Finally, in order to achieve the best performance, contextual information

obtained through features derived from previous sentences is a necessary supplemental to lin-

guistic dimensions of the current sentence obtained from LIWC, thus validating our hypothesis

H2.

Given the central propositions, and the important arguments in a dialogue; we move to
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the next research question about the actual issues and facets discussed in these debates. The next

chapter describes our approach to finding these facets that often manifest as similar repeated

arguments across these discussions.
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Chapter 5

Argument Facet Similarity

In this chapter, we address the research question on abstract issues and objects in a

discussion about social or political topics. Particularly, we determine the specific arguments and

counter arguments that emerge from and reflect the dynamic nature of argumentative dialogue.

This view of argumentation goes beyond the examination of arguments in isolation and analyzes

them in relation to other arguments addressed in all the dialogues in a discussion.

The main motivation is that all the conversants in a discussion make some contribution

towards the topic, and summarizing the entire range of perspectives and ideas on both sides gives

a complete view of the topic. When people converse about social or political issues, similar

arguments are often paraphrased by different speakers, across many different conversations.

For example, consider the dialogue excerpts in Figure 5.1 from the 89K sentences about gun

control in the IAC 2.0 corpus of online dialogues (Abbott et al., 2016). Each of the sentences

S1 to S6 provide different linguistic realizations of the same proposition namely that Criminals

will have guns even if gun ownership is illegal.
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S1: To inact a law that makes a crime of illegal gun ownership has no effect on criminal ownership

of guns.

S2: Gun free zones are zones where criminals will have guns because criminals will not obey the

laws about gun free zones.

S3: Gun control laws do not stop criminals from getting guns.

S4: Gun control laws will not work because criminals do not obey gun control laws!

S5: Gun control laws only control the guns in the hands of people who follow laws.

S6: Gun laws and bans are put in place that only affect good law abiding free citizens.

Figure 5.1: Paraphrases of the Criminals will have guns facet from multiple conversations.

Debate websites, such as Idebate and ProCon produce curated summaries of argu-

ments on the Gun Control topic, as well as many other topics.1 2 These summaries typically

consist of lists, e.g., Figure 5.2 lists eight different aspects of the Gun Control argument from

Idebate. Such manually curated summaries identify different linguistic realizations of the same

argument to induce a set of common, repeated, aspects of arguments, what we call argument

facets. For example, a curator might identify sentences S1 to S6 in Figure 5.1 with a label to

represent the facet that Criminals will have guns even if gun ownership is illegal.

Figure 5.3 illustrates a different type of summary for the Death Penalty topic from

ProCon, where the argument facets are called out as the “Top Ten Pros and Cons” and given

labels such as Morality, Constitutionality, and Race. See the top of Figure 5.3. The

bottom of Figure 5.3 shows how each facet is then elaborated by a paragraph for both its Pro
1http://debatepedia.idebate.org/en/index.php/Debate:_Gun_control
2http://gun-control.procon.org/
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Pro Arguments

A1: The only function of a gun is to kill.

A2: The legal ownership of guns by ordinary citizens inevitably leads to many accidental deaths.

A3: Sports shooting desensitizes people to the lethal nature of firearms.

A4: Gun ownership increases the risk of suicide.

Con Arguments

A5: Gun ownership is an integral facet of the right to self defense.

A6: Gun ownership increases national security within democratic states.

A7: Sports shooting is a safe activity.

A8: Effective gun control is not achievable in democratic states with a tradition of civilian gun

owership.

Figure 5.2: The eight facets for Gun Control on Idebate, a curated debate site.

and Con side, showing the summary for the Morality facet here.

These summaries are curated, thus one would not expect that different sites would call

out the exact same facets, or even that the same type of labels would be used for a specific facet.

As we can see, ProCon (Figure 5.3) uses one word or phrasal labels, while Idebate (Figure 5.2)

describes each facet with a sentence. Moreover, these curated summaries are not produced

for a particular topic once-and-for-all: the curators often re-organize their summaries, drawing

out different facets, or combining previously distinct facets under a single new heading. We

hypothesize that this happens because new facets arise over time. For example, it is plausible

that for the Gay Marriage topic, the facet that Gay marriage is a civil rights issue came to the
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Figure 5.3: Facets of the Death Penalty debate as curated on ProCon.org

fore only in the last ten years.

Our aim is to produce summaries similar to these curated summaries, but automati-

cally, and over time, so that as new argument facets arise for a particular topic, we can identify

them. Recognizing the facets of an argument automatically entails at least two subtasks.

• Task1: Argument Extraction: How can we extract sentences from a dialogue that
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clearly express a particular argument facet?

• Task2: Argument Facet Similarity (AFS): How can we recognize that two sentential

arguments are semantically similar, i.e., that they are different linguistic realizations of

the same facet of the argument?

PostID:Turn

S1:1 Agreed She is ignoring my religious freedom and trying to institute her religion into law. The law that will bar

my family from legal protections. It won’t protect her marriage but will bar me and my people from from being full

citizens. She isn’t protecting marriage but perserving her heterosexual privledge.

S2:1 How on earth is she impeding on you religious freedom? She isn’t trying to take away your right to any religious

ceremony. With such a wide-open standard of what constitutes religious freedom that you seem to have, any legislation could

be construed as imposing on religious freedom.

S1:2 Because it is her religious belief that marriage is between a man and a woman. My religious belief is that marriage

is between two people that love each other regardless of sex. She is tying to place her religious belif into law over mine.

Who gets hurt here? If my religious belief is put into law she can still marry the person of her choice. If her religious belief

gets put into law she can still marry the person of her choice but I do not get to. So I and my people are hurt by codifing her

religious belief into law. She is trying to keep gay people out of marriage and thus preserve her heterosexual privledge.

S2:2 But by that definition, either one could be viewed as impeding on religious freedom, including your view impeding on

hers ! We don’t define imposing on religious freedom on the basis of having different ideals. It doesn’t effect your religion

or religious freedom if you don’t get benefits under gay marriages. You can argue in other ways, on other basis, but the

idea that not giving gays marriage benefits is imposing on religious freedom is an empty ” argument ”.

Figure 5.4: Excerpt from Gay Marriage (Dialogue-1 in Figure 3.1).

Task1 is needed because social media dialogues consist of many sentences that either

do not express an argument, or cannot be understood out of context. Thus, sentences that are

useful for inducing argument facets must first be automatically identified. Hence, there must

be a system that can extract the most essential arguments for a given discussion, or central

104



PostID:Turn

S1:1 Certainly not yours. You should know that I am for no marriage in government. It should be left to a religious

institution where it will actually mean something. The states should then go back to doing something that actually makes

sense and doesn’t reward people like Britney Spears for being white trash.

S2:1 That is all well and good, but it is not the religious ceremony and sanction that gays are looking for. They already have

that; there are churches that perform same-sex marriages. It is the civil benefits that are at issue. Are you saying you would

be in favor of foregoing ALL the legal rights and benefits you are afforded by marriage? For example: *Assumption of

Spouse’s Pension *Automatic Inheritance *Automatic Housing Lease Transfer *Bereavement Leave.... What do you say?

S1:2 yeah I know. I’m saying that there should be a better system. For example, if you had a best friend who you are

roommates with... both hetero for the sake of argument... and never wish to get married then could they get some of the

benefits you described?

Figure 5.5: Excerpt from Gay Marriage (Dialogue-2 in Figure 3.5).

propositions of a conversation. Important arguments in Figures 5.4 and 5.5 are provided in

bold.

Task2: There must be another system, the Argument Facet inducer, that relates

these conversation-specific arguments to each other in terms of facets, e.g. that identifies the

two specific central propositions in Figures 5.4 and 5.5 about legal protections and civil benefits

as the same (abstract) facet, namely that same-sex marriage is about getting the civil rights

benefits of marriage.

Related work on argument mining (discussed in more detail in Chapter 2.2.2) defines

a finite set of facets for each topic, similar to those from Idebate in Figure 5.2 or from ProCon

in Figure 5.3. Previous work then labels posts or sentences using these facets, and trains a

classifier to return a facet label (Conrad et al., 2012; Hasan and Ng, 2014; Boltuzic and Šnajder,

2014; Naderi and Hirst, 2016), inter alia. However, this simplification may not work in the long
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term, both because the sentential realizations of argument facets are propositional, and hence

graded, and because facets evolve over time, and hence cannot be represented by a finite list.

This chapter addresses these limitations.

We created two different datasets for training the AFS. The first dataset comprised of

human-generated pyramid label pairs from summaries of dialogic arguments for a single topic

of Gay Marriage. These were concise, grammatical, and well structured. It served as a starting

point for the AFS, especially since the task was novel and the process of argumentation itself is

challenging. AFS annotations were collected using Mechanical turk. The average score across

all the annotators correlated at 0.7 with our gold standard annotation indicating that the task

was clear and accurately specified. Considering the high reliability of the overall approach, we

decided to construct and test AFS on another, much harder dataset, where we automatically

extracted arguments of high quality from social media dialogues. In what follows, we provide

a description of both the AFS datasets constructed using the above two approaches, and the

experiments performed. Specifically, the overall procedure of finding these facets consists of

the following steps:

1. Problem formulation that takes pairs of sentences from Task1 and then learns a regressor

that can predict Argument Facet Similarity (AFS), Section 5.1.

2. Compile two novel datasets for the AFS task. The first dataset input is created using

human labels from pyramid annotations (central propositions as described in Chapter 3)

as important arguments while the second contains actual high quality arguments from

social media posts. Getting reliable annotations is an important goal here to ensure that
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the AFS task is clear to the annotators, and can be repeated, Sections 5.2.1 and 5.3.2 .

3. Describe two different regression models, one for each dataset. Propose new features

better suited to the AFS task including features based on Word2Vec, LIWC and depen-

dency trees. Performance evaluation using correlation coefficient statistic and root mean

squared error. Perform experimental comparisons on both the models that demonstrate

that the proposed set of features significantly outperforms the STS baseline, validating

hypothesis H3, Sections 5.2.2 and 5.3.3

5.1 Problem Formulation

We hypothesized that we can use important arguments to induce facets of a topic

across a set of dialogues. We treat a cluster of important arguments as a facet label, just as a

synset concept in WordNet is labeled by its members. Calculating similarity is a central aspect

of AFS. At this point, we could treat a facet as a cluster of ‘paraphrased important arguments’

or ‘more or less similar but graded arguments’. Our corpus analysis showed that many a times

these arguments are similar but not exactly same. A similar observation was also reported in

a previous study by Boltuzic and Šnajder (2015) who performed clustering based on similarity

and found that it is difficult to draw clear-cut boundaries between arguments based only on tex-

tual similarity (STS). Hence, we framed the semantic equivalence as a continuous value rather

than a binary one. The goal is to define a similarity metric and train a regression model that

takes as input two important arguments and returns a scalar value that predicts their similarity

(AFS). The model must reflect the fact that similarity is graded, e.g. the same argument facet
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may be repeated with different levels of explicit detail. For example, sentence A1 in Figure 5.2

is similar to the more complete argument, Given the fact that guns are weapons—things de-

signed to kill—they should not be in the hands of the public, which expresses both the premise

and conclusion. Sentence A1 leaves it up to the reader to infer the (obvious) conclusion.

5.2 AFS with Pyramid Labels

The process of automatic dialogue extraction, human summarization, and human

SCU generation (graphically depicted in Figure 5.6b) is how we arrive at the central proposi-

tions or important arguments for the Argument Facet Similarity task. The pyramid structure

directly reflects the content that the annotators deem most important in the original dialogue.

We are interested in the content that bubbles to the top across all the dialogues and take the Tier

3 and above SCUs as our central propositions.

5.2.1 AFS Corpus with Pyramid Labels

For our first set of experiments, we used 45 Gay Marriage dialogue pyramids and

extracted the labels of those SCUs that had a tier rank 3 and above. This gave a total of 329

SCU labels. As described below (and sketched in Figure 5.6c), we used Mechanical Turk to

provide similarity scores between pairs of SCU central propositions. Although, in principle, we

could have asked about all possible pairs of the 329 central propositions, most pairs are likely

to be unrelated, and so we used an initial clustering algorithm to help reduce the work and cost.

Agglomerative Clustering: To group similar arguments, we performed clustering across our
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(a) Basic engineering approach for extracting cen-

tral propositions and clustering them into argument

facets across several dialogues;

(b) Workflow for detecting central propo-

sitions via pyramid evaluation of multiple

summaries;

(c) Workflow for obtaining gold-standard labels for AFS task.

Figure 5.6: The overall engineering architecture of our approach.
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329 labels. We performed Agglomerative Clustering using Scikit-learn (Pedregosa et al., 2011),

(Agg Clustering in Figure 5.6c). It recursively merges the pair of clusters that minimally in-

creases a given linkage distance. We used cosine similarity as the distance measure with av-

erage linkage criteria. The linkage criterion is used to determine the distance to use between

sets of observations. To focus on topic-specific cues, the clustering was performed using only

nouns, verbs and adjectives. After generating all pairwise combinations within a cluster, this

approach yielded 1131 argument pairs used in the Mechanical Turk AFS task. See Figure 5.6c.

Instructions
These HITS are part of an ongoing research project that is attempting to analyze the arguments pre-
sented in online debates. Each pair of phrases below is taken from an online, public debate forum. The
two phrases may be from author’s communicating directly with each other, or they may be from com-
pletely different discussions. We would like you to classify each of the following sets of pairs based
on your perception of how SIMILAR the arguments are, on the following scale, examples follow.
(5) Completely equivalent, mean pretty much exactly the same thing, using different words.
(4) Mostly equivalent, but some unimportant details differ. One argument may be more specific than
another or include a relatively unimportant extra fact.
(3) Roughly equivalent, but some important information differs or is missing. This includes cases
where the argument is about the same FACET but the authors have different stances on that facet.
(2) Not equivalent, but share some details. For example, talking about the same entities but making
different arguments (different facets)
(1) Not equivalent, but are on same topic
(0) On a different topic
Facet: A facet is a low level issue that often reoccurs in many arguments in support of the author’s
stance or in attacking the other author’s position. There are many ways to argue for your stance on a
topic. For example, in a discussion about the death penalty you may argue in favor of it by claiming
that it deters crime. Alternatively, you may argue in favor of the death penalty because it gives victims
of the crimes closure. On the other hand you may argue against the death penalty because some
innocent people will be wrongfully executed or because it is a cruel and unusual punishment. Each of
these specific points is a facet.
For two utterances to be about the same facet, it is not necessary that the authors have the same belief
toward the facet. For example, one author may believe that the death penalty is a cruel and unusual
punishment while the other one attacks that position. However, in order to attack that position they
must be discussing the same facet.

Figure 5.7: Instructions for AFS MT HIT.

MT Argument Facet Similarity HIT: Figure 5.7 shows the instructions defining AFS for the
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MT HIT. Inspired by the scale used for Semantic Textual Similarity (STS) (Agirre et al., 2012),

we collected annotations on a 6 point scale. One crucial difference in our formulation was a

desire to capture similarity in facet and argument simultaneously. The use of the value 3 for

‘same facet, contradictory stance’ was a well-thought decision in the definition of AFS. Just as

two words can only be antonyms if they are in the same semantic field, two arguments can only

be contradictory if they are about the same facet. Thus, we instruct annotators to give a score

of 3 to opposing arguments on the same facet. A score of 3 or more than 3 represents argument

pairs on the same facet. Since clustering is not perfect, it is possible to have arguments from

different facets within the same cluster. Such pairs get a score of less than 3.

The task was put on Mechanical Turk using two separate batches. For the first batch,

we randomly selected 500 pairs from our pairs dataset of 1131 pairs. However, our subsequent

impression was that the clustering had not filtered out enough of the unrelated pairs (score 0-1).

For the second batch, we applied an off-the-shelf system that calculates STS as a filter on pairs

of central propositions in an attempt to bias the distribution of the training set for our system to

have a much larger set of more similar pairs. However, the AFS task is clearly different than

STS, partly because the data is dialogic and partly because it is argumentative. We selected the

top 500 pairs according to the UMBC similarity score (Han et al., 2013).

This gave us a final pair dataset of 1000 pairs. Since AFS is a novel and subjective

task, workers took a qualification test. Then each pair was annotated by 5 workers, and one of

the authors provided gold standard labels. The HIT allowed 5 AFS judgements per hit, thus

the number of pairs annotated by a worker varied from 5 to 1000. To increase reliability, we

removed the annotations from those workers who had attempted less than 4 hits (20 pairs) and
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had the lowest pairwise correlations with our gold standard annotation. Our final AFS score was

the average score across all the annotators. The final AFS score correlated at 0.7 with our gold

standard annotation, showing that the AFS similarity task is well-defined, and understandable

by minimally trained annotators on MT. We discuss AFS values and features in the Section 5.2.2

below.

5.2.2 Experiments

Given the data collected above, we defined a supervised machine learning experiment

with AFS as our dependent variable and different collections of features inspired from previous

work as our independent variables.

5.2.2.1 Features

NGRAM overlap. This is our primary baseline. For each argument, we extracted all the

unigrams, bigrams and trigrams, and then counted how many were in overlap across the two

arguments. For unigrams, we did not include stop words. Stemmed n-grams were used to get

better overlap.

UMBC. This is our secondary baseline. This feature is the Semantic Textual Similarity ob-

tained using UMBC Semantic Similarity tool (Han et al., 2013).

DISCO Distributionally Similar Category. We used the distributional similarity tool DISCO

with the pre-computed English Wikipedia word space (Kolb, 2008). We extracted the top 5

distributionally similar nouns, verbs, and adjectives for each argument. For each argument

pair, three vector pairs (over nouns, verbs, and adjectives) were created with this extended
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vocabulary. Stemming was performed, and cosine similarity between these vector pairs was

calculated.

LIWC Category. This feature set is based on the Linguistics Inquiry Word Count tool (Pen-

nebaker et al., 2001). To tune these features, we first used a set of Gay Marriage posts from

websites such as CreateDebate and ConvinceMe to extract relevant LIWC categories. We sup-

plemented this data with Gay Marriage posts from 4forums, but excluded the discussion threads

in our dialogue corpus. From this data, we extracted the LIWC categories for the most frequent

nouns, verbs, and adjectives. For the verbs category, we excluded the verbs present in the NLTK

stop word list. We retained only semantically rich categories such as Biological Processes, Cau-

sation, Cognitive Processes, Humans, Negative Emotion, Positive Emotion, Religion, Sexual,

and Social Processes. The score for this set was the LIWC category overlap count across pairs

for each category.

ROUGE Scores. ROUGE is a family of metrics used to determine the quality of a summary by

comparing it to other ideal summaries (Lin, 2004). It is based on a number of overlapping units

such as n-gram, word sequences, and word pairs. This feature includes all of the rouge f-scores

available via the package https://pypi.python.org/pypi/pyrouge/0.1.0.

5.2.2.2 Results

Given the central proposition pairs from the CP detector, we needed to train an

argument Facet inducer. We define AFS as a regression problem and evaluate support vector

regression and linear regression for 10-fold cross validation using the Weka machine learning

toolkit (Hall et al., 2005).
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Classifier RMS MAE R

SMO 1.0208 0.8019 0.532

Linear Regression 0.9996 0.8003 0.540

Table 5.1: Support Vector and Linear Regression.

RMS: Root Mean Squared Error, MAE: Mean Absolute Error, R: Correlation Coefficient.

Table 5.1 shows that the results for support vector regression are worse than the linear

regression model using our proposed features combined with UMBC, hence we focus hereon

on linear regression. Table 5.2 provides the correlations, MAE, and RMS values for models

produced using various sets of features. We considered two baselines, simple Ngram overlap

and the off-the-shelf UMBC STS metric (Han et al., 2013). In general, we found that Ngram

overlap (Row 1) performed best alone of our features, but falls short of the UMBC baseline

(Row 2). It is interesting that Ngram alone out-performs distributional measures (which Conrad

et al. (2012) found most helpful for argument tagging task) as well as Rouge (which contains

metrics insensitive to linear adjacency).

Table 5.2, Row 15, shows that the best correlation that is achievable without UMBC

is the combination of Ngram, LIWC, ROUGE, and DISCO (NLRD). This combination signifi-

cantly improves over the UMBC baseline of 0.46 to 0.50 (paired t-test, p < .05).

We then tested combinations of features to determine which feature sets are com-

plementary. LIWC + NGRAM is significantly different than NGRAM alone (p < 0.01), and

ROUGE + NGRAM is significantly different than NGRAM alone (p = 0.03), but DISCO does

not add anything (p = 0.2). This shows that LIWC and ROUGE features complement Ngram
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Row Feature Set R MAE RMS

1 NGRAM (N) 0.39 0.90 1.09

2 UMBC (U) 0.46 0.86 1.06

3 LIWC (L) 0.32 0.92 1.13

4 DISCO (D) 0.33 0.93 1.12

5 ROUGE (R) 0.34 0.91 1.12

6 N-U 0.47 0.85 1.05

7 N-L 0.45 0.86 1.06

8 N-R 0.42 0.88 1.08

9 N-D 0.41 0.89 1.08

10 U-R 0.48 0.84 1.04

11 U-L 0.51 0.83 1.02

12 U-D 0.45 0.86 1.06

13 N-L-R 0.48 0.84 1.04

14 U-L-R 0.53 0.81 1.00

15 N-L-R-D 0.50 0.83 1.03

16 N-L-R-U 0.54 0.80 1.00

17 N-L-R-D-U 0.54 0.80 1.00

Table 5.2: Results for Different Individual Features and Feature Combinations.

features. Other combinations of interest are NGRAM + LIWC (Row 7) which amazingly per-

forms as well as UMBC while UMBC includes sentence alignment, a model of negation, and

distributional measures (Han et al., 2013). This suggests that AFS is a different task than STS.
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Additionally, we also combined our proposed set of features with UMBC. A comparison of

Row 15 (our feature set) with Rows 16 and 17 of Table 5.2 where we combine our features with

UMBC shows that this improves the correlation further, from the UMBC baseline of 0.46 to

0.54 (p < 0.01).

It is also interesting to examine the differences in model scores for particular argument

pairs as shown in Table 5.3. The best performing model for each row is in bold in Table 5.3.

The table is sorted by the AFS score (gold standard). The argument pairs shown in bold are

cases where UMBC by itself beats our proposed model. As described in the HIT instructions

in Figure 5.7, values of AFS near 0 (Row 1) indicate different topics and no similarity. Values

near 1 indicate same topic but different arguments (Rows 2,3). Values of 3 and above indicate

same facet (Rows 7,8), and values near 5 are same facet and very similar argument (Rows

12 and 13). Both Arg1 and Arg2 in Row 10 make the same argument, but Arg1 includes

additional argumentation. In Row 12, there is very low n-gram overlap, but strong AFS and

NLRD performs better than the other models, and LIWC performs well by itself.

In Row 1, UMBC performs the best with a predicted score of 0.37 as opposed to

an AFS score of 0.00. The top performance of NLRD in Row 5 without UMBC perhaps arises

from the semantic information that extermination and holocaust are somehow related. NGRAM

overlap does the best in Row 13 despite the fact that the phrase No one argues the point that

does not participate in the NGRAM overlap.
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Row N L U NLRD NLRDU MT Arg1 Arg2
1 1.38 1.50 0.37 1.31 0.40 0.00 Everyone has the free-

dom of speech.
Service in the military.

2 2.00 2.02 1.55 2.33 1.86 1.14 Gay people should be
able to marry a person
of their choice and get
equal rights.

Referring to namecalling
and violence from the
original post that was op-
posing gay rights.

3 2.00 1.29 2.52 1.37 1.54 1.33 Constitutional right to be
opposed to gay marriage
as well as gay people
themselves.

Arguing about marriage
benefits between single
people and married.

4 2.00 1.70 2.74 1.77 1.98 1.80 People should not pick
and choose what they want
equal rights on.

People did not want gay
marriage.

5 1.38 1.92 0.88 1.94 1.64 2.50 The Republicans creating
another Holocaust.

No republican in leader-
ship would call for the ex-
termination of gays.

6 1.69 2.02 2.58 1.89 2.49 2.60 Homosexuals have all the
same rights as heterosex-
uals.

Opposition to equal
rights for gay couples.

7 1.83 2.40 1.46 2.81 2.51 3.00 There was prejudice
against gays in 1909 just
as there is now.

It is prejudice as opposed
to religious or moral be-
liefs which fuel the anti-
gay agenda;

8 2.00 1.70 3.16 1.73 2.41 3.40 Homosexual relation-
ships should not com-
pare to heterosexual
marriages because only
heterosexuals are legally
allowed to marry.

Marriage should be
between a heterosexual
couple.

9 2.00 2.70 2.09 2.83 3.03 3.50 It is prejudice as opposed
to religious or moral be-
liefs which fuel the anti-
gay agenda;

When people claim reli-
gion in doing prejudice
they are actually abandon-
ing their morals.

10 2.94 2.02 2.93 2.18 2.70 3.50 Gay people should be
able to marry a person
of their choice and get
equal rights.

Gay couples are unable
to get any benefits that
married people do.

11 2.14 1.50 2.91 2.08 2.62 3.60 Paul Cameron is the
voice of the Republicans.

Conversation about Paul
Cameron.

12 2.63 3.63 2.60 3.75 3.57 4.17 In opening this opportu-
nity for gay marriage, the
definition of marriage will
change.

Opponents of homosexual
marriage tend to argue that
a change to marriage law
would make it too open
ended.

13 4.23 2.72 2.26 4.82 4.12 4.50 AIDs was initially spread
in the United States pri-
marily by homosexuals.

No one argues the point
that AIDs was spread in
the United States by ho-
mosexuals.

Table 5.3: Predicted Scores for each model and the Mechanical Turk AFS gold standard.

KEY: Feature sets model. N = NGRAM, U = UMBC STS tool, L = LIWC; R = Rouge, D = DISCO, AFS= Mean of Mechanical

Turker AFS scores, our gold standard.
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5.3 AFS from Actual Social Media Arguments

A potential limitation to the central proposition based AFS approach was that it was

tested on human authored abstractive labels derived from the pyramid method. A better gener-

alization would be to test it on an independent argument dataset. To have the same granularity

of argument as the previous dataset, we focus on Sentential Arguments, single sentences that

clearly express a particular argument facet in dialogue. The eventual goal is to use Senten-

tial Arguments to produce extractive summaries of online dialogues about current social and

political topics.

5.3.1 Argument Quality Data

Previous work has shown that probability of finding a high-quality argument in ran-

domly selected sentences from social media debates is low. A good quality argument is a

prerequisite for the AFS task.

Swanson et al. (2015) created a corpus of argumentative dialogues on the topics Gay

Marriage (GM, 22425 posts), Gun Control (GC, 38102 posts), Death Penalty (DP, 5283 posts)

and Evolution (EV, 43624), by combining the Internet Argument Corpus (IAC) (Walker et al.,

2012c), with dialogues from http://www.createdebate.com/, and trained a regressor

model to predict the quality of extracted arguments. The Argument Quality (AQ) regressor

gives a score to each sentence, which is intended to reflect how easily the speaker’s argument

can be understood from the sentence without any context. Easily understandable sentences are

assumed to be prime candidates for producing extractive summaries. In Swanson et al. (2015),
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the annotators rated AQ using a continuous slider ranging from hard (0.0) to easy to interpret

(1.0).

Topic Original Rescored Sampled AQ #N (%)

Gun Control 89,722 63,025 2140 1887 (88%)

Death Penalty 17,904 11,435 1986 1520 (77%)

Gay Marriage 51,543 40,306 2062 1745 (85%)

Table 5.4: Sentence count in each domain. Sampled bin range > 0.55 and number of sentential

arguments (high AQ) after annotation.

We expected to apply Swanson’s AQ regressor to our sample completely “out of the

box”. However, we first discovered that many sentences given high AQ scores were very sim-

ilar, while we need a sample that realizes many diverse facets. We then discovered that some

extracted sentential arguments were not actually high quality. We hypothesized that the diver-

sity issue arose primarily because Swanson’s dataset was filtered using high PMI n-grams. We

also hypothesized that the quality issue had not surfaced because Swanson’s sample was pri-

marily selected from sentences marked with the discourse connectives but, first, if, and so. Our

sample (Original column of Table 5.4) is much larger and was not similarly filtered. We refined

the Mechanical Turk task to elicit new training data for AQ as described below.

Figure 5.8 plots the distribution of word counts for sentences from our sample that

were given an AQ score > 0.91 by Swanson’s trained AQ regressor. The first bin shows that

many sentences with less than 10 words are predicted to be high quality, but many of these

sentences in our data consisted of only a few elongated words (e.g. HAHAHAHA...). The
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Figure 5.8: Word count distribution for argument quality prediction scores > 0.91 for Swan-

son’s original model.

upper part of the distribution shows a large number of sentences with more than 70 words with

a predicted AQ > 0.91. We discovered that most of these long sentences are multiple sentences

without punctuation. We thus refined the AQ model by removing duplicate sentences, and

rescoring sentences without a verb and with less than 4 dictionary words to AQ = 0. We then

restricted our sampling to sentences between 10 and 40 tokens, to eliminate run-on sentences

and sentences without much propositional content. We did not retrain the regressor, rather we

resampled and rescored the corpus. See the Rescored column of Table 5.4. After removing

the two tails in Figure 5.8, the distribution of word counts is almost uniform across bins of

sentences from length 10 to 40.

As noted above, the sample in Swanson et al. (2015) was filtered using PMI, and PMI
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contributes to AQ. Thus, to end up with a diverse set of sentences representing many facets

of each topic, we decided to sample sentences with lower AQ scores than Swanson had used.

We binned the sentences based on predicted AQ score and extracted random samples across

bins ranging from 0.55–1.0, in increments of 0.10. Then we extracted a smaller sample and

collected new AQ annotations for Gay Marriage and Death Penalty on Mechanical Turk, using

the definitions in Figure 5.9.

Score Scoring Criteria

3 The phrase is clearly interpretable AND either expresses an argument, or a premise or a

conclusion that can be used in an argument about a facet or a sub-issue for the topic of gay

marriage.

2 The phrase is clearly interpretable BUT does not seem to be a part of an argument about a

facet or a sub-issue for the topic of gay marriage.

1 The phrase cannot be interpreted as an argument.

Figure 5.9: Argument Quality HIT as instantiated for the topic Gay Marriage.

We pre-selected three annotators using a qualifier that included detailed instructions

and sample annotations. A score of 3 was mapped to a yes and scores of 1 or 2 mapped to

a no. We simplified the task slightly in the HIT for Gun Control, where five annotators were

instructed to select a yes label if the sentence clearly expressed an argument (score 3), or a no

label otherwise (score 1 or 2).

We then calculated the probability that the sentences in each bin were high quality

arguments using the resulting AQ gold standard labels, and found that a threshold of predicted
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AQ > 0.55 maintained both diversity and quality. Table 5.4 summarizes the results of each

stage of the process of producing the new AQ corpus of 6188 sentences (sampled and then

annotated). The last column of Table 5.4 shows that gold standard labels agree with the rescored

AQ regressor between 77% and 88% of the time.

5.3.2 AFS Corpus with Sentential Arguments

S7: Since there are gun deaths in countries that have banned guns, the gun bans did not work.

S8: It is legal to own weapons in this country, they are just tightly controlled, and as a result we have

far less gun crime (particularly where it’s not related to organised crime).

S9: My point was that the theory that more gun control leaves people defenseless does not explain

the lower murder rates in other developed nations.

Figure 5.10: Paraphrases of the Gun ownership does not lead to higher crime facet of the Gun

Control topic across different conversations.

Our approach draws strongly on recent work on semantic textual similarity (STS)

(Agirre et al., 2013). STS measures the degree of semantic similarity between a pair of sen-

tences with values that range from 0 to 5. However, we distinguish AFS from STS because:

(1) our data is so different: STS data consists of descriptive sentences whereas our sentences

are argumentative excerpts from dialogues; and (2) our definition of facet allows for sentences

that express opposite stance to be realizations of the same facet (AFS = 3) in Figure 5.7. Re-

lated work had primarily used entailment or semantic equivalence to define argument similarity

(Habernal and Gurevych, 2015; Boltuzic and Šnajder, 2015). We believe the definition of AFS
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given in Figure 5.7 will be more useful in the long run than semantic equivalence or entailment,

because two arguments can only be contradictory if they are about the same facet. For example,

consider that sentential argument S7 in Figure 5.10 is anti gun-control, while sentences S8 and

S9 are pro gun-control. Our annotation guidelines label them with the same facet, in a similar

way to how the curated summaries on ProCon provides both a Pro and Con side for each facet.

Figure 5.11: The distribution of AFS scores as a function of UMBC STS scores for Gun Control

sentences.

In order to efficiently collect annotations for AFS, we want to produce training data

pairs that are more likely than chance to be the same facet (scores 3 and above as defined in

Figure 5.7). Similar arguments are rare with an all-pairs matching protocol, e.g. in ComArg,

approximately 67% of the annotations are “not a match” (Boltuzic and Šnajder, 2014). Also,

we found that Turkers are confused when asked to annotate similarity and then given a set of
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sentence pairs that are almost all highly dissimilar. Annotations also cost money. We, therefore,

used UMBC STS (Han et al., 2013) to score all potential pairs, an off-the-shelf STS tool from

University of Maryland Baltimore County 3. To foreshadow, the plot in Figure 5.11 shows that

this pre-scoring works: (1) the lower quadrant of the plot shows that STS < .20 corresponds to

the lower range of scores for AFS; and (2) the lower half of the left hand side shows that we

still get many arguments that are low AFS (values below 3) in our training data.

We selected 2000 pairs in each topic, based on their UMBC similarity scores, which

resulted in lowest UMBC scores of 0.58 for GM, 0.56 for GC, and 0.58 for DP. To ensure a pool

of diverse arguments, a particular sentence can appear in at most ten pairs. MT workers took a

qualification test with definitions and instructions as shown in Figure 5.7. Sentential arguments

with sample AFS annotations were part of the qualifier. The 6000 pairs were made available

to our three most reliable pre-qualified workers. The last row of Table 5.6 reports the human

topline for the task, i.e. the average pairwise r across all three workers. Interestingly, the Gay

Marriage topic (r = 0.60) is more difficult for human annotators than either Death Penalty

(r = 0.74) or Gun Control (r = 0.69).

5.3.3 Experiments

Given the data collected above, we defined a supervised machine learning experiment

with AFS as our dependent variable. We developed a number of baselines using off the shelf

tools. Features are grouped into sets and discussed in detail below.
3http://swoogle.umbc.edu/SimService/
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5.3.3.1 Features

NGRAM cosine. Our primary baseline is an n-gram overlap feature. For each argument, we

extracted the unigrams, bigrams, and trigrams, and then calculated the cosine similarity between

two texts represented as vectors of their n-gram counts.

Rouge. Rouge is a family of metrics for comparing the similarity of two summaries (Lin, 2004),

which measures overlapping units such as continuous and skip n-grams, common subsequences,

and word pairs. We used all the rouge f-scores from the pyrouge package. Our analysis showed

that rouge s* f score correlates most highly with AFS.4

UMBC STS. We consider STS, a measure of the semantic similarity of two texts (Agirre et al.,

2012), as another baseline, using the UMBC STS tool. Figure 5.11 illustrates that in general,

STS is a rough approximation of AFS. It is possible that our selection of data for pairs for

annotation using UMBC STS either improves or reduces its performance.

Google Word2Vec. Word embeddings from Word2Vec (Mikolov et al., 2013b) are popular for

expressing semantic relationships between words, but using word embeddings to express entire

sentences often requires some compromises. In particular, averaging Word2Vec embeddings for

each word may lose too much information in long sentences. Previous work on argument min-

ing has developed methods using Word2Vec that are effective for clustering similar arguments

(Habernal and Gurevych, 2015; Boltuzic and Šnajder, 2015). Other research creates embed-

dings at the sentence level using more advanced techniques such as Paragraph Vectors (Le and

Mikolov, 2014).

We took a more direct approach in which we used the word embeddings directly as
4https://pypi.python.org/pypi/pyrouge/
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features. For each sentential argument in the pair, we created a 300-dimensional vector by fil-

tering for stopwords and punctuation and then averaging the word embeddings from Google’s

Word2Vec model for the remaining words.5 Each dimension of the 600 dimensional concate-

nated averaged vector was used directly as a feature. In our experiments, this concatenation

method significantly outperformed cosine similarity (Table 5.5, Table 5.6).

Custom Word2Vec. We also created our own 300-dimensional embeddings for our dialogic

domain using the Gensim library (Řehůřek and Sojka, 2010), with default settings, and a very

large corpus of user-generated dialogic content. This included the corpus described in Sec-

tion 5.3.2 (929, 206 forum posts), an internal corpus of 1, 688, 639 tweets on various topics,

and a corpus of 53, 851, 542 posts from Reddit.6

LIWC category and Dependency Overlap. Both dependency structures and the Linguistics

Inquiry Word Count (LIWC) tool have been useful in previous work (Pennebaker et al., 2001;

Somasundaran and Wiebe, 2009; Hasan and Ng, 2013a). We developed a novel feature set that

combines LIWC category and dependency overlap, aiming to capture a generalized notion of

concept overlap between two arguments, i.e., to capture the hypothesis that classes of content

words such as affective processes or emotion types are indicative of a shared facet across pairs

of arguments.

We created partially generalized LIWC dependency features and counted overlap nor-

malized by sentence length across pairs, building on previous work (Joshi and Penstein-Rosé,

2009). Stanford dependency features (Manning et al., 2014) are generalized by leaving one
5https://code.google.com/archive/p/word2vec/
6One month sample https://www.reddit.com/r/datasets/comments/3bxlg7/i_have_

every_publicly_available_reddit_comment
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Figure 5.12: LIWC Generalized Dep. tuples

dependency element lexicalized, replacing the other word in the dependency relation with its

LIWC category and by removing the actual dependency type (nsubj, dobj, etc.) from the triple.

This created a tuple of (“governor token”, “LIWC category of the dependent token”). We call

these simplified LIWC dependencies.

Figure 5.12 illustrates the generalization process for three LIWC simplified depen-

dencies, (“deter”, “fear”), (“deter”, “punishment”), and (“deter”, “love”). Because LIWC is

a hierarchical lexicon, two dependencies may share many generalizations or only a few. Here,

the tuples with dependent tokens, fear and punishment are more closely related because their

shared generalization include both Negative Emotion and Affective Processes, but the tuples

with dependent tokens fear and love have a less similar relationship because they only share the

Affective Processes generalization.

5.3.3.2 Results

We randomly selected 90% of our annotated pairs to use for nested 10-fold cross-

validation, setting aside 10% for qualitative analysis of predicted vs. gold-standard scores. We
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Gun Control Gay Marriage Death Penalty

RR SVR RR SVR RR SVR

ID Features r RMSE r RMSE r RMSE r RMSE r RMSE r RMSE

1 UMBC 0.49 0.90 0.50 0.90 0.16 0.90 0.21 0.90 0.21 1.16 0.20 1.20

2 Ngram 0.46 0.91 0.46 0.92 0.24 0.88 0.24 0.91 0.23 1.16 0.24 1.18

3 Rouge 0.52 0.88 0.57 0.86 0.22 0.89 0.26 0.90 0.39 1.10 0.40 1.11

4 LIWC depen-

dencies

0.50 0.89 0.59 0.85 0.27 0.88 0.26 0.90 0.34 1.12 0.40 1.12

5 Custom

W2Vec Cosine

0.47 0.91 0.52 0.89 0.22 0.89 0.25 0.90 0.29 1.14 0.30 1.16

6 Google

W2Vec Cosine

0.40 0.94 0.47 0.93 0.16 0.90 0.20 0.92 0.29 1.14 0.30 1.16

Table 5.5: Results for predicting AFS with individual features using Ridge Regression (RR)

and Support Vector Regression (SVR) with 10-fold Cross-Validation on the 1800 training items

for each topic.

used Ridge Regression (RR) with l2-norm regularization and Support Vector Regression (SVR)

with an RBF kernel from scikit-learn (Pedregosa et al., 2011). Performance evaluation uses

two standard measures, Correlation Coefficient (r) and Root Mean Squared Error (RMSE). A

separate inner cross-validation within each fold of the outer cross-validation is used to perform

a grid search to determine the hyperparameters for that outer fold. The outer cross-validation

reports the scoring metrics.

Simple Ablation Models. We first evaluate simple models based on a single feature using both

RR and SVR. Table 5.5, Rows 1, 2, and 3 show the baseline results: UMBC Semantic Textual

Similarity (STS), Ngram Cosine, and Rouge. Surprisingly, the UMBC STS measure does not
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perform as well as Ngram Cosine for Death Penalty and Gay Marriage. LIWC dependencies

(Row 4) perform similarly to Rouge (Row 3) across topics. Cosine similarity for the custom

Word2Vec model (Row 5) performs about as well or better than n-grams across topics, but

cosine similarity using the Google model (Row 6) performs worse than n-grams for all topics

except Death Penalty. Interestingly our custom Word2Vec models perform significantly better

than the Google Word2Vec models for Gun Control and Gay Marriage, with both much higher

r and lower RMSE, while performing identically for Death Penalty.

Feature Combination Models. Table 5.6 shows the results of testing feature combinations to

learn which ones are complementary. Since SVR consistently performs better than RR, we used

SVR only in combinations. Significance was calculated using paired t-tests between the RMSE

values across folds. We paired Ngrams separately with LIWC and ROUGE to evaluate if the

combination is significant. Ngram+Rouge (Row 1) is significantly better than Ngram for Gun

Control and Death Penalty (p < .01), and Gay Marriage (p = .03). Ngram+LIWC (Row 2)

is significantly better than Ngram for Gun Control, and Death Penalty (p < .01). Thus both

Rouge and LIWC provide complementary information to Ngrams.

Our best result using our hand-engineered features was a combination of LIWC,

Rouge, and Ngrams (Row 3). Interestingly, adding UMBC STS (Row 4) gave a small but

significant improvement (p < 0.01 for Gun Control; p = 0.07 for Gay Marriage). Thus we

took Ngrams, LIWC, Rouge, and UMBC STS (Row 4) as our best hand-engineered model

across all topics with a correlation of 0.65 for Gun Control, 0.50 for Death Penalty and 0.40 for

Gay Marriage. This combination was significantly better than the baselines for Ngram baseline

(p < .01), UMBC STS (p <= .02) and Rouge (p < .01) for all three topics.
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ID Feature Combinations with SVR Gun Control Gay Marriage Death Penalty

r RMSE r RMSE r RMSE

1 Ngram- Rouge 0.59 0.85 0.29 0.89 0.40 1.11

2 Ngram- LIWC dependencies 0.61 0.83 0.34 0.88 0.43 1.10

3 Ngram- LIWC dependencies- Rouge 0.64 0.80 0.38 0.86 0.49 1.05

4 Ngram- LIWC dependencies- Rouge-

UMBC

0.65 0.79 0.40 0.86 0.50 1.05

5 CustomW2Vec Concatenated vectors 0.71 0.72 0.48 0.80 0.56 0.99

6 GoogleW2Vec Concatenated vectors 0.71 0.72 0.50 0.79 0.57 0.98

7 Ngram- LIWC dependencies- Rouge-

UMBC- CustomW2Vec Concatenated

vectors

0.73 0.70 0.54 0.77 0.62 0.93

8 Ngram- LIWC dependencies- Rouge-

UMBC- GoogleW2Vec Concatenated

vectors

0.73 0.70 0.54 0.77 0.63 0.92

9 HUMAN TOPLINE 0.69 0.60 0.74

Table 5.6: Results for feature combinations for predicting AFS, using Support Vector Regres-

sion (SVR) with 10-fold Cross-Validation on the 1800 training items for each topic.

We then further combined the hand-engineered features (Row 4) with the Google

Word2Vec features (Row 6), creating the model in Row 8. A paired t-test between RMSE

values from each cross-validation fold for each model (Row 4 vs. Row 8 and Row 6 vs. Row

8) showed that the our hand-engineered features are complementary to Word2Vec, and their
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combination yields a model significantly better than either model alone (p < .01).

Although it is common to translate word embeddings into single features or reduced

feature sets for similarity through the use of clustering (Habernal and Gurevych, 2015) or cosine

similarity (Boltuzic and Šnajder, 2015), we showed that it is possible to improve results by

directly combining word embeddings with hand-engineered features. In our task, sentences

were limited to a maximum of 40 tokens in order to encourage single-facet sentences, but this

may have provided an additional benefit by allowing us to concatenate word embeddings while

still preserving useful signal. The custom Word2Vec concatenation features perform worse

for Death Penalty and Gay Marriage as compared to Google Word2Vec model. Gun Control

concatenation vectors perform similarly for both the models (Row 5 and Row 6 in Table 5.6 ).

This may be due to the topic distribution in IAC. It has a lot more data for Gun Control (89,722

sentences). The low performance of Gay Marriage and Death Penalty for concatenation vectors

may be due to relatively few sentences for them in the IAC [ (51,543(GM); 17,904(DP) ].

Our results also demonstrated that using concatenation for learning similarity with

vector representations works much better than the common practice of reducing a pair of vectors

to a single score using cosine similarity. Previous work (Li et al., 2015; Pennington et al.,

2014) also showed that all dimensions are not equally useful predictors for a specific task.

For sentiment classification, Li et al. (2015) found that “too large a dimensionality leads many

dimensions to be non-functional, causing two sentences of opposite sentiment to differ only in a

few dimensions”. This may also be the situation for the 300-dimensional embeddings used for

AFS. Hence, when using concatenation, single dimensions can be weighted to adjust for non-

functional dimensions, but using cosine makes this per-dimension weighting impossible. This
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ID Argument 1 Argument 2 STS Ngram Rouge LIWC
dep

W2Vec AFS MT
AFS

GC1 You say that gun control must not
be effective because the study’s
conclusions about gun control
were inconclusive.

You’re right that gun control isn’t
about guns, however, but ’control’
is a secondary matter, a means to
an end.

1.82 2.56 2.22 1.53 1.40 1.5 1

DP2 I don’t feel as strongly about the
death penalty as I feel about the
abortion rights debate since I can
relate to the desire for vengeance
that people feel.

Well I, as creator of this debate,
think that there should not be a
death penalty.

1.82 2.38 2.07 1.29 1.44 1.24 1.33

GC3 They do not have the expressed,
enumerated power to pass any law
regarding guns in the constitution.

Which passed the law requireing
”smart guns”, if they ever become
available (right now they do not
exist).

1.74 1.83 2.67 1.50 1.82 1.88 2.0

GM4 Technically though marriage is
not discrimination, because gays
are still allowed to marry the op-
posite sex.

Everyone has the right to marry
someone of the opposite sex, and
with gay marriage, everyone will
have the right to marry someone
of the same AND opposite sex.

1.76 2.09 1.68 2.00 2.23 2.06 2.33

GM5 If the state wants to offer le-
gal protections and benefits to
straight married couples, it cannot
constitutionally refuse equal pro-
tections to gay ones.

Same-sex couples are denied over
1,000 benefits, rights, and protec-
tions that federal law affords to
married, heterosexual couples, as
well as hundreds of such protec-
tions at the state level.

1.77 1.91 1.77 2.66 3.56 3.72 3.33

DP6 In addition, it is evident that the
death penalty does not deter mur-
der rates.

BUT it is not apparent that death
penalty lower crime rate.

2.03 2.31 3.71 2.21 3.84 3.95 4.0

DP7 Living in jail for life costs less
money then the death penalty.

Morality aside, no evidence of de-
terrence aside, the death penalty
costs more than life imprison-
ment.

1.84 2.43 2.56 3.23 2.90 2.90 4.33

Table 5.7: Illustrative Argument pairs, along with the predicted scores from individual feature
sets, predicted(AFS) and the Mechanical Turk human topline (MT AFS). The best performing
feature set is shown in bold. GC=Gun Control, DP=Death Penalty, GM=Gay Marriage.

might explain why our custom Word2Vec model outperformed the Google model when using

cosine as compared to concatenation, i.e. more dimensions are informative in the custom model

but overall, the Google model provides more complementary information when non-functional

dimensions are accounted for. More analysis is needed to fully support this claim.

To qualitatively illustrate some of the differences between our final AFS regressor

model (Row 8 of Table 5.6) and several baselines, we applied the model to a set-aside 200 pairs

per topic. Table 5.7 shows examples selected to highlight the strengths of AFS prediction for
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different models as compared to the AFS gold standard scores.

MT AFS values near 1 indicate same topic but no similarity. Rows GC1 and DP2

talk about totally different facets and only share the same topic (AFS = 1). Rouge and Ngram

features based on word overlap predict scores that are too high. In contrast, LIWC dependencies

and Word2Vec based on concept and semantic overlap are more accurate. MT values near

3 indicate same facet but somewhat different arguments. Arguments in row GM4 talk about

marriage rights to all, and there is some overlap in these arguments beyond merely being the

same topic, however, the speakers are on opposite stance sides. Both of the arguments in row

GM5 (MT AFS of 3.3) reference the same facet of the financial and legal benefits available to

married couples, but Arg2 is more specific. Both Word2Vec and our trained AFS model can

recognize the similarity in the concepts in the two arguments and make good predictions.

MT values above 4 indicate two arguments that are the same facet and very similar.

Row DP6 gets a high Rouge overlap score and Word2Vec relates ‘lower crime rate’ as seman-

tically similar to ‘deter murder rates’ thus yielding an accurately high AFS score. DP7 is an

example where LIWC dependencies perform better as compared to other features, because it

focuses in on the dependency between the death penalty and cost, but none of the models do

well at predicting the MT AFS score. One issue here may be that, despite our attempts to sam-

ple pairs with more representatives of high AFS, there is just less training data available for this

part of the distribution. Hence all the regressors will be conservative at predicting the highest

values.
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5.4 Chapter Summary

This chapter introduced a new task of Argument Facet Similarity (AFS) aimed at

identifying facets across opinionated dialogues. We employed a novel application of facet iden-

tification, using two different strategies.

The first method employed a pyramid summarization scheme to derive facets from

central propositions that rise to the top of the pyramid across summarizers, and then (via AFS)

across many dialogues on a topic. We used clustering in combination with measures of seman-

tic similarity to group the central propositions into the important facets of an argument across

many different dialogues. Importantly, we do not attempt to enumerate the possible facets for

an argument in advance, believing that bottom-up discovery of facets is a better fit to the prob-

lem. Our method instead explicitly models graded similarity of arguments. Because of the

novelty of the task, an initial step was to investigate if human annotators could reliably label the

argument pairs based on AFS definition for a single topic of Gay Marriage. Mechanical Turk

workers achieved an average pairwise correlation of 0.7 with gold standard indicating that the

task is feasible for humans to annotate manually. The result of this annotation study was a novel

annotated corpus of argument pairs annotated with AFS scores. We then addressed the auto-

matic assessment of AFS, where we experimented with different regression models and multiple

feature groups. The effectiveness of various features is investigated by experimenting with dif-

ferent feature combinations, feature ablation tests, and significance tests. Our results showed

that we could identify AFS with a correlation of 0.54 using features based on LIWC, Rouge,

Ngram, and UMBC as opposed to a baseline of 0.46 provided by the STS system designed for
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a similar task.

A limitation of the Pyramid tool was that it required the annotator to provide a hu-

man readable label for a collection of contributors that realize the same propositional content.

To overcome this limitation, the next step was to develop and test an AFS regressor on au-

tomatically extracted raw sentences from social media dialogues. We analyzed and improved

the argument extractor from Swanson et al. (2015), by testing it on a much larger dataset, and

developed a larger gold standard corpus for Argument Quality (AQ). We created a new corpus

of sentential arguments with gold-standard labels for AFS. We developed a regressor that can

predict AFS on extracted sentential arguments using a combination of hand-engineered and un-

supervised features with a correlation averaging 0.63 compared to a human top line averaging

0.68, for three debate topics namely Gay Marriage, Death Penalty, and Gun Control. Finally,

the evaluation results from both pyramid labels and sentential argument experiments clearly

demonstrated that proposed features yield better performance on AFS than those used for STS,

thus validating the hypothesis H3. In summary, we have presented two novel techniques for

modeling argument facet similarity in social media domain along with a reliable corpus, eval-

uated our ability to identify facets against several reasonable baselines, and improved on STS

systems for the AFS task.
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Chapter 6

Conclusion and Future Work

Online debate platforms and social networks provide a two way communication plat-

form with a massive amount of opinion and argument rich information. Such enormous feed-

back from society offers a unique opportunity to the government and policy makers to get

useful insights and public sentiment on issues under discussion. However, this information

is distributed and unstructured. To identify and integrate arguments across these discussions

requires computational methods that can facilitate users to systematically search, analyze and

summarize arguments as well as reason about the relationship among arguments, on a given

topic of interest.

In this thesis, we presented a systematic approach to leverage the pyramid based sum-

marization framework to rank and select arguments in social media dialogue, which is a novel

method for ranking arguments in conversational data. We developed techniques to recognize

abstract objects and issues under discussion that are central to a speakers stance by introduc-

ing a new task of Argument Facet Similarity (AFS). A bottom-up approach was used to induce
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facets by identifying similar repeated arguments across many discussions of a topic. A graded

argument similarity model was defined that takes as input two sentential arguments and returns

a scalar value that predicts their similarity (AFS). Section 6.1 summarizes the major contribu-

tions and findings of the thesis. Section 6.2 discusses the limitations. Finally, we conclude with

a discussion of possible avenues for future work that stem from this research in Section 6.3.

6.1 Contributions and Conclusion

In this section, we revisit and discuss how far the hypothesis presented in the intro-

duction have been validated, and the underlying research contributions.

6.1.1 Central Propositions and Important Arguments of a Social Media Dialogue

The first contribution of the thesis is to identify the debate propositions most central

to a particular stance, which are used to summarize the abstract issues in an ideological online

debate dialogue.

Obtaining reliable data for central propositions was a first step in this direction. In

Chapter 3, we described a systematic collection of naturally occurring dialogue corpus from

political debate on internet forums, with 61 dialogues on the topic of Gay Marriage, 50 on

Abortion, and 50 on Gun Control. Annotating text spans in the dialogue that correspond to cen-

tral propositions is a cognitive process and can be biased. We increased the objectivity of the

task by using saliency as a measure for determining central propositions. We elicit salience us-

ing summarization by many human summarizers. The common elements across the summaries

137



extracted from the pyramid structure, also known as high tier pyramid labels, reflected the im-

portant content in the dialogue. These pyramid labels then identified the issues under discussion

in debate dialogues, giving the central propositions as demonstrated in Section 3.4. This work

is amongst the first to apply the pyramid evaluation scheme to argumentative dialogue. Our first

hypothesis is:

H1: It is possible to map the ranked labels from the pyramid annotation back to the dialogue

with good reliability..

In Section 3.5, we showed that our annotation scheme could be successfully applied to

link pyramid labels to dialogue sentences with substantial agreement. In particular, we obtained

a Cohen’s Kappa of 0.68 for Gun Control, 0.63 for Abortion, and 0.62 for Gay Marriage. The

step by step approach using pyramid labels linked to dialogue sentences identified important ar-

guments in a dialogue in a verifiable and precise manner rather than based on purely subjective

judgments of the annotators. As a result of this study, we created an Argument Dialogue Cor-

pus, and contributed to the current state of knowledge in the following ways: (1) we collected

summaries of spontaneously-produced written dialogue of high social and political importance

(2) summaries reliably annotated with pyramid structure, and dialogues with well-defined im-

portant arguments. This annotated corpora fostered the development of computational methods

to validate the next hypothesis in this thesis.

H2: Adding linguistic and contextual features improves argument extraction.

Our next contribution is the development of an automatic summarization framework

for extracting important arguments in social media dialogue, as described in Chapter 4. Statisti-

cal corpus analysis in Section 4.1 showed that a considerable number of sentences were marked
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as not important and therefore non-argumentative. As a result, we modeled argument extraction

as a binary classification task to select important sentences from social media dialogue. Subse-

quently, we used an SVM and a Bidirectional LSTM to train and predict. Section 4.2 described

the core feature extraction module based on linguistic and contextual features. Moreover, our

analysis gave an in-depth insight into the LIWC categories that provided the topical information

useful for identifying sentences with substantive issues. Our system obtained a higher F-score

(0.74 for Gun Control, 0.71 for Gay Marriage, and 0.67 for Abortion) significantly beating the

traditional summarization baselines, for all the three debate topics. Experimental results showed

that our model makes use of both topical features (LIWC) and general features (Readability).

High performance of our model was also due to our new contextual features. Feature combina-

tion and ablation tests in results Table 4.3 demonstrated that leveraging contextual information

from Stanford Coreference module, and information from previous sentences significantly im-

proved the performance of the classifier.

6.1.2 Argument Facet Similarity

In Chapter 5, we introduced the notion of an Argument Facet, defined a novel task of

Argument Facet Similarity, and designed the experiments to support our last hypothesis:

H3: The proposed features yield better performance on AFS than those used for STS.

Issues and concerns which manifest in a large number of arguments represent impor-

tant topics of conversation and debate. Social media argumentation is a dynamic activity, and

many of the interesting and topical arguments are developed in dialogical situations. People use

arguments to support their beliefs and claims, as well as attack the opponents. In Chapter 5, we
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defined an argument Facet as a low level issue that often reoccurs in many arguments in support

of the author’s stance or in attacking the other author’s position. Another major contribution of

the thesis is the development of Argument Facet Similarity framework as discussed in Sections

5.2 and 5.3 , where we developed a new corpus and computational models aimed at identify-

ing various facets across opinionated dialogs. These facets can give an insight into an average

person’s viewpoint on the current issues.

Other work in this area categorizes sentences or posts using topic-specific argument

labels, which are functionally similar to our facets as discussed above (Conrad et al., 2012;

Hasan and Ng, 2014; Boltuzic and Šnajder, 2014; Naderi and Hirst, 2016). Boltuzic and Šnajder

(2015) used a predefined list to label posts. They applied unsupervised clustering using a se-

mantic textual similarity tool, but evaluate clusters using their hand-labeled argument tags. This

scheme is very limited and can identify explicit aspects as present in this predefined list. How-

ever, the issues in a debate are not fixed, and argumentation is an ongoing process where the

new aspects emerge all the time. In contrast, our approach as described in 5.2 and 5.3 induced

facets in a bottom-up manner by explicitly modeling graded similarity of sentential arguments,

and does not map arguments to any predefined list. Moreover, these earlier approaches assume

the labels are dependent on a particular stance towards an issue, whereas our facets are deliber-

ately designed to unify across stance disagreement to capture similarity in facet and argument

simultaneously. Chapter 5 illustrated the design of two different experiments for AFS. In Sec-

tion 5.2 we developed an AFS regressor for predicting the similarity of human-generated labels

for summaries of dialogic argument while in section 5.3 the AFS regressor operated on pairs

of high quality arguments extracted from social media conversations. Section 5.3.1 improved
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the argument quality extractor from Swanson et al. (2015) and created a large dataset for Ar-

gument Quality (AQ) for three debate topics, namely Gun Control, Gay Marriage and Death

Penalty. We then developed another corpus of sentential argument pairs annotated with AFS

scores with high reliability. Establishing clear guidelines for the AFS task was crucial so that

homogeneous and consistent annotations could be obtained, which was required to successfully

apply machine learning algorithms that learn to predict AFS on new unseen data. To this end,

we achieved an average pairwise correlation of 0.7 for the first set and 0.68 for the second set

of annotations using Mechanical Turk. We proposed novel feature sets consisting of Ngrams,

LIWC dependencies, and Rouge for the AFS task, and compared predictions using feature ab-

lation studies across different models. The results from both the set of experiments showed that

AFS with our proposed features significantly outperformed the STS baselines, validating H3 .

In summary, we introduced a methodical approach to discover argument facets across

multiple dialogues on topics of social and political importance. Our end-to- end argument ex-

traction approach allows summarizing important arguments from a dialogue, whereas the two

approaches on argument facet similarity enable the recognition of semantically similar argu-

ments, i.e., arguments about the same facet. Together, these approaches represent significant

steps towards processing real-world arguments in natural conversations, provide an output that

would enable users to get an overview of issues in a discussion, and systematically reason about

the arguments on both sides of an issue.
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6.2 Limitations

Summarizing important arguments and argument facet induction is a first step to-

wards bottom-up approach of facet induction in social media dialogue. The reported work has

limitations, which we address in this section.

6.2.1 Manual Pyramid Annotation

Recognizing the central propositions in a dialogue required human intervention at

two levels. The first step was to collect multiple summaries of a given dialogue, followed by the

pyramid annotation of summaries. The summary collection was quick and easy as summariza-

tion did not require formal training, and was accomplished using Mechanical Turk, a crowd-

sourcing platform. Though pyramid annotations have proven to be highly reliable (Nenkova and

McKeown, 2011), they were costly and time-consuming. The annotators were undergraduates

with linguistic background and had to be trained for several hours on how to use the pyramid

software. Even after the training phase is complete, pyramid generation is a slow process as the

annotators iterate over the process until they are satisfied with the semantic content units, and

the summary contributor assignments. The lack of automation is a major hindrance to the more

widespread use of pyramid method for summarization. Yang et al. (2016) proposed Pyramid

Evaluation via Automated Knowledge Extraction (PEAK), a first attempt to generate pyramids

automatically. It uses open information extraction to identify subject-predicate-object triples as

SCUs, and graphs constructed from the triples to identify and assign weights to SCUs. Seman-

tic similarity of triples is analyzed to identify the contributors for a SCU. The method achieved
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high correlation between scores based on an automated pyramid and scores based on a manual

pyramid. The original text to be summarized was an elementary physics text. This data is quite

different from social media dialogues which are informal, unstructured, and often noisy. There-

fore, it could be useful to evaluate in future studies the performance of PEAK method on our

dialogic social media data.

6.2.2 Domain Specific AFS

The system we have trained for AFS is domain and topic specific. Since it was a novel

task and we developed the framework from scratch, we could not test it for generalization to

other domains. To overcome this limitation, semi-supervised approaches such as clustering and

topic modeling as well as topic independent features could be explored. Previous work shows

that metrics used for evaluating machine translation quality perform well on paraphrase recogni-

tion tasks (Madnani et al., 2012). In our experiments, ROUGE performed very well, suggesting

that other machine translation metrics such as Terp and Meteor may be useful (Snover et al.,

2009; Lavie and Denkowski, 2009). Recently, Yin et al. (2016) used general Attention Based

Convolutional Neural Network for modeling a pair of sentences. Interdependent sentence pair

representations were shown to be more powerful than isolated sentence representations for an-

swer selection (AS), paraphrase identification (PI) and textual entailment (TE). The architecture

could be exploited further for developing a generalized topic independent framework for finding

argument similarity.
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6.2.3 Back-Linking Task of Pyramid Labels to Sentences

We only considered Tier 3 and above labels for the linking task. The lower tiers may

have important information but we define the upper tiers as the most important content as per

the pyramid method. The Mechanical Turk summaries were abstractive and hence sometimes

may contain individual views and opinions such as “Author 1 and Author 2 are annoyed with

each other”. These types of statements that reflect personalized views of the summarizers often

end up on lower tiers of the pyramid and may not map to any actual dialogue utterance in the

back-linking task.

6.3 Future Work

6.3.1 Argument Quality Scores for Summary Construction

We used an off the shelf AQ tool from Swanson et al. (2015). It gives a score to each

sentence indicating how clearly it expresses a particular argument facet. The tool was refined

to improve the predicted scores for the sentences. Dialogue Sentences can be also ranked based

on their relative AQ predicted scores. This ranking would produce another argument summary

for a given dialogue. However, we need to retrain and rebuild the model from scratch to get the

ranking for new dialogue sentences. It would be interesting to compare this type of argument

summary with that obtained from pyramid linking task and may serve as another baseline for

the argument dialogue summarization framework described in Chapter 4.
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6.3.2 Argument Quality Pairs

The refined AQ extractor in Section 5.3.1 treated all posts on a topic equally, operating

on a set of concatenated posts. As a consequence, the AQ extractor may eliminate arguments

made by less articulate citizens. Every conversation has different dynamics and a single pref-

erence order across all discussions may not exist. An approach to get more diverse arguments

could be based on argument quality labels between argument pairs within a dialogue. Sentences

in the Annotated Dialogue Corpus with a score of 3 or greater than 3 are argumentative, and

represent the relative importance of the content. This can provide an alternate definition of

argument quality (AQ) score. The AQ score of each argument reflects the relative preference

within the dialogue, giving a more diverse set of arguments where every dialogue in a debate

contributes. For a given dialogue, the arguments with an average AQ score of 3 or 3.5 may be

considered in the lower quality set while those with a score of 4.5 or 5 are the more preferred

ones. Pairs can be generated by taking the cross product of these two sets, giving an argument

preference corpus. We performed a preliminary investigation to determine what these pairs look

like. Table 6.1 shows example pairs from the corpus, and argument comparison looks a promis-

ing direction for future work. Habernal and Gurevych (2016b) address a closely related task of

argument comparison to measure qualitative properties of Web arguments based on their con-

vincingness. However, they model pairs by concatenating the isolated argument representations.

For the computational model, we plan to model the argument pair using Siamese architecture

(Bromley et al., 1993). These networks have been used in the past to model sentence pairs

for comparison (Yin et al., 2016), and thus we expect these models to be useful for argument
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comparison tasks as well.

Topic Argument 1 Argument2

Gun Control The original intent and purpose of the Second

Amendment was to preserve and guarantee ,not

grant the pre-existing right of individuals, to keep

and bear arms.

Criminals do not break either law , they become crim-

inals after they broke them.

Gun Control Would you feel secure knowing people around you

had guns.

Surely its obvious to you that this poses far more

threats than securities.

Gay Marriage Why is it in the interests of society to prevent gov-

ernment involvement in marriage?

Why should government get out of the marriage busi-

ness.

Gay Marriage I personally define marriage as a union of two peo-

ple who love one another and wish to make a com-

mitment to one another

The cultural definition comes from observation.

Abortion People respected life unlike today. No, it was a different era.

Abortion Abortion is controversial for the simple fact that

many people consider the procedure murder.

Pain in the medical experiments I referred to was not

intentional but a consequence of the experiment.

Table 6.1: Argument pairs with more preferred arguments in bold.

6.3.3 Explore Lower Tier Dialogue Sentences

The machine learning model did not distinguish between lower tiers, i.e. sentences

that have not appeared in the summary to those that map to tiers 1 or 2. It is possible that some

of the dialogues had important content in lower tiers, thus in future work it would be useful to

refine the model further and analyze the misclassifications in lower tiers. For instance, consider

the sample lower tier labels in Table 6.2 In future, one would get annotations for the lower tier

mappings and see if the model can distinguish between the statements that map to a pyramid
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S.No Pyramid Label Tier Rank

1 Religious freedom argument could be used in any

format to justify any action.

2

2 Two people annoyed with each other by the end of

dialogue.

1

Table 6.2: Lower tier labels.

label as compared to statements not present in the summary at all. It would also be beneficial to

see which pyramid labels do not map to any sentence. For example, sentence 2 in the Table 6.2

may not map to any sentence in the dialogue as it represents an abstractive general viewpoint of

a summarizer.

6.3.4 Fuzzy Argument Clustering

In future, we plan to use our AFS regressor to cluster and group similar arguments

and produce argument facet summaries as a final output of our pipeline. However, since AFS is

based on the notion of graded similarity, argument propositions in a facet overlap with varying

levels of similarity. Therefore, a fuzzy clustering approach where arguments are allowed to

be present in multiple clusters with certain probabilities would be a better fit to the problem.

A fuzzy clustering algorithm that could be explored using AFS similarity pairs is given by

Skabar and Abdalgader (2013). Here the authors proposed a fuzzy relational sentence level

clustering algorithm that can be applied to any domain in which the relationship between objects

is expressed in terms of pair wise similarities. Additionally, since the dialogue corpus comes
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with stance annotations, we will also sample by stance-side, so that summaries can be organized

using Pro and Con, as in curated summaries.

Our final goal is to combine quality-based argument extraction, our AFS model,

stance, post and author level information, so that our summaries represent the wide diversity

of views and opinions expressed on a topic in a debate dialogue.
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