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Abstract of the Dissertation

Robust Design for FPGAs

by

Ju-Yueh Lee

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2013

Professor Lei He, Chair

Field programmable gate arrays (FPGAs) use memory cells, primarily static

random-access memory (SRAM) cells to implement field programmability for logic

and interconnect, which is a preferable platform due to its high performance and

low non-recurring engineering cost. To increase the logic density and the inte-

gration capability, modern FPGAs use ever advancing process technologies and

smaller devices. However, smaller devices are more vulnerable to environmental

upsets caused by high energy particle hits and internal noise, and may change

their logic states as a result. Such an upset is called a “Soft Error”, which is

recently acknowledged as the most critical reliability issue for FPGAs.

In the contexts of system failure and circuit functional failure, this disserta-

tion studies the effects of soft errors caused by environmental upsets of modern

FPGA architectures and presents novel methods for soft error tolerance to improve

FPGA robustness from system to circuit levels. This dissertation first presents a

comprehensive soft error analysis framework for SRAM-based FPGAs. By using

a stochastic soft error model, the soft error sensitivities toward functional failures

of a design implemented on an FPGA are quantitatively identified. At the system

level, a novel FPGA configuration memory (CRAM) soft error mitigation tech-

nique by Heterogeneous CRAM Scrubbing (HCS) is proposed. Next, at the circuit

level, two in-place resynthesis techniques are proposed: In-Place Decomposition

ii



(IPD) for FPGA logic elements and In-Place inVersion (IPV) for FPGA intercon-

nect components. In contrast to existing redundancy techniques, the proposed

techniques are attractive because they do not change circuit global placement and

routing and hence, have negligible cost on performance, area, and design closure.

Furthermore, a co-optimization algorithm leveraging the proposed IPV technique

for soft error and leakage reduction is proposed. Finally, this dissertation also

demonstrates validation of the IPV technique on an industrial FPGA.
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CHAPTER 1

Introduction

1.1 Introduction to Field Programmable Gate Arrays (FP-

GAs)

An FPGA consists of a 2D array of Configurable Logic Blocks (CLBs) that are

selectively connected by global routing as illustrated in Figure 1.1. The CLB

architecture can be characterized by (k, N), i.e., it contains a cluster of N Look-

Up-Tables (LUTs) with k inputs. These LUTs use configuration memory (CRAM)

to implement desired functions and are connected by local MUXes, allowing CLB

inputs and outputs to be routed to and from each LUT within the cluster. Global

routing resources connect CLBs through connection boxes and switch boxes by

wires deployed in directional channels with a width of W (the number of tracks).

Logic 

Block

IO 

Blocks

CLBs

Routing 

tracks

IO 

tracks

Switch box for 

tracks in two 

directions

Connection Box 

for tracks and 

CLB output pin

Connection Box 

for tracks and 

CLB input pin

Figure 1.1: Island style FPGA architecture overview
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1.2 Background and Motivation

SRAM-based FPGAs are preferable developing platforms due to their rapid time

to market and low non-recurring engineering cost. Benefiting from the continu-

ous technology scaling in the past decades, SRAM-based FPGAs enable higher

density, lower power consumption and faster speed to implement more complex

designs, which are increasingly used not only for rapid prototyping but also for

deployed circuit systems, such as internet line cards and routers. At the same

time, higher integration demands a large quantity of memory cells. As Fig. 1.2

shows, the amount of memory elements used in Xilinx Virtex FPGA families have

rapidly increased, while the most used elements are CRAM cells to implement

the programmable logic blocks for functionality and routing resources for inter-

connects [Xild]. However, augmented memory size leads to degraded reliability

because these memory cells are vulnerable to soft errors. Consequently, soft error

tolerance has gained growing significance for modern SRAM-based FPGAs and

become the essential step towards dependable FPGA designs and applications.
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Figure 1.2: CRAM sizes of Xilinx Virtex FPGA families.
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Single Event Upset (SEU) is among the major causes of soft errors in SRAM-

based FPGAs. When a high energy particle, such as the secondary particles

liberated when a neutron collides with a silicon atom or the alpha particle emitted

from a contaminant of an electronic device, strikes a static memory element,

particularly an SRAM cell or a flip-flop, if the charge deposited in the particle is

large enough (called the critical charge), it can affect the voltage of a circuit node

and may change the logic value stored in a static memory element, i.e. causing

inadvertent 0 → 1 or 1 → 0 logic switch. In addition, power supply disturbance

and electromagnetic interference are may also cause SEUs. In contrast to hard

errors, such as device defects, soft errors typically imply a temporary malfunction

or interruption of operation.

In general, no shielding solution is available because it requires more than 30

meters of water to completely protect electronic equipment from these high en-

ergy particles. Furthermore, a well known fact of soft error effects is that at 65nm

devices began to grow unreliable and that trend continued, which has become

a major cause of circuit malfunctions. As device dimensions shrink, the device

supply voltage aggressively scales down in order to minimize the power consump-

tion such that the critical charge of a circuit node decreases, rendering steadily

increasing soft error rate (bit flip). Although the growth of soft error rate for

SRAM cells slows down primarily because of the saturation of the supply volt-

age, the chip level soft error rate continuously increases due to dramatic density

growth as Fig. [ITY10] shows, depicting the soft error rate under different process

technologies [Bid10]. Notably, the chip level soft error rate has increased by 7×

from 130nm to 22nm process technologies.

Redundancy is the most common soft error mitigation technique to achieve a

higher level of reliability [NSB12]. The first level of protection is the ability to

know an error has occurred. To achieve this feature, dual rail logic implemen-

tations, i.e. replication of logic functions or sub-functions, have been proposed

3



0

0.5

1

1.5

2

2.5

3

3.5

4

250 180 130 90 65 45 32 22

Design Rule (nm)

Soft Error Rate Ratio

Figure 1.3: Soft error rate scaling trend.

for error detection [DR08, FAL12, LSR11]. The second level of protection is

recovery from errors. For higher reliability requirements, triplication with a vot-

ing system is suggested, such as Triple Modular Redundancy (TMR) technique

[LV62, KSC05a, SRK04, GKB11, PCG08, ZIO10, PCC08, KSC05b], which has

been widely used in mission critical applications. However, the above redundancy

techniques typically require 2× to 6× power and area overhead. Particularly, the

extra circuit cost can be overtly expensive while not all applications require the

highest level of reliability.

Another well known technique includes resynthesis for robustness in the Computer-

Aided Design (CAD) flow. In a typical logic synthesis, the optimization objectives

are usually focused on performance, power consumption, and area. To further im-

prove reliability, logic resynthesis algorithms for reliability have been proposed

and they are applied after the typical logic synthesis flow [HFH08, FHH09]. How-

ever, they may change the circuit structure, bringing overhead to the physical

design, i.e. placement and routing, and thus require additional circuit cost and

longer synthesis iterations for design closure.

In order to meet the industrial demands for reliability while maintaining a

minimum circuit cost, in-place local rewriting is the most popular technique in
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logic resynthesis. An in-place resynthesis alters local components, such as logic

gates or look-up-tables (LUTs), with minimum or no change to the global place-

ment and routing, such that the optimization effort from the previous stage is

preserved. Therefore, they do not require extra circuit cost and have minimum

overhead on area, power, and performance. In Application-Specific Integrated Cir-

cuits (ASICs), this is usually referred to as Enginerring Change Orders (ECOs).

In FPGAs, because of their flexible configurability, higher design freedom and

potentials in in-place resyntheses for further optimization is allowed. Due to low

overhead, in-place methods are preferred in non-mission-critical applications, such

as networking or information systems.

The overall objective of this research is to exploit and develop optimization

techniques for reliability against soft errors for SRAM-based FPGAs with mini-

mum or no cost. Specific goals of this research are as follows.

• A systematic study of the soft error impact on modern FPGA architectures.

• Exploit efficient soft error mitigation methods with minimum or no cost.

1.3 Dissertation Contributions

In this dissertation, a robust FPGA design flow is proposed as Fig. 1.4 illustrates.

Compared to most of the existing techniques which do not carefully consider the

heterogeneity of the soft error effects and cause extensive overhead, this disserta-

tion studies soft errors thoroughly in various FPGA components and architectures.

Targeting at both system and circuit levels, several soft error tolerant techniques

are proposed. In particular, the focus of the proposed techniques is to mitigate

soft error impact while maintaining minimum or no cost.

Specifically, the primary contributions of this dissertation are as follows:

• This dissertation presents a comprehensive SEU induced soft error analysis
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framework for SRAM-based FPGAs. By using a stochastic soft error model,

it quantitatively evaluates the sensitivity of a soft error to functional failures.

It performs soft error analyses with respect to different FPGA components,

architectures, and applications, which yields useful insights for developing

robust FPGA designs and CAD algorithms. Our detailed analysis reveals

that soft errors on interconnect carries more functional failures and thus

explicit consideration of soft error mitigation on interconnect is necessary.

• By quantifying the sensitivity of SEUs to failures at system level, this dis-

sertation for the first time estimates the soft error tolerance improvement

by CRAM scrubbing. Based on system failure sensitivity information, this

dissertation presents Heterogeneous CRAM Scrubbing (HCS) for FPGAs.

Our experiment demonstrates that HCS increases 60% of improvement on
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system mean-time-to-failure (MTTF) compared to the conventional homo-

geneous CRAM scrubbing approach.

• At circuit level, this dissertation first presents an In-Place Decomposition

(IPD) resynthesis technique leveraging modern FPGA architecture features

in the programmable logic blocks (PLBs). This method focuses on soft

errors on logic elements, i.e. look-up-tables (LUTs), which decomposes a

logic function on an LUT into two or more subfunctions and combines them

via converging logic to reduce the soft error rate caused by SEUs. Such

decomposition can be implemented using the decomposable LUT and carry

chain in the original PLB without changing the PLB-level placement and

routing. Experimental results demonstrate IPD improves MTTF by 4.55×

on average for FPGA architecture similar to Altera Stratix-IV.

• For interconnect robustness, this dissertation presents In-Place LUT polarity

inVersion (IPV), to exclusively mitigate the SEU impact on FPGA compo-

nents of modern unidirectional routing structures. This technique leverages

the error masking scheme of FPGA routing multiplexers (MUXes). By de-

veloping efficient algorithms to reassign LUT polarities of IPV, experimental

results demonstrate 4× MTTF improvement.

• Furthermore, a co-optimization algorithm for soft errors and leakage power

consumption reduction using IPV technique is presented, which is able to

achieve the same level of soft error improvement plus 30% leakage power

reduction on average.

• Lastly, this dissertation also presents a validation of IPV technique on an

industrial FPGA. Using a Xilinx Virtex FPGA as a case study, we propose

a new soft error model and a modified IPV algorithm based on static signal

probability, where the experimental results show that IPV reduces MTTF

by 2× approximately.
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In particular, all of the proposed techniques in this dissertation do not change

circuit global placement and routing, and therefore lead to a fast design closure

with minimum overhead.

1.4 Dissertation Outline

The remainder of this dissertation is organized as follows: Chapter 2 first discuses

the soft error impact and modeling for SRAM-based FPGA. Then, we intro-

duce our SEU soft error analysis framework. In Chapter 3, we present our novel

CRAM scrubbing approach, Heterogeneous CRAM Scrubbing, to explicitly im-

prove FPGA CRAM reliability against failures at the system level. Chapter 4

presents In-Place Decomposition (IPD), which specifically improves reliability of

FPGA logic elements against soft errors. Chapter 5 presents for the first time an

in-place resynthesis technique, In-Place LUT inVersion (IPV), specifically target-

ing on reliability improvement for FPGA routing components. In addition, the

proposed IPV technique not only mitigates soft errors, but also leakage for FPGA

routing multiplexors, and a co-optimization algorithm for soft errors and leakage

is presented in Chapter 6. Moreover, we present validation of the IPV algorithm

on Xilinx Virtex FPGA in Chapter 7. Finally, Chapter 8 concludes the work and

discuses the future direction.
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CHAPTER 2

Quantitative SEU Soft Error Evaluation for

SRAM-Based FPGA Architectures

In order to design robust FPGA circuits, architectures, or synthesis algorithms

with respect to SEU, it is required to investigate the SEU impact and iden-

tify the SEU-sensitive circuit elements in FPGAs [CVR03, BBB04a]. Previous

works estimating the soft error sensitivity, or failure rate, are mainly simula-

tion based [BCD11, RRV02, HAW05, BCD12, VSC04], hardware emulation-based

[LBN10, KAJ12, ITA12], radiation-based, or a combination of the techniqeus

[JCG03, GCZ03, BBB04b]. However, it is hard for those methods to predict the

failure on a specific CRAM bit during design time. Software-based simulation and

analytical approaches have also been proposed [KPM07, AT05, ATM07, AT07],

but without explicit consideration for interconnect. In addition, these existing es-

timating approaches assume a bidirectional routing architecture. However, mod-

ern FPGA routing architecture has shifted from conventional bidirectional routing

towards unidirectional routing, where the failure sensitivity has not yet been stud-

ied.

Targeting generic FPGA architectures and applying logic simulation on a

post-layout FPGA application, we develop a comprehensive SEU fault evalua-

tion framework for SRAM-based FPGAs. It can quantify the failure rate, that

is, the probability of an SEU induced soft error that causes a system failure on

a basis of each CRAM bit. We analyze the SEU induced soft errors in various

circuit resources, and predict their impact on circuit functionality with a unified
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metric of soft error rate for each configuration bit. In the proposed framework,

the soft error is analyzed based on detailed post-layout circuit information. By

exploring different architectural combinations, we reveal different failure sensitiv-

ities for various resources and observe that architectural variations can influence

the overall reliability notably. We envision that our work will cast useful insights

for more robust FPGA circuit and architecture. In the later chapters, we will use

this platform to develop and evaluate SEU mitigation techniques.

2.1 SEU Induced Soft Errors in FPGA

Different circuit elements in an FPGA behave differently when affected by an SEU.

In this section, we study the fault behavior of the CRAM bits in LUTs, local

routing MUXes, and global routing PIPs according to the generic architecture

description preceding and their micro-architecture typically used in FPGAs. Both

the bidirectional and unidirectional routing architectures are considered. Note

that previous work treats multiple CRAM bits on one net as a single node [AT05].

In our framework, each bit is evaluated based on the detailed post-layout circuit

for more realistic predication of its failure sensitivity.

2.1.1 SEU on Look-Up-Tables (LUTs)

A typical implementation of an LUT is illustrated in Figure 2.1, where an LUT

is the basic configurable logic element in FPGAs. For a k input LUT, there are

2k CRAM bits for the desired logic function. The k inputs make a cascading

selection on these bits and provide one bit as the final LUT output.

The behavior of an SEU on an LUT CRAM bit is straightforward. An SEU

on any CRAM bit of the 2k bits may flip the LUT output when the affected bit

happens to be accessed under certain input patterns. The affected value may

further propagate throughout the logic network and finally result in a functional

10



Figure 2.1: SEU on an LUT.

failure when it reaches the primary outputs of the circuit.

2.1.2 SEU on Intra-CLB Routing

The intra-CLB routing connects the CLB inputs (and outputs) to LUT inputs

(and outputs) within each CLB. In the generic architecture to be evaluated in

this work, we allow for a full connection for all the inputs and outputs. Local

routing primarily uses MUXes for signal selection. Therefore, for the typical

implementation of a local routing network, as illustrated in Figure 2.2, each k

input pin of the N LUTs has its own input MUX with several CRAM bits, which

are programmed to select any of the CLB inputs, as well as the N outputs of the

LUTs within the same CLB. At the same time, the N LUT outputs can also be

connected to any of the CLB outputs via the local routing MUXes. The MUXes

enable the arbitrary interconnecting capability within each CLB.

Figure 2.2 further shows a typical structure for an encoded MUX under an

SEU. The CRAM bits controlling this MUX select one signal to drive the MUX

output. Once affected by the SEU, one of the encoded CRAM bits flips its state

and thus select an erroneous input signal onto the output. Different from the
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Figure 2.2: SEU on an input MUX inside a logic block.

SEU on an LUT, the affected configuration bit can always mistakenly select an

irrelevant signal disregarding the logic status of the net or the entire circuit. The

irrelevant signal has the chance of being propagated to primary outputs and leads

to a functional failure.

2.1.3 SEU on Bidirectional Routing

Conventionally, inter-CLB routing is typically interconnected via bidirectional

pass transistors [SV06, GB07], and its connectivity within a connection box or

a switch box is configured by CRAM bits. Once affected by an SEU, these bits

either Temporarily Switch-To-0 (TST0) or Switch-To-1 (TST1).

Figure 2.3 illustrates an SEU induced open fault, that is, TST0, which breaks

the originally connected wires at the faulty point in the connection box or switch

box. The outgoing wire from the open point carries an unknown signal whose

value depends on the FPGA circuit. Without loss of generality, we assume that

the broken net will be tied off to either Vdd or Gnd [RCS05] such that the following

transistors can be prevented from being conducted as short circuits, which should

be avoided in CMOS designs. However, the tied-off value may bring an input error

to the immediate fan-outs of the faulty point if it is different from the desired value.
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The error may propagate through the fan-out network and finally be observed at

primary outputs as a circuit failure.

Figure 2.3: Open fault in connection box or switch box in a schematic view.

SEU induced short fault, that is, TST1, bridges two adjacent wires when they

both pass through the same connection box or switch box. Figure 2.4 illustrates

an example, where two nets are bridged due to an SEU in the top-right connection

box. In fact, bridging may not always inject faults into the circuit. It depends on

the driving logic and strengths along the two nets. If both the driving signals are

the same, the signal at the faulty point is forwarded without fault. Only when

the two nets are driven by opposite logic values is the net bridging likely to cause

circuit failures.

For the two nets bridged caused by an SEU, the key concern is what logic

values are forwarded to the following logic from the bridging point. That is,

the steady logic values of d1 d4 are concerned, as the example in Figure 2.4

shows. To get their values, we derive the equivalent interconnect circuit as in Fig.

2.5(a), where the resistance and capacitance are respectively modeled according

to the physical layout after placement and routing. Although the driving signals
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Figure 2.4: Short fault in a schematic view (bridging at the crossing point).

of the two nets s1 and s2 change at circuit frequency, the transition time of the

faulty signal is typically small compared to that of the clock period. As a result,

we can statically analyze the circuit by ignoring the interconnecting and sink

capacitance from Figure 2.5(a), according to the study in [GYM05], on a bridged

circuit. Then, a resistance network with R1, R2, and Rb is left, as in Figure 2.5(b),

whose resistance values are calculated by the physical architectural parameters

and routing distances of the concerned wires from their respective driving blocks.

Hence, the signal values at the faulty point can be calculated by a voltage dividing

between Vdd and Gnd along the wires, and the logic values of d1 d4 can be

obtained accordingly.

In addition, the impact of bridging may vary along the affected wires. Still

considering net s1 in Figure 2.4, the logic values on points d2 and d3 are possible

to flip due to voltage dividing, while d1 may remain its value because it is nearer

to its driving source at s1. Similarly, d4 may also be flipped depending on its

driving distance to its source s2. This behavior makes the bridging fault quite

different from that of the LUTs. It is likely that a single wire is decomposed to
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(a)

(b)

Figure 2.5: The bridged circuit model [Gao et al. 2005].

carry different logic values, and multiple faults may be injected into the circuit at

one time.

2.1.4 SEU on Unidirectional Routing

For inter-CLB routing, modern FPGAs have shifted from bidirectional routing

towards unidirectional routing architecture. In this new routing architecture,

connection boxes and switch boxes employ directional wires to route signals and

use MUXes for signal interconnection. As a result, the fault behavior in this

unidirectional routing is different from that of bidirectional pass transistors. In

this work, we consider the strict use of single-driver directional routing [LLT04].

Once affected by the SEU, one of the encoded CRAM bits for routing MUXes

flips its value and thus select an erroneous input pin onto the MUX output, similar
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to the affected local routing seen in Figure 2.6. The erroneous signal may be

further propagated to primary outputs to be finally observed.
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Figure 2.6: An SEU on a connection box and switch box in a unidirectional routing
architecture.

The unidirectional routing architecture is mainly made up of MUXes, which

raises the signal selection fault instead of the open fault or short (bridging) fault

in the conventional bidirectional routing when an SEU occurs.

2.2 SEU Evaluation Framework

We now present our SEU fault evaluation framework. Our framework performs

the fault analysis on each CRAM bit under the single fault assumption, that is,

at any time, at most one SEU exists in the FPGA. This is reasonable, because

compared to SEUs, simultaneous multiple-bit SEUs (MBU) have less chances to

happen in current FPGAs [Cha09].
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2.2.1 Soft Error Sensitivity Evaluation

Previous work [HFH08, FHH09] have studied the sensitivity of functional failure

to SEU fault on LUT CRAM bits by introducing the metric of criticality for LUTs,

or called Soft Error Rate (SER). In this work, we leverage the idea and extend it

to interconnects, and present a unified metric of SER definition as follows.

For a circuit C with n primary inputs, the soft error rate SERb of one CRAM

bit b, which configures an FPGA resource like an LUT or a routing resource, is

the probability that an error can be observed at the primary outputs due to the

SEU on b.

SERb(x) =
1

2n
|{x|Cb(x) 6= Cb̄(x)} (2.1)

where x ∈ (0, 1)n is one of the vectors in the exhaustive input set X. Cb(x) is

the circuit output without SEU fault under x, and Cb̄(x) is the circuit output

when bit b is flipped. When Cb̄(x) and Cb(x) mismatches, the system is said to

encounter failures which should be attributed to bit b. Therefore, by identifying

detectable errors under input set X on the circuit, the metric of SER reveals the

possibility of an SEU on a CRAM bit that results in FPGA failures, which is

generally acknowledged as the failure rate by an SEU.

In general, the SER of bit b can be obtained by exhausting all the 2n permissible

vectors in a complete input set X, which is extremely time consuming. In practice,

it can be approximated by Monte Carlo-based simulation , which can provide good

accuracy as implied in [LLH10]. In addition, it applies to any circuit element as

long as it has CRAM bits in it as in Eq. 2.2. For example, we can quantify the

chip failure rate from each CRAM bit in the circuit by aggregating the SER of

one bit and the probability of SEU that happens on that bit.
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∑
b∈elem

SERb · Pr(b
SEU−−−→ b̄) (2.2)

where elem is the set of CRAM bits used by the design implemented on the FPGA.

2.2.2 Framework Overview

Figure 2.7 illustrates the flow of our proposed SEU fault evaluation framework for

SRAM-based FPGAs. Given a circuit netlist, it first applies logic optimization

and technology mapping onto the LUTs. The mapped circuit is packed into

logic blocks then placed and routed by physical design tools. The SEU analysis

starts right after the placement and routing, taking the post-layout circuit, FPGA

architectural file, and circuit logical function as inputs. Based on the metric of

SER, our framework evaluates the failure rate or sensitivity of each CRAM bit

in various elements according to their fault behavior, as described in Section 2,

for example, the open and short faults in bidirectional routing or the selection

faults in unidirectional routing. After the SEU analysis, SEU-induced soft errors

are injected into the simulator, which then performs logic-level simulation on the

faulty circuit and calculates the SER for each bit automatically.

As an important evaluation step towards robust FPGA design, our framework

can identify the most failure-sensitive circuit element and evaluate the applicabil-

ity of various fault mitigation schemes. This evaluation can be applied as early as

possible to be helpful during design time. Based on physical layout information,

our framework is able to reveal the failure sensitivity for each CRAM bit in the

FPGA circuit that is vulnerable to SEUs. In addition, the framework is universal

and flexible to different FPGA architectures by adding new micro-architectural

descriptions of the circuit element concerned. As a result, we envision that by

shedding light on the hidden relation between CRAM bits and FPGA functional

failures, our proposed framework will be helpful in designing more robust FPGA
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Figure 2.7: Overview of our SEU evaluation framework.

circuits, architectures, and synthesis algorithms.

2.3 SEU Characteristics on Architectures

In the experiments, the 10 largest MCNC combinational circuits are used as our

test benchmark circuits with their statistics shown in Table 2.1. For the bench-

mark circuits, we first apply logic optimization and technology mapping to 4- and

6-input LUTs (LUT size of k) using the Berkeley ABC tool [ABC] to represent the

most popular used LUT input sizes in practice. The mapped circuits are packed

by different logic block sizes (cluster size N) of 4, 6, 8, and 12 by the T-VPack

tool. As a result, their combinations cover eight different architectural settings

representing different cases, like smaller LUT with larger cluster, or larger LUT

with smaller cluster, and some other common settings. Then, the circuit under
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each case is placed and routed by the VPR tool [LKJ11] for minimum dimension

and routing channel width, such that it generates the FPGA array as compactly

as possible without involving extra unused bits that exceed the actual need of the

circuit.

Circuit # Gates # Inputs # Outputs
ex5p 527 8 63
apex4 722 9 19
misex3 735 14 14

alu4 730 14 8
ex1010 850 10 10
apex2 942 39 3

seq 1020 41 35
des 1498 256 245
spla 2237 16 46
pdc 2326 16 40

Table 2.1: Size Statistics for the 10 MCNC Benchmark Circuits

In this experiment, we characterize the SEU induced soft errors with respect

to different circuits and CLB architectures. The hardware model and detailed

SEU fault behavior on them have been discussed in Section 2. For the SER calcu-

lation, we performed Monte Carlo simulation with 10K vectors, which consumes

an acceptable runtime and provided relatively accurate estimations of the SER

values, according to the study in [LLH10]. The CRAM bits in all logic and rout-

ing resources are evaluated based on their physical information obtained after

placement and routing, which contribute to the majority of the configuration bits

in an FPGA. There are other CRAM bits with much smaller numbers, but may

configure clocks, resets, or other modules for control. It will be our future work to

model their diversified behavior when affected by an SEU. We suppose a uniform

distribution of the probabilities for each bit to go faulty, that is, Pr(b
SEU−−−→ b̄)

values are identical in Equation 2.2 for all the CRAM bits. In this way, we can

simplify our SEU evaluation by focusing on their sensitivity to failure. In this

section, we will first report the SEU characterization from different perspectives.
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Note that the experimental results are based on the averaged data of the ten

benchmark circuits if no circuit name is explicitly specified.

2.3.1 SER under Different CLB Architectures

Under bidirectional routing with different CLB architectures, Figure 2.8(a) shows

the proportion of CRAM bit numbers in different circuit elements, and Figure

4.14(b) shows the proportion of their SER values. As a brief overview of the

two plots, several observations can be made. (1) The routing resources hold the

majority of the CRAM bits, from 61% to 87% approximately, while contributing

even more in total SER, over 90% in these cases. This means that functional failure

is most likely due to routing rather than LUT. (2) In terms of SER, there is no

single circuit element dominating the overall SER. However, local routing MUXes

have a larger proportion, while the proportion of their CRAM bits is relatively

small compared to other elements. This indicates that they are the most failure-

sensitive elements in an FPGA. (3) Increasing LUT size k and cluster size N

increases LUT bits, but their SER proportion is nearly the same, which is less

than 10% for all the cases. (4) With the increasing LUT size k and cluster size

N , local routing MUXes contribute more in the total SER, because both k and

N enlarge the number and the size of local routing MUXes and shrink the global

routing network at the same time.

We further show Figure 2.9(a) for a detailed view of the SER values from

different circuit elements. The x-axis lists all the circuits under test in different

architectural settings, and the y-axis gives the summed SER value for each case.

From the figure, one can see that each circuit presents significantly different failure

sensitivities due to their inherent logic. Moreover, failure sensitivities of the same

circuit under different settings may also vary. It is interesting to note that a larger

LUT input size k provides a notable reduction of the total SER value, because

a larger LUT input size k shrinks the network dimension, which helps to reduce
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the routing CRAM bits that are more vulnerable to failures. In contrast, cluster

size N balances the impacts of switch boxes versus connection boxes and local

routing MUXes, while the total SER values of cases with medium cluster size N

are generally lower than other cases of the same LUT size.

We also report detailed SER values from different elements under the unidi-

rectional routing in Figure 2.9(b). One can see that it presents similar patterns

to those of bidirectional routing. A most significant difference is that in unidirec-

tional routing, the switch boxes hold the largest number of CRAM bits among

the three routing elements and dominate the overall SER as well. The reason is

due to the micro-architecture in unidirectional routing, where CLB outputs go

directly into switch box MUXes nearby and only CLB inputs are multiplexed in

connection boxes.

Further, Figure 2.10 reports the SEU evaluation time for the unidirectional

routing architecture to provide a sketch of the efficiency of our evaluation frame-

work. The experiments are performed on a personal desktop with an Intel i3-CPU

with 3G RAM. One can see that a smaller LUT input size k generally results in a

longer evaluation time, because smaller LUT sizes require more interconnect and

involve more CRAM bits on routing for evaluation. Note that in our evaluation

framework, all the CRAM bits will be evaluated, each with 10K input vectors.

Therefore it will be time consuming when a circuit has millions of CRAM bits.

To accelerate the evaluation, several techniques can be applied on our framework

in the future, such as packing the bit-wise input signals for parallel simulation

and packing circuit nodes into larger blocks to avoid unnecessary node traversal

when a block is fault free. In addition, due to the inherent parallelism in fault

simulation, the framework can be easily deployed across different machines to gain

further boost-up.
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2.3.2 SER Breakdown in Bidirectional Routing

As discussed in Section 2.1, SEUs on the routing CRAM bits in bidirectional

routing induce both open and short faults. Figure 2.11 shows the SER breakdown.

An SEU-induced short fault is more sensitive to functional failure than that of on

open fault, almost 1.3x in switch boxes and 4.5x in connection boxes on average,

in terms of their accumulated SER values. This is because most of the time, switch

boxes have utilization rates lower than 30%, and the rates of connection boxes are

even lower. Typically, a lower utilization rate in a switch box or a connection box

provides more possibility for a short fault. At the same time, the sum of short

and open SER values in switch boxes is notably reduced when the LUT input size

k and CLB size N increase, because the sensitive CRAM bits in switch boxes rely

completely on the dimension of the global routing network, which shrinks with an

increasing LUT input size k and CLB size N .

2.4 Summary

A comprehensive SEU fault evaluation framework for SRAM-based FPGAs has

been proposed in this chapter. Based on the post-layout FPGA application, the

proposed framework is capable of quantifying the SEU fault-induced functional

failures for exact configuration bits in various circuit elements, such as LUTs, con-

nection boxes, switch boxes, and local routing multiplexers. The SEU induced soft

errors were characterized by several existing FPGA architectures differentiated by

CLB sizes, LUT sizes, and routing structures. Detailed soft error characteristics

from various perspectives can be found in our experiments. The SEU fault eval-

uation framework provides detailed information for identifying the most critical

configuration bits or circuit elements to develop new fault mitigation algorithms,

which will help on developing robust FPGA architectures and SEU mitigation

techniques.
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(a)

(b)

Figure 2.8: In bidirectional routing, (a) CRAM bits and (b) total SER proportions
from different circuit elements under different CLB architectural settings.
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(a) Bidirectional routing

(b) Unidirectional routing

Figure 2.9: Detailed SER values for all the circuits under (a) bidirectional routing
(b) unidirectional routing.

Figure 2.10: Runtime for the SEU evaluation by our framework.
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Figure 2.11: SEU-induced open and short fault breakdown in switch boxes and
connection boxes in bidirectional routing.
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CHAPTER 3

Heterogeneous Configuration Memory

Scrubbing for Soft Error Mitigation in FPGAs

State-of-the-art SRAM-based FPGAs utilize a huge amount of configuration mem-

ory elements to implement logic and interconnect configurability for complex cir-

cuit functionality [Xilc]. Reliability of CRAM has become an issue of increasing

importance for SRAM-based FPGAs over the last decade due to soft errors caused

by Single Event Upsets (SEU) [Muk11]. Advances in manufacturing process tech-

nology and the extensive use of SRAM have resulted in a higher susceptibility to

SEUs.

Although radiation hardened techniques for FPGAs to prevent CRAM from

upset have been proposed [RPD07, McC09, acta, Xila, SAS10a], they result in

lowered logic density and increased area. To improve FPGA CRAM reliability

against SEUs, it is common to employ CRAM soft error detection or correction

techniques such as Cyclic Redundancy Check (CRC) [SB04], Error Correction

Code (ECC) [LSR12], or scrubbing [BPP08] for CRAM. For CRAM scrubbing

techniques, [BPP08] evaluates two different memory scrubbing schemes including

internal CRAM scrubbing solution using CRC and ECC [Cha09] and an external

scrubbing solution designed by NASA/GSFC REAG. Without frame by frame

readback and ECC checking, REAG scrubber has improved performance over the

solution developed by Xilinx. [HSW09] provides a way to perform partial reconfig-

uration with memory scrubbing and improves the configuration time for different

designs. However, none of the techniques have demonstrated quantitatively how
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effective or how much improvement they can make with respect to MTTF.

In addition, SEUs have varying impacts and sensitivities toward circuit behav-

iors. Rather than mitigating all the logic errors in the circuit, a difficult challenge

is to prevent critical failures in the system. While some SEUs may cause system

failures, others may not have a significant impact and are considered system don’t

cares. For example, an SEU on circuit control path is likely to cause unrecoverable

system failures. In contrast, a single error on the circuit data outputs such as video

or voice streaming rarely affects the system operation and only lowers the quality

of the streaming content, which is usually insignificant. However, all of the exist-

ing CRAM scrubbing methods are homogeneous. That is, all of the CRAM bits

are considered equally critical, which limits the improvement on system MTTF.

Therefore, tuning fault tolerant techniques to consider critical system failure and

system don’t care becomes particularly important for FPGA applications.

In this paper, we first demonstrate for the first time how much CRAM scrub-

bing can quantitatively improve the system MTTF measured by the stochastic

system vulnerability factor of CRAM bits. Then, we propose a Heterogeneous

CRAM Scrubbing (HCS) technique, to make an intelligent use of application in-

formation to mitigate system failures to the greatest extent. To fully leverage the

HCS technique, we develop a dynamic programming approach that solves the HCS

problem efficiently. Our experimental results first show a module level study using

the 10 largest combinational MCNC benchmark circuits that the optimized HCS

technique achieves average system MTTF improvement of approximately 20%.

Then, a system level study on a H.264/AVC decoder implemented on a Xilinx

Virtex-5 FPGA shows an estimation of roughly 60% system MTTF improvement

compared to the existing homogeneous CRAM scrubbing method. Note that the

proposed HCS technique can be applied to most of the CRAM scrubbing solu-

tions, such as the external CRAM scrubbing method in [BPP08], by replacing the

golden bitstream with the HCS result. Because modern FPGAs feature dynamic
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and partial reconfiguration, HCS does not require a stall and can be performed

without interrupting the circuit operation. In addition, HCS virtually does not

lead to any overhead on performance, power, and cost.

The rest of this chapter is organized as follows. Section 3.1 introduces the

stochastic modeling of SEU induced soft errors and its evaluation metrics. Sec-

tion 3.2 presents the idea of how CRAM scrubbing improves circuit system ro-

bustness and the problem formulation of the proposed HCS technique. Section 3.3

presents the dynamic programming approach to solve the HCS problem. Section

3.4 shows the experimental results on MCNC benchmark for module level study

and a H.264/AVC decoder for system level study. Section 3.5 summarizes this

chapter.

3.1 Preliminaries

3.1.1 System Robustness Evaluation

Mean Time to Failure (MTTF) and Failures in Time (FIT) are two most com-

monly used design metrics to quantitatively evaluate the robustness of circuit

systems. FIT is defined by the number of failures occurred in one billion hours

while the circuit system is operating. On the other hand, MTTF is reversely pro-

portional to the summation of the FIT values for every component in the system

according to [MER05], which can be calculated by:

MTTF (in hours) = 109/FITtotal (3.1)

The FIT value of an FPGA can be further decomposed into two factors. First

is the probability that an SEU occurs on a CRAM bit, which is the bit upset rate

measured by upsets per billion hours and denoted by Rintrinsic error that depends

on operating environment. The other factor is the Architecture Vulnerability
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Factor (AVF) which is the probability of a fault leading to a system failure, i.e.

a visible error at the circuit primary outputs. As a result, the FIT value of an

FPGA circuit can be given by

FITtotal =
∑

AV F ·Rintrinsic error (3.2)

To quantitatively measure the sensitivity of a CRAM bit to a system failure,

we define System Failure Rate (SFR). Under the single fault assumption, where

at most one fault exists in the circuit at a time, the SFR of a CRAM bit evaluates

the probability of the SEU on the bit that leads to a system failure,

SFRb = Pr(Cb(x) 6= Cb̄(x)|b SER−−−→ b̄) (3.3)

where x ∈ (0, 1)n is the exhaustive set of input vectors and Cb(x) is the circuit

status without SEU on b under x, and Cb̄(x) is the circuit operation status when

bit b is flipped due to an SEU. In general, the circuit operation status is usually

defined by the register values of the main finite state machine or the circuit outputs

that significantly affect the system operation. In general, SFRb can be obtained

by an exhaustive fault simulation on 2n input vectors. For practical use, we can

use Monte Carlo fault simulation to estimate SFR values efficiently.

While the metric of SFRb is used in this chapter as our evaluating measure-

ment to estimate the probability of system failures due to an SEU on a specific

CRAM bit, we will show in Section 3.3 that it is the key factor and can be con-

verted to AVF, FIT and MTTF on system failures when CRAM scrubbing is

applied.
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3.1.2 SEU Manifesting

It is a well known fact that not every SEU impacts the circuit functionality.

Specifically, whether an SEU can induce system failures is determined by two

factors: (a) the spatial factor, i.e. the fault location when the SEU occurs and

(b) the temporal aspect, i.e. the circuit status when in operation.

Practical applications typically do not fully utilize all of the CRAM bits in an

FPGA. In addition, only a portion of the CRAM bits occupied by the application

affect the circuit operation, which are generally defined as critical bits of the

design. On the contrary, most CRAM bits have no effect on circuit functionality,

and are considered as don’t-care bits of the design. In other words, a circuit

function is changed only if an SEU occurs at a critical bit. Further discussions

regarding critical bits and don’t-care bits will be presented in Chapter 4.

In terms of the temporal aspect, an SEU requires time to manifest itself at the

output and seldom raises a failure immediately. For example, this may happen

if an SEU occurs at some component that is intermittently idling during circuit

operation. Consequently, the SEU does not cause failures until the component

is active again and the fault is propagated to circuit outputs. For many cases,

a circuit requires a certain amount of time to response to an SEU, and another

period of time for the SEU induced errors to propagate to the circuit primary

outputs or FFs. The total amount of time required above is defined as SEU Time

to Manifest (TTM):

TTM = t2 − t1 (3.4)

where t1 is the time when an SEU occurs in the circuit and t2 is the time when

the circuit fails.
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3.2 Problem Formulation

The spatial and temporal factors indicate that an SEU requires a particular loca-

tion and time to induce a failure. This suggests that if the SEU on a critical bit

can be corrected before it induces an error, the system can stay healthy and fail-

ures can be avoided. In this section, we consider memory scrubbing, and propose

a heterogeneous CRAM scrubbing technique and its problem formulation.

We first define time to scrub of a CRAM bit as the scrubbing interval N of

a CRAM bit (i.e. the number of clock cycles to rewrite the bit). For a conven-

tional homogeneous memory scrubbing, which sequentially rewrites every CRAM

bit of the entire CRAM, the time to scrub each bit is equivalent to the time for

the scrubbing unit to rewrite the entire CRAM. Therefore, the scrubbing inter-

val is the total number of CRAM bits to be scrubbed divided by the number of

CRAM bits that can be scrubbed in one clock cycle. To improve the scrubbing

interval, only those CRAM bits used by the design are required to be scrubbed.

When a circuit size increases by occupying more critical bits, the time required

between scrubbings of a specific bit becomes longer, which degrades the AVF. A

straightforward solution to improve the AVF is to increase the speed of the CRAM

scrubbing. However, scrubbing speed is constrained by FPGA configuration in-

terface.

Based on the CRAM bit soft error analysis in Chpater 2 and other works

such as [LLH10] and [CM10], the vulnerability varies dramatically from node to

node in the circuit, which highly depends on the circuit structure and applica-

tion functionality. Intuitively, it helps to scrub critical components with higher

vulnerability more aggressively. In other words, more vulnerable bits should be

scrubbed with a higher rate, and those robust bits should be scrubbed less fre-

quently. Therefore, memory scrubbing intervals for different CRAM bits could

be adjusted according to their vulnerability for higher AVF reduction. We define
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the memory scrubbing schedule as a sequence of CRAM bits to be scrubbed, and

the sequence is applied periodically to refresh the entire CRAM. Note that each

CRAM bit is appeared at least once in the sequence to prevent the accumulation

of SEUs.

Figure 3.1 illustrates a simple example of how rescheduling the memory scrub-

bing sequences can prevent circuit failure. Suppose a circuit with n critical CRAM

bits with a homogeneous scrubbing unit, which refreshes these n bits sequentially

as shown in Figure 3.1(a). Suppose bit 1 encounters an SEU right after being

scrubbed, and can raise system failures after a fixed interval of cycles, i.e. the

TTM of bit 1, independent of the scrubbing sequence. Then, in scenario (a), the

system fails after the TTM of bit 1 because the time to scrub bit 1 is longer than

the TTM of bit 1 and cannot prevent the system failure. However, if we resched-

ule the scrubbing unit for bit 1 as in scenario (b), which rewrites bit 1 twice in

the schedule, the SEU on it can be cleared before it leads to failures. As a result,

finding a new scrubbing schedule helps to improve the AVF, and this problem can

be formulated as the following.

Formulation 1. Given a circuit C placed and routed onto an FPGA, the SFR

values for each CRAM bit in C, the operating frequency Fc of C, and a memory

scrubbing unit operating at Fm which refreshes W CRAM bits in each clock cycle,

schedule the memory scrubbing units to refresh each CRAM bit (or a group of

CRAM bits in sequence) in C in terms of its ordering and rate such that the AVF

of C can be minimized.

3.3 Heterogeneous Configuration Memory Scrubbing Al-

gorithm

In this section, we present the reliability improvement with CRAM scrubbing

based on the stochastic fault modeling presented in Section 3.1. Then, we pro-
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1 2 3 … … n-1 n 1 2 3 … …

Worst case time to rewrite : a seconds
error!

SEU on bit 1 TTM of bit 1

(a) Homogeneous CRAM scrubbing

1 2 3 … 1 … n-1 n 1 2 3 … …

SEU on bit 1 TTM of bit 1

Worst case time to rewrite : a/2 seconds

(b) Heterogeneous CRAM scrubbing

Figure 3.1: Examples of homogeneous and heterogeneous CRAM scrubbing

pose a dynamic programming based algorithm that can solve the heterogeneous

memory scrubbing scheduling problem optimally with a given length of the sched-

ule.

3.3.1 AVF Update with CRAM Scrubbing

Many scrubbing techniques and error correction methods by ECC code have been

proposed. However, no quantitative metric has been presented to show how much

improvement it can provide. In the following, we present a stochastic method to

estimate the improvement of CRAM scrubbing.

According to definition of Eq. 3.3, SFR is the probability that an error is
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observed at the circuit primary outputs by a random input vector. For each clock

cycle, we apply different random input vectors to the primary inputs. Assuming

that an SEU occurs at a CRAM bit b, and the scrubbing interval of the bit is N

clock cycles, the probability that the circuit does not produce any error after N

clock cycles is

AV Fb = 1− (1− SFRb)
N (3.5)

Note that N depends on the status of the scrubbing, i.e. at which bit the

CRAM scrubbing unit is rewriting. In this work, we assume a conservative and

worst case condition that an SEU always occurs right after the CRAM bit has

just been rewritten. In other words, N is the worst case time to scrub. Therefore,

for the existing homogeneous CRAM scrubbing technique, N is the time to scrub

the entire CRAM or the entire design.

3.3.2 Dynamic Programming Algorithm for Heterogeneous Memory

Scrubbing Scheduling

According to Eq. 3.5, reducing the time to scrub N of one CRAM bit can re-

duce its AVF. However, scrubbing a CRAM bit more frequently generally result

in scrubbing other CRAM bits less frequently under the assumption that only

one CRAM bit can be scrubbed at a time. Hence, a careful schedule of CRAM

scrubbing process becomes essential for AVF improvement of the circuit. In this

section, we propose a dynamic programming based algorithm that assigns the

memory scrubbing rates (how frequently the CRAM bits are scrubbed) hetero-

geneously for CRAM bits based on the AVF update in the previous section to

minimize the average AVF of the circuit.

In fact, the number of CRAM bits that can be written into CRAM at a time

is determined by the CRAM and the FPGA architectures. Therefore, we define
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the CRAM granularity as the following.

Definition 1. We define the minimal number of CRAM bits that can be accessed

at a time as CRAM granularity. As a result, the atomic operation of the memory

scrubbing unit is to rewrite a CRAM bit or a group of CRAM bit according to the

CRAM granularity.

In order to obtain a feasible solution and solve the problem efficiently in the

proposed algorithm, we fix the length of the memory scrubbing schedule, which

is defined as L as follows.

L: the number of atomic operations in the scrubbing sequence for given CRAM

granularity.

Then, the HCS algorithm assigns scrubbing rates for CRAM bits, i.e. how

many times a CRAM bit or a group of CRAM bits are scrubbed in the given

length of the schedule. Furthermore, we define

SR: the number of CRAM bits scrubbed in a clock cycle of circuit operation,

which is calculated by the memory scrubbing throughput divided by the circuit

operating frequency. Note that the circuit application on the FPGA and the

memory scrubbing unit can operate under different clock domains, and SR is

calculated under the circuit application clock domain.

Sb: how many times the CRAM bit or a group of CRAM bits b is rewritten in

the memory scrubbing schedule, i.e., the scrubbing rate of bit b.

Given L, SR, and the SFR for each CRAM bit (group), we present the math-

ematical formulation of the memory scrubbing scheduling problem as follows.

Minimize average AV F =
∑n

i=1 AV Fi/n

Subject to AV Fi = 1− (1− SFRi)
Qi

where Qi = L
Si·SR

(3.6)
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Note that AVF is additive and can be calculated independently for each bit.

Therefore, the problem above can be recursively divided into subproblems and

solved optimally. We propose a dynamic programming algorithm that minimizes

the total AVF of a circuit given L, SR, and SFRc, where SFRc contains the

CRAM bits (group) and their SFR in the circuit C. The CRAM scrubbing

scheduling problem with fixed length of the schedule can be solved optimally

by the proposed dynamic programming approach and the pseudo code is given

below.

Algorithm 1 Pseudo-code of HCS algorithm

1: set best avf dp = ∅;
2: optimal avf=avf dp(L, SFRc);
3: procedure avf dp(l, sfr)
4: if avf dp(l, sfr) has been solved and exists in best avf dp then
5: return the result of avf dp(l, sfr) in best avf dp
6: end if
7: if |sfr| == 1 then
8: return avf(sfr[0], l)
9: end if
10: if l = 0 then
11: return ∞
12: else
13: min avf =∞
14: for Si = 1;Si ≤ l;Si = Si + n do
15: current avf = avf(sfr[0], Si) + avf dp(l − Si, sfr′)
16: if current avf < min avf then
17: min avf = current avf
18: end if
19: end for
20: add (avf dp(l, sfr), min avf) to best avf dp
21: return min avf
22: end if
23: end procedure

In the pseudo code presented above, given L and SFRc of a circuit C, where

SFRc is the set of all CRAM groups in C with their SFR values. We define

avf dp(L, SFRc) as the function to solve CRAM scheduling problem. optimalavf

stores the optimal AVF for C and best avf dp is an array storing the optimal
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solutions for the subproblems of avf dp(l, sfrc), where l ≤ L and sfris a subset of

SFRc. avf(sfr[b], Si) calculates the AVF of a CRAM group b by its SFR value

with the scrubbing rate Si in the schedule. In line 4 and 5, if the subproblem

avf dp(l, sfr) has been solved, it returns the optimal result for avf dp(l, sfr)

stored in best avf dp. In line 7 and 8, if there is only one CRAM group that has

not been assigned the scrubbing rate, it allocates the group with the maximum

scrubbing rate with l and returns its AVF value. In line 10 and 11, if L = 0 and sfr

contains at least one CRAM group, it returns∞ because it cannot provide a valid

solution. This means schedule sequence has been fully assigned, but each CRAM

group is required to be scrubbed at least once in the scrubbing schedule. From

line 13 to line 21, the function recursively and increasingly assigns a scrubbing

rate for the first CRAM group in sfr, and the scrubbing length is reduced by the

scrubbing rate assigned to the group. Note that n is step size for scrubbing rate

assignment, and each time the scrubbing rate is increased by n. Then, the avf dp

function is called recursively to find the optimal solution for the subproblem of the

rest of the CRAM groups, sfr′, with the remaining length of the schedule, l−Si.

Then, based on the optimal scrubbing rate assignments can be found, where the

AVF is minimized.

3.4 Experimental Results

The proposed dynamic programming algorithm for HCS optimization is imple-

mented in C++ on a Ubuntu server with Xeon 2.4GHZ CPU and 24GB memory.

In this section, we evaluate the proposed HCS technique on two study cases: (a) a

module level study using the 10 largest MCNC combinational benchmark circuits

and (b) a system level study using an H.264/AVC video decoder implemented on

a Xilinx Virtex-5 xc5vlx110t FPGA. For the module level, an error is recorded

when a logic output is different from the right value and all logic outputs are
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treated equally. For the system level, an error is recorded considering so called

system level dont cares. Specifically, errors for control modules (such as entropy

coding and the main finite-state machine in the decoder) are recorded in the same

way as that for the aforementioned module level study. On the other hand, errors

for datapath modules are recorded only when the logic output errors are larger

than the given thresholds. Clearly, the system level case study is similar to the

practice and is therefore more relevant.

3.4.1 Module Level Case Study: MCNC benchmark circuits

The 10 largest combinational MCNC benchmark circuits are first optimized and

mapped to 6-input LUTs using Berkeley ABC technology mapper [ABC]. The

mapped circuits are packed using a cluster size of 8 using T-VPack tool, and

placed and routed by the Versatile Place and Route (VPR) tool set [BR97], with

a minimum dimension setting generating an FPGA as compact as possible. On the

placed and routed circuit, we apply Monte Carlo simulation for SEUs on CRAM

bits to calculate the SFR for each CRAM bits with an assumption that any error

at the primary outputs induces a system failure.

To evaluate the effectiveness of the proposed dynamic programming approach,

we first apply the traditional homogeneous memory scrubbing and calculate the

average AVF value (AV Ftypical) as the baseline for comparison purpose. Then,

we apply the dynamic programming algorithm to generate an HCS solution and

calculate the optimized AVF value (AV Foptimized). Due to the fact that MTTF is

inversely proportional to AVF, we show the MTTF improvement ratio of HCS over

the baseline by calculating AV Ftypical/AV Foptimized. We assume in the experiment

that SR = 100, where the memory scrubbing unit rewrites 100 CRAM bits when

a circuit runs a clock cycle (a rate similar to that in Xilinx Virtex-5 assuming

the circuit is running at 50Mhz), and L = 10 × |B|, i.e. the length of HCS is 10

times the total number of CRAM bits used by the circuit. We set the step size of
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Circuit
Circuit properties MTTF improvement

# of CRAM bits
Dimension CRAM Granularity
x,y w 16 64 256 1024

alu4 103425 12,12 32 24.53% 29.70% 20.81% 12.21%
apex2 165888 14,14 26 25.64% 23.70% 21.41% 20.39%
apex4 149505 14,14 26 18.75% 12.35% 8.44% 4.86%

des 688128 15,15 36 10.16% 10.13% 6.61% 6.54%
ex1010 193536 17,17 32 17.50% 14.60% 8.63% 6.54%
ex5p 88064 17,17 32 18.75% 16.06% 13.80% 8.26%

misex3 97208 17,17 34 22.83% 21.86% 18.26% 13.64%
pdc 522240 42,42 18 18.53% 15.51% 6.83% 3.24%
seq 171008 24,24 48 24.44% 19.36% 14.78% 10.13%
spla 466944 25,25 46 20.54% 15.13% 6.68% 3.21%

Average - - - 20.17% 17.84% 12.62% 8.90%

Table 3.1: MTTF IMPROVEMENT ON 10 LARGEST COMBINATIONAL
MCNC BENCHMARK CIRCUIT

the scrubbing rate assignment to 5 (n=5) in the proposed dynamic programming

approach to achieve a good tradeoff between the quality of the result and the

runtime.

Table 3.1 summarizes the MTTF improvement of the HCS solutions under

various CRAM granularities. Note that some circuits have the same dimension

but use different numbers of CRAM bits because only CRAM bits actually used

by the circuits should be counted. The results show that on average the HCS

achieves roughly 20% improvement over homogeneous memory scrubbing with

CRAM granularity of 16. A general trend shows that as CRAM granularity

increases, the improvement by HCS decreases. This is because larger CRAM

granularity typically result in lower design freedom for seeking a better HCS so-

lution. For granularity of 1024, the proposed HCS can still provide an average

improvement of approximately 9%.

We also list the runtime of the dynamic programming approach in Table 3.2.

On average the proposed algorithm returns an optimal solution in approximately

two hours for the smallest CRAM granularity in our experiment. The runtime
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Circuit
Runtime (s)

CRAM granularity
16 64 256 1024

alu4 2659 455 94 13
apex2 5344 1052 244 45
apex4 4466 960 203 35

des 20053 2699 581 136
ex1010 5261 1622 344 65
ex5p 1829 324 65 8

misex3 2577 425 83 11
pdc 17506 3036 655 143
seq 5012 325 67 12
spla 12350 2439 522 116

Average 7705.7 1333.7 285.8 58.4

Table 3.2: HCS runtime

decreases dramatically with larger CRAM granularity because it also reduces the

solution search space in the dynamic programming algorithm. When the CRAM

granularity is 1024, the proposed technique can solve the circuits in a minute while

providing a good improvement over the baseline.

We also investigate the impact of different HCS length, and the results are

illustrated in Figure 3.2. We set the HCS length to a multiple of the number of

CRAM bits used by the circuit and is swept by L = Lratio×|B| along the x-axis in

the figure. As one can see, the improvement by HCS begins to converge when the

Lratio is equal to 9. Note that larger L generally has better quality of the result

but requires larger storage space for the implementation of HCS. For example, for

CRAM scrubbing method using the golden bitstream, Lratio = 2 requires twice as

larger memory as the original one. On the other hand, scrubbing methods using

ECC checking and correction technique [Cha09] can store the memory address

to be scanned only, which greatly reduces size of storage and also minimizes the

overhead caused by larger L.

Figure 3.3 depicts the MTTF improvement ratio for different SR values. The

improvement increases when SR increases, which in general shows that the HCS
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Figure 3.2: MTTF improvement for different length of HCS.

technique has better performance in terms of MTTF when the CRAM scrubbing

unit runs at a higher throughput.
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Figure 3.3: MTTF improvement ratio under different SR value.

From the experimental results we show that even a circuit module has high

sensitivity to system failures on its CRAM, the proposed HCS technique and the

dynamic programming algorithm can still provide a good HCS solution with relia-

bility enhancement by 6% 26% over the existing homogeneous CRAM scrubbing.
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3.4.2 System Level Case Study: H.264/AVC Decoder

For complex circuit systems and applications, not every circuit output error should

be considered as a system failure. Instead, only errors occurred at the circuit

critical outputs or registers cause system failures, which require a system reset to

bring the system back to operation. For system level study, we use a H.264/AVC

decoder, which is one of the most popular applications in FPGAs. H.264/AVC is

a video coding standard which provides high compression efficiency via complex

functionality and feature, such as entropy coding, transformation, filtering, and

estimation. For example, an error in a single video frame can be considered

a system don’t care since the human vision system ignores such error during

watching video [CO05]. However, a soft error in video decoder could degrade the

quality in the successive video frame or even worse, lose the control of a system.

For this reason, a good mitigation strategy is crucial to improve system MTTF.

Unlike the module level SFR estimation, SFR estimation at the system level

is much more challenging due its complexity. To solve those issues, we provide

an approach of bottom-up SFR estimation. We assume control path has higher

SFR than data path. Especially in video coding, an error in video output may be

an acceptable error while an error in FSM output is a critical fault. Meanwhile,

some modules with lossy compression functionality have error-tolerance capability

like filter and IDCT. So we assume their SFR is lower than control based module

like main controller. Based on the assumptions, we define the critical registers in

H.264/AVC decoder such as register in controller and entropy coding since the

error in those registers will accumulate in time domain and make system enter an

unknown state. Specifically, the proposed SFR estimation method can be divided

into the following two steps: (1) divide the whole system into smaller modules;

(2) transfer SFR in nodes into SFR in CRAM bits for the modules. The details

of the two steps are as follows.
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First, we divide the system into modules by functionality illustrated in Figure

3.4, and the modules are further divided into submodules. This strategy refers to

actual placement and routing to define dimension for each module. We assume

the CRAM bits in each module have high spatial locality. So the difference in

SFR on CRAM bits for one module is relatively small, and we use the average

SFR of the module as the SFR of the CRAM bits that belong to the module.
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Figure 3.4: H.264/AVC decoder implemented on Xilinx FPGA Virtex-5
XC5VLX110T.

In the second step, we estimate the SFR of each module via Monte-Carlo fault

44



simulation. For each module, the faults are injected to LUTs in the post-mapped

simulation model. Then, we perform post-mapped simulation and capture the

simulation result of the critical registers and the critical outputs. By comparing

with the golden circuit result, we can calculate the average SFR for each module

simulated. Lastly, the average SFR is assigned to the CRAM bits that belong to

the module.

Table 3.3 and 3.4 show the experimental result for MTTF improvement and

runtime under different CRAM granularities. For system-level analysis, the allo-

cation in CRAM is proportional to FPGA resource although there are still some

unused CRAM bits in each module. The system MTTF improvement is the

weighting summation for each module improvement. The experiment in granu-

larity of 1312 (which is as the same setup as Xilinx Virtex-5 configuration [19])

shows nearly 40.84% MTTF improvement. If we change granularity to 256 and 64,

the improvements can even achieve 54.71% and 60.01%. The reason for such large

improvement is that high percentages of CRAM bits have low SFR. This gives the

rescheduling algorithm room to improve MTTF for other modules with high SFR.

Negative MTTF improvement in the IDCT and de-blocking filter shows that the

rescheduling algorithm sacrifices MTTF in those two modules. The bad module

MTTF in the IDCT and de-blocking filter don’t degrade system MTTF. In fact,

the SFR in IDCT and deblocking filter are rarely low so there is no significant

drawback even if we increase their MTTF via low scrubbing frequency. However,

system MTTF improves significantly since other modules have more time slots to

enhance MTTF via memory scrubbing in higher refresh frequency.

3.5 Summary

A Heterogeneous CRAM Scrubbing technique is proposed in this paper to improve

the robustness of FPGAs against SEU induced system failures. To estimate the
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Functional
block

# of
FF

# of
LUT

# of
CRAM bits

MTTF improvement
CRAM granularity

64 256 1312

CABAC 2278 9027 1093462 37.91% 35.21% 21.17%
Intra

prediction
5094 14634 3636129 60.43% 40.54% 35.24%

IDCT 2471 10405 2971154 -1.97% -1.87% -2.09%
Picture

Reconstruction
547 416 165051 28.27% 15.64% 8.27%

Deblocking
Filter

6648 7613 3638842 -0.84% -0.75% -1.07%

Main
Controller

418 466 205257 55.53% 36.73% 21.66%

Inter
Prediction

8157 16133 5856249 71.73% 57.65% 48.57%

System - - - 60.01% 54.71% 40.84%

Table 3.3: MTTF IMPROVEMENT ON THE H.264/AVC DECODER

CRAM granularity Runtime (s)
64 75012
256 20850
1312 5398

Table 3.4: HCS RUNTIME FOR THE H.264/AVC DECODER
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improvement from CRAM scrubbing, we use a stochastic fault modeling technique

which allows us to calculate the MTTF improvement from CRAM scrubbing.

Considering different levels of impact from SEU induced soft errors, we present

a dynamic programming algorithm providing a HCS solution that effectively im-

proves the system MTTF based on the system failure sensitivities of the CRAM

bits. Our system-level estimation using a H.264/AVC decoder implemented on

a Xilinx Virtex-5 FPGA shows that the proposed HCS method improves MTTF

by 60% compared to the existing homogeneous CRAM scrubbing. Such improve-

ment virtually does not have any overhead, i.e., virtually no change on area,

performance and power at the system.
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CHAPTER 4

In-Place Decomposition for Robustness in

FPGAs

Robustness with respect to SEU in FPGA has been extensively studied in the

literature [DH06, JMA12, BCD11]. To mitigate the impact of SEU, previous re-

search has proposed radiation hardened static memory elements which reduce the

susceptibility of SEUs [ZCW11, SAS10b, WCW09]. Specific FPGA architectures

have been developed such as radiation hardened FPGAs from Xilinx [Xilb] and

anti-fuse based FPGAs from Actel [Actb]. Although the aforementioned harden-

ing techniques improve resilience against SEUs, radiation hardened devices usually

do not meet the industrial demand due to the additional cost and low densities.

Recently, several logic resynthesis algorithms have been proposed to improve

robustness for commodity FPGA with minimal area, power, or performance penal-

ties. ROSE [HFH08] evaluates robustness during iterative logic re-mapping and

remaps a logic block to a robust block template with path reconvergence. However,

ROSE can change the topology of the LUT-level network, resulting in physical

re-synthesis and potentially slowing down design closure between logic and physi-

cal resyntheses. IPR [FHH09] performs logic transformation while preserving the

topology of the LUT-level network, and removes the aforementioned design closure

problem. It maximizes the identical configuration bits corresponding to comple-

mentary inputs of an LUT such that the faults seen at a pair of complementary

inputs has less possibility of propagation and the overall reliability is optimized. In

essence, ROSE and IPR use logic masking/redundancy to migrate the impacts of
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SEUs, and their MTTF improvements could be limited when circuits are heavily

optimized for area and therefore have little implicit logic redundancy.

The state of art FPGAs such as Xilinx Vertix 7 and Altera Stratix IV [Xilc, alt]

use decomposable LUT, where an LUT can be decomposed into two or more

smaller LUTs and a second output pin is also provided (see Figure 4.1(a) and

Figure 4.1(b)), to improve both performance and logic density [CR06]. Leveraging

decomposable LUTs and under-utilization of large-sized LUTs, [LHM10] proposed

to duplicate the logic inside a not fully used LUT, and increase MTTF without

increasing the number of LUTs. However, the coding to combine the duplicated

logic is done in the fanout LUTs. This leads to extra interconnects and potentially

heavy area penalty and slows down design closure between logic and physical

resyntheses.

In addition to decomposable LUT, the programmable logic block (PLB) in

modern FPGA chips also have dedicated carry chain or adder (see Figures 4.1(a))

and 4.1(b)). While the carry function can be implemented by LUT in the same

PLB, these carry chain circuits are built in as alternative circuits to obtain

high speed for applications such as networking with extensive carry computa-

tion [ZP10]. However, the chip level utilization rate of these built-in carry chains

is typically less than 20%.

This chapter proposes an in-place decomposition (IPD) for robustness in FPGA.

IPD decomposes the logic function originally implemented by one decomposable

LUT into two subfunctions to be implemented by smaller LUTs and to combine

(also called converge in this paper) the subfunctions by carry chain. This decom-

position introduces redundancy as the original logic function is now implemented

with extra circuit (i.e. carry chain) and such redundancy is used explicit to make

circuit more robust against soft errors.

We propose an ILP (integer linear programming) algorithm to solve IPD opti-

mally inside each PLB and applied ILP iteratively to PLBs at the chip level. For
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10 largest MCNC combinational benchmark circuits synthesized by ABC mapper,

FMD from [LHM10] improves MTTF by 10%, but the proposed IPD improves

MTTF by 3.33× for the PLB architecture similar to the Altera Stratix-IV when

the 20% utilization rate of carry chain is assumed. The gap between 10% and

3.33× is the improvement due to performing logic converging within the same

PLB.

The rest of this chapter is organized as follows. Section 4.1 presents the pre-

liminaries and problem formulation. Section 4.2 discusses the IPD problem and

its properties. Section 4.3 presents IPD algorithm. The experimental results given

in Section 4.4 and this chapter is concluded by 4.5. To the best of our knowledge,

this work is the first systematic study on robustness using both the built-in carry

chain (or adder) and decomposable LUT features of modern FPGAs.

4.1 Preliminaries and Problem Formulation

4.1.1 Dual-output LUT and Built-in Carry Chain/Adder PLB Archi-

tecture

Emerging FPGAs employ dual-output features in their LUTs to increase perfor-

mance and density. For example, Xilinx Virtex-7 has a decomposable 6-input LUT

architecture with a dual-output capability which can be configured as a single 6-

input function or two independent functions with a total of 5 unique inputs (see

Figure 4.1(a)). Altera Stratix-IV uses an 8-input adaptive logic module (ALM),

which contains two adaptive LUTs (ALUT) as shown in Figure 4.1(b). An ALM

has similar features as the Virtex-5 6-input LUTs but with different input sharing

constraints. Moreoever, an ALM can implement any single 6-input function but

only a subset of single 7-input functions. Table 4.1 summarizes the input sharing

constraints when all input pins are utilized for both architectures. Specifically,

the input sharing constraints limit that the two large functions implemented on
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a dual-output LUT must have some inputs in common. Otherwise, only two in-

dependent small functions (without any input shared) can be implemented. For

example, when the second output is used, an ALUT in an ALM can implement

up to two 6-input functions with four inputs shared between the two ALUTs.

In particular, two functions that have number of inputs less than six can be im-

plemented on an Stratix-IV ALM if the total number of unique inputs are less

than eight. Only when two 6-input functions are implemented on an Stratix-IV

ALM, the two functions are required to have the same operations with four inputs

shared.

size of dual-function # of shared inputs
Virtex-7 6-input LUTs

5 , 5 5
Stratix-IV ALM

4 , 4 0
5 , 3 0
5 , 4 1
5 , 5 2
6 , 6 4

Table 4.1: Input sharing conditions (and also decomposition cases to be used by
IPD algorithm) for Virtex-7 6-input LUTs and Stratix-IV ALM

In addition to decomposable LUTs, the programmable logic block (PLB) in

modern FPGA chips contains a dedicated carry chain or adder (see Figures 4.1(a))

and 4.1(b)). While the carry function can be implemented by a LUT in the same

PLB, these carry chain circuits are built in as alternative circuits to obtain high

speed. Therefore, it was not the original intention of the FPGA architecture

design to use both the carry chain and LUT in the same PLB. Although new

synthesis tools have been developed to leverage both carry chain and LUT in a

same PLB, the chip level utilization rate of carry chains is typically less than 20%.
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4.1.2 Prevailing Technique Leveraging Dual-Output Feature for FPGA

Robustness

Fully masked duplication (FMD) has been proposed in [LHM10], where the ex-

plicit duplication of a function is performed by utilizing an unused second output

of a dual-output LUT. Then, AND or OR encodings for logic masking for ro-

bustness enhancement are added at all direct fan-out LUTs of a duplicated LUT

(see Figure 4.2) when unused input pins are available for fanout LUTs. A more

flexible PMD (partially masked duplication) has also been developed. Note that

the encoding of AND or OR is called converging logic in this work.

4.1.3 Formulation of In-place Decomposition

To formulate the in-place decomposition (IPD) method, we first define the decom-

position and converging of a function. Given an n-input function F , decomposition

transforms F into two subfunctions, F1 and F2, where the total number of unique

inputs is equal to n, and converging logic � is applied such that F = F1 � F2.

Figure 4.3 is an example of decomposition, where a 5-input function F is trans-

formed into a 4-input subfunction F1 and a 3-input subfunction F2 with two

inputs shared. Then, the outputs of F1 and F2 are combined by the converging

logic.

By taking advantage of the dual-output feature of LUTs, two subfunctions can

be implemented in a single dual-output LUT. Decomposition can be divided into

two categories, fully-input-shared decomposition where all inputs are the same for

the two subfunctions, and partially-input-shared decomposition, which includes

the case where there is no common input for the two subfunctions.

Unlike FMD and PMD in [LHM10], which require spare input pins of LUTs

for converging, IPD utilizes the unused dedicated carry chain (or adder) within

the same PLB to converge the two decomposed subfunctions. Note that although
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there are up to 24 = 16 types of converging gate, an AND type and an OR

type converging gates are sufficient to cover all error masking capabilities from all

converging gate (explained in Section 4.2, which can be implemented by a carry

chain/adder.

IPD offers clear advantages over the duplication technique in [LHM10]. First,

duplication implies two identical subfunctions. It is an over-simplified case of de-

composition that enables distinguished subfunctions, which could differ in terms

of functionality and function size and lead to more potential for improvement.

Secondly, IPD performs logic decomposition and converging within the original

PLB. It does not change PLB level placement and routing, and therefore there is

no PLB level penalty on timing, area and design closure. The only timing over-

head comes from the logic delay of the signal propagating through the converging

logic implemented by the high performance carry chain. However, it has been

reported that the majority delay in FPGA is contributed by its routing structure

[Geo00, DeH96, CX11], and the signal propagation of Xilinx Virtex-5 carry chain

is 17 times faster than the LUT [ZP10]. Therefore, the timing overhead of the

converging logic is negligible considering the timing delay of the entire circuit.

In contrast, the duplication (namely FMD) algorithm from [LHM10] carries out

duplication and encoding (called converging in this paper) in multiple PLBs, re-

quiring extra interconnects between PLBs and a heavy penalty in area, delay and

design closure.

With respect to the above discussion, we formulate the IPD problem as follows.

Formulation 2. Given a circuit C, IPD decomposes the logic function for a

PLB into two subfunctions such that the two subfunctions are implemented by the

decomposable dual-output LUT in the PLB and are combined (or converged) by

the carry chain in the PLB, and the resulting soft error rate is minimized.

While our formulation and algorithms presented here apply to any converging
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logic, for simplicity of presentation, we consider only AND and OR converging

logic.

4.2 In-Place Decomposition Properties

In this section, we first introduce an efficient soft error rate update method, and

then present two important properties and their proofs for optimal SER reduction

which significantly improves the efficiency of the proposed algorithm. Next, upon

identifying don’t cares in LUTs, we show that the flexibility of decomposition can

be further improved when don’t cares are considered.

4.2.1 Updating SER after In-Place Decomposition

In most of the fault tolerant FPGA resynthesis algorithm, such as ROSE and IPR,

the reliability evaluation (i.e. SER update) is done through fault simulation, which

results in excessive overhead in runtime. In this section, we present a analytical

method where SER update after decomposition can be obtained efficiently given

the SER of each CRAM bit of an LUT.

According to Eq. 2.1, we can explain the SER of an LUT SRAM bit in the

following way. Assume that Li is ith bit of an LUT L, the SER of an LUT

SRAM bit SERLi
is the probability that the erroneous content of SRAM bit Li

is accessed and used as the LUT output, multiplied by the probability that the

erroneous output of L is propagated to the primary output. Thus, SERLi
of the

an LUT before decomposition can be formulated as the following equation,

SERLi
= I(L, xi)×O(L,xi)× P (L, xi), (4.1)

and the average SER of LUT L is
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SERL =
∑

0≤i≤2N

SERLi
(4.2)

where xi is a permissible input vector of L which retrieves the content of Li,

I(L, xi) is the probability of xi occurring at L, and N is the number of inputs

of LUT L. The probability of passing the error from LUT L to the primary

outputs under LUT input vector xi can be divided into two parts, the internal

observability O(L, xi) and the external observability P (L, xi). The internal ob-

servability O(L, xi) is the probability that the soft error on Li can be observed

at the PLB output under LUT input vector xi, and the external observability

P (L, xi) is the probability that the error can propagate from the PLB output

to the circuit primary outputs. Note that xi is one-to-one mapped to the LUT

SRAM bit Li before decomposition, and the internal observability O(L, xi) is 1.0

because the output signal of LUT is directly routed to the PLB output without

any logic masking capability before decomposition (see Figure 4.1. Therefore,

SERLi
before decomposition is:

SERLi
= I(L, xi)× P (L, xi), (4.3)

After decomposition, assuming that the decomposed two subfunctions are im-

plemented by the two smaller LUTs, L1 and L2 of a decomposable LUT L, the

two decomposed LUTs share the same inputs for L. That is, a input vector xi

of L retrieves two CRAM bit instead of one CRAM bit, one from L1 and the

other one from L2. The total SER of LUT L after decomposition becomes the the

summation of SER of every CRAM bit in L1 and L2. In addition, because the

decomposed subfunction can be smaller than the original function, there are mul-

tiple permissible input vectors of L that can retrieve the same CRAM bit of the

decomposed subfunction. Therefore, the decomposed LUT L′ can be calculated

as follows.
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SERL′ = 1
2N

(

m(L1)∑
i=1

SERL1i +

m(L2)∑
j=1

SERL2j)

= 1
2N

(

m(L1)∑
i=1

∑
xk∈ψ(L1i)

I(L, xk)×O(L1, xk)× P (L, xk)+

m(L2)∑
j=1

∑
xk∈ψ(L2j)

I(L, xk) ·O(L2, xk) · P (L, xk))

(4.4)

m(L1) and m(L2) are the number of SRAM bits of L1 and L2, and ψ(L1i) denotes

the set of input vectors that can retrieve LUT CRAM bit L1i (ψ(L2j) denotes the

set for L2j, respectively). Specifically, because each input vector retries two LUT

SRAM bits after decomposition, one from L1 and the other from L2, each input

vector xk contributes I(L, xk)×O(L1, xk)× P (L, xk) and I(L, xk)×O(L2, xk)×

P (L, xk) in the SER calculation of (4.4). Therefore, the average SER of an LUT

after decomposition can be rewritten to:

SERL′ =
1

2N

2N∑
i=1

I(L, xi)×O(L1, xi)× P (L, xi) + I(L, xi)×O(L2, xi)× P (L, xi)

=
1

2N

2N∑
i=1

I(L, xi)× P (L, xi)× (O(L1, xi) +O(L2, xi)) (4.5)

Combining Eq. 4.3 and Eq. 4.5, and based on the fact that xi and Li are

one-to-one mapped. We can rewrite Eq. 4.5 to the following equation.

SERL′ =
1

2N

2N∑
i=1

SERLi
· (O(L1, xi) +O(L2, xi)) (4.6)

According to (4.6), the SER update after decomposition mainly depends on the

internal observabilities O(L1, xi) and O(L2, xi). Since converging logic is applied

to the outputs of L1 and L2 after decomposition, some internal observabilities can
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be reduce to 0 according to the type of the converging logic and the truth tables

of L1 and L2. The update of O(L1, xi) depends on the output value of L2 under

input vector xi, and O(L2, xi) depends on that of L1, respectively. For example,

in the case of using AND as the converging logic, O(L1, xi) can be reduced to 0

if the output of L2 is ‘0’ under input vector xi, and O(L1, xi) equals to 1.0 if the

output of L2 is ‘1’. Therefore, the observability and the average SER of LUT can

be updated very efficiently after decomposition.

In particular, duplication is a special case of decomposition, and the above

SER update process is also valid for duplication. However, an efficient method

for updating SER for duplication can be found in [LHM10].

4.2.2 Optimality of In-Place Decomposition

For decomposition to three or more subfunctions, TMR provides an optimal so-

lution for LUT SER reduction if triplication and implementation of a voter for

convergence is allowed. TMR is capable of tolerating any single node error, and

therefore the SER of every node in the circuit is reduced to zero. However, for

decomposition into two subfunctions, it is unclear how an optimal solution can be

achieved. In this section, we discuss the optimality of decomposition into to two

subfunctions. We reveal two important properties and show that the duplication

provides an optimal fault rate reduction if it is allowed.

Lemma 1. An AND and an OR are the optimal forms of logic for converging

the two decomposed subfunctions.

After IPD decomposes a logic function into two separate functions, these func-

tions are converged using a logic gate, which can provide logic masking for faults

in the two LUTs used to implement the subfunctions. In this proof, we demon-

strate that AND and OR gates are the optimal forms of converging logic in terms

of their logic masking capability, by comparing the logic masking capability of
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every possible form of converging logic.

Figure 4.4 illustrates every 2-input logic function, including two for constant

logic and four which serve as single-input functions. Converging logic provides

logic masking when the output of the gate remains constant when the value of

one of the inputs is flipped. Therefore, XOR functions do not provide any logic

masking capability because there is no scenario in which the output remains con-

stant when an input is toggled.

Therefore, 8 out of 16 gates do not provide any logic-masking during conver-

gence. The other 8 functions are AND or OR functions, including cases with

inverted inputs which are equivalent to NOR and NAND gates. However, an

inverter does not provide any logic masking capability either. Therefore, each

gate has exactly the same logic masking capability as AND or OR.

Lemma 2. Decomposition is optimal when the two sub-functions and are identical

to the original function.

Suppose the Boolean function implemented by the original decomposable LUT

L is F . After applying fully-input-shared decomposition, the Boolean function F

is decomposed into one converging gate and two subfunctions, F1 and F2, where

F = F1 � F2. The SER can be reduced by masking logic propagations from

F1 and/or F2 with respect to the input patterns of F . Under fully-input-shared

decomposition, since each input pattern is one-to-one mapped to one SRAM bit

from F1 and one SRAM bit from F2, the configuration of an CRAM bit in

F1/F2 is independent to one in F1/F2. Therefore, optimal SER reduction can

be obtained by optimizing the fault rate of input patterns independently. Lemma

1 states that feasible converging logic can be based only on AND or OR type

functions. For AND converging logic, both the outputs of F1 and F2 must be ‘1’

when the output of F is ‘1’. In this case, the AND gate provides no logic masking

since the output will change if either input logic value is flipped.

58



However, in the case when the output of F is ‘0’, the inputs F1 and F2 can be

“00”, “01”, or “10”. The first case, when F1 and F2 are both ‘0’, provides twice

the logic masking capabilities of the other two cases because the logic value of the

output is retained when either input is flipped, in the case of AND converging logic.

Therefore, logic-masking is maximized when the two decomposed subfunctions are

identical.

In the case of OR converging logic, consider the case when F is ‘1’. This can

only occur when F1 and F2 are “01”, “10”, or “11”. It is clear that the latter case,

in when F1 and F2 are identical, provides twice the logic masking capabilities of

the case when F1 and F2 have opposite values. In conclusion, logic masking is

maximized when the two decomposed subfunctions are duplicated.

4.2.3 Decomposition with Don’t Care Flexibility

Based on the CRAM utilization and the impact of SEU of a circuit implemented

on an FPGA, CRAM bits can be divided into the following three categories [Le]:

• Essential bits : Those CRAM bits that are used by the design.

• Critical bits : A subset of essential bits; those essential bits which cause

functional failures at the primary outputs of the circuit if their values are

flipped. A bit b is critical if there exists an input vector x such that Cb(x) 6=

Cb̄(x).

• Dont-care bits : Those bits that do not affect the circuits primary outputs

when they change state, even if they are used by the design. A bit b is a

dont-care bit if Cb(x) = Cb̄(x) for any input vector x.

In general, the set of essential bits is a superset of critical bits contains a subset

of don’t-care bits as Figure 4.5 illustrates. For LUTs, the essential bits are those
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LUTs that have functions mapped on them. In addition, these LUT essential bits

can be further divided into critical bits and don’t-care bits.

Dont-cares have been commonly and widely used in circuit optimization [MBJ11,

SBT91, MB05, McM05, CM10]. For example, [CM10] proposed to consider log-

ical dont-cares when perform technology mapping in FPGA to improve circuit

reliability. In this section, we propose an improved decomposition with consider-

ation of logic dont-cares of LUTs. In order to preserve the an LUT function after

decomposition, obviously a strait forward method is to perform boolean match-

ing for each minterm of the LUT function, regardless of whether the minterms

are dont-cares or not. In this manner, the decomposition result may be limited

due to Boolean matching of those dont-care minterms. In fact, those don’t care

minterms do not necessarily required to be mapped explicitly. Therefore, we pro-

pose to consider leveraging the dont-care information to increase the flexibility of

decomposition.

By removing these constraints of mapping don’t-care bits, the IPD algorithm

is given more design freedom to perform an effective decomposition. For example,

consider the LUT depicted in Table 4.2, before decomposition. Though they are

all essential bits, but CRAM bit correspond to input 000, 010, 100, and 110 are

also dont-care bits, where the SER of don’t-cares bits are 0. Ordinarily, the

Boolean equation representing this LUT would be:

Y = ABC + ĀB̄C̄ (4.7)

When the two minterms of Boolean function Y need to be matched for decom-

position, there is no valid decomposition to smaller subfunctions for function Y.

However, assuming that the LUT bit corresponding to inputs “000” never occur in

the circuit, which is defined as a satisfiability don’t-care bit. The SER of the LUT

bit is 0 and it can be ignored during Boolean matching of the bit because it does
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Inputs LUT Value SER
000 1 0
001 0 0.1
010 0 0
011 0 0.1
100 0 0
101 0 0.1
110 0 0
111 1 0.1

Table 4.2: An example of a LUT in which decomposition is improved when LUT
Boolean matching is avoided for dont-care bits.

not have impact on the circuit functionally. Thus, the new equation representing

this LUT is:

Y = ABC (4.8)

With the dont-care information, the function Y can be decomposed to smaller

functions as Figure 4.6 shows. This example clearly shows that decomposition

considering every essential bit limits the quality of the result in the original IPD

algorithm. In this manner, the revised IPD, which identifies the don’t-care bits

of LUTs and does not perform Boolean matching for don’t-care bits, is able to

represent logic functions with fewer critical bits, and is also able to perform de-

composition in a manner which more effectively minimizes the total SER of the

circuit.

There are several methods one can use to identify dont-care bits in a circuit.

The most common method to identify dont-care bits is to perform exhaustive

simulation with all possible input vectors, which results in excessive runtime.

Therefore, several previous works have focused on improving the runtime while

providing good quality of dont-care identification results [MBJ11, SBT91, MB05,

McM05, CM10]. In this work, we use the method similar to [CM10], where a

windowing algorithm is used to identify subcircuits that are small and to effectively
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identify their dont-cares.

4.3 IPD Algorithm

4.3.1 ILP Formulation for SER Optimization of an LUT

According to (4.6), the SER update of an LUT after decomposition is independent

to that of other LUTs. Therefore, the overall optimal SER of IPD on a given circuit

C is the summation of the optimal decomposition of each LUT in C. For a given

LUT L ∈ C, we formulate the IPD problem to an Integer Linear Programming

(ILP) problem as follows.

Minimize
2N∑
i=1

SERLi
× (O(L1, xi) +O(L2, xi)),

subject to the following five sets of constraints.

4.3.1.1 Decomposition selection constraint

φ(L)∑
j=1

dj ≤ 1

φ(L) is the set of decomposition templates with different sizes of the two subfunc-

tions (such as those in Table 4.1 for Xilinx and Altera PLBs) that are applicable

to a decomposable LUT L, and dj ∈ {0, 1} is 1 if the jth decomposition template

is selected for LUT L, and the this constraint guarantees that there is at most

one decomposition template is selected and applied to the LUT. This constraint

allows the algorithm to solve multiple decomposition templates at a time and only
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selects the template leading to the lowest SER.

4.3.1.2 Boolean matching constraints of a decomposition template dj

for the LUT

∑
xi∈mt(L)

t(j, xi) = |mt(L)| × dj, 1 ≤ j ≤ φ(L)

mt(L) is the set minterms of L that are required to be matched, represented by

the corresponding input vector xi. t(j, xi) is a binary variable, where t(j, xi) = 1

indicates the Boolean function of L and that of decomposition dj are equivalent

under input vector xi. This set of constraint guarantees that a decomposition

template dj cannot be selected if there exists any inconsistency in the decomposed

Boolean function for those minterms.

4.3.1.3 Boolean matching constraints for a minterm

0 ≤ L1(j, xi) + L2(j, xi)− 2 · t(j, xi) ≤ 1, ifL(xi) = 1

2 ≤ L1(j, xi) + L2(j, xi) + 2 · t(j, xi) ≤ 3, ifL(xi) = 0

1 ≤ j ≤ φ(L), xi ∈ mt(L)

The third set of constraints perform Boolean matching for decomposition tem-

plate j with AND converging logic for a minterm (corresponding to the input

vector xi), where L(xi) is the output value of LUT L under LUT input vector xi,

and L1(j, xi) and L2(j, xi) are the output values of L1 and L2 of decomposition

template j under input vector xi. For simplicity, we show only constraints for

AND converging logic, since constraints for OR converging logic can be easily

inferred from the above constraints.
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4.3.1.4 Observability update constraints

0 ≤ dj + L2(j, xi)− 2 · P1(j, xi) ≤ 1

0 ≤ −1 · dj + L2(j, xi) + 2 ·B1(j, xi) ≤ 1

−1 · P1(j, xi) +O(L1, xi) ≥ 0

B1(j, xi) +O(L1, xi) ≤ 1

1 ≤ j ≤ φ(L), xi ∈ mt(L)

If decomposition template j is applied with AND converging logic, the above

constraints calculate the internal observability for each input vector according to

the function of L1 and L2. P1(j, xi) and B1(j, xi) are binary variables which

represent the propagation and masking of the signal from L1. For simplicity, we

show only constraints for observability update for L1 with AND converging logic.

The constraints for L2 and OR converging logic can be generated similarly.

4.3.1.5 Default observability constrains

O(L1, xi) +

φ(L)∑
j=1

dj ≥ 1

O(L2, xi) +

φ(L)∑
j=1

dj ≥ 1

1 ≤ j ≤ φ(L), xi ∈ mt(L)

The last set of constraints implies that when none of the decomposition tem-

plates are feasible, the observabilities are 1.0 for any input vector xi. These

constraints guarantee that a decomposition template can be selected only if it

leads to lower SER compared to the original implementation.
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4.3.2 IPD for Critical Bit Reduction

In the previous section, we proposed an IPD algorithm for SER reduction, which

mitigates the impact of SEUs on LUT CRAM bits. In this section, we discuss

how IPD can reduce the number of critical bits in a design. As defined in Section

4.2.3, critical bits are those bits which modify the circuits external functionality

when impacted by an SEU.

Decomposition achieves critical bits reduction for the following two reasons:

4.3.2.1 Complete fault coverage

Figure 4.7 illustrates the complete fault coverage of duplication. Suppose that

the original LUT is a 5-input AND function, and each of its 32 CRAM bits is

critical. Then, we apply duplication to the function using AND converging logic,

doubling the number of critical bits. Since the two subfunctions are identical,

the inputs to the AND converging logic are identical. When both inputs to the

AND gate are “00”, any single 0 → 1 fault of at input is masked. Therefore,

all of the 0-bits in both LUTs are completely covered and immune to SEUs, and

are reduced from critical bits to dont-care bits. In this example, the number of

critical bits is reduced from 32 to 2.

4.3.2.2 Reduction in the number of CRAM bits needed to implement

a function

Because two decomposed logic functions can use less CRAM bits than the original

function, decomposition can reduce the number of critical bits in the circuit.

Figure 4.8 illustrates the decomposition of a single 6-input AND function to

two 3-input AND subfunctions combined by 2-input AND logic, where such

decomposition can be implemented by dual-output LUT and the carry chain.

Assuming that all of the CRAM bits are critical and the 2-input AND logic is
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implemented by carry-chain, the number of critical bits in this example can be

reduced from 64 to 16, assuming all of the CRAM bits used for the subfunctions

after decomposition are critical bits.

Combining the two factors above, we show that IPD can lead to a reduction

in the number of critical bits. While duplication is unique and its feasibility is de-

termined by the number of inputs of the LUT and the availabilities of the second

output of the LUT and the built-in carry chain/adder, decomposition has varying

forms such as the number of input pins shared and the assignments of pins to the

decomposed LUTs. By evaluating all possible forms of decomposition and dupli-

cation in the experiment, we found that the optimal critical bit reduction can be

derived from either duplication or decomposition. Therefore, unlike IPD for fault

rate reduction, duplication does not guarantee an optimal critical bit reduction.

Note that IPD of a LUT, for both cases of duplication and decomposition, does

not have any impact on the critical bits on other LUTs. This property implies

that by solving the critical bit reduction for each LUT we can guarantee that the

number of critical bits of the entire circuit is reduced.

4.3.3 Overall IPD Algorithm

The overall IPD algorithm flow is illustrated in Figure 4.9. By taking advantage

of the two properties described in the previous section, the IPD algorithm has a

pruned solution space and thus improved performance.

Given a circuit C, the IPD algorithm begins with calculating the SER of each

LUT SRAM using the soft error evaluation platform proposed in Chapter 2 and

performs dont-care identification. For each LUT, we first check whether the LUT

has not been processed and the PLB the LUT belongs to has an un-used carry

chain or adder. For an LUT that has an un-used carry chain, if fully-input-shared

decomposition can be applied and it uses less number of critical bits compared to
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the original number before decomposition, we simply perform fully-input-shared

decomposition because it results in the optimal fault rate reduction as explained

in the previous section. On the contrary, if it cannot be applied, we perform

decomposition to smaller functions. We first generate all valid decomposition

templates for the LUT. A decomposition template is defined by the size of the

decomposed LUTs, i.e. the number of their inputs, and the number of inputs

shared between the decomposable LUTs, and it is valid if the decomposition can

be mapped onto the PLB architecture described in Figure 4.1 and Table 4.1. Then,

we perform the ILP-based algorithm for each of those templates and select the

one that results in the minimal SER with lower number of critical bits. After all

the LUTs are processed, we update the full-chip SER of C and the total number

of critical bits.

4.4 Experimental Results

The proposed IPD algorithm is implemented in C++ with the mosek [mos] solver

on an Ubuntu Linux powered server with Xeon 2.4GHz CPU and 2Gb memory.

The 10 largest MCNC combinational benchmark circuits are tested on both the

Xilinx Virtex-5 6LUT architecture and the Altera Stratix-IV ALM architecture.

All the benchmarks are first mapped into 6-input LUT logic networks by the

Berkeley ABC technology mapper [ABC] with edge flow optimization, which has a

special property that the mapped circuits are more suitable to be packed into dual-

output LUTs [JCC08] than the mapped circuits from other settings. Then, the

LUT merge algorithm in [AKA08] is used to merge pairs of small LUTs (<4 inputs)

into dual-output LUTs. In this section, we perform two sets of experiments. First,

we perform IPD without considering don’t-cares of LUTs on PLB architecture

similar to Xilinx Virtex 7 and Altera Stratix-IV. In addition, we also perform

FMD for comparison comparison purpose. Next, we perform IPD with don’t-care
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flexibility on the same benchmark to show SER and critical bits improvement by

don’t-cares.

4.4.1 IPD matching all minterms

For FPGA architectures under study, we apply IPD under different utilization

rates of build-in carry chain, e.g., 10% means that randomly, 10% of build-in

carry chain inside the used logic blocks are not available to be used by IPD. We

compute MTTF as reversely proportional to the chip level SER since there is no

routing or area change.

4.4.1.1 Characteristics of circuits and architectures

Figure 4.10 illustrates LUT utilization in terms of the size of logic functions

mapped for the 10 largest MCNC combinational circuits. In addition, Figure

4.11 shows the SER contribution for those functions before applying IPD. Both

figures show that 6-input functions have the greatest impact on the circuits in

terms of SER, due to their large number and the greater amount of CRAM bits

they utilize.

For Xilinx 6LUT architecture with five shared input pins, in-place duplication

can be used for functions with up to 5 inputs without losing optimality. Also

note that no decomposition is available for 6-input functions for this architec-

ture. Therefore, IPD is in fact the in-place duplication with AND or OR as the

converging logic for Xilinx 6LUT.

As shown in Figure 4.12, Altera ALM architecture has two adjustable LUTs

(ALUTs). The upper two 4-input LUTs belong to one ALUT, and the lower two

4-input LUTs belong to the other. Note that three inputs are shared among all of

the four LUTs. According to the architecture of an ALUT, it contains two 4-input

LUTs with three inputs shared. In other words, the two LUTs in an ALUT have
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a total of five unique inputs. Therefore, a function with up to five inputs can be

decomposed and implemented by one ALUT. As shown in Figure 4.13, we can

perform decomposition for 6-input functions by using three 4-input LUTs (with

three inputs shared) plus two converging gates implemented by the two adders.

Note that ALM can implement a subset of 7-input functions, which can be

decomposed in the similar way like 6-input functions except that we utilize all

four LUTs in the ALM (See Figure 4.13).

circuit

SER

BASE FMD
IPD

Xilinx 6LUT ALM
0% 10% 20% 30% 0% 10% 20% 30%

alu4 0.34% 0.33% 0.25% 0.26% 0.25% 0.27% 0.09% 0.11% 0.13% 0.17%
apex2 0.29% 0.26% 0.18% 0.19% 0.20% 0.21% 0.03% 0.05% 0.07% 0.12%
apex4 1.16% 1.10% 0.93% 0.95% 0.97% 0.99% 0.31% 0.41% 0.49% 0.60%

des 1.42% 1.41% 1.17% 1.20% 1.21% 1.27% 0.80% 0.85% 0.92% 0.95%
ex1010 1.24% 1.05% 0.51% 0.57% 0.65% 0.72% 0.27% 0.37% 0.47% 0.54%
exp5p 0.73% 0.62% 0.46% 0.48% 0.51% 0.52% 0.24% 0.30% 0.32% 0.39%
misex3 0.55% 0.49% 0.32% 0.34% 0.37% 0.38% 0.10% 0.15% 0.16% 0.23%

pdc 0.91% 0.83% 0.52% 0.56% 0.61% 0.63% 0.16% 0.22% 0.31% 0.38%
seq 0.63% 0.56% 0.39% 0.42% 0.44% 0.45% 0.11% 0.15% 0.21% 0.28%
spla 1.14% 1.05% 0.70% 0.74% 0.78% 0.82% 0.20% 0.31% 0.40% 0.48%

GeoMean 0.75% 0.68% 0.47% 0.50% 0.52% 0.55% 0.17% 0.22% 0.28% 0.35%
Ratio 1.00 0.91 0.63 0.67 0.70 0.73 0.22 0.30 0.37 0.47

MTTF Ratio 1.00 1.10 1.59 1.50 1.43 1.36 4.51 3.32 2.70 2.12

Table 4.3: Summary of IPD experimental results.

The experimental results for the baseline algorithm, FMD and the proposed

IPD are summarized in Table 4.3 and Table 4.4. In the Table, “Xilinx 6LUT” are

results for Xilinx Virtex-7 6LUT architecture, and “ALM” are results for Altera

Stratix-IV ALM architecture, assuming 0%, 10%, 20%, and 30$ carry chain/adder

utilization rates. For all of the benchmark circuits, we show the IPD improve-

ment on the SER reduction and the MTTF improvement ratio compared to both

the original circuits (baseline) and FMD algorithm. The MTTF improvement

decreases as more (from 0% to 30%) carry chains are used. We also obtain higher
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Circuit Runtime (s)

alu4 1466
apex2 1137
apex4 1430

des 2022
ex1010 1635
ex5p 795

misex3 1235
pdc 3429
seq 1659
spla 3270

Average 1808

Table 4.4: IPD runtime.

MTTF for Altera ALM than for Xilinx dual-output 6LUT.

While FMD improves MTTF only by 10% on average, IPD (with a conserva-

tive 20% utilization rate for carry chain) improves average MTTF by 1.43× and

2.70× for Xilinx and Altera architectures, respectively. When all carry chains

are available (utilization rate is 0%), IPD improves MTTF by up to 2.43× (see

“ex1010”) for 6LUT, and up to 9.67× (see “apex2”) for ALM.

Because in-place duplication is used exclusively for Xilinx architecture, the gap

between 10% and 1.43× is the improvement due to performing logic converging

within the same PLB. Because the Altera architecture uses both in-place decom-

position and in-place duplication, the gap between 1.43× and 2.70× is a good

indicator of improvement due to decomposition.

Table 4.3 also presents runtime of the IPD algorithm. Generally, each PLB

takes about 10s to obtain the optimal solution for duplication or decomposition.

4.4.1.2 IPD with don’t-care flexibility

In the ten benchmark circuits evaluated in this paper, anywhere from 15% to 66%

of used CRAM bits were discovered to be don’t-care bits, with an average of 42%
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Circuit # of LUT Essential Bits # of LUT Don’t-care Bits Don’t-care Ratio

alu4 20244 5951 0.293
apex2 26008 4000 0.153
apex4 21082 10414 0.493

des 31596 11837 0.374
ex1010 24444 11522 0.471
ex5p 13176 8056 0.611

misex3 18464 6025 0.326
pdc 56480 37365 0.661
seq 25600 5679 0.221
spla 53396 34766 0.657

Table 4.5: LUT don’t-care ratio.

of those used bits being don’t-care bits. By removing the matching constraints

for these don’t-care bits, IPD is able to further increase the MTTF, decreasing

the total circuit fault rate and reducing the number of critical bits.

Table 4.5 shows the number of don’t-care bits in each circuit. Circuits with

higher numbers of don’t-care bits will typically benefit more from the revised IPD

than those with limited numbers of don’t-care bits, if all other factors are held

constant.

The comparison of the MTTF improvement between the IPD matching all

minterms and the improved IPD with don’t-care flexibility is presented in Figure

4.14, where the average MTTF improvement ratio is increased from 3.7× to 4.55×

with 0% carry chain/adder utilization rate and from 2.63× to 3.33× with 20%

carry chain/adder utilization rate, respectively. Leveraging LUT don’t-care infor-

mation, the results indicate a substantial MTTF improvement, where 66% further

MTTF improvement can be achieved. Particularly, with a 20% carry chain/adder

utilization, the IPD with don’t-care flexibility shows a significant improvement on

the “ex1010” benchmark over the original IPD, where the SER is reduced by half

approximately (0.37 → 0.19) and thus the MTTF improvement ratio doubles by

identifying don’t-cares.

In addition, IPD can lead to a reduction in the number of critical bits after
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Circuit Orig. IPD IPD with DC

alu4 14293 11954 12475
apex2 22008 17841 18893
apex4 10668 8724 9136

des 19759 16809 17490
ex1010 12922 9523 10321
ex5p 5120 4658 4748

misex3 12439 10181 10698
pdc 19115 15495 16181
seq 19921 15922 16644
spla 18630 15401 16126

Average 15488 12651 13271

Table 4.6: Critical bit reduction after IPD and IPD with don’t care flexibility
assuming 20% carry chain/adder utilization.

decomposition. Note that decomposition not only reduces utilization of CRAM

bits but also converts critical bits to don’t-care bits in the subfunctions due to

logic masking by the converging logic. Unlike duplication, where the critical bits

and dont-care bits can be easily updated, we perform circuit simulation after IPD

to calculate the number of critical bits.

In the ten benchmark circuits used in our experimentation, the average number

of critical bits is 15487 before IPD. As summarized in Table 4.6, it is reduced

to 12651 after IPD, and 13271 after IPD with don’t-care flexibility, assuming a

20% carry-chain utilization. The corresponding improvement ratios are 0.821 and

0.860, respectively. The experimental results clearly show that the IPD algorithm

not only reduces the SER but also reduces the number of critical LUT CRAM

bits. The results show that the number of critical bits after IPD with don’t-care

flexibility is slightly higher than the original IPD algorithm. This indicates the

tradeoff between SER and critical bits reduction. However, the proposed IPD

algorithm targets on the optimal SER reduction and then reduces critical bits as

the second objective, as presented in Figure. 4.9, resulting in slightly increased

number of critical bits.
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4.4.1.3 IPD improvement indicator

Figure 4.15 presents a good indicator about how much IPD could improve the

reliability of the system. The (blue) bars represent the absolute difference between

SER of “on” set and “off” set of circuits. The “on” (resp. “off”) set is the CRAM

bit set with logic ‘1’ (resp. ‘0’). The (red) squares and the curve represent

the MTTF improvement for corresponding circuits. Both of the two values are

normalized for better demonstration. One conclusion that we can draw from the

figure is that the more the gap between the SERs of “on” set and “off” set is, the

more IPD increases the MTTF. This is because the large gap means either the

“on” set dominates the SER of the circuits where faults can be efficiently masked

by OR converging logic, or the “off” set dominates the SER where faults can be

masked by AND converging logic.

4.5 Summary

Leveraging decomposable LUT and built-in carry chain in modern FPGA, we

have developed an in-place decomposition (IPD) to decompose the logic function

originally implemented by one decomposable LUT into two subfunctions to be

implemented by smaller LUTs and to combine (called converge in this paper) the

subfunctions by carry chain. The logic decomposition and converging are carried

out within the original PLB.

We have developed an ILP (integer linear programming) algorithm to solve

IPD optimally within an PLB and iteratively apply IPD to PLBs at the chip

level. We have also revealed the condition when in-place duplication is optimal

and duplication can therefore be used instead of ILP-based IPD for better algo-

rithm efficiency. For 10 largest MCNC combinational circuits synthesized by ABC

mapper and with conservative 0% and 20% utilization rates for carry chain/adder,

IPD improves MTTF by 4.55× and 3.33×, respectively, for PLBs similar to those
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in Altera Stratix-IV.
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Figure 4.1: Dual-output LUT FPGA architecture
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Figure 4.2: LUT duplication (LUT A) and AND-encoding of its fanout (LUT B)
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Figure 4.6: Decomposition of Y = ABC.

• The number of critical bits is reduced from 32 to 2

Covered

Input Output

00000 0

11110 0

11111 1

…
…

…
…

Input Output

00000 0

11110 0

11111 1

…
…

…
…

Covered

Orig

Dup

F

…
...

…
...

0 -> 1

0

Figure 4.7: Critical bits reduction by duplication.

6AND

3AND

3AND

2AND

(a) before decomposition (b) after decomposition
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Figure 4.10: Distribution of different sizes of functions in the 10 largest MCNC
combinational benchmark circuits.
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Figure 4.11: SER contribution for different size of functions.
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Figure 4.12: Altera Stratix-IV ALM arithmetic mode
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(a) 0% carry chain/adder utilization rate.

(b) 20% carry chain/adder utilization rate.

Figure 4.14: MTTF improvement ratio comparison of the IPD matching all
minterms and IPD with don’t-care flexibility.
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Figure 4.15: IPD improvement indicator.
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CHAPTER 5

Mitigating FPGA Interconnect Soft Errors by

In-Place LUT Inversion

Modern SRAM-based FPGA use SRAM cells to configure logic and interconnects,

and the number of SRAM cells used for configuration can be up to 450 million in a

Xilinx Virtex-7 chip. These SRAM cells suffer from soft errors caused by cosmetic

radiation or circuit internal noise, and the soft error rate (SER) increases due

to technology scaling. To reduce the SER, classic Triple Module Redundancy

(TMR) employs circuit redundancy both in LUT and interconnect but with high

overhead in area, power and performance. Recent logic re-synthesis techniques,

such as ROSE [HFH08], IPR [FHH09], and [JHM10] leverage logic masking to

reduce SER in LUTs. However, these techniques do not explicitly consider the

interconnect SER and therefore the chip level SER reduction could be limited due

to the interconnect dominance in FPGA.

An FPGA architecture is mainly defined by Configuration Logic Blocks (CLBs)

and routing architectures as illustrated in Figure 5.1. Interconnects are critical

since they contribute a large portion of the total FPGA area and total configura-

tion bits. Modern FPGA routing has shifted from bidirectional routing towards

the unidirectional routing architecture, where both the inter-CLB routing (in-

cluding connection boxes and switch boxes) and the intra-CLB routing typically

employ directional MUXes to route the input signals. To select an output out of

the signals, each MUX is configured by several encoded CRAM bits, and these

bits contribute to the majority of the configuration bits in FPGA. For example,
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we observe that interconnects contribute to nearly 80% of the CRAM bits for the

10 largest MCNC benchmarks when they are synthesized to the minimum FPGA

architectures with 6-input LUTs.

S

CC

C

C

C

C

C

CLB CLBC

S S

CLB

CLB CLB

S

CLB

CLB CLB CLB

C

C

C

C

…
…

b1 b

…

MUX m

pin i

pin j

bm

…

v(i)

v(j)

b0 b1

Figure 5.1: FPGA unidirectional routing and multiplxer structure.

As Figure 5.1 illustrates, when one of the interconnect CRAM bits flips its

value due to soft error on a MUX, an erroneous input signal (dotted) is then

selected. If this erroneous signal from the faulty MUX reaches the primary outputs

of the chip, a functional failure at the chip level occurs. Note that this fault

mechanism is not a bridging fault as studied for bidirectional routing.

Modern FPGA has shifted towards the multiplexer-based (MUX-based) uni-

directional routing architecture [LLT04, SCW09], where the interconnect fault

mechanism is different from conventional bidirectional routing as previous stud-

ies in [GB07, RCS05]. In this chapter, considering MUX-based unidirectional
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routing, we propose In-Place inVersion (IPV) of LUT logic polarities to reduce

interconnect SER, and reveal a locality and NP-Hardness of IPV problem. We

then develop an exact algorithm based on the binary Integer Linear Programming

(ILP) and a heuristic based on the Simulated Annealing (SA), both enabled by

the locality. We report the averaged results for 10 largest MCNC bench-marks

mapped to 4- and 6-input LUTs by ABC [ABC] and then placed and routed by

VPR [LKJ11]. From the experiment results, SA obtains the same SER reduction

for the circuits that can be solved exactly by the ILP and therefore it is highly

effective. Specifically, SA-based IPV obtains nearly 4× reduction and runs 30×

faster. Furthermore, combining IPV and IPD leads to 5.3× SER reductions at the

chip level. This does not change placement and routing, and thus has no impact

on design closure. To the best of our knowledge, it is the first in-depth study

on SER reduction for modern MUX-based FPGA routing by the in-placed logic

resynthesis.

The chapter is organized as follows. We formulate the IPV problem in sec-

tion 5.1 and present IPV properties in section 5.2. Then, two IPV algorithms

are presented in 5.3. Section 5.4 shows the experimental results and section 5.6

concludes this chapter.

5.1 Problem Formulation

5.1.1 In-Place LUT Polarity Inversion in FPGAs

The logic inversion technique can be briefly illustrated in Figure 5.2, which is a

local modification involving two atomic operations: driver logic polarity inversion

and its fan-out adjustment. To illustrate the core idea, in a hard-wired circuit,

it can be done by inserting several inverters along the polarity-inverted path as

shown in the figure.
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Driver Logic polarity inversion

Fanout adjustment

Figure 5.2: Logic polarity inversion.

In the FPGA scenario, where a net is directly driven by an LUT and directly

connected to the input pins of the immediate fan-out LUTs, the two polarity

inversion operations can be performed by inverting all of the CRAM bits of the

driving LUT and encoding input inverters into the direct fan-out LUTs as Figure

5.3 illustrates, without any extra circuit cost.

In Figure 5.3(a), to encode the inverter at the output, we simply invert all of

the configuration bits in the LUT truth table. In Figure 5.3(b), to encode the

inverter at input i3 into the LUT, we perform pair-wise LUT configuration bits

swapping, where two configuration bits are swapped if their input vectors only

differ in i3, such as “010” and “011”. The LUT polarity inversion above is an

in-place mitigating strategy only involving the reassignment on some LUT logic

polarities, and thus introduces no overhead. The atomic operation reserves the

circuit functionality without any constraints and thus can be applied as flexible

as required.

5.1.2 Motivating Example of SER Reduction by LUT Polarity Inver-

sion

As illustrated in Figure 5.1, when MUX m has one of its CRAM bits b flipped

due to SEU, the output is driven by net j instead of the desired net i. If j carries
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(a) Driver LUT truth table inversion.
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(b) Fan-out adjustment.

Figure 5.3: Two atomic operations of in-place LUT polarity inversion in FPGAs.

a different logic value v(j) from v(i), a fault is injected onto the inputs of the

immediate fan-outs of m. The fault has a chance to be further propagated to

circuit outputs and contribute to SERb. On the contrary, if v(j) equals to v(i),

no fault is injected even if SEU happens. That is, the fault can be instantly

masked at m. In addition, SERb also depends on the observability of MUX m,

obv(m), which indicates if the fault can be masked by logic during its propagation

to circuit outputs. As a result, SERb can be given by

(v(i)⊕ v(j)) · obv(m) (5.1)

Such error masking for MUXes can be used to mitigate soft errors on inter-
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connects. When the logic value v(j) is different from v(i), we can invert v(j) at

its driving LUT to force them to be identical. Note that logic polarity can be

independently determined on each input and the output of an LUT in FPGA (see

one example in Figure 5.4). Similar techniques have been used to optimize timing

[Zhu07] and power [AN06]. Here, we use an example in Figure 5.5 to show how

logic polarity inversion helps to reduce SER on a routing MUX. In the example,

given the observability for the MUX and the two logic values on pin i and pin j,

the probability of v(i) 6= v(j) is 0.5 and the obv(m) = 1 when v(i) 6= v(j). Ac-

cording to Eq. 5.1, the SER of the CRAM bit b is 0.5. However, if j is inverted,

all of the errors from v(i) 6= v(j) are canceled becaused of the inversion of v(j)

and the new errors from v(i) 6= v(j̄) are masked due to the observability obv(m).

Consequently, the SER of bk can be reduced from 0.5 to 0 by inverting the logic

polarity on net j.

(000) = 0
(001) = 1
(010) = 0
(011) = 1
(100) = 0
(101) = 1
(110) = 1
(111) = 0

a,+

c,+

b,+

(000) = 1
(001) = 0
(010) = 1
(011) = 0
(100) = 1
(101) = 0
(110) = 0
(111) = 1

(000) = 1
(001) = 0
(010) = 0
(011) = 1
(100) = 1
(101) = 0
(110) = 1
(111) = 0

o,+

a,+

c,+

b,+ o,–

a,–

c,–

b,+ o,+

Figure 5.4: Atomic operations for LUT logic polarity inversion.

Based on the SER reduction on MUXes discussed above, we propose to increase

the fault masking capabilities on routing MUXes by logic polarity inversion. This

may be trivial for a single MUX. However, an inverted LUT output can change the

masking capabilities of multiple MUXes that the LUT drives. It is likely that the

CRAM bits in different routing multiplexer require the opposite logic polarities of
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Figure 5.5: LUT polarity inversion improves fault tolerance on interconnects.

the same LUT to maximize their masking capability individually. This scenario

is illustrated in Figure 5.6, where m1 may require LUT 2 as negative to locally

mitigate the fault, while m2 may require LUT 2 to stay positive. It is difficult to

find an optimal logic polarity assignment for all the LUTs that can minimize the

interconnect SER. The optimal inversion problem will be formulated next.

91



LUT 1

LUT 2

LUT 3

LUT 4

LUT 5

pseudo fan-in LUT pair, 
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m1

m2

m3

Figure 5.6: The pseudo fan-in pair of a routing CRAM bit subject to SEU.

5.1.3 IPV Problem Formulation

Formulation 3 (In-Place inVersion Problem). Given a circuit, assign the logic

polarity for each LUT, such that the SER for all multiplexer-based interconnects

is minimized.

We provide a bipartite graph representation in Figure 5.7 for a better illus-

tration of our IPV problem, where each node Li on the bottom represents one of

the n LUTs in the circuit, and each node bk at the top represents one of the m

CRAM bits used in the routing MUXes of the placed and routed circuit. An edge

between nodes Li and bk is generated if the driven signal by Li is either correctly

or wrongly selected by bk at a certain MUX.

L1,+ L2,+ Ln,+……

b1

SER

b2

SER

b3

SER

b4

SER

bm

SER……

L3,+

Figure 5.7: IPV problem representation by a bipartite graph.

Given the single fault assumption, each MUX CRAM bit b is connected to
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two LUT nodes, as illustrated in Figure 5.6. We call the exactly two LUTs as the

pseudo fan-in LUT pair and denote them as L(b) and l(b). In this example, for

the faulty bit b in m3, L(b) = LUT 3 that is the desired driving LUT and l(b) =

LUT 1 that is the driving LUT selected due to SEU.

Therefore, in the bipartite graph of Figure 5.7, an edge e(Li, bk) connects bk

with its pseudo fan-in LUT pair. Each node at the top has exact two incoming

edges, but the degree of each node at the bottom depends on the number of

MUXes it connects to. As shown in the figure, each top node is annotated with

a bit SER value that is associated with the polarities of its pseudo fan-in LUT

pair. Thus, our IPV problem reassigns the polarity for each Li such that the total

routing SER can be minimized for all bi|(i = 1, · · · ,m).

5.2 IPV Properties

In this section, we present the locality property of the pseudo fan-in pairs in the

IPV problem, which greatly improves the efficiency for SER update after polarity

inversion. In addition, we present and NP-hardness of the IPV problem.

5.2.1 The Locality of Bit SER upon Polarity Inversion

In the IPV problem, when one or multiple LUTs are selected to be inverted for

fault masking, the SERR with inversion, which can be denoted as SER′R should

be updated accordingly after each inverting operation. Intuitively, each update

needs an iterative fault simulation of the circuit and it is highly time-consuming.

However, we show that SER′R can be analytically updated by pre-calculating the

impact of inversion on SER for each bit, based on the following theorem.

Theorem 1 (Locality of Bit SER upon Polarity Inversion). Under the single fault

assumption, the SERb for each routing CRAM bit is solely decided by its pseudo
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fan-in LUT pair.

SERb is the error rate when neither of its pseudo fan-in pair LUT L(b) nor l(b)

is inverted. Although the polarity of an other LUT may be inverted at the same

time, by the two atomic operations of polarity inversion, only the value at the net

driven by the LUT is affected. Moreover, polarity inversion of a driving LUT of

a net does change the functions of other LUTs or the error masking capability on

other nets. Therefore, the SERb does not change regardless of the polarities of

other LUTs. It is solely decided by its pseudo fan-in LUT pairs, under the single

fault assumption.

5.2.2 Intractability of IPV Problem

As previously mentioned, the IPV problem is difficult since different routing

CRAM bits may require opposite polarities of the same LUT in order to en-

able the fault masking capability locally. Even with the locality of bit SER, we

say that

Theorem 2. IPV problem is NP-Hard.

Proof. We prove our IPV optimization problem by a reduction from the binary

Max-Sum (labeling) problem which is known to be NP-Hard [Wer07]. The binary

Max-Sum (labeling) problem is stated as to maximize the sum of unary and binary

functions of discrete variables, i.e. as computing

maxmize

[∑
t∈T

gt(xt) +
∑
{t,s}∈E

gt,s(xt, xs)

]
(5.2)

where an undirected graph G(T,E), a finite set X and quality values gt(xt),

gt,s(xt, xs) ∈ R ∪ −∞ are given, as illustrated in Figure 5.8(a). In the problem,

each node t ∈ T is assigned with a label xt ∈ X such that the quality or the
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objective function as defined in Eq. 5.2 is maximized. Note that by converting

the quality values to negative, Eq. 5.2 can be turned to a minimization function.

The problem reduction is performed as follows. Given a binary Max-Sum

problem instance of an undirected graph G(T,E) with n/2 nodes and a finite set

X containing two labels 0, 1, the reduction begins with multiplying the objective

function by 1. Then, for each node t in T , we add an extra node t′ into T and

connect it to t by an extra edge e′(t, t′). Accordingly, each binary quality value

between t with labeling xt and its connected extra node t′ with either labeling,

i.e. gt,t′(xt, xt′) is set equivalent to the unary quality value of g(xt). That is,

gt,t′(xt = 0, xt′ = 0) = gt,t′(xt = 0, xt′ = 1) = gt(xt = 0) and so for xt = 1. Thus, a

new undirected graph G(T ′, E ′) is constructed as shown in Figure 5.8(b), which

can be done in polynomial time.

Following we show that the above transformation is a reduction of the problem.

Considering the constructed graph G′ as above that has n nodes, each pair of nodes

connected by an edge is the pseudo fan-in LUTs of a certain routing multiplexer

bit. Meanwhile, the four pair-wised quality values between each pair of nodes

with a label 0 or 1 for each node can be seen as our SER quadruplet values of

{SERbij , ij = 00, 01, 10, 11} that is illustrated in Figure 5.8(c). Then in G′, each

of the n nodes to be labeled by 1 or 0 is actually one of the n LUTs in circuit

whose polarity is to be inverted or not. Since each binary quality value between

node t and its connected extra node t′ is equivalent to the unary quality value

g(xt), it is clear that

∑
{t,s}∈E

gt,s(xt, xs) +
∑
t∈T

gt(xt) =
∑
{t,s}∈E

gt,s(xt, xs) +
∑

{t,t′}∈E′−E

gt,t′(xt, xt′) (5.3)

=
∑
{t,s}∈E′

g + t, s(xt, xs) (5.4)
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Then, note that the labeling problem has been transformed to a minimization

problem, we say that a labeling result xt ∈ XT on G that can maximize the

quality of labeling also yields a minimized solution for our IPV problem and vice

versa. This completes the proof.

5.3 IPV Algorithms

5.3.1 Locality based SER Calculation

Based on the locality theorem (Theorem 1), the SER′R with inversion can be cal-

culated with a comparable complexity to SERR. To do this, we extend the SERb

to quadruplicated values of {SER00
b , SER

01
b , SER

10
b , SER

11
b }, which is called the

SER quadruplet of bit b. Each quadruplet provides four error rates indicated by

the two superscripted numbers, representing if one of its pseudo fan-in LUTs is

inverted or not, as in Eq. 5.5. The SER quadruplet for each CRAM bit b in

routing multiplexers is calculated through simulation.

SER′b =



SER00
b (= SERb) +L(b)& + l(b)

SER01
b −L(b)& + l(b)

SER10
b +L(b)&− l(b)

SER11
b −L(b)&− l(b)

(5.5)

For abbreviation, we denote it as SER′b[PL(b), Pl(b)], where P is a function

representing the polarities of LUTs L(b) and l(b), i.e. + or -. Thus, the total

routing SER′R can be written as

SER′R =
∑
b∈R

SER′b[PL(b), Pl(b)] (5.6)
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Eq. 5.6 reveals that the total routing SER for a given circuit can be updated

as the algebraic sum upon each CRAM by its SER quadruplet. In this way, the

iterative fault simulation after every reassignment of the LUT polarity can be

avoided. The two algorithms proposed in the following for IPV problem are also

based on this locality theorem.

5.3.2 Binary ILP Based Algorithm

Eq. 5.6 enables a one-off fault simulation for SER quadruplet such that SER′R can

be updated in a short time after each tentative LUT inversion. In addition, they

intuitively imply a binary ILP formulation for our IPV problem. Based on the

ILP technique, we can ideally find the globally optimal selection of the inverted

LUTs which can provide us an insight on the capability of IPV improvement.

We design a set of binary variables invi to denote whether an LUT i is inverted

or not, i.e. if invi = 1, the polarity of LUT i is positive. At the same time,

we use an inverting quadruplet {f 00
b , f

01
b , f

10
b , f

11
b } of binary values to denote the

polarities of the pseudo fan-in LUTs for each routing bit b. As a result, the binary

ILP formulation for our IPV problem is given by

min SER
′
R =

∑
b∈R
∑

ij=00,01,10,11 SER
ij
b · f

ij
b

s.t. f 00
b ≤ 1− invs

f 00
b ≤ 1− invt

f 00
b + 1 ≥ 1− invs + 1− invt

invs = L(b), invt = l(b)

(5.7)

The set of three constraints in Eq. 5.7 models the fact that exactly one SER

value in the quadruplet {SERij
b } should be selected for each bit, by masking with

the inverting quadruplet f ijb . In fact, variable f ijb is the function over PL(b) and

Pl(b) to select one SER value out for each bit b with respect to its pseudo fan-in
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LUT pair. Other constraints on f 01
b , f 10

b and f 11
b can be similarly written as those

in Eq. 5.7.

In our ILP formulation, by forcing corresponding invi = 0 in the constraints,

it also applies to the situation that some LUT input or output polarities are not

invertable.

5.3.3 Simulated Annealing based IPV Algorithm

In addition to the ILP approach for the optimal solution, we also develop a Simu-

lated Annealing (SA) based algorithm to improve the efficiency of IPV in runtime.

The SA based algorithm starts from the initial circuit with positive logic polarities

for all the LUTs. Then, it switches to another LUT polarity assignment at each

step by inverting the logic polarity of a LUT. The objective function of the new

logic polarity assignment is evaluated by locality based SEU calculation provided

in Eq. 5.6, which is efficient and well fit to the SER update in SA.

We follow the standard annealing for the IPV problem. The annealing starts

from temperature of 0.008, and is updated by a decreasing factor of 1.003. The

annealing always accepts the better LUT polarity assignment in terms of SER,

and rejects the worse assignment selectively. The SA algorithm stops till the

minimum temperature of 2.0e-6 is reached.

5.3.4 Overall Algorithm Flow

As illustrated in Figure 5.9, our approach that mitigates the SEU fault on FPGA

interconnects by fault masking consists of three phases. Starting from the given

netlist of a circuit, it first applies logic optimization and technology mapping onto

LUTs. The mapped circuit is packed into logic blocks, then placed and routed

by physical design tools. Secondly, in order to obtain the bit SER values, we

develop an SEU fault analysis framework which starts right after placement and
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routing. This framework performs logic simulation based on post-layout circuit

information to calculate the fault rate for each CRAM bit in routing MUXes in

the form of SER quadruplet. This is the basis for both the binary ILP approach

and the SA-based algorithm. Finally, after SER quadruplets for all the bits are

obtained, we start both the ILP solver and the SA-based algorithm to seek for

the reassignment of logic polarities for all the LUTs. The result with maximal

reduction on interconnect fault rate is selected, and then back-annotated to the

initial circuit by the atomic logic inversion operations to finish our proposed re-

synthesis flow.

5.4 IPV Experimental Results

5.4.1 Experimental Settings

In our experiments, the ten largest MCNC combinational circuits are used as

the test benchmark circuits as in Chapter 4. We leverage the parameterized

architecture in VPR [11] to characterize different FPGA architectures to study

the architecture impact on the proposed IPV resynthesis algorithm. We first apply

logic optimization and technology mapping onto k=4-, 6-input LUTs by Berkeley

ABC [ABC]. The mapped circuits are packed by two different CLB architectural

settings respectively, i.e. 4-input LUT (k) with a cluster size (N) of 4 and 6-input

LUT with a cluster of 8. Then, VPR [LKJ11] is used to implement a minimum

dimension for each of the benchmark circuit, which generates an FPGA array as

compact as possible without involving extra unused bits that exceeds the actual

need of the circuit. After that, we applied the Monte Carlo based fault simulation

to generate the bit SER quadruplet values. Note that our IPV algorithm can

be applied on any circuit to mitigate interconnect SEU fault as long as the SER

values for each CRAM bit are available. Then, the IPV ILP problem is solved

optimally by Mosek tool [mos].
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Circuit
LUT size k=4, Cluster size n=4

# LUT
Dimension Int. SER reduction Runtime (s)
x,y w ILP SA ILP SA

ex5p 622 12,12 32 2.51 2.51 4131.4 35.53
alu4 744 14,14 26 2.04 2.05 36000* 41.34

misex3 773 14,14 26 3.05 3.05 4830.04 44.92
apex4 821 15,15 36 4.79 4.79 2990.69 58.06
apex2 1014 17,17 32 3.91 3.91 584.79 64.75

seq 1084 17,17 32 3.32 3.32 2115.36 78.45
ex1010 1120 17,17 34 7.26 7.26 4132.28 70.36

des 1750 42,42 18 1.16 1.17 36000* 71.58
spla 2229 24,24 48 17.22 17.22 4602.59 183.75
pdc 2304 25,25 46 14.60 14.60 3159.54 206.31

Average - - - 5.99 5.99 - -

Table 5.1: Interconnect SER Reduction for k=4 and N=4

5.4.2 Comparison between the ILP and SA approaches

The experimental results on the ten benchmark circuits are listed in Table 5.1

and 5.2, which demonstrate the reduction ratios for the interconnect SER before

and after applying IPV, from both the ILP and SA approaches. From the table,

we can see that our IPV significantly improves the SER on FPGA interconnects

with respect to the routing MUXes in the unidirectional routing architecture. For

example, for 4-input LUT with a cluster size of 4, (k,N)=(4,4), the interconnect

SER can be reduced by 1.2× to 17.2× for the benchmark circuits tested, with an

average of around 6×. For 6-input LUT with a cluster size of 8, (k,N)=(6,8), the

SER can be reduced by about 5.4× on average.

From Table 5.1 and 5.2, we also observed that in most circuits, the SER reduc-

tion in CLB setting of (k,N)=(6,8) is slightly smaller than that in (k,N)=(4,4).

The reason is that larger CLB setting can generally reduce the routing network,

due to the minimum dimension setting for placement and routing. At the same

time, different circuits present completely different error masking capabilities as

the reductions are not comparable among different circuits. In these circuits, the
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Circuit
LUT size k=6, Cluster size n=8

# LUT
Dimension Int. SER reduction Runtime (s)
x,y w ILP SA ILP SA

ex5p 458 7,7 38 1.81 1.90 36000* 25.58
alu4 524 8,8 26 1.96 1.99 36000* 27.20

misex3 530 8,8 28 2.98 2.98 3845.59 29.16
apex4 618 9,9 46 4.91 4.91 5876.77 42.97
apex2 729 10,10 38 3.75 3.75 295.2 51.34

seq 782 10,10 40 3.40 3.40 7284.36 57.91
ex1010 682 10,10 44 7.46 7.46 5899.2 55.80

des 1056 42,42 14 1.07 1.09 36000* 34.45
spla 1524 14,14 60 14.05 14.05 811.53 141.50
pdc 1609 14,14 62 12.51 12.51 5474.11 153.77

Average - - - 5.39 5.40 - -

Table 5.2: Interconnect SER Reduction for k=6 and N=8

“des” has the lowest improvement ratio. By analyzing the circuit structure, we

found the reason that it has the smallest dimension of the routing network but

the highest logic density as indicated by x, y and w. At the same time, the values

in the SER quadruplets for many bits in “des” are high and close to each other,

which limits the design freedom of our IPV approach.

We also listed the runtime for the two approaches in Table 5.1 and 5.2. Note

that the time listed does not include the fault simulation time for SER quadruplets,

which is relatively small comparing to the time consumed by ILP approach. The

ILP approach consumes much longer runtime than its SA counterpart. We also

notice that the ILP approach may result in a sub-optimal solution (marked by *),

because the solver cannot solve the optimal solution in a limited time. In contrast,

the SA based algorithm can find the same optimal results for the circuits that can

be exactly solved by the ILP but with much shorter runtime. It also outperforms

the ILP approaches in the circuits with sub-optimal results by ILP. Therefore, we

show that the SA based algorithm is highly effective, both in solution quality and

runtime.
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Circuit
IPD+IPF Reduction IPV+IPF Reduction IPD+IPV Reduction
LUT(%) Chip(%) LUT(%) Chip(%) LUT(%) Chip(%)

ex5p 62.00 17.95 7.00 48.44 66.47 48.68
apex4 66.63 15.60 13.29 75.17 78.21 79.49
misex3 75.82 33.02 26.12 68.59 82.07 67.93

alu4 63.81 20.58 22.53 55.36 68.78 51.53
ex1010 59.03 14.59 9.24 80.51 76.57 85.84
apex2 85.26 15.76 12.52 70.41 85.69 74.68

seq 79.31 25.59 19.26 69.47 82.51 71.67
des 31.87 7.80 10.13 10.83 28.85 9.26
spla 70.94 20.49 14.48 87.69 85.80 92.44
pdc 70.64 24.90 13.05 86.51 88.41 91.79

Average 66.53 19.63 14.76 65.30 74.34 67.33

Table 5.3: SER Reduction by combined algorithms of IPF+IPD, IPF+IPV, and
IPD+IPV.

5.5 Combined IPD + IPF + IPV Experimental Results

Finally, we evaluate the improvement by combining different in-place resynthe-

sis algorithms for robustness. In this section, consider IPD, IPV, and also IPF

[FNH11], a recently published in-place technique. As resynthesis-based tech-

niques, the three algorithms are performed within LUTs after placement and

routing and preserve the circuit functionality without invoking physical resynthe-

ses.

Then, several combinations of the three algorithms are evaluated to investi-

gate the interactions between them to further boost their fault mitigation capa-

bility. We evaluated the combinations of IPD+IPF, IPV+IPF, IPD+IPV, and

IPD+IPV+IPF, where the algorithms are applied on the circuit as indicated by

their order, and the results are shown in Table 5.3.

For IPD+IPF, results show that the two algorithms are not orthogonal. First,

the interaction between them degrades the SER reduction on LUTs more than

with an individual IPD, from about 74% down to 67% on average. This is because

IPF may reduce the on/off set SER difference on LUTs, which is an indicator
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Circuit
IPD+IPV+IPF Reduction
LUT(%) Chip(%)

ex5p 62.00 52.55
apex4 66.63 79.79
misex3 75.82 74.12

alu4 63.81 59.87
ex1010 59.03 86.37
apex2 85.26 78.29

seq 79.31 76.78
des 31.87 12.49
spla 70.94 92.71
pdc 70.64 92.38

Average 66.53 70.53

Table 5.4: SER Reduction by IPD+IPV+IPF

provided of IPD discussed in Section 4.4. The “on” (resp. “off”) set is the CRAM

bit set with logic “1” (resp. “0”). In general, a higher on/off set SER difference

indicates more potential improvement that IPD can provide. We further plotted

the on/off set SER differences for the ten circuits in Figure 5.10, where most of

the differences are reduced after applying IPF, and thus the SER reductions by

IPD+IPF are degraded. Second, compared with individual IPF, an extra SER

reduction of several percent (about 5% on average) is observed on the chip level

after applying IPD on IPF. This is due to IPD further reducing the errors on LUTs,

which in turn improves chip reliability. Third, both algorithms present limited

improvement on the chip level (less than 20% on average), since neither of them

considers interconnect fault explicitly. This experiment reveals that interconnect

is more important in fault mitigation, and in order to develop more advanced fault

mitigation techniques in the future, the errors on LUTs and interconnects should

be tuned together to improve the circuit fault tolerance to the greatest extent.

For the combined algorithms of IPV+IPF and IPD+IPV, results indicate that

the SER on the chip level can be reduced respectively by around 65% and 67%

on average, which means reductions of 2.88× and 3.06× can be achieved. This is

103



due to IPV explicitly considering soft errors on interconnect. In addition, the IPV

algorithm is completely orthogonal with IPD. That is, the SER reduction of LUT

comes from IPD, while reduction of interconnect comes from IPV, because there

is no interaction or coupling between the two algorithms. For the combination of

IPV+IPF, IPV keeps the LUT SER reduction by IPF, while IPF helps to reduce

the interconnect errors by another 4% on average (from 61.3% to 65.3%). This

slight improvement is due to the implicit fault reduction by IPF, as previously

explained.

For the combination of IPD+IPV+IPF, the experiment results also confirm our

understanding of the three algorithms. That is, (1) since IPV has no improvement

on LUT fault, the SER reduction on LUT is the same as that of IPD+IPF; (2)

since the interconnect fault is explicitly considered by IPV, the SER reduction

on the chip level is higher than IPD+IPF; (3) as IPF implicitly helps to reduce

interconnect fault in fan-in cones for each LUT, the SER reduction is higher than

IPD+IPV in all cases. Although this combination covers soft error mitigation both

on LUTs and interconnects, their improvements are not orthogonal, because the

current combination simply neglects the interaction between them, for example,

IPD with IPF, IPV with IPF, which overlaps in optimization. This reveals that in

order to improve the fault tolerance on the chip level, future mitigation algorithms

should be concerned not only for the soft errors in LUTs and interconnects, but

also their interactions.

5.6 Summary

This chapter proposed an effective yet efficient approach to mitigate the SEU

fault on FPGA interconnects. By targeting the routing multiplexers that are the

dominant routing elements in the modern unidirectional routing architecture, we

took the feature of fault masking to reduce the interconnect fault to the greatest
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extent, which involves nearly no cost in the already placed and routed FPGA

applications. Further, we formulated the problem and proved it to be NP-Hard.

Then, based on the locality of the IPV problem, we developed two approaches,

a binary ILP technique to look for a globally optimized solution and a SA-based

search for fast result.

As demonstrated in the experiments, our approach can significantly reduces the

interconnect fault in terms of SER ranging from 1.2× to 17.2×, with an averaged

6× for 4-input LUT with a cluster size of 4 and about 5.4× for 6-input LUT with a

cluster size of 8. At the same time, the fault on circuit level can be greatly reduced

as well, nearly 4× on average. The SA based algorithm outperforms the ILP both

in solution optimality and runtime. Comparing with the previous IPD algorithm

mitigating the fault on LUTs, our IPV technique enables shorter runtime but

higher improvement at chip level. In addition, we observed that combining the

IPD and IPV can lead to a SER reduction up to 5.3× on chip level.

It is important to note that, our approach can be in-placed performed on the

placed and routed circuit, and thus involves nearly no cost in the standard FPGA

design flow. In the future, we will improve the speed of ILP approach and the

optimality of SA algorithm. At the same time, we will apply our approach to

sequential circuits by calculating bit SER for each CRAM bit after identifying

the sequential feedbacks in the circuit. Besides, we will further extend our IPV

approach to mitigating the fault simultaneously on LUT and interconnect by

considering their inherent interactions, such that the SEU fault in FPGA can be

mitigated to the great extend.
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Figure 5.8: Illustrations of the binary Max-Sum labeling problem (a) in the con-
text of our fault impact minimization problem (c) with the reduction in (b).
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Figure 5.10: The on/off set criticality differences versus LUT criticality improve-
ments by IPD and IPD+IPF.
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CHAPTER 6

Soft Error and Leakage Mitigations for FPGAs

using In-Place LUT Polarity Inversion

FPGA designs are suffering from an increasing leakage power dissipation. There

are two main sources of the leakage power [AN06, HHL12], i.e. sub-threshold leak-

age and gate leakage. The sub-threshold leakage comes from a non-zero current

between the source and drain of an off-state CMOS transistor. With shrinking

feature size and smaller supply voltages, threshold voltage has to be lowered to

mitigate the performance degradation but aggravate the leakage problem. The

gate leakage comes from tunneling current through the gate oxide of a transistor,

which is increasing because gate oxides are thinned to improve transistor drive

strength in modern manufacturing process. It is observed that over 40% total

power could be leakage, as reported by the previous studies in [KNC02].

Interestingly, in FPGA structures, routing resources have been demonstrated

as the most vulnerable resources to SEU, as well as the dominant contributor of the

total FPGA power. More than 90% of SEU induced soft errors are from routing

as reported in Section 2.3, and over 60% of the leakage are dissipated on routing

[RP04, TL03]. A common reason for this is that routing are the most dominant

resource and occupies the largest area in FPGAs. The large routing resources

lead to the most configuration bits in a modern SRAM-based FPGA, typically

millions of bits, which naturally become the focus for both SEU mitigation and

leakage reduction techniques.

In this chapter, we propose a joint optimization for the soft error and leakage
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on the VPR academic FPGA architecture by the in-place LUT polarity inversion

(IPV) technique. We formulate the soft error mitigation and leakage reduction

problems, and reveal that the two problems have similar structures but may be

contradictive in their objectives. Then, we propose a Simulated Annealing (SA)

based joint optimization approach for the two problems at the same time. For

the 10 largest combinational MCNC benchmark circuits, our experimental results

show that the proposed co-optimization algorithm reduces soft errors and leakage

by 50% and 33%, respectively.

The remainder of this chapter is organized as follows. Section 6.1 reviews the

background and the previous works on leakage mitigation. Section 6.2 formulates

the optimization problems for SEU and leakage, and proposes simulated annealing

based co-optimization algorithm. Section 6.3 shows the experimental results and

Section 6.4 concludes this chapter.

6.1 Background and Motivation

6.1.1 Previous Works on Leakage Reduction in FPGAs

Leakage reduction in FPGAs has been addressed in the literature targeting on

different leakage sources. For example, to reduce the leakage from the active paths,

multiple or dynamic voltage adjustment techniques are used in [KR02, MFM02].

High supply voltage is applied to resources on critical paths for high performance,

while lower supply voltage is applied on non-critical paths for low power, and gated

voltage is applied to the sleep resources to save power. For standby leakage power,

high threshold sleep transistors are used because high threshold voltage effectively

reduce the leakage power in [WCJ98, KR02, CLC04]. In [AME02, Sak02], sleep

transistors are on when circuit is active and are turned off when the circuit is

in standby mode. However, these methods are subject to the tradeoff between

performance and power, and FPGA architectural changes are required which also
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introduces additional cost.

Apart from the voltage adjustment, other approaches to leakage reduction in

FPGAs include considering the dynamic leakage characteristics due to internal

logic states at runtime. For example, in [Gat, HN97], specific input vectors are

identified and applied onto inputs to minimize leakage power when circuit is in

standby mode. To reduce leakage from MUXes in FPGA interconnect, the work

in [AN06] proposes to reassign logic polarity and invert configuration bits in LUTs

based on signal static probability. In addition, off-path leakage optimization is also

proposed in [Zhu07], which further considers the off-path leakage due to different

input vectors and performs optimization during routing stage. These works apply

similar techniques to the SER reduction technique IPV as proposed in Chapter

5, which directly motivates us to find SER and leakage co-optimization solutions

for FPGAs.

6.1.2 IPV for FPGA Leakage Reduction

Because an FPGA structure is pre-fabricated before a design is implemented,

those circuit resources not utilized in the design will consumes unnecessary leakage

power. As mentioned in the introduction, the primary source of leakage power

consumption comes from FPGA routing fabrics. In modern FPGA architecture,

interconnections between logic elements are typically constructed by MUXes as

depicted in Figure 6.1, where (a) shows an encoded MUX style and (b) shows the

decoded (non-encoded) style.

In fact, the leakage strongly depends on the two signals that are connected to

the drain and source of a NMOS pass transistor in a MUX. As reported in [HHL12],

the leakage of the on-path transistor (the connected pass transistor to route the

selected input signal of the MUX as in Figure 6.2) is negligible compared to those

transistors in the off-paths (the disconnected pass transistors as configured in the
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(a) encoded (b) decoded

Figure 6.1: 4-to-1 multiplexor structure.

design). Specifically, there are two cases when significant leakage will occur, that

is, when I2 carries a different signal, or I2 is not connected to any signal, i.e.

open connection.

To mitigate the leakage of routing MUXes, [AN06] proposed a LUT polarity

assignment method based on static probability, where signals with static proba-

bility less than 0.5 are inverted if possible. For the case that I1 or I2 is open, the

larger the static probability of the other signal is, the less leakage is dissipated.

This is due to the fact that FPGAs are usually designed to pull up the uncon-

nected nets to logic ‘1’ by specially designed circuitry, such as half-latch [GCJ03].

Consequently, assume that I2 is open and is pulled up to logic ‘1’, higher static

probability of signal I1 leads to lower possibility that a voltage different exists

between source and drain of the off-path transistor. However, when I1 and I2 are

two different signals, static probability method is less effective and may increase

leakage for some cases. For example, assuming that I1 and I2 are connected to

the signals as in Figure 6.3(a) and 6.3(b) shows, where the static probabilities of

I1 and I2 are 0.75 and 0.4, respectively. Because the static probability of I2 is
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Figure 6.2: Off-path leakage in a decoded multiplexor structure.

less than 0.4, it is inverted as suggested by [AN06]. However, as illustrated in

Figure 6.3(c), the leakage is increased after the signal probability method.

In fact, the static signal probability method is more effective when the pin

utilization rate of MUXes are low because in this case, more constant logic ‘1’

signal can be found due to the unconnected MUX input pins. On the other hand,

this indicates that when a large design is mapped, the signal probability method

is less effective.

6.2 Co-optimization of SER and Leakage in FPGAs

In this section, we first present the formulations of IPV for SER and leakage

optimization, and show that the two objectives can be contradictory, which makes

it difficult to optimize both criteria at the same time. Then, we propose an efficient

SA based co-optimization algorithm for SER and leakage.
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6.2.1 Formulation of SER and leakage co-optimization problem

As discussed in the previous section, the leakage power primarily arises when the

logic value of the selected signal is different from that of the unselected signal on

an off-path transistor. Therefore, the leakage of an off-path transistor t can be

calculated by

Leakaget = Pij(01)× L01 + Pij(10)× L10 (6.1)

where i is the selected signal of the MUX, j is the input signal of t, Pij(xy) is the

probability that signal i is x and signal j is y, and Lxy is the corresponding leakage.

Note that when the off-path transistor has the same logic value at the input and

the output, the leakage can be ignored because the leakage is minimal. Therefore,

given Eq. 6.1, the total off-path leakage can be calculated by the summation of

all of the off-path transistors as follows.

Total leakageoff−path =
∑

t∈Mactive

Leakaget (6.2)

where Mactive is the set of all active MUXes of the implemented design on the

FPGA.

SEU induced SER on a MUX can be estimated using similar method as leak-

age, but with the addition of the observability of the mux. Because SER is the

probability that a soft error is generated and propagated to the circuit primary

outputs, the SER of a MUX CRAM bit can be estimated by the probability that

the corresponding pseudo fan-in signal pair (i,j) have different logic values, Dij,

multiplied by the observability, Ob, from the MUX to the circuit primary outputs,

given as follows.

SERb = Dij ×Ob (6.3)
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Similarly, the total SER can be calculated as follows.

Total SERmux =

∑
b∈Cmux

SERb

|Cmux|
(6.4)

where C is all of the CRAM bits controlling those active MUXes used by the

design.

In fact, Dij can be calculated by Pij(01) + Pij(10). The existing methods pro-

posed in [AN06, HHL12] generally reduce the overall hamming distance between

signals, and thus reduce the overall leakage. However, due to the complicated dy-

namic characteristics of the observability, optimization for leakage and SER may

contradict to each other, resulting in degraded optimization quality. There are

two factors contributing to the contradiction. First, the sets of signal pairs for

SER and leakage differ. The signal pairs for SER are those pairs controlled by

CRAM bits, while the pairs for leakage depend on off-path transistors. Second,

observability has a wide impact on SER. Particularly, observability is usually the

dominant factor of SER, depending on the circuit structure. Therefore, polarity

assignment becomes a complicated and difficult problem when both objectives are

involved.

6.2.2 Simulated Annealing based Co-Optimization for Leakage and

SER

From the discussion above, it is clearly that optimization for leakage and SER

separately do not make joint benefits. As a result, the reduction of the leakage

power and SER need to be considered together during optimization. In this sec-

tion, we propose a simulated annealing based optimization algorithm with linear

combination of leakage and SER objectives as the cost function as follows.
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Total SERmux

Total SERmux norm
+

Total leakageoff−path
Total leakageoff−path norm

(6.5)

Because the metrics of SER and leakage are in different magnitudes, they are

normalized by Total SERmux norm and Total leakageoff−path norm in the com-

bined objective function, where Total SERmux norm and Total leakageoff−path norm

are typical SER and leakage values from the experiments.

The solution space of the SA based co-optimization algorithm is the logic

polarity assignment for all the LUTs in the circuit. Starting from the initial

circuit with positive logic polarities for all the LUTs, the new solution can be

generated by switching a random LUT to its opposite logic polarity at each move.

The objective function of the new assignment is evaluated after each move, by the

co-optimization cost function in Eq. 6.5.

The update on Total leakageoff−path after an LUT is inverted can be effi-

ciently calculated in the following fashion. When an LUT is inverted, the leakage

power of the off-path transistors in its driven MUX are updated accordingly, with

the leakage primitive values provided in previous studies, e.g. [AN06]. Given a

transistor t of an active MUX with signal pari i and j, as presented in Eq. 6.1,

suppose that i is inverted, P ij(xy) equals to Pij( xy). Therefore, the leakage can

be updated by

Leakaget =P ij(01)× L01 + P ij(10)× L10 (6.6)

Pij(11)× L01 + Pij(00)× L10 (6.7)

As the observability of MUX is not involved here, the Total leakageoff−path can

be directly calculated by the linear combination of the leakage primitives within

minimum runtime.
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On the other hand, the update of SER is slightly complicated due to ob-

servability. However, leveraging the precalculated SER quadruplet proposed in

Section 5.3, Total SERmux can be quickly updated similar to leakage. Therefore,

the objective of the co-optimization problem (Eq. 6.5) can updated efficiently

with LUT polarity inversion, which significantly reduces the runtime of the SA

based algorithm.

Starting from the given netlist of a circuit, the overall co-optimization al-

gorithm flow is similar to IPV for SER reduction presented in Section 5.3. The

algorithm flow first applies logic optimization and technology mapping onto LUTs.

The mapped circuit is packed into logic blocks, then placed and routed by phys-

ical design tools. Then, based on the efficient SER and leakage update method

proposed above, we start the SA-based algorithm to determine the reassignment

of logic polarities for all the LUTs. The result that yields the best objective value

is selected, and then back-annotated to the initial circuit by the atomic logic

inversion operations to complete our proposed re-synthesis flow.

6.3 Experimental results for SER and leakage co-optimization

We experimentally verify the proposed method by using the 10 largest combi-

national MCNC benchmark circuits. We first perform logic optimization and

technology mapping to 6-input LUTs using Berkeley ABC tool [ABC]. Next, the

mapped circuits are placed and routed by VPR tool set [LKJ11] with a cluster size

of 8 using a minimum dimension of the FPGA to implement each circuit. Then,

the SA based co-optimization algorithm is applied and verified for SER and leak-

age. In addition, we also apply the static probability based IPV algorithm to the

benchmark circuits separately for the comparison purpose.

Figure 6.4 shows improvements on SER by both algorithms, where the im-

provements are calculated by the ratio of SER compared to the original circuit.
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On average, the proposed co-optimization significantly reduces the SER by 52%,

while the static probability method can only reduce SER by 10%. We observe that

the observability values lie in a wide range from 1.0 to 1e-9. Therefore, according

to Eq. 6.3, reducing the hamming distance with low corresponding observability

only has minimal impact on SER. Furthermore, when the hamming distances of

those pseudo fan-in pairs with large observability values are increased, SER rises

significantly even if the overall hamming distance is reduced.

In addition, the average hamming distance between signals and the SER ratios

after the signal probability based method are shown in Figure 6.5. The hamming

distance between signals can be reduced by approximately 40% on average. From

the experiment, we show that hamming distance serves as a good indicator for

leakage optimization. As far as we investigate, although SER can also be reduced

with lower hamming distance values for most cases, it is not a good heuristic

because the observability is involved in SER calculation. For example, there are

cases that the SER gets increased on the “des” circuit by 18%, even though the

hamming distance is reduced by 13%.

For leakage, the proposed method can achieve slightly better leakage reduction

compared to the static probability method. The static probability method on

average reduces leakage by 29%. As the leakage does not involve the observability,

both the signal probability and co-optimization approaches can well predict the

leakage, although the proposed co-optimizatoin can further reduce leakage by

another 1%-5% for all of the benchmark circuits tested and achieves an averaged

total leakage reduction by 33%.

From the experimental results, we show that without careful consideration

of the soft error impact, SER can hardly be improved and may become even

worse. While providing the same level or slightly better leakage reduction, from

10% (signal probability based) to 52% (co-optimization based), the proposed

co-optimization algorithm demonstrates significant improvement on SER values.
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Particularly, our method reduces SER by 84% on “ex1010” circuit, which is 4.45×

improvement compared to the static probability method.

6.4 Summary

In this paper, the contradictions and difficulties of mitigations for leakage and

SEU induced soft error are identified. We propose an efficient simulated annealing

based co-optimization algorithm considering soft errors and leakage mitigations

at the same time. Our experimental results show 52% soft error rate reduction

and 33% leakage reduction on average on academic VPR FPGA architecture.
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(a) signal I1 with static probability of 0.75

(b) signal I2 with static probability of 0.4 and I2

(c) leakage comparison

Figure 6.3: An example of inversion using static probability method that increases
leakage.
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Figure 6.4: SER ratio for IPV based on static probability and the proposed SA
based co-optimization algorithm.

Figure 6.5: Average hamming distance, leakage, and SER ratio after applying
LUT polarity inversion based on signal probability.
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Figure 6.6: Leakage ratio for IPV based on static probability and the proposed
SA based co-optimization algorithm.
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CHAPTER 7

Validation of In-Place LUT Polarity Inversion

for Soft Error Mitigation on Xilinx Virtex

FPGAs

The objective of this chapter is to develop and validate IPV for industrial FPGAs.

However, the physical architectures of industrial FPGAs are different from the

academic VPR FPGA architecture which is assumed in the original IPV presented

in Chapter 5. Therefore, a new soft error model and an extended IPV algorithm

need to be developed in order to apply IPV to industrial FPGAs. In this work, we

use a Xilinx Virtex xcv300 FPGA as our case study. We first analyze the impact

of SEU on the interconnect of the xcv300 leveraging an in-field interconnect SEU

injection tool developed and build a soft error model based on signal probability.

Next, we propose an extended IPV 2.0 and its resynthesis flow integrated into

Xilinx ISE design tool set. To validate, we map circuits to an xcv300 FPGA by ISE

followed by IPV 2.0, and compare the soft error rates (SERs) with circuits without

IPV 2.0. As an in-place re-synthesis approach, it does not change placement

and routing in standard FPGA synthesis flow, and therefore has no impact on

performance, area, and design closure.

The remainder of the paper is organized as follows. Section 7.1 proposes an

SEU emulation methodology to calculate SER of an industrial FPGA. Section

7.2 presents the study of SEU impact on Xilinx Virtex FPGAs and the soft error

modeling. Then in section 7.3, we introduce the proposed IPV 2.0 resynthesis
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algorithm and its integration to ISE. Section 7.4 presents the experimental results.

Section 7.5 summarizes this chapter.

7.1 An SEU Emulation for Soft Error Rate Evaluation

To verify the SEU robustness of commercial FPGAs, fault simulation and em-

ulation are the most popular techniques. However, most of the existing studies

focused on the FPGA logic components. To investigate the fault characteristic

and evaluate SER of the SEU on the commercial FPGA interconnect architecture,

SEU emulations are used in our study. Before describing the proposed SEU emula-

tion method, we first present an SEU injection tool via JTAG FPGA configuration

interface.

Modern FPGAs feature advanced technique of dynamic and partial reconfig-

uration (DPR) capability. Dynamic reconfiguration enables us to make changes

to the circuit design implemented on the FPGA by modifying the configuration

memory (CRAM) data during runtime, without halting the FPGA operation. In

addition, partial reconfiguration is another key feature that allows us to modify a

small portion of the design without performing a full FPGA configuration. Com-

bine the above two reconfiguration features, it allows us to flip a bit in the CRAM

during runtime. We then develop an SEU injection tool based on DPR via the

JTAG FPGA configuration interface. To inject an SEU into the FPGA CRAM,

we first read back a frame from CRAM, where a frame is the minimum size of the

data that can be read from or write to the Xilinx FPGA CRAM. Then, the frame

is modified by flipping a bit. Finally, the modified frame data is written back

to the CRAM to complete the SEU injection process. Note that this fault injec-

tion technique can be applied via other FPGA configuration interfaces, such as

SelectMAP and the Internal Configuration Access Port (ICAP). We select JTAG

because it is the most viable interface that is design for debugging purpose.
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Leveraging the proposed JTAG SEU injection tool, we develop an FPGA SEU

emulation flow as Figure 7.1 illustrates. The emulation iteratively injects SEU

into the FPGA and performs circuit output analyses to characterize the fault

behavior. During each iteration, a random SEU address is selected. An SEU

location contains the frame address plus the bit offset in the frame. Next, the

SEU is injected using the JTAG SEU injection tool discussed above. After an

SEU is injected, the circuit primary outputs are analyzed and compared with

the golden values for a predefined monitoring time period. Then, the comparison

result is recorded for later fault behavior characterization. Note that for each time

we start a new SEU to be injected to a different location, we perform full FPGA

reprogramming in order to guarantee a clean experimental setup.

Random SEU location

(frame addr. & bit offset)

SEU emulation start

Fault injection

# of SEU injected 

> N?

SEU vulnerbility analysis

Frame readback

Bit flip

Frame writeback

End

Reprogram FPGA

Circuit primary output 

monitoring for a seconds

Figure 7.1: An FPGA emulation flow for SEU analysis.
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7.2 SEU Study for Xilinx Virtex Interconnect Architec-

ture

Without loss of generality, with respect to the logic value changed, the SEU in-

duced soft errors can be grouped into three categories: (1) switch-to-one, (2)

switch-to-zero, and (3) always-inverting faults. A switch-to-one fault is the unde-

sired logical transition from logic ‘0’ to ‘1’. On the contrary, a switch-to-zero fault

changes the logic value from ‘1’ to ‘0’, respectively. Finally, an always-inverting

fault upsets the logic value disregarding the logic value carried on the net.

In the following we implement a circuit specific designed for our SEU evaluation

purpose and perform two complementary experiments to quantitatively calculate

the number of switch-to-zero, switch-to-one, and always-inverting faults caused

by SEU on the interconnect.

For switch-to-zero faults, we implement a randomly generated large circuit

netlist that is composed of AND gates only. Then, each of the primary inputs is

connected to logic ‘1’, such that every internal net and the primary output holds

logic ‘1’. The circuit outputs are monitored to record any transition from ‘1’ to

‘0’. Because logic ‘0’ is the dominant input value of an AND gate, when a fault is

raised in the circuit, only the logic transitions from logic ‘1’ to ‘0’, i.e., switch-to-

zero or always-inverting fault is always propagated to the circuit primary output

and captured.

Similarly, to capture the switch-to-one faults, we implement the exactly same

circuit netlist, with identical placement and routing but replacing all AND gates

with OR gates and connecting all of the primary inputs to logic ‘0’. Such circuit

holds logic ‘0’ on all nets in the circuit and is only sensitive to switch-to-one or

always-inverting faults.

Next, we generate 10 different pairs of such complementary AND/OR circuit

netlist, with 1K gates (LUTs) randomly placed and routed for each pair. Note
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Quantity Percentage
Switch-to-one 872 82.41%
Switch-to-zero 182 17.20%

Always-inverting 4 0.39%

Table 7.1: Summary of the quantities of switch-to-one, switch-to-zero, and al-
ways-inverting faults.

that the primary concern of the circuit size is the routing utilization. Such circuit

networks with 1K gates (LUTs) after random placement on a xcv300 FPGA result

in complex routing networks that are complicated enough to characterize the

interconnect fault behaviors. Then, 5000 SEU locations are randomly selected for

each pair. Each SEU is injected to both the AND-network and the OR-network

of a pair, with one SEU injection at a time, and we monitor and record the faults

observed using the proposed emulation flow.

The emulation results are summarized in Table 7.1, where we show the average

number of each type of faults from the 10 circuit pairs and their percentage.

Approximately, we observe that only 21% of the injected have functional impact

on the circuits. Moreover, the probability of inverting fault is very low to be

negligible. The emulation results from real Virtex FPGA convince us that the

majority of the SEU on Virtex FPGA interconnect causes switch-to-one faults.

7.3 IPV2.0 for Xilinx Virtex FPGAs

In this section, we first propose a new soft error model based on static signal

probability for Xilinx Virtex FPGA interconnect architecture. Then, we propose

IPV2.0 algorithm integrated into Xilinx ISE design flow.

Base on the investigation in Section 7.2, the SER of an interconnect CRAM bit

is determined by the static probability of the net that the CRAM bit is controlling,

which is given by
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SERb = Pst0 × SPNet(b) ×Ob0 + Pst1 × (1− SPNet(b))×Ob1 (7.1)

where Pst0 and Pst1 denote the probabilities of switch-to-zero and switch-to-one

faults, SPNet(b) denotes the static probability of the net that CRAM bit b is

controlling, and Ob0 and Ob1 are the observabilities of logic ‘0’ and ‘1’ of the net.

The inverting fault is ignored because its probability is relatively tiny. According

to Table 7.1, since Pst1 >> Pst0, a net with low static probability value is more

vulnerable due to switch-to-one faults and the SER can be approximated by:

SERb = Pst1 × (1− SPNet(b))×Ob1 (7.2)

Eq. 7.2 leads to a conclusion that a higher signal probability results in a lower

SER value. Therefore, we develop a signal probability based IPV algorithm for

Virtex FPGAs, with an objective to increase the overall static probability. In

essence, when a net has its signal probability less than 0.5, it is suggested that the

net to be inverted. Therefore, the algorithm inverts the logic polarities of those

nets whose signal probability is below 0.5 to increase the overall signal probability

and thus mitigates SER of the design.

Next, we present an IPV2.0 resynthesis flow integrated into the Xilinx ISE

toolchain depicted in Figure 7.2. The proposed IPV2.0 resynthesis contains two

major steps: (1) static probability calculation and (2) LUT inversion. To obtain

static probability information, we perform simulation on the post-routed circuit

netlist and calculate static probabilities of net by analyzing the simulation wave-

form. Next, to apply net polarity inversion to the post-routed circuit, we develop

an IPV resynthesis tool based on Xilinx Design Language (XDL). The circuit

is converted to the XDL format and static probability based IPV resynthesis is

applied. Finally, the modified circuit netlist with IPV technique is converted to

generate the design bitstream of the FPGA.
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Figure 7.2: Signal probability based IPV resynthesis flow for Xilinx Virtex FPGAs.

7.4 Experimental results

The IPV resynthesis for Virtex FPGA discussed above is applied and verified

using the 10 largest combinational MCNC benchmark circuits implemented on an

xcv300 FPGA chip.

To evaluate the number of soft errors caused by SEU, we implement an SEU

evaluation platform as illustrated in Figure 7.3. Each benchmark circuit is dupli-

cated where one copy serves as the golden case for comparison purpose and the

other copy serves as the circuit under test (CUT). The CUT is placed within a

specific region that is isolated from any other circuit module, such that an SEU
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can be injected to the CUT precisely. Both the inputs of the golden circuit and

the CUT are given by the random input vectors generated by a Linear Feedback

Shift Register (LFSR). Finally, the outputs from the golden circuit and the CUT

are connected to the monitoring module for comparison, where we perform exclu-

sive or to detect errors and send the number of error detected to a host PC for

SER analyses.

Send the number 

of errors detected

LFSR

Golden Circuit Test Circuit

Output Monitor UART

FPGA

Host 

PC

Random input 

vector generator

Circuit with 

SEU injected

Compare the circuit 

primary outputs

Figure 7.3: SEU emulation platform for soft error evaluation.

For each benchmark circuit, we randomly select 5000 SEU locations that are

used for interconnect configuration within the placement region of the CUT and

inject one SEU at a time. Then, each SEU is evaluated using 100k random input

vectors by the emulation flow proposed in Figure 7.1 to calculate the number of

errors that can be observed at the circuit primary outputs for SER estimation.

Then, to evaluate the SER improvement, IPV is applied to the CUT and the same

SEU emulation is performed.

The experimental results are summarized in Figure 7.4, depicting the total

number of errors that are detected. According to Eq. 2.2, the SER value is
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proportional to the total number of errors. Therefore, the SER improvement

ratio can be calculated by the total number of errors of the circuit with IPV2.0

divided by that of the original circuit. The results show that IPV2.0 achieves on

average 2× SER improvement approximately. Particularly, the results show that

5× SER improvement can be achieved on the “ex1010” circuit.

In terms of runtime, the runtime of signal probability based IPV2.0 algorithm

is less than a minute on an Intel Xeon w3540 quad core CPU with 24G memory for

all of the benchmark circuit tested. The majority runtime of the entire resynthesis

flow is consumed by the post-route simulation to calculate the signal probability

values for each net. However, several vector-less based techniques to calculate

signal probability and switching activity have been proposed and widely used in

both academic research and industrial tools such as [CB10] and [AR12]. Lever-

aging those analysis techniques, it leads to a very low design closure overhead of

the proposed IPV resynthsis flow.

Figure 7.4: SEU emulation platform for soft error evaluation.
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7.5 Summary

In this chapter, the contradictions and difficulties of mitigation for SEU induced

soft error and leakage are identified. We propose an efficient simulated annealing

based co-optimization algorithm considering soft errors and leakage mitigations

at the same time. Our experimental results show 52% soft error rate reduction

and 33% leakage reduction on average on academic VPR FPGA architecture.

In addition, an efficient soft error model is proposed for Xilinx Virtex FPGAs

and a modified IPV algorithm is proposed. Then, validation of IPV on a Virtex

xcv300 FPGA is presented in this paper. Using SEU emulation, the results show

that IPV2.0 can achieve 50% soft error reduction on average, i.e. 2× MTTF

improvement.
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CHAPTER 8

Conclusions and Future Work

8.1 Conclusion and Future work

In this dissertation we proposed a robust design methodology for FPGA. We first

developed a SEU soft error analysis framework in Chapter 2 to quantitatively

evaluate the FPGA reliability against soft errors. To improve FPGA reliability,

we first provided a system level study and presented a novel CRAM scrubbing

technique in Chpater 3. In Chapter 4, to improve reliability for FPGA logic

components, we proposed a local remapping technique leveraging the underutilized

modern FPGA architecture features. From Chapter 5 to Chapter 7, we proposed

an LUT polarity re-assignment technique to reduce the soft error impact and

leakage power consumption on FPGA routing components explicitly. Then, the

polarity re-assignment algorithm was applied to an industrial FPGA to validate

the effectiveness on soft error mitigation.

In Chapter 2, a comprehensive SEU soft error evaluation framework for SRAM-

based FPGAs was proposed. Unlike most of the existing soft error evaluation

methods targeting the logic level, the proposed framework quantitatively measures

the impact of soft errors to circuit functional failure at the physical design level.

The proposed framework is capable of quantifying the soft error induced functional

failures for exact FPGA configuration bits in various circuit elements, such as

LUTs, connection boxes, switch boxes, and local routing multiplexers. Leveraging

the proposed framework, we evaluated different FPGA architectures characterized
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by CLB sizes, LUT sizes, and routing structures. Most important of all, the

proposed framework helps to identify critical components of a design implemented

on an FPGA, which enables development of efficient robust techniques and their

validation.

To mitigate the soft error impact, we first developed a novel robust technique

at the system level. In Chapter 3, we proposed heterogeneous CRAM scrubbing

technique (HCS). For the first time we proposed a MTTF estimation method for

FPGA CRAM scrubbing using a stochastic modeling of system failures. While the

conventional CRAM scrubbing technique does not consider the failure sensitivity

of a memory bit, HCS rewrites critical CRAM bits more aggressively to improve

the overall system MTTF. Based on the information of failure sensitivity, we

proposed a dynamic programming based algorithm that efficiently solves HCS

problem. By a system level experiment on an H.264/AVC decoder, we showed that

HCS achieves 60% MTTF improvement over the conventional CRAM scrubbing

technique.

Next, we continue to improve FPGA robustness at physical design level. To

improve robustness of functions implemented on FPGA logic components, we

proposed in-place decomposition technique (IPD). Leveraging the under utilized

decomposable LUT and built-in carry chain/adder features, IPD decomposes func-

tions into smaller subfunctions by decomposable LUTs and converges subfunctions

by built-in carry chain/adder. In doing this, not only the overall LUT CRAM

bit utilization is reduced but also the error masking capability is improved. We

showed that IPD on average improves MTTF of LUT by 4.55× and 3.33× under

0% and 20% carry chain/adder utilization rates.

On the other hand, we improved robustness of FPGA routing components by

proposing an in-place LUT polarity inversion technique (IPV) in Chapter 5. By

leveraging error masking at FPGA routing multiplexors, we proposed to re-assign

LUT polarities to optimize the overall soft error rate. As demonstrated in the
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experiments, the approach significantly reduces the interconnect fault in terms of

SER by nearly 4× on average. In addition, we observed that combining the IPD

and IPV can lead to a SER reduction up to 5.3× at chip level. Furthermore, we

presented a SER and leakage power co-optimization algorithm for IPV in Chapter

6 and showed that it reduces leakage power by 30% while maintaining a similar

level of SER reduction. Lastly, in Chapter 7, a validation of IPV on an industrial

FPGA architecture is presented, where a 2× SER reduction is demonstrated.

There are several future directions for this research. First, a future direction

is to explore logic and physical synthesis to improve memory scrubbing efficiency.

For example, although we have validated the combination of the two in-place

techniques proposed, the interaction between memory scrubbing and the two in-

place techniques has not yet been studied and will be an interesting future work.

Another interesting future direction is to explore architecture impact on the pro-

posed techniques. For example, in Chapter 6 and 7, we have shown the SER

improvement for IPV based on static signal probability on academic VPR and

Xilinx Virtex FPGA architectures. While IPV based on static signal probability

achieves 2× SER reduction on Xilinx Virtex architecture, its improvement on VPR

FPGA architecture is less than 20%. Therefore, the proposed techniques need to

be architecture-aware and more efficient algorithms need to be developed. Lastly,

validation on industrial FPGA architectures and exploiting advanced architecture

features will also be an interesting future work. In the future, by identifying

sequential feedbacks, we can also apply our approach to sequential circuits. Fur-

thermore, commercial architectures will be modeled to make this framework more

general for architectural and synthesis algorithm evaluation with respect to SEU

fault in FPGAs.

Our SEU fault evaluation framework provides detailed information for identi-

fying the most critical configuration bits or circuit elements to develop new fault

mitigation algorithms. We envision that our fault evaluation framework will be
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used to cast more useful insights for the design of more robust FPGA circuits,

architectures, and better synthesis algorithms.
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