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Abstract

High Precision Monte Carlo Event Generation for Particle Colliders

by

Calvin James Berggren

Doctor of Philosophy in Physics

University of California, Berkeley

Dr. Christian W. Bauer, Co-Chair

Professor Lawrence J. Hall, Co-Chair

Matrix-element calculations and parton shower programs are both crucial tools in
the analysis of data at modern particle physics experiments at colliders. Finding
the most effective ways to combine these complementary, but sometimes conflicting,
approaches to simulating physical events has been the subject of much work in the
recent decade. This thesis investigates state-of-the-art ways in which the precision
of the matrix elements can be extended in combination with the parton shower. We
identify three dimensions along which precision can be improved and describe how
progress can be made along each one.

First, we present a general method to match fully differential next-to-next-to-
leading-order (NNLO) calculations to parton shower (PS) programs, which represents
an extension of the successful LO+PS (leading order) and NLO+PS (next-to-leading
order) frameworks to NNLO+PS. We discuss in detail the perturbative accuracy
criteria a complete NNLO+PS matching has to satisfy, and we give an explicit and
general construction of the input “Monte Carlo cross sections” satisfying all required
criteria.

Next, we describe how augmenting an NLO calculation with higher-order resum-
mation of large Sudakov logarithms allows one to extend the lowest-order matching
of tree-level matrix elements with parton showers to give a complete description at
the next higher perturbative accuracy in αs, at both small and large jet resolutions.
As a byproduct, this combination naturally leads to a smooth connection of the NLO
calculations for different jet multiplicities. We focus on the general construction of
our method and present results of an implementation in the Geneva Monte Carlo
framework. For leptonic collisions, we apply our construction to e+e− → jets and
obtain good agreement with LEP data for a variety of 2-jet observables. For hadronic
collisions, we look at Drell-Yan production.
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Chapter 1

Introduction

In order to conduct an experimental particle collider program, one must have
some way to translate both accepted and proposed theories into the backgrounds and
signals that will be measured in the detector. Doing this is an involved and many-
stage process that has evolved over decades of hard work from many communities.
The goal is forming an expectation of what a specific measurement would yield if a
certain theory were valid. This is done by simulating possible final-state events of
particles that could have appeared in the detector. Once a large set of events has
been simulated, they can be run through an analysis similar to that used for real
events, and then the results of the simulation and the data can be compared.

At the core of the simulation are calculations of matrix elements using techniques
of quantum field theory. Possible configurations of final-state hard partons are gen-
erated and weights are assigned to them based on their calculated matrix elements.
It is advantageous to calculate these matrix elements as accurately as possible, and
improving this is one way of increasing the precision of the simulation.

Calculations in quantum field theory are carried out in a perturbative fashion,
where the result is a series of increasing powers of the coupling constants. The
most important corrections to the leading order (LO) term come from the strong
coupling constant αs of quantum chromodynamics (QCD). Higher order terms in αs
come from interactions containing loops of strongly interacting particles. Organizing
a calculation around powers of αs is called a fixed-order calculation. The next-to-
leading-order term in such a calculation is designated NLO is this document, the
next-to-next-to-leading term NNLO, and so on. Leading order terms for events with
greater numbers of strongly interacting particles also yield higher powers of αs.

Unfortunately, proceeding with the calculation for a real event in terms of matrix
elements becomes infeasible since real events can contain hundreds of particles and
the complexity of the calculation scales factorially with the number of particles. In
addition, nonperturbative effects also play a role, which matrix-element techniques
are ill-equipped to handle. Fortunately, the interactions in an event tend to factorize
into different scales where interactions at each scale are approximately independent
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Fixed Order + Resummation

Parton Shower

Figure 1.1: Shown above are important components for a Monte Carlo event gener-
ator. The top row represents the combination of fixed-order and resummed calcula-
tions. The final calculation is then matched onto a parton shower.

from each other. The hard scale interaction typically has only a few particles, and
each of these hard particles then fragments into numerous other particles through
lower-scale interactions. This factorization in scales led to the development of the
parton shower, whose job it is to perform this fragmentation. The parton shower
is an approximation to the full calculation and assumes that successive splittings
are independent. The approximation of the parton shower tends to be reasonably
accurate for soft and collinear splittings and not very accurate for hard splittings. At
lower scales still, the partons combine into color-neutral hadrons, and this stage is
handled by phenomenological hadronization models.

A central tension throughout this thesis is the one between the field theoretic
calculation and the parton shower, as each plays an important role in the process and
each imposes constraints on the other. In a sense, one would like to progressively
replace more and more of the parton shower with a full calculation, as the parton
shower is only an approximation to the full calculation. But as we shall see, making
a partial and selective replacement is a delicate task.

Besides the difficulty of having a large multiplicity of particles, one further issue
with traditional fixed-order calculations is that the perturbative series is not well
behaved in certain regions of phase space. Regions of phase space that introduce a
scale which is far below the hard scale of the interaction become problematic due
to the appearance of large logarithmic factors in the series. For example, when two
hard partons at hard scale Q become close together and are separated by a scale T ,
then generically, up to two powers of log T

Q
appear for every power of αs in the series.

For small enough values of T , the logarithm becomes numerically large. These large
logarithms appear at all orders and spoil the convergence of the fixed-order series.
Meaning can be restored to the series in these problematic regions through a technique
called resummation, where sets of these logarithms are resummed to all orders.
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LO PS PS PS

dFN dFN+1 dFN+2 dFN+3

Figure 1.2: A scheme for event generation can be represented using a diagram like
the above. This diagram represents a single multiplicity given at LO and all others
filled in by the parton shower.

In total, fixed-order matrix elements, resummation, and parton showers are the
three major elements that need to be carefully combined into a Monte Carlo event
generator (see figure 1.1). The matrix elements and resummation are combined at
the level of the theory calculation, and the full calculation is then matched onto the
parton shower.

In light of this discussion, three major strategies can be seen for increasing the
precision of the event generator.

1. One can add or increase the precision of higher multiplicity matrix elements in
the calculation.

2. One can increase the fixed order to which the base-level matrix element is
available.

3. One can increase the order of the resummation.

The final crucial note is that when carrying out any combination of the three strategies
above, one must not disrupt the link to the parton shower. Each of these strategies
presents its own difficulties.

Adding matrix elements for multiple multiplicities in a set of processes, as in strat-
egy 1, requires a careful division of responsibilities between the matrix elements and
the parton shower since both sides can give rise to events at the higher multiplici-
ties. The parton shower increases the multiplicity of partons through splittings and
can potentially lead to double counting regions of phase space covered by the matrix
elements if one is not careful.

Note here that correctly combining matrix elements at multiple multiplicities re-
quires a base level of resummation in order to match onto the parton shower. This
is because the parton shower carries out a modest level of resummation itself, and
the calculation needs to do the same in order to match up to it correctly. The par-
ton shower provides resummation at the leading logarithmic (LL) level and partial
resummation at the next-to-leading logarithmic (NLL) level. See sections 3.2.1.3 and
3.2.1.4 for more discussion of resummation orders.
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LO

LL
PS

LO

LL
PS

LO

LL
PS

dFN dFN+1 dFN+2 dFN+3

Figure 1.3: In an event generation scheme combining multiple LO matrix elements,
each multiplicity is covered by either a matrix element calculation, a parton shower,
or a combination of both. Correctly combining matrix elements and parton showers
within a multiplicity requires the addition of LL resummation. The dashed line
represents a jet resolution variable which divides the phase space into an N -jet-like
region covered by the parton shower and an (N + 1)-jet-like region covered by the
matrix element.

NLO

LL
PS

LO

LL
PS

LO

LL
PS

dFN dFN+1 dFN+2 dFN+3

Figure 1.4: This scheme builds on figure 1.3 to include the first multiplicity at higher
order.

Strategy 2 complicates things further because the presence of infrared (IR) diver-
gences arising in higher-order matrix elements requires not only the addition of certain
higher multiplicities as in strategy 1, but also its own rearrangement of phase space.
Pushing to ever higher order in strategy 2 or returning to strategy 1 to increase the
order of higher multiplicities creates an increasingly involved interplay between the
various terms at different orders and different multiplicities that must align correctly
with the base level of resummation required by the presence of the parton shower.

The third strategy above is to increase the level resummation beyond what is
required by the parton shower. This requires careful consideration because resum-
mation calculations typically are not fully differential and also because one has to
be careful not to double count the effect of the resummation between the calculation
and the parton shower.

The past decade has seen substantial improvements in the accuracy of fully exclu-
sive event generators. Using strategy 1 above, matching schemes to simultaneously
combine multiple LO matrix elements have been interfaced with parton shower (PS)
routines and implemented in many event generators [4, 5, 6, 7, 8, 9, 10, 11, 12]. The
combination with the parton shower requires the inclusion of LL resummation in
the calculation. A diagrammatic representation of this scheme is shown in figure 1.3.
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NNLO

LL
PS

NLO

LL
PS

LO

LL
PS

dFN dFN+1 dFN+2 dFN+3

Figure 1.5: An NNLO+LL event generator would further extend the accuracy of
certain multiplicities as shown above.

Pushing in direction 2, it has also become possible to match general NLO calculations
with a parton shower and produce physical event samples that describe sufficiently
inclusive distributions at NLO [13, 14, 15, 16, 17, 18, 19]. These NLO+PS event
generators are now part of the standard tool set for experimental analyses and have
made significant impact on phenomenology (see figure 1.4).

Calculations at NLO are particularly important because not only do they often
produce sizeable corrections to the LO result, but they also introduce a scale pa-
rameter into the calculation which can be varied to put a handle on the uncertainty
expected at that order. Well-behaved series will display a convergence where the
uncertainties shrink at higher orders and where each order falls approximately within
the previous order’s uncertainties. Obtaining some measure of the theoretical uncer-
tainty along with the central prediction is clearly a crucial part of understanding the
theoretical expectations.

The frontier of fixed-order precision is calculations at NNLO in QCD perturba-
tion theory. Fully differential NNLO calculations exist for several important hadron-
collider processes involving W , Z, γ, and Higgs bosons as well as top quarks [20, 21,
22, 23, 24, 25, 26, 27, 28], and the technology for these calculations is continually
being pushed toward more complex topologies [29, 30, 31]. Although experimental
analyses regularly make use of NNLO cross sections and distributions, there are many
challenges inherent in directly comparing fixed-order results with data.

As discussed above, an event generator that matches NNLO calculations with a
parton shower would be the tool needed to bridge the gap between pure fixed-order
calculations and the needs of experimentalists. It would provide hadron-level events
that can be more easily interfaced with an analysis while maintaining NNLO accuracy
for the underlying hard process, extending the power and flexibility of an NLO+PS
generator to NNLO+PS.

In chapter 2, we present a general method for combining NNLO calculations with
LL resummation to produce fully differential cross sections, and for attaching a parton
shower routine to produce complete events (see figure 1.5). We derive the conditions
that an NNLO+LL generator must satisfy and provide a construction that satisfies
these.

Another complementary strategy for increasing the precision of an event generator
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is by increasing the resummation order (strategy 3 in the list above). Accurate and
reliable theoretical predictions for measurements at collider experiments require the
inclusion of QCD effects beyond the lowest perturbative accuracy in the strong cou-
pling αs, and error estimation is also an important part of having reliable predictions.
This is especially important in the complex environment of the LHC, which requires
precise predictions for a broad spectrum of observables. It is true that higher-order
corrections in αs (strategy 2) are important to predict total cross sections and other
inclusive observables. But it is also important to realize that exclusive jet observables,
such as jet-vetoed cross sections, require the all-orders resummation of logarithmi-
cally enhanced contributions (strategy 3). In fact, for many observables, an accurate
description across phase space demands a combination of both types of corrections.
And as we have been repeating, the presence of the parton shower is crucial for
experimental analyses to benefit from these advances.

The goal of modern Monte Carlo programs is to provide a proper description of
the physics at every jet resolution scale. Returning to the LO+PS schemes described
above (see figure 1.3), we can understand that one of their main advantages is being
able to attain the lowest perturbative order accuracy in every region of phase space.
Here, the parton shower provides the correct lowest-order description at small jet
resolution scales, where the resummation of large Sudakov logarithms is needed, while
at large jet resolution scales the exact tree-level matrix elements are needed to provide
the correct lowest-order description. Hence, the LO+PS merging provides theoretical
predictions at the formally leading O(1) accuracy relative to the lowest meaningful
perturbative order. Once one has a consistent matching between these two limits of
phase space, the possibility to include exact tree-level matrix elements for several jet
multiplicities (strategy 1) follows almost automatically by iteration.

Given the necessity of higher-order perturbative corrections to make accurate
predictions, it is important to extend the perturbative accuracy of the Monte Carlo
description to formal O(αs) accuracy relative to the lowest order. Constructing a
framework to do this is described in detail in chapter 3, along with an implementation
of this framework in a new Monte Carlo called Geneva.

Extending the perturbative accuracy requires including the formally next higher-
order corrections that are relevant at each scale. At small scales, i.e., small values
of the jet resolution variable, this requires improving the LL parton shower resum-
mation with higher-order logarithmic resummation (strategy 3), while at large scales
this requires including the fully differential NLO matrix elements. Assuming that we
already have the matrix elements necessary to produce inclusive observables correct
to NLO, improving the accuracy at large values of the jet resolution variable corre-
sponds to increasing the order of matrix elements at higher multiplicity as described
in strategy 1. Extending the precision of multiple multiplicities is a desirable feature
which has recently been addressed by several groups [32, 33, 34, 35, 36, 37, 38, 39].
Our approach in particular focuses on the improvement to the resummation and finds
that the extension to higher multiplicities emerges as a byproduct. We show results



7

NLO

NNLL¢
PS

NLO

NNLL¢
PS

LO

LL
PS

dFN dFN+1 dFN+2 dFN+3

Figure 1.6: The Geneva Monte Carlo merges two multiplicities at NLO and a third
at LO. Resummation is included beyond the leading level, specifically NNLL′. (See
sections 3.2.1.3 and 3.2.1.4 for more discussion of resummation orders.) The dashed
line in the (N + 1)-body phase space has shifted to the left compared to figure 1.4
because higher-order resummation has enabled us to use the matrix elements for a
greater portion of the (N + 1)-body phase space and the parton shower for less.

for two multiplicities merged at NLO (see figure 1.6) and describe a straightforward
extension for merging an arbitrary number of multiplicities at NLO.

Having higher-order resummation allows Geneva to push the matrix element
calculations into the resummation region. This region has typically been beyond
the reach of fixed-order calculations because the low scales encountered give rise
to logarithms which are large enough to break down the perturbative expansion.
When combined with resummation, one can extend the reach of the matrix-element
calculations to these lower scales. This also means that one maintains explicit control
of the perturbative uncertainties in this region where the parton shower was once
used. This is an important step forward because parton showers do not provide a
well-defined and reliable way to estimate uncertainties.

Chapter 3 focuses on the general construction of our method and discusses its ap-
plication to e+e− and pp collisions. We present results of the implementation in the
Geneva Monte Carlo framework. We employ N -jettiness [1] as the jet resolution vari-
able, combining its NNLL′ resummation with fully exclusive NLO matrix elements,
and Pythia 8 as the backend for further parton showering and hadronization. For
leptonic collisions, we take e+e− → jets as an example to apply our construction, and
for hadronic collisions, we take Drell-Yan production. For e+e− → jets, together with
the Pythia 8 hadronization model, we obtain good agreement with LEP data for a
variety of 2-jet observables.

The remainder of this introduction provides an overview of Monte Carlo event
generation and gives a general setup which is used in later chapters. The subsequent
chapters in this thesis describe important progress that has been made along the lines
of each of the three strategies outlined above. First, chapter 2 describes the extension
of the generic NLO+PS program to NNLO+PS. Next, chapter 3 describes the first
attempt to systematically include resummation into an event generator, which in turn
yields the ability to fully combine multiple multiplicities at NLO. Finally, conclusions
are presented in chapter 4.
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1.1 Overview of Monte Carlo event generation

1.1.1 Monte Carlo phase space integration

Consider the cross section for some infrared-safe N -jet measurement MX , which
can contain a number of cuts (θ functions) as well as differential measurements (δ
functions) of observables, which we collectively refer to as X. At leading order in
perturbation theory, the cross section for measuring X is given by

σLO(X) =

∫
dΦN BN(ΦN)MX(ΦN) , (1.1)

where BN(ΦN) is the tree-level (Born) squared matrix element for N emissions. In
case of hadronic collisions, we assume that the relevant parton densities (PDF) have
already been convolved with the matrix elements, and we will therefore avoid writing
them out explicitly in our formulae. The measurement function MX(ΦN) implements
the measurement on the N -body phase space point ΦN . In particular, since MX is
infrared safe, it cuts off any possible IR divergences in BN(ΦN). To obtain σ(X) from
eq. (1.1), one usually performs the phase space integral over ΦN numerically. Due
to the large dimensionality of N -body phase space, the typical method of choice is
Monte Carlo integration: we generate points ΦN with relative weights such that they
are distributed according to BN(ΦN).1 For each generated point ΦN , we evaluate
MX(ΦN) and record the result for X into appropriate histograms with the associated
weight of the point ΦN .

At next-to-leading order in perturbation theory, σ(X) is given by

σNLO(X) =

∫
dΦN (BN + VN)(ΦN)MX(ΦN) +

∫
dΦN+1BN+1(ΦN+1)MX(ΦN+1) .

(1.2)

The virtual one-loop contribution VN and the (N + 1)-parton real-emission contribu-
tion BN+1 are separately IR divergent. A convenient way to handle these divergences
is the standard subtraction method, where one writes2

σNLO(X) =

∫
dΦN (BN + V C

N )(ΦN)MX(ΦN) (1.3)

1To be precise, if ΦN points are generated according to a probability distribution P (ΦN ), each
point gets assigned the weight w(ΦN ) = BN (ΦN )/P (ΦN ). The effective distribution of points is then
w(ΦN )P (ΦN ) = BN (ΦN ), as desired. The simplest would be to use a flat sampling P (ΦN ) = 1, while
P (ΦN ) ≈ BN (ΦN ) would be statistically more efficient. While the choice for P (ΦN ) is important
for the statistical efficiency of the Monte Carlo integration, it is not relevant for our discussion.

2Alternatively, one can keep the ΦN point fixed during the ΦN+1 integration and evaluate the
same MX(ΦN ) for all the subtraction counterterms and different MX [Φ̂mN+1(ΦN )] for each different
BmN+1 contribution, where

∑
mB

m
N+1 = BN+1. This approach might be better for efficiency reasons

and more suitable for matching with the parton shower.
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+

∫
dΦN+1

{
BN+1(ΦN+1)MX(ΦN+1)−

∑
m

Cm
N+1(ΦN+1)MX [Φ̂m

N(ΦN+1)]

}
.

Here, V C
N denotes the virtual contribution including the appropriate integrated sub-

traction terms to render it IR finite. The Cm
N+1 are the corresponding real-emission

subtraction terms. Written in this way, the ΦN and ΦN+1 integrals are separately IR
finite and can each be performed numerically by Monte Carlo integration.

The ΦN integral in eq. (1.3) can be performed as before at LO, except that the
ΦN points are now distributed according to BN + V C

N . The ΦN+1 integral is more
involved now due to the presence of the subtraction terms. Their precise form is not
important for our discussion. What is relevant is that generically several subtraction
terms are needed to remove all possible IR singularities in BN+1 and that in each
subtraction term, the measurement must be performed on a (in principle) different
projected N -body phase space point Φ̂m

N(ΦN+1). As a result, each generated point
ΦN+1 contributes multiple times to each histogram with multiple weights distributed
according to BN+1 and Cm

N+1, which are separately IR divergent. As we approach
any IR-singular region, the different X values obtained for the real emission term and
the relevant subtraction terms approach each other and eventually fall into the same
histogram bin, where the IR-divergent contributions of real emission and subtractions
cancel each other.

1.1.2 Monte Carlo event generation

The above Monte Carlo phase space integration is how essentially all (N)NLO
programs using subtractions operate. Its main feature is that it allows one to obtain
the exact result (up to limitations due to numerical precision) for arbitrary IR-safe
observables. It can be contrasted with the event generation used in (parton shower)
Monte Carlo event generators. In an event generator, the basic goal is to produce
physical events that are generated and stored once and that can be repeatedly pro-
cessed later, e.g., by performing various measurements on them.

Theoretically, performing a measurementMX on the stored events is exactly equiv-
alent to making a theoretical prediction for σ(X). To illustrate this with a trivial
example, imagine we want to compute σLO(X) in eq. (1.1) by generating events. To
do so, we take

dσmc
≥N

dΦN

= BN(ΦN) and σLO(X) =

∫
dΦN

dσmc
≥N

dΦN

MX(ΦN) . (1.4)

We now first generate a number of points ΦN (the actual generation routine can be
the same as before), call them “N -parton events,” and store them together with their
weights. These events are distributed according to the “MC cross section” dσmc

≥N/dΦN .
In the second step, we run over all stored events, evaluate the measurement MX(ΦN),
and record the result for X into histograms with the associated weight of each event.
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The result for σLO(X) obtained in this way is obviously identical to that obtained
by performing the Monte Carlo integration of eq. (1.1) as described there. We have
merely changed from two operations in a single loop into two separate loops with one
operation each. In practice, this separation becomes vital as soon as the additional
processing steps performed on the events become very involved (theoretically and/or
computationally intensive). This is the case when the events are run through a
parton shower and hadronization routine, which then also allows one to perform
much more detailed measurements, such as propagating them through a complete
detector simulation and using them in different experimental analyses.

Now, if we try to perform the NLO calculation in eq. (1.3) with the same approach,
then for each generated and stored ΦN+1 point with weight proportional to BN+1, we
would also have to keep track and store the complete set of associated (correlated) Φm

N

events with weights −Cm
N+1(ΦN+1). In principle, this is possible and would again give

the identical result for σ(X) as before (some fixed-order programs can indeed be run
in this mode). However, for experimental purposes, e.g., when matching onto parton
shower routines, it is impractical to deal with such “effective” events that consist of
a number of correlated unphysical events with large and opposite weights. The point
is that BN+1 and Cm

N+1 separately are not physical cross sections. Their individual
contributions are IR divergent, and the divergences only cancel each other to give
a physical result once they are combined into a physical measurement, i.e., a single
histogram bin.

Therefore, the goal is to generate events that are physical in the sense that the
contribution from each event should correspond to an IR-safe cross section; i.e., all IR
divergences should cancel on a per-event basis rather than between several unphysical
events.3 Conceptually, this implies that each N -parton event should be considered a
“bin entry” in a partonic N -jet measurement, which is IR finite and fully differential
in the corresponding partonic N -jet phase space. In other words, the generated N -
parton events really represent points in an N -jet phase space rather than an N -parton
phase space.

The definition of an N -jet cross section requires the presence of an N -jet resolution
variable, which we call TN . It is defined such that, in the IR-singular region, TN → 0.
Emissions below TN < T cut

N are considered unresolved and T cut
N is called the N -

jet resolution scale. When generating events with N and N + 1 partons, they are

3Note that the problem is not the use of weighted events to obtain the desired distribution, since
as long as the weighted events are statistically independent, they can be (partially) unweighted.
What is very impractical is to have unphysical events that must be treated as correlated due to their
individual weights being IR divergent, since there is no reasonable way to unweight these. One can
also have an “intermediate” case, where the final cross section is made up of independent IR-finite
parts, some of which still require events with negative weights. This causes much less severe but
still important practical complications and so should be avoided if possible.
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distributed according to the following Monte Carlo (MC) cross sections:

ΦN events:
dσmc

N

dΦN

(T cut
N ) ,

ΦN+1 events:
dσmc
≥N+1

dΦN+1

(TN > T cut
N ) . (1.5)

The cross section σ(X) measured from these events is given by

σ(X) =

∫
dΦN

dσmc
N

dΦN

(T cut
N )MX(ΦN) +

∫
dΦN+1

dσmc
≥N+1

dΦN+1

(TN > T cut
N )MX(ΦN+1) .

(1.6)
Physically, dσmc

N /dΦN(T cut
N ) is a fully differential, exclusive, partonic, N -jet cross

section. Perturbatively, it is the cross section for the emission of N identified partons
plus any number of unresolved emissions below the resolution scale T cut

N . (At higher
orders, this includes the necessary virtual corrections to render it IR finite.) Hence, as
mentioned already, ΦN really means Φjet

N here, and when specifying the jet resolution
variable TN , one also needs to specify how unresolved emissions with TN < T cut

N are
projected onto the partonic N -jet phase space Φjet

N in which the events are distributed.
To avoid cluttering the notation, we suppress the explicit “jet” label from here out.

The cross section dσmc
≥N+1/dΦN+1(TN > T cut

N ) in eqs. (1.5) and (1.6) is an inclusive
partonic (N + 1)-jet cross section. Perturbatively, it is the cross section for the
emission of N + 1 identified partons above the N -jet resolution scale T cut

N . It includes
any number of additional emissions, which are mapped onto the partonic (N + 1)-jet
phase space ΦN+1 ≡ Φjet

N+1 of the N + 1 identified partons (or rather partonic jets).
The jet resolution variable TN is part of the full ΦN+1, and we use the argument
TN > T cut

N to explicitly indicate the fact that dσmc
≥N+1 only has support for TN above

T cut
N .

This procedure is essentially what every generator of physical events does, either
implicitly or explicitly. For example, in a pure parton shower generator, TN corre-
sponds to the shower evolution variable, and T cut

N is the parton shower cutoff. In this
case, dσmc

N /dΦN(T cut
N ) is the no-emission probability, and dσmc

≥N+1/dΦN+1(TN > T cut
N )

is the probability to have at least one emission above T cut
N . This is discussed in detail

in section 2.2.2.
We now want to cast the FO calculation in eq. (1.2) into a form suitable for event

generation by applying the logic in eqs. (1.5) and (1.6) at fixed order. We start by
considering the trivial example of an LO calculation. Since at tree level there are
no additional emissions, we do not need to specify a resolution variable, the N jets
coincide with the N tree-level partons, and measuring the N -jet phase space simply
returns the full N -parton information. Thus, at LO, the “MC measurement” function
defining the MC cross section is

Mmc(Φ′N) = δ(ΦN − Φ′N) ; (1.7)
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i.e., the partonic phase space point Φ′N going into the measurement is mapped trivially
onto the partonic N -jet phase space ΦN ≡ Φjet

N of the Monte Carlo events. Inserting
this into the LO calculation in eq. (1.1), we obtain

dσmc
≥N

dΦN

=

∫
dΦ′N BN(Φ′N)Mmc(Φ′N) = BN(ΦN) , (1.8)

which is the obvious result and corresponds to eq. (1.4).
Starting at NLO, the fully differential MC measurement becomes nontrivial. We

now need to specify how the measurement function acts on both ΦN and ΦN+1 points.
At NLO, the definition of the MC cross sections given below eq. (1.6) corresponds to
the fully differential MC measurements

Mmc(Φ′N) = δ(ΦN − Φ′N) ,

Mmc(Φ′N+1) = δ[ΦN − Φ̂N(Φ′N+1)] θ[TN(Φ′N+1) < T cut
N ]

+ δ(ΦN+1 − Φ′N+1) θ[TN(Φ′N+1) > T cut
N ] . (1.9)

For these to be IR safe, TN(ΦN+1) can be any IR-safe resolution variable, and
Φ̂N(ΦN+1) can be any IR-safe projection from ΦN+1 to ΦN . In particular, TN(ΦN) =
0, and TN(ΦN+1) > T cut

N cuts off all IR-singular regions in ΦN+1. Below the reso-
lution scale T cut

N , the additional emission in ΦN+1 remains unresolved, and ΦN+1 is
projected onto a corresponding ΦN point via Φ̂N(ΦN+1). Above T cut

N , the additional
emission is resolved, and we measure the full ΦN+1 dependence. Inserting eq. (1.9)
into eq. (1.2), we obtain

dσmc
N

dΦN

(T cut
N ) = (BN + VN)(ΦN)

+

∫
dΦN+1

dΦN

BN+1(ΦN+1) θ[TN(ΦN+1) < T cut
N ] ,

dσmc
≥N+1

dΦN+1

(TN > T cut
N ) = BN+1(ΦN+1) θ[TN(ΦN+1) > T cut

N ] , (1.10)

where in the first equation, we have abbreviated

dΦN+1

dΦN

≡ dΦN+1 δ[ΦN − Φ̂N(ΦN+1)] . (1.11)

Using eq. (1.10) as the MC cross sections in eq. (1.5), we can generate physical NLO
events. Of course, to distribute our N -parton events, we still have to perform the NLO
calculation in dσmc

N /dΦN(T cut
N ) (which may be nontrivial and require subtractions [see

eq. (1.3)], but which we will assume exists).



13

We can ask to what extent other measurements MX are reproduced at NLO when
using eq. (1.10) together with eq. (1.6):

σ(X) =

∫
dΦN (BN + VN)(ΦN)MX(ΦN) +

∫
dΦN+1BN+1(ΦN+1) (1.12)

×
{
θ[TN(ΦN+1) < T cut

N ]MX [Φ̂N(ΦN+1)] + θ[TN(ΦN+1) > T cut
N ]MX(ΦN+1)

}
.

Comparing to eq. (1.2), it is clear that observables are correct to the appropriate
fixed order if and only if they are insensitive to the unresolved region of phase space
below T cut

N where the measurement is evaluated on the projected phase space point
Φ̂N(ΦN+1) rather than the exact ΦN+1. That is,

• N -jet (integrated) observables are correct to NLON up to power corrections
that scale as O(αsT cut

N /T eff
N ), where T eff

N is the typical resolution scale to which
the measurement is sensitive, i.e., up to which it integrates over ΦN+1. In
particular, it should contain the complete unresolved region of ΦN+1 where
TN(ΦN+1) < T cut

N .

• (N + 1)-jet (differential) observables are correct to LON+1 if they only include
contributions in the resolved region of ΦN+1, i.e., if their MX(ΦN+1) completely
excludes the unresolved TN(ΦN+1) < T cut

N region.

Here, M -jet observables are those that receive their first nonzero contribution from
an M -parton final state, and NnLOM refers to the O(αns ) correction relative to the
corresponding tree-level M -parton result.

An example of the effective resolution scale T eff
N is in Higgs boson production with

a veto on extra jets (requiring pjet
T < pcut

T ). If the resolution variable TN is chosen
to be the transverse momentum of the hardest jet, then T eff

N = pcut
T . For a different

resolution variable, T eff
N corresponds to the effective scale in TN to which the cut

on pjet
T is sensitive. For example, if TN is chosen to be the pT of the Higgs, then

T eff
N ' pcut

T . If it is chosen to be beam thrust [40], then T eff
N ∼ mH(pcut

T /mH)
√

2 [41].
The presence of power corrections in T cut

N /T eff
N clearly highlights the formal limi-

tation fundamental to the event generation method, namely that we inevitably lose
the fully differential information below the resolution cutoff. This is the price we
have to pay for the event-by-event IR-finiteness. Fortunately, in practice, this is not
a problem, since we can always make T cut

N small enough such that either power cor-
rections in T cut

N are irrelevant or else, if we do probe scales of order T cut
N , the FO

expansion breaks down and resummed perturbation theory is required to obtain a
stable prediction. In this case, the only observables for which we cannot obtain an
accurate FO result are those for which we would not want to use the FO calculation
in the first place.

One might think that the breakdown of the FO expansion indicates that our events
also become unphysical again. However, the important point is that the events (or
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more precisely the underlying MC cross sections) are still defined in a physical IR-safe
way. For very small T cut

N , we are simply going into an extremely exclusive and thus
IR-sensitive region, where the FO calculation itself breaks down, irrespectively of how
it is performed. This is precisely the region where improving the FO calculation with
the parton-shower LL resummation or a higher-order resummation becomes necessary
to obtain a meaningful perturbative result. Rewriting the FO calculation in this way
forms the basis (and in fact is a necessary precondition) for combining it with a parton
shower event generator. As we will see in the next chapter, after including the LL
improvement, T cut

N will become equivalent to the parton shower cutoff.
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Chapter 2

Matching fully differential NNLO
calculations and parton showers1

2.1 Introduction

One important frontier in modern event generation is the combination of state-
of-the-art NNLO calculations with parton showers. Event generators at NLO+PS
are now part of the standard tool set at experiments, but these lack the highest
order theory calculations available. Experimental analyses also regularly make use
of standalone NNLO cross sections and distributions, but there are many challenges
inherent in directly comparing fixed-order results with data. An event generator that
matches NNLO calculations with a parton shower would be an ideal tool to bridge
the gap between pure fixed-order calculations and the needs of experimentalists. It
would provide hadron-level events that can be more easily interfaced with an analysis
while maintaining NNLO accuracy for the underlying hard process.

One important first step in this direction has been taken in ref. [43], where a
MiNLO-improved Powheg simulation for Higgs plus one jet [38] was used to produce
an NNLO+PS event sample for Higgs boson production by reweighting the events to
the NNLO Higgs rapidity distribution.

In this chapter, we present a general method for combining NNLO calculations
with leading-logarithmic (LL) resummation to produce fully differential cross sections
and for attaching a parton shower routine to produce complete events. We derive the
conditions that an NNLO+LL generator must satisfy and provide a construction that
satisfies these. We also comment on the approach in ref. [43] and show how it can be
derived as a special case of our results.

Theoretically, there are two conceptually very distinct aspects to interfacing a
fixed-order calculation with a parton shower event generator (see figure 1.1). The

1This chapter is a modified version of a paper originally co-written with Simone Alioli, Christian
W. Bauer, Frank J. Tackmann, Jonathan R. Walsh, and Saba Zuberi and published in [42].
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first aspect is the LL improvement of the fully differential NNLO calculation. This
corresponds to matching an LL resummed calculation with an NNLO calculation
to obtain a combined NNLO+LL calculation, and doing so at a fully differential
level. This aspect is, a priori, completely independent of any particular parton shower
algorithm or program and can be performed solely at the partonic (or matrix-element)
level. Here, the NNLO calculation first needs to be recast in a way that is suitable
for fully differential event generation. Beyond leading order, the cross section for a
fixed number of partons is infrared divergent and thus ill defined, meaning that to
generate physical events with a given number of partons, the events must correspond
to a physically well-defined and infrared-safe partonic jet cross section. In other
words, each four-vector in the event should represent a partonic jet, which includes the
contribution of an arbitrary number of unresolved emissions below some jet resolution
cutoff. The NNLO calculation written in this way is then matched to an LL resummed
calculation to obtain a combined fully differential NNLO+LL calculation.

The second aspect is to attach an exclusive parton shower Monte Carlo to this
NNLO+LL calculation. In this step, events with N , N + 1, and N + 2 partons of the
NNLO+LL calculation are handed to a parton shower algorithm, which generates
additional emissions. Here, one has to take care of double counting between the
shower emissions and the partonic calculation as well as the compatibility of the LL
parton shower evolution with the partonic LL resummation.

The conceptual distinction between these two aspects has already been stressed in
refs. [44, 45, 46]. It becomes particularly important at NNLO. As we will see, the first
aspect of obtaining a consistent fully differential NNLO+LL matched calculation is
the more challenging one, which is why most of our discussion will focus on it. Once
this step has been carried out, the step of attaching a parton shower algorithm is
relatively straightforward.

This chapter is organized as follows. In section 2.2, we discuss in detail the general
framework for generating physical events at NNLO and at LL. The main outcome of
this section will be to identify the “Monte Carlo (MC) cross sections” dσmc, which
are the partonic jet cross sections according to which the different event multiplicities
are distributed. In particular, we show how the fixed-order (FO) calculation is cast
into this form to make it suitable for event generation. In section 2.3, we discuss
the general procedure and conditions for combining the pure FO and pure LL cal-
culations into a matched FO+LL calculation. As an instructive exercise, we review
the corresponding MC cross section for the known cases of LO+LL and NLO+LL
calculations. In section 2.4, we then discuss in detail how to construct the MC cross
sections for an NNLO+LL calculation. In section 2.5, we discuss how to interface
the NNLO+LL calculation with a parton shower, including the conditions needed
to avoid any double counting that might arise. In section 2.6, we discuss how our
method encompasses proposed and existing approaches [43, 46, 47], and in section 2.7,
we give the conclusions for this chapter.
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2.2 General setup

2.2.1 Event generation at NNLO

An overview of Monte Carlo event generation was given in the introduction in
section 1.1 and included specific examples for the construction of pure LO and NLO
Monte Carlos. We seek here to adapt that discussion to the case of NNLO.

To implement an NNLO calculation in the form of event generation, we first have
to extend eq. (1.5) to include (N + 2)-parton events. To do so, we split dσmc

≥N+1 into
an exclusive dσmc

N+1 and an inclusive dσmc
≥N+2 using an additional (N+1)-jet resolution

scale T cut
N+1. Events with N , N + 1, and N + 2 partons are then distributed according

to the following MC cross sections:

ΦN events:
dσmc

N

dΦN

(T cut
N ) ,

ΦN+1 events:
dσmc

N+1

dΦN+1

(TN > T cut
N ; T cut

N+1) , (2.1)

ΦN+2 events:
dσmc
≥N+2

dΦN+2

(TN > T cut
N , TN+1 > T cut

N+1) .

The cross section σ(X) measured from these events is given by

σ(X) =

∫
dΦN

dσmc
N

dΦN

(T cut
N )MX(ΦN)

+

∫
dΦN+1

dσmc
N+1

dΦN+1

(TN > T cut
N ; T cut

N+1)MX(ΦN+1)

+

∫
dΦN+2

dσmc
≥N+2

dΦN+2

(TN > T cut
N , TN+1 > T cut

N+1)MX(ΦN+2) . (2.2)

Here, dσmc
N (T cut

N ) is defined as before as an exclusive partonic N -jet cross section, i.e.,
the IR-finite cross section for N identified partons plus any number of unresolved
emissions below the resolution scale T cut

N . Next, dσmc
N+1(TN > T cut

N ; T cut
N+1) is an ex-

clusive partonic (N + 1)-jet cross section and is also IR finite. It contains N + 1
identified partons plus any number of unresolved emissions below the resolution scale
T cut
N+1. The argument TN > T cut

N indicates that the cross section only has support
above T cut

N , which acts as the condition to have one additional resolved parton. Fi-
nally, dσmc

≥N+2(TN > T cut
N , TN+1 > T cut

N+1) is an inclusive partonic (N + 2)-jet cross
section and is also IR finite. It contains at least N + 2 identified partons, where two
additional partons are required to be above T cut

N and T cut
N+1, respectively, as well as

any number of additional emissions. Compared to eq. (1.5), where N + 1 was the
highest multiplicity and inclusive over additional emissions, now both N and N + 1
are exclusive multiplicities, while the highest multiplicity is N + 2 and is again inclu-
sive over additional emissions. In figure 2.1, we illustrate the regions in TN and TN+1

contributing to each multiplicity.
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Figure 2.1: Illustration of the N -jet, (N+1)-jet, and (N+2)-jet regions in eq. (2.1) for
resolution variables that satisfy TN+1 < TN (e.g., the pT of the leading and subleading
jet or N -jettiness [1]). The N -jet bin has TN < T cut

N and is represented by N -parton
events with TN = TN+1 = 0 (shown by the black dot at the origin). The (N + 1)-jet
bin has TN > T cut

N and TN+1 < T cut
N+1 and is represented by (N + 1)-parton events

with TN+1 = 0 (shown by the black line on the TN axis). The inclusive (N + 2)-jet
bin has TN > T cut

N and TN+1 > T cut
N+1 and is represented by (N + 2)-parton events.

At fixed NNLO, the cross section σ(X) is given by

σNNLO(X) =

∫
dΦN (BN + VN +WN)(ΦN)MX(ΦN)

+

∫
dΦN+1

(
BN+1 + VN+1

)
(ΦN+1)MX(ΦN+1)

+

∫
dΦN+2BN+2(ΦN+2)MX(ΦN+2) , (2.3)

where WN contains the two-loop virtual corrections for N partons and VN+1 the one-
loop virtual corrections for N + 1 partons. In principle, the phase space integrals
in eq. (2.3) can again be performed by Monte Carlo integration using subtractions.
Since the singularity structure of the real, virtual, and real-virtual contributions is
much more complex than at NLO, the required subtractions are far more intricate.

We now want to recast eq. (2.3) in the form of eq. (2.2). At NNLO, the general
definition of the MC cross sections given below eq. (2.2) corresponds to the following
MC measurement functions:

Mmc(Φ′N) = δ(ΦN − Φ′N) ,

Mmc(Φ′N+1) = δ[ΦN − Φ̂N(Φ′N+1)] θ[TN(Φ′N+1) < T cut
N ] (2.4)

+ δ(ΦN+1 − Φ′N+1) θ[TN(Φ′N+1) > T cut
N ] ,
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Mmc(Φ′N+2) = δ[ΦN − Φ̂N(Φ′N+2)] θ[TN(Φ′N+2) < T cut
N ]

+ δ[ΦN+1 − Φ̂N+1(Φ′N+2)] θ[TN(Φ′N+2) > T cut
N ] θ[TN+1(Φ′N+2) < T cut

N+1]

+ δ(ΦN+2 − Φ′N+2) θ[TN(Φ′N+2) > T cut
N ] θ[TN+1(Φ′N+2) > T cut

N+1] .

For these measurements to be IR safe, TN and TN+1 can be any IR-safe resolution
variables, and the various Φ̂N(ΦM) can be any IR-safe phase space projections. These
conditions are much more nontrivial at NNLO compared to NLO, since we now
need explicit projections from ΦN+2 down to ΦN , and furthermore, the condition
TN(ΦN+2) > T cut

N must cut off all double-unresolved IR-singular regions of ΦN+2.
For example, at NLO, TN could simply be defined as the pT or virtuality of the one
additional emission (which is IR safe at NLO). However, taking TN and TN+1 as the
pT or virtuality of each of the two additional emissions is not IR safe at NNLO. In-
stead, a properly IR-safe NNLO generalization for TN would be to define it as the
pT of the additional jet using an explicit jet algorithm with some jet radius R. This
corresponds to using a “local” resolution variable. Another choice is to define it as
the

∑
pT of all additional emissions or N -jettiness [1]. These correspond to “global”

resolution variables.
Plugging eq. (2.4) back into eq. (2.3), we obtain the required MC cross sections,

dσmc
N

dΦN

(T cut
N ) = (BN + VN +WN)(ΦN)

+

∫
dΦN+1

dΦN

(BN+1 + VN+1)(ΦN+1) θ[TN(ΦN+1) < T cut
N ]

+

∫
dΦN+2

dΦN

BN+2(ΦN+2) θ[TN(ΦN+2) < T cut
N ] ,

dσmc
N+1

dΦN+1

(TN > T cut
N ; T cut

N+1)

= (BN+1 + VN+1)(ΦN+1) θ[TN(ΦN+1) > T cut
N ]

+

∫
dΦN+2

dΦN+1

BN+2(ΦN+2) θ[TN(ΦN+2) > T cut
N ] θ[TN+1(ΦN+2) < T cut

N+1] ,

dσmc
≥N+2

dΦN+2

(TN > T cut
N , TN+1 > T cut

N+1)

= BN+2(ΦN+2) θ[TN(ΦN+2) > T cut
N ] θ[TN+1(ΦN+2) > T cut

N+1] , (2.5)

where we have defined the generalization of eq. (1.11),

dΦM

dΦN

≡ dΦM δ[ΦN − Φ̂N(ΦM)] . (2.6)

Note that the implementation of the constraint TN > T cut
N in dσmc

N+1 is nontrivial
now. For simplicity, we have not written any subtractions in eq. (2.5), which will
be needed in some form when evaluating the cross sections numerically to separate
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out and cancel the IR divergences in the virtual and real emission contributions.
Applying the MC measurement functions in eq. (2.4) to the required subtraction terms
is straightforward. The precise form of the subtractions is, however, not important
for our discussion, and one can apply for example the NNLO subtraction techniques
in refs. [48, 49, 50, 51].

As at NLO, writing the NNLO calculation in terms of IR-finite MC cross sections,
as above, forms the basis for using it in an exclusive event generator for physical
events. Using eq. (2.5) together with eq. (2.2), the cross section for some measurement
MX obtained in this way is

σ(X) =

∫
dΦN (BN + VN +WN)(ΦN)MX(ΦN)

+

∫
dΦN+1 (BN+1 + VN+1)(ΦN+1)

×
{
θ[TN(ΦN+1) < T cut

N ]MX [Φ̂N(ΦN+1)]

+ θ[TN(ΦN+1) > T cut
N ]MX(ΦN+1)

}
+

∫
dΦN+2 BN+2(ΦN+2)

×
{
θ[TN(ΦN+2) < T cut

N ]MX [Φ̂N(ΦN+2)]

+ θ[TN(ΦN+2) > T cut
N ] θ[TN+1(ΦN+2) < T cut

N+1]MX [Φ̂N+1(ΦN+2)]

+ θ[TN(ΦN+2) > T cut
N ] θ[TN+1(ΦN+2) > T cut

N+1]MX(ΦN+2)
}
. (2.7)

This has the same inevitable limitations that we already saw in the NLO case. Since
N -parton and (N + 1)-parton events correspond to partonic N -jet and (N + 1)-jet
cross sections, the measurement is evaluated on the corresponding projected phase
space points in the unresolved regions of phase space. Therefore, the cross section
σ(X) is correct to the required fixed order (up to power corrections in the resolution
scales) for measurements X that are insensitive to the unresolved regions of phase
space. This means:

• N -jet observables are correct to NNLON if they integrate over the complete
unresolved regions of ΦN+1 and ΦN+2. [Power corrections are at most of rela-
tive O(αsT cut

N /T eff
N ) and O(α2

sT cut
N+1/T eff

N+1) where T eff
N and T eff

N+1 are the typical
resolution scales up to which the measurement integrates over ΦN+1 and ΦN+2,
and generically, T eff

N+1 . T eff
N .]

• (N+1)-jet observables are correct to NLON+1 if they only include contributions
in the resolved region of ΦN+1, while integrating over the complete unresolved
region of ΦN+2. [Power corrections are at most of relative O(αsT cut

N+1/T eff
N+1)

where T eff
N+1 ≤ TN is the typical resolution scale up to which the measurement

integrates over ΦN+2.]
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• (N + 2)-jet observables are correct to LON+2 if they only include contributions
in the resolved region of ΦN+2.

As before, M -jet observables receive their tree-level contribution from an M -parton
final state, and NnLOM refers to the O(αns ) correction relative to that. The definition
of T eff

N can be understood using an example similar to that used when discussing
MC cross sections at NLO. These properties are fundamental to the event generation
method and are shared by all implementations. In turn, they will also be the nec-
essary conditions on the FO accuracy that should be maintained by the NNLO+LL
calculation.

Although T cut
N and T cut

N+1 are jet resolution scales, they will typically not define jets
that are reasonable to measure experimentally. They effectively serve as IR cutoffs
below which observables should be inclusive over unresolved emissions (which in fact
means they should be smaller than the typical scales probed in the experimental
jet measurements). In practice, T cut

N and T cut
N+1 can again be made sufficiently small

such that FO perturbation theory is no longer appropriate to describe observables
that probe emissions at or below these scales. As at NLO, at this point, we are not
losing any relevant fixed-order information, and the parton shower or higher-order
resummation is required to provide a valid perturbative description.

To conclude this subsection, we stress that so far we have not done any showering;
we have simply rewritten the FO calculation in a form suitable to generate physical
events. This will be our starting point for obtaining a fully differential NNLON+LL
calculation and defines the partonic jet cross sections that we will require as inputs
from the FO calculation. We assume these are available to us, and we will not discuss
the techniques used to compute them. For dσmc

N+1 and dσmc
≥N+2, these are the same

inputs that are required in the corresponding NLON+1+LL calculation. The genuine
NNLO input required is the cumulant cross section dσmc

N /dΦN(T cut
N ). We assume

that it is provided to us by the FO calculation in a form that allows us to obtain
a numerical result for any needed ΦN point and T cut

N value. This is likely to be a
challenging part in the practical implementation, and its availability might restrict
the possible choices for the concrete definitions of TN(ΦN+2) and Φ̂N(ΦN+2) that can
be used.

2.2.2 Event generation at LL

The parton shower produces events whose cross sections include resummed con-
tributions from all orders in perturbation theory. These resummed rates account for
the large cancellations between virtual and real emissions in the IR region of phase
space. The shower can therefore describe the resummation region of observables more
accurately than FO calculations as well as produce high-multiplicity final states than
can be passed through hadronization routines to produce realistic events. In this
subsection, we are interested in using the parton shower approximation to obtain a
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resummed calculation for the MC cross sections at leading-logarithmic (LL) order.
This will serve as the basis for the LL improvement of the FO cross sections to obtain
matched FO+LL calculations in sections 2.3 and 2.4. Note that here, we are not
interested in the algorithmic construction of the parton shower. Formulating the LL
calculation in a parton-shower-like fashion will facilitate attaching an actual parton
shower to the matched FO+LL calculation.

The parton shower directly works as an event generator and is fundamentally based
on evolution in a resolution variable T , which characterizes the scale of an emission.
Subsequent emissions occur at increasingly smaller values of T , down to a low-scale
cutoff T cut ∼ 1 GeV, where the perturbative parton shower description ceases to be
valid. Below this cutoff, one enters the nonperturbative regime, where hadronization
models are used. In the leading-logarithmic limit, all emissions are strongly ordered;
i.e., each emission occurs at a much smaller value of T than the previous one, such
that all emissions can be considered independent. Due to this single-emission nature,
at LL, there is no distinction between global and local resolution variables that are
equivalent for a single emission. Hence, we can define the N -jet resolution variable
TN as the emission scale T of the N + 1st emission, with the resolution scale T cut

N

given by the shower cutoff T cut; i.e.,

TN = T (N → N + 1) , TN+1 = T (N + 1→ N + 2) , T cut
N = T cut

N+1 ≡ T cut .
(2.8)

To start, we consider an N -jet process (with N partons at the Born level) and are
interested in generating events with N and N + 1 partons as in eqs. (1.5) and (1.6).
The MC cross sections using the above N -jet resolution variable are then given at LL
order as

dσmc
N

dΦN

(T cut
N ) = BN(ΦN) ∆N(ΦN ; T cut

N ) ,

dσmc
≥N+1

dΦN+1

(TN > T cut
N )

=
∑
m

SmN+1(ΦN+1) ∆N [Φ̂m
N(ΦN+1); T mN (ΦN+1)] θ[T mN (ΦN+1) > T cut

N ]

≡
∑
m

SmN+1(ΦN+1) ∆N(Φ̂m
N ; T mN ) θ(T mN > T cut

N ) , (2.9)

where all ingredients and the notation we have introduced are discussed in detail in
the following. To shorten the notation, we will often drop the explicit dependence on
ΦN+1 for most objects, as in the last line of eq. (2.9), but one should keep in mind
that in general, all objects which depend on the emission label m (which is explained
below) have ΦN+1 as their argument.

First, ∆N(ΦN ; T cut
N ) is the N -parton Sudakov factor, which effectively sums the

dominant contribution from an arbitrary number of unresolved emission below T cut
N
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at LL, corresponding to the general definition of dσmc
N /dΦN(T cut

N ) [cf. the discussion
below eq. (1.6)]. It can be written as

∆N(ΦN ; T cut
N ) = exp

[
−
∫

dT PN(ΦN , T ) θ(T > T cut
N )

]
, (2.10)

where PN(ΦN , T ) is a global N → N + 1 splitting function which sums over all
possible single-parton emissions from each parton in ΦN at the emission scale T . It
arises from projecting the full emission phase space dΦN+1/dΦN , which contains the
complete set of splitting variables, onto the resolution variable T ,

PN(ΦN , T ) =
∑
m

∫
dΦN+1PmN (ΦN+1) δ[T − T m(ΦN+1)] δ[ΦN − Φ̂m

N(ΦN+1)] . (2.11)

Them labels in eqs. (2.9) and (2.11) run over all the possible (IR-singular) emission
channels (q → qg, g → gg, g → qq̄, etc.), including the information of which parton
in ΦN was split and which two partons in ΦN+1 resulted from the splitting. For
each emission channel m, T m(ΦN+1) determines the relevant emission scale, and the
splitting function PmN (ΦN+1) contains all coupling and kinematic prefactors times
the usual Altarelli-Parisi splitting function. For simplicity, we keep the upper limit
T < T mmax on the emission scale T implicit in the definition of PmN .2

Finally, the projection Φ̂m
N(ΦN+1) can be any IR-safe projection and as before,

specifies how the partonic ΦN+1 is mapped onto the partonic N -jet phase space point
ΦN ≡ Φjet

N , in which the N -parton events are distributed. The projection can be

different for each m. (As far as the parton shower goes, Φ̂m
N is the inverse of the

momentum reshuffling performed when splitting ΦN → ΦN+1 in channel m.)
Coming to dσmc

≥N+1 in eq. (2.9), the differential parton shower rate for the emission
with index m is given by its splitting function times the Born contribution,

SmN+1(ΦN+1) = BN [Φ̂m
N(ΦN+1)]PmN (ΦN+1) . (2.12)

For future use, we also define

SN+1(ΦN+1) =
∑
m

SmN+1(ΦN+1) , (2.13)

which is the LL approximation of the full real emission contribution BN+1 in the
IR-singular limit. The Sudakov factor ∆N(Φ̂m

N ; T mN ) appearing in dσmc
≥N+1 in eq. (2.9)

is the same as in eq. (2.10) but evaluated at the emission scale T mN . It effectively
resums the contributions from arbitrary additional emissions below T mN at LL.

2In general, the upper limit T < T mmax(ΦN+1) is a function of the full ΦN+1 and can be different
for different m. It can be determined purely by phase space limits or by an explicit upper cutoff of
some form in order to turn off the resummation above Tmax.
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The cross section for some measurement MX obtained from the LL MC cross
sections in eq. (2.9) is

σ(X) =

∫
dΦN BN(ΦN) ∆N(ΦN ; T cut

N )MX(ΦN)

+

∫
dΦN+1

∑
m

SmN+1(ΦN+1) ∆N(Φ̂m
N ; T mN ) θ(T mN > T cut

N )MX(ΦN+1) . (2.14)

To discuss its perturbative accuracy, we define

L = ln(TN/Q) , Lcut = ln(T cut
N /Q) , (2.15)

where Q ∼ T max
N is a typical hard scale in the process. Formally, the resumma-

tion corresponds to a reorganization of the perturbative series, which is achieved by
expanding in αs while counting3

αsL
2 ∼ 1 , αsL

2
cut ∼ 1 , or equivalently, L ∼ Lcut ∼ α−1/2

s . (2.16)

The leading-logarithmic order is O(1) in this counting. For the cumulant cross section
integrated up to T cut

N , this corresponds to resumming all terms ∼ αnsL
2n
cut relative to

the Born cross section, while for the cross section differential in TN , this corresponds
to resumming all terms ∼ αnsL

2n−1/TN . For a general measurement, this means:

• N -jet (integrated) observables are correct to LL resumming all terms
∼ αns ln2n(T eff

N /Q), where here, T eff
N is the typical resolution up to which the

measurement is integrated. (In particular, for dσmc
N /dΦN(T cut

N ), we have T eff
N ≡

T cut
N .)

• (N + 1)-jet (differential) observables are correct to LL resumming all terms
∼ αns ln2n−1(T eff

N /Q)/T eff
N , where here, T eff

N is the typical resolution to which
the measurement is sensitive. (In particular, for dσmc

≥N+1/dΦN+1(TN), we have
T eff
N ≡ TN .)

The parton shower intrinsically preserves probability, which is a consequence of
the fact that it is formulated as a Markov chain process, with the probability of each
emission given by the exact differential of the integrated probability. Taking the
special case where MX(ΦN+1) = MX [Φ̂m

N(ΦN+1)], we precisely reproduce the total
leading-order N -jet cross section from eq. (2.14),

σ(X) =

∫
dΦN

{
BN(ΦN) ∆(ΦN ; T cut

N )MX(ΦN)

+BN(ΦN)
[
1−∆N(ΦN ; T cut

N )
]
MX(ΦN)

}
=

∫
dΦN BN(ΦN)MX(ΦN) . (2.17)

3We use the simple logarithmic counting for the cross section, so LL stands for LLσ. Higher-order
resummation is usually performed not for the cross section but for the logarithm of the cross section
and using the stronger counting αsL ∼ 1.
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Here, we used the fact that the differential TN spectrum is the exact derivative of the
integrated T cut

N cumulant cross section,∑
m

∫
dΦN+1 S

m
N+1(ΦN+1) ∆N(ΦN ; T mN ) θ(T mN > T cut

N ) δ(ΦN − Φ̂m
N)

= BN(ΦN)

∫
dT PN(ΦN , T ) ∆N(ΦN ; T ) θ(T > T cut

N )

= BN(ΦN)
[
1−∆N(ΦN ; T cut

N )
]
. (2.18)

As a result, the T cut
N dependence precisely cancels between the cumulant and the inte-

grated spectrum in eq. (2.17). For a general measurement MX(ΦN+1) that cannot be
written in terms of the shower projection Φ̂m

N , the LO cross section is reproduced up to
small power corrections ∼ T cut

N /Q, which introduce a small residual T cut
N dependence.

In the resummation counting of eq. (2.16), the Sudakov factors in eqs. (2.14) and
(2.17) are O(1), and in particular, 1 − ∆N(T cut

N ) ∼ O(1), despite the fact that its
FO expansion would start at αs, which is essential for eq. (2.17) to work out. What
happens is that SN+1 ∼ αsL/TN , which upon integration over TN > T cut

N , becomes
αsL

2
cut ∼ 1. In other words, the TN spectrum at small TN is O(1) at LL, even though

at fixed order, it only starts at αs.

2.3 Combining fully differential FO calculations

with LL resummation

In this section, we discuss the general conditions to combine the fully differential
FO and LL calculations in an event generator. After the general discussion in sec-
tion 2.3.1, we will review the LO+LL and NLO+LL cases in the following subsections.
The NNLO+LL case is then discussed in detail in section 2.4.

2.3.1 General discussion

The goal of combining the FO calculation with the LL resummation is to improve
the perturbative accuracy in the resummation region, where the FO expansion itself
becomes invalid, to attain at least the O(1) accuracy provided by the LL resummation
there. At the same time, the perturbative accuracy of the FO calculation must be
maintained in the FO region where the resummation is unimportant.

As a necessary precondition, the combined FO+LL calculation must be simulta-
neously correct to the desired fixed order (LO, NLO, etc.) and resummation order
(LL, NLL, etc.). Here, the fixed order is counted as usual by powers of αs, while the
resummation order is dictated by the logarithmic counting in eq. (2.16),

αsL
2 ∼ 1 , αsL

2
cut ∼ 1 , or equivalently, L ∼ Lcut ∼ α−1/2

s ,
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where L = ln(TN/Q) and Lcut = ln(T cut
N /Q) [see eq. (2.15)]. Therefore, the MC cross

sections of the FO+LL calculation have to satisfy the conditions[
dσmc

]
FO

= dσmc-FO ,
[
dσmc

]
LL

= dσmc-LL , (2.19)

which require that, upon expanding/truncating the MC cross sections to either FO
or LL, denoted by [· · · ]FO or [· · · ]LL, the pure FO or LL results appearing on the
right-hand sides in eq. (2.19) correctly reproduce the results in section 2.2. These
conditions ensure that the input MC cross sections for each event multiplicity have the
desired perturbative accuracy in both the resummation and fixed-order regions. For
example, at NLO+LL, where we need events with N and N+1 partons, the MC cross
sections dσmc

N and dσmc
≥N+1 are correct to NLON+LL and LON+1+LL, respectively.

Similarly, for NNLO+LL, where we need events with N , N+1, and N+2 partons, the
corresponding dσmc

N , dσmc
N+1, and dσmc

≥N+2 are correct to NNLON+LL, NLON+1+LL,
and LON+2+LL, respectively.

We also have to achieve the desired perturbative accuracy at FO and LL for
general measurements MX . As discussed in section 2.2, when generating physical
events, σ(X) is predicted at the desired accuracy only up to power corrections in the
resolution scale T cut

N , which should therefore be as small as possible. At the same
time, for integrated N -jet observables, the residual dependence on the resolution scale
T cut
N in the pure FO and LL calculations is at most power suppressed. The important

condition is now that the same must also hold for the combined FO+LL calculation.
Therefore:

• Since T cut
N must be taken as small as possible to minimize power corrections,

it is imperative that logarithms of T cut
N must be counted as in eq. (2.16), for

which we adopt the notation Ocut, such that αnsL
m
cut ∼ Ocut(α

n−m/2
s ).

• For integrated N -jet and (N+1)-jet observables that in fixed order are predicted
at αns with corrections starting at O(αn+1

s ), any residual logarithmic dependence
on the jet resolution scales T cut

N and T cut
N+1 must be Ocut(α

≥n+1
s ), i.e., only give

corrections at the level of accuracy (or higher) as expected from higher FO
corrections.

To ensure this, the conditions in eq. (2.19) alone are not sufficient. In addition, the
MC cross sections for different multiplicities must be consistent with each other and
satisfy the relation4

d

dT cut
N

[
dσmc

N

dΦN

(T cut
N )

]
T cut
N =TN

=

∫
dΦN+1

dΦN

δ[TN − TN(ΦN+1)]
dσmc
≥N+1

dΦN+1

(TN > T cut
N )

(2.20)

4In general, the projection from ΦN+1 to ΦN and the definition of TN (ΦN+1) can depend on the
emission channel inside dσmc

≥N+1, which we have kept implicit in eq. (2.20). In a given implementa-

tion, this dependence is naturally accounted for, as we will see in the discussions below.
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Figure 2.2: Illustration of the perturbative accuracy of the cross section in different
regions of the jet resolution variable TN . On the left, we show the differential spectrum
in TN , and on the right, we show the cumulant as a function of T cN , which approaches

the total N -jet cross section (blue dashed line) for large T cN . For large T (c)
N , the

FO contributions (blue) determine the perturbative accuracy. As T (c)
N decreases into

the transition region, the resummed terms become increasingly important. At small
T (c)
N , the resummation order determines the perturbative accuracy. The LL accuracy

(green) that determines the shape at small T (c)
N can be improved by higher-order

resummation (orange). In the LL cumulant, we show that two different T cut
N values

(dotted vertical lines) should produce the same cumulant cross section above T cut
N .

up to Ocut(α
≥n+1
s ) violations for an NnLON+LL calculation. (The missing exact

dependence on ΦN+1 below T cut
N will still introduce the same power corrections in

T cut
N for general measurements MX as in the pure FO and LL cases.) On the right-

hand side, the fully differential ΦN+1 dependence is projected onto {ΦN , TN}. The
condition then enforces that the resulting differential TN spectrum is the derivative of
the cumulant with respect to T cut

N (for any fixed ΦN), such that the T cut
N dependence

between the cumulant and the spectrum cancels to the desired order. Integrating
eq. (2.20) over TN , we obtain the equivalent condition for the cumulant being the
integral of the TN spectrum. That is, for any T cN (and fixed ΦN),

dσmc
N

dΦN

(T cN) =
dσmc

N

dΦN

(T cut
N ) +

∫
dΦN+1

dΦN

dσmc
≥N+1

dΦN+1

(TN > T cut
N ) θ(TN < T cN) (2.21)

up to Ocut(α
≥n+1
s ) violations for an NnLON+LL calculation.

In figure 2.2, we show how the FO and resummed contributions determine the
accuracy of the cross sections in different regions of phase space. In table 2.1, we
summarize the perturbative accuracy as well as the size of uncontrolled higher-order
corrections from fixed order, resummed, and residual resolution scale dependence
for integrated N -jet observables and differential (N + 1)-jet observables for various
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T eff
N ∼ Q (fixed order) T eff

N � Q (resummation)

N -jet observables

LON 1 +O(αs) O(1)

NLON 1 + αs +O(α2
s) O(1)

NNLON 1 + αs + α2
s +O(α3

s) O(1)

LON+LL 1 +O(αs) 1 +O(α
1/2
s )

LON,N+1+LL 1 +O(αs) +Ocut(α
≥1
s ) 1 +O(α

1/2
s )

NLON+LL 1 + αs +O(α2
s) +Ocut(α

≥2
s ) 1 +O(α

1/2
s )

NLON,N+1+LL 1 + αs +O(α2
s) +Ocut(α

≥2
s ) 1 +O(α

1/2
s )

NNLON+LL 1 + αs + α2
s +O(α3

s) +Ocut(α
≥3
s ) 1 +O(α

1/2
s )

(N + 1)-jet observables

LON × ×
NLON 1 +O(αs) O(1)

NNLON 1 + αs +O(α2
s) O(1)

LON+LL O(1) 1 +O(α
1/2
s )

LON,N+1+LL 1 +O(αs) +Ocut(α
≥1
s ) 1 +O(α

1/2
s )

NLON+LL 1 +O(αs) +Ocut(α
≥1
s ) 1 +O(α

1/2
s )

NLON,N+1+LL 1 + αs +O(α2
s) +Ocut(α

≥2
s ) 1 +O(α

1/2
s )

NNLON+LL 1 + αs +O(α2
s) +Ocut(α

≥2
s ) 1 +O(α

1/2
s )

Table 2.1: Perturbative accuracy of N -jet (integrated) and (N + 1)-jet (differential)
observables satisfied at different FO and FO+LL. Here, T eff

N is the effective scale to
which the observables are sensitive. For T eff

N ∼ Q, the perturbative accuracy is set by
the FO expansion, with corrections from higher FO contributions as well as residual
T cut
N dependence. (The latter will depend on the details of the matching, so we show

the minimal required accuracy, which has to match the FO level of accuracy; see the
discussion of eq. (2.20) for more details.) For T eff

N � Q, the perturbative accuracy is
set by the resummation counting in eq. (2.16).

FO+LL orders. To give an example, at NNLON+LL, integrated N -jet observables are
supposed to get the O(α0

s), O(α1
s), and O(α2

s) terms correct, with corrections starting
atO(α3

s). This implies that the T cut
N dependence must cancel such that it only appears

at Ocut(α
≥3
s ), so the lowest-order dependence must be of the form αnsL

2n−6
cut ∼ Ocut(α

3
s)

or higher. A residual T cut
N dependence of the form α2

s[1 − ∆N(T cut
N )], which starts

at fixed O(α3
s), counts as Ocut(α

2
s) because ∆N(T cut

N ) ∼ Ocut(1). Hence, such a T cut
N

dependence would spoil the desired O(α2
s) accuracy of the NNLO+LL calculation.
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When increasing the FO accuracy, the condition in eq. (2.20) becomes more and
more stringent and thus more challenging. As we saw in section 2.2.2, in the LL
calculation, the cancellation of the T cut

N dependence to all orders is achieved by virtue
of the fact that the differential cross section in TN is given by the exact derivative
of the cumulant cross section with respect to T cut

N . The same is also obviously true
for the pure FO calculation. This demonstrates that a simple and generic method to
ensure the cancellation of the resolution scale dependence (up to power corrections) is
to explicitly construct the spectrum and cumulant by enforcing eqs. (2.20) and (2.21)
exactly. There are different choices for doing so, as we will see in section 2.4, as well
as different options for the practical implementation, which we will come back to in
section 2.6.

Note that, a priori, we do not require the resummation order to match the per-
turbative accuracy of the fixed order. For example, the NLL terms in an NNLO+LL
cross section are allowed to be incorrectly predicted, even though in the resummation
region, they are formally more important than the NNLO terms. These higher-order
resummed terms will affect observables in the singular regime at small T eff

N but not
observables at large T eff

N , which are controlled by FO corrections. In section 2.4, we
will explicitly see how the mismatch between the LL resummation and the NNLO
calculation enters. A consistent matching of fixed order and resummation at the same
perturbative accuracy would clearly be a desirable feature. As is shown in chapter 3,
by performing the resummation at NNLL, the merging of two NLO calculations with
different multiplicities arises as a byproduct. Maintaining the perturbative accuracy
with higher-order matrix elements and higher-order resummation is obviously more
challenging as more ingredients are required and additional complications arise; e.g.,
one has to employ a resolution variable that is resummable to the desired order.
These issues are thoroughly addressed in chapter 3, and we discuss the connection in
section 2.6.1.

2.3.2 LO+LL

The LL calculation performs the LL resummation in TN and T cut
N , as outlined in

section 2.2.2. It naturally contains the full LON contribution, so it is already LON+LL
correct but does not include the full contribution from the LO≥N+1 matrix elements
for additional jet multiplicities (beyond the shower approximation). The goal of
LO+LL matching is to combine the LO≥N+1 calculations with the LL resummation,
an example of which is the CKKW method [4, 5, 6, 10].

Considering the matching of LON , LON+1, and LL, denoted as LON,N+1+LL, the
exclusive N -jet and inclusive (N + 1)-jet MC cross sections are

dσmc
N

dΦN

(T cut
N ) = BN(ΦN) ∆N(ΦN ; T cut

N ) ,
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dσmc
≥N+1

dΦN+1

(TN > T cut
N ) =

∑
m

Bm
N+1(ΦN+1) ∆N(Φ̂m

N ; T mN ) θ(T mN > T cut
N ) ,

≡
∑
m

{
BN+1(ΦN+1) ∆N(Φ̂N ; TN) θ(TN > T cut

N )
}
m
. (2.22)

Here, the Bm
N+1 are defined such that BN+1 =

∑
mB

m
N+1, and whenever an emission

m becomes IR singular, Bm
N+1 contains all its divergences. A possible choice would

be to take Bm
N+1 = BN+1(SmN+1/SN+1). For ease of notation, from here on we always

group the emission label m on expressions with the notation
∑

m{· · · }m to denote
that all relevant terms within the curly brackets receive a label m.

The cross sections in eq. (2.22) are correct to LON and LON+1 respectively, simply
because any corrections to BN or BN+1 are of higher fixed order. The Sudakov factors
multiplying the Born contributions render the N -jet cumulant correct to LL in T cut

N

and the (N + 1)-jet spectrum correct to LL in TN .
To discuss the perturbative accuracy of integrated N -jet observables from residual

T cut
N dependence, we rewrite dσmc

≥N+1 in eq. (2.22) as

dσmc
≥N+1

dΦN+1

(TN > T cut
N ) =

∑
m

{
SN+1(ΦN+1) ∆N(Φ̂N ; TN)

+ (BN+1 − SN+1)(ΦN+1) ∆N(Φ̂N ; TN)
}
m
θ(T mN > T cut

N ) .

(2.23)

The first term on the right-hand side is identical to the pure LL cross section, and
when projected onto ΦN and integrated over TN , it produces BN(ΦN)[1 −
∆N(ΦN ; T cut

N )], which exactly cancels the T cut
N dependence in the cumulant dσmc

N (T cut
N )

[see eq. (2.18)]. The second term corresponds to the FO matching correction, making
dσmc
≥N+1 to be LON+1 accurate. Its T cut

N dependence is determined by the accuracy
of BN+1 − SN+1. If this difference contains subleading singular dependence on TN ,
which would be terms ∼ αs/TN , then the T cut

N dependence in integrated N -jet ob-

servables will be of order αnsL
2n−1
cut ∼ Ocut(α

1/2
s ). Interestingly, this is not actually

sufficient to preserve the 1 +O(αs) accuracy required at LON (see table 2.1). In the
case that SN+1 does reproduce the full singular structure of BN+1 (which generically
will not be the case for parton showers), then the residual T cut

N dependence will only
appear as Ocut(αsT cut

N ) power corrections. Improved LO+LL methods that explicitly

remove this residual Ocut(α
1/2
s ) dependence and restore the LON accuracy have been

discussed in detail in refs. [52, 53, 47, 36]. They essentially enforce the consistency
conditions in eq. (2.21).

Finally, we note that at LON,N+1+LL, another possible valid choice for dσmc
≥N+1 is
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to take

dσmc
N

dΦN

(T cut
N ) = BN(ΦN) ∆N(ΦN ; T cut

N ) ,

dσmc
≥N+1

dΦN+1

(TN > T cut
N ) =

∑
m

{
SN+1(ΦN+1) ∆N(Φ̂N ; TN)

+ (BN+1 − SN+1)(ΦN+1)
}
m
θ(T mN > T cut

N ) , (2.24)

where compared to eq. (2.23), we have dropped the Sudakov factor in the last line.
The T cut

N dependence in this case is different numerically but of the same accuracy
as for eq. (2.23), depending in the same way on the extent to which SN+1 reproduces
the IR singularities of BN+1.

2.3.3 NLO+LL

The matching of fully differential NLO calculations to parton shower routines has
been addressed by several frameworks [13, 15, 54, 55, 18, 46]. Here, we review the
general structure of the underlying matched NLO+LL calculation.

The MC cross sections underlying the MC@NLO [13] and Powheg [15, 16]
approaches are given by5

dσmc
N

dΦN

(T cut
N ) =

dσS≥N
dΦN

∆N(ΦN ; T cut
N )︸ ︷︷ ︸

resummed

+
dσB−SN

dΦN

(T cut
N )︸ ︷︷ ︸

FO matching

,

dσmc
≥N+1

dΦN+1

(TN > T cut
N ) =

∑
m

{
dσS≥N
dΦN

∣∣∣∣
ΦN=Φ̂N

SN+1(ΦN+1)

BN(Φ̂N)
∆N(Φ̂N ; TN) θ(TN > T cut

N )

}
m

+
dσB−S≥N+1

dΦN+1

(TN > T cut
N ) , (2.25)

where

dσB−SN

dΦN

(T cut
N ) =

∑
m

{∫
dΦN+1

dΦN

(BN+1 − SN+1)(ΦN+1) θ(TN < T cut
N )

}
m

,

dσB−S≥N+1

dΦN+1

(TN > T cut
N ) =

∑
m

{
(BN+1 − SN+1)(ΦN+1) θ(TN > T cut

N )
}
m

(2.26)

5For Powheg, dσS≥N/dΦN ≡ BN (ΦN ). In MC@NLO, S events are generated with a weight de-

termined by dσS≥N/dΦN , while H events are generated according to dσB−S≥N+1/dΦN+1 ≡
∑
m{(BN+1−

SN+1)(ΦN+1)}m.
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are the FO matching corrections, and

dσS≥N
dΦN

= (BN + VN)(ΦN) +
∑
m

{∫
dΦN+1

dΦN

SN+1(ΦN+1)

}
m

(2.27)

is essentially the inclusive NLON cross section, but using the real emission given by
SN+1 instead of BN+1. This means that SN+1 must contain the full IR singularities
of BN+1 in the limit TN → 0, such that upon integration, the virtual IR divergences
of VN are canceled in eq. (2.27).

We can easily check that eq. (2.25) is correct to NLO and LL, i.e., that it satisfies
eq. (2.19). Dropping the NLO corrections, which amounts to taking dσS≥N → BN

and dropping the dσB−SN in dσmc
N , we reproduce the LON,N+1+LL result in eq. (2.24).

Using the fixed O(αs) expansion of the Sudakov,

∆N(ΦN ; T cut
N ) = 1− 1

BN(ΦN)

∑
m

{∫
dΦN+1

dΦN

SN+1(ΦN+1) θ(TN > T cut
N )

}
m

+O(α2
s) ,

(2.28)
we see that expanding eq. (2.25) to NLO exactly reproduces eq. (1.10) at NLON and
LON+1, where the TN in the NLO calculation is now the same m-dependent resolution
variable that is used in the LL calculation.

As written in eq. (2.25), the MC cross sections exactly satisfy eqs. (2.20) and
(2.21). In fact, they do so separately for the resummed contributions proportional to
dσS≥N∆N and the FO matching corrections dσB−SN and dσB−S≥N+1.

The difference in the MC@NLO and Powheg implementations lies in the (ef-
fective) choice of SN+1. In MC@NLO,

SmN+1(ΦN+1) = G(T mN ) PSmN+1(ΦN+1) + [1−G(T mN )]Cm
N+1(ΦN+1) ,

with lim
TN→0

G(TN) = 0 , G(TN > T cut
N ) = 1 , (2.29)

where PSmN+1 denotes the parton shower approximation to BN+1 for channel m as
determined by the splitting factors used in an actual parton shower algorithm like
Herwig or Pythia, Cm

N+1 could be used as an NLO subtraction for Bm
N+1, and the

purpose of G(TN) is to smoothly join the two. [In principle, G(TN) ≡ Gm
N+1(ΦN+1)

can depend on m and the full ΦN+1.]
Note that the value of SN+1 for TN < T cut

N was not needed in the LL and LO+LL
discussions but is needed here, and the expressions we use are specific to the NLO+LL
construction. In our formulation of eq. (2.25), the MC@NLO method corresponds
to taking G(TN > T cut

N ) = 1, since an actual parton shower is used to generate
the Sudakov factor and T cut

N is identical to the parton shower cutoff. The condition
limTN→0G(TN) = 0 is necessary to ensure that all IR divergences cancel in the limit
TN → 0, because PSN+1 does not provide a valid NLO subtraction.
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Even though there is no explicit T cut
N dependence in eq. (2.27), the fact that

PSN+1 does not reproduce the full IR singularities of BN+1 causes an implicit log-
arithmic sensitivity to scales ≤ T cut

N in dσS≥N . To see this, we rewrite SN+1 =
CN+1 +G(TN)(PSN+1 − CN+1), such that

dσS≥N
dΦN

= (BN + VN)(ΦN) +
∑
m

{∫
dΦN+1

dΦN

CN+1(ΦN+1)

}
m

+
∑
m

{∫
dΦN+1

dΦN

(PSN+1 − CN+1)(ΦN+1)G(TN)

}
m

. (2.30)

The first three terms are IR finite and T cut
N independent. The last term is also IR finite

since limTN→0G(TN) = 0. However, since G(TN > T cut
N ) = 1, the subleading singular

dependence in PSN+1 − CN+1 is integrated down to T cut
N and only cut off below,

which means this last term scales as Ocut(α
1/2
s ).6 Taking into account this implicit

T cut
N dependence, dσS≥N ≡ dσS≥N(T cut

N ), the conditions in eqs. (2.20) and (2.21) are no
longer satisfied exactly. Rather, in the FO region, integrated N -jet observables are
only accurate to 1+αs+O(α2

s)+Ocut(α
3/2
s ), while differential (N+1)-jet observables

are only accurate to 1+O(αs)+Ocut(α
1/2
s ). Formally, this is not sufficient to maintain

the perturbative accuracy expected at NLON and LON+1, cf. table 2.1. In practice,
the numerical impact depends on how well the employed parton shower algorithm is
able to capture the subleading singular structure of the full real emission contribution.
In refs. [13, 14], this was shown to be a minor problem.

In Powheg, SN+1 is constructed by dividing the full BN+1 between the IR-
singular regions for the different emission channels,

SmN+1(ΦN+1) = BN+1(ΦN+1) Θm
N+1(ΦN+1)F (TN) ,

with
∑
m

Θm
N+1 = 1 , lim

T m
N →0

Θm
N+1 = 1 , lim

TN→0
F (TN) = 1 . (2.31)

The conditions imposed on the Θm
N+1 ensure that the full BN+1 is obtained in any

singular limit, such that SN+1 reproduces the full IR-singular structure and dσS≥N is
IR finite. The function F (TN) is included so the resummation can be turned off by
letting F (TN) → 0 at large TN . [In principle, F (TN) ≡ Fm

N+1(ΦN+1) can depend on
m and the full ΦN+1.] In this case, since SN+1 contains the full singular structure
also above T cut

N , there is no implicit T cut
N dependence. Strictly speaking, this is true

as long as Θm and F do not introduce a sensitivity to small TN .
The full ΦN+1 dependence in dσmc

≥N+1 in eq. (2.25) is determined by SN+1(ΦN+1)
in the resummation term, i.e., by the approximate ΦN+1 dependence in the splitting
factor that determines the Sudakov factor. The FO matching correction, dσB−S≥N+1 ∼

6The T cut
N dependence becomes explicit if one takes G(TN > T cut

N ) = θ(TN > T cut
N ), in which

case the integral would produce an explicit ln T cut
N . For a smooth G, this logarithm is smeared out,

but the integral has the same scaling.
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(BN+1−SN+1)(ΦN+1), additively corrects the approximate ΦN+1 dependence in SN+1

to the full LON+1 dependence given by BN+1. Another possible approach is to also
multiply this term by the Sudakov factor, or equivalently, directly use the full BN+1

dependence in the resummed spectrum, such that

dσmc
N

dΦN

(T cut
N ) =

dσS≥N
dΦN

∆N(ΦN ; T cut
N ) +

dσB−SN

dΦN

(T cut
N ) , (2.32)

dσmc
≥N+1

dΦN+1

(TN > T cut
N ) =

∑
m

{
dσS≥N
dΦN

∣∣∣∣
ΦN=Φ̂N

BN+1(ΦN+1)

BN(Φ̂N)
∆N(Φ̂N ; TN) θ(TN > T cut

N )

}
m

.

This corresponds to the usual CKKW procedure for LON,N+1+LL in eq. (2.22). It
is also analogous to the Geneva method in ref. [46], where the ΦN+1-differential FO
calculation is multiplicatively combined with the TN spectrum resummed to higher
order. In eq. (2.32), the spectrum is not the exact derivative of the cumulant anymore,
resulting in a residual T cut

N dependence in the integrated cross section. The effective
correction term by which eq. (2.21) is violated and that gets added to the correct
NLON cross section is given by∫

dΦN+1

dΦN

(BN+1 − SN+1)(ΦN+1)
[
∆N(Φ̂N ; TN)− 1

]
θ(TN > T cut

N ) . (2.33)

In fixed order, this is O(α2
s) and beyond NLON . However, its impact on the per-

turbative accuracy depends again on the extent to which the IR singularities of
BN+1 are correctly reproduced by SN+1. If SN+1 contains the full IR singularities,
so BN+1 − SN+1 is finite for TN → 0, then the leading term in eq. (2.33) scales as
T cut
N α2

s ln2(T cut
N /Q), which is Ocut(αsT cut

N ). Therefore, in this case, the correction can
be regarded as a power correction. If SN+1 does not reproduce the full IR singulari-
ties, so that BN+1−SN+1 contains subleading divergences ∼ αs/TN , then the leading

term scales as α2
s ln3(T cut

N /Q). Hence, in this case the correction is of Ocut(α
1/2
s ) and

clearly violates the NLON+LL accuracy, which allows at most Ocut(α
2
s) corrections

(see the first column of table 2.1). Note that the perturbative accuracy of the residual
T cut
N dependence in either case here is the same as in eq. (2.22) at LON,N+1+LL. The

reason is that it is determined by the resummation counting and the NLO matching
by itself only improves the FO accuracy.

2.4 Combining NNLO calculations with LL resum-

mation

As we saw in section 2.2.1, at NNLO, we need events representing N , N + 1, and
N + 2 partonic jets, defined through the N -jet and (N + 1)-jet resolution variables
TN and TN+1. The same is therefore also the case at NNLO+LL. Hence, we need to



35

construct expressions for the corresponding fully differential MC cross sections [see
eqs. (2.1) and (2.2)]

dσmc
N

dΦN

(T cut
N ) ,

dσmc
N+1

dΦN+1

(TN > T cut
N ; T cut

N+1) ,
dσmc
≥N+2

dΦN+2

(TN > T cut
N , TN+1 > T cut

N+1) .

(2.34)
As discussed in section 2.3.1, at NNLO+LL we require that N -jet observables are
correct to NNLON+LL, (N + 1)-jet observables to NLON+1+LL, and (N + 2)-jet
observables to LON+2+LL, provided that any observable built from these cross sec-
tions is sufficiently inclusive over the unresolved regions of phase space. Since the FO
calculation is supplemented with the LL resummation of the jet resolution variables
TN and TN+1, the perturbative accuracy of the prediction in the IR-singular regime is
improved relative to the pure FO calculation, which breaks down in this region. The
required perturbative accuracy at NNLO+LL in the FO and resummation regions is
summarized in table 2.1.

To construct the NNLO+LL MC cross sections, it will be convenient to proceed
in two steps. In section 2.4.1, we first consider the separation between the exclusive
N -jet and inclusive (N + 1)-jet cross sections using TN and construct the corre-
sponding exclusive dσmc

N (T cut
N ) and inclusive dσmc

≥N+1(TN > T cut
N ). In section 2.4.2,

we then consider the further separation of dσmc
≥N+1(TN > T cut

N ) into the final exclu-
sive dσmc

N+1(TN > T cut
N ; T cut

N+1) and inclusive dσmc
≥N+2(TN > T cut

N , TN+1 > T cut
N+1) using

TN+1. To make the notation as transparent as possible, we drop the emission labels
m throughout this section. They can be inserted straightforwardly into all formulae
giving the different contributions to the cross sections.

2.4.1 The exclusive N-jet and inclusive (N + 1)-jet cross sec-
tions

As we have already seen at LO and NLO, it is convenient to divide the full FO
exclusive N -jet cross section, dσFO

N (T cut
N ), into a singular and a nonsingular contribu-

tion,7

dσFO
N

dΦN

(T cut
N ) =

dσCN
dΦN

(T cut
N )︸ ︷︷ ︸

FO singular

+
dσB−CN

dΦN

(T cut
N )︸ ︷︷ ︸

FO nonsingular

. (2.35)

7To be precise, singular terms in the cumulant contain logarithms of T cut
N or constants, while

nonsingular terms vanish as T cut
N → 0. In the spectrum, singular terms contain plus distributions

or delta functions of TN , while nonsingular terms contain no singular distributions and at most
integrable singularities.
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At NNLO, dσFO
N (T cut

N ) is given in eq. (2.5). Its singular approximation is given by

dσCN
dΦN

(T cut
N ) = (BN + VN +WN)(ΦN)

+

∫
dΦN+1

dΦN

(CN+1 + V CN+1)(ΦN+1) θ[TN(ΦN+1) < T cut
N ]

+

∫
dΦN+2

dΦN

CN+2(ΦN+2) θ[TN(ΦN+2) < T cut
N ] , (2.36)

where CN+1, V CN+1, and CN+2 reproduce the exact IR singularities of BN+1, VN+1,
and BN+2, respectively; i.e., they correspond to a valid set of NNLO subtractions,
such that eq. (2.36) is IR finite. The full logarithmic T cut

N dependence arises from inte-
grating BN+1, VN+1, and BN+2, over the IR-singular region, which is fully reproduced
by the CN+1, V CN+1, and CN+2 contributions in eq. (2.36). Therefore, dσCN(T cut

N )
contains all logarithms in T cut

N , while the remainder dσB−CN (T cut
N ) in eq. (2.35) is a

power correction in T cut
N .

To identify the relevant terms, we rewrite the N -jet MC cross section in terms of a
resummed contribution and FO matching corrections. As we have seen at NLO+LL
in section 2.3.3, the LL resummed contribution can be obtained by multiplying an
inclusive cross section by the LL Sudakov factor for T cut

N . The resulting expression in
general differs from the correct FO result by both singular and nonsingular terms in
T cut
N , which are accounted for by adding corresponding FO singular and nonsingular

matching corrections. This gives

Case 1:
dσmc

N

dΦN

(T cut
N ) =

dσC≥N
dΦN

∆N(ΦN ; T cut
N )︸ ︷︷ ︸

resummed

+
dσC−SN

dΦN

(T cut
N )︸ ︷︷ ︸

FO singular matching

+
dσB−CN

dΦN

(T cut
N )︸ ︷︷ ︸

FO nonsingular
matching

.

(2.37)
The first term is the resummed contribution, where dσC≥N is the singular approxima-
tion of the inclusive FO N -jet cross section, obtained by dropping the θ(TN < T cut

N )
in eq. (2.36). It is by construction T cut

N independent, so all dependence on T cut
N in

the resummed term resides in the Sudakov factor ∆N(ΦN ; T cut
N ), which sums the LL

series in T cut
N . The remaining two terms are FO matching corrections to ensure the

correct FO expansion of eq. (2.37).
The last term in eq. (2.37), labeled B − C, is the FO nonsingular term from

eq. (2.35). It contains the difference between the full FO contribution and its singular
limit,

dσB−CN

dΦN

(T cut
N ) =

dσFO
N

dΦN

(T cut
N )− dσCN

dΦN

(T cut
N ) . (2.38)

As discussed above, it contains no logarithmic dependence on T cut
N .

The second term in eq. (2.37), labeled C − S, is the singular FO matching cor-
rection. It contains the difference between the singular approximation containing the
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full logarithmic T cut
N dependence and that obtained by expanding the resummed term

in fixed order; i.e.,

dσC−SN

dΦN

(T cut
N ) =

dσCN
dΦN

(T cut
N )−

[
dσC≥N
dΦN

∆N(ΦN ; T cut
N )

]
FO

= −
∫

dΦN+1

dΦN

(CN+1 − SN+1)(ΦN+1) θ(TN > T cut
N ) +O(α2

s) . (2.39)

Hence, it supplies the FO singular terms in T cut
N that are not contained in the re-

summed contribution. In the second line, we show the NLO result for illustration.
As already discussed in section 2.3.3, since the splitting function SN+1 generically
only reproduces the leading singularities in CN+1, dσC−SN (T cut

N ) can in general con-
tain logarithmic dependence as large as αsLcut at NLO and α2

sL
3
cut at NNLO, which

contribute at Ocut(α
1/2
s ) with the counting of eq. (2.16).

A potential problem with implementing eq. (2.37) is the presence of explicit loga-
rithms in dσC−SN (T cut

N ), which become large as T cut
N is reduced, meaning in particular

dσC−SN (T cut
N ) diverges for T cut

N → 0. While by construction this divergence cancels in
physical observables, it could give rise to events with large or even negative weights.
To circumvent this and regulate the logarithmic divergence, we can alternatively
choose to multiply the singular matching terms with the Sudakov factor and write

Case 2:
dσmc

N

dΦN

(T cut
N ) =

[
dσC≥N
dΦN

+
dσ̃C−SN

dΦN

(T cut
N )︸ ︷︷ ︸

FO singular matching

]
∆N(ΦN ; T cut

N )

︸ ︷︷ ︸
resummed

+
dσB−CN

dΦN

(T cut
N )︸ ︷︷ ︸

FO nonsingular
matching

,

(2.40)
where the FO singular matching corrections are now given by

dσ̃C−SN

dΦN

(T cut
N ) =

[
dσC−SN

dΦN

(T cut
N )

1

∆N(ΦN ; T cut
N )

]
FO

= −
∫

dΦN+1

ΦN

(CN+1 − SN+1)(ΦN+1) θ(TN > T cut
N ) +O(α2

s) . (2.41)

Note that, while multiplying with the Sudakov factor helps to suppress the FO T cut
N

logarithms in dσ̃C−SN (T cut
N ), this choice does not amount to an actual resummation of

these logarithms. A downside of this choice is that it introduces a more complicated
T cut
N dependence at all orders that must be canceled in inclusive N -jet observables.

Since dσ̃C−SN (T cut
N ) can contain logarithms α2

sL
3
cut, multiplying with the Sudakov factor

introduces terms of order αnsL
2n−1
cut .

The singular matching correction is always required if the resummation term
does not contain all logarithms of T cut

N to the desired fixed order. Even if SN+1

in eq. (2.39) contains the full subleading singularities at NLO (as in Powheg where
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CN+1 = SN+1, so dσC−SN (T cut
N ) = 0), at NNLO, dσC−SN (T cut

N ) can still contain terms
∼ α2

sL
2
cut ∼ Ocut(αs). Hence, to achieve NNLON+LL accuracy, it is essential to

enforce the consistency conditions in eqs. (2.20) and (2.21) for the dσC−SN or dσ̃C−SN

contributions. Otherwise, these terms can easily generate a residual T cut
N dependence

in inclusive observables that destroys their perturbative accuracy.
To construct the inclusive (N + 1)-jet MC cross section, dσmc

≥N+1(TN > T cut
N ),

as with dσmc
N before, we split it into a resummed contribution and FO singular and

nonsingular matching corrections. Following the above discussion, these different
contributions are constructed from their corresponding counterparts in eqs. (2.37)
and (2.40) by explicitly enforcing eqs. (2.20) and (2.21). This gives

Case 1:
dσmc
≥N+1

dΦN+1

(TN > T cut
N ) =

dσC≥N
dΦN

∣∣∣∣
ΦN=Φ̂N

SN+1(ΦN+1)

BN(Φ̂N)
∆N(Φ̂N ; TN) θ(TN > T cut

N )

+
dσC−S≥N+1

dΦN+1

(TN > T cut
N ) +

dσB−C≥N+1

dΦN+1

(TN > T cut
N ) ,

(2.42)

Case 2:
dσmc
≥N+1

dΦN+1

(TN > T cut
N ) ={[

dσC≥N
dΦN

+
dσ̃C−SN

dΦN

(TN)

]
ΦN=Φ̂N

SN+1(ΦN+1)

BN(Φ̂N)
θ(TN > T cut

N )

+
dσ̃C−S≥N+1

dΦN+1

(TN > T cut
N )

}
∆N(Φ̂N ; TN) +

dσB−C≥N+1

dΦN+1

(TN > T cut
N ) ,

(2.43)

where the various ingredients are discussed in detail in sections 2.4.1.1 and 2.4.1.2.
For case 1, the FO singular and nonsingular matching terms are pure FO corrections,
and to obtain them, it is sufficient to enforce that dσmc

≥N+1 expands to the correct
NLO cross section. For case 2, the singular matching correction is more complicated,
and its TN dependence is obtained by taking the derivative of dσ̃C−SN (T cut

N ) ∆N(T cut
N )

in eq. (2.40) with respect to T cut
N . This ensures that the singular matching corrections

in the spectrum correctly integrate up to cancel the corresponding T cut
N dependence

in the cumulant.8

Before we give the detailed expressions for all ingredients required to construct
eqs. (2.37), (2.40), (2.42), and (2.43), it is instructive to see how the NLO+LL case

8Notice that there might be points in ΦN+1 for which BN (Φ̂N ) = 0 due to either kinematical or
PDF effects. To avoid that the ratio SN+1(ΦN+1)/BN (Φ̂N ) goes to infinity, one has to define SN+1

such that it vanishes for these points. This implies that the contributions from these phase space
regions are contained in dσC−S or dσ̃C−S .
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arises from this notation. At NLO, we have

dσC≥N
dΦN

= (BN + VN)(ΦN) +

∫
dΦN+1

dΦN

CN+1(ΦN+1) , (2.44)

and the singular matching corrections for the cumulant, dσC−SN , are given in the second
line of eq. (2.39) [or eq. (2.41) for dσ̃C−SN ]. The nonsingular matching correction is

dσB−CN

dΦN

(T cut
N ) =

∫
dΦN+1

dΦN

(BN+1 − CN+1)(ΦN+1) θ(TN < T cut
N ) . (2.45)

The corresponding results for the differential spectrum are

dσC−S≥N+1

dΦN+1

(TN > T cut
N ) =

dσ̃C−S≥N+1

dΦN+1

(TN > T cut
N ) = (CN+1 − SN+1)(ΦN+1) θ(TN > T cut

N ) ,

dσB−C≥N+1

dΦN+1

(TN > T cut
N ) = (BN+1 − CN+1)(ΦN+1) θ(TN > T cut

N ) .

(2.46)

Note that dσC−S and dσ̃C−S are equal at this order. They only start to differ at
NNLO, where the cross terms in the FO expansion of the product dσ̃C−SN ∆N become
relevant.

As discussed in section 2.3.3, the splitting function of Powheg given in eq. (2.31)
reproduces the full singular dependence of the real emission. Thus, one can choose
CN+1 = SN+1, such that dσC−SN = 0 and dσC≥N = dσS≥N , and cases 1 and 2 both
reduce to eq. (2.25).

For MC@NLO, the splitting function is given in eq. (2.29). It depends on a
function G(TN), which for the sake of illustration we can choose as G(TN) = θ(TN >
T cut
N ) (even though this is not the choice made in the MC@NLO implementation).

In this case, the expression for dσS≥N given in eq. (2.30) is equivalent to dσS≥N =

dσC≥N + dσ̃C−SN , which corresponds to case 2 in eq. (2.40) for the cumulant. However,
the corresponding spectrum in eq. (2.25) is not that of case 2 in eq. (2.43). This is
the origin of the residual T cut

N dependence in MC@NLO discussed below eq. (2.30).
It should be clear from the discussion so far that the expressions in eqs. (2.37)

and (2.42) for case 1, or alternatively eqs. (2.40) and (2.43) for case 2, provide a
completely general result for the FO+LL matching valid to any fixed order. The
explicit NNLO+LL expressions are given in detail below in section 2.4.1.1 for case
1 and section 2.4.1.2 for case 2. Besides the choice one has between the two cases,
different implementations can be obtained by making different choices for the CN+1,
V CN+1, and CN+2 contributions that are used to approximate the singular behavior
of the full theory, as well as for the splitting function SN+1 that is used to define
the Sudakov factor. This amounts to shifting nonsingular corrections or subleading
logarithms between the resummed contribution and the FO matching corrections.
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2.4.1.1 Case 1

Here, we use dσmc
N (T cut

N ) as given in eq. (2.37) with its corresponding inclusive
dσmc
≥N+1(TN > T cut

N ) given in eq. (2.42), which we repeat here for completeness:

dσmc
N

dΦN

(T cut
N ) =

dσC≥N
dΦN

∆N(ΦN ; T cut
N ) +

dσC−SN

dΦN

(T cut
N ) +

dσB−CN

dΦN

(T cut
N ) ,

dσmc
≥N+1

dΦN+1

(TN > T cut
N ) =

dσC≥N
dΦN

∣∣∣∣
ΦN=Φ̂N

SN+1(ΦN+1)

BN(Φ̂N)
∆N(Φ̂N ; TN) θ(TN > T cut

N )

+
dσC−S≥N+1

dΦN+1

(TN > T cut
N ) +

dσB−C≥N+1

dΦN+1

(TN > T cut
N ) .

The explicit expressions for all ingredients are given in the following. By construction,
these are correct to NNLON and NLON+1 and include the correct LL resummation
for T cut

N and TN , respectively. Also, each of the three terms in the cumulant and
spectrum separately satisfy the exact consistency relations in eqs. (2.20) and (2.21)
without any residual T cut

N dependence.
The singular inclusive cross section, dσC≥N , appearing in the resummed terms is

obtained by removing the constraints on TN in eq. (2.36), which gives

dσC≥N
dΦN

= (BN + VN +WN)(ΦN) +

∫
dΦN+1

dΦN

(CN+1 + V CN+1)(ΦN+1)

+

∫
dΦN+2

dΦN

CN+2(ΦN+2) . (2.47)

Since dσC≥N is explicitly T cut
N independent, the resummed terms satisfy eq. (2.20)

because [see eq. (2.18)]

d

dT cut
N

[
∆N(ΦN ,T cut

N )
]
T cut
N =TN

=

∫
dΦN+1

dΦN

δ[TN − TN(ΦN+1)]
SN+1(ΦN+1)

BN(ΦN)
∆N(ΦN , TN) . (2.48)

The nonsingular matching correction, dσB−CN , is defined in eq. (2.38). Taking the
difference of eqs. (2.5) and (2.36), we can immediately obtain its NNLO result,

dσB−CN

dΦN

(T cut
N ) ≡ dσNNLO

N

dΦN

(T cut
N )− dσCN

dΦN

(T cut
N ) =∫

dΦN+1

dΦN

(BN+1 − CN+1 + VN+1 − V CN+1)(ΦN+1) θ[TN(ΦN+1) < T cut
N ]

+

∫
dΦN+2

dΦN

(BN+2 − CN+2)(ΦN+2) θ[TN(ΦN+2) < T cut
N ] . (2.49)
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The differential equivalent dσB−C≥N+1(TN > T cut
N ) is defined exactly analogously,

dσB−C≥N+1

dΦN+1

(TN > T cut
N ) ≡

dσNLO
≥N+1

dΦN+1

(TN > T cut
N )−

dσC≥N+1

dΦN+1

(TN > T cut
N )

= (BN+1 − CN+1 + VN+1 − V CN+1)(ΦN+1) θ[TN(ΦN+1) > T cut
N ]

+

∫
dΦN+2

dΦN+1

(BN+2 − CN+2)(ΦN+2) θ[TN(ΦN+2) > T cut
N ] ,

(2.50)

and one can easily see that eqs. (2.49) and (2.50) explicitly satisfy the consistency
condition in eq. (2.21).

Finally, the singular matching corrections, dσC−S, are defined as

dσC−SN

dΦN

(T cut
N ) =

dσCN
dΦN

(T cut
N )−

[
dσC≥N
dΦN

∆N(ΦN ; T cut
N )

]
NNLON

,

dσC−S≥N+1

dΦN+1

(TN > T cut
N ) =

dσC≥N+1

dΦN+1

(TN > T cut
N ) (2.51)

−
[

dσC≥N
dΦN

∣∣∣∣
ΦN=Φ̂N

SN+1(ΦN+1)

BN(Φ̂N)
∆N(Φ̂N ; TN) θ(TN > T cut

N )

]
NLON+1

.

By definition, they satisfy eqs. (2.20) and (2.21) because each of the terms on the right-
hand sides do so. To obtain their explicit expressions, we use the NNLO expansion
of the Sudakov factor, which we write as

∆N(ΦN ; T cut
N ) = 1 + ∆

(1)
N (ΦN ; T cut

N ) + ∆
(2)
N (ΦN ; T cut

N ) ,

∆
(1)
N (ΦN ; T cut

N ) = −
∫

dΦN+1

dΦN

S
(1)
N+1(ΦN+1)

BN(ΦN)
θ(TN > T cut

N ) ,

∆
(2)
N (ΦN ; T cut

N ) =
1

2

[
∆

(1)
N (ΦN ; T cut

N )
]2 − ∫ dΦN+1

dΦN

S
(2)
N+1(ΦN+1)

BN(ΦN)
θ(TN > T cut

N ) .

(2.52)

Here, we used S
(n)
N+1 to denote the αns contribution to SN+1; i.e.,

SN+1(ΦN+1) = S
(1)
N+1(ΦN+1) + S

(2)
N+1(ΦN+1) + · · · . (2.53)

For convenience, we also define the subtracted one-loop virtual correction, which is
the IR-finite NLO term in dσC≥N ,

V C
N (ΦN) = VN(ΦN) +

∫
dΦN+1

dΦN

CN+1(ΦN+1) . (2.54)
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The differential version is easier to obtain (since it does not explicitly require ∆
(2)
N ),

and we find

dσC−S≥N+1

dΦN+1

(TN > T cut
N )

= (CN+1 + V CN+1)(ΦN+1) θ(TN > T cut
N )

+

∫
dΦN+2

dΦN+1

CN+2(ΦN+2) θ[TN(ΦN+2) > T cut
N ]

−
[
1 +

S
(2)
N+1(ΦN+1)

S
(1)
N+1(ΦN+1)

+
V C
N (Φ̂N)

BN(Φ̂N)
+ ∆

(1)
N (Φ̂N , TN)

]
S

(1)
N+1(ΦN+1) θ(TN > T cut

N ) .

(2.55)

The cumulant version is given by

dσC−SN

dΦN

(T cut
N ) = −

∫
dΦN+1

dΦN

dσC−S≥N+1

dΦN+1

(TN > T cut
N )

= −
∫

dΦN+1

dΦN

(CN+1 + V CN+1)(ΦN+1) θ[TN(ΦN+1) > T cut
N ] (2.56)

−
∫

dΦN+2

dΦN

CN+2(ΦN+2) θ[TN(ΦN+2) > T cut
N ]

−BN(ΦN)
[
∆

(1)
N (ΦN ; T cut

N ) + ∆
(2)
N (ΦN ; T cut

N )
]

− V C
N (ΦN) ∆

(1)
N (ΦN ; T cut

N ) .

The integrals here are explicitly over TN > T cut
N , which cuts off all IR singularities that

do not cancel between the full FO singular contributions and their LL approximation
arising from the Sudakov expansion, which is given by the last lines in eqs. (2.55) and
(2.56). Note that CN+2 here fulfills two roles. First, it produces the leading double
logarithms α2

s(L
4
cut + L3

cut) (for the cumulant). The α2
sL

4
cut is always canceled by the

square [∆
(1)
N ]2 inside ∆

(2)
N , and the α2

sL
3
cut is also canceled if ∆

(1)
N produces the correct

single logarithm αsLcut at NLO. Second, the (N +1)-parton virtual IR divergences in
V CN+1 are canceled by the TN+1 → 0 limit in the ΦN+2 integral over CN+2, where the
remainder is an αs(αsL

2
cut + αsLcut) correction. Generically, these are only partially

canceled by the corresponding V C
N ∆

(1)
N (T cut

N ) term.

2.4.1.2 Case 2

For this case, we use dσmc
N (T cut

N ) as given in eq. (2.40), with its corresponding in-
clusive dσmc

≥N+1(TN > T cut
N ) given in eq. (2.43), which we repeat here for completeness:

dσmc
N

dΦN

(T cut
N ) =

[
dσC≥N
dΦN

+
dσ̃C−SN

dΦN

(T cut
N )

]
∆N(ΦN ; T cut

N ) +
dσB−CN

dΦN

(T cut
N ) ,
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dσmc
≥N+1

dΦN+1

(TN > T cut
N ) =

{[
dσC≥N
dΦN

+
dσ̃C−SN

dΦN

(TN)

]
ΦN=Φ̂N

SN+1(ΦN+1)

BN(Φ̂N)
θ(TN > T cut

N )

+
dσ̃C−S≥N+1

dΦN+1

(TN > T cut
N )

}
∆N(Φ̂N ; TN) +

dσB−C≥N+1

dΦN+1

(TN > T cut
N ) .

The explicit expressions for all ingredients are given in the following. As for case 1,
these are correct to NNLON and NLON+1 and include the correct LL resummation
for T cut

N and TN , respectively. The resummation terms involving dσC≥N∆N and the
nonsingular FO matching terms, dσB−C , are the same as in case 1 [see eq. (2.47) and
eqs. (2.49) and (2.50)] and separately satisfy the consistency relations in eqs. (2.20)
and (2.21).

The difference to case 1 is how the singular matching corrections, dσ̃S−C , are
included. For the cumulant, we have

dσ̃C−SN

dΦN

(T cut
N ) =

[
dσC−SN

dΦN

(T cut
N )

1

∆N(ΦN ; T cut
N )

]
NNLON

=
dσC−SN

dΦN

(T cut
N ) (2.57)

+ ∆
(1)
N (ΦN ; T cut

N )

∫
dΦN+1

dΦN

(CN+1 − S(1)
N+1)(ΦN+1) θ[TN(ΦN+1) > T cut

N ] ,

where dσC−SN (T cut
N ) is given in eq. (2.56). The corresponding differential result in the

spectrum is obtained by requiring eq. (2.21),

dσ̃C−S≥N+1

dΦN+1

(TN > T cut
N )

=
dσC−S≥N+1

dΦN+1

(TN > T cut
N )−

{
∆

(1)
N (Φ̂N ; TN) (CN+1 − S(1)

N+1)(ΦN+1) (2.58)

+
S

(1)
N+1(ΦN+1)

BN(Φ̂N)

∫
dΦ′N+1

dΦN

(
CN+1 − S(1)

N+1

)
(Φ′N+1) θ[TN(Φ′N+1) > TN ]

}
θ(TN > T cut

N ) ,

where dσC−S≥N+1(TN > T cut
N ) is given in eq. (2.55). One can easily check that with this

result the expression for dσmc
≥N+1 in case 2 expands to the correct NLON+1 result.

2.4.2 The exclusive (N + 1)-jet and inclusive (N + 2)-jet cross
sections

The inclusive (N+1)-jet MC cross section is divided into the exclusive (N+1)-jet
and inclusive (N + 2)-jet MC cross sections using a resolution scale T cut

N+1,

dσmc
≥N+1

dΦN+1

(TN > T cut
N ) =

dσmc
N+1

dΦN+1

(TN > T cut
N ; T cut

N+1)
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+

∫
dΦN+2

dΦN+1

dσmc
≥N+2

dΦN+2

(TN > T cut
N , TN+1 > T cut

N+1) . (2.59)

Note that this is just a special case of the consistency condition in eq. (2.21) applied
to TN+1 and taking T cN+1 ≡ T max

N+1.
The inclusive dσmc

≥N+1 already resums the leading logarithms of TN in the (N +1)-
parton phase space. On top of that, we also want to resum the leading logarithms of
T cut
N+1 and TN+1 appearing in dσmc

N+1(T cut
N+1) and dσmc

≥N+2(TN+1). The LL resummation
for TN+1 is obtained using the (N +1)-parton Sudakov factor, ∆N+1, which is defined
as

∆N+1(ΦN+2; T cut
N+1) = exp

{
−
∫

dΦN+2

dΦN+1

SN+2(ΦN+2)

BN+1(Φ̂N+1)
θ[TN+1(ΦN+2) > T cut

N+1]

}
,

(2.60)
where the upper limit on the integration over TN+1 should be chosen of order TN . Note
that the (N + 1)-parton splitting function SN+2 enters in the Sudakov factor relative
to the (N + 1)-parton Born matrix element BN+1, which is required to correctly sum
the logarithms of TN+1 across the whole range of TN , even for TN ∼ T max

N . In terms of
the resummation accuracy, achieving (N)LON+1+LL implies that the (N + 1)-parton
Sudakov factor must multiply the complete BN+1 matrix element to obtain the LL
resummation of TN+1 (or T cut

N+1) in the limit TN+1 � TN for both TN � T max
N and

TN ∼ T max
N .

Given these considerations, we again divide the exclusive (N + 1)-jet and inclu-
sive (N + 2)-jet MC cross sections into a resummed contribution and FO matching
corrections,

dσmc
N+1

dΦN+1

(TN > T cut
N ; T cut

N+1)

=
dσ′C≥N+1

dΦN+1

(TN > T cut
N ) ∆N+1(ΦN+1; T cut

N+1)︸ ︷︷ ︸
resummed

+

(
dσC−SN+1

dΦN+1︸ ︷︷ ︸
FO singular

matching

+
dσB−CN+1

dΦN+1︸ ︷︷ ︸
FO nonsing.

matching

)
(TN > T cut

N ; T cut
N+1) ,

dσmc
≥N+2

dΦN+2

(TN > T cut
N , TN+1 > T cut

N+1)

=
dσ′C≥N+1

dΦN+1

(TN > T cut
N )

∣∣∣∣
ΦN+1=Φ̂N+1

SN+2(ΦN+2)

BN+1(Φ̂N+1)
∆N+1(Φ̂N+1; TN+1) θ(TN+1 > T cut

N+1)

+

(
dσC−S≥N+2

dΦN+2

+
dσB−C≥N+2

dΦN+2

)
(TN > T cut

N , TN+1 > T cut
N+1) . (2.61)
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This has precisely the structure of the usual NLON+1+LL calculation [see eq. (2.25)],
but with the dependence on the singular and nonsingular FO matching corrections,
dσC−S and dσB−C , written out explicitly. Furthermore, dσ′C≥N+1(TN > T cut

N ) is the
singular approximation to the full (N + 1)-jet inclusive cross section on which the
TN+1 resummation acts. The crucial difference compared to the usual NLO+LL case
discussed in section 2.3.3 is that the NLON+1+LL calculation is used down to very
small values TN > T cut

N , and so dσ′C≥N+1(TN > T cut
N ) now has to include the LL

resummation in TN . In terms of the inclusive dσmc
≥N+1(TN > T cut

N ) [given by either
eq. (2.42) or eq. (2.43)], we can write it as

dσ′C≥N+1

dΦN+1

(TN > T cut
N ) =

dσmc
≥N+1

dΦN+1

(TN > T cut
N )

−
∫

dΦN+2

dΦN+1

(BN+2 − CN+2)(ΦN+2) θ[TN(ΦN+2) > T cut
N ] ,

(2.62)

where the second term on the right-hand side removes the dependence on BN+2 from
dσmc
≥N+1; i.e., it removes the last line in dσB−C≥N+1 in eq. (2.50). By definition of CN+2,

this term has no logarithmic dependence on TN and therefore does not affect the LL
resummation in TN . Expanding this to fixed NLON+1 reproduces the N + 1 version
of eq. (2.44),[

dσ′C≥N+1

dΦN+1

(TN > T cut
N )

]
NLON+1

= (BN+1 + VN+1)(ΦN+1)

+

∫
dΦN+2

dΦN+1

CN+2(ΦN+2) θ[TN(ΦN+2) > T cut
N ] .

(2.63)

This shows that, in the limit of turning off the TN resummation, eq. (2.61) reproduces
the correct NLON+1+LL result as required.

The FO matching corrections are determined by imposing the correct NLON+1

and LON+2 expansions of eq. (2.61). The nonsingular matching corrections are given
as

dσB−CN+1

dΦN+1

(TN > T cut
N ; T cut

N+1)

=

∫
dΦN+2

dΦN+1

(BN+2 − CN+2)(ΦN+2) θ[TN(ΦN+2) > T cut
N ] θ[TN+1(ΦN+2) < T cut

N+1] ,

dσB−C≥N+2

dΦN+2

(TN > T cut
N , TN+1 > T cut

N+1)

= (BN+2 − CN+2)(ΦN+2) θ[TN(ΦN+2) > T cut
N ] θ[TN+1(ΦN+2) > T cut

N+1] , (2.64)
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and (again by definition of CN+2) have no logarithmic dependence on T cut
N+1. For the

singular matching corrections, we then find

dσC−SN+1

dΦN+1

(TN > T cut
N ; T cut

N+1)

= −
∫

dΦN+2

dΦN+1

{
CN+2(ΦN+2) θ[TN(ΦN+2) > T cut

N ]

− SN+2(ΦN+2) θ[TN(Φ̂N+1) > T cut
N ]
}
× θ[TN+1(ΦN+2) > T cut

N+1] ,

dσC−S≥N+2

dΦN+2

(TN > T cut
N , TN+1 > T cut

N+1)

=
{
CN+2(ΦN+2) θ[TN(ΦN+2) > T cut

N ]− SN+2(ΦN+2) θ[TN(Φ̂N+1) > T cut
N ]
}

× θ[TN+1(ΦN+2) > T cut
N+1] . (2.65)

Here, we can explicitly see the mismatch between the exact definition of TN(ΦN+2)
required at NNLON and the shower approximation in the SN+2 term, which inherits
the Φ̂N+1(ΦN+2) dependence from the projection from ΦN+2 to ΦN+1 in the (N+1)-jet
Sudakov factor. Generically, this can introduce a subleading logarithmic dependence
on T cut

N in dσC−S (even in the limit SN+2 = CN+2), whose coefficient scales as ∼ T cut
N .

With the above results, we can check that no residual T cut
N+1 dependence (beyond

power corrections) is introduced in physical observables because eqs. (2.20) and (2.21)
are explicitly satisfied. For the FO matching corrections, this is clear from their above
expressions. The resummed terms also combine correctly to the inclusive dσC≥N+1

using the equivalent relation to eq. (2.18) for the (N + 1)-parton Sudakov,∫
dΦN+2

dΦN+1

SN+2(ΦN+2)

BN+1(Φ̂N+1)
∆N+1(Φ̂N+1; TN+1) θ(TN+1 > T cut

N+1) = 1−∆N+1(ΦN+1; T cut
N+1) .

(2.66)
Using this relation, we can also easily check that eq. (2.59) is satisfied. Upon integra-
tion over dΦN+2/dΦN+1, the dσC−SN+1 and dσC−S≥N+2 terms cancel each other, while the

dσB−CN+1 and dσB−C≥N+2 terms combine to precisely cancel the second line in eq. (2.62).
Hence, we precisely get back dσmc

≥N+1(TN > T cut
N ), which shows that no residual T cut

N

dependence is introduced.
In the above construction, we have the same amount of freedom as in section 2.4.1

in how to implement the TN+1 resummation and where to put the FO singular cor-
rections. Above, we have used the analog of case 1 from section 2.4.1, where dσC−S

is included at fixed order. Various alternatives are:

• One can multiply dσC−SN+1 by the ∆N+1 Sudakov, analogous to case 2 in sec-
tion 2.4.1. In this case, eq. (2.59) is maintained exactly when the corresponding
case 2 version is also used for the differential spectrum.
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• One has the freedom in eq. (2.62) and all the results following it to use a
different C ′N+2 from the CN+2 used in section 2.4.1. This includes whether one

uses TN(ΦN+2) or TN(Φ̂N+1) to implement the TN > T cut
N constraint for the

C ′N+2 contribution. In particular, one could use a simpler NLON+1 subtraction
for C ′N+2. (In general, this can change the logarithmic dependence on TN at the
subleading level.)

• One can use different choices for SN+2. In particular, in conjunction with using
an alternative C ′N+2, one can use a Powheg approach for NLON+1+LL, such
that one can take SN+2 = C ′N+2.

2.5 Matching the NNLO+LL calculation with a

parton shower

In the previous sections, we have shown how to consistently combine LO, NLO,
and NNLO calculations with LL resummation and how to obtain the MC cross sec-
tions dσmc

N , dσmc
N+1, and dσmc

≥N+2. In this section, we discuss how to interface the
corresponding N -parton, (N + 1)-parton, and (N + 2)-parton events with a parton
shower and avoid any double counting of phase space between the partonic calcula-
tion and the parton shower. The resulting NNLO+LL event generator will thus be
able to produce events with any parton multiplicity.

The NNLO+LL MC cross sections in section 2.4 provide resummation in the reso-
lution variables TN and TN+1, but in general, do not explicitly resum large logarithms
arising in singular regions of phase space for other observables. In the resummation
regime, the shape of a generic exclusive observable will therefore only be accurately
predicted after the addition of the parton shower, which in general provides LL ac-
curacy. Furthermore, care must be taken when interfacing to the parton shower such
that the perturbative accuracy provided by the MC cross sections dσmc

M is maintained.
This includes the FO accuracy, the LL accuracy in the evolution variables, and the
absence of residual dependence on the resolution scales T cut

N and T cut
N+1. Precisely, the

matching with the parton shower must satisfy three conditions:

1. Any exclusive observable must be correct to at least LL in the resummation
regime. This includes the resolution variables TN and TN+1, for which the LL
accuracy of the MC cross sections must be maintained. Additionally, the LL
accuracy requirement extends to observables requiring more than N + 2 jets,
for which the parton shower provides the only prediction.

2. The FO accuracy of any observable should be that of the NNLO calculation
(see section 2.2.1), which means:
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• N -jet observables are correct to NNLON up to power corrections of relative
order O(αsT cut

N /T eff
N ) and O(α2

sT cut
N+1/T eff

N+1), where T eff
N and T eff

N+1 are the
effective resolution scales to which the observable is sensitive.

• (N + 1)-jet observables are correct to NLON+1 if they only include con-
tributions in the resolved region of ΦN+1, up to power corrections of rela-
tive order O(αsT cut

N+1/T eff
N+1), where T eff

N+1 is the effective resolution scale to
which the observable is sensitive.

• (N + 2)-jet observables are correct to LON+2 if they only include contri-
butions in the resolved region of ΦN+2.

Note that no FO accuracy is implied for observables sensitive to the unresolved
regions of phase space, TN < T cut

N and TN+1 < T cut
N+1, as the parton shower

provides the only prediction in these regions (see below).

3. For observables that must be correct to NnLO, any residual dependence on the
resolution scales T cut

N and T cut
N+1 must enter at Ocut(α

≥n+1
s ).

The conditions above naturally echo those imposed on the MC cross sections in
section 2.3.1, and in particular, ensure that no double counting occurs in the matching.
In fact, in cases where the parton shower yields events with ≤ N + 2 partons, the
exact phase space constraints implemented by the MC cross section definitions can be
used on the shower (see figure 2.1). In cases with more emissions, one must develop
analogous constraints making sure the above conditions remain satisfied.

2.5.1 LL shower constraints

Condition 1 above requires us to maintain the LL accuracy of the event sample
and combine it with the parton shower LL resummation for additional emissions.
For this purpose, the identical considerations apply to our NNLO+LL calculation
as in the case of interfacing a merged LON,N+1,N+2+LL calculation with a parton
shower [4, 5, 6, 8, 7, 9, 10, 11, 12]. The reason is that, as far as the LL structure
is concerned, the only relevance of the higher FO accuracy in our case is that it
imposes a tighter constraint in condition 3 above. However, since the parton shower
is formulated such that the probability of an emission is the exact differential of the
no-emission probability [i.e., of the Sudakov factor, see eq. (2.18)], condition 3 will be
satisfied as long as any additional constraints imposed on the parton shower do not
spoil this relation.

The simultaneous LL resummation of TN and TN+1 in the NNLO+LL calculation
can be achieved by choosing both variables to be equivalent (at the single-emission/LL
level) to the same local shower evolution variable T [see eq. (2.8)], in which case we
can assume that they are ordered as TN+1 < TN .
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2.5.1.1 Equivalent resummation and shower evolution variables

The simplest case is when the evolution variable of the parton shower is equivalent
to T (i.e., it has the same LL structure). The event sample with N , N + 1, and
N + 2 partons can then be viewed as the result of the first two steps in the normal
parton shower evolution in T , and attaching the parton shower simply corresponds
to continuing this evolution down to the shower cutoff, where the relevant starting
scale, Tres, is given by the scale of the last emission or the resolution scale, namely

• Tres ≡ T cut
N for the N -parton events

• Tres ≡ T cut
N+1 for the (N + 1)-parton events

• Tres ≡ TN+1(ΦN+2) for the (N + 2)-parton events

In this case, conditions 1 and 3 are automatically satisfied because the parton shower
itself respects them.

This is precisely consistent with the physical interpretation of the MC cross sec-
tions. The dσmc

N (T cut
N ) and dσmc

N+1(TN > T cut
N ; T cut

N+1) cross sections represented by the
N -parton and (N + 1)-parton events are exclusive jet cross sections defined to only
include additional emissions below T cut

N and T cut
N+1. The dσmc

≥N+2(TN > T cut
N , TN+1 >

T cut
N+1) cross section represented by the (N + 2)-parton events is an inclusive cross

section defined to contain any number of additional emissions below TN+1.
Note also that, in principle, one can choose T cut

N = T cut
N+1 to be equal (or very close)

to the actual shower cutoff T cut, such that no (or very few) additional emissions need
to be generated for the N -jet and (N + 1)-jet samples.

2.5.1.2 Different resummation and shower evolution variables

If the local evolution variable T ′ of the parton shower differs in its LL structure
from the variable T used to implement the LL resummation in the partonic FO+LL
calculation, one has to utilize a veto procedure on the shower to achieve condition 1.
In principle, two approaches may be used here, using either a vetoed shower algorithm
or a global veto procedure. Additionally, one has to specify the starting scale of the
shower evolution.

The use of a vetoed parton shower was discussed in detail in refs. [4, 15] for the
case where T is the pT of an emission and using an angular-ordered parton shower
where T ′ is the emission angle. The same veto procedure can be applied here. The
vetoed shower works by evolving in T ′, and in each emission step, only emissions
satisfying the constraint T < Tres are allowed, where Tres is given as above. If an
emission at some T ′ violates this constraint, it is vetoed, and the evolution continues
from T ′. This vetoed shower exponentiates the T < Tres constraint, which effectively
transforms the shower evolution variable from T ′ into T .
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In the global veto procedure, one lets the evolution proceed undisturbed. After
the showering is done, the showered event is accepted if the condition T < Tres is
satisfied for all emissions. If this is not the case, the showering is repeated from the
start on the same partonic event, and this is done until an acceptable showered event
is generated. This second approach is certainly less efficient, but it has the advantage
that one does not need to modify the parton shower algorithm at all.

In either vetoing approach, one has to choose appropriate starting scales for the
T ′ evolution. First, one determines the maximal starting scale T ′max, which should be
either the value T ′max(ΦN) that one would normally choose when starting the shower
directly from BN(ΦN), or the maximum value of T ′ kinematically allowed for a given
Tres, whichever is smaller. The simplest approach is then to start the shower at T ′max

for all partons. A somewhat better approach is to choose the starting scale according
to the emission history.9 For partons that had no emissions, the shower is started
at T ′max. For the daughter partons of an extra emission step in the (N + 1)-jet and
(N + 2)-jet samples, the shower is started from the scale T ′res of the emission. The
possible additional emissions for T ′max > T ′ > T ′res are then added by running a
truncated shower [15] from T ′max to T ′res along the parent parton line of the emission.

2.5.2 FO shower constraints

The constraints on the shower implied by condition 2 are simpler for event samples
with higher jet multiplicity, as the desired perturbative accuracy is lower. Therefore,
we start by discussing the (N + 2)-jet sample, working our way down to the N -jet
sample. Note that if the shower evolves directly in T and both T cut

N and T cut
N+1 are set

to the shower cutoff, only the (N + 2)-jet sample gets showered, and the additional
complications arising for the (N + 1)-jet and N -jet samples become irrelevant.

2.5.2.1 Showering the (N + 2)-jet event sample

The MC cross section dσmc
≥N+2 of the NNLO+LL calculation is given in eq. (2.61).

Its perturbative accuracy is LON+2+LL, which the parton shower can easily maintain
by applying constraints analogous to those applied to the highest jet multiplicity
in an LO+LL matched event sample. The LON+2 accuracy of the cross section
is automatically guaranteed by the fact that additional emissions from the parton
shower are higher order in αs. Therefore, there are no additional FO constraints on
the shower. (Strictly speaking, the showered events in this sample must still satisfy
the constraints TN > T cut

N and TN+1 > T cut
N+1. If TN+1 < TN , ignoring this gives rise

to at most power corrections.)

9The LL resummation in TN and TN+1 is formulated as a consecutive sum over emission channels
m when splitting from N to N +1 partons (in the construction of dσmc

≥N+1) and from N +1 to N +2
partons (in the construction of dσmc

≥N+2). Hence, we can naturally associate each contribution in this

sum with an emission history for going from the underlying ΦN to the final ΦN+1 or ΦN+2 point.
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2.5.2.2 Showering the (N + 1)-jet event sample

The MC cross section dσmc
N+1(TN > T cut

N ; T cut
N+1) of the NNLO+LL calculation

is given in eq. (2.61). It contains the integrated cross section for TN+1 < T cut
N+1

calculated to NLON+1+LL. Before adding the parton shower, it is represented by
(N + 1)-parton events, which have TN+1 = 0 (see figure 2.1). By adding emissions,
the parton shower distributes the events located at TN+1 = 0 to nonzero TN+1 values.
In doing so, it must respect the exclusive (N + 1)-jet definition of the cross section;
i.e., the cross section for TN+1 < T cut

N+1 after showering has to remain accurate to
NLON+1+LL. Since the parton shower preserves the total cross section, this means
it is only allowed to fill out the region 0 < TN+1 < T cut

N+1. [The cross section for
TN+1(ΦN+2) > T cut

N+1 is already included in the inclusive (N + 2)-jet sample generated
from dσmc

≥N+2(TN > T cut
N , TN+1 > T cut

N+1).]
At LL accuracy, this is achieved by vetoing shower emissions with T > T cut

N+1, as
discussed in section 2.5.1. In addition, to satisfy condition 2, it is also necessary that
the cross section for TN+1 < T cut

N+1 remains correct to NLON+1. The veto on single
emissions with T > T cut

N+1 is sufficient for this purpose as well, so we do not require an
additional constraint on the shower. To see this, consider the shower emission with
the largest value of T , and sum over all other emissions. Strictly speaking, we need
the emission to satisfy TN+1[Φ̂N+2(ΦN+1,Φrad)] < T cut

N+1, where Φrad is the emission

phase space and Φ̂N+2 is the inverse of the phase space projection Φ̂N+1(ΦN+2) that is
used in the NLON+1 calculation. The single-emission veto in the shower corresponds
to imposing the constraint T ≡ TN+1[Φ̂PS

N+2(ΦN+1,Φrad)] < T cut
N+1, where Φ̂PS

N+2 is the
phase space map used in the parton shower. In principle, the two constraints can be
different since the two phase space maps can be different. However, both maps have
to be IR safe and must agree in the IR limit T cut

N+1 → 0. Therefore, the difference can
be at most a power correction in T cut

N+1.
From this discussion, it follows that a generic (N + 1)-jet observable receives

at most power corrections from showering of O(αsT cut
N+1/T eff

N+1), where T eff
N+1 is the

effective scale that the observable is sensitive to. Similarly, since dσmc
≥N+1 contributes

at O(αs) to generic N -jet observables, they receive at most power corrections of
O(α2

sT cut
N+1/T eff

N+1). Hence, condition 2 is satisfied. In fact, as long as the T cut
N+1 value is

kept small, the spectrum for TN+1 < T cut
N+1 is correctly described by the shower. The

parton shower therefore improves the description of the previously unresolved region
TN+1 < T cut

N+1. As a result, the power corrections induced by the shower actually
compensate for the power corrections in the partonic calculation arising from the
unresolved region below T cut

N+1. Of course, this is only true if the shower cutoff is
lower than T cut

N+1.
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2.5.2.3 Showering the N-jet event sample

The MC cross section dσmc
N (T cut

N ) of the NNLO+LL calculation is given in eq.(2.37)
or eq. (2.40). It contains the integrated cross section for TN < T cut

N calculated to
NNLON+LL, which before showering, is represented by N -parton events with TN = 0.

The basic considerations here are similar as for the (N + 1)-jet case. Repeating
the discussion in section 2.5.2.2, the shower must be constrained not to change the
cross section for TN < T cut

N , but only to fill out the TN spectrum below T cut
N . Since

the action of the parton shower is entirely within the N -jet cumulant bin, the induced
power corrections of O(αsT cut

N /T eff
N ) are again at the level allowed by condition 2 and

will actually improve the prediction of observables, because the unshowered events
at TN = 0 are distributed over the previously unresolved region TN < T cut

N with an
LL-accurate shape.

There is a further complication, however, that arises starting at NNLO. At NLO+
LL, the resolution variable must have two properties: it must realize an IR-safe sep-
aration of the phase space at the level of a single emission, and it must have an
LL resummation. Because LL resummation arises from exponentiating independent
emissions, these two properties are essentially one and the same. For example, in an
NLO+LL calculation of vector boson production, the resolution variable separating
events with 0 jets and 1 jet can be chosen as the transverse momentum of the leading
parton, with 0-jet events corresponding to pT < pcut

T and 1-jet events correspond-
ing to pT > pcut

T . At NNLO+LL, however, the story is different: defining the jet
resolution variable analogous to the shower evolution in terms of independent single-
parton variables is no longer sufficient to also ensure the IR safety of the NNLO 0-jet
cross section. To see how the problem arises, it is instructive to consider again the
example of vector boson production with two emissions illustrated in figure 2.3. De-
manding that the transverse momentum of each emitted parton is below pcut

T (dashed
lines) does not yield an IR-safe definition for the 0-jet cross section. If the two par-

tons are collinear to each other and each satisfies p
(i)
T < pcut

T , while their sum gives

p
(1)
T + p

(2)
T > pcut

T , this IR-divergent contribution would be included in the 0-jet cross
section, while the corresponding IR-divergent virtual diagram on the right would con-
tribute to the 1-jet cross section. As already discussed in section 2.2.1, we must use a
resolution variable which is properly IR-safe at NNLO. For example, we can sum over
all emissions (TN =

∑
pT ) or combine them using an IR-safe jet-clustering procedure

(TN = pjet
T ).

From this discussion, it is clear that the constraint TN < T cut
N that the parton

shower needs to satisfy cannot be formulated in terms of individual emissions but
must take at least two emissions into account. Generally, it is not sufficient to only
consider the two hardest emissions, since they do not necessarily correspond to the
hardest jet of the NNLO calculation. Therefore, the NNLO constraint can only be
imposed via a global veto after the showering. In case one uses a vetoed shower with
a single-emission local veto to enforce the LL constraints as described in section 2.5.1,
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pcut
T pcut

T

Figure 2.3: Illustration of the issues in defining an IR-safe phase space separation at
NNLO using single-parton variables in the case of vector boson production. Limit-
ing each emission to be below pcut

T (dashed lines) results in a miscancellation of IR
divergences between the tree-level contribution on the left, which would contribute
to dσmc

0 (pcut
T ), and the corresponding one-loop contribution on the right, which would

contribute to dσmc
≥1(pT > pcut

T ).

the additional NNLO constraint should be enforced separately.

2.6 Implementation and relation to existing ap-

proaches

In this section, we discuss the relation of our framework to recent related work
and the NNLO+PS implementation given in ref. [43]. This will show that our method
is indeed quite general and encompasses these other approaches. It also illustrates
that an actual implementation of our results is indeed feasible.

2.6.1 GENEVA

The motivation to build an NNLO+LL event generator is to interface the most
precise FO calculations available with a parton shower routine to be able to simu-
late realistic events with high perturbative accuracy. Whenever higher logarithmic
resummation is also available (NLL for several resolution variables, NNLL for certain
resolution variables such as N -jettiness, and NNLL′ for select processes10), it can be
implemented to also improve the perturbative accuracy in the resummation region
(see figure 2.2) following the Geneva approach. The Geneva approach is detailed
in chapter 3, but we provide a brief discussion here to show the connection.

If NNLL′ resummation is available, the resummation order matches the fixed
NNLO accuracy in the sense that all NNLO singular terms are naturally included in

10While NNLL resummation includes all logarithmic terms through NNLO, NNLL′ also includes
delta function terms to capture all NNLO singular terms including the 2-loop virtual corrections.
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the resummation. Hence, the FO singular matching correction vanishes,

dσC−SN

dΦN

(T cut
N ) = 0 , (2.67)

because the FO expansion of the NNLL′ resummed result reproduces the full NNLO
singular corrections. The remaining contributions in the N -jet MC cross section can
then be associated as follows:

dσC≥N
dΦN

∆N(ΦN ; T cut
N ) → dσresummed

N

dΦN

(T cut
N ) ,

dσB−CN

dΦN

(T cut
N ) → dσnonsingular

N

dΦN

(T cut
N ) . (2.68)

That is, the cross section takes the form of a traditional resummed calculation, with
the FO nonsingular corrections corresponding to dσB−CN and the higher-order re-
summed cumulant replacing the resummation term dσC≥N∆N(T cut

N ). The same rela-
tions also apply for the exclusive (N + 1)-jet and inclusive (N + 2)-jet cross sections.

The results in chapter 3 take this approach, using a jet resolution variable T2 for
which higher-order logarithmic resummation is available. There, the NNLL′ resum-
mation for e+e− → jets for small T2 are used together with the NLO2 nonsingular
terms, combined with the fully differential 3-jet cross section at NLO3, and interfaced
with a parton shower algorithm. As discussed above, the resummation to NNLL′

already incorporates the full singular contributions up to NNLO, including the two-
loop virtual corrections. Thus, the only missing contributions to make the calculation
in chapter 3 correct to full NNLO2 are the nonsingular corrections at NNLO2. Since
they scale as a power correction in T cut

2 , one could also take the value of T cut
2 small

enough to make their numerical impact small.

2.6.2 NNLO+PS using HJ-MiNLO

Results combining the inclusive NNLO Higgs cross section with a parton shower
algorithm were presented recently in ref. [43]. This approach uses the Multi-Scale
Improved NLO (MiNLO) calculation for the production of Higgs in association with
a jet [56], in which the Powheg HJ calculation [57] is supplemented by an analytic
Sudakov resummation factor, which includes logarithmic terms that become large as
the transverse momentum of the Higgs boson tends to zero. The Sudakov factor effec-
tively regulates the divergences in the Powheg HJ calculation when the transverse
momentum of the Higgs boson, qT , goes to zero. As a result, the HJ-MiNLO sample
can be used over the whole phase space even in the limit qT → 0. In practice, it is
used down to qT of order ΛQCD ∼ 1 GeV.

It was shown in ref. [38] that by explicitly including NNLL information in the
Sudakov factor, the HJ-MiNLO cross section integrates up to the correct inclusive
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Higgs cross section at NLO0. The HJ-MiNLO sample is then reweighted to the
differential NNLO0 Higgs cross section, which is facilitated by the fact that it is only
singly differential in the Higgs rapidity. This provides NNLO0 accurate predictions
for 0-jet observables without spoiling the NLO1 accuracy of 1-jet observables. One
feature of this approach is that it does not require a Higgs + 0-jet sample, since the
full NNLO0 information of inclusive Higgs production is explicitly included through
the reweighting factor.

While this approach seems at first sight quite different from the discussion in the
present chapter, we will now show that it directly follows as a special case from our
results in section 2.4. Hence, it can be viewed as a specific implementation of the
general method developed in this chapter. We first write the results of ref. [43] in
terms of the MC cross sections dσmc

0 (T cut
0 ) and dσmc

≥1(T0 > T cut
0 ), corresponding to the

exclusive Higgs + 0-jet and inclusive Higgs + 1-jet cross sections. We then show how
these expressions follow directly from our general results by making specific choices.

The 0-jet resolution variable used in ref. [43] to separate 0 from 1 or more extra
jets is the transverse momentum of the Higgs boson, so

T0 ≡ qT . (2.69)

We do not need to discuss how to separate the inclusive 1-jet sample into an exclusive
1-jet and an inclusive 2-jet sample. For this purpose, ref. [43] uses the standard
Powheg approach, which we have already shown in section 2.3.3 to be a special case
of our approach.

As mentioned already, the Higgs + 0-jet cross section is not included in ref. [43],
since it vanishes in the limit T cut

0 → 0. The inclusive MC cross section for one or
more jets is then given by

dσ
ref. [43]
≥1

dΦ1

(T0 > T cut
0 ) = R̃(Φ0; T cut

0 )
dσHJ-MiNLO
≥1

dΦ1

θ(T0 > T cut
0 ) . (2.70)

Here, the inclusive 1-jet cross section, dσHJ-MiNLO
≥1 , is equivalent to the modified B̄

function from HJ-MiNLO, which is obtained from the usual B̄ function in Powheg
by multiplying with the Sudakov factor ∆̃0(T0) and subtracting its first-order expan-
sion to maintain the NLO1 accuracy,

dσHJ-MiNLO
≥1

dΦ1

=

{
B1(Φ1)

[
1− ∆̃

(1)
0 (Φ̂0; T0)

]
+ V1(Φ1) +

∫
dΦ2

dΦ1

B2(Φ2)

}
∆̃0(Φ̂0, T0) .

(2.71)
The term in curly brackets contains the full singular T0 dependence at NLO1. The
crucial ingredient [38] is the fact that the exponent of the Sudakov factor ∆̃0(T0)
contains the full NNLL set of T0 logarithms to O(α2

s). This causes the spectrum to

become the total derivative of the NLO0-correct 0-jet cumulant, dσNLO
≥0 ∆̃0(T cut

0 ), up
to nonsingular corrections in T0 and higher orders in αs. As a result, the spectrum
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integrates to the correct NLO0 cross section up to power corrections that vanish as
T cut

0 → 0,∫
dΦ1

dΦ0

dσHJ-MiNLO
≥1

dΦ1

θ(T0 > T cut
0 ) =

dσNLO
≥0

dΦ0

+O(αsT cut
0 ) +O(α2

s) . (2.72)

The reweighting factor R̃(Φ0; T cut
0 ) in eq. (2.70) is then given by the ratio

R̃(Φ0; T cut
0 ) =

dσNNLO
≥0

dΦ0

/∫
dΦ1

dΦ0

dσHJ-MiNLO
≥1

dΦ1

θ(T0 > T cut
0 ) , (2.73)

and by construction, ensures that the Higgs + 1-jet spectrum in eq. (2.70) integrates
to the correct NNLO0 inclusive Higgs cross section. At the same time, because of
eq. (2.72), the reweighting factor has the form

R̃(Φ0; T0) = 1 +O(αsT cut
0 ) +O(α2

s) , (2.74)

and therefore does not affect the NLO1 accuracy of the inclusive 1-jet cross section
up to power corrections in T cut

0 . By taking T cut
0 → ΛQCD, these become negligible,

and the result becomes a valid NNLO+LL implementation.
To derive this result as a special case of our framework, we make the following

two choices:

1. Choose all singular terms equal to the exact tree-level and one-loop contribu-
tions,

C1(Φ1) = B1(Φ1) , C2(Φ2) = B2(Φ2) , V C1(Φ1) = V1(Φ1) . (2.75)

2. Choose the splitting functions as

S
(1)
1 (Φ1) = B1(Φ1) , (2.76)

S
(2)
1 (Φ1) = V1(Φ1) +

∫
dΦ2

dΦ1

B2(Φ2)−B1(Φ1)

[
V C

0 (Φ̂0)

B0(Φ̂0)
+ ∆

(1)
0 (Φ̂0; T0)

]
.

With these two choices, the singular inclusive cross section defined in eq. (2.47) is
given by the full NNLO0 expression,

dσC≥0

dΦ0

=
dσNNLO
≥0

dΦ0

, (2.77)

while all FO matching corrections vanish,

dσC−S0

dΦ0

(T cut
0 ) =

dσB−C0

dΦ0

(T cut
0 ) = 0 ,

dσC−S≥1

dΦ1

(T0 > T cut
0 ) =

dσB−C≥1

dΦ1

(T0 > T cut
0 ) = 0 .

(2.78)



57

The choice of the splitting function S2(Φ2) is not relevant for this discussion since its
purpose is to determine how to split the inclusive 1-jet cross section into an exclusive
1-jet and an inclusive 2-jet cross section.

Using the results of section 2.4.1.1 (or section 2.4.1.2, which are identical in this
case), we then find for the exclusive 0-jet and inclusive 1-jet MC cross sections

dσmc
0

dΦ0

(T cut
0 ) =

dσNNLO
≥0

dΦ0

∆0(Φ0; T cut
0 ) ,

dσmc
≥1

dΦ1

(T0 > T cut
0 ) =

dσNNLO
≥0

dΦ0

∣∣∣∣
Φ0=Φ̂0

S1(Φ1)

B0(Φ̂0)
∆0(Φ̂0; T0) θ(T0 > T cut

0 )

=
dσNNLO
≥0

dΦ0

∣∣∣∣
Φ0=Φ̂0

1

B0(Φ̂0)

{
B1(Φ1)

[
1−∆

(1)
0 (Φ̂0; T0)− V C

0 (Φ̂0)

B0(Φ̂0)

]
+ V1(Φ1) +

∫
dΦ2

dΦ1

B2(Φ2)

}
∆0(Φ̂0; T0) θ(T0 > T cut

0 ) , (2.79)

where in the last equation, we inserted the explicit expression for S1(Φ1) from
eq. (2.76). We can now compare this to the HJ-MiNLO result in eq. (2.70). Since
the exclusive 0-jet cross section is proportional to the Sudakov factor ∆0(Φ0; T cut

0 ),
it vanishes in the limit T cut

0 → 0. Thus, in this limit, the entire 0-jet cross section
can be obtained by integrating the inclusive 1-jet result over all values of T0, precisely
analogous to what happens in refs. [38, 43]. Since in practice, T cut

0 ∼ ΛQCD ∼ 1 GeV,
one could also keep the 0-jet cumulant, which would avoid introducing any addi-
tional power corrections in T cut

0 . The term in curly brackets times the Sudakov factor
∆0(Φ̂0; T0) is equivalent to dσHJ-MiNLO

≥1 /dΦ1 in eq. (2.71), except for the additional

V C
0 (Φ̂0) term. By including this term, the prefactor in dσmc

≥1 becomes simply the
inclusive NNLO cross section normalized to the tree-level result, dσNNLO

≥0 /B0(Φ0),
without any need to reweight the events.

With the choice C1(Φ1) = B1(Φ1) from above, V C
0 (Φ0) is the NLO correction to

the inclusive cross section [see eq. (2.54)],

dσNLO
≥0

dΦ0

= B0(Φ0) + V C
0 (Φ0) , (2.80)

and is in particular T0 independent. Although in principle there is no need to do so,
we can rewrite dσmc

≥1 and pull this term outside into the prefactor, which gives

dσmc
≥1

dΦ1

(T0 > T cut
0 ) = R(Φ̂0)

{
B1(Φ1)

[
1−∆

(1)
0 (Φ̂0; T0)

]
+ V1(Φ1) +

∫
dΦ2

dΦ1

B2(Φ2)

}
× ∆0(Φ̂0; T0) θ(T0 > T cut

0 ) , (2.81)

with the rescaling factor

R(Φ0) =
dσNNLO
≥0

dΦ0

/{
dσNLO
≥0

dΦ0

− V C
0 (Φ0)

B0(Φ0)

∫
dΦ1

dΦ0

S
(2)
1 (Φ1) ∆0(Φ0, T0)

}
. (2.82)
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The last term in the denominator here is the O(α3
s) cross term that arises from pulling

V C
0 (Φ0) out into the rescaling factor. It must be kept because it scales as α3

s(ln T0)/T0,
which upon integration over T0, becomes an α2

s correction. Equations (2.81) and (2.82)
are now the exact equivalent of the expressions in eqs. (2.70), (2.71), and (2.73). By

writing the factor in curly brackets in eq. (2.81) as S1(1+V C
0 /B0)−(V C

0 /B0)S
(2)
1 , one

can easily check that the denominator in eq. (2.82) is exactly the integral of eq. (2.81)
modulo the R(Φ0) prefactor.

As we have seen, with the two choices given above, our method gives an expression
with an analogous structure as in ref. [43]. In fact, the result in eq. (2.79) that
follows immediately from our approach is automatically correct to NNLO0 without
requiring an additional reweighting. Another difference is the precise form of the
Sudakov factors, ∆0(Φ0; T0) and ∆̃0(Φ0; T0). In our approach, ∆0 is constructed from

the splitting functions S
(i)
1 (Φ1), while in ref. [38], ∆̃0 is obtained from the analytic qT

NNLL resummation formula. Both expressions have the same logarithmic dependence
on T0 expanded to O(α2

s) in the exponent. We also point out that, in the approach
of refs. [38, 43], the known NNLL structure of the T0 = qT spectrum is essential
to analytically control all singular logarithms through O(α2

s). In this respect, this
approach is closely related to the Geneva approach [46] discussed in chapter 3 and
section 2.6.1.

2.6.3 UNLOPS

In section 2.4, we have explicitly constructed the required exclusive N -jet and
(N + 1)-jet MC cross sections to satisfy all the requirements to obtain a correct
NNLO+LL event sample discussed in section 2.3.1. Alternatively, one could also
start from the inclusive FO+LL M -jet cross sections and generate the exclusive MC
cross sections numerically,

dσmc
N

dΦN

(T cut
N ) =

dσmc
≥N

dΦN

−
∫

dΦN+1

dΦN

dσmc
≥N+1

dΦN

(TN > T cut
N ) ,

dσmc
N+1

dΦN+1

(TN > T cut
N ; T cut

N+1) =
dσmc
≥N+1

dΦN+1

(TN > T cut
N )

−
∫

dΦN+2

dΦN+2

dσmc
≥N+2

dΦN+1

(TN > T cut
N , TN+1 > T cut

N+1) . (2.83)

This method has been applied to merge multiple NLO+LL calculations in refs. [47,
37, 58], where it is referred to as UNLOPS.

Using eq. (2.83), the consistency conditions in eqs. (2.20) and (2.21) between
different multiplicities is automatically enforced. The inclusive MC cross sections
that are used as inputs must be correct at the relevant FO+LL accuracy according
to eq. (2.19). For dσmc

≥N , this means it has to be correct to NNLON , so it is simply
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given by the inclusive NNLON cross section,

dσmc
≥N

dΦN

=
dσNNLO
≥N

dΦN

. (2.84)

The inclusive (N + 1)-jet cross section must be correct to NLON+1 with the TN
dependence resummed to LL, and the inclusive (N + 2)-jet cross section must be
correct to LON+2 with the dependence on both TN and TN+1 resummed to LL, for
which our general results in section 2.4 [see eqs. (2.42) and (2.61)] can be used.

The major drawback of subtracting the integrals over the inclusive cross sections
in eq. (2.83) numerically is that one has to generate events with negative weights. The
advantage is that the expressions for the inclusive cross sections can be simplified sub-
stantially by dropping all higher-order dependence inherited from lower multiplicities.
For the inclusive (N + 1)-jet cross section, one could then use, for example,

dσmc
≥N+1

dΦN+1

(TN > T cut
N ) =

[
dσNLO
≥N+1

dΦN+1

(TN > T cut
N )

−BN+1(ΦN+1) ∆
(1)
N (Φ̂N ; TN) θ(TN > T cut

N )

]
×∆N(Φ̂N ; TN) ,

(2.85)

which includes the correct LL resummation and expands to the correct NLON+1

result. One could also have written this result using a singular approximation to
the inclusive cross section and added an FO matching correction, or only have the
Born-level result multiply the Sudakov factors, and then add all higher-order terms
in the FO matching correction. This last choice corresponds to what is done in
refs. [58, 47, 37]. For the inclusive (N + 2)-jet MC cross section, one could use the
equivalent of the CKKW result,

dσmc
≥N+2

dΦN+2

(TN > T cut
N , TN+1 > T cut

N+1) = BN+2(ΦN+2) θ(TN > T cut
N ) θ(TN+1 > T cut

N+1)

×∆N(Φ̂N ; TN) ∆N+1(Φ̂N+1; TN+1) . (2.86)

2.7 Conclusions

In this chapter, we have developed a general method to combine fully differential
NNLO calculations with LL resummation in the form of an event generator for phys-
ical events that can be directly interfaced with a parton shower. The basic quantities
in our construction are Monte Carlo (MC) cross sections

dσmc
N

dΦN

(T cut
N ) ,

dσmc
N+1

dΦN+1

(TN > T cut
N ; T cut

N+1) ,
dσmc
≥N+2

dΦN+2

(TN > T cut
N , TN+1 > T cut

N+1) ,

(2.87)



60

representing an exclusive partonic N -jet cross section, calculated to NNLON+LL;
an exclusive partonic (N + 1)-jet cross section, calculated to NLON+1+LL; and an
inclusive partonic (N+2)-jet cross section, calculated to LON+2+LL. We use NnLLM
to refer to the O(αns ) result relative to an M -parton tree-level result. These MC
cross sections are represented in the generator by events with N , N + 1, and N + 2
partons. They are characterized by N -jet and (N +1)-jet resolution variables TN and
TN+1, with resolution scales T cut

N and T cut
N+1 defining the separation between them.

We stress that these are not jet-merging scales but IR cutoffs equivalent to a parton
shower cutoff.

We have formulated the general conditions on the perturbative accuracy that a
complete and fully differential NNLO+LL calculation must satisfy. They require
that the MC cross sections must have the correct FO expansion (NNLON for dσmc

N ,
NLON+1 for dσmc

N+1, and LON+2 for dσmc
≥N+2), as well as include the LL resummation

of the resolution variables and scales (T cut
N for dσmc

N , TN and T cut
N+1 for dσmc

N+1, and
TN and TN+1 for dσmc

≥N+2). In addition, the consistent combination of FO and LL
requires that all observables that are expected to be correctly predicted at O(αns )
at fixed order must be independent of the resolution scales T cut

N and T cut
N+1 up to

residual corrections of Ocut(α
≥n+1
s ) [using the LL counting in eq. (2.16)] to maintain

their expected perturbative accuracy. We have shown that this can be achieved in
general by enforcing a derivative relationship between M -jet exclusive and (M+1)-jet
inclusive cross sections.

Our main results are given in section 2.4, where we derive in detail the MC cross
sections needed to construct the NNLO+LL event generator. The MC cross sections
are explicitly given in terms of the constituent matrix elements used in FO calcu-
lations and the parton shower. Our results are general, and we make no choices
about the techniques used to evaluate the FO contributions in the MC cross sections.
The primary and only NNLO ingredients that are required are a singular approxima-
tion of the inclusive NNLO N -jet cross section, dσC≥N , and the corresponding NNLO
subtractions, both of which are naturally part of existing NNLO calculations. All
other ingredients are NLO in nature and therefore obtainable as in existing NLO+LL
implementations. We proved that our construction explicitly satisfies all required
conditions on the perturbative accuracy of an NNLO+LL event generator.

We have discussed how the partonic NNLO+LL event generator can be interfaced
with standard parton showers using existing technologies, as well as the constraints
that must be placed on the parton shower routine. This matching must preserve the
FO and LL accuracy of the MC partonic jet cross sections, and the parton shower
will provide LL accuracy for general N -jet, (N + 1)-jet, and (N + 2)-jet observables,
producing events at all parton multiplicities. For the (N+1)-jet and (N+2)-jet sam-
ples, which are needed to NLON+1+LL and LON+2+LL accuracy respectively, the
constraints are essentially the same as for the well-known case of NLO+PS matching.
For the showering of the exclusive N -jet sample, which is needed at NNLON+LL ac-
curacy, we showed that the constraints on the parton shower cannot be implemented
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at the level of individual emissions as was possible for the other multiplicities. How-
ever, a global veto on the parton shower can still be used in this case. Alternatively, if
the shower evolution variable coincides with the TN and TN+1 resummation variables,
the resolution scales T cut

N and T cut
N+1 can be set equal to the parton shower cutoff itself,

in which case only the inclusive (N + 2)-jet sample must be showered.
Finally, we have discussed how other methods for matching higher-order per-

turbative calculations with parton showers fit into our general framework. For the
well-known case of NLO+LL matching, the Powheg and MC@NLO approaches
naturally follow as special cases. When employing the higher-order resummation at
NNLL′ as in Geneva, the only missing ingredients to achieve full NNLO accuracy
are power-suppressed nonsingular contributions. We have also shown explicitly how
the recent results for NNLO+PS using HJ-MiNLO arise as a special case from our
general results. We also commented how the ideas of UNLOPS fit into our method.

Our results provide a path for combining the precision frontier of fixed-order cal-
culations with the flexibility and versatility of parton shower Monte Carlo programs.
There are various steps that should be taken next toward a practical implementation.
While the comparison to existing approaches makes it clear that the implementation
is feasible, it remains to be seen what the optimal choices are to make the implemen-
tation sufficiently generic so that new NNLO calculations can be incorporated with
limited effort. Finally, it should be clear from our discussion that our general setup
not only applies to NNLO calculations, but can also be extended to even higher order,
should such results become available, though the details remain to be worked out in
this case.
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Chapter 3

Combining higher-order
resummation with multiple NLO
calculations and parton showers in
GENEVA1

3.1 Introduction

As we emphasized in chapter 1, accurate and reliable theoretical predictions for
measurements at collider experiments require the inclusion of QCD effects beyond the
lowest perturbative accuracy in every region of phase space. This includes higher-
order corrections in αs in some regions of phase space, all-orders resummation of
logarithmically enhanced contributions in other regions, and a combination of both
types of corrections in intermediate regions. In addition, for experimental analyses
to benefit from these advances, it is crucial to provide the best possible theoretical
predictions in the context of fully exclusive Monte Carlo event generators.

Given the necessity of higher-order perturbative corrections to make accurate
predictions, it is important to extend the perturbative accuracy of the Monte Carlo
description to formal O(αs) accuracy relative to the lowest order. This requires
including the formally next higher-order corrections that are relevant at each scale.
At small scales, i.e., small values of the jet resolution variable, this requires improving
the LL parton shower resummation with higher-order logarithmic resummation, while
at large scales this requires including the fully differential NLO matrix elements. It
is important to realize that typically a large part of phase space, often including
the experimentally relevant region, is characterized by intermediate scales, i.e., by a

1This chapter is a modified version of a paper originally co-written with Simone Alioli, Christian
W. Bauer, Andrew Hornig, Frank J. Tackmann, Christopher K. Vermilion, Jonathan R. Walsh, and
Saba Zuberi and published in [46].
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transition from small to large scales. In the end, providing an accurate description of
this transition region requires a careful combination of both types of corrections.

Such a Monte Carlo description at relative O(αs) accuracy across phase space was
first achieved in Geneva and is the subject of this chapter. (We briefly summarize
the existing efforts to combine NLO corrections with parton showers in section 3.1.1
below.) The crucial starting point in our approach is that all perturbative inputs
to the Monte Carlo are formulated in terms of well-defined physical jet cross sec-
tions [44, 45]. This allows us to systematically increase the perturbative accuracy by
incorporating results for the relevant ingredients to the desired order in fixed-order
and resummed perturbation theory.

An essential aspect of any higher-order prediction is a reliable estimate of its
perturbative uncertainty due to neglected higher-order corrections. To the extent
that parton shower Monte Carlos provide perturbative predictions, they should be
held to the same standards. An important benefit in our approach is that we have
explicit control of the perturbative uncertainties and are able to estimate reliable
fixed-order and resummation uncertainties. As a result, in Geneva each event comes
with an estimate of its perturbative uncertainty; i.e., Geneva provides event-by-event
theory uncertainties.2

In our approach, the Monte Carlo not only benefits from the resummation, but in
turn also provides important benefits to analytic resummed predictions. For one, it
greatly facilitates the comparison with experimental data, as it allows easy application
of arbitrary kinematic selection cuts, which can often be tedious to take into account
in analytic predictions. More importantly, resummed predictions require nonpertur-
bative inputs which can be treated as power corrections at intermediate scales but
become O(1) corrections at very small scales. Here, these are provided “on-the-fly”
by the nonperturbative hadronization model. In essence, we are able to combine the
precision and theoretical control offered by higher-order resummed predictions with
the versatility and flexibility offered by fully exclusive Monte Carlos.

In this chapter, we focus on the theoretical construction.3 We will however high-
light some of the main technical issues we had to overcome and discuss some imple-
mentation details in the application sections. In the remainder of this section, we
briefly summarize the existing efforts to include NLO corrections in parton shower
Monte Carlos and give a short overview of our basic construction. In section 3.2, we
discuss in detail the requirements to obtain full αs accuracy as well as our method to
achieve it. In section 3.3, we discuss the application to e+e− → jets, where we combine
next-to-next-to-leading logarithmic (NNLL) resummation with NLO matrix elements,
and present results from the implementation in Geneva together with a comparison
to LEP measurements. In section 3.4, we discuss the application to hadronic collisions

2Further uncertainties, e.g. due to nonperturbative effects such as hadronization, must be eval-
uated as well for a complete uncertainty analysis.

3The current Geneva framework and implementation is new and independent of the earlier work
in refs. [44, 45].
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and show first results for Drell-Yan production, pp → Z/γ∗ → `+`−+ jets, obtained
with Geneva. We give conclusions for the chapter in section 3.5.

3.1.1 Previous approaches combining NLO corrections with
parton showers

As previously discussed, many steps have been taken over the past decade to
include NLO corrections into Monte Carlo programs [59, 60, 61, 62, 13, 14, 63, 64, 65,
66, 15, 16, 17, 54, 18, 55, 67, 68]. By now, the MC@NLO [13, 14] and Powheg [15,
16, 17] methods are routinely able to consistently combine the fixed NLO calculation
of an inclusive jet cross section for a given jet multiplicity with additional parton
showering. These methods have also been extended to include the full tree-level
matrix elements for additional jet multiplicities [44, 69, 70, 53].

Recently, efforts have been made to extend these approaches in order to combine
NLO matrix elements for several jet multiplicities with parton showers [71, 32, 33,
34, 35, 36, 37]. We will discuss some issues faced by some of these approaches in
section 3.2.1.5. Here, we would like to stress that including several NLO matrix ele-
ments by itself does not provide a full extension of the lowest-order ME/PS matching
to relative O(αs) perturbative accuracy, since the fixed NLO corrections only suffice
to increase the perturbative accuracy in the region of large jet resolution scales. To
the same extent that the inclusion of the LL Sudakov factors in the ME/PS merging
are needed to get meaningful results at intermediate and small jet scales, higher-order
resummation is necessary to improve the perturbative accuracy in this region.

In our approach, the full information from NLO matrix elements for several jet
multiplicities is automatically included as follows: For a given Born process with N
partons, a small jet scale corresponds to the exclusive N -jet region, and here the
N -parton virtual NLO corrections are incorporated in conjunction with the higher-
order resummation; in fact, they are a natural ingredient of it. On the other hand,
a large jet scale corresponds to the inclusive (N + 1)-jet region with additional hard
emissions. Here, the (N+1)-parton virtual NLO corrections are included in the usual
way by the fixed NLO calculation for N + 1 jets.

3.1.2 Brief overview of our construction

The starting point of our approach is the separation of the inclusive N -jet cross
section into an exclusive N -jet region and an inclusive (N + 1)-jet region,

σ≥N =

∫
dΦN

dσ

dΦN

(T cut) +

∫
dΦN+1

dσ

dΦN+1

(T ) θ(T > T cut) . (3.1)

Here T ≡ T (ΦN+1) is a suitable resolution variable, which is a function of ΦN+1,
and dσmc

≥N+1/dΦN+1(T ) denotes the fully differential cross section for a given T . In
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ME/PS merging, this role is played by the variable that determines the merging scale.
However, in our case the parameter T cut is not a jet-merging cut but instead serves
as an infrared cutoff for the calculation of dσmc

≥N+1/dΦN+1(T ) and ideally is taken as
small as possible.

In the N -jet region at small T (both above and below T cut), logarithms of T
become large and must be resummed to maintain consistent perturbative accuracy
to some order in αs. On the other hand, in the (N + 1)-jet region at large T , a
fixed-order expansion in αs will suffice. To consistently match the resummed and
fixed-order calculations, we use the following prescription for the jet cross sections
entering in eq. (3.1):

dσ

dΦN

(T cut) =
dσresum

dΦN

(T cut) +

[
dσFO

dΦN

(T cut)− dσresum

dΦN

(T cut)

∣∣∣∣
FO

]
,

dσ

dΦN+1

(T ) =
dσFO

dΦN+1

(T )

[
dσresum

dΦNdT

/
dσresum

dΦN dT

∣∣∣∣
FO

]
. (3.2)

The superscript “resum” indicates an analytically resummed calculation and “FO”
indicates a fixed-order calculation or expansion. This construction properly repro-
duces the fixed-order calculation at large T , the resummed calculation at small T ,
and smoothly interpolates between them.

It is straightforward to extend our formulation to combine higher jet multiplicities
at NLO with higher-order resummation, as we will show. This is done by replacing
dσFO/dΦN+1 in eq. (3.2) with an inclusive (N+1)-jet cross section separated into the
exclusive (N + 1)-jet and inclusive (N + 2)-jet cross sections and iteratively applying
eq. (3.2).

The key ingredients in our approach are the higher-order resummation of the jet
resolution variable, the fully differential fixed-order calculation, and the parton shower
and hadronization. While each of these components is known, there is a sensitive
interplay of constraints between them that must be satisfied to achieve a consistent
combination. This is precisely what is accomplished in the Geneva framework and
is the focus of this section.

3.2 General construction

In this section, we derive our theoretical construction in a process-independent
manner. We start in section 3.2.1 with a slightly simplified setup, considering the
singly differential spectrum in the jet resolution variable. We use this to discuss
in detail the perturbative structure and the accuracy in the different phase space
regions. In section 3.2.2, we discuss the extension to the fully differential case and
how to combine the fixed-order expansion and resummation in this situation. In
section 3.2.3, we further generalize these results to include several jet multiplicities
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by iteration. Finally, in section 3.2.4, we discuss the Monte Carlo implementation
and how to attach parton showering and hadronization.

3.2.1 What resummation can do for Monte Carlo

3.2.1.1 Basic setup

As discussed in section 1.1, the basic idea of Monte Carlo integration is to ran-
domly generate points in phase space (“events”) that are distributed according to
some differential (probability) distribution. By summing over all points that satisfy
certain selection criteria, we are able to perform arbitrary integrals of the distribu-
tion. In our case, that distribution is the fully differential cross section, allowing one
to compute arbitrary observables. For simplicity, we will first focus on the singly
differential cross section in some phase space resolution (or jet resolution) variable T
of dimension one. The precise definition of T is not important at the moment, so we
keep it generic for now. We use the convention that the limit T → 0 corresponds to
Born kinematics, i.e., the tree-level cross section is ∼ δ(T ). We also require that T is
an IR-safe observable, such that the differential cross section dσ/dT can in principle
be well defined to all orders in perturbation theory and for T > 0 contains no IR
divergences.

To give an example, for our application to e+e− → 2/3 jets in section 3.3, we will
use 2-jettiness T2 = Ecm(1−T ), where T is the usual thrust [72]. Alternatives include
other 2-jet event shapes. For Drell-Yan in section 3.4, we will use beam thrust [40].
An alternative would be the pT of the leading jet. If the Born cross section we are
interested in has N signal jets,4 then T could be N -jettiness or the largest pT of any
additional jet. The important point is that we can think of T as a resolution variable
which determines the scale of additional emissions in the Φ≥N+1 phase space, such
that for T ≤ T cut there are no emissions above the scale T cut. For later convenience,
we also define the dimensionless equivalent of T as

τ =
T
Q
. (3.3)

Here, Q is the relevant hard-interaction scale in the Born process, e.g., Q ≡ Ecm for
e+e− → jets or Q ≡ m`+`− for Drell-Yan pp→ Z/γ∗ → `+`−. In terms of τ , the limit
τ � 1 corresponds to the exclusive limit close to Born kinematics. For τ ∼ 1, there
are additional emissions at the hard scale T ∼ Q, which means we are far away from
Born kinematics and we should switch the description to consider the corresponding
Born process with one additional hard jet.

To describe the differential T spectrum, we want the Monte Carlo to generate
events at specific values of T , which are distributed according to the differential cross

4As usual, we assume that the Born cross section is defined with appropriate cuts on the N signal
jets, so that it does not contain any IR divergences by itself.
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section dσ/dT . The total cross section is then simply given by summing over all
events,

σ =

∫
dT dσ

dT
. (3.4)

The essential problem every Monte Carlo generator faces is that in perturbation
theory the differential cross section dσ/dT contains IR divergences from real emissions
for T → 0, which only cancel against the corresponding virtual IR divergences upon
integration over the T → 0 region. As a result, the perturbative spectrum for T → 0
can only be defined in a distributional sense in terms of plus and delta distributions
[see eq. (3.8) below]. To deal with this, we have to introduce a small cutoff T cut and
define the cumulant of the spectrum as

σ(T cut) =

∫
dT dσ

dT
θ(T < T cut) . (3.5)

In the Monte Carlo, the total cross section is then obtained by combining the cumulant
and spectrum as

σ = σ(T cut) +

∫
dT dσ

dT
θ(T > T cut) . (3.6)

In practice, this is implemented by generating two distinct types of events: (i) events
that have T = 0 and relative weights given by σ(T cut), and (ii) events that have
nonzero values T > T cut and relative weights given by dσ/dT . The first type of
events have Born kinematics and represents the tree-level and virtual corrections
together with the corresponding real emissions integrated below T cut. The second
type of events contains one or more partons in the final state, since the real-emission
corrections determine the shape of the spectrum for nonzero T . We now have two
basic conditions:

1. From a numerical point of view, we want the value of T cut to be as small
as possible, so as to describe as much differential information as possible. In
practice, our ability to reliably compute the cumulant σ(T cut) in perturbation
theory sets a lower limit on the possible value of T cut & few times ΛQCD.

2. Since T cut is an unphysical parameter, we want the dependence on it to drop out
(to the order we are working at). In practice, this is guaranteed by including the
corresponding dominant higher-order corrections in the cumulant and spectrum.

3.2.1.2 Perturbative expansion and order counting

In perturbation theory, the differential cross section in τ and the cumulant in τ cut

have the general form

dσ

dτ
=

dσsing

dτ
+

dσnons

dτ
, σ(τ cut) =

∫ τcut

0

dτ
dσ

dτ
= σsing(τ cut) + σnons(τ cut) , (3.7)
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where we have distinguished “singular” and “nonsingular” contributions. For τ → 0,
the singular terms in dσsing/dτ scale like 1/τ , while the nonsingular terms in dσnons/dτ
contain at most integrable singularities. For the cumulant, this means that σsing(τ cut)
contains all terms in σ(τ cut) enhanced by logarithms lnk(τ cut), while σnons(τ cut = 0) =
0.

The singular part of the spectrum is given by

dσsing

dτ
= σB

[
C−1(αs) δ(τ) +

∑
n≥0

Cn(αs)Ln(τ)
]
, (3.8)

where σB denotes the Born cross section, and we denote the usual plus distributions
as

Ln(x) =

[
θ(x) lnn(x)

x

]
+

,

∫ xcut

0

dxLn(x) =
lnn+1(xcut)

n+ 1
. (3.9)

They encode the cancellation between real and virtual IR divergences. The corre-
sponding singular contribution to the cumulant cross section integrated up to τ ≤ τ cut

is

σsing(τ cut) = σB

[
C−1(αs) +

∑
n≥0

Cn(αs)
lnn+1(τ cut)

n+ 1

]
. (3.10)

At O(αks), only the coefficients Cn(αs) with n ≤ 2k − 1 contribute, so dσ/dτ has
logarithms up to αnsL

2n−1/τ , while σ(τ cut) has logarithms up to αnsL
2n
cut, where we use

the abbreviations
L ≡ ln(τ) , Lcut ≡ ln(τ cut) . (3.11)

The αs expansion of the coefficients C−1(αs) and Cn(αs) in the singular contribu-
tions can be written as

C−1(αs) = 1 +
∑
k≥1

ck,−1 α
k
s , Cn(αs) =

∑
2k≥n+1

ckn α
k
s . (3.12)

Similarly, the αs expansion of the nonsingular contributions can be written as

dσnons

dτ
= σB

∑
k≥1

fnons
k (τ)αks , F nons

k (τ cut) =

∫ τcut

0

dτ fnons
k (τ) . (3.13)
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+ fixed order

excl. N jet incl. N+1 jet

Figure 3.1: Illustration of the different parametric regions in the jet resolution.

Using eqs. (3.12) and (3.13), the spectrum and cumulant up to O(α2
s) are given by

1

σB

dσ

dτ

∣∣∣∣
τ>0

=
αs
τ

[
c11L + c10 + τfnons

1 (τ)
]

+
α2
s

τ

[
c23L

3 + c22L
2 + c21L+ c20 + τfnons

2 (τ)
]

+O(α3
s) , (3.14)

1

σB
σ(τ cut) = 1 + αs

[c11

2
L2

cut + c10Lcut + c1,−1 + F nons
1 (τ cut)

]
+ α2

s

[c23

4
L4

cut +
c22

3
L3

cut +
c21

2
L2

cut + c20Lcut + c2,−1 + F nons
2 (τ cut)

]
+O(α3

s) .

Note that the ck,−1 constant term in the singular corrections, which contains the finite
virtual corrections to the Born process, only appears in the cumulant.

We now distinguish three parametrically different regions in τ , which are illus-
trated in figure 3.1:

• Resummation (“peak”) region τ � 1: In this limit, the logarithms in the singu-
lar contributions are large, such that parametrically one has to count5

αsL
2 ∼ 1 , αsL

2
cut ∼ 1 . (3.15)

This means one has to resum the towers of logarithms (αsL
2)n in the spectrum

and (αsL
2
cut)

n in the cumulant in eq. (3.14) to all orders in αs to obtain a

5In analytic resummation, the counting and resummation of logarithms is performed in the
exponent of the cross section, where one counts αsL ∼ 1. For the purpose of our argument in this
section, it is sufficient to adopt the weaker scaling in eq. (3.15) and only count logarithms in the
cross section. In our results, we always perform the full resummation in the exponent, as discussed
in section 3.3.1.1.
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meaningful perturbative approximation at some order. At the same time, the
nonsingular corrections can be regarded as power suppressed, since they are of
relative O(τ).

• Fixed-order (“tail”) region τ ∼ 1: In this limit, the logarithms are not enhanced,
and a fixed-order expansion in αs is applicable. The singular and nonsingular
contributions are equally important and both must be included at the same
order in αs. In particular, there are typically large cancellations between these
for τ ∼ 1, so it is actually crucial not to resum the singular contributions in
this region, since otherwise this cancellation would be spoiled.

• Transition region: The transition between the resummation and fixed-order
regions.

There are of course no strict boundaries between the different regions. This is why
it is important to have a proper description not just in the two limits but also in the
transition region, which connects the resummation and fixed-order regions. In fact,
in practice the experimentally relevant region is often somewhere in the transition
region, where both types of perturbative corrections can be important.

3.2.1.3 Lowest perturbative accuracy

For the Monte Carlo to provide a proper description at all values of T , it has to
include at least the lowest-order terms relevant for each region. Keeping only these,
and dropping all other terms, the spectrum and the cumulant are given by

1

σB

dσ

dτ

∣∣∣∣
τ>0

=
αs
τ

[
Lf0(αsL

2) + f1(αsL
2) + τfnons

1 (τ)
]
,

1

σB
σ(τ cut) = 1 + αs

[
L2

cut F0(αsL
2
cut) + Lcut F1(αsL

2
cut)
]
. (3.16)

where the functions f0,1 and F0,1 are given in terms of the coefficients cij in eq. (3.12)
as

LLσ : f0(αsL
2) =

∑
n≥0

cn+1,2n+1(αsL
2)n , F0(αsL

2) =
∑
n≥0

cn+1,2n+1

2(n+ 1)
(αsL

2
cut)

n ,

NLLσ : f1(αsL
2) =

∑
n≥0

cn+1,2n(αsL
2)n , F1(αsL

2) =
∑
n≥0

cn+1,2n

2n+ 1
(αsL

2
cut)

n .

(3.17)

The f0 and F0 resum the leading-logarithmic series in the cross section, which we
denote as LLσ. The functions f1 and F1 resum the next-to-leading-logarithmic series
in the cross section, which we denote as NLLσ.
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In the resummation region at τ � 1, the LLσ terms in the spectrum scale as
L ∼ 1/

√
αs (relative to the overall αs/τ scaling) and provide the lowest level of

approximation. The NLLσ terms scale as ∼ 1, and one can argue about whether they
are needed as well in order to get a meaningful lowest-order prediction. Formally,
they are necessary to obtain the spectrum at ∼ αs/τ , which one might consider the
natural leading-order scaling of the spectrum (or equivalently if one does not want to
rely on the ∼ 1/

√
αs enhancement of the LL series). Experience shows that the NLL

terms are indeed numerically important. For example, in analytic resummations,
one rarely gets a sensible prediction without going at least to NLL. Similarly, to
obtain sensible predictions from a parton shower, it is almost mandatory to include
important physical effects such as momentum conservation in the parton splitting
and the choice of αs scale [73]. In the cumulant, the LLσ series in F0 scales as ∼ 1
and must be included. The NLLσ series in F1 scales as ∼ √αs and, for consistency,
should be included in the cumulant if it is included in the spectrum.

In the fixed-order region at τ ∼ 1, the lowest meaningful order in the spectrum
is given by the complete O(αs) terms, requiring one to include the c11 and c10 terms,
which are part of the f0 and f1 functions, as well as the nonsingular corrections
fnons

1 (τ). Since we take τ cut to be small, the cumulant is always in the resummation
region. Hence, its nonsingular corrections F nons

1 (τ) [see eq. (3.14)] are suppressed by
O(αsτ

cut) and can be safely neglected.
The leading level of accuracy in eq. (3.16) closely corresponds to what is achieved

in the standard ME/PS matching. In this case, the LL resummation is provided by
the parton shower Sudakov factors (either generated by the shower or multiplied by
hand), where the jet resolution variable corresponds to the shower evolution variable,
since that is the variable for which the shower directly resums the correct LLσ series.
The LLσ series has a well-known and simple exponential structure,

cn+1,2n+1 =
cn+1

11

2nn!
⇒ f0(αsL

2) = exp
[c11

2
αsL

2
]
, (3.18)

such that

1

σB

dσ

dτ

∣∣∣∣
τ>0

= c11 αs
L

τ
exp
[c11

2
αsL

2
]
,

1

σB
σ(τ cut) = exp

[c11

2
αsL

2
cut

]
. (3.19)

The resummation exponent at LLσ is given by the integral over the leading c11 αsL/τ
term in the spectrum. This is precisely what the standard parton shower veto algo-
rithm exploits to generate the resummation exponent. The analogous structure does
not hold at NLLσ, which is why the parton shower cannot resum the NLLσ series by
exponentiating the integral of the c10 αs/τ term. As already mentioned, in practice,
parton showers include important partial NLL effects, so practically this provides a
numerically close approximation to the correct NLLσ series. The nonsingular correc-
tions in the spectrum, fnons

1 (τ), are obtained by including the full tree-level matrix
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element for one additional emission. Since the full matrix element also includes the
c11 and c10 terms, this requires a proper matching procedure to avoid double counting
these terms. At LLσ, a simple way to do this is to multiply the full fixed-order result
from the matrix element with the shower’s LLσ resummation exponent,

1

σB

dσ

dτ

∣∣∣∣
τ>0

=
αs
τ

[
c11L+ c10 + τfnons

1 (τ)
]

exp
[c11

2
αsL

2
]
, (3.20)

which corresponds to the CKKW-L [4, 5, 6, 10] procedure. The reason this gives
the spectrum correctly at LLσ is the simple structure in eq. (3.19), where the LLσ
exponent multiplies the c11 term in the spectrum.6 At large τ ∼ 1, the exponent
in eq. (3.20) can be expanded as 1 + O(αs), so eq. (3.20) gives the correct leading
fixed-order result.

Compared to eq. (3.16), the NLO matching performed in MC@NLO and Powheg
amounts to adding to the cumulant the c1,−1 singular constant, containing the O(αs)
virtual corrections, as well as the nonsingular contributions F nons

1 (τ). Assuming the
same set of NLL terms are included in the cumulant and spectrum, this achieves that
inclusive quantities that are integrated over a large range of τ , such as the total cross
section, are correctly reproduced at fixed NLO, which provides them with O(αs) ac-
curacy. In these approaches, the goal is not to improve the perturbative accuracy of
the spectrum (or the cumulant at small τ cut), which has the same leading accuracy
as in eq. (3.20).

3.2.1.4 Next-to-lowest perturbative accuracy

We now want to improve the Monte Carlo description in eq. (3.6) from the lowest-
order accuracy, given by eq. (3.16), to the next-to-lowest perturbative accuracy in αs.
This requires us to include the appropriate higher-order corrections in each region,
which gives

1

σB

dσ

dτ

∣∣∣∣
τ>0

=
αs
τ

[
Lf0(αsL

2) + f1(αsL
2) + τfnons

1 (τ)
]

+
α2
s

τ

[
Lf2(αsL

2) + f3(αsL
2) + τfnons

2 (τ)
]
,

1

σB
σ(τ cut) = 1 + αs

[
L2

cut F0(αsL
2
cut) + Lcut F1(αsL

2
cut) + c1,−1 + F nons

1 (τ cut)
]

+ α2
s

[
L2

cut F2(αsL
2
cut) + Lcut F3(αsL

2
cut)
]
, (3.21)

6As before, since this simple LLσ structure does not hold in general at NLLσ, this procedure
does not yield the resummed spectrum at NLLσ, even if one were to multiply the spectrum with the
NLLσ resummation exponent
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where we denote the series of logarithms resummed by the functions f2 and F2 by
NLL′σ and the series resummed by f3 and F3 by NNLLσ. They can again be written
in terms of the cij coefficients in eq. (3.12) as

NLL′σ : f2(αsL
2) =

∑
n≥0

cn+2,2n+1(αsL
2)n , F2(αsL

2) =
∑
n≥0

cn+2,2n+1

2(n+ 1)
(αsL

2
cut)

n ,

NNLLσ : f3(αsL
2) =

∑
n≥0

cn+2,2n(αsL
2)n , F3(αsL

2) =
∑
n≥0

cn+2,2n

2n+ 1
(αsL

2
cut)

n .

(3.22)

In the resummation region, the NLL′σ series in the spectrum scales as ∼ α
3/2
s and

thus provides the ∼ αs correction to the LLσ series in f0. Similarly, the NNLLσ series
scales as ∼ α2

s providing the ∼ αs correction to the NLLσ series in f1. They can
again be obtained by performing the standard resummation in the exponent of the
cross section to NLL′ and NNLL respectively. (Here, NLL′ refers to those parts of the
full NNLL resummation that arise from the combination of the one-loop matching
corrections with the NLL resummation, see section 3.3.1.1 and table 3.2.)

In the fixed-order region, increasing the perturbative accuracy by∼ αs requires the
complete O(α2

s) corrections, including the fnons
2 (τ) nonsingular corrections. Similarly,

for the cumulant, F2 and F3 resum the NLL′σ and NNLLσ series of logarithms, which

scale as ∼ αs and ∼ α
3/2
s , respectively, and provide the ∼ αs improvement over the

LLσ and NLLσ series in F0 and F1. In addition, going to the next higher order in the
cumulant requires including the full singular constant c1,−1,7 as well as the nonsingular
corrections F nons

1 (τ), which both scale as ∼ αs.
It is instructive to see where the information from the virtual NLO matrix ele-

ments enters in eq. (3.21). As already mentioned, the virtual NLO corrections to the
Born process are given by c1,−1. In addition, by multiplying the LL series it con-
tributes part of f2 and F2. Hence, consistently combining the virtual corrections with
the resummation requires one to go to at least NLL′. The virtual NLO corrections
with one extra emission (plus the integral over the two-emission tree-level matrix
element) yield the full O(α2

s) corrections in the spectrum, i.e., both the singular c2k

terms as well as the nonsingular fnons
2 terms in eq. (3.14). Adding these corrections

again requires one to avoid double counting the singular c2k terms that are already
included in the resummation. In analytic resummation, it is well known how to do
this, namely by simply adding the nonsingular corrections. These are obtained by
taking the difference of the full NLO corrections and the singular NLO corrections,
where the latter are given by expanding the resummed result to fixed order. Since
this construction involves the virtual contribution to both the Born process and the
process with one extra emission, we see that going consistently to higher order in

7Formally, c1,−1 belongs to the NLL′σ series in the cumulant, but for the sake of discussion, we
keep it explicit.
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both the resummation and fixed-order regions naturally leads to a combination of the
information from two successive NLO matrix elements.

3.2.1.5 Merging NLO matrix elements with parton shower resummation
only

We stress that, for a description at the next-higher perturbative accuracy across
the whole range in τ , it is not sufficient to include the fixed NLO corrections to the
spectrum and take care of the double counting with the parton shower resummation.
This only provides the proper NLO description in the fixed-order region at large
τ . In the transition and resummation regions, a proper higher-order description
necessitates higher-order resummation. Of course, this is not a problem if the only
goal is to improve the fixed-order region at large τ , as is the case for example in a
recent MC@NLO publication [35].

However, including the fixed NLO corrections outside the fixed-order region, as is
done in Sherpa’s recent NLO merging [33, 34], can actually make things worse in two
respects: First, numerically this will typically force the spectrum to shift toward the
fixed-order result and away from the resummed one. Since this can shift the spectrum
in the wrong direction, it can potentially make the result less accurate.8 At the same
time, the perturbative uncertainties from fixed-order scale variation decrease, which
only aggravates this problem. Multiplying the NLO corrections to the spectrum with
LL parton shower Sudakov factors (see, e.g., ref. [56]) can mitigate this to some extent
but does not solve the problem. The only consistent way to include the fixed NLO
corrections to the spectrum outside the fixed-order region, and in particular obtain
reliable perturbative uncertainties, is to properly combine them with a higher-order
resummation.

Second, this explicitly spoils the formal O(αs) accuracy of the inclusive cross
section. To see this, consider adding the fixed NLO corrections to the lowest-order
spectrum and cumulant in eq. (3.16), properly taking care of the double counting at
O(α2

s), which gives

1

σB

dσ

dτ

∣∣∣∣
τ>0

=
αs
τ

[
Lf0(αsL

2) + f1(αsL
2) + τfnons

1 (τ)
]

+
α2
s

τ

[
c21L+ c20 + τfnons

2 (τ)
]
,

1

σB
σ(τ cut) = 1 + αs

[
L2

cut F0(αsL
2
cut) + Lcut F1(αsL

2
cut) + c1,−1 + F nons

1 (τ cut)
]
. (3.23)

8One can see this for example in the case of 2-jettiness in figure 3.3 in section 3.3. Here, the
NLL′+LO3 result is much closer to the slightly higher NNLL′+NLO3 best prediction than the fixed
NLO3 result. We have checked that in this case, adding the NLO3 to the NLL′+LO3 by expanding
it to O(α2

s) forces the result to move in the wrong direction toward the lower NLO3.
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Using these expressions yields for the inclusive cross section

1

σB
σ =

1

σB
σ(τ cut) +

∫ 1

τcut
dτ

1

σB

dσ

dτ

= 1 + αs

[
c1,−1 + F nons

1 (1)
]
− α2

s

[c21

2
L2

cut + c20Lcut

]
. (3.24)

While the first two terms give the correct NLO inclusive cross section, the O(α2
s)

terms induced by the fixed NLO corrections in the spectrum formally scale as αs
and α

3/2
s and therefore spoil the formal O(αs) perturbative accuracy for the inclusive

cross section and in fact for any inclusive observable. This directly contradicts the
claim in refs. [33, 34] that this description maintains the higher-order accuracy of the
underlying matrix elements in their respective phase space range. It only preserves
the fixed O(αs) terms, which in the context of combining fixed-order corrections
with a logarithmic resummation is necessary but not sufficient to preserve the higher
perturbative accuracy.

This problem cannot be avoided by multiplying the α2
s corrections in the spectrum

with the LL parton shower Sudakov factors, since this does not provide the proper
NLL′σ and NNLLσ series. Note also that we have already assumed in eq. (3.24) that
the full NLLσ series is included in the spectrum and cumulant. In general, the parton
shower cannot provide this, which means there will be even α2

sL
3
cut ∼

√
αs terms

induced in eq. (3.24).
Pragmatically, the inclusive cross section can be restored to formal O(αs) accu-

racy by either explicitly including the corresponding α2
s corrections in the cumulant

to cancel these terms, where numerical methods to do so have been described very
recently in refs. [47, 36, 37], or alternatively by explicitly restricting the fixed NLO
corrections in the spectrum to the fixed-order region at large τ , such that the induced
O(α2

s) terms in the total cross section are not logarithmically enhanced and are for-
mally O(α2

s). This is essentially the approach taken in ref. [35]. However, neither
of these approaches improves the perturbative accuracy in the spectrum outside the
fixed-order region.

3.2.2 What Monte Carlo can do for resummation

For T being the resolution variable between N and more than N jets, we showed
in the previous subsection that combining the NLO matrix-element corrections for
N and N + 1 partons at the level of the singly differential T spectrum is equivalent
to combining the NNLL resummation of the singular contributions with the higher-
order nonsingular contributions. Our goal now is to extend this singly differential
description to the fully differential case, in order to use the full N -parton and (N+1)-
parton information of the matrix elements. We will use the notation (N)LON or
(N)LON+1 to indicate up to which fixed order in αs the N -parton or (N + 1)-parton
matrix elements are included.
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To start with, it is straightforward to generalize the jet resolution spectrum dσ/dT
and its cumulant σ(T cut) to include the full dependence on the N -body Born phase
space,

dσ

dT
→ dσ

dΦNdT
,

σ(T cut) → dσ

dΦN

(T cut) =

∫
dT dσ

dΦNdT
θ(T < T cut) , (3.25)

such that eq. (3.6) becomes

dσincl

dΦN

=
dσ

dΦN

(T cut) +

∫
dT dσ

dΦNdT
θ(T > T cut) . (3.26)

Here, dσincl/dΦN is the inclusive N -jet cross section. The discussion in section 3.2.1
can be precisely repeated in this case, since the perturbative structure of the differen-
tial spectrum dσ/dΦNdT with respect to T is precisely the same as in eqs. (3.7) and
(3.8). Namely, we can write it as the sum of singular and nonsingular contributions,

dσ

dΦNdT
=

dσsing

dΦNdT
+

dσnons

dΦNdT
. (3.27)

The nonsingular contributions are general functions of ΦN and T , but as before are
integrable in T for T → 0. The singular contributions have the structure

dσsing

dΦNdT
=

dσB
dΦN

[
C−1(ΦN , αs) δ(T ) +

∑
n≥0

Cn(ΦN , αs)
1

Q
Ln
(T
Q

)]
, (3.28)

where dσB/dΦN is now the fully differential Born cross section. Since the singular
contributions arise from the cancellation of virtual and real IR singularities, which
only know about ΦN , their T dependence naturally factorizes from the ΦN kinematics
of the underlying hard process. This is what allows the resummation of the singular
terms to higher orders for a given point in ΦN . At LL, the entire ΦN dependence
is that of the Born cross section. At higher logarithmic orders, this is not the case
anymore, since the coefficients Cn can have nontrivial ΦN dependence. In addition,
the precise definition of T also becomes important. Depending on its definition, the
higher-order singular coefficients can depend on clustering effects or other types of
nonglobal logarithms [74, 75, 76, 77, 78, 79], which can be difficult to resum to high
enough order with currently available methods. Therefore, it is important to choose
a resolution variable with simple resummation properties. An example is N -jettiness,
for which the complete NNLL resummation for arbitrary N is known [1, 80]. For
the purpose of our discussion below, we will assume that a resummed result for the
spectrum and its cumulant in eq. (3.26) at sufficiently high order is available to us.

We can think of the cumulant dσ/dΦN(Tcut) in eq. (3.26) as the exclusive N -
jet cross section with no additional emissions (jets) above the scale T cut, while the
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spectrum dσ/dΦNdT for T > T cut is the corresponding inclusive (N + 1)-jet cross
section. While the cumulant dσ/dΦN(T cut) is differential in dΦN and thus already
as differential as it can be, the spectrum contains a projection from the full dΦ≥N+1

phase space down to dΦNdT . To also be fully differential in the (N + 1)-jet phase
space, we can generalize eq. (3.26) to

dσincl

dΦN

=
dσ

dΦN

(T cut) +

∫
dΦN+1

dΦN

dσ

dΦN+1

(T ) θ(T > T cut) , (3.29)

where dσ/dΦN+1(T ) denotes the fully differential spectrum for a given T ≡ T (ΦN+1).
We explicitly denote the dependence on T and T cut to clearly distinguish the spec-
trum from the cumulant. We have also used the same shorthand as given in eq. (1.11).
The projection from an (N + 1)-body phase space point to an N -body phase space
point defines what we mean by N jets at higher orders in perturbation theory. Note
that beyond LO, both the cumulant dσ/dΦN(T cut) and spectrum dσ/dΦN+1(T ) must
be well-defined jet cross sections; i.e., they require a specific IR-safe projection from
Φ≥k+1 to Φk for both k = N and k = N + 1. We will see below where this def-
inition enters. Using eq. (3.29) at the next-higher perturbative accuracy requires
us to combine the higher-order resummation in T for the cumulant and spectrum
with the fully exclusive N -jet and (N + 1)-jet fixed-order calculations at NLON and
NLON+1. To achieve this, we have to construct appropriate expressions for the cu-
mulant dσ/dΦN(T cut) and the spectrum dσ/dΦN+1(T ), which we do in the next two
subsections.

3.2.2.1 Matched cumulant

We start by discussing the cumulant in eq. (3.29). Since the resummation is
naturally differential in the dΦN of the underlying Born process, we can combine
the resummed result with the fixed-order one by adding the fixed-order nonsingular
contributions to it,

dσ

dΦN

(T cut) =
dσresum

dΦN

(T cut) +

[
dσFO

dΦN

(T cut)− dσresum

dΦN

(T cut)

∣∣∣∣
FO

]
. (3.30)

The first term contains the resummed contributions, while the difference of the two
terms in square brackets provides the remaining nonsingular corrections that have
not already been included in the resummation. The NLON fixed-order result is given
by

dσNLO

dΦN

(T cut) = BN(ΦN) + VN(ΦN) +

∫
dT θ(T < T cut)

∫
dΦN+1

dΦNdT
BN+1(ΦN+1) ,

(3.31)
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where BN and BN+1 are the N -parton and (N + 1)-parton tree-level (Born) contri-
butions, VN is the N -parton one-loop virtual correction, and we abbreviated

dΦN+1

dΦNdT
≡ dΦN+1 δ[T − T (ΦN+1)] δ[ΦN − ΦN(ΦN+1)] . (3.32)

Here, T (ΦN+1) implements the definition of T . The NLON result also depends on
the projection from ΦN+1 to ΦN , i.e., the precise NLO definition of ΦN . However,
this dependence only appears in the nonsingular corrections. For a given definition
of T , the singular NLO corrections do not depend on how the remaining ΦN+1 phase
space is projected onto ΦN , since they arise from the IR limit in which all (IR-safe)
definitions agree. In eq. (3.30), the singular contributions inside the full fixed-order
cumulant, dσFO/dΦN(T cut) are canceled by the NLO expansion of the resummed
result at NLL′σ or higher, leaving only the nonsingular fixed-order contributions in
square brackets.

3.2.2.2 Matched spectrum

To properly combine the higher-order resummation in T with the fully differential
(N + 1)-jet fixed-order calculation, the inclusive (N + 1)-jet spectrum dσ/dΦN+1(T )
in eq. (3.29) has to fulfill two basic matching conditions,

Condition 1:

∫
dΦN+1

dΦNdT
dσ

dΦN+1

(T ) =
dσ

dΦN dT
, (3.33)

Condition 2:
dσ

dΦN+1

(T )

∣∣∣∣
FO

=
dσFO

dΦN+1

. (3.34)

The first condition states that integrating the fully differential spectrum over the
additional radiative phase space has to reproduce the correct spectrum in T including
the desired resummation and fixed-order nonsingular corrections, such that eq. (3.29)
reproduces eq. (3.26). The second condition states that the fixed-order expansion
of the fully differential spectrum has to reproduce the full (N + 1)-jet fixed-order
calculation, where at NLON+1,

dσNLO

dΦN+1

= BN+1(ΦN+1) + VN+1(ΦN+1) +

∫
dΦN+2

dΦN+1

BN+2(ΦN+2) . (3.35)

Here, BN+1 and BN+2 are the (N + 1)-parton and (N + 2)-parton tree-level (Born)
contributions, and VN+1 is the (N+1)-parton one-loop virtual correction. Integrating
over dΦN+2 in the last term now requires a projection from ΦN+2 to ΦN+1,

dΦN+2

dΦN+1

≡ dΦN+2 δ[ΦN+1 − ΦN+1(ΦN+2)] , (3.36)
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analogous to eq. (1.11), which now defines precisely what we mean by N + 1 jets at
NLO.

In principle, there is some freedom to construct an expression for dσ/dΦN+1(T )
that satisfies both conditions to the order one is working. Our master formula to com-
bine the resummed spectrum dσresum/dΦNdT with the fully differential dσFO/dΦN+1

is given by
dσ

dΦN+1

(T ) =
dσFO

dΦN+1

[
dσresum

dΦNdT

/
dσresum

dΦN dT

∣∣∣∣
FO

]
. (3.37)

Expanding the right-hand side to a given fixed order, we can see immediately that
Condition 2 is satisfied by construction. Imposing Condition 1 yields the consistency
(or “matching”) condition

dσ

dΦNdT
=

[
dσFO

dΦNdT

/
dσresum

dΦNdT

∣∣∣∣
FO

]
dσresum

dΦNdT
. (3.38)

If the resummed result already has the nonsingular contributions at the desired fixed
order added in, then the term in brackets is by construction equal to unity for any
value of T . Otherwise, the expansion of the resummed result reproduces the singular
terms of the full fixed-order result, leaving the nonsingular fixed-order contributions,
such that we get

dσ

dΦNdT
=

dσsing,resum

dΦNdT
+

dσnons

dΦNdT

[
dσsing,resum

dΦNdT

/
dσsing

dΦNdT

]
. (3.39)

Here, dσsing,resum denotes the pure resummed result only containing the resummation
of the singular contributions. Hence, eq. (3.37) not only multiplies in the additional
dependence on ΦN+1/ΦN at fixed order, but if needed also adds the nonsingular
corrections to the spectrum multiplied by the higher-order resummation factor. (Note
that for the expansion of the resummed result to indeed reproduce all the singular
terms at the desired fixed order, the resummation has to be carried out to sufficiently
high order, which we have already seen in section 3.2.1.)

To apply Condition 1, we have to integrate eq. (3.35) using the projection onto
ΦN and T in eq. (3.32). Therefore, to get the correct T spectrum at NLON+1, the
projection in eq. (3.36) has to satisfy

T [ΦN+1(ΦN+2)] = T (ΦN+2) ; (3.40)

i.e., it has to preserve the value of T when constructing the projected ΦN+1 point.
Usually, the simplest way to handle this would be to use the left-hand side to define
T (ΦN+2). However, in our case, eq. (3.40) provides a very nontrivial condition on the
projection since T (ΦN+2) is already defined by our choice of jet resolution variable,
which in particular has to be resummable. This turns out to be a nontrivial technical
challenge one has to overcome to be able to satisfy Condition 1. We will see where
this enters in section 3.3.1.2 and section 3.4.1.2.
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inclusive N -jet exclusive N -jet inclusive (N + 1)-jet

notation fixed order accuracy log. order accuracy fixed order accuracy

LLT+LON+1 LON ∼ 1 LL ∼ α
−1/2
s LON+1 ∼ 1

NLLT LON ∼ 1 NLL ∼ 1 - -

NLLT+LON+1 LON ∼ 1 NLL ∼ 1 LON+1 ∼ 1

NLL′T+LON+1 NLON ∼ αs NLL′ ∼ α
1/2
s LON+1 ∼ 1

NNLLT+NLON+1 NLON ∼ αs NNLL ∼ αs NLON+1 ∼ αs

NNLL′T+NLON+1 NLON ∼ αs NNLL′ ∼ α
3/2
s NLON+1 ∼ αs

Table 3.1: Fixed and resummation orders and their achieved accuracy in αs.

Note that to ensure that the resummation factor in square brackets in eq. (3.37)
is well behaved in the fixed-order region at large T , it is important to turn off the
resummation such that the ratio of the resummed spectrum and its expansion becomes
O(1) up to higher fixed-order corrections. In principle, the fixed-order result in the
denominator can also become negative at very small values of T . This is not a problem
in practice, since this region is explicitly avoided by imposing the cut T > T cut.

3.2.2.3 Perturbative accuracy and order counting

The appropriate order counting in the resummation and fixed-order regions is
precisely the same as in section 3.2.1, so there is no need to repeat it here. Applying
eq. (3.37) at the very lowest order, namely LLσ resummation with LON+1 fixed-order
corrections, we get

dσ≥N+1

dΦN+1

∣∣∣∣
T >0

= BN+1(ΦN+1) exp
[c11

2
αsL

2
]
, (3.41)

where BN+1(ΦN+1) scales as αs/T relative to BN(ΦN) at small T , and we used that
at LLσ the ratio in brackets in eq. (3.37) is just the resummation exponent. This
directly corresponds to the CKKW-L procedure [4, 5, 6, 10], which multiplies the
tree-level matrix elements with the shower Sudakov factors. Hence, we can think of
our master formula eq. (3.37) as a consistent extension of this to higher orders.

As demonstrated in section 3.2.1, going to the next higher perturbative accuracy in
all phase space regions requires the NLL′σ and NNLLσ series of logarithms. We obtain
these by performing the full NLL′ and NNLL resummation in the exponent, as well as
the fixed NLON and NLON+1 corrections in the cumulant and spectrum, respectively.
The resummation naturally connects both jet multiplicities, since the NLON correc-
tions are included in the cumulant and are part of the resummation for the spectrum
starting at NLL′, where they effectively predict the singular NLON+1 contributions,
and the full NLON+1 corrections are obtained by adding the nonsingular corrections
to the spectrum. In the following, we will use the notation (N)NLL′T+(N)LON+1 to
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indicate the resummation order for the employed jet resolution variable together with
the (N +1)-jet fixed order. For simplicity, we do not explicitly denote the N -jet fixed
order and keep it implicit in the resummation order, i.e., LON at (N)LL and NLON

at NLL′ and above. This is summarized in Table 3.1.
An immediate and important question to ask is to what accuracy resummed spec-

tra for jet resolution variables other than T are predicted in our approach. A detailed
theoretical investigation of the formal resummation order one attains for other vari-
ables would be very interesting but is beyond the scope of this thesis. What is
certainly clear is that other variables will not be resummed at the same formal level
as the primary jet resolution variable T itself. However, we know that other variables
are correct to NLON+1, while at the same time, the inclusive cross section is not
changed, as it is independent of which variable one integrates over. This implies that
the NLON+1 corrections for other variables do not induce uncanceled, higher-order
logarithmic terms as in eq. (3.24), and hence, some higher-order resummation must
be partially retained for other observables as well. Numerically, the higher-order re-
summation in T provides an improved weighting of the IR region of phase space, from
which other variables are expected to benefit as well. We can validate to what accu-
racy other variables are obtained by comparing predictions from our highest order to
the analytically resummed results for other observables, which we do in section 3.3.3.

3.2.3 Extension to more jet multiplicities

The method proposed in this chapter is completely general and can be extended to
more jet multiplicities essentially by iterating the procedure discussed in section 3.2.2.
We start by introducing separate jet resolution variables TN to distinguish N from
N + 1 jets, TN+1 to distinguish N + 1 from N + 2 jets, and so on. One can choose any
IR-safe observable that goes to zero in the limit of N pencil-like jets. For each N , the
inclusive N -jet cross section is obtained by combining the cumulant and spectrum for
TN as in eq. (3.29),

dσincl

dΦN

=
dσ

dΦN

(T cut
N ) +

∫
dΦN+1

dΦN

dσ

dΦN+1

(TN) θ(TN > T cut
N ) ,

dσincl

dΦN+1

=
dσ

dΦN+1

(T cut
N+1) +

∫
dΦN+2

dΦN+1

dσ

dΦN+2

(TN+1) θ(TN+1 > T cut
N+1) ,

...

dσincl

dΦNmax

=
dσ

dΦNmax

(T cut
Nmax

→∞) . (3.42)

The exception is the highest jet multiplicity, Nmax, for which T cut
Nmax

=∞, correspond-
ing to the fact that no additional jets are resolved.

For the cumulants in eq. (3.42), the discussion in section 3.2.2.1 applies separately
for each N , so the cumulants matched to higher resummed and fixed order are given,
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as in eq. (3.30), by

dσ

dΦN

(T cut
N ) =

dσresum

dΦN

(T cut
N ) +

[
dσFO

dΦN

(T cut
N )− dσresum

dΦN

(T cut
N )

∣∣∣∣
FO

]
. (3.43)

The fully differential TN spectra dσ/dΦN+1(TN) are now obtained recursively as
follows. We start with the highest jet multiplicity, Nmax, for which no resummation
is needed since T cut

Nmax
is essentially removed. Furthermore, the highest jet multiplicity

is, by construction, only required at leading order, where the result is simply given
by the Born contribution,

dσ

dΦNmax

(T cut
Nmax

→∞) =
dσLO

dΦNmax

= BNmax(ΦNmax) . (3.44)

For each N < Nmax, we apply the discussion in section 3.2.2.2. To combine the
resummation in TN with the (N + 1)-jet fixed-order calculation, the fully differential
TN spectrum dσ/dΦN+1(TN) must satisfy the matching conditions as in eqs. (3.33)
and (3.34), ∫

dΦN+1

dΦNdTN
dσ

dΦN+1

(TN) =
dσ

dΦNdTN
, (3.45)

dσ

dΦN+1

(TN)

∣∣∣∣
FO

=
dσFO

dΦN+1

. (3.46)

These can be satisfied by a straightforward generalization of eq. (3.37),

dσ

dΦN+1

(TN) =
dσincl

dΦN+1

[
dσresum

dΦNdTN

/
dσresum

dΦNdTN

∣∣∣∣
FO

]
. (3.47)

The prefactor on the right-hand side is now the inclusive (N+1)-jet cross section from
eq. (3.42). This is what ties together the different jet multiplicities. The condition in
eq. (3.46) now leads to the consistency condition

dσincl

dΦN+1

∣∣∣∣
FO

=
dσFO

dΦN+1

, (3.48)

which states that for each N , the cumulant and spectrum in TN+1 must be included to
sufficiently high order so as to reproduce the (N + 1)-jet fixed order that is required
by the TN spectrum. Imposing the condition in eq. (3.45) yields the consistency
condition for the TN spectrum,

dσ

dΦNdTN
=

[ ∫
dΦN+1

dΦNdTN
dσincl

dΦN+1

/
dσresum

dΦNdTN

∣∣∣∣
FO

]
dσresum

dΦNdTN
, (3.49)
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which is the generalization of eq. (3.38). To satisfy eq. (3.48) at NLON+1, it requires
that

TN [ΦN+1(ΦN+2)] = TN(ΦN+2) , (3.50)

as in eq. (3.40). That is, for each N , the projection from ΦN+2 to ΦN+1 which
defines the (N + 1)-jet cross section at NLO has to preserve the value of TN . In
addition, eq. (3.49) requires that, upon integration, the TN+1 resummation contained
in dσincl/dΦN+1 does not interfere with the TN resummation, e.g., by inducing higher-
order logarithms in TN . Since eq. (3.42) relates the dσincl/dΦN to dσ/dΦN+1(TN),
the relationship in eq. (3.47) gives rise to a recursive definition, which when combined
with the result for the highest jet multiplicity in eq. (3.44) determines dσ/dΦN+1(TN)
for all N .

In the Monte Carlo implementation, the phase space is split up recursively as

dσmc
≥N

dΦN

=
dσmc

N

dΦN

(T cut
N ) +

∫
dΦN+1

dΦN

dσmc
≥N+1

dΦN+1

θ(TN > T cut
N ) ,

dσmc
≥N+1

dΦN+1

=
dσmc

N+1

dΦN+1

(T cut
N+1) +

∫
dΦN+2

dΦN+1

dσmc
≥N+2

dΦN+2

θ(TN+1 > T cut
N+1) , (3.51)

... ,

where in each step, the total cross section for N or more jets is separated into an
exclusive N -jet cross section, which is assigned to partonic events with N final-state
partons, and the integral over the remaining cross section for N + 1 or more jets. For
the highest multiplicity, Nmax, the remaining cross section for Nmax or more jets is
represented by events with Nmax final-state partons.

Note that the structure of eq. (3.51) is very similar to eq. (3.42). The crucial
difference is that in eq. (3.51), each inclusive cross section on the left-hand side is the
same that appears under the integral on the right-hand side in the line above. By
comparing eq. (3.51) with eq. (3.42) and repeatedly inserting eq. (3.47), we obtain the
higher-order, “fully resummed,” exclusive N -jet cross sections that serve as inputs to
the Monte Carlo. Abbreviating the resummation factor in eq. (3.47) as

UN(ΦN , TN) =
dσresum

dΦNdTN

/
dσresum

dΦNdTN

∣∣∣∣
FO

, (3.52)

we obtain

dσmc
N

dΦN

(T cut
N ) =

dσ

dΦN

(T cut
N ) ,

dσmc
N+1

dΦN+1

(T cut
N+1) =

dσ

dΦN+1

(T cut
N+1)UN(ΦN , TN) ,

...
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dσmc
≥Nmax

dΦNmax

=
dσ

dΦNmax

(T cut
Nmax

→∞)UN(ΦN , TN)UN+1(ΦN+1, TN+1)

× · · · × UNmax−1(ΦNmax−1, TNmax−1) . (3.53)

The careful reader will have noticed that the above is in one-to-one correspondence to
the structure generated by a parton shower with up to Nmax emissions. The crucial
difference is that, in our case, all ingredients are well-defined physical jet cross sections
defined in terms of a global jet resolution variable. This allows us to systematically
increase the perturbative accuracy by computing the relevant ingredients to higher
order in resummed and fixed-order perturbation theory as well as to systematically
estimate the perturbative uncertainties. The analogous parton-shower-like structure
underlies the CKKW-L ME/PS merging, which replaces the splitting functions in the
shower with the full tree-level matrix elements. Restricting eq. (3.53) to the lowest
order as in eq. (3.41), it reduces to the ME/PS merging as a special case.

In principle, the above construction allows us to go to even higher fixed and resum-
mation order, as long as the fixed-order ingredients are available and the resummation
is known to a correspondingly high enough order. It also lets us combine as many jet
multiplicities as we like at the order they are available. In particular, it is straight-
forward to add additional multiplicities at the lowest accuracy in a CKKW-L-like
fashion.

3.2.4 Attaching parton showering and hadronization

In the Monte Carlo, a point in ΦN is represented by N (massless) four-vectors
together with the appropriate flavor information. We then generate events with N to
Nmax partons and assign theN -parton events the weight dσmc

N /dΦN(T cut
N ), the (N+1)-

parton events the weight dσmc
N+1/dΦN+1(T cut

N+1), and so on. The events with Nmax

partons are assigned the weight dσmc
≥Nmax

/dΦNmax = BNmax(ΦNmax). The θ(TN > T cut
N )

functions in eq. (3.51) are included in the weight, which means that all events with
≥ N + 1 partons that have TN < T cut

N get zero weight.9 In this way, by summing up
the weights of all events, we can integrate up the cross sections in eq. (3.51), including
arbitrary kinematic cuts in ΦN , ΦN+1, etc. What is important is that, although the
events contain massless partons, they represent the exclusive jet cross sections of
eq. (3.53). (From the resummation point of view, the massless partons represent the
kinematics of the hard function.)

In the next step, the events are given as a starting point to a parton shower,
whose purpose it is to fill up the jets with additional emissions inside the jets with-
out changing the weight of the event. Formally, this means that the shower should
not be allowed to change the underlying distribution in the jet resolution variable,

9Technically, the split up of phase space is usually flavor-aware. This means that an event with
TN < T cut

N is only set to zero if the closest two partons produce a QCD singularity.
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since this has already been computed at the higher perturbative accuracy. For ex-
ample, starting from an event with N + 1 partons with kinematics ΦN+1 and weight
dσmc

N+1/dΦN+1(T cut
N+1), the fully showered event should have the same jet kinematics

ΦN+1 as the unshowered event from which it originated. Most importantly, the show-
ered event should have the same value of TN(ΦN+1) and should have TN+1 < T cut

N+1

so it still has the correct weight dσmc
N+1/dΦN+1(T cut

N+1). In the cumulant N -jet bin,
the shower is allowed to fill out the phase space from TN = 0 to T cut

N . Since for the
highest jet multiplicity, T cut

Nmax
→ ∞, the shower fills out the remaining phase space.

In practice, these are quite nontrivial constraints on the shower. The easiest way to
enforce them is to repeatedly run the shower on the same event until it produces an
acceptable showered event, where we allow the value of TN to be changed at most
by a numerically small amount consistent with a power correction. This method is
of course computationally intensive (though it is not computationally prohibitive),
since one may have to rerun the shower many times, and it would be interesting to
develop a more efficient way of constraining the shower for this purpose. Notice that
in this procedure no events are discarded, so the cross section is not changed.

In the final step, the showered event is passed to the hadronization routine. In
this case, there are no constraints on the kinematics of the hadronized event; i.e.,
the hadronization is allowed to smear out the TN spectrum. The reason is that our
perturbative calculation does not take into account nonperturbative effects, which
are instead supplied by the hadronization. This is discussed in more detail in sec-
tion 3.3.1.3.

3.3 Application to e+e− collisions

In this section, we apply the framework described in section 3.2 to e+e− → 2/3
jets, implemented in the Geneva Monte Carlo. The higher-order resummation for
2-jet event shapes in e+e− collisions is very well understood and many precise mea-
surements from LEP exist, which are used, for example, for precise determinations of
the strong coupling constant αs [81, 82, 83, 84, 85, 86, 87].

In this context, one important aspect is the interplay between both resummed and
fixed-order perturbative contributions with the nonperturbative corrections. Here,
the Geneva framework provides an important development by being able to com-
bine the perturbative higher-order resummation with the nonperturbative information
provided by Pythia’s hadronization model [88, 89]. For example, this allows us to
use a common theoretical framework to make predictions for different phase space
regions and different observables.

The e+e− implementation also provides an important and powerful validation of
our approach and its practical feasibility, while avoiding the additional complications
arising for hadronic collisions, such as initial-state radiation and parton distribution
functions (PDFs). The implementation and first results for pp collisions are presented
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in section 3.4.
In our e+e− implementation, we use 2-jettiness, T2, as the 2-jet resolution variable,

which is defined as [1]

T2 = Ecm

(
1−maxn̂

∑
k|n̂ · ~pk|∑
k|~pk|

)
, (3.54)

and is simply related to thrust T [72] by T2 = Ecm(1 − T ). Its kinematic limits are
0 ≤ T2 ≤ Ecm/2. In the limit T2 → 0, there are precisely 2 pencil-like jets in the final
state, while for T2 ∼ Ecm, there are 3 or more jets. We perform the resummation in
T2 to NNLL′ and include the full NLO2, NLO3, and LO4 fixed-order matrix elements,
i.e., we obtain NNLL′T+NLO3 predictions.

The default running parameters for our e+e− studies are Ecm = 91.2 GeV, αs(mZ)
= 0.1135, and Pythia 8.170 with e+e− tune 1.10 Using this value of αs(mZ) is
motivated by the fact that it was obtained from fits to the thrust spectrum using
N3LL′ resummation. These fits were performed in a region (corresponding to 6 GeV ≤
T2 ≤ 30 GeV for our Ecm) where the nonperturbative corrections due to hadronization
are power suppressed and can be described by a single nonperturbative parameter,
which leads to a shift in the spectrum and is included in the fit in ref. [85]. We
find that this value of αs(mZ), in conjunction with Pythia’s tune 1, provides overall
the best description of the data, including the peak region below T2 ≤ 6 GeV and
other 2-jet event shapes. For comparison, we show results using the world average
αs(mZ) = 0.1184 [90] as well as from using Pythia tune 3.

In the next subsection, we summarize the various ingredients that go into the mas-
ter formula, with the intention of giving a concise and informative overview, while
leaving a detailed discussion of our implementation to a separate publication. In
section 3.3.2, we discuss the T2 spectrum, validating our implementation using ana-
lytic predictions as well as comparing our results to LEP data. In section 3.3.3, we
present our results for other 2-jet variables, namely C-parameter, heavy jet mass, and
jet broadening, comparing Geneva’s predictions at NNLL′T+NLO3 to the analytic
higher-order resummation for each variable as well as to the experimental measure-
ments. In all cases, we find good consistency and agreement with the data.

3.3.1 Ingredients

The master formula is given by

dσincl

dΦ2

=
dσ

dΦ2

(T cut
2 ) +

∫
dΦ3

dΦ2

dσ

dΦ3

(T2) θ(T2 > T cut
2 ) , (3.55)

10The αs value used inside Pythia’s parton shower is not changed from the value set in the tune.
This is not inconsistent, since here the strong coupling functions as a phenomenological parameter,
regulating the amount of showering.
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where

dσ

dΦ2

(T cut
2 ) =

dσresum

dΦ2

(T cut
2 ) ,

dσ

dΦ3

(T2) =
dσincl

dΦ3

(
dσresum

dΦ2dT2

/
dσresum

dΦ2 dT2

∣∣∣∣
FO

)
. (3.56)

Its three key ingredients are the higher-order resummation of 2-jettiness, which we
include at NNLL′T+LO3, the full fixed-order matrix elements at NLO2, NLO3, and
LO4, and the interface to parton showering and hadronization, for which we use
Pythia 8.

Following the construction in section 3.2.3 with Nmax = 4, the inclusive 3-jet cross
section is separated into 3 and 4 or more jet contributions using 3-jettiness, T3, as
our 3-jet resolution variable,

dσincl

dΦ3

=
dσ

dΦ3

(T cut
3 ) +

∫
dΦ4

dΦ3

dσ

dΦ4

(T3) θ(T3 > T cut
3 ) . (3.57)

For e+e− collisions, N -jettiness is defined by [1]

TN =
∑
k

min
i

(
Ek − n̂i · ~pk

)
, (3.58)

where i = 1, · · · , N and n̂i is a unit vector along the direction of the ith jet, where the
jet directions can be determined by a jet algorithm or by directly minimizing TN .11

There are N pencil-like jets in the limit TN → 0 and N or more jets in the limit
TN ∼ Ecm.

As discussed in section 3.2.3, the master formula naturally incorporates the re-
summation of the 3-jet resolution variable in eq. (3.57) and extends to higher jet
multiplicities, i.e., Nmax > 4. However, since our current focus is on the main con-
ceptual development of combining the higher-order resummation with the fixed NLO
matrix elements for 2 and 3 jets, we leave these extensions to future work. As we will
not be interested in the T3 spectrum or other exclusive 3-jet observables, it is suffi-
cient for our purposes to calculate the two terms on the right-hand side of eq. (3.57)
at fixed order (i.e., we do not include resummation for T3). Thus, we use

dσ

dΦ3

(T cut
3 ) =

dσFO

dΦ3

(T cut
3 ) ,

dσ

dΦ4

= B4(Φ4) . (3.59)

In the results that follow, we use T cut
2 value between 0.5 − 1 GeV, which is selected

randomly from a flat distribution. This smoothing out of T cut
2 avoids small numerical

11This definition agrees with T2 in eq. (3.54) for massless final-state particles, which is the limit
in which resummation is carried out. It does affect the nonperturbative corrections when including
hadron masses [91, 92]. We use the definition of T2 in eq. (3.54) to be able to directly compare to
the experimental data for thrust.
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Fixed-order corrections Resummation input

singular nonsingular γx Γcusp β

LL LO2 - - 1-loop 1-loop

NLL LO2 - 1-loop 2-loop 2-loop

NLL′ NLO2 - 1-loop 2-loop 2-loop

NLL′+LO3 NLO2 LO3 1-loop 2-loop 2-loop

NNLL+LO3 NLO2 LO3 2-loop 3-loop 3-loop

NNLL′ NNLO2 - 2-loop 3-loop 3-loop

NNLL′+NLO3 NNLO2 NLO3 2-loop 3-loop 3-loop

Table 3.2: Perturbative inputs included at a given order in resummed and fixed-order
perturbation theory. The columns in the resummation input refer to the noncusp
anomalous dimension (γx), the cusp anomalous dimension (Γcusp), and the QCD beta
function (β).

discontinuities that can arise with a sharp cutoff. For T cut
3 , we use T cut

3 = 2 GeV.
This value is chosen small enough that the NLO3 calculation is fully exclusive and our
results are insensitive to scales below T cut

3 . Changing T cut
3 by a factor of two up and

down, the results remain unchanged, with any variations well within our perturbative
uncertainties.

3.3.1.1 Resummation

Our jet resolution variable, T2, has the important property that it can be factor-
ized. The factorization theorem for the T2 spectrum provides the resummed prediction
that is one of the primary inputs to our master formula in eq. (3.56). It is obtained
by using the framework of Soft Collinear Effective Theory (SCET) [93, 94, 95, 96]
and allows the resummation to be systematically carried out to higher orders and
combined with the nonsingular fixed-order result. Our highest-order resummed input
to the master formula has NNLL′ resummation. We use the standard resummation
formalism, where the large logarithms are resummed in the exponent of the cross
section, with the corresponding resummation orders summarized in table 3.2.

We write the jet resolution distribution in T2 as

dσresum
2

dΦ2 dT2

=
dσsing

2

dΩ2 dT2

+
dσnons

2

dΩ2 dT2

, (3.60)

where the separation into singular and nonsingular contributions was discussed in
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section 3.2.2 [see eq. (3.27)]. The singular contribution is given by [97, 98]

dσsing
2

dΩ2 dT2

=
dσB
dΩ2

H2(E2
cm, µ)

∫
ds1ds2 J1(s1, µ) J2(s2, µ)S2

(
T2 −

s1

Ecm

− s2

Ecm

, µ
)
.

(3.61)

Here, dΦ2 = dΩ2 = d cos θdφ is the angular phase space for the orientation of the
thrust axis with respect to the beam, and dσB/dΩ2 is the tree-level 2-parton cross
section. Note that the overall dependence on Ω2 here is that of the Born cross
section, which is correct in the limit T2 → 0 in which eq. (3.61) is obtained. The
hard function H2 in eq. (3.61) contains the fixed-order 2-parton matrix elements,
which describe the short-distance corrections at the scale Ecm. The jet functions
J1 and J2 describe the back-to-back collinear final-state radiation along the thrust
axis, and the soft function S2 describes the soft radiation between the jets. The
soft function contains perturbative and nonperturbative components, which can be
separated as [99, 100, 101]

S2(T2, µ) =

∫
dk Spert

2 (T2 − k, µ) f(k, µ) , (3.62)

where Spert
2 (T2 − k, µ) is the perturbative soft function, while the shape function

f(k, µ) describes the nonperturbative hadronization corrections. For T2 ∼ ΛQCD,
the shape function gives an O(1) contribution to the cross section, while for T2 �
ΛQCD it can be expanded, and only the leading O(ΛQCD/T2) nonperturbative power
correction is relevant. For further discussion and the derivation of the factorization
theorem, see refs. [97, 98]. The resummed prediction used in Geneva only includes
the perturbative soft function, while the nonperturbative corrections are provided by
the hadronization in Pythia.

The nonsingular contribution in eq. (3.60) is given by the spectrum at fixed order
with the singular terms subtracted. It includes all O(T2/Ecm) corrections to the
singular distribution to a given order in αs. The O(αs) nonsingular corrections in
T2 are known analytically and can be taken from ref. [85], so we include them in
our resummed result. Each function in eq. (3.61) depends on the renormalization
scale µ and the characteristic scale of the physics it describes. These are µH ∼
Ecm, µJ ∼

√
T2Ecm, and µS ∼ T2 for the hard, jet, and soft functions, respectively.

Renormalization group evolution (RGE) between the soft, collinear, and hard scales
resums the logarithms of the form lnµS/µH ∼ ln T2/Ecm and lnµ2

J/µ
2
H ∼ ln T2/Ecm

in the factorized singular distribution in eq. (3.61). The anomalous dimensions and
singular fixed-order corrections required at a given resummation order are summarized
in table 3.2.

The resummed cumulant in eq. (3.56) is obtained in an analogous way to the
resummed T2 distribution. It is given by a singular and nonsingular component,

dσresum
2

dΦ2

(T cut
2 ) =

dσsing
2

dΩ2

(T cut
2 ) +

dσnons
2

dΩ2

(T cut
2 ) , (3.63)
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where the singular contribution is obtained by integrating eq. (3.61) over T2 from
0 to T cut

2 . The nonsingular contribution to the cumulant is given by the difference
between the fixed-order result and the resummed singular terms expanded to fixed
order.

The perturbative uncertainties in the resummed spectrum are estimated by scale
variation and receive a contribution from two distinct sources, the fixed-order correc-
tions and the higher-order logarithmic resummation. The fixed-order uncertainties
are estimated by a correlated overall variation of all scales by factors of two. The
resummation uncertainties are instead estimated by varying the lower scales µJ(T2)
and µS(T2), which are functions of T2, and are referred to as profile scales [101, 85, 41].
The profile scales satisfy the criteria that, in the resummation region, µJ,S(T2) have
their canonical scaling (given above) and in the fixed-order region, µJ,S(T2) ∼ µH ,
which turns off the resummation. In the transition region, the profile scales pro-
vide a smooth interpolation between the resummation and fixed-order regions. These
three regions are determined based on where the fixed-order singular contributions
dominate over the nonsingular ones. The variations in the profile scales subject to
the above constraints determine the resummation uncertainty, where we take the
largest absolute variation from the central scale. The resummation uncertainties are
combined in quadrature with the fixed-order uncertainties to generate our theory un-
certainty estimate. For a given partonic event in Geneva, each profile scale variation
gives rise to a different event weight, which is computed analytically. Hence, we can
provide each event with its own perturbative uncertainty estimate by assigning it
several weights from the profile scale variation in addition to its central weight.

3.3.1.2 Fixed order

As we can see from eqs. (3.57) and (3.59), we need the 3-jet cumulant dσ/dΦ3(T cut
3 )

as well as the Born 4-parton cross section B4(Φ4). The Born 4-parton cross section is
trivial and requires no further discussion. To calculate the 3-jet cumulant at NLO3,
we use the generic formula given in eq. (3.35),

dσ

dΦ3

= B3(Φ3) + V3(Φ3) +

∫
dΦ4

dΦ3

B4(Φ4) θ(T3 < T cut
3 ) , (3.64)

where
dΦ4

dΦ3

≡ dΦ4 δ[Φ3 − ΦT3 (Φ4)] . (3.65)

The projection ΦT3 (Φ4) defines what we mean by Φ3 at NLO3. It implicitly depends
on our choice of resolution variable since eq. (3.40) requires it to satisfy

T2[ΦT3 (Φ4)] = T2(Φ4) . (3.66)

To deal with the IR singularities that are present both in V3 and in the integral of
B4 over Φ4, we use the FKS subtraction method [102]. We introduce a set of projecting
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functions, θTm(Φ4), that partition the phase space into nonoverlapping regions, such
that

∑
m θ
T
m(Φ4) = 1. In our case, this partition is effectively determined by the

resolution variable, which is indicated by the superscript. The resulting partition must
be such that each region m contains at most one collinear and one soft singularity.
Then, we can write

dΦ4 =
∑
m

dΦ3 dΦm
rad θ

T
m(Φ3,Φ

m
rad) , (3.67)

where Φm
rad denotes the radiative phase space describing a 1 → 2 splitting in each

region.
For each region m, we define a mapping that identifies which particle in Φ3 is

undergoing the 1→ 2 splitting, which generates the

Φm
4 ≡ Φm

4 (Φ3,Φ
m
rad) (3.68)

phase space point. It also unequivocally defines how the recoil is shared amongst
the remaining particles in the event, which is needed to enforce total momentum
conservation. Notice that our definition of the θTm-functions leaves us the freedom to
include phase space regions in the partition which do not contain any IR singularity.
This freedom is in fact essential to be able to satisfy Condition 1 in eq. (3.33), namely,
to ensure that in each phase space region the correct functional form for the resolution
variable T2(Φ4) is used. For example, in e+e− → qq̄g production, the region in
which the quark and antiquark are closest to each other does not contain any QCD
singularity. Nevertheless, it must be treated as a separate region in the phase space
partition, since in this region the invariant mass between the quark and antiquark
determines the value of T2.

With this notation, one can write

dσ

dΦ3

= B3(Φ3) + V3(Φ3) +
∑
m

∫
dΦm

radB4(Φm
4 )θTm(Φ3,Φ

m
rad)θ(T3 < T cut

3 ) . (3.69)

If the region m contains an IR divergence, the FKS subtraction requires one to define
the soft, collinear, and soft-collinear limits of Φm

rad, which we denote as Φm,s
rad , Φm,c

rad ,
and Φm,cs

rad , respectively, together with the resulting points in the 4-body phase space
Φm,s

4 , Φm,c
4 , and Φm,cs

4 . We can then write

dσ

dΦ3

=B3(Φ3) + V3(Φ3) + I(Φ3) +
∑
m

∫
dΦm

rad

[
B4(Φm

4 )θTm(Φ3,Φ
m
rad)θ(T3 < T cut

3 )

− dΦm,s
rad

dΦm
rad

B4(Φm,s
4 )θs

m(Φ3,Φ
m,s
rad )− dΦm,c

rad

dΦm
rad

B4(Φm,c
4 ) +

dΦm,cs
rad

dΦm
rad

B4(Φm,cs
4 )

]
, (3.70)

where θs
m encodes the soft limit of the θTm-functions and we have used the fact that

in the collinear and soft-collinear limits the θTm-functions are trivially satisfied. Also,
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since in each of these limits T3 ≡ 0, the θ(T3 < T cut
3 ) functions are satisfied by

construction.
If m is not singular, in principle, no such subtraction is needed, and one could

simply evaluate the 4-parton tree-level matrix element B4(Φm
4 ). However, given that

the integral of the subtraction counterterms over the whole phase space is known
analytically for both massless and massive partons [102, 103, 17],

I(Φ3) =
∑
m

[ ∫
dΦm,s

radB4(Φm,s
4 )θs

m(Φ3,Φ
m,s
rad ) +

∫
dΦm,c

radB4(Φm,c
4 )

−
∫

dΦm,cs
rad B4(Φm,cs

4 )
]
, (3.71)

we found it easier not to restrict the integration of the subtraction counterterms only
in the singular regions of phase space but to extend it across all of phase space.12 This
ensures the complete cancellation of and the independence of the final results from
the subtraction terms. The procedure outlined above takes care of all IR divergences,
making the integrand in the square brackets of eq. (3.70) as well as the sum of
V (Φ3) + I(Φ3) IR finite.

The crucial point, discussed in section 3.2.2.2, is that our construction requires
the phase space map that generates Φm

4 (Φ3,Φ
m
rad) to preserve the value of T2; i.e.,

T2[Φm
4 (Φ3,Φ

m
rad)] = T2(Φ3) . (3.72)

Comparing this to eq. (3.66), we see that the map Φm
4 (Φ3,Φ

m
rad) must be precisely

the inverse of ΦT3 (Φ4) in the region m. In principle, this condition can be relaxed to
only hold up to power corrections. Additionally, the map can fail to preserve T2 in a
region of phase space that gives a power-suppressed contribution to the cross section.
The phase space maps used in the standard FKS implementations [102, 16] were not
designed to preserve the value of T2, and thus, they change its value by an O(T3/T2)
amount over a large region of phase space.13 Since 4-parton events with T3 < T cut

3 and
T2 > T cut

2 are the only real emission contributions included in the NLO calculation
for the 3-jet cumulant, eq. (3.64), one can impose the restriction T cut

3 � T cut
2 and

use the standard FKS phase space maps. However, this hierarchy strongly restricts
T cut

3 , and it is preferable to define a map that is specifically designed for our goals.
We have constructed such a map, which preserves the exact value of T2 up to power
corrections, except in a region of phase space whose contribution to the cross section
scales as O(T2/Ecm). In this region, the value of T2 is altered by an O(T3/T2) amount,
meaning the net correction scales as O(T3/Ecm). Therefore, enforcing the much looser

12These integrals can also easily be defined by restricting the integration of the FKS variable ξ up
to some ξcut value. These are, however, not in direct correspondence to the partition of phase space
we are considering.

13Generically, an emission that takes a 3-parton event to a 4-parton event will change T2 by the
scaling T2(Φ4)− T2(Φ3) ∼ T3.
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constraint T cut
3 � Ecm is sufficient to achieve our purposes. We postpone the detailed

discussion of this map to a dedicated publication describing the implementation of
Geneva.

3.3.1.3 Parton shower and hadronization

The phase space points Φ2 and Φ3 represent jet kinematics, which are defined
by the jet resolution variable 2-jettiness. As discussed in section 3.2.4, we require
that the parton shower does not change the underlying hard jet distribution so that
the higher-order weights we calculate, dσ/dΦ2(T cut

2 ) and dσ/dΦ3(T2), are correctly
assigned. Without any constraints the parton shower will not preserve the value of
T2. We address this problem in our current implementation in a physically motivated
way. For small T2, the resummed singular jet resolution spectrum dominates and
is determined up to power corrections of order λ ∼ T2/Ecm. We require that for
Φ≥3 events, the change in T2 due to showering, ∆T2, satisfies ∆T2/T2 < λ. This
represents a power correction to the 2-jettiness spectrum, which scales as 1/T2 for
small T2. For the 2-jet cumulant bin, we require that Φ2 events, which have T2 = 0
when unshowered, remain in the 2-jet bin after showering up to a power suppressed
correction, with T2 < T cut

2 (1 + λ′). Here, the effect of a small nonzero λ′ induces a
change to the shape of the distribution generated by Pythia that scales as a power
correction and does not affect the formal accuracy of the spectrum. Formally, we
work in the limit where λ and λ′ are effectively taken to zero. For λ = 0, the shower
would be required to exactly preserve T2, making it maximally inefficient. Therefore,
for the results shown in this section, we use small nonzero values λ = 2λ′ = 0.05. We
have checked that these are small enough to be in the asymptotic region where the
results become independent of the precise value.

Furthermore, the shower must also be restricted to not change the NLO3 result.
This requires that, for 3-parton events, we effectively only allow showers to start from
T cut

3 . Likewise, we limit the showering of 4-partons events down from their T3(Φ4)
value. This can be seen as a proxy for what would be the correct approach in a
TN -ordered shower.

We use Pythia 8.170 with e+e− tune 1 for showering and hadronization. The
choice of tune for e+e− data in Pythia affects both the time-like showering and
hadronization model. However, since in our implementation we restrict the shower
from changing the T2 spectrum, the effect of changing the tune in Pythia primarily
reflects the uncertainty from hadronization in Geneva. We have checked that this
is also the case for observables other than T2 by verifying that the effect of the
tune on the showered Geneva predictions is very small compared to the change
due to hadronization. The uncertainty from hadronization is associated with the
nonperturbative contribution to the soft function in eq. (3.62) in our framework and
is not included in our event-by-event perturbative uncertainties, which are derived
from the analytical resummation and fixed-order matching. A complete uncertainty
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analysis should also include uncertainties due to hadronization as well as due to the
remaining amount of parton showering. As an indication of the size of the uncertainty
from hadronization, we also show Geneva hadronized results using e+e− tune 3. The
shift from the partonic to the showered results could be taken as a conservative upper
limit on the remaining showering uncertainty.

It is important to note that we use the standard tunes in Pythia, without chang-
ing any internal parameters. Since in our approach the shower evolution in standalone
Pythia 8 is substituted with higher-order resummation above the 2-jet resolution
scale, we advocate that a separate tuning of Geneva + Pythia 8 should be em-
ployed to obtain the best results. This would also allow one to obtain meaningful
estimates of hadronization and remaining showering uncertainties.

3.3.2 Validation using the jet resolution spectrum

Before comparing the Geneva prediction for various e+e− spectra to analytic
predictions and LEP data, we first validate the implementation of our procedure to
combine higher-order resummation and full NLO matrix-element corrections by using
the jet resolution spectrum. At the level of the singly differential T2 spectrum only, the
standard approach to resummation achieves the same matching between resummation
and fixed order by adding the nonsingular contribution to the resummed result. This
provides a nontrivial crosscheck of the master formula and in particular validates the
event-by-event theory uncertainties generated by Geneva. For each comparison in
this section, we show the peak, transition, and tail regions, described in section 3.2.1,
at the LEP center-of-mass energy Ecm = 91.2 GeV. In all cases, the error bars
or bands on the Geneva histograms are built from its event-by-event perturbative
uncertainties. The statistical uncertainties from Monte Carlo integration are much
smaller and are not shown.

3.3.2.1 Partonic results

The analytic resummed T2 spectrum is shown in figure 3.2 at successively higher
orders: NLL, NLL′+LO3, and NNLL′+NLO3 (see table 3.2 for the order-counting
definitions). The perturbative uncertainties are generated by using the same profile
scale variations employed in Geneva and discussed in section 3.3.1.1. The theory
uncertainties decrease at increasing order and demonstrate excellent convergence at
all values of T2. Below T2 < 0.5 GeV, we enter the purely nonperturbative region, and
the scale uncertainties diverge since even resummed perturbation theory breaks down.
In the far tail, the scale uncertainties also grow rapidly, which reflects missing higher
fixed-order corrections. The uncertainties in the NNLL′+NLO3 prediction diverge
past the 3-parton endpoint at Ecm/3, where the fixed-order prediction is only correct
at leading order for 4 partons. In the transition region, there is a smooth interpolation
between the resummation and fixed-order regions.
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Figure 3.2: Analytic resummation of T2 matched to fixed order. The central value is
shown along with the band from scale uncertainties, as discussed in section 3.3.1.1,
at NLL, NLL′+LO3, and NNLL′+NLO3.

In figure 3.3, we compare the partonic T2 spectrum from Geneva with T cut
2 =

1 GeV to the analytic resummed results from figure 3.2. To illustrate the interpolation
between resummed and fixed-order results, we also show the pure resummed results at
NLL′ and NNLL′ and the pure fixed-order contribution at LO3 and NLO3. The latter
are calculated using Event2 [104, 105], which serves as an independent crosscheck
of our NLO3 implementation. Using the NLL′+LO3 resummation of T2 and the
LO3 fixed-order contribution as inputs to our master formula for the spectrum in
eq. (3.56), the dσFO/dΦ3 and dσresum/dΦ2dT2

∣∣
FO

contributions exactly cancel for the
T2 spectrum. As a result, we see precise agreement between Geneva and the analytic
NLL′+LO3 result in figure 3.3(a)-3.3(c) in the peak, transition, and tail regions. This
result agrees well with the pure NLL′ resummed contribution in the peak, while in
the tail, it is consistent within uncertainties with the LO3 result, where the latter
clearly underestimates the full perturbative uncertainties.



96

0
0 1

2

2 3

4

4 5

6

6 7

8

8 9

10

10

12

T2 [GeV]

d
σ
/
d
T 2

[n
b
/
G
e
V
]

LEP (91.2GeV)

GENEVA NLL′
T +LO3

Partonic

NLL′
NLL′+LO3

LO3

(a) Peak Region

0

1

10 11 12 13 14 15 16 17 18 19 20

0.2

0.4

0.6

0.8

1.2

1.4

T2 [GeV]

d
σ
/
d
T 2

[n
b
/
G
e
V
]

LEP (91.2GeV) GENEVA NLL′
T +LO3

Partonic

NLL′
NLL′+LO3

LO3

(b) Transition Region

20 25 30 35 40

0.01

0.1

10−3

T2 [GeV]

d
σ
/
d
T 2

[n
b
/
G
e
V
]

LEP (91.2GeV)

GENEVA NLL′
T +LO3

Partonic

NLL′
NLL′+LO3

LO3

(c) Tail Region

0
0 1

2

2 3

4

4 5

6

6 7

8

8 9

10

10

12

T2 [GeV]

d
σ
/
d
T 2

[n
b
/
G
e
V
]

LEP (91.2GeV)

GENEVA NNLL′
T +NLO3

Partonic

NNLL′
NNLL′+NLO3

NLO3

(d) Peak Region

0

1

10 11 12 13 14 15 16 17 18 19 20

0.2

0.4

0.6

0.8

1.2

1.4

T2 [GeV]

d
σ
/
d
T 2

[n
b
/
G
e
V
]

LEP (91.2GeV) GENEVA NNLL′
T +NLO3

Partonic

NNLL′
NNLL′+NLO3

NLO3

(e) Transition Region

20 25 30 35 40

0.01

0.1

10−3

T2 [GeV]

d
σ
/
d
T 2

[n
b
/
G
e
V
]

LEP (91.2GeV)

GENEVA NNLL′
T +NLO3

Partonic

NNLL′
NNLL′+NLO3

NLO3

(f) Tail Region

Figure 3.3: The Geneva partonic NLL′+LO3 result is shown compared to the
analytic resummation of T2 matched to fixed order at NLL′+LO3 in the (a) peak,
(b) transition, and (c) tail regions. Also shown for comparison is the pure resummed
result at NLL′ and the fixed-order LO3 contribution. Figures (d), (e), and (f) show
the Geneva partonic result at NNLL′+NLO3 compared to the analytic resummation
of T2 matched to fixed order at NNLL′+NLO3. The pure NNLL′ resummation and
fixed-order NLO3 result are also shown for comparison.

At next higher order, using as inputs to the master formula the NNLL′+LO3 re-
summation of T2 and the NLO3 fixed-order calculation, we see that the central value
and event-by-event uncertainties in Geneva agree very well with the full analytic
NNLL′+NLO3 resummed prediction in the peak and transition regions, as shown in
figures 3.3(d) and 3.3(e). In the tail region, figure 3.3(f), Geneva has significantly
smaller uncertainties of the same size as the pure fixed-order contribution. This is
because there is a substantial cancellation between singular and nonsingular contri-
butions in this region, which is incorporated differently in the analytic resummation
and the master formula at NNLL′+NLO3. For the former, the nonsingular α2

s contri-
butions are added. This preserves the absolute size of residual resummation uncer-
tainties, which are very small relative to the singular contributions but large relative
to the total result after cancellation. In the master formula in eq. (3.56), the nonsin-
gular contributions are incorporated multiplicatively through the ratio of dσFO/dΦ3

and dσresum/dΦ2dT2

∣∣
FO

. This preserves the relative size of residual resummation un-
certainties, thus leading to much smaller absolute variations when compared to the
final result. Comparing the Geneva prediction with the pure NNLL′ resummed and
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NLO3 fixed-order results, we see that the master formula precisely interpolates as ex-
pected between the fixed-order and resummation regions, with the transition region
properly describing the transition between the two, including uncertainties.

Combining the exclusive 2-jet cross section with the integral of the inclusive 3-jet
cross section, the Geneva prediction at NNLL′+NLO3 formally reproduces the total
inclusive cross section at NLO. Numerically, we have σNLO

tot = 44.1±0.2 nb. With T cut
2

smeared between 0.5−1 GeV, the total inclusive cross section in Geneva is σGeneva
tot =

42.5±1.6 nb, where the uncertainties are given by integrating over the different profile
scale variations. The central value is 3.8% low and agrees within the uncertainties of
±3.8%. The uncertainty in Geneva that comes from integrating the spectrum over
T2 > T cut

2 , as in eq. (3.6), is much larger than the fixed-order uncertainty. The reason
is that, at any given point in the spectrum, but especially in the peak region, the
relative uncertainties, reflecting both shape and normalization, are larger than in the
total cross section. Hence, when integrating the spectrum to obtain the total cross
section, the uncertainties in the spectrum must cancel each other, meaning there is
a negative correlation in the uncertainties between different regions in the spectrum.
When the resummation and matching to fixed order is performed for the spectrum,
this correlation and cancellation is numerically not exact for the total cross section.
This is a well-known limitation of analytic resummation [85]. In fact, the result from
Geneva is completely consistent with the inclusive cross section obtained using the
analytic resummed result in eq. (3.6) with σ(T cut

2 ) calculated at NNLL′+LO3 and
dσ/dT2 calculated at NNLL′+NLO3. In this case, with T cut

2 = 1 GeV, the central
value is 3.5% low with uncertainties of ±3.7%. One way to solve this problem would
be to enforce a (highly nontrivial) constraint on the profile scale variation to reproduce
the required correlation exactly, in which case the total cross section would come out
exactly right. In practice, a simpler way to enforce this is to compute the result
for the resummed cumulant as the difference between the total cross section and the
integrated resummed spectrum. (This is similar in spirit to the method proposed in
refs. [47, 36, 37].) Since the focus in this thesis is the differential spectrum, which
serves as the primary input to the Monte Carlo, rather than the total cross section,
we leave this for future improvement.

3.3.2.2 Showered results

Next, we validate our interface with the parton shower. In figure 3.4, we compare
the NNLL′+NLO3 partonic and showered Geneva predictions with T cut

2 smeared
between 0.5 − 1 GeV. We also show the analytic resummed NNLL′+NLO3 and
pure fixed-order NLO3 spectra for comparison. Before showering, the cumulant
dσ/dΦ2(T cut

2 ) is in the T2 = 0 GeV bin, and we see the effect of the smeared T cut
2

on the spectrum in the Geneva partonic histogram in figure 3.4(a). The parton
shower generates emissions inside the 2-jet bin, which fills out and determines the
shape of the Geneva showered result in the region below T cut

2 and agrees remarkably
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Figure 3.4: The T2 distribution at NNLL′+NLO3 from Geneva before and after
showering with Pythia 8 in the (a) peak, (b) transition, and (c) tail regions of the
distribution. The analytic resummed result at NNLL′+NLO3 and the fixed-order
NLO3 contribution are shown for comparison.

well with the analytic resummed spectrum below the cut. While the shape of the
spectrum here is determined only by Pythia, the cross section below T cut

2 is still
accurate to NNLL′+LO3. We can see this explicitly in figure 3.5 from the separate
contribution of 2-, 3-, and 4-parton events before and after showering for the central
value in the peak region. The shape of the 2-parton showered histogram is deter-
mined by Pythia, and the area under the histogram is the cumulant dσ/dΦ2(T cut

2 )
calculated at NNLL′+LO3. The relative contribution of 3-parton and 4-parton events
is determined by T cut

3 = 2 GeV, for which the 4-parton contribution is well behaved,
giving 15% of the total cross section and no large cancellation with 3-parton events.
These contributions all combine smoothly to generate the total Geneva showered
result.

The action of the shower on 3-parton and 4-parton events, which make up the
spectrum above T cut

2 , is restricted to not change T2 by more than a power suppressed
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Figure 3.5: The peak region of the T2 distribution from Geneva partonic (left)
and after showering with Pythia 8 (right). The contribution from events originating
from 2-, 3-, and 4-parton events is shown along with their sum (solid blue histogram),
including the perturbative uncertainties shown by the error bars or band.

amount λ T2, as discussed in section 3.3.1.3. This controls the allowed shift from
the Geneva partonic to showered histograms in figure 3.4. We can see that there
is excellent agreement, including uncertainties, between the two in the peak and
transition regions. This validates that, with our choice of λ, the higher-order accuracy
of the resummed T2 spectrum is not compromised by the shower. (Increasing λ, we
do observe, at some point, a shift of showered results away from partonic.) The
showering does shift the T2 spectrum in the far tail away from the partonic result,
which matches the NLO3 curve, as can be seen in figure 3.4(c). This is allowed, since
our partonic prediction in this region becomes only leading order for 4 partons.

3.3.2.3 Hadronized results and comparison to data

The full prediction for the jet resolution spectrum is obtained by turning on the
hadronization in Pythia. This gives rise to a shift in the T2 spectrum, shown in
figure 3.6, where “default” refers to the default running parameters αs(mZ) = 0.1135
and Pythia e+e− tune 1. As discussed in section 3.3.1.3, we use the standard Pythia
8 tunes without modifying any internal parameters. For comparison, we show the
Geneva hadronized result for tune 3 with our default αs value as well as for tune
1 with the world average value αs(mZ) = 0.1184. We also show a comparison to
experimental data from ALEPH [2] and OPAL [3]. We only show ALEPH data in
the tail since the OPAL data in this region is sparse. These measurements are fully
corrected to the particle level, allowing us to directly compare to our hadronized
predictions. Since the data are normalized to the total cross section, we rescale them
to the total NNLO cross section and convert from thrust T to T2 = Ecm(1 − T ).
This allows us to directly compare the data to the absolute cross section predictions
in Geneva, unlike a comparison between normalized spectra, which would only test
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Figure 3.6: The showered NNLL′+NLO3 Geneva prediction with and without
hadronization using the default values Pythia 8 e+e− tune 1 and αs(mZ) = 0.1135
compared to data from ALEPH [2] in the (a) peak, (b) transition, and (c) tail regions
and to OPAL [3] in the peak and transition regions. The ratio of Geneva predictions
to the ALEPH data is shown in (d). Also shown is the Geneva prediction at the
central scale with αs(mZ) = 0.1184 and e+e− tune 3.

the shape. The Geneva prediction at the default values agrees impressively well with
the data within uncertainties across the peak and transition regions and into the tail.
The difference in the far tail is expected since here fixed-order contributions beyond
LO4 are important and are not yet included in our results.

The partonic Geneva prediction does not include nonperturbative effects in the
soft function of O(ΛQCD/T2), nor power corrections of the form O(ΛQCD/Ecm). Since
we strongly constrain the action of the Pythia parton shower to not change the
analytic resummed NNLL′+NLO3 result, as discussed in section 3.3.1.3 and demon-
strated in figure 3.4, we expect the hadronization in Pythia to supply these missing
nonperturbative effects. In effect, Pythia provides a well-tested model of the non-
perturbative soft function in eq. (3.62). We show the hadronized Geneva result with
Pythia e+e− tune 3 at the central scale in figure 3.6 as a measure of the uncertainty
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from hadronization. Tune 3 turns out to give a smaller shift due to hadronization
than tune 1, which makes a significant difference in the peak below . 3 GeV, where
nonperturbative corrections are O(1) and depend on the details of the hadronization
model. In the transition and tail regions, we see a smaller difference, with tune 3
being systematically lower than tune 1. This is consistent with the fact that the tran-
sition and tail regions are sensitive only to the first nonperturbative power correction
in the soft function of O(ΛQCD/T2).

There is an important interplay between the effect of hadronization and the value
of αs(mZ), as discussed in ref. [85], where a simultaneous fit to αs(mZ) and the
first nonperturbative correction to the soft function of O(ΛQCD/T2) was carried out.
Generically, larger nonperturbative corrections shift the partonic spectrum to larger
values of T2, while a smaller value of αs(mZ) shifts the 2-jettiness spectrum downward.
This gives rise to compensating effects. Since tune 3 gives a smaller shift due to
hadronization than tune 1, the combination of tune 3 and αs(mZ) = 0.1135 gives an
estimate of the lower bound on the combined uncertainty of these two effects in the
transition and tail regions, while the combination of tune 1 and αs(mZ) = 0.1184 gives
an estimate of the upper bound. This is illustrated very well in the ratio of Geneva
to ALEPH data in figure 3.6(d). Both are, however, still within the perturbative
uncertainties from Geneva across most of the transition and tail regions.

We have also checked that the nonperturbative shift from Pythia tune 1 is of
similar size as expected from the fit results in ref. [85]. This is consistent with the
fact that it gives a good description of the data when used together with their fitted
value of αs(mZ). Hence, we use tune 1 with αs(mZ) = 0.1135 as the default since
it agrees best with the data in the peak and provides a consistent description of the
data across larger values of T2.

3.3.3 Predictions for other event shapes

In this section, we present Geneva’s predictions for a variety of dijet event shape
variables. Examining observables other than the jet resolution variable we use as input
serves to validate our master formula at the fully differential Φ2,3 level [see eq. (3.55)]
rather than its projection onto the T2 spectrum [see eq. (3.26)]. Event shapes are
particularly useful to consider because there exist both higher-order resummed results
and precision LEP data with which we can compare.

By construction, Geneva correctly predicts other observables at NLO3, while
maintaining the correct inclusive cross section. However, as discussed in section
3.2.2.3, it is an important open question to what extent the NNLL′T+NLO3 resum-
mation of the T2 spectrum increases the accuracy of resummed predictions for the
other observables (beyond the partial NLL order naively expected by interfacing with
the parton shower). While other observables will not be predicted at the same re-
summed order as T2, the accuracy of the predictions for event shapes is expected
to increase as a function of their correlation with 2-jettiness. The comparison of
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Geneva to the higher-order analytic resummation of event shapes plays a crucial
role in numerically testing the accuracy achieved in our approach and validating the
event-by-event perturbative uncertainties.

We present results for the C-parameter [106, 107, 108], heavy jet mass (ρ) [109,
110], and jet broadening (B) [111, 112] event shapes. These are defined as follows:

C =
3

2

1

(
∑

k|~pk|)
2

∑
i,j

|~pi||~pj| sin2 θij ,

ρ =
1

E2
cm

max
(
M2

1 ,M
2
2

)
, where M2

i =

( ∑
k∈hemii

pk

)2

for i = 1, 2 ,

B =
1

2
∑

k|~pk|
∑
i

|~pi × n̂T | , (3.73)

where n̂T is the thrust axis and is used in heavy jet mass to divide the event into
two hemispheres, hemi1,2, with respect to which the masses M1,2 are measured. C, ρ,
and B provide a useful range of event shapes to compare to since their resummation
structure is increasingly different from that of T2. The resummation of C-parameter is
precisely the same as T2 to NLL and has the same convolution structure as eq. (3.61)
beyond. Heavy jet mass has a different convolution structure from T2. Both ρ and
T2 are projections of the same doubly differential spectrum dσ/dM2

1 dM2
2 , where T2

is related to the sum and heavy jet mass to the maximum of the hemisphere masses.
Of the event shapes we consider, jet broadening is most different from T2; it measures
momentum transverse to the thrust axis and, in the dijet limit, is sensitive to the
recoil of the thrust axis due to soft emissions [113], unlike T2. This complicates the
higher-order resummation of jet broadening, which was only recently extended to
NNLLB [114] and gives a logarithmic structure that is very different from T2. As a
result, jet broadening provides a highly nontrivial test of the accuracy and theory
uncertainties of the Geneva prediction.

For each of these observables, we compare to analytic resummed predictions as
well as the NLO3 fixed-order contribution from Event2. We present new results for
the analytic resummation of C-parameter at NNLL′C+NLO3, extending the previous
NLLC resummation of [115].14 Note the subscript on the order of resummation indi-
cates the observable for which analytic resummation was carried out. Since resummed
results for jet broadening do not exist at NNLL′B, we compare to the highest avail-
able resummation NNLLB+LO3, where we use the results of [114], which we extend
to include fixed-order matching that is necessary to describe the tail and transition
regions. Finally, for heavy jet mass, N3LLρ resummed results exist [84]; however,
we show the NNLL′ρ+NLO3 resummation since this is consistent with the highest T2

resummation we use.

14We thank Vicent Mateu and Iain Stewart for pointing out to us the relationship between thrust
and C-parameter in SCET.
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It is important to note that all running parameters were set based on the T2

spectrum alone, and no further optimization was carried out for other observables.
This ensures that our results for other observables are true predictions of the Geneva
framework.

3.3.3.1 C-parameter

In figure 3.7, we show the Geneva prediction for C-parameter both at the partonic
level and showered, using NLL′T+LO3 resummation as input to our master formula
in figures 3.7(a) and 3.7(b) and at next higher order NNLL′T+NLO3 in figures 3.7(c)
and 3.7(d). We compare this to the analytic resummed C-parameter prediction at
the same order as the T2 resummation we input, as well as one order lower. The
comparison of the Geneva prediction at different orders in the peak and transition
regions is useful because it highlights the features of resummation that are consis-
tently captured by our implementation. In the tail region, figure 3.7(e), where the
comparison to the NLO3 fixed-order result is most relevant, we only show our highest
order NNLL′T+NLO3 Geneva result.

We see the effect of the cut on 2-jettiness of T cut
2 = 0.5 − 1 GeV up to C =

0.066 in the partonic prediction from Geneva in figures 3.7(a) and 3.7(c) since C ≤
6T2/Q [115]. Interfacing with the shower generates emissions inside the jets and
fills out the region below C = 0.066. The action of the parton shower is restricted
based on the constraints on T2 discussed in section 3.3.1.3. This effectively constrains
the C-parameter distribution as well, giving very little change from the partonic to
showered predictions at both resummation orders except in the multijet region of the
far tail. Here, the constraints on the shower are looser, reflecting the fact that our
prediction is correct at LO4. The size of the shift from the partonic to the showered
result in the peak and transition regions is a measure of the correlation between the
C and T2 event shapes, where, although the two differ beyond NLL, their logarithmic
structure is the same. It is worth noting however, that despite the similarity of the
resummation structure between C and T2, the shape of the C-parameter spectrum is
very different, with the singular terms dominating the nonsingular for a much larger
region of the spectrum.
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Figure 3.7: The C-parameter partonic and showered Geneva predictions are shown
compared to the analytic resummation of C-parameter at different orders. The
Geneva result at NLL′T+LO3 is compared to NLLC and NLL′C+LO3 in (a) and
(b). In (c) and (d), the Geneva prediction at one order higher, NNLL′T+NLO3, is
compared to NLL′C+LO3 and NNLL′C+NLO3, while in the tail (e), we also show the
fixed-order NLO3 prediction from Event2.
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Figure 3.8: The C-parameter distribution comparing Geneva with and without
hadronization using Pythia 8 e+e− tune 1 and αs(mZ) = 0.1135 is shown com-
pared to ALEPH data in the (a) peak, (b) transition, and (c) tail regions and to
OPAL data in the peak and transition regions. The ratio of the Geneva predictions
to ALEPH data is shown in (d). Also shown are the Geneva predictions at the
central scale with αs(mZ) = 0.1184 and e+e− tune 3.

One might naively expect that the accuracy of the resummation achieved in
Geneva for any observable other than T2 would only be the partial NLL of the
parton shower. However, it is clear that the Geneva prediction at NLL′T+LO3 in
the peak and into the transition region, figures 3.7(a) and 3.7(b), is much more con-
sistent with NLL′C+LO3 than NLLC resummation, both in its central value and also
in the size of the perturbative uncertainties it predicts. This appears to hold even
in the peak region below C ∼ 0.05, where the parton shower determines the shape
of the spectrum. Going to one higher order in figures 3.7(c) and 3.7(d), we see that
the same pattern holds: the Geneva prediction is consistent with the higher-order
NNLL′C+NLO3 resummation rather than NLL′C+LO3, including uncertainties. This
is particularly clear in the peak region where the central values of the two analytic
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resummation orders are significantly different and Geneva tracks the NNLL′C+NLO3

prediction. The convergence of the Geneva result for C-parameter from NLL′T+LO3

to NNLL′T+NLO3 demonstrates the consistency of the Geneva implementation in-
cluding the event-by-event uncertainties for this observable. Although the accuracy
of the Geneva prediction for C-parameter is not formally of the same order as the
T2 resummation we used as input to the master formula, the fact that it matches
the analytic C-parameter resummation remarkably well both at NLL′C+LO3 and at
NNLL′C+NLO3 shows that numerically the accuracy achieved is very close.

The Geneva uncertainties in the transition region start to shrink relative to the
analytic resummation as we interpolate to the fixed-order NLO3 result. In the tail
region, the partonic Geneva prediction matches smoothly to the fixed-order NLO3

result past the Sudakov shoulder at C = 0.75 [116], demonstrating the validity of the
multiplicative implementation of dσ/dΦ3(T2) in eq. (3.56) in this limit.

The Geneva prediction including hadronization with the default running values
of Pythia e+e− tune 1 and αs(mZ) = 0.1135 is shown in figure 3.8 compared to
ALEPH and OPAL data rescaled to the NNLO inclusive cross section. Geneva
agrees with the data remarkably well across the entire distribution up to the multijet
region in the tail. We show the effect of αs(mZ) = 0.1135 with tune 3, which gives a
smaller correction from hadronization than tune 1, as seen from the size of the shift
from the Geneva unhadronized result to the hadronized in figure 3.8. We also show
the Geneva prediction at the central scale using the world average αs(mZ) = 0.1184
and tune 1. These two combinations provide an estimate of the upper and lower
bounds on the combined uncertainty of the nonperturbative effect and αs(mZ) value
in the transition and tail regions, as discussed in section 3.3.2. The ratio of the Monte
Carlo to data in figure 3.8(d) shows that they are both largely within the perturbative
uncertainties from Geneva in these regions. Of the values we consider, the default
tune 1 with αs(mZ) = 0.1135 gives the best agreement with the data across the C
spectrum and is consistent with our findings for the T2 distribution.

3.3.3.2 Heavy jet mass

The Geneva prediction for heavy jet mass is shown in figure 3.9, where we com-
pare the partonic and showered results using NLL′T+LO3 resummation in the mas-
ter formula in figures 3.9(a) and 3.9(b) to the analytic resummation of ρ at NLLρ
and NLL′ρ+LO3. In figures 3.9(c) and 3.9(d), we show the same results at one order
higher, comparing NNLL′T+NLO3 Geneva results to NLL′ρ+LO3 and NNLL′ρ+NLO3

analytic ρ resummation. In the tail, we show only the highest-order Geneva and
resummed results along with the pure fixed-order NLO3 contribution, since this is
sufficient to demonstrate the behavior in this region.

In the peak region, figures 3.9(a) and 3.9(c), we see the effect of T cut
2 on the

partonic ρ spectrum up to ρ = 1 GeV/Ecm = 0.011, which is smoothly filled out by
interfacing with the parton shower. The Geneva showered prediction in figure 3.9(a)
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shows impressive agreement with the NLL′ρ+LO3 resummed result in the peak region,
including uncertainties. The improvement in accuracy of the Geneva prediction for
heavy jet mass over the partial NLL resummation provided by the parton shower is
clear. Going to one higher order in figure 3.9(c), the Geneva prediction is more
consistent with the NNLL′ρ+NLO3, with which it agrees within uncertainties, rather
than the NLL′ρ+LO3 result.

The perturbative uncertainties of the Geneva showered prediction are larger than
those at NNLL′ρ+NLO3 and smaller than at NLL′ρ+LO3. This is consistent with the
fact that, while the Geneva prediction for ρ is not formally of the same order as the
T2 resummation that is input into the master formula, there is a gain in accuracy
going from Geneva at NLL′T+LO3 to NNLL′T+NLO3 that is transferred to the ρ
prediction.

In the transition region, both at NLL′T+LO3 and NNLL′T+NLO3, adding the
parton shower gives rise to a larger shift from the partonic spectrum than for the C-
parameter, because heavy jet mass is less correlated with T2 than C. This shift is nec-
essary to obtain agreement with the NNLL′ρ+NLO3 resummation within uncertainties
in figure 3.9(d). The partonic Geneva prediction in this region is more consistent
with NLL′ρ+LO3 analytic resummation, which is higher than the NNLL′ρ+NLO3 re-
sult. By restricting the change in T2 due to the shower, we are constraining the sum
of the hemisphere masses, M2

1,2 in eq. (3.73). For a given value of T2, ρ is largest when
either hemisphere mass is zero, and so ρ = T2. Adding the parton shower tends to
make this mass nonzero (while constraining the sum) and therefore gives an overall
shift of the spectrum to lower values of ρ. In the tail region, the partonic spectrum
interpolates to the fixed-order NLO3 result, as expected, with the shower giving rise
to a larger shift in the multijet region where our constraints are looser.

In figure 3.10, we show the showered Geneva prediction with and without hadron-
ization, with our default parameters. As before, we compare to ALEPH and OPAL
data, which shows impressive agreement with the data within uncertainties across all
three regions of the ρ spectrum, with the expected deviation in the multijet region of
the far tail. As discussed previously, tune 3 with αs(mZ) = 0.1135 and tune 1 with
αs(mZ) = 0.1184 provide bounds on the estimate of the combined uncertainty from
these two inputs. It is interesting to note that heavy jet mass is relatively insensitive
to hadronization in the transition and tail regions. This is demonstrated by the shift
from the shower-only to the fully hadronized result in figures 3.10(b) and 3.10(c),
as well as the small change in the default central value from using tune 1 to tune
3 above ρ ∼ 0.1 seen in figure 3.10(d). This breaks the coupling in some respect
between the nonperturbative effects and the value of αs in this region and suggests
that αs(mZ) = 0.1135 provides better agreement with the data.
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3.3.3.3 Jet broadening

Finally, we turn to the results of Geneva for jet broadening, which is the most
orthogonal event shape to our jet resolution variable that we consider. In figure 3.11,
we show the Geneva partonic and showered results using NLL′T+LO3 resummation
in figures 3.11(a) and 3.11(b) and NNLL′T+NLO3 resummation in figures 3.11(c) and
3.11(d). We compare these to the analytic NLLB and the best available NNLLB+LO3

resummed prediction. Note that we would like to compare the NLL′T+LO3 resum-
mation in Geneva to the resummation of B at the same order. However, since
going from NLL′B to NNLLB (which incorporates α2

s lnB terms into the resumma-
tion) is a comparatively small effect in this case, we will find it useful to compare the
NLL′T+LO3 prediction with the analytic NNLLB+LO3 result. In the tail, we compare
to the fixed-order NLO3 result from Event2, which is the more relevant comparison
in this region.

The effect of the cut on T2 extends up to B ' 0.055 in the peak region and
is smoothly removed by attaching the parton shower. Both at NLL′T+LO3 and
NNLL′T+NLO3, there is a significant shift induced by the parton shower across the
jet broadening spectrum toward larger values of B. The size of this shift is a measure
of the lack of correlation between B and T2, the variable used to constrain the parton
shower, and is therefore progressively larger for C, ρ, and B, as we have seen.
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Figure 3.9: The heavy jet mass partonic and showered Geneva predictions are shown
compared to the analytic resummation of ρ at different orders. The Geneva result at
NLL′T+LO3 is compared to NLLρ and NLL′ρ+LO3 in (a) and (b). In (c) and (d), the
Geneva prediction at one order higher, NNLL′T+NLO3, is compared to NLL′ρ+LO3

and NNLL′ρ+NLO3, while in the tail (e), we also show the fixed-order NLO3 prediction

from Event2.
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Figure 3.10: The heavy jet mass distribution comparing Geneva with and without
hadronization using Pythia 8 e+e− tune 1 and αs(mZ) = 0.1135 is shown compared
to ALEPH data in the (a) peak, (b) transition, and (c) tail regions and to OPAL data
in the peak and transition regions. The ratio of the Geneva predictions to ALEPH
data is shown in (d). Also shown are the Geneva predictions at the central scale
with αs(mZ) = 0.1184 and e+e− tune 3.
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Figure 3.11: The jet broadening partonic and showered Geneva predictions are
shown compared to the analytic resummation of B at NLLB and NNLLB+LO3. The
Geneva result at NLL′T+LO3 is shown in (a) and (b), and at one order higher,
NNLL′T+NLO3, in (c) and (d). In the tail (e), we also show the fixed-order NLO3

prediction from Event2.
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Figure 3.12: The jet broadening distribution comparing Geneva with and without
hadronization using Pythia 8 e+e− tune 1 and αs(mZ) = 0.1135 is shown compared
to ALEPH data in the (a) peak, (b) transition, and (c) tail regions and OPAL data
in the peak and transition regions. The ratio of the Geneva predictions to ALEPH
data is shown in (d). Also shown are the Geneva predictions at the central scale
with αs(mZ) = 0.1184 and e+e− tune 3.

As discussed in section 3.2.2.3, in the IR limit where both T2, B → 0, one might
expect to see some improved accuracy of the Geneva prediction over the partial
NLL of the parton shower, since the higher-order resummation of T2 provides a better
description in this region. This is consistent with figure 3.11(a), where the showered
Geneva prediction agrees well with the NNLLB+LO3 resummed result, including
uncertainties in the peak region. In the transition region in figure 3.11(b), the central
value of the Geneva showered prediction agrees with the NNLLB+LO3 resummed
result within uncertainties; however, the uncertainties from Geneva are smaller than
the corresponding analytic ones, which suggests that in this region they may be
underestimated.

In the far transition region and into the tail, the uncertainties in Geneva generi-
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cally are smaller than the corresponding analytic resummation and of order the NLO3

scale variation, as seen for example in the T2, C, and ρ spectra. This difference arises
because Geneva multiplicatively interpolates to the fixed-order result, while the an-
alytic resummation does an additive matching, as discussed in section 3.3.2.1. For an
observable such as jet broadening, the lack of correlation with T2 means that larger
values of the T2 spectrum contribute at smaller values of B. This can lead to an
underestimate of the uncertainties from Geneva at intermediate values of B where
the resummation is still important.

Going to higher order in Geneva in figures 3.11(c) and 3.11(d), the uncertainties
of the showered prediction decrease and overlap with the NNLLB+LO3 uncertainties
over much of the peak and transition regions. It would be interesting to compare
the Geneva prediction to the next higher-order analytic resummed jet broadening
prediction to numerically test the accuracy achieved; however, this is not yet available.
Determining the formal accuracy of the Geneva prediction for a given observable and
systematically including the uncertainty associated to the lack of correlation with T2

are next steps that we leave for future work. As mentioned in section 3.3.1.3, one
possibility would be to include the size of the shift from the partonic to the showered
results as a conservative estimate of the uncertainty due to the remaining showering.

The partonic Geneva jet broadening prediction interpolates smoothly to the
fixed-order NLO3 result in the tail, with uncertainties that match the fixed-order
result in this region. As for the other observables, this validates the behavior of the
fully differential master formula in eq. (3.56) in this limit.

In figure 3.12, we show the hadronized Geneva prediction for jet broadening
compared to data from ALEPH and OPAL, which shows good agreement within
uncertainties across the peak and transition regions and is low as expected in the far
tail. The uncertainty from the Pythia tune and value of αs are indicated by the
central values of the tune 3 and αs(mZ) = 0.1184 histograms, which agree within
the perturbative uncertainties of the default Geneva prediction across most of the
transition and tail regions. As for the other observables, we see better agreement in
the peak (below B ∼ 0.1) with Pythia tune 1 and αs(mZ) = 0.1135.

3.4 Application to hadronic collisions

In this section, we apply the framework developed in section 3.2 to hadronic
collisions and present first results from the implementation in the Geneva Monte
Carlo. To accommodate hadrons in the initial state, special consideration is required
for each component of our master formula. Our goal is to demonstrate that the same
methods can be applied in a hadronic environment to obtain a consistent description
at the next higher perturbative accuracy. We use Drell-Yan production pp→ Z/γ∗ →
`+`− as a concrete example to study the framework, deferring a detailed comparison
with Tevatron and LHC data to later work.
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In hadronic collisions, N -jettiness can be used as a jet resolution variable, with
the observable taking the initial states into account. The theoretical framework exists
to resum N -jettiness at hadron colliders, and this resummation has been applied to
several processes [117, 41, 118]. Similarly, the techniques required to perform the
next-to-leading-order calculations at hadron colliders are known. A phenomenolog-
ical study additionally requires Geneva to be interfaced with a parton shower and
hadronization model that includes multiple parton interactions.

In the Drell-Yan example, the 0-jet resolution variable is beam thrust, T0, which
is the analog to 2-jettiness, T2, used in the e+e− application.15 The resummation
of beam thrust is performed to NNLL, and the jet multiplicities at fixed order are
calculated at NLO0 and LO1. The prediction of Geneva is compared to the analytic
resummation of T0 at NNLL+LO1 as a demonstration that the program correctly
describes the matching between 0- and 1-jet multiplicities. Finally, we discuss how the
accuracy of these ingredients can be improved and the challenges present in applying
Geneva to hadron collisions.

Beam thrust is defined as a sum of contributions from particles in the final state [1],

T0 =
∑
k

min
{
na · pk, nb · pk

}
, (3.74)

where the observable is evaluated in the center-of-mass frame of the hard partonic
collision. The na,b are light cone vectors along the beam (ẑ) axis, with na = (1, ẑ) and
nb = (1,−ẑ). Beam thrust can be evaluated in any frame by performing a longitudinal
boost on eq. (3.74).

With the addition of more final-state jets, the N -jettiness definition can be gen-
eralized from the 0-jet case,

TN =
∑
k

min
{
na · pk, nb · pk, n1 · pk, . . . , nN · pk

}
. (3.75)

As for beam thrust, this observable is evaluated in the partonic center-of-mass frame.
The ni = (1, n̂i) for i = 1, . . . , N are light cone vectors along the jet directions.
Note that the above definition of TN is a simple extension of the observable for
e+e− collisions, which has no contribution from the beam directions but is otherwise
identical.

3.4.1 Master formula and ingredients for hadronic collisions

As in the e+e− case, the master formula for the cross section in Geneva is given
by eq. (3.29), eq. (3.30), and eq. (3.37). To match the 0- and 1-jet multiplicities for

15Since we are mainly interested in QCD corrections, we have chosen the subscript on T to indicate
the multiplicity of jets in the final state.
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a general process, the master formula is

dσincl

dΦ0

=
dσ

dΦ0

(T cut
0 ) +

∫
dΦ1

dΦ0

dσ

dΦ1

(T0) θ(T0 > T cut
0 ) , (3.76)

where the 0-jet cumulant, dσ/dΦ0(T cut
0 ), and the 1-jet spectrum, dσ/dΦ1(T0), are

dσ

dΦ0

(T cut
0 ) =

dσresum

dΦ0

(T cut
0 ) +

[
dσFO

dΦ0

(T cut
0 )− dσresum

dΦ0

(T cut
0 )

∣∣∣∣
FO

]
,

dσ

dΦ1

(T0) =
dσincl

dΦ1

[
dσresum

dΦ0dT0

/
dσresum

dΦ0 dT0

∣∣∣∣
FO

]
. (3.77)

Φ0 is the phase space for the hard scattering that produces the 0-jet final state, and
Φ1 includes the additional phase space for the final-state jet.

In Geneva, the contributions to these cross sections are calculated separately for
each parton subprocess. Because the fixed-order matching in the 0-jet cumulant is
performed additively, the net weight in the 0-jet cumulant after summing over events
is the same as the flavor-summed cumulant. In the 1-jet spectrum, the fixed-order
matching is performed multiplicatively, meaning the sum over all events for a given
T0 has a different cross section than if we used flavor-summed components for the
different terms in the matching formula. The two approaches agree up to higher-order
corrections, but the former approach is natural in the Monte Carlo. In the following
subsections, we will discuss how the resummed and fixed-order contributions to the
master formula are obtained.

3.4.1.1 Resummation

Like T2 for e+e− collisions, beam thrust can be factorized in SCET and the re-
summation can be carried out systematically to higher orders. The factorized beam
thrust spectrum for Drell-Yan is given by [40]

dσ

dΦ0dT0

=
dσB
dΦ0

∑
ij

Hij(Q, µ)

∫
dtadtbBi(ta, xa, µ)Bj(tb, xb, µ)Sij

(
T0 −

ta + tb
Q

, µ
)
,

(3.78)
where Q is the dilepton invariant mass, and Φ0 is the phase space for the qq̄ →
`+`− hard scattering. The momentum fractions xa,b are defined in terms of the total
rapidity Y of the final state from the hard scattering,

xa =
Q

Ecm

eY , xb =
Q

Ecm

e−Y . (3.79)

Comparing eq. (3.78) to the e+e− analog, eq. (3.61), it is clear that the factorization
theorems are structurally similar. The chief difference is that, while the jet functions
in eq. (3.61) parametrize the collinear evolution of final-state jets, the beam functions
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in eq. (3.78) parametrize the collinear evolution of the incoming partons as well as the
nonperturbative process of extracting high-energy partons from the proton. The beam
functions can be further factorized into a convolution between the parton distribution
functions fj and perturbatively calculable Wilson coefficients Iij [40, 119],

Bi(t, x, µ) =
∑
j

∫ 1

x

dξ

ξ
Iij
(
t,
x

ξ
, µ
)
fj(ξ, µ) . (3.80)

Note that due to initial-state radiation, the xa,b are distinct from the Bjorken vari-
able ξ appearing in the convolution above that gives the momentum fraction of the
energetic partons that are liberated from the proton. The sum over partons i, j in
eq. (3.78) is a sum over flavor singlet quark-antiquark combinations, such as uū or
b̄b. For each flavor, the beam functions are different, and the hard function Hij dif-
fers for up- and down-type quarks due to the different electroweak couplings to the
gauge boson. This flavor sum is an important consideration when implementing the
master formula in Geneva, since the Monte Carlo generates events for each flavor
combination, and the flavor sum is performed in the sum over events.

For processes with final-state jets, the extension of the beam thrust factorization
theorem to N -jettiness is known and has the schematic form [1, 80]

dσ

dΦNdTN
=

dσB
dΦN

Tr
∑
κ

Hκ

[(
Bκ
a B

κ
b J

κ
1 · · · JκN

)
⊗ SκN+2

]
(TN) . (3.81)

The trace is over the nontrivial color structures that can exist in the hard and soft
functions. Additionally, there is a sum over parton channels for the hard scattering
that are labeled by the index κ. The additional jets are associated with additional
collinear sectors in SCET, and the factorization theorem reflects this by including ad-
ditional jet functions. The soft function also changes to account for the soft radiation
between the final-state jets and the initial-state radiation from the colliding partons.

The factorization theorems in eqs. (3.78) and (3.81) can be used to perform the
resummation for both the spectrum and cumulant. Although these factorization
theorems directly describe the spectrum in T0 or TN , they can be integrated over
the observable to obtain the cumulant. The perturbative part of each function in the
factorization theorem is calculable, and for many processes the functions are known to
high order. Each function is associated with a scale that is connected to the physical
degrees of freedom that the function describes. As in the e+e− case, renormalization
group evolution resums the large logarithms of ratios of these scales (see table 3.2).

3.4.1.2 Fixed order

Following eq. (3.76), we need to define the 0-jet cumulant dσ/dΦ0(T cut
0 ) and the

1-jet spectrum dσ/dΦ1(T0). At the order we are interested in, the 1-jet spectrum will
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be given by the tree-level cross section B1(Φ1) for the process pp→ Z/γ∗j → `+`−j.
The 0-jet cumulant is given by

dσ

dΦ0

(T cut
0 ) = B0(Φ0) + V0(Φ3) +

∫
dΦ1

dΦ0

B1(Φ1)θ(T0 < T cut
0 )

+

∫
dΦ1,a

dΦ0

Ga(Φ1,a)θ(T0 < T cut
0 )

+

∫
dΦ1,b

dΦ0

Gb(Φ1,b)θ(T0 < T cut
0 ) , (3.82)

where the corresponding parton distribution functions have been included into the
definitions of the Born, virtual, and real emission cross sections,

BN(ΦN) = fa(xa, µF )fb(xb, µF )BN(ΦN) ,

VN(ΦN) = fa(xa, µF )fb(xb, µF )VN(ΦN) . (3.83)

In addition, in order to account for the incomplete cancellations of initial-state col-
linear singularities, we have included one collinear counterterm Ga,b for each initial-
state parton,

Ga(ΦN) = fa(xa, µF )fb(xb, µF )Ga(ΦN) ,

Gb(ΦN) = fa(xa, µF )fb(xb, µF )Gb(ΦN) . (3.84)

Assuming the UV divergences of V0 have already been taken care of by a proper
renormalization procedure, the remaining divergences present in B1, V0, and Ga,b are
of IR origin. We handle these divergences with the FKS subtraction procedure. After
having partitioned the phase space into nonoverlapping regions m, which contain at
most one collinear and one soft singularity, by means of a set of θTm-functions, the
final formula, including the subtraction counterterms, is

dσ

dΦ0

(T cut
0 ) = B0(Φ0) + V0(Φ0) + I(Φ0)

+
∑
m

∫
dΦm

rad

[
B1(Φm

1 )θTm(Φ0,Φ
m
rad)θ(T0 < T cut

0 )

− dΦm,s
rad

dΦm
rad

B1(Φm,s
1 )θs

m(Φ0,Φ
m,s
rad )− dΦm,c

rad

dΦm
rad

B1(Φm,c
1 ) +

dΦm,cs
rad

dΦm
rad

B1(Φm,cs
1 )

]
+

∫
dΦrad,a Ga(Φ1,a) +

∫
dΦrad,b Gb(Φ1,b) . (3.85)

As mentioned in section 3.3.1.2, we choose to partition the phase space by means
of θTm-functions that depend on the jet resolution variable. It is therefore crucial
to evaluate the jet resolution variable and the subtraction in the same frame. This
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ensures the proper cancellation of IR singularities by subtraction counterterms. The
preferred frame for the fixed-order calculations is the partonic center-of-mass frame,
since the subtraction is most naturally expressed in terms of variables defined in
that frame. Also, the jet resolution variable, eq. (3.74), is defined in this frame and
resummation can be performed in it. Therefore, our approach is to perform the entire
calculation in the partonic center-of-mass frame.

At this point, all the ingredients of eq. (3.85) are known and available in the
literature [102, 17]. Note that additional complications arise when extending this
construction to higher multiplicities because one must use a map that preserves the
value of T0 (up to power corrections), just as for T2 in the e+e− → 3 jet case. For our
pp → Z/γ∗ → `+`− study, this problem can be avoided since we currently include
only up to one extra parton and, consequently, the T0(Φ1) value is well defined. In
order to obtain T0(ΦN) with N > 1 in general, this issue may be addressed in a similar
fashion to what has been done for e+e−.

3.4.2 Application to Drell-Yan production

We study Drell-Yan production in pp collisions at Ecm = 8 TeV in Geneva,
sampling the invariant mass Q of the `+`− pair around the Z pole between MZ−10ΓZ
and MZ + 10ΓZ , where MZ = 91.1876 GeV is the mass of the Z and its width is
ΓZ = 2.4952 GeV [90]. The dominant contribution in this range of Q comes from
Z exchange, although the photon does contribute. Profile scales identical to those
used in the e+e− T2 resummation are used, which is justified since the logarithmic
structure is the same between the two observables. The resummation is turned off
just above T0 ∼ MZ/2, and for greater T0, the spectrum reproduces the fixed-order
distribution.

In figure 3.13, we show the analytic beam thrust resummation at NLL and NNLL+
LO1 in the peak, transition, and tail regions. In the peak and transition regions, the
resummed result converges well. At the end of the transition region and in the tail
region, the pure NLL resummed distribution goes to 0 as the resummation is turned
off, but the NNLL+LO1 distribution moves into the fixed-order result.

Implementing the Drell-Yan process in Geneva allows us to study the feasibility
of the multiplicative matching for the spectrum in eq. (3.77) and compare with the
analytic resummed distribution. We show this comparison in figure 3.14, where the
analytic curve is evaluated at NNLL+LO1. Additionally, we show the NNLL and LO1

distributions separately. Overall, the partonic Geneva distribution is quite close to
the NNLL+LO1 distribution, both in terms of the central values and the size of un-
certainties. In the peak region, the spectra match closely and agree well with the pure
NNLL resummed distribution. At the low end of the transition region, the resummed
spectra are still in fair agreement while moving to higher T0 values the Geneva par-
tonic prediction and the NNLL+LO1 distributions begin to systematically deviate
from the NNLL distribution. This deviation arises from the LO1 nonsingular terms
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Figure 3.13: Analytic resummation of T0 matched to fixed order in the (a) peak, (b)
transition, and (c) tail regions. The central value is shown along with the band from
scale uncertainties, as discussed in section 3.4.2, at NLL and NNLL′+LO1.

that are present in the matched spectrum but absent in the pure resummed one. In
the tail region, the Geneva partonic and NNLL+LO1 predictions move into the LO1

spectrum. After the resummation has been turned off, these spectra match the LO1

precisely in central value and uncertainties, as expected. Note that in the correspond-
ing comparison in the e+e− case, shown in figure 3.3(a)-3.3(c), the analytic and the
partonic Geneva distributions are in closer agreement because the resummed com-
ponents of the multiplicative matching in eq. (3.37) include the nonsingular terms at
LO3, which are known analytically. These are not included in the Drell-Yan case,
and so the difference between the analytic and Geneva distributions in figure 3.14
is more sensitive to the subleading corrections that the nonsingular terms generate.

As in the e+e− case, the uncertainty bands for the resummed curves and Geneva
predictions in figures 3.13 and 3.14 are obtained by adding the fixed-order and re-
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Figure 3.14: The Geneva partonic NNLL+LO1 result is shown compared to the
analytic resummation of T0 matched to fixed order at NNLL+LO1 in the (a) peak,
(b) transition, and (c) tail regions. Also shown for comparison is the pure resummed
result at NNLL and the fixed-order LO1 contribution.

summation uncertainties in quadrature. In the peak and transition regions of the dis-
tribution, the resummation uncertainties dominate, while the fixed-order uncertainty
dominates as the resummation is being turned off in the tail region. Comparing the
uncertainty of the resummed distributions with that of the LO1 distribution, which is
much smaller, one can see that the fixed-order uncertainty is an underestimate of the
missing higher-order terms. The reason for this is twofold: the missing large logarith-
mic corrections at higher orders, whose associated uncertainties are instead included
in the resummed distribution, and the partial cancellation between the renormaliza-
tion and factorization scale dependence, whose variations are correlated in the results
we show.

In both the e+e− and Drell-Yan processes, the partonic Geneva spectrum is
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determined by eq. (3.47), which for an event multiplies the fully exclusive fixed-
order cross section by the ratio of the resummed cross section for the jet resolution
variable divided by the fixed-order expansion of that resummation. Compared to
the e+e− case, where each subprocess contributing to the cross section is trivially
proportional, in Drell-Yan, the convolution with the PDFs requires treating every
possible qq̄ initial state separately, in both the fixed-order and the resummed cross
sections. In Geneva, the flavor sum is performed in the Monte Carlo sense, since
every event has a definite flavor for the initial-state quarks and the correct flavor-
summed cross section is obtained after a sum over all events. This means that the
separate factors in eq. (3.47) are evaluated for an individual flavor, and the entire
expression is summed over flavors. In the analytic resummation, since the matching
between the resummed and fixed-order cross sections is additive, there is instead only
one way to perform the sum over flavors.

A version of the master formula where both the resummed and the resummed-
expanded are separately flavor summed before entering eq. (3.77) would be equally
valid. We have checked, however, that this is a very minor effect and is not the main
contribution to the apparent differences of the Geneva predictions with the analytic
resummed cross section. In fact, the reason for the discrepancy is in the difference
of higher-order terms that are included in the Geneva multiplicative approach with
respect to the additive matching used in the analytical calculation. This can also be
seen as an indication of the relative freedom in implementing the master formula in
eq. (3.47) at a given perturbative accuracy. As one can evince from figures 3.3(d)-
3.3(f), should the resummation and fixed-order calculations be evaluated at the next
order in perturbative accuracy, the size of the yet-missing terms would decrease,
and consequently, the difference between Geneva and the analytic results would be
reduced.

The Geneva implementation in this example can be extended to higher accu-
racy in terms of both fixed-order matrix elements and resummation. An equivalent
accuracy to the e+e− results shown in section 3.3 can be achieved if the fixed-order
matrix elements for the 1-jet multiplicity are calculated at NLO, the 2-jet multiplicity
are calculated at LO, and the resummation of beam thrust is continued to NNLL′.
Although this is beyond the scope of this work, we nonetheless demonstrate that the
Geneva framework is capable of merging matrix elements of different jet multiplici-
ties beyond the lowest order. As in the e+e− case, jet multiplicities are defined using
a physical jet resolution variable, which allows for a consistent extension of the entire
framework to O(αs) perturbative accuracy.

In section 3.3, we found that NNLL′ resummation of the jet resolution variable
T2, when combined with the parton shower, was capable of describing the spectrum
in other 2-jet observables with an accuracy that clearly exceeded NLL, the naive
accuracy of the parton shower. The resummation of T2 captures an important set
of logarithms that are correlated with other 2-jet observables, and, when combined
with the fully exclusive, all-orders description of the parton shower, the accuracy of
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other observables can be improved beyond NLL. At a hadron collider, the effective
dynamic range of observables is much larger, meaning the correlation between the jet
resolution variable and another observable of interest may be small. In this case, the
parton shower may play a greater role in determining the spectrum, and hence the
accuracy, of other observables. We will investigate these features in a future work.

3.5 Conclusions

In this chapter, we have shown how to combine higher-order resummation of a jet
resolution variable with fully differential next-to-leading-order calculations to extend
the perturbative accuracy of cross sections beyond the lowest order for all values of
the jet resolution scale. This framework has been interfaced with a parton shower
and hadronization to give the Geneva Monte Carlo program.

Our framework provides both the versatility of fixed-order calculations and the
accuracy of higher-order analytic resummation. From the point of view of Monte
Carlo generators, the Geneva approach allows the combination of higher-order re-
summations with higher fixed-order calculations. From the point of view of resummed
calculations, it allows one to obtain a fully differential cross section that correctly re-
sums the jet resolution variable to higher logarithmic accuracy. Since this construction
maintains the higher perturbative accuracy for all values of the jet resolution scale, it
naturally allows NLO calculations of different jet multiplicities to be combined with
one another.

The higher logarithmic resummation of the jet resolution scale allows us to use
a low cut on the jet resolution scale, much lower than the point where fixed-order
perturbation theory breaks down but still above the nonperturbative regime. This is
a major difference to other approaches [33, 34, 35], where the jet-merging scale has
to be chosen much larger, such that αs ln2 τ cut � 1.

In this chapter, we have concentrated on the theoretical construction, which is
valid for any number of jets, and for both e+e− and hadron colliders. We have shown
that one has to carefully choose a jet resolution variable that is resummable to higher
logarithmic accuracy. In our approach, the N -jet and (N+1)-jet regions are described
by the same fully differential calculation without the need of an explicit jet-merging
scale. The cut on the jet resolution variable is only needed due to the presence of IR
divergences. We have given expressions for both the integrated cross section below
the IR cutoff and the differential cross section above that properly combine the higher
logarithmic resummation with a higher fixed-order calculation.

This approach has been implemented in the Geneva Monte Carlo. As a first
application, we have presented results for e+e− collisions. The jet resolution variable
for this case was chosen to be 2-jettiness, which is directly related to thrust, and
we combined its NNLL′ resummation with the fully differential 3-jet rate at NLO3.
Varying the profile scales and the renormalization scale has allowed us to obtain
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event-by-event uncertainties. As a final step, we have interfaced our perturbative
result with Pythia 8, which added a parton shower and hadronization to our results.
The parton shower adds additional radiation beyond the highest jet multiplicity in
Geneva and has been restricted to only fill out the jets of the exclusive jet cross
sections at lower jet multiplicity. Since the cut on the jet resolution variable could be
chosen to be very small, the effect of the perturbative shower (without hadronization)
is rather small, and different tunes in Pythia do not affect the resulting distributions
significantly. Hadronization has a significant effect, and the difference in final results
due to different hadronization parameters is more manifest.

We have shown that Geneva correctly reproduces the higher-order resummation
of the thrust spectrum, even after showering, which serves as a nontrivial validation of
our approach. Using αs(mZ) = 0.1135, as obtained in ref. [85] from fits to the thrust
spectrum using higher-order resummation, together with tune 1 of Pythia 8, we
obtain an excellent description of ALEPH and OPAL data. The same setup was then
used to predict other event shape variables, namely C-parameter, heavy jet mass,
and jet broadening. In all cases, our results agree remarkably well with the explicit
analytical resummations, even though only the thrust resummation was used as an
input. This comparison shows numerically that we achieve a higher resummation
accuracy than NLL, which is what one would naively expect to obtain from the parton
shower. This is especially remarkable for jet broadening, where the resummation
formula has a completely different structure from the thrust resummation. Comparing
our results after hadronization to the data, we again find excellent agreement for these
other observables.

Finally, we have presented first results toward an implementation for hadron col-
liders in Geneva. Choosing the Drell-Yan process at the LHC with beam thrust as
the jet resolution variable, we combined the resummation of beam thrust at NNLL
with the leading-order matrix element for the emission of an extra jet. The results
from Geneva agree well with analytical results, which shows the applicability of the
framework to hadron colliders.

As we have shown, our theoretical framework to combine higher-order resumma-
tion with fixed-order matrix elements and parton shower Monte Carlos is very general,
and there are many avenues to pursue in the future. Obvious next steps for e+e−

collisions are to include NLO calculations for 4 jets, which would require including
the logarithmic resummation for 3-jettiness [120] as well as additional tree-level ma-
trix elements. In addition, one can consider the resummation for other jet resolution
variables. For hadronic collisions, next steps are to include the resummation and
NLO calculations for higher jet multiplicities, as well as adding parton showering and
hadronization using the different available programs.
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Chapter 4

Conclusion

The preceding chapters have described in some detail certain state-of-the-art ways
that the precision of matrix-element calculations used to simulate events can be ex-
tended without sacrificing the benefits that parton shower routines have long provided
to the experimental community. Doing so is not an easy task, and the discussion in
section 2.3.1 articulated how the constraints that must be satisfied by a full calculation
become more and more stringent as one attempts to increase the fixed-order accu-
racy. Further discussion in section 2.5.2.3 described new issues that arise in matching
to the parton shower when pushing the fixed-order accuracy to NNLO. Nonetheless,
with careful attention to the various pieces involved and the constraints that their
combination must satisfy, it is possible to make progress.

The focus of chapter 2 was to detail just such a set of constraints for the extension
of the fixed-order accuracy of the lowest multiplicity to NNLO. After carefully under-
standing the problem and constraining the solution, the general construction of an
NNLO+PS framework was able to be worked out in a straightforward and systematic
fashion. Indeed, the considerations presented there are sufficient to straightforwardly
work out general constructions for even higher order FO+PS frameworks should there
be interest in doing so. An important next step will be to flesh out the details of
the general NNLO+PS construction to take practical constraints into account and to
optimize the construction for ease of implementation. There are many analyses that
could more fully benefit from the NNLO fixed-order calculations that are increasingly
becoming available, and a concrete implementation of an NNLO+PS framework will
be eagerly awaited by the experimental community.

Chapter 3 described efforts to increase the precision of event generators along a
different dimension. As useful as NNLO calculations are, there are regions of phase
space where fixed-order perturbation theory breaks down, and the higher fixed-order
accuracy is not helpful in these regions. To address the need of extending the lowest-
order matching of tree-level matrix elements with parton showers to give a complete
description at the next higher perturbative accuracy in αs at both small and large jet
resolutions, higher-order resummation was employed. It was shown that extending
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to the next higher perturbative accuracy requires the combination of the higher-
order resummation at small values of the jet resolution variable in addition to the
higher-precision fixed-order matrix-element corrections at large values. It was also
found, interestingly, that the higher-order resummation naturally leads to a smooth
connection of the NLO calculations for different jet multiplicities. This shows a
relation between the first and third strategies for improving precision described in the
introduction, both of which are important for increasing the power and versatility of
event generators.

Progress in building a concrete implementation of such a framework in a Monte
Carlo called Geneva was also described in chapter 3. For leptonic collisions, e+e− →
jets was used as an example of the construction. Results for this process were found
to be in good agreement with LEP data for a variety of 2-jet observables. Additional
work remains to be done to continue implementing the capabilities of the method.
For example, it is possible, in principle, to extend the framework to any number of
multiplicities at NLO, as described in section 3.2.3. Initial results were also shown
for hadronic collisions in Drell-Yan production, and additional work remains to fully
flesh out the capabilities of the method for hadronic collisions.

In closing, the material presented in this thesis not only advances along multi-
ple dimensions the precision that can be attained in modern event generators for
particle colliders, but it also lays the groundwork for further advances and specific
implementations yet to be fully realized.
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[89] Torbjörn Sjöstrand, Stephen Mrenna, and Peter Z. Skands. A Brief Introduction
to PYTHIA 8.1. Comput. Phys. Commun., 178:852–867, 2008.

[90] J. Beringer et al. Review of Particle Physics (RPP). Phys. Rev. D, 86:010001,
2012.

[91] G.P. Salam and D. Wicke. Hadron masses and power corrections to event
shapes. JHEP, 0105:061, 2001.

[92] Vicent Mateu, Iain W. Stewart, and Jesse Thaler. Power Corrections to Event
Shapes with Mass-Dependent Operators. Phys. Rev. D, 87:014025, 2013.

[93] Christian W. Bauer, Sean Fleming, and Michael E. Luke. Summing Sudakov
logarithms in B → Xsγ in effective field theory. Phys. Rev. D, 63:014006, 2000.

[94] Christian W. Bauer, Sean Fleming, Dan Pirjol, and Iain W. Stewart. An ef-
fective field theory for collinear and soft gluons: Heavy to light decays. Phys.
Rev. D, 63:114020, 2001.

[95] Christian W. Bauer and Iain W. Stewart. Invariant operators in collinear effec-
tive theory. Phys. Lett. B, 516:134–142, 2001.



133

[96] Christian W. Bauer, Dan Pirjol, and Iain W. Stewart. Soft-collinear factoriza-
tion in effective field theory. Phys. Rev. D, 65:054022, 2002.

[97] Sean Fleming, Andre H. Hoang, Sonny Mantry, and Iain W. Stewart. Jets from
massive unstable particles: Top-mass determination. Phys.Rev., D77:074010,
2008.

[98] Matthew D. Schwartz. Resummation and NLO matching of event shapes with
effective field theory. Phys.Rev., D77:014026, 2008.

[99] Gregory P. Korchemsky and George F. Sterman. Power corrections to event
shapes and factorization. Nucl.Phys., B555:335–351, 1999.

[100] Andre H. Hoang and Iain W. Stewart. Designing gapped soft functions for jet
production. Phys. Lett. B, 660:483–493, 2008.

[101] Zoltan Ligeti, Iain W. Stewart, and Frank J. Tackmann. Treating the b quark
distribution function with reliable uncertainties. Phys. Rev. D, 78:114014, 2008.

[102] S. Frixione, Z. Kunszt, and A. Signer. Three jet cross-sections to next-to-leading
order. Nucl.Phys., B467:399–442, 1996.

[103] Rikkert Frederix, Stefano Frixione, Fabio Maltoni, and Tim Stelzer. Automation
of next-to-leading order computations in QCD: The FKS subtraction. JHEP,
0910:003, 2009.

[104] S. Catani and M. H. Seymour. The Dipole Formalism for the Calculation of
QCD Jet Cross Sections at Next-to-Leading Order. Phys. Lett. B, 378:287–301,
1996.

[105] S. Catani and M. H. Seymour. A general algorithm for calculating jet cross
sections in NLO QCD. Nucl. Phys. B, 485:291–419, 1997. [Erratum-ibid. B510,
503 (1998)].

[106] G. Parisi. Super Inclusive Cross Sections. Phys. Lett. B, 74:65, 1978.

[107] John F. Donoghue, F. E. Low, and So-Young Pi. Tensor analysis of hadronic
jets in quantum chromodynamics. Phys. Rev. D, 20:2759, 1979.

[108] R. Keith Ellis, D. A. Ross, and A. E. Terrano. The Perturbative Calculation of
Jet Structure in e+e− Annihilation. Nucl. Phys. B, 178:421, 1981.

[109] L. Clavelli. Jet invariant mass in quantum chromodynamics. Phys. Lett. B,
85:111, 1979.

[110] S. Catani, G. Turnock, and B.R. Webber. Heavy jet mass distribution in e+e−

annihilation. Phys. Lett. B, 272:368–372, 1991.



134

[111] Paul E.L. Rakow and B.R. Webber. Transverse momentum moments of hadron
distributions in QCD jets. Nucl. Phys. B, 191:63, 1981.

[112] S. Catani, G. Turnock, and B.R. Webber. Jet broadening measures in e+e−

annihilation. Phys. Lett. B, 295:269–276, 1992.

[113] Yuri L. Dokshitzer, A. Lucenti, G. Marchesini, and G.P. Salam. On the QCD
analysis of jet broadening. JHEP, 9801:011, 1998.

[114] Thomas Becher and Guido Bell. NNLL Resummation for Jet Broadening.
JHEP, 1211:126, 2012.

[115] S. Catani and B. R. Webber. Resummed C-parameter distribution in e+e−

annihilation. Phys. Lett. B, 427:377–384, 1998.

[116] S. Catani and B.R. Webber. Infrared safe but infinite: Soft gluon divergences
inside the physical region. JHEP, 9710:005, 1997.

[117] Iain W. Stewart, Frank J. Tackmann, and Wouter J. Waalewijn. The
Beam Thrust Cross Section for Drell-Yan at NNLL Order. Phys. Rev. Lett.,
106:032001, 2011.

[118] Xiaohui Liu, Sonny Mantry, and Frank Petriello. Gauge-Boson Production with
Multiple Jets Near Threshold. Phys.Rev., D86:074004, 2012.

[119] Iain W. Stewart, Frank J. Tackmann, and Wouter J. Waalewijn. The Quark
Beam Function at NNLL. JHEP, 1009:005, 2010.

[120] Christian W. Bauer, Frank J. Tackmann, Jonathan R. Walsh, and Saba Zuberi.
Factorization and Resummation for Dijet Invariant Mass Spectra. Phys. Rev.
D, 85:074006, 2012.


	List of Figures
	List of Tables
	Introduction
	Overview of Monte Carlo event generation
	Monte Carlo phase space integration
	Monte Carlo event generation


	Matching fully differential NNLO calculations and parton showers
	Introduction
	General setup
	Event generation at NNLO
	Event generation at LL

	Combining fully differential FO calculations with LL resummation
	General discussion
	LO+LL
	NLO+LL

	Combining NNLO calculations with LL resummation
	The exclusive N-jet and inclusive (N+1)-jet cross sections
	The exclusive (N+1)-jet and inclusive (N+2)-jet cross sections

	Matching the NNLO+LL calculation with a parton shower
	LL shower constraints
	FO shower constraints

	Implementation and relation to existing approaches
	GENEVA
	NNLO+PS using HJ-MiNLO
	UNLOPS

	Conclusions

	Combining higher-order resummation with multiple NLO calculations and parton showers in GENEVA
	Introduction
	Previous approaches combining NLO corrections with parton showers
	Brief overview of our construction

	General construction
	What resummation can do for Monte Carlo
	What Monte Carlo can do for resummation
	Extension to more jet multiplicities
	Attaching parton showering and hadronization

	Application to e+ e- collisions
	Ingredients
	Validation using the jet resolution spectrum
	Predictions for other event shapes

	Application to hadronic collisions
	Master formula and ingredients for hadronic collisions
	Application to Drell-Yan production

	Conclusions

	Conclusion
	Bibliography



