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Systems/Circuits

Motor Variability Arises from a Slow Random Walk in
Neural State

Kris S. Chaisanguanthum,1,2 Helen H. Shen,1 and X Philip N. Sabes1,2

1Center for Integrative Neuroscience and Department of Physiology and 2Sloan-Swartz Center for Theoretical Neurobiology, University of California, San
Francisco, San Francisco, California 94143

Even well practiced movements cannot be repeated without variability. This variability is thought to reflect “noise” in movement
preparation or execution. However, we show that, for both professional baseball pitchers and macaque monkeys making reaching
movements, motor variability can be decomposed into two statistical components, a slowly drifting mean and fast trial-by-trial fluctua-
tions about the mean. The preparatory activity of dorsal premotor cortex/primary motor cortex neurons in monkey exhibits similar
statistics. Although the neural and behavioral drifts appear to be correlated, neural activity does not account for trial-by-trial fluctuations
in movement, which must arise elsewhere, likely downstream. The statistics of this drift are well modeled by a double-exponential
autocorrelation function, with time constants similar across the neural and behavioral drifts in two monkeys, as well as the drifts
observed in baseball pitching. These time constants can be explained by an error-corrective learning processes and agree with learning
rates measured directly in previous experiments. Together, these results suggest that the central contributions to movement variability
are not simply trial-by-trial fluctuations but are rather the result of longer-timescale processes that may arise from motor learning.

Introduction
Although professional athletes, such as 2013 Major League Base-
ball (MLB) National League Cy Young winner Clayton Kershaw,
can perform highly trained movements with remarkable preci-
sion, they still exhibit movement variability (Fig. 1a). This inev-
itable variability is thought to reflect a fundamental limit on
movement precision attributable to sensorimotor “noise.” This
noise could arise at any stage of sensorimotor processing, from
perception of the spatial cues for movement to motor prepara-
tion and execution (Harris and Wolpert, 1998; Todorov and Jor-
dan, 2002; Osborne et al., 2005; Churchland et al., 2006; Faisal et
al., 2008). Here we focus on cortical contributions to movement
variability, examining the patterns of activity in populations of
neurons in macaque dorsal premotor cortex (PMd) and primary
motor cortex (M1) recorded while animals performed well prac-
ticed reaching movements. These brain areas represent the out-
put of the cortical circuits for reach planning and execution, and
neural activity in these areas is known to account for a significant
amount of motor variation (Churchland et al., 2006). However,
the character of this centrally generated motor variation, or in-
deed motor variation as a whole, is not well understood.

Here, we show that central contributions to movement vari-
ability do not resemble simple sensory or neural noise but may

instead reflect slowly drifting neural states. We make this argu-
ment through a series of analyses. First, we show that, in macaque
monkeys making center-out reach movements—as well as in
professional baseball pitchers—a substantial fraction of the
movement-by-movement variability is attributable to a slow drift
in the mean movement. The preparatory activity of PMd/M1
neurons in monkey exhibits an analogous slow drift in firing rates
over time. Thus, variability in both behavior and neurons can be
decomposed into two statistical components: (1) the slow drift;
and (2) fast trial-by-trial fluctuations about the drifting mean.
Because preparatory neural activity predicts a significant amount
of movement variability, at least one of the following must be
true: (1) the fast fluctuations in the neural activity are related to
the fast fluctuations in behavior; and/or (2) the drifts in the neu-
ral activity and in behavior are related. The second set of analyses
tests the former hypothesis and shows the surprising result that
there is little correlation between the fast fluctuations in central
neural activity and behavior. Therefore, the fast trial-by-trial
variability must arise primarily downstream of PMd/M1 or oth-
erwise independently. The third set of analyses tests the latter
hypothesis and shows that drift in neural activity is related with
drift in behavior: we found that the magnitude of the neural drifts
correlate with the magnitude of the behavioral drift across ses-
sions. We also found that both neural and behavioral drifts are
well described by similar autocorrelation time constants, which is
additional evidence that they are of common origin. Finally, we
present evidence that the drift arises from an underlying error-
corrective learning process that is a fundamental feature of prac-
ticed movements in primates.

Materials and Methods
MLB data. Baseball pitching data were taken from the PITCHf/x data-
base, created and maintained by Sportvision and publicly available
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through MLB. PITCHf/x measures the release point and trajectory of
pitches via video tracking using a multicamera setup in each MLB sta-
dium. More detailed descriptions of the dataset have been described
previously (Albert, 2010). PITCHf/x release point has an SD of �1.3 cm
(Sportvision).

We analyzed release-point location and initial speed. The release point
is measured as the transverse location of the baseball when it crosses the
plane 50 feet (15.2 m) away from home plate. Because home plate is 60.5
feet (18.4 m) away from the pitching rubber and pitches are typically
released with the pitcher near full forward extension, this measured lo-
cation is a good proxy for where the pitcher released the ball. We chose to
analyze release point because it is the endpoint of the trajectory of the ball
that is directly under the pitcher’s control; for example, it is not con-
founded by ball spin. We also focused our analysis on a single pitch type,
four-seam fastballs, a common pitch thrown with high velocity, because
these pitches follow the straightest paths. Nonetheless, release-point drift
is apparent across all pitch types.

Note that not all of the variability in pitcher release point need be
“sensorimotor,” i.e., some of it may, in fact, be intentional, reflecting
strategy of play. However, such intentional variability would not be ex-
pected to drift on long timescales. Thus, we expect that, although such
intentional motor variability might affect the relative contributions of
the two distinct types of variability, it should not affect the character of
the drift.

Macaque reaching experiments. All procedures were approved by the
University of California, San Francisco Institutional Animal Care and
Use Committee and followed National Institutes of Health Guide for the
Care and Use of Laboratory Animals. Data were collected in 12 and 14
experimental sessions for monkeys D and E, both male, respectively.
Sessions consisted of a series of trials in which the animals made reaching
movements on a horizontal surface, located just below shoulder height.
Direct view of the hand and arm were blocked, with visual targets and
visual feedback of the hand displayed via a mirror and rear projection
screen such that objects appeared coplanar with the reaching hand
(McGuire and Sabes, 2011). Hand position was measured at the location
of the index fingertip using an electromagnetic tracking device (Liberty;
Polhemus), and visual feedback was given as a small disk of light at that
location. Eye position was also monitored using an infrared eye tracker
(Iscan).

Each trial began with the appearance of a circular start target at the
initial position, which was located sagittally along the midline and was
fixed throughout the experiment. Animals then moved their hand to the
initial position with visual feedback. After a hold period of 300 ms, a
reach target appeared. There were eight potential target locations, ar-
rayed evenly around a circle, 7 cm from the initial position (“center-out”
reaches). Animals were then required to visually fixate the target, and
fixation was enforced for the remainder of the trial. After 300 ms of visual
fixation, a variable delay began, with duration sampled uniformly be-
tween 500 and 1000 ms. An audible “go” cue was then played, and the

start target and feedback disappeared, cuing the animal to move to the
reach target. Reaches were made in the absence of visual feedback. The
trial ended when the arm came to a stop and remained stationary for 200
ms. Visual feedback was then turned back on, and fluid reward was
delivered in a graded manner based on final endpoint error: reward fell
linearly with the distance from the target, and trials with endpoint errors
�2.5 cm were not rewarded. The average endpoint error was �5 mm
from the center of the target.

Extracellular signals were recorded from the PMd of both animals and
from M1 of monkey E using chronically implanted 96-microelectrode
arrays (Blackrock Microsystems). Single units were identified by spike
sorting with Plexon Offline Sorter, using a combination of automatic
(T-Dist E-M algorithm) and manual processing. Identified units had an
average signal-to-noise ratio of 5.3 for monkey D and 3.9 for monkey E.
Mean firing rates were calculated during the instructed delay period
(between target presentation and the go cue), which was of variable
duration, between 800 and 1300 ms. We have also repeated the analyses
presented here using firing rates calculated from different epochs of the
trial, both before and after the delay period, as well from subsets of the
delay period; the results presented here are not sensitive to the choice of
time window.

There were two types of trial blocks, which alternated throughout the
experimental session: (1) 40-trial “tuning” blocks (five trials randomly
interleaved to each of the eight targets); and (2) 210-trial “three-target”
blocks (70 trials randomly interleaved to each of three targets in a quad-
rant, e.g., at 0°, 45°, and 90°; quadrant was fixed within a session but
randomized across sessions). For this study, the only purpose of the
tuning block data is to confirm that the responses of the recorded neu-
rons are indeed tuned to the location of the reach target cue. Using the
tuning block data, many recorded units exhibit “cosine tuning” in target
angle (Georgopoulos et al., 1981), and the location of the reach target can
be decoded from the vector of delay-period firing rates of the neurons,
with a cross-validated R 2 of 84.6% (averaged across all experimental
sessions). Hereafter, the data we present are from the three-target blocks,
which, for each session, consist of several hundred reaches to each target.
The large number of repeated reaches allowed us to observe and measure
variability in neural activity and behavior, including slow changes over
time.

Optimal linear estimators. We are interested in relating variations in
neural activity to variations in behavior, e.g., the speed or direction of a
reaching movement. This is often done with “population decoders” that
estimate the behavioral variable from recorded neural activity using
knowledge about the tuning curve of each individual neuron (and pos-
sibly some model of neural noise; Georgopoulos et al., 1986). We could
estimate such tuning curves (e.g., rate vs. movement direction) using
data from the tuning blocks. However, because the fine structure of the
tuning curves may not match simple parametric models such as cosine
tuning and because even cosine tuning curves are difficult to measure
with precision (Stevenson et al., 2011), the results of this approach would
be too biased and/or noisy to relate the relatively small variations in
neural activity and behavior that are observed in repeated reaches to a
nominally identical target.

Instead, we designed the three-target block structure: with a large se-
ries of reaches to a single target, we can determine the relationship be-
tween neural variation and behavioral variation in a way that is agnostic
of the tuning properties of the neurons. For a set of reaches to a single
target, we first subtracted means from neural activity and behavioral
metrics. This left only the target-independent variability in the system,
allowing us to determine the relationship between the neural and behav-
ioral variability in a data-driven manner: we found the linear estimator
that best predicted each behavioral metric from k leading principal com-
ponents of the neural firing vectors. The number of principal compo-
nents k for each was optimized independently for each session and target.

More explicitly, for each k (between unity and the number of units
recorded), we projected the firing rate vectors onto their k leading prin-
cipal components. With 60% of the trials (randomized, but the same for
all k), we computed optimal linear estimator coefficients by regressing a
given movement metric onto the k of principal components of the firing
rates. Half of the remaining trials (20%) were used as a cross-validation
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Figure 1. Examples of movement variability. a, Spread of release points for all four-seam
fastball pitches thrown by Los Angeles Dodgers pitcher Clayton Kershaw versus the New York
Mets on May 8, 2011. The location is defined in the frontal plane of the pitcher but in coordinates
fixed relative to the field. Baseball circumference shown for scale. b, Reach paths from all tuning
block trials in a single experimental session (monkey E, color coded by target).
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set: we used the performance of the estimator on these trials to determine
the k for which the corresponding optimal linear estimator was the best
predictor of the behavior. Once the optimal k was found, the perfor-
mance of the optimal linear estimator was measured on the remaining
20% of the trials and reported as a coefficient of determination.

Finally, we note that this aggressive optimization and cross-validation
scheme is intended to be conservative. Because we will use this approach
to show the lack of predictive power between some neural and behavioral
time series, we wanted to be sure that we optimized the estimation
process.

Multistate learning model. We considered a linear dynamic learning
model similar to that used by Cheng and Sabes (2006) but with a two-
dimensional state for each scalar observable, i.e., a second-order system
to account for multiple timescales of learning (Smith et al., 2006). The
observable yt (behavioral metric or neural firing rate on trial t) is related
to the internal state xt by a linear transformation, parameterized by the
“emission” vector E� :

yt � E�Tx�t � rt, (1)

where the emissions noise rt is independent and normally distributed
with 0 mean and variance R. The state update, including error-corrective
learning driven by feedback of the observable, can be written as

x�t � 1 � Mx�t � B�yt � w� t, (2)

where the parameters B and M describe the learning and retention rates
of the system, respectively. wt represents noise in the learning process and
is independent and normally distributed with 0 mean and covariance
W � �w� tw� t

T�, where angle brackets are used to denote expectation value,
averaged over trials.

In the steady-state regimen of this system—where the statistical descrip-
tion of the system, i.e., quantities such as �x�tx�t � �

T � and �ytyt � �
T �, no longer

evolves with t—it is straightforward to show that, for � � 1,

�ytyt��� � E� T�x� tx� t��
T � E� � �rtx�t���E�

� E�T[X(KT)�]E� � 	RB�T(KT)�
1]E�

� 	E�TXKT � RB�T](KT)�
1E� , (3)

with the shorthand K � M � B�E�T and X � �x�tx�t
T�. We define A(�) �

�ytyt � �
T �/�ytyt�, the autocorrelation of yt in the steady state (for � � 1). Note

first that A(�) is proportional to the quantity in Equation 3. Furthermore,
the dependence of this autocorrelation on the trial lag � enters only
through the exponentiation of the matrix K, which is defined by the
parameters of emission, learning, and retention (Eqs. 1–3). In particular,
from the form of Equation 3, we can write A(�) � �1�1

� � �2�2
�, where the

�j are simply the eigenvalues of K, and the �j are coefficients that can be
derived from the other parameters of the system. We fit this autocorre-
lation function (and a simpler, first-order version; Eq. 5a) to the empir-
ical autocorrelations using nonlinear least-squares regression.

Results
Neural and behavioral variability
In the May 8, 2011 Los Angeles Dodgers baseball game, Clayton
Kershaw threw 74 four-seam fastballs. The variability across these
repeated pitching movements can be measured in the release
point, where the baseball leaves the pitcher’s hand (Fig. 1a), or the
speed of the ball at that point. We chose to focus on these metrics,
because they represent the endpoint of the pitching movement
that is under the direct control of the pitcher. We analyzed
release-point variability for all 160 instances in the 2011 MLB
regular season in which a pitcher threw at least 70 four-seam
fastballs in a game. On average, the SD of the release point and the
pitch speed are 4.4 cm and 0.59 m/s, respectively. We are inter-
ested in why such variability remains, even in such highly trained
movements.

To answer this question, we studied the neural basis of move-
ment variation in the context of well practiced reaching move-
ments in nonhuman primate. Two rhesus macaque monkeys
were trained to make center-out reaching movements in the hor-
izontal plane toward visual targets, with an instructed delay pe-
riod. As seen in sample movement trajectories (Fig. 1b), animals
displayed appreciable movement variability on repeated trials to
the same target, despite receiving graded reward based on reach
accuracy. To analyze this movement variability, we defined two
primary movement metrics: (1) reach speed, defined as the peak
tangential speed in the movement plane; and (2) initial direction,
defined as the angle from initial hand position to the trajectory
point where the instantaneous speed of the reach first exceeds
40% of its peak speed. We chose these metrics, because they are
less affected by online corrections during the movement, yet re-
sults for reach endpoint are qualitatively similar. Variability in
both initial reach direction (average SD of 14.3°) and reach speed
(average SD of 0.06 m/s, or 12% of the average speed) are consis-
tent with previous reports (Georgopoulos et al., 1981; Riehle and
Requin, 1993; Churchland et al., 2006).

Neural activity predicts behavioral variability
During the experimental sessions, we also recorded extracellular
activity from a large population of neurons (on average, 66 and 55
neurons for monkeys D and E, respectively) using chronically
implanted 96-microelectrode arrays (Blackrock Microsystems;
Maynard et al., 1997), one array in PMd of monkey D and one
each in PMd and M1 of monkey E. (Here, we will not distinguish
between PMd and M1 activity, because M1 neurons analyzed
separately yield qualitatively similar results.) Except when other-
wise noted, we describe neural activity related to movement prep-
aration, quantified as the average firing rate for each neuron
during the delay period.

We know, from data collected during our eight-target tuning
trial blocks (see Materials and Methods) and from previous stud-
ies (Georgopoulos et al., 1986) that preparatory neural activity
can be used to predict movement direction. However, we are
specifically interested in how the variability in the neural re-
sponse—i.e., variability across presentations of the same stimu-
lus—is manifest in the variability of the behavioral response.
Thus, we focus on trials from the three-target trial blocks, which
include a large number (�300) of repeated reaches to each of
three given targets in a Cartesian quadrant. To eliminate depen-
dence on an explicit neuron tuning model (see Materials and
Methods), we computed, separately for each target, the devia-
tions from the mean neural and behavioral responses and ana-
lyzed the relationship between them. Specifically, for each target
and experimental session, we constructed the optimal linear es-
timator relating the vector of delay-period firing rates to the
movement speed and, separately, to the initial direction. These
optimal linear estimators were computed using the leading prin-
cipal components of the firing rates (typically 10 –15), with the
number of components determined by cross-validation; all re-
ported R 2 values (coefficient of determination) are cross-
validated (see Materials and Methods). With this approach, we
found that PMd/M1 neural activity predicts a substantial fraction
of the variation in movement speed and direction: on average,
across sessions and targets, R 2 was 24 and 12% for reach speed
and 15 and 28% for reach direction for monkeys D and E,
respectively. These results appear to confirm a previous report
that the precision of reach speed is limited by central variabil-
ity in the movement plan (Churchland et al., 2006) and to
extend that result to reach direction.
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Drift in motor variability and cortical
neural activity
The results of the previous section suggest
that behavior is noisy in large part because
the cortical neurons that drive them are
noisy. However, this simple interpreta-
tion is complicated by the observation
that there is nontrivial time structure to
the behavioral variability. This structure
can be seen in the slow drifts in speed and
initial direction for the sequence of
reaches to one target in a sample session
(Fig. 2a,c), which is consistent with previ-
ous reports (Cheng and Sabes, 2007;
Chestek et al., 2007). To quantify these
drifts, we decomposed peak speed or ini-
tial direction x as a function of trial num-
ber t into three components:

xt � x� � �xt
d � �xt

r, (4a)

�xt
d � c0 � c1t � c2t 2 � c3t 3 � c4t 4,

(4b)

the session mean x�, the “drift” �xt
d, and

the trial-to-trial “fluctuations” �xt
r that

remain after removing x� and �xt
d. Naively

characterizing the drift, �xt
d, as a fourth-

order polynomial in t (Eq. 4b), we found
that almost all session targets exhibit significant drift: of 78 total
session targets (for both monkeys), 75 and 72 show statistically
significant drift in reach speed and direction (p � 0.05, permu-
tation test). Drift accounts, on average, for 41 and 24% of the
variance in reach speed (Fig. 2b) and 18 and 24% of the variance
in reach direction (Fig. 2d) in monkeys D and E, respectively. The
polynomial characterization was chosen for simplicity; the poly-
nomial is meant only as an empirical description of the drift and
not its underlying mechanism, which is addressed below, and the
quantitative results are not sensitive to this choice.

To provide a qualitative impression, the behavioral drift
curves for all experimental sessions are shown in Figure 3. Each
curve shows the polynomial drift curve (Fig. 2a,c, black curves)
for a single behavioral measure, target, and session. There is a
variety of drift shapes and sizes. In particular, note that the drifts
are generally not monotonic and that there is no obvious rela-
tionship between the concurrent drifts in the two behavioral
parameters.

Given that behavioral variability consists of two distinct com-
ponents, it is natural to ask whether neural activity in macaque
PMd/M1 has an analogous structure across trials. As with behav-
ior, we observed a slow drift in the neural firing rates across the
course of many reach trials, illustrated in Figure 2e. Using the
same characterization of drift as for the movement metrics (Eq.
4), we found that, on average, 9.0 and 7.6% of the variance across
trials in individual neuronal firing rates is attributable to drift in
monkey D and E, respectively (Fig. 2f). Although this is smaller
than the fraction of the behavioral variability that is attributable
to drift, the total variability in the response of a neuron is ex-
pected to be higher, e.g., as a result of intrinsic neural spiking
noise, and that, for a particular target, many neurons will exhibit
low mean firing rates, making drift difficult to measure.

Slow drifts in performance appear to be a hallmark of highly
trained behaviors in expert humans as well (Fig. 2g,h): with the

same characterization of drift (Eq. 4), we found that, of the 160
MLB pitcher games described above, 99 and 86 exhibit statisti-
cally significant (p � 0.05, permutation test) drift in release point
and pitch speed, respectively. On average, the drift accounts for
9.5% of variance in fastball release points for this dataset and
12.6% of variance in pitch speed; the scale of these drifts is gen-
erally larger than the � 1.3 cm PITCHf/x release-point measure-
ment error. (The smaller fraction of pitcher games with
significant drift compared with monkey sessions is likely attrib-
utable in part to statistical limitations, e.g., the smaller number of
movement repetitions.) We verified that these drifts are not at-
tributable to systemic changes in PITCHf/x measurements by
verifying that the release points of opposing pitchers performing
during the same game (concurrently) do not drift in the same
direction.

Central neural activity only weakly predicts trial-by-trial
fluctuations in behavior
Having identified these two statistically distinct components of
both neural and behavioral variability, we then asked whether
either, or both, of the two distinct components of behavioral and
neural variability are related. We first assessed the relationship
between the trial-by-trial fluctuations. We isolate the fluctuations
by explicitly modeling the drift, e.g., by using Equation 4 to sub-
tract the drift from each sequence.

First, for individual neurons, we simply computed the corre-
lation coefficient between the drift-removed variation in firing
rate and the drift-removed behavioral metrics. We performed
this computation for the three-target blocks in each session, sep-
arately for each neuron and reach target. The results of this anal-
ysis are shown in Figure 4, a and b: single cells predict only a small
fraction of the variance in both reach speed and direction. Fur-
thermore, the distributions of R 2 values mostly overlap with the
distributions calculated in the control case, in which neural re-
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Figure 2. Quantification of behavioral and neural drift. a, Mean-subtracted speed for reaches to a single target during one
experimental session (monkey E); the black trace shows the best polynomial fit of drift (Eq. 4). b, Breakdown of macaque reach
speed variability for each session target into drift and residual components, expressed as SDs for both monkeys. Solid points
indicate session targets with significant ( p � 0.05, permutation test) drift. c– h, Analogous to a and b for initial reach direction (c,
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cordings from one experimental session are correlated with
movement metrics from another experimental session (with
identical target conditions). Thus, the firing rates of individual
neurons are poor predictors of trial-by-trial behavioral
fluctuations.

Next, we related behavioral and neural fluctuations at the
population level. We computed optimal linear estimators (relat-
ing each movement metric to the vector of firing rates across
cells) exactly as before, except that both the neural activity and
behavior metrics were drift removed. The results of this analysis,
again expressed as R 2, are shown in Figure 4, c and d. Even with a
large number of PMd/M1 cells that are apparently tuned for
reach movements (Fig. 2), these neural populations have little
predictive power for the trial-to-trial fluctuations in behavior,
only a few percent better than the control case (correlating neural
recordings with behavior from different experimental sessions, as
above).

The weak correlations we observed between the fluctuations
in neural firing rates and in behavior might have been attribut-
able to our having averaged the firing rates over such a long
preparatory period (800 –1300 ms). However, we repeated these
analyses, trying to predict behavioral fluctuations using the neu-
ral activity recorded during each quartile of the delay period
(200 –325 ms each), and obtained similarly small R 2 values (Fig.
4e,f, “motor prep. by quartile”). We also repeated these analyses
using neural firing rates from other epochs of the trial timeline,
including the period of movement onset, and again found simi-
larly small R 2 values (Fig. 4e,f). We could find no point in the trial
timeline during which the neural firing rates were good predic-
tors of fluctuations in behavioral variability.

Finally, to ensure that the results of Figure 4 were not depen-
dent on the use of Equation 4 (fourth-order polynomial fit of
drift) to estimate the trial fluctuations, we repeated these analyses

with fluctuations isolated in an alternate,
model-free way: by analyzing not the
speed, initial direction, and firing rates
themselves but rather the differences be-
tween these values on each consecutive
pair of trials. Because the drift is slow, this
also effectively removed the drift from
these quantities; the resulting sequences
had near 0 autocorrelation. The results
were qualitatively the same as those
shown in Figure 4.

We conclude that the representation of
trial-to-trial behavioral fluctuations in
PMd/M1 activity is weak.

Relating neural and behavioral drifts:
correlation of drift magnitude
Having observed that the trial-by-trial
fluctuations in neural activity and behav-
ior are only weakly correlated, we now ask
whether their drifts are related. It might
seem natural to perform the analogous
analysis to that used for the fluctuations,
i.e., to compute optimal linear estimators
relating the neural and behavioral drifts,
and then to compute the R 2 between the
actual and predicted behavioral drifts.
However, these drifts, by construction,
have very strong trial-by-trial correla-
tions, so the space of possible drifts is low-

dimensional, despite a large number of trials. In our case, the
space of drifts has only four degrees of freedom, because we fit the
drift with fourth-order polynomials. This means that the resul-
tant R 2 is not meaningful: combining �60 neural drifts into a
prediction of behavioral drift will necessarily lead to a perfect fit.
Indeed, when we repeated the analyses in Figure 3, c and d, using
the neural drifts to predict the behavior drifts, we found that, in
each case, we could “predict” the behavior drift with an R 2 value
of unity. Therefore, overfitting precludes the use of a simple re-
gression approach to compare these low-dimensional objects.
However, two alternative analyses demonstrate the relation be-
tween the neural and behavioral drifts: we show that the magni-
tudes of the drifts are correlated and that they also have similar
shapes.

First, we show the magnitudes of behavioral and neural drifts
are correlated across sessions. For each target and session, we
quantified the magnitude of the behavioral drift as its SD across
trials (Fig. 2b,d, abscissas). We quantified the magnitude of the
neural drift as a population average: we started with the SDs (Fig.
2f, abscissas) and then normalized by the mean activity for each
unit, yielding the coefficient of variation, and finally averaged this
value across units, separately for each target and session. Because
target-dependent differences in behavioral or neural drift could
artificially inflate the correlation between these measures, we
took the conservative step of separately subtracting from both
quantities the means for session targets with matched experimen-
tal conditions. The resulting values are positive for each animal
and each movement metric (Fig. 5a,c): r � 0.58 and 0.23 for reach
speed and r � 0.54 and 0.27 for reach direction, for monkeys D
and E, respectively. Only the correlations for monkey D are sig-
nificant (p � 0.05, t test) when analyzed separately for each ani-
mal and movement metric. However, the results for both metrics
are significant when data from the two animals are combined,

Monkey D

Monkey E

speed

direction

speed

direction

target direction

Figure 3. Time course for all behavioral drifts. Each trace corresponds to the fourth-order polynomial fit (Eq. 4) of the drift for a
given behavioral metric (speed or direction) for a given target in a single session. Vertical pairs correspond to the speed and
direction drifts measured in the same session. Each of the eight panels contains data from the corresponding target direction, with
color indicating the animal’s identity.
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and the results for both animals are signif-
icant when data from speed and direction
are combined. Thus, the magnitude of
drift in neural activity is indeed predictive,
across targets and sessions, of the magni-
tude of drift that will be present in the
behavior.

For comparison, the magnitudes of the
trial-to-trial fluctuations in neural activity
and behavior are shown in Figure 5, b and
d. In all four cases, the magnitudes are an-
ticorrelated (r � 
0.17 and 
0.18 for
reach speed and r � 
0.07 and 
0.18 for
reach direction for monkeys D and E, re-
spectively), although these correlations
are not significantly negative. Further-
more, the correlation between neural and
behavioral drift magnitudes are signifi-
cantly stronger than the trial-to-trial fluc-
tuation magnitudes (p � 0.05, t test), even
when assessed for each animal and each
movement metric separately. These re-
sults provide additional evidence that the
neural and behavioral fluctuations are not
strongly linked but suggest that the neural
and behavioral drifts are linked.

Relating neural and behavioral drifts:
similarity of drift shape
Having established that the drifts in neu-
ral activity and behavior have correlated
magnitudes, we proceeded to determine
whether they exhibit similar shapes. Spe-
cifically, we analyzed autocorrelation
functions A(�), the correlation of the vari-
able of interest with itself � trials delayed,
of the neural firing rates and behavioral
metrics. As shown in Figure 6a– c, the au-
tocorrelation functions, averaged over
session targets (and neurons), all have
similar shapes. We first asked whether
these autocorrelation functions had an
exponential form,

A(�) � ��t, (5a)

which would be consistent with a random-walk drift in the mean
behavior or neuronal activity. However, the best-fit exponentials
(Fig. 6a– c, gray lines) do not capture the shape of the autocorre-
lations: the empirical data show a more rapid drop in autocorre-
lation at short time differences and a slower decay at long time
difference. This observation suggested the presence of more than
one timescale in the drift process, and in fact we find (Fig. 6a– c,
colored lines) that the autocorrelations are very well fit by a dou-
ble exponential:

A(�) � �1�1
� � �2�2

�, (5b)

where �1 � �2 and where the timescales of the fast and slow drifts
processes correspond to �1 and �2, respectively.

We will provide additional motivation for the double-
exponential autocorrelation below. First, however, we argue that
a common mechanism underlies the behavior and neural auto-
correlations in Figure 6a– c. The first piece of evidence is shown in

Figure 6d, which shows the time constants for the fits of Equation
5b, plotted on a log scale as 1 
 �1 and 1 
 �2, i.e., the fraction of
the correlation that decays with each trial, for the fast and slow
processes, respectively. This plot shows that there is consistency
in the best-fit time constants across variables—reach speed, reach
direction, and neural activity—and across animals. Next, if these
behavioral and neural time constants reflect a common underly-
ing mechanism, then they should also correlate with each other
across experimental sessions and across targets. Testing this pre-
diction is complicated by the fact that there was not sufficient
data from a single target session to reliably fit the two-time-
constant model of Equation 5b. Instead, we fit these reduced
datasets with the single-time-constant model of Equation 5a and
were able to obtain reliable fits. The single time constant � pri-
marily reflects the slower time constant of Equation 5b, although
it is also influenced by the fast time constant [the log of 1 
 � and
1 
 �2 correlated significantly (p � 0.05) for all three variables,
but the log of 1 
 � and 1 
 �1 only correlated for reach speed].
Figure 7 shows the correlations across target sessions in the log of
1 
 �, pairwise for the two behavioral measures and for the
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Figure 4. Relating trial-by-trial fluctuations in neural activity and behavior. a, b, Histogram (with bins logarithmically spaced)
of R 2 between trial-to-trial fluctuations in behavior (reach speed, a; initial direction, b) and trial-to-trial responses of individual
neurons, with drift removed from both. Control histogram for null hypothesis of no correlation (gray) was determined by corre-
lating neural activity with behavioral data from different sessions with matched experimental conditions. Data are combined from
both monkeys, but results hold for each. c, d, Analogous to a and b, but correlating behavior to fluctuations in PMd/M1 population
response via optimal linear estimator (see Materials and Methods). e, f, Summary of population behavior R 2 analysis (c, d) but
correlating behavior to neural firing rates observed in different trial epochs. Each data point represents distribution median, and
error bars denote the smallest interval containing 68% of data points; colors are analogous to a–d. “pre-trial” is a 1 s window
before the trial begins. “trial start” begins with the appearance of a central start target; “hold” begins when the monkey has moved
to that target. “motor prep.” begins with the appearance of the visual reach target and ends with the go cue. We also repeated the
analysis using the neural firing rates measured during each of the four quartiles of the preparatory period. (For more details on the
trial timeline, see Materials and Methods.)
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neural firing rates. The correlations are significant for each pair-
wise correlation and each animal, with the exception of the
speed-rate correlation for monkey E. Together, these results sug-
gest that the behavioral and neural autocorrelations arise from
the same underlying process.

We also computed the autocorrelation functions for pitch
release point and speed in the MLB data. These were similarly well
described by a double exponential, with time constants notably
similar to those obtained with the nonhuman primate reaching
data (Fig. 6d). This similarity in the statistics of the pitching and
reaching again suggests a common underlying mechanism.

Drift and error-corrective learning
Given that the drifts in neural activity and behavior appear to
arise from a common mechanism, the natural question is: what
might that mechanism be? For the reaching experiment, drift
could arise from time-varying changes in the motivational or
attentional state of the animal (Arieli et al., 1996; Xu-Wilson et
al., 2009). For example, increasing fatigue or reward satiety would
seem to predict simple monotonic patterns of drift over time. In
fact, the behavioral drifts exhibit complex features. In particular,
drifts in movement metrics are generally not monotonic, and we
find no evidence that drifts in reach speed and reach direction are
correlated in any straightforward way (Fig. 3). If the level of
motivation, attention, or fatigue had been drifting non-

monotonically over the course of a ses-
sion, we would expect these changes to be
reflected in a parallel drift in the variance
of the trial-to-trial fluctuations. As is illus-
trated in example data of Figure 3, a, c, and
e, the variance of the trial-to-trial fluctua-
tions was flat across experimental ses-
sions. This last observation, along with the
lack of predictable drifts in reach direc-
tion, also suggest that the drift is not at-
tributable to the sharpening of a Bayesian
prior over target locations in the three-
target blocks (Verstynen and Sabes,
2011).

The fact that the neural and behavioral
autocorrelations are so well described by a
double exponential (Eq. 4b; Fig. 6) sup-
port the idea that these drifts are attribut-
able to a process with well defined
statistics. Here we consider the possibility
that this process is error-corrective learn-
ing, a constant feature of skilled move-
ments such as reaching, even when no
external perturbations are experienced
(Cheng and Sabes, 2007; van Beers, 2009).
Error-corrective learning is well modeled
as a linear dynamical system with variabil-
ity arising in both the motor output and
the learning itself, attributable to noisy er-
ror feedback, state maintenance, etc., and
this process can drive drifts in movement
metrics over time, with exponential auto-
correlations (Cheng and Sabes, 2006,
2007). Smith et al. (2006) have argued that
error-corrective learning is better mod-
eled as a two-state linear dynamical sys-
tem with two timescales of learning. In
Materials and Methods, we show that this

two-state learning model necessarily leads to behavioral drifts
that exhibit a double-exponential autocorrelation function (Eqs.
1–3), just like those we observe in the present study (Fig. 6a– c).
To test whether these autocorrelations may indeed arise from a
two-state error-corrective learning process, we used Equations
1–3 to infer the autocorrelation time constants from the two
learning rates that Smith et al. (2006) measured directly from the
behavioral corrections after dynamic perturbation. These time
constants are comparable with those we obtain from fits of the
autocorrelation functions in our neural and behavioral reaching
data, as well as the pitching data (Fig. 6d). (For the latter, to
reduce sensitivity to noise, we only included the 64, of 160,
pitcher games in which measured drift is found to be significant
at p � 0.003, by permutation test.) In summary, we find that the
learning model suggested by Smith et al. (2006) quantitatively
predicts the behavioral and neural autocorrelations that we find
in macaque reaching and the autocorrelations observed in MLB
pitching data. These results are suggestive that the drifts are at-
tributable to a noisy error-corrective learning process.

Discussion
We have shown that, across repeated reaches to a target, the be-
havioral metrics of the movements and the neural activity in
PMd/M1 exhibit two statistically distinct components of variabil-
ity: (1) a slow drift in the mean neural/behavioral responses; and
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Figure 5. Relating neural and behavioral drift magnitudes. a, Correlation across sessions and targets between the amounts of
variability attributable to drift in reach speed and in preparatory neural activity. b, Analogous to a but comparing residual trial-
to-trial variability instead of variability attributable to drift. c, d, Analogous to a and b but with reach direction as the behavioral
variable. In all panels, the behavioral variability is expressed as SD; neural variability is expressed as coefficient of variation
(SD/mean), averaged across all neurons. All values are mean subtracted for matched experimental conditions (see text). The gray
trace shows the regression slope for both monkeys combined. For both behavioral metrics, the magnitude of behavioral drift
correlates positively with the magnitude of neural drift for each monkey (a, c) and is significant with both monkeys combined ( p�
0.05, t test).
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(2) trial-to-trial fluctuations. We found
that trial-to-trial fluctuations in central
neural activity do not strongly predict
trial-to-trial fluctuations in reach behav-
ior. Conversely, drifts in neural activity
are linked with the drifts in behavior and
appear to arise from the same process, one
that is well described as the accumulation
of noise in a simple model of error-
corrective learning.

Although our conclusions rely primar-
ily on linear analyses, we did not assume
linearity in the full mapping from neural
activity to behavior (e.g., cosine tuning of
velocity). Rather, we built local, first-
order models relating fluctuations in neu-
ral activity to fluctuations in behavior on
nominally identical trials. Thus, by focus-
ing on many trials to the same target, we
were able to link neural activity and be-
havior, without requiring precise knowl-
edge of the tuning properties of the cells or
the full mapping from neural activity to
behavior. This approach is valid as long as
the true causal link between neural activ-
ity and behavior depends on firing rate
and is continuous and differentiable, both
mild and reasonable assumptions.

The weak relationship between trial-
to-trial fluctuations in behavior and in
central neural activity—at any point in
the trial timeline we considered—was un-
expected. This implies that behavioral
fluctuations, which constitute the major-
ity of total behavioral variability (Fig.
5b,d), primarily arise either downstream
of PMd/M1 or otherwise independently.
The weak propagation of trial-to-trial
fluctuations in central neural activity to
behavior also suggests that the neural cir-
cuits downstream of PMd/M1 effectively
average out the noise in this activity. This
is especially surprising given that these
neural populations do exhibit nontrivial
neuron–neuron correlations, as has been
reported in these and other analogous
cortical areas (Lee et al., 1998; Huang and
Lisberger, 2009).

There has been considerable interest in
whether the tuning properties of sensori-
motor neurons are stable over both time
and repeated usage. The drift in neural ac-
tivity that we observed is not inconsistent
with previous studies suggesting that the
tuning of target direction for individual
neurons changes over time (Carmena et
al., 2005; Rokni et al., 2007). However,
there are methodological difficulties with
those studies as a result of poor statistical power in measuring
tuning parameters with a center-out experimental design (Ste-
venson et al., 2011), and other reports have shown that tuning
properties of neurons exhibit stability over timescales at least as

long as typical experimental sessions (Chestek et al., 2007; Ste-
venson et al., 2011; Fraser and Schwartz, 2012). Here, we avoid
the statistical problems associated with fitting full tuning curves
by focusing on whether and how neural activity and behavior
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change over time for nominally identical trials. It is clear from our
results and those of others (Chestek et al., 2007; van Beers et al.,
2013) that both neural activity and behavior can drift over time.
Here, we have shown that the neural and behavioral drifts are
linked, suggesting that at least some of the changes in neural
activity occur at or upstream of PMd and are behaviorally rele-
vant.

We agree with the conclusion of Rokni et al. (2007) that drifts
in the patterns of neural activity likely arise from a noisy learning
process, i.e., a continual processes of adjusting the state of the
system to reduce performance errors (Cheng and Sabes, 2006,
2007). Specifically, we showed that the statistical structure of
both the neural and behavioral variability are well described by an
error-corrective learning model with two autocorrelation time
constants. These autocorrelation time constants are also consis-
tent with those found in a previous study of motor learning with
external force perturbations (Smith et al., 2006), suggesting that a
single mechanism may account for the dynamics of learning with
or without external perturbations. Thus, although Rokni et al.
(2007) argued that drift only occurs along dimensions that do not
affect behavior, we show, by analyzing the mapping from neural
activity to behavior at one target over longer timescales, that these
drifts in activity do appear to drive behavioral drift.

Given the sizable drifts that we observe in both neural activity
and behavior, it is reasonable to ask why they have not been
reported more frequently in the past. It is likely that that behav-
ioral drift has been overlooked in previous studies when it was
present. Most studies in which the value of movement metrics
have been tracked across trials are studies of motor learning,
which typically include an exogenous perturbation that drives
large changes in behavior; the slow drifts observed here would be
small by comparison and thus difficult to observe. These studies
also typically focus on mean learning curves, which average out
Brownian motion drift. Last, because of the slow time course of
the drift we observe, it would be difficult to detect over shorter
sequences of reach movements. Indeed, the drift analysis is data
limited even in the present dataset, with �300 trials per target,
per session. Data collected over longer timeframes would permit
a more complete characterization of the drift statistics (e.g., ad-
ditional, longer timescales may be involved) and would also allow
for a more direct correlation analysis between the neural and
behavioral drifts.

Although we propose that the drift observed here is attribut-
able to error-corrective learning, the degree to which learning is
expected to drive drift depends on the details of the behavioral
paradigm, in particular the error feedback and reward structure.
Error-corrective learning is only one of several mechanisms for
motor learning, and the relative importance of these depends on
the details of the task, in particular the nature of the error feed-
back (Izawa and Shadmehr, 2011). When feedback is effectively
binary (hit or miss), the motor system may be more likely to use
an exploration-based reinforcement learning strategy (Shmuelof
et al., 2012). In this case, the dynamics of the motor state may be
dominated not by slow drift (as in our model, Eqs. 1–3) but rather
by “intentional” trial-by-trial variability to explore the reward
landscape (Thrun, 1992). Indeed, rapid changes in motor inten-
tion under such conditions could also explain why Churchland et
al. (2006) observed short-timescale correlations between PMd
activity and movement speed, whereas we do not. In that case,
changes in the central representation of the motor plan would
occur on the same timescale as trial-by-trial fluctuations (i.e.,
noise) and so are confounded statistically. When changes in the

plan are dominated by slow drift, as appears to be the case here,
the behavioral drift represents a reasonable estimate (or at least
lower bound) of the relative size of the central contributions to
motor variability. Indeed, our measurements of 18 – 41% of be-
havioral variability attributable to drift are consistent with esti-
mates of the central contribution arrived at through other
psychophysical means (van Beers, 2009).

The two-state learning model (Eqs. 1 and 2) shows that pure
error-corrective learning can result in drift, but the magnitude of
that drift depends on the learning parameters. van Beers (2009)
has argued that minimizing total output variance requires pa-
rameters that eliminate drift. Here we see a regimen in which
learning is not strictly variance-minimizing. This may be a result
of the potential for instability with noisy feedback, attributable to
an intrinsic cost of learning being factored into the optimization
or the desire to preserve learning-related exploration. That we see
drift with very similar time constants in both rhesus macaques
and professional athletes suggests that the reward regimen of our
experiments is, if not naturalistic, at least ethologically relevant.

In summary, because we observe weak trial-to-trial neuron–
behavior correlations in the motor cortex, short-timescale move-
ment variability, or motor noise cannot generally be of central
origin. The neuron– behavior correlations we observe are pri-
marily attributable to a slow drift in the mean cortical activity
pattern and the mean behavior, whose statistics suggest a process
of trial-by-trial learning. This central source of movement vari-
ability may thus paradoxically reflect a key neural mechanism for
maintaining accurate control.
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