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ABSTRACT OF THE DISSERTATION

Emotion Based Music and Audio Understanding

by

Eunjeong Koh

Doctor of Philosophy in Music

University of California San Diego, 2022

Professor Shlomo Dubnov, Chair

Machine learning is a methodology of data analysis that allows software to learn about

data, identify patterns, and make predictions without human intervention. Using machine learning,

researchers can automatically generate high-quality images and write a novel. Creating art with

machine learning is a state-of-the-art technique, which can bridge several different research

areas, such as computer science, cognitive science, psychology, and music. In this dissertation,

the research objectives are (i) to find effective machine learning practices for music and audio

understanding based on emotional context, which improves the knowledge of affective computing,

(ii) to design a music generative model and investigate melodic anticipation/expectation and

information dynamics in machine generated music.

xvi



Music and emotion are strongly linked, and listeners can feel different emotions directly

or indirectly through music. Engaging emotion as a component of a musical interface has great

potential for composing creative music and expressing messages in an effective way. However,

emotions are not tangible objects that can be exploited in music information retrieval as they

are difficult to capture and quantify in algorithms. In this dissertation, we efficiently combine

machine learning techniques for understanding and extracting the emotional context in music and

audio data. Several machine learning models are implemented and tested in order to understand

the connection between music and emotion in a way that wasn’t possible before.

First, we look at the technology of music and audio understanding and design an algorithm

for improving the real case scenario for the application of sound understanding. Next, we

introduce a generative machine learning model for automatic music composition which uses

emotional aspects in musical dynamics for the machine generated music. In order to classify

music according to emotions, the deep audio embeddings method was tested, and we show its

efficacy for the automatic music emotion recognition task. Lastly, we propose an interactive

audio interface that sonifies emotion. The idea is to use human facial gesture data to detect

emotions and categorize these into several emotional states for sonification. Rather than simply

detecting facial gesture data, it automatically extracts emotional states and produces sound output

transition. This dissertation makes the technology more accessible for creative purposes so people

can analyze the emotions of music by using machine learning methods and generate machine

learning applications using emotional attributes of music.
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Part I.

Introduction

1



Chapter 1

Introduction

Advances in Artificial Intelligence (AI) and machine learning have opened up new possi-

bilities for music and audio understanding. Various information is implied in music and audio,

and the information can be combined with machine learning technology to develop multimedia

entertainment systems. Specifically, emotion-based machine learning technology can play a

role in creating new types of sounds with context information in real-time. Understanding the

relationship between music and emotion can inspire users to adapt it to create art and music in

new ways. In this dissertation, we argue that the ability to understand the emotional aspects of

music and audio, and the application of that understanding to AI can allow for computational

creativity.

We propose several deep-learning methods that understand the context-based emotional

information and affective capabilities of AI through visual and musical aspects from the data. In

this thesis, we look at how to process music and audio data and extract the desired information

from it. Specifically, we investigate machine learning techniques from the Sound Event Detection

(SED) research area to the Music Emotion Recognition (MER) research area for understanding

sentiment information in music. SED research targets the detection of sound events. The goal of

the study is to provide both the event label and the event time boundaries while multiple events
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can be existing in audio data. MER research aims to search and organize music information

based on its relevance to specific emotion queries. These two research areas have similarities

in distinguishing between different sound events or different emotion classes. In MER, we are

interested in organizing large collections of music according to their emotion class. For effective

emotion labeling, we looked at the results of recent SED studies and decided to apply one of the

recent methodologies, deep audio embeddings. The following are the advantages of adapting

deep audio embeddings to MER.

Emotion labeling mainly focuses on human featured engineering, so it is hard to generalize

the emotion labeling method to various datasets. In the SED study, there is an advantage

of automating event detection using deep audio embeddings. With the rapid development

of deep learning, we can automatically extract vector representations from audio data, and

such vector representations of audio, deep audio embeddings, can be used for classification or

verification tasks. We optimize this deep audio embeddings technique to music that can improve

emotion labeling and also guide AI systems to recognize emotion in real-time aligned with

musical dynamics. We also show how we understand the connection between music and emotion

from visual aspects of data such as human facial expressions and how it can lead to enhanced

communication with music. We implement and present a demo for the application which can

interact between music and emotion in real-time.

When using machine learning models for designing applications, one of the limitations

you may encounter is related to the training data. Not all data can be used as training data, and the

system could forget previous information while modifying the pre-trained model. To improve this,

we propose a new machine learning model based on an incremental learning algorithm. Using the

incremental learning algorithm, the system can expand its knowledge based on existing ones. For

example, there is a SED system which pre-trained with three sound events for detecting different

sounds. By applying the algorithm, the system can also detect a new additional sound that has

not been trained before. For doing this algorithm design, we propose and implement a Neural
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Adapter structure that can effectively support this information gap in the learning process. The

details of the system structure have been introduced in the main chapter.

This dissertation is about AI applications that can allow for computational creativity. One

of the interesting abilities of machine learning technology is to create something new. We design

a model for automatic music composition within emotional context. We show that optimizing

such models using machine learning achieves computational creativity in predicting emotional

anticipation. The connection between music, emotion, and the music generative model, can

be related to some views of melodic anticipation and expectation. In the cognitive perception

process, the view of expectation can be associated with both biology and culture [Hur08]. When

it comes to music, we can think about this melodic anticipation or expectation with a machine

learning generative model. During the composition process, the generative model tries to learn

to understand musical structure based on training data and use the knowledge to predict the

next level of musical notes. This process is related to finding the relationship between musical

expectation and the mechanism of the generative machine learning model. Musical outputs are

tested with Information Rate which is a measure of understanding the aspects of information

dynamics in music.

The primary goal of the dissertation is to advance music content usage for designing

music related applications based on machine learning. In this dissertation, we create these

main intellectual contributions: (i) for music emotion recognition, we use the music semantic

representation of deep audio embeddings, to prove and test a method of understanding different

sound events that can work for automatic music emotion recognition, (ii) we design an incremental

learning algorithm for real case scenario of audio understanding application and introduce a

new learning strategy of minimal training data and maintaining the performance of existing

knowledge, and (iii) we present a generative model for automatic music composition and test

generated outputs in the context of information dynamics.
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1.1 Dissertation Organization

Chapter 6: Mugeetion: Musical Interface 
Using Facial Gesture and Emotion

Chapter 7: Using Deep Audio Embeddings 
for Music Emotion Recognition

Chapter 3: Incremental Learning 
Algorithm for Sound Event Detection

Chapter 4: Rethinking Recurrent Latent 
Variable Model for Music Composition

Facial/Emotion Information

Deep Audio Embeddings

Audio Features

MIDI

Music

Human Facial 
Information

Audio

Music

Input Feature types Application

Chapter 5: Information Dynamics in
Machine Generated Music

Part II. Music and Audio Understanding

Part III. Music Generative Model

Part IV. Music and Emotion

Figure 1.1: An Overview of the Dissertation Organization

We have three main parts in this thesis: Music and Audio Understanding, Music Generative

Model, and Music and Emotion (see Figure 1.1). This dissertation starts with a discussion in

the preliminaries of music and audio feature processing. Chapter 3 in Part II contains the

research on building an incremental learning algorithm for SED with a focus on detecting both

known/unknown sound events without forgetting the learned knowledge during training. In Part

III, Chapter 4 presents our research on designing a variational autoencoder model for generating

a novel sequence of music. Chapter 5 presents the usage of Information Rate as a measure for

understanding the information dynamics in machine generated music.

Part IV focuses on finding a methodology for the connection between music and emotion.

Chapter 6 shares a background of understanding human facial information in real-time and shows

its application of musical interface using human facial expression. Chapter 7 will present the

usage of deep audio embeddings for automatic emotion recognition. Finally, in Chapter 8, we
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review the study of understanding listener’s preference in the context of musical structure.

This dissertation is about how we understand emotional aspects in music and how we

connect music and emotion with different technologies. Not just understanding the connection

between music and emotion, this dissertation is also about how we could be creative based on

understanding those connections. With understanding of emotional context and information

dynamics in musical structure, we can be creative composers using machine learning models.

Based on the findings of the dissertation, we could, therefore, capture and generate emotion-based

musical creativity, leading to engaging and meaningful musical experiences from different angles.
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Part II.

Music and Audio Understanding
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Chapter 2

Audio Feature Processing Preliminaries

In this chapter, we look at the ways for analysis of music and audio data. The methodology

of audio analysis can be varied based on its research purpose. For example, for automatic music

composition, we need to understand previous musical structures as well as the characteristics of

each sound feature for the synthesis process. Also, it’s important to understand the frequency

spectrum and envelope from audio signals when discussing timbre in the audio. Depending on

which components are used, the music generation output can be different and the generative model

could be also changed. In the study of aiming to create a new sequence of music, spectrogram has

been mainly used after Short-Time Fourier Transform (STFT) which is one of most representative

sound characteristics in order to analyze existing musical features.

2.1 Related Work

[GFG18] demonstrated how to learn object sounds by watching the unlabeled video.

For segregation of the sounds, they performed non-negative matrix factorization (NMF) on

each video’s audio channel. For single-channel audio source separation, the mixture of time-

discrete signals was transformed into a magnitude or power spectrum. Because the purpose

of this work mainly focused on audio source separation, it performed NMF independently
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on its audio magnitude spectrogram to process its spectral patterns. [OIM+16] showed the

methodology of sound synthesis from silent videos. The proposed algorithm utilized a Recurrent

Neural Network (RNN) to generate next-level sound features and then created a waveform of

the sound with an example-based synthesis procedure. For learning sound characteristics, it

approached speech synthesis methods that used RNN to predict sound features. By decomposing

the waveform into sub-band envelopes, the study got a simple representation obtained by filtering

the input waveform and applying a nonlinearity. The study used a bank of 40 bandpass filters

on an Equivalent Rectangular Bandwidth (ERB) scale and processed Hilbert transform. In

this process, they learned about sound properties from sub-band envelopes on a sample of

white noise for generating a waveform. Another work from the same research group, [OE18]

examined three different methodologies for three applications, sound source localization, e.g.,

visualizing the source of sound in a video, audiovisual action recognition, and on/off screen audio

source separation. The study targeted taking a spectrogram for the mixed audio as input and

a reconstructed spectrogram for the two mixture components. For the sampling, they sampled 2

sound clips from 5 second long clips, normalized each waveform’s mean squared amplitude, and

utilized spectrograms with a 64 ms frame length and 16 ms step size for producing 128x1025

spectrogram. [ZGR+18] introduced a model for enhancing the speech of desired speakers in a

video. In the system, the model focused the audio on specific speakers in a scene and improved the

speech separation quality. To pre-process before training, they computed the STFT of 3-second

audio segments. Then, features were fed into the model to learn an audio representation using

Convolutional Neural Network (CNN). [ZWF+18] introduced a method of generating sounds

from videos in wild. They sampled audio directly from the video dataset at 16kHz. For the

frame-based, they set a step size to 1024, and 159744 time steps per 10 seconds. [SZL+18]

presented a conditional video generation network that can generate the talking face video with

accurate lip synchronization. They extracted the audio feature and image identity feature using

two convolutional encode networks. The audio features, Mel-Frequency Cepstral Coefficients
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(MFCC), were extracted and fed into a convolutional encode network. They chose the MFCC

feature due to its effectiveness in the speech recognition task.

2.2 Learning Audio-Visual Correspondence

In this section, we review different encoding methodologies for audiovisual signals and

address some examples of prior work for finding a correlation between audiovisual features.

Based on existing audiovisual studies, we look at which audiovisual features have trained together,

and we also review the purpose of its training. In this section, we think about the question

”Are there situations in which adding audio feature detection could enhance human expectations

beyond what an image can offer?” and how the system can be improved with audio features.

Several studies focused on audiovisual models to find a joint component between sound

and image. Cross-modal audiovisual perception is a challenging research field as a discovery of

strong correlations in human perception of auditory and visual stimuli. Most studies presented a

model to find a solution for sound separation and localization. For example, [EML+18, OE18]

showed methodologies for learning audiovisual correspondence which uses audio to supervise

visual representations. [ZGR+18] also introduced a study to utilize visual features for improving

speech separation quality. It has been noted that models have been varied based on the goal

of their system. Such visual features are usually high dimensional and they perform Principal

Component Analysis (PCA) on the extracted features of the training set to reduce dimensionality.

The PCA dimensionality is chosen by cross-validation on a validation set separately for each trait.

The PCA weights are saved and further used in fine-tuning the neural networks model. [SZL+18]

achieved a synthesis of talking face video by Conditional Recurrent Adversarial Network. For

processing hybrid features, they applied recurrent units on the hybrid code of audiovisual features

which can generate improved video quality. [SSKS17] presented a photorealistic video of Obama

speaking with accurate lip-sync. For doing this, the system connected audio features with mouth
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gestures for understanding the connection between the two. They used RNNs for synthesizing a

high-quality video of Obama speaking with accurate lip-sync. For photo-realistic mouth texture,

they extracted audio features as input to RNNs that generate output a sparse mouth shape. They

processed the audio using standard MFCC and the mouth shape with 18 lip points reduced by a

PCA basis. Using MFCC audio features, the study improved the quality of video generation and

shared the possibility of engaging audio features for the improvement both in computer vision

and pattern recognition studies.

In this chapter we review previous methods of sound feature processing and audio-visual

correspondence, which is targeting for cross modal audio visual perception algorithm. While

this chapter focuses on the preprocessing of data before training, the next chapter more discusses

audio processing for sound event detection systems.
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Chapter 3

Incremental Learning Algorithm for

Sound Event Detection

This chapter presents a new learning strategy for the Sound Event Detection (SED) system

to tackle the issues of i) knowledge migration from a pre-trained model to a new target model and

ii) learning new sound events without forgetting the previously learned ones without re-training

from scratch. In order to migrate the previously learned knowledge from the source model to the

target one, a neural adapter is employed on the top of the source model. The source model and the

target model are merged via this neural adapter layer. The neural adapter layer facilitates the target

model to learn new sound events with minimal training data and maintaining the performance of

the previously learned sound events similar to the source model. Our extensive analysis on the

DCASE16 and US-SED dataset reveals the effectiveness of the proposed method in transferring

knowledge between source and target models without introducing any performance degradation

on the previously learned sound events while obtaining a competitive detection performance on

the newly learned sound events.
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3.1 Introduction

Sound Event Detection (SED) is a rapidly growing research area that aims to analyze

and recognize a variety of sound events in a continuous audio signal. Neural Networks based

methods such as Convolutional Neural Networks (CNNs) have recently been used for SED

systems to advance the performance of these systems [MHV18, MHV16b]. In the Detection and

Classification of Acoustic Scenes and Events (DCASE) Task 4 [DCA], the state-of-the-art SED

systems have been tested using real data that is either weakly labeled or unlabeled and simulated

strongly labeled data with the onset and offset times of sound events.

Although SED problem has been attracting many researchers, a vast majority of the state-

of-the-art systems are focused on advancing the performance of the SED systems by utilizing

weakly labeled data [DCA]. To our knowledge, one of the important and non-investigated

challenges of the current SED models is their closed-set nature, where a fixed and limited number

of known classes are used during the training. It is difficult to collect exhaustive training samples

or to properly annotate all the training data to train the classifiers. Hence in the closed-set

classifiers, only a limited number of classes are considered for training, with the assumption that

during test time, the test data is drawn from the same set of classes as the training data. However,

the SED systems in nature are open-set problems, in other words, the test data could include

samples associated with unknown sound events as well. Therefore, it is always desired to have

a flexible model that can learn new classes, once new training data including new sound events

becomes available. Then again, it is required to still remember the previously learned classes

after adopting the new classes, and learning capability is referred to as continuous learning or

incremental learning.

One of the main challenges associated with these types of continuous learning algorithms

is catastrophic forgetting [MC89]. That is if the information about the previously learned cate-

gories is unavailable when a new task is added, it overwrites the previously learned information.
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Hence, it leads to the performance degradation of past tasks. The ability of continuous/incremental

learning over time represents a long-standing challenge for Machine Learning and Neural Net-

works [TM95]. Recently, in the areas of computer vision and natural language processing

[GBC16, CM19], Transfer Learning (TL) has shown great potential to 1) identify the transferable

knowledge by accommodating new knowledge and 2) retain previously learned information. Some

recent works have explored TL for audio applications [CWSB19, KKF18, JPL19, SGH+19],

which focus on knowledge transfer between databases with various qualities, mismatch down-

stream tasks, and domains. However, it remains to be seen how a flexible TL model for SED task

to audio knowledge transfer can be done.

In this chapter, we present an incremental learning algorithm for SED applications

effectively transferring knowledge from a source model to a target model. Our method updates the

target model when new sound events are available without any catastrophic forgetting. Motivated

by the recent TL advances in natural language processing [CM19], we utilize a neural adapter

to bridge the gap between the source model and the target model. We combine new neurons for

transferring parameters from the source model and implement a neural adapter to lessen the gap

between the source and the target data distribution. For testing the performance of the neural

adapter, we test the basic simple TL approach, then we show the impact of our proposed neural

adapter for the SED task, while testing several TL options on just one category. The results

show that our method provides an effective knowledge transfer mechanism between source and

target domains without any additional training examples and any performance degradation of

the previously learned tasks in the source domain. Our learning algorithm helps to transmit the

predictions from the source model into that of the target model.

The rest of the chapter is organized as follows. In section 2, we cover the proposed SED

incremental learning algorithm, followed by the experimental results in section 3. The conclusion

and the discussion are provided in section 4.
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3.2 SED Incremental Learning Algorithm

3.2.1 SED Problem Formulation

Given an input audio file that includes several acoustic scenes, a standard SED predicts

the corresponding labels that indicate the annotation of all the sound events in the scenes. The

time-series audio input is represented by audio embedding vectors and the event label file includes

the information of event specification, such as the sound event onset/offset time and sound event

label.
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Figure 3.1: SED incremental learning algorithm structure. Source input consists of N
sound events and target input consists of N+1 sound events leaving one sound event out to be
incrementally learned later with the target model. The source and target model includes three
2D convolution layers, 2D max-pooling operation, and batch normalization layers. We use
a sigmoid function for output activation of the source and the target model. Source model’s
weights are fixed during target model training. The target model is initialized with the optimal
weights of the source model. The neural adapter consists of fully-connected dense layers. Note
that source and target models have different output dimensions due to the new class in the target
data. A©& B© are intermediate outputs for analysis, we add A© and B© to C© using merger, and
C© is the final output of our model.
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3.2.2 Transfer Learning (TL) Workflow

Our TL mechanism consists of several steps (see Figure 3.1); (i) a pre-trained source

model, MS, for a certain number of categories, in the source domain, DS; (ii) a target model,

MT , that utilizes the source model MS parameters as a starting point to learn the target domain,

DT . In addition to the typical TL mechanism, which is (i) and (ii), we add a neural adapter

(iii) a connection system between the source model MS and the target model MT for effectively

transferring knowledge from the source domain DS to the target domain DT . This connection

will alleviate the effect of information discrepancy and prevent any catastrophic forgetting on

the previously learned information. Finally, we (iv) jointly train the target model MT and the

connection system together to effectively learn the target domain DT information. Note that the

parameters of the source model MS are not updated during this target model MT training process.

3.2.3 Model Architecture

SED Source Model

Figure 3.1 describes the process and the structure of our SED incremental learning

methodology. We revise the Convolutional Neural Network (CNN) proposed by Salamon and

Bello [SB17], which includes three 2D convolution layers, a 2D max-pooling operation, and batch

normalization layers. Each layer processes 64 convolutional filters. The input to the network

is a Mel spectrogram of size 128x128 that is extracted from a one-second audio file. ReLU

activation functions are applied to the convolutional layers to reduce the backpropagation errors

and accelerate the learning process [GBC16]. Sigmoid function are used as the output activation

function with N classes. Adam optimizer [KB14] and binary cross-entropy loss function are used.

The stopping criterion is set as 500 epochs with an early-stopping rule, if there is no improvement

to the F1 score during last 100 learning epochs [MHV16a]. The final model has 720k parameters.

This model is implemented in Keras [Cho15].
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Incremental Learning using Neural Adapter

In this work, the MS is trained for N sound events using the aforementioned CNN model.

The goal is to create a MT for N+1 sound events without training from scratch. Note that the N

sound events are common for both MS and MT . To this end, the MT has the same CNN structure as

the MS and the trained parameters of the previously learned N sound events are utilized from the

MS as an initial training point for the MT . To account for the new category in the MT , we modify

its output layer with N+1 sigmoid activation. It is well known that learning a new task via such

a simple transfer learning paradigm usually results in forgetting the previously learned classes

while adding new classes. To avoid this knowledge-lost problem, we adopt the TL mechanism

proposed by Chen and Moschitti [CM19]. In this method, to effectively transfer the knowledge

between the MS and the MT , a neural adapter is utilized to bridge the two models and jointly

trained with the MT . More specifically, a neural adapter consists of two fully-connected dense

layers over the last layer of MS is used to connect the MS to the MT . This process is called the

element-wise summation which integrates the outputs from the source and target domain and

finally processes N+1 categories. The parameters of the neural adapter and the MT are learned

simultaneously while the MS parameters are fixed.

3.3 Experimental Results

3.3.1 Datasets

We start our implementation with building MS using only N sound events for DS, out

of the N+1 events, leaving one sound event out to be learned incrementally later with the MT .

We train the MS using the DS until the optimal parameters are achieved. These parameters and

results will be saved and re-utilized for DT . We evaluate our algorithm over three datasets; the

DCASE 2016 challenge Task 2 (DCASE16) [MHV16b], the UrbanSound-SED (US-SED), and
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UrbanSound-8K (US-8K) [SJB14] dataset.

The DCASE16 dataset includes eleven different sound events for the SED challenges1,

clearing throat, coughing, door knock, door slam, drawer, human laughter, keyboard, keys (put on

the table), page turning, phone ringing, and speech. In this work, we use four sound events; “door

knock”, “door slam”, “keyboard”, and “phone ringing”. To generate soundscapes from these

sound files, we use the Scaper open-source library [SMC+17] for the synthesis and augmentation

2. We create 800 soundscapes for MS training data and 200 soundscapes for each test/validation

data. The duration of each soundscape audio file is ten seconds. It is worth noting that the

soundscapes are generated in such that each event appears at least once and a maximum of two

times in every soundscape file. This DCASE16 dataset denotes a clean and well-labeled dataset

for our experimental setting.

The US-SED dataset [SJB14] includes ten different sound classes; air conditioner, car

horn, children playing, dog bark, drilling, engine idling, gun shot, jackhammer, siren, and street

music. In this work, we use the pre-generated UrbanSound soundscape audio files from the

Scaper study [SMC+17]. It has 10,000 soundscape files with a duration of ten seconds. Each of

the soundscape files has a minimum number of sound events as zero, and the maximum number

of nine. Thus, some of the soundscapes might be empty of the sound events of interest. This

situation can be interpreted as a more realistic SED framework compared to the aforementioned

DCASE16, where each of its soundscape files contains all the sound events. For our experiment,

we considered five sound events; “car horn”, “dog bark”, “gun shot”, “siren”, and “street

music”. 4,995 files are used for MS training, and 1,665 files for each of the test and verification

data.
1http://www.cs.tut.fi/sgn/arg/dcase2016/task-sound-event-detection-in-synthetic-audio
2We revise this open-source implementation:

https://github.com/justinsalamon/scaper_waspaa2017
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Table 3.1: F1-score of the MS, Simple TL, and Neural Adapter TL over different settings
on DCASE16. Simple TL means MT built based on a simple (or typical) TL method without
the neural adapter, and Neural Adapter TL means MT built using the neural adapter TL method
in addition to the simple TL. The MS sections shows the F1-score of MS for different DS domain
settings. Simple TL section illustrates the F1-score of the MT that are built via a simple TL
approach. Neural Adapter TL section reports the F1-score of the proposed approach. DS

columns of the Simple TL and Neural Adapter TL indicate the F1-score of MT on the previously
learned classes. The New columns present the F1-score of the newly learned class and All
columns report the overall F1. Rows in the table depict each of the test scenarios assuming that
unseen label in DS is newly introduced in DT . DCASE16 includes four sound event classes, C1:
keyboard, C2: door slam, C3: phone ringing, and C4: door knock.

DCASE16 MS Simple TL Neural Adapter TL
Labels in DS DS DS New All DS New All

C1 C2 C3 .9444 .8518 .666 .8055 .944 .6666 .8518
C1 C2 C4 .8888 .7777 .8888 .8055 .8886 .8888 .8888
C1 C3 C4 .8518 .8518 1.0 .8888 .8513 .8 .8388
C2 C3 C4 .7407 .8518 1.0 .8888 .74 1.0 .8055
Overall .8561 .8332 .8888 .8469 .8559 .8388 .8462

Table 3.2: F1-score of the MS, Simple TL, and Neural Adapter TL method over different
settings on US-SED and US-8K. This table is configured the same as Table 3.1 with different
datasets and sound classes. US-SED and US-8K include five sound event classes, C1: street
music, C2: siren, C3: gun shot, C4: dog bark, C5: car horn).

US-SED MS Simple TL Neural Adapter TL
Labels in DS DS DS New All DS New All
C1 C2 C3 C4 .5503 .5782 .6697 .5965 .5640 .6962 .5966
C1 C2 C3 C5 .5897 .5918 .4316 .5598 .589 .5270 .5789
C1 C2 C4 C5 .5985 .6040 .4493 .5731 .5947 .4232 .5666
C1 C3 C4 C5 .5850 .5826 .6151 .5892 .5826 .6188 .5929
C2 C3 C4 C5 .5891 .5822 .5572 .5573 .5875 .5977 .5938

Overall .5825 .5877 .5445 .5791 .5836 .5725 .5780

US-8K MS Simple TL Neural Adapter TL
Labels in DS DS DS New All DS New All
C1 C2 C3 C4 .6041 .5857 .5 .5704 .6023 .5706 .5908
C1 C2 C3 C5 .5166 .4523 .5233 .5076 .5047 .5285 .5142
C1 C2 C4 C5 .6277 .5568 .5846 .5999 .6145 .6085 .6133
C1 C3 C4 C5 .6499 .5865 .5076 .5538 .6192 .5464 .5607
C2 C3 C4 C5 .6791 .6756 .6461 .6773 .6675 .6567 .6606

Overall .6154 .5713 .5809 .5818 .6016 .5821 .5871
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3.3.2 Performance of the Incremental Learning

We evaluate our algorithm in three different settings; i) evaluating the MS trained on DS

with N sound events, ii) evaluating the MT that is built via a simple TL on the DT with N+1 sound

events, and iii) evaluating the model that is built utilizing the neural adapter, where the MT is

merged with the MS through the neural adapter and trained on DT . The results are reported in

terms of F1-score (see Table 3.1 and 3.2). We perform experiments per every class assuming it

is newly introduced in the DT . Note that N indicates three sound event classes for DCASE16

dataset and N indicates four sound event classes for the US-SED and US-8K dataset.

Table 3.1 and Table 3.2 present the evaluation results for the DCASE16 and US-SED,

respectively. These tables include three sections; MS, Simple TL and Neural Adapter TL. The

MS section shows the F1-score of MS models for different DS. Section Simple TL illustrates the

F1-score of the MT that are built via a simple transfer learning approach. Section Neural Adapter

TL reports the F1-score of the proposed approach. DS columns of the Simple TL and the Neural

Adapter TL indicate the F1-score of the new models on the previously learned classes after the

incremental learning process. The New columns present the F1-score of the newly learned class,

and finally the All columns report the overall F1-score on the N+1 sound events. Rows in the

table depict different test scenarios assuming that unseen label in DS is newly introduced in DT

for incremental learning.

• DCASE16: By paying attention to Table 3.1 and the DS column in the MS section versus

the DS column in the Simple TL section, it can be seen that learning sound classes via the simple

TL approach, without the neural adapter, results in performance degradation in the previously

learned sound events. This drop in performance indicates a catastrophic forgetting in the DT on

the original three categories in DS. On the other hand, the consistent F1-scores between the DS

column in the MS section and the DS column in the Neural Adapter TL section is an illustration

that the neural adapter can properly maintain the knowledge learned from DS while learning the

new class in the DT . This result proves that the neural adapter manages to mitigate the knowledge
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forgetting and enabling the model to update to the new domain.

• US-SED: The top table of Table 3.2 illustrates the results on US-SED dataset. Similar

to DCASE16, we can see the neural adapter can effectively bridge the knowledge between the

MS and the MT models while learning the new sound events. However, by comparing the DS

column in the MS section to the DS column in the Simple TL section, we can see the simple TL

achieves some improvement over the MS on the previously learned sound events. Unexpectedly,

these results are even slightly better than the neural adapter TL approach (see the DS column

in the Neural Adapter TL section). This result does not match the results obtained for the

DCASE16 dataset. The reason for this could be the amount of presented noise during the training

of the models. As it is mentioned earlier, in the US-SED, some of the used soundscapes in the

training data are empty of the sound events of interest. Hence, these files are interpreted as

noisy samples by the network. On the other hand, all the sound files used from the DCASE16 at

least contain one of the desired sound events. To assess this argument, we modify the original

UrbanSound8K dataset [SJB14] to mimic the settings from the DCASE16 in creating a more

clean dataset3 and this is the US-8K for our next dataset. In US-8K, each event appears at

least once and a maximum of two times in every soundscape file which is the same setting as

DCASE16 soundscape generation.

• US-8K: This US-8K dataset has the same five sound events as the US-SED. Similar to

DCASE16, each sound event appears in each soundscape file at least once. The evaluation results

on this dataset is provided in the bottom table of Table 3.2. By looking at the DS column in the

MS section and the DS column in the Neural Adapter TL section, it can be seen that similar to

the DCASE16 dataset, the neural adapter method consistently maintains the performance on the

previously learned sound events after learning new sound events. Also transferring the knowledge

from the MS via the neural adapter is more effective compared to the simple TL approach. It is

3For our experimental setting, US-8K soundscapes are generated based on the UrbanSound8K dataset which can
be found on:
https://urbansounddataset.weebly.com/urbansound8k.html.
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Table 3.3: Comparison between individual performances from each model over different
settings on DCASE16, US-SED, and US-8K. A© is the output of the source model with a
neural adapter. B© is the output of the target model. C© is a final output of our proposed model
(see also Figure 3.1).

DCASE16 US-SED US-8K
A© .5321 .2537 .3871
B© .8017 .3498 .5073
C© .8451 .4833 .5272

important to ensure that this improvement in the performance is not specific to any target event

category, and it is common across different experiments denoted in various rows of the tables.

Summarizing the experimental results from the three datasets, it can be seen that simple

TL method without the neural adapter has confronted the degradation of the performance with

losing the previously learned knowledge from the source model training. There are also up and

down in the performance from specific sound events or dataset in the simple TL method. On the

other hand, in the case of the neural adapter approach, it is possible to see the inclination in which

the learned knowledge is maintained consistently, and the performance sustains in a balanced

manner. Therefore, we show performance consistency on the previously learned sound events

through neural adapter while obtaining decent detection performance on the newly learned sound

events well.

3.3.3 The Feasibility of Neural Adapter for Incremental Learning

In this section, we study the contribution of each model’s outputs separately on the overall

performance. In Figure 3.1, we separate three individual outputs in the neural adapter approach;

(1) the optimal output of the source model with a neural adapter ( A© in Figure 3.1), (2) the output

of the target model ( B© in Figure 3.1) and (3) the final output of our proposed TL model ( C© in

Figure 3.1). For this study, the target domain is used in three cases. The results of the analysis are

provided in Table 3.3.
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It can be seen that when using DCASE16 dataset, the trained target model via the neural

adapter reaches an optimal point to be able to detect all the N+1(=4) sound events without the

need to have the source model (see B©& C© of the DCASE16 column). Therefore, only the target

model could be stored and used as a starting point for learning new categories without the need to

store the source model and the neural adapter. This result can provide a low footprint continuous

learning framework for further model expansion.

In contrast, in the case of using the US-SED dataset, the target model and the source model

remain complementary to each other for achieving an acceptable final outcome (see B©& C© of the

US-SED column). It appears that the target model cannot maintain the transferred knowledge

from the source model while learning the new sound event. Hence, in order to continuously

learn new sound events, we always need to keep the whole TL structure presented in Figure 3.1.

This is not feasible for continuous learning in applications that are operated on resource limited

platforms, for example, wearable devices. In the case of using the US-8K dataset, it has similar

aspect of DCASE16, but it is hard to see a difference as large as DCASE16.

3.4 Conclusion and Discussion

We present an incremental learning algorithm utilizing a TL paradigm for SED application.

We use a neural adapter to effectively bridge the gap between the previously learned information in

the source model and a target model for learning new sound events. Our extensive analysis shows

that utilizing such a mechanism improves the performance of recognizing both known/unknown

sound events without forgetting the previously learned knowledge. Thus, our proposed model

suits well the scalable and incremental SED applications.

This approach can also be used as a low footprint framework for continuous learning

in applications that involve less noisy and well annotated data. However, for the more realistic

applications, such as acoustic scene classification systems that involve more noisy data, both
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the target model and the source model might need to remain connected to achieve the desirable

performance. Addressing such a challenge remains the focus of our future work.

Chapter 3 is adapted from published material in ”Incremental Learning Algorithm for

Sound Event Detection”. Koh, Eunjeong, Saki, Fatemeh, Guo, Yinyi, Hung, Cheng-Yu, and Visser,

Erik. IEEE International Conference on Multimedia and Expo, 2020. The dissertation/thesis

author was the primary researcher and author of the paper.
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Part III.

Music Generative Model
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Chapter 4

Rethinking Recurrent Latent Variable

Model for Music Composition

We present a model for capturing musical features and creating novel sequences of music,

called the Convolutional-Variational Recurrent Neural Network. To generate sequential data, the

model uses an encoder-decoder architecture with latent probabilistic connections to capture the

hidden structure of music. Using the sequence-to-sequence model, our generative model can

exploit samples from a prior distribution and generate a longer sequence of music. We compare

the performance of our proposed model with other types of Neural Networks using the criteria of

Information Rate that is implemented by Variable Markov Oracle, a method that allows statistical

characterization of musical information dynamics and detection of motifs in a song. Our results

suggest that the proposed model has a better statistical resemblance to the musical structure of the

training data, which improves the creation of new sequences of music in the style of the originals.
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4.1 Introduction

Neural networks have enabled automatic music composition with little human interruption.

Many approaches have been proposed to generate symbolic-domain music, such as Recurrent Neu-

ral Networks (RNNs) [CM01, WERA, YCY17] and RNN combined with Restricted Boltzmann

Machine (RNN-RBM) [BLBV12]. However, previous studies on RNN-based music generation

lack in: 1) understanding the higher level semantics of a musical structure, which is critical

to music composition; 2) generating novel and creative patterns that avoid literal repetitions

[BWH16]. Most of the previous studies for music generation use so called one-to-many RNNs,

where a single musical unit (such as a single note or one bar of music) is used to predict the next

unit in a recurrent manner.

In addition, recent studies exploiting Convolutional Neural Networks (CNNs) for the

generation of symbolic-domain music use rich representations that are more adaptive to cre-

ating complex melodies, such as C-RNN-GAN [Mog16], MidiNet [YCY17], and MuseGAN

[DHYY17]. In general, the frameworks’ processes consist of: 1) representing multi-channel

MIDI files using filters learned by CNN layers; 2) setting a discriminator to learn the distributions

of melodies; and 3) processing longer sequences of data. CNNs have been well-established as

choices for recognition and classification tasks in 2D data such as images, so they make better

candidates for extracting melodies (horizontal) or chord (vertical) structure in musical time-pitch

space.

The Variational Autoencoder (VAE) has been also explored as a generative model for

creating multimedia structure. In [HUW17, REE], VAE has been trained for musical creation

which can better capture musical structure and generate complex sequential results. VAE exploits

samples from a prior distribution and generates a longer sequence. In addition to VAE, Variational

Recurrent Neural Networks have been introduced in [FvA14, CKD+15]. These studies show that

Variational Recurrent Neural Networks can create sequential data by integrating latent random
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variables in recurrent ways. To do this, the model utilizes encoded data in latent space in each

step. This suggests that these recurrent steps can make it possible to generate more diverse styles

tasks while incorporating features from data in a recognizable way. However, these previous

studies do not analyze the outputs in music generation, and how to maintain a designated theme

across the entire song remains unchallenged.

In this paper, we propose a Convolutional-Variational Recurrent Neural Network which

combines the strength of CNN and VAE together. We show that: 1) CNN feature learning can

improve statistical resemblance to musical structure of the training data; 2) utilizing encoded data

in latent space can extend the dynamic creation of new sequences of music. Our model consists

of a CNN to learn a better representation of bar-level of music and a Variational Recurrent Neural

Network for generating novel sequences of music. In this model, random sampling and data

interpolation can generate sequential data more dynamically while including learned aspects of

the original structure. We model the class of bar-level data points to enable the recurrent model to

infer latent variables.

To validate our model, we adopt Information Rate (IR) as an independent measure

of musical structure [WD14], in order to assess the effect of the repetition versus variation

structure constraints and compare our approach with that of RNN models for music generation

[WERA, YCY17]. We use IR implementation by Variable Markov Oracle (VMO) to discover

optimal predictive structure in the audio output of the different models. The IR analysis using

VMO provides an independent evaluation of the structure of the song as captured by the sequence

of audio Chroma features. Furthermore, we present a detailed motif analysis of the data and

provide a qualitative discussion of generated musical samples.

The rest of the paper is structured as follows: Section 2 gives an overview of related

models and computational approaches to music generation. Section 3 describes the components

involved in the Variational Recurrent Neural Network approach. Section 4 describes the IR

experimental validation of the sequential modeling in the context of Nottingham dataset [not], a
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collection of 1200 British and American folk tunes. We discuss the empirical findings in Section

5 and give future perspectives.

4.2 Backgrounds

4.2.1 Music Generation with Recurrent Neural Networks

Automatic music generation with neural networks is a task to automatically generate

music using parameters learned from a collection of music samples. Neural networks have

enabled automatic music composition with little human interruption. In this chapter, we review

previous studies of music generation by Recurrent Neural Network (RNN) and describe the pros

and cons of this neural network for music generation purposes. We also review some variations

of RNN such as RNN-RBM, or Variational RNN.

First, we look at ways to generate music sequences based on RNN. RNNs are the type

of neural networks that have been explored for sequential information. RNNs perform the same

function for every single element of a sequence with the result based on previous computation

(see Figure 4.1).

Figure 4.1: Block diagram of RNN structure (xt : input vector, ht : hidden layer vector, ot : output
vector, W,U,V: parameter matrices/vector)

The most common RNNs is the Long Short-Term Memory (LSTM) network which is

used for modeling long-term dependencies. This is a type of RNNs that can learn via gradient
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descent and recognize long-term patterns. LSTM structure has been widely utilized for solving

problems where the network has to memorize information for the long term.

We can use RNNs to design a generative model. With the increase in computational

resources and recent advancements in RNN architecture, we can generate a sequence of music

such as a song with repetition, or a random sequence of notes. During the generation process,

we get input sequence data by normalizing the hidden layer to a probability distribution and

calculating the product of the probabilities. Ideally, the generated song could have variations with

different levels of similarity to the training data.

There have been various approaches to implementing multiscale RNNs. The most popular

approach is to set the timescales as hyperparameters instead of treating them as dynamic variables

that can be learned from the data [EHB96, KGGS14]. In the same vein, the Variational Recurrent

Neural Network has been shown to perform well on generating sequential outputs by integrating

latent random variables in RNNs [FvA14, CKD+15]. For the latent variable structure, the model

utilizes encoded data in latent space in each step. The previous studies showed that these recurrent

steps can make it possible to be flexible on the generation of more diverse styles of music while

incorporating features from data in a concrete way.

In general, music generation studies on RNNs face challenges related to the ways of

capturing and learning from training data [CM01, WERA, BLBV12]. In the following sections,

we explore a recent methodology that has been approached for improving music generation based

on RNNs.

4.2.2 Music Generation with Variational Latent Model

Our architecture is inspired by the Variational Autoencoder (VAE) as a stochastic gen-

erative model [KW13, RMW14]. In general, the model consists of a decoding network with

parameters θ that estimates the posterior distribution pθ(x|z), where x is the sample being esti-

mated and z is an unobserved continuous random variable. The prior probability pθ(z) in this case
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is assumed to be generated from a Gaussian random variable with zero mean and unit variance.

In this form, the true posterior distribution pθ(z|x) = pθ(x|z)pθ(z)/pθ(x) is intractable, so an

encoding network q with parameters φ is used to estimate the posterior as qφ(z|x). The encoding

network is trained to estimate a multivariate Gaussian with a diagonal covariance.

logqφ(z|x) = logN (z;µµµ,σσσ2I) (4.1)

Noise can then be sampled using Gaussian distribution with the mean and standard deviation

learned by the encoding network.

z = µµµ+σσσ� εεε,εεε = N (0, I) (4.2)

Thus, the parameters of the encoding network φ can be estimated with gradient descent using the

re-parameterization trick [KW13] and the total loss of the network is calculated as

L(x;θ,φ)' 1
2 ∑

j
(1+ log(σσσ2

j)−µµµ2
j −σσσ

2
j)+

1
L ∑

l
log pθ(x|z(l)) (4.3)

where the first term on the right-hand side is an approximation to the KL divergence between

qφ(z|x) and pθ(z).

Intuitively speaking, the variational approach adds a probabilistic element to latent model

that allows not only generation of new variations through random sampling from a noise source,

but it is also trying to distill more informative latent representation by making the z’s as inde-

pendent as possible. In this view, the KL component in Equation 4.3 can be considered as a

probabilistic regularization that seeks the simplest or least assuming latent representation. Taking

this analogy one step further, one could say that a listener infers latent variables from the musical

signal she/he hears, which in turn leads her/him to imagine the next musical event by predicting

musical continuation in the latent space and then ”decoding” it into an actual musical sensation.
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Technically speaking, during training, the model is presented with samples of the input

which are encoded by q to produce the mean and standard deviation for the noise source. A

noise sample is then generated and passed through the decoding network which calculates the

posterior probability p to determine the sample generated by the network. The network is trained

to reproduce the input sample from the noise source, so the second term on the right-hand side

of Equation 4.3 can be either mean squared error in the case of a continuous random variable or

cross entropy for discrete random variables. At test time, random samples are generated by the

noise source, which is used by the decoder network to produce novel outputs.

4.2.3 Music Information Dynamics and Information Rate

We analyze our music generation output with IR value from VMO, in order to assess

the predictability of a time series sequential data, and understand consistency in a song (e.g.,

motives, themes, etc) [WD15]. VMO allows to measure music information dynamics and higher

IR value presents structural note transition in a generated music than the one with lower IR value.

In Equation 5.1, x1,x2, ...,xn denotes time series x with N observations, and H(x) denotes the

entropy of x. As a result, IR denotes corresponding information between the current and previous

observations, which enables the understanding of variation and repetition in a song segment.

IR(xn−1
1 ,xn) = H(xn)−H(xn|xn−1

1 ) (4.4)

For quantitative evaluation, VMO has also been explored by other deep learning research

focusing on music generation [BHP17, LGW16].

4.2.4 Search for Optimal Threshold

Evaluation of IR requires knowledge of the marginal and conditional distributions of the

samples xn and xn−1
1 . This function is not known and the whole purpose of modeling the data
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Figure 4.2: Convolutional-Variational Recurrent Neural Network architecture

with our variational latent model is to try to approximate such probabilities. So how can IR be

used without an explicit knowledge of the distribution?

The idea behind Music Information Dynamics analysis is estimating mutual information

between present and past in musical data in a non-parametric way. This is done by computing

similarity between features extracted from an audio signal that was synthesized from MIDI, using

human engineered features and distance measures known from musical audio processing. VMO

uses a string matching algorithm, called Factor Oracle (FO), to search for repeated segments

(suffixes) at every time instance in the signal.

A crucial step in VMO is finding a threshold θ to establish similarity between features. For

each threshold value, a string compression algorithm is used to compute the mutual information

between present and the past, measured in terms of the difference in the coding length of individual

frames versus block encoding using repeated suffixes. So the optimal IR in VMO is found by

searching over all possible threshold values and selecting a threshold that gives an overall best

compression ratio.

4.2.5 Links between Variational Latent Model and IR

A motivation for using IR as a method to estimate the efficiency of dynamic latent models

can be found through the relation between the variational inference loss function and IR using
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formulation of free energy. The loss function in Equation 4.3, known also as Evidence Lower

Bound (ELBO), can be shown to represent so called free energy of the system.

L ' Eq[log p(x,z)− logq(z|x)] =−F (4.5)

Let us further assume that the samples x depend only on the most recent z. In such case, the first

term averaged by q over all possible z values approximately corresponds to negative of marginal

entropy of the data x, −H(xn). The second term captures the entropy of z that contains the

residual information in the measurements, similar to information that is captured by the entropy

rate of x as H(xn|xn−1
1 ) for asymptotically large n. Under such assumptions −F is similar to the

IR expression given in Equation 5.1. Accordingly, finding the minimum of L is equivalent to

maximizing F , which in case of our time signal assumptions1 approximately equals to IR.

4.3 Methodology

4.3.1 Feature Learning with CNN

We adopt a CNN in order to learn a better representation of polyphonic music by treating

the input as a 2D binary feature map. This is predicated on the notion that the arrangement of

notes in a musical piece yields salient spatial relationships when visualized in a form such as a

piano-roll and thus are conducive to being modeled by a CNN. In this, the input MIDI is first

preprocessed into a piano-roll, with the beat resolution set to 8th notes. This gives us a feature

map representation x(t) ∈ {0,1}n×r×1 at time step t, where n is a number of time steps in a frame

and r is the note range. The piano-roll is then processed by a CNN with two convolutional layers

separated by max-pooling layers and a final flattening layer. The output of this network is the

latent feature m(t)
l ∈ Rk at time step t (See Panel A in Figure 4.2).

1It is worth noting that we are assuming here that the entropy of the latent states is equal to entropy rate of the
data.
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4.3.2 Encoder & Decoder Network

The models presented in Figure 4.2 can generate a track of music bar by bar, with a

possibly polyphonic structure among several bars. We adopt a recurrent architecture for our VAE,

which includes an RNN encoder and RNN decoder (See Panel B and C). The encoder RNN takes

the latent feature m(t)
l at each time step and produces a final hidden state h(T )

q ∈Re for a sequence

of T MIDI frames.

h(T )
q = fRNN(m

(1)
l , ...,m(T )

l ) (4.6)

The hidden state is then subject to two linear transformations to determine the mean and standard

deviation of the noise distribution given in Equation 4.1.

µµµ = Wµh(T )
q +bµ

σσσ = Wσh(T )
q +bσ

(4.7)

Where Wµ,Wσ ∈Rz×e and bµ,bσ ∈Rz. Noise is then generated as in Equation 4.2. Since we are

modeling sequential data, the decoder network is trained to predict pθ(x(t)|x(1:t−1),z). In this, the

RNN takes in the generated noise z at the first time step. At each subsequent time step, the latent

feature m(t)
l for an input sample x(t) is linearly transformed into the same dimensionality as the

noise source and then passed into the RNN.

m(t)
z = Wzm

(t)
l +bz (4.8)

Where Wz ∈ Rz×k and bz ∈ Rz. The RNN produces a hidden state h(t)
p at each time step, which is

passed through a logistic layer estimating pθ(x(t)|x(1:t−1),z).

h(t)
p = fRNN(z,m

(1)
z , ...,m(t)

z ) (4.9)
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x̃(t) = σ(Wph(t)
p +bp) (4.10)

Where σ(·) is the logistic sigmoid function, h(t)
p ∈ Rd , and Wp ∈ Rnr×d . This effectively yields a

binary feature map of the same dimensionality as the input which is used to predict a piano-roll

based on the input at the previous time steps and the noise. Finally, we use the Gated Recurrent

Unit (GRU) [CvM+14] for both the encoder and decoder RNN, which is defined by the following

equations for fRNN(x(1), ...,x(t)) at time step t.

s(t) = σg(Wsx(t)+Ush(t−1)+bs)

r(t) = σg(Wrx(t)+Urh(t−1)+br)

h(t) = s(t)�h(t−1)+(1− s(t))�σh(Whx(t)+Uh(r(t)�h(t−1))+br)

Here, σg(·) denotes the logistic sigmoid function and σh(·) denotes hyperbolic tangent. In

our implementation, we use 256 hidden units for the encoder and 512 hidden units for the decoder.

With GRU, the model can create sequential output combined with decoded noise and previous

output utilized for next input. As shown in Figure 4.2, the model sequentially generates bars one

after another based on VAE structure, which takes inputs of mean and variance, then proceeding

to next step which processes a random noise z and output received by the previous GRU.

4.3.3 Training Details

We train the network on training MIDI files, segmenting the MIDI input into batches of

8 bars, half a bar to a time step, and 8th note as the note resolution, resulting in 16 time steps.

In each epoch, we train on the entire song with non-overlapping batches. We use dropout as a

regularizer on the output of the CNN and the output of the decoder RNN. For optimization, we

use the Adam optimizer with a learning rate of 0.001. In addition, we clip the gradients of the

36



weight matrices so the L2 norms are less than 10. The loss of our network is that of Equation 4.3,

with the log loss in the second term being cross entropy loss between the input samples and

the output of the decoder. The model generally converges around 200 epochs. By enabling

loss function calculation automatically, we observe and measure the model by the cost function.

During training, our model is to focus the posterior of probability by training network to process

the mean and variance of this posterior. In the aspects of variational inference, as the learning is

repeated, the difference is minimized (Equation 4.3).

4.4 Experiments

To evaluate the structural quality of the musical result, we compare our model with the

MelodyRNN model [WERA]. The MelodyRNN model is designed in several different ways

(basic RNN, lookback RNN, attention RNN, and polyphony RNN), and we chose attention RNN

and polyphony RNN model, which allow the model to capture longer dependencies, and result in

melodies that involve arching themes [Mel]. Specifically, polyphony RNN aims at polyphonic

music generation, so it is an appropriate baseline to compare with our model. For our experiments,

our training data comes from the Nottingham Dataset, a collection of 1200 folk songs [not]. Each

training song is segmented into frames (piano-roll), and for the preprocessing of our dataset, we

implement our method based on the music21,librosa, and pretty midi packages for feature

extraction on MIDI file [CA10, MRL+15, RE]. We use an input of 128 binary visible units and

aligned on the 8th note beat level. With these data, we train each model of MelodyRNN and our

proposed network to create MIDI sequences. Both our proposed model and MelodyRNN model

converge around 200 epochs. Our implementation is now available on github2.

2https://github.com/skokoh/c vrnn mmsp 2018
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Table 4.1: Total IR Results (Averaged scores)

Melodies
Total IR
(8 bars)

Total IR
(16 bars)

Total IR
(32 bars)

Nottingham Original [not] 4974.61 7412.91 18567.01
Proposed 3463.81 6047.28 16044.91
PolyphonyRNN [WERA] 3023.44 6027.04 15425.27
AttentionRNN [WERA] 3381.71 5712.87 14192.60
MidiNet [YCY17] 3117.68 - -
Time (s) 15.3 29.2 67

4.4.1 Model comparison

After training, we compare generated samples from each of 3 models (proposed, polyphony

RNN, attention RNN) for each of 3 settings in generated sample duration of 8 bars, 16 bars,

and 32 bars. We use IR from VMO [WD15] as a basis of comparison and each generated MIDI

sample was synthesized to audio signal. For comparison, we extracted 30 unique generated songs

from each setting (See Table 4.1), thus 273 individual sample songs are tested for evaluation3. In

the case of MidiNet, only 3 different testing samples are available within 8 bar length of audio

sample. We want to see the variation in Total IR value which could be affected by the length of

song in structural analysis. We report an averaged value of IR in Table 4.1.

We empirically analyze our model in several settings against MelodyRNN model. We

share key observations:

• Table 4.1 shows average IRs for original Nottingham MIDI datasets and for generated

samples from several models, where higher IRs report more distinct self-similarity structures.

The IR of the original dataset is higher than that of the generated music. Self-similarity in audio

refers to the multi-scalar feature in a set of relationships, and it commonly indicates musical

coherence and consistency [Foo99].

• In Table 4.1, polyphony RNN and attention RNN models present lower IR than our

proposed model does. Results in each setting show that the convolutional recurrent latent variable
33 audio samples (8 bars length only) are generated by MidiNet Model, which are uploaded on https://github.

com/RichardYang40148/MidiNet/tree/master/v1/
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sampling approach increases the IR of the produced musical material over other neural network

approaches, indicating a higher degree of structure. Accordingly, the results manifest our proposed

model can generate higher level of musically consistency structure.

Figure 4.3: Total IR vs. Threshold θ value (VMO)
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• In Figure 4.3, the visualizations of the IR values versus different θ on one song are

represented. From top to bottom, we share the results of the sample songs from each setting,

training dataset, our proposed model, polyphony RNN, and attention RNN model. The results

show the relation between IR and threshold value and implies different musical structures are

generated by different θ values. In terms of the results graphs, the attention RNN recopies longer

segments, but they are interrupted, which is dropped down in figure, while our proposed model

relies on shorter previous patterns, but the transitions are smoother thus the blocks are longer.

• In Figure 4.4, the results for finding repeated patterns in one of the audio samples

generated from each setting are displayed from top to bottom. The y-axis indicates the pattern

index of repeated motifs of a signal sampled at discrete times shown along the x-axis. The

lines represent repeated motifs, which are longer and fewer in the RNN case. In the graph from

Nottingham Original, we can recognize that the original has many more shorter musical pattern

indexes appearing at multiple frame numbers. The overall distribution of repeated themes seems

to be captured better in the outputs of our proposed approach, suggesting that it captures some

structural aspects of patterns distribution of the data as well.

4.4.2 Application

In this section, we share our generated melodies in terms of following the research

question: can we build a model capable of learning long-term structure and capable of including

the method to generate polyphonic music pieces?

Considering an application level, we explore video game music generation and emulate

a specific song from music samples for creating a new sequence of music (See Figure 4.5). By

doing this, we use 10 different MIDI files derived from a corpus of Video Game music4 and

we generate 10 unique MIDI outputs based on each training sample. The MIDI files are mainly

composed of 4-5 different instruments with multi-tracks. From this approach, our model copies

4https://www.vgmusic.com
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the theme from previous music sample and mimics the style of music with a new sequence.

Figure 4.4: Pattern Findings with VMO
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Figure 4.5: Examples from the Video Game music sample and generated results from attention
RNN and proposed method. From top to bottom: original sonicstarlightzone.mid, attention
RNN result, proposed method result.
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In Figure 4.5, the results indicate that our proposed model can generate music beyond

monophonic melodies for various types of music, depending on the input data. The result of the

attention RNN differs in our model and in the complexity of the results, since attention RNN

model covers simple melody generation/progression and repetitive patterns appearing in the

generation results. Our generated melodies shows that we can create long-term structure of music

and can compose complex sequence of music while including the original theme. Moreover, our

proposed model can process training samples from a prior distribution and generate the sequence

more dynamically. Our sample results for video game music are also posted on soundcloud5.

4.5 Discussion

In this study, we show initial proof that our proposed model applied to MIDI sequence

representations can capture the structure of the song and create polyphonic music. The motivations

behind combining CNN, RNN and VAE were to explore significant problems in music generation

which are related to representation issues that are handled via CNN, repetitive patterns in generated

output that are known in RNN and ability to generate variations from progression of melody

sequence. In our study, we used IR as a critera to evaluate the generated output and compare it to

other models.

From the quantitative evaluation, the results show that the latent variable sampling ap-

proach substantially increases the IR of the generated musical material over other neural network

approaches, implying a higher degree of semantic structure. At the application stage of our

method, we introduce the model to emulate a specific song from a video game and generate

background music similar in style to those examples. Some musical applications need to work

with fewer samples in order to generate a specific musical result and our Convolutional-Variational

Recurrent Neural Network would be flexible about the size of dataset.
5https://soundcloud.com/user-431911640/sets
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In addition to VAE utilized in this paper, other generative models have been actively

challenged in different ways for music generation purpose. Given the recent enthusiasm in deep

learning with music, we also practice introducing combined neural network models and data

representations that effectively process the melodic polyphonic harmonic structure in music.

Chapter 4 is adapted from published material in ”Rethinking recurrent latent variable

model for music composition”. Koh, Eunjeong, Dubnov, Shlomo, and Wright, Dustin. IEEE

International Workshop on Multimedia Signal Processing, 2018. The dissertation/thesis author

was the primary researcher and author of the paper.
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Chapter 5

Information Dynamics in Machine

Generated Music

This paper reports on a study that analyzes the structure of music created by neural

networks. We tackle an important problem of the evaluation and interpretation of machine

learning models with a focus on music models. To quantitatively evaluate the quality of music,

we use Information Rate which can compare how information flows in original music versus in

music generated by an artificial neural network that learned that music. We review mostly known

but often underappreciated properties relating to the evaluation and interpretation of machine

learning models with a focus on music models. We aim to study the perspectives from statistics

and information theory as to how creativity can be measured in both a computationally and

musically meaningful way. Information Rate can measure mutual information between past and

present in music and can be used to find repeated motifs and the main theme in music which

are the basis of the composition. This approach represents the attempt at defining evaluation

metrics for automatic music generation by neural networks which possess measure-level musical

structure in terms of novelty.
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5.1 Introduction

In terms of evaluation of machine-generated music, a lot of qualitative evaluation is

conducted through user studies in general automatic music composition researches. In these

experiments, they evaluated the quality of music by asking the participants about their opinions

regarding generated music. On the other hand, statistical approaches are used for quantitative

evaluation, such as log-likelihood or prediction accuracy. In this study, we analyze the musical

results generated by machine learning and the quality of the corresponding music. To enable a

quantitative analysis of musical structure, we apply the Information Rate (IR) from Variational

Markov Oracle (VMO) study. Using IR, we are able to understand the structural properties

of music, which is important for understanding the relation between musical organization and

perception, as well as for automatic music composition. For example, using IR, we can assess the

effect of repetition versus variation structure constraints and higher Information Rates indicate

more distinct self-similarity structures. This also introduces the problems in modeling the content-

invariant self-similarity property as well as some sampling noise which increases predictive

entropy with lowering creativity.

5.2 Methodology

Rather than understanding the distance between existing music data and generated results,

we consider the internal working of neural network models and generated musical sequences

in terms of IR by VMO. VMO allows measuring music information dynamics where higher IR

values capture longer structural note transitions in generated music compared to ones with lower

IR values [WD15].

IR(xn−1
1 ,xn) = H(xn)−H(xn|xn−1

1 ) (5.1)
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Analyzing musical structure in terms of IR, we can compare how information flows in

original music versus in music generated by an artificial neural network that learned that music. In

order to do so, we generalize the notion of IR to include an additional variable that represents the

state of the neural network. In Equation 5.1, x1,x2, ...,xn denotes time series x with N observations,

and H(x) denotes the entropy of x. As a result, IR denotes corresponding information between the

current and previous observations, which enables the understanding of variation and repetition in

a song segment. The IR analysis using VMO provides an independent evaluation of the structure

of song as captured by the sequence of audio chroma features. Furthermore, it presents a detailed

motif analysis of the data and provides a qualitative discussion of generated musical samples.

5.3 Experiment

We compare the generated music pieces from some recent generative neural network

models 1. The experiment shows average IRs for the original MIDI training dataset and for

generated samples from the models, Boulanger et al [BLBV12] and Koh et al [KDW18], where

higher IRs report more distinct self-similarity structures. Self-similarity in audio refers to

multi-scalar features in a set of relationships, and it commonly indicates musical coherence and

consistency. Results in each setting show that the latent variable sampling approach increases the

IR of the produced musical material over RNN-based approaches, indicating a higher degree of

structure. In addition, the distribution in each group shows that the result of [KDW18] has more

distribution than the training dataset or another model. This is because the research focuses on

the creation of a diverse and complex new sequence of music.

For comparing music quality between the groups, we set some evaluation rubrics of

understanding music quality based on IR: (1) visualized motifs based on IR by VMO, (2) number

of motifs and their lengths, and (3) how IR changes over time in generative models. VMO analysis

1Sound example:
https://soundcloud.com/user-431911640/sets/model-comparisontraining-data-whole-nottingham-dataset
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Figure 5.1: (Top) VMO Pattern Findings with RNN-RBM [BLBV12], (Bottom) VMO Pattern
Findings with CNN-Recurrent VAE [KDW18]

is able to detect the motifs themselves as repeated patterns of notes since it finds repetitions

using approximately matching suffix search (See Figure 5.1). The motifs over time (and sub-

motifs when the lines overlap vertically) allows visual inspection of such structures. The higher

level repetitions also exist in the arrangement of motifs themselves. Since each VMO analysis

optimizes the threshold of similarity for approximate suffix matching, the motifs shown in the

different figures appear slightly different. Also, the VMO takes into consideration also the later

motif structure and adjusts its sensitivity so as to produce the most informative representation of

the overall information in each piece. The results show the relation between IR and threshold

value and imply different musical structures are generated by different θ values. In terms of

the results graphs, the RNN-RBM recopies longer segments, but they are interrupted, while the

CNN-Recurrent VAE model relies on shorter previous patterns. The CNN-Recurrent VAE uses a

latent variable model to design the graph, so we can see that the chord progression of the music is

more variously than iterative or repetitive structure.

Chapter 5 is adapted from published material in ”Information Dynamics in Machine
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Generated Music”. Koh, Eunjeong and Dubnov, Shlomo. SoCal Machine Learning Symposium,

2018. The dissertation/thesis author was the primary researcher and author of the paper.
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Part IV.

Music and Emotion
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Chapter 6

Mugeetion: Musical Interface Using Facial

Gesture and Emotion

People feel emotions when listening to music. However, emotions are not tangible objects

that can be exploited in the music composition process as they are difficult to capture and quantify

in algorithms. We present a novel musical interface, Mugeetion, designed to capture occurring

instances of emotional states from users’ facial gestures and relay that data to associated musical

features. Mugeetion can translate qualitative data of emotional states into quantitative data,

which can be utilized in the sound generation process. We also presented and tested this work in

the exhibition of sound installation, Hearing Seascape, using the audiences’ facial expressions.

Audiences heard changes in the background sound based on their emotional state. The process

contributes multiple research areas, such as gesture tracking systems, emotion-sound modeling,

and the connection between sound and facial gesture.
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6.1 Introduction

Electronic music researchers use various components as inputs for their music generation

process [PLF+01, Lyo17, LT01, Çam12]. Music and emotion are strongly linked, and listeners

can feel different emotions directly or indirectly through music. Engaging emotion as a component

of a musical interface has great potential for composing creative music and expressing messages

in an effective way [VOC09]. However, there are several difficulties in using emotion for

sonification [Lem08, WW13]. First, emotion is qualitative and thus hard to utilize for sound

generation applications, which rely on quantitative inputs. Second, emotion is represented on

a continuous spectrum. Measurement of affect requires a complex and multi-faceted approach.

In this paper, we use a facial gesture tracking system to define emotional states based on facial

gesture information.

Facial gestures express various information related to emotion, cognition, and inspiration

[DTM14, KCT00]. Further, facial gestures are more straightforward indicators of emotion than

other bodily gestures. There are several studies related to the connection between facial gestures

and sound itself [dAD13, McD16]. In this paper, we propose an interactive audio interface that

sonifies emotion. The idea is to use facial gesture data to detect emotion and categorize these into

several emotional states for sonification. We implement two approaches for this prototype: (1)

music style transition based on user’s emotion and (2) auditory interface based on the connection

between facial components and musical metadata. We also installed our system in a digital

exhibition for facial interaction with an audience at the Hearing Seascape installation. During the

exhibition, Mugeetion detected audience’s facial expression in real-time and audience were able

to hear the sounds simultaneously which was mapped with their specific facial gestures.
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6.2 Related Work

There has been a rich history of creating novel sound interfaces using gesture-based

motion-tracking for live performance and improvisation [KTPLW14, Jen12, CPL11]. A motion

tracking system can allow a musician to generate their own creative music in real-time [WB98,

LXC+15]. Previous studies demonstrated interesting new audio interfaces for sonification through

body gesture. A number of systems have looked at capturing gestures and utilizing gesture data

for the sonification process either stepwise or in real-time [CPL11, MSE14]. Regarding previous

studies, there are two approaches, which have used sound as an input for tracking facial gestures or

facial components as input for sound generation. Some studies utilized auditory input for focusing

on the visualization of facial gesture [Kra00, SCT04, Haw02]. For example, Kapuscinski [Kap10]

conducted listening tests of Chopin pieces and recorded facial expressions from the participants.

Other experiments have focused on sound generation using facial parameters as an input [Art28].

These studies use FaceOSC software to apply facial gesture data to the sound generation process.

McDonald [McD16] created FaceOSC software to track facial gestures directly to Max as input.

There are several interesting experiments linking facial gestures and sound on Youtube [Art28].

However, these experiments are more targeted toward application, rather than music cognition

research. Few computer music researchers delve into the relationship between emotion and sound

itself.

Music psychologists have studied the relationship between emotion and sound, and tried to

model its connection. However, music cognition research has not contributed to music sonification

research. In this paper, we propose a musical interface with the facial gesture tracking system and

Facial Action Coding System (FACS) [DTM14] in order to capture emotional states. FACS can

allow a concrete data representation of the facial gesture and its corresponding emotional state.

Thus, facial gestures can be reference points for observing emotion and translating emotion into

sound. In this context, we use the tracked facial data to the sonification process. We will discuss
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its musical implementation in the following sections.

6.3 Methods

6.3.1 Understanding Facial Gesture

AU6
AU12
AU25

AU4
AU15
AU17

Happy

Sadness ♫

Face
OSC

FACS Sonification ♫

Figure 6.1: System structure: connection between facial gesture, compound facial expressions
of emotion, and sound

Figure 6.1 gives an overview of integrating the proposed system to connect facial expres-

sion to sound generation1. We generated the musical style based on facial expressions. In Figure

6.1, our system includes three sequential steps: (1) capturing facial gesture using FaceOSC, (2)

connecting to compound facial expressions of emotion, and (3) synthesizing musical features

based on the emotional state. FaceOSC software is used to help the Mugeetion system understand

the user’s facial gestures and generate sound based on the user’s emotional state. The emotion

detection module uses the software for real-time facial gesture tracking and transmits raw-level

facial data over the Open Sound Control (OSC) protocol. If the detector finds multiple potential

faces within the frame, the closest face will get the priority of recognition, analyzing a single face

1In Figure 1 and 2, printed images are copyrighted by c©Jeffrey Cohn, which come from Cohn-Kanade (Ck &
CK+) database. http://www.consortium.ri.cmu.edu/ckagree/
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at a time. For analyzing facial expression, we use the FACS and Action Unit classification2. We

chose the Action Unit (AU) combinations of three basic emotions: (A) happy, (B) neutral, and

(C) sad. Each emotional state is combined with several individual AUs. For example, the facial

expression of happy includes AU 6 (cheek raiser), AU 12 (lip corner puller), and AU 25 (lips part)

(See Figure 6.1).

We practiced our sonification method with face images from The Cohn-Kanade AU-Coded

Facial Expression Data-base [KCT00, LCK+10]. By training with multiple images, we made

the system work well with different faces. We selected representative facial images for linking

with our sound generation process. We used 20 images for each emotional state: happy, neutral,

sad (60 images total). We measured these data to create a data range for each emotional state

and defined the differences between each emotion. We manually annotated the range of facial

gestures for mapping each muscle activation to AU components (See Table 6.1)3. Figure 6.2

shows the data range for AU components with our training images. For example, the average AU6

scale of the happy face is 2.6605, AU12 is 18.2263, and AU25 is 2.3777. After learning the range

of AUs, the system can classify facial gestures to pre-defined states with each individual photo

or real-time face input through the connected web-cam. Along with categorizing, the system

attempts to translate the musical style based on the input of emotional states (See Figure 6.2).

Figure 6.2: Data transition process: from facial gesture to emotion

2Description of Facial Action Coding System and Action Units https://www.cs.cmu.edu/˜face/facs.htm
3The unit in this table is followed by FaceOSC data measurement.
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Table 6.1: Facial data configuration from FaceOSC

position details data range (min/max)

mouth
width 6.0244/19.2747
height 0.8893/3.0010

eyebrow
left 6.7666/8.0714

right 6.6787/7.9785

eye
left 2.4329/3.4357

right 2.3950/3.3144
jaw - 18.9888/22.9718
nostrils - 5.6477/8.8061

6.3.2 Sonification with Action Units

In this section, we focus on sonification with AUs in detail. We generate musical output

based on the connection between AUs and emotional state. We then apply the formula between

emotion and sound features, such as how the energetic happy face is mapped to the pitch/loudness

increasing, and the dynamics in the sad face are mapped to white noise/distortion parameters.

We also connect specific AUs to MIDI notes for sonification. The MIDI packets are mapped to

controls of different parameters, resulting in different musical sounds based on how the emotional

state moves. For example, when a user moves their mouth, the mouth height data is inputted and

we normalize the data between 0-127 scales for generating MIDI notes or dynamics. Then, these

0-127 scales correspond to MIDI note scales. There are a few studies have explored this method

before [dAD13, MSE14, SCT04], and we explore the linkage between other sound features and

the emotion conveyed in the AUs.

6.3.3 Connecting between Emotion and Sound

In this section, we explain how the system has been implemented for connecting emotion

to sound. The system can interpolate the sound results from facial gesture inputs. In this approach,

we generate the sound based on pre-recorded sound. We can play different sounds based on the
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user’s happy, neutral, or sad emotional state. Our Mugeetion interface automatically plays the

specific song related to the user’s emotional state. We list our sound files below, which have been

played to a number of subjects interacting with the system.

· Happy

Mozart - The Piano Sonata No 16 in C major

Mozart - Eine Kleine Nachtmusik K 525 Allegro

· Neutral

Mozart - Piano Sonata No 11 in A major K 331

· Sad

Mozart - Symphony No 25 in G Minor K 183

1st Movement

Mozart - Requiem in D minor

The selection of the list is based on the study of the Mozart Effect [PCBCC13]. For the

sound files, we use Piano-midi.de dataset4.

6.4 Prototypes

6.4.1 Demo

For the prototype of our system, we explored adding more musical variation, such as

pitch height, loudness, distortion, or tempo change, as parameters to be controlled. We show a

possibility of sound generation in real-time. Our preliminary demo video is uploaded on Youtube5.

In order to allow users to easily interact with their sound generation process, we built a Max

application, which utilizes facial data and FAC for sound creation.

4http://www.piano-midi.de/mozart.htm
5https://www.youtube.com/playlist?list=PLjaQX_vKy2Jcv0r9wrc_yU2gbRhZh39GV
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6.4.2 Sound Installation Work with Mugeetion

Our sonification method, Mugeetion, has also been used in the sound installation exhibi-

tion, Hearing Seascape (See Figure 3) at the Qualcomm Institute at UC San Diego in February

20186. This exhibition was a part of a collaborative effort with the Scripps Institution of Oceanog-

raphy at UC San Diego to interpret their coral reef image data in a musical way. To convey the

importance of engaging in the soundscapes of coral reefs, we suggested that our Mugeetion would

be effective in fulfilling the goal of the project. Our prototype of the exhibition can be found in

Youtube7. The main goals of this project were to display different aspects of sound and innovative

graphic design to create an enjoyable environment for the audience, and to create an inviting

soundscape with a synergy among voices, images, synthesized sounds, and human emotion.

Figure 6.3: Left: Hearing Seascape exhibition, Right: Interaction with Mugeetion during the
exhibition (Neutral state)

Characteristics of the sounds in the Hearing Seascape

There were two sound components in the sound installation. First, regarding sound input,

we made recordings of singing and speaking in bowls of water. We recorded various sounds, such

as giggling, clicking with tongue, singing, spoken dialogue, low/high pitches, both in the air and
6Photo by Alex Matthews c©2018 Regents of the University of California.
7https://youtu.be/c-kHwnYuF44
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in the water. This specific sonification process was related to the goal of the project. The sound

of voices underwater showed a variation of pitch and vagueness of speech. This is representative

of the confusion and misunderstanding that surrounds coral reef research [SBC+16]– there is so

much yet to be discovered and understood about these creatures. Second, using Mugeetion, our

method detected the audience’s facial expression in real-time, and the detected emotional state

was used to display of the coral reef images and synthesize the soundscape. The audience can

hear the sound that is simultaneously mapped with their specific facial gestures. For instance,

when audiences expressed strong emotions with their facial gestures, these dynamics connected

to sound components to increase intensity, tempo, and pitch height. The interaction through

Mugeetion invited the audience to participate in the exhibition.

6.4.3 Application: Music Submission for ISMIR 2019

• Title: Mozart Emotional Variations (MEV)

• Authors: Eunjeong Koh, Robert M. Keller, and Shlomo Dubnov (Center for Research

in Entertainment and Learning, UC San Diego)

Description of the content/concept/idea

Mozart felt different emotions when he performed different variations. In this video, we

propose an interactive audio performance that sonifies emotion. The idea is to use facial gesture

data to detect emotion and categorize these into several emotional states for improvisation. For

doing this, we incorporated with two previous studies: Impro-Visor [Kel12] and Mugeetion

[KY18]. Using Mugeetion, we captured occurring instances of emotional states from users’ facial

gestures and relayed that data to associated musical features. Next, we transcribed the Mozart

Variations 1 and 3 to Impro-Visor’s leadsheet notation, inferring chord symbols from the original

by hand.
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Figure 6.4: Snapshots of the Mozart Emotional Variations application where Impro-Visor and
Mugeetion algorithms are embedded. (Top) Different Mozart’s faces showing emotional changes
with different facial gestures and colors. (Bottom) Mozart’s face interacts with the Impro-Visor.
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Then for each variation, Impro-Visor automatically learned grammars that imitate the

corresponding melodic style. Each grammar was inspired by different emotional settings and we

generated new melodies from these grammars. The backing harmony and bass lines were created

from simple style files constructed by hand but exploited as the improvisations were generated in

real-time. This process contributes to multiple research areas, such as gesture tracking systems,

emotion-sound modeling, and new musical interface designs. Video material is available in here

https://youtu.be/LyEJ0IYEOHk.

6.5 Conclusions

Mugeetion makes several contributions to previous work. Rather than simply detecting

facial gesture data, it also automatically extracts emotional states and produces sound output

transition. Mugeetion provides a sound generation model to users based on the components of

emotion and musical metadata. We focus on how sound can be changed based on users’ emotional

movement. In the presented soundscape installation, the interaction between emotion and sound

occurred based on user’s emotional states. We explore how audience participation in artwork

can be utilized in interactive systems and how it changes the sound generation output. In future

work, we will collect continuous auditory feedback during the exhibition in order to evaluate the

sound generation output. For example, audiences would be asked how satisfied they were with

the reflection between sound output and their emotional states.

Furthermore, the system would be able to store a collection of data, which creators can use

to improve their sonification process. Every AU per second and audio files would be automatically

saved. The system would collect and store a repository of the memory units that users can look

back on in order to re-utilize their composition process.

We will further develop the system based on the following issues:

· increasing training images for covering multiple faces and optimizing different emotional states
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· implementing an AU indicator or other emotional measure on the FaceOSC display for better

interaction with users

· exploring other similar emotion interactive system to compare the sonification result
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Chapter 7

Using Deep Audio Embeddings for Music

Emotion Recognition

Emotion is a complicated notion present in music that is hard to capture even with fine-

tuned feature engineering. In this chapter, we investigate the utility of state-of-the-art pre-trained

deep audio embedding methods to be used in the Music Emotion Recognition (MER) task. Deep

audio embedding methods allow us to efficiently capture the high dimensional features into a

compact representation. We implement several multi-class classifiers with deep audio embeddings

to predict emotion semantics in music. We investigate the effectiveness of L3-Net and VGGish

deep audio embedding methods for music emotion inference over four music datasets. The

experiments with several classifiers on the task show that the deep audio embedding solutions

can improve the performances of the previous baseline MER models. With this approach, we

conclude that deep audio embeddings represent musical emotion semantics for the MER task

without expert human engineering.
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7.1 Music Emotion Recognition

It is an essential step for music indexing and recommendation tasks to understand emo-

tional information in music. Previous MER studies explore sound components that can be used to

analyze emotions such as duration, pitch, velocity, and melodic interval. Those representations are

high-level acoustic features based on domain knowledge [WWL15, MGG18, CZX+16, LCY13].

Relying on human expertise to design the acoustic features for pre-processing large

amounts of new data is not always feasible. Furthermore, existing emotion-related features are

often fine-tuned for the target dataset based on music domain expertise and are not generalizable

across different datasets [PMP18b].

One of the goals of the MER task is to automatically recognize the emotional information

conveyed in music [KSM+10]. Although there are many studies in the MER field [SCS+13,

YC12, YDL18], it is a complex process to compare features and performances of the studies

because of the technical differences in data representation, emotion labeling, and feature selection

algorithm. In addition, different studies are difficult to reproduce as many of them use different

public datasets or private datasets with small amounts of music clips and different levels of

features.

7.2 Deep Audio Embeddings

Advancement in deep neural networks now allows us to learn useful domain-agnostic

representations, known as deep audio embeddings, from raw audio input data with no human

intervention. Furthermore, it has been reported that deep audio embeddings frequently outperform

hand-crafted feature representations in other signal processing problems such as Sound Event

Detection (SED) and video tagging task [Wil20, DCA].

The power of deep audio embeddings is to automatically identify predominant aspects

in the data at scale. Specifically, the Mel-based Look, Listen, and Learn network (L3-Net)
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embedding method recently matched state-of-the-art performance on the SED task [CWSB19].

Using a sufficient amount of training data (around 60M training samples) and carefully designed

training choices, Cramer et al. were able to detect novel sound features in each audio clip using

the L3-Net audio embeddings [CWSB19]. Cramer et al. released their optimal pre-trained L3-Net

model which can now be extended to new tasks.

Previous studies have utilized neural networks to efficiently extract emotional infor-

mation and analyze the salient semantics of the acoustic features. Recent works explore

neural networks given the significant improvements over hand-crafted feature-based methods

[Pic15, SB17, PS19, SZ14]. Specifically, using Convolutional Neural Networks (CNNs) and

Recurrent Neural Networks (RNNs) based models, several studies attempt to extract necessary

parameters for emotion prediction and reduce the dimensionality of the corresponding emotional

features [CLB+20, THR19, DYZL19, LFH19]. After careful feature engineering, these methods

are suitable for a target data set for emotion prediction, however, a considerable amount of training

and optimization process is still required.

Deep audio embeddings are a type of audio features extracted by a neural network that

take audio data as an input and compute features of the input audio. The advantages of deep

audio embedding representations are that they summarize the high dimensional spectrograms into

a compact representation. Using deep audio embedding representation, 1) information can be

extracted without being limited to specific kinds of data, and 2) it can save time and resources.

Several studies have used deep audio embedding methods in music classification tasks.

For example, Choi et al. implemented a convnet feature-based deep audio embedding and showed

how it can be used in six different music tagging tasks such as dance genre classification, genre

classification, speech/music classification, emotion prediction, vocal/non-vocal classification,

and audio event classification [CFSC17]. Kim et al. proposed several statistical methods to

understand deep audio embeddings for usage in learning tasks [KULH19]. However, there are

currently no studies analyzing the use of deep audio embeddings in the MER task across multiple
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datasets.

Knowledge transfer is getting increased attention in the Music Information Retrieval

(MIR) research as a method to enhance sound features. Recent MIR studies report considerable

performance improvements in music analysis, indexing, and classification tasks by using cross-

domain knowledge transfer [HE10, VdODS13]. For automatic emotion recognition in speech

data, Feng and Chaspari used a Siamese neural network for optimizing pairwise differences

between source and target data [FC20]. In the context of SED, where the goal is to detect different

sound events in audio streams, Cramer et al. [CWSB19] propose a new audio analysis method,

using deep audio embeddings, based on computer vision techniques. It remains to be seen if

knowledge transfer can be successfully applied on deep audio embeddings from the SED domain

to the MIR domain for the task of MER.

In this study, we use deep audio embedding methods designed for the SED task and apply

it over four music emotion datasets for learning emotion features in music.

7.3 Methodology

7.3.1 Downstream Task: Music Emotion Recognition

We employ a two-step experimental approach (see Figure 7.1).

Step 1. Given a song as an input, a deep audio embedding model extracts the deep audio

embeddings that indicate the acoustic features of the song.

Step 2. After extracting deep audio embeddings, the selected classification model predicts

the corresponding emotion category that indicates the emotion label of the song.
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Step 1: select an audio embedding method, 
then extract a deep audio embedding 

feature vector

Step 2: select a classification model,
then predict an emotion category of 

each song

Figure 7.1: The Proposed Workflow. The figure shows the proposed approach using deep
audio embeddings for the MER task.

7.3.2 Deep Audio Embeddings

We choose two deep audio embedding methods, L3-Net and VGGish, which are state-

of-the-art audio representations pre-trained on 60M AudioSet [GEF+17] and Youtube-8M data

[AEHKL+16]. AudioSet and Youtube-8M are large labeled training datasets that are widely used

in audio and video learning with deep neural networks.

Look, Listen, and Learn network (L3-Net)

L3-Net is an audio embedding method [CWSB19] motivated by the original work of

Look, Listen, and Learn (L3) [AZ17] that processes Audio-Visual Correspondence learning task

in computer vision research. The key differences between the original L3 (by Arandjelović and

Zisserman) and L3-Net (by Cramer et al.) are (1) input data format (video vs. audio), (2) final

embedding dimensionality, and (3) training sample size.

The L3-Net audio embedding method consists of 2D convolutional layers and 2D max-

pooling layers, and each convolution layer is followed by batch normalization and a ReLU

nonlinearity (see Figure 7.2). For the last layer, a max-pooling layer is performed to produce a
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Figure 7.2: Network Architecture of L3-Net and VGGish. The input spectrogram representa-
tions are 128x199 for L3-Net and 96x64 for VGGish. Blue boxes, yellow boxes, and green boxes
denote the 2D convolutional layers, max-pooling layers, and fully-connected layers, respectively.
The number inside of the blue box is the size of filters and the number inside of the green box is
the number of neurons.
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single 512 dimension feature vector (L3-Net serves as an option for output embedding size such

as 6144 or 512, and we choose 512 as our embedding size). The L3-Net method is pre-trained on

Google AudioSet 60M training samples containing mostly musical performances [GEF+17].

We follow the design choices of the L3-Net study which result in the best performance

in their SED task. We use Mel spectrograms with 256 Mel bins spanning the entire audible

frequency range, resulting in a 512 dimension feature vector. We revise OpenL3 open-source

implementation1for our experiments.

VGGish

We also verify another deep audio embedding method, VGGish [SZ14], VGGNet based

deep audio embedding model. VGGish is a 128-dimensional audio embedding method, motivated

by VGGNet [SZ14], and pre-trained on a large YouTube-8M dataset [AEHKL+16]. Original

VGGNet is targeting large scale image classification tasks, and VGGish is targeting extracting

acoustic features from audio waveforms. The VGGish audio embedding method consists of 2D

convolutional layers and 2D max-pooling layers to produce a single 128 dimension feature vector

(see Figure 7.2). We modify a VGGish open-source implementation2 for our experiments.

7.3.3 Music Emotion Classifiers

From the computed deep audio embeddings, we predict an emotion category correspond-

ing to each audio vector as a multi-class classification problem. We employ six different classifica-

tion models, Support Vector Machine (SVM), Naive Bayes (NB), Random Forest (RF), Multilayer

Perceptron (MLP), Convolution Neural Network (CNN), and Recurrent Neural Network (RNN).

For each classification task, we use 80% of the data for training, 10% for testing, and

10% for validation. All six classification models are implemented in Scikit-learn [PVG+11],

1OpenL3 open-source library:https://openl3.readthedocs.io/en/latest/index.html
2VGGish:https://github.com/tensorflow/models/tree/master/research/audioset/vggish
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Keras [Cho15], and Tensorflow [ABC+16]. In the case of MLP, CNN, and RNN classification

models, we share some implementation details below.

•MLP: We implement the MLP model with two of a single hidden layer with 512 nodes,

a ReLU activation function, an output layer with a number of emotion categories, and a softmax

activation function. The model is processed using the categorical cross-entropy loss function and

we use Adam stochastic gradient descent [KB14]. We fit the model for 1000 training epochs with

the default batch size of 32 samples and evaluate the performance at the end of each training

epoch on the test dataset.

• CNN: For CNN classification model, we revise the convolutional filter design proposed

by Abdoli et al. [ACK19], which includes four 1D convolution layers and a 1D max-pooling

operation layer. Each layer processes 64 convolutional filters. The input to the network is a Mel

spectrogram, size of 512 feature vector extracted from a deep audio embedding method. This

input size is varied depending on the type of embedding methods. For example, in the case of

L3-Net, the embedding size is 512, VGGish embedding size is 128. ReLU activation functions

are applied to the convolutional layers to reduce the backpropagation errors and accelerate the

learning process [GBC16]. The softmax function is used as the output activation function with

a number of emotion categories. Adam optimizer, categorical cross-entropy loss function, and

the batch size of 32 samples are used. The stopping criterion is set as 1000 epochs with an

early-stopping rule if there is no improvement to the score during the last 100 learning epochs.

• RNN: Weninger et al. [WES14] propose LSTM-RNN design as an automaton-like

structure mapping from an observation sequence to an output feature sequence. We use LSTM

networks with a pointwise softmax function based on a number of emotion categories. Adam

optimizer, the categorical cross-entropy loss function, and the batch size of 32 samples are used.

The same stopping criterion is set as CNNs.
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Table 7.1: Dataset Details. The number of emotion categories in each dataset and the number
of clips in each emotion category are described. Q1, Q2, Q3, Q4 means the emotion categories
of the four Arousal-Valence (A-V) quadrants based on Russell’s model [Rus03]: Q1 (A+V+),
Q2 (A+V-), Q3 (A-V-), Q4 (A-V+). For RAVDESS singing data, it has been classified into six
emotion categories, N:Neutral, C:Calm, H:Happy, S:Sad, A:Angry, F:Fearful

Emotion Category
Dataset Q1 Q2 Q3 Q4 Total
4Q Audio 225 225 225 225 900
Bi-modal 52 45 31 34 162
Emomusic 305 87 241 111 744

Emotion Category
Dataset N C H S A F Total
RAVDESS 92 184 184 184 184 20 848

7.4 Evaluation

7.4.1 Dataset

Four different datasets are selected for computing the emotional features in music data. In

Table 7.1, we show the number of music files of each dataset by emotion category.

• 4Q Audio Emotion Dataset: This dataset is introduced by Panda et al. [PMP18a],

annotated each music clip into four Arousal-Valence (A-V) quadrants based on Rusell’s model

[Rus03]: Q1 (A+V+), Q2 (A+V-), Q3 (A-V-), Q4 (A-V+). Each emotion category has 225 music

clips, and each music clip is 30 seconds long. The total music clips for the dataset are 900 files.

• Bi-modal Emotion Dataset: This dataset is introduced by Malheiro et al. [MPGP16] in

a context of bi-modal analysis in the emotion recognition with audio and lyric information. The

emotion category is also annotated into four A-V quadrants by Russell’s model. In this dataset,

each emotion category has a different number of music clips, Q1: 52 clips; Q2: 45 clips; Q3: 31

clips, and Q4: 34 clips, and each music clip is 30 seconds long. The total music clips for the

dataset are 162 files. The size of this dataset is the smallest for our experiments.

• Emotion in Music: Using a crowdsourcing platform, Soleymani et al. [SCS+13] release
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a music emotion dataset with 20,000 arousal and valence annotations on 1,000 music clips. For

our experiments, we map the arousal and valence annotation into four A-V quadrants followed by

previous Russell’s model settings. Each emotion category has a different number of music clips,

Q1: 305 clips; Q2: 87 clips; Q3: 241 clips, and Q4: 111 clips, and each music clip is 45 seconds

long. We use 744 music clips of the dataset in our experiments. This dataset is one of the most

frequently used datasets for the MER task.

• Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS): This

dataset is introduced by Livingstone et al. [LR18] for understanding the emotional context in

speech and singing data. In singing data, it includes the recording clips of human singing with

different emotional contexts. 24 different actors were asked to sing in six different emotional

states: neutral, calm, happy, sad, angry, fearful. We choose singing data only for our experiments.

Each emotion category has a different number of music clips, neutral: 92 clips; calm: 184 clips;

happy: 184 clips, sad: 184 clips, angry: 184 clips, and fearful: 20 clips, and each music clip is 5

seconds long. The total music clips for the dataset are 848 files.

7.4.2 Baseline Audio Features

As a baseline feature, we use Mel-Frequency Cepstral Coefficients (MFCCs), which are

known to be efficient low-level descriptors for timbre analysis, used as features of music tagging

tasks [CFSC17, KLN18]. MFCCs describe the overall shape of a spectral envelope. We first

calculate the time derivatives of the given MFCCs and then take the mean and standard deviation

over the time axis. Finally, we concatenate all statistics into one vector. We generate the MFCC

features of each music clip into a matrix of 20 x 1500. Librosa is used for MFCCs extraction and

audio processing [MRL+15].
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Figure 7.3: Performance of Emotion Recognition on the Music Emotion Datasets. Blue
bar means the performance of L3-Net, orange bar for VGGish, and green bar for MFCCs. X-axis
indicates the type of classifiers we used, and Y-axis indicates the classification accuracies of the
emotion category recognition.
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7.4.3 Performance Measures

For classification problems, classifier performance is typically defined according to the

confusion matrix associated with the classifier. We use accuracy measure as a primary evaluation

criterion. We also calculate F1-score and r2 score for comparison with other baseline models.

7.4.4 Evaluation of Music Emotion Recognition

In Figure 7.3, we show the performance of deep audio embeddings over four music

emotion datasets. We empirically analyze deep audio embeddings in several settings against

baseline MFCC features. The experiments are validated with 20 repetitions of cross-validation

where we report the average results. We share key observations in the next sections.

7.4.5 Performance Analyzed by Features

The L3-Net embedding has the best performance in all considered cases except for two,

CNN classifier accuracy both in Bi-modal Emotion and Emotion in Music dataset (see Figure

7.3). Even though the L3-Net embedding is generally not a descriptor for any music-related tasks

before, the performance convinces us to use a pre-trained L3-Net audio embedding model for the

MER task.

Since the direct use of the L3-Net embedding shows the better performance, we also inves-

tigate more about the different embedding dimension of the L3-Net and compare the performance

between 512 and 6144. Interestingly, we observe decreasing results with the dimension of 6144

L3 embeddings. This indicates that those extra features might not be relevant but introducing

noise. While the 512 L3 embeddings show consistent higher performance in many cases, based on

our observations, even we increase the depth and number of parameters, 6144 L3-Net embeddings

perform slightly lower on this MER task. Thus, we have not included the performance in the

figure. Note that reported results in Figure 7.3 are only considered the performance of 512.
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Comparing between L3-Net and VGGish, L3-Net outperforms VGGish across the dataset.

This could be because L3-Net was pre-trained on both visual and audio onto the same embedded

space which can include more features. The performance of VGGish is better than MFCC baseline

features with the rest of the classification models, even though it has fewer parameters, 128. This

justifies our use of L3-Net as a main deep audio embedding choice for MER task and VGGish is

for some cases.

It is generally known that decision trees and in our case, RF is better than other neural

network based classifiers where the data comprises a large set of categories [PS19]. It also

deals better with dependence between variables, which might increase the error and cause some

significant features to become insignificant during training. SVM uses kernel trick to solve

non-linear problems whereas decision trees derive hyper-rectangles in input space to solve the

problem. This is why decision trees are better for categorical data and it deals with co-linearity

better than SVM. We still find that SVM outperforms RF in some cases. The reason can be that

SVM deals better with margins and thus better handles outliers. Although these are tangential

considerations, it seems to support the overall notion that MER is a higher level recognition

problem that first needs to address the division of the data into multiple acoustic categories, also

requiring the learning of a rather non-trivial partition structure within these sub-categories.

7.4.6 Performance Analyzed by Datasets

For comparison with prior works studying emotions in audio signals, we analyze the

performance of previous studies on each dataset we used. We choose four baseline MER models

for our experiments: 1) Panda et al. [PMP18a] release the 4Q Music Emotion dataset and present

the study of musical texture and expressivity features, 2) Malheiro et al. [MPGP16] present novel

lyrical features for MER task and release the Bi-modal Emotion dataset, 3) Choi et al. [CFSC17]

present a pre-trained convnet feature for music classification and regression tasks and evaluate

the model using Emotion in Music dataset, 4) Arora and Chaspari [AC18] present the method of
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Table 7.2: Performance Comparison with Baseline MER models. This table shows the data
and feature information used in previous baseline models. Data column indicates each dataset
for the experiment. Feature column indicates the set of feature vectors extracted by the baseline
model. Metric column indicates the metric used for the performance analysis. Baseline column
includes the performance of the baseline models. Proposed L3-Net column includes the best
performance of L3-Net embeddings on each music dataset.

Data Feature Metric Baseline Proposed L3-Net
4Q Audio Domain Knowledge F 73.5% 72.0%
Bi-modal Domain Knowledge F 72.6% 88.0%

Emomusic Convnet r2 A: 0.656
V: 0.462

A: 0.671
V: 0.556

RAVDESS Siamese Acc 63.8% 71.0%

a siamese network for speech emotion classification and evaluate the method using RAVDESS

dataset. We compare those baseline models to the performance of our proposed method (see

Table 7.2).

In the case of the 4Q Audio Emotion dataset, the previous study by Panda et al. obtained

its best result of 73.5% F1-score with a high number of 800 features. In Table 7.3, Domain

Knowledge means a feature set defined by domain knowledge in the study. For achieving the

performance of the previous study, the following steps are needed. First, we need to pre-process

standard or baseline audio features of each audio clip. The study used Marsyas, MIR Toolbox, and

PsySound3 audio frameworks to extract a total of 1702 features. Second, we need to calculate the

correlation between the pair of features for normalization. After the pre-processing, the number of

features can be decreased to 898 features. Third, after computing these baseline audio features, we

also need to compute novel features of each audio clip proposed by the study. Those features were

carefully designed based on domain expertise, such as glissando features, vibrato, and tremolo

features. Finally, baseline features and extracted novel features are combined for the MER task.

For the evaluation, the study conducted post-processing of the features with the ReliefF feature

selection algorithm [RŠK03], ranked the features and evaluated its best-suited features. Since the

performance has been evaluated by hyperparameter tuning and feature selection algorithms, these

factors may influence the performance of the MER task significantly. Note that in our proposed
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approach, we show the performance without any post-processing.

In the case of the Bi-modal Emotion dataset, the previous study by Malheiro et al.

[MPGP16] presented its best classification result of 72.6% F1-score on the dataset which is lower

than the performance we have, 88% F1-score from the result of L3-Net embedding with SVM

classifier.

In the case of the Emotion in Music dataset, previous studies predicted the time-varying

arousal and valence annotation and calculated r2 score as a performance measure [WES14,

LLPL19, KLN18, CFSC17]. We previously map these time-varying annotations into four A-V

quadrants based on Rusell’s model and show our prediction performance with four emotion

categories (see Figure 7.3-(c)). For a fair comparison, we also verify the original time-varying

dynamic annotations from the dataset [SCS+13] and compare the result with the baseline model.

Using the Emotion in Music dataset, Choi et al. reported its r2 scores of arousal annotation,

0.656 and valence annotation, 0.462 [CFSC17]. The best performance of L3-Net embeddings

achieves 0.671 r2 score on arousal and 0.556 r2 score on valence annotation. The result shows

that we have a considerable and higher performance on arousal and valence annotation. The

result confirms that L3-Net embedding method shows favorable performance than the previous

embedding features over Emotion in Music data.

In the case of RAVDESS data, the study by Arora and Chaspari [AC18] reported its best

classification accuracy of 63.8% over the dataset which is lower than our accuracy, 71.0%, from

the result of L3-Net embedding with CNN classifier (see Figure 7.3-(d)).

7.4.7 Performance Analyzed by A-V Quadrants

In Table 7.3, we show the results analyzed by each quadrant. This classification report

gives us a further understanding of the characteristic of each emotion category in music. The

meaning of each quadrant (Q1, Q2, Q3, Q4) information is described in Table 7.1.
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Table 7.3: Classification Results of Each Quadrant. The top table indicates the classification
report of L3-Net embedding with Random Forest classifier on 4Q Audio Emotion Dataset. The
bottom table indicates the classification report of L3-Net embedding with SVM classifier on
Bi-modal Emotion Dataset.

4Q Audio Emotion Precision Recall F1-score
Q1 0.64 0.85 0.73
Q2 0.85 0.80 0.83
Q3 0.73 0.60 0.66
Q4 0.64 0.61 0.62
Accuracy - - 0.72
Weighted Average 0.73 0.72 0.72

Bi-modal Emotion Precision Recall F1-score
Q1 0.80 1.00 0.89
Q2 1.00 0.89 0.94
Q3 1.00 0.67 0.80
Q4 0.80 0.80 0.80
Accuracy - - 0.88
Weighted Average 0.90 0.88 0.88

In the case of the 4Q Audio Emotion dataset, Q2 and Q3 categories obtain a higher

score compared to the Q1 and Q4. This indicates that emotional features in music clips with

lower valence components are easier to recognize. Specifically, the Q2 category shows higher

performance which is distinctive than others. Based on the dataset [PMP18b], the study describes

music clips of the Q2 category belong to specific genres, such as heavy metal, which have

recognizable acoustic features than others.
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Figure 7.4: T-SNE Visualization on RAVDESS dataset. Different colors of dots indicate the
type of emotion in the dataset. Both visualizations use a perplexity value of 30. Top: T-SNE
Visualization of L3-Net embeddings, bottom: T-SNE Visualization of VGGish embeddings.

Lower results in Q1 and Q4 categories may also reflect the characteristics of music clips.
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For instance, the Q1 category indicates happy emotions, which are typically energetic based on

positive arousal and positive valence components. Since Q1 and Q4 categories share the same

valence axis based on Rusell’s model, if the intensity of the song is not intense, the difference

between the two quadrants (Q1&Q4 or Q2&Q3) may not be apparent. This aspect results in

similar behaviors on the Q2 and Q3 categories’ performances as well.

7.5 Conclusion

In this chapter, we evaluate L3-Net and VGGish pre-trained deep audio embedding

methods for MER task over 4Q Audio Emotion, Bi-modal Emotion, Emotion in Music, and

RAVDESS datasets. Even though L3-Net has not been intended for emotion recognition, we find

that L3-Net is the best representation for the MER task. Note that we achieve this performance

without any additional domain knowledge feature selection method, feature training process, and

fine-tuning process. Comparing to MFCC baseline features, the empirical analysis shows that

L3-Net is robust across multiple datasets with favorable performance. Overall, the result using L3-

Net shows improvement compared to baseline models for Bi-modal Emotion, Emotion in Music,

and RAVDESS dataset. In the case of the 4Q Audio Emotion dataset, complex hand-crafted

features (over 100 features) still seem to perform better. Specifically, our work does not consider

rhythm or specific musical parameters over the time axis that 4Q Audio Emotion had, looking

into time-based aspects could be the next step for future research.

In order to gain deeper insight into the meaning of acoustic features for emotional

recognition, we use T-SNE visualization (see Figure 7.4). In both cases of L3-Net and VGGish,

two main clusters on the left and right side of the figure mean male/female singer groups. We can

also see a relatively smooth grouping of samples by emotions with different colors. In the case

of L3-Net embeddings (top figure of Figure 7.4), multiple small groups in each cluster indicate

individual singer which has audio recordings in different emotions. L3-Net data seems to cluster
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into multiple smaller groups according to gender and individual categories, and this shows L3-Net

outperforms for detecting different timbre information than VGGish. This pattern seems to be

consistent in the wild range of T-SNE perplexity parameters. This also shows that our study

provides an empirical justification that L3-Net outperforms VGGish, with the intuition discussed

in the paper based on the clustering shown in Figure 7.4.

Accordingly, for the next step, a possible direction to validate different classifiers is to

explore a combination of discrete neural learning methods, such as VQ-VAE, to first solve the

categorical problem, and only later learn a more smooth decision surface. VQ-VAE has been

recently explored for spectrogram-based music inpainting [BHEM20]. It would be interesting to

explore similar high-level parameterization using L3-Net embeddings.

7.6 Discussions: Music Analysis with VMO-RQA

In this chapter, we study affective aspects of music from the perspective of audio signal,

demonstrating the importance of understanding the structural aspects of audio for the perception

of emotion in music. In this discussion, we further investigate other relevant audio features for

music emotion analysis with the method of nonlinear dynamics analysis in terms of symbolized

recurrence properties.

7.6.1 Recurrence Quantification Analysis (RQA)

In the previous study of understanding affect in audio signals, the method of Recurrence

Quantification Analysis (RQA) was proposed [MD17]. RQA is a methodology that computes

nonlinear dynamics with a technique of adaptive time series understanding in terms of symbolized

recurrence properties. For getting RQA features from the audio signals, first, we compute

symbolic recurrence quantification measures from symbolic recurrence plots in the process of

Variable Markov Oracle (VMO) computation. We use VMO to find the repetition structure in
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the audio sequence in order to analyze temporal aspects of sound and calculate several symbolic

recurrence quantification properties from symbolic recurrence plots in VMO. Using VMO, we

are able to analyze the graph structure to find summary statistics that capture the dynamics of the

feature in terms of several measures, such as the density of the recurrence points, ratio of repeated

motifs (or recurrence diagonals), relative to all recurrence points, the average length of motifs

and so on.

7.6.2 Understanding Temporal Aspects in VMO-RQA

For classifying data according to emotion, here we try to understand the structural aspects

of each data. The process of analysis can be summarized as follows. We model a sequence of

the deep audio embeddings using VMO. In this step, a threshold search is performed to find the

optimal recurrence graph in terms of its predictive properties which is Information Rate. Then,

the optimal recurrence graph is converted to a matrix form, recurrence plot, which is further

analyzed in terms of recurrence quantification features. After finding the structures, we then

summarize using several statistics that are specifically designed to reveal recurrence structure.

We select a few temporal properties in RQA components, through structural understanding

using VMO. During the process, we are able to recognize information dynamics in music, examine

how emotional changes over time fluctuate according to music structure, and how the structure of

music affects music emotion generation. This statistical analysis offers us a new perspective on

the connection between emotion and recurrence quantification features.

This study demonstrates the possibility of an easily implementable computational method

for music emotion recognition studies. We also visualize the musical structure using VMO matrix

representation, which is a visualization tool of repetition statistics. In this work, we propose a

systematic way to test the expressivity of deep representations, considering musical semantics. In

our future research, we plan to further explore how semantic information in music may connect to

humans’ perceptions and intentions for a better understanding of information dynamics in music.
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Chapter 7 is adapted from published material in ”Comparison and Analysis of Deep Audio

Embeddings for Music Emotion Recognition”. Koh, Eunjeong and Dubnov, Shlomo. Association

for the Advancement of Artificial Intelligence (AAAI) Workshop on Affective Content Analysis,

2021, and ”Understanding Affective Aspects of Music Using Deep Audio Embeddings”. Koh,

Eunjeong and Dubnov, Shlomo. International Conference on Music Perception and Cognition,

2021. The dissertation/thesis author was the primary researcher and author of the paper.
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Chapter 8

Other Music and Emotion Research

8.1 The Role of Musical Structure in Shaping Listener’s Pref-

erence

What makes people like a song? Earworms are the repeats of a song that remain in

a listener’s head, which generate one’s preference for the song. In this chapter, we explore

the relationship between musical preference and the elements of musical structure, possibly

independent from the semantic content of lyrics. We investigate positive correlations for emotional

response between musical dynamics and the level of interest in replaying the song through

listening experiments. Native and non-native speakers of English listened to excerpts of musical

pieces, either with lyrics in their own language or another. We asked the participants to evaluate

the level of their emotional response to multiple songs and which songs they were interested in

replaying. Based on the unsupervised machine learning method, we extracted features from each

excerpt that were correlated to participants’ subjective responses. The participants’ ratings of each

song (e.g. appraisal of musical elements) were collected in several study sessions, where they

eventually selected their most favorite song to be replayed from the playlist. We have analyzed

the participants’ data with statistical models, which would categorize the relationship between the
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data collected and the elements of musical structure. Our preliminary results have been consistent

with the findings that emotional judgments could be related not only to the meaning expressed by

the lyrics but also to the elements of musical structure, especially musical repeats. Our empirical

data suggest that musical preference would have the following properties: 1) repetition-based

structure in music should create strong impressions on the listener’s long-term memory, and 2)

certain compositional designs of musical structure could be an indicator of the recurring interest

deriving from earworms. While preliminary, these results suggest the possibility of discovering

a shared cognitive mechanism for meeting the musical expectations of listeners and enabling

broader musical communication among different cultures.

8.1.1 Research Objectives

We design song-listening experiments to investigate the relationship between musical

dynamics and the listener’s interest in replaying the song. We also analyze compositional designs

of musical structure as an indicator of the recurring interest.

8.1.2 Pilot study: Preference of the Seven Songs

Seven different samples of Korean pop songs were chosen as our data classes (e.g., dance,

ballad, hip-hop, trot, folk-blues). Native speakers of English and Korean listened to excerpts

of musical pieces either with lyrics in their own language or another. Then, they answered this

question for understanding their preference for the seven songs.

”How much would you like to listen to the songs again?”

When the U.S. participants, non-native speakers of the Korean lyrics, were asked to

choose the song that they liked the most (among the seven songs), 43.8% chose the song which is

highly repetitive. Also, the Korean participants, native speakers of the Korean lyrics, chose the

same song as U.S. participants. These are some examples of listener’s comments: ”The steady
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and uplifting beat is comfortable to listen”, ”I also enjoy the fast beat”, ”Catchy, energetic”, ”Fast,

cheerful, and upbeat!”

8.1.3 Conclusion

Highly repetitive songs were clustered together in unsupervised learning techniques and

were preferred by U.S. participants over other songs. In terms of song preferences, musical

repetition would play a key role than the lyrics, which may suggest the possibility of a shared

cognitive mechanism for musical expectations among different cultures.

Chapter 8 is adapted from published material in ”The Role of Musical Structure in Shaping

Listener’s Preference”. Koh, Eunjeong, and Kim, Min-ju. Society for Music Perception and

Cognition, 2017. The dissertation/thesis author was the primary researcher and author of the

paper.
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Appendix A

Summary

In this part, we share the goals, achievements, and some details of each chapter.

A.1 Chapter 3

A.1.1 The Goal of the Experiments

We use a neural adapter to effectively bridge the gap between the previously learned

information in the source model and a target model for learning new sound events.

A.1.2 Dataset

We evaluate our algorithm over three datasets; the DCASE 2016 challenge Task 2

(DCASE16) [MHV16b], the UrbanSound-SED (US-SED), and UrbanSound-8K (US-8K) [SJB14]

dataset.
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A.1.3 Implementation

· Existing tools

We revise this open-source implementation for creating soundscapes sound files https:

//github.com/justinsalamon/scaper_waspaa2017

· New implementation

We implement the Neural Adapter structure from scratch. The neural adapter structure

ideas have been adapted from here.

A.1.4 The Scope of the Experiments

In this experiment, the source model and the target model perform limited sound events

detection. The source model has been designed for detecting three different sound events and the

target model has been designed for detecting four different sound events.

A.1.5 Accomplishment

We present an incremental learning algorithm utilizing a TL paradigm for SED applica-

tion. Our extensive analysis shows that utilizing such a mechanism improves the performance

of recognizing both known/unknown sound events without forgetting the previously learned

knowledge. Thus, our proposed model suits well the scalable and incremental SED applications.

A.1.6 Future Works

This approach can also be used as a low footprint framework for continuous learning

in applications that involve less noisy and well-annotated data. However, for the more realistic

applications, such as acoustic scene classification systems that involve more noisy data, both

the target model and the source model might need to remain connected to achieve the desired

performance. Addressing such a challenge remains the focus of our future work.
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A.2 Chapter 4

A.2.1 The Goal of the Experiments

We design CNN-VRNN machine learning model for automatic music composition using

MIDI data. We compare the performance of our proposed model with other types of Neural

Networks using the criteria of Information Rate that is implemented by Variable Markov Oracle,

a method that allows statistical characterization of musical information dynamics and detection of

motifs in a song. Our results suggest that the proposed model has a better statistical resemblance

to the musical structure of the training data, which improves the creation of new sequences of

music in the style of the originals.

A.2.2 Dataset

For our experiments, our training data comes from the Nottingham Dataset, a collection

of 1200 folk songs [not]. Each training song is segmented into frames (piano-roll), and for the

preprocessing of our dataset, we implement our method based on the music21, librosa, and pretty

midi packages for feature extraction on MIDI file [CA10, MRL+15, RE]. We use an input of 128

binary visible units and are aligned on the 8th note beat level.

A.2.3 Implementation

· Baselines

MelodyRNN, PolyphonyRNN, AttentionRNN, and Midinet

https://github.com/magenta/magenta/blob/main/magenta/models/melody_rnn/

README.md

· New implementation
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We implement CNN-VRNN from scratch.

Github link: https://github.com/skokoh/c_vrnn_mmsp_2018

Soundcloud: https://soundcloud.com/user-431911640/sets

A.2.4 The Scope of the Experiments

We present a model for capturing musical features and creating novel sequences of music,

called the Convolutional-Variational Recurrent Neural Network. To generate sequential data, the

model uses an encoder-decoder architecture with latent probabilistic connections to capture the

hidden structure of music. Using the sequence-to-sequence model, our generative model can

exploit samples from a prior distribution and generate a long sequence of music. Qualitative

experiments can improve this experiment’s results understanding.

A.2.5 Musical Point of View

We show average IRs for original Nottingham MIDI datasets and for generated samples

from several models, where higher IRs report more distinct self-similarity structures. The IR of

the original dataset is higher than that of the generated music. Self-similarity in audio refers to the

multi-scalar feature in a set of relationships, and it commonly indicates musical coherence and

consistency [Foo99]. Self-similarity in audio refers to multi-scalar features in a set of relationships,

and it commonly indicates musical coherence and consistency. Results in each setting show that

the latent variable sampling approach increases the IR of the produced musical material over

RNN-based approaches, indicating a higher degree of structure. In addition, the distribution in

each group shows that the result of [KDW18] has more distribution than the training dataset or

another model. This is because the research focuses on the creation of a diverse and complex new

sequence of music.
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A.2.6 Accomplishment

In this study, we show initial proof that our proposed model applied to MIDI sequence

representations can capture the structure of the song and create polyphonic music. The motivations

behind combining CNN, RNN, and VAE were to explore significant problems in music generation

which are related to representation issues that are handled via CNN, repetitive patterns in generated

output that are known in RNN and the ability to generate variations from the progression of

melody sequence. In our study, we used IR as a criteria to evaluate the generated output and

compare it to other models.

A.2.7 Future Works

Qualitative experiments can be helpful for a better understanding of our generated music

structure.

A.3 Chapter 5

A.3.1 The Goal of the Experiments

We tackle an important problem of the evaluation and interpretation of machine learning

models with a focus on music models. To quantitatively evaluate the quality of music, we use

Information Rate which can compare how information flows in original music versus in music

generated by an artificial neural network that learned that music. We review mostly known but

often underappreciated properties relating to the evaluation and interpretation of machine learning

models with a focus on music models. We aim to study the perspectives from statistics and

information theory as to how creativity can be measured in both a computationally and musically

meaningful way.
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A.3.2 Dataset

For our experiments, our training data comes from the Nottingham Dataset, a collection

of 1200 folk songs [not].

A.3.3 Implementation

· Baselines

Boulanger et al [BLBV12]

· New implementation

Soundcloud:

https://soundcloud.com/user-431911640/sets

A.3.4 The Scope of the Experiments

Results in each setting show that the latent variable sampling approach increases the IR

of the produced musical material over RNN-based approaches, indicating a higher degree of

structure. In addition, the distribution in each group shows that the result of [KDW18] has more

distribution than the training dataset or another model. This is because the research focuses on

the creation of a diverse and complex new sequence of music.

A.3.5 Musical Point of View

The results show the relation between IR and threshold value and imply different musical

structures are generated by different values. In terms of the results graphs, the RNN-RBM

recopies longer segments, but they are interrupted, while the CNN-Recurrent VAE model relies

on shorter previous patterns. The CNN-Recurrent VAE uses a latent variable model to design the

graph, so we can see that the chord progression of the music is more variously than iterative or

repetitive structure.
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A.3.6 Accomplishment

The motifs over time (and submotifs when the lines overlap vertically) allow visual

inspection of such structures. The higher level repetitions also exist in the arrangement of motifs

themselves. Since each VMO analysis optimizes the threshold of similarity for approximate suffix

matching, the motifs shown in the different figures appear slightly different. Also, the VMO takes

into consideration also the later motif structure and adjusts its sensitivity so as to produce the

most informative representation of the overall information in each piece.

A.4 Chapter 6

A.4.1 The Goal of the Experiments

We present a novel musical interface, Mugeetion, designed to capture occurring instances

of emotional states from users’ facial gestures and relay that data to associated musical features.

Mugeetion can translate qualitative data of emotional states into quantitative data, which can be

utilized in the sound generation process.

A.4.2 Dataset

We list our sound files below, which have been played to a number of subjects interacting

with the system. The selection of the list is based on the study of the Mozart Effect [PCBCC13].

For the sound files, we use Piano-midi.de dataset.

· Happy

Mozart - The Piano Sonata No 16 in C major Mozart - Eine Kleine Nachtmusik K 525

Allegro

· Neutral

Mozart - Piano Sonata No 11 in A major K 331
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· Sad

Mozart - Symphony No 25 in G Minor K 183 1st Movement Mozart - Requiem in D minor

A.4.3 Implementation

· Existing tools

FAC, FaceOSC

· New implementation

We built a Max application, which utilizes facial data and FAC for sound creation. Our pre-

liminary demo video is uploaded on Youtube. https://www.youtube.com/playlist?

list=PLjaQX_vKy2Jcv0r9wrc_yU2gbRhZh39GV

A.4.4 The Scope of the Experiments

We also presented and tested this work in the exhibition of sound installation, Hearing

Seascape, using the audiences’ facial expressions. Audiences heard changes in the background

sound based on their emotional state. The process contributes to multiple research areas, such as

gesture tracking systems, emotion-sound modeling, and the connection between sound and facial

gesture.

A.4.5 Accomplishment

Mugeetion makes several contributions to previous work. Rather than simply detecting

facial gesture data, it also automatically extracts emotional states and produces sound output

transition. Mugeetion provides a sound generation model to users based on the components of

emotion and musical metadata. We focus on how sound can be changed based on users’ emotional

movement.
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A.4.6 Future Works

We will further develop the system based on the following issues: increasing training

images for covering multiple faces and optimizing different emotional states, implementing an

AU indicator or other emotional measure on the FaceOSC display for better interaction with users

exploring other similar emotion interactive systems to compare the sonification result.

A.5 Chapter 7

A.5.1 The Goal of the Experiments

We evaluate L3-Net and VGGish pre-trained deep audio embedding methods for MER

task over 4Q Audio Emotion, Bi-modal Emotion, Emotion in Music, and RAVDESS datasets.

Even though L3-Net has not been intended for emotion recognition, we find that L3-Net is the best

representation for the MER task. Note that we achieve this performance without any additional

domain knowledge feature selection method, feature training process, and fine-tuning process.

A.5.2 Dataset

Four different datasets are selected for computing the emotional features in music data,

4Q Audio Emotion Dataset [PMP18a], Bi-modal Emotion Dataset [MPGP16], Emotion in Music

[SCS+13], Ryerson Audio-Visual Database of Emotional Speech and Song (RAVDESS) [LR18].

A.5.3 Implementation

· Existing tools

We choose two deep audio embedding methods, L3-Net and VGGish, which are state-of-

the-art audio representations pre-trained on 60M AudioSet [GEF+17] and Youtube-8M
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data [AEHKL+16]. AudioSet and Youtube-8M are large labeled training datasets that are

widely used in audio and video learning with deep neural networks.

· New implementation

From the computed deep audio embeddings, we predict an emotion category corresponding

to each audio vector as a multi-class classification problem. We employ six different

classification models, Support Vector Machine (SVM), Naive Bayes (NB), Random Forest

(RF), Multilayer Perceptron (MLP), Convolution Neural Network (CNN), and Recurrent

Neural Network (RNN).

A.5.4 The Scope of the Experiments

We didn’t design our own method of deep audio embedding for this experiment. We used

pre-trained L3-Net and VGGish and adapted it to different tasks from SED to MER.

A.5.5 Accomplishment

Comparing to MFCC baseline features, the empirical analysis shows that L3-Net is

robust across multiple datasets with favorable performance. Overall, the result using L3-Net

shows improvement compared to baseline models for Bi-modal Emotion, Emotion in Music, and

RAVDESS dataset.

A.5.6 Future Works

A possible direction to validate different classifiers is to explore a combination of discrete

neural learning methods, such as VQ-VAE, to first solve the categorical problem, and only later

learn a more smooth decision surface. VQ-VAE has been recently explored for spectrogram-based

music inpainting [BHEM20]. It would be interesting to explore similar high-level parameteriza-

tion using L3-Net embeddings.
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A.6 Chapter 8

A.6.1 The Goal of the Experiments

We explore the relationship between musical preference and the elements of musical

structure, possibly independent from the semantic content of lyrics. We investigate positive

correlations for emotional response between musical dynamics and the level of interest in

replaying the song through listening experiments.

A.6.2 The Scope of the Experiments

Native and non-native speakers of English listened to excerpts of musical pieces, either

with lyrics in their own language or another. We asked the participants to evaluate the level of

their emotional response to multiple songs and which songs they were interested in replaying.

A.6.3 Accomplishment

Our preliminary results have been consistent with the findings that emotional judgments

could be related not only to the meaning expressed by the lyrics but also to the elements of

musical structure, especially musical repeats. Our empirical data suggest that musical preference

would have the following properties: 1) repetition-based structure in music should create strong

impressions on the listener’s long-term memory, and 2) certain compositional designs of musical

structure could be an indicator of the recurring interest deriving from earworms.
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