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Abstract

Imperfect Label Information in Multimodal Human-Centric Machine Learning

by

Yi Ding

Multimodal machine learning studies the ability to take multiple streams of input

data to make predictions on an output. The classic notion is that by using multiple

streams of input, we can make better predictions by accounting for multiple contexts.

Such applications include audio-visual speech recognition, emotion prediction, and much

more. While this research has enabled novel and effective ways to fuse the data for

improved modeling performance, few works have examined how highly uncertain and

varied human opinions and behavior can impact model performance.

Accounting the variability or differences in human opinions is important for multi-

modal machine learning because in many human-centric applications the labels contain

high degrees of uncertainty. One notable example of this is in predicting human sentiment

or emotions. In current datasets, we do not get a complete picture for the variability

of human opinions. This is further complicated by the fact that the inclusion of addi-

tional modalities leads to an increase in discriminating features, causing models to fit to

imperfect data faster.

This thesis lays a foundation for examining the effect of label variability on multi-

modal algorithms and datasets. We propose and develop novel techniques for unimodal

label tolerance and strive to bring this to a multimodal domain. The goal is that by

explicitly accounting for ambiguities in the output, we can improve the effectiveness and

understanding of label noise in a multimodal domain.
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Chapter 1

Introduction

This thesis is primarily motivated by the desire to understand human emotions and

behavior in relationship to machine learning. In contrast to simply pursuing Artificial

Intelligence (AI) techniques which attempt to replicate human capabilities such as sight,

sound, or speech, we are interested in how these techniques can be incorporated into

understanding how humans feel, think and act. The reason for this is two-fold: 1) it can

enable a better understanding of ourselves, and 2) it can enable far richer interaction

experiences.

In the last few years, there has been an incredible development in the capabilities of

AI to replicate human behavior. And, on some benchmarks such as image recognition

or natural language understanding, AI can actually surpass human capability. A well-

known application is AlphaGo, an AI who is arguably the strongest Go player in history.

However, despite all these developments, most AI applications have yet to become ef-

fectively integrated into society. And even with services that are becoming increasingly

available, such as Chatbot assistants, something in the technology feels amiss. We be-

lieve that at least some of the current limitations are due to the lack of understanding of

the behavioral and psychological properties of humans, both by us and by AI.

1



Introduction Chapter 1

Human-sourced data that depends on human interpretation and opinion

is inherently imperfect; understanding this pattern and improving the

handling of this uncertainty, first in unimodal scenarios and then

extended to multimodal human signals, are critical for effective and

natural integration of AI into society.

Thesis Statement

To tackle these issues, we investigate two questions that we believe are critical com-

ponents for solving this problem:

1. How do we improve multimodal modeling of human-centered data? (Part I)

2. How do we address the variability and imperfection of human-centered data? (Part

II)

We believe that these issues are core components towards enabling better understanding

of human behavior by an AI because 1) human interaction is naturally multimodal, and

2) humans are inherently different from each other. By gaining a better understanding

of these issues, as well as how they inter-relate, we can make critical strides towards

enabling AI to help humans more effectively.

1.1 Multimodality and Variability

We experience and interact with the world through our five senses: sight, sound, taste,

touch, and smell. The human brain is incredibly good at processing all of this information,

paying attention only to the few things that matter. Imbuing a computer with the ability

to process multimodal data effectively is highly desirable because it would enable a vast

array of multi-sensory applications. We begin this thesis by investigating how multimodal

2
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models can be applied on human-centric data and improved. In particular, we focus on

applications that contain elements of motion and mobility. This is because we would like

interaction with an intelligent multimodal agent to occur anywhere and at any time.

The second issue that lies at the heart of this thesis is regarding variability. While

groups of humans often behave according to some broad average pattern, there are large

individual variances that can make it difficult to model expected behavior and emotions,

as well as interaction processes. As such, we should account for the inaccuracies in human

perceptions when building multimodal systems. A classic example for the importance

of studying multimodal machine learning is presented by the McGurk effect [1]. In this

situation, a slight incongruence in auditory and visual stimuli can cause a human to

perceive drastically different things. Once such example, is the perception of /da:/ when

hearing the syllable /ba:/ but watching the lips of a person saying /ga:/.

In re-examining the McGurk effect, we pose the question: should the label in such

a situation be /da:/, /ba:/ or /ga:/? In such situations, we argue, the true label would

depend on how the labeling process was conducted and the specifics of what the data

collection parameters were. However, in reality, datasets typically are not collected with

such clear distinctions as we neither fully understand the labeling effects nor ambiguities

and differences in opinion. Sometimes, it might even be infeasible to do so. For example,

more complex datasets involving an application such as emotion recognition can depend

on body movements, tonal changes, speech cadence, audio, visual, language cues and

many more as input for prediction. These inputs are used as a whole and assigned an

emotion score by humans which may have different interpretations of the input based on a

range of factors such as culture, experiences, gender, environment, and much more. Under

such a scenario, providing a comprehensive way to address the labeling uncertainties

appears to be an impossible task. In this thesis we attempt to dissect these issues of

multimodality and variability, and attempt to examine the impact of these effects.

3



Introduction Chapter 1

Figure 1.1: Diagram of the contributions made by this thesis. Part I discusses the
contributions for multimodality which covers topics on novel interfaces and multi-
modal modeling. Part II discusses the contributions on variability, covering topics on
weakly-supervised learning and learning with noisy labels.

It should be noted that we consider noise and differences of opinion to be synonymous

when in fact they are not. In other words, we consider a reliable annotation to be valid

when modeling this type of data. There are two reasons that we do this. First, quantifying

the validity [2] of results for subjective data is difficult. While current datasets account

for reliability via agreement scores, it is much more difficult to assess validity as there is

no quantitative metric for it. Secondly, to us, it is the first logical step towards enabling

the modeling of human variability due to existing datasets and models. We anticipate

future work built on this thesis will separate these two concepts.

1.2 Contributions

This thesis contributes research on modeling techniques aimed at tackling uncertain-

ties on labels in a unimodal setting and on incorporating this into multimodal settings.

We first examine problems involving multimodal inputs (Part 1). We find that there is a

lack of clarity on how to incorporate techniques which tolerate high degrees of uncertainty

into multimodal settings. This topic is highly important, as many problems that deal

with multimodal inputs, such as modeling human behavior, are affected by high degrees

4
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of uncertainty. Motivated by this, we examine problems in multimodal settings that

expose high degrees of uncertainty, and how uncertainty is typically addressed. We then

explore the role of human uncertainty in the setting of multimodal sentiment analysis

bring the two lines of work together. We present this thesis to gain an understanding

for how we can build smarter systems while relying on less human input. A conceptual

diagram of these contributions is provided in Figure 1.1. The following summarizes the

contributions in each chapter:

1. We start by exploring a few applications of multimodal machine learning in Chap-

ter 2. We discuss our explorations using EEG as a modality as well as RGB depth

prediction. We present a novel multimodal approach for classifying the P300 event

related potential (ERP) component by coupling EEG signals with nonscalp elec-

trodes (NSE) that measure ocular and muscle artifacts.

2. In Chapter 3, we present Sparse Fusion Transformers (SFT), a novel multimodal

fusion method for transformers that performs comparably to existing state-of-the-

art methods while having greatly reduced memory footprint and computation cost.

3. We begin our examination of uncertainty in multimodal learning in Chapter 4 by

examining the potential to use unlabeled public reactions in the form of textual

comments to aid in classifying video affect. We examine two popular datasets

used for affect recognition and mine public reactions for these videos. We learn a

representation of these reactions by using the video ratings as a weakly supervised

signal.

4. In Chapter 5, we present an algorithm that obtains state-of-the-art performance on

multiple benchmarks on the learning with noisy labels problem. We achieve this

by proposing a novel way to inject augmentations into the learning pipeline. We

5
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find that using one set of augmentations for loss modeling tasks and another set for

learning is most effective. We use this as a grounded method to examine methods

to improve uncertainty handling in human-centric data.

5. Lastly, in Chapter 6 we examine how label uncertainty finds its way into human-

centric datasets and its impact. In particular, we ask >1000 crowdworkers to

provide their demographic information and annotations for multimodal sentiment

data and its component modalities. We show that demographic differences among

annotators impute a significant effect on their ratings, and that these effects also

occur in each component modality.

6
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Multimodality

7



Chapter 2

Applications of Multimodal Learning

Parts of the contents of this chapter were published with multiple collaborators at the In-

ternational Conference on Multimodal Interaction (ICMI) 2019 and ICMI Late-Breaking

Results 2019.

This chapter discusses some common applications of multimodal machine learning

and how they can be improved. It explores some of the existing works and motivates our

work in label noise tolerance. We examine the ERP classification problem as it relates to

Brain-Computer Interfaces in a grounded evaluation. We then examine a way in which

such a BCI scheme can be used as an easy way for user authentication. This chapter aims

to provide a few examples of how data coming directly from a human can be modeled.

2.1 Multimodal EEG Classification Under Motion

Brain Computer Interface (BCI) systems enable the control of a computer through

brain signals [3]. Traditionally, BCIs have been utilized as an assistive technology for

people with mobility impairments [4]. There is however a growing interest in general

purpose, non-invasive BCI technologies to improve the computing experience of perfectly

8
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Standard

Distractor

Target

Stim. Presentation: 200 ms

A B

C

1 Hz Task ISI: ~800 ms 
2 Hz Task ISI: ~300 ms

Figure 2.1: Methods and Tasks. (A) Example of the oddball task. Participants were
required to detect targets (right oriented faces) in a stream of distractors (left oriented
faces) and standards (cars oriented left or right). (B) The participant was fitted with
an EEG cap and positioned on a stationary bike. (C) The participant rested their
elbows on a pair of “aero bars” attached to the bike handlebars and used their right
thumb to respond to targets.

healthy people. A number of consumer facing products have been developed such as EEG

headsets by Emotiv, the Muse meditation headband, and an EEG-integrated virtual

reality headset by Looxid Labs. These products promise to enhance the computing

experience by enabling intelligent interfaces that sense and react to changes in the user’s

cognition.

Recent work from neuroadaptive systems have explored the use of these brain signals

(EEG) as an additional input modality for a wide variety of interaction tasks. A central

idea is to use EEG information for user modeling to build adaptive interfaces [5, 6]

that can implicitly and quickly react to user state [7, 8]. This information can be used

to quantify user states such as cognitive load [9, 10], emotion [11, 12], and attention

[13, 14] to inform better interaction experiences for education [15], entertainment [16],

equipment operation [17], and others [18, 19, 20, 21]. Nonetheless, an open research

question remains as to how these signals should be integrated and how reliable they are

9
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for non-trivial computing applications.

The key advantage of these technologies is that they opens the door to real Ubiqui-

tous Computing, where computing may occur in any time or place [22]. In ubiquitous

computing, users may be interacting with the system while moving around in their en-

vironment and engaging in physical activity (e.g. an augmented reality task). However,

EEG signals are commonly known to be severely impacted by a wide range of biophysi-

ological artifacts associated with movement. To ensure that the system remains usable,

it is crucial to understand how classification performance of EEG signals changes under

these adverse conditions, so that we can develop techniques for robust classification and

analysis.

Typical BCI solutions are based on laboratory studies and rarely replicate the condi-

tions outside the lab in which the system should be deployed. There are three main ways

to tackle such a problem: 1) to extract features that are invariant to the expected noise,

2) to denoise the signal, and 3) to be robust to the noise. An extensive amount of data

collection, manual feature extraction, and domain knowledge is typically necessary to

identify, classify, and correlate these signals to a particular application [23]. A number of

techniques have been used to alleviate the need for manual feature extraction, including

spatial and temporal filtering, and neural networks [24].

Due to the success of Deep Learning models in other fields such as Computer Vision

and Speech Recognition in which the performance reaches human-like levels of perfor-

mance, there has been a resurgence in the use of deep neural networks for feature extrac-

tion and classification of EEG signals [25]. However, deep learning methods require a

large amount of training examples to be successful in order to model the variability that

exists across examples [26], which is not typically the case for BCI data. First, the EEG

datasets have a low number of examples per class compared to typical computer vision

problem, and they have unbalanced datasets, in particular for event-related potential

10
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(ERP) based BCI in which the target class has a low probability. Second, EEG is highly

non-stationary and characteristics of the signal can change depending on the behavioral

state of the wearer (e.g. fatigue/arousal). These effects can be partially remedied through

the use of data augmentation [27, 28, 29], but the applications of these techniques have

not been well studied for EEG signals.

To help address these issues, we introduce a dataset in which participants were po-

sitioned on a stationary bike and engaged in a visual three-stimulus oddball task [30]

while at rest and during bouts of low- and high- intensity cycling exercise [31]. We

open source1 this dataset with the goal of encouraging further research. We investigate

whether classification performance of a state-of-the-art deep learning model suffers under

different intensity levels of physical activity, and discover that it does, suggesting room

for improvement of feature representation. We propose a model to improve performance

by incorporating the use of a denoising autoencoder. Furthermore, we consider the ad-

dition of signals from nonscalp electrodes and user state data, to provide supplementary

information.

2.2 Related Work

2.2.1 Classification Methods

Lotte et al. [32, 24] has provided a review of classification algorithms for EEG-based

BCI. They concluded that the current state-of-the-art is Riemannian Geometry (RG)

classifiers, and suggested it is time to move away from classical approaches which usually

use Linear Discriminant Analysis (LDA) with Common Spatial Pattern (CSP) filters. In

fact, the winning approach for the Kaggle BCI competition at NER 2015 used xDAWN
1https://github.com/yding37/mcann

11
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spatial filters with RG [33].

Deep learning models have been applied to EEG classification since at least 2008 [34]

and there has been a sharp increase in activity thanks to the recent success of these models

in the natural language processing and computer vision domains. The best performing

deep learning approach is currently Convolutional Neural Networks (CNN), which are

able to borrow technical advancements from the computer vision community. CNNs

were first used for EEG classification by Cecotti et al. in 2011 [35, 36] for P300 ERP

classification. Schirrmeister et al. [25] conducted an in-depth survey of CNN architectures

for EEG classification and provided an open source software library for evaluating them.

Recently, the US Army Research Lab released EEGNet, a CNN architecture that

reached performance comparable to the state-of-the-art on 4 different BCI tasks [37]. The

authors used depthwise and separable convolutions which helped to reduce the amount

of trainable parameters in the model [38]. Our model uses a variant of EEGNet as the

basis for our encoder. By applying EEGNet within an autoencoder paradigm, we are

able to learn a more robust representation of the EEG data.

Although not as common, autoencoder methods have been explored in a few EEG

classification studies. In Yin and Zhang[39], the authors utilized a Stacked Denoising

Autoencoder (SDEA) in order to classify mental workload. We also utilize a denoising

autoencoder, but we target the P300 signal which is better characterized and understood

[40]. The authors also compared computation time and concluded that their SDEA model

could be used for online classification, which supports our intended use case of ubiquitous

BCI.

Said et al. [41] used a multimodal fusion approach with stacked autoencoders coupling

EEG and EMG data. However, their approach utilized two separate pathways for EEG

and EMG and learned a latent vector representation of the data. However, their network

did not show improvements over CNN based approaches. In our approach, we share the

12
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weights of the encoder for both EEG and NSE and fuse their latent representations.

2.2.2 EEG During Physical Activity

EEG recordings are known to suffer from motion artifacts, as they simply measure

the electrical signals in the brain. Moreover, the activation of muscles produces large

electrical signals and is the main source of noise in many studies. Participants are usually

trained to stay completely still in order to minimize contamination of the dataset. For

this reason, there are relatively few datasets where EEG is actually recorded while under

motion.

Nathan and Contreras-Vidal [42] collected EEG recordings of subjects walking at 3

different speeds on a treadmill. Contrary to expectations, they did not observe significant

contamination of the EEG signal by motion artifacts. However, it should be noted that

the fastest speed investigated (4.5 km/h) is still less than the preferred walking speed of

an average person [43], making it difficult to extrapolate to Ubiquitous BCI settings.

A handful of studies have collected EEG data during acute bouts of exercise. Yagi et

al. [44] and Grego et al. [45] both measured EEG with a P300 task while cycling. More

recently, other studies have investigated the impact of acute exercise on other types of

brain responses, such as orientation-selective responses in visual cortex [46] and neural

oscillatory activity associated with inhibitory control [47]. For a comprehensive summary

of sport and exercise related EEG studies, see Cheron et al. [48]. However, to the best

of our knowledge, the present study is the first to apply classification methods to EEG

collected during acute bouts of physical activity, with the goal of improving the efficacy

of ubiquitous BCI.

Artifact removal is another common practice for removing sfig/ources of interference

such as muscle activity. Gwin et al. [49] compare artifact removal methods for EEG
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Figure 2.2: Single subject (sj04) ERPs are shown for each of the physical activity
conditions. To avoid visual clutter, only ERPs generated from the standard and target
conditions are shown. Error bars represent ± standard error of the mean (SEM)

Dataset # Samples Ratio

BCI-2a [51] 2.5K 1:1
Kaggle [52] 8.8K 1:1
P300 [37] 30K 1:5.6
Bike (ours) [31] 72K 1:1:8

Table 2.1: Our dataset is the largest among current publicly available datasets for BCI
tasks of similar purpose.

collected while walking or running. General guidelines and good practice for artifact

removal can be found in Urigüen and Garcia-Zapirain [50]. Ultimately, given that we are

interested in online classification, we chose not to perform any motion artifact removal.

Instead, we perform minimal pre-processing on the datasets, which we describe in the

next section.

2.3 Description of Dataset

2.3.1 Task and Exercise Protocol

The EEG dataset used in this work was previously described in Bullock et al. [31].

Twelve adult student volunteers took part in the study in exchange for course credit or

financial compensation. Figure 2.1 provides an overview of the methodology used for

collection. Each participant performed two different versions of a three-stimulus oddball
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task [30] while seated on a stationary bike. Participants were required to respond to

target stimuli (left-oriented faces) and ignore the distractor stimuli (right-oriented faces)

and the standard stimuli (cars oriented either to the left or right). The ratio of targets

to distractors and standards was 1:1:8, respectively. In the two different versions of the

task the stimuli were presented at different rates. Stimuli were either presented at 1 Hz

(200 ms stimulus presentation with 800 ms inter-stimulus intereval (ISI) or 2 Hz (200

ms stimulus presentation with 300 ms ISI). The 2 Hz data were collected for the purpose

of a BCI study and were not reported in the original paper.

Participants completed the 1 Hz and 2 Hz tasks at rest (sat on the bike but not ped-

aling), during low-intensity exercise (pedaling at at a very light resistance level of 40W)

and during high-intensity exercise (pedaling at a resistance level which the participant

reported to be “somewhat hard” according to their Rating of Perceived Exertion (RPE;

Borg 1970 [53].)). The order of completion was counterbalanced between participants.

EEG data were recorded continuously during each task using a BioSemi Active Two

System consisting of 32 scalp electrodes arranged in an elastic cap (Electro-Cap, OH,

USA) and placed in accordance with the 10-20 system. Additional non-scalp electrodes

(NSE) were fixed to the right and left mastoids, 1 cm lateral to the left and right canthi

(horizontal EOG), above and below each eye (vertical EOG) and on the right and left

trapezius muscles (EMG).

2.3.2 Classification Goals and Challenges

Here, the goal of the classifier was to determine which stimulus (target, distractor or

standard) the participant viewed for each trial. The inclusion of two physical activity

conditions sets this dataset apart from typical P300 datasets. This dataset fits with

our goal of building BCI paradigms for ubiquitous computing, because compared to
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other P300 datasets, the conditions in this task are more similar to those that might be

encountered in real life. In traditional P300 EEG data collection, participants typically

sit in a comfortable position and are told to minimize non-task related physical motion.

However, for BCIs to be useful in real life, the actions of the user should not be controlled.

In contrast, this P300 dataset incorporates physical exercise, an indispensable part of day-

to-day life. Therefore, achieving a good classification accuracy on this dataset is a first

step to building a useable BCI for everyday activities.

The inclusion of physical exercise introduced extra noise, which makes the classifica-

tion task more difficult. The presence of extra noise under physical exercise is visualized

in the error bands in Figure 2.2. Here, we identify at least three sources of noise which

may not be present in other existing P300 datasets. The first is EMG noise. EMG activ-

ity can be present in the range 10 - 250 Hz, which overlaps with the useful frequency band

of EEG signals at 1 - 40 Hz. The second is that sweating can cause low-frequency noise

[54]. The third is physical motion itself. During the task, the participants were biking at

50 RPM, which corresponds to 100 pedal downstrokes per minute (left and right). This

introduced a noise at 1.33 Hz, which also overlaps with the 1 - 40 Hz range. Due to the

overlap, naive filtering methods cannot eliminate those sources of noise completely.

2.4 Method

The ERP classification task is defined as follows: A set of EEG channels C and its

signal over time x ∈ RC×T is given where T depends on the sampling rate and duration

of an epoched trial. The task is to take each epoched trial x and output a 3-class

probability distribution y. We are additionally given xnse ∈ RCn×T for NSE information

and s ∈ [0.1, 0.5, .9] for resting, low, and high exercise states.

In this chapter, we propose an end-to-end deep learning architecture, Multimodal
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Layer Parameters

Conv2d 1x10x10
Batch Norm f: 10, eps: 1e-3, m:0.1
Conv2d, Elu Cx10x10
AvgPool k: 1x4 s: 1x4
Renorm p: 2, mn: 1
Conv2d 10x1x20

(a) Temporal Encoding Network

Layer Parameters

Dropout p: .25
Conv2d 1x16x20, g: 20
Conv2d 1x1x10
AvgPool k: 1x8, s: 1x8
Dropout p: .25
Fully Connected,
Elu

(T/1.6)x64

(b) Fusion Network

Layer Parameters

Fully Connected,
Elu

64x(20*T//32)

BatchNorm
Deconv2d 1x1x20
Fully Connected,
Elu

(T/4 + 1)x(T/4 + 1)

Deconv2d Cx1x10, g: 10
Deconv2d, Elu 1x5x1
Deconv2d 1x10x1

(c) Decoder Network

Table 2.2: Network parameters are abbreviated as follows: eps for epsilon, m for
momentum, f for number of filters, k for kernel size, s for stride, p for power, mn
for max norm, and g for groups. Convolutions filter sizes are expressed in channel by
time by number of filters.

Context-Aware Neural Network (MCANN), for modeling the ERP prediction problem.

Our model (Figure 2.3) is in part motivated by the ability for unsupervised techniques

to build a good representation of data. We break our model into 4 components: 1) a

temporal feature extraction module in section , 2) a fusion component which combines

these features, 3) a decoder which to reconstruct the signal for unsupervised learning and

4) a classification network for predicting the final class distribution.
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Figure 2.3: Our proposed model for evaluating EEG data with additional input modalities.

2.4.1 Unsupervised Representation Learning

Autoencoders first map an input x into a latent representation by a deterministic

mapping: z = fθ(x). The latent representation z is then remapped back to x′ = gθ′(z).

A denoising autoencoder additionally takes a corrupted version of the original input x̃

to reconstruct x. Autoencoders of this sort have been shown to be robust to partial

destruction of input for a wide range of tasks. Here fθ(x) and gθ(x) are modeled by

multiple neural networks.

Noisy input x̃ = x + Wn is formed by the addition of a noise vector whose values

are sampled independently from a normal distribution Wnij ∼ N (0, σ2) for all i ∈

{1, . . . , C} channels and all j ∈ {1, . . . , T} time samples. Here we use the standard

normal distribution (σ2 = 1), however other values could be considered depending on the

dataset. Additionally, alternative methods of corruption could be explored which can be

informed via user context or state information.

The noisy input x̃ is concatenated with prior noise information xnse and s and fed

into our network. The reconstructed signal x′ = gθ′(fθ(x̃,xnse, s)) is obtained.
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2.4.2 Temporal Encoder

Table 2.2a describes the temporal feature extraction network. Weights from the first

convolutional layer are shared to extract common temporal signal properties. The output

of our temporal extraction process is denoted by: veeg = hφ(x̃) and vnse = hφ′(xnse) for

encoded eeg and nse features.

2.4.3 Fusion Network

The outputs of the temporal encoder are concatenated channel-wise with state and

NSE information v = [veeg;vnse; s], where the state is broadcast for each temporal feature

value. A single layer, fully connected, network u = MLP (v) is used to fuse channel

information over time for each time step. The output u is passed through our multimodal

fusion encoding network (Table 2.2b). Note that we can adjust, add, or remove other

modalities of input by modifying the representations concatenated to v and fused through

u with ease.

For all evaluations 64 dimensions are used as the latent representation output by

the last layer of the fusion network along the temporal dimension. For datasets with a

smaller number of temporal time steps, the min(64, T/1.6) is used.

2.4.4 Decoder Network

The network is parameterized by x′ = gθ′(z) using the network given in Table 2.2c.

At a very high level it approximates the opposite order of layers presented by the encoder

network to obtain the non-corrupt signal. The final output x′ is mapped to the noise-free

input via the reconstruction loss:

Lr = − 1

N

N∑
i=1

‖xi − x′i‖21. (2.1)
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2.4.5 Classification Network

The classification network is a single layer fully connected network which maps the

latent vector z to a softmax distribution of 3 classes y′ = softmax( MLPρ(z)). The

negative log likelihood is utilized to maximize the correct class distribution:

Lc = −E[log p(y|x)] (2.2)

2.4.6 Joint Loss Function

The final optimization function is a linear combination of the reconstruction and

classification loss:

L = Lc + λLr, (2.3)

Where λ is an adjustable weight that can be annealed. For all experiments, we set λ to

be linearly annealed from 1e−2 to 1e−5 over 5 training epochs. While other functions

for annealing are possible, we did not evaluate them for this study.

2.5 Experiment Setup

Two methods of preprocessing were used to examine the performance as well as

noise tolerance properties of our model. For each of 1Hz-Bike and 2Hz-Bike data

(the two conditions of data collection previously described), the mastoid electrodes were

used as the reference electrodes. The original data were also band-pass filtered between

.1Hz-255Hz. We analyze a “denoised” version of the dataset, 1Hz-Bike-Filtered and

2Hz-Bike-Filtered, by applying a band-pass filter from 1-40Hz and down sampling to

128Hz. This step removes the high (40Hz+) and low (.1Hz-1Hz) frequency noise as the

P300 ERP signal is known, a priori, to be within the 1Hz-40Hz frequency band. Com-
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paring these different preprocessing methods allows us to examine algorithmic behavior

under different conditions of noise and prior information.

To evaluate the accuracy and robustness of our algorithm, we split the data in two

ways. For subject-independent splitting, the post-processed data is split into 80%

training and 20% testing instances. We do this for each user stratifying by class distri-

bution. The training data for each user is concatenated and shuffled to create a large

training dataset. The same is done for the test dataset. Model and parameter tuning

is conducted by randomly splitting 10% of the data from the training set for validation.

This method for data splitting was used because this is common practice for current ma-

chine learning methodologies, as well as its more challenging condition over single-subject

within-subject classification.

Cross-subject splitting allows us to analyze the generalizability of a technique to

novel users. We follow the procedure from EEGNet [37] for subject splitting. Due to

our smaller subject pool, we choose 1 subject iteratively and select an additional subject

randomly. The remaining 10 subjects are used for training. This process is repeated 12

times so that each subject’s test data is tested at least once. We set the training epochs

to be 150 when validation accuracy appears to have converged for all models.

2.5.1 Algorithm Comparison

The MCANN model is compared against a traditional non-deep learning approach as

well as a previous state-of-the-art deep learning model for ERP classification. For the

traditional approach, xDAWN with 5 spatial filters was trained on the EEG data for each

class, estimate covariance matrices, and project them into tangent space. Classification

is performed using logistic regression with Riemannian distance [33]. This is similar to

the technique used to win the Kaggle BCI challenge.
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For the deep-learning model, MCANN is compared against EEGNet [37], a CNN

architecture which performs comparably to state-of-the-art methods on a number of BCI

tasks. For a fair comparison and to study the effects of multimodal signals on existing

architectures, two versions of EEGNet are used. The EEGNet (UM) is a unimodal model

which is only trained on EEG data. EEGNet (MM) is a multimodal model where we

concatenate state information and non-scalp electrodes to the input.

2.5.2 Training and Setup

Training was conducted using a dropout of .25, the adam optimizer with an L2 weight

decay of 1e−8, and a learning rate of 1e−3. All hyperparameters were tuned on the

validation set of subject independent splitting and kept same throughout evaluation.

Early stopping was used during tuning.

Training and evaluation was conducted on a single AMD 2700X with a single NVidia

RTX 2070. We measure the performance of running a classification on the test set with

a mini-batch size of 1 to simulate how samples would be received during a real-time

scenario. Running a single end-to-end evaluation of a single sample takes 39 ms.

We examine the macro-averaged precision, recall and F1-scores of all algorithms.

Table 2.3 shows the classification results averaged across all physical activity conditions.

We compare all algorithms using both methods of pre-processing for two different data

collection parameters (1 Hz and 2 Hz).

2.5.3 Subject-Independent Evaluation

While xDAWN+RG provided the best performance in recall for one of the four condi-

tions, the MCANN model exhibited the best performance in F1-score and in all metrics

for all other conditions. In this study, our overall F1-score for subject-independent clas-
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1Hz-Bike 1Hz-Bike-Filtered

Method R P F1 R P F1

xDAWN+RG 74.16 54.40 62.76 70.52 52.32 60.07
EEGNet (UM) 64.98 55.99 60.16 68.18 58.29 62.85
EEGNet (MM) 64.98 57.86 61.21 71.72 57.42 63.78
MCANN (Ours) 69.62 61.92 65.55 75.33 62.31 68.20

(a) 1Hz sampling results.

2Hz-Bike 2Hz-Bike-Filtered

Method R P F1 R P F1

xDAWN+RG 64.7 46.93 54.40 67.59 49.33 57.03
EEGNet (UM) 58.82 48.63 53.24 66.94 52.00 58.53
EEGNet (MM) 62.04 50.59 55.73 67.70 54.33 60.28
MCANN (Ours) 67.09 56.33 61.24 71.92 58.27 64.38

(b) 2Hz sampling results.

Table 2.3: Summary results for all conditions under subject independent splitting.
Average percentage metrics for (R)ecall, (P)recision, and (F1) score reported. Bold
signifies best performance.

sification improved 6.28 points or approximately 10% in performance.

Figure 2.7 provides a confusion matrix for the 1Hz-Bike-Filtered condition. Pre-

cision and recall values for recognizing the distractor signal improved with MCANN for

the high-intensity exercise condition. Additionally, the decrease in performance between

resting and high-intensity exercise (higher noise) for target recognition is noted in this and

other experiments. For the four cases we analyzed, the true positive rate for distractors

showed the greatest increase.

Noise Robustness

We study the effects of noise on algorithms by changing the sampling and filtering

parameters. Our dataset contains noise both within the known ERP frequency (1-40hz)

and outside. Future applications of algorithms to EEG might make use of these additional
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data ranges, potentially preventing the bulk filtering of large frequency bands.

All algorithms (with the exception of the 1 Hz case for xDAWN+RG) typically demon-

strated approximately 3% increase in performance metrics over unfiltered data (Table

2.3). However, when given noisy data, MCANN scores higher on the overall F1-score

than other methods under filtered conditions. This suggests MCANN has high tolerance

to noise.

Effect of Exercise Intensity

All algorithms for all evaluated conditions and preprocessing methods experienced a

drop in performance from resting to low- or high- intensity activity. Figure 2.7 provides

an example comparison for the user context versus performance. While MCANN also

experiences a drop in performance, it more than doubles the precision for prediction of

the distractor in the 1Hz-Bike-Filtered scenario.

Table 2.4 examines the algorithmic performance over the three conditions. We see that

our model and EEGNet (MM) demonstrate an improvement in performance, especially

in the high-intensity exercise (higher noise) condition. Our algorithms produced a greater

increase in performance under noisy conditions over previous state-of-the-art classifiers,

indicating an improved tolerance to noise. EEGNet (MM) also showed improvements

over it’s UM variant.

Effect of Multimodality

There is some evidence to suggest that the addition of multimodal information can

improve classification performance. When comparing the EEGNet (UM) model to EEG-

Net (MM) performance, we see on average a 1.5 point improvement in F1 score in

Table 2.3. Our proposed method, which also uses the additional modalities performs

best on precision and recall scores and leads to an average 6 point improvement in F1
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User Context Resting Low High

Precision

xDAWN+RG 52.65 43.7 44.46
EEGNet (UM) 49.89 (-5%) 49.44 (+13%) 46.55 (+5%)
EEGNet (MM) 52.08 (-1%) 49.22 (+13%) 50.47 (+14%)
MCANN (Ours) 59.93 (+14%) 54.75 (+25%) 54.34(+22%)

Recall

xDAWN+RG 70.67 60.75 59.43
EEGNet (UM) 64.73 (-8%) 60.35(-1%) 53.12 (-11%)
EEGNet (MM) 68.21 (-3%) 59.62(-2%) 59.54 (+0%)
MCANN (Ours) 69.8 (-1%) 67.8 (+12%) 63.38 (+7%)

Table 2.4: 2Hz-Bike, subject independent condition with percentage difference from
xDAWN+RG.

over EEGNet (UM).

Looking at the confusion matrix in Figure 2.7, we see that EEGNet (UM) target pre-

diction true positives drops by 10 percentage points between the resting and high-intensity

exercise conditions. However, for our multimodal approach, we maintain reasonable per-

formance for target predictions and only drop by about 2 points. This suggests that the

extra modalities may enhance target signal detection.

2.5.4 Cross-Subject Evaluation

Cross subject evaluation is conducted on the best overall algorithm performance case

(1Hz-Bike-Filtered) and the worst overall algorithmic performance case (2 Hz-Bike) from

subject-independent evaluation.

A two-sample t-test assuming equal variances is used. We report p-values and ef-

fect size using Cohen’s d. Our method performs significantly better on metrics against

xDAWN+RG, the traditional approach, with greater accuracy (p=0.005, d=1.28), pre-

cision (p=0.008, d=1.19), recall (p=0.031, d=0.94), and F1-score (p=0.006, d=1.25).

When compared to EEGNet (UM), our model performs better on accuracy (p=0.014,
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Method Resting Low High

Precision

xDAWN+RG 49.44 ± 1.34 46.95 ± 1.24 46.08 ± 1.02
EEGNet (UM) 52.01 ± 1.26 51.34 ± 1.16 48.34 ± 1.17
EEGNet (MM) 52.42 ± 1.37 51.81 ± 1.23 48.51 ± 1.29
MCANN (Ours) 56.01 ± 1.85 54.65 ± 1.65 49.33 ± 1.56

Recall

xDAWN+RG 68.52 ± 1.86 63.71 ± 2.04 59.31 ± 1.96
EEGNet (UM) 68.38 ± 1.42 61.78 ± 1.36 56.18 ± 1.81
EEGNet (MM) 68.35 ± 1.16 62.46 ± 1.56 56.41 ± 1.79
MCANN (Ours) 72.02 ± .89 68.52 ± 1.41 62.29 ± 1.41

Table 2.5: Cross subject evaluation on the 1Hz-Bike-Filtered condition. ± standard
error is reported.

d=1.09), recall (p=0.002, d=1.44), and F1-score (p=0.032, d=0.93). We did not find

any significant difference for precision. Likewise, when compared to EEGNet (MM), we

perform significantly better on accuracy (p=0.027, d=0.97), recall (p=0.005, d=1.26),

and F1-score (p=0.05, d=0.85), but there were no significant differences on the precision

metric.

Additional significance tests were computed to compare across biking condition.

When comparing to EEGNet (UM) we see significant increases for metrics on accu-

racy (p=0.013, d=1.10), recall (p=0.003, d=1.34), and F1 (p=0.028, d=0.96) for the low

condition. For the high activity condition when compared to EEGNet (UM) we perform

significantly better on accruacy (p=0.021, d=1.01) and recall (p=0.021, d=1.02). No

other significant differences were found when compared to EEGNet (UM). Under resting

conditions, no significant difference was found between EEGNet (UM) and our model.

Similar tests are conducted between MCANN and xDAWN+RG. We generally see

significantly better performance on almost all metrics for our model. On the high in-

tensity condition, we see accuracy (p<0.005, d=.64), precision (p<0.005, d=.70), recall

(p<0.005, d=.49), and F1-Score (p<0.005, d=.68). In the low condition, we see improve-
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Figure 2.4: 1Hz-Bike-Filtered performance measures for each algorithm: Accuracy,
Recall, Precision, and F1-metric. Error bars show standard error. Brackets indicate
p-value significance groups from paired t-tests.

ments in accuracy (p<0.005, d=1.6), precision (p<0.005, d=1.4), and F1-Score (p<0.005,

d=1.4). In the resting condition, we found significant improvements in accuracy

(p=0.004, d=1.32), precision (p=0.01, d=1.16), and F1-score (p=0.007, d=1.22). Both

tests of significance on EEGNet(UM) and xDAWN+RG indicate MCANN’s stronger

tolerance to noise.

When looking at the worst case scenario with the 2Hz-Bike dataset, we did not find

any significant differences among any of the methods. We believe that, due to the minimal

amount of processing and higher presentation frequency, the 2Hz-Bike dataset has a very

large amount of individual subject variance outside the traditional 1-40Hz range, making

it difficult for any model to generalize to new subjects. Some of these differences may

be due to differences in individual motion patterns such as riding posture and cadence.

These factors introduce unique noise patterns that compound the already challenging

task of performing classification across users. These results highlight the need for more

robust multimodal sensors to be used in conjunction with EEG sensors. We intend to

investigate these inter-user differences in future research.
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2.6 An example application

To demonstrate how ERPs can be incorporated into a real-world use case, we provide

a demonstration for how it can be used for VR/AR authentication. As VR/AR headsets

become pervasive, alternative methods for fast, secure, and non-intrusive authentication

systems such as face and fingerprint recognition on modern mobile devices must be con-

sidered. This is especially important as private information stored in these headsets,

such as eye and facial movement as well as financial and geo-tracking information, is an

important security risk.

A potential answer to this problem lies in the use of Brain-Computer Interface (BCI)

technology. BCIs enable interaction with computing devices via electroencephalogram

(EEG) information with applications in education, marketing, security, medicine, and

entertainment [55, 56]. Head-mounted devices such as VR/AR headsets offer a natural,

non-intrusive way for widespread deployment of this technology. However, the generaliz-

ability of BCI algorithms across the EEG data of users is a major challenge. What if we

take advantage of these inter-user differences for biometric authentication? Additionally,

can we make authentication more accurate using additional modalities/biometrics from

head-mounted devices?

Due to its morphological, anatomical, and functional plasticity, EEG based biometrics

have been found to have potential discriminating capability [57] enabling it to be a

reliable, convenient and universal biometric [58]. As a behavioral biometric, EEG signals

are harder to imitate compared to physiological biometrics such as face and iris due to

their temporal variations [59]. Another non-intrusive behavioral biometric, eye tracking,

which is commonly used in VR/AR headsets, depends on the subtly different reactions

of the eyes to stimuli [60] and can thus be easily applied to such systems.

Combinations of biometrics/modalities such as EEG and face [61], EEG and ECG
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AUC 99%

Accuracy 98%

EEG EER 3.4%

FRR 8.4%

FAR 1.8%

Table 2.6: Results for EEG Authentication: Note that this system is very accurate
and the low FAR and FRR values are very valuable in a biometric security system.

Accuracy 79%

Eye Log Loss 0.82

Tracking FRR 36.7%

FAR 7.4%

Table 2.7: Results for Eye Tracking Authentication: Note that the FAR is low but the
FRR is high indicating the high rejection of subjects from the system.

[62], and Eye Tracking and facial recognition [63] have been shown to achieve high levels

of accuracy through multimodal fusion in biometric authentication. The authors did

not find previous works combining EEG and eye tracking for the particular use case of

biometric authentication.

2.7 Evaluating a Multimodal Authentication Scheme

The proposed method consists of three major steps: EEG authentication, Eye Track-

ing authentication, and Multimodal Fusion.

2.7.1 EEG Authentication

Task and Dataset: The EEG data used for processing were ERPs generated in a

motor imagery task [64, 65, 66]. The left and right fist movements from the EEG Motor

Movement/Imagery (EEG MMI) dataset from the Physionet bank [67, 68] were chosen
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due to the simplicity of such motions in a potential practical application of such a system

and the abundant use of such tasks in BCIs.

Preprocessing: The EEG signals are epoched and preprocessed using the MNE

package [69]. Each individual epoch was band-pass filtered using a Finite Impulse Re-

sponse windowed filter between 0.5 Hz to 42 Hz and normalized to zero mean and z-scores

from zero.

Classification: The unnormalized cross-correlation is used to measure the similarity

between two signals and is applied in a template matching procedure between the 64

electrode signal pairs from the samples being compared. The maximal value of the cross-

correlation is used to create a 64 × 1 feature vector. Support Vector Machines (SVM)

with linear and radial basis function (RBF) kernels are applied to this feature vector.

2.7.2 Eye Tracking Authentication

Task and Dataset: The dataset A of the EMVIC 2012 competition, containing

positional data of the eye fixations across time, was utilized [70]. The dataset contains

eye tracking data from a “jumping dot stimulus” task. Samples were disproportionately

grouped towards certain subjects. To reduce dataset bias, we pool subjects with fewer

than 40 samples into a separate group called the “unauthorized users group”. This pro-

cedure has the positive side effect of allowing for more variety and fewer samples per

subject for unauthorized users which better reflects real-world conditions.

Classification: A random forest classifier with 100 trees was trained on feature

vectors composed of the concatenated eye-tracking signals. The model predicts an array

of posterior probabilities that the given sample belongs to each of the possible labels

consisting of n = 5 authorized users and the unauthorized group (totally n+ 1 = 6 bins).
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Models FAR FRR

SVM Fusion 23.6% 29.2%

Weighted Mean (Eye tracking + EEG) 60.5% 23.6%

EEG only 42.1% 27.8%

Table 2.8: Comparison of fusion methods and EEG baseline in cases of low confidence

2.7.3 Multimodal Fusion

Each subject in the EMVIC dataset was matched to a participant in the EEG MMI

dataset to create a fused dataset of hypothetical subjects with Motor imagery and Eye

Tracking data. We thus have 5 authorized subjects and 32 unauthorized subjects in our

newly composed dataset. We conduct match-score level fusion as it preserves adequate

discriminating information and is modular in its execution. Here, two fusion methods

have been implemented: weighted mean and fusion by SVM with linear kernels, each

providing a normalized match-score from the individual predictions.

Weighted Mean: A weighted linear combination of the EEG and eye tracking scores

gives a normalized match-score by the following formula:

z = αu+ (1− α)v (2.4)

where u, v are the scores of the individual modalities and α is a parameter tuned on the

training set.

SVM: An SVM with a linear kernel is applied to the predicted EEG score and the

eye tracking distribution to obtain the fused score.
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Figure 2.5: Analysis of positive samples. Normalized match scores are presented for
each type of input. Higher scores indicate that the model is predicting a match with
high confidence while lower scores indicate that the model is predicting a mismatch
with high confidence. Values between 0.2 and 0.8 are considered low-confidence predic-
tions with .5 being a neutral prediction. SVM fusion performs the best overall, however
it is more likely to give a negative prediction when the expected label is positive.

2.8 Results and Discussion

2.8.1 Individual Modalities:

The results for the individual modalities are provided in Table 2.6 and Table 2.7. We

tested the EEG system using an 80:20 train-test split. We report only the metrics of

the linear kernel SVM due to its significantly better performance compared to the RBF

kernel SVM. For the Eye Tracking system, we assume the label with maximum score in

the distribution as the match-score. An 80:20 train-test split was applied and the various

metrics for the 6 way classification are described.

2.8.2 Multimodal Evaluation

We did not observe appreciable improvement in ROC curves, EER values, and AUC

values when using the fusion system versus the EEG system. In fact, the weighted average

method performed worse compared to the EEG baseline and the SVM fusion method

provided marginal improvements. We try to understand this by examining the confidence
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Figure 2.6: Analysis of negative samples. Normalized match scores are presented for
each type of input. Higher scores indicate that the model is predicting a match with
high confidence while lower scores indicate that the model is predicting a mismatch
with high confidence. Values between 0.2 and 0.8 are considered low-confidence pre-
dictions with .5 being a neutral prediction. SVM fusion also appear to perform the
best when negative predictions are expected.

of the predictions. From the median match-score of the SVM fusion method in positive

and negative ground truths (Figure 2.6, Figure 2.5), the system shows higher confidence

towards the correct label. However, when examining low confidence predictions of the

EEG system (0.2 to 0.8), SVM fusion is more likely to give a negative prediction. This

results in the FAR values being significantly lower for the SVM Fusion as compared to

other methods without the FRR being affected as can be seen in Table 2.8. Here, we

see eye tracking providing a benefit when EEG confidences are low without affecting the

values of high confidence.

2.9 Conclusion

In this chapter we presented a challenging dataset for developing BCI classification

algorithms. We provided a novel method for classifying EEG signals under conditions

that varied dramatically with regard to noise. We observed significant improvements

in our test set during cross-subject evaluation when compared to previous state-of-the-
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art techniques. Additionally, our new algorithm is capable of incorporating additional

modalities for improved classification of brain data. We additionally provide a feasibility

study towards using EEG and eye tracking for multimodal biometric authentication.

Future work will include (1) the application of our classifier to online BCI scenarios that

involve motion, such as navigation of real-life or virtual environments, and (2) testing

classifier performance during other types of physical activity that may involve more

extreme head and body movements.
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Figure 2.7: Detailed breakdown of performance for the 1Hz-Bike-Filtered, subject-in-
dependent condition.
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Chapter 3

Fusing Multimodal Data with

Computation Constraints

Parts of this chapter are in preparation with collaborators for the Winter Conference on

Applications in Computer Vision 2023

This chapter looks at how we can reduce the computational complexity of multimodal

machine learning algorithms. Because we would like these models to work in a real-time

environment, high-powered computing devices may not be always available. We perform

the experiments in this chapter with this purpose in mind and try to examine ways in

which we can improve model performance while minimizing computational cost.

3.1 Motivation

Processing multiple data streams increases computational cost, and it is therefore

a high priority to develop efficient algorithms in the multimodal domain. Additionally,

many multimodal applications, such as the detection of instances of domestic abuse,

or detection of prolonged emotional and psychological struggles, are particularly well-
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suited for mobile or low-resource devices. In these resource-constrained settings, the

computation cost and memory footprint become critical factors that must be considered

for practical use.

Current multimodal algorithms involve some level of modality-independent feature

processing followed by a fusion process which then jointly models the dependencies

and cross-dependencies between the modalities. In particular, deep-learning transformer

models have been used in this way to achieve state-of-the-art performance on numer-

ous tasks [71, 72]. However training and processing such data remains prohibitively

expensive in many cases, in terms of time, computational resources, and energy con-

sumption. For example, a single layer of a vision transformer [73] requires approximately

1.35 billion floating-point operations (GFlops) for a 224 × 224 image for a single for-

ward pass. If we represent a sequence of 30 frames in a similar manner for video data,

this explodes to 88.24 GFlops. Although recent advancements have been made to spar-

sify transformers, these efforts have primarily approached the problem from a unimodal

perspective [74, 75, 76, 77, 78].

Motivated by these concerns, we propose a sparse fusion method for multimodal

transformers called Sparse Fusion Transformers (SFTs) that drastically reduces training

time and memory consumption while maintaining the quality of existing fusion meth-

ods. Our approach is based on the hypothesis that the large amount of complementary

information across different modalities allows us to sparsify unimodal information prior

to multimodal fusion without the loss of accuracy. In particular, approaching a problem

from a multimodal perspective enables us to sparsify the unimodal information far more

aggressively. With our sparse-fusion method, we achieve faster performance with less

memory use while attending to features that are most important.

Our proposed fusion process is agnostic to input modality and makes a full multimodal

classification network robust to sparsification of input representations. It is composed
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of three parts: a block-sparse within-modality attention to learn strong local represen-

tations, a pooling method for extracting them, and dense self-attention for cross-modal

feature fusion. Furthermore, we propose to use a customized mixup to apply spatio-

temporal regularization to the learned representations in a modality agnostic manner.

Fusing features in this way demonstrates comparable or better performance than exist-

ing methods while requiring significantly less computation and memory. In summary,

our contributions are:

• We propose a novel fusion method that maintains or exceeds the performance of

previous fusion methods while demonstrating up to a six-fold reduction in compu-

tation and memory requirements.

• We demonstrate that multimodal algorithms can tolerate far more token reduction

than unimodal algorithms due to complementary cross-modal information. We

show that by accounting for multimodal information during sparsification, more

information can be removed without loss of performance.

• We perform extensive ablation studies on fusion components using real-world

datasets to determine the efficacy of each model component. We further exper-

iment with multiple pooling methods to demonstrate model robustness under dif-

ferent pooling requirements.

3.2 Related Work

The problem of modality fusion has been explored in numerous problem spaces for

a long time [79]. The primary challenge is to find an effective way to combine represen-

tations of data from disparate modalities into a single representation for more accurate

modeling. While the first methods for multimodal fusion were proposed to address signal
38



Fusing Multimodal Data with Computation Constraints Chapter 3

inadequacies in individual modalities [80], we are now at a time when the resolution in

each modality is much higher, making some computation costly and intractable. There-

fore, we wish to purposely trade off some of the signal bandwidth to improve performance.

Many methods have been proposed to tackle the task of fusion. A way to categorize all

these techniques is by the time of fusion occurrence. Early fusion typically refers to com-

bining base level representations or even input values, while late fusion primarily refers to

its application near the output. Early deep-learning methods typically make use of linear

layers and cross products to combine modalities [81, 82, 83]. More rudimentary forms

of fusion simply involve adding the logits of individual modality predictions together.

As transformer-based architectures have become very popular recently, some recent tech-

niques have also explored their use in multimodal settings. Originally proposed in [84] for

neural machine translation (NMT) tasks, they have demonstrated superior performance

on multiple benchmark problems such as image classification [73], action recognition [72]

and 3D reconstruction [85, 86]. The basic functionality is to apply layers of self-attention,

on sequential representations. To classify a discrete output, transformers typically rely

on the use of a special token (CLS) that is prepended to the sequence for classification.

The most natural form of transformer fusion is simply to concatenate the sequence

of tokens and rely on self-attention to learn their inter-dependencies. Works such as

[87, 88] that do this learn better cross-modal representations and have shown benefits

relative to naive fusion methods. Very recently, multimodal bottleneck transformers [72]

have demonstrated a way for early fusion to occur without the use of costly cross-modal

operations. However, the process of fusing multimodal information with some form of

concatenation and dense attention remains costly due to the O(N2) complexity of trans-

formers for input sequences of length N . It is this cost we seek to address with our

sparsification approach.

Recent efforts have focused on reducing computational complexity for transformers
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and large-scale deep learning [89, 90, 91, 74]. An effective method for this is to exploit the

representation of features within a small sliding window of tokens [92] on a long sequence.

However, these methods require significant engineering efforts and are hard to train [93].

Other works approach the problem via sparsification of the attention mechanism, such

as random or local attention [94, 95, 96]. Sparsification methods have also been applied

successfully for some computer vision tasks [77].

Training optimizations for transformers have also been explored. Regularization tech-

niques such as dropout [97], weight decay [98], and mixup [99] have all been applied.

While weight decay and dropout can be applied in a modality-agnostic manner directly

onto the weights, the use of mixup has primarily been used to tackle problems in the

vision domain, as its application is easily interpretable and offers large benefits to the

algorithms [100, 101]. Although some recent efforts have been made to enable the ap-

plication of mixup on domains in a modality agnostic manner [102], its application in

a fundamentally multimodal domain remains under-explored. Its use in the mixing of

fused features across modalities spatially and across time demonstrates large benefits for

our application.

3.3 Method

In this section, we describe our proposed Sparse Fusion Transformers (SFT). See

Fig. 3.1 for a visualization of our algorithm. As input, our method takes token sets

from M different modalities, Z1, . . . ,ZM , with each modality consisting of N tokens of

dimension D, Zi = [zi1, . . . , ziN ] ∈ RN×D. Note the number of tokens N can vary from

modality to modality but for simplicity of notation, we keep it fixed in our description.

Additionally, if the token dimension D varies from modality to modality, we apply a per-

token projection to keep the token dimension constant across all modalities. Following
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Figure 3.1: Visualization of our fusion method with two modalities. Following existing
work, a special CLS token is appended to each unimodal token set prior to unimodal
transformers. After unimodal transformers, the CLS token (cL1 and cL2 ) from each
modality is summed. A pooled block-sparse attention is applied to local regions of
each modality. The CLS token and pooled representations are then combined, and
dense self-attention is applied to model global and cross-modal dependencies.

existing work, we prepend a special CLS token c with learnable parameters to each token

set for each modality for the purpose of classification: Ẑi = [ci|Zi] = [ci, zi1, . . . , ziN ] ∈

R(N+1)×D. The goal of our method is classification, i.e., we want to learn a function

fθ : RM×(N+1)×D → RC :

fθ(Ẑ1, . . . , ẐM) = p, (3.1)

such that p is the probability distribution over C classes.

Our method consists of three main parts. First, we model relationships between

tokens within modalities using a standard transformer that is applied unimodally

(Sec. 3.3.1). Second, we aggregate information within local regions of each sequence

using block-sparse attention and then apply local subsequence pooling to sparsify the to-
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ken set for each modality (Sec. 3.3.2). Third, we concatenate the sparsified features from

each modality and run dense self-attention to predict a final class (Sec. 3.3.3). During

training, we apply a novel multimodal variation of manifold mixup [102] for regularization

of intermediate latent representations (Sec. 3.3.4).

3.3.1 Unimodal Modeling

In this stage, we apply a separate transformer to the token set from each modality.

Following Vaswani et al. [84], we use a standard L-layer transformer encoder to model

relationships between tokens in each modality. Each layer of the encoder consists of layer

normalization (LN), Multi-head Self-Attention (MSA), and a Multi-Layer Perceptron

(MLP). Given token set Ẑl after l transformer layers, the output of layer l + 1 is:

Yl = MSA(LN(Ẑl)) + Ẑl (3.2)

Ẑl+1 = MLP(LN(Yl)) + Yl (3.3)

We apply a separate L-layer transformer per modality to get token sets ẐL1 , . . . , ẐLM .

3.3.2 Sparse Multimodal Fusion

In this stage, we apply local pooling blocks to each token set ZLi to extract k descrip-

tive tokens per modality Z̃i = [z̃i1, . . . , z̃ik] ∈ Rk×D, as represented by the “Sparsify”

blocks in Fig. 3.1. As shown in our experiments in Sec. 3.5.3, information is quite redun-

dant within and across each modality, and we hypothesize simple sub-sequence pooling

to be a cheap and effective method for capturing important information while remov-

ing redundancies. Prior to pooling, we first apply a single bi-directional strided sparse

attention layer [103] to enforce aggregation of dense local context and sparse global con-
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text to every token in the sequence to each modality. We then apply non-overlapping

per-channel pooling blocks of stride s for each token set:

z̃ij = pool
(
zLi(js+1), . . . , z

L
i(js+s)

)
. (3.4)

A natural choice for pooling is either per-channel max pool or average pool. We explored

several options in ablation studies and found our method to be robust to the choice of

pooling (see Table 3.4). However, for our main experiments we use average pooling.

We additionally form a multimodal classification token c̃ by summing the unimodal

classification tokens:

c̃ =
M∑
i=1

cLi (3.5)

The final, fused token set F is formed using this classification token and the union of the

unimodal pooled token sets Z̃1, . . . , Z̃M :

F = [c̃, z̃11, . . . , z̃Mk] (3.6)

3.3.3 Dense Cross-modal Modeling and Prediction

To model cross-modal relationships, we apply a dense, T -layer transformer on the

token set F. Note the tokens of F are aggregated from all modalities. We adopt the

same architecture used in the unimodal modeling task, denoting the token set after t

transformer layers as Ft, with the final output denoted FT = [c̃T , z̃T11, . . . , z̃
T
Mk]. Finally,

a small MLP followed by softmax is applied to c̃T to produce a C-way class prediction

p.
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3.3.4 Multimodal Manifold Mixup

We apply a novel variation of manifold mixup [102] for improved generalization. In

the originally proposed mixup [99], given two random training inputs xi and xj, their cor-

responding ground-truth labels yi, yj, and an interpolation weight λ ∈ [0, 1], a classifier

is trained using the following virtual training examples:

x̃ = λxi + (1− λ)xj (3.7)

ỹ = λyi + (1− λ)yj (3.8)

Generally, the interpolation term λ is sampled from a Beta distribution Beta(α, α), where

α is a hyperparameter. Manifold mixup extends this by also selecting a random layer l

in an L layer network f and interpolating the latent representations vli,vlj of that layer

instead of the input example:

ṽl = λvli + (1− λ)vlj (3.9)

Layers l+ 1, . . . , L of f are then applied to ṽl and the output is supervised using Eq. 3.8.

Manifold mixup has been shown to be more effective for regularization than input mixup.

We extend manifold mixup to the multimodal case for use with our model. Given our

(L+ T )-layer network, with the first L layers involving separate, unimodal transformers

and the last T layers involving a single, multimodal transformer, we sample a single layer

l ∈ [1, L + T ] for manifold mixup. If l > L, we use standard manifold mixup using

Eqs. 3.8 and 3.9. If l ≤ L, we sample a different interpolation term for each of the M

modalities, λ1, . . . , λM ∼ Beta(α, α). Given latent representation vlmi,v
l
mj of layer l for
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modality m, the new latent representation is given as:

ṽlm = λmv
l
mi + (1− λm)vlmj (3.10)

This is applied to every latent representation of layer l for every modality 1, . . . ,M . After

running the remaining L+ T − l layers, the output of the network is supervised using:

ỹ = λ∗yi + (1− λ∗)yj (3.11)

where λ∗ is the average of the M sampled λ values.

3.4 Experimental Setup

We now describe the datasets used for training and evaluation (Sec. 3.4.1),

dataset pre-processing (Sec. 3.4.2), baseline network architectures used for comparison

(Sec. 3.4.3), and training hyper-parameters we used (Sec. 3.4.4).

3.4.1 Datasets

We perform extensive experiments on two benchmark multimodal datasets: VGG-

Sound [104] and CMU-MOSEI [105] The datasets tackle popular and broadly applicable

tasks in multimodal machine learning for audio-visual classification and multimodal sen-

timent classification. The modalities evaluated include video, audio, and text data. Addi-

tionally, these datasets have differences in modality characteristics such as cross-modality

alignment and information content.
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VGG-Sound

VGG-Sound [104] consists of over 200,000 YouTube videos and their associated audio

streams, each annotated with one of over 310 class labels. The audio spans a large range

of challenging acoustic environments and noise characteristics of real applications. All

videos are captured “in the wild.” There are clear audio-visual correspondences, i.e., the

sound source is visually evident. Each segment is 10 seconds long. To aid in evaluation,

we select two subsets of data from VGG-Sound containing 10 classes and 100 classes each.

We call these VGGS10 and VGGS100, respectively. We select VGGS10 by choosing pairs

of easily confused classes, such as “baby babbling” and “baby laughing”. We then build

VGGS100 using these ten classes and additionally include 90 randomly chosen classes.

The total training and testing set sizes for VGGS10 are 6,051 and 459. For VGGS100,

the training set size is 66,180 and the test set size is 4,549. A validation set is extracted

by taking 20 percent of the training set.

We summarize the classes we used in VGGS10 and provide the label distributions in

VGGS10 and VGGS100. VGGS10 is a manually curated dataset built by selecting pairs

of difficult to separate classes from the full VGGSound dataset as well as for differences

between video and audio modalities. We chose the following ten classes: airplane, baby

babbling, baby crying, baby laughter, cat meowing, cat purring, people marching, people

running, playing bass guitar, playing electric guitar. The final training set distribution

for VS10 in Fig. 3.2, and the final VGGS100 dataset distributions are show in Fig. 3.3.

CMU-MOSEI

The CMU Multimodal Opinion Sentiment and Emotion Intensity (CMU-MOSEI)

[105] dataset is one of the largest multimodal sentiment analysis and emotion recognition

datasets to date. The dataset contains more than 23,500 sentence utterance videos from
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Figure 3.2: Distribution of samples in the VGGS10 dataset by class.
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Figure 3.3: Distribution of samples in the VGGS100 dataset by class.

more than 1000 online YouTube speakers. The dataset is gender-balanced. All utterances

are randomly chosen from various topics and monologue videos. The task is to predict a

7-class sentiment score of a particular multimodal video sample. Each sample contains

audio, video, and text modalities. This dataset is frequently used to explore the unaligned

nature of multimodal sequences between text and video.
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3.4.2 Pre-processing

Each modality is pre-processed with a feature extraction pipeline in order to generate

the input token sequence. For the MOSEI dataset, we use the pre-processed data provided

by the authors. The pre-processing pipeline that was used assumes that each video

depicts a “talking head”: a single human talking, whose face is visible and whose voice is

clearly audible. This assumption is valid for the MOSEI dataset, and the pre-processing

pipeline therefore extracts visual features such as facial landmark positions and audio

features such as estimated vocal parameters. We refer the reader to Zadeh et al. [105]

for the full details. To pre-process VGGSound, we employ a feature extraction pipeline

that can be applied to videos more generally, without assuming human faces or voices

are present.

For the VGGS10 and VGGS100 datasets, we extract visual features using I3D [106],

a spatio-temporal video feature extraction model that was pre-trained on the Kinetics

human action recognition dataset [106]. This is a two-stream model, which processes

optical flow and raw RGB independently as two separate modalities. We also extract

TV-L1 optical flow from the VGGSound videos. For Audio pre-processing we follow

Nagrani et al. [72]: we resample all audio at 16Hz and convert to mono, then compute

log mel spectrograms with 128 frequency bins, using a Hamming window with size 25ms

and stride 10ms.

3.4.3 Baseline Network Architectures

We compare against the following transformer-based fusion methods:

Self-Attention Fusion (Concat): A baseline method of fusion is to concatenate

the individual modality representations prior to input to any network and rely exclusively

on dense self-attention. This is a form of early fusion.
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Late Fusion (LF): This method works by applying transformer blocks on individual

modalities only. The final prediction is obtained via a summation of logits derived from

individual class tokens. This helps us compare the benefit of modeling cross-modal

interactions.

Multimodal Transformer (MulT): [87] MulT is a hybrid early-late attention-

based fusion method using a unique cross-modal attention mechanism. The data is

first fused via an attention mechanism by using one modality each for key, query, and

value. Transformer blocks are then stacked on top. At the very end, the features are

concatenated and a prediction is obtained after an FC layer.

Bottleneck Fusion (MBT): [72] This is a form of fusion in which special tokens

called bottleneck tokens are introduced. These tokens are shared among all modalities,

and transformers alternate operating on each modality independently. The final CLS

token is summed from each modality and used for prediction. We additionally evaluate

MBT using manifold mixup (MBT+MM) as the original paper used input mixup, and

our inputs are features.

3.4.4 Implementation details

Our model is implemented in PyTorch. For all experiments on the smaller datasets

VGGS10 and MOSEI we use a learning rate of 10−4. For the larger dataset VGGS100

we use a learning rate of 10−3. Learning rate is decayed by factor of 10 every 10 epochs

based on minimum validation loss. We use a batch size of 24 for all experiments. For

all datasets, we report results based on averaging performance training from 5 different

seeds for generalization purposes and to minimize tuning effects. We use a standard

12-layer network and 5 attention heads for all evaluations. We project embeddings from

each modality to 40 to minimize the effects of over-parameterization. For experiments
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involving latent mixup, we used a strength of α = 0.3. We use an initial warm-up of

5 epochs in which no mixup is applied. For all other experiments we applied dropout

p = 0.2 for regularization. For baselines, we follow descriptions in original papers and

publicly available code for comparison. All experiments were conducted on consumer-

grade graphics cards. We make our code and preprocessed data publicly available.

3.4.5 Metrics

We report results using commonly used metrics. Top1 represents the accuracy of the

most likely class. mAP represents the mean of per-class average precision scores. We

also report the computational cost in Giga floating-point operations (GFlops) which is

estimated similar to previous methods [77]. We present all flop estimates in the chapter

using the following equations. We primarily follow the flop estimation from [77] with

some minor changes due to layer differences. Each transformer layer consists of a multi-

head attention and multilayer perceptro block. A multi-head attention (MHA) block has

cost of:

φMHA = φqkv + φA + φO + φproj

= 3nd2 + n2d+ n2d+ nd2

= 4nd2 + 2n2d (3.12)

where n, d represent the length and embedding dimension, φqkv is the cost of projecting

to the query, key, and values. φA is the cost of the attention map, φO is the cost of the

self attention, and φproj is the cost of projection for self-attention outputs.
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A MLP block includes two linear layers as well as a normalization layer for a cost of:

φMLP = φproj1 + φnorm + φa + φproj2

= nd2 + 3nd+ nd+ nd2

= 2nd2 + 4nd (3.13)

where φproj1 and φproj2 are cost of projecting into and out of latent space for transformer

block, φnorm represents cost of applying layer normalization, and φa represents the cost

of an activation function.

Many experiments examine the effect of a reduction factor, which refers to reducing

the number of tokens in the sequence dimension for transformer architectures. We report

most results as a mean and standard deviation of experiments run with five different

seeds.

3.5 Results

We first report our results against state of the art (Sec. 3.5.1) showcasing our perfor-

mance on multiple datasets from different domains. We then perform a series of ablation

studies to explore the effects of sparsification (Sec. 3.5.2), and the benefits of address-

ing within-modality redundancies during fusion (Sec. 3.5.3). We also study the effect of

pooling choice (Sec. 3.5.4) and the effect of our proposed multimodal manifold mixup

(Sec. 3.5.5).

3.5.1 Comparison against state of the art

We present our summary benchmark performance on real-world datasets VGGS10,

VGGS100, and MOSEI in Tables 3.1 and 3.2. For each dataset, our model keeps a subset
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VGGS10 VGGS100 MOSEI

Top1 mAP Top1 mAP Top1 mAP

Concat 67.62± 1.3 71.46± .63 51.72± .26 51.64± .13 48.47± .23 32.40± .83
LF 67.10± .79 70.46± .79 52.00± .73 46.92± .28 49.10± .33 31.75± .78
MulT 65.49± .40 69.73± 1.1 51.35± .43 49.25± .43 49.36± .34 31.92± .79
MBT 66.84± .61 70.98± .78 51.67± .66 51.29± .37 49.12± .27 32.15± .47
MBT+MM 66.80± 1.8 70.56± .61 55.97± .42 57.29± .37 48.77± .37 32.03± 1.2
Ours 67.71± 1.3 71.06± .81 55.61± .61 57.18± .39 49.67± .23 33.66± .85

Table 3.1: Accuracy comparison for each dataset and model. For all benchmarks we
report the mean and standard deviation performance over 5 seeds to minimize tuning
effects. Bold indicates best, underline second best. We are either best or close to best
in all metrics.

of tokens from each modality during pruning. For VGGSound data after pooling we have

12 tokens of RGB and flow information and 20 tokens spectrogram data. For MOSEI, we

keep 10 tokens of visual and audio information and 25 tokens of text information. These

numbers were chosen according to experiments described in Sec. 3.5.3.

We maintain the performance of existing fusion methods and exceed them in some

situations while significantly reducing the amount of computation required. For MOSEI

we report more than a five-fold reduction in computational cost while achieving the best

performance in terms of both Top1 accuracy and mAP. For VGGS10 and VGGS100,

we observe approximately a six-fold reduction in computational cost. Our method also

exceeds the performance of multiple fusion methods on the VGGS100 dataset.

3.5.2 Effect of Sparsification

In this section, we explore the effect of how naively applying pooling can affect mul-

timodal models. In particular, we are interested in how pooling affects fused versus

modality-independent features. We answer this question by comparing the performance

of late fusion, concatenation fusion, and our fusion method. For concatenation fusion,

we concatenate all the input tokens prior to input into the model. From here, we apply
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Mem (GB) Eval (ms) Train (ms) GFlops

Concat 1.52 (3.16×) 3.59 (2.46×) 10.93 (2.56×) 1.68 (6.72×)
LF 1.35 (2.80×) 3.54 (2.42×) 12.32 (2.88×) 1.51 (6.04×)
MulT 1.18 (2.45×) 3.53 (2.41×) 16.73 (3.91×) 2.64 (10.56×)
MBT 1.35 (2.82×) 3.59 (2.45×) 12.02 (2.81×) 1.52 (6.08×)
Ours 0.48 1.46 4.27 0.25

(a) VGGS10/VGGS100 comparison

Mem (GB) Eval (ms) Train (ms) GFlops

Concat 1.04 (11.95×) 2.71 (2.39×) 8.02 (2.01×) 1.16 (11.60×)
LF 0.49 (5.66×) 2.00 (1.77×) 7.66 (1.92×) 0.59 (5.90×)
MulT 0.62 (7.10×) 2.84 (2.50×) 11.49 (2.88×) 1.03 (10.30×)
MBT 0.50 (5.72×) 2.14 (1.89×) 7.42 (1.86×) 0.59 (5.90×)
Ours 0.09 1.13 3.99 0.10

(b) MOSEI comparison

Table 3.2: Computational cost comparison for each dataset and model. For all metrics
we obtain results with a single RTX 3090. Metrics are normalized by the batch size.
Our method has the lowest cost. GFlops is estimated based on number of transformer
blocks and token operations and represents a theoretical cost for a single forward pass
through the network.

a single transformer block as if the number of modalities is M = 1. We then apply

max pool with a kernel and stride of 64. Afterwards, we apply eleven more transformer

layers to obtain the result. For late fusion and our method, we also apply pooling on

the representations after the first layer. However, the pooling is conducted on unimodal

representations. In late fusion, transformer layers are applied independently for each

modality and the final result is obtained via a summation of logits obtained from the CLS

token. In experiments described in Sec. 3.5.3, we observe a drop in performance for our

method with strides larger than 32 for some datasets and 128 for others, thus we assume

a stride of 64 will provide meaningful comparisons between fusion methods.

The results shown in Table 3.3 demonstrates that our method for sparsification is more

robust than naive methods. We see that in both naive methods of pooling, the reduction

in the sequence dimension causes a significant drop in performance. Our method does
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Token Reduction Factor

None 64× Diff.

Concat Top1 51.72± .26 46.29± .73 −5.45
mAP 51.64± .13 47.49± .63 −4.49

LF Top1 52.00± .73 49.76± .71 −2.24
mAP 46.92± .28 45.96± .62 −0.96

Ours Top1 55.57± .23 55.98± .28 +0.41
mAP 56.54± .49 56.91± .60 +0.37

Table 3.3: Comparison of our method for sparsification versus application of only
pooling in baseline methods on VGGS100. Diff column shows difference between no
reduction of tokens and taking 1/64ths of the tokens, where the minimum is one token
per modality. Our method is more robust than naive methods of pooling. Pooling
has a large effect when training with fused features (Concat) which we solve using
our method. Difference for the same reduction factors between Top1 and mAP shows
that late fusion (LF) tends to fit some samples better than others and suggests the
advantages of an early-fusion method.

not see any reduction, instead experiencing a small boost in performance. Furthermore,

we see that concatenation fusion tends to have a higher mAP metric, whereas late fusion

has a higher Top1. Overall, our method is robust, and pooling has no detrimental effect

even when removing over 98% of tokens.

3.5.3 Within-Modality Information Redundancy

We provide experiments to analyze why it is advantageous to address the within-

modality redundancy problem during fusion. In particular, we wish to show that pooling

when accounting for multimodal information is more robust than pooling without this

information. We set up the experiment so that a max-pooling layer is applied after

the first layer of transformers to simulate modality-independent feature sparsification for

each method. We then compare pruning by an equal factor for each modality to observe

the effect on overall performance, referred to as “sequence reduction factor.” We set the

minimum allowed sequence length to one to avoid removing all tokens. We compare
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VGGS10 VGGS100 MOSEI

Pooling Method Top1 mAP Top1 mAP Top1 mAP

Max 67.0 ± 1.1 70.7 ± 0.7 55.7 ± 0.4 57.3 ± 0.4 49.4 ± 0.2 33.2 ± 0.3
Average 67.7 ± 1.2 71.1 ± 0.7 55.6 ± 0.5 57.2 ± 0.3 49.7 ± 0.2 33.7 ± 0.9
Attn Average 67.5 ± 1.0 71.1 ± 0.7 55.4 ± 0.3 56.9 ± 0.4 49.4 ± 0.2 33.7 ± 0.8

Table 3.4: Comparison of pooling method on VGGS10, VGGS100, and MOSEI
datasets. Based on Top 1 accuracy and mean average precision metrics, we find our
method robust to pooling type.

against unimodal transformers for each modality. We also evaluate two versions of our

method: SFT which is our full pipeline, and SFT-PO which removes the strided sparse

attention layer and multimodal manifold mixup and includes only the strided pooling.

In the first column of Fig. 3.4, we present Top1 accuracy as a function of sequence

reduction factor. In the second column, we present the relative change in Top1 accuracy

when compared with no sequence reduction. Lower indicates a performance degrada-

tion from sequence reduction. Multimodal models exceed unimodal performance in all

reduction factors. We generally see a performance decrease for each unimodal model as

the reduction factor increases. However, some modalities do not decrease due to two

likely reasons: 1) from redundancies in information and 2) that all useful information

was extracted after just a single layer of transformers. We also see that some modali-

ties experience an increase in performance as we reduce the number of tokens, signifying

better feature extraction for those. However, in general, the performance of unimodal

models with less redundant information all decrease, while our model (SFT) is more ro-

bust. In particular, SFT is better than using just pooling (SFT-PO) as is evident from

it maintaining higher performance with greater reduction factors.

We see that up to a factor of 50 for evaluations conducted on MOSEI, there is very

minimal drop in performance in the multimodal model. However, the performance of the

text-only transformer drops observably larger than our multimodal model. The perfor-
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mance of the RGB and Audio transformers remains the same throughout the experiment.

This signifies two things: that the information for label present in the text classifier is

less redundant than in RGB and Audio features for this dataset, and that application of

sparse fusion can compensate for the loss of information necessary for classification by

exploiting the other modalities. The effect of unimodal models experiencing a decrease in

performance is also evident for the optical flow modality on the VGGS10 dataset at 8×

reduction, and at 64× reduction for spectrogram data. On VGGS100, we see the same,

where both the RGB and flow modalities experience decreases in performance with a

pruning factor of just 2× while our model’s performance remains relatively flat. Fur-

thermore, our multimodal model with one token per-modality after pruning still achieves

better performance than a unimodal model which uses all tokens.

These observations signify that certain modalities contain information that is more

redundant than others and that even if we filter out more than what a model with re-

dundant information is able to predict, the multimodal model is able to make up for

that. The same is not true for unimodal models, which cannot filter out unnecessary

information as well, and is not robust to this reduction. Even under extreme circum-

stances where information is reduced to the length of a single token, performance of the

multimodal degrades but still remains the overall top performer.

3.5.4 Effect of Pooling

In this section, we explore the effects of using various pooling choices in the network.

See Table 3.4 for results on the VGGS10, VGGS100, and MOSEI datasets. We use max

pooling, average pooling, and attention-weighted average pooling, denoted “Max,” “Aver-

age,” and “Attn Average” respectively. For attention-weighted averaging, we weight using

a simple, attention-based per-token significance metric proposed by Goyal et al. [107].
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mixup? Top1 mAP

X 55.61± .61 57.18± .39
× 51.30± .80 51.80± .44

Table 3.5: Comparison of model performance on VGGS100 when trained with and
without our multimodal manifold mixup.

Given the attention weights Wh ∈ RN×N calculated from layer L head h ∈ {1, . . . , H}

of the pre-fusion network, the significance (sig) for token i is:

sig(i) =
H∑
h=1

N∑
n=1

W h
in (3.14)

Interestingly, all metrics are within 1 percentage point of each other across the three

pooling types. This indicates our model is quite robust to the choice of pooling type.

Average pooling appears better, but this is well within the std. dev.

3.5.5 Effect of Multimodal Manifold Mixup

See Table 3.5 for results from SFT trained on VGGS100 with and without the use

of our multimodal manifold mixup during training. Without mixup, we observe over

a 4% reductin in Top1 and over a 5% reduction in mAP. This drop in performance is

quite significant, indicating the effectiveness of training with our proposed multimodal

manifold mixup.

3.6 Limitations

We provide an effective method for quickly ingesting and classifying large quantities

of multimodal sequential data with high levels of accuracy. However, we do not provide

evaluations on how this fusion method might behave as part of a generative network and
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we leave this for future work. Secondly, our methods operate on extracted features such

as I3D and spectrogram data. While we follow popular and common settings for feature

extraction, improved unimodal modeling might be able to condense the representations

and reduce within-modality redundancy. This would lead to slightly reduced complexity

benefits. However, the large differences between our results and unimodal approaches as

well as maintaining performance under extreme sparsification support our conclusions.

3.7 Conclusion

We present an effective technique that offers more than a five-fold reduction in com-

putational cost while maintaining the performance of state-of-the-art fusion techniques.

Different fusion methods exhibit improved performance under varying conditions when

all input conditions are equal. However, when optimizing for speed, there are drastic

improvements that can be made to feature selection during cross-modal modeling that

can improve performance.

Broader Impacts: We propose sparse fusion for multimodal transformers as a

method to reduce computational costs. This translates to energy savings and is beneficial

for numerous applications including on mobile devices. Namely, it has the potential to

train and fine-tune a network for use to a specific user without needing to offload the

training to a server. This preserves the privacy of the user while providing benefits of

performance and energy savings. Furthermore, we hope to spur democratization of learn-

ing on large datasets by enabling rapid development and evaluation on consumer-level

hardware. However, we hope that by enabling this technology on mobile devices it is not

applied to tasks such as unlawful surveillance.
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(a) Top 1 absolute score and relative change from
no pooling for VGGS10. Multimodal performance
degredation occurs after a 64-fold reduction in se-
quence length. Compared to flow at 4, and spec-
trogram at 64. We outperform all all methods at
all reduction levels. SFT exceeds the pooling only
variant (SFT-PO).
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(b) Top 1 metrics for VGGS100. SFT degrada-
tion occurs at 256-fold reduction compared to 64
for SFT-PO and 2 for Flow and RGB. Audio repre-
sentations might benefit from better feature extrac-
tion, however there is dramatic loss of performance
with very few tokens, while we remain tolerant.
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(c) Top 1 metrics for MOSEI. SFT degrades mini-
mally until max while SFT-PO degrades at 32. Text
modality degrades immediately. Information ap-
pears highly redundant in Audio-Visual modalities.

Figure 3.4: Comparison of reduction factor effect on performance difference against
no reduction for unimodal and multimodal models. Reduction in total length of fused
features reported in the x-axis. In cases where the reduction factor is greater than
sequence length of a particular modality, a single token along the sequence dimension
is passed through. Sequence lengths for VGGS10 and VGGS100 are 38 for RGB and
Flow, 1200 for Spectrogram. For MOSEI, Audio and Visual is 500 while text is 50.
Top1 absolute score and relative change from using no pruning is reported. For all
experiments we used a batch size of 24. Multimodal models will tolerate more pruning
over unimodal models by making up for the lost information through fusion. Notably,
SFT exceeds performance of SFT without sparse attention or mixup (SFT-PO) in all
cases and tolerates more reduction. Pooling offers some benefits for feature extraction
in some cases for longer sequences.
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Chapter 4

A Weakly Supervised Application to

Induced Affect Prediction

Parts of the contents of this chapter were published with collaborators at the International

Conference on Multimodal Interaction 2020.

We start our examination variability by exploring an application in Affective Comput-

ing. Affective Computing encapsulates many forms of human variability and is a natural

place to start. It uses computational techniques to model human psycho-physiological

states [108]. Researchers have tackled the recognition of these states uni- and multi-

modally. By recognizing these states, we can enable richer human-computer interaction

by encoding human state beyond what is explicitly expressed. Application opportuni-

ties are broad and include the ability to automatically determine user opinion, empower

individuals with better social cues, automated detection of misbehavior and many more.

Several high quality datasets have recently been developed to study this important

problem [12, 109, 110]. These recent works provide both categorical measures and also

incorporate continuous ratings of affect to capture subtle emotional differences. However,

creating such high quality datasets is very resource intensive.
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Figure 4.1: Example of comments for Youtube music videos. The left video has a
low arousal and high valence rating. The right video has a low arousal and low va-
lence rating. Corresponding comments from YouTube are shown below the figure and
demonstrate correlation with the affect contents of the video.

To alleviate this issue, we investigate whether we can use unlabeled public reactions

to aid in determining the affect of a corresponding video. Since many emotional reactions

are gathered in the lab by presenting a stimuli to induce an emotional response, then we

would expect some similar reactions in the wild. For example if the average rating by test

subjects in a lab for a particular video is 4 out of 5 for a happiness rating, then we should

expect similar reactions and statistical measures by people in the public. Furthermore,

we examine whether these responses can then be used to help determine the affect rating

of the video.

We study these questions by examining comments found in the wild of videos used

to induce emotions in a laboratory setting. We attempt to learn a language model

respective of the affect dimensions when given only the laboratory affect ratings of the

video. The learned language features are then incorporated into a multimodal affect

prediction model to determine video affect. Since each video has potentially millions of
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comments, designing an effective way to model this data can drastically reduce the video

annotation burden.

Mathematically, our problem can be construed as learning a language representation

over a mixture of Gaussians. We assume that each video occupies a region in affect

space, and elicits emotional responses according to its distribution (an expected value as

determined in a lab). We hypothesize that these emotional responses are reflected in the

comments posted to a video. We take each video rating to induce an emotional response

which can be used to “mold” the multiple comments associated with each video to region

occupied by the video. That is, when given a weak prior in the form of expectations to

video reactions, we would like to embed language in this affect space to fit its affective

properties.

To learn this, we define a custom variational objective, an approach with demon-

strated effectiveness in learning unsupervised sentence representations [111, 112]. By

taking advantage of the smooth distribution learned by a VAE as well as weakly su-

pervised information offered by the videos, we can mold the latent distribution of the

comments such that they conform closer to the defined affect dimensions.

In summary, we provide the following contributions:

1. We propose a novel problem for learning language representations from induced

affect in the wild when given weakly supervised signals.

2. We formalize the problem within the context of a Gaussian mixture and design an

effective optimization method.

3. We augment existing datasets with public reactions and make these augmentations

publicly available.

4. Experiments that indicate the potential to use induced signals in the wild for affect
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prediction tasks.

4.1 Related Work

Affect representation has primarily been studied in two ways: as a categorical

selection [113] or via dimensional representations such as the well known arousal-valence

model [114, 115]. The research field of sentiment analysis often focuses on measures

the valence dimension of affect: positive, negative or neutral [116]. We use the arousal-

valence model, which measures affect on two orthogonal dimensions: arousal (the level of

alertness/involvement) and valence (a pleasure-displeasure continuum) [114]. However,

it should be noted that whether the dimensions are truly orthogonal can be deemed

controversial [117].

Early works in affect computation primarily attempted to group people’s emotional

state into distinct categories. Over the years, researchers have expanded this capability

to include more continuous affect representations [110, 109], by capture emotional state in

addition to intensity which enable the modelling of modelling subtle difference. Multiple

recent works have attempted to learn improved multimodal representations of affect-

based data to improve downstream tasks such as video affect classification [118].

Emotion elicitation can by achieved by having subjects watch music videos [119,

12]. Visual [109] and audio stimuli [120] are among the most common modalities for

inducing emotions. There has also been an increasing interest in using data collected in

response to multimodal stimuli for the task of emotion recognition. Audio-visual stimuli

have been studied in the form of monologues [121], conversations [122], and music videos

[123]. The DEAP Database [12] contains records of EEG and peripheral physiological

signals of participants who watched selected music videos, as well as the participants’

self assessment of their emotional state after each trial. This has been used in emotion
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recognition and classification tasks [124, 125]. We use the arousal and valence values

that have been provided for each video in the database as weak signals to supervise the

learned representations in our model.

Language models seek to learn a representation and have been studied actively

[126] [127] [128]. More recently, work has been done on using additional modalities

in language modelling [129], incorporating symbolic knowledge into language models to

allow for generation of rare words [130], and learning generalized representations of data

for use in multiple language understanding tasks [131]. Frameworks to learn sentence

representations by unsupervised learning methods have also been widely studied, such

as asymmetric encoder-decoder structures [132], improvements to the VAE that learn

semantics better [133], and the use of discourse relations to learn accurate sentence

representations [134] [135]. Our approach, however, is to use a weakly supervised learning

method, to embed language with explainable dimensions.

Some techniques used for affect recognition tasks include transfer learning [136] [137],

attention modelling [138], and Tree-LSTMs [139]. Ghosh et al. [140] extend the LSTM

model for text generation in conversations, allowing for control of the emotional content

of the sentences generated. Another approach to controlling the emotion of generated

sentences assume that the emojis in Twitter messages indicate the emotion of the con-

versation, and accordingly generates responses with appropriate emotion [141]. Song et

al. [142] have explored affect-based text generation using not only explicitly emotional

words, but also neutral words which express an emotion when combined in a specific

pattern.

Traditional variational autoencoders (VAEs) usually incorporate a single Gaussian for

regularizing latent variables, and Gaussian for the output as well. The output of VAE

has been extended with mixture models and it has performed in unsupervised clustering

[143] where the clusters are modelled by GMM, and an uniform distribution to model
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major clusters and the remaining data [144]. Mixture models in the latent space for

semi-supervised learning in classification problems have also been adopted [145], where

different mixture components share parameters.

4.2 Problem Formulation

We formalize the problem as follows: We denote V as a given set of videos that have

been assigned an emotional rating, where a rating is a two-dimensional vector consisting

of valence and arousal scores. Our task is to learn a mapping of comments f : C → R2

such that µc := f(c) and µc reflects the true valence and arousal of the comments.

Each video has multiple ratings, and the mean µv ∈ R2 and variance Σv ∈ R2×2 of the

ratings are given. When the number of raters is large enough, we can reasonably assume

that all reactions towards a video v follows a normal distribution N (µv,Σv). Explicitly,

µv is the mean valence µ(1) and mean arousal score µ(2), while the covariance matrix Σv is

diagonal, since we assume that valence and arousal are two uncorrelated [114], orthogonal

criterion, i.e.,

µ = (µ(1), µ(2))
T ,

Σ =

σ(1) 0

0 σ(2)

 .

For simplicity, we use diag{σ(1), σ(2)} to denote covariance.

The set of comments is denoted by C and comments associated with the video v are

represented by Cv. Each video is given a rating µv which codes its effect on viewers.

We are interested in exploiting the potential emotional influence of the video on any

commenters. That is, the learned distribution of comments for a particular video should

occupy the region described by the mean and variance of the video. Intuitively, while
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there may be a few deviating comments, a large proportion of the comments Cv in a

video should agree roughly with the rating. Once we obtain the learned language model,

we can then use the average comment scores for affect as an indicator for video affect.

4.3 Learning an Affect Embedding

A variational autoencoder (VAE) is an unsupervised architecture with demonstrated

ability to produce quality representations of text [111]. They work by optimizing the

parameter θ and maximizing the probability of each c such that:

P (c) =

∫
Z
Pθ(c|z)Pθ(z)dz,

where z ∈ Z is a latent variable sampled by another function Q(z|c) in order to reproduce

c. VAEs are an extension of the standard autoencoder which imposes a prior distribution

on z. It assumes that samples of z can be first drawn from a standard Gaussian distribu-

tion p(z) ∼ N (0, I), where I is the identity matrix of the same column dimension with

z. This has been empirically shown to learn smooth regions and enable better continuity

in language representations. [111]

Hence we expect the distance between Qφ(z|c) and Pθ(z|c) to be small. Mathemati-

cally, the standard VAE objective can be defined as [146] :

Lθ;φ(c) = Eqφ(z|c)[log pθ(c|z)]−DKL(qφ(z|c)||p(z)) (4.1)

However, since the posterior distribution learned by the VAE is arbitrary, we cannot

guarantee that a representation is learned in the dimensions that we want. Here we

propose a simple tweak to use the valence and arousal ratings as a prior to shape the

distribution. As a result, the ratings of comments from a video can be modelled as a
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two-dimensional uncorrelated Gaussian distribution N (µp,Σp), where µp = (µ
(1)
p , µ

(2)
p ),

Σp = diag{σ(1)
p , σ

(2)
p }.

Giving us the following KL term instead of the KL term in equation 4.1 by the

property of a diagonal matrix:

DKL(Q||P ) =
1

2
(tr(log Σp)− tr(log Σq)− n

+ tr(Σ−1p Σq)

+ (µp − µq)TΣ−1p (µp − µq)),

where log Σp := diag{log σ
(1)
p , log σ

(2)
p }.

4.3.1 Centered VAE (C-VAE)

Since it is known that stronger stimuli tends to produce a stronger emotional response,

we introduce a second KL divergence term. To explain the reasoning, we introduce the

definition of uncertain response: a response without a specific appropriate stimulus class

[147]. Since stimuli with an uncertain response – close to the origin (0, 0) – do not provide

additional information regarding the prior, these videos should still contain comments

that can vary wildly depending on personal preference which could “cover” the latent

space.

Since the comments should match the center of the ratings with weight 1 − λ, we

construct the second KL term with the prior p(x) sampled from the distribution of the

entire dataset, i.e., for all v ∈ V . p(x) ∼ N (µx,Σx). For a total of N videos in V ,
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µx = 1
N

∑N
i=1 µi; and we compute σ(r)

x , r = 1, 2 as follows:

(σ(r)
x )2 = E[(x(r))2]− (µ(r)

x )2

≈ 1

N

N∑
i=1

E[(x
(r)
i )2]− (µ(r)

x )2

=
1

N

N∑
i=1

{(
µ
(r)
i

)2
+
(
σ
(r)
i

)2 − (µ(r)
x

)2}
.

Using this mean and variance, we can create our new term DKL

(
Q||N (µx, σX)

)
. We

use a λ term to weigh the potential variance in emotional responses based on its Euclidean

distance to the original. This gives us our final loss function:

Lθ;φ(c) = Eqφ(z|c)[log pθ(c|z)]

− λDKL

(
qφ(z|c)||p(z)

)
− (1− λ)DKL

(
Q||N (µx,Σx)

) (4.2)

4.3.2 Centered Gaussian Mixture VAE (CGM-VAE)

As it is a strong assumption that all comments to videos are normally distributed,

we propose to use a Gaussian mixture prior. This allows us to be more accurate with

respect to the center of the video ratings given by the prior p(z). We extend the work

of Hershey and Olsen [148] which demonstrates numerous ways to approximate the KL

divergence of Gaussian mixtures.

Recall that a Gaussian mixture consists of multiple Gaussian distributions and the

proportion of each mixture component which is represented as a latent variable that

yields the multinomial distribution. So we use unlabeled samples {yi}i=1,...,n from n
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multi-dimensional Gaussians with known covariance matrices. This yeilds the mixture:

fθ(y) =
n∑
i=1

πiφ(y;µi, σ
2
i Id)

where πk is the mixing proportion of the k-th Gaussian distribution satisfying
∑n

i=1 πi =

1, and φ(·;µ,Σ) denotes the density of a N (µ,Σ) random vector in Rd:

φ(w;µ,Σ) = (2π)−
d
2 |Σ|−

1
2 exp{−1

2
(w − µ)TΣ−1(w − µ)}

Specifically, for the total n = N number of videos, we give equal weight to each part

of the mixture, i.e., πk = 1
N
. Since we don’t distinguish the weight of each Gaussian dis-

tribution if there is no further information on the importance of the videos, the dimension

of each Gaussian is d = 2 for the valence and arousal ratings.

Thus the second KL divergence follows

DKL(Q||P ) = − 1

2
tr(log Σq)− 1

− 1

n
EQ
[

log
N∑
i=1

1

|Σi|
1
2

e−
1
2
Ak

]
,

(4.3)

where Ak := (x− µk)TΣ−1k (x− µk).

One possible way to make equation 4.3 computationally tractable is through Monte

Carlo sampling. We draw K i.i.d samples {xj}nj=1 from the distribution of Q, N (µq,Σq):

DKL(Q||P ) = − 1

2
tr(log Σq)− 1

+
1

2N

n∑
k=1

{
tr
(

log Σk

)
+ tr

(
Σ−1k µkµ

T
k

)
+

1

K

K∑
j=1

tr
(
Σ−1k xj(x

T
j − 2µTk )

)}
,
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(a) Arousal comparison over testing epochs
epochs

(b) Valence comparison over testing epochs

Figure 4.2: Average of fine grained scores provided by LIWC for top and bottom
500 comments of learned embeddings. Anger is associated with high arousal but
neutral valence, while sadness is associated with low arousal and low valence. A large
inflection can be seen at approximately 12 epochs of training time due to the delay of
kl-annealing. As can be seen, there is a correlation with some tested models

where Ajk := (xj − µk)TΣ−1k (xj − µk).

4.4 Experiment Setup

We conduct two primary experiments to validate our optimization methods presented

in equations 4.2 and 4.3. We examine the predictive power of our technique and its ability

to learn embeddings through induced emotion signals. We then compare the fusion of our

learned embeddings into a multimodal model to examine results compared on a state of

the art benchmark. Our optimization methods are referenced as VAE (the standard VAE

objective but with a modified prior), C-VAE (Centered VAE), and CGM-VAE (Centered

Gaussian Mixture VAE).
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Statistic DEAP MOSEI

# Videos 120 3228
# Videos with comments 82 764
# Comments 31481 17217

Table 4.1: Summary statistics of dataset

4.4.1 Data

We apply our approach to use text comments on videos as a signal provider for

instilled affect to augment two different datasets for affect prediction:

DEAP [12] provides affect annotations for music videos available on Youtube. We

used the online subjective annotations video list containing 120 Youtube videos each with

14 to 16 ratings. A 9-point rating for valence, arousal, and dominance were collected,

although we only examine the valence and arousal dimensions. We ask readers to refer

to the original paper for detailed analysis [12]. For our use case, we used DEAP’s valence

and arousal ratings to embed comment language in a 2-dimensional space.

MOSEI [110] is a large multimodal sentiment and emotional dataset containing

23453 segments of videos by 1000 distinct speakers. Each video is an opinion video clip

which is annotated in segments by 14 expert judges. Sentiment annotations on a Likert

scale from -3 to 3 and Ekman emotions are annotated on a Likert scale of [0,3] from no

evident emotion to high presence of emotion. For our use case, MOSEI’s emotional space

provided an additional 6-dimensional embedding vector for each comment. Additionally,

since no video rating was provided, we took the mean of all segment-level ratings for each

video as the overall video rating as input to our model.

For all videos we crawled the available comments. The maximum number of comments

per video was limited to 1000 and we exclude videos with no comments. Additionally,

some videos were no longer available at the time of data collection. This resulted in 82

videos with comments for DEAP and 764 usable videos for MOSEI. Summary statistics
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are available in Table 4.1.

DEAP expresses instilled emotion (i.e. emotion of the viewer of a music video), while

MOSEI characterizes the emotional state of the speaker in a video. User comments on a

video may be more directly indicative of the user’s emotion than the speaker’s emotion,

and we will evaluate this use case in Sections 4.5.1-4.5.3. Regarding the second case, it

is our hypothesis that a causal connection sufficient for a distinctive signal likely exists

as well, i.e., if I see a video of a happy/angry/sad person, I’m more likely to write

a happy/angry/sad comment myself. We will show results on the MOSEI dataset in

Section 4.5.4.

4.4.2 Preprocessing

The crawled comments are preprocessed to keep only the top-most level comment

to remove any unrelated discussion using the @user expression. We also removed non-

english comments and discarded sentences longer than 50 words, and shorter than 2

words for ease of language modeling. GloVE [149] word embeddings are used and kept

fixed during training.

The dataset is split into an 80%-20% training-testing by randomly selecting 80% of

the videos and their associated comments for training and the rest for testing. Validation

is split from the training set during model tuning and for cross validation experiments in

an 80%-20% fashion. For MOSEI evaluations, we observed the training, validation and

testing splits provided by the MOSEI sentiment classification dataset.

4.4.3 Network Architecture

We train our comments embedding network using a Recurrent Neural Networks

(RNNs) connected in an end-to-end fashion [150] as the foundation for our modeling.
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We follow the the work from [111] closely in learning and optimization procedures, but

use our learning objective.

Multiple network architectures were evaluated for our experiments. We used a Gated

Recurrent Unit (GRU) as the base recurrent architecture. Single layer and 2 layer GRUs

were used to evaluate our results. A 2-layer MLP is added to the output of the GRU to

predict output distributions. Decoder architectures were varied with single, and 2-layer

bidirectional GRU variants. The BiGRU tag is used to indicate the 2-layer bidirectional

variant.

4.4.4 Hyperparameter Tuning

A the encoder and decoder hidden vector size was set to 100. Glove embeddings of

100 dimensions were used and kept fixed during model training. A two layer feed-forward

network is attached to the output of the decoder GRU to predict word tokens. Monte

Carlo samples used to approximate the gaussian mixture prior was set to 200. Although

we experimented with different λ values, no large differences were noticed and were set

at .5 for the entire experiment.

Hyperparameters were tuned on the validation set. The standard AdamW optimizer

with all default options. A batch size of 128. Both Dropout and word dropout are used

and is set to 0.2. Sigmoid KL annealing as used to train the evaluated VAEs offset by

15 epochs.

4.5 Results & Discussion

1) We provide empirical evaluation of the predicted video emotion ratings (Sections

6.1 & 6.2). 2) We show that our metric approximations agree with crowd-sourced user

rated affect scores (Section 6.3). 3) We apply our technique to a large-scale public

74



A Weakly Supervised Application to Induced Affect Prediction Chapter 4

benchmark dataset for multimodal emotion analysis (MOSEI) and show that we can

learn fine-grained emotion ratings for individual user comments while matching overall

video emotions as the aggregate emotion of all user comments. We also demonstrate the

ability for our embeddings to successfully extend an existing model with user comments

as an additional dimension (Section 6.4).

4.5.1 Analysis on predictive power of comments

We perform an empirical evaluation of the learned language representations using

the augmented DEAP dataset, as music performance is known for its ability to induce

emotions, as demonstrated in lab studies. DEAP provides annotations for each video

by multiple users in a valence, arousal and dominance space. We examine whether

individual comments can be placed in a space close to their valence and arousal rating

without the supervised information from the videos. We perform multiple experiments

to correlate our predictions of valence and arousal scores with supervised tools which

analyze language affect.

Supervised language analysis tools

The evaluations of the learned language representations are compared with two well-

known tools for analyzing affect content in text. These tools are often used to provide

distantly supervised information for related machine learning tasks [140] and are built

on supervised knowledge. It is our expectation that if our learned representation with-

out supervised information, demonstrates a positive correlation with existing supervised

techniques, then we can expect that the video has 1) induced an expected emotion in the

user and 2) our model can extract this information. This supervised information is not

provided during training or testing time.
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Two popular language analysis tools are used to analyze the video coments:

LIWC2015 [151] is a proprietary tool which produces scores for various dimension of

language use. The typical output measures the fraction of words which fall under some

variable.

The tone score is used to analyze our predicted valence score. It is a variable that

measures the positive or negative tone of a text. Additionally, measures for anxiety, anger

and sadness are provided which are typically associated with high, high and low arousal

emotions [152].

VADER [153] is a lexicon and rule-based sentiment analysis tool designed for social

media contexts. provides ratings for proportion of text which fall under categories of

positive, neural, or negative as well as a normalized compound score. The compound

score ranges from -1 to 1 and represents a summarizing of the overall positiveness or

negativeness of the input text sequence. It is the expectation that the compound score

most closely related to valence.

Metrics

As we do not have ground truth for sentence-level affect scores, we define an approx-

imation based on expected emotion correlations:

V =
Sc + St

2
− .5

A = Sa + Sx − Ss

Where the Sc represents the normalized (between 0 and 1) in VADER compound score,

and St, Sa, SxSs represents the normalized in LIWC tone, anger, anxiety, and sadness

scores respectively.

The tone and compound scores reflect the positive versus negative emotions present
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(a) MAE of predicted valence by epoch (b) MAE of predicted arousal by epoch

Figure 4.3: 10-fold Cross-validation prediction of video rating with the DEAP dataset.
MAE valence and arousal of our predicted comments ratings with defined metrics per
epoch is shown.

in the sentence. As there is no direct measure for arousal, we correlate with the LIWC

measure for anger and sadness which are respectively positively and negatively correlated

with arousal. We found that these metrics typically produced affect scores between -.5

and .5.

4.5.2 Video Affect Regression

We perform a 10-fold cross-validation evaluation with random initialization. The

training set is split into 80% training and 20% validation. The MAE distance of pre-

dicted affect scores from our model with our valence and arousal metrics are shown in

Figure 4.3. As can be seen, while the initial training shows large variations, all models

eventually converge to a value closer to scores given by supervised approaches. Our Gaus-

sian mixture optimization technique also shows the best average overall performance at

epoch 50.
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Model Valence MAE Arousal MAE

Random .33 .33

VAE .222 .225
C-VAE .217 .220
GM-VAE .217 .220
BIGRU-VAE .223 .221
BIGRU-C-VAE .198 .221
BIGRU-GM-VAE .218 .222

Table 4.2: Minimum MAE for valence and arousal ratings of video. Random shows
the average MAE from randomly choosing scores and represents a baseline. Minimum
possible value and best possible score is 0. As can be seen, our optimization method
can learn embeddings that enable predictions close to the valence and arousal rating
of the video.

Table 4.2 shows the epochs with the minimum valence and arousal MAE values. As

can be seen, the learned embeddings are moving away from a randomly embedded space

into one which correlates with valence and arousal. Additionally, we see in figure 4.2,

emotion scores from LIWC for each comment correlates with the expected embedding

within valence and arousal space. We also see that comments are slowly conforming to

the mold given by the prior distribution.

4.5.3 Perception Study

We conducted a user study via Amazon Mechanical Turk asking users to rate the

valence and arousal properties of learned comments representations. We compare the

top and bottom ranked 100 comments for each dimension (valence and arousal) for each

algorithm. All participating workers were from the US, with an approval rating greater

than 98%. Workers provides ratings on a 5 point Likert scale, for valence as well as

arousal of each comment.

Workers worked in batches of 16 comments with each sentence being rated by two

unique workers. Inter-rater agreement was measured using Krippendorff’s α as an ordinal
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Method Bottom 100 Top 100

VAE 0.58 ± 0.02 0.60 ± 0.02
C-VAE 0.50 ± 0.03 0.67 ± 0.02
GM-VAE 0.56 ± 0.02 0.66 ± 0.02

BiGRU-VAE 0.54 ± 0.01 0.65 ± 0.02
BiGRU-CGM-VAE 0.54 ± 0.01 0.62 ± 0.02

Table 4.3: User valence scores for the comments with model-estimated valence scores
ranked in the top 100 and bottom 100. Scores range from 0 to 1. As we can see based on
user ratings, the comments scored lower by our algorithm exhibit lower valence ratings
and higher ranked comments received overall higher ratings from human raters.

Method Bottom 100 Top 100

VAE 0.47 ± 0.02 0.61 ± 0.02
C-VAE 0.45 ± 0.02 0.57 ± 0.02
GM-VAE 0.50 ± 0.03 0.59 ± 0.02

BiGRU-VAE 0.51 ± 0.01 0.59 ± 0.02
BiGRU-CGM-VAE 0.51 ± 0.01 0.57 ± 0.01

Table 4.4: User arousal scores for the comments with model-estimated arousal scores
ranked in the top 100 and bottom 100. Scores range from 0 to 1. A similar correlating
trend is seen here with arousal scores.

metric, with α = 0 representing perfect disagreement and α = 1 representing perfect

agreement. For this study α = 0.475 for the arousal scale, and α = 0.686 for the valence

scale.

Table 4.3 shows the mean valence scores, as rated by the workers, of the top and

bottom 100 comments. We perform a two population means t-test to compare the models,

with a significance level α = 1%. C-VAE is significantly better than GM - VAE (p-value

= 0.0444) and VAE (p-value = 0.0126) when identifying low-valence comments, and also

outperforms VAE (p-value = 0.0135) in identifying high-valence comments.

The mean arousal scores are displayed in Table 4.5.3. The empirical analysis suggested

that no model significantly outperforms another, and the results of this perception study

indicate the same - no model performs significantly better than the others, both for low
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Label H Sa A F D Su

Video Ground Truth 0.13 0.07 0.17 0.17 0.1 0
Video Prediction 0.18 0.07 0.07 0.01 0.05 0
Comments Prediction 0.3 0.08 0.04 0 0.03 0.01

(a) Ratings by method for sentence: “I liked lord of the flies in High
School . It was really good i thought .”

Label H Sa A F D Su

Video Ground Truth 0.33 0 0.17 0 0 0
Video Prediction 0.23 0.07 0.06 0 0.04 0.01
Comments Prediction -0.05 0.09 0.17 -0.02 0.08 0

(b) Ratings by method for sentence: “I hate how my English teacher just
makes us write and give a public speech without even teaching how to do
that ! ! ! ! ! ! ! ”

Label H Sa A F D Su

Video Ground Truth 0.17 0.17 0 0.06 0.06 0
Video Prediction 0.18 0.09 0.08 0.01 0.05 0
Comments Prediction 0.41 0.05 0.04 0.01 0.02 0

(c) Ratings by method for sentence: “Very interesting video, Melody,
thank you!”

Table 4.5: Selected results, comparing the ground truth and predicted emotion of
a video to that of a single comment on the same video. This demonstrates that
the network learns better fine-grained embeddings than are provided by the overall
video ratings. The six dimensions of emotion are happiness(H), sadness(Sa), anger(A),
fear(F), disgust(D) and surprise(Su). A higher score indicates a stronger presence of
the emotion.

as well as high arousal sentences.

4.5.4 MOSEI benchmark

We evaluate the performance of our learned comment embeddings to aid in a mul-

timodal affect classification task. We used the MOSEI sentiment unaligned dataset for

this task. We compare against two state of the art techniques MulT [87] and Raven [81].

We follow the experiment setup from [87] and use their CTC augmentation of RAVEN.

We learn comment-level embeddings on the training set and accordingly predict the
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Figure 4.4: Percentage of emotions predicted by our learned comments compared to
the original dataset.

6-dimensional emotion vector for each comment in the test set. Figure 4.4 shows that our

video predictions capture the overall relative distribution of emotions from the original

segment ratings.

Video-level emotional embeddings are generated by averaging the segment level pre-

dictions.

We concatenate the predicted video emotion ratings for each video onto the text

embedding to fuse the comments context vector with segment-level text information.

The resulting text representation is fed through the the network from [118] to perform

the prediction.

Table 4.6 shows results from the MOSEI sentiment classification task which predicts

sentiment classes for video segments. Our augmented affect predictions incurs but a slight

effect on the final predicted segment sentiment scores. One limitation of our approach is

that the user comments refer to the entire video, whereas MOSEI sentiment classification

occurred on the level of shorter video segments.

Note also that the YouTube dataset makes up a small portion of the overall dataset

and thus of the original 3228 videos, only 764 had comments (cf. Table 4.1). With

additional comment information performance could potentially improve.

Additionally, we provide a case study on the predicted emotion ratings of individual
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Model Acc7 Acc2 F1 MAE Corr

CTC+RAVEN 45.5 75.4 75.7 0.664 0.599
MulT 50.1 81.0 81.2 .610 .681

MulT + C-VAE (ours) 49.1 81.2 81.5 .618 .681

Table 4.6: MOSEI Sentiment classification results on unaligned data. We see the
augmentation of existing state of the art techniques improves its performance in a few
situations.

comments in table 4.5. As can be seen in multiple examples, despite the overall video not

providing detailed emotion representations, we can still provide an effective prediction of

the comment’s emotions. For example, looking at the last row of table 4.5, we notice that

the video has a positive emotion overall (H is larger than all the negative emotions). The

comment however (which is clearly sad), is predicted to have Sa larger than H, which is

accurate.

4.6 Conclusion

In this chapter we examined the problem of learning sentence representations in affect

space when given a weak prior in the form of a video affect rating. We introduced a novel

problem and proposed and evaluated an effective optimization technique.

Our empirical evaluation of the predicted video emotion ratings show that it is possible

to deduce affect from video content alone and that our approximation metrics agree with

crowd-sourced user rated affect scores.

When applying our technique to a large-scale public benchmark dataset for multi-

modal emotion analysis (MOSEI), we show that we can learn fine-grained emotion rat-

ings for individual user comments while matching overall video emotions as the aggregate

emotion of all user comments. This demonstrates that our embeddings can successfully

extend an existing multimodal model with user comments as an additional dimension.
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While we did not achieve the best performance here likely due to the differences in the

way MOSEI and DEAP obtained affect labels.

Overall, we provided new augmentations of multimodal video datasets and demon-

strated the potential for reactive signals in the wild, in the form of user comments, to

predict the affect induced by the videos, through modeling effective language represen-

tations in affect space.
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Chapter 5

Improving Learning under Imperfect

Data Conditions

Portions of this chapter were published with collaborators at the Conference on Computer

Vision and Pattern Recognition 2021

We seek to find a method to address imperfections in the data more directly. This

leads us to examine how we can perform effective classification in the presence of label

noise. In particular, we are interested in how we might improve such techniques. In

this chapter, explore how data augmentation can be effectively applied for this type of

problem.

Data augmentation is a common method used to expand datasets and has been ap-

plied successfully in many computer vision problems such as image classification [154]

and object detection [155], among many others. In particular, there has been much suc-

cess using learned augmentations such as AutoAugment [156] and RandAugment [157]

which do not require an expert who knows the dataset to curate augmentation policies.

It has been shown that incorporating augmentation policies during training can improve

generalization and robustness [158, 159]. However, few works have explored their efficacy
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for the domain of learning with noisy labels (LNL) [160].

Many techniques which tackle the LNL problem make use of the network memoriza-

tion effect, where correctly labeled data fit before incorrectly labeled data as discovered

by Arpit et al. [161]. This phenomenon was successfully explored in Deep Neural Net-

works (DNNs) through modeling the loss function and the training process, leading to

the development of approaches such as loss correction [162] and sample selection [163].

Recently, the incorporation of MixUp augmentation [99] has dramatically improved the

ability for algorithms to tolerate higher noise levels [164, 165].

While many existing works use the common random flip and crop image augmentation

which we refer to as weak augmentation, to the best of our knowledge, no work at the time

of writing has explored using more aggressive augmentation from learned policies such as

AutoAugment during training for LNL algorithms. These stronger augmentation policies

include transformations such as rotate, invert, sheer, etc. We propose to incorporate these

stronger augmentation policies into existing architectures in a strategic way to improve

performance. Our intuition is that for any augmentation technique to succeed, they

must (1) improve the generalization of the dataset and (2) not negatively impact the

loss modeling and loss convergence behavior that LNL techniques rely on.

With this in mind, we propose an augmentation strategy we call Augmented Descent

(AugDesc) to benefit from data augmentation without negatively impacting the network

memorization effect. Our idea for AugDesc is to use two different augmentations: a weak

augmentation for any loss modeling and pseudo-labeling task, and a strong augmentation

for the back-propagation step to improve generalization.

In this chapter, we propose and examine how we can incorporate stronger augmen-

tation into existing LNL algorithms to yield improved results. We provide some answers

to this problem through the following contributions:
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• We propose an augmentation strategy, Augmented Descent (AugDesc), which

demonstrates state-of-the-art performance on synthetic and real-world datasets un-

der noisy label scenarios. We show empirically that this can increase performance

across all evaluated noise levels (Section 5.3.4). In particular, we improve accuracy

on the CIFAR-10 benchmark at 90% symmetric noise by more than 15% in absolute

accuracy, and we also improve performance on the real-world dataset Clothing1M

(Section 5.3.5).

• We show that there is a large effect on performance depending on how augmentation

is incorporated into the training process (Section 5.3.2). We empirically determine

that it is best to use weaker augmentation during earlier epochs followed by stronger

augmentations to not adversely affect the memorization effect. We analyze the

behavior of loss distribution to yield insight to guide effective incorporation of

augmentation in future work (Section 5.3.3).

• We evaluate the effectiveness of our augmentation methodology by performing gen-

eralization studies on existing techniques (Section 5.3.7). Without tuning any hy-

perparameters, we were able to improve existing techniques with only the addition

of our proposed augmentation strategy by up to 5% in absolute accuracy.

5.1 Related Work

Learning with Noisy Labels The most recent advances in training with noisy

labels use varying strategies of (1) selecting or heavily weighting a subset of clean labels

during training [166, 167, 163, 168], or (2) using the output predictions of the DNN or

an additional network to correct the loss [169, 170, 171, 162, 172].

Many methods use varying strategies of training two networks, using the output of
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one or both networks to guide selection of inputs with clean labels. Decoupling [166]

maintains two networks during training, updating their parameters using only inputs

which the two networks disagree on. MentorNet [167] pre-trains an extra network and

uses the pre-trained network to apply weights to cleanly labeled inputs more heavily

during training of a student network. Co-teaching [163] maintains two networks, and

feeds the low-loss inputs of each network to its peer for parameter updating. The low-

loss inputs are expected to be clean, following the finding that DNNs fit to the underlying

clean distribution before overfitting to noisy labels [161]. INCV [168] trains two networks

on mutually exclusive partitions of the training dataset, then uses cross-validation to

select clean inputs. INCV uses the Co-teaching architecture for its networks. The main

drawback of these strategies is they only utilize a subset of the information available for

training.

The second category of techniques attempts to use the model’s output prediction to

correct the loss at training time. One such common method is to estimate the noise

transition matrix and use it to correct the loss, as in forward and backward correction

[170] and S-Model [171]. Another common method is to linearly combine the output of

the network and the noisy label for calculating loss. Bootstrap [169] replaces labels with

a combination of the label and the prediction from the DNN. Joint Optimization [162]

uses a similar approach to the work in [169], but adds a term to the loss to optimize the

correction of noisy labels. D2L [172] monitors the dimensionality of subspaces during

training, using it to guide weighting of a linear combination of output prediction and

noisy label during loss calculation.

Optimized Augmentation Augmentation of training data is a widely used method

for improving generalization of machine learning models. Recent works such as Au-

toAugment [156] and RandAugment [157] have focused on studying which augmentation

policies are optimal. AutoAugment uses reinforcement learning to determine the selection
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and ordering of a set of augmentation functions in order to optimize validation loss. To

remove the search phase of AutoAugment and therefore reduce training complexity, Ran-

dAugment drastically reduces the search space for optimal augmentations and uses grid

search to determine the optimal set. Both techniques are widely used in semi-supervised

settings.

In semi-supervised learning settings, augmentation has been successfully applied to

consistency regularization [173, 174, 175, 176]. In consistency regularization, a loss is

applied to minimize the difference in network prediction between two versions of the

same input during training. [173] uses a mixture of augmentation, random dropout, and

random max-pooling to produce these two versions. More recently, unsupervised data

augmentation [174] and ReMixMatch [175] minimize the network predictions between a

strongly augmented and weakly augmented version of the input. All of these findings

motivate us to incorporate strong augmentation within the realm of LNL to improve

performance.

The semi-supervised learning problem itself is similar to the LNL problem with the

subtle difference that some labels are unknown rather than corrupt. As techniques in

semi-supervised learning have been able to make predictions on a larger dataset from a

smaller clean dataset, it would be logical that LNL techniques would benefit from the

generalization effects of augmentation. In fact, the recent semi-supervised techniques

MixUp [99], and Luo et al. [177] all exhibit strong robustness to label noise.

Most recently, FixMatch [176] successfully combines strong vs. weak augmentation

in consistency regularization with pseudo-labeling to achieve state-of-the-art results in

semi-supervised classification tasks. While we similarly employ two separate pools of

augmentation functions for use in downstream tasks, there are key important differences.

Most notably, our key idea is separating augmentations used during loss analysis from

augmentations used during back-propagation, rather than focusing on pseudo-labeling
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(a) Raw (b) Dataset Expansion (c) Runtime (d) AugDesc

Figure 5.1: Visualization of training methods when incorporating different augmen-
tation strategies. Raw takes the input directly and feeds it into the model for loss
analysis and back-propagation. Dataset expansion first creates an expanded dataset
which is then sampled by batches and fed into the network. Runtime Augmentation
applies a random augmentation policy during runtime for each sampled batch. Aug-
mented Descent produces two sets of random augmentations at the batch level: one is
used for all loss analysis tasks, and the other is used for gradient descent.

and consistency regularization. Additionally, we apply this idea to LNL, a separate

domain with different considerations. We experimentally show improvements for a wide

variety of LNL algorithms and demonstrate improvements on both synthetic and real-

world datasets.

5.2 Method

We first describe how various algorithms operate within the context of the network

memorization effect [161]. We then propose the Augmented Descent strategy for filtering

and generating pseudo-labels for high confidence samples based on one set of augmenta-

tions, then performing gradient descent on a different set of augmentations. Lastly, we

provide an example for how to retrofit existing techniques.

5.2.1 Loss Modeling Under Noisy Label Scenarios

For some training data D = (xi, yi)
N
i=1, a classifier can be trained to make predictions

using the cross entropy loss:
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l(θ) = −
∑
x,y∈D

yT log(hθ(x)),

where hθ is the function approximated by a neural network. Fundamentally, many algo-

rithms are exploiting the behavior outlined in Arpit et al. [161] which finds that correctly

labeled data tends to converge before incorrectly label data when training neural net-

works.

Many existing algorithms are then employing some degree of “pseudo-labeling”, where

the network is using its own guesses to approximate the labels for the remainder of the

dataset. This is done by encouraging the learning of high confidence (or lower initial

loss) samples via filtering or modifications to the loss function.

For example, in the sample selection technique Co-teaching [163], this is accomplished

by feeding low-loss samples to a sister network, training the networks on data which it

believes is correct. Abstractly, this would create two datasets from the input for each

training epoch of what is believed to be correctly labeled C = arg minD:|D|≥R(T )|D|l(f,D),

where R(T ) is a threshold for the number of samples to place into the clean set determined

empirically by the loss behavior, and incorrectly labeled I = D \C. Using these sets, we

obtain the loss:

l(θ) = −
∑
x,y∈C

yT log(hθ(x))− 0 ∗
∑
x,y∈I

yT log(hθ(x)).

Here, the learning process is ignoring samples which are believed to be incorrectly labeled

as the training progresses. This is represented by the 0 term multiplied into what the

model believes to be incorrect samples.

By contrast, Arazo et al. [164] accomplishes noise tolerance by incorporating the net-

work’s own prediction into its loss as a weighted sum based on the confidence determined

by a mixture model fit to the previous epoch’s losses, enabling a softer incorporation of

the labels:
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l(θ) = −
∑

x,y∈D,w∈W

(1− w)yT log(hθ(x))

−
∑

x∈D,w∈W

wzT log(hθ(x)),

where W is a set of weights learned using a beta mixture model and z is the model’s

prediction for input x. More recently, DivideMix [165] combines these ideas and assigns

weights to inputs to incorporate network guesses, separates the input into two sets, and

trains with the resulting data in a semi-supervised manner using MixMatch [101].

With this understanding, we propose Augmented Descent (AugDesc) for LNL tech-

niques that employ loss modeling to separate correctly labeled from incorrectly labeled

data. We propose to use one augmentation of the input for sample loss modeling and

categorization to create the hypothetical sets C and I or to determine the pseudo label z,

while utilizing another different augmentation as input to the network hθ for purposes of

back-propagation. This would require twice the number of forward passes during training

for each input. The goal of this is so that we do not adversely affect any loss modeling

but also be able to inject more generalization during the learning process. We provide

an example in section 5.2.4 for how we can incorporate AugDesc into DivideMix.

5.2.2 Augmentation Strategies

We examine the following strategies for incorporating augmentation into existing

algorithms. Figure 5.1 presents a conceptual representation for incorporating our aug-

mentation strategy into existing techniques.

Raw: Original image is used without any modifications.

Dataset Expansion: A dataset is created that is twice the original size of the

dataset. This is then fed directly into the model without further augmentation.

Runtime Augmentation: Images are transformed before being fed into network at
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Algorithm 1
Input: θ1, θ2, training batch possibly labeled x, possibly unlabeled u,
dataset labels y, gmm probabilities w, number of augmentations M, aug-
mentation policies Augment1 and Augment2

xdesc = Augment2(x)
udesc = Augment2(u)

for m = 1 to M
x = Augment1(x)
u = Augment1(u)

end // co-guessing and sharpening
p = 1

M

∑
m pmodel(x; θ(k))

ȳ = wy + (1− w)p
ŷ = Sharpen(y, T )

q̄ = 1
2M

∑
m(pmodel(û; θ(1))

+pmodel(û; θ(2)))
q̂ = Sharpen(q̄, T )
// train using a different augmentation
X̂ = {(x, y)|x ∈ xdesc, y ∈ ŷ}
Û = {(u, q)|u ∈ udesc, q ∈ q̂}
Lx,Lu = MixMatch(X̂ , Û)
L = Lx + λuLu + λrLreg
θ(k) =SGD(L, θ(k))

Figure 5.2: Batch level training modifications to DivideMix for Augmented Descent.
Full implementation provided in the supplemental.

runtime.

Augmented Descent (AugDesc): Two sets of augmented images are created.

One set is used for any loss analysis tasks, while the other is used for gradient descent.

The motivation is that we can learn a better representation for each image while not

compromising the sample filtering and pseudo-labeling process.

5.2.3 Augmentation Policy

We evaluate three different augmentation policies, classified into “weak” and “strong”.

Many algorithms make use of the standard random crop and flip for augmentation [178].
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We call this process weak augmentation. We experiment with strong augmentations

using automatically learned policies from AutoAugment [156] and RandAugment [157].

AutoAugment and RandAugment both provide a way to apply augmentations without

hand-tuning the particular policy. Our strong augmentation policy first applies a random

crop and flip, followed by an AutoAugment or RandAugment transformation, and lastly

normalization. For dataset expansion and runtime augmentation, we experiment with

both weak and strong augmentations.

We examine three variants of Augmented Descent. AugDesc-WW means we per-

form loss analysis using a weakly-augmented input, then use this label to train a dif-

ferent weakly augmented version of the same input. Similarly, AugDesc-SS represents

strongly-augmented loss analysis, coupled with strongly augmented gradient descent.

Finally, AugDesc-WS corresponds to weakly-augmented loss analysis with strongly

augmented optimization.

Because AutoAugment is learned on a small subset of the actual data, it is easy to

incorporate into existing architectures. We further perform an ablation study using Ran-

dAugment to show that our augmentation strategy is agnostic to augmentation policy,

as well as the fact that no dataset-specific or pre-trained augmentations are necessary.

We use AutoAugment for most of our experiments as it prescribes a pre-trained set of

policies, while RandAugment requires tuning that can depend on the networks used as

well as the training set size.

5.2.4 Application to State of the Art

While many techniques beyond those above have similar characteristics that we can

analyze in a similar manner, we examine this augmentation strategy within the context

of the current state-of-the-art DivideMix [165] in this chapter. We then extend our
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augmentation strategy to other techniques and report results in the experiments section.

DivideMix incorporates aspects of warm-up, co-training[167, 163], and MixUp [99].

The original DivideMix algorithm works by first warming up using normal cross-entropy

loss with a penalty for confident predictions by adding a negative cross entropy term

from Pereyra et al. [179]. Afterwards, for each training epoch, the algorithm first uses

a GMM to model the per-sample loss with each of the two networks. Using this and

a clean probability threshold, the network then categorizes samples into a labeled set x

and an unlabeled set u. Batches are pulled from from each of these two sets and are

first augmented. Predictions using the augmented samples are made and a sharpening

function is applied to the output [101] to reduce the entropy of the label distribution.

This produces sharpened guesses for the labeled and unlabeled inputs which is used for

optimization.

We outline the application of our augmentation strategy in Algorithm 5.2. We require

two different sets of augmentations: one for the original DivideMix pipeline, and one to

augment the original input for training with MixMatch losses. Additional examples of

implementation in previous techniques are included in the supplemental.

5.3 Experiments

We first perform evaluations on synthetically generated noise to determine an effec-

tive augmentation strategy. We then conduct generalization experiments on real-world

datasets, apply our strategies to previous techniques, and experiment with alternative

augmentation policies.
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5.3.1 Experimental Setup

We perform extensive validation of each augmentation technique on CIFAR-10 and

CIFAR-100, two well-known synthetic image classification datasets frequently used for

this task. CIFAR-10 contains 10 categories of images and CIFAR-100 contains 100 cat-

egories for classification. Each dataset has 50K color images for training and 10K test

images of size 32x32. Symmetric and asymmetric noise injection methods [162, 180] are

evaluated. We perform most of the ablation studies within the DivideMix framework as

this is the state-of-the-art technique. We then extend the augmentation strategies we

found to other techniques.

We use an 18-layer PreAct Resnet [181] as the network backbone and train it using

SGD with a batch size of 128. Some experiments are conducted using a batch size of

64 due to hardware constraints but consistency is maintained in the comparisons. We

conduct the experiments using the method outlined in DivideMix [165] with all the same

hyperparameters: a momentum of 0.9, weight decay of 0.0005, and trained for roughly

300 epochs depending on the speed of convergence. The initial learning rate is set to

0.02 and reduced by a factor of 10 after roughly 150 epochs. Warm-up periods where

applicable are set to 10 epochs for CIFAR-10 and to 30 epochs for CIFAR-100. We keep

the number of augmentations parameter M = 2 fixed for a fair comparison.

5.3.2 Comparison of Augmentation Strategies

We examine the performance of each proposed augmentation strategy outlined in

Section 5.2.2 using DivideMix as our baseline model. We investigate the performance

impact on lower label noise (20%) and very high label noise (90%) for some performance

bounds. We report results in Table 5.1.

As shown in the table, there is a large effect on algorithm performance based on how
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CIFAR-10 CIFAR-100

Method/Noise 20% 90% 20% 90%

Raw Best 85.94 27.58 52.24 7.99
Last 83.23 23.92 39.18 2.98

Expansion-W Best 90.86 31.22 57.11 7.30
Last 89.95 10.00 53.29 2.23

Expansion-S Best 90.56 35.10 55.15 7.54
Last 89.51 34.23 54.37 3.24

Runtime-W [165] Best 96.10 76.00 77.30 31.50
Last 95.70 75.40 76.90 31.00

Runtime-S Best 96.54 70.47 79.89 40.52
Last 96.33 70.22 79.40 40.34

AugDesc-WW Best 96.27 36.05 78.90 30.33
Last 96.08 23.50 78.44 29.88

AugDesc-SS Best 96.47 81.77 79.79 38.85
Last 96.19 81.54 79.51 38.55

AugDesc-WS Best 96.33 91.88 79.50 41.20
Last 96.17 91.76 79.22 40.90

Table 5.1: Performance differences for each augmentation strategy. The best perfor-
mance in each category is highlighted in bold. Removing all augmentation is highly
detrimental to performance, while more augmentation seemingly improves perfor-
mance. However, too much augmentation is also detrimental to performance (AugDe-
sc-SS). Strategically adding augmentation by exploiting the loss properties (AugDe-
sc-WS) yields the best results in general.

augmentations are included. While in some aspects this is unsurprising, what is surprising

is the huge effect augmentation can have with regards to higher noise datasets. In the best

case, we see AugDesc-WS at 90% noise achieve results on CIFAR-10 close to accuracies

reported on augmentation techniques with 20% label noise. For CIFAR-100, we also

witness a large effect with higher noise rates but it remains a challenging benchmark for

noisy datasets. Overall, we find that AugDesc-WS achieves the strongest result across

the board.

It should be noted that a vast number of image-based machine learning algorithms in-

corporate some level of weak augmentation (flip, crop, and normalization) during training
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Figure 5.3: Effect of augmentation strength on the distribution of normalized loss for
noisy versus clean segments of the dataset during warm-up for 90% label noise. Too
much augmentation can cause samples in the clean dataset to be have higher loss,
causing lower loss in samples from the noisy dataset.

time. For completeness, we retrospectively examine the effect of removing these augmen-

tations to tease out the effect of augmentation, i.e. the raw input method. We see

that including some very small amount of augmentation is hugely beneficial, particularly

evident when examining the transition from raw to weak augmentation at runtime.

5.3.3 Effect of Augmentation During Warm-up

LNL algorithms generally rely on fact that clean samples are fit before noisy ones. To

take advantage of such a property, many algorithms create scheduled learning or tune the

loss function, explicitly designating warm-up period to exploit the label noise learning

property [164, 165, 182]. We test the effect of introducing augmentation before and after

this period by comparing the performance of models injected with augmentations from

the first epoch and models trained with augmentations after the designated warm-up

period.

We report performance metrics in Table 5.2 for various noise levels. We find that

injecting strong augmentations during the warm-up period in low noise datasets benefit

performance, but is detrimental when the dataset becomes increasingly noisy. This is

particularly evident when examining the 90% noise rate. Conversely, weakly augmented

warm-up greatly increases performance at higher noise levels.
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Model Noise 20% 50% 80% 90% 40% Asym

DivideMix (baseline) [165] Best 96.1 94.6 92.3 76.0 93.4
Last 95.7 94.4 92.9 75.4 92.1

DM-AugDesc-WS-SAW Best 96.3 95.6 93.7 35.3 94.4
Last 96.2 95.4 93.6 10.0 94.1

DM-AugDesc-WS-WAW Best 96.3 95.4 93.8 91.9 94.6
Last 96.2 95.1 93.6 91.8 94.3

(a) Results on CIFAR-10

Model Noise 20% 50% 80% 90%

DivideMix (baseline) [165] Best 77.3 74.6 60.2 31.5
Last 76.9 74.2 59.6 31.0

DM-AugDesc-WS-SAW Best 79.6 77.6 61.8 17.3
Last 79.5 77.5 61.6 15.1

DM-AugDesc-WS-WAW Best 79.5 77.2 66.4 41.2
Last 79.2 77.0 66.1 40.9

(b) Results on CIFAR-100

Table 5.2: Application of strong versus weak augmentation during the warm-up period
of DivideMix, in comparison to the baseline model. WAW signifies weakly augmented
warm-up, SAW represents strongly augmented warm-up. Weak warm-up appears to
benefit datasets with higher noise while strong warm-up benefits datasets with lower
noise.

To better understand why this is, we perform an experiment by stochastically applying

strong augmentation to each batch with increasing chance to observe its distribution at

epoch 20. Figure 5.3 shows the loss distribution for samples in the training set associated

with the clean versus the noisy dataset. We find that applying too much augmentation

too soon can encourage lower noise data to have too high of a loss and noisy data to have

lower loss.

5.3.4 Synthetic Dataset Summary Results

We report the summary results in Table 5.3. The results show that augmenting

the state-of-the-art algorithm using our best augmentation strategy increases accuracy
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CIFAR-10 CIFAR-100

Model Noise 20% 50% 80% 90% 20% 50% 80% 90%

Cross-Entropy Best 86.8 79.4 62.9 42.7 62.0 46.7 19.9 10.1
Last 82.7 57.9 26.1 16.8 61.8 37.3 8.8 3.5

Reed et. al. [183] Best 86.8 79.8 63.3 42.9 62.1 46.6 19.9 10.2
Last 82.9 58.4 26.8 17.0 62.0 37.9 8.9 3.8

Yu et al. [182] Best 89.5 85.7 67.4 47.9 65.6 51.8 27.9 13.7
Last 88.2 84.1 45.5 30.1 64.1 45.3 15.5 8.8

Zhang et al. [99] Best 95.6 87.1 71.6 52.2 67.8 57.3 30.8 14.6
Last 92.3 77.6 46.7 43.9 66.0 46.6 17.6 8.1

Yi & Wu [184] Best 92.4 89.1 77.5 58.9 69.4 57.5 31.1 15.3
Last 92.0 88.7 76.5 58.2 68.1 56.4 20.7 8.8

Li et al. [180] Best 92.9 89.3 77.4 58.7 68.5 59.2 42.4 19.5
Last 92.0 88.8 76.1 58.3 67.7 58.0 40.1 14.3

Arazo et al. [164] Best 94.0 92.0 86.8 69.1 73.9 66.1 48.2 24.3
Last 93.8 91.9 86.6 68.7 73.4 65.4 47.6 20.5

Li et al. [165] Best 96.1 94.6 92.9 76.0 77.3 74.6 60.2 31.5
Last 95.7 94.4 92.3 75.4 76.9 74.2 59.6 31.0

DM-AugDesc-WS-SAW Best 96.3 95.6 93.7 35.3 79.6 77.6 61.8 17.3
Last 96.2 95.4 93.6 10.0 79.5 77.5 61.6 15.1

DM-AugDesc-WS-WAW Best 96.3 95.4 93.8 91.9 79.5 77.2 66.4 41.2
Last 96.2 95.1 93.6 91.8 79.2 77.0 66.1 40.9

Table 5.3: Performance comparison when incorporating our best augmentation strat-
egy into the current state-of-the-art. Our augmentation strategy improves performance
at every noise level. Results for previous techniques were directly copied from their
respective papers.

across all noise levels. In particular, the improvement for extremely noisy datasets (90%)

is very large, and approaches the best performance of lower noise datasets and represents

an error reduction of 65%. For comparison, we achieve 91% accuracy for 90% symmetric

noise on the CIFAR-10 dataset while the previous state of the art achieves 96.1% on only

20% label noise. Furthermore, we achieve an over 15% improvement in accuracy over

previous state of the art for CIFAR-10 at 90% label noise.
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Method Test Accuracy

Cross Entropy 69.21
M-correction [164] 71.00
Joint Optimization [162] 72.16
MetaCleaner [185] 72.50
MLNT [180] 73.47
PENCIL [184] 73.49
DivideMix [165] 74.76
ELR+ [186] 74.81

DM-AugDesc-WS-WAW (ours) 74.72
DM-AugDesc-WS-SAW (ours) 75.11

Table 5.4: Comparison against state-of-the-art methods for accuracy on the Cloth-
ing1M dataset.

5.3.5 Clothing1M Performance

Clothing1M [187] is a large-scale real-world dataset containing 1 million images ob-

tained from online shopping websites. Labels are generated by extracting tags from the

surrounding texts and keywords, and are thus very noisy. A ResNet-50 with pre-trained

ImageNet weights are used following the work of DivideMix [180]. We applied the pre-

trained ImageNet AutoAugment augmentation policy for this task.

We report results in table 5.4. Our augmentation strategy obtained state-of-the-

art performance when utilizing a strongly augmented warm-up cycle. In addition to

obtaining competitive results, this further indicates that the noise level is likely to be

below 80% based on our previous experiments, as strong warm-up improves accuracy.

This is in concordance with the estimates of the noise level of Clothing1M, said to be

approximately 61.54% [187].

5.3.6 Automatic Augmentation Policies

In our evaluation benchmarks, we primarily used AutoAugment pre-trained policies.

These policies are trained on a small subset of the original dataset with regards to CIFAR-
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CIFAR-10 CIFAR-100

Method/Noise 20% 90% 20% 90%

Baseline [165] Best 96.1 76.0 77.3 31.5
Last 95.7 75.4 76.9 31.0

AutoAugment Best 96.3 91.9 79.5 41.2
Last 96.2 91.8 79.2 40.9

RandAugment Best 96.1 89.6 78.1 36.8
Last 96.0 89.4 77.8 36.7

Table 5.5: Comparison of different automated augmentation policy algorithms. We
compare performance of each policy using the AugDesc-WS approach. Adjusting the
augmentation policy has minimal effect but still handily outperforms the runtime
augmentation used in the baseline. The improved performance is still large with a
noise ratio of 90%.

10 and CIFAR-100 (5000 samples). We do this due to the simplistic nature of integrating

pre-trained AutoAugment policies. For completeness, we evaluate whether we can achieve

similar performance with an untrained set of augmentations, as theoretically we could

then tune policies based on validation accuracy. To do this, we examine whether we can

achieve performance on-par with AutoAugment using RandAugment [157], which can be

tuned by adjusting 2 parameters. For these experiments, we used N = 1 and M = 6 for

RandAugment hyperparameters.

We report results in Table 5.5. As shown in the table, RandAugment can achieve

performance on-par with AutoAugment with minimal tuning and demonstrates the valid-

ity of our approach. Furthermore, since we were able to outperform the state-of-the-art

on Clothing1M while using a pre-trained ImageNet AutoAugment policy for the task,

optimizing an AutoAugment policy on Clothing1M could potentially yield better results.

5.3.7 Generalization to Previous Techniques

Based on our evaluations, we find that a weakly augmented warm-up period followed

by the application of strong augmentation works best. Furthermore, it is beneficial
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to perform the loss analysis process on a weakly augmented input, then forwarding a

strongly augmented input through the network for training. We apply our most effective

augmentation strategy to previous techniques to evaluate generalizability of our approach.

We choose to compare to Cross-Entropy, Co-Teaching+ [182], M-DYR-H [164], and

DivideMix [165] due to the range of techniques these algorithms employ. Co-Teaching+

uses two networks and thresholding to exploit the memorization effect and is an updated

work based on the popular Co-Teaching [163] technique. M-DYR-H uses mixture models

to fit the loss to previous epochs to weight the models predictions using a single network.

DivideMix is the current state-of-the-art which combines these and brings in a semi-

supervised learning framework.

All source code for each evaluated technique was available publicly published by

the original authors. We follow the hyperparameters and models outlined in the orig-

inal published paper and apply no tuning of our own. This demonstrates the ease at

which augmentations can be incorporated without delicate tuning of hyperparameters,

highlighting the generalizability of our approach. We detail the exact algorithm modifi-

cations for inserting augmentations in the supplemental of this chapter. We perform the

evaluation on a lower noise setting (20%) as many previous techniques did not perform

well at high noise levels. Table 5.6 shows the performance of our evaluation.

For vanilla cross-entropy, we used Runtime-S since as there is no warm-up period.

For other techniques, we applied the AugDesc-WS-WAW strategy. We evaluated our

augmentation strategy on these algorithms as they cover a range of general approaches

to learning with label noise. Some differences in performance are larger than expected

due to the specific implementation of network architecture and synthetic noise generation

techniques. We attempted strongly augmented warm-up for Co-teaching and found that

there was a very large detrimental impact to performance. This agrees with our earlier

observation that too much augmentation during the warm-up period can be detrimental.
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CIFAR-10 CIFAR-100

Base Aug Base Aug

Cross Entropy Best 86.8 89.9 60.2 61.2
Last 82.7 85.1 59.9 60.4

Co-Teaching+ [182] Best 59.3 60.6 26.2 25.6
Last 55.9 57.4 23.0 23.7

M-DYR-H [164] Best 94.0 93.9 68.2 73.0
Last 93.8 93.9 67.5 72.7

DivideMix Best 96.1 96.3 77.3 79.5
Last 95.7 96.2 76.9 79.2

Table 5.6: Performance benefits when applying our augmentation strategy to previous
techniques at 20% noise level. Baseline and augmented accuracy scores are reported.

In particular, it appears to have a strong impact on the way noisy and clean data converge

during the warm-up period, which these algorithms typically rely on.

The AugDesc-WS-WAW strategy and even augmentation in general benefits per-

formance in multiple categories (Table 5.6). As the experiments conducted were with no

tuning of hyperparameters, we expect that further improvements can be seen when tun-

ing with augmentation in mind due to the ways in which these algorithms exploit the loss

distributions. Additionally, we see that across the board, the average performance of the

last few epochs with augmentation is better than performance without. This indicates

that using our augmentation strategy aids in learning a better distribution.

5.4 Conclusion

In this chapter, we propose and examine the effect of various augmentation strategies

within the domain of learning with label noise. We find that it is advantageous to

add additional augmentation, particularly for higher noise ratios. Furthermore, copious

amounts of augmentation during warm-up periods should be avoided if the noise rate

is high, as this can have detrimental effects on the property that neural networks fit
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clean data before noisy data [161]. We performed extensive studies and found that the

AugDesc-WS strategy is capable of producing improvements across all noise levels and

in multiple datasets. We further show its generalization capabilities by applying it to

previous techniques with demonstrated success. This is additional evidence for how using

two separate pools of augmentation operations for two separate tasks in these machine

learning algorithms can be beneficial. This idea has previously been demonstrated to be

effective in SSL settings [176], and we now show this for LNL settings.

In summary, we examined where it is advantageous to incorporate varying degrees of

augmentation, and were able to demonstrate a strategy to advance the state-of-the-art as

well as improve the performance of previous techniques. We hope the insights regarding

the strength and amount of augmentation will be beneficial for future applications of

augmentation when developing LNL algorithms.
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Chapter 6

Impact of Demographics on

Multimodal Dataset Labels

Portions of this chapter are slated for publication at the Conference On Computer- Sup-

ported Cooperative Work And Social Computing ’22

In the previous chapter we presented a method for improving machine learning algo-

rithms in the presence of label noise in the unimodal setting. In this chapter, we look at

how label noise and label variability manifests in a multimodal setting.

Multimodal sentiment analysis presents the challenge of computationally determin-

ing how humans would emotionally interpret a given input. For example, what is the

sentiment expressed by a speaker in a video? This problem is critical for building richer

human-computer interaction experiences and providing automated assistance to people,

for example. Leveraging the power of deep learning, researchers have made progress

modeling sentiment in any modality of input including text, video, audio, or some com-

bination of multiple modalities. To train complex, non-linear deep learning models,

researchers have created datasets consisting of thousands of video examples labeled ac-

cording to sentiment [188, 189, 190, 105, 191, 192]. Most of these datasets consist of
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example videos of “talking head” speakers. Each example is labeled independently by a

set of human annotators who are asked to gauge the emotion of the speaker (whether

they are saying something positive, negative, or neutral, for instance). As research in

sentiment analysis has progressed, AI models that classify sentiment have been applied to

a range of decision making pipelines and applications, including emotional chat support

[193] and determining hate speech [194]. Furthermore, as these technologies advance and

become more pervasive, it can drastically alter how we live our daily lives from seeking

out medical help [195] to and changing our work environment [196].

To create the datasets to train the models in these systems, researchers often rely

on hiring crowd workers through services such as Amazon’s Mechanical Turk to label

the data. There has been extensive work examining how to leverage crowd workers to

obtain quality labels at scale [197, 198], and sentiment is frequently labeled in the same

manner. However, sentiment is highly subjective, and when appraising sentiment of

others, psychologists have found that our experiences and opinions play an important

role [199, 200, 201, 202, 203, 204, 205, 206, 207, 208]. Since these studies have shown

that demographics can be used to capture differences in sentiment appraisal, it there-

fore suggests that differences in annotator demographics can lead to differences in their

interpretation of sentiment.

To attempt to control for the impacts of demographics, researchers have developed

previous datasets that balance some variables. For example, balancing for a 50-50 dis-

tribution of male and female speakers [105]. Newer datasets also occasionally provide

demographic information of the speakers or subjects in the dataset [192, 191] as a means

to aid models in making more informed decisions. Other works have also examined the

biases inherent to the contents [209, 210, 211]. However, few works have examined bi-

ases due to annotators’ demographic backgrounds [212, 213, 214]. To the best of our

knowledge, no works have examined annotator biases for sentiment from a multimodal
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perspective.

If annotator demographics impact sentiment, then any results gleaned from a dataset

that does not control for annotator demographics at the time of creation will be biased

and skewed in addition to all the other biases that such datasets already exhibit [215,

216, 217] by any “unbalanced” (defined relative to specific application needs and goals)

distribution of annotators. Therefore, if the demographics of the annotators did not

match the distribution of, say, the general population, then results and analysis using

that dataset might not be applicable to the general population. Furthermore, models

and evaluations using these datasets would reflect the opinions of those who perform

crowdwork versus those who do not. For systems which make decisions based on these

models, this would mean lower efficacy for certain groups of users. However, as these

technologies become increasingly critical in commonplace technological systems, it would

not be far-fetched to notice a disenfranchisement of specific demographics of people [218]

Understanding the potential role of annotator demographic is critical in informing

decisions about how we use and trust sentiment analysis technologies going forward. We

attempt to provide some answers to this and quantify the impact of demographics on

sentiment analysis datasets. We re-labeled the well-established MOSEI dataset [105]: a

dataset of “talking head” speakers scraped from YouTube. Using a crowd-sourced labeling

process that took the annotators’ demographic information into account, we produce a

rich annotation that includes 5 times more annotators per video than the original MOSEI

dataset. We also collected detailed demographic information for all annotators in our

relabeled dataset. Using this dataset, we conduct statistical experiments to establish and

begin to quantify the impact of demographic background on sentiment labeling. From

this analysis we found that annotator sentiment varies (with statistical significance) based

on demographic factors such as age, gender, ethnicity, and educational level. Our results

suggests that decisions derived from AI should be used cautiously and a strong need for

107



Impact of Demographics on Multimodal Dataset Labels Chapter 6

interdisciplinary collaboration for more inclusive AI development.

Our work provides the following contributions:

• We present a large set of annotations for multimodal sentiment analysis containing

rich demographic information. Additionally, we provide annotations for indepen-

dent modalities (text, audio, visual) in addition to their combined annotations.

• We show that demographics have a significant effect on sentiment labeling, and show

that this effect generalizes across all component modalities: text, visual, audio, and

their combination. We find noticeable differences in label agreement and ratings for

different modalities. These results suggest that decisions derived from AI results

should be used cautiously. In particular, they should consider the parameters for

data collection that may introduce unintended biases.

• We show that algorithmic claims of sentiment classifier improvement can vary

greatly due to demographics, observing up to 4.9% change in absolute algorithmic

performance when sampling for various sub-populations. This exceeds the improve-

ment claims over state-of-the-art of most recent sentiment classification machine

learning papers. We additionally show the ability for our gathered labels to be

used as an improved evaluation metric to account for demographic biases. Data is

released for public use.

6.1 Related Work

We examine relevant literature to motivate our work. We first examine modern

advancements in multimodal machine learning that is applied to sentiment or emotion

classification. We discuss datasets these models are trained with and their annotation

process. We then examine how demographics can influence the emotion appraisal process.
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Finally, we examine ways in which works have attempted to quantify and mitigate the

demographic of annotators.

6.1.1 Multimodal Machine Learning

Enabling machine learning for multimodal data has been explored in many domains

over a long period of time [79]. Many machine learning techniques have been applied

on the task of sentiment classification [219, 81]. As transformer-based architectures have

become very popular recently, some recent techniques have also explored their use in

multimodal settings. Originally proposed in [84] for neural machine translation (NMT)

tasks, they have demonstrated superior performance on multiple benchmark problems

such as in image classification [73] and action recognition [72]. The basic functionality

is to apply layers of self-attention, on sequential representations. Recent attempts by

researchers to enable multimodal modeling on transformers via cross-modal attention

have been successful for sentiment analysis [87, 220]. Inspired by work which showed

that shifting one modality (language) using representations from other modalities im-

proves performance, [81], MAG-XLNet [221] incorporates the ability for fine-turning on

multimodal data on a transformer-like model built on top of XLNet [222]. XLNet is an

extension of transformer based methods that enables learning over longer sequences and

the ability to better model the context dependencies.

6.1.2 Multimodal Machine Learning Datasets

There is a long line of work for building large scale datasets for machine learning.

There have been numerous works on the development of large scale datasets for the

vision, language, and multimodal domains. Many datasets have been gathered over the

years to explore sentiment or valence: text based, visual, audio, and via their multimodal

109



Impact of Demographics on Multimodal Dataset Labels Chapter 6

combination [105, 192, 191]. Additional datasets using modalities such as pose [190, 188]

and EEG [12] have also been created and analyzed. Datasets built around continuous

representations have also been explored [223].

Due to their large size, these datasets are typically labelled via crowdsourcing plat-

forms such as Amazon Mechanical Turk. One frequently used method for obtaining

quality labels is the use of multiple annotations and taking the mean or majority class.

While many existing datasets simplify annotations to a single ground truth emotion or

sentiment label, likely due to a lack of annotators per sample, emotion representation is

not necessarily discrete. Representations such as [224] describe emotions in a continuous

space. In this work we compare the mean label for ease of comparison with prior art,

however, the scope of our data collection enables us to represent labels as a distribution

(with mean and variance).

6.1.3 Demographic Effect on Emotional Appraisal

The studies of how emotions are interpreted have a long history in psychology. Demo-

graphics such as gender [202, 200, 225], age [206, 204], culture [203], economic background

[226], etc., play a particularly large role. There are significant differences in the emotion

expression and appraisal as a result of these factors. Combinations between multiple

demographic variables have also been considered, such as in age and culture [206]. For

example, Plant et al. [200] showed that people typically rate women sadder than men,

and that they demonstrated a wider variety of emotions. Fischer et al. [202] found that

women’s experiences of emotions were modulated by cultural background. Many works

have also explored gender stereotypes beyond this [227, 203].

Cultural backgrounds have also played a role. Brody [203] presented data showing

that emotion expressiveness across cultures are different. Davis et al. [201] demonstrated
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# samples
Mean
annotators
per sample

Total
annotations Scale D M

Ours 500 15 30,000 7-pt likert Yes Yes
CH-SIMS [192] 2281 3 27,372 7-pt likert No Yes
MOSEI [105] 23,453 3 70,359 7-pt likert No No
SEWA [223] 1990 5 Continous Continuous No Yes

Table 6.1: High level statistics of recent datasets for sentiment or emotion analysis.
D represents whether the datasets contains annotator demographic information and
M represents whether the datasets provide per-modality annotations. Our annota-
tion effort produced more ratings per sample and also contains detailed annotator
information. We also provide per-modality labels and have a comparable number of
total annotations in the entire dataset. This type of annotation enables us to perform
in-depth analysis on demographic effects and is comparable to large-scale machine
learning datasets by annotation count.

that elicited emotional responses are different between participants of Chinese versus

American culture between men and women. Age has also been well studied: Mitchell et

al. [204] found that older adults are less accurate at interpreting prosodic emotion cues,

and follows numerous previous works studying the age-related decline for identifying

emotional cues [228]. Additional differences in age demographics between rater and

poser were also discussed by Riediger et al. [205], and that emotional expression by older

posers were more difficult to read.

6.1.4 Annotator Bias

The study of annotator demographics and its relationship to machine learning dataset

creation is not new. Many techniques have tackled this during data acquisition [229, 230]

as well as during model development [231, 100]. Works such as Wauthier and Jordan

[232] proposed a framework to mitigate worker biases and downstream effects on model

performance. Asking workers to think about other workers responses as demonstrated

by Shaw et al. encouraged workers to provide more objective annotations [233]. This
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inspired Hube et al. [213] to develop a method for intervention to overcome the strong

influence that personal opinions have during annotation of subjective datasets. Chung et

al. [234] recently conducted a systematic evaluation of different approaches for obtaining

ground truth labels. Most recently, techniques have been proposed by Chen et al. [235]

have attempted to capture annotation uncertainty as well as improve consistency by

improving the annotation task design.

Furthermore, recent efforts to combat bias have been a topic of focus in the

natural language processing domain. In particular, it has been observed that for

datasets pertaining to hate-speech, the demographics of annotators play a large role

[214, 236, 237, 238, 239, 240]. These results are echoed by Prabhakaran et al. [212] who

found that annotators for hate-speech [239], sentiment [241], and emotions [242] for the

language modality contained bias due to annotator demographics. That is, aggregated

labels did not properly capture the perspectives of annotators from varying demographic

groups. In fact, the impact of annotator demographics have also been observed when

obtaining credibility ratings for news [243]. Some recent works have begun to quantify

and mitigate this effect. Gordon et al. [244] introduced a metric to correct metrics based

on the assumption that annotators will provide inaccurate answers with some chance.

We build upon these works by providing more detailed data as well as analysis for

the multimodal domain. Additionally, we examine the scale of these effects empirically

using state of the art techniques.

6.2 Experimental Design

We examine the impact of how demographics of annotators impact label distribution.

In other words, do the demographics of annotators matter when labeling sentiment data?

Our hypothesis is that by grouping annotations based on the demographics of annotators
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who provided them, we can drastically alter the “ground truth” label distribution, to the

point that these differences might even outweigh differences among competitive machine

learning classifiers attempting to approximate this ground truth. Furthermore, with the

intuition that model performance and evaluation will be strongly affected, we examine

how annotations from strategically selected demographic subgroups can be used to cre-

ate a demographic bound on performance. Naturally, this requires gathering data that

can capture nuances of demographic effects and is also capable of being used by recent

machine learning architectures for evaluation.

We divide the experiment into two parts: 1) We first conduct a large scale annotation

(> 1000 annotators) of videos used for multimodal sentiment classification, and 2) We

additionally conduct a set of statistical experiments to determine the significance and

impact of annotator demographics on dataset labels.

We choose to evaluate sentiment, in this case positive versus negative speaker stance

(as evidenced by language, speaker video and speaker audio), due to the simplicity in the

annotator decision making (one single axis) compared to more complex emotion measures.

Agreement scores among raters are generally much lower for emotion datasets than for

sentiment (positive vs negative) only [245]. We perform our investigations in the chosen

domain to provide a strong baseline, as more obvious annotations should intuitively be

least affected by demographic differences. Furthermore, as we wish to examine whether

the effects of modality would modulate any annotator biases, we additionally gather

annotations for the individual component modality for each sample. We present our

process for data collection in Section 6.3.

We build our dataset by randomly sampling from the test set for MOSEI based on

the split from the work of Tsai et al. [87] and Rahman et al. [221] for re-annotation. This

is a very suitable dataset for our purposes. The fact that we are extending an existing

established dataset means that we have a baseline set of annotations to compare to when
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performing analysis of the new annotations. Another benefit is that the machine learning

research community actively produced and evaluated classifiers for MOSEI, which can be

used in our evaluation [87, 221, 81, 220]. By changing the demographic distribution of the

test set, we determine the approximate effect that this would have on machine learning

models. We discuss and conduct thorough experiments in Section 6.4. In summary, our

goals are to 1) provide a set of annotations large enough for machine learning evaluation

and to understand demographic influences and 2) provide empirical evidence for the scale

of annotator demographic effects on sentiment dataset labeling across modalities.

6.3 Data Collection

We now describe the data collection process for our large scale study to examine the

influences of annotator demographics on unimodal and multimodal sentiment-dataset

annotation. We first describe the video samples used for annotation in Section 6.3.1. We

then discuss the platform used for recruiting participants (Section 6.3.2), and the collec-

tion interface (Section 6.3.3). Lastly, we discuss our way to improve the demographic

distribution of the annotators in Section 6.3.4.

6.3.1 Multimodal video samples

We build our dataset using 500 videos segments randomly sampled from the Mul-

timodal Opinion Sentiment and Emotion Intensity (MOSEI) dataset [105]. It is one of

the largest multimodal sentiment analysis datasets to date, and is highly regarded in

the domain. The dataset is gender-balanced for male/female speakers. All sentences

are annotated and randomly selected from various topics and monologues. The dataset

contains over 23k video segments of 7.28 seconds long. Each segment was annotated by

3 annotators on a 7-point Likert scale. This resulted in over 70k total annotations.
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To answer questions regarding modality effects, we split each video into its compo-

nent modalities: audio, video, text, and their combination. This results in a total of 2000

different samples. Annotators are randomly assigned 30 of the 2000 samples for annota-

tion. We ask more than 1000 annotators to provide ratings and results in approximately

15 annotations per sample. This enables us to to capture the per sample demographic

and population effects on sentiment annotation for all modalities.

6.3.2 Prolific crowdsourcing

We use Prolific to gather annotations for the samples. Prolific is a crowdsourcing tool

similar to Amazon’s Mechanical Turk available to countries within the Organisation for

Economic Co-operation and Development (OECD). In addition to being able to designate

tasks to crowdworkers, Prolific gathers demographics of participants and makes this

information available to researchers. Researchers can filter for a specific participants

based on demographic background. We chose to go with Prolific as our crowd sourcing

tool due to this accessibility of diverse participant information and its strict verification

process (via government issued identification). We obtained crowdworker ethnicity data,

country of birth, employment status, student status, gender identity, fluent languages,

highest education level, immigration, whether participants were mono/multi culture,

their nationality, and household income.

In addition to filtering for data we need for analysis, we filter participants by param-

eters to maintain data quality. In particular, we only accept workers with greater than

97 percent approval, who are fluent in English with no language related disorders. It is

also required that participants can see video and hear audio.

This work involves reannotating part of an existing dataset consisting of non-offensive

video footage of movie and other reviews. We do not collect demographic information
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ourselves or have access to any private information of the annotators. The participants

have further agreed that some high level demographic information will be shared and used

for research purposes when signing up for our study through Prolific. The annotation

task is quick, and we experimentors did not interact directly with any annotators. As

a result of these factors, our institution’s IRB has determined our methodology to be

exempt human subjects research. We recognize demographic properties of participants

is sensitive information and follow protocols to protect the privacy of the annotators.

The representations of demographic properties are limited by the availability of infor-

mation provided by Prolific and exclude certain populations from analysis. We encourage

the reader to interpret results with these factors in mind.

6.3.3 Collection interface

We follow the same annotation process described in detail by Liang et al. [245] for

data collection interface to reduce variability between the experiments. The participants

are presented with a series of bullet points explaining the task of sentiment analysis,

as we did not have access to the original training videos used by Zadeh et al [105].

We describe sentiment as the speaker’s attitude towards the topic of their discussion.

We also asked the annotators to rate the sentiment of the speaker, and not their own

opinions. As sentiment labeling is a frequent task on crowd working sites, we expected

most annotators to be able to accomplish the task with minimal training. We did not

provide too much training as we, in accordance with previous annotation goals, wanted

to avoid the over-training of subjects and wanted to maintain the in-the-wild goal of the

dataset.

After receiving directions, the participants are given 30 random samples to annotate.

We asked participants to provide ratings on a 7-point Likert scale for sentiment from
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Figure 6.1: Distribution of sentiment ratings by modality. The distributions are similar
to the original ratings, however noticeable differences exist when examining different
modalities.

highly negative (-3) to highly positive (3). We further ask the participant to rate the

gender of the speaker as well as ask if any samples failed to display properly. We match

the gender assessment of each sample with the original annotations as an additional way

to maintain data quality. While we do not use this assessment of the speaker in our

work directly for analysis, we anticipate future work to explore relationships between

annotator demographics and data properties.

We estimated the time to complete 30 questions to be approximately 13 minutes

or approximately 20 seconds per sample with some extra time for the directions. We

targeted payment to be approximately $9.50 per hour as this is the good pay threshold

set by Prolific. However, our actual hourly rate ended up being approximately $13 per

hour as text was much faster to label and the average taken length for 30 questions ended

up being 10 minutes instead. We did not reduce this pay as we did not wish affect the

task adoption or completion rate [246].

6.3.4 Improving demographic diversity of annotations

We divide the annotation process into two phases during the summer of 2021. In

the first phase, we asked 500 participants from the US to provide annotations without
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Age Before
boosting

After
boosting

Prolific
dist.

≤ 20 27% 21% 17%
21-30 58% 46% 50%
31-40 8% 16% 18%
> 40 6% 17% 14%

Gender

Female 79% 73% 73%
Other 21% 27% 27%

Ethnicity

White 73% 67% 74%
Other 27% 33% 26%

Table 6.2: Demographic distribution by age, gender, and ethnicity before and after
gathering data from under-represented groups. By gathering more data from under-
-represented groups we reduced the demographic skew. We report the proportion of
labels before and after applying a boosting process to increase the number of under-
-represented demographic groups of online annotators. Each annotator provided 30
labels and we obtained data from approximately 1000 people. We also provide the
approximate active proportion of annotators available to researchers as reported by
Prolific. These distributions are in agreement with previous findings that a majority
of crowd workers are white, young (under 30), and female. More data is collected from
under-represented groups by filtering for candidates in these groups, i.e., annotations
over age 30, annotators who are not female, and annotators who are not white. The
boosting process provided a noticeable benefit to the representation of the dataset.
However, annotations by underrepresented groups typically took longer, and partici-
pants were less actively picking up our annotation task. This would explain some of
the more dramatic demographic skews in age and gender before applying the boosting
process.

controlling for any specific demographic backgrounds. In the second phase, we gather

data from an additional 500 annotators by restricting certain demographic backgrounds.

The process for restricting annotations from certain demographics is the same as quality

related properties such as annotator approval rates. Our task is only visible to particular

populations that match a pre-specified group. That is, we ask for annotators who are

older than 30, who are not female, and who are not white. We keep quality related filters

such as approval rates, language skills and others the same. We perform this restricted
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group annotation process independently for each group. We report the demographic

proportions from this process in Table 6.2. We see that the dataset is heavily skewed

before this restriction process, and that the representation of smaller groups is boosted

afterwards. We also report the approximate overall Prolific distribution of annotators.

However, we found that underrepresented groups typically participated far less actively

in the annotation process and thus amplified some dataset skews seen in age and gender.

For our study, participants who did not provide demographic information were re-

moved from the list of pool of potential annotators. We further limited our scope of

research to participants within the US to limit potential geographic effects. Including

multiple geographies would also exacerbate the long-tailed distributions of demographic

properties due to additional variables. However, since a large portion of the active par-

ticipants on Prolific appear to live in the US, we still had a sizeable population for

recruitment. Additionally, as a vast majority of the active users on Mechanical Turk are

also from the US [247], we anticipated significant demographic overlap with the original

labels. After applying these filters, there were approximately 50k participants who were

active in the last 90 days prior to data collection.

In general we found that when boosting for specific demographics, it took longer before

our annotations were completed. We also found that by only removing one demographic

from consideration, such as only permitting annotators who were not female, that the

other demographic properties (gender and ethnicity) were still heavily skewed. Although

using more specific filters may help, such as filtering for non-female and non-white, we

chose to use more general filters as some population demographics were very small that

we did not want to introduce other population effects. We did not notice any differences

in annotation quality for different demographics.
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6.4 Experiments and Results

We conduct experiments and present results to first provide a summarized view of the

gathered data for context to interpret the results Section 6.4.1. We present the signifi-

cance of demographic effects in Section 6.4.2. We then perform a series of experiments

to explore the impact of these effects. We first examine the effects of this via Monte

Carlo simulation experiments in Section 6.4.3. We then analyze how inter-annotator

reliability is impacted in Section 6.4.4. Lastly, we analyze the impact that this has on

state-of-the-art learning algorithms for this task in Section 6.4.5.

6.4.1 Data overview

A total of 1034 annotators participated in our annotation task. We removed partici-

pants who did not complete the task by answering all 30 questions, completed the task

too quickly, or experienced connectivity issues. A final 886 annotators completed the

task with the distribution of population shown in Table 6.2.

We find that without controlling for demographics, our distribution skew is similar

to what is found in existing literature: young, female, and educated [248, 247, 249, 250].

Without controlling for demographics, the proportion of females in the dataset was 79%,

those under 30 made up 85% of the overall dataset and consisted of approximately 73%

people who claimed white ethnicity. After attempting to boost the under-represented

populations, we were able to obtain considerable reductions in proportion of females

(73%, proportion of white ethnic background was reduced to 67%, and proportion of

those under 30 was reduced to 67%. This increases the average dataset age to 29.5

years old from 25.5 years old. For comparison, the US population is approximately 62%

white, 50% female, and 40% under 30. As a large portion of analysis is centered around

over-represented versus under-represented groups, we will will frequently refer to under-
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(a) Age Category (b) Simplified Ethnicity (c) Gender

Figure 6.2: Mean sentiment ratings broken down by demographic categories. We
provide the age, ethnicity and gender charts. Component modalities (text, video,
audio, and combined) are shown as different colors. Grey line illustrates 95% confidence
intervals. Note that there are obvious significant differences in ratings for modality.
Trends can also be observed visually.

represented groups as other or non-majority when presenting results. For example a

comparison of female versus non-female or other. We do this to avoid having very small

groups due to finer categorization.

Other demographic aspects of the dataset for people who gave answers were: 46% of

people identify as monocultural and 41% of people identify as multi-culture for culture

identity; 95% were born in the U.S., however only 89% learned English as their first

language. Approximately 41% of participants were currently students where 2% of an-

notators had a doctorate degree, 12% had a graduate degree, 40% had an undergraduate

degree, 30% had a high school degree, 14% have a technical degree, and the remainder

have other or no formal qualifications. All demographic information and annotations are

publicly accessible via Github for further analysis.
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6.4.2 Significant effects in sentiment rating due to demographics

We wish to understand whether demographic background can cause significant dif-

ferences in ratings. For example, differences between older versus younger annotators.

To understand the demographic differences while accounting for the various grouping

effects from samples, subjects and modalities, we conduct a linear mixed effects analysis

following [251]. We construct a linear model of sentiment as a function of all gathered

demographics. We modeled age, gender, ethnicity, cultural background, and education.

This model was significant (p < 0.001). Figure 6.2 presents example annotation distribu-

tions for age, ethnicity, and gender. We find via visual inspection that despite age having

a non-linear effect, the slope is still significant (p < 0.01).

We report mixed effects analysis results as an effect size with a standard error bound.

We found that age affects sentiment ((χ2(1)=12.17, p < 0.001)), and increasing sentiment

by approximately 0.0045 ± 0.0013 (standard errors) per year. Gender was also found

to have a significant effect ((χ2(1)=4.33, p=0.037)), increasing rating by 0.066 ± 0.032

standard errors. Significant interaction effects were found between gender and ethnicity

((χ2(4)= 11.10, p=.026)). Borderline significant interaction effects was found for age

and gender ((χ2(1)=3.73, p=.053)). We further test for any interaction effects between

demographics and modality. As expected, testing modality is a highly significant effect

((χ2(1)=11.10, p < .001)). Interaction tests between modality with age, ethnicity, culture

and education showed no major effects, the greatest significance was between gender and

modality at ((χ2(2)=2.95, p=.086)).

These results suggest that ratings for sentiment when annotating in text, visual,

audio and all combined modalities will produce different ratings depending on which

demographic is annotating. They also suggest that the demographic effect is consistent

across modalities. Furthermore, the significant differences in annotations within each
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modality suggest that ground truth annotations for each modality is subtly different.

That is, human perceptions of text, video, audio, or combined modalities are subtly dif-

ferent. Therefore, when building datasets, we need to be careful whether participants are

accounting for the information in the modalities we are interested in holistically. Fur-

thermore, when developing a model for prediction, we should be wary that the predicted

label matches the expected label of user interaction. That is, we do not want a model

to infer the multimodal sentiment label when a user is only communicating via text, as

this might result in lower perceived model effectiveness.

6.4.3 Monte Carlo simulation of demographic effects

We perform a Monte Carlo experiment to visualize how shifting demographics can

alter the truth of labels for a dataset. The diverse demographic information in the

dataset enables us to perform a Monte Carlo sampling of sub-populations to understand

the effect of varying the population with differences in the dataset. We seek to empirically

demonstrate how sampling various sub-populations based on demographic ratios impacts

the dataset metrics. We also seek to show how using our labels can be used as an

evaluation to test for the spread of performance in current algorithms due to demographic

differences. We conduct the results using the combined modality for bench-marking and

analysis purposes.

Following the mixed effects analysis, we saw a significance in the annotator gender

and age categories for all the modalities. We randomly sample 3 raters per video segment

with replacement from the dataset for different mean ages and for varying proportions

of women. We examine metrics with respect to the original dataset [105]. We report

Jaccard similarity and Pearson correlation against this dataset, similar to how previous

models used these [87]. We additionally report the Krippendorf Agreement score for each
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(a) Monte Carlo performance metrics by age. Sampling is performed to obtain a subset of our data to
obain differing mean ages. Similarity with original annotations from MOSEI [105] is reported in the
left two figures using Jaccard similarity and Pearson’s r. Agreement within the Monte Carlo sampling
is reported as Krippendorf alpha. We report the distribution of demographics in the right-most figure.
Observe that when compared to the original dataset (right two figures) that there is a high degree of
relative change. In particular, annotators aged approximately 30 had the least amount of similarity with
original annotations. Stronger agreement within the dataset (third from right) appears to correspond
with more similarity to original annotations.

(b) Monte Carlo performance by gender distribution. From the right two figures, we see that as the
proportion of women increases, there is more similarity with the original labels. Since a majority of
annotators are women, this shows that the labels are more biased towards the opinions of women. Women
also tended to agree more with the annotations of other women. The right most figure demonstrates
that there are more younger women than older women and helps to illustrate the co-variance between
age and gender.

Figure 6.3: Visualization of Monte Carlo experiments on age and gender. Left two
figures in each category show similarity with original ratings from [105]. Alpha is the
agreement score of the dataset sampled via Monte Carlo. The trends observed above
support the significance of effects found in Section 6.4.2.

monte carlo sample.

As can be observed in Figure 6.3, we observe large variations in age metrics when

adjusting for the mean age of the dataset. There appears to be a correlation of within

dataset agreement for age with regards to agreement with previous labels. When control-

ling for proportion of females, we see a small improvement in metrics as the proportion
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of female annotators increase. This supports works in literature on the influences of

gender in emotion interpretation [252, 253, 200, 254, 255, 256]. Additionally, all these

results agree with our observations for significance previously. Furthermore, they support

the finding that testing for demographics can be beneficial for measuring ground truth

quality in subjectively annotated datasets. In summary, these results suggests that the

original ground truth labeled via Mechanical Turk likely follow the overall crowd-working

demographic biases, and these effects showcase a demonstrable effect.

6.4.4 Differences in inter-annotator reliability due to demo-

graphics

In this section we provide experiments for annotation quality and reliability. We

explore two questions: 1) Are annotators in certain demographics more in agreement

than others? and 2) Are annotators in certain demographics more in agreement with the

original dataset? To evaluate agreement within a demographic group, we use Krippen-

dorf’s alpha. Krippendorf’s alpha is a metric used to measure annotation consistency

among annotators and to give an indication to the quality and amount of variability

present in a dataset. It can also normalize for missing data and is applicable on a vari-

able number of coders. To measure agreement with the original dataset, we compute

the Pearson correlation (r) of each demographic with the original labels from MOSEI.

Correlation is reported for the combined modality only as the original dataset does not

provide per-modality annotations. Results are reported in Table 6.3

The overall krippendorf agreement of our data is .48 which is good for a publicly

annotated dataset, especially given the diverse population which provided annotation.

Additionally, this is comparable to the .51 reported in [245]. While works such as [257] re-

port higher agreement scores, these annotation efforts typically require a post-annotation
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discussion phase to find score consensus. It is challenging for crowd-sourced annotated

data to do this and thus explains much of this difference. Some works such as Schaeker-

mann et al. [258] have studied how to effectively incorporate a deliberation process into

the crowd-sourced annotation process. However, when creating larger datasets, incorpo-

rating deliberations have thus far not been used extensively. Potential for future work

such as using advanced semi-supervised models on small strongly annotated datasets that

incorporate deliberations exist.

We measure the agreement score among sub populations to look for any large demo-

graphic effects. No large differences in agreement were noticed in age, with the exception

of the text modality and all modalities being slightly lower for annotators over 30. This

demonstrates that within each age group, participants had similar opinions regarding the

sentiment of a sample. However when examining the correlation, participants over 40

provided annotations that were far less correlated with the original labels. This trend

is observed for non-white annotators, as well as non-female annotators. In addition to

using the seven-class annotations to compute agreement, we also simplified the labels to

be binary and computed the agreement. That is, all labels less than zero are considered

to be negative, and all labels greater than zero are considered to be positive. We found

that the agreement scores follows a similar trend of higher agreement in over-represented

groups and lower agreement in under-represented groups.

These results demonstrate that certain demographic groups might agree on labels

more than others. To improve this, some demographic groups may benefit from additional

training due to task familiarity. Additional demographic factors such as differences in

emotion interpretation due to age, gender, and culture might also be influencing the

results. Furthermore, we see that the same groups that have lower agreement (older

than 40, non-white, and non-female) also had lower correlation scores with the original

annotations. These demographic groups are also less represented among crowdworkers.
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This is further evidence that the demographics has a strong influence on ground truth

labels.

6.4.5 Best/Worst case analysis by demographic

We further quantify the effect of shifting demographics on trained model performance.

We experimented with the best possible (and worst possible) demographic distributions

with respect to the MOSEI dataset. In other words, what is the population distribution

that gives us video labels as close (or as far) as possible to MOSEI? This is relevant

because MOSEI and many other sentiment prediction datasets [192] are often taken

as ground truth in various works, even though annotator demographics are typically

unaccounted for. We wanted to understand the possible swing in scores that could occur

with an arbitrarily good (or bad) population distribution.

Sampling procedure

To perform this experiment, we first divide the population of annotators into a series

of age bins from 18-20, 20-25, ..., 45-50, > 50. We further breakdown the annotators

into female or non-female bins. This gives us 16 bins to optimize. Given each bin, we

then adjust the weights of the female and non-female annotators to match the desired

target gender distribution within that age demographic. The “ground truth” labels for

each video sample can then be computed using a weighted averaging of the demographic

category based on the mean ratings within each demographic category:

vi=
Σjwjli
Σjwj

, (6.1)

where v is the determined ground truth label using the simulated distribution, wj is

the weight for the j-th group of annotators for the video, lij is their label. Weights
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are optimized via gradient descent using the MAE of our predictions vi against the

original MOSEI labels as loss. By maximizing the MAE with respect to MOSEI, we can

obtain the worst case demographic population. We found that the best or worst case

population demographics did not change between multiple optimization runs. We restrict

the minimum demographic to being 1% of the overall population. For the US population

data, we base the demographic weights on census data. We then compare the ratings of

this hypothetical population of annotators.

Models

Three recent state of the art techniques for multimodal sentiment classification are

used for evaluation:

MulT [87] is an extension of the transformer architecture to enable multimodal in-

puts. It incorporates elements of early feature fusion by mixed-attention of modalities and

then using late fusion to combine predictions across modalities. We used the unaligned

model for evaluation.

MAG-Bert [221] Enables the fusion of modalities and the use of pretrained em-

beddings by exploiting modality gating mechanism inspired by [81] and incorporating

into a transformer architecture. State-of-the-art benchmarks were reported on multiple

datasets using BERT embeddings. [259]

MAG-XLNet Utilizes the same fusion technique however uses an XLNet [222] back-

bone which is improvement on Bert that exploits autoregressive training, relative posi-

tioning, and segment recurrence from Transfomer-XL [260] for improved modeling.

Each algorithm is trained on the original dataset using publicly available code. The

algorithm results are then measured against the ratings scores for a particular population

distribution derived from the optimization procedure. We report the binary accuracy,

F1 score, mean average error and pearson correlation. For binary accuracy, this value is
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reported as the accuracy of positive or negative sentiment only. F1 is a harmonic mean

of precision recall for positive and negative sentiment. MAE and correlation is a measure

obtained from the means for a specific sample and the predicted mean rating. Note also

that since our annotations are for the test set, we run for only a single trial as opposed

to cross-validation. This methodology is the same as existing standards.

Classification results

We present the results in Table 6.4. As can be seen, there is a large spread in

performance among different population distributions. A drop in performance is expected

as the existing works do not optimize for our test condition. The most similar sampling

to original labels did not improve results significantly, as expected, potentially due to

crowd-working demographics being similar. Examining the US population shows that

there is a drop, indicating that the demographic differences are having an effect of about

1%, when compared against a “crowdworker” demographic.

However, what is surprising is the potential effect from a demographic that is the least

similar to the original annotations. While we see an approximately 3.3% drop in binary

accuracy between least and most similar for when compared to the original dataset,

algorithmic performance decreased much more. Algorithm performance decreased up to

4.9%. This different suggests that the algorithm is over-fitting to properties in the original

dataset, and that these properties can be observed when adjusting for demographics.

From an HCI perspective, the effect of this would suggest that AI systems for sentiment

prediction works well for some people (e.g., younger, white, and female) and not others

(e.g., older, non-white, and non-female).

Furthermore, when measured against the original annotations (Table 6.4(d)), the new

models MAG-Bert and MAG-XLNet outperform the older technique (MulT). However,

when the population is changed, we see that newer techniques perform much worse than
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older techniques. This suggests that the newer models are matching patterns and prop-

erties in the original dataset that can be quantified via annotator demographics.

In summary, we see that by sampling for different demographics we can place a

bound on the expected behavior due to variations in annotator demographics. From our

experiments, this effect is almost 5% for binary accuracy and affects models differently.

This is quite significant as we are simply evaluating based on positive and negative

expressed sentiment and not at a fine grained level. For more recent models (MAG-

XLNET and MAG-Bert) the performance drops more than the older technique (MulT).

As models have become more capable of capturing dataset nuances, these effects appear

to become more amplified based on this experiment. This points to the importance

for more rigorous evaluation measures that include annotator demographic information.

This is particularly important for annotations that have high degrees of subjectivity.

6.5 Discussion

We discuss the impact of annotator demographics on dataset biases and model effi-

cacy, current limitations of our work, and recommendations for the research field.

6.5.1 Impact

In this work we produced a set of annotations large enough for machine learning

evaluations that contains detailed demographic information. We find that there can

be a nearly 5% difference (77.8%-72.9% in the case of MulT) in binary classification

accuracy alone when adjusting demographics for evaluating model behavior. This dif-

ference is likely exacerbated when when examining fine-grained sentiment classification

or for more controversial annotation tasks. For example, in applications such as lan-

guage toxicity classification, it has been observed that real world user experience and

130



Impact of Demographics on Multimodal Dataset Labels Chapter 6

reported algorithmic performance is vastly different [244]. Furthermore, as models are

becoming increasingly expressive and optimized with respect to original datasets (which

clearly have their own demographic biases), demographic differences may make the seem-

ing improvements much less pronounced and impressive. This can be observed in Table

6.4 where MulT, an older algorithm, outperforms the newer algorithms MAG-Bert and

MAG-XLNet when labels are given by annotators which follow a US population distri-

bution. We further contextualize this expectation via hypothetical user groups who use

sentiment prediction algorithms and frameworks in Table 6.5. With no exception, we see

that demographics that correspond to the majority class correlate better with previous

annotations. These results mean that any user who belongs to a minority demographic

group (with respect to the overall annotator demographics distribution) will perceive

the sentiment rating system to perform worse than those in the majority group. Given

that there are quite different biases in common machine learning corpora, namely biases

towards white male populations, and common crowdsourcing populations, namely biases

towards young white female populations – both uniquely problematic —, this situation

is bound to occur fairly often.

Many techniques have tackled the issue of mismatch in real world versus experimental

metrics from different angles. We find that annotator biases quantified by demographics

might be one important source of the issue. This would suggest that existing datasets,

while valuable and necessary for the development of learning models, do not work well for

a large portion of the population in practice. However, as previous works have pointed

out, biases can be removed by increasing the number of annotators in diverse groups

[213]. This suggest that one solution might be to extend current datasets with additional

annotations from less represented demographics.
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6.5.2 Limitations

While we see the data and analysis as highly beneficial for the domain, there are

limitations to the answers that our work can provide. The data gathered was limited

to a single country (US), and more work is needed to understand the effect of a wider

demographic on machine labeled data. It may be for this reason that we did not see a

significant effect for ethnicity, and culture across regions could change (likely amplify)

the significance of certain effects. Additional effort will need to be made to examine the

differences across cultures and the effects. Another demographic issue is that while we

obtained data for additional gender categories, we could not obtain sufficient amounts

of data to model gender as a non-binary demographic. For this reason, we resorted to

analysis using a proportion of women in the overall dataset. This allowed us to show

that differences do exist when accounting for gender and the degree of this effect. In

our study, we compromised on these demographic choices as including them would have

drastically exacerbated the long-tailed distribution of crowdworker demographics. The

availability of annotators from certain demographic groups was frequently very low.

Considerations regarding dataset type should also be made. The annotations are

for a specific kind of data – opinions and monologue videos. While it is an important

problem, there is a lot more to sentiment recognition research beyond just talking heads

and opinions. The MOSEI dataset is mostly comprised of video samples which is less

controversial than topics such as hate speech [236, 237, 214, 238]. While previous works

have demonstrated that demographic imparts differences in ratings for videos of differing

content type, the degree of this effect does not appear to be quantified. Furthermore,

labeling content that is less subjective might also demonstrate different effects. For

example, in the case of determining dogs versus cats, demographic background likely

play a smaller role. We provide our rich annotations for future researchers to understand

132



Impact of Demographics on Multimodal Dataset Labels Chapter 6

and correctly these differences.

6.5.3 Recommendations

We echo existing calls for caution when using ML systems. We recommend that ML

practitioners should be cautious when implementing technologies that use sentiment pre-

diction models and that users should take great care in interpreting model predictions.

This is particularly important in high risk scenarios such as in clinical settings. We hope

that current users and practitioners can use our results to interpret ML predictions in

a new light. In our experiments, we found that the attributes of annotators imparted

a significant difference on both the ground truth as well as the model predictions. One

potential approach which follows from this is to match the demographic properties of the

annotator with the users of the predictions of the models. Or, more generally, we can try

to match annotator distribution with user distribution to maintain performance of any

system. Because naturally, demographics do not explain all of the variability or distri-

bution differences in annotator properties. However, by restricting the user distribution,

HCI researchers are greatly restricting themselves in the experiments they can conduct

and the designs they can create. As models become more capable, data variability, such

as those arising due to demographics, is more readily captured by the model. Yet at

the same time, without understanding what this variability is, it can be difficult to both

improve the model or interpret the results correctly. For example, suppose we did not

know that most dataset annotators are female, then we would be confused as to why a

sentiment prediction software works better for female than for non-female users. This

highlights an important need for increased collaboration between ML and HCI researchers

to develop better models and to build more representative datasets.

We recommend the collection and release of properly anonymized annotator demo-
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graphic information for subjective tasks such as sentiment or emotion labeling. This

recommendation was also voiced by previous work (e.g. [212]), showing significance on

similar tasks. Our analysis provides strong evidence that machine learning researchers in

particular need to be mindful of the demographic composition of human annotators. As

added evidence for the importance of this, we show that the effect on algorithms is larger

than the expected effect when comparing different human annotations. Release of our

data will facilitate the development of improved algorithms for predicting distributions

of multimodal sentiment classification for different demographic groups. This would lead

to the improved experience of users which are in different demographic groups than the

majority of those who provided annotations.

We recommend the development of a richly annotated subset of data to help quantify

variability or annotation noise. In this work, we examined the effect of demographics and

expect to explore additional biases that can occur on different demographic dimensions.

Annotating a subset of data to quantify the degree of variability due to biases is sufficient

for analysis and is also considerably more cost-effective than duplication of entire datasets

with additional demographic information. The annotation effort for this work for 500

samples for all modalities cost approximately 3000 USD, or approximately 750 USD

per modality. We find this cost to be reasonable for any large scale annotation effort.

Understanding dataset biases in this manner can substantially benefit future users from

diverse groups, and the insights can likely be transferred to larger datasets.

Lastly, we recommend the balancing of demographic backgrounds of annotators dur-

ing dataset creation. In our experiments, we found that certain demographic effects were

amplified potentially due to the task being more appealing to certain populations. And

one has to be mindful of the danger of oversampling individual annotators in highly un-

derrepresented demographic groups. We took a less aggressive approach with regard to

enforcing parity of underrepresented demographic groups and saw a benefit to the overall
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representation. Such a method is easy to implement in practice and can potentially be

combined with methods such as [213]. While not perfect in that it would not result in

the ultimately desired (e.g. uniform) distribution, the improved representation might

increase the benefit to more groups of future users, and statistical methods, paired with

the insights from our work, can be used to approximate the desired distributions.

6.6 Conclusion

The goal of this work was to gain an understanding for the variability that subjectively

annotated datasets might contain. Towards this goal, we present a large scale dataset that

captures annotator demographics variability and contains annotations for multimodal

data and its component modalities. We demonstrate the importance for understanding

annotator demographics. We show that that demographic differences impute a significant

effect on the ratings they provide and that these effects occur in all modalities. We

verify these properties and show large algorithmic performance variability when measured

against different demographic groups.

As models become more complex and capable of modeling the details of human ex-

pression, more thorough evaluations which can account for the biases in data should be

conducted. As is the case here, models and evaluations weigh the opinions of those who

perform crowdwork versus those who do not differently. This leaves the potential to bias

evaluations and model selection to people who are not part of the annotation process. We

hope our data and results can be beneficial not only for future researchers who wish to

build more representative datasets, but for evaluation of algorithms and understanding

annotator behavior.
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Age Text Video Audio All r

≤ 20 0.45 0.31 0.43 0.47 0.67
21-30 0.47 0.33 0.43 0.48 0.71
31-40 0.44 0.30 0.41 0.41 0.68
> 40 0.39 0.30 0.43 0.43 0.59
Overall 0.45 0.32 0.42 0.46 0.75

(a) Agreement scores broken by age and modality. Anno-
tators over 40 had slightly lower agreement within them-
selves. Their predictions also correlated less with previ-
ous annotations.

Ethnicity Text Video Audio All r

White 0.46 0.33 0.45 0.48 0.74
Other 0.44 0.30 0.36 0.42 0.67
Overall 0.45 0.32 0.42 0.46 0.75

(b) Agreement scores by ethnicity and modality. Non-white
annotators had lower within-group agreement and lower cor-
relation with previous labels. Lower agreement is observed
in all modalities.

Gender Text Video Audio All r

Female 0.48 0.32 0.44 0.47 0.76
Other 0.38 0.27 0.35 0.42 0.60
Overall 0.45 0.32 0.42 0.46 0.75

(c) Agreement scores by gender and modality. Non-
female annotators had lower within-group agreement and
lower correlation with previous labels. Reduction in
agreement is observed in all modalities.

Table 6.3: Agreement scores by modality for age, ethnicity, and gender. For text,
video, audio, and all modalities, we report Krippendorff’s alpha computed using a
variable number of annotators and accounts for missing data. We also report the
correlation of the labels (all modalities only) provided by each demographic with the
original MOSEI labels (r). Older (> 40), non-white, and non-female populations all
demonstrated lower agreement with original labels. This further showcases the bias
when not controlling for annotator demographics during annotation. The original an-
notations were obtained via Mechanical Turk which had higher proportions of younger,
white and female annotators.
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Most Similar Least Similar

Model Acc2 F1 MAE r Acc2 F1 MAE r

MulT 0.778 0.779 0.724 0.617 0.729 0.734 0.905 0.506
MAG-Bert 0.756 0.752 0.698 0.679 0.715 0.714 0.879 0.551
MAG-XLNet 0.766 0.760 0.733 0.683 0.729 0.726 0.909 0.556
Human 0.818 0.711 0.661 0.748 0.785 0.685 0.845 0.618

(a) Most similar sampling versus least similar sampling performance metrics.

US Population Crowdworker Distribution

Model Acc2 F1 MAE r Acc2 F1 MAE r

MulT 0.770 0.771 0.708 0.623 0.791 0.795 0.599 0.625
MAG-Bert 0.756 0.752 0.678 0.690 0.811 0.811 0.584 0.695
MAG-XLNet 0.754 0.748 0.727 0.689 0.861 0.860 0.551 0.746
Human 0.806 0.703 0.644 0.752 1.000 1.000 0.000 1.000

(b) US population distribution sampling compared to uncontrolled crowdworker distribution.

Table 6.4: Performance metrics when measured against different demographic distri-
butions of our annotations. We see some recent models have reduced performance
metrics when measured against different sampling techniques. Binary accuracy mea-
sured according to Tsai et al. [87]. The human model is the original human (MOSEI)
annotations compared against our new annotations. The difference w.r.t. original
dataset is minimal due to the difference in population and training effect differences.
Demographics has a much larger effect on learned models. The difference in perfor-
mance provides demographic bounds on algorithmic performance. Notice the large
difference in accuracy for the same model for most similar and least similar sampling
(bold). This indicates that demographic differences of annotators can account for
more than 4.5 percent difference in performance.
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Younger Annotators (<30) Older Annotators (≥30)

Model Acc2 F1 MAE r Acc2 F1 MAE r

MulT 0.756 0.759 0.746 0.604 0.772 0.771 0.785 0.591
MAG-Bert 0.746 0.742 0.714 0.666 0.748 0.741 0.810 0.643
MAG-XLNet 0.754 0.752 0.755 0.664 0.756 0.747 0.763 0.651
Human 0.808 0.712 0.673 0.733 0.792 0.707 0.749 0.691

(a) Comparison of younger annotators (<30) versus older annotators ≥ 30.

Female Annotators Other Annotators

Model Acc2 F1 MAE r Acc2 F1 MAE r

MulT 0.768 0.771 0.737 0.616 0.732 0.736 0.882 0.533
MAG-Bert 0.746 0.742 0.705 0.681 0.742 0.740 0.833 0.605
MAG-XLNet 0.754 0.751 0.753 0.674 0.726 0.721 0.868 0.609
Human 0.816 0.711 0.652 0.755 0.760 0.693 0.833 0.621

(b) Comparison of female versus other annotators.

White Other

Model Acc2 F1 MAE r Acc2 F1 MAE r

MulT 0.766 0.766 0.750 0.606 0.762 0.764 0.809 0.567
MAG-Bert 0.752 0.747 0.704 0.678 0.756 0.753 0.789 0.616
MAG-XLNet 0.752 0.749 0.759 0.670 0.748 0.746 0.821 0.628
Human 0.798 0.704 0.678 0.738 0.774 0.698 0.761 0.680

(c) Comparison of ethnically white vs annotators who are not ethnically white.

Table 6.5: Performance metrics when measured against different demographic distri-
butions of our annotations. We compare against specific demographics to observe
differences for certain user groups. Assuming that users of a certain demographic pre-
fer annotations from the same demographic, we can see a difference in performance for
different user groups. Tables on left (a, c, e) present results that represents the ma-
jority of crowdworker demographics. We can see our scores from demographics which
match the majority demographic population far better than those that match the mi-
nority. Reduction in model performance is also pronounced for female vs non-female
annotators (c vs d). The trend of decrease between majority vs minority demographics
is obvious via MAE and correlation.
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Conclusion

7.1 Summary

In this thesis, we make contributions in two broad directions: 1) multimodal ma-

chine learning, and 2) addressing variability arising from differences in human opinions

modeling human-centric data. We further examine how multimodality and variability

are inter-related. We do this to bring together the domains of multimodality and vari-

ability in hopes of addressing critical and common problems relevant to human-centric

computing such as understanding human behavior and emotions.

In Part I, we examined how we can improve multimodal machine learning models.

We presented work which made use of multiple modalities including EEG, eye-tracking,

motion, video, audio, and text. We demonstrated several ways in which the modeling

of these signals can be improved to overcome motion and computational constraints. In

Part II, we examined the theme of variability and discussed how differences in human

opinion can impact multimodal problems. We presented methods for how we can alleviate

issues of imperfect labels in a unimodal scheme, and examine how imperfect labels are

manifested in a multimodal scheme.
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7.1.1 Multimodality

Since human interaction is inherently multimodal, creating better multimodal models

is critical to building AIs that can better interact with humans. In this thesis, we made

advancements in two key areas of multimodal machine learning. First we presented a

state-of-the-art method to interpret human EEG and motion signals. In particular, we

are targeting the situation where the user is in motion. Such a requirement is important

as we cannot expect users to be stationary during interaction. Furthermore, EEG sensors

were not designed to operate in motion and thus incorporating it as a sensor for in-motion

settings remains a challenge. We further provide a demonstration of how a multimodal

system can be used for authentication to an AR/VR device using EEG and other sensors.

Continuing along the lines of building a convenient and multimodal human-AI inter-

face, we then discussed our work on sparsifying inputs during fusion of inputs. As we

wish to build natural interfaces, we cannot expect to have high-powered devices available

to use at all times. We show that by incorporating the sparsification process during mul-

timodal fusion, we can maintain algorithmic performance while reducing computational

cost. Traditionally multimodal signals have been used to overcome per-modality signal

inaccuracies, we flip this intuition and propose that modern sensors are more detailed

than necessary. By taking advantage of this, we can prune out unnecessary information

to save on computational cost.

7.1.2 Variability

Another key property for human behavior is that we are all variable in the way we

behave. This highlights the importance of studying techniques that can tolerate and take

advantage of this property. In Part II, we first explore this question from the angle of

affect classification. Affect classification encompasses many properties of human behavior
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including variability of human reactions. We develop a way to model the distribution of

responses that are induced by viewing affect-rich videos on the internet. Motivated by

this, we explored ways to improve techniques that can address errors in human responses.

This led us to our work on noisy labels in which we presented a state of the art technique

for modeling imperfect datasets.

One of the key goals of this thesis is to bring together the ideas of multimodality and

variability because they are both critical pieces for understanding human behavior. To

do this, we developed an evaluation dataset based on an existing dataset for multimodal

sentiment analysis by number of labels. We obtained a high number of annotations

per sample to fully capture human behavior characteristics and multimodality effects.

This led to our discovery that demographic traits can account for larger differences in

performance metrics than algorithmic improvements. We use this work and thesis as the

foundation for future work in the study of multimodality and variability in human-centric

machine learning.

7.2 Future Work

A broad goal of mine has always been to enable AI to understand human behaviors

and emotions. This is useful as it would enable much richer interaction and collaboration

between the AI and human, such as for personal health support. To effectively address

these goals, I believe an end-to-end holistic approach is needed. I identify three broad

fundamental future research areas that will serve as the foundation for my future research

pursuits. First, data quality requirements for factors such as privacy and diversity are

stringent for tasks involving human content. Second, the development of algorithms is

needed to analyze the complex temporal, cross-modal and causal relationships in human-

centered data. Third, how can we effectively integrating these new AI capabilities into

141



Conclusion Chapter 7

our daily lives.

7.2.1 Data Challenges

To enable ML algorithms requires data gathered from humans for analysis. Important

considerations for privacy and data diversity should be made. For example, personal

information has the potential to be remembered by a deep learning model. Additionally,

content diversity can potentially bias the dataset to be exclusive to groups not represented

by the dataset. Lastly, the subjective qualities of datasets for tasks such as intention or

emotion prediction introduces large variability. All these challenges are compounded by

the fact that machine learning requires copious amounts of data.

A promising angle will be to address these issues by exploring privacy protecting

ways for building datasets, as well as improving the representation qualities. As one of

the foundational building blocks for data-driven machine learning models, understanding

biases and the representation that datasets impart on the model is central to our pursuit

of fair, equal, and accessible AI. A particular question of interest is to explore the question

of how content may impart different types of biases on different annotators. For example

a male annotator rating a female subject might be different than a female annotator

rating the same female subject.

Another future project would be to curate a large dataset suitable for training general

purpose feature extraction algorithms on human data, and gather smaller, more personal-

ized data for optimization for a particular user for evaluation purposes. Lastly, gathering

quality data from humans requires the development of quality perceptual metrics that

can can quantify behavior between multiple people and for individuals over time. All of

these tasks coupled with multimodal influences are rich for exploration.
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7.2.2 Model Challenges

Human data is highly variable, temporal, and typically involves complex multimodal

and causal relationships. Modeling this data effectively in addition to addressing concerns

such as privacy are critical and important in machine learning. An natural direction is to

focus on taking existing approaches for addressing the modeling of data in the unimodal

realm and adapt it for the multimodal, human-centric realm.

To address these issues, future work will continue to explore the fundamental machine

learning problem of learning with noisy labels. We will further explore techniques that

can learn by exploiting the disagreement between multiple annotators. Additionally, we

will explore techniques that can learn better representations through unsupervised or

self-supervised methodologies for this task.

We also wish to explore ways to address concerns for privacy from the model per-

spective by enabling better machine learning in low-resource environments. This would

remove the need to send personal data to the cloud for training. We will explore how fed-

erated learning techniques can be applied here. Lastly, to effectively model and support

human-centered data, developing explainable models is of critical importance.

7.2.3 Interaction Challenges

I believe that there are additional ways to leverage EEG and other psycho-

physiological data for both understanding fundamental processes of human behavior, as

well as inform fundamental development of better neural network algorithms. However,

the development of more intelligent systems is useless without the continuous feedback of

users. An area of investigation is in how we can take advantage of the capabilities offered

by how AI’s understanding of humans to build novel interfaces involving humans in the

loop. A few key questions of interest arise here: 1) How should an AI exhibit proactive-
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ness? 2) How should an AI respond when it senses ambiguity or sarcasm? 3) What might

the AI be able to sense about user’s current state to improve and potentially offload a

task at hand? Critically important questions relevant to ethics for interaction are also

beginning to surface: How should we handle over-reliance (accidents in self driving cars)?

Who is responsible for mistakes made by an artificial agent? All of these questions must

be answered before AI can be effectively integrated into society.

In addition to answering fundamental questions for how we can interact with an

increasingly advanced system, I believe there is room to incorporate the feedback of

potential future users of this technology. A few “testbed“ applications that would also

be highly beneficial to society, I believe lie in the health and education domains. In the

future, I hope to partner with education and health researchers to explore the limits of

current systems and opportunities for improvement. Questions such as how we can use

AI to improve the education experience and to support learning for people of all ages are

great next steps for research.

I believe that there is now and in the future a need to address AI research and HCI

research in a wholistic manner. This fact is evident in the rising popularity of the nascent

field of Human-Centered AI. It is an exciting time to be working at the intersection of AI

and HCI – building models that can address the concerns necessary for better Human-AI

interaction; developing novel interactive technologies that can fully take advantage of

model capabilities; and making improvements to each while respecting the data privacy,

diversity, and quantity concerns.
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