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ABSTRACT OF THE DISSERTATION

Developing Thermal Density Functional Theory Using the Asymmetric Hubbard Dimer

By

Justin Clifford Smith

Doctor of Philosophy in Physics

University of California, Irvine, 2017

Professor Kieron Burke, Chair

In this dissertation, I introduce both ground-state and thermal density functional theory.

Throughout I use the asymmetric two-site Hubbard model, called the Hubbard dimer for

short, to better understand and/or develop these theories. This model is used because it can

be solved analytically and it contains all the necessary physics while still being conceptually

simple enough to tease apart the various aspects of density functional theory. Ground-state

density functional theory has seen broad use in many disciplines including physics, chemistry,

geology, and material science and has led to a number of important physical and technological

successes. In the first two chapters I elucidate the behavior of the ground-state theory using

the Hubbard dimer. The simplicity of the model allows me to showcase aspects of the

theory that are common points of confusion within the electronic structure community, e.g.

the fundamental gap problem. The next two chapters focus on thermal density functional

theory which has been coming to prominence as the study of warm dense matter has become

a growing interest at the national laboratories and in the astronomical body community.

The Hubbard dimer allows me to do the first ever exact thermal density functional theory

calculation. In this work I am better able to understand the approximations used in thermal

density functional theory and can point to why they succeed and fail. This also allows me to

illustrate old conditions and derive new ones. I conclude with an overview of the work and

a few different directions in which the asymmetric Hubbard dimer could be used further.
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Chapter 1

The Hubbard Dimer: A density

functional case study of a many-body

problem (part 1)

This chapter, and the next, is entirely from Ref. [47] with its corrigendum incorporated. This

work was co-authored with Diego Carrascal (first), Jaime Ferrer (second), and Kieron Burke

(fourth). I was third author and contributed writing, proof reading, additional calculations

and derivations, and verification of all results.

This first chapter consists of the first portions of the paper that lay out the foundation of

DFT, the Hubbard dimer, and Site-Occupation Functional Theory.

1.1 Abstract

This review explains the relationship between density functional theory and strongly corre-

lated models using the simplest possible example, the two-site Hubbard model. The relation-

1



ship to traditional quantum chemistry is included. Even in this elementary example, where

the exact ground-state energy and site occupations can be found analytically, there is much

to be explained in terms of the underlying logic and aims of Density Functional Theory.

Although the usual solution is analytic, the density functional is given only implicitly. We

overcome this difficulty using the Levy-Lieb construction to create a parametrization of the

exact function with negligible errors. The symmetric case is most commonly studied, but

we find a rich variation in behavior by including asymmetry, as strong correlation physics

vies with charge-transfer effects. We explore the behavior of the gap and the many-body

Green’s function, demonstrating the ‘failure’ of the Kohn-Sham method to reproduce the

fundamental gap. We perform benchmark calculations of the occupation and components

of the KS potentials, the correlation kinetic energies, and the adiabatic connection. We test

several approximate functionals (restricted and unrestricted Hartree-Fock and Bethe Ansatz

Local Density Approximation) to show their successes and limitations. We also discuss and

illustrate the concept of the derivative discontinuity. Useful appendices include analytic ex-

pressions for Density Functional energy components, several limits of the exact functional

(weak- and strong-coupling, symmetric and asymmetric), various adiabatic connection re-

sults, proofs of exact conditions for this model, and the origin of the Hubbard model from a

minimal basis model for stretched H2.

1.2 Introduction

In condensed matter, the world of electronic structure theory can be divided into two camps:

the weakly and the strongly correlated. Weakly correlated solids are almost always treated

with density-functional methods as a starting point for ground-state properties[67, 147, 42,

33, 37]. Many-body (MB) approximations such as GW might then be applied to find prop-

erties of the quasi-particle spectrum, such as the gap[297, 231, 15]. This approach is ‘first-
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principles’, in the sense that it uses the real-space Hamiltonian for the electrons in the field

of the nuclei, and produces a converged result that is independent of the basis set, once a

sufficiently large basis set is used. Density functional theory (DFT) is known to be exact in

principle, but the usual approximations often fail when correlations become strong[56].

On the other hand, strongly correlated systems are most often treated via lattice Hamilto-

nians with relatively few parameters[150, 59]. These simplified Hamiltonians can be easier

to deal with, especially when correlations are strong[75, 59]. Even approximate solutions to

such Hamiltonians can yield insight into the physics, especially for extended systems[278].

However, such Hamiltonians can rarely be unambiguously derived from a first-principles

starting point, making it difficult (if not impossible) to say how accurate such solutions are

quantitatively or to improve on that accuracy. Moreover, methods that yield approximate

Green’s functions are often more focused on response properties or thermal properties rather

than on total energies in the ground-state.

On the other hand, the ground-state energy of electrons plays a much more crucial role in

chemical and material science applications[190, 211]. Very small energy differences determine

geometries and sometimes qualitative properties, such as the nature of a transition state in

a chemical reaction[164, 117, 78] or where a molecule is adsorbed on a surface[20, 210]. An

error of 0.05 eV changes a reaction rate by a factor of 5 at room temperature. Thus quantum

chemical development has focused on extracting extremely accurate energies for the ground

and other eigenstates[306, 115, 88, 255, 321]. This is routinely achieved for molecules using

coupled-cluster methods (CCSD(T)) and reasonable basis sets[237, 280]. Such methods

are called ab initio, but are not yet widespread for solids, where quantum Monte Carlo

(QMC) is more often used[84, 294]. DFT calculations for molecules are usually much less

computationally demanding, but the errors are less systematic and less reliable[212].

However, many materials of current technological interest are both chemically complex and

strongly correlated. Numerous metal oxide materials are relevant to novel energy technolo-
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gies, such as TiO2 for light-harvesting[208] or LiO compounds for batteries[110, 285]. For

many cases, DFT calculations find ground-state structures and parameters, but some form

of strong correlation method, such as introducing a Hubbard U or applying dynamical mean

field theory (DMFT), is needed to correctly align bands and predict gaps[13, 93]. There

is thus great interest in developing techniques that use insights from both ends, such as

DFT+U and dynamical mean field theory[121, 14, 152, 151, 155, 154].

There are two different approaches to combining DFT with lattice Hamiltonians[43]. In the

first, more commonly used, the lattice Hamiltonian is taken as given, and a density func-

tion(al) theory is constructed for that Hamiltonian[108]. We say function(al), not functional,

as the density is now given by a list of occupation numbers, rather than a continuous func-

tion in real space. The parenthetical reminds us that although everything is a function, it

is analogous to the functionals of real-space DFT. We will refer to this method as SOFT,

i.e., site-occupation function(al) theory[261], although in the literature it is also known as

lattice density functional theory[129]. While analogs of the basic theorems of real-space

DFT can be proven such as the Hohenberg-Kohn (HK) theorems and the Levy constrained

search formulation for SOFT, it is by no means clear[113] how such schemes might con-

verge to the real-space functionals as more and more orbitals (and hence parameters) are

added. Alternatively, one may modify efficient solvers of lattice models so that they can be

applied to real-space Hamiltonians (as least in 1-D), and use them to explore the nature of

the exact functionals and the failures of present approximations[308, 281]. While originally

formulated for Hubbard-type lattices, SOFT has been extended and applied to many differ-

ent models include quantum-spin chains[8], the Anderson impurity model[289, 46], the 1-D

random Fermi-Hubbard model[319], and quantum dots[257].

These two approaches are almost orthogonal in philosophy. In the first, one finds approx-

imate function(al)s for lattice Hamiltonians, and can then perform Kohn-Sham (KS) DFT

calculations on much larger (and more inhomogeneous) lattice problems[39], but with all
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the usual caveats of DFT treatments (am I looking at interesting physics or a failure of an

uncontrolled approximation?). For smaller systems, one can often also compare approximate

DFT calculations with exact results, results which would be prohibitively expensive to cal-

culate on real-space Hamiltonians. The dream of lattice models in DFT is that lessons we

learn on the lattice can be applied to real-space calculations and functional developments.

To this end, work has been done on understanding self-interaction corrections[302], and on

wedding TDDFT and DMFT methods for application to more complex lattices (e.g. 3-D

Hubbard)[138]. And while it is beyond the scope of this current review, much work has

been done on developing and applying density-matrix functional theory for the lattice as

well[178, 179, 180, 181, 253, 254]. While such results can be very interesting, it is often

unclear how failures of approximate lattice DFT calculations are related to failures of the

standard DFT approximations in the real world.

There is much interest in extracting excited-state information from DFT, and time-dependent

(TD) DFT[248] has become a very popular first-principles approach[38, 292, 189]. Because

exact solutions and useful exact conditions are more difficult for TD problems, there has

been considerable research using lattices. TD-SOFT can be proven for the lattice in much

the same way SOFT is proven from ground-state DFT. This generalization is worked out

carefully in Refs. [288, 77]. An adiabatic approximation for TDSOFT was introduced

in ref. [296]. Applications of TD-SOFT typically involve Hubbard chains both with and

without various types of external potentials [16, 139, 290, 187]. However, TD-SOFT has

also been applied to the dimer to understand the effects of the adiabatic approximation in

TD-DFT[90, 92, 91], strong correlation[290], and TD-LDA results for stretched H2 in real-

space[17]. Unfortunately, we will already fill this article simply discussing the ground-state

SOFT problem, and save the TD case for future work.

To get the basic idea, consider Fig. 1.1. It shows the asymmetric Hubbard dimer in two

different regimes. In this work we use asymmetric to mean differing on-site potentials. On
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Figure 1.1: Many-body view of two distinct regimes of the asymmetric Hubbard dimer. On
the left, the charging energy is much greater than the difference in on-site potentials. On
the right, the situation is reversed.

the left, the Hubbard U energy is considerably larger than the difference in on-site potentials

and the hopping energy t. This is the case most often analyzed, where strong correlations

drive the system into the Mott-Hubbard regime if U is also considerably larger than t. The

on-site occupations are in this case close to 1. On the right panel, U is in contrast smaller

than the on-site potential difference ∆v, and here the dimer stays in the charge-transfer

regime, where both electrons mostly sit in the same deeper well. This is the many-body

view of the physics of an asymmetric Hubbard dimer.

Now we turn to the KS-DFT viewpoint. Here, we replace the interacting Hubbard dimer

(U 6= 0) with a non-interacting (U = 0) tight-binding dimer, called the KS system, that

reproduces the Hubbard occupations. In Fig. 1.2, we take the asymmetric dimer with the

same on-site potential difference, but we vary U . We plot the occupations, showing how, as

U increases, their difference decreases. But we also plot the on-site potentials of the Kohn-

Sham model, ∆vS, that are chosen to reproduce the occupations of the interacting system

with a given value of U . As U increases, the KS on-site potential difference reduces and the

offset from 0 increases. The middle panel corresponds to the charge-transfer conditions of
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Figure 1.2: DFT view: occupations n and potentials v of an asymmetric half-filled Hubbard
dimer as a function of U . The on-site potential difference ∆v is shown in black and the KS
on-site potential difference ∆vS is in red. The second and third panels correspond to the
situations of Fig. 1.1.

Fig. 1.1, while the last panel corresponds to the Mott-Hubbard conditions of Fig. 1.1. The

basic theorems of DFT show that if we know the energy as a function(al) of the density, we

can determine the occupations by solving effective tight-binding equations, the KS equations,

and then find the exact ground-state energy. This is not mean-field theory. It is instead

a horribly contorted logical construction, that is wonderfully practical for computations of

ground-state quantities. Inside this article, we give explicit formulas for the energy functional

of the Hubbard dimer.

We perform a careful study of the Hubbard dimer, to show the differences between SOFT

and real-space DFT. We show how it is necessary to introduce inhomogeneity into the site

occupations in order to find the exact density function(al) explicitly. In Section 1.3.1 we

explain the logic of the KS DFT approach in excruciating detail in order to both illustrate
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the concepts to those unfamiliar with the method and to give explicit formulas for anyone

doing SOFT calculations. We elucidate the differences between the KS and the many-body

Green’s functions in Section 2.1.3. Next, in Sections 2.1 and 2.2 we discuss in detail both

concepts and tools for strong correlation, and explain how the gap problem appears in DFT.

We construct the adiabatic connection formula for the exact function(al) in Section 2.2.2,

showing how it is quantitatively similar to those of real-space DFT. We use the theory to

construct a simple parametrization for the exact function(al) for this problem in Section

2.3, where we also demonstrate the accuracy of our formula by finding ground-state energies

and densities by solving the KS equations with our parametrization. In Section 2.4.1, we

study the broken-symmetry solutions of Hartree-Fock theory, showing that these correctly

yield both the strongly-correlated limit and the approach to this limit for strong correlation.

In Section 2.4.2 we present BALDA (Bethe-ansatz local density approximation), a popular

approximation for lattice DFT, and in Section 2.4.3 we compare the accuracy of BALDA

and Hartree-Fock to each other. We discuss fractional particle number and the derivative

discontinuity in Section 2.5. Finally, we end with a discussion of our results in Section 2.6.

In Table 1.1 we list our notation for the Hubbard dimer, as well as many standard DFT

definitions.

Our purpose here is several-fold. Perhaps most importantly, this article is intended to explain

the logic of modern DFT to our friends who are more familiar with strongly correlated lattice

systems. We believe this should be equally useful to any researcher interested in many-

electron systems such as traditional quantum chemists, or atomic and molecular physicists,

since we use and explain the simplest model of strong correlation to illustrate many of the

basic techniques of modern DFT. There are many more tricks and constructions, but we

save those for future work.

Secondly, the article forms an essential reference for those researchers interested in SOFT,

possibly in very different contexts and applied to very different models. It shows precisely how
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concepts from first-principles calculations are realized in lattice models. Third, we give many

exact results for this simple model, expanding in many different limits, showing that even in

this simple case, there are orders-of-limits issues. Fourth, we use DFT techniques to find a

simple but extremely accurate parametrization of the exact function(al) for this model. Even

though the model can be solved analytically, the function(al) cannot be expressed explicitly.

Thus our parametrization provides an ultra-convenient and ultra-accurate expression for

the exact function(al) for this model, that can be used in the ever increasing applications

of SOFT. Finally, we examine several standard approximations to SOFT, including both

restricted and unrestricted mean field theory, and the BALDA, and we find surprising results.

1.3 Background

In this section we briefly introduce real-space DFT, and the logical underpinnings for every-

thing that follows. Then we discuss the mean-field approach to the Hubbard model as well

as a few well-known results and limits for the Hubbard dimer. Throughout this section we

use atomic units for all real-space expressions so all energies are in Hartree and all distances

are in Bohr.

1.3.1 Density functional theory

We restrict ourselves to non-relativistic systems within the Born-Oppenheimer approxima-

tion with collinear magnetic fields[73]. Density functional theory is concerned with efficient

methods for finding the ground-state energy and density of N electrons whose Hamiltonian

contains three contributions:

Ĥ = T̂ + V̂ee + V̂ . (1.1)
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The first of these is the kinetic energy operator, the second is the electron-electron repulsion,

while the last is the one-body potential,

V̂ =
N∑
i=1

v(ri). (1.2)

Only N and v(r) change from one system to another, be they atoms, molecules or solids.

In 1964, Hohenberg and Kohn proved that for a given electron-electron interaction, there

was at most one v(r) that could give rise to the ground-state one-particle density n0(r) of

the system, thereby showing that all ground-state properties of that system were uniquely

determined by n0(r) [124]. The ground-state energy E0 could then be found by splitting the

variational principle into two steps via the Levy-Lieb constrained search approach[165, 168].

First, the universal functional F is determined,

F [n] = min
Ψ→n
〈Ψ| T̂ + V̂ee |Ψ〉 = T [n] + Vee[n] (1.3)

where the minimization is over all normalized, antisymmetric Ψ with one-particle density

n(r). This establishes a one-to-one connection between wavefunctions and ground-state

densities, and enables us to define the minimizing wavefunction functional Ψ[n0]. Then the

ground-state energy is determined by a second minimization step of the energy functional

E[n],

E0 = min
n
{E[n]} = min

n

{
F [n] +

∫
d3r n(r) v(r)

}
. (1.4)

This shows that E0 can be found from a search over one-particle densities n(r) instead of

many-body wavefunctions Ψ, provided that the functional F [n] is known. The Euler equation

corresponding to the above minimization for fixed N is simply

δF [n]

δn(r)

∣∣∣∣
n0(r)

= −v(r). (1.5)
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Armed with the exact F [n], the solution of this equation yields the exact ground-state density

which, when inserted back into F [n], yields the exact ground-state energy.

To increase accuracy and construct F [n], modern DFT calculations use the Kohn-Sham (KS)

scheme that imagines a fictitious set of non-interacting electrons with the same ground-state

density as the real Hamiltonian[148]. These electrons satisfy the KS equations:

{
−1

2
∇2 + vS(r)

}
φi(r) = εi φi(r), (1.6)

where vS(r) is defined as the unique potential that generates single-electron orbitals φi(r)

that reproduce the ground-state density of the real system,

n0(r) =
∑
occ

|φi(r)|2. (1.7)

To relate these to the interacting system, we write

F [n] = TS[n] + UH[n] + EXC[n]. (1.8)

TS is the non-interacting (or KS) kinetic energy, given by

TS[n] =
1

2

∫
d3

N∑
i=1

|∇φi(r)|2 = min
Φ→n
〈Φ| T̂ |Φ〉, (1.9)

where we have assumed the KS wavefunction (as is almost always the case) is a single Slater

determinant Φ of single-electron orbitals. The second expression follows from Eq. (1.3)

applied to the KS system, it emphasizes that TS is a functional of n(r), and the minimizer

defines Φ[n0], the KS wavefunction as a density functional. Then UH[n] is the classical

electrostatic self-repulsion of n(r),

UH[n] =
1

2

∫
d3r

∫
d3r′

n(r)n(r′)

|r− r′|
, (1.10)
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and EXC is called the exchange-correlation energy, and is defined by Eq. (1.8).

Lastly, we differentiate Eq. (1.8) with respect to the density. Applying Eq. (1.5) to the KS

system tells us

vS(r) = −δTS[n]

δn(r)
, (1.11)

yielding

vS(r) = v(r) + vH(r) + vXC(r) (1.12)

where vH(r) is the classical electrostatic potential and

vXC(r) =
δEXC

δn(r)
(1.13)

is the exchange-correlation potential. This is the single most important result in DFT, as it

closes the set of KS equations. Given any expression for EXC in terms of n0(r), either ap-

proximate or exact, the KS equations can be solved self-consistently to find n0(r) for a given

v(r). Under standard conditions, and with the exact functional, they always converge[309].

However, we also note that, just as in all such schemes, the energy of the KS electrons does

not match that of the real system. This ‘KS energy’ i.e., the energy of the KS electrons, is

ES[n] =
∑
i

εi = TS + VS, (1.14)

but the actual energy is

E0 = F [n0] + V [n0] = TS[n0] + UH[n0] + EXC[n0] + V [n0] (1.15)

where n0(r) and TS[n0] have been found by solving the KS equations, and inserted into this
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expression. Thus, in terms of the KS orbital energies, there are double-counting corrections,

which can be deduced from Eqs. (1.14) and (1.15):

E0 = ES − UH[n0] + EXC[n0]−
∫
d3r n0(r) vXC[n0](r). (1.16)

We emphasize that, with the exact EXC[n0], solution of the KS equations yields the exact

ground-state density and energy, and this has been done explicitly in model cases[309], but

is computationally exorbitant. The practical use of the KS scheme is that simple, physically

motivated approximations to EXC[n0] often yield usefully accurate results for E0, bypassing

direct solution of the many-electron problem.

For the remainder of this article, we drop the subscript 0 for notational convenience, and

energies will be assumed to be ground-state energies, unless otherwise noted. For many

purposes, it is convenient to split EXC into a sum of exchange and correlation contributions.

The definition of the KS exchange energy is simply

EX[n] = 〈Φ[n]|V̂ee|Φ[n]〉 − UH[n]. (1.17)

The remainder is the correlation energy functional

EC[n] = F [n]− 〈Φ[n]| T̂ + V̂ee |Φ[n]〉, (1.18)

which can be decomposed into kinetic TC and potential UC contributions (see Eqs. (2.11) and

(2.12) in Sec. 2.2). Additionally, all practical calculations generalize the preceding formulas

for arbitrary spin using spin-DFT [304].

For just one particle (N = 1), there is no electron-electron repulsion, i.e., Vee = 0. This
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means

EX = −UH, EC = 0, (N = 1), (1.19)

i.e., the self-exchange energy exactly cancels the Hartree self-repulsion. Since there is no

interaction, F 0[n] = T [n] = TS[n], and for one electron we know the explicit functional:

TS = TW =

∫
d3r |∇n|2/(8n), (1.20)

which is called the von Weisacker functional[312]. For two electrons in a singlet (N = 2),

EX = −UH/2, TS = TW, (N = 2), (1.21)

but the correlation components are non-zero and non-trivial.

Many popular forms of approximation exist for EXC[n], the most common being the lo-

cal density approximation (LDA)[148, 304, 224], the generalized gradient approximation

(GGA)[217, 27, 162, 130, 219], and hybrids of GGA with exact exchange from a Hartree-

Fock calculation[28, 220, 5, 120]. The computational ease of DFT calculations relative

to more accurate wavefunction methods usually allows much larger systems to be calcu-

lated, leading to DFT’s immense popularity today[234]. However, all these approximations

fail in the paradigm case of stretched H2, the simplest example of a strongly correlated

system[21, 56, 118].

1.3.2 The Hubbard model

The Hubbard Hamiltonian is possibly the most studied, and simplest, model of a strongly

correlated electron system. It was initially introduced to describe the electronic properties
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of narrow-band metals, whose conduction bands are formed by d and f orbitals, so that

electronic correlations become important[127, 85]. The model was used to describe ferro-

magnetic, antiferromagnetic and spin-spiral instabilities and phases, as well as the metal-

insulator transition in metals and oxides, including high-Tc superconductors[59, 163]. The

Hubbard model is both a qualitative version of a physical system depending on what terms

are built in[12, 264] and also a testing-ground for new techniques since the simpler forms of

the Hubbard model are understood very well[122, 30, 31, 123].

The model assumes that each atom in the lattice has a single orbital. The Hamiltonian is

typically written as [191, 109, 76, 283]

Ĥ =
∑
i,σ

viσ n̂iσ −
∑
i j σ

(
tij ĉ

†
i σ ĉj σ + h.c.

)
+
∑
i

Ui n̂i↑ n̂i↓ (1.22)

where at its simplest the on-site energies are all equal viσ = 0 as well as the Coulomb integrals

Ui = U . Further, the hopping integrals tij typically couple only nearest neighbor atoms and

are equal to a single value t.

We note that here the interaction is of ultra-short range, so that two electrons only in-

teract if they are on the same lattice site. Further, they must have opposite spins to

obey the Pauli principle. Simple examples of building in more complicated physics include

using next-nearest-neighbor hoppings or nearest neighbors Coulomb integrals for high-Tc

cuprate calculations and magnetic properties[174, 71, 61], and varying on-site potentials

used to model confining potentials[244]. Also, adding more orbitals per site delivers multi-

band Hubbard models, where Coulomb correlations may be added to some or all of the

orbitals. The Hubbard model has an analytical solution in one dimension, via Bethe ansatz

techniques[170, 169].

If the Hubbard U is small enough, a paramagnetic mean-field (MF) solution provides a

reasonable description of the model in dimensions equal or higher than two. As an example,
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the Hubbard model in a honeycomb lattice can describe correctly a number of features of

gated graphene samples[119]. However, for large U or in one dimension, more sophisticated

approaches are demanded, which go beyond the scope of this article[170, 85].

We describe briefly the well-known broken-symmetry MF solution, where the populations

of up- and down-spin electrons can differ. The standard starting point for the MF solution

neglects completely quantum fluctuations:

(n̂i↑ − ni↑) (n̂i↓ − ni↓) = 0, (MF ) (1.23)

where niσ = 〈n̂iσ〉, so that

V̂ MF
ee =

∑
i

U (ni↑ n̂i↓ + ni↓ n̂i↑ − ni↑ ni↓) . (1.24)

The MF hamiltonian is then just an effective single-particle problem

ĤMF =
∑
iσ

ĥeff
iσ , (1.25)

ĥeff
iσ = vMF

iσ n̂iσ − t
∑
j

(ĉ†iσ ĉjσ + h.c.), (1.26)

where vMF
iσ = viσ + U niσ̄. This ĤMF can be easily diagonalized if one assumes space-

homogeneity of the occupations ni,σ = nσ. For large U , the broken symmetry solution (often

ferromagnetic) has lower energy than the paramagnetic solution.

1.3.3 The two-site Hubbard model

We now specialize to a simple Hubbard dimer model with open boundaries, but we allow

different on-site spin-independent energies by introducing a third term that produces asym-
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metric occupations,

Ĥ = −t
∑
σ

(ĉ†1σ ĉ2σ + h.c) + U
∑
i

n̂i↑ n̂i↓ +
∑
i

vin̂i (1.27)

where we have made the choices t12 = t∗21 = t and v1 + v2 = 0. Our notation for this Hamil-

tonian can be found in Table 1.1. Specifically, the two-site model is useful in comparing

approximate methods[185] or investigating highly local properties [40] due to its concep-

tual simplicity. Recently, the two-site model was realized experimentally using ultracold

techniques with the hopes of experimentally building more arbitrary Hubbard models in

the future [202]. This model was carefully investigated in a DFT context by Requist and

Pankratov[242, 243].

Figure 1.3: Ground-state energy of Hubbard dimer as a function of ∆v for several values of
U and 2 t = 1.

It is straightforward to find an analytic solution of the model for any integer occupation N .

However, we specialize to the particle sub-space N = 2, Sz = 0 in what follows unless other-
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wise stated. We expand the Hamiltonian in the basis set [|1 ↑ 1 ↓}, |1 ↑ 2 ↓}, |1 ↓ 2 ↑}, |2 ↑ 2 ↓}]:

Ĥ =



2v1 + U −t t 0

−t 0 0 −t

t 0 0 t

0 −t t 2v2 + U


(1.28)

The eigenstates are three singlets and a triplet state. The ground-state energy corresponds

to the lowest-energy singlet, and can be found analytically. The expressions are given in

2.9. The wavefunction, density difference, and individual energy components are also given

there. We plot in Fig. 1.3 the ground-state energy as a function of ∆v for several values of

U , while in Fig. 1.4, we plot the occupations.

Figure 1.4: Ground-state occupation of Hubbard dimer as a function of ∆v for several values
of U and 2 t = 1.
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When U = 0, we have the simple tight-binding result, for which the ground-state energy is

E = −
√

(2 t)2 + ∆v2 (U = 0), (1.29)

∆n = −2 ∆v/
√

(2 t)2 + ∆v2 (U = 0). (1.30)

where ∆n is defined in Table 1.1. If there is only one electron, these become smaller by a

factor of 2. The curves for U = 0.2 are indistinguishable (by eye) from the tight-binding

result. We may simplify the expressions by introducing an effective hopping parameter,

t̃ = t
√

1 + (∆v/(2 t))2 (1.31)

which accounts for the asymmetric potential. Then

E = −2t̃, (U = 0), (1.32)

∆n = −∆v/t̃,

i.e., the same equations as when ∆v = 0.

In the other extreme, as U grows, we approach the strongly correlated limit. For a given

∆v, as U increases, ∆n decreases as in Figs. 1.2 and 1.4, see also Fig. 1 in [242], and the

magnitude of the energy shrinks. Typically, the E(∆v) curve morphs from the tight-binding

result towards two straight lines for U large:

E ' (U −∆v) Θ(∆v − U), U � 2 t, (1.33)

∆n ' −2 Θ(∆v − U), U � 2 t. (1.34)
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We also have a simple well-known result for the symmetric limit, ∆v=0, where

E = −
√

(2t)2 + (U/2)2 + U/2, (∆n = ∆v = 0). (1.35)

This vanishes rapidly with 1/U for large U . Its behavior is different from the case with finite

∆v. Results for various limits and energy components are given in 2.9.

1.3.4 Quantum chemistry

Traditional quantum chemical methods (often referred to as ab initio by their adherents)

usually begin with the solution of the Hartree-Fock equations[282]. For our Hubbard dimer,

these are nothing but the mean-field equations of Sec 1.3.2. Expressing the paramagnetic

HF Hamiltonian of Eq. (1.26) for two sites yields a simple tight-binding Hamiltonian and

eigenvalue equation describing a single-particle in an effective potential:

veff
i (ni) = vi + Uni/2. (1.36)

with an eigenvalue:

εeff =
(
U −

√
(∆veff)2 + (2 t)2

)
/2. (1.37)

Writing φeff = (c1, c2)T , then

∆n = 2 (c2
2 − c2

1) = 2
ξ2 − 1

ξ2 + 1
, (1.38)

where x = ∆veff/2 t, and ξ =
√
x2 + 1 − x. Eq. (1.38) is quartic in ∆n and can be solved

algebraically to find ∆n as a function of ∆v explicitly (2.13). Just as in KS, the HF energy
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is not simply twice the orbital energy, there is a double-counting correction:

EMF = 2εeff − UH (1.39)

=
U

2

(
1−

(
∆n

2

)2
)
− 2 t

√
1 + x2.

These energies are plotted in Fig 1.5. We see that for small U , HF is very accurate, but much

Figure 1.5: Ground-state energy of the Hartree-Fock Hubbard dimer (thick dashed line) and
exact ground-state of the Hubbard dimer (thin solid line) as a function of ∆v for several
values of U and 2 t = 1.

less so for 2 t� U � ∆v. In fact, the HF energy becomes positive in this region, unlike the

exact energy, which we prove is never positive in 2.11. The molecular orbitals often used in

chemical descriptions have traditionally been those of HF calculations, despite the fact that

HF energies are usually far too inaccurate for most chemical energetics[26]. (They have now

largely been supplanted by KS orbitals.) In quantum chemical language, the paramagnetic
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mean-field solution is called restricted HF (RHF) because the spin symmetry is restricted

to that of the exact solution, i.e., Sz = 0. For large enough U , the broken-symmetry, or

unrestricted, solution is lower, and is labeled UHF, which we discuss in Sec. 2.4.1.

Figure 1.6: Correlation energy Etrad
C of Hubbard dimer as a function of ∆v for several values

of U and 2 t = 1.

Accurate ground-state energies, especially as a function of nuclear positions, are central

quantities in chemical electronic structure calculations[282]. Most such systems are weakly

correlated unless the bonds are stretched. The correlation energy of traditional quantum

chemistry is defined as just the error made by the (restricted) HF solution:

Etrad
C = E − EHF. (1.40)

This is plotted in Fig 1.6. This is always negative, by the variational principle. Many

techniques have been highly developed over the decades to go beyond HF. These are called

model chemistries, and for many small molecules, errors in energy differences of less than 1
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kcal/mol (0.05 eV) are now routine[204, 24].

Usually Etrad
C is a small fraction of E for weakly correlated systems. For example, for the He

atom, E = −77.5 eV, but Etrad
C = −1.143 eV. This is the error made by a HF calculation.

In Fig. 1.6 we plot Etrad
C just as we plotted E in Fig. 1.5. We see that for strong correlation

Etrad
C becomes large (∼ −U/2 for ∆v � U), much larger than E. However, E is much

smaller, and so any strongly correlated method should reproduce E accurately. In fact,

one can already see difficulties for weakly correlated approximations in this limit. For weak

correlation, a small percent error in Etrad
C yields a very small error in E, but produces an

enormous error in E in the strong correlation limit. For an infinitely stretched molecular

bond, t → 0 while U remains finite, so only one electron is on each site. Thus E → 0, so

we can think of E as the ground-state electronic energy relative to the dissociated limit, i.e.

the binding energy.

Because HF is accurate for E when correlation is weak, and because quantum chemistry

focuses on energy differences, the error is often measured in terms of the accuracy of the

exchange-correlation together (if both are approximated as in most DFT calculations). For 2

electrons having Sz = 0, the exact exchange is trivial, and so we will focus on approximations

to the correlation energy.

Notice the slight difference in definition of correlation energy between DFT (Eq. 1.18) and

quantum chemistry (Eq. (1.40))[252, 104, 293]. In DFT, all quantities are defined on a given

density, usually the exact density of the problem, whereas in quantum chemistry, the HF

energy is evaluated on the density that minimizes the HF energy. For weakly correlated

systems, this difference is extremely small[97], but is not so small for large U . And, one can

prove, Etrad
C ≥ EDFT

C [104], (see 2.11).

We close by emphasizing the crucial difference in philosophy between DFT and traditional

approaches. In many-body theory, mean-field theory is an approximation to the many-
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body problem, yielding an approximate wavefunction and energy which are expected to be

reasonably accurate for small U . In DFT, this treatment arises from approximating F for

small U , and so should yield an accurate KS wavefunction and expectation values for small

U . Thus, only one-body properties that depend only on position are expected to be accurate,

and their accuracy can be improved by further improving the approximation to F . For large

U , such an approximation fails, but there is still an exact F that yields an exact answer.

1.4 Site-occupation function theory (SOFT)

In this section, we introduce the site-occupation function theory for the Hubbard dimer[108,

260, 261, 46, 242, 243, 55]. If we want a physical system where this arises, think of stretched

H2[193]. We imagine a minimal basis set of one function per atom for the real Hamiltonian.

We choose these basis functions to be 1s orbitals centered on each nucleus, but symmetrically

orthonormalized. Then each operator in real-space contributes to the parameters in the

Hubbard Hamiltonian as seen in 2.14.

It is reasonably straightforward to establish the validity of SOFT for our dimer. So long as

each occupation can come from only one value of ∆v, for a fixed U , there is a one-to-one

correspondence between ∆n and ∆v, and all the usual logic of DFT follows. But note that T̂

and V̂ in SOFT do not correspond to the real-space kinetic energy and potential energy. For

example, the hopping energy is negative, whereas the real-space kinetic energy is positive.

This means that all theorems of DFT to be used must be reproven for the lattice model.

More importantly, the SOFT does not become real-space DFT in some limit of complete

basis sets (in any obvious way). We will however apply the same logic as real-space DFT,

with the hopping energy in SOFT playing the role of the kinetic energy in DFT, and the

on-site energy in SOFT playing the role of the one-body potential. The interaction term

obviously plays the role of V̂ee. Many of the elementary equations and figures in these
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sections have appeared elsewhere, e.g. [242, 243, 43, 91, 92], some of them as static versions

of time-dependent results.

1.4.1 Non-interacting warm-up exercise

To show how SOFT works, begin with the U = 0 case, i.e., tight-binding of two non-

interacting electrons. The ground-state is always a spin singlet. From the non-interacting

solution, we can solve for ∆v in terms of ∆n

∆v = − 2 t∆n√
4−∆n2

, (1.41)

and substitute back into the kinetic energy expectation value to find

T (n1, n2) = −2 t
√
n1n2. (1.42)

This is the universal density function(al) for this non-interacting problem (see Eq. (1.3)),

and can be used to solve every non-interacting dimer.

To solve this N = 2 problem in the DFT way, we note that T is playing the role of F (n1, n2).

So the exact function(al) here is

F (n1) = −2 t
√
n1n2, (U = 0), (1.43)

from which we can calculate all the quantities of interest using a DFT treatment. Note that

everything is simply a function(al) of n1 since n2 = (N − n1), or alternatively a function(al)

of ∆n. When N is fixed the formulas look like usual DFT when we use ∆n.
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We then construct the total energy function(al):

E(n1) = F (n1) + ∆v∆n/2, (U = 0) (1.44)

and minimize with respect to n1 for a given ∆v to find the ground-state energy and density:

E = −
√

(2 t)2 + ∆v2, (1.45)

∆n = −2 ∆v/
√

(2 t)2 + ∆v2. (1.46)

Both of these agree with the traditional approach and recover Eqs. (1.29) and (1.30). The

N = 1 result is half as great as Eqs. (1.45) and (1.46).

We can deduce several important lessons from this example. First, we need to vary the

one-body potential (in this case, the on-site energy difference) to make the density change

through all possible values, in order to find the function(al), since it requires knowing the

one-to-one correspondence for all possible densities. Second, if we really change the atoms

in our 2-electron stretched molecule, of course the minimal basis functions would change,

and both t and ∆v would differ. But here we keep t fixed, and vary ∆v simply to explore

the function(al), even if we are only interested in solving the symmetric problem. (Real-

space DFT does not suffer from this problem, as the kinetic and repulsion operators are

universal.) Third, we are reminded that the hopping and on-site operators in no sense

represent the actual kinetic and one-body potential terms – they are a mixture of each.

Finally, although we ‘cheated’ and extracted the kinetic energy function(al) from knowing

the solutions, if someone had given us the formula, it would allow us to solve every possible

non-interacting Hubbard dimer by minimizing over densities. And an approximation to that

formula would yield approximate solutions to all those problems.
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1.4.2 The interacting functional

For the interacting case, we cannot analytically write down the exact function(al) F (n1) at

N = 2 in closed form. Although we have analytic formulas for both E and ∆n as functions of

∆v, the latter cannot be explicitly inverted to yield an analytic formula for F (∆n). However,

we can plot the function(al), by simply plotting F = E−V as a function of n1, and see how

it evolves from the U = 0 case to stronger interaction. The spin state is always a singlet. We

Figure 1.7: F-function(al) of Hubbard dimer as a function of n1 for several values of U and
2 t = 1.

plot in Fig. 1.7 the F -function(al) as a function of n1 for several values of U . As U increases

we can see F appears to tend to U |1− n1|.
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For any real problem the Euler equation for a given ∆v is

dF (n1)

dn1

− ∆v

2
= 0, (1.47)

and the unique n1(∆v) is found that satisfies this. Then

E(∆v) = F (n1,∆v) + ∆v∆n(∆v)/2. (1.48)

The oldest form of DFT (Thomas-Fermi theory[287, 79]) approximates both T (n1) and

Vee(n1) and so leads to a crude treatment of the energetics of the system. A variation on

this was used in Ref. [39] to enable extremely large calculations.

1.4.3 Kohn-Sham method

The modern world uses the KS scheme, and not pure DFT[33]. The scheme in principle

allows one to find the exact ground-state energy and density of an interacting problem by

solving a non-interacting one. This scheme is what produces such high accuracy while using

simple approximations in DFT calculations today. Next, we see how the usual definitions of

KS-DFT should be made for our dimer.

The heart of the KS method is the fictitious system of non-interacting electrons whose

density matches with the ground-state density of the interacting system. For our two-

electron system, the KS system is that of non-interacting electrons (U = 0) with an on-site

potential difference ∆vS, defined to reproduce the exact ∆n of the real system. This is just

the tight-binding problem with an effective on-site potential difference, and is illustrated in

Fig. 1.2.

As stated in Section 1.3.1, in KS-DFT one conventionally extracts the Hartree contribution

from the electron-electron repulsion. There are deep reasons for doing so, which center on the
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remnant, the XC energy, being amenable to local and semilocal-type approximations[35, 233].

To see how the Hartree energy should be defined here, rewrite the electron-electron repulsion

as:

V̂ee =
U

2

∑
i

(n̂2
i − n̂2

i↑ − n̂2
i↓). (1.49)

This form mimics the treatment in DFT. The first term depends only on the total (i.e.

spin-summed) density, akin to Hartree in real-space DFT. The remaining terms cancel the

self-interaction that arises from using the total density for the electron-electron interaction.

For the N = 2 dimer, this decomposition results in

UH(∆n) =
U

2

(
n2

1 + n2
2

)
, (1.50)

and

EX(∆n) = −U
4

(
n2

1 + n2
2

)
, (1.51)

which satisfies EX = −UH/2 for N = 2 as in real-space DFT for a spin singlet, Eq. (1.23).

Together, the Hartree-Exchange is

EHX(∆n) =
U

4

(
n2

1 + n2
2

)
=
U

2

(
1 +

(
∆n

2

)2
)
. (1.52)

In 2.10 we see that the leading order in the U expansion of the F−function(al) yields the

same result. A typical mean field treatment of V̂ee also results in Eq. (1.52). In DFT there

is always self-exchange, even for one or two particles. In many-body theory, exchange means

only exchange between different electrons. Despite this semantic difference, both approaches

yield the same leading-order-in-U expression for the dimer, which we call EHX here (but is

often called just Hartree in many-body theory).
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For the dimer, from Eq. (1.42), the KS kinetic energy is just

TS(n1) = −2 t
√
n1n2, (1.53)

so that FHF(n1) = TS(n1) + EHX(n1) as in Section 1.3.4. We can then define the correlation

energy function from Eq. (1.18), so that

EC(n1) = F (n1)− TS(n1)− EHX(n1). (1.54)

In Fig. 1.8, we plot the correlation energy as a function of n1. For small U ,

Figure 1.8: Plot of exact EC (blue line) and EC,par (red dashed line) for different U and
2 t = 1.

EC ∼ −U2(1− (n1 − 1)2)5/2/8 U � 2 t (1.55)
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which is much smaller than the Hartree-exchange contribution, and is a relatively small

contribution to E. But as U increases,

EC ∼ −U(1− |n1 − 1|)2/2, U � 2 t (1.56)

with a cusp at half-filling. Combined with EHX, this creates F for large U as in Fig. 1.7.

Inserting this result into Eq. (1.47), we find that the KS electrons have a non-interacting

Hamiltonian:

ĥS |φ〉 = εS |φ〉, (1.57)

where this KS Hamiltonian is

ĥS(∆n) = −t
(
ĉ†1ĉ2 + h.c.

)
+
∑
i

vs,i(∆n)n̂i. (1.58)

The KS potential difference is

∆vS(∆n) = ∆v + U∆n/2 + ∆vC(∆n), (1.59)

where

∆vC = −2 dEC(n1)/dn1, (1.60)

the analog of eq. (1.13). For any given form of the (exchange-)correlation energy, differenti-

ation yields the corresponding KS potential. If the exact expression for EC(n1) is used, this

potential is guaranteed[309] to yield the exact ground-state density when the KS equations

are iterated to convergence via a simple algorithm.

In Fig. 1.9, we plot several examples of the dependence of the potentials in the KS system as
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Figure 1.9: Plots of ∆vS (blue) and its components, ∆v (black), U∆n/2 (green), and
∆vC + U∆n/2 (red) plotted against n1 for various U and 2 t = 1. The arrows indicate
the occupations used in Fig. 1.2. (See also Figs. 5 and 6 of [242].)

a function of n1, which range from weakly (U = 0.4) to strongly (U = 10) correlated cases. In

each curve, the black line is the actual on-site potential difference as a function of occupation

of the first site. The blue line is the KS potential difference, which is the on-site potential

needed for two non-interacting (U = 0) particles to produce the given n1. This is found

by inverting the tight-binding equation for the density, Eq. (1.41). Their difference is the

Hartree-exchange-correlation on-site potential, denoted by the red line. Finally, the green

line is just Hartree-exchange, which ignores correlation effects. For U = 0.4, we see that

the difference between blue and black is quite small, and almost linear. Indeed the Hartree-

exchange contribution is always linear (see Eq. (1.59)). Here the red is indistinguishable

by eye from the green, showing how small the correlation contribution to the potential is.

This means the HF and exact densities will be virtually (but not quite) identical. When

we increase U to 2 t, we see a similar pattern, but now the red line is noticeably distinct

from the green. For any given n1, the blue curve is smaller in magnitude than the black.

This is because turning on U pushes the two occupation numbers closer, and so their KS

on-site potential difference is smaller. Again, the red curve is larger in magnitude than the

green, showing that HF does not suppress the density difference quite enough. In our final

panel, U = 20 t, and the effects of strong correlation are clear. Now there is a huge difference

between black and blue curves. Because U is so strong, the density difference is close to zero

for most n1, making the blue curve almost flat except at the edges. In the KS scheme, this is
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achieved by the red curve being almost flat, except for a sudden change of sign near n1 = 1.

These effects give rise to the ∆vS values shown in Fig. 1.2. This effect is completely missed

in HF.

Figure 1.10: Plot of ∆vC for different U and 2 t = 1.

To emphasize the role of correlation, in Fig. 1.10, we plot the correlation potential alone,

which is the difference between the red and green curves in Fig. 1.9. Values from the blue

curves for ∆v = 2 were used to make Fig. 1.2. ∆vC is an odd function of n1. In the weak-

and strong-coupling limits we can write down simple expressions for ∆vC (see 2.10.2):

∆vC ≈ 5U2∆n

32 t
(1− (∆n/2)2)3/2 (U � 2 t) (1.61)

∆vC ≈ U(1− |∆n/2|) sgn(∆n) (U � 2 t). (1.62)

These correspond to the 1st and 4th panels in Fig. 1.10. For small U , it is of order U2

(see 2.10), and has little effect. As U increases, it becomes proportional to U , and becomes
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almost linear in U , with a large step near n1 = 1. If we now compare this figure with Fig.

1.8, we see that it is simply the derivative of the previous EC(n1) curve, as stated in Eq.

(1.60).

The self-consistent KS equations, Eqs. (1.57) and (1.58), have, in this case, precisely the

same form as those of restricted HF (or mean-field theory), Eqs. (1.26) and (1.36), but

with whatever additional dependence on n1 occurs due to ∆vC(n1). When converged, the

ground-state energy is found simply from:

E(n1) = TS(n1) + Vext(n1) + UH(n1) + EXC(n1). (1.63)

The energy can alternatively be extracted from the KS orbital energy via Eq. (1.16):

E = 2εS + (EC −∆vC∆n/2− EHX), (1.64)

where the second term is the double-counting correction. But note the crucial difference

here. We consider HF an approximate solution to the many-body problem whereas DFT,

with the exact correlation function(al), yields the exact energy and on-site occupation, but

not the exact wavefunction.
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Table 1.1: Standard DFT definitions and our Hubbard dimer notation.

Definition Description

Generic DFT

Ψ[n] Many-body wfn of density n
Φ[n] Kohn-Sham wfn of density n
F = T + Vee Hohenberg-Kohn Functional
EXC = F − TS − UH Exchange-correlation energy

EX = 〈Φ|V̂ee|Φ〉 − UH Exchange energy
EX = −UH/2 Exchange energy for 2 electrons
EC = TC + UC Total correlation energy
TC = T − TS Kinetic correlation energy
UC = Vee − UH − EX Potential correlation energy
UXC(λ) = Uλ

XC/λ Adiabatic connection integrand
TC = EC − dEλ

C/dλ|λ=1 Method to extract TC from EC

UC = dEλ
C/dλ|λ=1 Method to extract UC from EC

ĥS = −∇2/2 + vS Kohn-Sham hamiltonian
vS = v + vH + vXC Kohn-Sham one-body potential
Etrad

C = E − EHF Quantum chemical corr. energy

SOFT Hubbard

n1, n2 Occupations at sites 1, 2
N = n1 + n2 Total number of electrons
∆n = n2 − n1 Occupation difference
∆m = m2 −m1 Magnetization difference
v1, v2 On-site potentials
v̄ = (v1 + v2)/2 = 0 On-site potential average
∆v = v2 − v1 On-site potential difference
∆vXC = vXC,2 − vXC,1 XC potential difference
UH = U(N2 + ∆n2)/4 Hartree energy
EHX = U(N2 + ∆n2)/8 Hartree-Exchange energy

TS =−t
√

(2−|N − 2|)2 −∆n2 Single particle hopping energy

Dimensionless Variables

ε = E/2 t Energy in units of hopping
u = U/2 t Hubbard U in units of hopping
ν = ∆v/2 t Pot. diff. in units of hopping
ρ = |∆n|/2 Reduced density difference
ρ̄ = 1− ρ Asymmetry parameter
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Chapter 2

The Hubbard Dimer: A density

functional case study of a many-body

problem (part 2)

This chapter is the various results sections of Ref. [47].

2.1 The fundamental gap

Now that we have carefully defined what exact KS DFT is for this model, we immediately

apply this knowledge to investigate a thorny subject on the border of many-body theory and

DFT, namely the fundamental gap of a system.
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2.1.1 Background in real space

Begin with the ionization energy of an N -electron system:

I = E(N − 1)− E(N) (2.1)

is the energy required to remove one electron entirely from a system. We can then define

the electron affinity as the energy gained by adding an electron to a system, which is also

equal to the ionization energy of the (N + 1)-electron system:

A = E(N)− E(N + 1). (2.2)

In real-space, I and A ≥ 0. For systems which do not bind an additional electron, such as

the He atom, A = 0. The charge, or fundamental, gap of the system is then

Eg = I − A, (2.3)

and for many materials, Eg can be used to decide if they are metals (Eg = 0) or insulators

(Eg > 0)[146]. The spectral function of the single-particle Green’s function has a gap equal

to Eg. For Coulombic matter, Eg has always been found to be non-negative, but no general

proof has been given.

Now we turn to the KS system of the N -electron system. We denote the highest occupied

(molecular) orbital as εHOMO and the lowest unoccupied one as εLUMO. Then the DFT version

of Koopmans’ theorem[222, 221, 267, 9, 10, 45] shows that

εHOMO = −I, (2.4)

by matching the decay of the density away from any finite system in real space, in the
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interacting and KS pictures. However, this condition applies only to the HOMO, not to

any other occupied orbitals, or unoccupied ones. The LUMO level is not at −A, in general.

Define the KS gap as

Egs = εLUMO − εHOMO. (2.5)

Then Egs does not match the true gap, even with the exact XC functional[251, 22]. We write

Eg = Egs + ∆XC (2.6)

where ∆XC 6= 0, and is called the derivative discontinuity contribution to the gap (for reasons

that will be more apparent later)[216, 218]. In general, ∆XC appears to always be positive,

i.e., the KS gap is smaller than the true gap. In semiconductors with especially small gaps,

such as germanium, approximate KS gaps are often zero, making the material a band metal,

but an insulator in reality. The classic example of a chain of H atoms becoming a Mott-

Hubbard insulator when the bonds are stretched is demonstrated unambiguously in Ref.

[281].

While this mismatch occurs for all systems, it is especially problematic for DFT calculations

of insulating solids. For molecules, one can (and does) calculate the gap (called the chemical

hardness in molecular systems[211]) by adding and removing electrons. But with periodic

boundary conditions, there is no simple way to do this for solids. Even with the exact

functional, the KS gap does not match the true gap, and there’s no easy way to calculate

Eg in a periodic code. In fact, popular approximations like LDA and GGA mostly produce

good approximations to the KS gap, but yield ∆XC = 0 for solids. Thus there is no easy way

to extract a good approximation to the true gap in such DFT calculations. The standard

method for producing accurate gaps for solids has long been to perform a GW calculation[15],
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an approximate calculation of the Green’s function, and read off its gap. This works very

well for most weakly correlated materials[295]. Such calculations are now done in a variety

of ways, but usually employ KS orbitals from an approximate DFT calculation. Recently,

hybrid functionals like HSE06[120] have been shown to yield accurate approximate gaps to

many systems, but these gaps are a mixture of the quasiparticle (i.e., fundamental) gap,

and the KS gap. Their exchange component produces the fundamental gap at the HF level,

which is typically a significant overestimate, which then compensates for the ‘too small’ KS

gap. While this balance is unlikely to be accidental, no general explanation has yet been

given.

2.1.2 Hubbard dimer gap

Figure 2.1: Plot of −A, −I, εHOMO, and εLUMO as a function of ∆v with U = 1 and 2 t = 1.

For our half-filled Hubbard dimer, we can easily calculate both the N ± 1-electron energies,
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Figure 2.2: Plot of −A, −I, εHOMO, and εLUMO as a function of ∆v with U = 5 and 2 t = 1.

the former via particle-hole symmetry from the latter[46]. In Fig. 2.1, we plot −I, −A,

εHOMO, and εLUMO for U = 1 when 2 t = 1, as a function of ∆v. We see that A (and

even sometimes I) can be negative here. (This cannot happen for real-space calculations, as

electrons can always escape to infinity, so a bound system always has A ≥ 0.) The HOMO

level is always at −I according to Eq. (2.4) but the LUMO is not at −A. Here it is smaller

than −A, and we find this result for all values of U and ∆v. The true gap is I −A, but the

KS gap is εLUMO + I, which is always smaller. Thus ∆XC ≥ 0, just as for real systems.

Fig. 2.1 is typical of weakly correlated systems, where ∆XC is small but noticeable. In Fig.

2.2, we repeat the calculation with U = 10 t, where now Eg � Egs at ∆v = 0, but we still

see the difference become tiny when ∆v > U . In both figures, ∆XC is the difference between

the red line and the green dashed line. In all cases, ∆XC ≥ 0, and this has always been found

to be true in real-space DFT, but has never been proven in general.
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2.1.3 Green’s functions

To end this section, we emphasize the difference between the KS and many-body approaches

to this problem by calculating their spectral functions[207]. We define the many-body re-

tarded single-particle Green’s function as

Gijσσ′(t− t′) = −i θ(t− t′)〈Ψ0|{ĉiσ(t), ĉ†jσ′(t
′)} |Ψ0〉 (2.7)

where i, j label the site indices, σ, σ′ the electron spins, and {A,B} = AB + BA. For the

Hubbard dimer at N = 1 and 3, |Ψ0〉 is a degenerate Kramers doublet and we choose here

the spin-↑ partner. Fourier transforming into frequency, we find for the diagonal component:

Gσ(ω) = G11σσ(ω) =
∑
α

|Mα
1σ|2

ω + EN − EN+1
α + i δ

+
∑
α

|Lα1σ|2

ω − EN + EN−1
α + i δ

(2.8)

where Mα
1σ = 〈ψN+1

α | ĉ†1σ |ψN0 〉, Lα1σ = 〈ψN−1
α | ĉ1σ |ψN0 〉, and δ > 0 is infinitesimal. Here, α

runs over all states of the N ± 1-particle systems. The other components have analogous

expressions. From any component of G, we find the corresponding spectral function

A(ω) = −=G(ω)/π (2.9)

We represent the spectral function δ-function poles with lines whose height is proportional

to the weights. Via a simple sum-rule[80], the sum of all weights in the spin-resolved spectral

function is 1. There are four quasi-particle peaks for N = 2. These peaks are reflection-

symmetric about ω = U/2 for the symmetric dimer.

We also need to calculate the KS Green’s function, GS(ω). This is done by simply taking
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the usual definition, Eq. (2.7), and applying it to the ground-state KS system. This means

two non-interacting electrons sitting in the KS potential. The numerators vanish for all but

single excitations. Thus the energy differences in the denominators become simply occupied

and unoccupied orbital energies. Since there are only two distinct levels (the positive and

negative combinations of atomic orbitals), there are only two peaks, positioned at the HOMO

and LUMO levels, with weights:

Mα
1σ =

1

2

(
1 +

∆vS/2√
(∆vS/2)2 + t2

)
, (KS) (2.10)

and the sign between the contributions on the right is negative in the L term. Thus the

symmetric dimer has KS weights of 1/2.

Figure 2.3: Spectral function of symmetric dimer for U = 1, ∆v = 0, and 2 t = 1. The
physical MB peaks are plotted in blue, the KS in red. Here I = 0.1, A = −1.1, and
εLUMO = 0.9, corresponding to ∆v = 0 in Fig. 2.1.

In Fig. 2.3 we plot the spectral functions for the symmetric case, for U = 1, when 2 t = 1.

Each pole contributes a delta function at a distinct transition frequency, which is represented
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by a line whose height represents the weight. The sum of all such weights adds to 1 as it

should, and the peaks are reflection-symmetric about U/2 = 0.5. The gap is the distance

between the highest negative pole (at −I) and the lowest positive pole (at −A). We see that

the MB spectral function also has peaks that correspond to higher and lower quasi-particle

excitations. If we now compare this to the exact KS Green’s function GS, we see that, by

construction, GS always has a peak at −I, whose weight need not match that of the MB

function. It has only two peaks, the other being at εLUMO, which does not coincide with

the position of the MB peak. This is so because the KS scheme is defined to reproduce

the ground-state occupations, nothing else. But clearly, when U is sufficiently small, it is a

rough mimic of the MB Green’s function. The larger peaks in the MB spectral function each

have KS analogs, with roughly the correct weights. One of them is even at exactly the right

position. Thus if a system is weakly correlated, the KS spectral function can be a rough

guide to the true quasiparticle spectrum.

Figure 2.4: Same as Fig. 2.3, but now U = 5. Here I = −0.3, A = −4.7, and εLUMO = 1.3,
corresponding to ∆v = 0 in Fig. 2.2.
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On the other hand, when U � 2 t, the KS spectral function is not even close to the true MB

spectral function, as illustrated in Fig. 2.4. Now the two lowest-lying MB peaks approach

each other, as do the two highest lying peaks, therefore increasing the quasi-particle gap.

In addition, the weights tend to equilibrate with each other. In fact, when U → ∞ and/or

t→ 0, those two lowest-lying peaks gather together at ω = 0, having both the same weight

of 1/4. And similarly the two highest-lying peaks merge at ω = U , also with a weight of

1/4. They are the precursors of the lower and upper Hubbard bands with a quasi-particle

gap equal to U . If more sites are added to the symmetric dimer, other quasi-particle peaks

appear, that also merge into the lower and upper Hubbard bands as U → ∞. Notice that

the spectral function has significant weights for transitions between states that differ from

the HOMO and LUMO, and are forbidden in the KS spectral function for large U . In Fig.

2.4, we see that not only there is a large difference between the gaps in the two spectral

functions, but also the KS weights are not close to the MB weights. The only ‘right’ thing

about the KS spectrum is the position of the HOMO peak.

In Fig. 2.5, we plot the spectral functions for ∆v = 2 and U = 1 for 2 t = 1, to see the effects

of asymmetry on the spectral function. Now the system appears entirely uncorrelated, and

the KS spectral function is very close to the true one, much more so than in the symmetric

case. Here ∆XC is negligible. The asymmetry of the potential strongly suppresses correlation

effects. In Fig. 2.6, we see that the effects of strong U are largely quenched by a comparable

∆v. Here ∆XC is small compared to the gap, but not all KS peak heights are close to their

MB counterparts.

The situation is interesting even for the ‘simple’ case, N = 1, in which the ground-state is

open-shell[101]. Here the interacting spin-↑ and -↓ Green’s functions differ. To understand

why, we choose the N = 1 ground state to have spin ↑. This state has energy E(1) =

−
√
t2 + (∆v/2)2. Adding a ↓-spin electron takes the system to the different singlet states at

N = 2, and to the triplet state with Sz = 0. One of them is the ground state at N = 2 whose
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Figure 2.5: Same as Fig. 2.3, but now U = 1, ∆v = 2. Here I = 0.27, A = −1.27, and
εLUMO = 1.25, corresponding to ∆v = 2 in Fig. 2.1.

energy E(2) < 0 is given in Eq. (2.68) in the appendix. In contrast, adding an ↑-spin electron

takes the interacting system to the triplet N = 2 state with Sz = 1, whose energy is trivially

given by E(2)trip = 0. Annihilating an ↑-spin electron takes the system to the vacuum, while

it is impossible to annihilate a ↓-spin electron. These clearly illustrates that the number and

energy of the poles in G↑ and G↓ is different: G↑ has only two quasi-particle peaks, with

trivial energies E(2)trip−E(1) =
√
t2 + (∆v/2)2 and E(1)−E(0) = −

√
t2 + (∆v/2)2. This

last expression corresponds to the ionization energy I = E(0) − E(1) =
√
t2 + (∆v/2)2.

G↓ has four quasiparticle peaks, all corresponding to adding a ↓-spin electron, with non-

trivial energies. The lowest of these corresponds to the electron affinity A = E(1)−E(2) =

−
√
t2 + (∆v/2)2 − E(2). In other words, ionization involves either removing an ↑-spin

electron (hence seen as a pole in G↑) or adding a ↓-spin electron (hence seen as a pole in

G↓). The interacting gap is Eg = I − A = 2
√
t2 + (∆v/2)2 + E(2).
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Figure 2.6: Same as Fig. 2.5, but now U = 5, ∆v = 5. Here I = −1.8, A = −3.2, and
εLUMO = 3, corresponding to ∆v = 5 in Fig. 2.2.

We turn now to the KS Green’s function. For N = 1, the KS on-site potentials equal the

true on-site potentials, ±∆v/2. So the ground-state (chosen again to have spin ↑) has energy

ES(1) = −
√
t2 + (∆vS/2)2. Since the other state has energy ES(1), and a second ↑-electron

occupies that state, the total KS energy is E(2)Sz=1 = 0. On the other hand, annihilating the

↑ electron costs an energy E(1). This shows that the ↑-spin KS and interacting Green’s func-

tions are identical to one other and trivial for N = 1. Thus I = −εHOMO =
√
t2 + (∆v/2)2.

This result is specific to this model.

Removing a ↓-spin KS electron is impossible, just as in the interacting case. However, adding

it means having either two opposite-spin KS electrons with the same energy−
√
t2 + (∆vS/2)2,

or having one with energy −
√
t2 + (∆vS/2)2 and another with energy

√
t2 + (∆vS/2)2. The

first case corresponds to the KS ground-state with energy −2
√
t2 + (∆vS/2)2, while the

second one is an excited state with energy 0. The KS value for the electron affinity is
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AS = ES(1) − ES(2) =
√
t2 + (∆vS/2)2, which differs from the interacting value. Further-

more, the KS gap Egs = 0 is clearly an incorrect estimate of the true interacting gap, which

is given by I = ∆xc.

Figure 2.7: Spin-↓ resolved spectral function for N = 1 and U = 1, ∆v = 2, (2 t = 1). Here
I = 1.12, A = 0.27, and εLUMO = εHOMO = −1.12.

Figs. 2.7 and 2.8 show the spectral function associated with G↓ for the many-body and KS

Green’s functions for N = 1 and ∆v = 2. In the first, U = 1, so it is relatively asymmetric,

whereas in the second, U = 5, making it close to symmetric. Thus the HOMO is at the

lowest red line, and matches exactly the LUMO, with a KS gap of zero. Thus ∆XC is the

gap of the interacting system. We see that in the first figure, correlations are weak and the

KS spectral function mimics the physical one, but in the second figure (U = 5), they differ

substantially, even though N = 1!

The difference in expressions for spin species is illustrated further by work analyzing Koop-

mans’ and Janak’s theorems for open-shell systems[100, 102, 106, 101]. Self-energy ap-
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Figure 2.8: Spin-↓ resolved spectral function for N = 1 and U = 5, ∆v = 2 (2 t = 1). Here
I = 1.12, A = −0.90, and εLUMO = εHOMO = −1.12.

proximations beyond GW have been performed on the Hubbard dimer[246, 245], as well as

a battery of many-body perturbation theory methods[206] though only for the symmetric

case.

The bottom line message of this subsection is that the KS spectral function does not match

the quasiparticle spectral function, because it is not supposed to. However, the main features

of a weakly correlated system are loosely approximated by those of the KS function, with

the gap error shifting the upper part of the spectrum relative to the lower part. This is

the motivation behind the infamous scissors operator in solid-state physics. A very accurate

DFT approximation can (at best) approximate the KS spectral function, not the many-body

one. The exact XC functional does not reproduce the quasiparticle gap of the system. For

strongly correlated systems, there are often substantial qualitative differences between the

MB and KS spectral functions. These are some of the limitations of KS-DFT. that, e.g.,
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DMFT is designed to overcome [93].

2.2 Correlation

2.2.1 Classifying correlation: Strong, weak, dynamic, static, ki-

netic, and potential

There are as many different ways to distinguish weak from strong correlation as there are

communities that study electronic structure. Due to the limited degrees of freedom (namely,

one), these all overlap in the Hubbard dimer. We will discuss each.

The most important thing to realize is that correlation energy comes in two distinct contri-

butions: kinetic and potential. These are entirely well-defined quantities within KS-DFT.

The kinetic correlation energy is:

TC = T − TS (2.11)

for a given density. Note that we could as easily call this the correlation contribution to the

kinetic energy. The potential correlation energy is:

UC = Vee − EHX, (2.12)

and could also be called the correlation contribution to potential energy. For future nota-

tional convenience, we also define UX = EX, i.e., there is no kinetic contribution to exchange.

Then, from Eq. (1.18), we see

EC = TC + UC. (2.13)
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We can now use these to discuss the differences between weak and strong correlation. First

note that, by construction, and as shown for our dimer in 2.11,

EC < 0, TC > 0, UC < 0. (2.14)

In Figs. 1.8 and 2.9, we plot both EC and TC, respectively, for several values of U (with

2 t = 1). When U is small, TC ≈ −EC. However, for U � 2 t, we see that although EC

becomes very large (in magnitude), TC remains finite and in fact, TC never exceeds 2 t as

proven in 2.11. We can define a measure of the nature of the correlation[34]:

βcorr ≡
TC

|EC|
. (2.15)

As U → 0, βcorr → 1, while as U → ∞, βcorr → 0. Thus βcorr close to 1 indicates weak

correlation, β small indicates strong correlation. We plot βcorr as a function of U for several

values of ∆v in Fig. 2.10. Although βcorr is monotonically decreasing with U for ∆v = 0,

we see that the issue is much more complicated once we include asymmetry. The curve for

each ∆v remains monotonically decreasing with U . But consider U = 2 and different values

of ∆v. Then βcorr at first decreases with ∆v, i.e. becoming more strongly correlated, but

then increases again for ∆v > U , ultimately appearing less correlated than ∆v = 0.

Quantum chemists often refer to dynamic versus static correlation. Our precise prescription

in KS-DFT loosely corresponds to their definition, replacing dynamic by kinetic, and static

by potential. Thus, considering an H2 molecule with a stretched bond, the Hubbard model

applies. As the bond stretches, t vanishes, and U/2 t grows. Thus βcorr → 0 as R→∞. The

exact wavefunction, the Heitler-London wavefunction[116], has only static correlation in this

limit. In many-body language, it is strongly correlated. In DFT language, the fraction of

correlation energy that is kinetic is vanishing.
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Figure 2.9: Plot of exact TC (blue line) and TC,par (red dashed line) for different U and
2 t = 1.

2.2.2 Adiabatic connection

With the various contributions to correlation well-defined, we construct the adiabatic con-

nection (AC) formula [160, 107] for the Hubbard dimer. The adiabatic connection has had

enormous impact on the field of DFT as it allows both construction [28, 220, 74, 5, 230],

and understanding [220, 34, 214], of exact and approximate functionals solely from their

potential contributions.

In many-body theory, one often introduces a coupling-constant in front of the interaction. In

KS-DFT, a coupling constant λ is introduced in front of the electron-electron repulsion but,

contrary to traditional many-body approaches, the density is held fixed as λ is varied (usually

from 0 to 1). Via the Hohenberg-Kohn theorem, as long as there is more than 1 electron,
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Figure 2.10: Plot of βcorr = TC/|EC| as a function of U with 2 t = 1.

this implies that the one-body potential must vary with λ, becoming vλ(r). By virtue of the

density being held fixed, vλ=0(r) = vS(r) while vλ=1(r) = v(r). Thus λ interpolates between

the KS system and the true many-body system. Additionally, λ→∞ results in the strictly

correlated electron limit[184, 266, 176, 94, 186] which provides useful information about real

systems that are strongly correlated.

The adiabatic connection for the Hubbard dimer is very simple. Define the XC energy at

coupling constant λ by simply multiplying U by λ while keeping ∆n fixed:

Eλ
XC(U,∆n) = EXC(λU,∆n). (2.16)

Application of the Hellman-Feynman theorem[81] yields[114, 160, 161, 107]:

dEXC(λU,∆n)

dλ
=
UXC(λU,∆n)

λ
, (2.17)
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where UXC(U,∆n) is the potential contribution to the XC energy, i.e., UX = EX and

UC(λU) = Vee(λU)− λEHX(U). (2.18)

Thus, we can extract TC solely from our knowledge of EC(U) via

TC = EC − UC = EC −
dEλ

C

dλ

∣∣∣∣
λ=1

. (2.19)

Thus, any formula for EC, be it exact or approximate, yields a corresponding result for TC

and UC, and vice versa[58]. We may then write

EXC(U,∆n) =

∫ 1

0

dλ

λ
UXC(λU,∆n), (2.20)

and this is the infamous adiabatic connection formula of DFT[160, 107]. We denote the

integrand as UC(λ), defined as

UC(λ) =
UC(λU)

λ
=
dEC(λU)

dλ
. (2.21)

Plots of UC(λ) from Eq. (2.21) are called adiabatic connection plots, and can be used to

better understand both approximate and exact functionals. In Fig. 2.11, we plot a typical

case for U = 2 t and ∆v = 0. They have the nice interpretation that the value at λ = 1 is

the potential correlation energy, UC, the area under the curve is EC, and the area between

the curve and the horizontal line at UC(1) is −TC. Furthermore, one can also show[166]

dUXC(λ)

dλ
< 0, (2.22)

from known inequalities for TC(λ) and EC(λ). This is proven for our problem in 2.11. In-

terestingly, such curves have always been found to be convex when extracted numerically

for various systems[1, 89], but no general proof of this is known. The Hubbard dimer also
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exhibits this behavior. A proof for the dimer might suggest a proof for real-space DFT.

Figure 2.11: Adiabatic connection integrand divided by U for various values of U . The solid
lines are ∆v = 2 and the dashed lines ∆v = 0. Asymmetry reduces the correlation energy
but increases the fraction of kinetic correlation.

In Fig. 2.11 we plot UC(λ)/U for ∆v = 0 and ∆v = 2, with various values of U . From the

above formulas, one can deduce that the area between the curve and the horizontal line at

UC(1) is −TC. Thus as U grows, the curve moves from being almost linear to decaying very

rapidly, and βcorr varies from 1 down to 0.

In Fig. 2.11, we show U up to 10 (for 2 t = 1), to show the effect of stronger correlation. Not

only has the magnitude of the correlation become larger, but the curve drops more rapidly

toward its value at large λ. βcorr ' 0.9 for ∆v = 0 and U = 1, but βcorr ' 0.2 for ∆v = 0

and U = 10, reflecting the fact that the increase in correlation is of the static kind.

The weakly correlated limit has been much studied in DFT. Perturbation theory in the
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coupling constant is called Goerling-Levy perturbation theory[98]. For small λ,

UC(λU) = λ2U
(2)
C + λ3U

(3)
C + ... (λ→ 0). (2.23)

In 2.10.2, we show that

U
(2)
C (∆n) = −U

2

8 t

(
1−

(
∆n

2

)2
)5/2

, (2.24)

and

U
(3)
C (∆n) =

3U3

32 t2

(
∆n

2

)2
(

1−
(

∆n

2

)2
)3

(2.25)

for the dimer. This yields, for TC,

TC = −1

2
λ2U

(2)
C −

2

3
λ3U

(3)
C −

3

4
λ4U

(4)
C − ... (2.26)

showing that β → 1 as U (or λ) vanishes. For any system, U
(2)
C determines the initial slope

of UC(λ).

On the other hand, in the strongly correlated limit, in real-space[176, 95].

EC → λ(B0 + λ−1/2B1 + λ−1B2...), (λ→∞) (2.27)

where Bk (k = 0, 1, 2...) are coupling-invariant functionals of n(r)[177]. The dominant term

is linear in U . Physically, it must exactly cancel the Hartree plus exchange contributions,

since there is no electron-electron repulsion to this order when each electron is localized to

separate sites. Correctly, such a term cancels out of TC, so that its dominant contribution

is O(1). From 2.10.2, we see that the Hubbard dimer has a different form, involving only
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integer powers of λ:

EC → λB0 + B̃1 + B̃2/λ+ ... (λ→∞) (2.28)

where

B0(∆n) = −U(1 + ∆n/2)2/2, (2.29)

B̃1(∆n) = 2 t
√

1 + ∆n/2 (
√

1−∆n/2−
√
−∆n), (2.30)

and

B̃2(∆n) = (1 + ∆n/2)t2/U. (2.31)

But both this term and the next cancel in the total energy (at half filling), so that the

ground-state energy is O(1/U), i.e., extremely small as U grows:

E → −4t2

U
(2.32)

This illustrates that, although the KS description is exact, it becomes quite contorted in the

large U limit (see Fig. 1.2). This has been implicated in convergence difficulties of the KS

equations, even with the exact XC functional, because the KS system behaves so differently

from the physical system[307].
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2.3 Accurate parametrization of correlation energy

Although the Hubbard dimer has an exact analytic solution when constructed from many-

body theory, the dependence of F (∆n) (or equivalently EC(∆n)) is only given implicitly.

While this is technically straightforward to deal with, in practice it would be much simpler

to use if an explicit formula is available. In this section, we show how the standard machinery

of DFT can be applied to develop an extremely accurate parametrization of the correlation

energy functional.

An arbitrary antisymmetric wavefunction is characterized by 3 real numbers where |12〉

means an electron at site 1 and site 2, etc.:

|ψ〉 = α (|12〉+ |21〉) + β1 |11〉 + β2 |22〉. (2.33)

Normalization requires 2α2 + β2
1 + β2

2 = 1. In terms of these parameters, the individual

components of the energy are rather simple:

T = −4 t α(β1 + β2)

Vee = U(β2
1 + β2

2)

V = −∆v(β2
1 − β2

2), (2.34)

so that the variational principle may be written as

E = min
α,β1,β2

1=2α2+β2
1+β2

2

E(α, β1, β2). (2.35)

The specific values of these parameters for the ground-state wavefunction are reported in

2.9.
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For this simple problem, we are fortunate that we can apply the Levy-Lieb constrained

search method explicitly. A variation of this method was used for the derivation of the

exact functional of the single- and double-site Anderson model and the symmetric Hubbard

dimer[46], and a numerical version of this was used by Fuks et al.[90]. Similar results were

obtained by an alternative methods in [242]. The functional F [n] is defined by minimizing

the expectation value of T̂ + V̂ee over all possible wavefunctions yielding a given n(r). In

real-space DFT, there are no easy ways of generating interacting wavefunctions for a given

density. But here,

∆n = 2(β2
2 − β2

1), (2.36)

which allows us to simply eliminate a parameter, e.g., β1 in favor of ∆n. Thus

F [∆n] = min
α2+β2

2= 1
2

(1+
|∆n|

2
)

[T (α, β2,∆n) + Vee(α, β2,∆n)] . (2.37)

With normalization and the density constraint, only one parameter is left free. There exist

several possible choices for this. If we choose g = 2α (β1 + β2) which corresponds to the

hopping term, then after some algebra the function(al) can be written nicely as

F (ρ) = min
g

f(ρ, g) (2.38)

with the intermediate quantity

f(ρ, g) = −2 t g + Uh(g, ρ), (2.39)

and

h(g, ρ) =
g2 (1−

√
1− g2 − ρ2) + 2ρ2

2(g2 + ρ2)
. (2.40)
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Note that both t and U appear linearly in f(g, ρ). The minimization yields a sextic polyno-

mial, equation (2.81), that g must satisfy. The weak-coupling, strong-coupling, symmetric,

and asymmetric limits of g are given in 2.10.

Our construction begins with a simple approximation to g(ρ):

g0(ρ) =

√
(1− ρ) (1 + ρ (1 + (1 + ρ)3ua1(ρ, u)))

1 + (1 + ρ)3ua2(ρ, u)
(2.41)

where

ai(ρ, u) = ai1(ρ) + u ai2(ρ), (2.42)

and

a21 =
1

2

√
(1− ρ)ρ/2, a11 = a21(1 + ρ−1),

a12 =
1

2
(1− ρ), a22 = a12/2. (2.43)

These forms are chosen so g0 is exact to second- and first- order in the weak- and strong-

coupling limits respectively, and to first- and second- order in the symmetric and asymmetric

limits respectively. Use of this g0 to construct an approximation to F , f(g0(ρ), ρ), yields very

accurate energetics. The maximum energy error, divided by U , is 0.002.

But for some of the purposes in this paper, such as calculations of TC, even this level of error

is unacceptable. We now improve on g0(ρ) using the adiabatic connection formula of Sec

2.2.2. Like F , we can define functions of two variables for each of the correlation components.

Write

eC(g, ρ) = f(g, ρ)− TS(ρ)− EHX(ρ). (2.44)
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where TS and EHX are from Eqs. (1.53) and (1.52), respectively. The kinetic and the potential

correlation are given by

tC(g, ρ) = T − TS = −2 t
(
g −

√
1− ρ2

)
(2.45)

uC(g, ρ) = Vee − EHX = U
[
h(g, ρ)− (1 + ρ2)/2

]
, (2.46)

and their sum yields eC(g, ρ). If we insert g(ρ), the exact minimizer of f(g, ρ), into any of

these expressions, we get the exact answers.

But recall also that one can extract UC from the derivative of EC with respect to the coupling

constant λ, i.e.,

UC = dEC(λ)/dλ|λ=1. (2.47)

Now for any g and eC(g), we can find the λ dependence by replacing U by λU . Thus

deC(g, λ)

dλ
=
∂EC(λ)

∂λ
+
∂EC(λ)

∂g

∂g

∂λ
(2.48)

Since TS and EHX do not depend on g, the minimization of f reduces to ∂eC/∂g = 0, so for

the exact g the second term on the right of Eq. (2.48) is always zero. But it does not vanish

for g0.

Equating Eqs. (2.47) and (2.48) and using the definitions, we find the following self-consistent

equation for g:

g = − T
2 t

+
1

2 t

∂EC

∂g

∂g(λ)

∂λ

∣∣∣∣
λ=1

. (2.49)

We may use this to improve our estimate for g. Simply evaluate the right-hand side at g0,
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to find:

g1 = g0 +

(
u
∂h

∂g
− 1

)
∂g(λ)

∂λ

∣∣∣∣g=g0
λ=1

(2.50)

where

∂g(λ)

∂λ

∣∣∣∣g=g0
λ=1

=
(1− ρ) (1 + ρ)3 u2

2 g0 (1 + (1 + ρ)3 u a2(u))2

× [(3 ρ/2− 1 + ρ (1 + ρ)3 u a2(u)) a12

−ρ (1 + (1 + ρ)3 u a1(u)) a22] (2.51)

Figure 2.12: Error in EC,par(ρ)/U for different U and 2 t = 1.

The new Fpar and EC,par are then obtained by using g1 in Eqs. (2.39) and (2.44). Using
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g1, ∂EC,par/∂g 6= 0 still, but the error with g1 is much lower than with g0. We plot the

the relative error, (EC − EC,par)/U for several U in Fig. 2.12. The maximum relative error

is reduced by almost two orders of magnitude (from 2 × 10−3 to 5 × 10−5) in the region

U ≈ 2− 6, |∆n| ≈ 0.25, where g0 has the largest error. The other regions are also improved.

For (TC − TC,par)/U and (UC − UC,par)/U the improvement is just of one order of magnitude

(from 2 × 10−2 to 2 × 10−3 in both cases relative to the maximum), with different sign, so

there is an error cancellation that yields the larger reduction of the EC error. We anticipate

that g could be improved even further by iteration.

Figure 2.13: Top row: Error in density as a function of ∆v. Bottom row: Error in ground-
state energy as a function of ∆v and 2 t = 1.

To test the validity of our parametrization, we use it in the KS scheme to calculate the cor-

relation energy of our Hubbard dimer self-consistently. If our parametrization were perfect,

we would recover the exact densities and energies from our KS calculation without having

to solve the many-body problem. These are plotted in Figs. 2.13, together with the ab-

solute errors committed by the parametric function(al). Notice that in Figs. 1.8 and 2.9

the results obtained from the parametric function(al) are indistinguishable from the exact
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results. We recommend the use of g0 for routine use, and g1 for improved accuracy. We

hope the methodology developed here might prove useful to improve accuracy of correlation

functionals in other contexts, e.g. using DFT to improve sampling in a Quantum Monte

Carlo calculation [273].

We can define the starting point of our parametrization in a multitude of ways. In this

section we defined it such that the parameter corresponds to the hopping term. Another

possible choice favors the electron-electron term. Define

f2(f, ρ) = −2 t
√

1− f
(√

f + ρ+
√
f − ρ

)
+ U f. (2.52)

Another choice captures the asymmetric limit. Define,

f3(l, ρ) = −2 t
√

2 l − l2 − ρ2 + U
l2 + ρ2

2 l
. (2.53)

Then,

F (ρ) = min
f
f2(f, ρ) = min

l
f3(l, ρ). (2.54)

These also yield high order polynomial equations when minimized. The present parametriza-

tion, Eq. (2.41), is quantitatively superior for nearly all values of U , and ∆v of interest.

2.4 Approximations

The usefulness of KS-DFT derives from the use of approximations for the XC functional, not

from the exact XC which is usually as expensive to calculate as direct solution of the many-

body problem (or more so). While the field of real-space DFT is deluged by hundreds of

different approximations[188] (relatively few of which are used in routine calculations[233]),
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few approximations exist that apply directly to the Hubbard dimer. The two we explore

here are illustrative of many general principles.

2.4.1 Mean-field theory: Broken symmetry

Since time immemorial, or at least the 1930’s, folks have realized the limitations of restricted

HF solutions for strongly correlated multi-center problems, and performed broken-symmetry

calculations[57]. For example, in many-body theory, Anderson solved the Anderson impurity

model for a magnetic atom in a metal[11] by allowing symmetry breaking, several years before

Kondo’s ground-breaking work[149]. In quantum chemistry, Coulson and Fischer identified

the Coulson-Fischer point of the stretched H2 molecule where the broken symmetry solution

has lower energy than the restricted solution[57]. Modern quantum chemists like to spin-

purify their wavefunctions, but DFT hardliners[223] claim the broken-symmetry solution is

the ‘correct’ one (for an approximate functional). The exact KS functional, as shown in

all previous sections, yields the exact energy and spin densities, while remaining in a spin

singlet.

If we do not impose spin symmetry, the effective potential in mean-field theory becomes (Sec

1.3.2):

veff
iσ = vi + U niσ̄, (2.55)

with σ = +1 for spin up, σ = −1 for spin down and σ̄ = −σ, because the change in the

effective field is caused by the other electron. Writing ni = ni,↑ + ni,↓, mi = ni,↑ − ni↓ and

∆m = m2 −m1, and defining

∆veff
σ = ∆v +

U

2
(∆n− σ∆m), (2.56)
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and

teff
σ = t

√
1 + (∆veff

σ /2 t)
2, (2.57)

we find the eigenvalues are:

eMF
±,σ =

U

4
(N − σM)± teff

σ̄

2
, (2.58)

where N = 2 is the number of particles and M is the total magnetization. We find the

ferromagnetic solution (M = 2) to be everywhere above the antiferromagnetic solution (M =

0), and for M = 0:

E =
U

2
(1− ∆n2 −∆m2

4
)− 1

2
(teff
↑ + teff

↓ ), (2.59)

where ∆m = 0 is the paramagnetic (spin singlet) solution, and corresponds to our original

mean-field or restricted Hartree-Fock solution. We minimize this energy with respect to ∆n

and ∆m, given by

∆n = −
∑
σ

∆veff
σ

teff
σ

, ∆m = −
∑
σ

σ
∆veff

σ

teff
σ

, (2.60)

These antiferromagnetic (AFM) self-consistency equations always have the trivial solution

∆m = 0, which corresponds to the restricted MF solution(RHF). However, there exists a

non-trivial solution ∆m 6= 0 for sufficiently large values of U .

In Fig. 2.14, we plot ∆n for both restricted and unrestricted HF solutions for U = 5. The

solutions coincide for large ∆v, but below a critical value of ∆v, they differ. The UHF

solution has a significantly lower ∆n, which is much closer to the exact ∆n.

In Fig. 2.15, we plot the energies, showing that the UHF solution does not rise above zero,
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Figure 2.14: Plots of ∆n for HF and BALDA as a function of ∆v for U = 5 and 2 t = 1.
The crossover from the charge-transfer to the Mott-Hubbard regime happens at U ≈ ∆v.

and mimics the exact solution rather closely. For large U , at n1 = 1, we can compare results

analytically:

E → U

2
− 2 t (RHF), − 2 t2

U
(UHF), − 4 t2

U
(exact) (2.61)

confirming that the UHF energy is far more accurate than the RHF energy, and recovers the

dominant term in the strongly correlated limit. Note that the symmetric case is atypical:

The constant terms vanish, both exactly and in UHF, so the leading terms is O(1/U), and

its coefficient in UHF is underestimated by a factor of 2. The slope of the exact result is two

times larger than UHF. Of course, the exact solution is a spin-singlet, so the symmetry of

the UHF solution is incorrect, but its energy is far better than that of RHF. This is called

the symmetry dilemma in DFT[223]: Should I impose the right symmetry at the cost of a
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Figure 2.15: Ground-state energy of the unrestricted Hartree-Fock (thick dashed line), re-
stricted Hartree-Fock (dot dashed line), and exact ground-state (thin solid line) of the Hub-
bard dimer as a function of ∆v for several values of U and 2 t = 1. The dot shows the
Coulson-Fischer point at which the symmetry breaks spontaneously. For smaller ∆v the
UHF energy is below RHF while for larger ∆v they are the same.

poor energy? Note that the exact KS wavefunction is also a singlet, so a broken-symmetry

DFT solution produces the wrong symmetry for the KS wavefunction.

2.4.2 BALDA

In real-space DFT, the local density approximation (LDA) was first suggested by Kohn and

Sham[148], in which the XC energy is approximated at each point in a system by that of a

uniform gas with the density at that point. Another way to think of this is that one decides

to make a local approximation, and then chooses the uniform gas XC energy density to

ensure exactness in the uniform limit. On the lattice, we must switch our reference system
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to incorporate Luttinger-liquid correlations instead of Fermi-liquid correlations[111]. The

infinite homogeneous Hubbard chain plays the role of the uniform gas. This can be solved

exactly via Bethe ansatz[170], and the corresponding LDA was first constructed and tested

in Ref. [261]. Later, Capelle and collaborators[172, 44, 173, 320, 87] used the exact Bethe

ansatz solution to create an explicit parametrization for the energy per site, and called this

Bethe Ansatz LDA, or BALDA.

Since its inception, BALDA has been applied to many different problems including disorder

and critical behavior in optical lattices[313, 41], spin-charge separation[300, 301] and effects

of spatial inhomogeneity[270, 171] in strongly correlated systems, confined fermions both

with attractive and repulsive interactions[39], current DFT on a lattice[7], electric fields

and strong correlation[6], and various critical phenomena in 1-D systems[3, 86]. Exten-

sions to include spin-dependence (BALSDA) have been principally used for studying density

oscillations[314, 303], and fermions in confinement[316, 315, 126]. A thermal DFT approxi-

mation on the lattice has been constructed using BALDA[317]. BALDA has also been used as

an adiabatic approximation in TD-DFT to calculate excitations[296, 167, 157, 291, 298, 140]

and also transport properties[159, 299], as well as using BALDA as a gateway to calculate

time-dependent effects in 3-D[138]. There has been significant interest in using BALDA

to understand the derivative discontinuity in both DFT and TD-DFT[320, 159, 317, 324].

Additionally, the BALDA approach has been developed for other BA-solvable fermionic

lattice systems aside from the Hubbard model[318, 4, 256, 198], such as the Anderson

model[29, 175, 158], as well as bosonic systems[112, 310, 311].

We use here the semi-analytical approach to BALDA[173, 320] where the expressions are

given in 2.12. In Fig. 2.16 we plot the BALDA ground-state energy as a function of ∆v for

several values of U . At first glance, it seems to do a good job in all regimes. In particular,

for either very weak correlation (U = 0.2) or very strong correlation (U = 100), it is indis-

tinguishable from the exact curves. However, for moderate correlation (1 . U . 5) where
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Figure 2.16: Ground-state energy versus ∆v for several U , with 2 t = 1. The BALDA
energies are evaluated self-consistently.

∆v . U , it appears to significantly underestimate the magnitude of E.

Even for the strong correlation regime, its behavior is not quite correct. For the symmetric

case:

EBA ' 2 t

(
4

π
− 1

)
> 0 (U � 2 t) (2.62)

Thus, for ∆v = 0 and U = 100 in Fig. 2.16, BALDA is in serious error, but this cannot

be seen on the scale of the figure. The origin of this error is easy to understand. BALDA’s

reference system is an infinite homogeneous chain, and we are applying it to a finite in-

homogeneous dimer. The error is in the correlation kinetic energy, which comes from the

difference between the exact and KS kinetic energies. The tight-binding energy for an infi-

nite homogeneous chain is different from that of the dimer, and this difference is showing up
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(incorrectly) in the correlation energy. We could, of course, reparametrize BALDA to use

the homogeneous dimer energy, but the analog of real-space DFT is to use the homogeneous

extended system (infinite Hubbard chain).

2.4.3 BALDA versus HF

Figure 2.17: Plots of the RMF, UMF, and BALDA ∆E = Eapprox − Eexact as a function of
∆v for U = 0.2, 1, 5, and 10. For small U the RMF and UMF results are indistinguishable.
Here 2 t = 1.

Lastly we compare BALDA and both the restricted and unrestricted Hartree-Fock approx-

imations. In Fig. 2.17, we plot the errors made in the ground-state energy of all three

approximations. For U ≤ 1, HF does not break symmetry, and so UHF=RHF. For very

small U , the energy error is comparable to HF. For U = 1, BALDA is better than HF. For

larger U , UHF produces a lower energy than HF, and almost everywhere is more accurate

than BALDA. The sole exception is at precisely U ≈ ∆v, where BALDA is much better. In

70



Fig. 2.14, we compare BALDA and UHF densities to the exact density for U = 5 as a func-

tion of ∆v. Although BALDA does not have a symmetry-breaking point, it unfortunately

has a critical value of ∆v where ∆n vanishes incorrectly. This is the origin of the cusp-like

features in the BALDA energies of Figs. 2.16 and 2.17. In fact, the BALDA density appears

somewhat worse than UHF for most ∆v. But keep in mind that the main purpose of BALDA

is to produce accurate energies without the artificial spin-symmetry breaking of UHF.

2.5 Fractional particle number

We will now show a way that one can extract the physical gap from ground-state DFT. This

is done simply by changing the number of electrons, but now continuously, rather than just

at integers. In fact, we already used this technology implicitly in Sec 2.1, but here we make

this much more explicit.

2.5.1 Derivative discontinuity

An extremely important concept in DFT is that of the derivative discontinuity [222, 221, 259,

199, 54, 201, 159, 322, 200]. This is most famous for its implication for the Kohn-Sham gap

of a solid, ensuring that the gap (in general) does not match the true fundamental (or charge)

gap of the solid, as we saw in Sec. 2.1. The expression itself refers to a plot of ground-state

energy versus particle number N at zero temperature. In seminal work[222, 221, 216], it was

shown that E(N ) consists of straight-line segments between integer values, where N is a

real variable, where all quantities are now expectation values in a grand-canonical ensemble

at zero temperature:

E(N ) = (1− w)E(N) + wE(N + 1), (2.63)
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and

nN (r) = (1− w)nN(r) + w nN+1(r), (2.64)

where N = N + w, i.e., both energy and ground-state density are piecewise linear, with a

sudden change at integer values.

Then the chemical potential is

µ = dE/dN = −I (N < N)

= −A (N > N). (2.65)

When we evaluated everything at N = 2 in Sec. 2.1, we really meant N = 2−. Then Janak’s

theorem[133] shows that, for the KS system,

µ = dE/dN = εHOMO (N < N)

= εLUMO (N > N) (2.66)

This is the proof of the equivalence of I and −εHOMO.

Because the energy is in straight-line segments, the slope of E(N ), the chemical potential,

µ(N ), jumps discontinuously at integer values. Hence the name, derivative discontinuity.

The jump in µ across an integer N is then Eg = I − A, the fundamental gap. In the KS

system, since the energy is given in terms of orbitals and their occupations, that jump is

simply the KS HOMO-LUMO gap, Egs. Since the KS electrons have the non-interacting

kinetic energy, and the external and Hartree potentials are continuous functionals of the

72



density, the difference is an XC effect. Moreover, it implies that vXC jumps by this amount

as one passes through N , an integer.

For solids, addition or removal of a single electron has an infinitesimal effect on the density,

but the XC discontinuity shifts the conduction band upward by ∆XC when an electron is

added, contributing to the true gap. Since local and semilocal approximations to XC are

usually smooth functionals of the density, they produce no such shift. They do yield accurate

approximations to the KS gap of a solid, but not to the gap calculated by adding and

removing an electron, because of this missing shift. Thus we have no general procedure

for extracting accurate gaps using LDA and GGA. An important quality factor in more

sophisticated approximations is whether or not they have a discontinuity. Orbital-dependent

functionals, such as exact exchange (EXX in OEP)[268, 284, 153, 96, 323, 156] or self-

interaction corrected LDA (SIC)[225, 238, 19, 48, 215], often capture effects due to the

discontinuity quite accurately.

2.5.2 Hubbard dimer near integer particle numbers

In Fig. 2.18, we plot E(N ) for our Hubbard dimer. Real-space curves have always been

found to be convex, although this has never been proven to be generally true. The vital

part for us is that this equivalence of the HOMO level and −I links the overall position of

the KS levels to those of the many-body system. For fixed particle number, only the KS

on-site energy difference is determined by the need to reproduce the exact site occupancies.

But this condition also fixes the mean value of the KS on-site energy, v̄S, which in general

is non-zero, even though we chose the actual mean on-site energy to be zero always. In Fig.

1.2, this is visible in the mean position of the two KS on-site potentials.

Another way to think about this is that function(al) derivatives at fixed N leave an undeter-

mined constant in the potential, whereas that constant is determined if the particle number
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Figure 2.18: Plot of E(N ) for U = 1, ∆v = 0 and 2 t = 1.

is allowed to change. We can write many equivalent formulas for the discontinuity:

∆XC =
∂EXC

∂N

∣∣∣
N+
− ∂EXC

∂N

∣∣∣
N−
,

= v̄XC(N+)− v̄XC(N−),

= v̄S(N
+)− v̄S(N

−),

= εS(N
+)− εS(N

−), (2.67)

all of which are true. Thus another way to find the gap from a KS system is to occupy it

with an extra infinitesimal of an electron, and note the jump in potentials or eigenvalues.

To illustrate this, in Fig. 2.19 we replot Fig. 2.1, but now for N = 2+, showing that now

the LUMO matches −A, and the difference between the HOMO and −I is ∆XC.

In Fig. 2.20 we plot ∆XC for N = 2 for various U , as a function of ∆v, scaling each variable
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Figure 2.19: Same as Fig. 2.1 except with N = 2+ instead of N = 2−.

by U . We see that the discontinuity always decreases with increasing ∆v. In fact, the larger

U is, the more abruptly it vanishes (on a scale of U) when ∆v > U . In this sense, the greater

the asymmetry, the less discontinuous the energy derivative is, and the KS gap will be closer

to the true gap.

The situation is reversed when N = 1, as shown in Fig. 2.21. Now the discontinuity grows

with increasing ∆v. In this case, a large asymmetry puts the electron mostly on one site.

When an infinitesimal of an electron is added, it goes to the same site, but paying an energy

cost of U . On the other hand, if ∆v is small, the first electron is spread over both sites, and

so is the added infinitesimal, reducing the energy cost by a factor of 2. So ∆XC → U/2 in

the weakly correlated near-symmetric limit.
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Figure 2.20: Derivative discontinuity as a function of ∆v for U = 1, and U = 5.

2.5.3 Discontinuity around n1 = 1 for N = 2

The derivative discontinuity manifests itself in many different aspects of DFT. We have

already seen how it affects both energies and potentials as N is continuously moved across

an integer. Here we explore how it appears even at fixed particle number, as correlations

become strong.

For our Hubbard dimer, with any finite ∆v, if U � ∆v, we know each ni is close to 1. The

overwhelmingly large U localizes each electron on opposite sites. In the limit as U → ∞,

all fluctuations are suppressed, and the dimer becomes two separate systems of one electron

each. For large but finite U , and finite ∆v, one is on the integer deficient side, and the

other has slightly more than one electron. All the statements made above about N passing

through 2 now apply as n1 passes through 1.
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Figure 2.21: Derivative discontinuity for N = 1 as a function of ∆v for U = 1, and U = 5.

We can see the effects in many of our earlier figures. In Fig. 1.7, the slope of F for U = 10

appears discontinuous at n1 = 1. F contains the discontinuity in both TS and EXC in the

limit U → ∞. However, in reality, this curve is not really discontinuous. Zooming in on F

near n1 = 1, one sees that on a scale of O(1/U), F is rounded.

The classic manifestation already appears in Fig. 1.4, the occupation difference as a function

of ∆v. To emphasize the point, in Fig. 2.22, we plot several curves for U = 100. This is the

discontinuous change from having 1 particle on each site to 2 on one site that occurs. This

is important because the common approximate density functionals miss this discontinuity

effect. Explicit continuous functionals of the density cannot behave this way. For the SOFT

case, this is embodied in the HF curves of Fig. 1.9: No matter how strong the value of U ,

these curves are linear. In RHF, ∆n versus ∆v never evolves the sudden step discussed above,

as shown in Fig. 2.14. On the other hand, the BALDA approximation contains an explicit

discontinuity at n1 = 1 in its formulas, and so captures this effect, at least to leading-order
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Figure 2.22: Plots of ∆n in HF and BALDA as a function of ∆v for U = 100 (2 t = 1). The
crossover from the charge-transfer to the Mott-Hubbard regime happens at about U ≈ ∆v.

in U . In this sense, both BALDA and UHF capture the most important effect of strong

correlation. On the other hand, as discussed in Sec 2.4.3, UHF ‘cheats’, while BALDA

retains the correct spin singlet. If BALDA’s effects could be (legally) built into real-space

approximations, they would be able to accurately dissociate molecules, overcoming perhaps

approximate DFT’s greatest practical failure.

However, in Fig. 2.23, we simply zoom in on the region of the plot near ∆v = U . In fact, the

exact curve is S-shaped, with a finite curvature on the scale of t. Now we see that, although

both UHF and BALDA reproduce the discontinuous effect, the details are not quite right.

UHF is admirably close in shape to the accurate curve, but its slope is too great at n1 = 1.

BALDA is accurate to leading order in 1/U , and captures beautifully the region ∆v a little

larger than U , but is quite inaccurate below that. The presence of the gap in the BALDA
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Figure 2.23: Same as Fig. 2.22

potentials leads to the incorrect discontinuous behavior near ∆v = 98. But once again we

emphasize that the important feature is that these approximations do capture the dominant

effect, and that BALDA does so without breaking symmetry.

2.6 Conclusions and Discussion

So, what can we learn from this exercise in applying DFT methods to the simplest strongly

correlated system? Perhaps the most important point is that there is a large cultural differ-

ence between many-body approaches and DFT methodology, and a considerable barrier to

communication. In Sec. 1.4.3, we saw that even the definition of exchange is different in the

two communities. The greatest misunderstandings come not from using different words for
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the same thing, but rather from using the same word for two different things.

We can also see that the limitations of DFT calculations are often misunderstood in the

broader community. For example, the exact ground-state XC functional has a HOMO-

LUMO gap that does not, in general, match the fundamental gap. The KS eigenvalues are

not quasiparticle eigenvalues in general, and are in fact, much closer to optical excitations[2].

Even the purpose of a DFT calculation is quite foreign to most solid-state physics. The

modern art of DFT is aimed at producing extremely accurate (by physics standards) ground-

state energies, and the many properties that can be extracted from those, rather than the

response properties that are probed in most solid-state experiments, such as photoemission.

(Flipping the coin, most quantum chemists would never describe DFT energies as extremely

accurate, as traditional quantum chemical ab initio methods are hyper accurate on this

scale.)

We also mention many aspects that we have not covered here. For example, time-dependent

DFT is based on a distinct theorem (the Runge-Gross theorem[248]), and provides approxi-

mate optical excitations for molecular systems[38]. The Mermin theorem[194] generalizes the

HK theorem to thermal ensembles[235]. There are many interesting features related to spin

polarization and dynamics, but very little is relevant to the system discussed here. There

are also many non-DFT approaches, such as GW , which could be tested on the asymmetric

dimer.

We also take a moment to discuss how SOFT calculations can be related to real-space DFT.

One can easily add more orbitals to each site and create an extended Hubbard model. For

the H2 molecule, adding just pz orbitals and allowing them to scale yields a very accurate

binding curve. But such an extension (beyond one basis function per site) is extremely

problematic for SOFT[113, 258], because it is no longer clear how to represent the ‘density’.

With 2 basis functions, should one use just the diagonal occupations, or include off-diagonal

elements? In fact, neither one is satisfactory, as neither approaches the real-space density
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functional in the infinite basis limit. An underlying important point of DFT is that it is

applied to potentials that are diagonal in r, i.e., v(r), and not diagonal in an arbitrary basis.

This is a key requirement of the HK theorem, and is the reason why the one-body density

n(r) is the corresponding variable on which to build the theory, and why the local density

approximation is the starting point of all DFT approximations.

This inability to go from SOFT calculations to real-space DFT calculations should be re-

garded as a major caveat for those using SOFT to explore DFT. Here we have shown many

similarities in the behavior of SOFT functionals compared to real-space functionals. We

have also proven some of the same basic theorems as those used in real-space DFT. But any

results (especially unusual ones) that are found in SOFT calculations might not generalize

to real-space DFT. The only way to be sure is to find a proof or calculation in real-space. On

the other hand, SOFT calculations can be safely used to illustrate the basic physics behind

real-space results[281].

Another limitation of SOFT can be seen already in our asymmetric Hubbard dimer. In

a real heterogeneous diatomic molecule, say LiH with a pseudopotential for the core Li

electrons, the values of U would be different on the two sites. But the real-space DFT is

applied to interactions that are the same among all particles. And even if SOFT applies

when both U and t become site-dependent, i.e. a one-to-one correspondence can be proven,

it is unlikely that such studies would yield behavior that is even qualitatively similar to

real-space DFT. Minimal models are usually designed to capture universal features and our

Hubbard dimer captures the essential physics of the strongly correlated limit. However the

SOFT function(al) is not the same as the DFT one.

Finally, we wish to emphasize once again the importance of testing ideas on the asymmetric

Hubbard dimer. Much (but not all) of the SOFT literature tests ideas on homogeneous

cases. The essence of DFT is the creation of a universal functional. i.e., F [n] is the same no

matter which specific problem you are trying to solve. The symmetric case is very special in
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several ways, and there are no difficulties in applying any method to the asymmetric case.

We hope that some of the results presented here will make that easier.
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2.8 Additional Results

The following sections are Ref. [47]’s appendices.

2.9 Exact solution, components, and limits

In all appendices, we use dimensionless variables for brevity. Hence ε = E/2 t, u = U/2 t,

and ν = ∆v/2 t. All the results in this appendix are already known, e.g. [242]. Then, the

energy of the singlet-ground-state is

ε =
2

3

(
u− w sin (θ +

π

6
)
)

(2.68)
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where

w =
√

3 [1 + ν2] + u2, (2.69)

and

cos(3θ) = (9(ν2 − 1/2)− u2)u/w3. (2.70)

The coefficients of the minimizing wavefunction, Eq. (2.33), are

α = c
(

1− u

ε

)
, β1,2 = c (u− ε± ν) , (2.71)

c−2 = 2
(
ν2 + (ε− u)2

(
1 + ε−2

))
. (2.72)

The ground-state expectation values of the density difference and of the different pieces of

the Hamiltonian are

∆n = 4 c2 ν (ε− u) (2.73)

V = ∆v∆n/2, (2.74)

T = 4 c2(ε− u)2/ε, (2.75)

Vee = 4 c2 t u
(
(ε− u)2 + ν2

)
. (2.76)

For fixed asymmetry ν, we can expand ε in the weakly and strongly correlated limits:

εw = −
√

1 + ν2

(
1− (

1

2
+ ν2)ũ+ (

1

4
+ ν2)

ũ2

2
+ ν4 ũ

3

2

)
(2.77)
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where ũ = u/(1 + ν2)3/2. In the strongly correlated limit:

εst = −u−1 + (1− ν2)u−3 +O(u−5). (2.78)

We can also expand for fixed u around the symmetric limit:

εsym =
1

2
(u− r) +

u− r
r(u+ r)

ν2, (2.79)

where r =
√
u2 + 4. And the asymmetric limit:

εasy = −ν + u− (2ν)−1 − u/2ν−2 + (1− 4u2)(2ν)−3. (2.80)

2.10 Many limits of F (∆n)

In this appendix we derive the limits that our parametrization in Section 2.3 satisfies. Min-

imizing F̃ of Eq. (2.39) with respect to g, we obtain a sextic equation for g:

(4 + u2) g6/4 + (ρ2 (3 + u2)− 1) g4 +

2u ρ2 g3 + ρ2 (ρ2 (3 + u2)− (2 + u2)) g2 −

2u ρ2 (1− ρ2) g − ρ4 (1− ρ2) = 0 (2.81)

where we define ρ = |∆n|/2. The solution defines gm(ρ), and F (ρ) = F (gm(ρ), ρ). Next we

expand in several limits. and F [U, ρ] = F̃ [U, ρ, gm]. However, equation (2.81) can not be

solved analytically in general.
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2.10.1 Expansions for g(ρ, u)

We expand g in 4 different limits, which are built into g0 of Eq. (2.41) in Section 2.3.

The weakly correlated limit corresponds to u � 1. We thus expand g(ρ, u) in powers of u

for fixed ρ,

g(ρ, u) =
∞∑
n=0

g(n)(ρ)un/n!, (2.82)

and insert the expansion into Eq. (2.81). The coefficients g(n) are found by canceling each

term order by order in Eq. (2.81), yielding

g(0) =
√

1− ρ2, g(1) = 0, (2.83)

g(2) = −(1− ρ2)5/2

4
, g(3) =

3

4
ρ2 (1− ρ2)3,

g(4) =
9

16
(1− ρ2)7/2 (1 + 7 ρ2 − 24 ρ4).

Notice that n1,2 = 1 ∓ sign(∆n) ρ so that to first order in U , Eq. (2.39) yields the non-

interacting kinetic energy functional of Eq. (1.42).

For strongly correlated systems, we expand g in powers of 1/u while holding ρ fixed

g(ρ, u) =
∞∑
n=0

g̃(n)(ρ)u−n/n!, (2.84)

and substitute back into Eq. (2.81) to find the coefficients. The result is

g̃(0) =
√

2 ρ (1− ρ), g̃(1) =
1− ρ

2
, (2.85)

g̃(2) =
3 (1− 3 ρ)

8ρ
g̃(0).
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Notice that this expansion breaks down at the symmetric point ρ = 0.

The other kind of limit keeps u fixed. The symmetric limit is equivalent to ρ → 0. We

expand g in powers of ρ while holding u fixed.

g(ρ, u) =
∞∑
n=0

ḡ(n)(u) ρn/n!, (2.86)

and substitute back into Eq. (2.81) to find the coefficients. The result is

ḡ(0) = r−1, ḡ(2) =
1

2

(
u2 +

u2/2 (u2/2 + 1)− 1

r

)
(2.87)

where r =
√

1 + (u/2)2.

The asymmetric limit is equivalent to ρ→ 1. We expand g in powers of ρ̄ = 1− ρ for fixed

u:

g(ρ, u) =
∞∑
n=0

˜̄g(n)(u) ρ̄n/n!, (2.88)

and substitute back into Eq. (2.81). The result is

˜̄g(1/2) =
√
π/2, ˜̄g(3/2) = −3˜̄g(1/2)/8 (2.89)

˜̄g(5/2) =

(
1

16
+ u2

)
5˜̄g(3/2)

˜̄g(3) = 12u3.
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2.10.2 Limits of the correlation energy functional

Now that we have expressions for g in all four limits we can use our expression for F , eq.

(2.39), TS, and UH to compute EC in each regime:

eC = −g + uh(g, ρ)− u

2
(1 + ρ2) +

√
1− ρ2.

where h(g, ρ) is defined in Eq. (2.40). Then, as u→ 0, eC → ewC , where

ewC (ρ) = −u
2

8
(1− ρ2)5/2

(
1− u ρ2

√
1− ρ2

)
. (2.90)

Similarly, as u→∞, eC → estrC , where

estrC (ρ) = −u
2

(1− ρ)2 +
√

1− ρ
(√

1 + ρ−
√

2 ρ
)
− 1− ρ

4u
. (2.91)

An alternative expansion is to fix u and expand in ρ. As ρ→ 0, eC → esymC , where

esymC (ρ) = 1−
√

1 +
(u

2

)2

(2.92)

+ ρ2

((u
2

)3

− 1

2
+

√
1 +

(u
2

)2
(

1

2
+
(u

2

)2
))

.

As ρ→ 1, eC → easymC , where

easymC (ρ) = u2 ρ̄5/2

(
− 1√

2
+ u
√
ρ̄

)
. (2.93)

where ρ̄ = 1− ρ.
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2.10.3 Order of limits

Finally, we look at how these expressions behave when both parameters are extreme. The

weakly correlated limit has no difficulties near the symmetric point:

ewC (ρ→ 0) = esymC (u→ 0)

= −u
2

8

(
1− 5 ρ2

2

)
+
u3 ρ2

8
. (2.94)

In the asymmetric limit, there are also no problems:

ewC (ρ→ 1) = easymC (u→ 0)

= u2 ρ̄5/2

(
− 1√

2
+ u
√
ρ̄

)
. (2.95)

Thus, the expansion in powers of u is well-behaved, and there are no difficulties using it for

sufficiently small u. In the symmetric case, one sees explicitly that the radius of convergence

of the expansion is u = 2.

On the other hand, the strong coupling limit is more problematic. Expanding the strong-

couping functional around the symmetric limit, we find

estrC (ρ→ 0) = −u
2

+ 1− 1

4u
−
√

2 ρ+ ρ

(
u+

1

4u

)
, (2.96)

while reversing the order of limits yields:

esymC (u→∞) = −u
2

+ 1− 1

u
− ρ2

2

(
1− u− 1

2u
− u3

2

)
. (2.97)

88



Note the difference beginning in the third terms, i.e., at first-order in 1/u, even for ρ =

0. Thus for the Hubbard dimer, approximations based on expansions around the strong-

coupling limit are likely to fail for some values of the density.

2.11 Proofs of Energy Relations

Using the notation established in Section 2.3, we prove some simple relations about the

energy and its components. Start with the general expression for the energy, Eq. (2.39) and

(2.40),

ε = min
ρ,g

[−g + uh(g, ρ)− νρ] . (2.98)

First take ρ→ 0. The second term reduces to u
(

1−
√

1− g2
)
/2. Then let g → 0, resulting

in h → 0. This yields ε → 0 and therefore the exact ε ≤ 0. This process corresponds to

choosing a trial wavefunction, and by Rayleigh-Ritz, the ground-state wavefunction will

produce a value equal to or below the trial result.

In Hartree-Fock, g reduces to gHF =
√

1− ρ2. Then,

εHF = min
ρ
ε(gHF(ρ), ρ) ≥ ε. (2.99)

This shows that εtrad
C = ε − εHF ≥ 0, as in Fig. 1.6. The minimization can be performed

analytically though it involves solving the quartic polynomial

ρ√
1− ρ2

+ u ρ− ν = 0. (2.100)
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Similarly, a DFT exact exchange (EXX) calculation is defined by

εEXX = ε(gHF(ρm), ρm) ≥ min
ρ
ε(gHF(ρ), ρ) (2.101)

where ρm is the minimizing density for the many-body problem. This yields εDFT
C = ε−εEXX,

and εtrad
C ≥ εDFT

C [104].

For the kinetic energy alone, t = −g(ρm), and

tS = min
u→0,ρ

[−g(ρ)] = −
√

1− ρ2. (2.102)

This results in tC ≥ 0 since the KS occupation difference is defined to minimize the hopping

energy. This combined with the above implies uC ≤ 0, as in Eq. (2.14).

For the adiabatic connection integrand, take a derivative of Eq. (2.46):

duλC
dλ

=
uC(ρ, λ)

λ
+ λu

∂h

∂g

∂g

∂λ
. (2.103)

The first term is less than zero by definition but the second needs more unraveling. To begin,

from Eq. (2.39),

∂f

∂g
= −1 + u

∂h

∂g
, (2.104)

so, at the solution

∂h

∂g
=

1

u
. (2.105)

For λ near 1, Suppose g(λ) ' g(1)+(λ−1)g′(1), and expand ∂h/∂g|g(λ) in g(λ) around g(1):
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∂h

∂g

∣∣∣∣
g(λ)

=
∂h

∂g

∣∣∣∣
g(1)

+ (λ− 1)g′(1)
∂2h

∂g2

∣∣∣∣
g(1)

(2.106)

The first term on the left is 1/(λu) ≈ (2− λ)/u. After some algebra,

∂g

∂λ

∣∣∣∣
λ=1

= −

(
u
∂2h

∂g2

∣∣∣∣
g(1)

)−1

(2.107)

Since the hopping term of f is linear in g, ∂2f/∂g2 = ∂2h/∂g2. The energy is a minimum at

g so ∂2f/∂g2 > 0, thus ∂g/∂λ > 0. Together, this results in

dUλ
C/dλ < 0, (2.108)

the adiabatic connection integrand is monotonically decreasing as seen in Fig. 2.11.

2.12 BALDA Derivation

For an infinite homogeneous Hubbard chain of density n = 1 + x, the energy per site (in

units of 2 t) is given approximately by

ε̃unif = ux θ(x) + α(x, β(U)) (2.109)

where θ(x) is the Heaviside function and

α(x, β) = −β
π

sin (π (1− |x|)/β) /π. (2.110)
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The function β(u) varies smoothly from 1 at u = 0 to 2 as u→∞[173], and satisfies

α(0, β) = −4

∫ ∞
0

d ξ
J0(ξ) J1(ξ)

ξ [1 + exp(u ξ))]
(2.111)

This simple result is exact as u → 0, u → ∞ and at n = 1, and a good approximation

(accurate to within a few percent) elsewhere[173] to the exact solution via Bethe ansatz[170].

In principle, β depends on n, and this dependence has been fit in later work[87]. Here, we

use the simpler original version of a function of u only. In fact, the solution to Eq. (2.111)

can be accurately fit (error below 1%) with a simple rational function,

βfit(u) =
2 + au+ bu2

1 + cu+ bu2
(2.112)

with coefficients a = 2c− π/4 and b = (a− c)/ log 2 chosen to recover the small-u behavior

to first-order, and the large u behavior to first order in 1/u, and c = 1.197963 is fit to β(u).

This is useful for quick implementation of BALDA.

At u = 0, the hopping energy per site is just

t̃unif
S = − sin (π (1− |x|)) /π, (2.113)

while the Hartree-exchange energy per site is a simple local function:

ũunif
HX = un2/4. (2.114)

Thus the correlation energy per site is just

ε̃unif
C = ε̃unif − t̃unif

S − ũunif
HX . (2.115)
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The BALDA approximation is then

εBALDA
XC = ε̃unif

XC (n1, U) + ε̃unif
XC (n2, U). (2.116)

Since the exchange is local, BALDA is exact for that contribution, and only correlation is

approximated. Since n1,2 = 1 ∓ ∆n/2, x = ∓∆n/2 for sites 1 and 2 respectively. The

BALDA HXC energy is then:

εBALDA
HXC = 2 (α(∆n/2, U)− α(∆n/2, 0)) + u|∆n|/2, (2.117)

and was inserted into the KS equations (Sec 1.4.3) to find the results of Sec 2.4.2.

2.13 Mean-Field Derivation

The MF hamiltonian for the Hubbard dimer can be written in the number basis |1σ, 2σ〉 as

follows

ĤMF
σ =

 −∆veff
σ /2 −t

−t ∆veff
σ /2

 (2.118)

with σ = ±1 for spin up and down respectively. Setting M = m1 +m2 and N = n1 + n2 as

the total magnetization and particle number of the system, the eigenvalues are

eMF
±,σ =

U

4
(N − σM)± teff

σ̄

2
, (2.119)

teff
σ = 2 t

√
(∆veff

σ /2 t)
2 + 1,

∆veff
σ = ∆v +

U

2
(∆n− σ∆m).
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The total energy of the system is

EFM = e−,↑ + e+,↑ − UH (2.120)

EAFM = e−,↑ + e−,↓ − UH, (2.121)

where the Hartree term is written as

UH =
U

4
(n1 ↑ n1 ↓ + n2 ↑ n2 ↓)

=
U

8

(
N2 −M2 + ∆n2 −∆m2

)
. (2.122)

Depending on whether EAFM is larger or smaller than EFM , the ground-state of the system

may be ferromagnetic (N = 2, |M | = 2) or antiferromagnetic (N = 2, M = 0, |∆m| ≥ 0).

The paramagnetic state is a specific case of the AFM state with ∆m = 0. Explicitly, for the

ferromagnetic state we have the eigenstate energies and self-consistency equations

∆n = ∆m = −∆v/
√

4 t2 + ∆v2 (2.123)

e∓,↑ = ∓
√

4 t2 + ∆v2/2 (2.124)

On the other hand, the M = 0 state (|∆m| > 0 is AFM, ∆m = 0 is PM) corresponds to the

eigenvalues,

e−,↑ = (U − teff
↓ )/2, e−,↓ = (U − teff

↑ )/2, (2.125)
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and self-consistency equations

∆n = −
∑
σ

∆veff
σ

teff
σ

, ∆m = −
∑
σ

σ
∆veff

σ

teff
σ

, (2.126)

and the expressions for ∆veff
σ and teff

σ are given in Eq. (2.119). The self-consistency procedure

needs to be carried out numerically in this case.

The total energy can also be written as

EAFM,PM =
U

2
(1− ∆n2 −∆m2

4
)−

teff
↑ + teff

↓

2
. (2.127)

In the PM case, the expressions can be simplified to give

∆n =
−2 ∆v − U ∆n√

(∆v + U∆n/2)2 + 4 t2
(2.128)

for the occupations and

EPM =
U

2

(
1−

(
∆n

2

)2
)
−

√(
∆v +

U

2
∆n

)2

+ 4 t2. (2.129)

2.14 Relation between Hubbard model and real-space

To show how SOFT and real-space DFT are connected, begin with the one-electron dimer,

H+
2 , with the protons separated by R. Use a basis of the exact atomic 1s orbitals, one on

each site. This is a minimal basis in quantum chemistry. Then

ĥ = −1

2
∇2 − 1

r
− 1

|r−Rz|
(2.130)
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where the bond is along the z-axis. Then the matrix elements of ĥ in the basis set of atomic

orbitals are:

v1 = v2 = εA + j(R), t = s(R) εA + k(R) (2.131)

where εA is the atomic energy (one Rydberg here) and

s(R) = 〈A|B〉 = e−R(1 +R +R2/3)

j(R) = 〈A| 1

|r−Rz|
|A〉 = −(1/R− e−2R(1 + 1/R))

k(R) = 〈A| 1

|r−Rz|
|B〉 = −e−R(1 +R), (2.132)

yielding the textbook eigenvalues (for the generalized eigenvalue problem):

ε± = εA + (j ± k)/(1± s). (2.133)

Of course, the orbitals can always be symmetrically orthogonalized in advance[183], in which

case

vortho = εA + (−j + ks)/(s2 − 1), (2.134)

tortho = −(sj − k)/(s2 − 1). (2.135)

Although physics textbooks often set the overlap to zero, this is inconsistent, as the size of

the overlap is comparable to k(R), say. Setting the on-site potential to zero (but re-adding

its value to the energy) and using tortho, makes the solution Eq. (1.29) of the text produce

the exact electronic energy in this minimal basis.
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But quantum chemistry textbooks note that this calculation is horribly inaccurate, yielding

a bond-length of 2.5 Bohr and a well depth of 2.75 eV. Inclusion of a pz orbital on each site,

and allowing the lengthscale of each orbital to vary, produces almost exact results of 2.00

Bohr and 4.76 eV. Thus, even in this simple case, more than one orbital per site is needed

to converge to the real-space limit.

Next we consider repeating the minimal-basis calculation with one nuclear charge replaced

by value Z. This yields an asymmetric tight-binding problem for which the orbitals can be

orthogonalized and values of ∆v and t deduced as a function of R. But note that changing Z

will change both ∆v and t simultaneously, unlike our asymmetric SOFT dimer, where only

∆v changes. In real-space DFT, the kinetic energy functional remains the same, TW
S of Eq.

(1.20), for all R and every Z.

The situation is even more complicated for H2 and its asymmetric variants. Clearly U

becomes a function of R, but there are also several independent off-diagonal matrix elements

that are R dependent. Again, all change as a function of both R and Z, but none of this

occurs in SOFT. In real-space DFT, TS is still the von Weisacker functional, UH is always the

Hartree energy, and the exact EXC[n] is independent of R and Z, but always produces the

exact energy when iterated in the KS equations. In Ref. [50], they take a different approach

by including a nearest-neighbor Hubbard U .

97



Chapter 3

Exact Thermal Density Functional

Theory for a Model System:

Correlation components and accuracy

of the zero-temperature

exchange-correlation approximation

This chapter, in its entirety, is from Ref. [276]. I am the first, and lead, author. I contributed

writing, proof reading, ideas, and all figures and formulas. My co-authors were Aurora

Pribram-Jones (second) and Kieron Burke (third).
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3.1 Abstract

Thermal density functional theory (DFT) calculations often use the Mermin-Kohn-Sham

(MKS) scheme, but employ ground-state approximations to the exchange-correlation (XC)

free energy. In the simplest solvable non-trivial model, an asymmetric Hubbard dimer,

we calculate the exact many-body energies, the exact Mermin-Kohn-Sham functionals for

this system, and extract the exact XC free energy. For moderate temperatures and weak

correlation, we find this approximation to be excellent. We extract various exact free energy

correlation components and the exact adiabatic connection formula.

3.2 Introduction

Recent decades have seen enormous advances in the use of DFT calculations[124] of warm

dense matter, a highly energetic phase of matter that shares properties of solids and plasmas[99].

Materials under the extreme temperatures and pressures necessary to generate WDM can

be found in astronomical bodies, within inertial confinement fusion capsules, and during ex-

plosions and shock physics experiments[205]. These calculations are used in the description

of planetary cores[192, 182, 143], for the development of experimental standards[142, 145],

for prediction of material properties[125, 141, 247], and in tandem with experiments push-

ing the boundaries of accessible conditions[277]. Because of this growing interest in WDM

and thermal systems in general, we seek to better understand thermal DFT using exactly

solvable models.

In almost all thermal DFT calculations, a crucial approximation is made: the exchange-

correlation (XC) free energy in principle depends on the temperature[65, 226], but in prac-

tice is approximated by a standard ground-state approximation. Most calculations are for

extended systems, and usually use a generalized gradient approximation, such as PBE[219].
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These Mermin-Kohn-Sham (MKS)[194, 148] calculations predict several key properties, such

as the free energy and density for a given distribution of the nuclei, and any properties that

can be extracted from these, such as equations of state of materials and Hugoniot shock

curves[18]. If the exact temperature-dependent XC free energy were known, such properties

would be exact[235]. In some cases, response properties are extracted from the thermal KS

orbitals[125], which involves a further approximation. Although no one has shown that the

lack of thermal XC corrections is a fatal flaw in a given calculation, the pervasive use of this

uncontrolled approximation is an underlying concern[136] that warrants investigation.

The crucial step that made zero-temperature DFT sufficiently accurate for chemical pur-

poses was the introduction and testing of generalized gradient approximations about 20 years

ago[74, 131]. By careful comparison with highly accurate benchmarks produced either by di-

rect solution of the Schrödinger equation or from experiments with well-controlled errors, the

general level of accuracy and reliability of such approximations was well documented[209,

325, 250]. With improved binding energies came the ability to determine molecular ge-

ometries for complex systems. A similar transformation is occurring in materials science

today[132].

But no such database or highly accurate results exist for thermal systems. It is hard to

imagine experimental measurements of energies with the required accuracy under the relevant

conditions, but calculations should be possible. Various Monte Carlo methods have been

developed to study WDM in extended systems[82, 262, 68, 32, 263, 196, 105]. There have

been multiple results from combining Monte Carlo and DFT for such cases[195, 305, 69, 70].

But none of these could approach the accuracy needed to invert the Kohn-Sham equations or

extract highly accurate correlation energy components. For such purposes, finite molecular

systems are often the only ones where sufficient accuracy can be practically achieved.

The prototype case for electronic structure and chemical binding is the simplest molecule,

H2, and its binding energy curve at zero temperature is simple to calculate, to study the
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success of GGA’s near equilibrium[213] and their failures as the bond is stretched[21]. But

even this system is too difficult to calculate when the electrons are heated: Only the mean

number of electrons is fixed, and all possible electron numbers must be included in evaluating

the grand canonical partition function.

Here we circumvent this difficulty with the simplest representation of a diatomic molecule.

In a minimal basis set (one function per atom), the full Hamiltonian is simply a 2-site Hub-

bard model to which lattice DFT applies[47]. The severe truncation of the Hilbert space

makes exact solution possible in thermal DFT. By inverting the MKS equations, we perform

the first exact calculations of correlation free energies and their individual components for

an inhomogeneous system, an admittedly crude representation of a chemical bond. By per-

forming self-consistent calculations with the exact ground-state exchange-correlation energy

functional for this system, we show that the ground-state approximation works well, even

becoming relatively exact in the high-temperature limit. We also illustrate several exact

conditions on the correlation energy components. While such a simplified model cannot be

used to test the accuracy of standard approximations applied in the continuum, such as the

local density or generalized gradient approximations, it does provide a first glimpse at the

behaviors of correlation energy components as a function of temperature, a subject about

which almost nothing is known outside of the uniform electron gas.

This paper is laid out as follows. In section 3.3.1 we review the ground-state of the asym-

metric Hubbard model. In section 3.3.2 we briefly outline thermal DFT. Next, in section 3.4

we write out the analytic expressions for the MB and MKS system. Lastly in section 3.6 we

discuss some results using the ground-state XC functional.
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3.3 Background

3.3.1 Ground-state Hubbard Dimer

Ref. [47] is an exhaustive review of the asymmetric Hubbard dimer for the ground-state

case. In this section we briefly review the Hamiltonian and the most salient points. The

Hamiltonian is typically written as

Ĥ = −t
∑
σ

(
ĉ†1σ ĉ2σ + h.c.

)
+
∑
i

(Un̂i↑n̂i↓ + vin̂i) (3.1)

where ĉ†iσ(ĉiσ) are electron creation (annihilation) operators and n̂iσ = ĉ†iσ ĉiσ are number op-

erators, t is the strength of electron hopping between sites, U the Coulomb repulsion when

two electrons are on the same site, and vi is the external potential on each site. Without

loss of generality, we choose v1 + v2 = 0, ∆v = v2− v1, and denote the occupation difference

∆n = n2 − n1. All terms in Eq. (3.1) have analogs in an ab initio Hamiltonian[47]. The

hopping term plays a role logically analogous to the kinetic energy, the Coulomb repulsion

is now ultra-short ranged but otherwise the same, and the on-site potential serves as the

one-body potential. Most importantly the asymmetry is necessary to perform our analy-

sis. Otherwise the occupation difference would vanish and we could not learn about the

function(al) behavior. We choose units where 2 t = 1 and we vary U and ∆v.

The key observation is that repulsion and asymmetry directly compete. When U dominates

over ∆v the density, ∆n, tends towards 0, while in the opposite limit ∆n tends towards 2.

Additionally U < ∆v is the weakly-correlated regime while U > ∆v is strongly-correlated.

The difference between weak and strong correlation is very well characterized in the sym-

metric case, where an expansion in powers of U converges absolutely up to U = 4 t and

diverges beyond that; similarly, an expansion in 1/U converges absolutely only for U > 4 t.

Here, we restrict our attention to the weakly correlated regime in order to best mimic typical

102



conditions of thermal DFT calculations.

3.3.2 Thermal Density Functional Theory

In this section we will briefly review the basics of thermal DFT[194]. For a more exhaustive

treatment see Ref. [235]. We begin with an ensemble in thermal equilibrium connected to a

bath at temperature τ . The free energy may be found from:

A = min
n

(
F [n] +

∫
d3r n(r)v(r)

)
(3.2)

where v(r) is the one-body potential, µ is the chemical potential, and the minimization is

over all positive densities with finite kinetic energy. The Mermin functional is

F [n] = min
Γ→n

Tr
{

(T̂ + V̂ee − τ Ŝ)Γ
}

(3.3)

where T̂ is the kinetic energy operator, V̂ee the electron-electron repulsion operator, Ŝ the

entropy operator, and the minimization is over all statistical density matrices with density

n(r). The average particle number is determined uniquely by µ. Then one can construct the

MKS equations[235]

{
−1

2
∇2 + vτS [n](r)

}
φτi (r) = ετi φ

τ
i (r), (3.4)

where

vτS [n](r) = v(r) + vH[n](r) + vτXC[n](r), (3.5)
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and vH[n](r) is just the usual Hartree potential[236] and

vτXC[n](r) =
δAτXC[n](r)

δn(r)
. (3.6)

The density is the sum over all orbitals,

nτ (r) =
∑
i

f τi |φτi (r)|2, (3.7)

where f τi = (1 + e(ετi −µ)/τ )−1 are their Fermi occupations. Finally, once self-consistency has

been achieved, the free energy of the interacting system is reconstructed as:

Aτ = AS − UH[n] + AτXC[n]−
∫
d3r n(r)vτXC[n](r). (3.8)

where AS is the Kohn-Sham free energy.

If the exact XC free energy density functional (confusingly, often referred to as simply the

XC energy) were known and used in the MKS equations, then their solution produces the

exact density and free energy (and any other quantity that can be directly extracted from

them). However, there are very few cases where we have access to the exact vXC(r). All

practical MKS calculations use some approximation, and most use a simple ground-state

approximation. To distinguish different levels of approximation, we write

AτXC[n] = EXC[n] + ∆AτXC[n], (3.9)

where EXC[n] is the exact ground-state XC energy, and ∆AτXC[n] is the difference in XC free

energy from its ground-state value. We call this the thermal contribution to AτXC. Then, the

zero-temperature approximation (ZTA) is where we ignore the thermal contribution to AτXC,
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i.e.,

AZTA,τ
XC [n] = EXC[n], (3.10)

i.e., we neglect thermal effects, but use the exact ground-state XC functional. This allows

us to separate thermal from non-thermal XC effects in a completely well-defined manner.

Of course, in practice, it is only in simple model systems that one has access to the exact

ground-state XC functional.

In this language, most modern QMD calculations can be thought to have made two distinct

approximations. The first is to make ZTA and ignore thermal contributions. The second is

to use some common approximation for EXC[n] within ZTA. On the other hand, calculations

that use, e.g., thermal LDA, go beyond ZTA, but approximate both the ground-state and

thermal contributions to AτXC[n].

3.4 Analytic results

We apply this technology to the asymmetric Hubbard dimer. The DFT version of a lattice

model is called site-occupation functional theory (SOFT)[261] and has the distinct advantage

of a truncated Hilbert space. We can compute every energy for every particle number and

construct exact thermodynamic and DFT components. The truncation makes the calculation

feasible. We expect that, for very high temperatures, the results will not be representative

of realistic systems with infinite Hilbert spaces.
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3.4.1 Exact many-body solution

To begin, we calculate the finite-temperature many-body energy and density for the Hubbard

dimer. Begin with the grand canonical partition function

Zgc =
∑
i,N

e(µN−Ei(N))/τ (3.11)

where Ei(N) is the i-th energy level of the Hamiltonian with N particles. The energies for 0

through 4 particles are calculated explicitly, yielding the exact partition function. From that

we construct the grand potential, its derivatives, and the free energy in the usual fashion[25]:

Ω = −τ log(Zgc), S =
∂Ω

∂τ

∣∣∣∣
µ

, (3.12)

N =
∂Ω

∂µ

∣∣∣∣
τ

, A = µN − Ω. (3.13)

We choose half-filling, 〈N〉 = 2, which means µ = U/2 (and µ = 0 for the MKS system)[269].

With the partition function and Boltzmann factors we can calculate ensemble averages:,

X = Z−1
gc

∑
i,N

〈X̂〉i,Ne(µN−Ei(N))/τ , (3.14)

where 〈X̂〉i,N is the expectation value of a general operator X̂ of the i-th state for N particles.

Using Eq. (3.14) we compute the exact energy components for the dimer. To do this, we

calculate the expectation values for each particle number of the quantities of interest such

as T , Vee, and ∆n. We list in the appendix all the expectation values for the total energies,

energy components, coefficients of the eigenstates, and densities for all the particle numbers.

In Fig. 3.1 and 3.2, we plot the free energy and entropy as a function of temperature for

several different values of ∆v. For the free energy we include curves for the zero-temperature
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Figure 3.1: Free energy for different values of ∆v. Solid lines are exact, dashed lines are the
zero-temperature XC approximation (ZTA), evaluated on the self-consistent thermal density.

approximation and for the entropy we include the self-consistent Kohn-Sham entropy (both

to be discussed later). In both cases we pick a system, i.e. fix ∆v and U and see what

happens as we heat it up. For the free energy, the values at τ = 0 recover the ground-

state energies reported in Ref. [47]. Increasing temperature results in a decrease in free

energy primarily due to the entropic term, −τS, as expected. At small temperatures there

is minimal effect as seen in Fig. 3.2 where the entropy is small and further multiplied by

a τ � 1 when calculating A. However, once the system is sufficiently warm the entropy

plays a much larger role. In contrast, increasing ∆v lowers the entropy since the asymmetry

restricts the motion of electrons. Lastly, the entropy approaches a maximum value of log(16)

for higher temperatures where 16 is the number of states in our grand canonical ensemble.
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Figure 3.2: Exact entropy (solid) and self-consistent Kohn-Sham entropy (dashed) for dif-
ferent values of ∆v. All curves approach 4 log 2.

3.4.2 Inversion and correlation components

Next, we construct the exact KS potential as well as various energy components using the

MKS approach. To begin we construct the exact occupation difference ∆n from Eq. (3.14).

We plot the result in Fig. 3.3 for fixed U but against ∆v and vary τ . In this figure we also

plot the ZTA result which will be discussed later. Increasing the temperature pushes the

electrons apart, akin to repulsion. As the system heats up, ∆n becomes closer to 0 as both

electrons sit on separate sites even when ∆v is large.

To construct the exact MKS potential, we first give formulas for non-interacting electrons

(U = 0, a.k.a. tight-binding).

The grand canonical partition function collapses to the product

Zgc =
∏
i

(
1 + eβ(µ−εi)

)
(3.15)
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Figure 3.3: Densities as a function of temperature for the system of Fig. 3.1. Solid lines are
exact, dashed lines are self-consistent KS using the ZTA.

where εi is the single-particle orbital energy. Eq. (3.12) and (3.13) can then be used. The

entropy can also be explicitly given in terms of Fermi factors,

SS = −
∑
i

fi log(fi) + (1− fi) log(1− fi). (3.16)

where fi = (1 + eβ(εi−µ))−1. The Kohn-Sham entropy is calculated in Fig. 3.2 where the

Fermi factors are calculated from self-consistently solving the MKS equations (see below).

To construct the MKS system for the Hubbard dimer within SOFT, we simply repeat the

exact calculation with U = 0, i.e., a tight-binding dimer. We find:

∆n = −2 sinφ tanhα (3.17)

where α = (4τ cosφ)−1, sinφ = x/
√

1 + x2, τ is in units of 2 t, and x = ∆vS/2 t. To perform

the inversion for a given density from the many-body problem, we perform a binary search at

the given temperature on Eq. (3.17) to find ∆vS(∆n), the exact KS site-potential difference

that yields the required occupation density. The exact ∆vXC for the given ∆n is then found
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by subtracting off the other potential contributions, i.e., ∆v and ∆vH. The Hartree energy

(in the standard DFT definition[236]) for this model is

UH(∆n) = U

(
1 +

∆n2

4

)
, (3.18)

and the Hartree potential is simply

vH(∆n) = U∆n/2 (3.19)

and both functionals are temperature-independent. For two unpolarized electrons, EX =

−UH/2 at all temperatures[235], and so is also independent of τ . The thermal MKS hopping

energy is just that of this tight-binding problem:

T τS (∆n)/(2t) = ∆n/x(∆n) (3.20)

and the tight-binding MKS entropy is

SτS (∆n) = 4 log {2 coshα} − 4α tanhα (3.21)

With these simple results, we can now extract the correlation free energy for this problem

as

AτC = (T τ − T τS )− τ(Sτ − SτS ) + (V τ
ee − UHX) (3.22)

where T τ , Sτ , and V τ
ee are calculated from the many-body problem via eqs. (3.14), (3.12),

and (3.14). Since AτX is trivial and has no thermal contribution for our system, AτC is what

we study, and we know of no other exact calculation of this quantity for a finite system.
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3.5 Numerical results

Performing the inversion to explicitly analyze the MKS potential shows how the features

of interactions are built into the non-interacting potential[286, 53, 203]. The crux of the

MKS approach is that we capture the effects of interactions through the modified external

potential ∆vS. For example, interaction causes the dimer occupations to be more symmetric,

thus ∆vS < ∆v for a MB system with U > 0. Similarly, for any given density both potentials,

∆v and ∆vS, increase with temperature to counteract thermal effects pushing the system

towards symmetry. But even in this simple model, there is a vast parameter space to be

explored as, choosing 2 t = 1, we can vary U , ∆v, τ , and 〈N〉. We focus on 〈N〉 = 2,

and the weakly-correlated and low temperature corner of our parameter space: U, τ < 1.

In particular, we avoid warming our model so much that properties are strongly influenced

by the very limited Hilbert space. Specifically, we check that the system is not too hot by

computing the occupations of all the states in the grand canonical ensemble. We test this

in the symmetric case because it is most prone to overheating since asymmetry competes

against thermal effects. For U = 1, uniform occupation of all states does not occur until

τ � 8 and appreciable uniformity does not start to arise until τ ≈ 4. Thus our results are

not limited by the top of our Hilbert space.

We can calculate all the individual contributions to the correlation free energy by subtracting

MKS quantities from their physical counterparts. These are the energy differences appearing

in Eq. (3.22):

T τC = T τ − T τS , SτC = Sτ − SτS , U τ
C = V τ

ee − UHX. (3.23)

The kentropic correlation is KC = TC − τ SC and plays a key role in thermal DFT[228].

In Fig. 3.4, we plot the exact correlation free energy functional, the sum of kinetic and

potential correlation functional, and lastly the entropic correlation functional all for various
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Figure 3.4: Panel 1: Correlation free energy functional for various temperatures. Panel 2:
Sum of kinetic and potential energy functional for various temperatures. Panel 3: Entropic
correlation functional for various temperatures.

temperatures. By fixing U and τ and plotting versus ∆n, we analyze the correlation as a

density functional, i.e. we are no longer looking at a fixed system and instead are looking at

the underlying structure of how thermal DFT behaves.

We see that the correlation free energy is always negative, the kentropic contribution is

always positive (not shown), and the potential contribution is always negative. These are

consistent with conditions on the correlation[228]. This is the first exact investigation of those

inequalities. The correlation free energy, AτC, always decreases with temperature at U = 1,

even though the components do not behave that way at small temperature. TC + UC and

τSC also decrease for all densities at larger temperature just like AC. In this regime, thermal

effects dominate over interactions, resulting in the interacting system and the non-interacting
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system having similar energy components and thus relatively smaller correlation. But for

small temperature, i.e. τ < 1 when U = 1, the MKS quantities are furthest from the exact

system since neither effect dominates and this results in an even larger difference between

the two systems than at τ = 0. Overall we see the same behavior as in the ground-state

case[47] – correlation decreases as our system becomes more asymmetric. If the electrons are

completely pinned on the lower site then there is no motion, the interaction is completely

described by the Hartree, and there is only one entropic conformation.

Figure 3.5: Adiabatic connection integrand for the symmetric dimer at several different
temperatures.

Next, we consider the adiabatic connection formula[160, 107] that has proven useful in study-

ing and improving density functional approximations. The ground-state version was calcu-

lated for the Hubbard dimer in Fig. 21 of Ref. [47]. An alternative version, called the

thermal connection formula, was derived in Ref. [232], but that flavor relies on relating the

coupling-constant to coordinate scaling. Such a procedure applies to continuum models, but
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Figure 3.6: Same as Fig. 3.5, except ∆n = 1.

not lattices. So we use the traditional version here, applied to finite temperature[228]:

AτC[n] =

∫ 1

0

dλ

λ
U τ,λ

C [n] (3.24)

where λ is a coupling constant inserted in front of V̂ee in the Hamiltonian, but (unlike regular

many-body theory) the density is held fixed during the variation. Here U τ,λ
C is the potential

correlation energy at coupling constant λ, which, for our model, is obtained by replacing U

with λU . In Fig. 3.5, for the symmetric case, turning on temperature clearly reduces both

the magnitude of the correlation and the degree of static correlation, as judged by the initial

slope of the curves. Fig. 3.6 shows this result remains true beyond the symmetric case.

In Fig. 3.7, we repeat the AτC curves of Fig. 3.4 but now for fixed ∆n = 0 and increasing

U . We start with the U = 1 from earlier and increase into the strongly correlated regime.

The curves show a minimum at about τ = 0.25, particularly in U = 3 and 4. Thus the

derivative with respect to temperature can be negative, and this does not happen even if

we look closely at U = 1. Thus the correlation free energy is not generally monotonically
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Figure 3.7: Correlation free energy for the symmetric case with increasing values of U ranging
from weak to strong correlation.

decreasing in magnitude and the correlation energy is not bounded by the τ = 0 value.

3.6 Zero-temperature approximation

In this section, we explore the effects of making the zero-temperature approximation (ZTA),

in which thermal contributions are ignored (Eq. (3.10)). We use the (essentially) exact

parametrization of the ground-state XC energy of the Hubbard dimer of Eq. (108) of Ref.

[47]. This substitution is made in the calculation of the total free energy and in the MKS

equations via the calculation of the XC potential, Eq. (3.6). We return to Fig. 3.1, where

we also plot the free energy in the ZTA by replacing AτC(∆n) with EC(∆n), evaluated on the

self-consistent ∆n. We see that the error of ZTA is extremely small for τ . 0.5. Moreover,

trends are very well reproduced by the ZTA values, and fractional errors shrink for large τ .

This suggests that free energies in such calculations may be reliable depending, of course,

on the precision needed in a given calculation. The errors grow most rapidly with τ when

the dimer is asymmetric. Thermal effects push the electrons apart, making the density
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more symmetric, in direct competition with ∆v. For larger ∆n, there is a larger error in

ignoring thermal effects. Note that since we have only two electrons, our model is a worst

case scenario. In many simulations, there are more valence electrons per site, and (exchange-

)correlation components are a much smaller fraction of the total energy. In a realistic DFT

calculation, the error made by approximating the ground-state functional would likely be

much larger than the error due to the lack of temperature-dependence[275].

Figure 3.8: Error in ZTA densities of Fig. 3.3, density from self-consistent MKS subtracted
from exact density.

However, this is only part of the story. Real thermal DFT calculations are performed self-

consistently within ZTA. Then both the density and MKS orbitals are often used to calculate

response properties (usually on the MKS orbitals)[271, 272, 241, 52, 64, 239, 62, 240, 229].

In Fig. 3.3, we compare the self-consistent density obtained using Eq. (3.4) through Eq.

(3.7). In Fig. 3.8, we plot the differences. We see that the maximum errors in the density are

small. At first they grow with small temperature but quickly start to lessen as temperature

increases which will be further explained below. As ∆v gets large the error goes to zero since

the asymmetry dominates over thermal effects.

In terms of Fig. 3.4, the ZTA consists of approximating each of the curves by the cor-
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responding black one. Because all correlation components tend to vanish with increasing

temperature, while the total free energy grows in magnitude, the small error made in the

ZTA becomes less relevant with increasing temperature. Specifically, we can analyze the

symmetric case where correlation effects are at their strongest. At τ = 0 correlation is about

20% of the total energy but when the system is at τ = 1 correlation is roughly 2.5% of the

total free energy. More importantly this is due to the total energy magnitude going up by a

factor of 5 and the correlation only decreasing by a factor of 2. This explains the small errors

in the ZTA free energies of Fig. 3.1 and the behavior of the self-consistent ZTA densities of

Fig. 3.8. Note that the temperatures need not be so high as to make the density uniform

(i.e., symmetric). Fig. 3.3 shows that, even for the temperature at which density differences

can be largest (τ = 1), the density difference can remain substantial as the temperature

increases, if the inhomogeneity (∆v) is large enough.

3.7 Conclusions

In summary, we have solved the simplest possible non-trivial system at finite temperature

exactly, both for the many-body case and within MKS density functional theory. We have

produced the first exact plots of MKS quantities and the ZTA approximation for a finite sys-

tem (albeit one with a limited Hilbert space). When the system is weakly correlated system

at low to moderate temperatures, the neglect of thermal contributions to the exchange-

correlation functional has relatively little effect on the calculated free energies and even less

on the self-consistent densities. Present limitations of ground-state approximations, such as

their inability to treat strongly correlated systems, are likely the greatest source of error in

these calculations. Future work will explore other quantities of interest within thermal DFT

and will analyze the ZTA more deeply.
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3.8 Energies and Densities for all States

Here we list all the total energies, energy components, and density components for all particle

numbers so that all the relevant ensemble averages of Eq. (3.14) can be reconstructed. We

begin with the energies

Ei(4−N) = (2−N)U + Ei(N) N = 0–4,

E0(0) = 0,

E0,1(1) = ∓
√

(2 t)2 + ∆v2/2,

Ei(2) =
2U

3
− 2 r

3
cos(θ +

2π

3
(i+ 1)) i = 0, 1, 2,

Ei(2) = 0, i = 3, 4, 5,

where

r =
√

3((2 t)2 + ∆v2) + U2,

θ =
1

3
arccos

[
9U(∆v2 − 2 t2)− U3

(3((2 t)2 + ∆v2) + U2)3/2

]
.

E1(2) and E2(2) are both positive and should be ordered 4 and 5 instead. However the three

triplets, i.e. the three zero-energy states, give only zero values in the later expectation values,

so for notational convenience we order the non-zero 2-particle states 0, 1, and 2 instead of

0, 4, and 5. These energies were used to construct Zgc in Eq. (3.11) of the main text.

Next are the expectation values needed to construct the three different ensemble averages of
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interest, T , Vee, and ∆n (Vext is unnecessary since it is trivially ∆v∆n/2):

Ti(4−N) = Ti(n) N = 0–4

T0,1(1) = ∓ t√
(2 t)2 + ∆v2

,

Ti(2) = (β+
i + β−i )2/Ei(2) i = 0, 1, 2,

Vee,i(4−N) = (2−N)U + Vee,i(N) N = 0–4,

Vee,0,1(1) = 0,

Vee,i(2) = U((β+
i )2 + (β−i )2) i = 0, 1, 2,

∆ni(4−N) = ∆ni(N) N = 0–4,

∆n0,1(1) = ∓ 2∆v√
(2 t)2 + ∆v2

,

∆ni(2) = 2((β−i )2 − (β+
i )2) i = 0, 1, 2,

and all the 0-particle terms are 0. The β±’s are from the N = 2 wavefunction:

|Ψi(N)〉 = αi(N)(|12〉+ |21〉) + β+
i (N)|11〉+ β−i (N)|22〉
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with

αi =
2 t (Ei(2)− U)

ciEi(2)
, β±i =

U − Ei(2)±∆v

ci
,

ci =
√

2(∆v2 + (Ei(2)− U)2(1 + (2 t/Ei(2))2).

The ket |ij〉 signifies an electron at site i and site j. These expectation values were used

with Eq. (3.14) to construct the densities and energy components shown in the figures.
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Chapter 4

Exact conditions on the temperature

dependence of density functionals

This chapter is entirely from Ref. [36]. I am the second author and contributed figures,

equation verification, proof reading, and some writing. My co-authors are Kieron Burke

(first), Paul Grabowski (third), and Aurora Pribram-Jones (fourth).

4.1 Abstract

Universal exact conditions guided the construction of most ground-state density functional

approximations in use today. We derive the relation between the entropy and Mermin free

energy density functionals for thermal density functional theory. Both the entropy and

sum of kinetic and electron-electron repulsion functionals are shown to be monotonically

increasing with temperature, while the Mermin functional is concave downwards. Analogous

relations are found for both exchange and correlation. The importance of these conditions

is illustrated in two extremes: the Hubbard dimer and the uniform gas.
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4.2 Introduction

Warm dense matter (WDM) is a rapidly growing multidisciplinary field that spans many

branches of physics, including for example astrophysics, geophysics, attosecond physics, and

nuclear physics[142, 51, 63, 197, 249, 277, 279, 143, 49]. In the last decade, quantum molec-

ular dynamics, using DFT with electrons at finite temperatures, has been extremely success-

ful at predicting material properties under extreme conditions, and has become a standard

simulation tool in this field[99]. Almost all such simulations use ground-state exchange-

correlation (XC) approximations, even when the electrons are significantly heated. Ther-

mal density functional theory (thDFT) was formalized by Mermin[194], when he showed

that the reasoning of Hohenberg and Kohn[124] could be extended to the grand canonical

potential of electrons coupled to a thermal bath at temperature τ . In recent times, the

Mermin-Kohn-Sham (MKS) equations of non-interacting electrons at finite temperature,

whose density matches that of the physical system, are being solved to simulate warm dense

matter[148, 235]. In most of these calculations, the ground-state approximation (GSA) is

made, in which the exchange-correlation (XC) free energy, which typically depends on τ , is

approximated by its ground-state value. Accurate results for the uniform gas are still being

found[32, 135, 83, 263], which provide input to a thermal local density approximation, but

LDA is insufficiently accurate for many modern applications, and thermal GGA’s are being

explored[275].

Many useful exact conditions in ground-state DFT (relation between coupling constant and

scaling, correlation scaling inequalities, exchange and kinetic scaling equalities, signs of en-

ergy components) were first derived[166] by studying the variational principle in the form of

the Levy constrained search[165]. Most of these conditions are satisfied (by construction) by

the local density approximation[148] and have been used for decades to constrain and/or im-

prove more advanced approximations[219]. Their finite temperature analogs were derived in

Ref. [228] (see also Ref. [72]), and extended in Ref. [232]. Because the kinetic and entropic
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contributions always appear in the same combination as the so-called kentropic energy [see

Eq. (4.21) and related text], such relations can never be used to extract either component

individually.

Many basic thermodynamic relations are proven via quantum statistical mechanics[265].

However, converting these to conditions on density functionals is neither obvious nor trivial.

In the present work, we extend these methods to the dependence of the Mermin functional

(i.e., the universal part of the free-energy functional) on the temperature, rather than on the

coupling constant or the scale of the density. We find several new equalities and inequalities

which apply to thDFT of all electronic systems. This allows us to separate entropic and

kinetic contributions. We show that the entropy density functional is monotonically increas-

ing with temperature, as is the sum of the kinetic and electron-electron repulsion density

functionals, and that the temperature derivative of the Mermin functional is the negative

of the entropy functional. Thus the Mermin functional is concave downwards as a function

of temperature. Applying these conditions to the MKS system yields conditions on the

exchange-correlation free energy functionals. Lastly, we illustrate all our findings in the two

extreme cases of the uniform gas and the Hubbard dimer. We find a recent parametrization

of the XC free energy of the uniform gas violates our conditions, although only for densities

that are so low as to be unlikely to significantly affect any property calculated within thLDA.

4.3 Theory

For a given average particle number, define the free energy of a statistical density-matrix Γ

as

Aτ [Γ] = H[Γ]− τ S[Γ], (4.1)
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where Ĥ is the Hamiltonian operator, S extracts the entropy, and we use τ to denote

temperature. Define

FI[Γ] = T [Γ] + Vee[Γ], (4.2)

where T̂ is the kinetic energy operator and V̂ee the electron-electron repulsion operator. Then

F τ [Γ] = FI[Γ]− τ S[Γ]. (4.3)

The Mermin functional, written in terms of a constrained search, is[228]

F τ [n] = min
Γ→n

F τ [Γ], (4.4)

where the argument distinguishes functionals of the density from those of the density-matrix.

The free energy of a given system can be found from

Aτ = min
n

{
F τ [n] +

∫
d3r v(r)n(r)

}
. (4.5)

We denote by Γτ [n] the statistical density matrix that minimizes F̂ τ and yields density n(r).

Then:

dF τ [n]

dτ
=
∂F τ [Γ]

∂τ
+

∫
dΓ

∂F τ [Γ]

∂Γ

dΓτ [n]

dτ
, (4.6)

where all are evaluated at Γτ [n]. Because Γτ [n] is the minimizer, its derivative with respect

to temperature (or any variable) vanishes. Thus

dF τ [n]

dτ
= −Sτ [n]. (4.7)
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This is the DFT analog of the standard thermodynamic relation[265], and implies

F τ [n] = F 0[n]−
∫ τ

0

dτ ′ Sτ
′
[n], (4.8)

where F 0[n] is the ground-state functional[124]. We note that Eq. (4.7) was derived in [49],

but only within lattice DFT.

Given a Mermin functional (approximate or exact, interacting or not), Eq. (4.7) defines what

the corresponding entropy functional must be. Since coordinate scaling[228] can separate the

kentropic and potential contributions in F , Eq. (4.7) allows the entropic and kinetic energy

functionals to be separated. Alternatively, given an entropy functional, Eq. (4.7) defines

the temperature-dependence of the corresponding Mermin functional. Since the entropy is

always positive,

dF τ [n]/dτ ≤ 0, (4.9)

i.e., the Mermin functional is monotonically decreasing.

Now consider what happens when, for a given density and temperature τ , we evaluate the

Mermin functional on the density matrix for that density but at a different temperature. By

the variational principle, Eq. (4.5),

F τ [Γτ
′
[n]] ≥ F τ [n], (4.10)

for any value of τ ′. Thus

FI[Γ
τ ′ [n]]− τ S[Γτ

′
[n]] ≥ F τ

I [n]− τ Sτ [n], (4.11)
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or

F τ ′

I [n]− τ Sτ ′ [n] ≥ F τ
I [n]− τ Sτ [n]. (4.12)

Since this result is true for any pair of temperatures, we reverse τ and τ ′ to find:

F τ
I [n]− τ ′ Sτ [n] ≥ F τ ′

I [n]− τ ′ Sτ ′ [n]. (4.13)

Addition of Eqs. (4.12) and (4.13) yields

(τ − τ ′) (Sτ [n]− Sτ ′ [n]) ≥ 0, (4.14)

so that the entropy monotonically increases with τ :

dSτ [n]/dτ ≥ 0. (4.15)

Combining this with Eq. (4.7) implies

d2F τ [n]/dτ 2 ≤ 0. (4.16)

Thus F τ [n] is concave downwards.

We can also isolate the behavior of F τ
I [n]. If we multiply Eq. (4.12) by τ ′, and Eq. (4.13)

by τ , and add them together, all entropic contributions cancel, yielding

(τ ′ − τ) (F τ ′

I [n]− F τ
I [n]) ≥ 0, dF τ

I [n]/dτ ≥ 0. (4.17)

Both F τ
I [n] and Sτ [n] are monotonically increasing, but the net effect is that the Mermin

free energy is decreasing.

126



Applying these conditions to the Mermin-Kohn-Sham electrons[235], we find

dF τ
S [n]/dτ = −SτS [n], (4.18)

and the inequalities

dT τS [n]

dτ
,
dSτS [n]

dτ
≥ 0 ≥ dF τ

S [n]

dτ
,
d2F τ

S [n]

dτ 2
(4.19)

where subscript s denotes non-interacting, and F τ
S [n] = T τS [n]− τ SτS [n]. Some of these rela-

tions have long been invoked for the uniform and slowly-varying gases and for constructing

orbital-free density functionals (see Ref. [137] and references therein), but here they have

been proven for every inhomogeneous system.

4.4 Illustration

To illustrate these results, we calculate all energy components for an asymmetric Hubbard

dimer, i.e. a two-site Hubbard model with a potential v1 = −v2, as described in Ref. [47] for

the groundstate and [276] for the thermal system. Here t is the hopping parameter, U the

on-site repulsion, and ∆n the difference in site occupations where the difference comes from

having an inhomogeneous potential ∆v = v2 − v1. This is the simplest possible model in

which one can perform an exact thermal calculation, including the exact thermal correlation

components. Fig. 4.1 shows the energy components, both interacting and non-interacting,

as a function of temperature for the homogeneous system with ∆n = 0. All our exact

conditions are satisfied for many values of ∆n and U .

At the other extreme is the uniform electron gas and a modern parametrization of its free

energy[135]. In the special case of a uniform density and potential, our formulas become

the same as the standard thermodynamic formulas. In Fig. 4.2, we plot the derivative
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Figure 4.1: Energy components for the Hubbard dimer in units of 2 t, where U = 2 t and
∆n = 0: F τ , F τ

I , S
τ , both interacting (solid) and non-interacting (dashed).

of the free energy per particle for fixed density (rS value where rS = (3/(4πn))1/3) as a

function of temperature, on the scale of the Fermi energy and in atomic units. As rS → 0,

these curves converge to their well known[60] non-interacting value, in which the derivative

is negative and decreasing everywhere, in accordance with Eq. (4.9). Unfortunately, by

decreasing the density so that XC effects become relatively more important, we find that

the parametrization violates our conditions for rS > 10. Via Eq. (4.7), this implies that the

entropy is unphysically negative. While such low densities are irrelevant to most practical

calculations using thLDA, parametrizations of the uniform gas should build in simple exact

conditions such as ours. Note that our restrictions apply only to continuous parametrizations.

The QMC data on which Ref. [135] is based[32] is for the XC energy at discrete values of

the density, and so does not directly give the entropy.

For extremely high temperatures, sums over KS eigenstates become impractical, and only

pure DFT can be applied. Because the uniform gas satisfies our conditions, and because

128



Figure 4.2: Temperature dependence of the Mermin functional for spin-unpolarized uniform
gas for several values of the Wigner-Seitz radius rS, using the XC parametrization of Ref.
[135], where εF is the Fermi energy.

Thomas-Fermi (TF) theory uses local approximations to the kinetic and entropic contribu-

tions which satisfy the conditions pointwise, we deduce that TF theory satisfies our condi-

tions. However, recent attempts to go beyond TF theory, such as using generalized gradient

approximations for the energy[134, 274, 275], should be tested for satisfaction of these con-

straints.

4.5 Exchange-Correlation

In the final section of this paper, we apply this reasoning to the MKS method. The Mermin

functional is written in terms of the MKS quantities and a correction:

F τ [n] = F τ
S [n] + UH[n] + AτXC[n], (4.20)
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called the exchange-correlation (XC) free energy. (The Hartree energy, UH[n], has no explicit

temperature dependence). The XC free energy is a sum of three components:

AτXC[n] = Kτ
XC[n] + U τ

XC[n] = T τXC[n]− τSτXC[n] + U τ
XC[n], (4.21)

where U τ
XC is the potential contribution and Kτ

XC is the kentropic contribution, which in turn

consists of T τXC, the kinetic contribution, and −τSτXC, where SτXC is the entropic contribution.

Subtract Eq. (4.18) from Eq. (4.7) to find

dAτXC[n]

dτ
= −SτXC[n], (4.22)

or

AτXC[n] = EXC[n]−
∫ τ

0

dτ ′ Sτ
′

XC[n]. (4.23)

All thermal XC effects are contained in the XC contribution to the entropy. This provides an

intriguing alternative to the adiabatic connection formula of Ref. [228] or the thermal con-

nection formula of Ref. [232]. Our inequalities do not yield definite signs for XC quantities,

just weak constraints that would be difficult to impose universally on an XC approximation:

dT τXC

dτ
≥ −dT

τ
S

dτ
,

dSτXC

dτ
≥ −dS

τ
S

dτ
. (4.24)

We can also combine these with the coupling-constant derivatives of Ref. [232] to find

Maxwell-style relations:

(
∂UXC

∂τ

)
λ

= −λ
(
∂SXC

∂λ

)
τ

(4.25)
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where λ denotes evaluation at coupling-constant λ, holding the density fixed[228].

Exchange can be isolated by considering the limit of either weak interaction or scaling to

the high-density limit[228]. The exchange free energy is

AτX[n] = Vee[Γ
τ
S [n]]− UH[n] (4.26)

in a case of no degeneracies (the only case we consider here). Because ΓτS minimizes the

kentropy alone, to first order in λ, kentropic corrections must be zero. Thus

Kτ
X[n] = 0, T τX [n] = τ SτX[n] = −τdAτXC[n]/dτ. (4.27)

It may seem odd to consider a kinetic contribution to exchange (impossible in the ground

state), but T τX vanishes as τ → 0 in Eq. (4.27). For a uniform gas, the thermal exchange

energy is well-known[60]. But for our Hubbard dimer[276], when 〈N〉 = 2, we find EX[n] =

−UH[n]/2, so that T τX = SτX = 0.

Figure 4.3: Correlation entropy in the Hubbard dimer for several values of ∆n as a function
of temperature, in units of 2 t, where U = 2 t.

The results of Eq. (4.23) apply to correlation alone and can be used in either direction,

just as the relation for the full functional. They are well-known for the uniform gas from
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statistical mechanics[128, 226, 227]. But for an inhomogeneous system, they are non-trivial,

and so we illustrate them on the asymmetric Hubbard dimer. In Fig. 4.3, we plot the

entropic correlation as a function of temperature for several values of ∆n, the occupation

difference that arises from the asymmetric potential. Eq. (4.23) is satisfied within numerical

precision. The derivative of SτC can change sign, even though both Sτ (∆n) and SτS (∆n) are

monotonically increasing (This explains the small dip seen in Fig. 7 of Ref. [276]).

4.6 Discussion and Conclusions

Finally, we explain the apparent success of the ground-state approximation (GSA) for AτXC[n]

in MKS equilibrium calculations. Almost all present-day calculations of WDM use this ap-

proximation, and a recent calculation on the Hubbard dimer[276] found that GSA worked

well when neither the temperature nor the strength of the correlations were large (the con-

ditions corresponding to most WDM calculations). Now we explain why. Write

F τ,GSA[n] = F τ
S [n] + UH[n] + EXC[n]. (4.28)

Clearly, all temperature dependence is contained only in the KS part (usually a very domi-

nant piece). Since the KS piece satisfies all the different inequalities and equalities, then so

does any GSA calculation. But attempt to add corrections to a GSA calculation by writing

Aτ,GSA
XC [n] = EGSA

XC [n] + ∆AτXC[n]. (4.29)

Only the thermal correction appears in the exact conditions we have derived, since they all

contain temperature derivatives. But there is no simple way to know if the corrections will

satisfy the exact conditions for all possible systems. The only case would be using local

approximations for all temperature-dependent quantities, and then using energy densities
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from the uniform gas. Thus a TF calculation, with thermal LDA corrections, would satisfy

these conditions, since they would be satisfied pointwise, as the uniform gas satisfies these

conditions for every density. But in any MKS calculation using approximate thermal XC

corrections, this is not guaranteed. Unless special care is taken to guarantee satisfaction

of our conditions, only GSA automatically does this. This is analogous to the situation in

TDDFT (at zero temperature): The adiabatic LDA, which ignores the history dependence

that is known to exist in the TDDFT functionals, satisfies most exact conditions, while

the time-dependent LDA (the Gross-Kohn approximation[103]) violates several important

constraints[66]. All this explains why the GSA has been working well in many situations[142,

144]. The GSA appears to be correct in both the low- and high-temperature limits and, at

least for model systems, reproduces the exact KS orbitals accurately[276]. Of course, this

depends on the specific property being calculated and the acceptable level of error, and

does not preclude moderate deviations, especially between these extremes, i.e., warm dense

matter. But any calculation that includes, e.g., semilocal thermal XC corrections, risks

violating the exact conditions listed here that GSA automatically satisfies, and should be

checked for such violations. On the other hand, the Hartree-Fock approximation (or rather,

the DFT equivalent, called EXX[156]), must satisfy the conditions since any expansion in

powers of the coupling constant up to some order must satisfy all our conditions.

To conclude, the formulas presented here are exact conditions applying to every thermal

electronic system when treated with DFT, and should guide the future construction of ap-

proximate functionals.
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Chapter 5

Conclusion

In this dissertation I have focused on understanding and developing ground-state and thermal

density functional theory using the asymmetric two-site Hubbard model since it is a system

that can be solved exactly. This proves useful as one can compute exact densities, energies,

etc. even in the thermal case where exact results are not computationally feasible even for

simple atomic systems.

Chapter 1 lays the foundation for ground-state DFT, site-occupation functional theory, and

the Hubbard dimer. It illustrates these with exact calculations of fundamental quantities

such as the energy, density, and various potentials. Chapter 2 is a continuation of Chapter 1.

This chapter provides further background and demonstrates the breadth of concepts where

the Hubbard dimer can be applied. These aspects include working to clarify the so-called

gap problem in DFT and demonstrations of Green’s functions. We delve into understanding

correlation and also create a parametrization of the universal functional so the Hubbard

dimer can be easily used as a density functional. We also looked at approximations but are

hampered by the lack of clear parallels to real-space approximations, e.g. BALDA vs. LDA.

With the foundation laid, chapter 3 introduces thermal density functional theory and shows
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the first ever exact thDFT calculation. In doing so we analyze the successes of the zero-

temperature approximation and gain increased understanding of why ZTA in conjunction

with LDA and GGA has seen so much success in the warm dense matter community. Ad-

ditionally, we showed that there is non-monotonic behavior in the free energy with respect

to temperature and importantly that the free energy is not bounded by its τ = 0 value as

commonly thought.

Next, in chapter 4 we delve into new exact conditions. We show the importance of under-

standing known quantities from a density functional mindset and that the current thLDA

at that time did not satisfy our new conditions. The Hubbard dimer is used to illustrate the

new conditions and shows the extreme behavior of the correlation entropy as a function of

temperature.

The asymmetric two-site Hubbard model has limitations. It captures the qualitative nature

of many physical phenomena but it can not capture all of them nor can it get quantitatively

useful results. But it has all the above mentioned results despite, and in many ways because,

of these limitations.

There are many possible paths for future work. In chapters 3 and 4 I demonstrates new

thermal results with the Hubbard dimer, but there are still many results from chapter 2

that can be generalized to the thermal case. There is also a likely rich parameter space that

can still be explored with thermal DFT as well as testing rough analogs of thermally depen-

dent AXC approximations to see what effects they may have. Additionally, there have been

advances in thermal reduced-density-matrix-functional theory[23] that can be benchmarked

and illustrated using the Hubbard dimer. Lastly as time progresses and new theories are

developed, the applications of the Hubbard dimer will increase. I have used it for thermal

DFT and others have used it for ensemble DFT and time-dependent DFT. It is likely that

more flavors of DFT as well as new many-body theories are to come and the Hubbard dimer

will prove useful once again.
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[102] O. V. Gritsenko, B. Bräıda, and E. J. Baerends. Physical interpretation and evalua-
tion of the kohn-sham and dyson components of the ε-i relations between the kohn-
sham orbital energies and the ionization potentials. The Journal of Chemical Physics,
119:1937–1950, jul 2003.

[103] E. Gross and W. Kohn. Local density-functional theory of frequency-dependent linear
response. Phys. Rev. Lett., 55:2850, 1985.

[104] E. K. U. Gross, M. Petersilka, and T. Grabo. Conventional quantum chemical cor-
relation energy versus density-functional correlation energy. Chemical Applications of
Density-Functional Theory, 629:42–53, 1996.

[105] S. Groth, T. Schoof, T. Dornheim, and M. Bonitz. Ab initio quantum monte carlo
simulations of the uniform electron gas without fixed nodes. Phys. Rev. B, 93:085102,
Feb 2016.

[106] M. Grüning, O. V. Gritsenko, and E. J. Baerends. Exchange-correlation energy and
potential as approximate functionals of occupied and virtual kohnsham orbitals: Ap-
plication to dissociating h2. The Journal of Chemical Physics, 118(16):7183–7192,
2003.

[107] O. Gunnarsson and B. Lundqvist. Exchange and correlation in atoms, molecules, and
solids by the spin-density-functional formalism. Phys. Rev. B, 13:4274, 1976.

[108] O. Gunnarsson and K. Schönhammer. Density-functional treatment of an exactly
solvable semiconductor model. Phys. Rev. Lett., 56:1968–1971, May 1986.

[109] Z. Ha. Quantum Many-body Systems in One Dimension. Series in Algebra. World
Scientific, 1996.

143



[110] J. Hafner, C. Wolverton, and G. Ceder. Toward Computational Materials Design:
The Impact of Density Functional Theory on Materials Research. MRS Bulletin,
31(09):659–668, Jan. 2011.

[111] F. D. M. Haldane. ’luttinger liquid theory’ of one-dimensional quantum fluids. i.
properties of the luttinger model and their extension to the general 1d interacting
spinless fermi gas. Journal of Physics C: Solid State Physics, 14(19):2585, 1981.

[112] Y. Hao and S. Chen. Density-functional theory of two-component bose gases in one-
dimensional harmonic traps. Phys. Rev. A, 80:043608, Oct 2009.

[113] J. E. Harriman. Densities, operators, and basis sets. Phys. Rev. A, 34:29–39, Jul 1986.

[114] J. Harris and R. Jones. The surface energy of a bounded electron gas. J. Phys. F,
4:1170, 1974.

[115] M. Head-Gordon. Quantum chemistry and molecular processes. The Journal of Phys-
ical Chemistry, 100(31):13213–13225, 1996.

[116] W. Heitler and F. London. Interaction between neutral atoms and homopolar binding
according to quantum mechanics. Z. Physik, 44:455, 1927.

[117] T. Helgaker, T. A. Ruden, P. Jørgensen, J. Olsen, and W. Klopper. A priori calculation
of molecular properties to chemical accuracy. Journal of Physical Organic Chemistry,
17(11):913–933, 2004.

[118] M. Hellgren, F. Caruso, D. R. Rohr, X. Ren, A. Rubio, M. Scheffler, and P. Rinke.
Static correlation and electron localization in molecular dimers from the self-consistent
rpa and gw approximation. Phys. Rev. B, 91:165110, Apr 2015.

[119] I. Herbut. Interactions and phase transitions on graphene’s honeycomb lattice. Phys.
Rev. Lett., 97:146401, Oct 2006.

[120] J. Heyd, G. E. Scuseria, and M. Ernzerhof. Hybrid functionals based on a screened
coulomb potential. The Journal of Chemical Physics, 118(18):8207–8215, 2003.

[121] B. Himmetoglu, A. Floris, S. de Gironcoli, and M. Cococcioni. Hubbard-corrected dft
energy functionals: The lda+u description of correlated systems. International Journal
of Quantum Chemistry, 114(1):14–49, 2014.

[122] J. E. Hirsch. Metallic ferromagnetism in a single-band model. Phys. Rev. B, 40:2354–
2361, Aug 1989.

[123] J. E. Hirsch. Electron- and hole-hopping amplitudes in a diatomic molecule. Phys.
Rev. B, 48:3327–3339, Aug 1993.

[124] P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136(3B):B864–
B871, Nov 1964.

144



[125] B. Holst, R. Redmer, and M. P. Desjarlais. Thermophysical properties of warm dense
hydrogen using quantum molecular dynamics simulations. Phys. Rev. B, 77:184201,
May 2008.

[126] J.-H. Hu, J.-J. Wang, G. Xianlong, M. Okumura, R. Igarashi, S. Yamada, and
M. Machida. Ground-state properties of the one-dimensional attractive hubbard model
with confinement: A comparative study. Phys. Rev. B, 82:014202, Jul 2010.

[127] J. Hubbard. Electron correlations in narrow energy bands. Proceedings of the Royal
Society of London. Series A. Mathematical and Physical Sciences, 276(1365):238–257,
1963.

[128] S. Ichimaru. Rev. Mod. Phys., 54:1017, 1982.

[129] M. Ijäs and A. Harju. Lattice density-functional theory on graphene. Phys. Rev. B,
82:235111, Dec 2010.

[130] S. H. V. K. A. J. M. R. P. D. S. J. P. Perdew, J. A. Chevary and C. Fiolhais. Atoms,
molecules, solids, and surfaces: Applications of the generalized gradient approximation
for exchange and correlation. Phys. Rev. B, 46:6671, 1992.

[131] M. M. J. Paier, R. Hirschl and G. Kresse. The perdew-burke-ernzerhof exchange-
correlation functional applied to the g2-1 test set using a plane-wave basis set. J.
Chem. Phys., 122:234102, 2005.

[132] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia,
D. Gunter, D. Skinner, G. Ceder, and K. A. Persson. Commentary: The materi-
als project: A materials genome approach to accelerating materials innovation. APL
Materials, 1(1):–, 2013.

[133] J. Janak. Proof that [partial] e / [partial] ni= epsilon in density-functional theory.
Phys. Rev. B, 18:7165, 1978.

[134] V. V. Karasiev, D. Chakraborty, O. A. Shukruto, and S. B. Trickey. Nonempirical
generalized gradient approximation free-energy functional for orbital-free simulations.
Phys. Rev. B, 88:161108, Oct 2013.

[135] V. V. Karasiev, T. Sjostrom, J. Dufty, and S. B. Trickey. Accurate homogeneous
electron gas exchange-correlation free energy for local spin-density calculations. Phys.
Rev. Lett., 112:076403, Feb 2014.

[136] V. V. Karasiev, T. Sjostrom, and S. B. Trickey. Comparison of density functional
approximations and the finite-temperature hartree-fock approximation in warm dense
lithium. Phys. Rev. E, 86:056704, Nov 2012.

[137] V. V. Karasiev, T. Sjostrom, and S. B. Trickey. Generalized-gradient-approximation
noninteracting free-energy functionals for orbital-free density functional calculations.
Phys. Rev. B, 86:115101, Sep 2012.

145



[138] D. Karlsson, A. Privitera, and C. Verdozzi. Time-dependent density-functional theory
meets dynamical mean-field theory: Real-time dynamics for the 3d hubbard model.
Phys. Rev. Lett., 106:116401, Mar 2011.

[139] D. Karlsson, C. Verdozzi, M. M. Odashima, and K. Capelle. Dynamical self-
stabilization of the mott insulator: Time evolution of the density and entanglement en-
tropy of out-of-equilibrium cold fermion gases. EPL (Europhysics Letters), 93(2):23003,
2011.

[140] E. Khosravi, A.-M. Uimonen, A. Stan, G. Stefanucci, S. Kurth, R. van Leeuwen, and
E. K. U. Gross. Correlation effects in bistability at the nanoscale: Steady state and
beyond. Phys. Rev. B, 85:075103, Feb 2012.

[141] A. Kietzmann, R. Redmer, M. P. Desjarlais, and T. R. Mattsson. Complex behavior
of fluid lithium under extreme conditions. Phys. Rev. Lett., 101:070401, Aug 2008.

[142] M. D. Knudson and M. P. Desjarlais. Shock compression of quartz to 1.6 TPa: Re-
defining a pressure standard. Phys. Rev. Lett., 103:225501, Nov 2009.

[143] M. D. Knudson, M. P. Desjarlais, A. Becker, R. W. Lemke, K. R. Cochrane, M. E.
Savage, D. E. Bliss, T. R. Mattsson, and R. Redmer. Direct observation of an abrupt
insulator-to-metal transition in dense liquid deuterium. Science, 348(6242):1455–1460,
2015.

[144] M. D. Knudson, M. P. Desjarlais, and D. H. Dolan. Shock-wave exploration of the
high-pressure phases of carbon. Science, 322(5909):1822–1825, 2008.

[145] M. D. Knudson, M. P. Desjarlais, and A. Pribram-Jones. Adiabatic release measure-
ments in aluminum between 400 and 1200 gpa: Characterization of aluminum as a
shock standard in the multimegabar regime. Phys. Rev. B, 91:224105, Jun 2015.

[146] W. Kohn. Theory of the insulating state. Phys. Rev., 133:A171, 1964.

[147] W. Kohn. Nobel lecture: Electronic structure of matter - wave functions and density
functionals. Rev. Mod. Phys., 71:1253, 1999.

[148] W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation
effects. Phys. Rev., 140(4A):A1133–A1138, Nov 1965.

[149] J. Kondo. Resistance minimum in dilute magnetic alloys. Progress of Theoretical
Physics, 32(1):37–49, 1964.

[150] V. E. Korepin and F. H. Essler. Exactly solvable models of strongly correlated electrons,
volume 18. World Scientific, 1994.

[151] G. Kotliar, S. Y. Savrasov, K. Haule, V. S. Oudovenko, O. Parcollet, and C. A. Mari-
anetti. Electronic structure calculations with dynamical mean-field theory. Rev. Mod.
Phys., 78:865–951, Aug 2006.

146



[152] G. Kotliar and D. Vollhardt. Strongly correlated materials: Insights from dynamical
mean-field theory. Physics Today, 57(3):53–60, 2004.

[153] J. B. Krieger, Y. Li, and G. J. Iafrate. Systematic approximations to the optimized
effective potential: Application to orbital-density-functional theory. Phys. Rev. A,
46(9):5453–5458, Nov 1992.

[154] H. J. Kulik. Perspective: Treating electron over-delocalization with the dft+u method.
The Journal of Chemical Physics, 142(24):–, 2015.

[155] H. J. Kulik and N. Marzari. Systematic study of first-row transition-metal diatomic
molecules: A self-consistent dft+u approach. J. Chem. Phys., 133:114103, 2010.
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of hot expanded aluminum: Experimental measurements and ab initio calculations.
Phys. Rev. E, 66:056412, Nov 2002.

[242] R. Requist and O. Pankratov. Generalized kohn-sham system in one-matrix functional
theory. Phys. Rev. B, 77:235121, Jun 2008.

[243] R. Requist and O. Pankratov. Adiabatic approximation in time-dependent reduced-
density-matrix functional theory. Phys. Rev. A, 81:042519, Apr 2010.

[244] J. Robert, S. Niels, G. Kenneth, M. Henning, and E. Tilman. A mott insulator of
fermionic atoms in an optical lattice. Nature, 455(7210):204–207, sep 2008. 10.1038/na-
ture07244.

[245] P. Romaniello, F. Bechstedt, and L. Reining. Beyond the g w approximation: Com-
bining correlation channels. Physical Review B, 85(15):155131, 2012.

[246] P. Romaniello, S. Guyot, and L. Reining. The self-energy beyond gw: Local and
nonlocal vertex corrections. The Journal of chemical physics, 131(15):154111, 2009.

[247] S. Root, R. J. Magyar, J. H. Carpenter, D. L. Hanson, and T. R. Mattsson. Shock
compression of a fifth period element: Liquid xenon to 840 GPa. Phys. Rev. Lett.,
105(8):085501, Aug 2010.

[248] E. Runge and E. K. U. Gross. Density-functional theory for time-dependent systems.
Phys. Rev. Lett., 52(12):997, Mar 1984.
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