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Abstract

Highly torquoselective electrocyclizations of chiral 1-azatrienes are described. These 1-azatrienes 

contain an allylic stereocenter that is substituted with a silyl group and are derived in situ from 

condensation of γ-silyl-substituted enals with vinylogous amides. The ensuing stereoselective 

ring-closures are part of a tandem sequence that constitutes an aza-[3 + 3] annulation method for 

constructing 1,2-dihydropyridines. Several mechanisms for the formal 1,7-hydrogen shift of these 

1-azatrienes were evaluated computationally.

Electrocyclizations represent an important pericyclic process in organic synthesis. Our aza-

[3 + 3] annulation1-3 method involving chiral enals 1 and vinylogous amides 2 is a powerful 

strategy for total syntheses of alkaloids4 and a unique platform for studying the 

torquoselectivity of electrocyclizations of 1-azatreienes 35 (Scheme 1). Despite its 

significance in constructing chiral 1,2-dihydropyridines, efforts to develop and understand 

torquoselective ring-closures of 1-azatrienes 3 have lagged behind with the sole exceptions 

of Tanaka and Katsumura’s elegant work.6 Although we have developed highly 

torquoselective electrocyclizations of a chiral auxiliary substituted 1-azatrienes,7 a more 
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general and practical approach employing chiral enals has yielded diastereoselectivity of 

83:17 at best (see aza-electrocyclization of 3a in Scheme 2).8.9 Recently, our collaborative 

efforts to understand the origins of the stereoselectivities of a number of pericyclic 

reactions10 have led us to model these stereoselective ring closures computationally. A 

complete stereochemical model for these electrocyclic reactions is still being developed. In 

the course of our studies, we predicted that the stereochemical outcomes of these 

electrocyclizations depend on the electronic nature of the allylic substituent X. As shown in 

Scheme 2, if X is a σ donor such as SiR3 instead of a σ acceptor such as OAc, a reversal of 

stereoselectivity is predicted (4 versus 5). We have now shown that such a reversal occurs 

and that the electrocyclizations of these silyl-substituted 1-azatrienes are highly 

torquoselective.

We commenced our investigation by examining aza-[3+3] annulations of vinylogous amides 

6 and 7 with γ-silyl-substituted enal 811,12, and quickly found that the respective desired 

aza-annulation products 11/11′ and 13/13′ were minor products (Scheme 3). Major products 

in these reactions were vinyl silanes 12 and 14 from 6 and 7, respectively. These isomeric 

vinyl silanes could be formed by a (formal) 1,7-H shift of 1-azatrienes 9 or 10. Although the 

competition of a 1,7-H shift with the desired annulation pathway has been documented,13 

the isomerizations responsible for the formation of 12 and 14 have never been observed 

before. The E-configurations of vinyl silanes 12 and 14 were assigned using NOE 

experiments.

Annulations using 6-membered ring vinylogous amides were more successful. As shown in 

Scheme 4, although the reaction of vinylogous amide 15a still yielded the 1,7-H shift 

product (16a) as the major product, respective 1-azatrienes from 6-membered ring 

vinylogous amides 15b and 15c predominantly underwent ring-closure in high yields and 

diastereoselectivity. This is also true in cases of electrocyclizations that led to 18 and 20 
with the respective vinyl silanes byproducts 19 and 21 being isolated only in small amounts.

Using the single crystal X-ray structure of 16b, we were able to unambiguously assigned the 

stereochemistry of 16b and confirm the prediction of a complete reversal of selectivity for 

electrocyclizations of these silyl-substituted 1-azatrienes. The attempted aza-annulations of 

1-azatrienes bearing large N-substituent (such as the N-CHPh2 group of 15a) would still 

yield products of 1,7-H shift. This is presumably due to enhanced steric repulsion between 

the larger N-substituent and the TBDPS group at the electrocyclization transition state. It is 

noteworthy that in direct contrast, aza-annulations of 15a with non-silylated chiral enals 

were feasible and most diastereoselective as demonstrated by 22.8a

Table 1 illustrates the generality of this stereoselective aza annulation; an array of different 

γ–silyl-substituted enals 25a-h, including one substituted with a TBS group, were 

successfully used as annulation partners. In all cases, the selectivity is very high while the 

competing 1,7-H shift is by and large mitigated. It is noteworthy that this is the first time a 

very high level of diastereoselectivity could be achieved in aza-[3 + 3] annulations using 

acyclic chiral enals.
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To better understand why 1-azatrienes annulated with 5-membered rings (9 and 10), undergo 

competitive formal 1,7-hydrogen shifts rather than the desired aza-electrocyclizations, we 

modeled the reaction of truncated 1-azatrienes 28 and 30 (see Figure 2) computationally.15 

In Scheme 5, a summary of four possible mechanisms by which isomerization may occur is 

shown. All pathways assume the intermediacy of 1-azatriene I, and pathways 1, 2, and 4 

feature key steps that are concerted in nature. Consequently, in addition to modeling the 

electrocyclizations of 28 and 30, we have also modeled steps of these three pathways. The 

intermediacy of 1-azatriene I in pathway 3, which involves base-mediated proton transfer, 

has not been modeled; however, such a mechanism is a plausible alternative.

The energetics of the electrocyclizations of 1-azatrienes 28 and 30 are shown in Figure 2. At 

130 °C, the aza-electrocyclizations of 28 and 30 are facile reactions (ΔG‡ < 20 kcal mol−1) 

that under kinetic control stereoselectively yield dihydropiperidines 29a and 31a, 

respectively. Electrocyclization of 30 is, according to theory, only slightly more facile than 

that of 28; however, it is significantly more exergonic than the ring-closure of 28 (ca. 8 kcal 

mol−1).16

Based on computations, pathways 1 and 2 involving a direct 1,7-hydrogen shift or 1,5-

hydrogen shift of 1-azatriene 28,6d respectively, are unlikely. These sigmatropic 

rearrangements feature ΔG‡ of at least 30 kcal mol−1. However, the free energy of activation 

for the 1,7-hydrogen shift involved in pathway 4 is 17 kcal mol−1. Thus, pathway 4 is a 

plausible mechanism, so long as the required isomerizations (presumably promoted by base) 

are facile processes.

Interestingly, the rate of 1,7-hydrogen shift is 100-fold slower (ΔΔG‡ = 2.7 kcal mol−1) than 

the ring closure of 1-azatriene 30. However, for 1-azatriene 28, these two processes are very 

similar in activation free energies (Figure 3). Theses difference in reactivity may be 

(partially) responsible for the distinct product outcomes observed for this pair of azatrienes.

The lowest energy transition structures of the 1,7-hydrogen shift of II derived from 

substrates 28 and 30 (TS29c and TS31c) are shown in Figure 2. TS31c is destabilized by 

A1,3 strain between N-methyl substituent and annulated cyclohexanone (see green lines in 

Figure 3). This destabilizing interaction is less severe in TS29c featuring the γ-lactone 

because this moiety, unlike the corresponding cyclohexanone in TS31c is planar.

We have described here a highly torquoselective electrocyclization of a series of novel chiral 

1-azatrienes. These 1-azatrienes contain an allylic stereocenter substituted with a silyl group, 

and are generated in situ by condensing γ-silyl-substituted enals with vinylogous amides. 

Theoretical calculations have provided mechanistic insights into a previously unknown 

competing 1,7-hydrogen shift from the same 1-azatriene intermediate. Efforts to explore 

synthetic applications of this torquoselective electrocyclization are underway. Full details 

regarding the stereochemical model that rationalizes the observed torquoselectivities will be 

reported in due course.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
X-Ray Structure of 1,2-Dihydropyridine 16b.
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Figure 2. 
Energetics of the electrocyclic ring closures of model 1-azatrienes 28 and 30. Energies are 

Gibbs free energies in kcal mol−1 determined at the M062-X/def2-QZVPP//M06-2X/

6-31+G(d,p) level.
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Figure 3. 
M06-2X/6-31+G(d,p) structures of lowest 1,7-hydrogen shift featured in pathway 4. 

Energies shown are M06-2X/def2-QZVPP//M06-2X/6-31+G(d,p).
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Scheme 1. Torquoselective Electrocyclizations of 1-Azatrienes in Aza-[3 + 3] Annulations
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Scheme 2. A Prediction of Reversal of the Torquoselectivity
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Scheme 3. An Unexpected Competing 1,7-Hydrogen Shift
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Scheme 4. 
Aza-[3+3] Annulations Using 6-Membered Vinylogous Amides as Annulation Partners
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Scheme 5. Potential Mechanism for the Competitive Isomerization
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Table 1

A Highly Torquoselective Electrocyclization
a,b

entry chiral enals electrocyclization products 1,7-H shift products

1

2 25b: R = i-Bu

3 25c: R = n-hex

4 25d: R = Ph(CH2)3

5 25e: R = allyl

6 25f: R = Bn

7

8

a
All reactions were carried with vinylogous amide 16c using piperidine and Ac2O, and reactions were heated at 130 °C for 24 h.
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b
All are isolated yields and dr ratios are determined using 1H NMR analysis of the crude reaction mixture.
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