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ABSTRACT OF THE DISSERTATION

Efficient Storage Design in Log-Structured Merge (LSM) Tree Databases

by

Qizhong Mao

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, June 2022

Dr. Vagelis Hristidis, Chairperson

In this cloud era, data is being generated rapidly from billions of network users,

mobile devices, social networks, sensors, and many other devices and applications. Com-

pared to traditional relational databases which were optimized for read-heavy workloads,

many modern NoSQL database systems choose log-structured merge (LSM) architectures to

support high write throughput, including AsterixDB, Bigtable, Cassandra, Dynamo, HBase,

LevelDB, and RocksDB. My research interests focus on the architectural design and opti-

mization of the storage engines of such LSM systems. Specifically, my thesis targets three

aspects: merge policies, spatial data, and partitioning.

First, a merge policy, also known as compaction strategy, is a critical component of

an LSM system. It defines how data is organized on disk and highly affects the system’s read

and write performance as well as space utilization. Five state-of-the-art merge policies from

existing LSM systems, including Bigtable, Constant, Exploring, Tiered, and Leveled, with

two recently proposed policies, Binomial and MinLatency, are selected for comparison and

evaluation of write, read and transient space amplification. We build and experimentally

vi



compare all these policies on the same platform. The experimental results show these new

policies outperform the other strategies, as they offer a better trade-off between write and

read amplification.

Second, most of the existing LSM systems are optimized only for single dimensional

data, that is, they lack support for spatial indexes for spatial queries. To support spatial

indexes, an LSM system must either index spatial data by mapping the spatial keys into

single dimensional keys or provide native support for a secondary LSM R-tree index. Using

an OpenStreetMap dataset and a synthetic dataset, we experimentally compare LSM R-

tree indexes with four different merge policies: Concurrent, Binomial, Tiered, and Leveled

(with three partitioning algorithms). We discuss our observations and recommendations

with respect to the merge policy, comparator, and partitioning in Leveled policy.

Third, the incremental merge style of the Leveled policy makes it possible to break

a big merge into multiple small sub-merges via partitioning. For certain workloads, such

as sequential insertions, Leveled policy supports trivial-moves, where a whole partition is

moved to the next level without any processing. Such features are missing from stack-based

merge policies, such as Tiered, which often have many time-consuming large merges, and

have no effective support for trivial moves to minimize disk I/O. We propose a novel global-

range partitioning algorithm for stack-based merge policies to 1) improve the parallelism of

merges to improve the overall write throughput; 2) increase opportunities for trivial-moves;

and 3) enable a hybrid of stack-based and leveled merge policies.
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Chapter 1

Introduction

In this cloud era, billions of network users, mobile devices, social networks, sen-

sors, and many other devices and applications keep generating data rapidly. Many modern

NoSQL database systems choose log-structured merge (LSM) [72], including AsterixDB [9],

Bigtable [36], Cassandra [7], Dynamo [25], HBase [8], LevelDB [37], and RocksDB [29].

Compared to traditional relational databases which apply in-place update index structured

that are optimized for read-heavy workloads, the out-of-place update mechanism in LSM

architectures makes these systems capable of supporting high write throughput (see Sec-

tion 2.1 for the details of LSM architectures).

My research focuses on the architectural design and optimization of the storage

engines of such LSM systems. Specifically, this thesis targets three aspects: merge policies,

spatial data, and partitioning.

Merge Policy A merge policy, also known as compaction strategy in some systems, is a

critical component of an LSM that defines how data is organized on disk, and highly affects
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the system’s write, read performance and space utilization. Most research has focused on

optimizing LSM systems’ core user operations like insert/update/delete, read (single get)

and scan (iterator) based on existing merge policies. The study of different merge policies

has been missing for a long time. We select five state-of-the-art merge policies from existing

LSM systems, including Bigtable, Constant, Exploring, Tiered, and Leveled, with

two recently proposed policies, Binomial and MinLatency for comparison and evalua-

tion of write, read and transient space amplification. These policies are implemented and

experimentally compared on the same platform, AsterixDB. The results show these two

new policies outperform the other strategies in the compared metrics, as they offer a better

trade-off between write and read amplification.

Spatial Data Support Most of the existing LSM systems are designed as key-value

stores, which are mainly optimized for single dimensional data. Almost all of them, except

AsterixDB, lack the support for spatial indexes for spatial queries, as their internal indexes

design and merge policies cannot handle multi-dimensional data efficiently. Some systems

like ScyllaDB [78] choose to use other frameworks that are dedicated for spatial-temporal

data (e.g., Spark [81, 96, 97]) as complements for spatial query. But this method often

requires translation between multidimensional data and single dimensional data, which

generally has high overhead. To natively support spatial queries, an LSM system must either

index spatial data by mapping the spatial keys into single dimensional keys or provide native

support for a secondary LSM R-tree index. We experimentally compare LSM R-tree indexes

with four different merge policies: Concurrent, Binomial, Tiered, and Leveled (with

three partitioning algorithms: Size, STR and R*-Grove) using an OpenStreetMap dataset

2



and a synthetic dataset. We discuss our observations and recommendations with respect to

the choices of merge policy, comparator, and partitioning in Leveled policy.

Partitioning in LSM LevelDB and RocksDB deploy an incremental merge style of a par-

titioned policy (Leveled), which makes it possible to break a big merge into multiple small

sub-merges to improve the overall merge performance. These twos systems also support a

so-called trivial-move operation to move data without rewriting it in certain workloads such

as sequential insertions. Such features are missing from stack-based LSM systems and when

Tiered is used in RocksDB. When a stack-based merge policy is used, there often have

many time-consuming large merges, and trivial moves are not always available to minimize

disk I/O even for some special workloads. We propose a novel Global-Range partitioning

algorithm for stack-based merge policies to 1) improve the parallelism of merges to improve

the overall write throughput; 2) increase opportunities for trivial-moves; and 3) enable a

hybrid of stack-based and leveled merge policies.

The rest of this thesis is organized as follows. Chapter 2 discusses the background

information of LSM-trees including two LSM architectures and merge policies. Chapter 3

compares and evaluates seven LSM merge policies. Chapter 4 studies spatial index support

in LSM systems. Chapter 5 presents novel partitioning algorithms for stack-based merge

policies. Finally, Chapter 6 concludes this dissertation.
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Chapter 2

Background

In Section 2.1 we discuss the fundamentals of an LSM tree and how data is main-

tained. In Section 2.2 we discuss two LSM architectures, stack-based and leveled, and

several state-of-the-art merge policies we compared and evaluated for each architecture.

2.1 LSM tree

An LSM tree [72] generally consists of two layers, one layer in memory which

contains one active MemTable (a.k.a memory component), and one layer on disk where

data is organized into one or multiple sorted runs [2]. Every sorted run contains records

sequentially ordered by the indexed key. Depending on the LSM tree architecture (discussed

in Section 2.2), a sorted run can have one or multiple immutable SSTables (a.k.a disk

components). SSTables are typically implemented using a tree structure, such as B+-tree.

A tree structure usually partitions records into blocks or pages as nodes (some may group

multiple blocks or pages into frames as nodes). This partition is usually referred as local

4



partition within a physical file. On the other hand, a sorted run may be a virtual file

that is partitioned into multiple physical files, which is referred as global partition. Local

partition is often bound with the data structure used in physical files, where global partition

is associated with the LSM tree architecture. Therefore, in this thesis, we will primarily

focus on global partition only.

Disk

(4, W, 20)

(3, Z, 18)

-(2)

P2

(Z, 3)

(W, 4)

-(Y, 2)

-(X, 3)

S2

(3, X, 18)

(2, Y, 17)

(1, X, 18)

P1

(Y, 2)

(X, 3)

(X, 1)

S1

Memory

(4, W, 20)

(3, Z, 18)

PM

(Z, 3)

(W, 4)

SM

(2)

PD

(Y, 2)

(X, 3)

SD

Figure 2.1: LSM flush operation. Primary (double line) and secondary (single line)
MemTable are flushed independently to the top of SSTables of the corresponding index.
Delete table is flushed together with the corresponding MemTable (PM and PD, SM and
SD), creating anti-matter records (marked with -) in the flushed SSTable. Index keys are
underlined. The primary index P ’s schema is (CarID, OwnerID, ManufactureYear). A
secondary index S is built on OwnerID.

All records inserted or updated are batched into the MemTable. When the MemTable

reaches its capacity, it is scheduled to be flushed to disk, creating an SSTable, as shown in

Figure 2.1. A flush operation sorts the records in the MemTable PM , then bulk-writes the

sorted records to a SSTable P2. A comparator, which compares two keys, is used to sort

records in the MemTable. A key is inserted to a separate in-memory delete table PD when
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a record is deleted (e.g. 2). PD is flushed together with the PM , adding anti-matter (a.k.a

tomestone) records (e.g. -(2)) to P2.

After

(4, W, 20)

(3, Z, 18)

-(2)

(1, X, 18)

P3

(Z, 3)

-(Y, 2)

-(X, 3)

(X, 1) (W, 4)

S3

(4, W, 20)

(3, Z, 18)

-(2)

P2

(3, X, 18)

(2, Y, 17)

(1, X, 18)

P1

(Z, 3)

-(Y, 2)

-(X, 3)

(W, 4)

S2

(Y, 2)

(X, 3)

(X, 1)

S1Before

Figure 2.2: LSM merge operation. Primary index and secondary index are merged indepen-
dently. Anti-matter records (marked with -) can be completely deleted if the oldest SSTable
(e.g. P1 or S1) is involved in the merge.

Reads become slower as the number of SSTables increases. To improve the read

performance, SSTables are merged based on a merge policy (a.k.a. compaction strategy). A

merge operation scans all records from all merging tables and creates a sorted stream using

a priority queue and the same comparator, then bulk-writes the unique records into new

SSTable(s), as illustrated in Figure 2.2. Obsolete (old version) records are discarded during

a merge, leaving only the newest version. For example, (3, X, 18) from P1 gets removed

because P2 has a newer version (3, Z, 18). An anti-matter record will overwrite any old

versions of the same record (e.g record with key 2), but will be overwritten by a new version

of the same valid record (from a later insertion). Anti-matter records can be deleted when
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the oldest sorted run is involved in a merge. Write amplification is a common measurement

of the write cost in an LSM system. A read query first checks the metadata of all tables,

and adds tables whose key range contains the searched key to an ordered list of operational

tables. All operational tables may contain records to answer the query, thus, the number

of operational tables is usually used to compute the read amplification, which measures the

read cost in the worst case1.

2.2 LSM Architectures and Merge Policies

2.2.1 Stack-based LSM Tree

In a stack-based LSM tree, every single SSTable is a sorted run (thus SSTable

and sorted run are interchangeable), where SSTables are ordered by the time created from

flushes or merges. Stack-based merge policies generally merge only consecutive SSTables

and create only one single SSTable per merge.

Most stack-based merge policies make merge decisions based on certain size ratio

conditions, where every single merge involve similar sized SSTables. Such merge policies are

often referred as tiering style. The term tiering came from the SizeTiered policy in Cassan-

dra (described later in this section), while the term stack-based came from Bigtable [65, 68].

Tiering style merge policies are a subset of stack-based merge policies. A key difference is

that SSTable sizes in tiering style merge policies are non-decreasing with respect to their

time of creation, such that older SSTables are usually no smaller than any newer SSTables,

while such restriction does not hold for the general stack-based merge policies, where there

1Some operational tables may be skipped by filters such as Bloom filter, reducing the actual read ampli-
fication.
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is no relation between SSTable sizes and freshness. Certain stack-based policies choose to

restrict the total number of SSTables to a constant number which limits the worst case read

amplification. These policies are called bounded-depth policies [65].

2.2.2 Leveled LSM Tree

In a Leveled LSM tree [26, 27] every level is a sorted run which is partitioned into

multiple (typically) disjoint SSTables of the same size [62]. The number of SSTables in level

i ≥ 2 is B times more than the number in level i − 1. There may also be a special level

0 which contains B0 SSTables as a buffer, which holds flushed SSTables as multiple sorted

runs. When a level reaches its capacity (B0 or Bi), a SSTable is selected and merged with

all overlapping SSTables in the next level, creating one or multiple new SSTables in the

next level. While the oldest SSTable in level 0 must be selected, any SSTable in other levels

can be selected. A point query only needs to check all SSTables in level 0, and at most 1

SSTable in every level i ≥ 1. A range query may just need to check a few SSTables in each

level, reducing the total size to be checked.

2.2.3 Stack-based vs. Leveled LSM Tree

The major differences between stack-based and leveled LSM trees in terms of merge

operations are illustrated in Figure 2.3. All sorted runs (SSTables / levels) are ordered from

newer to older in top-down direction, where blue and orange rounded rectangles represent

input and output SSTables of a merge, respectively. Three consecutive SSTables C1-C3 are

merged into a single SSTable C1,3 in a stack-based LSM tree, where in a leveled LSM tree,

one SSTable ([3, 6]) from one level (L1) is merged with the only overlapping SSTable ([2, 5])
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in the next level (L2), and the two output SSTables are placed in the next level (L2). At

the same time, SSTables [9, 12] and [8, 11] or [8, 11] and [7, 10] can be merged as they do

not overlapping with the current merging SSTables [3, 6] and [2, 5].

Before merge

1, 4, 7, 10C1

2, 5, 8, 11C2

3, 6, 9, 12C3

After merge

1, 2, 3, 4, 5, 6,

7, 8, 9, 10, 11, 12
C1,3

(a) Merge in stack-based LSM tree. Each rectangle is a SSTable
storing a sorted run.

Before merge

1, 4 7, 10 ...L3

2, 5 8, 11 ...L2

3, 6 9, 12 ...L1

After merge

1, 4 7, 10 ...L3

2, 3 5, 6 8, 11 ...L2

9, 12 ...L1

(b) Merge in leveled LSM tree. Each solid rectangle is a SSTable.
Each row is a level / sorted run, containing one or multiple
SSTables.

Figure 2.3: Examples of merges in stack-based and leveled LSM trees. Input and output
SSTables in a merge are marked in blue and orange, respectively. Keys in a SSTable are
represented by the numbers inside the rectangle.
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Chapter 3

Comparison and Evaluation of

State-of-the-Art LSM Merge

Policies

3.1 Introduction

Many modern NoSQL systems [16, 17] use log-structured-merge (LSM) architec-

tures [72] to achieve high write throughput. To insert a new record, a write operation sim-

ply inserts the record into the memory-resident MemTable [17] (also called the in-memory

component). Update operations are implemented lazily, requiring only a single write to

the MemTable. Delete operations are implemented similarly, by writing an anti-matter

record for the key to the MemTable. Thus, each write, update, or delete operation

avoids any immediate disk access. When the MemTable reaches its allocated capacity (or
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for other reasons), it is flushed to disk, creating an immutable disk file called a component,

or, usually, an SSTable (Sorted Strings Table [17]). This process continues, creating many

SSTables over time.

Each read operation searches the MemTable and SSTables to find the most re-

cent value written for the given key. With a compact index stored in memory for each

SSTable, checking whether a given SSTable contains a given key typically takes just one

disk access [38, §2.5]. (For small SSTables, this access can sometimes be avoided by storing

a Bloom filter for the SSTable in memory [24].) Hence, the time per read grows with the

number of SSTables. To control read costs, the system periodically merges SSTables to

reduce their number and to prune updated and anti-matter records. Each merge replaces

some subset of the SSTables by a single new SSTable that holds their union. The merge

batch-writes these items to the new SSTable on disk. The write amplification is the number

of bytes written by all merges, divided by the number of bytes inserted by write operations.

A merge policy (also known as a compaction policy) determines how merges are

done. The policy must efficiently trade off total write amplification for total read cost

(which increases with the average number of SSTables being checked per read operation,

known as read amplification). This chapter focuses on what we call bounded depth policies

— those that guarantee a bounded number of disk accesses for each read operation by

ensuring that, at any given time, the SSTable count (the number of existing SSTables)

never exceeds a given parameter k, typically 3–10, such that the read amplification is at

most k. Maintaining bounded depth is important in applications that require low read

latency, but bounded-depth policies are not yet well understood.
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A recent theoretical work by Mathieu et al. [68] (including one of the current

authors) formally defines a broad class of so-called stack-based policies (see Section 3.3 for

the definition). This class includes policies of many popular NoSQL systems, including

Bigtable [17], HBase [34, 48, 73], Accumulo [47, 73], Cassandra [52], Hypertable [45], and

AsterixDB [4]. In contrast, leveled policies (used by LevelDB and its spin-offs [37]) split

SSTables by key-space to avoid monolithic merges, so they do not fit the stack-based model.

Note that all current leveled implementations yield unbounded depth, hence they are not

considered here.

Mathieu et al. [68] also propose theoretical metrics for policy evaluation, and,

as a proof of concept, propose new policies that, among stack-based policies, are opti-

mal according to those metrics. Two such policies, MinLatency and Binomial (defined

in Section 3.2) are bounded-depth policies which were designed to have minimum worst-

case write amplification (subject to the depth constraint) among all stack-based policies.

Mathieu et al. [68] observe that, according to the theoretical model, on some inputs existing

policies are far from optimal, so, on some common workloads, compared to existing policies,

MinLatency and Binomial can have lower write amplification.

Here we empirically compare MinLatency and Binomial to 3 representative

bounded-depth merge policies from state-of-the-art NoSQL databases: a policy from As-

terixDB [9], Exploring (the default policy for HBase [8]), and the default policy from

Bigtable (as described by Mathieu et al. [68], which includes authors from Google); as well

as the standard Tiered policy (the default policy for Cassandra [7]) and Leveled policy

(the default policy for LevelDB [37]). Section 3.2 defines these policies. We implement the
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policies under consideration on a common platform — Apache AsterixDB [4, 9], — and

evaluate them on inputs from the Yahoo! Cloud Serving Benchmark (YCSB) [20, 92]. This

is the first implementation and evaluation of the policies proposed by Mathieu et al. [68] on

a real NoSQL system. The empirical results validate the theoretical model. MinLatency

and Binomial achieve write amplification close to the theoretical minimum, thereby out-

performing the other policies by orders of magnitude on some realistic workloads. (See

Section 3.4.)

Having a realistic theoretical model facilitates merge policy design both via the-

oretical analysis (as for MinLatency and Binomial), and because it enables rapid but

faithful simulation of experiments. NoSQL systems are designed to run for months, in-

corporating hundreds of terabytes. Experiments can take weeks, even with appropriate

adaptations. In contrast, the model allows some experiments to be faithfully simulated in

minutes. (See Section 3.5.)

In summary, this chapter makes the following contributions:

1. The implementation of several existing merge policies, including the popular Tiered

and Leveled, from a variety of different NoSQL database systems, and two recently

proposed merge policies, on a common, open-source platform, specifically Apache

AsterixDB.

2. An experimental evaluation on write, read and transient space amplification using

the Yahoo! Cloud Serving Benchmark (YCSB), confirming that the recently proposed

policies can significantly outperform the state-of-the-art policies on some common

workloads, such as append-only and update-heavy workloads.
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3. A study of how insertion order affects the write amplification of merge policies, espe-

cially for Leveled.

4. We have shown that Binomial and MinLatency outperform the popular Tiered

and Leveled policies with a better trade-off between write amplification and average

read amplification.

5. An empirical validation of a realistic cost model, which facilitates the design of merge

policies via theoretical analysis and rapid simulation.
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(e) MinLatency
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(f) Tiered
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Figure 3.1: Examples of SSTables states after 16 flushes for the 7 merge policies. SSTables
are represented by rectangles (solid for the 6 stack-based policies, dotted for Leveled).
Older SSTables are lower, newer SSTables are higher. Levels are represented by solid
rectangles in the last plot. SSTables’ sizes are with respect to the flush size.
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3.2 Policies Studied

Bigtable (Google) The default for the Bigtable platform is as follows [68]. When the

MemTable is flushed, if there are fewer than k SSTables, add a single new SSTable holding

the MemTable contents. Otherwise, merge the MemTable with the i most recently created

SSTables, where i is the minimum such that, afterwards, the size of each SSTable exceeds

the sum of the sizes of all newer SSTables.1 Roughly speaking, this tries to ensure that

each SSTable is at most half the size of the next older SSTable. We denote this policy

Bigtable.

Exploring (Apache HBase) Exploring is the default for HBase [8]. In addition to k,

it has configurable parameters λ (default 1.2), C (default 3), and D (default 10). When

the MemTable (Memstore in HBase) is flushed, the policy orders the SSTables (HFiles in

HBase) by time of creation, considers various contiguous subsequences of them, and merges

one that is in some sense most cost-effective. Specifically: Temporarily add the MemTable

as its own (newest) SSTable, then consider every contiguous subsequence s such that

• s has at least C and at most D SSTables, and

• in s, the size of the largest SSTable is at most λ times the sum of the sizes of the other

SSTables.

In the case that there is at least one such subsequence s, merge either the longest (if there

are at most k SSTables) or the one with minimum average SSTable size (otherwise). In the

1The implementation of this and other policies may temporarily create an SSTable holding the MemTable
contents, and then merge that SSTable with the other SSTables.
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remaining case, and only if there are more than k SSTables, merge a contiguous subsequence

of C SSTables having minimum total size.

Constant (AsterixDB before version 0.9.4) Constant is as follows. When the

MemTable is flushed, if there are fewer than k SSTables, add a single new SSTable holding

the MemTable contents. Otherwise, merge the MemTable and all k SSTables into one.

Tiered and Leveled Tiered policy is the default for Cassandra (termed as SizeTiered

Compaction Strategy). Leveled is the default for LevelDB [37] and RocksDB [29] (termed

as Leveled Compaction). In theory, both policies have one core configurable parameter,

the size ratio B. In practice, Tiered may need multiple parameters (3 in Cassandra) to

determine SSTables of similar sizes, Leveled also has an extra paramter that control the

number of SSTables in level 0 as an on disk buffer. The total SSTable size in one tier or

level is B times larger than the previous tier or level. The differences are:

• In Tiered, every tier must have at most B SSTables, each SSTable is B larger than

the SSTable size in the previous tier. In Leveled, all SSTables are of the same size,

the number of SSTables in one level is B more than the previous level.

• Any two SSTables can have overlapping key space in Tiered, while all SSTables must

not have overlapping key space in the same level in Leveled.

• Tiered only allows merging consecutive SSTables. While in Leveled, one SSTable

is picked to be merged with all SSTables in the next level that have overlapping key

ranges with the picked SSTable (if any). These SSTables do not have to be consecutive.
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• In Tiered, every merge involves at least two SSTables. In Leveled, only one SSTable

can be merged if there is no overlapping SSTable in the next level.

• Only one SSTable is created in a merge in Tiered. In Leveled, the number of

SSTables created in a merge is typically the same as the number of SSTables being

merged.

• In Tiered, the new SSTable size is typically the same as the total size of the SSTables

being merged. In Leveled, all input and output SSTables have the same size.

Next are the definitions of the MinLatency and Binomial policies which were

proposed by Mathieu et al [68]. First, define a utility function B, as follows. Consider any

binary search tree T with some nodes {1, 2, . . . , n} in search-tree order (each node is larger

than those in its left subtree, and smaller than those in its right subtree). Given a node t

in T , define its stack (merge) depth to be the number of ancestors smaller (larger) than t.

(Hence, the depth of t in T equals its stack depth plus its merge depth.)

Fix any two positive integers k and m, and let n =
(
m+k
k

)
− 1. Let τ∗(m, k) be

the unique n-node binary search tree on nodes {1, 2, . . . , n} that has maximum stack depth

k − 1 and maximum write depth m − 1. For t ∈ {1, 2, . . . , n}, define B(m, k, t) to be the

stack depth of node t in T .

Compute the function B(m, k, t) via the following recurrence. Define B(m, k, 0)

to be zero, and for t > 0 use
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B(m, k, t) =


B(m− 1, k, t) if t <

(
m+k−1

k

)
,

1 +B
(
m, k − 1, t−

(
m+k−1

k

))
if t ≥

(
m+k−1

k

)
.

The policies are defined as follows.

MinLatency For each t = 1, 2, . . . , n, in response to the t-th flush, the action of the

policy is determined by t, as follows:

Let m′ = min{m :
(
m+k
m

)
> t} and i = B(m′, k, t). Order the SSTables by time

of creation, and merge the i-th oldest SSTable with all newer SSTables and the flushed

MemTable (leaving i SSTables).

Binomial For each t = 1, 2, . . . , n, in response to the t-th flush, the action of the policy

is determined by t, as follows:

Let Tk(m) =
∑m

i=1

(
i+min(i,k)−1

i

)
and m′ = min{m : Tk(m) ≥ t}.

Let i = 1 + B(m′,min(m′, k) − 1, t − Tk(m
′ − 1) − 1). Order the SSTables by

time of creation, and merge the i-th oldest SSTable with all newer SSTables and the flushed

MemTable (leaving i SSTables).

As described in Section 3.3, these policies are designed carefully to have the mini-

mum possible worst-case write amplification among all policies in the aforementioned class

of stack-based policies.

Bigtable, Constant and (although it is not obvious from its specification) Min-

Latency are lazy — whenever the MemTable is flushed, if there are fewer than k SSTables,

the policy leaves those SSTables unchanged, and creates a new SSTable that holds just the
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flushed MemTable’s contents. For this reason, these policies tend to keep the number of

SSTables close to k. In contrast, for moderate-length runs (4k or fewer flushes, as discussed

later), Exploring and Binomial often merge multiple SSTables even when fewer than k

SSTables are already present, so may keep the average number of SSTables well below k,

potentially allowing faster read operations.

Examples of all these seven merge policies for the first 16 flushes are shown in

Figure 3.1. For the six stack-based policies (Figure 3.1a - 3.1f), a new SSTable is added

to the top of the stack in every flush. Several SSTables are merged into one SSTable. For

example in Figure 3.1a, before the 12th flush, there are 2 SSTables of size 2x and 2 SSTabls

of size 1x. After the 12th flush, all the 5 SSTables are merged into one big SSTable of

size 12x. The number of SSTables of Bigtable, Binomial, Constant, Exploring and

MinLatency never exceeds k = 4. Binomial and MinLatency choose different SSTables

to merge starting from the 9th flush, based on their own computations (Figure 3.1b and

3.1e). For Tiered, a merge is triggered every B = 2 flushes and multiple merges are

triggered at the 4th, 8th, 12th and 16th flush (Figure 3.1f). For Leveled, multiple merges

may be triggered at every flush starting from the 3rd flush, while only one merge is triggered

at the 2nd flush (Figure 3.1g). For example, before the 12th flush, there are 2 SSTable in

level 1 (top rectangle), 4 rectangles in level 2, and 5 SSTable in level 3 (bottom rectangle).

After the 12th flush, a new SSTable is added to level 1, triggering a merge which selects an

SSTable in level 1 and merges it to level 2. Then level 2 has 5 SSTables, and another merge

is triggered which selects an SSTable in level 2 and merges it to level 3. Eventually, there

are still 2 SSTables in level 1 and 4 SSTables in level 2, but 6 SSTables in level 3.
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3.3 Design of MinLatency and Binomial

This section reviews definition of the class of so-called stack-based merge policies

in [68], the worst-case write amplification metric, and how MinLatency and Binomial

are designed to minimize that metric among all policies in that class.

3.3.1 Bounded-depth stack-based merge policies

Informally, a stack-based policy must maintain a set of SSTables over time. The set

is initially empty. At each time t = 1, 2, . . . , n, the MemTable is flushed, having current size

in bytes equal to a given integer ℓt ≥ 0. In response, the merge policy must choose some

of its current SSTables, then replace those chosen SSTables by a single SSTable holding

their contents and the MemTable contents. As a special case, the policy may create a new

SSTable from the MemTable contents alone.

Each newly created SSTable is written to the disk, batch-writing a number of bytes

equal to its size, which by assumption is the sum of the sizes of the SSTables it replaces,

plus ℓt if the merge includes the flushed MemTable. (This ignores updates and deletes,

but see the discussion below.)

A bounded-depth policy (in the context of a parameter k) must keep the SSTable

count at k or below. Subject to that constraint, its goal is to minimize the write ampli-

fication, which is defined to be the total number of bytes written in creating SSTables,

divided by
∑n

t=1 ℓt, the sum of the sizes of the n MemTable flushes. (Write amplification

is a standard measure in LSM systems [27, 56, 57, 79].) Tiered is stack-based but not

bounded-depth, while Leveled is neither stack-based nor bounded-depth.
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t SSTables at time t bytes written
SSTable
count

1 σ1 = {1} ℓ1 1
2 σ2 = {1}, {2} ℓ2 2
3 σ3 = {1}, {2,3} ℓ2 + ℓ3 2
4 σ4 = {1}, {2, 3}, {4} ℓ4 3
5 σ5 = {1, 2, 3 ,4 ,5} ℓ1 + ℓ2 + ℓ3 + ℓ4 + ℓ5 1
6 σ6 = {1, 2, 3, 4, 5}, {6} ℓ6 2
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Figure 3.2: (a) An eager, stable schedule σ (n = 6, k = 3). (b) A graphical representation
of σ. Each shaded rectangle is an SSTable (over time). Row t is the stack at time t. (c)
The binary-search-tree representation of σ.

For intuition, consider the example k = 2 and ℓt = 1 uniformly for t ∈ {1, 2, . . . , n}.

The optimal write amplification is Θ(
√
n).

Next is the precise formal definition, as illustrated in Figure 3.2(a):

Problem 1 (k-Stack-Based LSM Merge) A problem instance is an ℓ ∈ Rn
+. For each

t ∈ {1, . . . , n}, say flush t has (flush) size ℓt. A solution is a sequence σ = {σ1, . . . , σn},

called a schedule, where each σt is a partition of {1, 2, . . . , t} into at most k parts, each called

an SSTable, such that σt is refined by2 σt−1 ∪ {{t}} (if t ≥ 2). The size of any SSTable F

is defined to be ℓ(F ) =
∑

t∈F ℓt — the sum of the sizes of the flushes that comprise F . The

goal is to minimize σ’s write amplification, defined as W (σ) =
∑n

t=1 δ(σt, σt−1)/
∑n

t=1 ℓt,

where δ(σt, σt−1) =
∑

F∈σt\σt−1
ℓ(F ) is the sum of the sizes of the new SSTables created

during the merge at time t.

Formally, a (bounded-depth) stack-based merge policy is a function P mapping each

problem instance ℓ ∈ Rn
+ to a solution σ. In practice, the policy must be online, meaning

that its choice of merge at time t depends only on the flush sizes ℓ1, ℓ2, . . . , ℓt seen so far.

2Each part in σt is the union of some parts in σt−1 ∪ {{t}}.
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Because future flush sizes are unknown, no online policy P can achieve minimum possible

write amplification for every input ℓ. Among possible metrics for analyzing such a policy P ,

the focus here is on worst-case write amplification: the maximum, over all inputs ℓ ∈ Rn
+ of

size n, of the write amplification that P yields on the input. Formally, this is the function

n 7→ max{W (P (ℓ)) : ℓ ∈ Rn
+}.

Updates and Deletes The formal definitions above ignore the effects of key updates

and deletes. While it would not be hard to extend the definition to model them, for

designing policies that minimize worst-case write amplification, this is unnecessary: these

operations only decrease the write amplification for a given input and schedule, so any online

policy in the restricted model above can easily be modified to achieve the same worst-case

write amplification, even in the presence of updates and deletes.

Additional terminology Recall that a policy is stable if, for every input, it maintains

the following invariant at all times among the current SSTables: the write times of all

items in any given SSTable precede those of all items in every newer SSTable. (Formally,

every SSTable created is of the form {i, i+1, . . . , j} for some i, j.) As discussed previously,

this can speed up reads. We note without proof that any unstable solution can be made

stable while at most doubling the write amplification. Likewise, each uniform input has an

optimal stable solution. All policies tested here are stable.

A policy is eager if, for every input ℓ, for every time t, the policy creates just one

new SSTable (necessarily including the MemTable flushed). Every input has an optimal

eager solution, and all bounded-depth policies tested here except for Exploring are eager.

22



An online policy is static if each σt is determined solely by k and t. In a static

policy, the merge at each time t is predetermined — for example, for t = 1, merge just

the flushed MemTable; for t = 2, merge the MemTable with the top SSTable, and so on

— independent of the flush sizes ℓ1, ℓ2, . . . The MinLatency and Binomial policies are

static. Static policies ignore the flush sizes, so it may seem counter-intuitive that static

policies can achieve optimum worst-case write amplification.

3.3.2 MinLatency and Binomial

Among bounded-depth stack-based policies, MinLatency and Binomial, by de-

sign, have the minimum possible worst-case write amplification. Their design is based on

the following relationship between schedules and binary search trees.

Fix any k-Stack-based LSM Merge instance ℓ = (ℓ1, . . . , ℓn). Consider any eager,

stable schedule σ for ℓ. (So σ creates just one new SSTable at each time t.) Define the

(rooted) merge forest F for σ as follows: for t = 1, 2, . . . , n, represent the new SSTable Ft

that σ creates at time t by a new node t in F , and, for each SSTable Fs (if any) that is

merged in creating Ft, make node t the parent of the node s that represents Fs.

Next, create the binary search tree T for σ from F as follows. Order the roots of

F in decreasing order (decreasing creation-time t). For each node in F , order its children

likewise. Then let T = T (σ) be the standard left-child, right-sibling binary tree representa-

tion of F . That is, T and F have the same vertex set {1, 2, . . . , n}, and, for each node t in

T , the left child of t in T is the first (oldest) child of t in F (if any), while the right child

of t in T is the right (next oldest) sibling of t in F (if any; here we consider the roots to

be siblings). It turns out that (because σ is stable) the nodes of T must be in search-tree
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order (each node is larger than those in its left subtree and smaller than those in its right

subtree). Figures 3.2(a) and 3.2(c) give an example.

What about the depth constraint on σ, and its write amplification? Recall that

the stack (merge) depth of a node t is the number of ancestors that are smaller (larger)

than t. While the details are out of scope here, the following holds:

For any eager, stable schedule σ:

1. σ obeys the depth constraint if and only if every node in T (σ) has stack depth at most

k − 1,

2. the write amplification incurred by σ on ℓ equals

∑n
t=1(mergedepth(t, T (σ)) + 1)ℓt∑n

t=1 ℓt
≤ 1 +

n
max
t=1

mergedepth(t, T (σ)).

The mapping σ → T (σ) is invertible. Hence, any binary search tree t with nodes

{1, 2, . . . , n}, maximum stack depth k−1, and maximum merge depth m−1 yields a bounded-

depth schedule σ (such that T (σ) = t), having write amplification at most m on any input

ℓ ∈ Rn
+.

Rationale for MinLatency MinLatency uses this observation to produce its sched-

ule [68]. First consider the case that n =
(
m+k
k

)
− 1 for some integer m. Among the binary

search trees on nodes {1, 2, . . . , n}, there is a unique tree with maximum stack depth k − 1

and maximum merge depth m − 1. Let τ∗(m, k) denote this tree, and let σ∗(m, k) denote

the corresponding schedule.
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MinLatency is designed to output σ∗(m, k) for any input of size n. Since τ∗(m, k)

has maximum merge depth m− 1, as discussed above, σ∗(m, k) has write amplification at

most m, which by calculation is

(1 +O(1/k)) k n1/k/ck, (3.1)

where ck = (k + 1)/(k!)1/k ∈ [2, e]. This bound extends to arbitrary n, so MinLatency’s

worst-case write amplification is at most (3.1).

This is optimal, in the following sense: for every ϵ > 0 and large n, no stack-based

policy achieves worst-case write-amplification less than (1 − ϵ)k n1/k/ck. This is shown by

using the bijection described above to bound the minimum possible write amplification for

uniform inputs.

Binomial and the small-n and large-n regimes As mentioned previously, due to

the fact that MinLatency and Bigtable are lazy, they produce schedules whose average

SSTable count is close to k. When n is large, any policy with near-optimal write amplifi-

cation must do this. Specifically, in what we call the large-n regime — after the number

of flushes exceeds 4k or so — any schedule with near-optimal write amplification (e.g., for

uniform ℓ) must have average SSTable count near k. In this regime, Binomial behaves

similarly to MinLatency. Consequently, in this regime, Binomial still has minimum

worst-case write amplification.

However, in what we call the small-n regime — until the number of flushes n

reaches 4k — it is possible to achieve near-optimal write-amplification while keeping the av-

erage SSTable count somewhat smaller. Binomial is designed to do this [68]. In the small-n
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regime, it produces the schedule σ for the tree τ∗(m,m), for which the maximum stack depth

and maximum merge depth are both m ≈ log2(n)/2, so Binomial’s average SSTable count

and write amplification are about log2(n)/2, which is at most k (in this regime) and can be

less. Consequently, in the small-n regime, Binomial can opportunistically achieve average

SSTable count well below k. In this way it compares well to Exploring, and it behaves

well even with unbounded depth (k = ∞).

3.4 Experimental Evaluation

3.4.1 Test Platform: AsterixDB

Apache AsterixDB [4, 9] is a full-function, open-source Big Data Management Sys-

tem (BDMS), which has a shared-nothing architecture, with each node in an AsterixDB

cluster managing one or more storage and index partitions for its datasets based on LSM

storage. Each node uses its memory for a mix of storing MemTables of active datasets,

buffering of file pages as they are accessed, and other memory-intensive operations. Aster-

ixDB represents each SSTable as a B+-tree, where the number of keys at each internal node

is roughly the configured page size divided by the key size. (Internal nodes store keys but

not values.) Secondary indexing is also available using B+-trees, R-trees, and/or inverted

indexes [5]. As secondary indexing is out of the scope of this chapter, our experiments

involve only primary indexes.

AsterixDB provides data feeds for rapid ingestion of data [39]. A feed adapter

handles establishing the connection with a data source, as well as receiving, parsing and

translating data from the data source into ADM objects [4] to be stored in AsterixDB.
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Several built-in feed adapters available for retrieving data from network sockets, local file

system, or from applications like Twitter and RSS.

3.4.2 Experimental Setup

The experiments were performed on a machine with an Intel i3–4330 CPU running

CentOS 7 with 8 GB of RAM and two mirrored (RAID 1) 1 TB hard drives. AsterixDB

was configured to use 1 node controller, so all records are stored on the same disk location.

The relatively small RAM size of 8 GB limits caching, to better simulate large workloads.

The MemTable capacity was configured at 4 MB. The small MemTable capacity increases

the flush rate to better simulate longer runs.

The workload was generated using the Yahoo! Cloud Serving Benchmark [20, 92],

with default parameters used in the load phase. The full workload consists of 80,000,000

writes, each writing one record with a primary key of 5 to 23 bytes plus 10 attributes of

1000 bytes, giving a total size of about 1 kB. Each primary key is a string with a 4-byte

prefix and a long integer (as a string). Insert order was set to the default hashed.

To achieve high ingestion rate, we implemented a YCSB database-interface layer

for AsterixDB using the “socket adapter” data feed (which retrieves data from a network

socket) with an upsert data model, so that records are written without a duplicate key

check to achieve a much higher throughput. Upsert in AsterixDB and Cassandra is the

equivalent of standard insert in other NoSQL systems, where, if an inserted record conflicts

in the primary key with an existing record, it overwrites it.

The MemTable flushes were triggered by AsterixDB when the MemTable was near

capacity, so the input ℓ generated by the workload was nearly uniform, with each flush size
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ℓt about 4 MB. This represents about 3,300 records per flush, so the input size n — the

total number of flushes in the run — was just over 24, 000.

For each of the five bounded-depth stack-based policies tested, and for each k ∈

{3, 4, 5, 6, 7, 8, 10}, we executed a single run testing that policy, configured with that depth

(SSTable count) limit k. For Tiered and Leveled policies, we executed the same runs

with size ratio B ∈ {4, 8, 16, 32}, the number of SSTables in level 0 was set to 2 in Leveled

policy. Leveled also used a strategy that picks the SSTable which overlaps with the

minimum number of SSTables in the next level for merges in order to reduce the write

amplification. All other policy parameters were set to their default values (see Section 3.2).

Each of the 43 runs started from an empty instance, then inserted all records of the workload

into the database, generating just over 24,000 flushes for the merge policy.

For some smaller k values, some of the bounded-depth policies had significantly

large write amplification and so did not finish the run. Binomial andMinLatency finished

in about 16 hours, but Bigtable and Exploring ingested less than 40% of the records

after two days, so were terminated early. Similarly, Constant was terminated early in all

of its runs.

As our focus is on write amplification, which is not affected by reads, the workload

contains no reads (but see Section 3.4.3).

The data for all 43 runs is tabulated in Appendix A
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(a) k = 5, n ≈ 24, 000; 45 = 1024.
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(b) k = 6, n ≈ 24, 000; 46 = 4096
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(c) k = 7, n ≈ 24, 000; 47 = 16, 384
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(d) k = 5, n = 2, 000; 45 = 1024
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(e) k = 6, n = 2, 000; n ≪ 46
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(f) k = 7, n = 2, 000; n ≪ 47

Figure 3.3: Write amplification vs. number of flushes over time for runs with k ∈ {5, 6, 7}.
The top row shows n ≈ 24, 000; the bottom shows n = 2, 000. The transition from the
small-n regime to the large-n regime (if present) occurs at 4k flushes. Complete data is in
Appendix A.

3.4.3 Policy Comparison

Write Amplification

At any given time t during a run, define the write amplification (so far) to be the

total number of bytes written to create SSTables so far divided by the number of bytes
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flushed so far (
∑t

s=1 ℓs). This section illustrates how write amplification grows over time

during the runs for the various policies. The 5 bounded-depth stack-based policies all share

a common parameter k, which is the maximum number of SSTables. On the other hand,

Tiered and Leveled both share a different parameter B, which is the size ratio between

tiers or levels. Because these two parameters carry different meanings, it is not meaningful

to compare the write amplification of these 7 policies directly with the same value of k

and B. Thus in this subsection, we compare and evaluate them into 2 groups: one group

containing the 5 bounded-depth stack-based policies are compared for the same value of k,

while the other group of Tiered and Leveled are compared for the same value of B.

Bounded-depth Stack-based Policies

We focus on the runs with k ∈ {5, 6, 7}, which are particularly informative. The

runs for each k are shown in Figures 3.3a–3.3c, each showing how the write amplification

grows over the course of all n ≈ 24, 000 flushes. Because workloads with at most a few

thousand flushes are likely to be important in practice, Figures 3.3d–3.3f repeat the plots,

zooming in to focus on just the first 2, 000 flushes (n = 2, 000).

In interpreting the plots, note that the caption of each sub-figure shows the thresh-

old 4k. The small-n regime lasts until the number of flushes passes this threshold, whence

the large-n regime begins. Note that (depending on n and k), some runs lie entirely within

the small-n regime (n ≤ 4k), some show the transition, and in the rest (with n ≫ 4k) the

small-n regime is too small to be seen clearly. In all cases, the results depend on the regime

as follows. During the small-n regime, MinLatency has smallest write amplification, with

Binomial, Bigtable, and then Exploring close behind. As the large-n regime begins,
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MinLatency and Binomial become indistinguishable. Their write amplification at time t

grows sub-linearly (proportionally to t1/k), while those of Bigtable and Exploring grow

linearly (proportionally to t). Although we do not have enough data for Constant, its

write amplification is O(t/k) as it merges all SSTables in every k flushes. These results are

consistent with the analytical predictions from the theoretical model [68].

Tiered Policy and Leveled Policy

The runs for Tiered and Leveled are shown in Figure 3.4a for n ≈ 24, 000

flushes with B ∈ {4, 8, 16, 32}. Tiered achieved lowest write amplification than any other

policy tested, while Leveled has significantly higher write amplification than all the other

policies except for Constant. The write amplification is O(log t) and O(B log t) for Tiered

and Leveled, respectively. From the figure, it is observable that smaller size ratio leads

to higher write amplification in Tiered but lower write amplification in Leveled, which

verifies the theoretical numbers. Runs with 2, 000 flushes are shown in Figure 3.4b which

shows the same results. Unlike the bounded-depth policies, the small-n regime does not

apply to Tiered and Leveled.

Read Amplification

Read amplification is the number of disk I/Os per read operation. In this chapter,

we focus on point query only. In practice, accessing one SSTable only costs one disk I/O,

assuming all metadata and all internal nodes of B+-trees are cached. Therefore, the worst-

case read amplification can be computed as the SSTable count for all stack-based policies,
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(a) n ≈ 24, 000
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(b) n = 2, 000

Figure 3.4: With B ∈ {4, 8, 16, 32}, Tiered are shown as solid lines in the top sub-figures,
Leveled are shown as dashed lines in the bottom sub-figures.

or approximately the number of levels for Leveled policy (number of SSTables in level 0

is 2 in our experiments), although techniques such as Bloom filter can skip checking most

of the SSTables, making the actual read amplification be only 1.
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As noted previously, MinLatency and Bigtable, being lazy, tend to keep the

read amplification near its limit k. In the large-n regime, any policy that minimizes worst-

case write amplification must do this. But, in the small-n regime, Binomial opportunisti-

cally achieves smaller average read amplification, as does Exploring to some extent.

Figure 3.5 has a line for each policy except Constant. The line for Constant

was generated from simulation. It can be clearly seen from the figure that Constant is

far from optimal, thus below we concentrate on the other policies. The curve shows the

trade-off between final write amplification and average read amplification achieved by its

policy: it has a point (x, y) for every run of the bounded-depth stack-based policy with

k ∈ {4, 5, 6, 7, 8, 10}, or Tiered and Leveled with B ∈ {4, 8, 16, 32} (and n ≈ 24, 000),

where x is the final write amplification for the run and y is the average read amplification

over the course of the run. Both the x-axis and y-axis are log-scaled.

3 4 5 6 7 8 9 11 13 19 25 31 44 53 71 181 239
Total W ite Amplification

4
5
6
7
9

11

16

26

45

Av
e 

ag
e 

R
ea

d 
A

m
pl

ifi
ca

tio
n

Bigtable
Binomial
Constant
Explo ing

MinLatency
Tie ed
Leveled

Figure 3.5: Average read amplification vs. total write amplification (x and y log-scaled).

First consider the runs with k ∈ {7, 6, 5, 4}. Within each curve, these correspond

to the four rightmost / lowest points (with k = 4 being rightmost / lowest). These runs are

dominated by the large-n regime, and each policies has average SSTable count (y coordinate)
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close to k. In this regime the Binomial and MinLatency policies achieve the same (near-

optimal) trade-off, while the Exploring and Bigtable policies are far from the optimal

frontier due to their larger write amplification.

Next consider the remaining runs, for k ∈ {10, 8}. On each curve, these are the

two leftmost / highest points, with k = 10 leftmost. In the curve for Exploring, its two

points are indistinguishable. These runs stay within the small-n regime. In this regime,

Binomial achieves a slightly better tradeoff than the other policies. MinLatency and

Bigtable give comparable tradeoffs. For Exploring, its two runs lie close to the optimal

frontier, but low: increasing the SSTable limit (k) from 8 to 10 makes little difference.

The read amplification of Tiered and Leveled is inverse of their write amplifica-

tion, that is O(B log t) for Tiered and O(log t) for Leveled. Tiered, – the 4 points from

left to right correspond to B ∈ {32, 16, 8, 4} respectively – has higher read amplification

than any other policy tested but has significantly lower write amplification. Leveled, –

the 4 points from left to right correspond to B ∈ {4, 8, 16, 32} respectively – has comparable

read amplification to the other policies except Tiered, but has much higher write amplifi-

cation. Usually, a merge policy cannot achieve low write and read amplification at the same

time. Most researches tried to improve the trade-off curve of Tiered and Leveled such

that it can get closer to the optimal frontier [23, 24]. As shown in the figure, Binomial and

MinLatency are both closer to the optimal frontier, which has better trade-off between

write and read. Bigtable and Exploring are closer to the optimal frontier with a few

large k values, but they have to pay very high write cost to reduce the read cost.
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Transient Space Amplification

Recently various works [10, 27, 51] have discussed the importance of space ampli-

fication. In an LSM-tree based database system, space amplification is mostly determined

by the amount of obsolete data from updates and deletions in a stable state which are yet

to be garbage-collected in merges. Because our primary focus is an append-only workload

without any updates or deletions, there would be no obsolete data, so the space amplifi-

cation of all policies would be almost the same. Therefore, comparing space amplification

among these policies is not interesting here.

On the other hand, what is more interesting is the transient space amplification,

which measures the temporary disk space required for creating new components [30, 62]

during merges. We compute transient space amplification as the maximum total size of

all SSTables divided by the total data size flushed (inserted) so far. For example, a flush

in Tiered or Leveled can trigger several merges in sequence, where only the largest

merge will be counted. A maximum of transient space amplification of 2 can happen

when a major merge involves all existing SSTables. A policy with higher transient space

amplification needs larger disk space to load the same amount of data, causing lower disk

space utilization. The highest transient space amplification observed in our experiments

for each policy are shown in Figure 3.6, where Binomial, MinLatency, Bigtable and

Exploring use k = 4, Tiered uses B = 4 and Leveled uses B = 32. All stack-based

policies tested (including Tiered) could eventually reach a transient space amplification

of 2, while Leveled has very low transient space amplification that is close to 1, and

hence utilizes disk space much better. Among the five stack-based policies, Tiered offered
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lowest transient space amplification but highest read amplification; the transient space

amplification is lower than the others for Bigtable but its write amplification is high. But

in generally, any policy which tries to reduce the total number of SSTables to a minimum

can have a high transient space amplification close to 2 due to major merges.
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Figure 3.6: Transient space amplification of stack-based policies with k = 4 or B = 4 and
Leveled with B = 32.

3.4.4 Updates and Deletions

Update and delete operations insert records whose keys already occur in some

SSTable. As a merge combines SSTables, if it finds multiple records with the same key,

it can remove all but the latest one. Hence, for workloads with update and delete

operations, the write amplification can be reduced. But the experimental runs described

above have no update or delete operations. As a step towards understanding their effects,

we did additional runs with k = 6 and B ∈ {4, 8, 16, 32}, with 70% of the write operations

replaced by updates, each to a key selected randomly from the existing keys according to
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a Zipf distribution with exponent E = 0.99, concentrated on the recently inserted items,

similar to the “Latest” distribution in YCSB. The flush rate is reduced, as updates to keys

currently in the MemTable are common but do not increase the number of records in the

MemTable. To compensate, we increased the total number of operations by 50%, resulting

in about n ≈ 26, 400 flushes.

Figure 3.7a and Figure 3.7b plot the write amplification versus flushes for the 4

runs of the bounded-depth policies and for the 8 runs of Tiered and Leveled, respectively.
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(a) Four bounded-depth policies with k = 6
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(b) Tiered and Leveled with B ∈ {4, 8, 16, 32}.

Figure 3.7: Runs with random updates (n ≈ 26, 400).
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The primary effect (not seen in the plots) is a reduction in the total number of

flushes, but the write amplification (even as a function of the number of flushes) is also

somewhat reduced, compared to the original runs (Figure 3.3b). The relative performance

of the various policies is unchanged. Experiments with other key distributions (uniform

over existing keys, or Zipf concentrated on the oldest) yielded similar results that we don’t

report here.

Although the theoretical model mostly focuses on the append-only workload, via

the experiments shown in Figure 3.7, the write amplifications are still aligned with the

model’s prediction even with a update-heavy workload. In practice, with more updates

or deletions, the error between the theoretical and the actual write cost of Binomial and

MinLatency can become more and more significant. One way to solve this problem is

to periodically re-evalute the current status of SSTables, and recompute the number of

flushes based on the total SSTable size. Hence Binomial and MinLatency are still good

candidates even for update-heavy workloads in real-world applications.

3.4.5 Insertion Order

Unlike stack-based policies where merges are independent of SSTable contents,

Leveled is highly sensitive to the insertion order, which affects the number of overlapping

SSTables in every merge. For workloads with sequentially inserted keys, SSTables do not

overlap with each other, and hence they are simply moved to the next level by updating

only the metadata with no data copy [75]. For an append-only workload with sequential

insertion order, Leveled can achieve a minimum write amplification that is close to 1, as

all merges are just movements of SSTables. However, if updates or deletions were added

38



to such workload, we found that Leveled could have very similar write amplification as a

workload with non-sequential insertion order. We re-ran the same experiments for Leveled

with updates, except that we changed the insert order from hashed to ordered, such that

new keys inserted are in sequential order, while some of the inserted keys can be updated

later. Results of these runs are shown in Figure 3.8, which is almost identical to Figure 3.7b.

The insertion order does not impact the write amplification of the other stack-based policies

by much, thus we do not report their write amplifications here.

A minor observation from these runs is, compared to the runs with hashed in-

sertion order, the total number of flushes is slightly reduced, leading to a slightly lower

write amplification. This is because AsterixDB implements MemTable as B+-tree. The

MemTables are usually 1/2 to 2/3 full with hashed, so flushes are triggered more often. As

SSTables are created using bulk loading method, their B+-tree fill factors are very high,

making the flushed SSTable size smaller than the MemTable size. For a workload with

sequential insertion order, both MemTables and SSTables have very high fill factors, so

flushes are triggered less frequently.
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Figure 3.8: Runs of sequential insertion with random updates for Leveled (n ≈ 26, 400)
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3.5 Model Validation and Simulation

In each run, the total time spent in each merge operation is well-predicted by the

bytes written. This is demonstrated by the plot in Figure 3.9, which has a point for every

individual merge in every run, showing the elapsed time for that merge versus the number

of bytes written by that merge.
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Figure 3.9: Time for each merge vs. bytes written

Also, observed write amplification is in turn well predicted by the theoretical

model. More specifically, using the assumptions of the theoretical model, we implemented a

simulator [85] that can simulate a given policy on a given input for any stack-based policies.

For each of the 35 runs of the bounded-depth policies from the experiment, we simulated

the run (for the given policy, k, and n ≈ 24, 000 uniform flushes).

Figure 3.10a illustrates the five runs with k = 7, over time, by showing the write

amplifications over time as observed in the actual runs. Figure 3.10b shows the same for

the simulated runs. For the static policies MinLatency and Binomial, the observed

write amplification tracks the predicted write amplification closely. For Exploring and

40



Bigtable, the observed write amplification tracks the predicted write amplification, but

not as closely. (For these policies, small perturbations in the flush sizes can affect total

write amplification.)
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(a) Observed write amplification over time. (k = 7, n = 24, 000)
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(b) Simulated write amplification over time. (k = 7, n = 24, 000)

Figure 3.10: Observed and simulated write amplification over time.
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Figure 3.11 shows that the simulated write amplification is a reasonable predictor

of the write amplification observed empirically. That figure has two plots. The first (top)

plot in that figure has a curve for each policy (exceptConstant), with a point for each of the

six or seven runs that the policy completed, showing the observed final write amplification

versus the simulated final write amplification. The two extreme points in the upper right

are for Bigtable and Exploring with k = 4, with very high write amplification. To better

show the remaining data, the second (bottom) plot expands the first, zooming in to the

lower left corner (the region with x ∈ [7, 39]). For each curve, the R2 value of the best-fit

linear trendline is shown in the upper left of the first plot. (The trendlines are not shown.)

The R2 values are very close to 1, demonstrating that the simulated write amplification is

a good predictor of the experimentally observed write amplification.
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Figure 3.11: Observed versus simulated write amplification. The bottom plot zooms in to
the portion with x ∈ [7, 39].
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(a) k = 6 (Tiered: B = 2, Leveled: B =
9), n = 100, 000; 4k = 4, 096.
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(b) k = 7 (Tiered: B = 2, Leveled: B =
6), n = 100, 000; 4k = 16, 384.
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(c) k = 10 (Tiered: B = 2, Leveled: B =
4), n = 1, 000, 000; 4k ≈ 106.

Figure 3.12: Simulated total write amplification for 105 flushes (and 106 for k = 10).

Policy design via analysis and simulation A realistic theoretical model facilitates

design in at least two ways. As described earlier, the model allows a precise theoretical

analysis of the underlying combinatorics, as illustrated by the design of MinLatency and

Binomial. It also allows accurate simulation. As noted in the introduction, LSM systems

are designed to run for months, incorporating terrabytes of data. Even with appropriate

adaptations, real-world experiments can take days or weeks. Replacing experiments by

(much faster) simulations can moderate this bottleneck. As a proof of concept, Figure 3.12

shows simulated write amplification over time for Bigtable, Binomial, Constant, Ex-

ploring, and MinLatency for k ∈ {6, 7, 10}. As these policies’ average read amplification
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are all less than k (k2 for Constant), the following settings were used for Tiered and Lev-

eled to achieve similar average read amplification (assuming one SSTable overlaps with B

SSTables in the next level in every merge for Leveled):

• Figure 3.12a: k = 6, n = 100, 000,B = 2 for Tiered and B = 9 for Leveled, their

average read amplification are 8.15 and 6.25, respectively;

• Figure 3.12b: k = 7, n = 100, 000, B = 2 for Tiered and B = 6 for Leveled, their

average read amplification are 8.15 and 7.33, respectively;

• Figure 3.12c: k = 10, n = 1, 000, 000, B = 2 for Tiered and B = 9 for Leveled,

their average read amplification are 9.88 and 10.53, respectively.

The smallest size ratio allowed for Tiered is 2, which also provides the lowest average read

amplification it can achieve. In all settings, the write amplification of Leveled are 3 to 4

times larger than Binomial and MinLatency, they are only comparable with Exploring

and slightly better than Bigtable in the first plot. Tiered, on the other hand, had lower

write amplification than Bigtable and Exploring, but always higher than Binomial and

MinLatency, and its average read amplification are higher too, except for the last plot,

which is slightly lower than 10.

These simulations took only minutes to complete.

3.6 Discussion

As predicted by the theoretical model, policy behavior fell into two regimes: the

small-n regime (until the number of flushes reached about 4k) and the large-n regime (after
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that). MinLatency achieved the lowest write amplification, with Binomial a close second

to it. Bigtable and Exploring were not far behind in the small-n regime, but in the

large-n regime their write amplification was an order of magnitude higher. In short, the

two newly proposed policies achieve near-optimal worst-case write amplification among all

stack-based policies, outperforming policies in use in industrial systems, especially for runs

with many flushes.

The trade-offs between write amplification and average read amplification were also

studied in this chapter. In the large-n regime, all bounded-depth policies except (sometimes)

Exploring had average read amplification near k. MinLatency and Binomial, but not

Exploring or Bigtable, were near the optimal frontier. In the small-n regime, all policies

were close to the optimal frontier, with Binomial and Exploring having average read

amplification below k. On the other hand, although popular in the literature, the trade-offs

of Tiered and Leveled are much worse than Binomial and MinLatency. These two

policies might be overrated if we focus more on the cost of writes and reads.

Limitations and Future Work

Non-uniform flush sizes, updates, dynamic policies. The experiments here are lim-

ited to near-uniform inputs, where most flush sizes are about the same. Most LSM database

systems, including AsterixDB, Cassandra, HBase, LevelDB and RocksDB, use uniform flush

size. Some of them support checkpointing, which flushes the MemTable at some timeout

interval, or when the commit log is full, potentially creating smaller SSTable before the

MemTable is full. Although uniform or near-uniform flush is more common in the litera-

ture, workloads with variable flush sizes are of interest. Variable flush size may be used to
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coordinate multiple datasets sharing the same memory budget, or balance the write buffer

and the read buffer cache for dynamic workloads. For example, a recent work [61] described

an architecture which provides adaptive memory management to minimize overall write

costs. For moderately variable flush sizes, we expect the write amplification of most poli-

cies (and certainly of MinLatency and Binomial) to be similar to that for uniform inputs.

Regardless of variation, the write amplification incurred by MinLatency and Binomial

is guaranteed to be no worse than it is for uniform inputs.

Most of the experiments here are limited to append-only workloads. A few pre-

liminary results here suggest that a moderate to high rate of updates and deletes mainly

reduce flush rate, and slightly reduce write amplification. At a minimum, updates and

deletes are guaranteed not to increase the write amplification incurred by MinLatency

and Binomial. But inputs with updates, deletes, and non-uniform flush sizes can have

optimal write amplification substantially below the worst case of Θ(n1/k). In this case, dy-

namic policies such as Bigtable, Exploring, and new policies which are designed using

the theoretical framework of competitive-analysis (as in [68]), may, in principle, outperform

static policies such as Binomial and MinLatency. Future work will explore how signif-

icant this effect may be in practice. On the other hand, all the six evaluated stack-based

policies are not very sensitive to workloads with updates or deletes, their relative ranking

of write and read cost almost remain the same. The exception is Leveled, which is very

sensitive to updates or deletes if the insertion order is nearly sequential. With a very

low rate of updates or deletes, write amplification of Leveled increased significantly.

46



Compression Many databases support data compression to reduce the data size on disk,

at a cost of higher CPU usage to retrieve data with decompression. In general, a system

with stronger compression has lower write amplification and space amplification because

of smaller data size [27]. Moreover, compression makes flushed SSTable size smaller than

the MemTable size which can potentially affect the performance of Binomial and MinLa-

tency.

Read costs The experimental design here focuses on minimizing write amplification,

relying on the bounded-depth constraint to control read costs such as read amplification —

the average number of disk accesses required per read for point queries. Most LSM systems

(other than Bigtable) offer merge policies that are not depth-bounded, instead allowing the

SSTable count to grow, say, logarithmically with the number of flushes. A natural objective

would be to minimize a linear combination of the read and write amplification — this

could control the stack depth without manual configuration. (This is similar to Binomial’s

behaviour in the small-n regime, where it minimizes the worst-case maximum of the read

and write amplification, achieving a reasonable balance.) For read costs, a more nuanced

accounting is desirable: It would be useful to take into account the effects of Bloom filters,

and dynamic policies that respond to varying rates of reads are also of interest. Moreover,

read amplification of point queries or range queries, query response time and throughput,

sequential versus random access to SSTables can be of interest as well.

Secondary indexes The existence of secondary indexes impacts merging. For example,

AsterixDB (with default settings) maintains a one-to-one correspondence between the SSTa-
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bles for the primary indexes and the SSTables for the secondary indexes. Ideally, merge

policies should take secondary indexes into account.

3.7 Related Work

Historically, the main data structure used for on-disk key-value storage is the B+-

tree. Nonetheless, LSM architectures are becoming common in industrial settings. This is

partly because they offer substantially better performance for write-heavy workloads [44].

Further, for many workloads, reads are highly cacheable, making the effective workload

write-heavy. In these cases, LSM architectures substantially outperform B+-trees.

In 2006 Google released Bigtable [17, 36], now the primary data store for many

Google applications. Its default merge policy is a bounded-depth stack-based policy. We

study it here. Spanner [21], Google’s Bigtable replacement, likely uses a stack-based policy,

though details are not public.

Apache HBase [8, 34, 48] was introduced around 2006, modeled on Bigtable, and

used by Facebook 2010–2018. Its default merge policy is Exploring, the precursor of which

was a variant of Bigtable called RatioBased. Both policies are configurable as bounded-

depth policies. Here we report results only for Exploring, as it consistently outperformed

RatioBased.

Apache Cassandra [7, 52] was released by Facebook in 2008. Its first main merge

policy, SizeTiered, is a stack-based policy that orders the SSTables by size, groups similar-

sized SSTables, and then merges a group that has sufficiently many SSTables. SizeTiered

is not stable — that is, it does not maintain the following property at all times: the write
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times of all items in any given SSTable precede those of all items in every newer SSTable.

With a stable policy, a read can scan the recently created SSTables first, stopping with

the first SSTable that contains the key. Unstable policies lack this advantage: a read

operation must check every SSTable. Apache Accumulo [47] which was created in 2008 by

the NSA, uses a similar stack-based policy. We don’t test these policies here, as our test

platform supports only stable policies, and we believe they behave similarly to Bigtable

or Exploring.

Previous to this work, our test platform — Apache AsterixDB — provided just

one bounded-depth policy (Constant), which suffered from high write amplification [5].

AsterixDB has removed support for Constant, and, based on the preliminary results

provided here, added support for Binomial. Our recent work [66] shows that Binomial

can provide superior write and read performance for LSM secondary spatial indexes, too.

Leveled policies LevelDB [26, 37] was released in 2011 by Google. Its merge policy,

unlike the policies mentioned above, does not fit the stack-based model. For our purposes,

the policy can be viewed as a modified stack-based policy where each SSTable is split (by

partitioning the key space into disjoint intervals) into multiple smaller SSTables that are

collectively called a level (or sorted run). Each read operation needs to check only one

SSTable per level — the one whose key interval contains the given key. Using many smaller

tables allows smaller, “rolling” merges, avoiding the occasional monolithic merges required

by stack-based policies.

In 2011, Apache Cassandra added support for a leveled policy adapted from Lev-

elDB. (Cassandra also offers merge policies specifically designed for time-series workloads.)
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In 2012, Facebook released a LevelDB fork called RocksDB [27, 29]. RocksDB offers several

policies: the standard Tiered and Leveled, Leveled-N which allows multiple sorted

runs per level, a hybrid of Tiered+Leveled, and FIFO which aims for cache-like data

[30].

Mixed of tiered and leveled policies In the literature, Tiered provides very low write

amplification but very high read amplification. On the other hand, Leveled provides good

read amplification at the cost of high write amplification. It is natural to combine these 2

policies together to achieve a more balanced trade-off between write and read amplification.

In RocksDB [27, 29], there are 2 policies of such mix of Tiered and Leveled policies.

The Leveled-N policy allows N sorted run in a single level instead of 1 sorted run per level.

Similar idea was also described in [23, 24]. The other policy is called tiered+leveled, which

uses Tiered for the smaller levels and Leveled for the larger levels. This policy allows

transition from Tiered to Leveled at a certain level. SlimDB [76] is one example of

this policy. It is an interesting research direction to evaluate and compare their trade-offs

between write and average read amplification with Binomial and MinLatency.

None of the leveled or mixed policies are stack-based or bounded-depth policies.

Other merge-policy models and optimizations Independently of Mathieu et al. [68],

Lim et al. [56] propose a similar theoretical model for write amplification and point out its

utility for simulation. The model includes a statistical estimate of the effects of for updates

and deletes. For leveled policies, Lim et al. use their model to propose tuning various

policy parameters — such as the size of each level — to optimize performance. Dayan
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et al. [23, 24] propose further optimizations of SizeTiered and leveled policies by tuning

aspects such as the Bloom filters’ false positive rate (vs. size) according to SSTable size, the

per-level merge frequency, and the memory allocation between buffers and Bloom filters.

Multi-threaded merges (exploiting SSD parallelism) are studied in [18, 27, 57, 88].

Cache optimization in leveled merges is studied in [84]. Offloading merges to another server

is studied in [1].

Some of the methods above optimize read performance; those complement the

optimization of write amplification considered here. None of the above works consider

bounded-depth policies.

This chapter focuses primarily on write amplification (and to some extent read

amplification). Other aspects of LSM performance, such as I/O throughput, can also be

affected by merge policies but are not discussed here. For a more detailed discussion of

LSM architectures, including compaction policies, see [62].

3.8 Conclusions

This chapter compares several bounded-depth LSM merge policies, including rep-

resentative policies from industrial NoSQL databases and two new ones based on recent

theoretical modeling, as well as the standard Tiered policy and Leveled policy, on a

common platform (AsterixDB) using Yahoo! cloud serving benchmark. The results have

validated the proposed theoretical model and show that, compared to existing policies,

the newly proposed policies can have substantially lower write amplification. Tiered and

Leveled, while popular in the literature, generally underperform because of their worse
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trade-off between writes and reads. The theoretical model is realistic, and can be used, via

both analysis and simulation, for the effective design and analysis of merge policies. For

example, we shared our experimental findings with the developers of Apache AsterixDB [9],

and Binomial, designed via the theoretical model, has now been added as an LSM merging

policy option to AsterixDB.
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Chapter 4

Comparison of LSM Indexing

Techniques for Storing Spatial

Data

4.1 Introduction

Due to the increasing need of (mobile) applications such as navigation systems,

location-based review systems, and geo-tagged social media, the volume and ingestion rate

of spatial data are increasing rapidly. Database systems have been moving to log-structured

merge (LSM) tree [72] storage architectures to facilitate high write throughput. Such sys-

tems include Apache AsterixDB [4], Cassandra [52], and HBase [34], Google Bigtable [17],

and LevelDB [26], Facebook RocksDB [27], and ScyllaDB [78]. LSM systems provide su-

perior write performance than most relational databases. However, most of these systems
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primarily focus on key-value store, and do not have native support of spatial queries, which

often rely on spatial indexes.

In most applications, a spatial index cannot live alone and must be created as a

secondary index that is dependent on a primary index to query any non-spatial attributes.

Most LSM systems do not have the direct support of the general secondary index, not to

mention the support of spatial index. In AsterixDB, LSM-fication is a generic framework

to convert a class of indexes to LSM secondary indexes [5]. Using this framework, we have

two options to index spatial data. The first option is a B+-tree-based solution that indexes

single-dimensional data projected from multidimensional spatial data through linearization.

Note that this option also applies to systems (e.g, LevelDB and RocksDB) that use Sorted-

String-Table (SSTable) and binary search methods to support range queries. The second

option is a native spatial index, for example, R-tree, as a local index. To the best of our

knowledge, AsterixDB is the only LSM storage engine with native support of LSM R-tree

index; all other LSM-based systems only support B+-tree index at most. Based on the

results from [49, 50], the R-tree-based solution is the general preferable option for LSM

spatial index in most scenarios, hence in this chapter, we focus on LSM R-tree indexes only.

In addition to the organization of the local index discussed above, which determines

how data is organized in a single LSM component (file), another key design choice for

spatial LSM indexes is the merge policy, which determines when and how components are

merged. The two main merge paradigms we consider are stack-based and leveled. In stack-

based policies, components are organized as a stack, where the most recent components

are higher in the stack. Leveled policies use (almost) fixed-size components, with newer
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components on higher levels; lower levels have more components per level. Stack-based

LSM tree usually has better write performance and good read performance. Leveled LSM

tree is the most popular paradigm in the industry with very good read performance, but

higher write amplification in general [67].

The typical query for spatial indexing is a region query, where the region is typically

expressed as a Minimum Bounding Rectangle (MBR). For each component, we maintain

its MBR, so it is easy to filter components based on the query MBR. This filtering is

generally not effective in stack-based policies, as most components have very large MBRs,

comparable to the whole space in many applications. On the other hand, this filtering can

be more effective for Leveled policy, because the components on the same level are mostly

disjoint in key ranges. In the case of R-tree indexing, this means that the components at

the same level have non-overlapping MBRs, or possibly limited overall, depending on the

partitioning algorithm employed.

To achieve minimal spatial overlap in Leveled policies, spatial partitioning algo-

rithms, specifically Sort-Tile-Recursive (STR) [54] and R*-Grove [86], are employed. There

are several subtle implementation decisions that significantly affect the merge performance.

We found that a critical one is the choice of comparator, which compares two spatial records,

because different comparator performs differently in high and low selectivity queries; certain

combinations of comparator and partitioning algorithm in Leveled policy can effectively

create disk components of disjoint MBRs, which significantly improves filtering efficiency.

A key contribution of the chapter is that we implemented several LSM spatial

indexing algorithms on a common database system, AsterixDB, and compared them for
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write and read performance using two spatial workloads. A key conclusion is that stack-

based policies generally perform better with low write and read cost. Although Leveled

policy had very high write amplification, certain configurations could achieve comparable

write throughput to stack-based policies. Its read performance was also very competitive

in low selectivity queries.

In summary, this chapter makes the following contributions:

1. We study how an LSM architecture can be extended to support secondary spatial

indexes (Section 4.3.3). We consider several design decisions and architectures.

2. We examine a number of optimized partitioning algorithms for Leveled LSM R-tree

index, which minimize the overlap among MBRs while also minimizing the I/O cost

(Section 4.3.4).

3. We implement all compared LSM spatial indexing policies on AsterixDB. Source code

is publicly available at [64].

4. We experimentally compared all LSM spatial indexing algorithms using a real-world

dataset and a synthetic dataset (Section 4.4).

5. We discuss our observations and recommendations, which challenge the current pop-

ularity of Leveled policies (Section 4.5).
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4.2 Background

4.2.1 Policies Studied

In this chapter, the following three stack-based merge policies are selected for

evaluation:

• Binomial policy was originally proposed by Mathieu et al. [68], then formally defined

and evaluated in [65, 67]. The name Binomial came from the fact that it uses a Binary

Search Tree to make merge decisions. It is a bounded-depth policy that maintains an

optimal write cost with an upper bound of worst case read amplification by only one

parameter k, which restricts the maximum number of disk components. Compared

to the other online merge policies, whose merge schedules are based on heuristic

information such as component sizes, Binomial policy is an offline policy whose

merge schedule is pre-determined only on the number of flushes. It was originally

designed for append-only workload, but can be adjusted for workloads with updates

or deletions as well.

• Tiered (a.k.a SizeTiered) policy is the default policy in Cassandra [15], and had been

adopted as Universal Compaction [31] in RocksDB. It groups disk components into

tiers. Every tier has B disk components. Whenever a tier has B disk components, all

the B disk components are merged into a new component of B times larger into the

top of the next tier. B is also called size ratio or fanout factor. The implementation

of Tiered policy varies in different systems. For example, besides selecting similar

sized components to merge, the Universal compaction in RocksDB can also select
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components that have more overlapping keys to reduce space amplification, or simply

merge several components to enforce the total number of components to the number

specified by level0 file num compaction trigger [31], if the other two options cannot be

performed. In this chapter, we implemented the Tiered policy similar to Cassandra,

which only selects components based on size ratio, thus ignoring components’ contents.

• Concurrent policy was recently added to AsterixDB to replace Prefix policy as its

new default policy [58]. Unlike Prefix policy, which tends to merge similar sized com-

ponents and excludes components whose sizes are larger than a user defined threshold,

Concurrent policy is bounded-depth by a parameter k. The disk components to

be merged are determined by a minimum length C, a maximum length D and a size

ratio λ. Starting from the newest disk component, the policy considers any longest

sequence with disk components {Di, Di−1, . . . , D1} where C +1 ≤ i ≤ D, and merges

them into a single disk component if |Di| ≤ λ
∑i−1

j=1 |Dj |, where |Dj | is the size of disk

component Dj .

4.2.2 Comparing Different Merge Policies

To better illustrate the difference among the four compared merge policies, we

list their sorted runs sizes after some number of flushes in Table 4.1. Component sizes in

Tiered and Concurrent are always non-decreasing. For Binomial, it is possible that

some newer sorted runs are larger. For example, after 40 flushes, the third sorted run has

size 20 while the fourth sorted run has size 15. Also the number of sorted runs in Binomial

never exceeds k = 4.
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Merge Policy Binomial (k = 4) Tiered (B = 4) Concurrent (default) Leveled (B0 = 2, B = 4)

20 Flushes 1, 4, 15 4, 16 3, 17 1, 1, 4, 14

40 Flushes 2, 3, 20, 15 4, 4, 16, 16 1, 1, 3, 35 1, 1, 4, 16, 18

60 Flushes 10, 50 4, 4, 4, 16, 16, 16 1, 59 1, 1, 4, 16, 38

80 Flushes 10, 20, 50 16, 64 3, 77 1, 1, 4, 16, 58

100 Flushes 15, 35, 50 4, 16, 16, 64 1, 1, 3, 95 1, 1, 4, 16, 64, 14

120 Flushes 3, 10, 106 4, 4, 16, 16, 16, 64 1, 119 1, 1, 4, 16, 64, 34

Table 4.1: Sorted run sizes of the four compared merge policies, where newer sorted runs
are on the left. Each number is the size of a sorted run with respect to the MemTable size.
Tiered, Concurrent and Leveled always have sorted runs in non-decreasing order.
The first two sorted runs in Leveled policy are two disk components in level 0, the other
numbers are the number of disk components of size 1 in the corresponding levels. Default
parameters for Concurrent: k = 30, C = 3, D = 10, λ = 1.2.

4.3 LSM Secondary Spatial Index

In this section, we first cover how LSM secondary indexes are maintained (Section

4.3.1), which affects the trade-off between write and read performance. We then discuss

two approaches to index the spatial data, which are special type of secondary data, on LSM

systems: a B+-tree-based solution is discussed in Section 4.3.2, an R-tree-based solution is

discussed in Section 4.3.3. We discuss how different merge policies affect the spatial index

performance and present a partitioning algorithm for the Leveled policy.

4.3.1 LSM Secondary Index

Before talking about the spatial index, we first explain how LSM secondary indexes

are constructed and maintained. An LSM secondary index has almost identical architecture

to the primary index, except it is sorted by a composite key ⟨SK,PK⟩, where SK is the
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secondary key, and PK is the primary key. Records are first ordered by SK then by PK in

disk components. When a record gets updated or deleted in the primary index, the current

composite key in a secondary index may become invalid as SK is no longer valid for PK.

During record insertion, an eager strategy uses the PK (2 and 3 in Figure 2.1) to find the

old value of SK (Y for 2 and X for 3), and then inserts an anti-matter record with the

old SK and PK (two entries in SD) to all secondary indexes, so any read on a secondary

index will only return valid records thus the primary index does not need to be checked.

A lazy strategy does not update secondary indexes during records insertion but needs an

extra step, querying the primary index, to verify the returned records. Writes are usually

slower in the eager strategy due to the checking on all secondary indexes but reads can be

faster. On the other hand, the lazy strategy provides faster writes, but reads are slower

due to the extra validation in the query time. Detailed discussion about these secondary

indexing strategies can be found in [5, 59, 74].

An LSM secondary index can have its own memory component budget, and flushes

and merges are triggered independently of the primary index. Or it can share a global

budget with the primary index. In this design, the primary index and all secondary indexes

are always flushed together, but they may use different merge policies. Merges may not

be triggered at the same time, although certain merge policies (CorrelatedPrefix policy in

AsterixDB) can enforce the merges for all indexes at the same time. Read queries on an

LSM secondary index are very similar to the merge operation.
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4.3.2 Spatial LSM Index based on B+-tree

Most of the works on LSM tree are optimized for single-dimensional data. Unlike

single-dimensional data, there is usually no clear definition of how to order multidimensional

spatial data. The most common approach is to project multidimensional data to single-

dimensional data to be indexed by a B+-tree. The projection is made through linearization.

One of the most common linearization methods is space-filling curve. The two most well-

known space-filling curves are Z-order curve and Hilbert curve. TheBuildIndexes function

of Algorithm 4.1 presents the pseudocode of building a spatial index on B+-tree via space-

filling curve. Both GeoMesa [43] and DataStax Cassandra [14] support this type of spatial

index using GeoHash [43, 71], which is based on Z-order curve. More details are discussed

in Section 4.6.

A space-filling curve partitions space into cells of the same size and uses fixed-

length bit strings (usually 32/64-bit numbers) to represent each cell. A toy example of a

Hilbert curve with 4 bits is shown in Figure 4.1. For point-type data, the value of the cell

in which a point resides will be saved as the secondary key SK, and a B+-tree is built

on these cell values. Spatial queries may be handled in two ways to obtain the cells to be

scanned. The first method is to find the cell values for all corners of the query MBR (the

light purple region) and scans all cells between the smallest cell (2) and the largest cell

(13). This method utilizes sequential disk I/O but may waste lots of resources checking

records not in the contained cells (e.g., 3 – 6 and 9 – 12). It is generally preferred when the

difference between the two values is small. Another method is to identify the exact cells in
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Algorithm 4.1 Spatial index based on B+-tree - Part 1

1: function SFCPoint(⃗a) ▷ The space-filling curve (SFC) value of point a⃗

2: function BuildIndexes

3: while not end do

4: pk = NextRecord.GetPrimaryKey() ▷ Primary key

5: v⃗ = NextRecord.GetSpatialKey() ▷ Secondary key

6: o = NextRecord.GetOthers() ▷ Any other attributes

7: WritePrimaryIndex(pk, v⃗, o)

8: WriteBTreeIndex(SFCPoint(v⃗), pk)

9: end while

10: end function

11: function SFCRect(⃗a, b⃗) ▷ All SFC values of a rectangle as a⃗ to b⃗

12: function PrimaryKeys(v) ▷ All primary keys whose spatial key’s SFC value is v

13: function SpatialKey(pk) ▷ The spatial key (point) of a primary key pk

which the query MBR covers (2, 7, 8, and 13), then scans every covered cell. This method

minimizes the disk I/O, but more random I/Os are involved. It can be used if the minimum

and maximum cell values are far apart or very few cells are covered. Both methods get

the records whose SK fall into the query cells, but every record must be further checked

using its spatial attribute. As shown in the function SpatialSearch of Algorithm 4.1,

the secondary spatial index is first searched to get all the primary keys whose spatial keys

match any of the space-filling curve values from the searching MBR. This process may be

implemented as a range query or multiple point queries. Next, the spatial attribute of each

62



Algorithm 4.2 Spatial index based on B+-tree - Part 2

14: a⃗, b⃗ ▷ Lower (left) and upper (right) points of the searching rectangle

15: function SpatialSearch(⃗a, b⃗)

16: S = { } ▷ (Hash) set for unique primary keys

17: for vc ∈ SFCRect(⃗a, b⃗) do

18: for pk ∈ PrimaryKeys(vc) do ▷ B+-tree search

19: S.Add(pk)

20: end for

21: end for

22: R = [ ] ▷ List of matching records

23: for pk ∈ S do

24: v⃗ = SpatialKey(pk) ▷ Primary index search

25: if v⃗.WithinRect(⃗a, b⃗) then

26: R.Add(Record(pk))

27: end if

28: end for

29: return R

30: end function

unique primary key must be obtained from the primary index. Then, the spatial attribute

will be verified with the searching MBR to determine if the record shall be returned.

Spatial index with linearized data on B+-tree can be very efficient due to the

superior random and sequential read performance of B+-tree. It is also relatively easy
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Figure 4.1: Example of Hilbert curve and spatial intersection query.

for an existing database system to support spatial index with some extended framework

(GeoMesa) Despite these advantages, these methods have some common drawbacks. The

major issue is that this type of index requires some prior knowledge about the space, such

as the minimum and maximum values of each dimension, and object distribution, to decide

the number of cells to use. Storing cell values costs extra disk space and I/O during index

writes and reads. Spatial objects in some cells may be very dense, making scans in these

cells relatively slow.

4.3.3 Spatial LSM Index based on R-tree

Spatially close objects may not have close cell values, as shown in Figure 4.1. A

natural way is to place nearby records into the same groups. R-tree [40] and R*-tree [11] are

widely used as local indexes for spatial data, which partition records into disk blocks based

on their spatial locations (in this chapter, we use R-tree and R*-tree interchangeably). The

R-tree has similar implementation to B+-tree, except it partitions leaf nodes and creates in-

ternal nodes by MBRs. Spatial queries may need to traverse multiple paths to leaf nodes to

find records. To bulk-write an R-tree, records are sorted by a comparator, then packed into
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multiple partitions as leaf nodes and create internal nodes accordingly in a bottom-up fash-

ion. Common comparators used in R-tree include space-filling curve comparators (Hilbert

curve or Z-order curve), and simple bitwise comparator (Algorithm 4.3). Because only

the relative order of two records is needed, space filling curves values are only computed

during run-time, and do not need to be stored together with the records, which saves disk

space and reduces disk I/O. The simple comparator compares two points by each dimension,

which is essentially the Nearest-X algorithm [54, 77]. Note that it is a generalized version

of the comparator used for single-dimensional data.

Algorithm 4.3 Comparator implementations - Part 1

1: a⃗ ▷ A point type spatial object represented by a vector

2: |⃗a| ▷ The number of dimensions of a⃗

3: function SFCCompare(⃗a, b⃗) ▷ |⃗a| = |⃗b|

4: va = SFCPoint(⃗a) ▷ Algorithm 4.1

5: vb = SFCPoint(⃗b) ▷ Algorithm 4.1

6: if va < vb then

7: return -1 ▷ a⃗ is smaller

8: else if va > vb then

9: return 1 ▷ b⃗ is smaller

10: else

11: return 0 ▷ a⃗ and b⃗ are equal

12: end if

13: end function
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Algorithm 4.4 Comparator implementations - Part 2

14: function SimpleCompare(⃗a, b⃗) ▷ |⃗a| = |⃗b|

15: for i = 1 → |⃗a| do ▷ Compare each dimension

16: if a⃗[i] < b⃗[i] then

17: return -1 ▷ a⃗ is smaller

18: else if a⃗[i] > b⃗[i] then

19: return 1 ▷ b⃗ is smaller

20: else

21: continue ▷ Check the next dimension

22: end if

23: end for

24: return 0 ▷ a⃗ and b⃗ are equal

25: end function

In an LSM R-tree index, SK is the spatial location of every record, typically as an

array of numbers. The same records are compared multiple times during flushes, merges,

and queries. With a space-filling curve comparator, linearized values of records must be re-

computed every time, potentially adding delays to those operations. In most cases, R-tree

(or R*-tree) is the preferred option for spatial index [49, 50]; hence in this chapter, we only

focus on the LSM R-tree designs.

A spatial query first determines the list of operational components by checking

each component’s MBR, represented by the minimum key (bottom left point) K⃗min and the

maximum key (top right point) K⃗max, where K⃗ represents an array. Given two components
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C : ⟨K⃗min, K⃗max⟩ and C ′ : ⟨K⃗ ′
min, K⃗

′
max⟩ and the number of dimensions D ≥ 1, the two

components are overlapping if and only if (4.1) is satisfied, or disjoint otherwise.

∀d ∈ [1, D] : K⃗min[d] ≤ K⃗ ′
max[d] ∧ K⃗ ′

min[d] ≤ K⃗max[d] (4.1)

Then, a spatial search can scan all operational components and return the results

directly, as shown in Algorithm 4.5. Depending on the actual query, the primary index may

not be involved in the spatial search.

As described in Section 2.2.1, stack-based merge policies are often unaware of disk

components’ contents like key boundaries, which merges are scheduled in the same way

regardless of the type or dimensions of the data. Disk components have a high chance to

have intersected MBRs with each other, making MBR based filtering at component level

less important for stack-based policies. Also, R-tree employs MBR-based filtering on the

disk block level internally; only a small portion of disk components is read even if the

component size is large. Despite a spatial query usually needs to scan all disk components,

the read amplification is not high, due to the low average number of disk blocks scanned

per component. To the best of our knowledge, AsterixDB is the only system that uses

stack-based LSM R-tree indexes.

Stack-based LSM R-tree indexes mostly rely on the local index of disk components

for spatial queries, which has little room to improve in the policies themselves. However,

it is very different for Leveled LSM R-tree index. A Leveled LSM R-tree index may have

thousands of disk components. A spatial query can potentially check all disk components

in the worst case, which leads to very high read amplification and low locality. Two key
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Algorithm 4.5 Spatial index based on R-tree

1: function BuildIndexes

2: while not end do

3: pk = NextRecord.GetPrimaryKey() ▷ Primary key

4: v⃗ = NextRecord.GetSpatialKey() ▷ Secondary key

5: o = NextRecord.GetOtherAttributes() ▷ Any other attributes

6: WritePrimaryIndex(pk, v⃗, o)

7: WriteRTreeIndex(v⃗, pk)

8: end while

9: end function

10: function SpatialSearch(⃗a, b⃗)

11: R = [ ] ▷ List of matching records

12: for ⟨v⃗, pk⟩ ∈ Rect(⃗a, b⃗) do ▷ R-tree search

13: R.Add(Record(pk))

14: end for

15: return R

16: end function

design decisions are (a) how to partition records into components during merges and (b)

what comparator to use to order records inside a component to allow faster merges. We

will discuss them in the next section in detail. To the best of our knowledge, no current

system is using leveled LSM R-tree indexes, which is surprising given the popularity of

Leveled merge policies. We have implemented the discussed policies on AsterixDB for our

experiments.
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4.3.4 Partitioning in Leveled LSM R-tree

A partitioning algorithm is necessary to split records into different disk compo-

nents, which affects the performance of write and read operations of a leveled LSM tree.

It must be capable of distributing records into a fixed number of partitions such that the

number of records in all partitions are roughly the same. In this section we discuss three

partitioning algorithms, size, STR and R*-Grove, along with two comparators, the Hilbert

curve comparator, and the simple comparator.

Size Partitioning Size partitioning is the default partitioning algorithm used in leveled

LSM-trees. It simply distributes sorted records into multiple disk components such that

all disk components have roughly the same size. A priority queue takes streams of sorted

records from each merging component as inputs, and outputs a stream of sorted record

from all merging components, similar to the sort-merge join algorithm. Because records are

already sorted in each component, storing them in memory for sorting is not needed. Size

partitioning only fetches one disk block from each merging disk component at a time, so

the memory requirement is minimal. The order of the records depends on the comparator

being used. By default, AsterixDB sorts spatial records by a Hilbert curve comparator for

2-D point data and Z-order curve comparator for the other types of spatial data. The two

space filling curve based comparators cannot guarantee spatially disjoint disk components,

as shown in Figure 4.2b as the partitioning result from Figure 4.2a. On the other hand,

if size partitioning is coupled with the simple comparator, this combination can achieve a

similar result as STR partitioning, which will be discussed in the next paragraph.
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STR Partitioning Sort-Tile-Recursive (STR) [54] was originally proposed to pack blocks

for R-tree for point data. We adopt this partitioning algorithm in leveled LSM R-tree

index. When disk components are merged, we apply STR to partition all merging records

to multiple spatially disjoint groups and create a separate disk component for each group.

That way, all disk components in one sorted run are disjoint, regardless of the comparator.

For non-point data, we apply STR to the center points of spatial objects, but MBRs are

computed from their actual MBRs. The comparator only affects the order of the records

inside each component, but the components’ MBRs remain the same. There are two major

drawbacks of STR partitioning. The first is that STR requires storing all merging records

in memory for sorting, leading to much higher CPU and memory usage, otherwise, exernal

sorting is needed which incurs much higher disk I/O cost. Thus, it is generally slower than

size partitioning. The second is that because STR gives higher weights on more significant

dimensions, it tends to create narrow but tall rectangles (as shown in Figure 4.2c from the

same input), which may make read queries less efficient as a read query may need to check

more disk components although only a small portion of each disk component is actually

needed. This may be even more severe for higher dimensional data [86, 87].

R*-Grove Partitioning We also ported R*-Grove [86, 87] partitioning, which aims to

create square-like and balanced partitions for analytic frameworks like Apache Hadoop and

Spark, into AsterixDB for our experiments. R*-Grove partitions spatial records in three

phases: a sampling phase which draws a random sample of the input records, a boundary

computation phase which generates partition boundaries with desired level of load balance,

and a final partitioning phase which puts every record into the corresponding partition. Like
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STR, comparator does not affect the partitioning but only affects the internal organization

of disk components. As shown in Figure 4.2d (from the same input), R*-Grove tends to

create more square-like MBRs so fewer disk components may be checked. However, it makes

multiple passes to scan all records, and is computationally more expensive than STR, for

which merges are usually slower.

(a) Input MBRs (b) Size partitioning

(c) STR partitioning (d) R*-Grove partitioning

Figure 4.2: Examples of three partitioning algorithms from the same input. Points are
uniformly distributed in each of the four input MBRs and are marked with dots in the
three partitioned sub-figures.

Both STR and R*-Grove face an issue of high memory usage, which limits the

total size of components to be merged. A possible solution is to make two passes on all

merging disk components. The first pass samples a small number of records from all merging

disk components, then STR or R*-Grove can be applied on the sampled records to obtain
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partition boundaries. The second pass scans all records and put them into a corresponding

partition whose MBR contains the record (or the center if it is not point type). This method

only uses a small amount of memory, but significantly increases the number of disk I/Os

during merge operations.

4.4 Experimental Evaluation

4.4.1 Datasets and Workloads

Two geo-location datasets of exactly 100,000,000 2-D points were used in all ex-

periments. One is a real-world dataset randomly sampled from OpenStreetMap (OSM for

short) [35, 41]; the other is a synthetic dataset which longitude and latitude values were

uniform randomly generated. Points in the OSM dataset are highly clustered in urban areas

all over the world, especially in the United States and western Europe (Figure 4.3a). Points

in the random dataset are uniformly distributed around the globe (Figure 4.3b).

(a) OpenStreetMap (b) Random

Figure 4.3: Heatmap of the two datasets, coordinates range from [−180◦,−90◦] to
[180◦, 90◦].
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For each dataset, we generated a workload with interleaved reads and writes as

follows:

1. A Load phase of 50,000,000 records. Each record is associated with a unique ID in long

type and a random string of 1,000 bytes as a synthetic attribute (e.g., geo-location

description). Points are stored as two double type numbers. Every record is exactly

one kilobyte long.

2. An Insert phase containing 500,000 records.

3. A Read phase containing 10,000 spatial intersection queries. The query rectangle

center is a point randomly picked from all previously inserted points. The rectangle

size is determined by a random selectivity 10−σ, σ ∈ {3, 4, 5}, that the width and

height are 360× 10−σ and 180× 10−σ, respectively.

The Load phase was executed once in the beginning, then the Insert phase and Read phase

were interleaved for 100 times that 100,000,000 total records were inserted (leading to 100

GB primary index and 2.4 GB LSM R-tree index), and 1,000,000 queries were executed.

This interleaved workload guarantees the same data size in the corresponding insert phase

and read phase in all experiments for fair comparisons.

Read queries were generated in a way that every query can return at least one

record. We also tested other selectivity values with σ ∈ {1, 2} and σ ∈ [6, 10]. We observed

the same results for σ ∈ {1, 2} with σ = 3, and σ ∈ [6, 10] with σ = 5, hence we only

reported results for σ ∈ {3, 5} (σ = 4 and σ = 5 are very similar). To avoid access to

the primary index, we used COUNT(*) function so only the LSM R-tree index would

be scanned. AsterixDB provides several built-in spatial functions, only “spatial intersect”
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operates on the LSM R-tree index. Many other types of spatial query are usually based

on pruning using MBR intersections, such as circle range, kNN and distance join, it is

reasonable to focus on this type of rectangular intersection queries.

4.4.2 Experimental Setup

Apache AsterixDB [9] is a full-function, open-source Big Data Management System

(BDMS) on LSM storage. The primary index of a dataset is stored as LSM B+-tree, the

spatial index is stored as LSM R-tree. All secondary indexes and the primary index share

a global memory budget; thus, they are always flushed together. AsterixDB uses the eager

strategy to maintain secondary indexes. Spatial records are ordered by a Hilbert curve

comparator or a Simple comparator. MBR of a disk component is computed from all

records when it is created from a flush or a merge.

All experiments were performed on 5 AWS m5.large instances. Each instance

has 2 vCPUs running on Intel Xeon Platinum 8175M, 8 GB of memory, and 200 GB

general purpose SSD (gp2). All 5 instances are located in the same zone “us-west-2b”,

connections within instances only used private IP to minimize network latency. AsterixDB

was configured to use a single node in each server. Other configurations were set to the

defaults. The average size of the flushed disk components in LSM R-tree index was around

2 MB.
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4.4.3 Merge Policy Configurations

The following merge policy configurations were applied to the LSM R-tree index:

• Binomial: k ∈ {4, 10}.

• Tiered: B ∈ {4, 10}.

• Concurrent: Default (k = 30, C = 3, D = 10, λ = 1.2).

• Leveled: B0 = 2, B = 10, size, STR and R*-Grove partitioning.

Both Hilbert curve comparator and Simple comparator were paired with each configuration.

To avoid interference from the primary index, we set Binomial policy with k = 8 for the

primary index in all runs. For runs of Leveled policy, we used a selection algorithm to

pick a disk component that overlaps with the fewest disk components in the next level,

aiming at minimizing their write amplification.

4.4.4 Write Performance

Write Amplification A merge policy with higher write amplification writes more data,

which may reduce the write throughput, potentially slow down other operations as well. We

present the write amplification of policies with different configurations for the two datasets

in Figure 4.4. Write amplification of all stack-based policies are not affected by the dataset

because the policies are all content-unaware. Comparators only affect the order of records

within disk components, but not component sizes. The write amplification of a stack-based

policy are the same for all its configurations, so they are combined in the figure. Binomial

with k = 10, Tiered with B = 10, and Concurrent had the lowest write amplification as

75



they merge infrequently. Binomial with k = 4 and Tiered with B = 4 had slightly higher

write amplification as they merged more eagerly, and Binomial must bound the number

of disk components.
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Figure 4.4: Write amplification of compared policies with different configurations.

All Leveled policy runs had much higher write amplification than any stack-

based policy. Write amplification for the random dataset is higher than the OSM dataset.

For the random dataset, it has a higher chance of having more overlapping disk components

involved in every merge.

Runs using R*-Grove partitioning had the highest write amplification among all

and are even more significant in the random dataset. Runs using size partitioning with

Hilbert curve comparator had the second highest write amplification, as this setting failed

to generate disjoint disk components. Runs using STR partitioning with either comparator

had slightly lower write amplification because STR partitioning guarantees disjoint disk

components, so merge sizes were smaller on average. Runs using size partitioning with

Simple comparator achieved the lowest among them because merging records were ordered

by the longitude values; thus, they were partitioned into disjoint groups, creating almost

disjoint disk components.
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The write amplification of runs using R*-Grove is much higher than the other runs

of Leveled policy, especially in the random dataset. A key reason is that a partitioning

algorithm that generates disjoint key ranges can only guarantee that the merged components

do not overlap with any other component in the level for single dimensional data, as shown

in Figure 4.5a, where component 1 from level i has overlapping key range with component

3 and 4 from level i+ 1 (each rectangle represents the component’s key range in the whole

key space). However, as shown in Figure 4.5b, creating disjoint merged components may

fail to guarantee disjoint components in the level. Having overlapping components in a level

does not only increase the read amplification, but also increases the write amplification as

the probability of merging with more components becomes higher. STR partitioning also

has this issue, but it is not so obvious. MBRs created from STR partitioning tend to be

tall and thin, which will look like a vertically stretched version of Figure 4.5a, that there

will be only a few of overlapping components in every level. But for R*-Grove, overlapping

components can frequently occur, leading to much higher write amplification.

Level i+ 1

Level i

Before merge After merge

5

1 2 3 4 1 6 7 8 4

(a) Single-dimension

Before merge After merge

1

2 3

4
5

6 7 8

1 4

(b) Two-dimension

Figure 4.5: Components’ key boundaries before and after a merge, where components 2, 3
and 5 are merged and replaced by 6, 7 and 8 (illustration purpose only, not from real data).
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Write Throughput We have further measured the write throughput and listed the num-

bers in Figure 4.6. All stack-based policies showed a very high write throughput. Binomial

and Tiered runs had the highest write throughput. Concurrent had much lower write

throughput though its write amplification are low. For runs of Leveled policy, write

throughput of runs with Simple comparator was very close to Binomial and Tiered de-

spite they had high write amplification, runs with Hilbert curve comparator still got the

lowest throughput as expected. The write throughput of runs using R*-Grove partitioning

were much lower than the others.
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Figure 4.6: Average write throughput (requests per second) for all policies with different
configurations.

All indexes shared a global memory budget in AsterixDB; any secondary index

was always flushed together with the primary index. The write throughput of an LSM

secondary index can be dominated by the throughput of the primary index, as the primary

index is much larger (2.4 GB v.s 100 GB). For this reason, write throughput of Binomial

and Tiered runs were slowed down. We did not observe write stalls or spikes in write

throughput in the R-tree index either, which should be common in stack-based policies

[60, 95].
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Hilbert curve comparator is generally slower in computation than Simple compara-

tor as it needs multiple internal iterations to compare two values, significant overheads could

be added to write throughput. To verify this hypothesis, we ran a set of small experiments

using the same source codes of both comparators plus a Z-order curve comparator from

AsterixDB to sort arrays of 1,000,000 random points of 2, 3 and 4 dimensions, respectively.

Results in Figure 4.7 showed that Simple comparator is about six times faster than the

other two.
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Figure 4.7: Total time to sort arrays of 1,000,000 random points. AsterixDB’s Hilbert curve
comparator only supports two dimensional points due to its slow computation for higher
dimensions.

4.4.5 Read Performance

We measured the read performance by the following two metrics: (a) average

(mean) read amplification, i.e., the number of operational disk components of each spatial

query, and (b) average (mean) read latency, i.e., the total time spent to scan all operational

disk components. Latency here is different from query response time that it measures the

time accessing every operational disk component and excludes the time of query compilation

and network latency.
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High Selectivity (10−3) A spatial query with higher selectivity covers a more substantial

area, which returns more results on average. We measured the average number of returned

records of about 28,000 for the OSM dataset and 75 for the random dataset. The difference

between these two numbers signified from the clustering of the OSM dataset, where a large

selectivity query hit more points in highly clustered areas than unclustered areas in the

random dataset.

The average read amplification and latency for the OSM dataset are shown in

Figure 4.8a. In general, the read amplification of a stack-based LSM index is the same as

the total number of disk components, because all disk component must be scanned. For

leveled LSM index, only 10 to 20 disk components were scanned, even though over 1,000

disk components were available; MBR based filtering was very efficient. Two runs using size

partitioning had the highest two read amplification. Looking into latency, all policies with

Hilbert curve comparator had lower latency than those with Simple comparator, except for

the runs using R*-Grove partitioning. With Hilbert curve comparator, stack-based policies

still had the lowest latency numbers, the latency of Leveled policy using size partitioning

and R*-Grove partitioning were not bad. Surprisingly, Leveled policy using R*-Grove

partitioning with Simple comparator achieved very competitive results to the faster five

runs of the stack-based policies with Hilbert curve comparator, while most of the other

Leveled policy runs were slower. Overall, Hilbert curve comparator would be preferred for

large selectivity queries, read latency is almost linearly correlated to the read amplification;

thus stack-based policies might be better, but Leveled policy using R*-Grove partitioning

with Simple comparator is also a good option.
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Figure 4.8: Average read amplification and latency for selectivity 10−3.

For the random dataset, read amplification were about the same to the OSM

dataset for all stack-based policies, as shown in Figure 4.8b. However, read amplification

of Leveled policy runs dropped to below 8 with significant improvements, meaning that

MBR based filtering had been even more efficient for this type of dataset. Runs with Hilbert

curve comparator still outperformed runs with Simple comparator for read latency, except

for the runs using R*-Grove partitioning. Still, runs of Leveled policy ranked very well

among them, especially the run using R*-Grove partitioning with Simple comparator which

ranked second, thanks to their lower read amplification. Latency numbers in the random

81



dataset were 6 to 8 times shorter than the numbers in the OSM dataset. Here, reads tend

to be slower in the highly clustered dataset for high selectivity queries.

Low Selectivity (10−5) Common spatial queries usually return less than 100 results,

which cover a relatively small area. In our experiments, we measured an average of 12

results from the OSM dataset and 1 from the random dataset. However, the number could

be 0 most of the time for the random dataset if query rectangles were not generated from

existing points.

Similar to high selectivity queries, write amplification of all the stack-based poli-

cies remained the same for both datasets, as almost all disk components were scanned, as

shown in Figure 4.9a and Figure 4.9b. Except for one run of Leveled policy using size

partitioning with Hilbert curve comparator, the other five runs of Leveled policy became

very competitive in both datasets, which even had lower read amplification than some stack-

based policies. The two runs using STR partitioning, and the runs using size partitioning

and R*-Grove partitioning with Simple comparator, had much better MBR based filtering

for low selectivity queries.

Because of the lower read amplification and fewer returned records, read latency

numbers were all smaller than those in the high selectivity queries. Runs with the Hilbert

curve comparator were slower than those with Simple comparator. The slower computation

of the Hilbert curve comparator became a significant bottleneck for low selectivity queries,

while it showed superior efficiency for high selectivity queries. The three Leveled runs

with Simple comparator were all in the top four among all. Queries could finally take
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Figure 4.9: Average read amplification and latency for selectivity 10−5.

advantage of their better MBR based filtering capabilities to provide much faster index

access time. From comparing the two figures of read latency for the two datasets, we can

see the numbers are very close to the same policy with the same configuration. The impact

of data clustering was not evident on read performance for small selectivity queries.

4.5 Discussion

Among all compared policies, Binomial was the winner in almost all settings,

showing the best read amplification and latency numbers, while maintaining the highest
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write throughput and near-top write amplification. Concurrent was only second to Bi-

nomial in terms of read performance in most settings, but it had relatively low write

throughput, although its write amplification was low. Its multi-threaded merge was a bot-

tleneck in write throughput. There could be some optimizations to multi-threaded merges,

but most need hardware or operating system support [27, 88]. Tiered had the lowest write

amplification and very high write throughput, but the read performance was sacrificed.

The Leveled policy had the highest write amplification, but writes could still be fast with

proper configurations. In our experiments, the Leveled policy showed good read perfor-

mance mostly in low selectivity queries, although the combination of R*-Grove partitioning

and Simple comparator achieved outstanding read performance at the cost of the lowest

write performance. Therefore it may not be a good option for high selectivity queries in

general. There could be cases where it may be better suited. Leveled architecture is a

perfect fit for object stores (Amazon S3, Microsoft Azure, etc.) which tend to have many

relatively small files (or so-called blobs). Comparing to stack-based policies, it can manage

records more efficiently via file (disk component) based filtering, rather than relying on local

indexes.

In terms of policy configuration, Hilbert curve comparator performed better than

Simple comparator in high selectivity queries but was worse in low selectivity queries due

to its slow computation. If Leveled policy must be chosen, size partitioning is generally a

good option for high selectivity queries, while STR partitioning and R*-Grove partitioning

are still very competitive, especially in low selectivity queries. With a larger index size,

STR and R*-Grove might be better options because they guarantee to create disjoint disk
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components to have better MBR based filtering capability. However, the higher CPU and

memory requirement during merges as well as the low write performance of R*-Grove must

be considered.

How LSM secondary index is maintained may have a major impact on the write

and read performance of a secondary index. With the eager strategy, write throughput

may be determined by the primary index, while with the lazy strategy, read latency may

be dominated by the time to verify returned records against the primary index.

Limitations and Future Work In this chapter we focused on the write and read per-

formance of R-tree based LSM spatial indexes. Based on the results from [50], we did not

include comparisons against indexes based on B+-tree, which may be a more common ap-

proach on existing LSM database systems. It may be worthwhile to revisit these designs on

different LSM architectures, since B+-tree usually has better write and read performance

than R-tree for certain types of non-intersection spatial queries. The lack of optimizations

on hardware and operating system limited the MBR based filtering efficiency for Leveled

policy. We would expect some better results for Leveled policy if some optimizations could

be done, such as hardware support for MBR based filtering (e.g. FPGA based filtering) to

utilize STR or R*-Grove partitioning.

4.6 Related Work

Most LSM systems only support single-dimension indexes such as B+-tree. To

support spatial index, they must rely on some linearization method to project multidimen-

sional data into a single dimension to be loaded in B+-tree. GeoMesa [43] is a spatial-
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temporal index that supports so-called Bigtable-style databases including Google Bigtable

[17], Apache Accumulo [47], Apache HBase [34]. It uses a customized GeoHash [43, 71]

implementation based on the Z-order curve to encode spatial and temporal data into bit

strings. STEHIX [19] and Brahimet al [14] took a similar approach but only limited to

HBase and DataStax Cassandra, respectively. Kim et al [49, 50] studied five LSM spatial

indexes, four of them fall into this category: DHB-tree, DHVB-tree, and SHB-tree all map

point data with space-filling curves (Hilbert curve); SIF builds an inverted index (based

on B+-tree) but the main idea is similar to SHB-tree. Like SIF, a posting list based LSM

inverted index design described in [74] can also be extended to support spatial index.

Another common approach is to build LSM spatial indexes on R-tree. R-HBase [42]

and BGRP-tree [83] partition the data space into grid cells or regions and use an in-memory

R-tree to index the partitions, although the local indexes are still built on B+-trees. Nan-

jappan implemented a separate R∗-tree index outside of Cassandra [70]. LevelGIS [91] uses

a three-layer hierarchical structure of R-tree index on LevelDB to support spatial queries.

LSM RUM-Tree [80] utilizes Update Memo on AsterixDB’s R-tree index to support

update-intensive spatial workloads, which is orthogonal to our work.

Galvizo et al. [33] described how multi-valued fields (multidimensional data) are

indexed in AsterixDB, which could also be extended to improve the R-tree index perfor-

mance as a future work. While many open-source projects add spatial index support to

LevelDB, RocksDB, and some other LSM systems, most still use the first approach which is

B+-tree with linearized spatial data, only a few of them adopt the LSM R-tree approach. To

the best of our knowledge, none of these projects have been deployed in practice. RocksDB
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used to provide a utility called SpatialDB, but it got abandoned and removed from GitHub

since January 2019.

Some systems choose to use an LSM database only for storage and use some other

structures for spatial queries. For example, DataStax stores geospatial data in Cassandra,

but builds geospatial index and handles geospatial queries via Solr [22]. Compared to native

LSM secondary spatial index, the key drawback of such systems is that insertions are slower

as they need to be written to two or more systems.

Partitioning algorithms can highly affect the write and read performance of a

leveled LSM R-tree index. Some R-tree packing algorithms can be directly used for par-

titioning in merges. The combinations of size partitioning with Hilbert curve comparator

and Simple comparator have the same effect as Hilbert Sort [46] and Nearest-X [77], re-

spectively, which are both outperformed by STR partitioning [54]. OMT [53] is a top-down

R-tree bulk-loading algorithm which might be portable as well. Other partitioning algo-

rithms include sampling-based methods like SpatialHadoop [28] and R*-Grove [86, 87], and

quad-tree-based method like [89] for Hadoop. Most of these algorithms designed for R-tree

bulk-loading or Hadoop can efficiently handle static data, where the data is written only

once. However, they are usually not designed for dynamic data, where the data frequently

changes in some write-heavy workloads. A better partitioning algorithm that takes both

heavy writes and reads is much desired, that LSM spatial index can benefit a lot from it.
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4.7 Conclusions

In this chapter, we compared and evaluated secondary spatial index performance

of both stack-based and leveled LSM architectures with four representative merge policies,

on a common platform (AsterixDB). The results from both the OpenStreetMap dataset

and the synthetic random datset have shown that Binomial policy is probably the best

candidate for LSM R-tree-based spatial index, although it is not specifically optimized for

multidimensional spatial data. While having higher write amplification and generally lower

write throughput, with proper configuration, Leveled policy can achieve close or even better

read performance to some of the better stack-based policies. Although most stack-based

policies do not benefit from MBR based filtering at the disk component level, MBR based

leveled partitioning can provide much better filtering efficiency to improve spatial query

performance in proper settings. Compared to analytic frameworks, a key challenge of MBR

based leveled partitioning in LSM tree is to maintain more disjoint square-liked MBRs while

keeping the write cost low. We also showed that the choice of different comparators and

partitioning algorithms for a Leveled policy depends on spatial queries’ selectivity.
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Chapter 5

Effective Partitioning for

Stack-based Merge Policies

5.1 Introduction

Most of the existing LSM systems can be put into two categories, stack-based

and leveled. The former category includes AsterixDB [9], Bigtable [36], Cassandra [7] and

HBase [8]. Stack-based policies are generally more efficient for applications that need to

support high ingestion rate. Merges in these systems may be large in size, which often leads

to fewer but larger files. This design makes resource management easier as merges must be

executed single-threaded, and there is no need to maintain many file handlers in memory.

On the other hand, large merges take a long time to complete, leading to a higher chance

of stopping data ingestion (a.k.a write stalls). Also, canceling a merge may be expensive,

especially when the work is almost completed, and most merged data has to be discarded.
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Leveled policies mainly includes LevelDB [37] and RocksDB [29]. They use a

partitioned merge style to keep files relatively small. Data is merged incrementally between

sorted runs (levels). Instead of having few large merges, they choose to perform many small

merges. This design has several benefits: 1) merges are small, so they can be finished faster;

2) more threads can be used to parallelize multiple merges at the same time; 3) aborting

a merge is not too expensive compared to aborting a stack-based merge; and 4) files may

not need to be rewritten in merges in certain special workloads. Generally speaking, stack-

based LSM systems have better write performance and leveled LSM systems have better

read performance.

In Chapters 3 and 4, we discussed how some stack-based merge policies, including

the two proposed Binomial and MinLatency, can achieve optimal write amplification

while maintaining a very low read amplification. To further tackle their major problems

of having insufficient merge throughput due to single-threaded large merges, we propose

two partitioning algorithms for stack-based merge policies, such that large merges can be

parallelized, and disk I/O can be saved via the support of trivial-moves for certain workloads.

In summary, this chapter makes the following contributions:

1. We motivate and present the problem of facilitating parallelism during stack-based

merges. A baseline partitioning method is proposed, size-based, where a new partition

is created when the previous partition is above a maximum size. We show what the

key challenges are to increase parallelism. Specifically , We identify the chaining

problem that makes size based partitioning ineffective to stack-based merge policies

(Section 5.3).
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2. We propose two partitioning methods: Local-Range and Global-Range partitioning

that can mitigate the problems of size-based partitioning. These partitioning methods

facilitate multiple parallel sub-merges and trivial-moves. (Section 5.4).

3. We implement the two proposed partitioning algorithms on RocksDB and evaluate

their write and read performance against the no-partitioning and size partitioning on

RocksDB’s UniversalCompaction.

5.2 Background

5.2.1 Stack-based Merge

In Chapters 2, 3 and 4, we discuss the differences between stack-based merge

policies and leveled merge policies. Stack-based merge policies always merge whole sorted

runs into a single output sorted run (Figure 2.3). In the standard design, a single sorted

run is equivalent to a single SSTable. An SSTable’s size may become very large after a few

merges. In general, stack-based merge policies tend to create a few large SSTables. When

these SSTables are merged, only a single thread can be used to scan the input SSTables

and write to a single output SSTable. This often leads to relatively low disk and CPU

utilization, given the fact that database servers have more CPU cores and faster SSDs to

support highly parallelized computation and disk I/O.

In the previous chapters, most stack-based merge policies make merge decisions

based on file sizes, such as Bigtable, Concurrent, Exploring and Tiered. Binomial

and MinLatency make merge decisions offline assuming flushed SSTables are of the same

size. They all assume SSTables to be merged are all overlapping with each other. This
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is typically true for many workloads where keys inserted are almost random. However,

there are some special workloads in which keys are (almost) sorted. Such examples include

workloads where keys are time-correlated, or in a bulk-loading stage. Usually, for such

workloads, there is no need to perform any merges, as SSTables created will be strictly non-

overlapping with each other. Any single Get query needs to check at most one SSTable.

Traditional stack-based merges do not take this important information into account, and

still make unnecessary merges, wasting disk I/O to merge already sorted data.

RocksDB’s UniversalCompaction RocksDB is a fork of LevelDB, which has no sup-

port of stack-based merge policies in the beginning. The SizeTiered merge policy (Com-

pactionStrategy) in Cassandra was ported to RocksDB and renamed as UniversalCom-

paction. Although it originated from the SizeTiered policy, it now has quite different

settings and behaviors. Instead of always picking similar sized SSTables to merge, Uni-

versalCompaction also supports picking SSTables of different sizes based on their total sizes

via an option stop style. UniversalCompaction in RocksDB is not a strict stack-based merge

policy though. For example, sorted runs are allowed to be placed into levels other than 0

to have partitioned SSTables, but it still keeps the backward compatibility to have large

sorted runs of single SSTable in level 0. Thus, it can still be viewed as a stack-based merge

policy.

5.2.2 Partitioned Leveled Merge

In contrast to stack-based merge, leveled merge in LevelDB [37] and RocksDB [29]

chooses to break large sorted runs into smaller non-overlapping SSTables. One sorted run
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is represented as a list of SSTables, whose key ranges are sorted and non-overlapping. For

example, let [li, ui] denote the key range (smallest key and largest key) of the i− th SSTable

in a sorted run, there must be li ≤ ui < li+1 ≤ ui+1. Note here, although not common,

an SSTable can contain a single key, making its l = u. But an SSTable’s smallest key

must be strictly larger than the largest key in the previous SSTable in the same sorted

run. Searching in a sorted run is divided into two or three binary searches for single Get or

Iterator (scan) operation respectively. In a Get operation, a binary search is performed to

find the first candidate SSTable whose largest key u is no less than the searched key. Then

this SSTable’s smallest key is checked. If the smallest key is larger than the searched key,

this whole sorted run can be skipped as no SSTable in this sorted run contains the searched

key. If the smallest key is smaller than the searched key, the key will be binary searched

again using the SSTable’s index. In an Iterator operation, similar to Get, at most binary

searches are needed to find the first and the last SSTables that have overlapping ranges

with the seached range. Then a binary search is performed in the first SSTable to return

the first result, followed by a linear scan to return all matching results in all the candidate

SSTables.

In a merge, only a portion of the SSTables in sorted runs are selected to keep every

merge size small. A typical leveled merge usually sets a maximum SSTable size limit θ such

that most SSTables will be this size. In a partitioned leveled merge, output key-value pairs

are partitioned on-the-fly based on the current writing SSTable size. Algorithm 5.1 shows

the pseudocode of how a merge is executed with size partitioning. If the total size to output

is S, there will be ⌈Sθ ⌉ SSTables created. All SSTables created will be the same size θ except
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for the last one, which may be smaller. It is worth noting that, a triditional stack-based

merge can be viewed as the same algorithm with θ = ∞, so that only one SSTable is created

from a merge.

Algorithm 5.1 Merge via size based partitioning

1: Input: T ▷ List of input SSTables to be merged

2: Input: θ ▷ Size constraint of SSTables

3: Input: rout ▷ The output sorted run

4: iter = Iterator(T ) ▷ Merging iterator on all SSTables in T

5: t = NewTable() ▷ Create one SSTable

6: while iter.HasNext() do

7: ⟨k, v⟩ = iter.GetNext() ▷ Get key and value, then advance the iterator

8: if t.Size()+ k.Size()+ v.Size() > θ then ▷ SSTable size overflow

9: rout.Add(t) ▷ Complete t and add to rout

10: t = NewTable() ▷ Create another SSTable

11: end if

12: t.Write(k, v)

13: end while

14: rout.Add(t) ▷ Complete the last t and add to rout

Both LevelDB and RocksDB support a so-called trivial-move operation. When

an SSTable does not overlap with any SSTable in the next sorted run (level), this single

SSTable can be selected to “merge” into the next sorted run. Instead of rewriting this

SSTable, LevelDB and RocksDB can directly move the file into the next sorted run and just
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update some minimum size metadata. The I/O cost of a trivial-move is almost none, thus

merges in sequential workloads or bulk-loads of sorted data are extremely fast.

5.3 Problem Definition

5.3.1 Motivation: Expensive Stack-based Merges

Although most stack-based merge policies have much better write performance

than the partitioned leveled merge policy, they suffer from the following problems:

• During large merges where many sorted runs or some big sorted runs are involved,

one merge can occupy lots of CPU, memory and disk resources for a long time. This

often leads to write stalls, which slows down or completely stops new writes into the

LSM tree.

• Only a single thread can be used for one merge, mainly because there is only one

SSTable to write for the output sorted run. For modern storage devices like SSD, this

design may not fully utilize the powerful hardware to achieve higher write throughput.

The chaining problem described below is another constraining factor that does not

allow multiple threads to work on the merge in parallel.

• For certain special workloads, for example, a sequential workload where all ingested

keys are in a monotonically increasing order, a partitioned leveled policy can use a

trivial-move [32] technique to move the files without rewriting them. This design can

save lots of disk I/O for this type of workload. However, existing stack-based merge

policies do not benefit from trivial-moves, as they always rewrite existing SSTables.
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A naive solution to the above problems is to apply partitioning to sorted runs

in stack-based LSM trees. Instead of having a single SSTable for each sorted run, every

sorted run can be partitioned into one or multiple disjoint SSTables, like the partitioned

leveled LSM tree. With a good partitioning algorithm, it is possible to split a big merge

into multiple smaller sub-merges, where each sub-merge only processes a subset of SSTables

from the input sorted runs. If multiple sub-merges can be scheduled in one merge, they can

be executed in multi-threads, which will improve the overall write throughput, and reduce

the total time to complete the merge. On the other hand, SSTables that are non-overlapping

with any other SSTables in a merge can be trivial-moved to the output sorted run, this can

save disk I/O and further improve the write performance. Note here we do not require the

whole sorted run be non-overlapping with other merging sorted runs.

5.3.2 Chaining Problem: Key Obstacle to Parallelizing Merges

It is natural to adopt the size based partitioning algorithm to stack-based LSM

trees. However, this algorithm will frequently cause the chaining problem, where most

or even all the input SSTables must be grouped in one sub-merge. As shown in Fig-

ure 5.1, to merge sorted run A with keys {1, 3, 5, 7, 9, 11, 13} and sorted run B with keys

{4, 6, 8, 10, 12, 14} with the maximum SSTable size limit (as the number of keys) θ = 3, only

one sub-merge can be scheduled using size partitioning, because there is no way to split the

to-be-merged components into disjoint groups. On the other hand, the proposed Global-

Range partitioning (discussed in Section 5.4) can effectively schedule two sub-merges and

one trivial-move, making the merge of these two sorted runs more efficient.
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Figure 5.1: Size partitioning vs. Global-Range partitioning.

5.3.3 Trivial-Move: I/O Saving during Merge

RocksDB’s UniversalCompaction supports trivial-moves with a strict requirement

— a trivial-move can only be performed when only one single SSTable is selected in a merge,

and this SSTable is non-overlapping with any other SSTable in the output level. In practice,

this usually requires that all SSTables in level 0 are non-overlapping with each other. Be-

cause a stack-based merge policy only merges consecutive SSTables, an SSTable will always

be merged if it is between two overlapping SSTables, even if this SSTable is not overlapping

with any other SSTable in the database. For example, to merge three consecutive SSTables

A, B and C, whose key ranges are [1, 10], [21, 30] and [6, 15] respectively, B [21, 30] must

be merged together with A and B though it is not overlapping with the other two.

5.4 Proposed Local-Range and Global-Range Partitioning

In this section, we first show how a stack-based merge is executed with partitioning

in Section 5.4.1. Then we present an overview of Local-Range and Global-Range partitioning

in Section 5.4.2. We show the details of Local-Range and Global-Range partitioning in
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Section 5.4.3. Lastly, we show the challenges and our solutions in implementing these two

partitioning algorithms Section 5.4.4

5.4.1 Partitioned Stack-based Merge

In a leveled merge, when an SSTable is selected to merge and it is not overlapping

with any SSTables in the next level, this SSTable will be trivial-moved. This means, any

leveled merge of at least two SSTables will never contain any SSTables that can be trivial-

moved. However, when a stack-based merge is executed with partitioning, it is possible

that some SSTables do not overlap with other SSTables, since all SSTables in the merging

sorted runs must be selected. For this reason, the partitioned stack-based merge should

be handled differently to leveled merge. Algorithm 5.2 describes how sub-merges can be

generated and executed in one stack-based merge of multiple partitioned sorted runs, where

some SSTables may be trivial-moved and the others may be sub-merged.

By checking the metadata of all the input SSTables, we are able to place the

SSTables into one or multiple non-overlapping groups. Then we can execute either a trivial-

move or a sub-merge for each group in parallel. Parallel execution via multi-threaded sub-

merges provides better write throughput with shorter total merge time, at the cost of higher

CPU, memory, and disk usages. The performance of multi-threaded sub-merges is heavily

hardware dependent, which may be limited by the number of CPU cores, storage media

access speed, etc.

If one sub-merge contains only one input SSTable, meaning this SSTable has no

overlapping SSTables in the whole merge, this SSTable can be safely trivial-moved to save
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Algorithm 5.2 Partitioned stack-based merge - Part 1

1: Input: Rin ▷ List of input sorted runs (|Rin| ≥ 2)

2: Input: rout ▷ The output sorted run

3: M = [ ] ▷ List of all SSTables to be merged

4: for r in Rin do ▷ r: sorted run

5: for t in r do ▷ t: SSTable

6: M.Append(t)

7: end for

8: end for

9: M.SortByLowerBound()

10: C = [ ] ▷ List of non-overlapping SSTables groups

11: G = [ ] ▷ Group of overlapping SSTables

12: umax = 0 ▷ Current upper bound of G

the disk I/O for rewriting it. The execution of a trivial-move is simple, all files (if more

than one) associated with this SSTable can be moved or hard-linked (filesystem dependent)

into the output sorted run. Although moving or hard-linking files incurs no disk I/O,

minimum disk I/O may be required to update the SSTable or database’s metadata such as

the manifest file.

If one sub-merge has more than one input SSTables, we must partitioned-sub-

merge (Algorithm 5.3, line 30) them. The size based partition method in Algorithm 5.1

can be used as one implementation of the PartitionedSubMerge function aiming at

creating similar sized SSTables with a maximum SSTable size limit θ. As discussed in

99



Algorithm 5.3 Partitioned stack-based merge - Part 2

13: for t in M do ▷ t: SSTable

14: ut = t.GetUpperBound()

15: if |G| = 0 then ▷ The first SSTable, G is empty

16: umax = ut

17: else if t.GetLowerBound() > u then ▷ t is disjoint with G

18: C.Append(G) ▷ Complete G and append it to C

19: G, umax = [ ], ut ▷ Reset the current group G

20: else ▷ t overlaps with G, update umax if needed

21: umax = Max(umax, ut)

22: end if

23: G.Append(t)

24: end for

25: C.Append(G) ▷ Complete the last G and append it to C

26: for T in C do ▷ T : list of overlapping SSTables

27: if |T | = 1 then

28: TrivialMove(rout, T [0]) ▷ Move the only SSTable to rout

29: else

30: PartitionedSubMerge(rout, T ) ▷ Execute a sub-merge with partitioning

31: end if

32: end for
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Section 5.3.2, the chaining problem may prevent Size partitioning from generating sub-

merges effectively. To solve this problem, we propose two algorithms, Local-Range and

Global-Range partitioning, which partition SSTables based on predetermined key ranges.

5.4.2 Overview of Local-Range and Global-Range Partitioning

Similar to k-d tree [13], both Local-Range and Global-Range partitioning apply

binary space partitioning on keys rather than SSTable sizes. The key difference between

these two algorithms is, Local-Range partitioning uses the actual key range from the SSTa-

bles to be merged (actual smallest and largest keys) as the key space to binary-split, while

Global-Range partitioning uses the key range from the whole key space (smallest and largest

possible keys). They recursively partition the keys until all partitions are no larger than

θ. Figure 5.2 presents an overview of the three partitioning algorithms (Size partitioning,

Local-Range and Global-Range partitioning) and No-partitioning on a sorted run of 40 keys.

0 32 64 96 128 160 192 224 255

Global

Local

Size

No 40:[9,254]

10:[9,77] 10:[79,143] 10:[156,210] 10:[220,254]

8:[9,66] 10:[72,127] 9:[141,186] 5:[201,221] 8:[225,254]

7:[9,48] 6:[66,89] 5:[103,127] 9:[141,186] 5:[201,221] 8:[225,254]

Figure 5.2: Overview of No-partitioning, Size, Local-Range partitioning and Global-Range
partitioning on a sorted run of 40 8-bit unsigned integer keys. Maximum SSTable size
limit θ = 10. SSTable size as the number of keys, the smallest key and the largest key
are annotated in each rectangle representing an SSTable. Actual keys are shown in dashed
vertical lines.
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Local-Range partitioning first splits the key range [9, 254] at the mean ⌊9+254
2 ⌋ =

131, then the left and right partitions are further split at their means ⌊9+131
2 ⌋ = 70 and

⌊132+254
2 ⌋ = 193, respectively. On the other hand, Global-Range partitioning makes the first

split at the mean of the whole key space [0, 255], thus the first split is always at ⌊0+255
2 ⌋ =

127. Then the left and right partitions are split at ⌊0+127
2 ⌋ = 63 and ⌊128+255

2 ⌋ = 191,

respectively. In both algorithms, splits will stop when all partitions are no larger than 10.

Comparing the three partitioning algorithms and no-partitioning, no-partitioning

creates a single partition that covers almost the entire key space. Size partitioning creates

similar sized partitions (all have 10 keys) except the last one. Local-Range partitioning

creates partitions where adjacent partitions’ key range sizes are similar. For example, the

first three partitions have key range sizes 58, 56 and 46 respectively. The last two partitions

have key range sizes 21 and 20 respectively, and their total key range size is 54, which is

close to the first three partitions. Global-Range partitioning creates partitions with fixed

bounds [0, 63], [64, 95], [96, 127], [128, 191], [192, 223] and [224, 255] respectively, where the

maximum key range size of each partition is always 256 × 2−i, where 0 ≤ i ≤ 8. It is

also worth pointing out that these partitioning algorithms may create the same partitions

depending on the distribution of keys, like the last three partitions in Local-Range and

Global-Range partitioning.

When multiple partitioned sorted runs are merged, Global-Range partitioning has

a higher chance to generate more sub-merges. An example of partitioned stack-based merges

on three sorted runs is shown in Figure 5.3. Size and Local-Range partitioning can generate

only one sub-merge, while Global-Range partitioning can generate five sub-merges.
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Figure 5.3: Examples of Size, Local-Range and Global-Range partitioning. The top 3 rows
are the SSTable size ratios with respect to θ in 3 input sorted runs. The last row is the
size ratios of the output sorted run from merging the 3 input sorted runs. Each column
represents the results of a different partition algorithm. SSTables of the same color are
grouped in one sub-merge. Keys are the same in the sorted runs in every row. Sorted runs
1, 2 and 3 are created from previous flushes and merges.

Although Global-Range partitioning can generally provide higher parallelism via

multiple sub-merges, it tends to create more SSTables. In the given example, 10 SSTa-

bles are created after merge using Size partitioning, while this number is 15 and 16 for

Local-Range and Global-Range partitioning respectively. In practice, both Local-Range

and Global-Range will create 1.5 to 2 times more SSTables than Size partitioning with

the same θ, although Local-Range partitioning usually creates fewer SSTables than Global-

Range partitioning. Having too many SSTables may increase the overhead of maintaining

SSTables in the system, and may reduce the Iterator performance due to the fact that

more files need to be scanned.
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There are also two major challenges implementing Local-Range and Global-Range

partitioning, estimating data size within a range, and mapping variable-length byte string

keys to unsigned integers. We will address these two challenges in Section 5.4.4.

5.4.3 Local-Range and Global-Range Partitioning Implementation

The section is organized as follows. We first show the basic implementation of

range-based PartitionedSubMerge (Algorithm 5.3 line 30) with a list of predetermined

key bounds, which is used by both Local-Range and Global-Range partitioning. Then we

show the implementations of Local-Range and Global-Range partitioning to compute the

key bounds. Lastly, we show the challenges in the implementations and our solutions.

Range-based PartitionedSubMerge

In a sub-merge with Size partitioning, the key range of every output SSTable is

computed on the fly during the SSTable construction. The execution of a sub-merge is

different when the key ranges are provided beforehand. Generally, a key range is defined as

a pair of a lower bound l and an upper bound u, identified as [l, u]1. During the execution

of a sub-merge, a key value pair will be written to a new SSTable when the key is larger

than the current range’s upper bound. The pseudocode of this range-based is shown in

Algorithm 5.4.

1Some implementation may use an exclusive upper bound as [l, u)
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Algorithm 5.4 Merge via range-based partitioning

1: Input: T ▷ List of input SSTables to be merged

2: Input: rout ▷ The output sorted run

3: B = ComputeBounds(T ) ▷ Sorted list of pairs of lower and upper bounds

4: iter = Iterator(T ) ▷ Merging iterator on all SSTables in T

5: t = NewTable() ▷ Create one SSTable

6: i = 1

7: while iter.HasNext() do

8: ⟨k, v⟩ = iter.GetNext() ▷ Get key and value, then advance the iterator

9: if k > B[i].GetUpperBound() then ▷ This key belongs to the next SSTable

10: rout.Add(t) ▷ Complete t and add to rout

11: t = NewTable() ▷ Create another SSTable and reset t

12: i = i+ 1 ▷ Process the next upper bound

13: end if

14: t.Write(k, v)

15: end while

16: rout.Add(t) ▷ Complete the last t and add to rout

Key Bounds Computation

To compute the key bounds B (Algorithm 5.4 line 3), Local-Range and Global-

Range partitioning both use the same BinarySplit function, as described in Algorithm 5.5.

The basic idea of this function is to keep splitting at the mean of a range and

stop when the approximate data size of a sub-range is no greater than θ. Unlike Size
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Algorithm 5.5 Function BinarySplit

1: function BinarySplit(l, u) ▷ l ≤ u

2: s = SizeInRange(l, u) ▷ Approximate data size between l and u

3: if s = 0 then

4: return [ ]

5: else if s ≤ θ then

6: return [(l, u), ]

7: else

8: m = ⌊ l+u
2 ⌋ ▷ Mean of l and u

9: return BinarySplit(l,m) +BinarySplit(m+ 1, u) ▷ List concatenation

10: end if

11: end function

partitioning which aims at creating partitions of the same data size, this function aims

at creating partitions of the same key range size. Next, we discuss the Local-Range and

Global-Range partitioning with the help of BinarySplit in the paragraphs below.

Local-Range Partitioning Intuitively, we can partition the local key range of SSTables

being merged with BinarySplit. By doing so, we can ensure the two sub-ranges’ sizes

are equal after a split. If keys are uniformly distributed in those SSTables, the mean and

median of the key range will likely be close to each other, making almost perfect partitioning

in both data size and key range size. The pseudocode is shown in Algorithm 5.6.

As we can see in Figure 5.3 (b), SSTables are almost symmetrical in both data size

and key range size. It still has the chaining problem just like Size partitioning. The major
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Algorithm 5.6 Function ComputeBoundsLocalRange

1: function ComputeBoundsLocalRange(T ) ▷ T : List of SSTables in a sub-merge

2: kmin = GetMinKey(T )

3: kmax = GetMaxKey(T )

4: return BinarySplit(kmin, kmax)

5: end function

issue is that this method does not guarantee high quality bounds to reduce the possibility

of overlapping SSTables.

Global-Range Partitioning In Local-Range partitioning, we use the actual key range

of a sub-merge as the reference to create the partition upper bounds. However, it fails

to create fixed bounds which still leads to many overlapping SSTables. To overcome this

problem, we can use the maximum key space as the reference to create the partition upper

bounds. By doing a binary split from the maximum key space, we can ensure the mean

values are always in a fixed set.

An example of Global-Range partitioning is illustrated in Figure 5.4, which shows

the execution steps of Sub-Merge 2 in Figure 5.1 with a key space of 8 bits (e.g, data type

uint8 t). As we can observe from the figure, the key range size of a node in the binary

tree at level i (i ≥ 0, root is at level 0) is always 2−i of the total key space size (256 here).

For any two SSTables t1 and t2 (t1 ̸= t2), let n1 and n2 denote the lowest nodes in a full

binary tree that fully contain t1 and t2 respectively. If n1 is an ancestor or a descendent of

n2 (n1 and n2 can be the same node), this indicates t1 and t2 are overlapping, so that they

must be merged. Otherwise, n1 and n2 have a lowest common ancestor that is different
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from them, this indicates t1 and t2 are non-overlapping, so that they have a higher chance

to be trivial-moved.

  8: b00001000 
  9: b00001001 
10: b00001010 
11: b00001011 
12: b00001100 
13: b00001101 
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[0, 255]
8, 9, 10, 11, 12, 13, 14

[0, 127]
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[128, 255]

[8, 15]
8, 9, 10, 11, 12, 13, 14

[8, 11]
8, 9, 10, 11

[0, 15]
8, 9, 10, 11, 12, 13, 14

[0, 7]

[12, 15]
12, 13, 14

[8, 9]
8, 9

[10, 11]
10, 11

   Omitted: [0, 63], [0, 31]
Discarded: [64, 127], [32, 64], [16, 31]

Intermediate 
partition node

Final partition 
node

Discarded 
partition node

Figure 5.4: Binary tree for Global-Range partitioning.

Although this method can generate better quality partitions, it is computationally

expensive. The size of the binary tree can be large with many levels. We observe that many

recursions are spent on discarding nodes in the beginning and the end of the whole key

space, such as node [0, 7] and [128, 255]. When the key space is large, this becomes a waste

of resources. To make the algorithm run faster, we must make the binary tree smaller. We

notice that node [8, 15] is the first node that splits to two non-empty nodes. We can directly

create a binary tree rooted at node [8, 15] for Global-Range partitioning, as shown in the

area in blue dashed lines. By looking at the binary representations of all possible values

of this node, we can easily see they all share a common binary prefix b00001∗. To obtain

the root node in the smaller tree, we can compute the longest binary prefix (b00001∗) of
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the smallest key (8: b00001000) and the largest key (14: b00001110) to be partitioned, the

root node must have the same binary prefix, with ∗ replaced by all 0s (8: b00001000) and

1s (15: b00001111) as the key range. This completes the final Global-Range partitioning in

Algorithm 5.7.

Algorithm 5.7 Function ComputeBoundsGlobalRange

1: function ComputeBoundsGlobalRange(T ) ▷ T : List of SSTables in a sub-merge

2: bmin = ToBinary(GetMinKey(T ))

3: bmax = ToBinary(GetMaxKey(T ))

4: for i = 1 → |bmin| do ▷ |bmin|: Total number of bits

5: if bmin[i] ̸= bmax[i] then

6: f = i ▷ f : The position of the first distinct bit

7: break

8: end if

9: end for

10: for i = f → |bmin| do

11: bmin[i] = 0 ▷ Unset the bit

12: bmax[i] = 1 ▷ Set the bit

13: end for

14: l = ToUInt(bmin) ▷ Convert binary string to unsigned integer

15: u = ToUInt(bmax) ▷ Convert binary string to unsigned integer

16: return BinarySplit(l, u)

17: end function
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As indicated in Figure 5.3 (c), Global-Range partitioning has a higher chance to

create non-overlapping SSTables, leading to more trivial-moves and sub-merges, thus the

merge throughput can be improved.

5.4.4 Challenges in Implementation

In the implementations of Local-Range and Global-Range partitioning, we face

two major challenges. The first is that we need to find an efficient and effective way to

compute the data size within a range without having too much disk I/O. The second is

that, Global-Range partitioning assumes unsigned integer keys such as uint64 t, we must

use a hash function to convert a key (mainly variable-length byte string) to an unsigned

integer to make binary space partition. To support range queries, this hash function must

be order-preserving.

Data Size Estimation via StreamHist

To make the most accurate partitions that respect the maximum SSTable size limit

θ, we can build a binary tree like the one in Figure 5.4 and place all the key value pairs in the

nodes. However, this requires excessive disk I/O and space, which contradicts the purpose

of improving the write performance. To obtain the approximate data size within a range, we

can use a sample-based method to maintain some statistics of keys for every SSTable. In this

work, we use the C++ StreamHist implementation [82] of Ben-Haim’s Streaming Parallel

Decision Trees [12] to maintain a histogram for each SSTable during its construction. The

histograms will be then used in the SizeInRange function in Algorithm 5.5 line 2, which

gives very good accuracy with minimum overhead.
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Algorithm 5.8 shows the implementation of SizeInRange function using StreamHist.

Note the Sum function of StreamHist computes the estimated size from −∞ to the func-

tion argument value. In our implementation, we use a hash table to cache the Sum results

as they may be reused many times in the recursions of BinarySplit.

Algorithm 5.8 Data size estimation in range

1: hm = NewStreamHist() ▷ An empty StreamHist

2: for t in T do ▷ t: SSTable

3: ht = t.GetStreamHist()

4: hm.Merge(ht) ▷ Merge ht into hm

5: end for

6: function SizeInRange(l, u)

7: return hm.Sum(u)− h.Sum(l)

8: end function

We modify the implementation of StreamHist by removing unnecessary attributes

and methods with some optimizations for the speed. The space overhead of StreamHist

is minimum. In our implementation, a StreamHist of 64-bit double type with 128 bins

occupies about 2 kB in memory and less space on disk (some attributes can be shared from

the SSTable’s metadata, compression can further reduce the size). In a database of 1000

SSTables, the total space overhead is about 2 MB only.

Because a StreamHist must be maintained for every SSTable, every single key

written to an SSTable during flushes and merges must be written to the StreamHist as

well, which incurs some overhead in time. In our testing (Figure 5.5), an unweighted

111



StreamHist with 128 bins has an average of 300 nanoseconds or less, and the weighted

version has an average of 4 microseconds or less, for a single insertion regardless of the data

type (double or long double) used.
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Figure 5.5: Average insertion latency in StreamHist.

Order-preserving Hash Function

While Local-Range partitioning does not require unsigned integer type of keys, it

still needs the StreamHist which requires numerical data for the estimation of data sizes.

Moreover, Global-Range partitioning also requires unsigned integer type of keys. For non-

numerical type of keys such as variable-length byte strings2, we apply a hash function that

converts a key to uint64 t and stores this value in the StreamHist. If range query support

is not required, we can use any standard hashing function for this purpose. Also, the

SSTables will likely use hash indexes instead of binary-search-based indexes (e.g., B+-tree).

To support range queries, we propose an order-preserving hash function for the conversion

from variable-length byte string to uint64 t.

2Numerical types like singed integers and floating numbers can be easily one-to-one mapped to unsigned
integers while preserving the order.
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In general, due to the Pigeonhole principle [3], it is impossible to convert an

arbitrary string of variable-length into a unique unsigned integer, because the original key

space is almost infinite, while the key space size of uint64 t is only 264. For an arbitrary

length byte string s using the whole extended ASCII characters (0x00—0xFF), its mapped

uint64 t value via f(s) = λ(s)
(
264 − 1

)
, where λ(s) is a real number scalar in [0, 1).

Mathematically, we want λ(s1) < λ(s2) if and only if s1 < s2. Define a function g such that

λ(s) =
∑|s|

i=1 g(s[i]), where s[i] is the i-th byte value between 0 and 255. g must satisfy the

following five constraints.

1. 0 < g(s[i]) < 1, otherwise λ(s) may be greater than 1.

2. Let s[1→i] be a sub-string of s from byte 1 to byte i inclusively. g(s[1→i]) < g(s[1→i+

1]) for all 1 ≤ i ≤ |s| − 1. This gives more weights on the more significant bytes.

3. g(s[i]) > 0 for all 0 ≤ s[i] ≤ 255. This ensures Constraint 2. and distinguishes the

case with no byte at position i (i > |s|).

4. g(s1[i]) < g(s2[i]) for any two bytes 0 ≤ s1[i] < s2[i] ≤ 255 to maintain the order of

strings.

5. For strings s1 < s2, let k be the first position of where they differ, that is s1[1→k−1] =

s2[1→k−1] and s1[k] < s2[k]. We must guarantee g(s1[k])+
∑|s1|

i=k+1 g(s1[i]) < g(s2[k]).

The remaining part of s2 is truncated because s2[1→k] is the smallest possible string

starting with this prefix.

Let us assume the function g(s[i]) = s[i]
xi , where x is a variable to be determined.

Doing so ensures Constraint 3. since 0 ≤ s[i] ≤ 255. To ensure 1. and 4., we just need to
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make x > 1. Plug this formula into the inequation in Constraint 5., we just need to find a

value of x that satisfies Inequation 5.1:

s1[k] + 1

xk
+

|s1|∑
i=k+1

s1[i] + 1

xi
<

s2[k] + 1

xk
,∀s1[k] < s2[k] (5.1)

Transforming 5.1 we get Inequation 5.2

|s1|−1∑
i=k+1

s1[i] + 1

xi
<

s2[k]− s1[k]

xk
≤ 1

xk
,∀s1[k] < s2[k] (5.2)

The maximum value of
∑|s1|

i=k+1
s1[i]+1

xi happens when |s1| = ∞ and all s1[i] = 255,

then we have

max

 |s1|∑
i=k+1

s1[i] + 1

xi

 ≤
|s1|∑

i=k+1

255 + 1

xi

=
256

xk+1
×

(
1− x−(|s1|−k)

1− x−1

)

<
256

xk+1
×
(
1− x−∞

1− x−1

)
=

256

xk+1
×
(

1

1− x−1

)
, ∀x > 1

(5.3)

Now we have 256
xk+1 ×

(
1

1−x−1

)
≤ 1

xk , which is x
(
1− x−1

)
≥ 256. Solving this

inequation we get x ≥ 257. The final formula for λs is shown in Equation 5.4.

λ(s) =

|s|∑
i=1

s[i] + 1

257i
(5.4)

For an empty string, its λ(s) = 0. For any non-empty string, min (λ(s)) = 0+1
2571

=

1
257 , where the smallest string contains a single byte ‘0x00’. max (λ(s)) =

∑∞
i=1

255+1
257i

=

256
257 ×

(
1

1−257−1

)
= 1, where the largest string is an infinity length string with all ‘0xFF’s.

Therefore, λ(s) < 1 is true for any finite length string.
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Although this hash is a one-to-one mapping from any string to a unique real

number in [0, 1), storing the real number in a floating type in the computer will lose its

precision, and incurs rounding errors when converting this floating number to an unsigned

integer. There can be collisions (two different strings hashed to the same integer) when two

different strings are mapped to the same unsigned integer. We cannot maintain the strict

relation f(s1) < f(s2) for any strings s1 < s2, but a weak relation f(s1) ≤ f(s2) is still

guaranteed. In practice, this hash function has an exceptionally low collision rate. In our

testing, we find no collision in 100,000,000 random variable-length byte strings. However,

the collision rate starts increasing for strings with certain common prefixes. Table 5.1

summarizes the collision rates of strings with common prefixes. In practice, we can apply

the hash function on the suffixes to reduce the collision rate.

l =

p =
1 2 3 4 5 6 7 1 2 3 4 5 6 7

p+ 1 0 0 0 0 0 0.99+ 0.99+ 0 0 0 0 0 0.93 0.99+

p+ 2 0 0 0 0 0.69 0.99+ 0.99+ 0 0 0 0 0 0.93 0.99+

p+ 3 0 0 0 0.13 0.96 0.99+ 0.99+ 0 0 0 0 1.8e-3 0.93 0.99+

p+ 4 0 0 5.1e-4 0.17 0.96 0.99+ 0.99+ 0 0 0 6.9e-6 0.03 0.93 0.99+

p+ 5 0 2e-6 5.9e-4 0.18 0.97 0.99+ 0.99+ 0 0 0 1.2e-4 0.03 0.93 0.99+

p+ 6 0 2.6e-6 6.6e-4 0.17 0.97 0.99+ 0.99+ 0 0 4.0e-7 1.2e-4 0.03 0.93 0.99+

p+ 7 0 1.8e-6 6.9e-4 0.16 0.98 0.99+ 0.99+ 0 0 4.0e-7 1.2e-4 0.03 0.93 0.99+

(a) Type: double (64-bit) (b) Type: long double (80/128-bit)

Table 5.1: Average collision rates of byte strings with common prefixes. Columns are the
prefix lengths (p), rows are the string lengths (l). Collision rates remain unchanged for
larger p or l.

115



We also test the performance of this hash function. As shown in Figure 5.6, the

overhead of hashing a byte string is also minimum (less than 90 nanoseconds for 128-byte

long random strings). Also we notice that the performance is about the same for both

double and long double types. To achieve better precision with lower collision rate, we

use long double in the implementation of this hash function.
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Figure 5.6: Average latency of the order-preserving hash function for variable-length strings.
Average latency per byte is 0.63 nanoseconds for both double and long double types.

5.5 Experiments

5.5.1 Experimental Setup

We implement the proposed partitioning algorithms for UniversalCompaction in

RocksDB, and compare the four partitioning algorithms (No-partition, Size, Local-Range

and Global-Range) with the default Leveled merge policy. We also make the following

optimizations to RocksDB:

1. Allow trivial-moves within a merge, such that some SSTables can be trivial-moved

and the others can be sub-merged.
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2. Sub-merges are executed in a thread-pool, instead of having a single thread for every

sub-merge. This is because the proposed partitioning algorithms are able to create

many (over 60) sub-merges in certain workloads, which may overload the system with

too many threads.

3. Allow multiple SSTables to form a single sorted run in level 0. Binary search is

also made available in level 0 on SSTables in the same sorted run to find candidate

SSTables for a given Get or Iterator operations. This is more efficient a linear search

on all SSTables in level 0.

Basic Experimental Settings

To compare and evaluate the write and read performance of these four partitioning

algorithms, we conduct two sets of experiments as shown in Table 5.2. The UInt experiment

set has three different distributions to insert keys. The distributions have a significant

impact on the performance of the two proposed partitioning algorithms. All runs in the

UInt and Str experiments have a loading phase of 41,943,040 key-value pairs (about 40 GB).

They also have 100,000 reads and 10,000 range scans of size 1000 after the loading phase.

10,000 keys are used to warm the table cache before doing any reads and scans. UInt runs

do not need a hash function since the keys are in the binary format of uint64 t. The hash

function described in Section 5.4.4 is used in the Str runs.

We did not include experiments that use a sequential key distribution. This is

because in a sequential distribution, all flushed SSTables are non-overlapping, making all

SSTables in the database strictly non-overlapping with each other. No actual merge will
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Experiment Key Data Type Key Length Value Length Total KV Length Key Distribution

UInt Byte string of 64-bit unsigned integer 8 1016 1024

Unique random

Semi-sequential

Zipf (q = 0.5)

Str Byte string [4, 32] [992, 1020] 1024 Random length, random bytes

Table 5.2: Summary of experiments.

be performed but only trivial moves, thus all partitioning algorithms take no effect in this

case. The semi-sequential distribution is similar to a pure sequential distribution, except

two adjacent flushed SSTable may have a small overlapping range. This can happen when

keys are generated using an incremental counter, and they are written to the database

asynchronously. Figure 5.7 show an example of three key distributions for the first three

flushed SSTables. The key range sizes in (c) extend to the whole key space.

Flush 1

Flush 2

Flush 3

Min Max

(a) Pure Sequential

Flush 1

Flush 2

Flush 3

Min Max

(b) Semi-sequential

Flush 1

Flush 2

Flush 3

Min Max

(c) Random

Figure 5.7: UInt key distributions.

RocksDB Options

Most options in RocksDB are kept default. Non-default options are listed in

Table 5.3. num levels is set to 1 in UniversalCompaction to force placing SSTables in level

0 and create unpartitioned sorted runs with No-partitioning, in order to simulate the original

SizeTiered merge policy. level0 slowdown writes trigger and level0 stop writes trigger are

adjusted to limit the maximum number of sorted run in the database. These two options
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Option UniversalCompaction LevelCompaction

max subcompactions 16

max compaction bytes Unlimited

target file size base 64 MB

num levels 1 4

level0 slowdown writes trigger 8 5

level0 stop writes trigger 9 6

compaction options universal.allow trivial move true N/A

compaction options universal.min merge width 4 N/A

compaction options universal.stop style
kCompactionStopStyleSimilarSize

kCompactionStopStyleTotalSize

N/A

Table 5.3: RocksDB options.

and num levels are also adjusted in LevelCompaction to have the same maximum number

of sorted runs in the database. LevelCompaction does not have a partitioning option set,

thus it is default to Size partitioning. Maximum SSTable size constraint θ is set to 64

MB using target file size base except for the No-partitioning runs. In all the runs with No-

partitioning and Size partitioning, StreamHist is disabled so they do not have the overhead

of converting a key to uint64 t and writing to StreamHist. Runs with Local-Range and

Global-Range partitioning are configured to use unweighted StreamHists of 128 bins3.

Test Platform

All experiments are done on a AWS EC2 c5.2xlarge instance with 8 cores and 16

GB memory. The instance uses EBS gp3 storage. As shown in Figure 5.8, the peak write

3The weighted version improves the data size estimation marginally with a larger time overhead.
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throughput is around 725 MB/s using 6 to 8 threads. Having more threads does not improve

the write throughput and will further decrease the write throughput per each thread.
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Figure 5.8: Multi-threaded write throughput on EBS gp3 storage

5.5.2 Experimental Results with Unsigned Integer Keys

Semi-sequential Key Distribution

In a semi-sequential key distribution, any two adjacent sorted runs will overlap with

each other. UniversalCompaction with No-partitioning cannot schedule any trivial-moves

since all sorted runs contain a single SSTable. On the other hand, any partitioned runs,

including LevelCompaction, have similar write performance (Figure 5.9) as most SSTables

can be trivial-moved.

Merges with Size partitioning are slightly faster than Local-Range and Global-

Range partitioning (Figure 5.10). This is mainly because it does not have the overhead of

writing to StreamHist, and it has fewer SSTables to merge and trivial-move (Figure 5.11).
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Figure 5.9: Semi-sequential UInt: Total write time.
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Figure 5.10: Semi-sequential UInt: Merge statistics.

When it comes to read performance, Size partitioning is the winner (Figure 5.12).

The tree partitioning algorithms all achieve the lowest Get latencies because of smaller file

size. In terms of Iterator performance, Size partitioning is only second to No-partitioning,

which has much fewers files to scan.
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Figure 5.11: Semi-sequential UInt: SSTable statistics.
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Figure 5.12: Semi-sequential UInt: Read performance.

Random Key Distribution

In a random key distribution, all sorted runs have a similar key span over the whole

key space [0, 264−1]. Global-Range partitioning achieves 18% and 7% improvement over the

No-partitioning and Size partitioning using similar size stop style and total size stop style

respectively (Figure 5.13). Size partitioning is even slower than No-partitioning because no

sub-merges can be scheduled, and it has extra overhead to scan multiple SSTables.
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Global-Range partitioning has the highest merge throughput, and Local-Range

partitioning is only second to it (Figure 5.14). These two partitioning algorithms can

effectively process large merges with multi-threading. On the other hand, Size partitioning

cannot schedule any sub-merge, thus behaves similarly to No-partitioning.
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Figure 5.14: Random UInt: Merge statistics. Leveled has over 600 merges (truncated).
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Even though Local-Range and Global-Range partitioning tend to create more

SSTables (Figure 5.15), read performance is not affected much. As shown in Figure 5.16,

all the four partitioning algorithms have about the same latency in both stop styles. No-

partitioning is only a little bit faster still due to fewer SSTables to scan.

No Size Local Global

Universal (Similar Size)

0

200

400

600

800

1000

1200

1400

To
ta
l S

ST
ab
le
s

6

650

980

1336

No Size Local Global

Uni ersal (Total Size)

3

648

952

1126

Size

Le eled

647

Figure 5.15: Random UInt: SSTable statistics.
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Figure 5.16: Random UInt: Read performance.
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Skewed Key Distribution

We use a zipf distribution with q = 0.5 to generate a skewed distribution with

unique keys. We observe almost the same write (Figure 5.17), merge (Figure 5.18) and read

(Figure 5.19) performance as the random key distribution. The only difference is, fewer

SSTables are created in this distribution using Local-Range and Global-Range partition-

ing. In the runs of random key distributions, compared to Size partitioning, Local-Range

partitioning creates 50% more SSTables and Global-Range partitioning creates 100% more

SSTables. While in the skewed key distribution, they both create 50% more SSTables,

which is not a big overhead to maintain.
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Figure 5.17: Skewed UInt: Total write time.
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Figure 5.18: Skewed UInt: Merge statistics. Leveled has over 600 merges (truncated).
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Figure 5.19: Skewed UInt: Read performance.

5.5.3 Experimental Results with Variable-length Byte String Keys

While random byte strings almost follow an uniform distribution similar to the

random integers, the actual performance is different. Local-Range partitioning is only a few
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Figure 5.20: Skewed UInt: SSTable statistics.

seconds slower than the Global-Range partitioning in total write time (Figure 5.21). Their

read performance is also very similar, as shown in Figure 5.22. Global-Range partitioning

has slightly higher merge throughput (Figure 5.23), likely because it creates 10% to 20%

more SSTables than Local-Range partitioning (Figure 5.24), leading to more sub-merges.
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Figure 5.21: Byte String: Total write time.

Overall, both Local-Range and Global-Range partitioning outperform No-partitioning

and Size partitioning in writes. No-partitioning has slightly better iteration performance
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Figure 5.22: Byte String: Read performance.
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Figure 5.23: Byte String: Merge statistics.

due to fewer SSTables to scan. The other three partitioning algorithms have similar read

performance in both get and iteration operations.
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Figure 5.24: Byte String: SSTable statistics. Leveled has over 600 merges (truncated).

5.6 Discussion

The two proposed local-range and global-range partitioning algorithms can both

effectively generate better quality partitions to increase the parallelism of LSM merges

in most of the tested workloads. Global-range partitioning generally has the best merge

throughput and achieves the highest write throughput, even with the overhead of main-

taining StreamHists. The major problem with Global range partitioning is that it tends

to create more SSTables, and some very small SSTables may exist, leading to higher cost

to maintain the metadata of SSTables for sorted runs. Although this drawback does not

affect the Get operation performance, Iterator performance will degrade with more files

to scan. Local-range partitioning can also achieve high parallelism of LSM merges, and

it creates fewer SSTables than global-range partitioning. When a system has many range

queries, local-range partitioning may be a better option. There are two ways to reduce the

number of SSTables created with local-range and global-range partitioning. Small parti-

tions can be grouped together to create a larger partition. These partitions can be treated
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as virtual SSTables that share the same physical file (data, index and filters). A physical

SSTable may keep a list of metadata of these virtual SSTables. Another way is to increase

the maximum SSTable size limit θ to compensate. θ can be set to 1.5 or 2 times of the

limit used in size partitioning, given the fact that the average SSTable size of local-range

and global-range partitioning is 1
2 and 2

3 of that of size partitioning for the same θ. For

certain special workloads where keys are pure sequential or semi-sequential, all partitioning

algorithms have similar performance. Size partitioning may be a better choice for these

workloads, as it creates the least number of SSTables, having the smallest memory and disk

overhead.

Limitations and Future Work

Dynamic resource allocation As shown in Figure 5.8, having too many threads for

merges may not effectively improve the overall write throughput. Threads are also used

by other operations like flushes and user queries (Get, Iterator, etc.), there may not be

enough CPU resources to execute many sub-merges. In this work, we limit the maximum

number of sub-merges via an option as the hard limit. It would be better if an algorithm

can make dynamic decisions for sub-merges that take the number of available CPU cores

into consideration.

Data Size Estimation Currently, StreamHist is unable to handle updates. The preci-

sion of estimating data size will degrade significantly with lots of updates. Also, it is only

used for the two proposed partitioning algorithms only. Given its capability of providing

more statistics for SSTable contents, it is possible to use this information for a better merge
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policy. The requirement of converting a key to uint64 t may be removed if a better data

structure can be used, which can reduce space overhead and provide better estimation of

data sizes.

Hybrid stack-based and leveled merge policy With the partitioning for stack-based

merge policies, the boundaries between stack-based and leveled merge policies become

blurred. Transitions between these two types of merge policies are made easier, leading

to the potential of a new hybrid policy. This new policy can have the ability to achieve

high write throughput like the stack-based policies and keep the read latencies low like the

leveled policies. It will be more tunable to adapt to dynamically changing workloads.

5.7 Related Work

Partitioning Algorithms Besides the default Size partitioning used in LevelDB and

RocksDB, many partitioning algorithms were proposed mainly for the Leveled policy only.

Some of them can also be used on stack-based policies like UniversalCompaction in RocksDB.

The partitioning algorithm proposed in PE File [44] is application dependent. It generally

applies a binary split at the median of keys, which can be viewed as a special version of Size

partitioning. Zhang et al. [99] and SifrDB [69] use a similar partitioned stack-based design

as the Size partitioning in LevelDB and RocksDB. The lightweight-compaction-tree [93, 94]

uses vertical grouping for partitioning, similar to the one used in Leveled merge policy.

Its partitioning also benefits load balancing across database nodes. PebblesDB [75] has a

similar idea of range-based partitioning. It randomly picks an inserted key by some least-

significant-bits from the hashed value as a guard for every range in a level. During merges,
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keys are written to the SSTables protected by the corresponding guard value. The Write-

Buffer tree [6], LSM-trie [90] and HashKV [55] apply hash-based partitioning to distribute

keys evenly into SSTables for workloads that do not need range query support. Most of the

aforementioned work does not apply to stack-based merge policies, have limited support of

range query, and may have the same chaining problem.

Optimizations for Range Query While partitioning a large sorted runs into set of

smaller SSTables can generally improve the system’s overall write performance, and has

almost no impact on the single Get query performance, it makes medium to long range

queries slower due to the fact that more files must be scanned. There is various existing

research that target at improving range query performance in a partitioned LSM tree.

REMIX [100] proposes a so-called Split Compaction, which splits data into multiple physical

partitions by file sizes, to improve range query performance of LSM trees. Split compaction

does not partition within a sorted run, but creates a collection of SSTables as a separate

LSM tree. Surf [98] and Rosetta [63] both propose effective range query filters to reduce

the number of SSTables to be checked to answer a query. Rosetta filter is constructed

with multiple Bloom filters for every binary prefix of a range query. Since every single

SSTable in Global-Range partitioning has a common binary prefix for all the keys, it can be

combined with Rosetta and reduce the number of Bloom filters needed for every SSTable.

It may also be possible to combine Rosetta filter with StreamHist to provide more accurate

estimation of data size and faster computation speed to make Global-Range partitioning

more efficient.
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5.8 Conclusions

In this work, we propose two partitioning algorithms, named Local-Range parti-

tioning and Global-Range partitioning, for stack-based merge policies. We compare these

two partitioning algorithms with the existing Size partitioning, and No-partitioning on

RocksDB. The experimental results show the proposed algorithms can improve the merge

throughput for up to 30%, the overall write throughput for up to 20% over No-partitioning

or Size partitioning using RocksDB’s UniversalCompaction, while having the same or even

better Get latency and less than 10% of higher Iterator latency.
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Chapter 6

Conclusions

In this thesis, we have presented a various efficient storage design in LSM-tree

databases.

In Chapter 2, we studied the fundamental I/O components of LSM systems, and

two architectures with merge policies.

In Chapter 3, we studied five existing merge policies, Bigtable, Constant, Ex-

ploring, Tiered and Leveled, and comapred them with two newly proposed policies

Binomial and MinLatency using YCSB on a common platform AsterixDB. The results

validated the the theoretical model and showed that the two proposed policies have sub-

stantially lower write amplification while maintaining a low read amplification.

In Chapter 4, we compared and evaluated secondary spatial index performance of

both stack-based and leveled LSM architectures with four representative merge policies, on

AsterixDB. The results from both the OpenStreetMap dataset and the synthetic random

dataset have shown that Binomial policy is probably the best candidate for LSM R-tree-
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based spatial index, although it is not specifically optimized for multidimensional spatial

data. Based on our experimental results, we showed our recommendation for the choice

of merge policy, comparator and partitioning algorithms depending on the workload and

queries’ selectivity.

Finally in Chapter 5, we proposed two novel range-based partitioning algorithms

for stack-based merge policies. These two partitioning algorithms can effectively improve

the parallelism during merges in a variety of different workloads, increasing the overall write

throughput, while having minimum effect on the single get and iterator performance.
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B (2011) YCSB++: Benchmarking and performance debugging advanced features in
scalable table stores. In: Proceedings of the 2Nd ACM Symposium on Cloud Com-
puting, ACM, SOCC ’11, pp 9:1–9:14

[74] Qader MA, Cheng S, Hristidis V (2018) A comparative study of secondary indexing
techniques in LSM-based NoSQL databases. In: Proceedings of the 2018 International
Conference on Management of Data, pp 551–566

[75] Raju P, Kadekodi R, Chidambaram V, Abraham I (2017) PebblesDB: Building key-
value stores using fragmented log-structured merge trees. In: Proceedings of the 26th
Symposium on Operating Systems Principles, pp 497–514

[76] Ren K, Zheng Q, Arulraj J, Gibson G (2017) SlimDB: a space-efficient key-value stor-
age engine for semi-sorted data. Proceedings of the VLDB Endowment 10(13):2037–
2048

[77] Roussopoulos N, Leifker D (1985) Direct spatial search on pictorial databases using
packed R-trees. In: Proceedings of the 1985 ACM SIGMOD international conference
on Management of data, pp 17–31

[78] ScyllaDB Inc (2021) ScyllaDB. URL https://www.scylladb.com/

[79] Sears R, Ramakrishnan R (2012) bLSM: A general purpose log structured merge tree.
In: Proceedings of the 2012 ACM SIGMOD International Conference on Management
of Data, ACM, SIGMOD ’12, pp 217–228

[80] Shin J, Wang J, Aref WG (2021) The LSM RUM-Tree: A log structured merge R-Tree
for update-intensive spatial workloads. In: 2021 IEEE 37th International Conference
on Data Engineering (ICDE), IEEE, pp 2285–2290

[81] Spark A (2018) Apache Spark. Retrieved January 17(1):2018
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Appendix A

Merge Policy Data

For each of the 43 runs, Tables A.1 and A.2 show the total write amplification

and the average read amplification at five points during the run: after 1, 000, 3, 000, 5, 000,

10, 000, and 20, 000 flushes. If it happens that the MemTable is flushed while a merge

is ongoing, the SSTable count may briefly exceed k. For this reason, the average read

amplification slightly exceeded k in a few runs (with k ∈ {3, 4, 5} — see the highlighted

cells in the tables).
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n = 1,000 3,000 5,000 10,000 20,000

Policy k/B Write

Amplif.

Read

Amplif.

Write

Amplif.

Read

Amplif.

Write

Amplif.

Read

Amplif.

Write

Amplif.

Read

Amplif.

Write

Amplif.

Read

Amplif.

B
ig
t
a
b
l
e

3 37.57 3.48 87.37 3.71 165.89 3.79 N/A

4 11.64 3.97 31.89 4.35 46.79 4.46 86.33 4.61 175.06 4.74

5 7.13 4.53 11.19 4.79 15.80 4.96 26.16 5.17 46.17 5.36

6 5.78 5.03 7.78 5.36 9.08 5.55 12.52 5.76 18.71 5.96

7 5.34 5.60 6.69 5.92 7.85 6.10 9.22 6.31 11.46 6.52

8 5.05 6.00 6.52 6.34 6.52 6.57 7.32 6.80 8.31 7.04

10 5.31 6.97 5.79 7.39 6.63 7.51 7.26 7.73 7.87 7.98

B
in
o
m
ia
l

3 12.05 2.95 17.26 3.01 20.61 3.03 25.72 3.08 32.07 3.13

4 8.61 3.71 10.67 3.82 12.72 3.85 14.76 3.91 17.56 3.95

5 6.38 4.49 8.84 4.65 9.34 4.70 10.86 4.77 12.49 4.83

6 5.61 5.21 7.33 5.48 8.16 5.57 8.84 5.64 10.34 5.69

7 5.40 5.39 6.44 6.05 6.77 6.24 7.57 6.40 8.96 6.49

8 5.40 5.41 6.30 6.21 6.44 6.64 7.37 7.00 7.64 7.23

10 5.40 5.38 6.30 6.19 6.44 6.62 7.30 7.08 7.19 7.68

E
x
p
l
o
r
in
g

3 30.67 3.31 94.57 3.63 164.31 3.76 N/A

4 12.52 3.80 22.88 4.07 34.83 4.23 68.71 4.43 153.02 4.61

5 7.00 4.31 10.55 4.66 13.08 4.79 21.72 5.06 37.00 5.26

6 6.20 4.51 7.68 5.06 8.75 5.23 11.22 5.50 16.93 5.77

7 5.99 4.58 7.41 5.19 7.73 5.42 8.66 5.81 10.07 6.12

8 5.97 4.56 7.12 5.20 7.45 5.47 8.19 5.91 8.71 6.33

10 5.90 4.55 6.99 5.19 7.33 5.48 7.98 5.97 8.37 6.40

Table A.1: Total observed write and average read amplification for all runs, for various n.
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n = 1,000 3,000 5,000 10,000 20,000

Policy k/B Write

Amplif.

Read

Amplif.

Write

Amplif.

Read

Amplif.

Write

Amplif.

Read

Amplif.

Write

Amplif.

Read

Amplif.

Write

Amplif.

Read

Amplif.

M
in
L
a
t
e
n
c
y

3 12.10 3.00 17.26 3.03 20.62 3.04 25.72 3.08 32.07 3.12

4 7.89 3.73 10.68 3.84 12.74 3.88 14.79 3.94 17.58 3.98

5 6.38 4.51 8.11 4.66 9.37 4.70 10.90 4.76 12.48 4.82

6 5.86 5.24 6.75 5.46 7.52 5.52 8.78 5.58 10.41 5.64

7 4.97 6.09 5.96 6.30 6.59 6.37 7.55 6.44 9.13 6.51

8 4.34 6.77 5.30 7.10 6.03 7.13 6.89 7.24 7.64 7.33

10 3.69 8.24 4.52 8.56 5.03 8.63 5.87 8.78 6.93 8.91

T
ie
r
e
d

4 4.25 8.36 5.01 9.39 5.87 9.84 5.98 10.53 6.73 11.34

8 3.15 11.75 3.46 13.81 4.24 14.54 4.28 15.31 4.30 16.86

16 2.52 17.94 2.67 22.05 3.41 23.35 3.43 24.37 3.43 26.19

32 1.86 31.54 2.45 33.24 2.57 34.36 2.66 36.95 2.70 41.98

L
e
v
e
l
e
d

4 17.05 5.36 19.87 6.13 21.07 6.48 22.87 6.95 24.48 7.48

8 22.17 4.05 25.03 4.68 26.47 4.81 28.66 5.23 30.37 5.62

16 32.75 3.59 36.60 3.86 38.68 3.92 42.15 4.33 44.47 4.67

32 51.65 2.95 60.98 3.48 63.50 3.69 66.54 3.84 69.62 3.92

Table A.2: Total observed write and average read amplification for all runs, for various n
(continued).
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