
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
p-adic Integration on Modular Curves and Code-based Cryptography

Permalink
https://escholarship.org/uc/item/2zz3n0m8

Author
Lau, Jun Bo

Publication Date
2023

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2zz3n0m8
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

p-adic Integration on Modular Curves and Code-Based Cryptography

A dissertation submitted in partial satisfaction of the
requirements for the degree

Doctor of Philosophy

in

Mathematics

by

Jun Bo Lau

Committee in charge:

Professor Kiran Kedlaya, Chair
Professor Russell Impagliazzo
Professor Jonathan Novak
Professor Cristian Popescu
Professor Claus Sorensen

2023

Copyright

Jun Bo Lau, 2023

All rights reserved.

The dissertation of Jun Bo Lau is approved, and it is accept-

able in quality and form for publication on microfilm and

electronically.

University of California San Diego

2023

iii

TABLE OF CONTENTS

Dissertation Approval Page . iii

Table of Contents . iv

Acknowledgements . vi

Vita . viii

Abstract . ix

I Coleman Integration on Modular Curves 1

Chapter 1 Preliminaries . 2
1.1 Introduction . 2
1.2 Background . 6

1.2.1 Modular forms . 6
1.2.2 Modular curves . 9
1.2.3 Hecke operators . 11
1.2.4 Coleman integrals . 15

Chapter 2 Coleman Integration on Modular Curves . 17
2.1 Breaking the Coleman integrals into tiny integrals 18
2.2 Computing a basis of cusp forms . 19
2.3 Hecke operators as double coset operators 20
2.4 Tiny integrals via complex number approximation 22

Chapter 3 Computations and examples . 25
3.1 X0(N) . 26

3.1.1 Example: X0(37) . 26
3.2 X+

0 (N) . 30
3.2.1 Example: X+

0 (67) . 32
3.3 X+

ns(p) . 36
3.3.1 Example: X+

ns(13) . 38
3.4 Conclusion and future work . 43

II Decoding Failures of BIKE 44

iv

Chapter 4 Preliminaries . 45
4.1 Introduction . 45
4.2 Background on code-based cryptography 48

4.2.1 Coding theory . 48
4.2.2 Code-based cryptography . 50
4.2.3 KEM’s and Niederreiter cryptosystems 52

Chapter 5 BIKE . 54
5.1 Parameters and design . 54
5.2 Decoding failures, weak keys and near-codewords 56

Chapter 6 Experiments . 58
6.1 Methods . 58
6.2 Experimental results . 61
6.3 DFR on At,ℓ(S) . 63
6.4 Syndrome weight as an indicator . 65
6.5 Conclusion and future work . 68

Bibliography . 69

v

ACKNOWLEDGEMENTS

I would like to express my heartfelt gratitude to my thesis advisor Kiran Kedlaya, for his

invaluable guidance and support throughout my time at UCSD. His expertise and constructive

feedback have been pivotal to my academic growth.

The first project started as a collaboration with Mingjie Chen and Kiran Kedlaya. I thank

Kiran Kedlaya for suggesting the problem of computing Coleman integrals on modular curves using

their instrinsic geometry; Mingjie Chen for many helpful discussions and code-debugging sessions;

and Jennifer Balakrishnan, Pietro Mercuri and Samir Siksek for constructive conversations. The

second project began as part of the Rethinking Number Theory workshops. I would like to thank the

organisers Allechar Serrano López, Heidi Goodson and Mckenzie West for making this possible;

my collaborators Sarah Arpin, Tyler Raven Billingsley, Daniel Rayor Hast, Ray Perlner and Angela

Robinson for many discussions that launched my interest in cryptography; Marco Baldi, Christine

Kelley and Thomas Richardson for helpful feedbacks on our paper; and Lily Chen, Dustin Moody,

Ray Perlner and Angela Robinson for hosting me at NIST for a research visit on this topic.

I am grateful to my parents for helping me to foster my passion for the subject, giving me

many opportunities to grow and supporting me in my major decisions. I thank my partner Shu Ting

for being my companion throughout this journey and for many years of love and support. You have

been a source of comfort and motivation.

There are many friends who have made my academic journey memorable. I would like to

thank Mingjie, Woonam, Zeyu, Zongze, Baiming, Nandagopal, Sindhana, Shubham, Wei, Minxin

and many others. I would also like to thank the men’s ultimate frisbee team for reigniting my love

for the sport and being fun teammates at every occasion.

This thesis was written with support from the NSF grants DMS-1844206 and DMS-1802161.

Part 1 is, in full, being prepared for submission for publication and is included in one of the

collaborator’s thesis. The dissertation author was the collaborator and the coauthor for the material

vi

in the first bullet point.

• Mingjie Chen, Kiran Kedlaya, Jun Bo Lau “Coleman Integration on Modular Curves"

• Mingjie Chen. Arithmetic of Algebraic Curves. UC San Diego. ProQuest ID: Chen_ucsd_0033D_21000.

Merritt ID: ark:/13030/m5qz9cpg. Retrieved from https://escholarship.org/uc/item/2v180848

Part 2 includes material that are in publication. The dissertation author was the collaborator

and the coauthor for the material below.

• Sarah Arpin, Tyler Raven Billingsley, Daniel Rayor Hast, Jun Bo Lau, Ray Perlner, and

Angela Robinson. A Study of Error Floor Behavior in QC-MDPC Codes. In Post-Quantum

Cryptography: 13th International Workshop, PQCrypto 2022, Virtual Event, September

28–30, 2022, Proceedings, page 89–103, Berlin, Heidelberg, 2022. Springer-Verlag.

vii

https://escholarship.org/uc/item/2v180848

VITA

2017 Master of Mathematics, University of Warwick, U.K.

2017-2023 Graduate Teaching Assistant, University of California San Diego, U.S.A.

2023 Doctor of Philosophy in Mathematics, University of California San Diego,
U.S.A.

viii

ABSTRACT

p-adic Integration on Modular Curves and Code-Based Cryptography

by

Jun Bo Lau

Doctor of Philosophy in Mathematics

University of California San Diego, 2023

Professor Kiran Kedlaya, Chair

In the first part of the dissertation, we develop an algorithm to compute Coleman integrals

on modular curves. This novel method does not rely on knowing a model of the curve. This

provides a method to the problem of explicitly determining rational points on modular curves. In

the second part, we investigate BIKE, one of the candidates for the National Institute of Standards

and Technology Post-Quantum Cryptography Standardization Process. We identified several factors

that affect the security of the code-based cryptosystem through extensive simulations.

ix

Part I

Coleman Integration on Modular Curves

1

Chapter 1

Preliminaries

All curves in this paper are smooth, projective and geometrically irreducible with good

reduction at a prime p.

1.1 Introduction

Some of the oldest questions in number theory can be reformulated in modern terms: given

a finite list of polynomials, what are the integer or rational solutions to this set of equations? In

fact, these solutions can be viewed as integral or rational solutions of geometric objects – curves,

surfaces or higher dimensional objects.

In this project, we focus on the case of curves. A remarkable result, formulated by Mordell

in 1922 and proved by Faltings in 1983, states that for curves of higher genus, there are only finitely

many rational points on them.

Theorem 1.1.1. (Mordell’s conjecture/ Faltings’s theorem) Let X/Q be a curve of genus g ≥ 2,

then the set of rational points X(Q) is finite.

However, Faltings’s [Fal86] and subsequent proofs by Vojta [Voj91], Bombieri [Bom90],

2

Faltings [Fal91], Lawrence-Venkatesh [LV20], etc., are not effective, i.e., there is no explicit method

to determine the complete set of rational points on the curve. Before Faltings, Chabauty proved

Mordell’s Conjecture with the condition that if the rank of the Jacobian of the curve is strictly

less than the genus, then the set of rational points is finite [Cha41]. In [Col85b, Col85a] Coleman

defined p-adic line integrals and re-interpreted Chabauty’s method. The paper produced an explicit

bound on the cardinality of the set of rational points and constructed a set of p-adic points which

contains the rational points. These Coleman integrals provide an effective method to problems in

arithmetic geometry, including but not limited to, torsion points on Jacobians of curves (Manin-

Mumford conjecture), p-adic heights on curves, p-adic polylogarithms, Mordell conjecture (rational

points), etc. In [BD18, BD17], as part of Kim’s nonabelian Chabauty program [Kim05, Kim09],

Balakrishnan and Dogra developed quadratic Chabauty as a computational tool to study the set of

rational points as long as the curve satisfies a certain quadratic Chabauty bound, involving the rank

of the Jacobian, genus and Néron-Severi rank of the Jacobian.

There are several approaches to numerically compute these Coleman integrals. Wetherell

[Wet97] combined the certan properties of Coleman integrals and the arithmetic of the Jacobian to

compute
∫

D ω , where D is a divisor in the Picard group and ω is a holomorphic differential on the

curve. The next approach relies on computing the Frobenius action in p-adic cohomology following

Dwork’s principle of analytic continuation along the Frobenius [BBK10, Tui16, Tui17, BT20].

However, both of these approaches have their shortcomings – Wetherell’s method requires an

explicit divisor in order to reduce the computation to a power series integration (“tiny integrals")

and the second method requires an explicit equation of the curves as the input.

We turn our attention to computing Coleman integrals on modular curves. The set of rational

points on modular curves has special arithmetic meaning. For instance, the set of rational points

X0(N)(Q) correspond to the torsion points of elliptic curves (Mazur’s theorem). Another motivation

to study modular curves comes from Serre’s Uniformity Conjecture. Let E be an elliptic curve

3

defined over K. The group of p-torsion points E[p](K̄) is isomorphic to (Z/pZ)2 and is acted upon

by the absolute Galois group Gal(K̄/K), giving rise to a representation ρp,E : Gal(K̄/K)→GL2(Fp).

In [Ser72], Serre proved the following:

Theorem 1.1.2. Suppose that E does not have complex multiplication. Then there exists a number

N(E) such that ρp,E is surjective for all p > N(E).

In the same paper, he posed the following question on removing the condition of N depending

on the elliptic curve E:

Conjecture 1.1.3. (Serre’s Uniformity Conjecture) Given a number field K, then there exists a

constant NK > 0 such that for any elliptic curve E defined over K without complex multiplication,

the corresponding Galois representation ρp,E is surjective for all primes p > NK .

Since modular curves parametrise elliptic curves with torsion data, this can be formulated in

terms of rational points on modular curves:

Conjecture 1.1.4. (Serre’s Uniformity Conjecture) Let H ≤ GL2(Fp) be a proper subgroup such

that the determinant map det : H→ F×p is surjective, then there exists a constant NK > 0 such that

for any prime p > NK , the associated modular curve XH(p) has K-rational points coming only from

cusps and elliptic curves with complex multiplication.

If ρp,E is not surjective, the image lies inside some maximal proper subgroup of GL2(Fp).

Therefore, one could prove the conjecture by showing that for p large enough, the image of ρp,E

does not lie in any maximal subgroup. The classification of maximal subgroups of GL2(Fp) is

classical, originally due to Dickson [Dic]:

Theorem 1.1.5. Let H ≤ GL2(Fp) not containing SL2(Fp). Up to conjugacy, H is one of the

following:

• (Borel) H ⊆ B0(p) = {(∗ ∗0 ∗)}

4

• (Normaliser of split Cartan) H ⊆ N+
s (p) = {

(
α 0
0 β

)
,
(

0 α

β 0

)
: α,β ∈ F×p }

• (Normaliser of non-split Cartan) H ⊆ N+
s (p) = {

(
α 0

0 α p

)
,
(

0 α
α p 0

)
: α ∈ F×p2}

• (Exceptional) The image of H in PGL2(Fp) is isomorphic to A4,S4 or A5.

Most of the cases have been resolved [Maz78, BPR13, BP11, Ser72], except for the nor-

maliser of non-split Cartan. There has been some progress using quadratic Chabauty to find the

rational points of the modular curve corresponding to the nonsplit Cartan of level 13 [BDM+19]

and level 17 [BDM+21].

Since most modular curves satisfy the quadratic Chabauty bound [Sik17], we provide a

model-free algorithm to compute Coleman integrals on modular curves arising arising from Serre’s

Uniformity Conjecture.

5

1.2 Background

1.2.1 Modular forms

In this section, we give a brief introduction of modular forms, following [DS05].

Let H := {τ ∈ C : Im(τ)> 0} be the upper half complex plane. The special linear group

SL2(Z) acts on H via fractional linear transformations:

γ · τ =
aτ +b
cτ +d

where γ =
(

a b
c d

)
,τ ∈H.

Definition 1.2.1. Let f : H→ C be a function and k ∈ Z.

• The automorphy factor is a function

j : GL+
2 (R)×H→ C

(γ,z) 7→ cz+d

where γ =
(

a b
c d

)
.

• The weight-k slash operator is defined as

(·)|k(·) : Hom(H,C)×GL+
2 (R)→ Hom(H,C)

(f (z),γ) 7→ (f |kγ)(z) := (detγ)k−1 j(γ,z)−k f (γ · z).

The automorphy factor satisfies a cocycle relation j(γ1γ2,z) = j(γ1,γ2z) j(γ2,z) which

implies that GL+
2 (R) acts on Hom(H,C) via f |kγ1γ2 = (f |kγ1)|kγ2.

6

Consider the projection map π : SL2(Z)→ SL2(Z/NZ) where we reduce the entries modulo

N. We define congruence subgroups in the following way.

Definition 1.2.2. Γ≤ SL2(Z) is a congruence subgroup if there exists an integer N ≥ 1 such that

Γ(N)≤ Γ. The minimal such N is called the level of Γ.

It follows immediately that congruence subgroups of SL2(Z) have finite index and corre-

spond to subgroups of SL2(Z/NZ).

Example 1.2.3. Here are some common examples of preimages of π which give rise to congruence

subgroups of level N:

• Γ(N) = π−1(
(

1 0
0 1

)
) = {

(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(

1 0
0 1

)
(mod N)}.

• Γ1(N) = π−1({
(

1 ∗
0 1

)
}) = {

(
a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡
(

1 ∗
0 1

)
(mod N)}.

• Γ0(N) = π−1({(∗ ∗0 ∗)}) = {
(

a b
c d

)
∈ SL2(Z) :

(
a b
c d

)
≡ (∗ ∗0 ∗) (mod N)}.

Example 1.2.4. We can also construct congruence subgroups corresponding to the maximal proper

subgroups of GL2(Fp). Let H ≤ GL2(Fp) be one of the maximal proper subgroups in Dickson’s

classification. Then the associated congruence subgroup (of level p) is defined as ΓH := π−1(H ∩

SL2(Fp)).

Definition 1.2.5. Let Γ≤ SL2(Z) be a congruence subgroup of level N and k ≥ 0 an integer. We

say a function f : H→ C is a modular form of weight k with level Γ if

1. f is holomorphic,

2. f is weight-k invariant under Γ, i.e., f |kγ = f for all γ ∈ Γ,

3. f |kα is holomorphic at ∞ for all α ∈ SL2(Z), i.e., (f |kα)(z) is bounded as z→ i∞.

7

If, in addition, f |kα vanishes at infinity for all α ∈ SL2(Z), we say that f is a cusp form.

We denote the set of weight-k modular forms with respect to Γ (resp. cusp forms) as Mk(Γ) (resp.

Sk(Γ)).

Suppose f is a modular form of weight k with level Γ. Since Γ is a congruence subgroup,(
1 h
0 1

)
∈ Γ for some minimal integer h≥ 1, this integer is the width of the cusp ∞. Since a modular

form satisfies f |kγ = f for γ ∈ Γ, we have (f |k
(

1 h
0 1

)
)(z) = f (z+h) = f (z), so f (z) is hZ-periodic

and admits a Fourier expansion f (τ) = ∑
∞
n=0 anqn

h where qh = exp(2πiτ/h). The third condition of

modular forms implies that the Fourier expansion begins at index 0 and cusp forms satisfy a0 = 0.

Example 1.2.6. Let Gk(τ) = ∑(c,d)̸=(0,0) 1/(cτ + d)k. This is a modular form of weight k for

SL2(Z) called Eisenstein series.

The j-invariant is a modular form of weight 0, i.e., a modular function and an element of

the function field of the modular curve C(X(SL2(Z))), with q-expansion:

j : H→ C, j(τ) = 1728
(60G4(τ))

3

(60G4(τ))3−27(140G6(τ))2 =
1
q
+744+196884q+

It is a standard result that Sk(Γ) ⊆Mk(Γ) are finite dimensional complex vector spaces.

Modular forms and modular curves are related by the fact that there is an isomorphism between the

space of weight 2 cusp forms and the space of holomorphic differentials on the modular curve X(Γ)

given by the map:

S2(Γ)
∼=−→ H0(X(Γ),Ω1)

f (τ) 7→ f (τ)dτ.

8

1.2.2 Modular curves

In this section, we define our object of study. Modular curves have rich structures as

Riemann surfaces, algebraic curves and moduli spaces of elliptic curves with some torsion data. We

frequently use properties from various perspectives interchangeably.

As Riemann surfaces

Let Γ≤ SL2(Z) be a subgroup of finite index. H inherits the Euclidean topology from C

and so Y (Γ) := Γ\H carries the quotient topology that is Hausdorff. Y (Γ) can be compactified by

adjoining cusps, which are orbits of P1(Q) under the action of Γ. The resulting quotient space

X(Γ) := Γ\H∗ where H∗ := H∪P1(Q) is called the modular curve associated to Γ. One could

further show that by considering elliptic points and cusps, one can choose suitable charts, therefore

giving Y (Γ) and X(Γ) the structure of Riemann surface.

This approach allows us to use techniques from Riemann surfaces, e.g., genus/ramification

theory, Riemann-Hurwitz formula, Riemann-Roch, etc. to study modular curves.

As algebraic curves

For a finite index subgroup Γ ≤ SL2(Z). The associated modular curve X(Γ) has the

structure of a compact Riemann surface. Compact Riemann surfaces and complex algebraic curves

are equivalent notions [For81]. Note that we are also considering modular curves where the

determinant map on the subgroup H ≤ GL2(Z/NZ) is surjective. By Theorem 7.6.3 in [DS05],

these algebraic curves are in fact defined over Q. We have a Galois-theoretic correspondence

between curves and their function fields:

Theorem 1.2.7. (Curves-Fields Correspondence) For any field k, there is a bijection:

9

{C/k smooth projective algebraic curves}/∼=↔{K/k function field extensions over k}/∼

C 7→ k(C)

Furthermore, this is contravariant: a nonconstant morphism from algebraic curves C to C′

over k corresponds to a field morphism from k(C′) to k(C).

The above theorem allows us to use field/Galois theory, i.e., we can replace curves and their

morphisms by fields and field injections. In particular, the function field of the modular curve X(Γ)

consists of modular functions of weight 0 and level Γ.

As moduli spaces of elliptic curves

For each τ ∈ H, one could associate it with a lattice Λτ := Z+ τ ·Z ⊆ C. The resulting

quotient space C/Λτ is a compact Riemann surface of genus 1, an elliptic curve. Conversely, for

any elliptic curve, as a genus 1 compact Riemann surface, the homology group of the elliptic curve

H1(E,Z) is generated by two loops, γ1,γ2. For an invariant differential ω of the elliptic curve,

we can construct the lattice generated by the periods ΛE = (
∫

γ1
ω) ·Z+(

∫
γ2

ω) ·Z. This can be

renormalised so that ΛE = Z+ τ ·Z with τ = (
∫

γ1
ω)/(

∫
γ2

ω) ∈ H. In particular, the points on H

correspond to elliptic curves.

For Γ≤ SL2(Z), the modular curve X(Γ)(Q̄) parametrise elliptic curves with some torsion

data, i.e., a pair (E,φ) where E is an elliptic curve defined over Q̄ and φ is an isomorphism of

its N-torsion points φ : E[N]→ (Z/NZ)2. Two points (E1,φ1),(E2,φ2) are isomorphic if there

is an isomorphism of elliptic curves ψ : E1→ E2 and some matrix M ∈ Γ such that the diagram

commutes:

10

E1[N] (Z/NZ)2

E2[N] (Z/NZ)2.

φ1

ψ M

φ2

Furthermore, there is an action of the absolute Galois group Gal(Q̄/Q) on (E,φ) and we say

that (E,φ) is a Q-rational point if it is invariant under the action. We can view points on modular

curves as elliptic curves with certain torsion structures which allows us to apply properties of elliptic

curves to study the rational points on X(Γ).

Example 1.2.8. Let H ≤ GL2(Z/NZ) be a subgroup such that

• −I ∈ H,

• the determinant map det : H→ (Z/NZ)× is surjective.

Then for an integer N ≥ 1, we have the congruence subgroup ΓH(N) = {A∈ SL2(Z) : A (mod N)∈

H}, which gives rise to the modular curves XH := X(ΓH(N)).

Following Example 1.2.3, the corresponding modular curves parametrise:

• X(N) := X(Γ(N)) consists of (E,(P,Q)) an elliptic curve and a pair of points generating the

N-torsion subgroup of E.

• X1(N) := X(Γ1(N)) consists of (E,Q) an elliptic curve and a point of order N.

• X0(N) := X(Γ0(N)) consists of (E,C) an elliptic curve and a cyclic subgroup of order N.

1.2.3 Hecke operators

We begin with the definition of Hecke operators as operators on spaces of modular forms.

These are used in conjunction with spectral theory to show that the inner product space of modular

forms contains a basis of modular forms that are eigenvectors under the Hecke operators {Tp}p.

11

Hecke operators are defined on modular forms and modular curves. We use both the transcendental

and algebraic/geometric definitions of Hecke operators in our algorithm.

Definition 1.2.9. Let Γ1,Γ2 be congruence subgroups of SL2(Z) and α ∈ GL+
2 (Q).

• We define the double coset Γ1αΓ2 as the set

Γ1αΓ2 := {γ1αγ2 : γ1 ∈ Γ1,γ2 ∈ Γ2}

• This gives rise to the double coset operators:

(·)|k[Γ1αΓ2] : Mk(Γ1)→Mk(Γ2) (1.1)

f (τ) 7→ f |kΓ1αΓ2 := ∑
i

f |kβi (1.2)

where Γ1αΓ2 =
⋃

i Γ1βi is a (finite) disjoint coset decomposition that does not depend on

the choice of decomposition. This map restricts to an operator on the space of cusp forms

(·)|k[Γ1αΓ2] : Sk(Γ1)→Sk(Γ2).

Hecke operators are a special instance of double coset operators.

Definition 1.2.10. ([Asf20]) Fix a congruence subgroup ΓH ≤ SL2(Z) with H ≤ GL2(Z/NZ). Let

α ∈M2(Z) such that det(α) = p and α (mod N) ∈ H. We define the Hecke operator as

Tp = Tα = (·)|k[ΓαΓ]

Assume p ̸ |N. Then Tp = Tα is independent of the choice of α .

12

Example 1.2.11. ([DS05] Prop. 5.2.1) The theory of Hecke operators can be made explicit for

certain congruence subgroups. The Hecke operator Tp = [Γ1(N)
(1 0

0 p
)
Γ1(N)]k on Mk(Γ1(N)) has

the following formulae:

Tp f =


∑

p−1
i=0 f |k

(
1 j
0 p

)
, if p|N,

∑
p−1
i=0 f |k

(
1 j
0 p

)
+ f |k(

(m n
N p

)(p 0
0 1

)
), if p ̸ |N, where mp−nN = 1.

We summarise a well-known result from the theory of Hecke operators to show that there is

a basis of cusp forms which are eigenvectors of the Hecke operators [DS05]:

Theorem 1.2.12. ([DS05], Chap. 5) Let Γ be a congruence subgroup of level N and n an integer

coprime to N. Then,

• Mk(Γ),Sk(Γ) are inner product spaces with respect to an inner product called the Petersson

inner product.

• The Hecke operator Tn is a normal operator with respect to this inner product. There is

another family called the diamond operators which is also a normal operator.

Therefore, we have a commuting family of operators on a finite dimensional inner product

space and the spectral theorem implies that there is an orthogonal basis of simultaneous eigenvectors

formed by the cusp forms. In this case, we say that the cusp forms are Hecke eigenforms or simply

eigenforms.

There is also an algebraic/geometric interpretation of the double coset operator as a mor-

phism of divisor groups. For Γ1,Γ2 congruence subgroups, α ∈ GL+
2 (Q), Γ3 := α−1Γ1α ∩Γ2 and

Γ′3 := αΓ3α−1. Since points on the modular curve X(Γ) have the form Γτ , we have a diagram at

the level of groups which induces a diagram on modular curves:

13

Γ2←↩ Γ3
∼=−→ Γ

′
3 ↪→ Γ1

X2
π2←− X3

∼=−→ X ′3
π1−→ X1

Suppose Γ3/Γ2 =
⋃

j Γ3γ2, j and β j = αγ2, j. Then the double coset operator induces a map

on the divisor groups after Z-linear extension:

Div(X2)→ Div(X1)

Γ2τ 7→∑
j

Γ1β jτ

We can specialise the above diagram to Hecke operators to get a similar picture. Furthermore,

we could benefit from the moduli interpretation of modular curves by defining it as a correspondence.

For H ≤ GL2(Z/NZ) and p coprime to N, we obtain the modular curve XH and its fiber product

XH(p) := X0(p)×X(1) XH . There are two degeneracy maps α,β : XH(p)→ XH defining the Hecke

operator at p where one forgets the cyclic group of order p and the other quotients out by the cyclic

group of order p.

XH(p)

XH XH

α β

By Picard functoriality, for a point (E,n) ∈ XH where the level structure n is determined by

H, we have an algebraic description of the Hecke operator at p:

Tp(E,n) := α
∗
β∗(E,n) = ∑

f :E→E ′,deg(f)=p
(E ′, f (n)).

14

1.2.4 Coleman integrals

Coleman’s construction of p-adic line integrals share many similar properties as their

complex-analytic analogue. Below we record some properties of Coleman integrals that will be

used in our calculations.

Theorem 1.2.13. ([CdS88, Col85c]) Let X/Qp be a smooth, projective, and geometrically

irreducible curve with good reduction at p, let J be the Jacobian of X.Then there is a p-adic integral

∫ Q

P
ω ∈Qp

with P,Q ∈ X(Qp),ω ∈ H0(X ,Ω1) satisfying:

1. The integral is Qp linear in ω ,

2. We have additivity of endpoints:

∫ Q

P
ω =

∫ R

P
ω +

∫ Q

R
ω,

3. ∫ Q

P
ω +

∫ Q′

P′
ω =

∫ Q′

P
ω +

∫ Q

P′
ω

Thus, we can define
∫

D ω , where D ∈ Div0
X(Qp). Also, if D is a principal divisor, then∫

D ω = 0,

4. There is an open subgroup of J(Qp) such that
∫ Q

P ω can be computed in terms of power series

in some uniformiser by formal term-by-term integration. In particular,
∫ P

P ω = 0,

5. The integral is compatible with the action of Gal(Qp/Qp). In particular, if P,Q ∈ X(Qp)

then
∫ Q

P ω ∈Qp.

15

6. Let P0 ∈ X(Qp) be fixed and ω ̸= 0. Then the set of P ∈ X(Qp) reducing to X(Fp) such that∫ P
P0

ω = 0 is finite,

7. If U ⊆ X ,V ⊆ Y are wide open subspaces of the rigid analytic spaces X ,Y , ω a 1-form on V ,

and φ : U →V a rigid analytic map, then we have the change of variables formula:

∫ Q

P
φ
∗
ω =

∫
φ(Q)

φ(P)
ω,

8. We have an analogue of the Fundamental Theorem of Calculus:
∫ Q

P d f = f (Q)− f (P),

Definition 1.2.14. The Coleman integral
∫ Q

P ω is called a tiny integral if P and Q reduce to the

same point in X(Fp), i.e., they lie in the same residue disc.

If P and Q are in the same residue disc, then the differential form can be expressed as

a power series in terms of a uniformiser at P. The tiny integral can be computed by formally

integrating the power series and then evaluating at the endpoints:

∫ Q

P
ω =

∫ t(Q)

t(P)
ω(t) =

∫ t(Q)

t(P)
∑ait idt = ∑

ai

i+1
(t(Q)i+1− t(P)i+1).

Coleman’s construction is suitable for computations. In [BBK10], the authors demonstrated

an algorithm to compute single Coleman integrals for hyperelliptic curves. Their method is based on

Kedlaya’s algorithm for computing the Frobenius action on the de Rham cohomology of hyperelliptic

curves [Ked01] and this is generalized to arbitrary smooth curves [BT22, Tui16, Tui17]. Despite

recent developments in this direction, current implementations require nice affine plane models for

the curves as inputs. Since modular curves tend to have large gonality [Abr96], methods using the

canonical map [Gal96] are impractical. Therefore, such models are not readily available and are

often bottlenecks in existing algorithms.

16

Chapter 2

Coleman Integration on Modular Curves

In this section, we introduce an algorithm that computes single Coleman integrals between

any two points on modular curves. The modular curves in consideration have congruence subgroups

ΓH ≤ SL2(Z) where H ≤ GL2(Z/NZ) and

• −I ∈ H,

• det : H→ Z/NZ is surjective.

Furthermore, our method extends to the Atkin-Lehner quotients of modular curves with a

slight modification. Another innovation is that the algorithm does not require affine models of the

modular curves, which are often required as inputs in previously known algorithms.

The algorithm to compute
∫ R

Q ω for any P,Q ∈ X , ω ∈ H0(X ,Ω1) has the following major

steps:

1. (Reduction) Write
∫ R

Q ω into a sum of tiny integrals.

2. (Basis and uniformiser) Find a basis of holomorphic 1-forms and a suitable uniformiser.

3. (Hecke operator) Compute the action of Hecke operator on cusp forms and points.

17

4. (Power series expansion) Write the 1-forms as a power series in the uniformiser. This involves

algebraic approximations after solving a system of equations over C.

5. (Evaluation) Formally integrate and evaluate at the end points.

2.1 Breaking the Coleman integrals into tiny integrals

Let X/Q be a modular curve associated to a congruence subgroup Γ, two points Q,R∈X(Q̄),

{ω1, . . . ,ωg} a Q-basis of H0(X ,Ω1) where g is the genus of the curve and p a prime of good

reduction on X .

The Hecke operator at p, Tp, acts on the weight 2 cusp forms, which corresponds to the

holomorphic 1-forms:

T ∗p


ω1

...

ωg

= A


ω1

...

ωg

 .

where A is the Hecke matrix acting on the basis of cusp forms. Since the Hecke operators are linear,

integrating between the points Q and R gives:


∫ Q

R T ∗p ω1

...∫ Q
R T ∗p ωg

= A


∫ Q

R ω1

...∫ Q
R ωg

 .

For any ω ∈ H0(X ,Ω1), using the definition of Hecke operator as a correspondence and the

functoriality of Coleman integrals, we obtain the following equality:

∫ Q

R
T ∗p (ω) =

∫ Tp(Q)

Tp(R)
ω =

p

∑
i=0

∫ Qi

Ri

ω,

18

where Tp(Q) = ∑
p
i=0 Qi and Tp(R) = ∑

p
i=0 Ri. Note that there are p+1 subgroups of order p in E[p],

giving rise to p+1 isogenies of degree p. These isogenies need not be defined over Q.

By considering ((p+1)
∫ R

Q ω−
∫ R

Q T ∗p ω), we have the following fundamental equation:

((p+1)I−A)


∫ Q

R ω1

...∫ Q
R ωg

=


∑

p
i=0

∫ Q
Qi

ω1−∑
p
i=0

∫ R
Ri

ω1

...

∑
p
i=0

∫ Q
Qi

ωg−∑
p
i=0

∫ R
Ri

ωg

 . (2.1)

The Qi’s and Ri’s are by definition p-isogenous to Q and R, therefore, the Eichler-Shimura

relation ([DS05] Theorem 8.7.2) implies that they are in the same residue discs respectively. So the

vector on the right hand side consists of sums of tiny integrals. On the left hand side, the matrix

((p+1)I−A) is invertible by the Ramanujan bound – the Hecke matrix A has eigenvalues {ap}

which satisfy |ap| ≤ 2
√

p.

From the above discussion, since any ω is a linear combination of the ω j’s, we can simulta-

neously compute the Coleman integrals
∫ R

Q ω once we have evaluated the tiny integrals ∑
p
i=0

∫ Q
Qi

ω

and ∑
p
i=0

∫ R
Ri

ω .

2.2 Computing a basis of cusp forms

The spaces of cusp forms for the congruence subgroups Γ(N),Γ1(N) and Γ0(N) are available

in software packages [The22b] and [BCP97]. For H ≤GL2(Z/NZ) satisfying the conditions above,

S2(Γ(N))H , the space of weight 2 cusp forms invariant under H, is isomorphic to S2(ΓH) and

therefore isomorphic to H0(XH ,Ω
1).

The problem of computing a basis of cusp form reduces to computing the action of H ≤

GL2(Z/NZ) on S2(Γ(N)).We follow [Zyw20, BN20] to compute the (well-defined) action. Note

that SL2(Z) is freely generated by the two matrices S =
(

0 −1
1 0

)
and T =

(
1 1
0 1

)
. Since cusp forms of

19

S2(Γ(N)) have qN-expansions, where qN = e2πi/N , the slash-k operator by T introduces a factor ζ n
N

for the n-th Fourier coefficient. On the other hand, the action by S is given by a linear combination

of the basis of cusp forms on Γ(N) where the coefficients depend on a certain Atkin-Lehner operator

WN . Since GL2(Z/NZ)/SL2(Z/NZ)
∼=−→ (Z/NZ)×, we have:

• There is an action of SL2(Z/NZ) induced from SL2(Z) on the cusp forms,

•
(

1 0
0 d

)
acts on the coefficients of the qN-expansion by ζN 7→ ζ d

N , where ζN is a N-th root of

unity.

For congruence subgroups Γ
+
0 (N) := Γ0(N)/wN with an Atkin-Lehner involution, we mod-

ify Zywina’s Magma implementation to compute our examples.

Remark 2.2.1. In general, the map H0(XH ,Ω
⊗k
XH
)→S2k(Γ(N),Q(ζN))

H is injective [Zyw20]. It

is an isomorphism when k = 1, which is what we use here.

2.3 Hecke operators as double coset operators

Hecke operators act on both cusp forms and the divisor group of the modular curve. To

compute them as a double coset operator, we need to compute the coset representatives ΓH\ΓHαΓH

for the congruence subgroup ΓH . A few key lemmas will give us a procedure to compute the coset

representatives.

Lemma 2.3.1. ([DS05] Lemmata 5.1.1, 5.1.2) Let Γ,Γ1,Γ2 be congruence subgroups and α ∈

GL+
2 (Q). Then,

1. α−1Γα ∩SL2(Z)≤ SL2(Z) is a congruence subgroup.

2. There is a bijection:

20

(α−1
Γ1α ∩Γ2)\Γ2↔ Γ1\Γ1αΓ2

(α−1
Γ1α ∩Γ2)γ2 7→ Γ1αγ2

More concretely, {γ2,i} is a set of coset representatives for (α−1Γ1α ∩Γ2)\Γ2 if and only if

{αγ2,i} is a set of coset representatives of Γ1\Γ1αΓ2.

Lemma 2.3.2. ([Shi94] Lemma 3.29(5)) Let α ∈M2(Z) be such that det(α) = p and α (mod N)∈

H. If ΓHαΓH =
⋃

i ΓHαi is a disjoint union, then SL2(Z)αSL2(Z) =
⋃

i SL2(Z)αi is a disjoint

union.

Using the double coset operator definition of Hecke operators as in Equation 1.1, the Hecke

operators can be computed as follows:

1. Find α ∈M2(Z) satisfying det(α) = p, α (mod N) ∈ H,

2. Find the coset representatives {αi} in (α−1SL2(Z)α ∩ SL2(Z))\SL2(Z). Usually, α will

be chosen such that (α−1SL2(Z)α ∩ SL2(Z)) has a clear description. By Lemma 2.3.1,

SL2(Z)\SL2(Z)αSL2(Z) has coset representatives {ααi},

3. By Lemma 2.3.2, for each ααi, find βi ∈ SL2(Z) such that βiααi ∈ ΓH . Then {βiααi} will

be the desired coset representatives for ΓH\ΓHαΓH .

On the other hand, the Hecke operators act on points on the modular curves. Since we

are expressing the Hecke images in terms of the chosen uniformiser, the Hecke images, which

correspond to elliptic curves that are p-isogeneous to our point, arise as roots of modular polynomials.

A table of small modular polynomials is available in [BLS10, BOS16].

21

2.4 Tiny integrals via complex number approximation

We present a method to compute tiny integrals. We first write the 1-forms or cusp forms as

a power series in a chosen uniformiser. We compute the Taylor coefficients of the cusp forms and

uniformiser around a point and recover the power series coefficients as algebraic approximations

of the complex solutions of a system of equations. The algebraic approximations can be done via

an LLL-type algorithm from known implementations. We find the corresponding Hecke images

of the points in the same residue disc as zeros of modular polynomials since they correspond to

elliptic curves that are p-isogeneous to our point. Finally, we formally integrate and evaluate at

these endpoints.

Algorithm 2.4.1. Computing ∑
p
i=0

∫ Q
Qi

ω

Input:

• τ0 ∈H such that Γτ0 corresponds to a rational point Q on X, and q0 := e2πiτ0/h where h is

the width of the cusp.

• A good prime p which does not divide j(Q) or j(Q)−1728.

• A cusp form f ∈S2(Γ) given by its q-expansion where q = e2πiτ/h. We denote the corre-

sponding 1−form by ω .

Output:

• The sum of tiny Coleman integrals ∑
p
i=0

∫ Q
Qi

ω ∈Qp, where Tp(Q) = ∑
p
i=0 Qi.

Steps:

1. (Writing ω as a power series in terms of an uniformiser u) Fix a precision n. Find xi ∈ Q

such that

ω = (
n

∑
i=0

xi(u)n +O(un+1))d(u). (2.2)

22

These xi’s can be found using the following steps:

a. Write u and ωi as power series expansions of q−q0 by differentiating their q-expansions

and evaluating at q0:

u =
C1

∑
i=1

ai(q−q0)
i +O((q−q0)

C1+1),

ω =
C2

∑
i=0

bi(q−q0)
i +O((q−q0)

C2+1)dq,

d(u) = (
C1

∑
i=1

iai(q−q0)
i−1 +O((q−q0)

C1))dq,

where C1,C2 are some fixed precision determined by n and the norm of q0. The coeffi-

cients ai, bi’s are in C.

b. Replace ω, u and d(u) by their power series expansions in q−q0 as in equation (2.2).

Comparing the coefficients of (q− q0)
k on both sides gives us the following linear

system:



a1 0 0 . . . 0

2a2 a2
1 0 . . . 0

3a3 3a1a2 a3
1 . . . 0

...
...

...

(n+1)an+1 ∑
n
i=1 ai(n+1− i)an+1−i ∗ . . . an+1

1


·



x0

x1

x2

...

xn


=



b0

b1

b2

...

bn


c. Solve this system of equations and get complex solutions xi’s. These xi’s can be recovered

as elements in Q using algdep from PARI/GP. This is likely to succeed given sufficient

complex precision.

2. Calculate u(Qi) as algebraic numbers. In practice, we use the j-invariant function as an

23

uniformiser. We calculate j(Qi) transcendentally by evaluating the q-expansion of the j-

function on βi(τ0) and then obtain the algebraic approximation. On the other hand, the roots

of the modular polynomial Φp(x, j(Q)) = 0 are the j-invariants of elliptic curves that are

p-isogeneous to Q. This gives another (algebraic) method to compute j(Qi).

3. Compute the sum of tiny integrals
p
∑

i=0

∫ Qi
Q ω ≈

p
∑

i=0

∫ u(Qi)
0 (∑n

j=0 x ju jdu) with its p-adic expan-

sion.

24

Chapter 3

Computations and examples

In the previous chapter, we outlined an algorithm to compute single Coleman integrals on

modular curves between any two known points. The modular curves in consideration come from

Serre’s Uniformity Conjecture, i.e., they are of the form X = XH(N) :=H+/ΓH(N) and they satisfy:

• ΓH(N)≤ SL2(Z) where H ≤ GL2(Z/NZ),

• −I ∈ H,

• det : H→ Z/NZ is surjective.

Moreover, we also consider quotients of modular curves by the action of Atkin-Lehner

involutions. We will demonstrate three classes of examples, namely, X0(N), X+
0 (N), and X+

ns(N),

while gathering the necessary ingredients such as known rational points, basis of differentials and

the action of the Hecke operators to perform Coleman integration.

25

3.1 X0(N)

Let N be positive integer. The modular curve X = X0(N) is defined to be the quotient of the

upper half plane by the congruence subgroup Γ0(N) = {(∗ ∗0 ∗) (mod N)} ≤ SL2(Z). As a moduli

space, the Q-rational points of X correspond elliptic curves E defined over Q such that E admits

a Q-rational isogeny of degree N to another elliptic curve E ′. Given a point Q on X , to find the

coset representative on the upper half plane, one first finds the ratio of periods τ ′ ∈H of the elliptic

curve Q, which corresponds to SL2(Z)τ ′ ∈ SL2(Z)\H satisfying j(τ ′) = j(E). This can be done

by finding an elliptic curve Eτ/C with j-invariant jE via the universal elliptic curve:

y2 + xy = x3− 36
jE −1728

x− 1
jE −1728

Then, one iterates through the cosets of SL2(Z)/Γ0(N) to find γ such that its j-invariant

satisfies:

j(γτ
′) = j(Nγτ

′) = j(E)

As a result, the point Q corresponds to Γ0(N)γτ ′ ∈ Γ0(N)\H+. One could find a basis of

weight 2 cusp forms S2(Γ0(N)) and the action of Hecke operators on the basis of cusp forms using

well known methods that are implemented in SAGEMATH[Ste07, The22b]. Let ω ∈ H0(X ,Ω1),

Q ∈ X(Q). We follow Algorithm 2.4.1 for computing ∑
p
i=0

∫ Q
Qi

ω . We choose j(τ)− j(Q) as our

uniformiser.

3.1.1 Example: X0(37)

• Curve data: We consider the modular curve X = X0(37). X is a hyperelliptic curve.

Comparing relations between q-expansions of rational functions x, y ∈ C(X), we obtain a

26

plane model y2 = −x6− 9x4− 11x2 + 37. It known that there are four Q-rational points

Q = (1,−4), R = (−1,−4), S = (1,4), T = (−1,4), where Q,R are noncuspidal rational

points and S,T are cuspidal rational points [MSD74].

• Rational points: Since the j-function is a modular function on X0(37) and that X0(37) is

hyperelliptic, we could express j-function as a rational function of x and y to compute that

j(Q) =−9317 =−7 ·113,

j(R) =−162677523113838677 =−7 ·1373 ·20833.

The points Q,R corresponds to the elliptic curve EQ,ER with j-invariants j(Q), j(R) con-

taining a cyclic subgroup of order 37 (or equivalently, with a degree 37-isogeny). This

information could be verified in LMFDB [LMF22]. Following the method in Section 3.1, we

obtain the upper half plane representatives of Q,R as follows:

τQ ≈ 0.5+0.17047019819380 · i ∈H,

τR ≈ 0.5+0.39635999889406 · i ∈H.

• Basis of differential forms: One could compute that S2(Γ0(N)) has C-dimension 2 and

a basis of the space of weight 2 cusp forms using SAGEMATH. Furthermore, the action of

Hecke operators on the basis of cusp forms is available on SAGEMATH. Linear algebra yields

27

an eigenbasis { f0, f1} of the C-vector space S2(Γ0(37)) with the following q-expansions:

f0 = q+q3−2q4 +O(q6),

f1 = q−2q2−3q3 +2q4−2q5 +O(q6).

• Hecke action: We choose p = 3, and T3(f0) = f0, T3(f1) = −3 f1. Therefore the Hecke

operator matrix T3 is
(

1 0
0 −3

)
. Furthermore, we find j(Qi), j(Ri) as roots of the modular

polynomials Φ3(j(Q),X) = 0, Φ3(j(R),X) = 0 where Φ3(X ,Y) is the modular polynomial

of level 3.

• Algorithm 2.4.1 and results: Let ω0,ω1 be 1-forms that corresponds to cusp forms−1
2 f0,−1

2 f1

respectively in order to obtain ω0 =
dx
y and ω1 =

xdx
y . This way, we can get a direct compari-

son with MAGMA’s implementation of computing Coleman integrals on hyperelliptic curves.

Now, we proceed with computing the Coleman integrals on ω0, ω1.

By comparing complex coefficients and using algdep to algebraically approximate complex

numbers, we obtain rational coefficients xi in the expansion of ω1 about j = j(Q):

ω1 =(−9317)+
717409

2 ·37 ·47
(j− j(Q))+

253086749261192
372 ·473 (j− j(Q))2

+
176804544077038351043955

373 ·475 (j− j(Q))3 +O((j− j(Q))4) d(j− j(Q)).

After that, we substitute the roots into a sum of local power series:

3

∑
i=0

∫ Q

Qi

ω1 =
3

∑
i=0

∫ 0

j(Qi)− j(Q)
(−9317)+

717409
2 ·37 ·47

t +
253086749261192

372 ·473 t2

+
176804544077038351043955

373 ·475 t3 + · · ·dt

Our results are listed in the table below. One can verify the results by comparing with the

28

hyperelliptic model of this curve or with the MAGMA hyperelliptic curves implementation

from [BT22].

Table 3.1: Coleman integration on X0(37)

∑
3
i=0

∫ Q
Qi

ω0 O(314)

∑
3
i=0

∫ Q
Qi

ω1 32 +33 +39 +310 +2 ·311 +312 +2 ·313 +O(314)

∑
3
i=0

∫ R
Ri

ω0 O(314)

∑
3
i=0

∫ R
Ri

ω1 32 +33 +39 +310 +2 ·311 +312 +2 ·313 +O(314)

29

3.2 X+
0 (N)

Consider the modular curve X0(N) from the section. The Atkin-Lehner involution wN :=

1√
N

(
0 −1
N 0

)
acts on the points of X0(N). One could verify that w2

N acts as the identity on the Γ0(N)-

orbits of H. Let Γ
+
0 (N) := Γ0(N)∪wNΓ0(N). The compactification of the quotient of the upper

half plane by Γ
+
0 (N) gives rise to the modular curve X := X+

0 (N).

Proposition 3.2.1. Suppose Γ0(N)τ ∈ X0(N) corresponds to the elliptic curve with torsion data

(E1,φ : E1→ E2), then wN(Γ0(N)τ) corresponds to (E2, φ̂ : E2→ E1), where φ̂ is the dual isogeny.

Proof. Γ0(N)τ corresponds (Eτ ,⟨ 1
N ,τ⟩) up to isomorphism. As wN · τ = −1

Nτ
, wN ·Γ0(N)τ corre-

sponds to [E 1
Nτ

,⟨ 1
N ,

1
Nτ
⟩]. Note that the relation between complex tori over Γ0(N) and elliptic curves

with a cyclic subgroup of order N are captured by the following isomorphism Eτ/⟨ 1
N ,τ⟩ ∼=C/⟨ 1

N ,τ⟩.

It is clear that ⟨ 1
N ,τ⟩= τ⟨1, 1

Nτ
⟩, hence E 1

Nτ

is isomorphic to Eτ/⟨ 1
N ,τ⟩. It remains to check that the

dual isogeny of φ : E→ Eτ/⟨ 1
N ,τ⟩ is indeed the isogeny induced by E 1

Nτ

. This can be checked by

first computing the dual isogeny and comparing kernels.

The above proposition provides a moduli interpretation for X+
0 (N), i.e., the Q-points corre-

spond to unordered pairs of elliptic curves {φ1 : E1→ E2,φ2 : E2→ E1} such that φ1 is an isogeny

of degree N, and φ2 is the dual isogeny, with the additional requirement that they are Gal(Q̄\Q)-

invariant. Note that by complex multiplication theory, it is possible that the elliptic curves E1,E2 or

the isogenies φ1,φ2 may not be defined over Q but over a quadratic extension of Q, and in that case

the elliptic curves or isogenies are fixed by nontrivial Galois element of the quadratic extension.

The expected rational points on X correspond to elliptic curves with complex multiplication.

Following [Mer18, Sta75], we have a list of discriminants of imaginary quadratic number fields

with class number one:

30

D = {−3,−4,−7,−8,−11,−12,−16,−19,−27,−28,−43,−67,−163}.

Let E be a CM elliptic curve such that its endomorphism ring OE has discriminant ∆E ∈D .

Elliptic curves E such that N splits or ramifies in OE give rise to rational points on X [Gal99].

Iterating through the class number one discriminants, we have list of candidates of expected rational

points coming from CM elliptic curves. We denote the one of the rational points by Q.

The endomorphism ring OE is an order in an imaginary quadratic field and therefore has

a generator τE and we factor the ideal (N) into a product of principal ideals mm̄ in OE . Write

m = (α). Since α ∈ OE , there exists integers c,d such that α = cτE + d. Euclidean algoritm

gives two integers a,b such that γ =
(

a b
c d

)
∈ SL2(Z). In this case, the upper half representative is

τQ = γ · τE .

To compute the basis of cusp forms S2(Γ
+
0 (N)), one observes that by the definition of

X+
0 (N), S2(Γ

+
0 (N)) = { f ∈S2(Γ0(N)) : f |2wN = f}, i.e., the weight 2 cusp forms on this space

are the ones from Γ0(N) that are fixed by the Atkin-Lehner involution.

Now, we describe the action of Hecke operators:

Lemma 3.2.2. Let α ∈ GL+
2 (Q). The coset representatives of (α−1Γ

+
0 (N)α ∩Γ

+
0 (N))\Γ+

0 (N) is

the same as that of (α−1Γ0(N)α ∩Γ0(N))\Γ0(N).

Proof. Observe that

α
−1

Γ
+
0 (N)α ∩Γ

+
0 (N) = α

−1(Γ0(N)∪wNΓ0(N))α ∩ (Γ0(N)∪wNΓ0(N))

= (α−1
Γ0(N)α ∩Γ0(N))∪ (α−1(wNΓ0(N))α ∩wNΓ0(N))

31

Now, by Lemma 2.3.1, one has an explicit description of the double coset representatives of

Γ0(N)αΓ(N) and one could show that the two sets of coset representatives above are equal.

In particular, the above lemma implies that, for a prime p, the Hecke operator Tp on X+
0 (N)

and X0(N), as a double coset operator, has the same coset representatives:

(·)|k[Γ+
0 (N)αΓ

+
0 (N)] = (·)|k[Γ0(N)αΓ0(N)] : f 7→∑

i
f |kβi =

p−1

∑
i=0

f |k
(1 i

0 p
)
+ f |k

(p 0
0 1

)
For the uniformiser, we require a combination of modular functions that is invariant under

the Atkin-Lehner involution wN . Since j(wN ·τ) = j(−1/Nτ) = j(Nτ), we can choose j+ jN as our

uniformiser, where jN(τ) := j(Nτ). For a given point Q = {E1↔ E2} and the points Qi in the same

residue disc, the endpoints of the sum of tiny integrals are j(Qi)+ j(NQi) where j(Qi) and j(NQi)

can be computed as roots of the modular polynomials Φp(x, j(E1)) = 0 and Φp(x, j(E2)) = 0.

3.2.1 Example: X+
0 (67)

• Curve data: We consider the modular curve X = X+
0 (67). X is a hyperelliptic curve. Again,

by comparing relations between q-expansions of rational functions x, y ∈ C(X), we obtain a

plane model y2 = x6 +2x5 + x4−2x3 +2x2−4x+1. A quick box search yields two rational

points R = (0,−1),S = (1,1) on X .

• Uniformisers: We use j+ jN as the uniformiser since it is a modular function invariant under

the Atkin-Lehner involution.

• Rational points: For the rational points R,S, their upper half plane representatives can be

found as follows. R is the pair {φ1 : E1→ E1, φ̂1 : E1→ E1}, with j(E1) =−2183353. E1/Q

has CM by the ring of integers OK1 where K1 = Q(
√
−43). 67 splits in OK1 implies that

32

such pair of isogenies exists. Similarly, S is the pair {φ2 : E2 → E2, φ̂2 : E2 → E2}, with

j(E2) = 2653. E2/Q has CM by the ring of integers OK2 with K2(=Q(
√
−2)), 67 splits in

OK2 as well. Note that both R and S are not fixed by the Atkin-Lehner involution, since that

corresponds to the case when 67 is ramified.

We have j(R) = 2653,D(R) = −8, hence τR =
√
−2. Following the steps described in the

previous section, we have (67) = (7+3
√
−2)(7−3

√
−2) and the Euclidean algorithm gives

7+3
√
−2 = 7+3 ·

√
−2 =⇒ γ̂ =

(
1 2
3 7

)
Therefore,

τ̂R = γ̂τR =

√
−2+2

3
√
−2+7

≈ 0.298507462686567+0.0211076651100462 · i.

Similarly, we have j(S) = 243353,D(S) = −12,τS =
√
−3. (67) = (8+

√
−3)(8−

√
−3)

and the Euclidean algorithm gives

8+
√
−3 = 8+1 ·

√
−3 =⇒ γ̂ =

(−1 −9
1 8

)

Therefore,

33

τ̂S = γ̂τS =−
√
−3+9√
−3+8

≈ 1.11940298507463−0.0258515045905802 · i.

• Basis of differential forms: S2(Γ0(67)) has dimension 5. One could compute the action of

w67 on the space and find a 2-dimensional subspace spanned by cusp forms invariant under

the Atkin-Lehner involution using SAGEMATH, to get a basis of H0(X ,Ω1):

ω0 = f0 dq/q = 2q−3q2−3q3 +3q4−6q5 +O(q6) dq/q

ω1 = f1 dq/q =−q2 +q3 +3q4 +O(q6) dq/q

• Hecke action: Let p = 13 be a good prime. The Hecke matrix on this subspace is T13 =(
−7/2 15/2
3/2 −7/2

)
. As before, we find the Hecke images of points as roots of modular polynomials

at level 13.

• Algorithm 2.4.1 and results: Step 1 of Algorithm 2.4.1 gives a power series expansion of

the differential forms for the uniformiser j := j+ jN (for simplicity, we use this notation).

For example, ω0 at j = j(R) has the following power series expansion:

ω0 =
−1

27 ·52 ·72 +
3047

215 ·55 ·76 (j− j(R))+
−38946227
224 ·58 ·710 (j− j(R))2

+
33888900627
232 ·510 ·714 +

−110823337943341
242 ·513 ·717 (j− j(R))3 +O((j− j(R))4) d(j− j(R)).

The endpoints j(Qi)+ j(NQi) appearing in the sum of tiny integrals can be computed as

mentioned in the previous section. Finally, we compute the Coleman integrals and our results

can be verified with the MAGMA implementation by [BT22] since X is hyperelliptic.

34

Table 3.2: Coleman Integrations on X+
0 (67))

∑
3
i=0

∫ R
Ri

ω0 2 ·13+132 +3 ·133 +7 ·134 +11 ·135 +8 ·136 +8 ·137 +7 ·138 +139 +O(1310)

∑
3
i=0

∫ R
Ri

ω1 11 ·13+8 ·132 +6 ·133 +8 ·134 +3 ·135 +6 ·136 +6 ·137 +7 ·138 +11 ·139 +O(1310)

∑
3
i=0

∫ S
Si

ω0 10 ·13+8 ·132 +2 ·135 +5 ·136 +10 ·137 +2 ·138 +2 ·139 +O(1310)

∑
3
i=0

∫ S
Si

ω1 3 ·13+7 ·132 +2 ·133 +10 ·134 +8 ·135 +5 ·136 +8 ·138 +10 ·139 +O(1310)

35

3.3 X+
ns(p)

For a prime p, we first define the nonsplit Cartan subgroup Cns and its normaliser C+
ns. Let

{1,α} be a Fp- basis of Fp2 . Suppose that α satisfies a minimal polynomial X2− tX +n ∈ Fp[X].

For any β = x+ yα ∈ F×p2 , there is a multiplication-by-β map with respect to the basis {1,α}:

iα : F×p2 → GL2(Fp)

β 7→
(x −ny

y x+ty
)

Given this choice of basis, we define the nonsplit Cartan subgroup Cns(p) ≤ GL2(Fp) as

the image of iα . The normaliser of the nonsplit Cartan subgroup C+
ns(p) is the subgroup generated

by Cns(p) and the conjugation map under iα coming from Gal(Fp2/Fp). α can be chosen to be the

squareroot of a quadratic nonresidue ε in Fp2 satisfying X2− ε2 = 0. Then, we have:

C+
ns(p) = ⟨

(
x ε2y
y x

)
,
(

1 0
0 −1

)
: (x,y) ∈ F2

p\(0,0)⟩.

If ⟨β ⟩= F×p2 , then we can write down the generators of C+
ns(p).

Example 3.3.1. Let p = 13,ε =
√

7,F×p2 = ⟨1+ ε⟩. Then

C+
ns(13) = ⟨

(
1 7·1
1 1

)
,
(

1 0
0 −1

)
⟩.

The modular curve corresponding to the normaliser of nonsplit Cartan subgroup C+
ns(p) is

defined as the compactification of the quotient of the upper half plane by the lift of C+
ns(p) to a

subgroup Γ+
ns(p)≤ SL2(Z).

Finding a basis of S2(Γ
+
ns(p)) can be done following Zywina’s MAGMA implementation as

in Section 2.2. For the purpose of exposition, suppose S2(Γ
+
ns(p)) = { f1, . . . , fg}.

36

To find the upper half plane representatives of the expected rational points, we follow a

similar procedure for X0(N). First, in the list of class number one discriminants D , the expected

points correspond to the discriminants ∆ such that p is inert in the corresponding order O∆ [Maz77].

Once we have the list of expected points {P1, . . .Pr}, one could use the same method of inverting

the j-invariant function to find SL2(Z)-orbits {τ1, . . . ,τr}. The cosets of Γ+
ns(p)\SL2(Z) allow us

to find the correct upper half plane representatives corresponding to {P1, . . .Pr}. The problem now

reduces to computing Γ+
ns(p)\SL2(Z). There is bijection:

SL2(Z)/Γ
+
ns(p)→ SL2((Z/pZ)/C+

ns(p)∩SL2(Z/pZ)

Γ
+
ns(p)γ 7→ (C+

ns(p)∩SL2(Z/pZ))γ̄.

Therefore, once we obtained coset representatives {γi} of SL2((Z/pZ)/C+
ns(p)∩SL2(Z/pZ),

we can verify if γiτ is a Q-rational point on X for τ ∈ {τ1, . . . ,τr} by considering the canonical

embedding, i.e., we can check if (f1(γi · τ) : . . . : fg(γi · τ)) ∈ Pg−1(Q).

On the cusp forms, there are two major steps to computing the Hecke operator: find the

double coset representatives and then decompose these representatives into products on simpler

matrices, for which there are algorithms to compute the slash-k operators [Zyw20, DS05]. The

Hecke operator at the prime ℓ acts as a double coset operator:

[Γ+
ns(p)αΓ

+
ns(p)]2 f = ∑ f |2αi,

where {αi}i=0,...,p are the double coset representatives of Γ+
ns(p)\Γ+

ns(p)αΓ+
ns(p). It turns

out that the representatives have the form αi = εε ′
(

1 0
0 ℓ

)
β or εε ′β

(
ℓ 0
0 1

)
, where ε,ε ′ ∈ SL2(Z)

depends on α and β comes from the standard cosets of Γ0(ℓ)\SL2(Z). The motivation for this

37

decomposition is that Zywina’s algorithm [Zyw20] can compute the slash-k operator on determinant

1 matrices and the two matrices on the right can be resolved using techniques from [DS05]

In the first case, f |2αi = f |2εε ′
(

1 0
0 ℓ

)
β is given by Zywina’s algorithm and explicit formulas

found in Chapter 5, Section 2 of [DS05]. For the second case, one uses the fact that
(

1 0
0 ℓ

)(
mℓ n
N 1

)
=

(m n
N ℓ)

(
ℓ 0
0 1

)
where mℓ− nN = 1. So the last coset αℓ is of the form εεβ

(p 0
0 1

)
. Again, Zywina’s

algorithm allows us to compute the slask-k operator for the first three matrices of determinant 1

while
(
ℓ 0
0 1

)
acts by shifting the indices by multiples of ℓ.

Since we already have a basis { f1, . . . , fg} of weight 2 cusp forms on Γ+
ns(p) by Zy-

wina’s algorithm, writing [Γ+
ns(p)αΓ+

ns(p)]2 fi as a linear combination of the basis elements of

S2(Γ(p),Q(ζp)) would give us the Hecke matrix.

The Hecke operator on points can be computed in two ways as before. Firstly, if we have

the double coset representatives, we can evaluate the points. Secondly, we could find the roots of

the modular polynomial. Each approach has its (dis)advantages: we can evaluate cusp forms on

explicit representatives but this will require a closer analysis of the group structure of C+
ns(p) and

high enough complex precision; the modular polynomials give us the j-invariants of ℓ-isogeneous

points but they have large coefficients.

3.3.1 Example: X+
ns(13)

We consider the cursed curve X = X+
ns(13) of genus 3 [BDM+19]. Let C+

ns(13) be defined

by choosing the quadratic non-residue to be 7 as in the previous example, and let Γ+
ns(13) be the lift

of C+
ns(13) in SL2(Z).

• Basis of differential forms: Using Zywina’s Magma implementation [Zyw20] , we obtain a

38

basis of cusp forms as follows:

f0 =(3ζ
11
13 +ζ

9
13 +3ζ

8
13 +ζ

7
13 +ζ

6
13 +3ζ

5
13 +ζ

4
13 +3ζ

2
13 +1)q

+(−ζ
10
13 −2ζ

9
13−ζ

7
13−ζ

6
13−2ζ

4
13−ζ

3
13−2)q2 +O(q3)

f1 =(4ζ
11
13 +2ζ

9
13 +5ζ

8
13 +5ζ

5
13 +2ζ

4
13 +4ζ

2
13)q

+(−3ζ
11
13 −5ζ

10
13 −4ζ

9
13−4ζ

8
13−4ζ

7
13−4ζ

6
13−4ζ

5
13−4ζ

4
13−5ζ

3
13−3ζ

2
13−2)q2 +O(q3)

f2 =(ζ 10
13 −2ζ

7
13−2ζ

6
13 +ζ

3
13)q

+(−ζ
11
13 −2ζ

10
13 −2ζ

8
13−2ζ

5
13−2ζ

3
13−ζ

2
13 +2)q2 +O(q3),

where ζ13 is a 13-th primitive root of unity and q = e
2πiτ
13 .

• Curve data: The method of canonical embedding [Gal96] gives us the following model:

X4− 7
12

X3Y − 37
30

X2Y 2 +
37
30

XY 3− 3
10

Y 4− 61
60

X3Z +
41
15

X2Y Z

− 103
60

XY 2Z +
19
60

Y 3Z− 23
6

X2Z2 +
87
20

XY Z2− 14
15

Y 2Z2− 199
60

XZ3

+
97
60

Y Z3− 11
15

Z4 = 0,

where X , Y and Z corresponds to f0, f1 and f2 respectively. The rational points can be found

by a box search:

{(3
5

: 2 : 1),(−2 : 2 : 1),(−2 :
−9
2

: 1),(−2 :
−7
3

: 1),(
7
3

: 2 : 1),(
5
4

: 2 : 1),(11 :
43
2

: 1)}

.

• Uniformisers: S2(Γ
+
ns(13))⊆S2(Γ(N),Q(ζN)) so the j-function is still a modular function

for the normaliser of nonsplit Cartan and therefore can be used as an uniformiser.

39

• Rational points: Among the class number one discriminants ∆ in D , we find ∆ such that

13 is inert in the corresponding order O∆. The set {−7,−8,−11,−19,−28,−67,−163}

contains discriminants that give rise to 7 expected rational points on X . We pick Q to be

the point that corresponds to discriminant −7, and R to be the point that corresponds to

discriminant −11. Following the notations in previous section, we have τ7 =
1
2 +

1
2

√
−7 and

τ11 =
1
2 +

1
2

√
−11. We then compute the coset representatives of SL2(Z)/Γ+

ns(13),

{g0, . . . ,g77}= {T i, (T 2)ST i, (T 3)ST i, (T 4)ST i, (T 5)ST i, (T 12)ST i for i = 0, . . . ,12},

where T =
(

1 1
0 1

)
, S =

(
0 −1
1 0

)
are the two generators of SL2(Z). By evaluating f0, f1, f2 at

gi(τ7) and gi(τ11) for i = 0, . . . ,77, we obtain the correct Γ+
ns(13)-orbit representatives for Q

and R, τQ = 4+2
√
−7

3+
√
−7

,τR = 13+
√
−11

2 . As in the previous section, the correct representative for

Q can be found by evaluating f0(gi(τ7))
f2(gi(τ7))

and f1(gi(τ7))
f2(gi(τ7))

for different coset representatives gi so

that the ratios are rational numbers. Applying the same method to all the 7 discriminants, we

get their corresponding rational points as computed from the model above.

• Hecke action on forms: We choose p = 11. Let α =
(−13 44

42 −143

)(
1 0
0 11

)
be the element

α ∈M2(Z) with det(α)= 11, α (mod 13)∈C+
ns(13). To find the double coset representatives

we start with finding the coset representatives for S := (α−1 SL2(Z)α∩SL2(Z))\SL2(Z) =

Γ0(11)\SL2(Z). For each β ∈ S , we found a corresponding γ ∈ Γ0(11) such that the

representative β ′ = γβ ∈ Γ+
ns(13). We define the set of coset representatives to be S ′ :=

40

(α−1Γ+
ns(13)α ∩Γ+

ns(13))\Γ+
ns(13) and the set of corresponding γ’s to be Γ:

S = {
(

1 i
0 1

)
, i = 0,1, . . . ,10}∪{

(
66 5
13 1

)
},

Γ = {
(

1 0
0 1

)
,
(

1 0
−2 1

)
,
(

1 11
0 1

)
,
(

1 −55
0 1

)
,
(

1 22
0 1

)
,
(

1 −44
0 1

)
,
(

1 33
0 1

)
,
(

1 −33
0 1

)
,
(

1 44
0 1

)
,(

1 −22
0 1

)
,
(−1 −55

0 −1

)
,
(

1 −44
0 1

)
},

S ′ = {
(

1 0
0 1

)
,
(

1 1
−2 1

)
,
(

1 13
0 1

)
,
(

1 −52
0 1

)
,
(

1 26
0 1

)
,
(

1 −39
0 1

)
,
(

1 39
0 1

)
,
(

1 −26
0 1

)
,
(

1 52
0 1

)
,(

1 −13
0 1

)
,
(−1 −65

0 −1

)
,
(−506 −39

13 1

)
}.

From the bijection

Γ
+
ns(13)\Γ+

ns(13)αΓ
+
ns(13)→ (α−1

Γ
+
ns(13)α ∩Γ

+
ns(13))\Γ+

ns(13)

Γ
+
ns(13)δ 7→ (α−1

Γ
+
ns(13)α ∩Γ

+
ns(13))α−1

δ

we can get the double coset representatives of Γ+
ns(13)\Γ+

ns(13)αΓ+
ns(13):

Sα = {
(−13 4

42 −13

)(
1 0
0 11

)(
1 0
0 1

)(
1 0
0 1

)
,
(−13 4

42 −13

)(
1 0
0 11

)(
1 0
−2 1

)(
1 1
0 1

)
, . . . ,(−13 4

42 −13

)(
1 0
0 11

)(−1 −55
0 −1

)(
1 10
0 1

)
,
(−13 4

42 −13

)(
1 0
0 11

)(
1 −44
0 1

)(
66 5
13 1

)
}

= {
(−13 4

42 −13

)(
1 0
0 1

)(
1 0
0 11

)(
1 0
0 1

)
,
(−13 4

42 −13

)(
1 0
−22 1

)(
1 0
0 11

)(
1 1
0 1

)
, . . . ,(−13 4

42 −13

)(−1 −5
0 −1

)(
1 0
0 11

)(
1 10
0 1

)
,(−13 4

42 −13

)(
1 −4
0 1

)(
1 0
0 11

)(
66 5
13 1

)
=
(−13 4

42 −13

)(
1 −4
0 1

)(
6 5

13 11

)(
11 0
0 1

)
}.

Following the discussion in the previous section, the Hecke matrix is A =
(0 −1 2

4 −4 3
−1 1 4

)
in our

41

fundamental equation

((p+1)I−A)(
∫ R

Q
ωi) = (∑

j

∫ Q j

Q
ωi−∑

j

∫ R j

R
ωi).

• Algorithm 2.4.1 and results: In Step 1 of Algorithm 2.4.1, linear algebra over C gives a

power series expansion of the differential form ω0 at j = j(Q):

ω0 =
1

34 ·52 ·13
+

23
310 ·55 ·13

(j− j(Q))+
4

313 ·57 ·13
(j− j(Q))2

+
437174

322 ·510 ·133 (j− j(Q))3 +
138504533

328 ·513 ·134 (j− j(Q))4 +O((j− j(Q))5) d(j− j(Q)).

The Hecke images can be found by computing the roots of the modular polynomial equation

Φ11(j(Q),x) = 0. Next, we compute the integrals as in Step 3. We record our results in the

following table.

Table 3.3: Coleman Integrations on X+
ns(13))

∑
11
i=0

∫ Q
Qi

ω0 10 ·11−1 +9+9 ·11+6 ·112 +7 ·113 +9 ·114 +O(115)

∑
11
i=0

∫ Q
Qi

ω1 8 ·11−1 +7+7 ·11+2 ·112 +6 ·113 +6 ·114 +O(115)

∑
11
i=0

∫ Q
Qi

ω2 10 ·11−1 +8+8 ·11+112 +9 ·114 +O(115)

∑
11
i=0

∫ R
Ri

ω0 7 ·11−1 +2+3 ·11+9 ·112 +3 ·113 +5 ·114 +O(115)

∑
11
i=0

∫ R
Ri

ω1 6+6 ·11+113 +5 ·114 +O(115)

∑
11
i=0

∫ R
Ri

ω2 7 ·11−1 +4+11+10 ·112 +10 ·113 +5 ·114 +O(115)

42

3.4 Conclusion and future work

In this project, we developed a model-free algorithm to compute single Coleman integrals

on modular curves. The algorithm works for all modular curves which arise from maximal proper

subgroups of GL2(Fp) (see Serre’s Uniformity Conjecture) and Atkin-Lehner quotients of modular

curves.

As a continuation project, we hope to get an analogous model-free algorithm for double

integrals in order to apply these methods to quadratic Chabauty since modular curves satisfy the

quadratic Chabauty bound [Sik17]. There exists combinatorial identities for iterated Coleman

integrals but some of the properties such as additivity of endpoints and functoriality no longer hold

since pushforwards of 1-forms are not well-behaved.

Furthermore, when writing the 1-forms as power series expansions in terms of the uni-

formiser, we recover the coefficients by algebraic approximations of the complex solution of a

system of equations. This process depends on the complex precision that we allow. Another

approach to solve this problem is to look at the differential equations satisfied by modular forms.

One could also consider other choices of uniformisers. Our approach exploits the fact

that p-isogeneous elliptic curves arise as roots of the modular polynomials. However, modular

polynomials often have large coefficients and the splitting fields often have large degrees. One

hope is to replace uniformisers by ones that satisfy a simpler modular polynomial. Moreoever,

certain rational combinations of the j-invariant function yield smaller coefficients in the uniformiser

expansion of the 1-form and it will be interesting to understand the reason behind such choices.

43

Part II

Decoding Failures of BIKE

44

Chapter 4

Preliminaries

4.1 Introduction

Most cryptosystems implemented today rely on certain hard problems in number theory,

such as integer factorisation or the discrete log problem. These problems fall into the general

category of Hidden Subgroup Problems. Recently, there has been significant research on quantum

computers and quantum algorithms which make use of quantum phenomena to solve some of these

problems that are deemed difficult on classical computers([Sho99, Joz01]).

While building a large-scale quantum computer is an engineering challenge, some scientists

predict that within the next twenty to fifty years, sufficiently powerful quantum computers will be

built to break most if not all current public key cryptography infrastructure. Taking into account the

amount of time to implement quantum resistant cryptosystems in public, the National Institute of

Standards and Technology (NIST) initiated a process in 2016 to standardise post-quantum digital

signature algorithms (DSA), public-key encryption (PKE), and key-encapsulation mechanisms

(KEM). Initially, there were 82 submissions. As of April 2023, there 4 algorithms are selected for

standardisation while there are three code-based candidates that are still going through evaluation.

45

There is also an on-ramp call for new DSA’s in order to diversify the signature portfolio to include

signature schemes that are not based on lattices.

Table 4.1: NIST Post-Quantum Standardisation Process - Round 4

PKE/KEM DSA
Selected
Lattice 1 2
Hash 0 1
Candidates
Code 3 0

In this document, we focus on code-based cryptography, more specifically, one of the

4th round candidates in NIST’s standardisation process, BIt-flipping Key Encapsulation (BIKE)

[ABB+21]. In 1978, McEliece introduced the use of error-correcting codes in cryptography

[McE78]. Originally, error-correcting codes are used in telecommunications in which one party

transmits a message through a noisy channel and the recipient recovers the original message from a

noisy codeword. In McEliece’s proposal, one would use a structured code and hide a message by

adding as many errors as the decoder can remove so that the codewords are indistinguishable from

random codes. So far, there are no major classical or quantum attacks on the McEliece system but

the downside is that it suffers from having large key sizes which make implementations costly.

BIKE is an instance of a more general scheme, called Quasi-Circulant Moderate Density

Parity Check (QC-MDPC) codes [MTSB13]. QC-MDPC codes have much smaller key sizes

compared to the McEliece cryptosystem and have not suffered from major attacks. One difference

between QC-MDPC codes and McEliece’s variants is that QC-MDPC codes use decoders which

depend on probabilitistic properties, not algebraic ones. Therefore, one expects decoding failures to

occur. Furthermore, decoding failures also reveal information about the secret key. An attack by

[GJS16a] exploits these failures by collecting a set of failure-causing inputs and recover the secret

key. With this in mind, one needs to consider the use of ephemeral versus static keys in applications

46

and also verify certain security conditions, called indistinguishability under chosen cipher attack

(IND-CCA).

NIST has considered BIKE as one of the promising candidates and has expressed concerns

about its IND-CCA security and decoding failure analysis. By design, it is not feasible to directly

compute the average Decoding Failure Rate (DFR) for BIKE at cryptographic security levels. It is

possible to measure DFR’s via extrapolation methods to estimate the DFR for larger parameters

from smaller ones [SV19a, DGK20b]. But one needs to consider a phenomenon known as the error

floor region of DFR curves to avoid an underestimate of DFR for larger code sizes. It is known

that for LDPC and MDPC codes, the logarithm of the DFR drops significantly faster than linearly,

and then linearly as the signal-to-noise ratio is increased [DGK20c, Ric03]. Thus a typical DFR

curve contains a concave waterfall region followed by a near-linear error floor region. One must

accurately predict the error floor of a DFR curve to accurately predict the DFR for cryptographically

relevant code sizes.

For LDPC codes, the error floor regions have been studied extensively via their Tanner

graph representations. Recent work [Vas21a, Vas21b, Til18, SV19a] has considered several factors

affecting the DFR of QC-MPDC codes: choice of decoder, classes of weak keys, and sets of

problematic error patterns.

Our approach to this problem is to study a scaled-down version of BIKE, and identify

various properties of QC-MDPC codes and their decoding failures through extensive experiements.

47

4.2 Background on code-based cryptography

In this chapter, we recall the main definitions from coding theory and what will be needed

to construct QC-MDPC codes in cryptography. Throughout this chapter, q is a prime power. In our

case, we will study codes when q = 2, that is, codes over the binary field F2.

4.2.1 Coding theory

We start with the basic definitions from coding theory.

Definition 4.2.1. A linear code C ⊆ Fn
q is a k-dimensional linear subspace of the vector space Fn

q.

Such a code is called a [n,k]-code. The elements of C are called codewords.

Definition 4.2.2. The rate of a [n,k]-code C is the ratio R = k
n .

In the context of communications or cryptography, this means that for every n-bit of

information, there are k symbols of useful information and (n−k) symbols of redundant information.

Usually, the redundant information is used to detect or correct errors.

We introduce some tools from linear algebra.

Definition 4.2.3. Let C be a [n,k]-code. A generator matrix G ∈ Fk×n
q is a k×n matrix whose rows

form a basis of C . So C = {vG : v ∈ v ∈ Fk
q}.

Definition 4.2.4. Given a [n,k]-code C , the dual code C⊥ is defined to be

C⊥ := {v ∈ Fn
q|∀w ∈ C , w · v = 0}

where w · v is the usual dot product. The generator matrix of C⊥ is called the parity check matrix.

Remark 4.2.5. Let C a linear code, G its generator matrix and H its parity check matrix. Then,

• G,H satisfy GH⊤ = 0.

48

• We can write G,H in systematic form:

G = [Ik|P], ,H = [In−k|P]

• One matrix can be determined by the other using linear algebra. In particular, we can define

C in terms of its parity check matrix:

C = {c ∈ Fn
q|Hc⊤ = 0}.

Definition 4.2.6. Let C be a [n,k]-code and H ∈ F(n−k)×n
q its parity check matrix. The syndrome of

x ∈ Fn
q is the vector Hx⊤ ∈ Fn−k

q .

Definition 4.2.7. For an element v = (v0,v1, . . . ,vn−1) ∈ Fn
q, the support of v is the set of indices

with nonzero entries,

Supp(v) := {i ∈ {0,1, . . . ,n−1} : vi ̸= 0}

. The Hamming weight of a vector is the number of nonzero entries: |v| := |Supp(v)|.

Definition 4.2.8. Fn
q is a metric space with the metric defined to be d(x,y) := |x− y|. This is called

the Hamming distance between x,y.

Definition 4.2.9. The minimum distance of a linear code C is defined to be the minimum distance

between two distinct codewords:

d(C) := min
c0,c1∈C

d(c0,c1) = min
c∈C

d(c,0) = min
c∈C
|c|

.

49

Definition 4.2.10. Given v,w ∈ Fn
q, the Schur product of v,w is the componentwise product:

v⋆w := (v0 ·w0,v1 ·w1, . . . ,vn−1 ·wn−1).

4.2.2 Code-based cryptography

In this section, we define QC-MDPC codes and their representations as graphs.

Definition 4.2.11. Let {Ci} be a family of linear codes with length ni and parity check matrix Hi.

If Hi has row weight O(
√

ni), we say that {Ci} is a family of moderate density parity check

(MDPC) codes. If Hi has row weight O(1), we say that {Ci} is a family of low density parity check

(LDPC) codes.

We introduce graph theory as a tool to study these codes.

Definition 4.2.12. Given a [n,k]-code C and its parity check matrix H∈ F(n−k)×n
q , the Tanner graph

of C (or H) is the bipartite graph defined by the biadjacency matrix H. The n columns correspond

to n nodes, called variable nodes, and the (n− k) rows correspond to (n− k) nodes called check

nodes.

Tanner graph is a powerful tool that is used to analyse decoders in LDPC codes since they

have sparse parity check matrices and no algebraic structures [Gal62]. Therefore, it is easy to

capture certain graph theoretic information, for example, number of cycles, girth of the graph, etc.

On the other hand, MDPC codes have denser parity check matrices and the cost of analysis will

increase exponentially in this situation.

LDPC and MDPC codes have their advantages and disadvantages in cryptography. For

example, LDPC codes have better decoding performance than their MDPC counterparts but certain

low weight codewords can lead to an attack on the McEliece cryptosystem using LDPC codes

[MRS00, BC07, BBC08]. MDPC codes can be made more secure but at the expense of more

50

complicated decoder behaviours and large key sizes. Influenced by the development of NTRU

[HPS98], lattice- and code-based cryptosystems adapted the use of quotient polynomial rings of the

form F2[x]/(xn−1) in order to reduce key sizes. This leads to our next definition.

Definition 4.2.13. A circulant matrix is a matrix such that each row is a cyclic shift to the right of

its previous row.

Let r be a positive integer. If H ∈ Fr×r
q is a circulant matrix, then H can be defined by its

first row (h0 hr−1 . . . h1):

H =



h0 hr−1 . . . h2 h1

h1 h0 . . . h3 h2

...

hr−2 hr−3 . . . h0 hr−1

hr−1 hr−2 . . . h1 h0


Observe that a circulant matrix can be defined as the cyclic shift of each column by one

entry down of its previous column as well.

We say a matrix is a Quasi-Circulant (QC) matrix if it is a block sum of circulant matrices.

Definition 4.2.14. Fix positive integers n0,r,d. A QC-MDPC code is a code with parity check

matrix:

H = [H0 . . . Hn0−1]

where each block Hi is a r× r MDPC matrix, with each row having Hamming weight d such that

n0d = O(
√

n0r). One could check that this code is a [n0r,n0r− r]-code, with rate R = 1−1/n0. We

call r the block size of the code.

In code-based cryptography, there are two hard problems, in which most cryptosystems are

51

based on:

1. (Syndrome Decoding Problem) Given a parity check matrix H ∈ F(n−k)×n
q , a syndrome

s ∈ Fn−k
q and a fixed weight t ∈ Z>0, find e ∈ Fn

q such that |e|= t and He⊤ = s.

2. (Codeword Finding Problem) Given a parity check matrix H ∈ F(n−k)×n
q , a fixed weight

w ∈ Z>0, find e ∈ Fn
q such that |e|= w and He⊤ = 0.

It is known that these problems are NP-hard [BMvT78]. The best known attacks are based

on Prange’s information set decoding algorithm and its improvements [Pra62, Ste89, MMT11,

BJMM12].

4.2.3 KEM’s and Niederreiter cryptosystems

BIKE is a Key Encapsulation Mechanism that is based on a Niederreiter cryptosystem. In

this section, we provide definitions to the objects involved.

Modern cryptography uses hybrid cryptosystems: there is a public key cryptosystem com-

bined with a symmetric key cryptosystem. The Key Encapsulation Mechanism allows the involved

parties to exchange a common key, thus establishing a secure channel for future communications.

The Diffie-Hellman key exchange is a well-known example of this instance.

Definition 4.2.15. A Key Encapsulation Mechanism (KEM) is a triple of probabilistic polynomial-

time algoritms (KeyGen,Encaps,Decaps) with:

• A key generation method:

KeyGen : {0,1}λ → Kpub×Kpriv

where λ is the security parameter, Kpub and Kpriv are the spaces of public and private keys

respectively.

52

• An encapsulation method:

Encaps : Kpub→M×C

where M and C are the spaces of message and ciphertext. The encapsulation method has a

public key as the input and outputs a pair of message and ciphertext.

• A decapsulation method:

Decaps : Kpriv×C→M

The decapsulation method takes a private key and ciphertext pair as inputs then outputs the

message or a failure, which is denoted by ⊥.

The McEliece cryptosystem works as follows. One generates a code such that an efficient

decoder is known and then scrambles the generator matrix by changing the basis or permuting the

coordinates. The resulting scrambled matrix is the public generator matrix of the code. Furthermore,

the decoder must be able to detect and correct up to a certain number t of errors. In the NIST PQC

submission, the McEliece candidate uses Goppa codes which are known to have a good decoder

[McE78, The22a, Pat75]. BIKE and Classic McEliece use the Niederreiter cryptosystem [NIE86],

in which parity check matrices are used instead of the generator matrices. In this sense, they are

dual to McEliece cryptosystems and share the same advantages (fast encryption and decryption)

and disadvantages (large key sizes). The block size of Niederreiter cryptosystems is smaller than

McEliece’s.

53

Chapter 5

BIKE

5.1 Parameters and design

In this section, we focus on BIKE and its security. Details about the choice of parameters

and designs can be found on the BIKE website [ABB+21].

BIKE was originally designed for ephemeral use, i.e., in settings where a KEM key pair is

generated for every key exchange instance. This provides a countermeasure against the GJS attack

[GJS16b] where an attacker can use decoding failures to recover the private key of the scheme.

Since the second round of the NIST PQC process, BIKE proposed parameter sets that can achieve

security in the static-key setting.

The parameters of BIKE are as follows:

• r = the block size of a parity check matrix,

• n = 2r; the length of the code,

• d = the column weight of a parity check matrix,

• w = 2d; the row weight of a parity check matrix,

54

• t = the error weight of an error pattern,

• λ = the security parameter, in bits.

The design principles of BIKE are as follows:

• r is a prime such that xr−1 ∈ F2[x] has only two irreducible factors,

• w = 2d = O(
√

n),

• λ ≈ t− 1
2 log2(r)≈ w− 1

2 log2(r).

Table 5.1: BIKE parameters

λ r w t
128 12,323 142 134
192 24,659 206 199
256 40,973 274 264

Following the Niederreiter framework, BIKE is defined in the following manner:

• (Key generation) Randomly sample two rows h0,h1 ∈ Fr
2 of fixed weight d ∈ Z>0 which

form the (private) r×2r QC-MDPC matrix H = [H0|H1]. The public key is H′ = [I|H−1
0 H1]

in systematic form.

• (Encapsulation) The message m will be encoded as an error vector e ∈ F2r
2 of weight at most

t. The ciphertext will be the syndrome s = He⊤.

• (Decapsulation) Solve the syndrome decoding problem on inputs H,s using the Black-Grey-

Flip (BGF) decoder [DGK20c].

55

5.2 Decoding failures, weak keys and near-codewords

We are interested in the decoding failure rate (DFR) for BIKE using the BGF decoder. In

particular, we want to understand the factors causing the error floor phenomenon. In this subsection,

we provide definitions of decoding failures and the factors causing them.

Definition 5.2.1. For a syndrome decoding instance (H,s), where s = He⊤ for some unknown

e∈ F2r
2 , we say a decoding failure occured when the output e′ :=Decode(H,s) is such that He′⊤ ̸= s.

In [Vas21a], the author identifies three classes of weak keys for BIKE. These are parity

check matrices which have higher than usual DFR’s compared to random parity check matrices of

the same parameters.

• (Type I) Parity check matrices whose rows in one of the circulant blocks contain consecutive

nonzero bits [DGK20a].

• (Type II) Parity check matrices such that there are many nonzero bits at regular intervals in

each row of one of the circulant blocks.

• (Type III) Parity check matrices such that there are many intersections between the columns

of the two circulant blocks.

There are also some sets of vectors that are likely to cause decoding failures than random

vectors.

Definition 5.2.2. Given a parity check matrix H of a linear code, we say an error vector e ∈ F2r
2 is a

(u,v)-near codeword if |e|= u and |He⊥|= v.

When u,v are small, these (u,v)-near codewords correspond to low weight codewords which

are known to cause decoding failures in LDPC codes [Ric03]. Based on the structure of BIKE,

56

Vasseur defines three sets with small u,v as follows: Given a parity check matrix H = [H0|H1] with

first rows defined by h0,h1 respectively,

• C := row(G) where G = [H⊥1 |H⊥0] is the generator matrix. This is the set of rows of G

consisting of (2d,0)-near codewords.

• N := row([H0|0])∪ row([0|H1]). This is the set of rows of the individual circulant matrices

in H consisting of (d,d)-near codewords.

• 2N := N +N . This is the set formed by sum of two elements from N consisting of

(2d− ε0,2d− ε1)-near codewords for some small ε0,ε1 ≥ 0.

Furthermore, Vasseur identified and studied the proximity of error vectors to any of the three

problematic sets S ∈ {C ,N ,2N } and how they affect the average DFR. These are the defined

by:

At,ℓ(S) := {v ∈ F2r
2 : |v⋆ c|= ℓ for some c ∈S }

Dually, one could also study the distance of an error vector from an element in S by the

quantity δ := |v|+ t−2ℓ.

57

Chapter 6

Experiments

6.1 Methods

It is difficult to directly measure cryptographic parameters (where DFR < 2−128 as in the

previous section). The common method is to compute DFR’s for smaller code sizes then extrapolate

in order to estimate the DFR for larger parameters [SV19b, DGK20b, DGK20a]. However, as

mentioned in the previous sections, such extrapolation methods rely on certain assumptions which

may underestimate the DFR and ignore the error floor phenomenon. In this work, we analyse the

decoding behaviour for BIKE parameters at the λ = 20 bits of security.

The parameters were selected according to BIKE design principles and the error weight

t is reduced to prevent almost likely decoding failures. The initial parameters are as follows:

(r,2d, t,λ) = (523,30,18,20). Later we include 389 ≤ r ≤ 827 for prime r such that xr− 1 has

only two irreducible factors modulo 2.

We use the Black-Grey-Flip (BGF) decoder in all experiments. Within the decoder, we

used the original threshold selection function, defined as the maximum of two values: d+1
2 , and the

output of an adaptive threshold function, defined in section 2.5.1 of the BIKE v1.0 specification

58

[ABB+17]. The affine threshold functions in the current version of BIKE are derived from this

original threshold rule.

We implement the weak key rejection algorithm defined in [Vas21a, Algorithm 15.3] in order

to filter out the weak keys that impede decoding. The definition of weak key depends on a parameter

T . For cryptographic size parameters (λ ≥ 128), Vasseur sets T = 10 for BIKE parameters. We

instead use T = 3 for the weak key threshold. This is the smallest value of T for which finding

non-weak keys is feasible. This is justified by the following empirical observation: If we set T = 4,

the decoding failure rate increases enormously; for example, an experiment with (r,T) = (587,4)

observed a DFR on the order of 2−8, compared to around 2−20 for (r,T) = (587,3).

We use the Boston University Shared Computing Cluster [Bos], a heterogeneous Linux-

based computing cluster with approximately 21000 cores, to run SAGEMATH and Rust implemen-

tations of the BGF decoder in all experiments. The experiments yielded a graph with both the

waterfall and error floor regions for our parameter set in addition to many explicit examples of

decoding failures that can be used for future analysis. All raw data and the decoder used for this

paper are available at [ABH+].

We first compute an average DFR for all suitable block lengths r as follows. For r in Table

6.1, we sample a random key H, rejecting any weak keys of types I,II,III as defined before, a random

vector e ∈ F2r
2 of weight t, compute s = HeT , run BGF decoder on input (H,s), and record the

total number of failures. This procedure is run N times where 104 ≤ N ≤ 109 to ensure there are

enough decoding failures at each r for robust statistical analysis. The error vectors tested in the

DFR experiment all had weight 18. The results of this experiment are displayed in Table 6.1 and

plotted with best fit curves in Figure 6.1.

Remark 6.1.1. Initially, the SAGEMATH experiments used different numbers of trials ranging from

103 to 108 for different block sizes r. This is to ensure that we have enough data to compute the

average DFR. Smaller block sizes have more decoding failures whereas larger block sizes have

59

much fewer, creating the need for this adjustment. A future Rust implementation significantly

optimised this process. Comparing the results from both implementations, there were quantitative

differences but no qualitative ones.

60

6.2 Experimental results

As we have defined earlier, a decoding failure is an instance where, on input (H,s), where

s is of the form s = HeT , the syndrome decoder output e′ is such that He′T ̸= s or e′ ̸= e. The

experiment was also designed to record any decoding instances where He′T = s and e′ ̸= e, but

none were discovered. For the security level λ = 20, we manage to reproduce the error floor region

as predicted in [Ric03].

Figure 6.1: Semi-log plot of decoding failure rates for non-weak keys (T = 3, left) and for
unfiltered random keys (right), with a 95% confidence interval for each r. There is a quadratic best
fit (blue) in the waterfall region and a linear best fit (red) in the error floor region (r ≥ 587).

61

Table 6.1: Decoding failure rates for r-values such that 389≤ r ≤ 827, r is prime, and xr−1 has

only two irreducible factors modulo 2. The data was computed using the parameters and methods

described above.

r Decoding failures Decoding trials log2(DFR)
389 7544 104 −0.41
419 3482 104 −1.52
421 3167 104 −1.66
443 9182 105 −3.45
461 2134 105 −5.55
467 1304 105 −6.26
491 1506 106 −9.38
509 322 106 −11.60
523 916 107 −13.41
541 169 107 −15.85
547 109 107 −16.49
557 382 108 −18.00
563 263 108 −18.54
587 557 109 −20.78
613 272 109 −21.81
619 300 109 −21.67
653 144 109 −22.73
659 157 109 −22.60
661 126 109 −22.92
677 102 109 −23.22
701 83 109 −23.52
757 31 109 −24.94
827 15 109 −25.99
907 7 109 −27.09

62

6.3 DFR on At,ℓ(S)

Recall that Vasseur identified three problematic sets of (u,v)-near codewords and proposed

a study on the effect of proximity of error vectors to these sets by defining the set:

At,ℓ(S) := {v ∈ F2r
2 : |v⋆ c|= ℓ for some c ∈S }

.

While ℓ measures the number of common intersections of an error vector with an element of

S , we can define another quantity that measures the distance of an error vector from S :

δ (e) = |c|+ t−2ℓ

where c ∈S is the vector with |e⋆ c|= ℓ.

For ℓ high (equivalently, δ low), decoding failures are extremely prevalent (see Figure 6.2).

Figure 6.2: 20-bit security DFR versus δ for near-codeword sets C ,N ,2N for r = 523

We study the relationship between At,ℓ(S) for some ℓ, S ∈ {C ,N ,2N } and decoding

63

failures. Our data shows that it is highly unlikely for a decoding failure vector to have a high

intersection with an element in S . For a vector v, we define the maximum overlap of v for a

fixed S by computing the largest ℓ such that v ∈ At,ℓ(S). Using the experimental data from

r = 587,N = 109 we recorded 557 total decoding failures and stored the 557 random error vectors

that led to decoding failure. The relationship between these decoding failure vectors and the sets S

is shown below:

Figure 6.3: Distribution of maximum overlaps of decoding failure vectors (left) or random vectors
(right) with the sets C , N , and 2N for r = 587, using a weak key threshold of T = 3 to generate
keys.

The cases where ℓ > 10 are rare. It is expected that these problematic sets contribute to

the decoding failures occuring in error floor region and our data suggests that some proportion of

decoding failures can be explained by their proximity to N or 2N . However, it is also the case that

a significant of the errors causing decoding failures do not have more overlap with S than typical

random vectors. Further analysis is needed to determine what proportion of decoding failures are

explained by this proximity.

64

6.4 Syndrome weight as an indicator

From the previous analysis of At,ℓ(S), the syndrome weights of error vectors causing

decoding failures in those sets are low. It is natural to investigate to if the syndrome weight can

serve as a predictor for decoding failures.

For the experiment, for each suitable r, we generate 103 instances of non-weak parity check

matrices H, random error vectors e, and then we compute the average weight of their syndromes

s = HeT . For decoding failure error vectors, we extract the information from our previous DFR

simulations to get the nonweak parity check matrices and the corresponding vector causing decoding

failures, and then we compute the average weight of their syndromes. Figure 6.4 below gives a

summary of our results:

Figure 6.4: Distribution of syndrome weights for random error vectors (red) versus error vectors
causing decoding failures (blue). The left plot is for non-weak keys (with threshold T = 3); the
right plot is for unfiltered random keys.

The simulations suggest that syndrome weights of generic vectors tend to follow a normal

distribution while the error vectors causing decoding failures have syndrome weights that are more

concentrated around the mean, which we hypothesise to be lower than that of the generic vectors;

see Figure 6.5 for the case r = 587, where we compare the syndrome weights of the 557 vectors

65

which caused decoding failures with the syndrome weights of the 105 randomly generated vectors

of the same weight t = 18.

(a) Decoding failure vectors (b) Randomly generated vectors

Figure 6.5: A comparison of syndrome weights for r = 587 between the 128 error vectors which
were found to be involved in decoding failures and 105 random vectors. Vertical axis is frequency,
and horizontal axis is syndrome weight.

Using this data, we explore whether or not there is convincing evidence that the syndrome

weights of error vectors causing decoding failures are lower than those of generic vectors. The null

hypothesis is that there is no difference between the two groups in consideration while the alternative

hypothesis is that the generic vectors have higher syndrome weights. Both data come from random,

independent sampling and have data sets with more than 30 observations. The difference in sample

means may be modeled using a t-distribution. For each r, one could compute the point estimates

mgeneric−mDF of population difference µ = µgeneric−µDF and standard errors of the point estimate

SE =

√
σ2

generic

Ngeneric
+

σ2
DF

NDF
.

With this information, one could compute the test statistic for this (one-tailed) test by the

formula T = µ−0
SE . Using either a t-table or statistics software, we can find appropriate degrees of

freedom and from there, the p-value, for each r. Our conclusion is that for the sixteen r-values in

the range 491 ≤ r ≤ 827, the p-value is less than the significance value α = 0.01, and therefore

66

we reject the null hypothesis, i.e., syndrome weights of error vectors causing decoding failures are

lower than those of generic vectors.

A general summary of the test statistic values mgeneric−mDF and the corresponding p-values

can be found in Table 6.2.

Table 6.2: Hypothesis test results for 491≤ r ≤ 827, with the corresponding test statistic values

and p-values, indicating the vectors causing decoding failures do have lower syndrome weights

than generic vectors for 491≤ r ≤ 701, notably a selection of r-values where the waterfall region

meets the error floor in the DFR graph of Figure 6.1.

r mgeneric−mDF p
491 10.31 < 0.00001
509 12.45 < 0.00001
523 14.14 < 0.00001
541 16.90 < 0.00001
547 18.23 < 0.00001
557 15.65 < 0.00001
563 15.69 < 0.00001
587 12.63 < 0.00001
613 12.95 < 0.00001
619 11.63 < 0.00001
653 10.29 < 0.00001
659 11.88 < 0.00001
661 11.47 < 0.00001
677 11.07 < 0.00001
701 13.34 < 0.00001
757 14.28 < 0.00001
827 13.99 < 0.00001

67

6.5 Conclusion and future work

In the analysis of the BIKE cryptosystem at the 20-bit security level, we have reproduced

the error floor phenomenon and obtained large amount of data for analysis. We found that decoding

failure error vectors have lower syndrome weights than those of random vectors. Furthermore,

as identified in [Vas21a, Vas21b], the three classes of problematic error vectors C ,N ,2N and

their proximity sets At,ℓ(S) contain many elements that cause decoding failures. However, our

experiments showed these sets are not responsible for the bulk of decoding failures.

It therefore remains to further identify classes of error vectors causing decoding failures

in our experiments. As part of an ongoing work, the small parameters allow us to adopt a graph

theoretic approach to study the Tanner graph representations of these QC-MDPC codes, which

allow us to study interesting behaviours coming from absorbing and trapping sets.

68

Bibliography

[ABB+17] Nicolas Aragon, Paulo Barreto, Slim Bettaieb, Loïc Bidoux, Olivier Blazy, Jean-
Christophe Deneuville, Philippe Gaborit, Shay Gueron, Tim Güneysu, Carlos Aguilar
Melchor, Rafael Misoczki, Edoardo Persichetti, Nicolas Sendrier, Jean-Pierre Tillich, and
Gilles Zémor. BIKE: Bit flipping key encapsulation - spec v1.0. https://bikesuite.
org/files/BIKE.2017.11.30.pdf, 2017.

[ABB+21] Nicolas Aragon, Paulo Barreto, Slim Bettaieb, Loïc Bidoux, Olivier Blazy, Jean-
Christophe Deneuville, Philippe Gaborit, Santosh Ghosh, Shay Gueron, Tim Güneysu,
Carlos Aguilar Melchor, Rafael Misoczki, Edoardo Persichetti, Jan Richter-Brockmann,
Nicolas Sendrier, Jean-Pierre Tillich, Valentin Vasseur, and Gilles Zémor. BIKE: Bit
flipping key encapsulation - spec v4.2. https://bikesuite.org/files/v4.2/BIKE_
Spec.2021.07.26.1.pdf, 2021.

[ABH+] Sarah Arpin, Tyler Raven Billingsley, Daniel Rayor Hast, Jun Bo Lau, Ray Perlner, and
Angela Robinson. Raw data and decoder in the paper "a study of error floor behavior
in qc-mdpc codes". https://github.com/HastD/BIKE-error-floor. Accessed:
2022-05-23.

[Abr96] Dan Abramovich. A linear lower bound on the gonality of modular curves. International
Mathematics Research Notices, 1996(20):1005–1011, 01 1996.

[Asf20] Eran Assaf. Computing classical modular forms for arbitrary congruence subgroups.
arXiv:2002.07212, 2020.

[BBC08] Marco Baldi, Marco Bodrato, and Franco Chiaraluce. A new analysis of the mceliece
cryptosystem based on qc-ldpc codes. In Rafail Ostrovsky, Roberto De Prisco, and
Ivan Visconti, editors, Security and Cryptography for Networks, pages 246–262, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg.

[BBK10] Jennifer S. Balakrishnan, Robert W. Bradshaw, and Kiran S. Kedlaya. Explicit coleman
integration for hyperelliptic curves. In Guillaume Hanrot, François Morain, and Em-
manuel Thomé, editors, Algorithmic Number Theory, pages 16–31, Berlin, Heidelberg,
2010. Springer Berlin Heidelberg.

69

https://bikesuite.org/files/BIKE.2017.11.30.pdf
https://bikesuite.org/files/BIKE.2017.11.30.pdf
https://bikesuite.org/files/v4.2/BIKE_Spec.2021.07.26.1.pdf
https://bikesuite.org/files/v4.2/BIKE_Spec.2021.07.26.1.pdf
https://github.com/HastD/BIKE-error-floor

[BC07] Marco Baldi and Franco Chiaraluce. Cryptanalysis of a new instance of mceliece
cryptosystem based on qc-ldpc codes. In 2007 IEEE International Symposium on
Information Theory, pages 2591–2595, 2007.

[BCP97] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system. I. The
user language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational algebra and
number theory (London, 1993).

[BD17] Jennifer Balakrishnan and Netan Dogra. Quadratic chabauty and rational points ii:
Generalised height functions on selmer varieties. International Mathematics Research
Notices, 04 2017.

[BD18] Jennifer S. Balakrishnan and Netan Dogra. Quadratic Chabauty and rational points, I:
p-adic heights. Duke Math. J., 167(11):1981–2038, 2018. With an appendix by J. Steffen
Müller.

[BDM+19] Jennifer Balakrishnan, Netan Dogra, J. Steffen Müller, Jan Tuitman, and Jan Vonk.
Explicit Chabauty–Kim for the split Cartan modular curve of level 13. Annals of
Mathematics, 189(3):885 – 944, 2019.

[BDM+21] Jennifer Balakrishnan, Netan Dogra, Jan Müller, Jan Tuitman, and Jan Vonk. Quadratic
chabauty for modular curves: Algorithms and examples. Preprint, 2101.01862, 01 2021.

[BJMM12] Anja Becker, Antoine Joux, Alexander May, and Alexander Meurer. Decoding random
binary linear codes in 2n/20: How 1 + 1 = 0 improves information set decoding. In David
Pointcheval and Thomas Johansson, editors, Advances in Cryptology – EUROCRYPT
2012, pages 520–536, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[BLS10] Reinier Bröker, Kristin E. Lauter, and Andrew V. Sutherland. Modular polynomials via
isogeny volcanoes. Math. Comput., 81:1201–1231, 2010.

[BMvT78] E. Berlekamp, R. McEliece, and H. van Tilborg. On the inherent intractability of certain
coding problems (corresp.). IEEE Transactions on Information Theory, 24(3):384–386,
1978.

[BN20] François Brunault and Michael Neururer. Fourier expansions at cusps. The Ramanujan
Journal, 53(2):423–437, Nov 2020.

[Bom90] Enrico Bombieri. The mordell conjecture revisited. Annali della Scuola Normale
Superiore di Pisa - Classe di Scienze, Ser. 4, 17(4):615–640, 1990.

[Bos] Boston University Shared Computing Cluster. https://www.bu.edu/tech/support/
research/computing-resources/scc/. Accessed: 2022-02-18.

70

https://www.bu.edu/tech/support/research/computing-resources/scc/
https://www.bu.edu/tech/support/research/computing-resources/scc/

[BOS16] Jan Hendrik Bruinier, Ken Ono, and Andrew V. Sutherland. Class polynomials for non-
holomorphic modular functions. Journal of Number Theory, 161:204–229, 2016. Special
Issue on Applications of Automorphic Forms in Number Theory and Combinatorics.

[BP11] Yuri Bilu and Pierre Parent. Serre’s uniformity problem in the split Cartan case. Ann. of
Math. (2), 173(1):569–584, 2011.

[BPR13] Yuri Bilu, Pierre Parent, and Marusia Rebolledo. Rational points on X+
0 (pr). Ann. Inst.

Fourier (Grenoble), 63(3):957–984, 2013.

[BT20] Jennifer S. Balakrishnan and Jan Tuitman. Explicit coleman integration for curves.
Mathematics of Computation, 89:2965–2984, 2020.

[BT22] Jennifer Balakrishnan and Jan Tuitman. Magma code. https://github.com/
jtuitman/Coleman, 2022.

[CdS88] Robert Coleman and Ehud de Shalit. p-adic regulators on curves and special values of
p-adic L-functions. Invent. Math., 93(2):239–266, 1988.

[Cha41] Claude Chabauty. Sur les points rationnels des courbes algébriques de genre supérieur
á l’unité. Comptes rendus hebdomadaires des séances de l’Académie des sciences.,
212:882–885, 1941.

[Col85a] Robert F. Coleman. Effective Chabauty. Duke Mathematical Journal, 52(3):765 – 770,
1985.

[Col85b] Robert F. Coleman. Torsion points on curves and p-adic abelian integrals. Ann. of Math.
(2), 121(1):111–168, 1985.

[Col85c] Robert F. Coleman. Torsion points on curves and p-adic abelian integrals. Ann. of Math.
(2), 121(1):111–168, 1985.

[DGK20a] Nir Drucker, Shay Gueron, and Dusan Kostic. On constant-time QC-MDPC decoders
with negligible failure rate. In Marco Baldi, Edoardo Persichetti, and Paolo Santini,
editors, Code-Based Cryptography, pages 50–79. Springer, Cham, 2020.

[DGK20b] Nir Drucker, Shay Gueron, and Dusan Kostic. QC-MDPC decoders with several shades
of gray. In Jintai Ding and Jean-Pierre Tillich, editors, Post-Quantum Cryptography,
pages 35–50. Springer, Cham, 2020.

[DGK20c] Nir Drucker, Shay Gueron, and Dusan Kostic. Qc-mdpc decoders with several shades
of gray. In Jintai Ding and Jean-Pierre Tillich, editors, Post-Quantum Cryptography,
pages 35–50, Cham, 2020. Springer International Publishing.

[Dic] Leonard E. Dickson. Linear groups with an exposition of the Galois field theory. Leipzig,
B.G. Teubner, 1901.

71

https://github.com/jtuitman/Coleman
https://github.com/jtuitman/Coleman

[DS05] Fred Diamond and Jerry Shurman. A first course in modular forms, volume 228 of
Graduate Texts in Mathematics. Springer-Verlag, New York, 2005.

[Fal86] Gerd Faltings. Finiteness Theorems for Abelian Varieties over Number Fields, pages
9–26. Springer New York, New York, NY, 1986.

[Fal91] Gerd Faltings. Diophantine approximation on abelian varieties. Annals of Mathematics,
133(3):549–576, 1991.

[For81] Otto Forster. Lectures on Riemann Surfaces. Springer New York, NY, 1981.

[Gal62] R. Gallager. Low-density parity-check codes. IRE Transactions on Information Theory,
8(1):21–28, 1962.

[Gal96] Steven D. Galbraith. Equations for modular curves. DPhil thesis, University of Oxford,
1996.

[Gal99] Steven D. Galbraith. Rational points on X+
0 (p). Experiment. Math., 8(4):311–318, 1

1999.

[GJS16a] Qian Guo, Thomas Johansson, and Paul Stankovski. A key recovery attack on mdpc with
cca security using decoding errors. pages 789–815, 12 2016.

[GJS16b] Qian Guo, Thomas Johansson, and Paul Stankovski. A Key Recovery Attack on MDPC
with CCA Security Using Decoding Errors. In Jung Hee Cheon and Tsuyoshi Takagi,
editors, Advances in Cryptology – ASIACRYPT 2016, volume 10031 of Lecture Notes in
Computer Science, pages 789–815, Berlin, Heidelberg, 2016. Springer.

[HPS98] Jeffrey Hoffstein, Jill Pipher, and Joseph H. Silverman. Ntru: A ring-based public key
cryptosystem. In Joe P. Buhler, editor, Algorithmic Number Theory, pages 267–288,
Berlin, Heidelberg, 1998. Springer Berlin Heidelberg.

[Joz01] R. Jozsa. Quantum factoring, discrete logarithms, and the hidden subgroup problem.
Computing in Science & Engineering, 3(2):34–43, 2001.

[Ked01] Kiran S. Kedlaya. Counting Points on Hyperelliptic Curves using Monsky-Washnitzer
Cohomology. arXiv Mathematics e-prints, page math/0105031, May 2001.

[Kim05] Minhyong Kim. The motivic fundamental group of P1\{0,1,∞} and the theorem of
siegel. Inventiones Mathematicae, 161:629–656, 09 2005.

[Kim09] Minhyong Kim. The unipotent albanese map and selmer varieties for curves. Publications
of the Research Institute for Mathematical Sciences, 45, 11 2009.

[LMF22] The LMFDB Collaboration. The L-functions and modular forms database. http:
//www.lmfdb.org, 2022.

72

http://www.lmfdb.org
http://www.lmfdb.org

[LV20] Brian Lawrence and Akshay Venkatesh. Diophantine problems and p-adic period map-
pings. Inventiones mathematicae, 221, 09 2020.

[Maz77] B. Mazur. Rational points on modular curves. In Jean-Pierre Serre and Don Bernard
Zagier, editors, Modular Functions of one Variable V, pages 107–148, Berlin, Heidelberg,
1977. Springer Berlin Heidelberg.

[Maz78] B. Mazur. Rational isogenies of prime degree (with an appendix by D. Goldfeld). Invent.
Math., 44(2):129–162, 1978.

[McE78] R. J. McEliece. A Public-Key Cryptosystem Based On Algebraic Coding Theory. Deep
Space Network Progress Report, 44:114–116, January 1978.

[Mer18] Pietro Mercuri. Equations and rational points of the modular curves X+
0 (p). Ramanujan

J., 47(2):291–308, 2018.

[MMT11] Alexander May, Alexander Meurer, and Enrico Thomae. Decoding random linear codes
in Õ(20.054n). In Dong Hoon Lee and Xiaoyun Wang, editors, Advances in Cryptology –
ASIACRYPT 2011, pages 107–124, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[MRS00] C. Monico, J. Rosenthal, and A. Shokrollahi. Using low density parity check codes in the
mceliece cryptosystem. In 2000 IEEE International Symposium on Information Theory
(Cat. No.00CH37060), pages 215–, 2000.

[MSD74] B. Mazur and P. Swinnerton-Dyer. Arithmetic of weil curves. Invent Math, 25:1–61,
1974.

[MTSB13] Rafael Misoczki, Jean-Pierre Tillich, Nicolas Sendrier, and Paulo S. L. M. Barreto.
Mdpc-mceliece: New mceliece variants from moderate density parity-check codes. In
2013 IEEE International Symposium on Information Theory, pages 2069–2073, 2013.

[NIE86] H. NIEDERREITER. Knapsack-type cryptosystems and algebraic coding theory. Prob.
Contr. Inform. Theory, 15(2):157–166, 1986.

[Pat75] N. Patterson. The algebraic decoding of goppa codes. IEEE Transactions on Information
Theory, 21(2):203–207, 1975.

[Pra62] E. Prange. The use of information sets in decoding cyclic codes. IRE Transactions on
Information Theory, 8(5):5–9, 1962.

[Ric03] Tom Richardson. Error floors of LDPC codes. In Proc. 41st Annual Allerton Conf. on
Communication, Control, and Computing, pages 1426–1435, 01 2003.

[Ser72] J.-P. Serre. Propriétés galoisiennes des points d’ordre fini des courbes elliptiques. Inv.
Math., 15:259–3319, 1972.

73

[Shi94] Goro Shimura. Introduction to the arithmetic theory of automorphic functions, volume 11
of Publications of the Mathematical Society of Japan. Princeton University Press,
Princeton, NJ, 1994. Reprint of the 1971 original, Kanô Memorial Lectures, 1.

[Sho99] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms
on a quantum computer. SIAM Review, 41(2):303–332, 1999.

[Sik17] Samir Siksek. Quadratic chabauty for modular curves. Preprint, 1704.00473, 04 2017.

[Sta75] H. M. Stark. On complex quadratic fields with class-number two. Mathematics of
Computation, 29(129):289–302, 1975.

[Ste89] Jacques Stern. A method for finding codewords of small weight. In Gérard Cohen and
Jacques Wolfmann, editors, Coding Theory and Applications, pages 106–113, Berlin,
Heidelberg, 1989. Springer Berlin Heidelberg.

[Ste07] William Stein. Modular forms, a computational approach, volume 79 of Graduate
Studies in Mathematics. American Mathematical Society, Providence, RI, 2007. With an
appendix by Paul E. Gunnells.

[SV19a] Nicolas Sendrier and Valentin Vasseur. About low DFR for QC-MDPC decoding.
Cryptology ePrint Archive, Paper 2019/1434, 2019. https://eprint.iacr.org/2019/
1434.

[SV19b] Nicolas Sendrier and Valentin Vasseur. On the decoding failure rate of QC-MDPC
bit-flipping decoders. In Post-quantum cryptography, volume 11505 of Lecture Notes in
Comput. Sci., pages 404–416. Springer, Cham, 2019.

[The22a] The McEliece Developers. Classic McEliece, 2022.
https://classic.mceliece.org/index.html.

[The22b] The Sage Developers. SageMath, the Sage Mathematics Software System (Version 9.6.1),
2022. https://www.sagemath.org.

[Til18] Jean-Pierre Tillich. The decoding failure probability of MDPC codes. In 2018 IEEE
International Symposium on Information Theory (ISIT), pages 941–945. IEEE, 2018.

[Tui16] Jan Tuitman. Counting points on curves using a map to P1, i. Math. Comput., 85:961–981,
2016.

[Tui17] Jan Tuitman. Counting points on curves using a map to P1, II. Finite Fields and Their
Applications, 45:301–322, 05 2017.

[Vas21a] Valentin Vasseur. Post-quantum cryptography: a study of the decoding of QC-MDPC
codes. PhD thesis, Université de Paris, Mar 2021.

74

https://eprint.iacr.org/2019/1434
https://eprint.iacr.org/2019/1434

[Vas21b] Valentin Vasseur. QC-MDPC codes DFR and the IND-CCA security of BIKE. Cryptology
ePrint Archive, Paper 2021/1458, 2021. https://eprint.iacr.org/2021/1458.

[Voj91] Paul Vojta. Siegel’s theorem in the compact case. Annals of Mathematics, 133(3):509–
548, 1991.

[Wet97] Joseph L. Wetherell. Bounding the number of rational points on certain curves of high
rank. PhD thesis, 1997.

[Zyw20] David Zywina. Computing actions on cusp forms. arXiv: Number Theory, 2020.

75

https://eprint.iacr.org/2021/1458

	Dissertation Approval Page
	Table of Contents
	Acknowledgements
	Vita
	Abstract
	I Coleman Integration on Modular Curves
	Preliminaries
	Introduction
	Background
	Modular forms
	Modular curves
	Hecke operators
	Coleman integrals

	Coleman Integration on Modular Curves
	Breaking the Coleman integrals into tiny integrals
	Computing a basis of cusp forms
	Hecke operators as double coset operators
	Tiny integrals via complex number approximation

	Computations and examples
	X0(N)
	Example: X0(37)

	X0+(N)
	Example: X0+(67)

	Xns+(p)
	Example: Xns+(13)

	Conclusion and future work

	II Decoding Failures of BIKE
	Preliminaries
	Introduction
	Background on code-based cryptography
	Coding theory
	Code-based cryptography
	KEM's and Niederreiter cryptosystems

	BIKE
	Parameters and design
	Decoding failures, weak keys and near-codewords

	Experiments
	Methods
	Experimental results
	DFR on At,(S)
	Syndrome weight as an indicator
	Conclusion and future work

	Bibliography

