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ABSTRACT OF THE DISSERTATION

On Riemannian Submersions and Diffeomorphism Stability

by

Curtis Christopher Pro

Doctor of Philosophy, Graduate Program in Mathematics
University of California, Riverside, June 2012

Professor Frederick Wilhelm, Chairperson

This thesis consists of work that was carried out in three separate papers that were written

during my time at UC, Riverside.

Abstract of chapter II: If π : M → B is a Riemannian Submersion and M has non-

negative sectional curvature, O’Neill’s Horizontal Curvature Equation shows that B must

also have non-negative curvature. We find constraints on the extent to which O’Neill’s

horizontal curvature equation can be used to create positive curvature on the base space

of a Riemannian submersion. In particular, we study when K. Tapp’s theorem on Rieman-

nian submersions of compact Lie groups with bi-invariant metrics generalizes to arbitrary

manifolds of non-negative curvature.

Abstract of Chapter III: Though Riemannian submersions preserve non-negative

sectional curvature this does not generalize to Riemannian submersions from manifolds

with non-negative Ricci curvature. We give here an example of a Riemannian submersion

π : M → B for which Riccip(M) > 0 and at some point p ∈ B, Riccip(B) < 0.

Abstract of Chapter IV: The smallest r so that a metric r–ball covers a metric

vi



space M is called the radius of M. The volume of a metric r-ball in the space form of

constant curvature k is an upper bound for the volume of any Riemannian manifold with

sectional curvature ≥ k and radius ≤ r. We show that when such a manifold has volume

almost equal to this upper bound, it is diffeomorphic to a sphere or a real projective space.
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Chapter 1

Introduction

1.1 Flats and Submersions in Non-Negative Curvature

Until very recently all examples of compact, positively curved manifolds were

constructed as the image of a Riemannian submersion of a Lie group with a bi-invariant

metric ([9, 27, 48]). Earlier constructions of positive curvature in [1, 3, 4], and [10, 12, 11]

combined the fact that Lie groups with bi-invariant metrics are non-negatively curved with

the so called Horizontal Curvature Equation,

secB (x, y) = secM (x̃, ỹ) + 3 |Ax̃ỹ|2

[16, 42]. Here π : M → B is a Riemannian submersion, {x, y} is an orthonormal basis for a

plane in a tangent space to B, {x̃, ỹ} is a horizontal lift of {x, y} , and A is the “integrability

tensor” for the horizontal distribution—that is,

Ax̃ỹ ≡
1

2
[X̃, Ỹ ]vert
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where X̃ and Ỹ are arbitrary extensions of x̃ and ỹ to horizontal vector fields.

Since the Horizontal Curvature Equation decomposes secB (x, y) into the sum of

two non-negative quantities, we see immediately that Riemannian submersions preserve non-

negative curvature. In addition, if either term on the right is positive, then secB (x, y) > 0.

Naively, one might expect positively curved examples to be constructed by exploiting the

full power of the Horizontal Curvature Equation; however, a survey of the examples shows

that this has never been done. In the context in which the examples in [1, 3, 4, 10, 12, 11],

and [57] were constructed, it is impossible for a Riemannian submersion to create positive

curvature via the A–tensor alone. In fact, in [56] Tapp shows

Theorem[Tapp] Let π : G→ B be a Riemannian submersion of a compact Lie group with

a bi-invariant metric. Then

1 Every zero-curvature plane of B exponentiates to a flat (meaning a totally geodesic

immersion of R2 with a flat metric), and

2 Every horizontal zero-curvature plane of G projects to a zero-curvature plane of B.

In the case of bi-quotients of Lie groups, this is a consequence of an equation in

[19]. This was first observed explicitly in [60].

Recall, if σ is a zero-curvature plane in a Lie group G with bi-invariant metric,

then exp(σ) is a (globally) flat submanifold of G. So it is natural to ask about the extent to

which Tapp’s theorem holds if σ is assumed to be a horizontal zero-curvature plane whose

exponential image is a flat submanifold of M . More formally, we pose:

Problem 1 If π : M → B is a Riemannian submersion of a compact, non-negatively
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curved manifold M and σ is a horizontal zero-curvature plane in M such that exp(σ) is a

flat submanifold, does it follow that π∗(σ) is a zero-curvature plane in B?

We emphasize that the given flat is not assumed to be globally horizontal.

The following easy consequence of Lemma 1.5 in [55] shows that an affirmative

answer to our problem implies that both M and B have a lot of additional structure.

Theorem 2 Let π : M → B be a Riemannian submersion of complete, non-negatively

curved manifolds. Let σ be a zero-curvature plane in B and σ̃ a horizontal lift of σ so that

exp(σ̃) is a flat in M . Then

1 The plane σ exponentiates to a flat in B, and

2 Every horizontal lift of σ exponentiates to a horizontal flat in M .

If we assume the fibers of the submersion are totally geodesic, then, even in the

non-compact case, the conclusion of Tapp’s theorem holds.

Theorem 3 Let π : M → B be a Riemannian submersion of complete, non-negatively

curved manifolds with totally geodesic fibers. Let σ̃ be a horizontal zero-curvature plane in

M such that exp(σ̃) is a flat. Then

1 σ̃ projects to a zero-curvature plane σ in B that exponentiates to a flat submanifold of

B, and

2 Every horizontal lift of σ exponentiates to a horizontal flat in M .

We also give an affirmative answer to Problem 1 in the special case when the

submersion is induced by an isometric group action with only principal orbits.
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Theorem 4 Let a compact Lie group G act by isometries on a compact, non-negatively

curved manifold M . Suppose all of the orbits are principal, and let π : M → M/G be the

induced Riemannian submersion.

Suppose σ̃ is a horizontal zero-curvature plane in M such that expp(σ̃) is a flat.

Then

1 σ̃ projects to a zero-curvature plane σ in M/G that exponentiates to a flat submanifold

of M/G, and

2 Every horizontal lift of σ exponentiates to a horizontal flat in M .

Example 17 shows that this result does not hold if we remove the hypothesis that

M is compact. On the other hand, appropriate associated bundles also inherit this property.

Corollary 5 Let G be a compact Lie group, P be compact, and πP : P → B ≡ P/G

a principal G–bundle with non-negatively curved G–invariant metric. Let F be a non-

negatively curved manifold that carries an isometric G–action and π : E := P ×G F → B

the corresponding associated bundle with fiber F . Give E and B the corresponding non-

negatively curved metrics so that π and Q : P × F → P ×G F = E become Riemannian

submersions.

If σ̃ is a π–horizontal zero-curvature plane in E such that expp(σ̃) is a flat, then

1 σ̃ projects to a zero-curvature plane σ in B that exponentiates to a flat submanifold of

B, and

2 Every horizontal lift of σ exponentiates to a horizontal flat in E.
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Example 6 Grove and Ziller have shown how to lift the product metric on S2 × S2 and

Cheeger’s metric on CP 2# − CP 2 to various principal SO (k) bundles and hence to all of

the associated bundles [30]. According to Lemma 23 (below) the flat tori in S2 × S2 lift

to flats in all of these non-negatively curved bundles. Similarly, the flat Klein bottles in

Cheeger’s CP 2# − CP 2 must also lift to flats in all of the non-negatively curved bundles

of [30]. It follows from the construction of the metric that the principal bundles all have

totally geodesic fibers. Therefore the principal bundles give examples of Theorems 2, 3, and

4. The associated bundles give examples of Theorem 2 and Corollary 5.

1.2 Riemannian Submersions Need Not Preserve Positive

Ricci Curvature

One might ask if something similar to O’Neill’s horizontal curvature equation exists

for Riemannian submersions in the Ricci curvature case. However, given the difference

between Ricci and sectional curvature, it is not a surprise that Riemannian submersions

need not preserve a lower Ricci cuvature bound. Yet, an example of this appears to be

absent from the literature. We give an example that shows this can fail severely, that is,

Theorem 7 For any C > 0, there is a Riemannian submersion π : M → B for which M

is compact with positive Ricci curvature and B has some Ricci curvatures less than −C.

The examples are constructed as a warped product S2 ×ν F , where F is any

manifold that admits a metric with Ricci curvature ≥ 1, and the metric on S2 is C1–close

to any predetermined positively curved rotationally symmetric metric on S2.

5



1.3 The Diffeomorphism Type Of Manifolds with Almost

Maximal Volume

Any closed Riemannian n–manifold M has a lower bound for its sectional curva-

ture, k ∈ R. This gives an upper bound for the volume of any metric ball B (x, r) ⊂M,

volB (x, r) ≤ vol Dnk (r) ,

where Dnk (r) is an r–ball in the n–dimensional, simply connected space form of constant

curvature k. If rad M is the smallest number r such that a metric r–ball covers M, it follows

that

volM ≤ vol Dnk (rad M) .

The invariant rad M is known as the radius of M and can alternatively be defined

as

radM = min
p∈M

max
x∈M

dist (p, x) .

In the event that volM is almost equal to vol Dnk (rad M) , we determine the

diffeomorphism type of M .

Theorem 8 Given n ∈ N, k ∈ R, and r > 0, there is an ε > 0 so that every closed

Riemannian n–manifold M with

sec M ≥ k,

rad M ≤ r, and (1.1)

vol M ≥ vol Dnk (r)− ε

is diffeomorphic to Sn or RPn.

6



Grove and Petersen obtained the same result with diffeomorphism replaced by

homeomorphism in [25]. They also showed that for any ε > 0 and M = Sn or RPn there

are Riemannian metrics that satisfy (1.1) except when k > 0 and r ∈
(

1
2
π√
k
, π√

k

)
.

For k > 0 and r ∈
(

1
2
π√
k
, π√

k

)
, Grove and Petersen also computed the optimal

upper volume bound for the class of manifolds M with

sec M ≥ k and rad M ≤ r. (1.2)

It is strictly less than vol Dnk (r) [25]. For k > 0 and r ∈
(

1
2
π√
k
, π√

k

)
, manifolds satisfying

(1.2) with almost maximal volume are already known to be diffeomorphic to spheres [28].

The main theorem in [43] gives the same result when r = π√
k
.

For k > 0 and r = π√
k
, the maximal volume vol Dn1

(
π√
k

)
is realized by the n-sphere

with constant curvature k. For k > 0 and r = π
2
√
k
, the maximal volume volDn1

(
π

2
√
k

)
is

realized by RPn with constant curvature k. Apart from these cases, there are no Riemannian

manifolds M satisfying (1.2) and vol M = vol Dnk (r) . Rather, the maximal volume is

realized by one of two types of Alexandrov spaces. [25]

Example 9 (Crosscap) The constant curvature k Crosscap, Cnk,r, is the quotient of Dnk (r)

obtained by identifying antipodal points on the boundary. Thus Cnk,r is homeomorphic

to RPn. There is a canonical metric on Cnk,r that makes this quotient map a subme-

try. The universal cover of Cnk,r is the double of Dnk (r). If we write this double as

Dnk (r) := Dnk (r)+ ∪∂Dnk (r)± Dnk (r)− , then the free involution

A : Dnk (r) −→ Dnk (r)
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that gives the covering map Dnk (r) −→ Cnk,r is

A : (x,+) 7−→ (−x,−) ,

where the sign in the second entry indicates whether the point is in Dnk (r)+ or Dnk (r)−.

Example 10 (Purse) Let R : Dnk (r) → Dnk (r) be reflection in a totally geodesic hyper-

plane H through the center of Dnk (r). The Purse, Pnk,r, is the quotient space

Dnk (r) / {v ∼ R (v)} , provided v ∈ ∂Dnk (r) .

Alternatively we let {HDnk (r)}+ ∪ {HDnk (r)}− = Dn
k (r) be the decomposition of

Dnk (r) into the two half disks on either side of H. Then Pnk,r is isometric to the double of

{HDnk (r)}+ .

Dn
k (r)

H

R

HDn
k (r)+

HDn
k (r)−

Figure 1.1: Two equivalent constructions of P 2
1,r

Let {Mi}∞i=1 be a sequence of closed n-manifolds satisfying sec M ≥ k and radM ≤

r and {volMi} converging to vol Dnk (r) where r ≤ π
2
√
k

if k > 0. Grove and Petersen

showed that {Mi} has a subsequence that converges to either Cnk,r or Pnk,r in the Gromov-

Hausdorff topology [25]. The main theorem follows by combining this with the following

diffeomorphism stability theorems.
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Theorem 11 Let {Mi}∞i=1 be a sequence of closed Riemannian n–manifolds with sec Mi ≥

k so that

Mi −→ Cnk,r

in the Gromov-Hausdorff topology. Then all but finitely many of the Mis are diffeomorphic

to RPn.

Theorem 12 Let {Mi}∞i=1 be a sequence of closed Riemannian n–manifolds with sec Mi ≥

k so that

Mi −→ Pnk,r

in the Gromov-Hausdorff topology. Then all but finitely many of the Mis are diffeomorphic

to Sn.

Remark 13 One can get Theorem 12 for the case k = 1 and r > arccot
(

1√
n−3

)
as a

corollary of Theorem C in [29]. Theorem 11 when k = 1 and r = π
2 follows from the

main theorem in [61] and the fact that Cn1,π
2

is RPn with constant curvature 1 . With minor

modifications of our proof, the hypothesis sec Mi ≥ k in Theorems 11 and 12 can replaced,

except in one case, with an arbitrary uniform lower curvature bound. The exceptional case,

is Theorem 11 in dimension 4, specifically in Proposition 56. For ease of notation, we have

written all of the proofs for {Mi}∞i=1 with sec Mi ≥ k converging to Cnk,r or Pnk,r.

Remark 14 We mention here that the space of directions at every point p ∈ Cnk,r is iso-

metric the round sphere Sn−1. It has been shown in [35] that diffoemorphism stability holds

when the limit space has all of its space of directions being Euclidean and therefore Theorem

9



11 follows immediately from this. However, the proof here differs greatly from what is in

[35] and we leave it for this reason.

10



Chapter 2

Flats and Submersions in

Non-Negative Curvature

2.1 Background

By the implicit function theorem, the fibers of a smooth submersion π : M → B

are smooth submanifolds of M . We call the distribution V defined by

V := kerπ∗

the vertical distribution. If M is a Riemannian manifold, we denote by H the distibution

defined as the orthogonal compliment to V and call H the horizontal distribution. We then

have a decomposition of the tangent bundle

TM = V ⊕H.

If, in addition, B is Riemannian, π is called a Riemannian submersion if π∗|H is an isometry.
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For a vector v ∈ TM , we write

v = vv + vh

to denote the vertical and horizontal components of v, respectively. In [42] O’Neill general-

izes the classical second fundamental form for immersions by defining two tensors A and T

on M . Here, for vector fields E,F on M these are defined as

AEF := (∇EhF h)v + (∇EhF v)h

TEF := (∇EvF v)h + (∇EvF h)v

Just like the case for the second fundamental form of an immersion, these tensors measure

the geometric complexities of the submersion.

2.2 Examples

Our goal is to generalize Tapp’s theorem to Riemannian submersions from more

than just compact Lie groups G with a biinvariant metric. So we begin by giving examples

of how the conclusions of Tapp’s theorem can fail to hold in this new setting. Recall that

Tapp shows

Theorem [Tapp] Let π : G→ B be a Riemannian submersion of a compact Lie group with

a bi-invariant metric. Then

1 Every zero-curvature plane of B exponentiates to a flat (meaning a totally geodesic

immersion of R2 with a flat metric), and

2 Every horizontal zero-curvature plane of G projects to a zero-curvature plane of B.

12



The following examples show that this theorem fails if the Lie group G is replaced

by an arbitrary, compact, non-negatively curved Riemannian manifold M . The inhomoge-

neous metrics of these examples have zero-planes whose exponentials are locally, but not

globally, flat.

Example 15 (Fish Bowl) Let ψ : [0, π] −→ R be a smooth, concave-down function that

satisfies

ψ (t) =


t for t ∈

[
0, π4

]
π − t for t ∈

[
3π
4 , π

]
Consider the warped product metric

gψ = dt2 + ψ2dθ2

on S2 = [0, π]×ψ S1. As before, S1 acts isometrically on
(
S2, gψ

)
, so we get a Riemannian

submersion (
S2, gψ

)
× S1 −→

(
S2, ḡψ

)
,

where ḡψ is the metric induced by the submersion. Notice that
(
S2, gψ

)
× S1 is flat in a

neighborhood of the set {0, π} × S1, but, as in Example 17,
(
S2, ḡψ

)
is positively curved in

the image of this neighborhood. If, in addition,

ψ′′|(π4 , 3π4 ) < 0,

then
(
S2, ḡψ

)
is positively curved. This shows that even in the compact case, the A– tensor

can be responsible for creating positive curvature and that conclusion 2 of Tapp’s Theorem

fails for arbitrary Riemannian submersions of compact, nonnegatively curved manifolds.

13



Example 16 To see how conclusion 1 of Tapp’s theorem can fail to hold, choose ψ in the

previous example to be constant in a neighborhood of π/2. This makes
(
S2, gψ

)
isometric

to a flat cylinder near a neighborhood of the equator. In the Cheeger deformed metric, the

image of this region is a smaller flat cylinder. Since the base,
(
S2, ḡψ

)
, is not flat, we have

zero–curvature planes near the equator that do not exponentiate to flats.

In Theorem 2, we do not require that M is compact; on the other hand, without

compactness, the answer to Problem 1 is “no”, even when M is a Lie group.

Example 17 Let (R2, ḡ) be the Cheeger deformation of R2 obtained from the standard S1

action on R2. Let s and g be the usual metrics on S1 and R2, respectively. Recall that ḡ is

defined so that the quotient map,

Q : (S1 × R2, s+ g)→ (R2, ḡ)

given by Q(z, q) = z̄q is a Riemannian submersion. This new metric is positively curved

and is a paraboloid asymptotic to a cylinder of radius 1. All horizontal planes have zero

curvature, but each projects to a positively curved plane. So positive curvature is created via

the A-tensor alone.

2.3 Jacobi Fields Along Geodesics Contained In Flats

To prove Theorems 3 and 4 we establish a main lemma on holonomy fields, whose

defintion we recall from [20].

Definition 18 Given a Riemannian submersion π : M → B let A and T be the cor-

responding fundamental tensors as defined in [42]. A Jacobi field J along a horizontal

14



geodesic c : I →M is said to be a holonomy field if J(0) is vertical and satisfies

J ′(0) = Aċ(0)J(0) + TJ(0)ċ(0). (2.1)

Main Lemma 1 Let π : M → B be a Riemannian submersion of complete, non-negatively

curved manifolds so that each holonomy field is bounded. Let σ̃ be a horizontal zero-curvature

plane in M such that exp(σ̃) is a flat. Then

1 σ̃ projects to a zero-curvature plane σ in B that exponentiates to a flat submanifold of

B, and

2 Every horizontal lift of σ exponentiates to a horizontal flat in M .

The symmetries of the curvature tensor imply that the map X 7−→ R (X,W )W

is self-adjoint. This combined with the spectral theorem yields the following result, which

appears implictly in [48].

Proposition 19 Let span {X,W} be a zero curvature plane in a nonnnegatively curved

manifold, then

R (X,W )W = R (W,X)X = 0.

In a compact Lie group G with bi-invariant metric, solutions to the Jacobi equation

along a geodesic γ(t) have the form

J(t) = E0 + tF0 +
l∑

i=0

(
cos(

√
kit)Ei + sin(

√
kir)Fi

)
,

where Ei and Fi are parallel along γ (see [41]). We generalize this decomposition in the

following way:

15



Lemma 20 Suppose γ is a geodesic in a complete, non-negatively curved manifold M , and

suppose J0 is a normal, parallel, Jacobi field along γ, then any normal Jacobi field J along

γ can be written as

J(t) = (a+ bt)J0(t) +W (t), (2.2)

where a, b ∈ R and W and W ′ are perpendicular to J0.

Proof. Extend J0 to an orthonormal basis {J0, E2, ..., En−1} of normal, parallel

fields along γ. Since J0(t) and γ′(t) span a zero-curvature plane and M is non-negatively

curved, R(J0, γ
′)γ′ = 0, by Proposition 19. Therefore, if we write

J(t) = f(t)J0(t) +

n−1∑
i=2

fi(t)Ei(t),

we have

J ′′(t) = −R(J(t), γ′(t))γ′(t)

= −
n−1∑
i=2

fi(t)R(Ei, γ
′(t))γ′(t)

and

〈R(Ei, γ
′)γ′, J0〉 = 〈R(J0, γ

′)γ′, Ei〉 = 0

by a symmetry of the curvature tensor. Thus J ′′ ⊥ J0. Since {J0, E2, ..., En−1} is parallel

and orthogonal, we also have

J ′′(t) = f ′′(t)J0(t) +

n−1∑
i=2

f ′′i (t)Ei(t).

Combining this with J ′′ ⊥ J0, we see that f ′′ = 0 as claimed.

Since W ′ =
∑n−1

i=2 f
′
i(t)Ei(t), we also have W ′ ⊥ J0.

16



Given a Riemannian submersion π : M → B , let V and H be the vertical and

horizontal distributions. As holonomy fields are the variational fields arising from horizontal

lifts of geodesics in B, they never vanish, they remain vertical, and they satisfy (2.1) for

all time. In fact, we can find a collection {Ji(t)} of such fields that span V along c. This

description of V allows one to determine precisely when a field along a curve in M has

values in H. In particular, we have the following, as observed by Tapp when M is a Lie

group.

Lemma 21 Suppose π : M → B is a Riemannian submersion of a complete, non-negatively

curved manifold M , γ is a horizontal geodesic in M , and J0 is a parallel Jacobi field along

γ such that J0(0) is horizontal. If all holonomy fields V along γ have bounded length, then

J0 is everywhere horizontal.

Proof. Let V be a holonomy field. Since V is always vertical, the decomposition

in Lemma 20 simplifies to

V (t) = btJ0(t) +W (t).

Since V has bounded length, b = 0 and therefore V (t) = W (t), which is perpendicular to

J0. As the collection of all holonomy fields spans the vertical distribution along γ, the result

follows.

Part 1 of the main lemma is a consequence of the next result.

Lemma 22 Suppose π : M → B is a Riemannian submersion of a complete, non-negatively

curved manifold M , and all holonomy fields of π have bounded length. Suppose σ̃ is a

horizontal zero curvature plane and exp (σ̃) is a totally geodesic flat.

17



Then σ := dπ (σ̃) has a zero curvature and exp(σ) is a totally geodesic flat sub-

manifold of B.

Proof. Let {X,Y } be any orthonormal pair in σ̃. Let γ be the geodesic: t 7−→

exp (tX) , and let J be the parallel Jacobi field along γ with J (0) = Y. Then by the

previous Lemma, J (t) is horizontal for all t. Hence exp (σ̃) is everywhere horizontal, and,

by assumption, a totally geodesic flat.

It follows from the Horizontal Curvature Equation that π(exp (σ̃)) is also flat, and

from the formula for covariant derivatives of horizontal fields it follows that π(exp (σ̃)) is

totally geodesic. Since horizontal geodesics project to geodesics, π(exp (σ̃)) = exp(dπ (σ̃)) =

exp(σ). So exp(σ) is a totally geodesic flat submanifold of B.

The following lemma is probably a well known application of the Horizontal Cur-

vature Equation. We include it as it establishes part 2 of our main lemma and is also used

in the proof of Theorem 2.

Lemma 23 Let π : M → B be a Riemannian submersion of a complete, non-negatively

curved manifold M. Let σ be a tangent plane to B so that exp(σ) is a totally geodesic flat.

Then for any horizontal lift σ̃ of σ, exp(σ̃) is a totally geodesic flat that is every-

where horizontal.

Proof. The Horizontal Curvature Equation implies that any horizontal lift τ̂ of a

plane τ tangent to exp(σ) satisfies

secM (τ̂) = 0 and A (τ̂) = 0.
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In particular, the collection of all such τ̂s gives us an integrable 2-dimensional distribution

that is horizontal. The vanishing A–tensor combined with our hypothesis that exp(σ) is

totally geodesic gives us that all the integral submanifolds of this distribution are also

totally geodesic. If σ̃ is a horizontal lift of σ, then it follows that exp(σ̃) is tangent to this

distribution and hence is a totally geodesic flat that is everywhere horizontal.

We now proceed with proofs of theorems 3 and 2.

Proof of Theorem 3. When the fibers of a Riemannian submersion are to-

tally geodesic, the T -tensor for the submersion vanishes. If V is a holonomy field along a

horizontal geodesic γ, by (2.1) we have

〈V (t), V (t)〉′ = 2〈V (t), V ′(t)〉 = 2〈V (t), TV (t)γ
′(t)〉 = 0,

so V has constant norm. An applicaiton of the main lemma completes the proof.

In contrast to our other results the proof of Theorem 2 does not use the main

lemma. Instead we exploit the infinitesimal geometry of the submersion.

Proof of Theorem 2.

Let σ be a zero-curvature plane in B and σ̃ a horizontal lift of σ so that exp(σ̃)

is contained in a flat of M . Let γ be a geodesic in exp(σ̃) and J0 be a parallel Jacobi field

along γ such that

σ̃ = span
{
γ′ (0) , J0 (0)

}
.
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Now Aγ′(0)J0(0) = 0 because secM (σ̃) = secB(σ) = 0; so for any holonomy field V,

we have

〈J0(t), V ′(t)〉
∣∣
t=0

= 〈J0(t), Aγ′(t)V (t)〉
∣∣
t=0

, since J0(0) is horizontal

= − 〈Aγ′(t)J0(t), V (t)〉
∣∣
t=0

= 0.

On the other hand, differentiating the right hand side of V (t) = btJ0(t) +W (t), we find

〈J0(t), V ′(t)〉
∣∣
t=0

= 〈J0(t), bJ0(t)〉|t=0 + 〈J0(t),W ′(t)〉
∣∣
t=0

= b |J0(0)|2 .

Therefore b = 0 and V = W , and it follows that N := exp(σ̃) is everywhere horizontal.

Thus its projection, exp (σ), is a totally geodesic flat in B.

By Lemma 23, every horizontal lift of σ exponentiates to a horizontal flat in M.

2.4 The Holonomy of π

In this section we prove Theorem 4 by showing that such submersions have bounded

holomomy fields and hence satisfy the hypotheses of the main lemma. At the end of the

section we prove Corollary 5.

Given a point b ∈ B, we define the holonomy group hol(b) to be the group of all

diffeomorphisms of the fiber π−1(b) that occur as holonomy diffeomorphisms hc : π−1(b)→

π−1(b) obtained by lifting piecewise smooth loops c at b. If M is compact, the T tensor is
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globally bounded in norm. It follows that each holonomy diffeomorphism hc is Lipschitz

with Lipschitz constant dependent only on the length of c (see [21], Lemma 4.2). Since

this Lipschitz constant can actually depend on the length of c, this is generally not enough

to conclude that the the holonomy fields are uniformly bounded (see [56], Example 6.1]).

On the other hand, if B is compact and hol(b) is a compact, finite-dimensional Lie

group, then there is a uniform Lipschitz constant for all of hol(b). Thus the holonomy fields

are uniformly bounded ([56], Proposition 6.2). So to prove theorem 4, it suffices to show

that hol(b) is a compact, finite-dimensional Lie group.

Proof of Theorem 4. Set B = M/G, and for p ∈M, let Gp denote the isotropy

subgroup of G. Note that the map f : G/Gp →M given by f(gGp) = g(p) is an imbedding

onto the orbit G(p) of p. Now take any piecewise smooth curve c : [0, 1]→ B. The holonomy

diffeomorphism

hc : π−1(c(0))→ π−1(c(1))

is defined by

hc(p) = c̄(1),

where c̄ is the unique horizontal lift of c starting at p. By assumption, G acts isometrically

on M , so gc̄ is also horizontal. Since (gc̄)(1) = g(c̄(1)), we have that

hc(gp) = ghc(p).

In other words, hc is G-equivariant.

By the above, hol(b) is a subgroup of the collection DiffG(π−1(b)) of allG-equivariant

diffeomorphisms of the fiber π−1(b). Take any p ∈ π−1(b). Set H ≡ Gp, and identify π−1(b)
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with G/H. Then DiffG(G/H) is isomorphic to the Lie group N(H)/H, where N(H) is the

normalizer of H (see [20], Lemma 2.3.3).

In [59], Wilking associates to a given metric foliation F the so-called dual foliation

F#. The dual leaf through a point p ∈M is defined as all points q ∈M such that there is

a piecewise smooth, horizontal curve from p to q. Let L#
p be the dual leaf through p.

We shall see that for any p ∈M, hol(b) is homeomorphic to L#
p ∩ π−1(b).

We have the continuous map

evp : hol(b)→ L#
p ∩ π−1(b)

defined by

evp : hc 7→ hc(p).

To construct the inverse, let q be in L#
p ∩ π−1(b). There is a piecewise smooth,

horizontal curve c̄ from p to q. Now π ◦ c̄ is a piecewise smooth loop at b and

hπ◦c̄(p) = q.

We therefore propose to define ev−1
p by

ev−1
p : q 7−→ hπ◦c̄.

To see that ev−1
p is well-defined, suppose c̃ is another piecewise smooth, horizon-

tal curve from p to q. By construction, we have hπ◦c̄(p) = hπ◦c̃(p). Since all holonomy

diffeomorphisms are G-equivariant and G acts transitively on π−1(b), it follows that

hπ◦c̄ = hπ◦c̃.
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Now take a sequence of points qi ∈ L# ∩ π−1(b) converging to q0 ∈ L# ∩ π−1(b). There

are horizontal curves c̄i from p to qi such that hπ◦c̄i(p) = qi. Again by G-equivariance and

the transitive action of G, these holonomy diffeomorphisms are completely determined by

their behavior at a point. Thus hπ◦c̄i → hπ◦c̄0 , and so ev−1
p is continuous. Therefore hol(b)

is homeomorphic to L# ∩ π−1(b).

Since F is given by the orbit decomposition of an isometric group action, the dual

foliation has complete leaves ([59], Theorem 3(a)). In particular, this says L# ∩ π−1(b) ∼=

hol(b) is a closed subset of the compact space π−1(b) and hence is also compact. It follows

that hol(b) is closed in the Lie group DiffG(G/H) ∼= N(H)/H, so is a Lie subgroup of

DiffG(G/H). Thus hol(b) is a compact, finite-dimensional Lie group.

Remark 24 In general, hol(b) need not even be a Lie group, let alone a compact Lie group

[56]. However, it is shown in [22] that when the fibers come from principal G-actions, hol(b)

is always a Lie group.

Recall (see [20], p.92) that if P is the total space of the principal G–bundle

πP : P → B := P/G and F is a manifold that carries a G–action, then G acts freely on

the product P × F . In particular, if P and F have G-invariant metrics of non-negative

curvature, G acts by isometries on the product P × F . As a result, the total space E =

P ×G F := (P ×F )/G of the associated bundle inherits a metric of non-negative curvature

such that the quotient map Q : P ×F → P ×GF is a Riemannian submersion [8]. Similarly,

B inherits a metric of non-negative curvature such that πP : P → B is a Riemannian

submersion. If π1 : P × F → P is projection onto the first factor, the diagram
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P × F Q−−−−→ E

π1

y yπ
P −−−−→

πP
B

commutes and so π : E → B is also a Riemannian submersion.

Proof of Corollary 5: . Consider the composition

πP ◦ π1 : P × F −→ B.

The holonomy fields for πP ◦π1 are the products of holonomy fields for πP : P → B

and π1. The former are bounded by the proof of Theorem 4, the latter are bounded because

the fibers of π1 are totally geodesic.

Now suppose that σ̃ is a horizontal zero-curvature plane for π : E −→ B such that

expp(σ̃) is a flat. Apply Lemma 23 to Q : P × F → E to conclude that any horizontal lift

σ̃P×F of σ̃ exponentiates to a (Q–horizontal) flat. Since the holonomy fields of πP ◦π1 = π◦Q

are bounded, we can apply Lemma 22 to conclude that σ := d (π ◦Q) (σ̃P×F ) = dπ (σ̃) is

a zero plane that exponentiates to a flat. Applying Lemma 23 to π : E → B we conclude

that every horizontal lift of σ is a horizontal flat.

Remark 25 Combining the Main Lemma with the concept of projectable Jacobi fields from

[20] one gets a shorter (but more learned) proof of the Corollary.
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Chapter 3

Riemannian Submersions Need

Not Preserve Positive Curvature

3.1 Vertical Warping

Given a Riemannian submersion π : M → B, the vertical and horizontal distribu-

tions are defined as V := kerπ∗ and H := (kerπ∗)
⊥, respectively. This gives a splitting of

the tangent bundle as

TM = V ⊕H.

If g is the metric on M , we denote by gh and gv the restrictions of g to H and V. Define a

new metric gν := e2νgv + gh, where ν is any smooth function on B. Note that both H and

gh are unchanged, so π : (M, gν)→ B is also Riemannian.

The calculations that give important geometric quantities associated to gν in terms

of g and ν are carried out in ([20], p. 45). In particular, the (0, 2) Ricci tensor Ricν of gν
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is given in detail. When M = Bm×F k with g a product metric, these quantities reduce to

the following (Corollary 2.2.2 [20]):

For horizontal X,Y and vertical U, V , we have

Ricν(X,Y ) = RicB(X,Y )− k(Hess ν(X,Y ) + g(∇ν,X)g(∇ν, Y )), (3.1)

Ricν(X,U) = 0, (3.2)

Ricν(U, V ) = RicF (U, V )− g(U, V )e2ν(∆ν + k|∇ν|2). (3.3)

Here we denote by the same letter those fields which are π1-related where π1 : B × F → B

is projection onto the first factor. We write B ×ν F to denote the warped product metric

gν on B × F .

3.2 S2
ϕ ×ν F

Choose ϕ : [0, π]→ [0,∞) so that S2 equipped with the metric gϕ = dr2 + ϕ2dθ2

is a smooth Riemannian manifold denoted by S2
ϕ. Let ν : [0, π] → R be a function on

S2
ϕ that only depends on r. Consider the warped product S2

ϕ ×ν F where (F, gF ) is any

k-dimensional manifold (k ≥ 2) with RicF ≥ 1. Using the notation ν̇ = ∂rν, since ν only

depends on r

∇ν = ν̇∂r.
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If L denotes Lie derivative we have,

2Hess ν = L∇νgϕ

= Lν̇∂rgϕ

= ν̇L∂rgϕ + dν̇dr + drdν̇

= 2ν̇Hess r + 2ν̈dr2,

and so the Hessian of ν is given by

Hess ν = ν̈dr2 + ν̇ϕϕ̇dθ2.

The Ricci tensor of S2
ϕ is (see p. 69 [47]) given as

RicS2
ϕ

= − ϕ̈
ϕ
gϕ.

Let Richν and Ricvν denote Ricν restricted to the horizontal and vertical distribution, respec-

tively. Equation (3.1) can be written as

−Richν =

[
ϕ̈

ϕ
+ k(ν̈ + ν̇2)

]
dr2 + ϕ [ϕ̈+ kν̇ϕ̇] dθ2 (3.4)

and equation (3.3) can be written as

Ricvν = RicF − e2ν(ν̈ +
ϕ̇ν̇

ϕ
− kν̇2)gF . (3.5)

Notice that since RicF ≥ 1, if Richν is positive, then these equations together with

Equation 3.2 imply that S2
ϕ×ν+lnλF has positive Ricci curvature, provided λ is a sufficiently

small positive constant.

27



By requiring that ϕ̈(p) > 0 for some point p ∈ (0, π), the projection π1 : S2
ϕ ×ν

F −→ S2
ϕ is a Riemannian submersion for which the base has points of negative Ricci

curvature.

To describe a Riemannian submersion that does not preserve non-negative Ricci

curvature, it suffices to find functions ϕ and ν, and a metric gF on F so that

1. S2
ϕ is smooth and has points of negative curvature, i.e.,

ϕ(even)(0) = ϕ(even)(π) = 0,

ϕ̇(0) = −ϕ̇(π) = 1,

ϕ̈(p) = η > 0

for some point p ∈ (0, π),

2. Richϕ ≥ 0, i.e.,

ν̈ + ν̇2 ≤ − ϕ̈

kϕ

ϕ̇ν̇ ≤ − ϕ̈
k
.

and

3. Ricvϕ ≥ 0, i.e.,

RicF ≥ e2ν(ν̈ + ϕϕ̇ν̇ − kν̇2)gF

Assuming F admits a metric with positive Ricci curvature, once functions satisfy-

ing (1) and (2) are found, we can scale down to a metric gF that strictly satisfies (3). So

all that remains is to find functions ϕ and ν satisfying (1) and (2).
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In fact, we show S2
ϕ×νF can have positive Ricci curvature by showing the existence

of functions satisfying (1) and (2) with strict inequalities. This will follow by finding smooth

functions ϕ and ν and numbers a, ε > 0, and b > p+ ε such that

(A) ϕ satisfies (1) and

ϕ̈ < 0

on (0, π) \ [p− ε, p+ ε],

ϕ̇ ≥ a

on [0, b].

(B) ν̇ = 0 on [0, π] \ (p/2, b) and

ν̇ < − η

ka

ν̈ + ν̇2 < − η

kϕ(p− ε)

on (p− ε, p+ ε).

(C)

ν̈ + ν̇2 < − ϕ̈

kϕ

on (p+ ε, b].

The only constraint for a function ϕ that satisfies all conditions of (A) is that∫ b

0
ϕ̈ dr ≥ a− 1.

On (0, p− ε), |ϕ̈| may be chosen arbitrarily small, so this constraint may be written as∫ b

p+ε
ϕ̈ dr ≥ a− 1. (3.6)
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Take ν so that on [0, p/2], ν̇ = 0. On some subinterval of [p/2, p − ε], require ν̈

small enough so that

ν̈ + ν̇2 ≤ 0,

ν̇(p− ε) = −2η

ka
,

and on (p− ε, p+ ε), we may set

ν̈ =
−2η

kϕ(p− ε)
−
(

2η

ka

)2

.

Then

ν̇(p+ ε) = −2η

ka
+O(ε)

and therefore on (p− ε, p+ ε),

ν̈ + ν̇2 ≤ − 2η

kϕ(p− ε)
+O(ε).

So (B) will be satisfied provided ε is small enough and ν̇ = 0 on [b, π]. This last constraint

can be written as

∫ b

p+ε
ν̈ dr = −ν̇(p+ ε) (3.7)

=
2η

ka
−O(ε).

On [p+ ε, b), ϕ ≥ (p+ ε)a. So (3.6) says

∫ b

p+ε
− ϕ̈

kϕ
dr ≤ 1− a

k(p+ ε)a
.

On the same interval,

ν̇ ≥ −2η

ka
+O(ε).
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This, together with (3.7) says

∫ b

p+ε
ν̈ + ν̇2 dr ≤ 2η

ka
+

(
2η

ka

)2

(b− (p+ ε)) +O(ε).

Therefore, on (p+ ε, b], if we take ϕ̈ small enough so that

ϕ̈ < −ka(p+ ε)(ν̈ + ν̇2),

(C) will be satisfied provided

2η

ka
+

(
2η

ka

)2

(b− (p+ ε)) +O(ε) <
1− a

k(p+ ε)a
.

If η < 1/(4(p+ ε)), this will be satisfied, for example, by taking a = 1− 4(p+ ε), b = p+ 2ε

and ε sufficiently small.

Notice that η can be taken large and ϕ(p) will be small provided p is sufficiently

small. Given C > 0, the metric S2
ϕ may be taken to have points of curvature less than −C.
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Chapter 4

The Diffeomorphism Type of

Manifolds with almost maximal

volume

Section 4.1 introduces notations and conventions. Section 4.2 is review of necessary

tools from Alexandrov geometry. Section 4.3 develops machinery and proves Theorem 11

in the case when n 6= 4. Theorem 11 in dimension 4 is proven in Section 4.4, and Theorem

12 is proven in Section 4.5.

Throughout the remainder of the paper, we assume without loss of generality, by

rescaling if necessary, that k = −1, 0 or 1.
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4.1 Conventions and Notations

We assume a basic familiarity with Alexandrov spaces, including but not limited

to [5]. Let X be an n–dimensional Alexandrov space and x, p, y ∈ X.

1. We call minimal geodesics in X segments. We denote by px a segment in X with

endpoints p and x.

2. We let Σp and TpX denote the space of directions and tangent cone at p, respectively.

3. For v ∈ TpX we let γv be the segment whose initial direction is v.

4. Following [46], ⇑px⊂ Σx will denote the set of directions of segments from x to p, and

↑px∈ ⇑px denotes the direction of a single segment from x to p.

5. We let ^(x, p, y) denote the angle of a hinge formed by px and py and ˜̂(x, p, y) denote

the corresponding comparison angle.

6. Following [43], we let τ : Rk → R+ be any function that satisfies

lim
x1,...,xk→0

τ (x1, . . . , xk) = 0,

and abusing notation we let τ : Rk × Rn → R be any function that satisfies

lim
x1,...,xk→0

τ (x1, . . . , xk|y1, . . . , yn) = 0,

provided that y1, . . . , yn remain fixed.

When making an estimate with a function τ we implicitly assert the existence of such

a function for which the estimate holds.
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7. We denote by R1,n the Minkowski space (Rn+1, g), where g is the semi-Riemannian

metric defined by

g = −dx2
0 + dx2

1 + · · ·+ dx2
n

for coordinates (x0, x1, · · · , xn) on Rn+1.

8. We reserve {ej}mj=0 for the standard orthonormal basis in both euclidean and Minkowski

space.

9. We use two isometric models for hyperbolic space,

Hn
+ :=

{
(x0, x1, · · · , xn) ∈ Rn+1

∣∣− (x0)2 + (x1)2 + · · ·+ (xn)2 = −1, x0 > 0
}

and

Hn
− :=

{
(x0, x1, · · · , xn) ∈ Rn+1

∣∣− (x0)2 + (x1)2 + · · ·+ (xn)2 = −1, x0 < 0
}
.

10. We obtain explicit double disks, Dnk (r) := Dnk (r)+ ∪∂Dnk (r)± Dnk (r)− , by viewing

Dnk (r)+ and Dnk (r)− explicitly as

Dnk (r)+ :=



{
z ∈ Hn

+ ⊂ R1,n
∣∣distHn

+
(e0, z) ≤ r

}
if k = −1{

z ∈ {e0} × Rn ⊂ Rn+1
∣∣ distRn+1 (e0, z) ≤ r

}
if k = 0{

z ∈ Sn ⊂ Rn+1
∣∣distSn (e0, z) ≤ r

}
if k = 1,

and

Dnk (r)− :=



{
z ∈ Hn

− ⊂ R1,n
∣∣ distHn

−
(−e0, z) ≤ r

}
if k = −1{

z ∈ {−e0} × Rn ⊂ Rn+1
∣∣distRn+1 (−e0, z) ≤ r

}
if k = 0{

z ∈ Sn ⊂ Rn+1
∣∣distSn (−e0, z) ≤ r

}
if k = 1.

Since r < π
2 when k = 1, Dnk (r)+ and Dnk (r)− are disjoint in all three cases.
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4.2 Basic Tools From Alexandrov Geometry

The notion of strainers [5] in an Alexandrov space forms the core of the calculus

arguments used to prove our main theorem. In this section, we review this notion and its

relevant consequences. In some sense the idea can be traced back to [43], and some of the

ideas that we review first appeared in other sources such as [58] and [62].

Definition 26 Let X be an Alexandrov space. A point x ∈ X is said to be (n, δ, r)–strained

by the strainer {(ai, bi)}ni=1 ⊂ X ×X provided that for all i 6= j we have

˜̂ (ai, x, bj) >
π
2 − δ, ˜̂ (ai, x, bi) > π − δ,

˜̂ (ai, x, aj) >
π
2 − δ, ˜̂ (bi, x, bj) >

π
2 − δ, and

mini=1,...,n {dist({ai, bi}, x)} > r.

We say a metric ball B ⊂ X is an (n, δ, r)–strained neighborhood with strainer

{ai, bi}ni=1 provided every point x ∈ B is (n, δ, r)–strained by {ai, bi}ni=1.

The following is observed in [62].

Proposition 27 Let X be a compact n-dimensional Alexandrov space. Then the following

are equivalent.

1 There is a (sufficiently small) η > 0 so that for every p ∈ X

distG−H
(
Σp, S

n−1
)
< η.

2 There is a (sufficiently small) δ > 0 and an r > 0 such that X is covered by finitely many

(n, δ, r)–strained neighborhoods.
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Theorem 28 ([5] Theorem 9.4) Let X be an n–dimensional Alexandrov space with curva-

ture bounded from below. Let p ∈ X be (n, δ, r)–strained by {(ai, bi)}ni=1 . Provided δ is small

enough, there is a ρ > 0 such that the map f : B(p, ρ)→ Rn defined by

f(x) = (dist (a1, x) ,dist (a2, x) , . . . ,dist (an, x))

is a bi-Lipschitz embedding with Lipschitz constants in (1− τ (δ, ρ) , 1 + τ (δ, ρ)) .

If every point in X is (n, δ, r)–strained, we can equip X with a C1–differentiable

structure defined by Otsu and Shioya in [44]. The charts will be smoothings of the map

from the theorem above and are defined as follows: Let x ∈ X and choose σ > 0 so that

B(x, σ) is (n, δ, r)–strained by {ai, bi}ni=1. Define dηi,x : B(x, σ)→ R by

dηi,x(y) =
1

vol(B(ai, η))

∫
z∈B(ai,η)

dist(y, z).

Then ϕηx : B(x, σ)→ Rn is defined by

ϕηx(y) = (dη1,x(y), . . . , dηn,x(y)). (4.1)

If B is (n, δ, r)–strained by {ai, bi}ni=1, any choice of 2n–directions
{(
↑aix , ↑bix

)}n
i=1

where x ∈ B will be called a set of straining directions for Σx. As in, [5, 62], we say

an Alexandrov space Σ with curv Σ ≥ 1 is globally (m, δ)-strained by pairs of subsets

{Ai, Bi}mi=1 provided

|dist(ai, bj)− π
2 | < δ, dist(ai, bi) > π − δ,

|dist(ai, aj)− π
2 | < δ, |dist(bi, bj)− π

2 | < δ

for all ai ∈ Ai, bi ∈ Bi and i 6= j.
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Theorem 29 ([5] Theorem 9.5, cf also [43] Section 3) Let Σ be an (n− 1)–dimensional

Alexandrov space with curvature ≥ 1. Suppose Σ is globally strained by {Ai, Bi}. There is

a map Ψ̃ : Rn −→ Sn−1 so that Ψ : Σ→ Sn−1 defined by

Ψ(x) = Ψ̃ ◦ (dist (A1, x) , dist (A2, x) , . . . ,dist (An, x))

is a bi-Lipschitz homeomorphisms with Lipshitz constants in (1− τ (δ) , 1 + τ (δ)).

Remark 30 The description of Ψ̃ : Rn −→ Sn−1 in [5] is explicit but is geometric rather

than via a formula. Combining the proof in [5] with a limiting argument, one can see that

the map Ψ can be given by

Ψ(x) =
(∑

cos2 (dist (Ai, x))
)−1/2

(cos (dist (A1, x)) , . . . , cos (dist (An, x))) .

In particular, the differentials of ϕηx : B(x, σ) ⊂ X −→ ϕ(B(x, σ)) are almost isometries.

Next we state a powerful lemma showing that for an (n, δ, r) strained neighbor-

hood, angle and comparison angle almost coincide for geodesic hinges with one side in this

neighborhood and the other reaching a strainer.

Lemma 31 ([5] Lemma 5.6) Let B ⊂ X be (1, δ, r)–strained by (y1, y2). For any x, z ∈ B

| ˜̂ (y1, x, z) + ˜̂ (y2, x, z)− π| < τ (δ, dist (x, z) |r)

In particular, for i = 1, 2,

|^ (yi, x, z)− ˜̂ (yi, x, z)| < τ (δ, dist (x, z) |r) .
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Corollary 32 Let B ⊂ X be (1, δ, r)–strained by (a, b). Let {Xα}∞α=1 be a sequence of

Alexandrov spaces with curvXα ≥ k such that Xα −→ X. For x, z ∈ B, suppose that

aα, bα, xα, zα ∈ Xα converge to a, b, x, and z respectively. Then

|^ (aα, xα, zα)− ^ (a, x, z)| < τ (δ, dist (x, z) , τ (1/α|dist (x, z)) | r) .

Proof. The convergence Xα −→ X implies that we have convergence of the

corresponding comparison angles. The result follows from the previous lemma.

Lemma 33 Let B ⊂ X be (n, δ, r)–strained by {(ai, bi)}ni=1. Let {Xα}∞α=1 have curvXα ≥ k

and suppose that Xα −→ X. Let {(γ1,α, γ2,α)}∞α=1 be a sequence of geodesic hinges in the

Xα that converge to a geodesic hinge (γ1, γ2) with vertex in B. Then

∣∣^ (γ′1,α (0) , γ′2,α (0)
)
− ^

(
γ′1 (0) , γ′2 (0)

)∣∣ < τ (δ, τ (1/α|len (γ1) , len (γ2)) | r) .

Remark 34 Note that without the strainer, lim infα→∞^
(
γ′1,α (0) , γ′2,α (0)

)
≥ ^ (γ′1 (0) , γ′2 (0))

[24], [5].

Proof. Apply the previous corollary with xα = γ1,α (0) , zα = γ1,α (ε) , xα → x,

and zα → z to conclude

∣∣∣^(⇑a
α
i
xα , γ

′
1,α (0))− ^(⇑aix , γ′1 (0))

∣∣∣ < τ (δ, dist (x, z) , τ (1/α|dist (x, z)) | r) .

Similar reasoning with xα = γ2,α (0) , zα = γ2,α (ε) , x = limα→∞ x
α, and z = limα→∞ z

α

gives

∣∣∣^(⇑a
α
i
xα , γ

′
2,α (0))− ^(⇑aix , γ′2 (0))

∣∣∣ < τ (δ, dist (x, z) , τ (1/α|dist (x, z)) | r) .

Since dist (x, z) may be as small as we please, the result then follows from Theorem

29.
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Lemma 35 ([62] Lemma 1.8.2) Let {(ai, bi)}ni=1 be an (n, δ, r)–strainer for B ⊂ X. For

any x ∈ B and µ > 0, let Σµ
x be the set of directions v ∈ Σx so that γv|[0,µ] is a segment.

For any sufficiently small µ > 0, Σµ
x is τ (δ, µ)–dense in Σx.

Corollary 36 Suppose Xα −→ X, {(ai, bi)}ni=1 is an (n, δ, r)–strainer for B ⊂ X, and

(n, δ, r)–strainers {(aαi , bαi )}ni=1 for Bα ⊂ Xα satisfy

({(aαi , bαi )}ni=1 , B
α) −→ ({(ai, bi)}ni=1 , B) .

For any fixed µ > 0 and any sequence of directions {vα}∞a=1 ⊂ Σxα with xα ∈ Bα, there is

a sequence {wα}∞a=1 ⊂ Σµ
xα with

^ (wα, vα) < τ (δ, µ)

so that a subsequence of {γwα}∞α=1 converges to a geodesic γ : [0, µ] −→ X.

From Arzela-Ascoli and Hopf-Rinow, we conclude

Proposition 37 Let X be an Alexandrov space and p, q ∈ X. For any ε > 0, there is a

δ > 0 so that for all x ∈ B (p, δ) and all y ∈ B (q, δ) and any segment xy, there is a segment

pq so that

dist (xy, pq) < ε.

We end this section by showing that convergence to a compact Alexandrov space

X without collapse implies the convergence of the corresponding universal covers, provided

|π1 (X)| <∞. For our purposes, when X = Cnk,r, it would be enough to use [52] or [15].

The key tools are Perelman’s Stability and Local Structure Theorems and the

notion of first systole, which is the length of the shortest closed non-contractible curve.
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Perelman’s proof of the Local Structure Theorem can be found in [45], this result is also a

corollary to his Stability Theorem, whose proof is published in [33].

Theorem 38 Let {Xi}∞i=1 be a sequence of n–dimensional Alexandrov spaces with a uni-

form lower curvature bound converging to a compact, n–dimensional Alexandrov space X.

If the fundamental group of X is finite, then

1 A subsequence of the universal covers, {X̃i}∞i=1, of {Xi}∞i=1converges to the universal

cover, X̃, of X.

2 A subsequence of the deck action by π1 (Xi) on {X̃i}∞i=1 converges to the deck action of

π1 (X) on X̃.

Proof. In [45], Perelman shows X is locally contractible. Let {Uj}nj=1 be an open

cover of X by contractible sets and let µ be a Lebesgue number of this cover. By Perelman’s

Stability Theorem, there are τ
(

1
i

)
–Hausdorff approximations

hi : X −→ Xi

that are also homeomorphisms. Therefore, if i is sufficiently large, {hi (Uj)}nj=1 is an open

cover for Xi by contractible sets with Lebesgue number µ/2. It follows that the first

systoles of the Xis are uniformly bounded from below by µ. Since the minimal displacement

of the deck transformations by π1 (Xi) on X̃i −→ Xi is equal to the first systole of Xi, this

displacement is also uniformly bounded from below by µ. By precompactness, a subsequence

of {X̃i} converges to a length space Y. From Proposition 3.6 of [15], a subsequence of the

actions
(
X̃i, π1 (Xi)

)
converges to an isometric action by some group G on Y. By Theorem
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2.1 in [14], X = Y/G. Since the displacements of the (nontrivial) deck transformations by

π1 (Xi) on X̃i −→ Xi are uniformly bounded from below, the action by G on Y is properly

discontinuous. Hence Y −→ Y/G = X is a covering space of X. By the Stability Theorem,

Y is simply connected, so Y is the universal cover of X.

Remark 39 When the Xi are Riemannian manifolds, one can get the uniform lower bound

for the systoles of the Xis from the generalized Butterfly Lemma in [23]. The same argument

also works in the Alexandrov case but requires Perelman’s critical point theory, and hence

is no simpler than what we presented above.

Lens spaces show that without the noncollapsing hypothesis this result is false

even in constant curvature.

4.3 Cross Cap Stability

The main step to prove Theorem 11 is the following.

Theorem 40 Let {Mα}∞α=1 be a sequence of closed Riemannian n–manifolds with sec

Mα ≥ k so that

Mα −→ Cnk,r

in the Gromov-Hausdorff topology. Let M̃α be the universal cover of Mα. Then for all but

finitely many α, there is a C1 embedding

M̃α ↪→ Rn+1 \ {0}

that is equivariant with respect to the deck transformations of M̃α −→ Mα and the Z2–

action on Rn+1 generated by −id.
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Two and three manifolds have unique differential structures up to diffeomorphism;

so in dimensions two and three Theorems 11 and 40 follow from the main result of [25]. We

give the proof in dimension 4 in section 4.4. Until then, we assume that n ≥ 5.

Proof of Theorem 11 modulo Theorem 40.. By Perelman’s Stability Theo-

rem all but finitely many {M̃α}∞α=1 are homeomorphic to Sn (cf [25]). Combining this with

Theorem 40 and Brown’s Theorem 9.7 in [39] gives an H–cobordism between the embedded

image of M̃α ⊂ Rn+1 and the standard Sn. Modding out by Z2, we see that Mα and RPn

are H–cobordant. Since the Whitehead group of Z2 is trivial ( [32], [40], p. 373), any H–

cobordism between Mα and RPn is an S–cobordism and hence a product, which completes

the proof. [2, 38, 53]

The proof of Theorem 11 does not exploit any a priori differential structure on the

Crosscap. Instead we exploit a model embedding of the double disk

Dnk (r) ↪→ Rn+1,

whose restriction to either half, Dnk (r)+ or Dnk (r)−, is the identity on the last n–coordinates.

By describing the identity Dnk (r) −→ Dnk (r) in terms of distance functions, we then argue

that this embedding can be lifted to all but finitely many of a sequence {Mα} converging

to Dnk (r) .

The Model Embedding

Let A : Dnk (r) → Dnk (r) be the free involution mentioned in Example 9. For

z ∈ Dnk (r) , we define fz : Dnk(r)→ R by

fz(x) = hk ◦ dist (A (z) , x)− hk ◦ dist (z, x) (4.2)
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where hk : R→ R is defined as

hk(x) =



1
2 sinh r cosh(x) if k = −1

x2

4r if k = 0

1
2 sin r cos(x) if k = 1.

Recall that we view Dnk (r)± as metric r-balls centered at p0 = e0 and A(p0) = −e0

in either Hn
±, {±e0} × Rn, or Sn. For i = 1, 2, . . . , n we set

pi :=



cosh(r)e0 + sinh(r)ei if k = −1

e0 + rei if k = 0

cos(r)e0 − sin(r)ei if k = 1.

(4.3)

The functions {fi}ni=1 := {fpi}ni=1 are then restrictions of the last n–coordinate functions

of Rn+1 to Dnk (r)± . We set f0 := fp0 . In contrast to f1, . . . , fn, our f0 is not a coordinate

function. On the other hand its gradient is well defined everywhere on Dnk (r)\{p0, A (p0)} ,

even on ∂Dnk (r)+ = ∂Dnk (r)− where it is normal to ∂Dnk (r)+ = ∂Dnk (r)− .

Define Φ : Dnk (r)→ Rn+1, by

Φ = (f0, f1, f2, · · · , fn) ,

and observe that

Proposition 41 Φ is a continuous, Z2–equivariant embedding.

Proof. Write Rn+1 = R× Rn and let π : R× Rn → Rn be projection. Since

f1, f2, · · · , fn are coordinate functions, the restrictions

π ◦ Φ|Dnk (r)± : Dnk (r)± −→ Rn
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are both the identity. From this and the definition of f0, we conclude that Φ is one–to–

one. Since Dnk (r) is compact, it follows that Φ is an embedding. The Z2–equivariance is

immediate from definition 4.2.

Lifting the Model Embedding

To start the proof of Theorem 40 let {Mα}∞α=1 be a sequence of closed Riemannian

n–manifolds with sec Mα ≥ k so that

Mα −→ Cnk,r,

and we let {M̃α}∞α=1 denote the corresponding sequence of universal covers. From Theorem

38, a subsequence of {M̃α}∞α=1 together with the deck transformations M̃α −→Mα converge

to (Dnk(r), A) . For all but finitely many α, π1 (Mα) is isomorphic to Z2. We abuse notation

and call the nontrivial deck transformation of M̃α −→Mα, A.

First we extend definition 4.2 by letting fαz : M̃α → R be defined by

fαz (x) = hk ◦ dist(A(z), x)− hk ◦ dist(z, x). (4.4)

Let pαi ∈ M̃α converge to pi ∈ Dnk(r), and for some d > 0 define fαi,d : M̃α → R by

fαi,d(x) =
1

volB(pαi , d)

∫
qα∈B(pαi ,d)

fαqα(x). (4.5)

Differentiation under the integral gives

Proposition 42 The fαi,d are C1 and
∣∣∣∇fαi,d∣∣∣ ≤ 2.

We now define Φα
d : M̃α → Rn+1 by

Φα
d =

(
fα0,d, f

α
1,d, f

α
2,d, · · · , fαn,d

)
.
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As α → ∞ and d → 0, Φα
d converges to Φ in the Gromov–Hausdorff sense. Since Φ is an

embedding it follows that Φα
d is one–to–one in the large. More precisely,

Proposition 43 For any ν > 0, if α is sufficiently large and d is sufficiently small, then

Φα
d (x) 6= Φα

d (y) ,

provided dist (x, y) > ν.

Since the Z2-equivariance of Φα
d immediately follows from definition 4.5, all that

remains to prove Theorem 40 is the following proposition:

Proposition 44 There is a ρ > 0 so that Φα
d is one to one on all ρ–balls, provided that α

is sufficiently large and d is sufficiently small.

This is a consequence of Key Lemma 46 (stated below), whose statement and proof

occupy the remainder of this section.

Uniform Immersion

The proof of the Inverse Function Theorem in [50] gives

Theorem 45 (Quantitative Immersion Theorem) Let

Rnı̂ := {(x1, x2, . . . , xi−1, 0, xi+1, . . . , xn+1)} ⊂ Rn+1

and let

Pı̂ : Rn+1 −→ Rnı̂

be orthogonal projection.
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Let F : Rn −→ Rn+1 be a C1 map so that for some a ∈ Rn, λ > 0, and ρ > 0,

there is an i ∈ {1, . . . , n+ 1} so that

|d (Pı̂ ◦ F )a (v)| ≥ λ |v|

and

|d (Pı̂ ◦ F )a (v)− d (Pı̂ ◦ F )x (v)| < λ

2
|v|

for all x ∈ B (a, ρ) and v ∈ Rn, then (Pı̂ ◦ F ) |B(a,ρ) is a one–to–one, open map.

We note that every space of directions to Dnk(r) is isometric to Sn−1. By propo-

sition 27, there are r, δ > 0 so that every point in the double disk has a neighborhood B

that is (n, δ, r)–strained. If B ⊂ Dnk(r) is (n, δ, r)–strained by {ai, bi}ni=1, by continuity of

comparison angles, we may assume there are sets Bα ⊂ M̃α (n, δ, r)–strained by {aαi , bαi }ni=1

such that

({(aαi , bαi )}ni=1 , B
α) −→ ({(ai, bi)}ni=1 , B) .

Given xα ∈ Bα, we let ϕηxα be as in 4.1.

To prove Proposition 44 it suffices to prove the following.

Key Lemma 46 There is a λ > 0 and ρ > 0 so that for all xα ∈ M̃α there is an ixα ∈

{0, 1, . . . , n} such that the function F := Φα
d ◦ (ϕηxα)

−1
satisfies

1. ∣∣∣d(Pı̂xα ◦ F )ϕηxα (xα) (v)
∣∣∣ > λ |v|

and
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2. ∣∣∣d (Pı̂xα ◦ F )ϕηxα (y) (v)− d (Pı̂xα ◦ F )ϕηxα (xα) (v)
∣∣∣ < λ

2
|v|

for all y ∈ B (xα, ρ) and v ∈ Rn, provided that α is sufficiently large and d and η are

sufficiently small.

We show in the next subsection that part 1 of Key Lemma 46 holds, and in the

following subsection we show that part 2 holds.

Lower bound on the differential

We begin by illustrating that, in a sense, the first part of the key lemma holds for

the model embedding.

Lemma 47 There is a λ > 0 so that for all v ∈ TDnk(r) there is a j (v) ∈ {0, 1, . . . , n} so

that ∣∣Dvfj(v)

∣∣ > λ |v| .

Proof. Recall that the double disk Dnk(r) is the union of two copies of Dnk (r) that

we call Dnk (r)+ and Dnk (r)−—glued along their common boundary—that throughout this

section we call S := ∂Dnk (r)±.

If x ∈ Dnk(r) \ S, then for i 6= 0, ∇fi is unambiguously defined; moreover,

{∇fi (x)}ni=1

is an orthonormal basis. Thus the lemma certainly holds on Dnk(r) \ S.
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For x ∈ S and i ∈ {1, . . . , n} , we can think of the gradient of fi as multivalued.

More precisely, for x ∈ S, we view

S ⊂ Dnk (r)± ⊂



Hn
± if k = −1

{±e0} × Rn if k = 0

Sn if k = 1

and define ∇f±i to be the gradient at x of the coordinate function that extends fi to either

Hn
±, {±e0} × Rn, or Sn.

From definition 4.2, for any v ∈ TxDnk(r)

Dvfi =


〈
∇f+

i , v
〉

if v is inward to Dnk (r)+

〈
∇f−i , v

〉
if v is inward to Dnk (r)−.

Notice that the projections of ∇f+
i and ∇f−i onto TxS coincide, so for v ∈ TxS we have

Dvfi =
〈
∇f+

i , v
〉

=
〈
∇f−i , v

〉
. As

{
∇f+

i

}n
i=1

is an orthonormal basis, the lemma holds for

v ∈ TS and hence also for v in a neighborhood U of TS ⊂ TDnk(r)|S . Since ∇f0 is well

defined on S and normal to S, for any unit v ∈ TDnk(r)|S \ U, we have |Dvf0| > 0. The

lemma follows from the compactness of the set of unit vectors in TDnk(r)|S \ U.

Notice that at pk and A (pk) the gradients of fk and f0 are colinear. Using this we

conclude

Addendum 4.3.1 Let pk be any of p1, . . . pn. There is an ε > 0 so that for all x ∈ B (pk, ε)∪

B (A (pk) , ε) and all v ∈ TxDnk(r), the index j (v) in the previous lemma can be chosen to

be different from k.

Lemma 48 There is a λ > 0 so that for all v ∈ TxDnk(r) there is a j (v) ∈ {0, 1, . . . , n} so
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that

|Dvfz| > λ |v|

for all z ∈ B(pj(v), d), provided d is sufficiently small.

Proof. If not then for each i = 0, 1, . . . , n there is a sequence {zji }∞j=1 ⊂ Dnk(r)

with dist(zji , pi) <
1
j and a sequence of unit vj ∈ TxjDnk(r) so that

∣∣∣Dvjfzji

∣∣∣ < 1

j
.

Choose the segments xjzji and xjA
(
zji

)
so that

^

(
↑z
j
i

xj
, vj

)
= ^

(
⇑z

j
i

xj
, vj

)
and

^

(
↑A(zji )
xj

, vj
)

= ^

(
⇑A(zji )
xj

, vj
)
.

After passing to subsequences, we have vj → v, xj → x and

xjzji → xpi

xjA
(
zji

)
→ xA (pi) ,

for some choice of segments xpi and xA (pi) . Using Lemma 33 and Corollary 36 we conclude∣∣∣∣^(↑zjixj , vj)− ^ (↑pix , v)

∣∣∣∣ < τ

(
δ, τ

(
1

j

∣∣∣∣ dist (x, pi)

))
,∣∣∣∣^(↑A(zji )

xj
, vj
)
− ^

(
↑A(pi)
x , v

)∣∣∣∣ < τ

(
δ, τ

(
1

j

∣∣∣∣ dist (x,A (pi))

))
.

(4.6)

If x /∈ S, then the segments xpi and xA (pi) are unambiguously defined, and so the

previous inequality and the hypothesis
∣∣∣Dvjfzji

∣∣∣ < 1
j , contradict the previous lemma and its

addendum.
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If x ∈ S and v ∈ TxS, then

^ (↑pix , v) and ^
(
↑A(pi)
x , v

)
are independent of the choice of the segments xpi and xA (pi) , so the hypothesis

∣∣∣Dvjfzji

∣∣∣ <
1
j together with the Inequalities 4.6 contradict the previous lemma and its addendum. Thus

our result holds for v ∈ TS and hence also for v in a neighborhood U of TS ⊂ TDnk(r)|S .

For a unit vector v ∈ TDnk(r)|S \ U, we saw in the proof of the previous lemma

that for some λ > 0

|Dvf0| > λ. (4.7)

For x ∈ S, we have unique segments xp0 and xA (p0) , so the hypothesis
∣∣∣Dvjfzji

∣∣∣ < 1
j and

inequalities 4.6 contradict Inequality 4.7.

Combining the proof of the previous lemma with Addendum 4.3.1, we get

Addendum 4.3.2 Let pk be any of p1, . . . pn. There is an ε > 0 so that for all x ∈ B (pk, ε)∪

B (A (pk) , ε) and all v ∈ TxDnk(r), the index j (v) in the previous lemma can be chosen to

be different from k.

Lemma 49 There is a λ > 0 so that for all v ∈ TM̃α there is a j (v) ∈ {0, 1, . . . , n} so

that

Dvf
α
j(v),d > λ |v| ,

provided α is sufficiently large and d is sufficiently small.
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Proof. If the lemma were false, then there would be a sequence of unit vectors

{vα}∞α=1 with vα ∈ TxαM̃α such that for all i,

∣∣Dvαf
α
i,d

∣∣ < τ

(
1

α
, d

)
.

Let limα→∞ x
α = x ∈ Dnk(r). By Corollary 36, for any µ > 0 there is a sequence {wα}∞α=1

with wα ∈ Σµ
xα such that

^ (vα, wα) < τ (δ, µ) .

Since
∣∣∣∇fαi,d∣∣∣ ≤ 2, ∣∣Dwαf

α
i,d

∣∣ < τ

(
δ, µ,

1

α
, d

)
(4.8)

for all i. After passing to a subsequence, we conclude that
{
γwα |[0,µ]

}∞
α=1

converges to

a segment γw|[0,µ]. By the previous lemma, there is a λ > 0 and a j (w) so that for all

z ∈ B(pj(w), d),

|Dwfz| > λ |w| , (4.9)

provided d is small enough. Moreover, by Addendum 4.3.2 we may assume that

dist
(
x, pj(w)

)
> 100d > µ and

dist
(
x,A

(
pj(w)

))
> 100d > µ. (4.10)

By the Mean Value Theorem, there is a zαj(w) ∈ B
(
pαj(w), d

)
with

Dwαf
α
zα
j(w)

= Dwαf
α
j(w),d. (4.11)

Choose segments xαzαj(w) and xαA(zαj(w)) in M̃α so that

^

(
↑
zα
j(w)

xα , wα
)

= ^

(
⇑
zα
j(w)

xα , wα
)

and

^

(
↑
A(zα

j(w)
)

xα , wα
)

= ^

(
⇑
A(zα

j(w)
)

xα , wα
)
.
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After passing to a subsequence, we may assume that for some zj(w) ∈ B(pj(w), d), xαzαj(w)

and xαA(zαj(w)) converge to segments xzj(w) and xA(zj(w)), respectively. By Lemma 33,∣∣∣∣^(↑
zα
j(w)

xα , γ′wα (0))− ^(↑zj(w)
x , γ′w (0))

∣∣∣∣ < τ
(
δ, τ

(
1/α|µ, dist

(
x, zj(w)

)))
∣∣∣∣^(↑

A(zα
j(w)

)

xα , γ′wα (0))− ^(↑A(zj(w))
x , γ′w (0))

∣∣∣∣ < τ
(
δ, τ

(
1/α|µ, dist

(
x,A

(
zj(w)

))))
.

Combining the previous two sets of displays with 4.10

∣∣∣Dwαf
α
zα
j(w)
−Dwfzj(w)

∣∣∣ < τ (δ, τ (1/α|µ)) . (4.12)

So by Equation 4.11,

∣∣∣Dwαf
α
j(w),d −Dwfzj(w)

∣∣∣ < τ (δ, τ (1/α|µ)) ,

but this contradicts Inequalities 4.8 and 4.9.

The first claim of Key Lemma 46 follows by combining the previous lemma with

the fact that the differentials of the ϕηxα ’s are almost isometries.

Remark 50 Note that when xα is close to pk or A (pk) , the desired estimate

∣∣∣d(Pı̂xα ◦ F )ϕηxα (xα) (v)
∣∣∣ > λ |v|

holds with Pı̂xα = Pk̂. This follows from Addendum 4.3.2 and the proof of the previous

lemma.

Equicontinuity of Differentials

In this subsection, we establish the second part of the key lemma. If xα is not

close to one of the pks or A (pk) s we will show the stronger estimate

∣∣∣d (F )ϕηxα (y) (v)− d (F )ϕηxα (xα) (v)
∣∣∣ < λ

2
|v| . (4.13)
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So at such points, the second part of the key lemma holds with any choice of coordinate

projection Pı̂xα .

For xα close to pk or A (pk) , we will show

∣∣∣d (Pk̂ ◦ F )ϕηxα (y)
(v)− d

(
Pk̂ ◦ F

)
ϕηxα (xα)

(v)
∣∣∣ < λ

2
|v| , (4.14)

where λ is the constant whose existence was established in the previous section. Together

with remark 50, this will establish the key lemma.

Suppose B ⊂ Dnk(r) is (n, δ, r)–strained by {(ai, bi)}ni=1. Let x, y ∈ B and let

ϕη : B −→ Rn

be the map defined in 4.1 and [44]. Set

Px,y := (dϕη)−1
y ◦ (dϕη)x : TxDnk(r)→ TyDnk(r).

It follows that Px,y is a τ(δ, η)–isometry.

Lemma 51 Let B ⊂ Dnk(r) be (n, δ, r)–strained by {(ai, bi)}ni=1 . Given ε > 0 and x ∈ B,

there is a ρ (x, ε) > 0 so that the following holds.

For all k ∈ {0, 1, . . . , n} , there is a subset Ek,x ⊂ {B (pk, d) ∪B (A (pk) , d)} with

measure µ (Ek,x) < ε so that for all z ∈ B (pk, d) \ Ek,x, all y ∈ B (x, ρ (x, ε)) , and all

v ∈ Σx,

∣∣^ (v, ↑zx)− ^
(
Px,y (v) , ↑zy

)∣∣ < τ (ε, δ, η| dist (x, z)) and∣∣∣^(v, ↑A(z)
x

)
− ^

(
Px,y (v) , ↑A(z)

y

)∣∣∣ < τ (ε, δ, η|dist (x,A(z))) .
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Proof. Let Cx = {z|z ∈ Cutlocus (x) or A (z) ∈ Cutlocus (x)} and set

Ek,x = B (Cx, ν) ∩ {B (pk, d) ∪B (A (pk) , d)} .

Choose ν > 0 so that µ (Ek,x) < ε.

By Proposition 37, for each z ∈ B (pk, d) \Ek,x, there is a ρ (x, z, ε) so that for all

y ∈ B (x, ρ (x, z, ε)) and any choice of segment zy,

dist (zx, zy) < ε,

where zx is the unique segment from z to x.

Making ρ (x, z, ε) smaller and using Corollary 32, it follows that for any ãi, āi ∈

B (ai, η) ,

∣∣^ (⇑ãix , ↑zx)− ^
(
⇑āiy , ↑zy

)∣∣ < τ (δ, ε, η|dist (x, z) , dist (y, z))

= τ (δ, ε, η|dist (x, z)) .

It follows that ∣∣∣(dϕη)x (↑zx)− (dϕη)y
(
↑zy
)∣∣∣ < τ (δ, ε, η|dist (x, z)) ,

and hence

^
(
Px,y (↑zx) , ↑zy

)
= ^

(
(dϕη)−1

y ◦ (dϕη)x (↑zx) ,
(
↑zy
))

< τ (δ, ε, η|dist (x, z)) .

So for any v ∈ Σx,

∣∣^ (v, ↑zx)− ^
(
Px,y (v) , ↑zy

)∣∣ ≤ |^ (v, ↑zx)− ^ (Px,y (v) , Px,y (↑zx))|+

∣∣^ (Px,y (v) , Px,y (↑zx))− ^
(
Px,y (v) , ↑zy

)∣∣
< τ (δ, η) + τ (ε, δ, η|dist (x, z))

= τ (ε, δ, η|dist (x, z)) .
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Using Proposition 37 and the precompactness of B (pk, d)\Ek,x, we can then choose

ρ (x, z, ε) to be independent of z ∈ B (pk, d) \ Ek,x. A similar argument gives the second

inequality.

Corollary 52 Given any ε > 0, there is a ρ(ε) > 0 so that for any x ∈ Dnk(r), y ∈

B(x, ρ(ε)), and z ∈ B(pi, d) \ Ei,x, we have

∣∣Dvfz −DPx,y(v)fz
∣∣ < τ (ε, δ, η|dist (z, x) ,dist (A (z) , x))

for all unit vectors v ∈ Σx.

Proof. Since Dnk(r) is compact, the ρ(ε, x) from the previous lemma can be chosen

to be independent of x.

Given x ∈ Dnk(r), y ∈ B(x, ρ(ε)), and v ∈ Σx, choose segments yz and yA(z) so

that

^
(
↑zy, Px,y (v)

)
= ^

(
⇑zy, Px,y (v)

)
and

^
(
↑A(z)
y , Px,y (v)

)
= ^

(
⇑A(z)
y , Px,y (v)

)
.

Since the segments xz and xA(z) are unique, the result follows from the formula for direc-

tional derivatives of distance functions, the previous lemma, and the chain rule.

We can lift a strainer from Dnk(r) to any M̃α if distGH

(
M̃α,Dnk(r)

)
is sufficiently

small. So if xα and yα are sufficiently close, we define

Pxα,yα := (dϕη)−1
yα ◦ (dϕη)xα : TxαM̃

α → TyαM̃
α.
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Lemma 53 Let i be in {0, . . . , n} . There is a ρ > 0 so that for any xα ∈ M̃α, any yα ∈

B(xα, ρ), and any unit vα ∈ TxαM̃α we have

∣∣∣Dvαf
α
i,d −DPxα,ya (vα)f

α
i,d

∣∣∣ < τ

(
ρ,

1

α
, δ, η|dist (xα, pαi ) , dist (xα, A (pαi ))

)
,

provided d is sufficiently small.

Proof. If not, then for any ρ > 0 and some i = 0, 1, . . . , n, there would be a

sequence of points xα → x ∈ Dnk(r), a sequence of unit vectors {vα}∞α=1 and a constant

C > 0 that is independent of α, δ, and η so that

∣∣∣Dvαf
α
i,d −DPxα,ya (vα)f

α
i,d

∣∣∣ ≥ C,

dist (x, pi) ≥ C, and

dist (x,A (pi)) ≥ C (4.15)

for some yα ∈ B(xα, ρ). Choose ε > 0 and take ρ < ρ(ε) where ρ(ε) is from the previous

corollary. We assume B (x, ρ(ε)) is (n, δ, r)–strained. Let y = lim yα and µ > 0 be suffi-

ciently small. By corollary 36, there are sequences {wα}∞α=1 ∈ Σµ
xα and {w̃α}∞α=1 ∈ Σµ

yα so

that

^ (vα, wα) < τ (δ, µ)

^ (Pxα,ya (wα) , w̃α) < τ (δ, µ) (4.16)

and subsequences {γwα}∞α=1 and {γw̃α}∞α=1 converging to segments γw and γw̃ that are

parameterized on [0, µ] . Since |∇fαi,d| ≤ 2, we may assume for a possibly smaller constant

C that ∣∣Dwαf
α
i,d −Dw̃αf

α
i,d

∣∣ ≥ C.
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Thus for some zα ∈ B(pαi , d) with distHaus (zα, Ei,x) > 2ν,

|Dwαf
α
zα −Dw̃αf

α
zα | ≥

C

2
. (4.17)

Passing to a subsequence, we have zα → z ∈ B(pi, d) \ Ei,x. As in the proof of

Lemma 49 (Inequality 4.12), we have

|Dwαf
α
zα −Dwfz| < τ (δ, τ (1/α|µ)) and

|Dw̃αf
α
zα −Dw̃fz| < τ (δ, τ (1/α|µ)) .

Thus,

|Dwαf
α
zα −Dw̃αf

α
zα | ≤ |Dwαf

α
zα −Dwfz|+ |Dwfz −Dw̃fz|+ |Dw̃fz −Dw̃αf

α
zα |

< |Dwfz −Dw̃fz|+ τ (δ, τ (1/α|µ))

≤
∣∣Dwfz −DPx,y(w)fz

∣∣+
∣∣DPx,y(w)fz −Dw̃fz

∣∣+ τ (δ, τ (1/α|µ))

≤ τ (ε, δ, µ, η, τ (1/α|µ))

by the previous corollary and Inequalities 4.15 and 4.16. Choosing ε, δ, η, µ, and 1/α small

enough, we have a contradiction to 4.17.

The previous lemma, together with the definitions of Φα
d , (ϕη)−1 and Pxα,ya es-

tablishes the estimates 4.13 and 4.14 and hence the second part of Key Lemma, completing

the proof of Theorem 11, except in dimension 4.

4.4 Recognizing RP 4

To prove Theorem 11 in dimension 4, we exploit the following corollary of the fact

that Diff+

(
S3
)

is connected [7].
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Corollary 54 Let M be a smooth 4–manifold obtained by smoothly gluing a 4–disk to the

boundary of the nontrivial 1–disk bundle over RP 3. Then M is diffeomorphic to RP 4.

To see that our Mαs have this structure, we use standard triangle comparison and

argue as we did in the part of Section 4.3 titled “Lower Bound on Differential” to conclude

Proposition 55 For any fixed ρ0 > 0, fα0,d does not have critical points on

Mα\{B (pα0 , ρ0) ∪B (A (pα0 ) , ρ0)} , and ∇fα0,d is gradient-like for dist (A (pα0 ) , ·) and −dist (pα0 , ·) ,

provided α is sufficiently large and d is sufficiently small.

0

x

y

dα

dα

Figure 4.1: The model Dnk (2dα).

Finally, using Swiss Cheese Vol-

ume Comparison (see 1.1 in [25]) we will

show

Proposition 56 There is a ρ0 > 0 so that

dist (pα0 , ·) does not have critical points in

B (pα0 , ρ0) , provided α is sufficiently large.

Proof. Since vol Mα → vol Dnk (r) , volB (pα0 , r)→ vol Dnk (r) . Via Swiss Cheese

Volume Comparison (see 1.1 in [25]) we shall see that the presence of a critical point close

to pα0 contradicts volB (pα0 , r) → vol Dnk (r) . Suppose qα is critical for dist (pα0 , ·) , and

dist (pα0 , qα) = dα → 0. Let x, y be points in ∂Dnk (dα) at maximal distance. By Swiss

Cheese Comparison and 1.4 in [25],

vol (B (qα, 2dα) \B (pα0 , dα)) ≤ vol (Dnk (2dα) \ {B (x, dα) ∪B (y, dα)})

= vol (Dnk (2dα))− 2vol (Dnk (dα)) .
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Since

volB (pα0 , dα) ≤ vol Dnk (dα) ,

we conclude

vol (B (qα, 2dα)) ≤ vol (Dnk (2dα))− vol (Dnk (dα))

< κ · vol Dnk (2dα)

for some κ ∈ (0, 1) . By relative volume comparison for ρ ≥ 2dα,

κ >
volB (qα, 2dα)

vol Dnk (2dα)
≥ volB (qα, ρ)

vol Dnk (ρ)

or

κ · vol Dnk (ρ) > volB (qα, ρ) .

Since

B (pα0 , r) ⊂ B (qα, r + dα) ,

volB (pα0 , r) < κ · vol Dnk (r + dα) .

Letting dα → 0, we conclude that

volB (pα0 , r) < κ · vol Dnk (r) ,

a contradiction.

An identical argument shows

Proposition 57 There is a ρ0 > 0 so that dist (A (pα0 ) , ·) does not have critical points in

B (A (pα0 ) , ρ) , provided α is sufficiently large.
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Combining the previous three propositions, we see that (fα0,d)
−1 (0) is diffeomor-

phic to S3. By Geometrization, (fα0,d)
−1 (0) / {id, A} is diffeomorphic to RP 3. If ρ0 is as in

Proposition 55, it follows that (fα0,d)
−1([−ρ0, ρ0])/ {id, A} is the nontrivial 1–disk bundle

over RP 3. M̃α \ (fα0,d)
−1([−ρ0, ρ0]) consists of two smooth 4–disks that get interchanged by

A. Thus Mα has the structure of Corollary 54 and is hence diffeomorphic to RP 4.

Remark 58 The proof of Perelman’s Parameterized Stability Theorem [33] can substitute

for Geometrization to allow us to conclude that f−1 (0) / {id, A} is homeomorphic and there-

fore diffeomorphic to RP 3. The need to cite the proof rather than the theorem stems from

the fact that the definition of admissible functions in [33] excludes fα0,d . It is straightforward

(but tedious) to see that the proof goes through for an abstract class that includes fα0,d.

The fact that RP 4 admits exotic differential structures can be seen by combining

[31] with either [6] or [13].

4.5 Purse Stability

We let Γn denote the group of twisted n–spheres. Recall that there is a filtration

{e} ⊂ Γnn−1 ⊂ · · · ⊂ Γn1 = Γn

by subgroups, which are called Gromoll groups [18]. Rather than using the definition of the

Γnq s from [18], we use the equivalent notion from Theorem D in [29].

Definition 59 Let

f : Sq−1 × Sn−q −→ Sq−1 × Sn−q
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be a diffeomorphism that satisfies

pq−1 ◦ f = pq−1,

where

pq−1 : Sq−1 × Sn−q −→ Sq−1

is projection to the first factor. Then Γnq consists of those smooth manifolds that are diffeo-

morphic to

Dq × Sn−q ∪f Sq−1 ×Dn−q+1. (4.18)

Theorem 60 Let {Mα}∞α=1 be a sequence of closed, Riemannian n–manifolds with

secMα ≥ k

so that

Mα −→ Pnk,r

in the Gromov-Hausdorff topology. Then for α sufficiently large, Mα ∈ Γnn−1.

Notice that a diffeomorphism f : Sn−2×S1 −→ Sn−2×S1 so that pn−2 ◦f = pn−2

gives rise to an element of πn−2

(
Diff+

(
S1
))
. If two such diffeomorphisms give the same

homotopy class, then the construction 4.18 yields diffeomorphic manifolds (cf [29]). Since

the group of orientation preserving diffeomorphisms of the circle deformation retracts to

SO (2) , it follows that for n ≥ 4, Γnn−1 = {e} . Since Γn = {e} for n = 1, 2, 3, we have

Γnn−1 = {e} for all n. Thus all but finitely many of the Mαs in Theorem 60 are diffeomorphic

to Sn, and to prove Theorem 12 it suffices to prove Theorem 60.

61



The Model Submersion

Recall that we view Dnk (r) as a metric r-ball centered at p0 = e0 in either Hn
+ ⊂

R1,n, {e0} × Rn ⊂ Rn+1, or Sn ⊂ Rn+1, and we defined

pi :=



cosh(r)e0 + sinh(r)ei if k = −1

e0 + rei if k = 0

cos(r)e0 − sin(r)ei if k = 1.

We let the totally geodesic hyperplane H ⊂ Dnk (r) that defines Pnk,r be the one

containing p0, p1, . . . , pn−1. We denote the singular subset of Pnk,r by S, that is, S is the

copy of Sn−2 which is the boundary of the (n− 1)–disk Dnk (r) ∩H. Thus {pi}n−1
i=1 ⊂ S.

Dn−1D2

pn

S1

S

Sn−2p0p1

p2

A(p1)

A(p2)

Figure 4.2: One side of Pnk,r for n = 3 and k = 0.

As the antipodal map A : Dnk (r) −→ Dnk (r) commutes with the reflection R in H,

it induces a well-defined involution of Pnk,r, which we also call A. Note that A : Pnk,r −→ Pnk,r

restricts to the antipodal map of S and fixes the circle at maximal distance from S.

For i = 1, . . . , n− 1, we view S ⊂Dnk (r) and define fi as in 4.2

fi(x) := hk ◦ dist (A (pi) , x)− hk ◦ dist (pi, x) .
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We let Ψ : Pnk,r −→ Rn−1 be defined by

Ψ = (f1, f2, . . . , fn−1) .

Lifting The Model Submersion

Let {Mα}∞α=1 be a sequence of closed, Riemannian n–manifolds with

secMα ≥ k

so that

Mα −→ Pnk,r.

In contrast to the situation for the Crosscap, the isometry A : Pnk,r −→ Pnk,r need

not lift to an isometry of Mα. We nevertheless let A : Mα −→Mα denote any map that is

Gromov-Hausdorff close to A : Pnk,r −→ Pnk,r.

As before, we define fαi,d : Mα −→ R by

fαi,d(x) =

∫
z∈B(A(pαi ),d)

hk ◦ dist (z, x)−
∫
z∈B(pαi ,d)

hk ◦ dist (z, x) . (4.19)

We let Ψα
d : Mα −→ Rn−1 be defined by

Ψα
d = (fα1,d, . . . , f

α
n−1,d).

The Handles

We identify Rn−1 with

Rn−1 ≡ span {e1, . . . , en−1} ⊂



R1,n if k = −1

Rn+1 if k = 0

Rn+1 if k = 1.
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For small ε > 0, we set

E0 (ε) := (Ψ)−1 (Dn−1(0, r − ε)),

Eα0 (ε) := (Ψα
d )−1 (Dn−1(0, r − ε)),

E1 (ε) := (Ψ)−1 (An−1(0, r − ε, 2r)), and

Eα1 (ε) := (Ψα
d )−1 (An−1(0, r − ε, 2r)),

where An−1(0, r − ε, 2r) is the closed annulus in Rn−1 centered at 0 with inner radius r− ε

and outer radius 2r, and Dn−1(0, r− ε) is the closed ball in Rn−1 centered at 0 with radius

r − ε.

Theorem 60 is a consequence of the next two lemmas.

Key Lemma 61 For any sufficiently small ε > 0,

Ψα
d : Eα0 (ε) −→ Dn−1(0, r − ε)

is a trivial S1–bundle, provided α is sufficiently large and d is sufficiently small.

Let pr : An−1(0, r − ε, 2r) → ∂
(
Dn−1(0, r − ε)

)
= Sn−2 be radial projection and

set

g := pr ◦Ψ : E1 (ε)→ ∂
(
Dn−1(0, r − ε)

)
gαd := pr ◦Ψα

d : Eα1 (ε)→ ∂
(
Dn−1(0, r − ε)

)
.

Key Lemma 62 There is an ε > 0 so that

gαd : Eα1 (ε) −→ ∂
(
Dn−1(0, r − ε)

)
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is a trivial D2–bundle over ∂
(
Dn−1(0, r − ε)

)
= Sn−2, provided α is sufficiently large and

d is sufficiently small.

Since every space of directions of Pnk,r contains an isometrically embedded, totally

geodesic copy of Sn−3, and every space of directions of Pnk,r \ S contains an isometrically

embedded, totally geodesic copy of Sn−1, we get the following. (Cf Proposition 27.)

Proposition 63 There are r, δ > 0 so that every point in the purse Pnk,r has a neighborhood

B that is (n− 2, δ, r)–strained.

For any neighborhood U of S, there are r, δ > 0 so that every point in Pnk,r \U has

a neighborhood B that is (n, δ, r)–strained.

Remark 64 For x ∈ S, the strainer {(ai, bi)}n−2
i=1 can be chosen to lie in S.

Because the fi : Pnk,r −→ R are coordinate functions, Ψ|Dnk (r)∩H differs from the

identity by a translation. Using this and ideas from Section 4.3, we will be able to prove

Proposition 65 There is a neighborhood U of S ⊂ Pnk,r so that for any family of open sets

Uα ⊂ Mα with Uα → U, gαd |Uα is a submersion, provided α is sufficiently large and d is

sufficiently small.

We will show that our key lemmas hold for any ε > 0 so that

Ψ−1
(
An−1(0, r − ε, r)

)
⊂ U.

Since {fi}n−1
i=1 are the (n− 1)–coordinate functions for the standard embedding of

S = Sn−2 ⊂ Rn−1, we have
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Lemma 66 There is a λ > 0 so that for all v ∈ TS, there is an j so that the jth–component

function of g satisfies

|Dv (gj)| > λ |v| .

As in Section 4.3, we have

Addendum 4.5.1 Let pk be any of p1, . . . pn−1. There is an ε > 0 so that for all x ∈

B (pk, ε) ∪ B (A (pk) , ε) and all v ∈ TxS, the index j in the previous lemma can be chosen

to be different from k.

To lift Lemma 66 to the Mαs, we need an analog of TS within each Mα, or better

a notion of gαd –almost horizontal for each Uα ⊂ Mα. To achieve this, cover S by a finite

number of (n− 2, δ, r)–strained neighborhoods B ⊂ Pnk,r with strainers {(ai, bi)}n−2
i=1 ⊂ S.

Let U be the union of this finite collection, and let Uα ⊂Mα converge to U.

Given xα ∈ Uα, we now define a gαd –almost horizontal space at xα as follows.

Let Bα be a (n− 2, δ, r)–strained neighborhood for xα with strainers {(aαi , bαi )}n−2
i=1 that

converge (
Bα, {(aαi , bαi )}n−2

i=1

)
−→

(
B, {(ai, bi)}n−2

i=1

)
,

where
(
B, {(ai, bi)}n−2

i=1

)
is part of our finite collection of (n− 2, δ, r)–strained neighbor-

hoods for points in S ⊂ Pnk,r. We set

H
gαd
xα := spani∈{1,...,n−2}

{
↑a

α
i
xα

}
,

where ↑a
α
i
xα is the direction of any segment from xα back to aαi . Regardless of this choice,

H
gαd
xα satisfies the following Lemma, from which Proposition 65 follows.
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Lemma 67 There is a λ > 0 so that for all xα ∈ Uα and all v ∈ Hgαd
xα , there is an j so that

the jth–component function of gαd satisfies

∣∣∣Dv

(
(gαd )j

)∣∣∣ > λ |v| ,

provided U and d are sufficiently small and α is sufficiently large. In particular, gαd |Uα is a

submersion.

Proof. Let xα → x, and for all j = 1, . . . , n− 1, let zαj → zj ∈ B (pj , d) . If xαz
α
j

converges to xzj , then by Corollary 32,

∣∣∣^(↑aαixα , ↑zαjxα)− ^
(
↑aix , ↑zjx

)∣∣∣ < τ (δ, 1/α|dist (x, zj)) .

Similarly for a sequence of segments xαA
(
zαj

)
converging to xA (zj) , we have∣∣∣∣^(↑aαixα , ↑A(zαj )

xα

)
− ^

(
↑aix , ↑

A(zj)
x

)∣∣∣∣ < τ (δ, 1/α|dist (x,A (zj))) .

Arguing as in the proof of Lemma 49, we have for all i and j,∣∣∣∣D↑aαixα (gαd )j −D↑aix (g)j

∣∣∣∣ < τ (δ, d, 1/α|dist (x, pj) , dist (x,A (pj))) .

Since v ∈ H
gαd
xα = spani∈{1,...,n−2}

{
↑a

α
i
xα

}
, the lemma follows from the previous display

together with Lemma 66, Addendum 4.5.1, and the hypothesis that U is sufficiently small.

Let pn ∈ Dnk (r) be as in 4.3, and let Q : Dnk (r) −→ Pnk,r be the quotient map. We

abuse notation and call Q (pn) , pn. We define fn : Pnk,r → R by

fn(x) := hk ◦ dist ((pn) , x)− hk ◦ dist (p0, x) .

With a slight modification of the proof of Proposition 27, we get
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Lemma 68 There are δ, r > 0 so that for all x ∈ E0 (ε/2) there is an (n, δ, r)–strainer

{(ai, bi)}ni=1 with

{(ai, bi)}n−1
i=1 ⊂ f

−1
n (l)

for some l ∈ R.

We cover E0 (ε/2) by a finite number of such (n, δ, r)–strained sets and make

Definition 69 For x ∈ E0 (ε/2) , set

HΨ
x := spani∈{1,...,n−1} {↑aix } ,

where {(ai, bi)}n−1
i=1 is as in the previous lemma.

Since Ψ : E0 (ε/2) −→ Dn−1 (r − ε/2) is simply orthogonal projection, we have

Lemma 70 There is a λ > 0 so that for all x ∈ E0 (ε/2) and all v ∈ HΨ
x , there is an i so

that

|Dvfi| > λ |v| .

To lift this lemma to the Mαs, we need a notion of Ψα
d–almost horizontal for each

Mα. Given zα ∈ Eα0 (ε/2) , we define a Ψα
d–almost horizontal space at zα as follows. Let

Bα be a (n, δ, r)–strained neighborhood for zα with strainers {(aαi , bαi )}ni=1 that converge

(Bα, {(aαi , bαi )}ni=1) −→ (B, {(ai, bi)}ni=1) ,

where (B, {(ai, bi)}ni=1) is part of our finite collection of (n, δ, r)–strained neighborhoods for

points in E0 (ε/2) that comes from Lemma 68. We set

H
Ψαd
zα := spani∈{1,...,n−1}

{
↑a

α
i
zα

}
,
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where ↑a
α
i
zα is the direction of any segment from zα back to aαi . Regardless of this choice,

H
Ψαd
zα satisfies the following Lemma, whose proof is nearly identical to the proof of Lemma

49.

Lemma 71 There is a λ > 0 so that for all zα ∈ Eα0 (ε/2) and all v ∈ HΨαd
zα , there is an

i ∈ {1, . . . , n− 1} so that ∣∣Dvf
α
i,d

∣∣ > λ |v| ,

provided α is sufficiently large and d is sufficiently small. In particular, Ψα
d |Eα0 (ε/2) is a

submersion.

Proposition 72 Eα1 (ε) is homeomorphic to Sn−2 × D2, and Eα0 (ε) is homeomorphic to

Dn−1 × S1, provided α is sufficiently large and d is sufficiently small.

Proof. First we show that Eα0 (ε) is connected. By the Stability Theorem [33], we

have homeomorphisms hα : Pnk (r) −→Mα that are also Gromov–Hausdorff approximations

(cf [23], [25] and [45]). Thus for α sufficiently large, we have

Eα0 (ε) ⊂ hα (E0 (ε/2)) .

Let ρα : Mα −→ R be defined by

ρα (x) := |Ψα
d (x)| .

Since Ψα
d |Eα0 (ε/2) is a submersion, it follows that ρα does not have critical points on Eα0 (ε/2)\

Eα0 (2ε) . By construction, the flow lines of ∇ρα are transverse to the boundary of Eα0 (ε) and

hence can be used to move hα (E0 (ε/2)) onto Eα0 (ε) . It follows that Eα0 (ε) is connected.
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Since Ψα
d |Eα0 (ε) is a proper submersion, it is a fiber bundle with contractible base

Dn−1 (0, r − ε) . Since the fiber is 1–dimensional and the total space is connected, we con-

clude that Eα0 (ε) is homeomorphic to Dn−1 × S1.

We choose a homeomorphism h0 : E0 (ε/2) −→ Eα0 (ε/2) so that

E0(ε/2) Eα0 (ε/2)

Dn−1

h0

Ψd Ψαd

commutes. Using the proof of the Gluing Theorem ([33], Theorem 4.6), we construct a

homeomorphism h : Pnk (r) −→Mα so that

h =


h0 on E0 (ε)

hα on E1 (ε/4) .

It follows that h (E1 (ε)) = Eα1 (ε) . Since E1 (ε) is homeomorphic to Sn−2 ×D2, the result

follows.

Proof of Key Lemma 62. By Proposition 65, gαd : Eα1 (ε) −→ ∂Dn−1(0, r−ε) =

Sn−2 is a submersion. Since gαd is proper, gαd is a fiber bundle with two-dimensional fiber

F. From the long exact homotopy sequence and Proposition 72, we conclude that F is a

2–disk. For n 6= 4, every D2–bundle over Sn−2 is trivial by Theorem 1 of [36]. When n = 4,

Eα1 (ε) is a D2–bundle over S2 whose total space is homeomorphic to S2 × D2. It follows

for example from [54] that Eα1 (ε) is trivial in all cases, completing the proof of Key Lemma

62.

Proof of Key Lemma 61. Since Ψα
d |Eα0 (ε) is a proper submersion, (Eα0 (ε) ,Ψα

d )

is a fiber bundle over Dn−1 (0, r − ε) with one-dimensional fiber F. Since Eα0 (ε) is also
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homeomorphic to Dn−1 × S1, it follows that the fiber is S1. The base is contractible, so

the bundle is trivial. This completes the proof of Key Lemma 61 and hence the proofs of

Theorems 60 and 12, establishing our Main Theorem.

Double Disk Stability

The proof of Theorem 11 also yields

Corollary 73 Let {Mi}∞i=1 be a sequence of closed Riemannian n–manifolds with sec Mi ≥

k so that

Mi −→ Dnk (r)

in the Gromov-Hausdorff topology. Then all but finitely many of the Mis are diffeomorphic

to Sn.

Proof. In contrast to Theorem 40, we do not necessarily have an isometric invo-

lution of the Mis. Instead, we let A : Mi −→ Mi be any map which is Gromov-Hausdorff

close to A : Dnk (r) −→ Dnk (r) . We then define fαi,d : Mi −→ R as in 4.19 and proceed as in

the proof of Theorem 11.
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