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Data from decades of life sciences research and literature is being curated and made available

for searching and analysis. While considerable work has been done to integrate and re-use

this data, what is still lacking is a unifying platform that allows new experimental data to

leverage all previously published data effectively.

Crick is an intelligent and scalable platform for data integration, visualization, and searching

for meaningful biological hypothesis. It was built to create an effective way to integrate and

analyze experimental data in the context of the vast literature of other biologically relevant

information. Crick was designed ground-up to solve some of the most challenging problems

in biological data such as entity resolution, size, scale, reliability of the data, visualization

of high-dimensional information, etc. Crick has been successfully used to identify molecular

mechanism regulating circadian metabolism; to understand the complex coupling of circadian

oscillating species; to study pediatric cancers; to analyze the dynamic long-range interactions

in the genome; and more.
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Chapter 1

Big Data in Biology

1.1 Introduction

Humans have been collecting and recording information for a very long time. The oldest

proof of written history dates to the 4th millennium BC. We record events, phenomena

and every single aspect of our understanding of the world around us. In the age of the

internet, we are now experiencing an explosion in the amount of data that is collected and

processed. An estimate in 2012 by IBM shows that 2.5 exabytes (2.5 x 1018) of data is

created every single day and this number is increasing. Hence there is a massive amount

of data being collected across all domains including but not limited to physics, internet,

finance, meteorology, environment and climate studies, politics, marketing and biology.

The domain of life sciences is witnessing a dramatic change in the way we work with data.

Data from decades of research is being curated into databases with the ability to be re-used,

thereby becoming more accessible. Data from literature is being converted into machine

readable formats making it readily available for mining and analysis. However, integration

of biological data from diverse databases and various file formats is a growing challenge.
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Biological data is a combination of qualitative and quantitative results. There are multiple

heterogeneous datasets that can be collected from a system, for example genome sequence,

transcriptome, metabolome, proteome, imaging, drug affinity etc. Even when measuring the

same biological entity, there are multiple technologies, vendors, experimental procedures and

analysis methods which make it harder to compare data across experiments. For instance,

one can carry out microarrays or RNA-sequencing to measure the genome-wide expression of

transcripts – both of which are offered by several vendors as well as have several methods for

normalizing and data processing. With more and more high throughput data being made

available, there is a need for a system to integrate new experimental data with all other

publicly available data in order to extract biologically meaningful hypotheses. Incompatible

exchange of data and the inability to extract results from previous studies have often resulted

in whole experiments being repeated. Furthermore, we are also seeing trends of comprehen-

sive data being generated under a specific condition. Like ChIP-seq, transcriptome, and

metabolome all measured from the liver of the same animal with identical feeding profile,

genetic background, environmental conditions, etc.

1.2 Key Challenges

Biological data has structured, unstructured, semi-structured and multi-structured data.

Many of the challenges when dealing with biological data are common to other domains of

data science.

1.2.1 Entity resolution or record linkage

Entity resolution or Record Linkage is the process of identifying information in a single data

set or across data sets that refers to the same entity (a single molecular species). While
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this may seem trivial, it is actually one of the hardest problems in life sciences (Stein,

2003). Many standards have been proposed (Wain et al., 2002; Maltais et al., 2002; Levan

et al., 1995) that ameliorate this problem but legacy databases and published literature still

contains useful information that is difficult to resolve correctly. In addition, there are subtle

difference in the concepts or usage of terms as me move from one domain to another (Stein,

2003).

1.2.2 Size

With recent advances in genomics, proteomics, metabolomics, imaging and other technolo-

gies, researchers are generating huge amounts of data. The European Bioinformatics Insti-

tute (EBI) which maintains one of the world’s largest biological-data repositories, stores ∼20

petabytes (20 x 1015 bytes) of data. Of that, genomic data alone accounts for ∼2 petabytes,

with the number doubling in under a year. The National Center for Biotechnology Informa-

tion, or NCBI also stores ∼15 petabases of DNA sequencing data generated per year (Marx,

2013). The Beijing Genome Institute is one of the largest genome sequencing facilities in the

world with a capacity of generating 6 TB of data per day. Researchers are already taking on

highly ambitious big-data projects like the analysis of the genomes of many cancers; mapping

of the human brain; developing better biofuels and other crops; personalized medicine and

drug discovery. Hence the size of data generated is only expected to increase over time as

we develop better, more sensitive methods for measurement.

1.2.3 Scale

Algorithms, data structures, and analysis methods need to scale with the size of the data,

so large collections of data can be efficiently processed. Ideally, scaling should happen

without requiring specific high-end hardware. Distributed computing is becoming extremely
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common in processing large amounts of biological data. Compute Grids/HPC, Message

Passing Interface (MPI) based clusters, and shared-nothing architectures like Hadoop are

all being used to effectively process biological data. Each of these methods offer unique

scalability and performance characteristics, while they also have their share of advantages

and challenges.

1.2.4 Efficient storage and query

Often, the size and scale are so large that it makes the storage prohibitively difficult and

expensive. Downloading petabytes of data and analyzing it would be highly inefficient.

With cloud based technology, there are ways of minimizing the data movement and allowing

queries that are trying to find needles in the haystack. Fortunately, distributed file systems

(like Hadoop Distributed File System and GlusterFS) provide a cost efficient way of storing

large datasets. In addition, most databases provide standard APIs to access information

avoiding downloads, in-house storing, and maintenance of large data stores.

1.2.5 Missing data

Missing data is extremely common in all data sciences and this is especially true of biological

data. For instance, in the case of microarrays, there are many sources of missing values such

as scratches on the slides, background noise, hybridization failures, spotting conditions, etc.

(de Brevern et al., 2004; Scheel et al., 2005). Missing values in experimental data often has

a negative impact on downstream analyses of the data.

But in addition, there are several challenges unique to biological data, such as
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1.2.6 Obsolete experimental and analysis procedures

As new experimental procedure and technology is developed and adapted, data generated

from older methods has become less useful. This is also true of the methods with which we

normalize and analyze data. New methods of analysis are published every day. Defining

standards for input and output would help create pluggable analysis modules.

1.2.7 Reliability of data

Biological data often contains significant amounts of noise. Similar experimental procedures

performed by different researchers produce different results. There are several currently

unknown factors that influence and affect the quality and reliability of the data. Statistical

tests and performing sufficient replicates are a good way of decreasing the noise. Cost also

plays an important role in how many replicates can be performed. Modern technology such

as sequencing is not perfect either. For a very accurate picture, the sequencing coverage

required would be extremely high. False or incorrectly annotated data is also common

within biological databases. This is because of the fact that several of these databases are

machine annotated rather than hand curated by experts.

1.2.8 High-dimensional

For any given biological molecule, there are a large set of variables and dimensions that are

available or can be measured. For example, in the case of a protein, its sequence, physi-

cal properties, chemical properties, structural properties, pathway and interaction features,

expression profile etc. can be used in any analysis. One important side-effect of this is

overfitting in predictive models and increase in the complexity of algorithms. In addition,

it has been shown that the expected distance between the nearest and farthest points in
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high dimensional space (Beyer et al., 1999) decreases as the dimensions increase, making

clustering ineffective. Principal component analysis (Fodor, 2002) and other methods are

often used to reduce the dimensionality.

1.2.9 Complex

Biological data is extremely complex. Let us consider gene expression for example. In the

human body, there are over 20,000 genes. Splicing and post-transcriptional modification can

result in a much larger number of transcripts. In the human body there are thousands of

different cell-types; each of them can have a different gene-expression profile. Furthermore,

the gene-expression can oscillate and quickly change with the day-night cycle (Patel et al.,

2014) and/or environmental factors – meaning the levels are different depending on what

time of the day and where the measurements are performed. In addition, biological sys-

tems have a stochastic component that modulates the molecular interactions within the cell

(Quackenbush, 2007; Losick and Desplan, 2008). There is a similar degree of complexity in

all layers of biological data. In most situations, the average behavior observed by measuring

millions of cells is enough to understand the biological systems that we study. However, the

conditions under which a healthy cell switches to a disease state would require accounting

for the stochasticity (Losick and Desplan, 2008).

1.2.10 Visualization and sharing of results

With the increase in volume and complexity of the data, visualisation has become extremely

important. Tables and spreadsheets are useful for sorting and viewing a small set of rows,

but unsuitable for unstructured data. Charts and heat maps are often limited to a few dif-

ferent dimensions. Specialized tools are also available for certain sub-domains. For instance,

genome browsers (UCSC Genome Browser, Integrative Genomics Viewer, Savant Genome
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browser etc.) and circos allow users to visualize regions of the genome and also add custom

tracks of experimental data for visualization. Epigenome browser is another example of a

custom tool built for the visualization of epigenetic datasets. Networks are also a great way

of visualizing the links between the different molecular species, but less ideal when the net-

work is extremely large or when there are too many different types of nodes and edges. There

are several software/libraries available for network visualization and layout like Cytoscape,

D3js, NAViGaTOR, and Gephi. Amongst these, Cytoscape is the most popular and feature

rich option. Thus, effective visualization of biological data often requires a hybrid approach

combining several of the above-mentioned methods.

1.2.11 Partial knowledge

Data models become obsolete quickly as new information becomes available. Sometimes the

data is not measured and at other times we do not even know what to measure. For instance

long-range interactions and the 3D structure of the genome was unknown till a few years ago,

and the data model had to account for storing and analyzing this piece of information. Hence

it is important to adapt to new data as it becomes available, thereby making the design of

the platform that much harder. This also makes maintaining constraints and consistency

checks within and across databases difficult.

1.2.12 Too many databases

Biological knowledge is spread across several different databases. While this makes integra-

tion and consistency checking harder, it also provides a great way for domain experts and

community to make optimal decisions about the data, updating the data, etc. (on Frontiers

at the Interface of Computing et al., 2005; Stein, 2003). Databases like GenBank, the Euro-

pean Molecular Biology Laboratory (EMBL) Nucleotide Sequence Database, UCSC genome
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browser, and the DNA Databank of Japan (DDJ) provide well recognized options for stor-

ing DNA regions and genomics sequences. Protein databases like UniProt also link back

to most of these popular DNA databases. There are databases for specific interactions like

BioGRID and STRING for protein-protein interactions; MotifMap and CENTIPEDE for

transcriptional regulation edges; KEGG and MetaCyc for enzyme-metabolite reactions etc.

Furthermore, there are also several organism specific databases like FlyBase, WormBase,

SGD, and Mouse Genome Informatics (MGI). A full list of key databases is provided in

Table 2.1. As previously noted, (on Frontiers at the Interface of Computing et al., 2005), the

long-term vision would be to have decentralized collection of data while maintaining common

standards and practices for design, compatible vocabularies, user interfaces etc. across all

databases, allowing easy integration and cross-database queries. This is a non-trivial chal-

lenge and intelligent methods of data integration across databases are steps towards solving

these challenges.

1.2.13 New information

Last but not the least is dealing with new information. New data is being generated at an

astronomical rate and it is not only important to analyze the new data in the context of all

previously published data, but also to be able to easily re-analyze older data in the context of

the new data. Often inferences would have been missed due to partial knowledge or missing

data.

1.3 Summary

In summary, biology contains a large number of different data types, all of which are needed

to understand and reliably model the function at the cellular and organism level. Each data
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source can only provide a limited view of the underlying molecular mechanisms, and it is

the integration of these different lines of evidence under a wide variety of conditions that

can help in understanding any biological phenomenon at multiple levels. Integration from

multiple sources is always expected to provide more information that any single source of

data. In the next chapter, we describe the platform Crick, which provides a scalable and

intelligent way for large scale integration of data and analysis of new experimental data.
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Chapter 2

Crick

Each data, from microarray to sequencing, from protein interactions to drug binding, comes

with its own noise and limitations. It is the combination of diverse lines of evidence that has

the power and coverage to solidify inferences, rank hypotheses, and built predictive models

in a relevant way. This integration process is not new or unique to biology, of course, and

in essence is at the root of IBM’s Watson system for the game of Jeopardy (Ferrucci, 2011)

and most modern search engines. This integration process is ongoing and raises several

computational challenges in its execution.

Crick was designed ground up to solve some of the challenges described in the previous

chapter and effectively provide context to any dataset. Broadly, Crick provides three major

functions. First, is data integration and the ability to leverage the vast knowledge base of

prior information (public databases, published literature etc) to analyze new experimental

data. Second, is the ability to search and rank specific molecular hypotheses. Last, is the

data visualization which allows easy navigation and manipulation of biological networks with

the ability to overlay any specific data of interest.
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2.1 Data Integration

Crick extracts information from a variety of biological databases and web servers to build

an extensive knowledge base. Table 2.1 provides a list of the main data sources and tools

that are integrated into Crick along with a brief description and the corresponding URL.

2.1.1 Representation

A natural way of representing and storing biological data is in the form of a network. Bi-

ological networks contain nodes (genes, proteins, sequence of DNA, metabolites, drugs etc)

and edges (protein-protein interaction, transcriptional regulation, enzyme-metabolite inter-

action, drug-protein binding, long-range genomic interactions, etc.). There can be multiple

edges between a pair of nodes; edges can be directed or undirected with self-edges. Thus

a multi-graph with directed and undirected edges is a suitable form for representing and

storing biological data in Crick. Furthermore, annotations about nodes and edges can be

stored as key-value attributes to the corresponding nodes and edges. This model of storing

information allows one to enumerate all the links in the data, effectively partition and merge

the data, and also query specific pieces of the data in the context of the neighborhood in the

biological network.

2.1.2 Building

Since the data is represented as a network, the retrieval of information from various sources

can be trivially parallelized. Crick builds the network around each node (genes, metabolites,

proteins, etc.) separately. Views of the networks centered around a specific node are con-

structed. All of the relevant information about the nodes and edges in the graph around the

node of interest is extracted from databases, file systems, and web services for processing.
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Database Description URL
TRANSFAC Databases of transcription factors and

transcription factor weight matrices.
http://www.gene-
regulation.com/pub/databases.html

JASPAR Databases of transcription factors and
transcription factor weight matrices.

http://jaspar.cgb.ki.se

MotifMap Genome-wide maps of regulatory bind-
ing sites. MotifMap uses transcrip-
tion factor weight matrices and the
Bayesian Branch Length Score to assess
evolutionary conservation and identify
DNA regulatory elements across entire
genomes.

http://motifmap.igb.uci.edu

CENTIPEDE Predicted transcription factor binding
sites.

http://centipede.uchicago.edu/

KEGG Metabolic pathway information, knowl-
edgebase for metabolites

http://www.kegg.jp

NCBI Information about mouse mRNA and
genes, transcriptional and translational
relationships between genes, mRNA
and proteins

http://www.ncbi.nlm.nih.gov/nuccore

UCSC Genome Browser Genomes, alignments, ChIP-seq, and
other genomic datasets

http://genome.ucsc.edu

ENCODE Chip-seq data, DNaseI Hypersensitiv-
ity data etc.

http://genome.ucsc.edu/ENCODE

GEO Gene expression and other genomic
datasets

http://www.ncbi.nlm.nih.gov/geo

Circa Circadian gene expression profiles http://bioinf.itmat.upenn.edu/circa
UniProtKB Protein knowledgebase http://www.uniprot.org
BioGRID Protein-protein interactions http://thebiogrid.org
IntAct Protein-protein interactions http://www.ebi.ac.uk/intact
Mint Protein-protein interactions http://mint.bio.uniroma2.it/mint
STRING Protein-protein interactions http://string-db.org/
CORUM Information about protein complexes http://mips.helmholtz-

muenchen.de/genre/proj/corum
DAVID Functional enrichment analysis http://david.abcc.ncifcrf.gov
Phosida Post-translational modification infor-

mation
http://www.phosida.de/

PhosphoSitePlus Protein phosphorylation information http://www.phosphosite.org/
DrugBank Drugs and drug targets http://www.drugbank.ca/
BindingDB Drugs and drug targets http://www.bindingdb.org/
PharmGKB Drugs and drug targets https://www.pharmgkb.org/

Table 2.1: Data sources and web-services used by Crick
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Node type Use
CrickDNARegion Used to represent any sequence of DNA e.g. a Single

Nucleotide Polymorphism
CrickGene Used to represent genes.
CrickRNA Used to represent transcripts (mRNA), micro RNAs etc.
CrickProtein Used to proteins including transcription factors, en-

zymes, etc.
CrickCompound Used to represent metabolites, drugs and other chemical

compounds found in the biological system.

Table 2.2: List of node types available in Crick

These graphs are typically first or second neighbor graphs built around the initial node and

finally stored to disk or a database. For instance, a metabolite centric view defined in Figure

2.3 is built around a metabolite and contains all the enzymes that regulate the metabolite, all

the metabolites that co-react with it, all transcription factors and protein/drug interactions

of the enzymes.

Once the base networks have been built, different annotators and experimental data inte-

grators can be run on top of these networks. This is how Crick can quickly leverage a vast

knowledge base of published datasets and literature information. For instance, to analyze a

microarray dataset using a microarray annotator, the experimental data can be augmented

to the networks with the relevant expression values. In this step the networks can further

be pruned for the specific tissue or condition. For example, tissue specific ChIP-seq datasets

can be included; genes not expressed in the tissue can be removed hence pruning the graph.

At regular intervals all the base networks are recreated and all experimental datasets rein-

tegrated. The process of building Crick networks around Upp2 is illustrated in Figure 2.1

and sample Crick code (in Python) shown in Figure 2.2.
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KLF12	  

POU3F1	  

NKX6-‐1	  
	  

NRSF1	  

+chr2:58599596-‐58643079	  

HLX	  ETS2	  
	  STAT3	  

CLOCK	  

ARNTL	  
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HNF4A	  

NM_029692	  

Figure 2.1: Schematic of data integration. Starting from the gene Upp2 (black node
labeled with genomic coordinates) Crick builds out the mRNA transcript (green node labeled
with RefSeq identifier) and enzyme (red node labeled with UniProt name) along with all
relevant nearest neighbors. UPP2 catalyzes a key reaction (black lines) involving uracil
and uridine. Regulatory interactions (gray arrows, predicted; cyan arrows, experimentally
verified) of transcription factors (brown nodes) that bind to the promoter of Upp2, metabolite
coreactions (blue dotted lines) and protein-protein interactions (red dashed lines) are also
displayed. When available, corresponding time series are shown within the nodes (mRNA
data from microarray experiments and metabolite data from mass spectrometry experiments)
over the light-dark 24-hour cycle (blue curves, wild type; orange curves, Clock−/−).
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from crick.environment import *

FLAGS.species = const.hg19

cn = CrickNetwork()

cn.add_proteins(["upp2"])

ProteinProteinEdges(cn).build_network()

ProteinDNAEdges(cn).build_network()

EnzymeMetaboliteEdges(cn).build_network()

cn.export_json("upp2.json", networkout=True)

Figure 2.2: Example Python code to build protein-protein interaction, enzyme
reaction, and gene regulation for the UPP2 enzyme.

Gene	  Centric	  View	  Metabolite	  Centric	  View	  
Transcrip4on	  Factor	  

Gene	  

mRNA	  

Enzyme	  or	  Protein	  

Metabolite	  

NODES	  

TF	  binding	  site	  
TF	  binding	  site	  on	  Open	  
Chroma4n	  
	  

	  
Transcrip4on	  

Transla4on	  

Protein-‐Protein	  	  

Enzyme-‐Metabolite	  

Metabolite	  Co-‐reac4on	  

EDGES	  

TF	  binding	  according	  to	  
ChIP-‐seq	  or	  ChIP-‐ChIP	  

Figure 2.3: Gene and metabolite centric views of Crick networks.
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2.1.3 Storing

Crick networks can be serialized using Python’s pickle format, JSON, or XGMML. JSON and

XGMML are more suited for visualization using Cytoscape, while the Python pickle format

allows these sub-networks to be quickly loaded, processed, updated, and combined to form

new larger networks. The backend database is a scalable and fault tolerant NoSQL datastore.

There are several good open-source and proprietary choices for a NoSQL database. Crick

uses MongoDB primarily because of the large set of features (counters, regular expression,

search, complex indexing, etc.) that are built into the database.

2.2 Analysis and Query

Starting from a small sub-network, it can be expanded by doing a breadth-first or depth-

first search and merging with other networks. Additional experimental data to drive the

analysis can also be easily overlaid on top of the networks. For instance, after overlaying the

expression of all genes from a microarray study, one can calculate the correlation of a node

to its connected neighbors. Paths can be correlated and scored from a node of interest to all

other nodes in the graph.

Crick also enables searching for specific network-motifs. Networks motifs are a set of nodes

and edges that describe a set of predicates that need to be satisfied. For instance, one can

describe a network motif with 4 nodes (A, B, C, and D) such that A and B are transcription

factors; A and B interact with each other via a protein-protein interaction; C is an enzyme;

C is regulated by A and B; C catalyzes a metabolic reaction of D. A motif like this can be

easily defined and Crick can enumerate all matching sub-graphs from the network. These

network motifs can be extremely complex and have access to all features/data about the

nodes and edges. For instance, in the above mentioned motif, one can add constraints - such
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as that the gene-expression of A-B-C be correlated; C have a specific gene-ontology; and

D participates in a specific metabolic pathway. This also allows estimating graph topology,

looking for known molecular feed-forward, feed-back loops etc.

2.3 Data Visualization

The Crick web server uses CytoscapeWeb (Lopes et al., 2010; Shannon et al., 2003) in a

HTML5/JavaScript application to display the networks and all node and edge information.

The web server allows users to visualize and interactively manipulate any Crick network

within the web browser, hence removing the need to download the entire graph and install

complex dependencies. This module is implemented using Apache, Python (Flask), and

CytoscapeWeb. Data in the form of charts (line charts, pie charts, bar charts etc) or node fill

colors (used to represent up and down regulated molecular species) can be used to visualize

a specific dataset by drawing them directly on the networks using Cytoscape. While the

overlaid graphs are created using Google charts API, any image URL can be shown on the

nodes.

During the build process, all nodes, edges, and keywords are indexed using a full-text search

library. This allows searching for any Crick network by a combination of one or more

keywords.
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2.4 Features and Design Choices

2.4.1 Fault tolerance

It is important for a large and complex system like this to be fault tolerant at every level. For

example, for most data sources multiple methods of access (web API, database connection,

local file system downloads, etc) are defined in Crick. For a given datasource, Crick uses

the preferred method for access but in case of failure will automatically extract information

from any available channel. This model greatly simplifies the process of downloading data

and making sure all parsers are up-to-date. While community driven libraries like BioPy-

thon/BioPerl etc. are making this task easier, updating datasets is a huge challenge often

forcing researchers to use outdated versions of the data.

The choice of database and file system was also made with fault tolerance in mind. For

example MongoDB was run with sharing, replication, and multiple Mongo servers to ensure

reliable uptime.

2.4.2 Data sources

Crick contains a large and comprehensive list of data sources, often with multiple sources

of databases for the same piece of data. New databases are constantly being added and the

design makes it easy to add a new source of node or edge database. Hence Crick is fairly

comprehensive and contains a large knowledge base. Information from most databases can

be retrieved directly without downloading and processing them in-house.
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2.4.3 Performance and scale

Crick uses a compute grid to build networks in parallel and stores the information on network

attached file systems or a key-value database. It is important to note that this choice was

primarily due to the availability of a large Sun Grid Engine cluster within the group. The

network building and information retrieval can be carried out easily by a MapReduce (Dean

and Ghemawat, 2008) job that stores the retrieved information to a distributed file system

or a distributed key-value database. Crick can reconstruct all of the base networks within

a couple of hours – depending on how many compute slots are available, how much data is

available locally, how many web requests can be made per second etc. Crick’s knowledge

base building is embarrassingly parallel and has linear scaling capability.

2.4.4 Auto refresh and cache

Ability to extract data using standard APIs and remote database connections ensures that

the networks are always built against the latest version of the data. In addition, APIs

often return results in standard format, provide redirection, content-headers etc. Crick also

implements a simple persistent-caching mechanism that saves the results of remote requests,

decreasing the load on the source web server drastically. This is important since Crick

networks are updated and recreated far more often than the data sources.

2.4.5 Experimental data

Crick is designed to ingest experimental data from disparate sources including data analyzed

by different techniques or generated using different methods.
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2.4.6 Learns IDs over time

Internally Crick assigns a unique identifier for each specific molecular entity. Using cross-

reference information, IDs from different databases are connected together and assigned a

unique identifier. This means that the Crick assigned ID is transient and resolves to a set of

identifiers that can be used based on the database that needs to be queried.

2.4.7 Web application for data visualization

Crick’s web based application allows users to view networks without having to install complex

dependencies. Crick uses modern NoSQL databases for storing the different objects and

networks.

The following chapters describe projects where Crick was successfully used for data analysis,

to find novel molecular mechanism, to gather global statistics, etc.
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Chapter 3

Understanding the link between

metabolism and the circadian clock

3.1 Introduction

Circadian rhythm or the day-night cycle plays a key role in ensuring homeostatic balance

with the environment and coordinating many aspects of physiology including the sleep/wake

cycle, eating, hormone and neurotransmitter secretion, and even cognitive function (Eckel-

Mahan and Sassone-Corsi, 2009; Froy, 2011; Gerstner et al., 2009; Yoo et al., 2004; Takahashi

et al., 2008). Disruption of circadian rhythms has been directly linked to health problems

ranging from cancer; to insulin resistance, to diabetes, to obesity, and to premature ageing

(Takahashi et al., 2008; Antunes et al., 2010; Froy, 2010; Karlsson et al., 2001; Knutsson,

2003; Kohsaka et al., 2007; Lamia et al., 2008; Sharifian et al., 2005; Turek et al., 2005).

Research has shown that circadian rhythms are genetically encoded by a molecular clock

found in nearly every cell, with a master clock located in the suprachiasmatic nucleus (SCN)

(Moore and Eichler, 1972; Ralph et al., 1990) of the hypothalamus coordinating and inter-
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acting with peripheral clocks throughout the body (Yoo et al., 2004; Takahashi et al., 2008).

Central to the molecular rhythmicity of SCN neurons as well as other oscillating cells are

transcription factors that drive expression of their own negative regulators (Schibler and

Sassone-Corsi, 2002). This attribute of the clock results in a negative transcriptional and

translational feedback loop, highly conserved across species, that perpetuates oscillations

in gene expression that occur every 24-hrs. In mammals, two bHLH transcription factors,

CLOCK and BMAL1 heterodimerize and bind to conserved E-box sequences in target gene

promoters, thus driving the rhythmic expression of mammalian Period (Per1, Per2, and

Per3 ) and Cryptochrome (Cry1 and Cry2 ) genes (Stratmann and Schibler, 2006). PER

and CRY proteins form a complex that inhibits subsequent CLOCK:BMAL1-mediated gene

expression (Brown et al., 2012; Dibner et al., 2010; Partch et al., 2013). In short, the core

of the clock is driven by only a dozen genes (Yan et al., 2008).

Circadian genomic and transcriptomic data sets are accessible, and recently, metabolomics

data in the circadian context also have been made available (Eckel-Mahan et al., 2012, 2013;

Dyar et al., 2013). Metabolism is a highly dynamic process. It is tightly controlled by the

circadian clock, which responds to environmental lighting conditions via the suprachiasmatic

nucleus of the brain. Notably, peripheral organs have their own pacemakers, with food serv-

ing as a potent zeitgeber for metabolically active tissues (such as liver and muscle). We have

explored the circadian metabolome in different tissues and under various physiological con-

ditions, including disparate nutritional and circadian conditions. Thus, the components for

building a comprehensive map of circadian networks are thus ready for assembly using Crick.

Our initial studies (Eckel-Mahan et al., 2012) had revealed that 60% of liver metabolites

show a difference between wild-type and circadian mutant (Clock–/–) mice.
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3.2 Liver Metabolome with a Clock Knockout

As an organ involved in glycogen storage, the production of bile acids, and the storage and

provider of numerous amino acids and vitamins for the rest of the body, the circadian oscilla-

tion of metabolic function within the liver is seminal to understanding circadian physiology.

Thus, to determine whether liver metabolites oscillate in a circadian fashion and to deter-

mine the extent to which their presence is Clock -controlled, liver samples from wild-type and

Clock -deficient (Clock -/-) mice were prepared for GC/MS and LC/MS/MS analysis.

Mass Spectrometry spectra for 538 metabolites were obtained, of which 309 were identified

by searching against a standard library (Evans et al., 2009). Metabolites that showed time-

or genotype- main effects were grouped based on their major pathway in Figure 3.1. Red

fractions of each pie chart in Figure 3.1 depict the percentage of metabolites that change

over the circadian cycle. Orange lines depict the relative accumulation of the metabolite in

Clock -/- livers, while blue lines depict the relative metabolite concentration in WT control

livers. A majority of amino acid and xenobiotic metabolites peaked at night (ZT15-ZT21)

while peak abundance of nucleotide, carbohydrate, and lipid metabolites occurred at ZT9.

Oscillation of amino acid and xenobiotic metabolites was temporally cohesive with the peak

hours of energy intake. Of the 538 total metabolites measured, 172 showed a time main

effect (P < 0.05, ANOVA) and 132 showed a genotype main effect (P < 0.05, ANOVA).

Of 309 named metabolites, 100 showed a time main effect and 73 showed a genotype main

effect. More information about the experiment procedure and results on the analysis can be

found in Eckel-Mahan et al. (2012).
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A 

Figure 3.1: Metabolic pathways of the liver containing diurnally regulated metabo-
lites. Major metabolic pathways are represented in the liver by numerous metabolites that
change in abundance throughout the 24-h cycle (orange lines, Clock–/– metabolites; blue
lines, WT metabolites). Metabolites that vary in abundance over time are shown. Pie charts
depict the percentage of metabolites that changed over time (red) vs. those that did not
(green). N = 5 per genotype per time point.
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3.2.1 A Clock-driven metabolome

It has been reported that Clock -deficient mice are rhythmic in the brain due to the presence

of the CLOCK paralog, NPAS2 (Debruyne et al., 2006). However, peripheral clocks are

arrhythmic in the absence of systemic cues. In the presence of systemic cues (i.e. in vivo),

the patterns of liver gene expression are altered in a gene-specific manner (Debruyne et al.,

2006; DeBruyne et al., 2007b,a). Clock-deficient mice model a situation in which the local

liver circadian clock is impaired. Several food-derived biochemicals were altered in Clock-

deficient mice, leading to the hypothesis that a circadian phenotype in energy intake might

occur in these mice. Thus, the liver circadian metabolome provided valuable information

regarding the metabolic and physiological functions of the circadian clock in vivo.

3.2.2 Constructing a map of the circadian metabolome

To understand this complex metabolic landscape in the backdrop of existing information

and the role played by the central clock machinery- we generated comprehensive network of

all proteins/enzymes and metabolites using Crick. In addition, experimental datasets listed

in Table 3.1 were overlaid on the networks. Finally using Crick, the paths between Clock

and all metabolites were enumerated from comprehensive networks; the gene expression of

enzymes from Hughes et al. (2009) was correlated against the metabolite levels; connected

metabolite levels were correlated; and transcription factors regulating enzyme levels were

found. One of the top ranking hypothesis that came out of this analysis was the regulation

of Uracil levels by the CLOCK transcription factor. This typifies the prominent interfaces

found in this study between the circadian liver metabolome and transcriptome and directly

demonstrates the interdependence of the metabolome and the hepatic circadian clock.

Specifically, within the uracil-containing pyrimidine metabolic pathway, uridine oscillated in

WT livers (P=0.008, ANOVA) while a remarkable absence in oscillation was observed in
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Experimental Data Reference
Liver metabolite levels measured every 6 hours Eckel-Mahan et al. (2012)
Liver transcript levels measured every hour Hughes et al. (2009)
Liver BMAL1 ChIP-seq Rey et al. (2011a)

Table 3.1: Experimental datasets included in Crick for the analysis of the liver
metabolome

Clock-deficient mice (Fig. 3.2A and C). Uracil showed an oscillation in WT mice that was

antiphase to uridine and, like uridine, did not oscillate in the liver of Clock-deficient animals

(Fig. 3.2C). Uridine levels were generally elevated in the livers of mutant mice, particularly

at ZT9 and ZT15 (ZT9 Clock -/- vs. WT= 1.550, P < 0.001; ZT15 Clock–/– vs. WT, P <

0.001) relative to WT liver concentrations. Values of uracil in liver samples showed a time and

genotype main effect (P=0.012 and P < 0.001, respectively, two-way ANOVA), and uridine

values showed time and genotype main effects (P=0.008 and P=0.001, respectively, two-way

ANOVA) as well as a genotype:time interaction (P=0.008). Within the metabolic node, a

number of regulatory enzymes, including Upp2 were implicated (Fig. 3.2A). Upp2 (uridine

phosphorylase 2) is essential for pyrimidine salvage and catalyzes the reversible reaction of

uracil and ribose 1-phosphate (or deoxyribose 1-phosphate) into uridine (or deoxyuridine)

and orthophosphate (Fig. 3.2B) (Cao and Pizzorno, 2004; Giorgelli et al., 1997). To assess

the expression of Upp2 in vivo, liver Upp2 mRNA was analyzed in WT and Clock-deficient

mice. Correlating with the levels of uracil and uridine in vivo, Upp2 oscillates in a circadian

fashion (P=0.0002, two-way ANOVA, N=5-8 livers per zeitgeber time, per genotype) with

a peak at ZT15 (P < 0.05, Bonferroni posttest). Upp2 oscillation was reduced in Clock-

deficient mice, and levels of normalized Upp2 expression were particularly low at ZT15

(Fig. 3.2E) (main effect of genotype, P=0.020, two-way ANOVA). The depression of Upp2

in Clock-deficient mice correlates with the general increase in their hepatic uridine levels.

Based on the enzymatic function of Upp2, an increase in uridine levels in the Clock-deficient

mice would be expected with a lowering of Upp2 expression. Conversely, uracil levels were

depressed in Clock -/- mice at both ZT9 and ZT15, correlating with the lack of uridine
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metabolism. Thus, circadian expression of Upp2 is cohesive with the observed oscillations in

Upp2 -related metabolites. While Upp2 mRNA expression showed a strong circadian profile,

UPP2 protein also showed an oscillation throughout the circadian cycle (Fig. 3.2F). Using

data from MotifMap (Xie et al., 2009; Daily et al., 2011), Crick was able to predict regulatory

motifs in the promoter of Upp2. Of interest are the E-box elements that Clock and Bmal1

can bind to. Furthermore, Bmal1’s binding to the promoter of Upp2 was confirmed using

the ChIP-seq data from Rey et al. (2011a) that was included in the network construction.

We found the presence of three E-boxes and one canonical E-box between the regions of -143

and -183 of the transcriptional start site. Chromatin immunoprecipitation analysis using an

antibody directed against CLOCK revealed that CLOCK binds to this region of the Upp2

promoter in a circadian fashion, with a peak at ZT15 (Fig. 3.2G). To verify that CLOCK

binding followed the expected profile of binding on other target sites in the same livers,

CLOCK binding to the Dbp promoter was analyzed in the same WT and Clock–/– livers.

As expected, CLOCK binding to upstream Dbp regulatory elements showed the expected

circadian profile, with a peak at ZT9. Thus Upp2 expression appears to be directly regulated

by the circadian clock machinery in a circadian fashion and in a manner that supports the

temporal profile of Upp2 mRNA expression.

3.2.3 CircadiOmics

We also developed CircadiOmics, a computational resource that provides a common reposi-

tory for circadian cycle related metabolic and transcriptomic data and provides high-resolution

biological networks displaying, for instance, metabolites, enzymes, transcription factors and

their interactions, and concentration changes over time throughout the circadian cycle. In-

tegration of multiple data sources allows the generation of new testable hypotheses on the

interactions of metabolic and circadian processes. The CircadiOmics web server allows users

to search for metabolites or genes (Figure 3.3) and view an information-rich, tissue-specific
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Figure 3.2: Uracil network built using Crick. (A) The uracil network predicts an
interaction with uridine phosphorylase 2 (UPP2). (B) UPP2 participates in the reversible
reaction whereby uridine and orthophosphate are converted to uracil and ribose 1-phosphate.
(C) Uridine and uracil oscillate in an antiphase pattern in WT livers but are nonoscillatory
in Clock–/– livers. (D and E) Semiquantitative PCR of Upp2 and quantification of Upp2
mRNA in WT (+/+) and Clock–/– livers (error SEM). (F) UPP2 and Actin protein expres-
sion in WT and Clock–/– livers (each band represents five pooled livers) (G) Diurnal binding
of CLOCK to the Upp2 promoter. Immunoprecipitation of CLOCK from liver homogenates
and quantification of CLOCK-bound target DNA by qPCR normalized to Upp2 input DNA.
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Figure 3.3: Screenshot of CircadiOmics

biological network from within the web browser. See Figure 3.4 for the gene-centric net-

work of Ass1 overlaid with transcriptomics, proteomics and metabolomics data. Circa-

diOmics addresses the recently highlighted challenges and opportunities of how to integrate

metabolomics with other omics. This resource provides a systems-wide picture taken from a

high-resolution lens, allowing researchers to analyze metabolism with a broader perspective

and to generate hypotheses on how levels of metabolites may change under various phys-

iological settings. CircadiOmics is available at http://circadiomics.ics.uci.edu/ and allows

users to visualize and interactively manipulate these metabolite centric graphs.

3.2.4 The Circadian Clock as a Connector between Metabolome

and Transcriptome

Circadian physiology reveals that strong connections between the circadian clock and cellular

metabolism exist, but the extent to which this occurs and the nature of these interactions

have been largely unappreciated. This study reveals the first integrated map of the circadian

metabolome in the liver and provides a detailed depiction of the dynamic interfaces between
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Figure 3.4: Gene-centric network of Ass1 overlaid with several experimental
datasets
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the metabolome, proteome and transcriptome. The implications are numerous. In addition

to revealing scores of oscillating metabolites in the liver, this study suggests that a fraction

of the liver metabolome is dependent on local effects of the circadian clock transcriptional

machinery. However, as evidenced by metabolites that oscillate in WT and Clock-deficient

mouse livers but whose normalized expression differs, it is likely that some metabolic path-

ways depend more on zeitgebers (such as food or light). In some cases, such as in the

production of uracil from uridine, the transcriptional regulation of the enzymes responsible

for this reaction is altered in Clock-deficient mice. As analysis by MotifMap identified a po-

tential D-box, E-boxes, and RRE elements in the regulatory region of Upp2, it is likely that

the aberrant circadian expression is directly related to the disrupted circadian transcriptional

network within the Clock-deficient mouse livers. Indeed, the immunoprecipitation of CLOCK

from the Upp2 promoter in WT but not Clock-deficient livers provides direct evidence that

this is the case. Furthermore, the decreased and relatively flat expression of Upp2 in the

liver of mutant mice is reflected by the parallel alteration in the levels of uridine and uracil.

While CLOCK-mediated gene transcription clearly contributes to metabolic homeostasis

in the liver, the altered pattern of food-derived metabolites in the livers of Clock-deficient

mice reflects the deviant pattern of food consumption observed in indirect calorimetry ex-

periments. Metabolic homeostasis at the local level then appears to be strongly driven by

food acting as a zeitgeber as well as by the classical transcriptional events associated with

circadian rhythmicity. The aberrant pattern of food biochemicals (such as essential fatty

acids, bile acids, and xenobiotic metabolites) in the Clock-deficient livers strongly suggests

that the SCN and hypothalamic cues associated with rhythmic food intake are disrupted

in these animals, in a manner that drives early waking, food consumption, and therefore

metabolite fluctuations. The molecular events responsible for this advanced circadian food

consumption may be related to the causes underlying human diseases such as night eating

disorder (NES) where individuals wake during the night to consume food (O’Reardon et al.,

2004; Goel et al., 2009; O’Reardon et al., 2005). While circadian disruption occurs in this
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situation, the molecular events responsible for this diurnal eating pattern are not yet clear.

3.3 Reprogramming of the Circadian Clock by Nutri-

tional Challenge

The molecular mechanisms by which a high fat diet (HFD) affects the circadian clock are

not known. Using high-throughput profiling of the liver metabolome and transcriptome

we establish that HFD has multifaceted effects on the clock, including a phase advance of

metabolite and transcript oscillations which are maintained on the diet, as well as an abolition

of otherwise oscillating transcripts and metabolites. In addition to these disruptive effects, we

find a surprising, elaborate induction of newly oscillating transcripts and metabolites. Thus,

HFD has pleiotropic effects that lead to a reprogramming of the metabolic and transcriptional

liver pathways. These are mediated both by interfering with CLOCK:BMAL1 recruitment

to chromatin and by inducing the de novo oscillation of PPARγ-mediated transcriptional

control at otherwise non-cyclic genes.

3.3.1 Reprogramming of the circadian metabolome by high-fat

diet

To understand how altered nutrients affect circadian metabolism, we explored the effect of

HFD in mice by studying the hepatic metabolome, where a large number of metabolites are

circadian or clock-controlled (Dallmann et al., 2012; Eckel-Mahan et al., 2012; Kasukawa

et al., 2012). After ten weeks on a HFD, mice displayed expected metabolic features. Im-

portantly, the timing and quantity of energy intake was similar between feeding groups.

Metabolome profiles were obtained by MS/MS and GC/MS from livers isolated every four
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hours throughout the circadian cycle (Evans et al., 2009). A large number of metabolites

across several metabolic pathways displayed changes in HFD-fed animals. Of 306 identifiable

metabolites, 77% showed a diet effect and 45% showed a time effect (Figure 3.5A and Fig-

ures S2). When analyzed for circadian oscillations, 141 metabolites cycled in abundance. Of

these, 61 metabolites (43%) oscillated in both feeding conditions (Both), while 42 metabo-

lites (30%) oscillated only in normal chow-fed animals (NC). Importantly, 38 metabolites

oscillated only in HFD-fed animals (HF) (Figure 3.5B). Many of the metabolite changes were

present at ZT12 and ZT16 (Figure 3.5C) and included numerous nucleotide, amino acid, and

xenobiotic metabolites (Figure 3.5D). The metabolite peak profiles differed across several of

the metabolic pathways throughout the circadian cycle (Figure 3.5E). Interestingly, the phase

and amplitude of remaining oscillatory metabolites also differed. Specifically, metabolites

that oscillated in both feeding conditions generally showed a shift in phase when in HFD

(Figure 3.5F). Of the phase-shifted metabolites, 28% were delayed in phase, while 72% were

phase-advanced in HFD (Figure 3.5F-H). Considering the phase of metabolites that oscil-

lated only in NC or only in HFD, metabolites that oscillated only in HFD tended to peak

earlier (Figure 3.5G).

A majority of metabolite oscillations previously shown to be CLOCK-dependent (Eckel-

Mahan et al., 2012) are affected by HFD (Figure 3.5I). As seen in our previous experi-

ments, specific metabolic subpathways are circadian. For example, lysine metabolism is

highly rhythmic in normal feeding conditions (Eckel-Mahan et al., 2012). In this study, ly-

sine metabolism was highly rhythmic in both feeding conditions. Specifically, glutarate,

lysine, 2-aminoadipate, and pipecolate showed oscillatory abundance in both conditions

(http://circadiomics.ics.uci.edu/). On the other hand, pyrimidine metabolism displayed

rhythmicity only under NC condition. For example, cytidine 5-monophosphate (5-CMP),

2-deoxycytidine, and 2-deoxycytidine 5-monophosphate all lost oscillation in HFD.

Strikingly, HFD completely blocked oscillation of nicotinamide adenine dinucleotide (NAD+)
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Figure 3.5: HDF alters the Circadian Profile of the Metabolome. (A) Number of hepatic
metabolites affected by diet or time. (B) The hepatic circadian metabolome consists of metabolites
that oscillate in both groups of animals regardless of diet (Both), metabolites that oscillate only in
animals fed normal chow (NC), and metabolites that oscillate only in animals fed HFD (HF). p <
0.05, JTK cycle, and n = 5 biological replicates. (C) The number of hepatic metabolites altered by
the HFD at each zeitgeber time (ZT). (D) Percent of metabolites in a metabolic pathway changing at
a specific ZT in HF animals. (E) Metabolic landscapes depict the percent of oscillatory metabolites
that peak at a specific ZT for each feeding condition compared to the total number of oscillatory
metabolites in that metabolic pathway. (F) Proportion of metabolites that oscillate on both diets
that are in phase or phase shifted (left) and the direction of the phase shift (right). (G) Phase
graph of metabolites that oscillate in both conditions (left) or only in the NC or HF conditions
(right). (H) Heat maps depicting phase-delayed or phase-advanced metabolites in HF livers. (I)
Overlap of metabolites that are both CLOCK dependent and sensitive to a HF diet.
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Figure 3.6: The Circadian Transcriptome Is Reprogrammed by a HFD. (A) The
number of oscillatory transcripts only in NC, only in HF, or in both NC and HF groups
(p < 0.01, JTK cycle). (B) Heat maps for NC- and HF-only oscillating transcripts (p <
0.05). (C) Gene annotation on oscillating genes with a p < 0.01 reveals pathways that
are oscillatory in both NC and HF livers (unique pathways in bold font). (D) Pathways
in which oscillatory expression is lost by the HF diet. (E) KEGG pathways represented by
genes oscillatory only in the HF liver. (F) Proportion of the oscillatory transcriptome shared
in both liver sets that is phase shifted (left) and the direction of the phase shift (right). (G)
Phase analysis of transcripts that oscillate only in NC or HF. (H) Circadian fluctuations of
the metabolome relative to the transcriptome in both (left), NC-only (middle), or HF-only
categories (right). (I) Extent of amplitude changes in transcript abundance (heat map and
graph) and metabolites (graph) after HF feeding.
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(Figure 3.8A). A previous report demonstrated reduced hepatic NAD+ under HFD (Yoshino

et al., 2011). Thus, HFD may modulate its negative influence on energy balance by eliminat-

ing circadian oscillations in NAD+, rather than inducing a static decrease in total NAD+

content. The lack of circadian NAD+ accumulation under HFD supports the observation

that NAD+ is high during fasting (Rodgers et al., 2005) . Animals fed a HFD may never

achieve such an energy-depleted state due to the constant and non-oscillatory levels of glu-

cose. The molecular mechanism leading to the impairment in NAD+ oscillation in HFD

constitutes a paradigm of clock transcriptional reprogramming through the control of the

Nampt gene (Figures 3.7B and 3.8E).

A large number of lipid metabolites were affected by HFD. Coenzyme A, a cofactor in-

volved in fatty acid synthesis and beta oxidation, displayed a circadian profile in HFD

that was substantially increased in amplitude, as did its precursors phosphopanthetein and

3-dephosphocoenzyme A. Many amino acid metabolites continued to oscillate in both con-

ditions, even though their relative abundance was substantially reduced by the HFD, likely

due to increased gluconeogenesis. We conclude that the high fat diet impinges on the circa-

dian metabolome in three possible manners: ablation, phase-advancement, or promotion of

oscillation for specific metabolites.

3.3.2 Reprogramming the Circadian Transcriptome

We analyzed the circadian transcriptome using the same liver samples used for the metabolome.

In all, 2,799 transcripts oscillated in expression; of these 49.5% (1394) were rhythmic only

in the NC condition (Figure 3.6A). An additional 778 were rhythmic in both NC and HF

conditions and a surprising 654 were newly oscillating exclusively in HFD (Figure 3.6A and

2B). When analyzed for singular enrichment in metabolic pathways, we found that genes

oscillating in both NC and HF showed unique annotations including purine metabolism and
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circadian rhythm (Figure 3.6C). The persistence of circadian clock gene oscillation in both

NC and HFD validates the notion that circadian oscillation within the core clock genes is

highly resistant to perturbation, while clock output genes are more sensitive to food as a

zeitgeber (Damiola et al., 2000). Metabolic pathways whose oscillation was uniquely lost

in HFD included ubiquitin mediated proteolysis and insulin signaling (Figure 3.6E). The

654 transcripts that gained rhythmicity exclusively in HFD attracted our attention. Only

five annotation groups were found, with glycerophospholipid metabolism, antigen processing

and presentation, and N-glycan biosynthesis as the uniquely oscillating pathways. Three

members of the oligosaccharyltransferase complex (OSTC) were among this newly oscillat-

ing group, including a subunit of the Oligosaccharyltransferase Complex Homolog A, Ostc.

Importantly, specific N-glycans have been observed to be substantially elevated in the serum

of db/db mice and in the serum of human subjects with type 2 diabetes (Itoh et al., 2007).

Increased expression of glycan biosynthesis genes has also been observed in serum from hu-

mans with type 2 diabetes (Das and Rao, 2007). As 27.6% of all rhythmic genes oscillated

in both NC and HF conditions, we analyzed their phase of expression. Of these 778 genes,

34% oscillated in phase while 66% were phase-shifted by HFD (Figure 3.6F). Remarkably,

most of the oscillatory transcripts in this category showed a phase profile that was, as for

the metabolome, phase-advanced in HFD. Only 21% showed a phase delay while 79% of the

shifted transcripts showed a phase advance (Figure 3.6F). Analysis of the phase of transcripts

that oscillated only in NC or HFD, revealed starkly different profiles. Specifically, oscillatory

transcripts in the NC-only group showed robust peaks between ZT4-ZT12, while the HFD

group showed rather an irregular phase pattern (Figure 3.6G). The peak of oscillatory tran-

scripts in the NC-only condition is consistent with when the CLOCK:BMAL1 heterodimer

is most active and recruited to circadian contacts (Hatanaka et al., 2010; Kondratov et al.,

2003; Rey et al., 2011). When comparing the phase of the transcripts and metabolites that

oscillated in both liver sets (Figure 3.6H, left), similar organization was seen, with transcripts

and metabolites showing a biphasic pattern and transcript peaks slightly preceding metabo-
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lite peaks. Metabolite and transcript oscillations that were lost in HFD (i.e. oscillating in

NC only) also showed a temporal organization with transcripts peaking prior to the major-

ity of metabolites (Figure 3.6H, middle). However, coherence was not complete in HFD,

with most metabolites peaking at ZT14, and transcripts remaining largely unsynchronized

in phase (Figure 3.6H, right). In addition to phase analysis, we studied the oscillation am-

plitude of both transcripts and metabolites (Figure 3.6I). Of all common oscillators, 62% of

the 778 transcripts showed a reduction in amplitude in HFD, while 38% showed an increase.

Similarly, 71% of metabolites showed a reduction in amplitude in HFD, while 29% showed

an increase. We conclude that the percentage of the circadian metabolome and transcrip-

tome are similarly affected in amplitude by HFD, stressing the coherence between these two

groups of oscillators.

3.3.3 Coherence of metabolome and transcriptome

We determined the relationship within metabolic pathways between the transcriptome (of the

enzymes) and the metabolome using Crick and the data was included in CircadiOmics (Patel

et al., 2012). We classified and grouped metabolite-enzyme edges based on the presence or

absence of oscillation as well as additional characteristics of the oscillation, specifically, the

phase and amplitude (Figure 3.7A). The most common edge characterization (87 of 384 edges,

23%) revealed that the loss of oscillation for a particular metabolite usually was accompanied

by a loss of oscillation for its related transcripts (Figures 3.7A-B). Interestingly, the second

most common edge classification involved the loss of oscillatory transcript abundance in

HFD but an increase in the amplitude of oscillation in the related metabolite. No phase

delay in the transcriptome or metabolome was observed within the top ten edge classification

scenarios, suggesting again that a significant effect of HFD is to phase-advance the remaining

oscillatory metabolites. Edge classification reinforced the notion that one of the effects of

HFD is to reorganize the temporal coherence between the metabolome and transcriptome.
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The most common relationships between related transcripts and metabolites involved an

opposing state of oscillation in animals in HFD (Figure 3.7A and 3B). A paradigmatic

example of a metabolite whose loss of oscillation by HFD is accompanied by a dampened

oscillation for its related transcript is NAD+. Circadian NAD+ synthesis depends on the

transcriptional control by the clock of Nampt gene expression (Nahakata et al. 2009; Ramsey

et al. 2009). HFD induces a loss of NAD+ oscillation that parallels a dampening of Nampt

cyclic transcription (Figure 3.7B; and 3.8E-F). Additional case scenarios include ornithine

decarboxylase 1 (Odc1) and ornithine (where a concomitant loss of oscillation occurs in

HFD), acyl-CoA synthetase short-chain family member 2 (Acss2) and coenzyme A (where

loss of oscillatory transcript in HFD corresponds to an increased metabolite amplitude) and

cytochrome P450 monooxygenase (Cyp2a5) and arachidonate (where a phase advance in

transcript in HFD corresponds to a lack of oscillation in its related metabolite) (Figure

3.7B).

Importantly, several metabolite and transcript edges within individual pathways mirror each

other in HFD-induced gain of oscillation. Remarkable examples are within the amino acid

subpathway of cysteine, methionine, S-adenosylmethionine (SAM) and taurine metabolism.

Indeed, both SAM and S-adenosylhomocysteine (SAH) showed newly oscillating profiles in

HFD (Figure 3.7C). HFD-induced cycling of these metabolites was accompanied by de novo

oscillation of several related enzymes, including Ehmt, Trmt2b, Whsc1, Dph5 genes whose

products have known or predicted methyltransferase activity. A relevant case is Ahcyl2,

the gene encoding the enzyme that catalyzes the reversible conversion of SAH to adenosine

and homocysteine, whose oscillation parallels the one of SAH in HFD (Figure 3.7D). Each

metabolite and transcript identified in the livers of animals fed NC or HFD were integrated

within the computational resource, CircadiOmics (Eckel-Mahan et al., 2012; Patel et al.,

2012).
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Figure 3.7: HFD Disrupts Circadian Organization between the Transcriptome and
Metabolome. (A) Heat map showing the relationships between all pairs of metabolites
and enzymes in KEGG. (Note: flat is a subset of not, where the maximum abundance
does not exceed the minimum by 20%.) Circled are the numbers referring to the five most
common relationships. (B) Related enzyme transcripts and metabolites (edges) that follow
a particular temporal profile. (C) Metabolites and related transcripts within the SAM node
that gain oscillation in HF. (D) Oscillatory abundance of SAM, SAH, and their related
enzymes Ehmt2 and Ahcyl2 only in HF. Error bars, SEM.
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3.3.4 High-fat diet hinders CLOCK:BMAL1 chromatin recruit-

ment to target Genes

Activation by CLOCK:BMAL1 of target gene promoters has been linked to oscillations of

a number of metabolites (Eckel-Mahan et al., 2012; Nakahata et al., 2009; Ramsey et al.,

2009). Thus, we investigated the molecular mechanisms by which circadian oscillations are

disrupted by HFD. First, we hypothesized that HFD might alter core clock gene expression.

Importantly, most of the core circadian genes were rhythmic in the livers of HFD-fed mice

(Figure 3.8A), displaying only weak shifts or slightly dampened patterns of oscillation, re-

sults which are cohesive with previously published work (Hatori et al., 2012; Kohsaka et

al., 2007). Per2 and Bmal1 mRNA showed mild dampening and phase advancement, while

Clock expression was unaffected. One case scenario is represented by the gene Dbp, whose

robust circadian oscillation was phase-advanced in HFD (Figure 3.8A). Since Clock and

Bmal1 cyclic transcription is similar in HFD-fed mice (Figure 3.8A), we analyzed protein

levels. Importantly, the levels of BMAL1 (Figure 3.8B) and CLOCK proteins were unal-

tered in livers of HFD-fed animals. Similarly, the phosphorylation profiles of BMAL1 in NC

and HFD conditions were similar in different cellular fractions. We next explored whether

CLOCK:BMAL1 chromatin recruitment might contribute to the altered pattern of Dbp ex-

pression by chromatin immunoprecipitation (Ripperger and Schibler, 2006). Remarkably,

BMAL1 and CLOCK recruitment was shifted in livers of HFD-fed mice (Figure 3.8C).

Interestingly, transcripts whose oscillation was lost in HFD were in large part peaking be-

tween ZT4 and ZT12 (Figure 3.6G), a time period that correlates with prominent CLOCK:BMAL1

recruitment to chromatin targets (Hatanaka et al., 2010; Kondratov et al., 2003; Rey et al.,

2011). This parallels the dampening or abrogation of the oscillations of numerous metabolites

previously shown to be CLOCK:BMAL1-regulated (Figure 3.8D). A remarkable example is

NAD+, whose cyclic levels become flat after HFD, paralleling the profile of Nampt tran-

scription (Figure 3.8D-E). Similarly, the oscillations of the metabolites uridine and uracil,
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the abundance of which is dependent on the enzymatic activity of CLOCK:BMAL1-driven

uridine phosphorylase 2 (Upp2 ) expression (Eckel-Mahan et al., 2012), were depressed in the

livers of HFD-fed animals (Figure 3.8D). The amplitude of Upp2 expression was consider-

ably reduced under HFD (Figure 3.8E). Interestingly, we observed a substantial decrease in

CLOCK and BMAL1 circadian occupancy on the Upp2 and Nampt promoters in livers of

animals fed a HFD (Figure 3.8F-G). Importantly, oscillation in H3K4me3, a histone mod-

ification tightly associated with circadian transcription (Katada and Sassone-Corsi, 2010;

Ripperger and Schibler, 2006), significantly decreased at the Upp2 (Figure 3.8H) and Nampt

(not shown) promoters in HFD-fed animals. Thus, the profound effect elicited by HFD is

caused by either phase-shifted or reduced recruitment of the CLOCK:BMAL1 complex to

chromatin at the level of target promoters.

3.3.5 High-fat diet induced reprogramming of the clock by PPARγ

The disruptive effect of HFD on CLOCK:BMAL1 chromatin recruitment (Figure 3.8E-G),

does not explain the de novo rhythmicity gained by a large group of genes in HFD (Fig-

ure 3.6B). Notably, with the exception of the group of genes whose oscillation is lost under

HFD, the group of newly oscillating genes is the largest, over doubling the number of genes

that showed phase advancement as a result of the HFD. Transcription factor motif analysis

by MotifMap (Xie et al., 2009; Daily et al., 2011) was performed on a regions located 10kb

upstream and 3kb downstream of the transcriptional start sites to determine what transcrip-

tional pathways might be most heavily affected by the HFD. Using a Bayesian branch length

score of 1 or greater, E-boxes were significantly enriched in genes oscillating only under NC

as well as in genes oscillating under both NC and HFD conditions. On the contrary, no

enrichment for E-boxes was observed in the group of genes oscillating exclusively in HFD

condition. Analysis of the frequency of specific transcription factors binding sites in the pro-

moters of genes whose oscillation was induced by HFD, revealed that HFD promotes the use
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of additional transcriptional pathways to reprogram the hepatic transcriptome. One of the

most represented transcription factors in the newly oscillating group of genes was PPARγ .

Several other transcription factors oscillated in HF only, which included SREBP-1 (Srebf),

CREB1 and SRF. PPARγ and SREBP1 were identified as having one or more target sites

in 322 and 91 genes, respectively. In line with the idea of increased PPARγ -mediated gene

expression under HFD, metabolomics analysis revealed that PPARγ ligands were elevated

in livers of HFD-fed animals, specifically 13-HODE, 15-HETE, linolenate and arachidonate

(http://circadiomics.ics.uci.edu). PPARγ is a nuclear receptor involved in glucose and lipid

metabolism and has been described as a nutrient sensor in metabolic tissues. We found that

PPARγ expression was robustly oscillatory in the liver of HFD-fed animals, with a peak at

ZT12. While the levels of total PPARγ protein were elevated, but not circadian in HFD-fed

mice.

3.4 Summary

In summary, in these studies it was shown that Crick can provide very detailed, high-

resolution, and tissue-specific views of the underlying molecular network. Crick can be

effectively used to analyze new experimental data to identify novel mechanisms, like the link

between Clock and Uracil.

44



Chapter 4

Can most transcripts and metabolites

oscillate, and how?

4.1 The Pervasiveness of Circadian Oscillations

It is well known that genetically encoded molecular clocks found in nearly every cell, based

on interlocked transcription/translation feedback loops and involving only a dozen genes,

play a central role in maintaining these oscillations. However, high-throughput transcrip-

tomic, proteomic, and metabolomic experiments reveal that in a typical tissue ∼10-15% of

molecular species oscillate with the day-night cycle and that, beyond the core clock overlap,

the oscillating species vary with different cell and tissue types. This suggests that a much

larger fraction of all molecular species bear the potential for circadian oscillation. However,

recent gene expression experiments reveal that a significant fraction of all transcripts in a

cell oscillate in a circadian manner. High-resolution gene expression data from mice liver

(Hughes et al., 2009) identified over 3000 transcripts that oscillate with a 24-hour period-

icity. In addition, analysis across different tissue types of the same organism reveals little
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overlap between the molecular species that oscillate in one tissue versus another beyond the

core clock genes. Out of 7000 genes studied, 337 transcripts were found oscillating in SCN

compared with 335 in the liver (Panda et al., 2002). However, when the oscillating genes in

each tissue were compared, only 28 genes were oscillating in both SCN and liver. Likewise,

a low amount of genes was identified as circadian in both muscle and liver (57 genes) (Miller

et al., 2007) as well as between heart and liver (Storch et al., 2002). Similar results have also

been reported with high-throughput metabolomic studies (Eckel-Mahan et al., 2013, 2012).

Furthermore, it has now been established that genetic, environmental, and even diet changes

can modify oscillatory patterns by: (1) modifying the phase or amplitude of existing oscil-

lations; (2) suppressing existing oscillations entirely; and (3) giving rise to new oscillations

that were not observed in the absence of perturbations (Figure 1A). Indeed, comparing gene

expression and metabolite levels in liver tissue from high-fat-fed versus normal-chow-fed mice

found over 2,800 transcripts oscillating in expression across both conditions (Eckel-Mahan

et al., 2013). Of these, 27.5% (778) did oscillate in both conditions, but often with a change

in amplitude and/or phase; 49.5% (1,394) were rhythmic only in the normal-chow-fed condi-

tion; and approximately 23% (654) were rhythmic only in the high-fat-fed condition. Similar

results were also observed for oscillating metabolites. The results from across tissue and

within tissue experiments strongly suggest that a large fraction of all molecular species is

capable of oscillating in a circadian manner under some set of conditions.

Researchers have looked at the common denominator (the master clock genes and its inter-

actors), but little has been done to understand the unique and possibly novel oscillations in a

tissue or perturbation until recently. In our previous study (Eckel-Mahan et al., 2013) where

we compared the transcript and metabolite levels from normal-chow and high-fat diet we

noticed a massive reprogramming occurring within the cell. By analyzing not only the tran-

scripts and metabolites that lost their oscillation, but also the transcripts and metabolites

that gained a new oscillation as a result of perturbation, we were able to discover com-

pensatory oscillations in important molecular species like SREBP1 (a transcription factor
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responsible for lipid synthesis). In this study, we analyze time-resolved transcriptomes and

metabolomes from a large group of published and unpublished datasets.

4.2 Results

4.2.1 Comparison of transcriptomes

Analysis across different tissue types and conditions (listed in Table 4.1), reveals surprisingly

little overlap between the molecular species that oscillate in one tissue versus another (Figure

4.1) beyond the core clock genes. When the results of circadian experiments conducted over

different tissues and conditions (listed in Table 4.1) are aggregated with a stringent oscillatory

cutoff (P < 0.05), over 13,600 genes are found to oscillate in at least one tissue or condition

in mouse. Thus, a significant fraction (∼67%) of the genes in a mammalian genome is

capable of generating mRNAs which oscillate in a circadian fashion in at least one tissue or

condition. Even comparing transcriptomes from perturbation experiments performed on the

same tissue type (liver, see Figure 4.3) show that a major fraction of genes can oscillate under

some condition. Thus, tissue-type, environmental, genetic, and even diet perturbations all

lead to significant differences in the list of oscillating genes.

4.2.2 Comparison of metabolomes

Similar results are seen when time-dependent metabolite levels from different tissues and

conditions (listed in Table 4.1) are aggregated (Figure 4.2). At a P-value less than 0.05,

out of the 554 measured metabolites, we find 376 metabolites oscillate in at least one of

the conditions. Hence ∼68% of the measured metabolites oscillate even with a small set of

tissue/conditions explored.
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We hypothesize that this may be true even at the protein level, although high-throughput

circadian proteomic measurements are not yet widely available. In any case, these results

from across tissue and within tissue comparisons strongly suggest that a significant fraction

of transcripts and other important molecular species is capable of circadian oscillations in

at least one type of tissue or condition. Noise, experimental variability, and statistical

significance cutoffs to assess circadian oscillations can account for some of these numbers,

but only to a limited extent. For instance, even at a more stringent p-value of 0.01, we still

find ∼8,650 genes (Figure 4.4) and ∼300 metabolites (Figure 4.5) that oscillate in at least

one experiment.

4.2.3 Effects of perturbation

Genetic, diet, or environmental perturbations may disrupt circadian oscillations and may:

1. Change the amplitude of the oscillations of some of the circadian molecular species;

2. Change the phase of the oscillations of some of the circadian molecular species;

3. Disrupt or even suppress the oscillations of some of the circadian molecular species.

Indeed, experiments involving genetic knockouts, diet changes, or even simply different

mice strains, show these effects (Figure 4.6). For instance, when comparing gene

expression in liver tissue from Clock mutant and wild-type mice (Miller et al., 2007),

∼1160 genes show a loss of circadian rhythmicity. However, ∼400 genes oscillate in

both conditions, but with a difference in amplitude or phase (Figure 4.6A). Similarly

when comparing gene expression and metabolite levels in liver tissue from 10-week

high-fat-fed versus normal-chow-fed mice, ∼2200 genes and ∼40 measured metabolites

show a loss of circadian rhythmicity, while ∼1520 genes and ∼60 measured metabolites

oscillate in both conditions, but with a difference in amplitude or phase (Eckel-Mahan
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et al., 2013).

4. Most importantly, these perturbations will also create new circadian oscillations for

some of the molecular species. These oscillations are only superficially new in the

sense that the potential for oscillatory behavior was already present and in a sense is

revealed by the perturbation.

4.2.4 Emergence of new oscillations

When comparing liver samples from Clock mutant and wild-type mice, ∼240 genes oscillate

in the mutant but not in the wild type. Interestingly, these new oscillations arise in spite

of mutating the Clock gene. Similarly, when comparing liver samples from mice fed with

high-fat chow versus normal-chow, ∼1110 genes and ∼40 measured metabolites oscillate in

the high-fat but not in the normal-chow condition (Figure 4.6B). Important transcription

factors, enzymes, and metabolites are found among the new oscillating species. For example,

SREBF1 a key transcription factor regulating enzymes involved in lipid synthesis shows a

new, robust (P = 0.00001), circadian oscillation in the high-fat condition.

Remarkably, novel oscillations are also seen in data collected from the same tissue of wild-

type mice, but corresponding to different genetic strains. Specifically, a comparison of liver

tissue from C57BL/6J (Eckel-Mahan et al., 2013) and C57/B6 + Black Swiss (Masri et al.,

2014) mice strains, uncovers ∼2840 genes that oscillate only in C57BL/6J, ∼890 genes that

oscillate only in C57/B6 + Black Swiss, and ∼900 genes that oscillate in both strains (Figure

4.6C). This was true also when comparing liver samples from two animals with a slightly

different mixture of C57/B6 and Black Swiss strains (see Liver Sirt1 WT and Liver Sirt6

WT in Figure 4.1). Note that this may in part explain also why differences in oscillatory

behavior are seen in assays that are presumed to be identical (e.g. wild-type liver tissue),

but in reality are not, due to significant differences between wild-type strains (Yalcin et al.,
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Figure 4.1: Pairwise comparison matrix across 18 transcriptomic experiments at P
< 0.05. The numbers correspond to the number of oscillating genes/metabolites (P ≤ 0.05)
that are common to both tissues/conditions (i.e. |A ∩ B|). The color intensity corresponds
to the Tanimoto-Jaccard index (|A ∩ B|/|A ∪ B|). In total, there are 13683 (∼67%) genes
that oscillate in at least one tissue or condition.
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Figure 4.2: Pairwise comparison matrix across 10 metabolomic experiments at P
< 0.05. The numbers correspond to the number of oscillating genes/metabolites (P ≤ 0.05)
that are common to both tissues/conditions (i.e. |A ∩ B|). The color intensity corresponds
to the Tanimoto-Jaccard index (|A∩B|/|A∪B|). In total, there are 376 (∼68%) measured
metabolites that oscillate in at least one tissue or condition.
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Figure 4.3: Pairwise comparison matrix across all perturbations experiments
from Liver tissue at P < 0.05 The numbers correspond to the number of oscillating
genes/metabolites (P ≤ 0.05) that are common to both perturbations (i.e. |A ∩ B|). The
color intensity corresponds to the Tanimoto-Jaccard index (|A∩B|/|A∪B|). In total, there
are 11318 (∼56%) genes that oscillate in at least one perturbation/condition.
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Figure 4.4: Pairwise comparison matrix across 18 transcriptomic experiments at P
< 0.01. The numbers correspond to the number of oscillating genes/metabolites (P ≤ 0.01)
that are common to both tissues/conditions (i.e. |A ∩ B|). The color intensity corresponds
to the Tanimoto-Jaccard index (|A ∩ B|/|A ∪ B|). In total, there are 8662 (∼43%) genes
that oscillate in at least one tissue or condition.
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Figure 4.5: Pairwise comparison matrix across 10 metabolomic experiments at P
< 0.01. The numbers correspond to the number of oscillating genes/metabolites (P ≤ 0.01)
that are common to both tissues/conditions (i.e. |A ∩ B|). The color intensity corresponds
to the Tanimoto-Jaccard index (|A∩B|/|A∪B|). In total, there are 300 (∼54%) measured
metabolites that oscillate in at least one tissue or condition.
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2012) and the environments in which they are raised.

4.2.5 Molecular oscillators are directed loops with the same pe-

riod

In general molecular species in isolation cannot oscillate. What really oscillates are di-

rected loops of interacting molecular species involving various interactions such as regulatory,

protein-protein, and enzymatic interactions. In biological networks, there are a large number

of such directed loops. For instance, in a network consisting of 21826 genes/proteins with

120988 edges (114493 regulatory edges and 6495 physical protein-protein interactions), we

found over 3600 directed loops of size 3 and over 71100 directed loops of size 4. Furthermore,

high time resolution circadian data (Hughes et al., 2009) shows that most oscillating genes

have a period of approximately 24-hour, with some genes oscillating at harmonic periods of

about 12 hours and 8 hours. Very short periods (e.g. periodicity of one hour or less) and

periods not commensurate with the day-night cycle (e.g. periodicity of 5 hours) are probably

not physiological and thus not observed. The key question then is why do most directed

loops exhibit the same 24h periodicity and how does the cell achieve this coupling? The

first part of the question can be answered by the fact that the world is drastically different

during day and night and since the beginning of life Earth has rotated on its axis over a

trillion times (3.5 x 109 x 365 = 1.3 x 1012), inducing a relentless 24h day-night cycle that

has been deeply sculpted in living systems. The second part of the question can be answered

by the fact that biological networks are densely connected and several oscillating directed

loops share edges between them forming an intricate network of coupled oscillators which can

be reprogrammed by modifying the sign of the interactions; creating new interactions; and

destroying existing interactions. The coupling in such a network is likely to be non-linear,

condition-specific, and heterogeneous.
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4.2.6 Role of core clock genes in coupled oscillator network

To understand the factors that contribute to the capability of the cell to reprogram the oscil-

latory signature, we analyzed the role of the core clock genes in the context of the underlying

global molecular network. Using the network with all regulatory edges and protein-protein

interactions we calculated the distance of all nodes from Clock or Bmal1 and also the total

number of directed loops that Clock or Bmal1 is part of. We found that ∼10% of genes are

one hop away and ∼60-70% genes are two hops away from Clock or Bmal1 (see Table 4.2).

In addition, there are several directed loops that Clock or Bmal1 is a part of. About ∼10%

of genes are connected to Clock or Bmal1 through a directed loop (see Table 4.3) of size 6

or less. Hence in the global molecular network, Clock and Bmal1 are centrally located to

modulate circadian rhythms.

4.3 Discussion

Over a trillion day-night cycles have deeply impregnated the 24h periodicity in living systems

at all levels: from the molecular to the cellular, to the organism, and beyond. It is interesting

to note that the earth is constantly losing angular velocity and rotational energy through a

process called tidal acceleration, which leads to a slow lengthening of the day. For instance,

about 620 million years ago a day had only about 21.9±0.4 hours. This slow change is

helping evolution sculpt the periodicity in all living organisms.

When a complex physical system is significantly perturbed, in general one does not expect

to see a large number of new components oscillating at the same frequency, unless these

components were already primed and capable of oscillating at this particular frequency, in

which case the perturbation simply reveals a preexisting capability. The important question

then is why so many genes and metabolites have the potential to oscillate in a circadian
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Figure 4.6: Venn diagrams comparing different pertubations. First row: Venn
diagrams comparing: (A) wild-type and Clock mutant liver gene expression, as an example
of genetic perturbation; (B) normal-chow fed and high-fat fed liver gene expression, as an
example of environmental perturbation; and (C) C57BL/6J and C57/B6 + Black Swiss
liver gene expression, as an example of strain perturbation. In all cases, there is massive
reprogramming leading to a large number of new oscillations. Second row: Histogram
showing the changes in amplitude. Third row: Histogram showing the changes in phases
(measured in hours).
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manner, and how does the cell select which molecular species should oscillate in a given

situation?

4.3.1 Mechanism

There are several possible non-exclusive mechanisms by which the cell can create, suppress,

or modify interactions between the different species cells in order to rapidly reprogram its

oscillatory repertoire. For instance, dynamic changes in the epigenome, like methylation,

acetylation, and chromatin remodeling can play a central role in selecting the fraction of

oscillating species. In fact recent studies have identified circadian long-range interactions

(Aguilar-Arnal et al., 2013) and the role of Clock gene as a histone acetyltransferase (Taka-

hashi et al., 2008). More importantly, perhaps, cells create and destroy interaction edges by

revealing or hiding transcription factor binding sites. For instance, the core molecular clock

is known to bind to a single or pair of E-box sites. E-box sites are short (canonical sequence

CACGTG) and frequent in the genome. With a stringent Bayesian Branch Length Score

greater than 1, we found over 23800 conserved E-box sites on the genome using MotifMap–

several of which are found in the promoter of transcription factors. Using time-resolved

ChIP-seq data for Bmal1, Rey et al. (2011a) identified 2,049 E-box binding sites in mouse

liver. Among these, ∼60% (1,319) showed a rhythmic binding and 13% of all Bmal1 sites

had a pair of E-box elements with spacers of 6-7 base pairs. Thus, in a given environment,

cells can reveal or hide a fraction of E-box sites thereby controlling which loops are directly,

or indirectly, affected by Clock and Bmal1.

Cells can also rapidly and massively reprogram which species oscillate by acting on densely

connected molecular hubs. For example, as previously described Clock and Bmal1 both are

densely connected molecular hubs (see Table 4.2). Another example of this is Nicotinamide

adenine dinucleotide+, a metabolite that participates in many reactions, plays a central role

58



(1)	   (2)	   (3)	  

D	  

B	  A	  

C	  
E	  

+	  

–	  +	  

–	  

D	  

B	  A	  

C	  

+	  

+	  +	  

+	  
+	  +	  D	  

B	  A	  

C	  

+	  

–	  –	  

–	  

Figure 4.7: Cycles in biological networks. (1) A cycle between four molecular species
with an even number of negative interactions. Increasing the concentration of A, increases the
concentration of B, which decreases the concentration of C, which increases the concentration
of D, which further increases the concentration of A (and vice versa if the concentration of
A is decreased). Thus in general such a system does not oscillate and will tend to converge
to one of several fixed-point attractors. (2) A cycle between four molecular species with
an odd number of negative interactions. Increasing the concentration of A, increases the
concentration of B, which decreases the concentration of C, which decreases the concentration
of D, which then decreases the concentration of A. Thus such a system will tend to oscillate.
(3) Example of two interlocked cycles one of size four and another of size three sharing
one edge (between C and D) with fixed-point attractors. Changing the sign of the shared
interaction creates two oscillatory cycles.

in regulating circadian rhythms (Nakahata et al., 2008; Peek et al., 2013; Ramsey et al.,

2009). All these mechanisms could set up cascades among coupled circadian oscillators by

which changes in the phases and amplitudes of key oscillators could propagate to neighboring

oscillators.

Currently, there is not enough data to try to model these mechanisms on a large-scale in

realistic detail. Detailed mathematical models for specific molecular oscillators have been

developed (Goldbeter, 1995, 1997). While useful, these are not capable of providing a system

view of circadian oscillations, or making system level predictions.
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4.3.2 The coupled-oscillator network framework

We propose a novel conceptual framework, whereby as a result of the ancestral and relentless

circadian oscillation of the Earth, a large fraction of the molecular species in the cell is ca-

pable of oscillations under at least some set of conditions. In a given environment, through

epigenetic and other modifications, a cell selects which fraction of molecular species out of

its entire repertoire should exhibit circadian oscillations. This framework has important im-

plications for understanding, and may be one day predicting, what happens when significant

perturbations are applied to these networks of coupled oscillators.

Arrays of fairly homogeneous coupled oscillators have been studied in physics and other areas

(Baldi and Meir, 1990; Strogatz, 2000; Goel and Ermentrout, 2002; Brandt et al., 2006). A

fairly general class of models can be written in the form

∂θi
∂t

= ωi +
n∑
i

f(θi, θj) (4.1)

where θi is the phase of the i -th oscillator, ωi represents its frequency, and f is the homoge-

neous coupling function. For instance, in the well-studied Kuramoto model the coupling is

given by f(θi, θj) = sin(θj− θi). Other relatively simple models could use Boolean functions

or neural networks with Hill-like functions (Baldi and Atiya, 1989; Scheper et al., 1999; Ak-

man et al., 2012) to model the state or concentration of a molecular species as a function of

its interacting neighbors. For instance, the concentration yi of species i could be a non-linear
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function of its activation xi with

yi = f(xi) =
1

1 + ce−λxi
and

dxi
dt

=
−xi
τi

+
∑
j

wijyj (4.2)

here τi is the decay time-constant of species i and wij is a sparse matrix of weights capturing

the interactions with neighboring species (Baldi and Atiya, 1989). A general key point is

that feedback loops are required for oscillations. Thus in the coupled-oscillator view of

molecular networks, the oscillators are not individual molecular species but rather directed

loops of interacting species. Under fairly general assumptions, it is known from the theory

of dynamical systems that activity in cycles with an even number of negative connections

tend to converge to one of several possible stable points, whereas cycle with an odd number

of negative connections lead to oscillations (Figure 4.7).

If the sign of an interaction is changed by a perturbation, a corresponding cycle could flip

from stable to oscillatory behavior. This effect could extend to multiple cycles sharing the

same edge (Figure 4.7) there by propagating the change of phase or amplitude; suppression

of existing oscillations; and giving rise to novel oscillations. An additional prediction in

this case is that these new oscillations would tend to arise in areas of the network that are

adjacent to the previously existing, or newly created oscillators.

4.3.3 Comprehensive networks of circadian molecular species

Significant progress has been made in producing and visualizing comprehensive network maps

of which molecular species interact and which molecular species oscillate under particular sets

of conditions. CircadiOmics (Patel et al., 2012) produces high-resolution biological networks

displaying, for instance, metabolites, enzymes, transcription factors and their interactions,
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and concentration changes over time throughout the circadian cycle. These high-resolution

maps have been instrumental in predicting and understanding novel molecular mechanism

(Eckel-Mahan et al., 2012, 2013). Now, all of the datasets analyzed in this study have been

included in CircadiOmics and similar high-resolution networks are made available for all

of these experiments. Analysis of the global molecular network shows that there are large

number of directed loops capable of circadian oscillations and that Clock and Bmal1 are well

situated to modulate circadian rhythms. While these networks are not completely accurate

(for reasons such as incomplete information, false positives in predicted regulatory edges,

etc.), they still provide a first-order approximation of the underlying real biological networks

and are useful to derive global statistical predictions and in the development of coarser but

large-scale circadian oscillation models.

4.3.4 Conclusion

In summary, as a result of the world being very different during the night versus the day,

over a trillion night-and-day cycles during the course of evolution have deeply sculpted the

molecular networks of the cell and made 24h oscillations pervasive. Aggregation of high-

throughput transcriptomics and metabolomics experiments across tissue types and conditions

reveal that a large fraction of the molecular network of a cell is primed for and potentially

capable of oscillating in a circadian manner. Broadly, in a given cell, as a result of many

environmental and genetics factors, the cells selects a relatively small fraction of this broad

repertoire for circadian oscillations. Thus from a circadian standpoint the cell can be viewed

as an intricate network of coupled-oscillators with complex couplings. It is important to

note that circadian oscillations are non-rigid and highly plastic, unlike the oscillations in a

physical system. This property allows an organism to quickly adapt to perturbations and

environmental changes (like a change in diet or time of sleep). Perturbations of all kinds–

genetic, epigenetic, and environmental– not only modify existing oscillations, but can also

62



induce new oscillations through these couplings, revealing the underlying oscillatory fabric

that enables flexible cellular reprogramming. The complement of transcripts and other

species that oscillate in a circadian manner provides a characteristic signature describing a

cell and its physiological condition.

A simple consequence of having so many transcripts oscillating, or with the potential for

oscillating, is that one ought to be cautious when drawing differential conclusions from gene

expression experiments performed at a single time point. For instance two genes may not be

significantly differentially expressed at one time point, but they may be at a different time

point, if at least one of the two genes being considered behaves in a circadian manner in the

corresponding assay. Ongoing and future work should provide the data to better model and

understand circadian coupled-oscillator networks, predict how they respond to perturbations,

and used these responses to explain biology and direct therapeutic intervention.

4.4 Methods

4.4.1 Transcriptome analysis

Time-resolved gene expression microarrays from 12 published (Hughes et al., 2009; Miller

et al., 2007; Eckel-Mahan et al., 2013; Panda et al., 2002; Andrews et al., 2010) and 6

unpublished experiments (Masri et al., 2014; Tognini et al., 2014) were gathered for analysis.

The datasets were downloaded from Circa (Hughes et al., 2009) or GEO (Edgar et al.,

2002); or provided by the authors. The transcriptomes along with tissue and perturbation

condition (if any) are listed in Table 4.1. To compare gene lists across different microarray

platforms/experiments we used DAVID (Huang et al., 2009, 2007) for all gene/transcript ID

conversion.
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4.4.2 Metabolome analysis

Time-resolved metabolite levels measured using LC/GC chromatography were obtained from

4 published (Eckel-Mahan et al., 2013; Dyar et al., 2013) and 6 unpublished experiments

(Masri et al., 2014; Abbondante et al., 2014). The metabolomes along with tissue and

perturbation condition (if any) are listed in Table 4.1. The unique compound identifier

reported by Metabolon R© was used to compare the list of metabolites across the different

experiments.

Table 4.1: List of transcriptomic and metabolomic datasets analyzed

Tissue/Condition Strain Transcript
Data

Metabolite
Data

Reference

Aorta unknown Yes No Rudic et al, 2004
Gut Normal-Chow C57BL/6J No Yes Tognini, Murakami et al, 2014
Gut Ketogenic-Diet C57BL/6J No Yes Tognini, Murakami et al, 2014
Liver C57BL/6J Yes No Hughes et al, 2009
Liver C57BL/6J Yes No Panda et al, 2002
Liver Clock WT C57BL/6J Yes No Miller et al, 2007
Liver Clock Mutant C57BL/6J Clock homozygous mutant Yes No Miller et al, 2007
Liver Normal-Chow C57BL/6J Yes Yes Eckel-Mahan et al, 2013
Liver High-Fat Diet C57BL/6J Yes Yes Eckel-Mahan et al, 2013
Liver Sirt1 WT Mostly C57/B6 with some Black Swiss Yes Yes Masri et al, 2014
Liver Sirt1 KO Mostly C57/B6 with some Black Swiss

- Sirt1 knockout
Yes Yes Masri et al, 2014

Liver Sirt6 WT Mixed C57/B6 and Black Swiss Yes Yes Masri et al, 2014
Liver Sirt6 KO Mixed C57/B6 and Black Swiss - Sirt6

knockout
Yes Yes Masri et al, 2014

Muscle Bmal1 WT Cre-negative littermates from cross be-
tween C57BL/6 with floxed Bmal1 and
C57BL/6 mouse carrying a Cre recom-
binase transgene.

Yes Yes Dyar et al, 2013

Muscle Bmal1 KO Cross between C57BL/6 with floxed
Bmal1 and C57BL/6 mouse carrying a
Cre recombinase transgene.

Yes Yes Dyar et al, 2013

NIH3T3 C57BL/6J Yes No Hughes et al, 2009
Serum Normal-Chow C57BL/6J No Yes Abbondante et al, 2014
Serum High-Fat Diet C57BL/6J No Yes Abbondante et al, 2014
SCN C57BL/6J Yes No Panda et al, 2002
Skeletal Muscle C57BL/6J Yes No Andrews et al, 2010
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4.4.3 Statistical circadian analysis

JTK cycle (Hughes et al., 2010) implements a nonparametric statistical test which can be

used to determine cycling events. Gene expression and metabolite levels from all experimen-

tal datasets were analyzed using JTK cycle and the corresponding P-values are reported. A

gene was considered circadian, if at least one of its transcripts passed the P-value cutoff.

4.4.4 Creation and analysis of circadian networks.

To understand the global structure of the molecular network and the role played by the

core clock genes in it we constructed comprehensive networks maps using CircadiOmics.

The detailed method to build these networks is described in Patel et al. (2012). Briefly,

CircadiOmics combines information about all molecular species and their interactions from

several databases to provide information-rich and tissue-specific views of the underlying bio-

logical network. These networks include metabolic and enzymatic reactions, protein-protein

interactions, regulatory edges from MotifMap (Xie et al., 2009; Daily et al., 2011) and some

published ChIP experiments, etc. along with the expression profiles from experimental

data. Comprehensive first-neighbor graphs were generated in-parallel and finally combined

together for network analysis. Networks with all the metabolomes and transcriptomes ana-

lyzed in this paper have been included in the CircadiOmics website.

Table 4.2: Network distance from Clock/Bmal1

Distance # Genes in undirected
network

# Genes in directed
network with PPI

# Genes in directed
network without PPI

1 2300 2293 2286
2 15249 13744 13339
3 758 1750 1035
4 17 437 50
5 1 2 -
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We constructed networks with only regulatory edges and protein-protein interactions to

estimate the number of loops found in a cell. This network consisted of 21826 genes/proteins,

with 120988 edges. There were 114493 regulatory edges and 6495 protein-protein interactions

(only physical interactions were considered). The approximate diameter of this graph is 8.

Regulatory edges are uni-directional while protein-protein interactions are considered bi-

directional.

Table 4.3: Estimated counts of cycles in the network

Cycle size # Cycles with Clock # Cycles with Bmal1
2 10 14
3 73 90
4 1007 1097
5 15512 15641
6 260973 253615
7 4570219 4324732

The clock machinery is centrally located and capable of potentially acting on a large fraction

of the genome. We estimated the network-distance between Clock or Bmal1 and all other

proteins. We computed these on three different networks. First, network where the direction

of edges is ignored. Second, network with uni-directional regulatory edges and bi-directional

protein-protein interactions. Last, network with only the uni-directional regulatory edges. In

all cases, it can be seen in Table 4.2 that ∼10% of genes are one hop away from Clock/Bmal1

and ∼60-70% genes are two hop away.

In general, molecular species do not oscillate in isolation. What oscillates are directed loops

also known as cycles. Cycles were counted by enumerating all paths with no repeated nodes

which start and end at Clock/Bmal1. The counts are shown in Table 4.3.
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Chapter 5

Crick in Genome Analysis Pipelines

5.1 Using Crick in a cancer genome analysis pipeline

5.1.1 Introduction

At the most fundamental level, cancer is a disease of the DNA, in which changes to the

DNA sequence and the molecules that interact with it ultimately lead to uncontrolled cell

proliferation. Large-scale cancer sequencing projects, such as the Cancer Genome Atlas

(Can, 2013), have already started and produced volumes of data that are already well beyond

what can be transferred over the Internet. However, these projects are still at a relatively

early stage of development and are fraught with numerous challenges associated with the

complexity of the sequencing technology, the lack of standardization, the sheer volume of

data, the heterogeneity of cancers, the complexity of cancer biology, and the problem of

obtaining proper control samples, to name only a few. Crick is used for the downstream

analysis in a computational pipeline for the analysis of high-throughput sequencing cancer

data that is currently being applied to pediatric cancer data that is regularly being sequenced,
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and further resequenced on recurrence, as a result of a collaboration between the University

of California, Irvine (UCI) and the Children Hospital of Orange County (CHOC).

Worldwide, it is estimated that childhood cancer has an incidence of more than 175,000 per

year, and a mortality rate of approximately 96,000 per year. In the United States, cancer

is the second most common cause of death among children between the ages of 1 and 14

years, exceeded only by accidents, with an incidence of about 12,000 of newly diagnosed

cases per year and 1,300 deaths. The most common cancers in children are (childhood)

leukemia (34%), brain tumors (23%), and lymphomas (12%). Other, less common childhood

cancer types are: Neuroblastoma (7%), Wilms tumor (5%), NonHodgkin lymphoma (4%) ,

Rhabdomyosarcoma (3%), Retinoblastoma (3%), Osteosarcoma (3%), Ewing sarcoma (1%),

Germ cell tumors, Pleuropulmonary blastoma, Hepatoblastoma, and hepatocellular carci-

noma. The causes of most childhood cancers are unknown. The CHOC receives on the order

of 100 new cases per year, and a project was started in 2012 to sequence the genome from

healthy and cancer tissues of a subset of newly diagnosed cases – and therefore with no em-

phasis on particular tumors or tissue types – together with high-throughput gene expression

measurements from cancer cells using RNA-seq.

5.1.2 Analysis pipeline

The goal is to develop an analysis pipeline comprising a combination of in-house and third

party software to manage and analyze the raw data produced by these experiments, in a

timely manner after they become available, including the identification and ranking of af-

fected genes containing both small and large variants, and their integrative systems biology

analyses against the large background of omic, literature, and other data available to us

in order to derive inferences of clinical relevance specific to the cancer types of the pa-

tients sequenced. This pipeline assists in the analysis of pediatric tumors, as an unbiased
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Figure 5.1: Overview of the genomics analysis pipeline. Raw sequencing reads are
derived from two biological samples per patient and results in a HTML report with ranked
genes and pathways.

and automated method for interpreting sequencing results along with identifying potentially

therapeutic drugs and their targets. A schematic of the pipeline is shown in Figure 5.1 and

more details can be found in Zeller et al. (2014).

5.1.3 Crick’s network based approach

Relationships between cancer and the sequenced tumor genome are highlighted using Crick’s

network-based approach that integrates known and predicted protein-protein, protein-TF,

and protein-drug interaction data. By using an integrative approach, effects of genetic

variations on gene expression are used to provide further evidence of a driver mutations.

It has been shown that cancer cells share in common multiple acquired capabilities that

enable the cell to proliferate uncontrollably. These hallmarks of cancer have been highlighted

previously (Hanahan and Weinberg, 2000, 2011) and show a wide range of known pathways to

be affected across different types of cancer. To visualize the connections between identified

genetic and regulatory variations for each patient within known pathways – as well their

connections to unaffected proteins – networks are created using Crick and then rendered

in a web browser. 478 known pathways were included from KEGG Pathways (Kanehisa

et al., 2004) and the NCI Pathway Interaction Database (Schaefer et al., 2009) in order to
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Figure 5.2: Crick network with drug interactions. Example of a network with drug,
interaction, and transcription databases used to relate transcripts to each other and to
potential drugs.

initialize networks with proteins related to a specific pathway. Subsequently, transcription

factor (TF)-DNA, TF-TF, protein-protein edges are added to the network based on the

publicly available datasets integrated into Crick. Variants on proteins, as well as the proteins

identified as differential in the microarray and RNA-seq analyses, are used to highlight

portions of the network and help visually interpret the biological role of the mutations.

Variant TFBS are visualized by highlighting the edges between transcription factors in a

network to the genes which contains a site for that factor within its promoter. Further,

drug-protein interactions are added to the network, as described in the next section. Taken

together, this network approach assists in investigating potential driver mutations with a

focus on identifying potential drug candidates and their targets. An example of such a

network is shown in Figure 5.2.

In order to elucidate potential druggable therapeutic targets, we have integrated several pub-

licly accessible databases of drugs for network analyses. We have included well-characterized

and predicted drug-effects, binding affinities, and drug-efficacy. These databases include the
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Figure 5.3: CHOC36 drug-target edges in AML pathway limited to variants. Cir-
cles denote proteins and hexagons denote drugs. Filled circles denote affected proteins, with
identified potentially therapeutic drugs circled.

following resources:

• DrugBank (Knox et al., 2011; Wishart et al., 2008, 2006)

• BindingDB (Liu et al., 2007)

• PharmGKB (Whirl-Carrillo et al., 2012)

Each database provides an orthogonal set of annotations from which one can infer potential

attenuation of known drug-effect, or perhaps novel drug interaction. Additional drug and

drug-target information were also incorporated using semantic web resources for open drug
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data. These include Bio2RDF (Belleau et al., 2008; Callahan et al., 2013), Chem2Bio2RDF

(Chen et al., 2010), and Linked-Open Drug Data (Samwald et al., 2011). Figure 5.3 shows the

corresponding auto-generated drug-target network used in exploring potential therapeutic

targets.

Thus, Crick is an essential tool in the downstream analysis of genome-sequencing pipelines.

5.2 Spatial and temporal chromosomal organization driven

by the circadian clock

Dynamic transitions in the epigenome have been associated with regulated patterns of nu-

clear organization. The accumulating evidence that chromatin remodeling is implicated in

circadian function prompted us to explore whether the clock may control nuclear archi-

tecture. We applied the chromosome conformation capture on chip technology in mouse

embryonic fibroblasts (MEFs) to demonstrate the presence of circadian long-range interac-

tions using the clock-controlled Dbp gene as bait. The circadian genomic interactions with

Dbp were highly specific and were absent in MEFs whose clock was disrupted by ablation

of the Bmal1 gene (also called Arntl). Using Crick we analyzed these genomic regions of

interest and established that the Dbp circadian interactome contains a wide variety of genes

and clock-related DNA elements. These findings reveal a previously unappreciated circadian

and clock-dependent shaping of the nuclear landscape.

5.2.1 Background

Accumulating evidence has shown that chromatin remodeling events are involved in circadian

regulation (Aguilar-Arnal and Sassone-Corsi, 2013; Feng and Lazar, 2012). Both genetic and
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pharmacological approaches have shown that histone modifiers are implicated in circadian

control, which indicates that their coordinated actions are necessary to fine tune a dynamic

circadian epigenome. Genome-wide studies comprising mainly chromatin immunoprecipi-

tation sequencing (ChIP-seq) analyses on livers harvested from mice in a circadian fashion

have demonstrated that the histone modifications that are introduced by the circadian epige-

netic modifiers are indeed rhythmic at many of the circadian gene promoters. These include

rhythmic changes in acetylation at histone H3 Lys9 and Lys14 and methylation at histone

H3 Lys4 and Lys27 (Koike et al., 2012; Etchegaray et al., 2003; Vollmers et al., 2012), which

parallels the rhythmic recruitment of polymerase II (Koike et al., 2012; Le Martelot et al.,

2012).

Although these studies provide convincing evidence on the role of chromatin remodeling in

circadian function, they do not explore whether nuclear topological organization is influ-

enced by the clock. As the functional compartmentalization of the nuclear interior is being

unraveled (Hakim et al., 2010; Rajapakse and Groudine, 2011; Sanyal et al., 2012), the spa-

tial positioning of genes and regulatory elements is becoming increasingly recognized as an

important epigenetic regulatory layer (Giles et al., 2010; Edelman and Fraser, 2012; Sexton

et al., 2009; Lanctôt et al., 2007). Hence, the three-dimensional folding of chromosomes

inside the nucleus has been investigated extensively by fluorescence in situ hybridization

(FISH) and chromosome conformation capture (3C) techniques25. The outcomes of these

studies have revealed a nonrandom distribution of interphase chromosomes in chromosome

territories and in topologically associating domains with common epigenetic marks (Dixon

et al., 2012; Lieberman-Aiden et al., 2009; Nora et al., 2012). The positioning configura-

tions of chromosomes and genes diverge between cell types, and they can vary in response

to physiological processes such as transcriptional reprogramming, development or disease

(Cavalli and Misteli, 2013). In this respect, the circadian clock provides an ideal framework

to study the interplay between genome organization and a physiologically dynamic program.

Moreover, a potential regulatory role for the circadian clock in coordinating the higher-order
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structure of the chromatin has been lacking. In this study we investigated the contribution

of the circadian clock to the fine tuning of temporal changes in genome organization. To

this end, we explored the circadian genomic interactome of the clock-controlled gene Dbp

in MEFs. We found that the genomic interactions at the Dbp locus change in a way that

parallels the circadian cycle progression and the expression of the gene, thereby delineating a

Dbp circadian interactome. Notably, the Dbp circadian interactome was dependent on intact

clock machinery, as it was not present in Bmal1-deficient MEFs. We also found that the Dbp

interactome enclosed other circadian genes and was enriched in functionally related genes.

5.2.2 Circadian long-range genomic interactions

Using 4C (Ohlsson and Göndör, 2007; Simonis et al., 2006), we sought to detect preferential

interactions of the Dbp gene with other loci in the genome during the circadian cycle. Dbp

gene was selected because of its robust circadian expression that is dictated by rhythmic

CLOCK:BMAL1 binding to E-box DNA elements located on its promoter and coding se-

quences (Ripperger and Schibler, 2006; Stratmann et al., 2012). More precisely, we designed

the bait for the 4C experiment in a region (on chromosome 7) within intron 2 containing

two E-boxes (Wuarin and Schibler, 1990). Data was collected from WT MEFs with robust

circadian expression and Bmal1–/– MEFs with no circadian oscillation. 4C was used to

detect the inter-chromosomal (trans) interactions.

To explore interaction frequencies in trans, we applied a running mean procedure to the

mouse genome using a window size of 100 kb that was centered at each probe of the microar-

ray. This analysis showed precise distribution and nonrandom interaction patterns for the

Dbp locus that were coherent with the interaction patterns described previously for other

loci in several cell types (Hakim et al., 2011, 2012). The genomic distribution of Dbp con-

tacts along the circadian cycle remained largely unaltered and delineated the genomic spatial
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Figure 5.4: (a) Dbp expression profile in WT and Bmal1–/– MEFs after synchro-
nization with DEX, as analyzed by quantitative RT-PCR. The value at time 0 was
set to 1. The data were normalized to β-actin (also known as Actb) and are represented as
the average ± s.e.m. of three independent biological replicates. Blue and red arrows indicate
the CT in which WT and Bmal1–/– cells, respectively, were harvested for 4C analysis. (b)
Circos plot representing the Dbp interactome. The layers indicate, from the outside
to the inside: chromosome, where the chromosome number is indicated as a color code and
its length is proportional to the actual length of the interacting regions; averaged p scores
for each genomic region shown as a color scale; histogram bars representing the gene content
for each region; and E-box element locations. The averaged p scores correspond to each
of the 4C experiments, from the outside to the inside: WT CT22, WT CT26, WT CT30,
WT CT34, WT CT46, Bmal1–/– CT22 and Bmal1–/– CT34. (c,d) Microarray profiles
showing the interaction frequencies (p scores from the 4C data) between Dbp
and mouse chromosomes (chr.) 10 (c) and 17 (d). The orange and blue plots repre-
sent the data for WT and Bmal1–/– MEFs, respectively. The corresponding CT is indicated
for each lane. The data sets are highly correlated, but major differences in the interaction
frequencies are also apparent (black arrows in d). The genomic positions in mm8 coordinates
are indicated on the horizontal axis.
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environment of the Dbp locus (Figure 5.4b,d).

5.2.3 Regions of interest

We identified 201 genomic regions that contact the Dbp gene at any time of the circadian

cycle in WT MEFs, and the mean length of these regions was 130 kb (Figure 5.4b). These

regions were further analyzed using Crick and all genes and regulatory binding sites were

mapped. Whereas some chromosomes, such as chromosomes 1, 3 and 12, interacted only

rarely with Dbp, others displayed preferential contacts with our bait on different locations

(Figure 5.4b, outer layer). For example, on chromosome 11, we found 39 loci that contact

Dbp. This result indicates close spatial proximity and a high intermingling frequency between

territories from chromosomes 7 and 11. Notably, the Dbp genomic contacts displayed a four-

fold enrichment in gene content over randomized data. We then sought to determine the

dynamics of the interaction of Dbp contacts during the circadian cycle. Our running mean

analysis showed that the genomic locations of Dbp contacts remained similar overall along

the circadian cycle. Notably, the interaction frequencies of Dbp with specific loci varied in

degrees according to the locus and CT (Figure 5.4e, with examples indicated by black arrows

on the colored genomic plots).

To determine the overall likelihood of interaction of the Dbp locus with a given genomic

region, we calculated an averaged p score for each of the 201 described contacts at each CT.

We calculated the averaged p score by considering the p scores of neighboring probes (Online

Methods). We then classified the Dbp genomic contacts according to their averaged p score at

each CT. Interestingly, specific contacts that followed a cyclic pattern of interaction mirrored

Dbp circadian gene expression. These genomic regions efficiently contact Dbp at CT22, CT26

and CT48, which corresponds to times at which Dbp shows the highest expression. These

interactions were virtually undetectable at CT34, which is the time of lowest Dbp expression
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(Figure 5.5a). We identified 29 genomic regions that met these criteria, and these regions

comprise the Dbp circadian interactome (Figure 5.4b).

5.2.4 Bmal1 is essential for a specific circadian interactome

The Dbp contacts in the Bmal1–/– MEFs were similar overall to those in WT MEFs and

showed a highly correlated profile of peaks and troughs (Figure 5.4c,d). However, there was

a markedly reduced contact frequency within the Dbp circadian interactome in Bmal1–/–

MEFs (Figure 5.5a). Notably, a lack of BMAL1 was associated with a loss of circadian

oscillation in the interaction of Dbp with the 29 selected genomic regions (Figure 5.5a).

The profiles of the Dbp circadian contacts at both CT22 and CT34 in Bmal1–/– MEFs

showed low interaction frequencies and were thus highly similar to the profile in WT MEFs

at CT34 (Figure 5.5a). These findings indicate that the circadian system contributes to the

establishment of a specific subnuclear genomic environment around the Dbp gene. To gain

insights into the molecular mechanisms that contribute to the specific circadian genomic

architecture of the Dbp locus, we used MotifMap (Xie et al., 2009; Daily et al., 2011) to

identify the transcription-factor binding sites on the promoters of the genes that associate

with Dbp in a circadian fashion (Figure 5.5b). Among these promoters, we found a 2.5-

fold enrichment on promoters containing E-boxes (P < 0.001, Fisher exact test). E-boxes

are highly conserved DNA elements that bind CLOCK:BMAL1 and are involved in driving

circadian gene expression (Ripperger and Schibler, 2006; Hardin, 2004). We speculate that

the Dbp gene is present within a subnuclear environment that is gradually modified during

the circadian cycle and that the circadian molecular machinery is implicated in establishing

this pattern.
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Figure 5.5: (a) Genomic map of the Dbp circadian interactome at the indicated
CTs after synchronization with DEX in WT and Bmal1–/– MEFs. Averaged p
scores for each region are indicated in a green-red color scale according to the intensity of
the interaction, which is proportional to the probe signal (4C over genomic DNA). Colored
triangles indicate the positions of the Dbp circadian contacts. Areas shown in gray did not
show circadian contact. The genomic positions in mm8 coordinates are indicated on the top
horizontal axis. Chromosomes that did not present circadian interaction with Dbp are not
shown here. (b) Circos plot representing the genome-wide view of Dbp circadian
interactions (black lines) with the corresponding chromosomes in trans. The gene
content corresponding to each contact region is indicated in the outer layer of the plot. The
genes in red are those that presented circadian mRNA accumulation after synchronization
with DEX as defined by the gene expression analysis (JTK P < 0.01).
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Figure 5.6: (a) Heat map showing the log2 expression values of the circadian genes
in the Dbp circadian interactome. Selected genes were plotted according to their phase.
(b) Quantitative real-time PCR of selected transcripts confirming the microarray
data. Total RNA was collected before synchronization with DEX (CT0) and at 16, 22, 26,
30, 34, 40, 46 and 52 h after DEX induction from WT and Bmal1–/– MEFs. Data were
normalized to β-actin and are shown as the average s.e.m. of three independent biological
replicates.
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5.2.5 Features of genes within the Dbp circadian interactome

Higher-order genome organization has a major role in efficient responses to stimuli, effective

signaling pathways and the coordination of lineage-specific differentiation. We next inves-

tigated the time-specific expression of genes within the Dbp circadian interactome. More

information about the experimental procedure and results from the microarray are included

in Aguilar-Arnal et al. (2013). By comparing our circadian array data in MEFs with the

genes that appear to have circadian contacts, we found 18 genes that cycle in a circadian

manner (JTK P < 0.01) (Figure 5.5b, genes in red, and Figure 5.6). These genes can be clas-

sified according to their expression phase into two major groups containing 5 and 13 genes

(Figure 5.6a). We confirmed the rhythmicity of the selected genes by RT-PCR and found

that their mRNA levels oscillated in a circadian manner, further validating our microarray

data (Figure 5.6b).

A motif discovery analysis on the promoters of these 18 genes revealed enrichment of recog-

nition motifs for ROR-α and E-box elements, which are known to be centrally implicated in

circadian gene expression (Ueda et al., 2005). A comparative analysis with available BMAL1

ChIP-seq databases (Koike et al., 2012; Rey et al., 2011b) indicated that the promoters of

many genes located within the Dbp circadian interactome bind BMAL1. Moreover, the mo-

tif analysis indicated that the promoters of the circadian genes within the Dbp interactome

may also contain D-boxes. These findings, which are consistent with our microarray analy-

sis, suggest the possibility that the clock machinery itself could be implicated in shaping the

nuclear genomic architecture.

The coordinated expression of circadian genes represents a remarkable paradigm of tran-

scriptional control (Doherty and Kay, 2010). Accumulating evidence has recently shaped

the notion that distinct changes in chromatin remodeling may be driven by the circadian

clock to insure co-regulation of clock-controlled genes. The combined effects exerted by a
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variety of chromatin remodelers are assumed to lead to circadian activation and silencing

of specific genes. Recent advances in the field of nuclear architecture have suggested that

chromosome organization has an active role in many genomic functions. In this context,

understanding how the nuclear landscape is modified in a CT-specific manner can lead to

insights into the molecular mechanisms that determine circadian rhythms.

5.2.6 Conclusion

Our data reveal that the circadian clock is implicated in shaping temporal and spatial cy-

cles in chromosomal organization. These variations in nuclear organization could provide

a genomic frame to assist circadian gene expression of Dbp. Our data suggest that the ge-

nomic environment of the Dbp locus around the circadian cycle remains largely constant.

However, several large chromatin domains change their frequency of interaction in trans

with Dbp, which parallels the progression of the circadian cycle and the transcriptional state

of the gene (Figure 5.5). We present genetic evidence that BMAL1 has a critical role in

establishing a CT-specific Dbp interactome (Figure 5.5).

The outcomes of our comprehensive analysis have direct functional implications. In this re-

spect, we described a spatial clustering of genes and circadian-related DNA elements around

the Dbp locus. These results point to the existence of subnuclear environments enriched

with CLOCK-specific response elements. This finding is in agreement with previous reports

showing that spatial congregation of DNase I–hypersensitive sites is observed within DNA

sequences that establish trans contacts (Lieberman-Aiden et al., 2009; Hakim et al., 2011).

The role of specific transcriptional regulators in establishing the interactome is emerging as

a new avenue for understanding the modulation and functions of genome topology (Hakim

et al., 2013; Schoenfelder et al., 2010). Here we provide evidence supporting the circadian

clock, including the BMAL1 transcription factor, being involved in shaping the nuclear ar-
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chitecture during the circadian cycle. This conclusion is further reinforced by our study on

BMAL1-deficient cells, in which the changes in the interactome around the circadian cycle

were not present. Future studies will be necessary to uncover the precise contribution and the

hierarchical organization of all clock regulators in determining circadian genome topology.

5.3 Summary

In summary, Crick forms a important piece in genome analysis pipelines to provide context to

experimental data like variants from patient genomes, long-range interactions in the genome,

etc.
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