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ABSTRACT OF THE DISSERTATION

Defending Against Adversarial Attacks With Low-Rank Factorization

by

Negin Entezari

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, March 2022

Dr. Evangelos Papalexakis, Chairperson

Despite the popularity and success of deep learning architectures in recent years, they have

shown to be vulnerable to adversarial attacks. Utilizing machine learning methods that

are vulnerable to adversarial attacks has raised many concerns, especially in safety-critical

domains. Self-driving vehicles and medical imaging are examples of systems where pertur-

bations in the data can have dramatic and irreparable impacts as the malfunction of the

system may result in death or serious injuries. Fake product reviews are another exam-

ple of deliberate perturbations that negatively impact everyone’s life by fooling people into

purchasing fake and potentially dangerous products. Therefore, understanding these vul-

nerabilities and designing robust defense mechanisms against perturbations could benefit a

large group of society.

Recent studies have addressed these concerns and conducted research to analyze the

vulnerability of machine learning algorithms and develop defense techniques and methods

that are more robust to attacks. However, the general properties of adversarial attacks

have not been investigated. In this dissertation, we analyze the properties of adversarial
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attacks in different domains, including graphs, images, and recommender systems. Our goal

is to identify a unifying theme to propose a general defense mechanism applicable to various

domains. Attackers try to achieve their malicious intentions by crafting perturbations into

data while attempting to remain unnoticeable. In the image domain, attackers add noise

to the high-frequency spectrum of the images that are not perceptible by the human eyes.

Unlike images, in other domains like graphs and recommender systems, changes cannot be

easily noticed by looking at the data. However, attackers try to preserve some key features

and measurable statistics of the original data to remain unnoticeable. This could be achieved

by preserving the degree distribution of the nodes in graphs and rating distributions in

recommender systems. These imperceptibility constraints prohibit attackers from making

significant changes to the data. Therefore, the footprint of the attack is subtle compared to

the footprint of the structure of the entire data. In other words, the impact of the adversaries

is noticeable mainly in the high-frequency spectrum of the data.

In this dissertation, we identify a unifying theme in adversarial attacks across differ-

ent applications domains (graph node classification, image classification, and recommender

systems). More specifically, we observe that in all three domains, the attack manifests in

high ranks of the matrix or tensor representing the data. Motivated by this unifying theme,

we propose low-rank solutions in different domains to alleviate the negative impact of ad-

versaries. Finally, as a case study, we propose a low-rank tensor-based method to improve

the quality of complementary basket recommendations, where the goal is to recommend

products that are frequently purchased with the items in the users’ shopping cart.
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Chapter 1

Introduction

In recent years Deep Neural Networks (DNNs) have gained tremendous success in

a variety of tasks, including computer vision, speech recognition, graph analysis, and many

more. Despite the popularity and success of deep learning architectures in recent years, they

have shown to be vulnerable to adversarial attacks [255]. Recent studies have shown that

Machine learning models often suffer from vulnerabilities to adversarial perturbations [76].

Subtle perturbations of the data can be imperceptible yet lead to wrong results. Even when

the attacker does not have full knowledge of the network architecture, they are still able to

perturb the data and affect the learning outcome.

Utilizing machine learning methods which are vulnerable to adversarial attacks

have raised many concerns. Recent studies have addressed this concern and conducted re-

search to analyze vulnerability of machine learning algorithms and also develop defense tech-

niques and methods that are more robust to attacks [233]. However, the general properties of

adversarial attacks has not been investigated. Attackers attempt to craft perturbations such
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that they are imperceptible, however, they can significantly deteriorate the performance of

machine learning models. Our goal is to understand common properties of adversarial at-

tacks in different domains including graphs, images, and recommender systems and propose

a general defense mechanism applicable to various domains.

The major contribution of this dissertation is the establishment of a link between

a dataset that contains adversarially attacked data points and the rank of that data. More

specifically, we identify a recurring theme of adversarial attacks manifesting in high-rank

components of the data. This pattern persists across different applications: graphs, images,

and recommender systems. Informed by this pattern, we develop low-rank-based defenses

for those applications. The methodological contributions of this dissertation are:

• Defense against adversarial attacks on graphs

• Defense against adversarial attacks on images

• Defense against adversarial attacks on recommender systems

• Low-rank tensor-based complementary product recommendation

In Chapter 2, we attempt to address the problem of adversarial attack for node

classification task. Our proposed methods utilize low-rank factorization of input data to

discard attacks. For graph data, we show that the adversaries affect higher ranks in the

singular value spectrum of the graph and therefore a low-rank approximation of the graph can

significantly alleviate the attacks. on the CiteSeer dataset, our proposed defense mechanism

is able to reduce the success rate of the attack from 98% to 36%.

In Chapter 3, we tackle the problem of adversarial attack for image classification

task. For image data, perturbations are mostly crafted in high-frequency domain to re-

2



main unnoticeable to human eye, therefore by performing tensor decomposition techniques

and low-rank reconstruction of images we could improve the performance of deep convo-

lutional network for the task of image classification. Our tensor-based defense mechanism

outperforms the state-of-the-art method named SLQ by 14% against Fast Gradient Descent

(FGSM) adversarial attacks, while maintaining comparable speed.

In Part III, we evaluate the impact of low-rank solution on the performance of

recommender systems from two different aspects. In Chapter 4, we consider low-rank so-

lutions from adversarial point of view. In recommender systems domain, we observe that

low-rank reconstructions and/or transformation of the attacked data has a significant alle-

viating effect on the attack. We also demonstrate that a simple classifier is able to learn

to detect fake users from real users and can successfully discard them from the dataset.

This observation elaborates the fact that the threat model does not generate fake users that

mimic the same behavior of real users and can be easily distinguished from real users’ be-

havior. We also examine how transforming latent factors of the matrix factorization model

into a low-dimensional space impacts its performance. Furthermore, we combine fake users

from both attacks to examine how our proposed defense is able to defend against multiple

attacks at the same time. Local low-rank reconstruction was able to reduce the hit ratio

of target items from 23.54% to 15.69% while the overall performance of the recommender

system was preserved. In Chapter 5, we we utilize low-rank tensor-based solution to solve

the problem of complementary product recommendation. To satisfy the customers’ needs, it

is vital to provide relevant personalized recommendations and ease the customers’ shopping

experience. In Chapter 5, we propose a tensor-based method that utilizes a three-mode

3



Figure 1.1: System Overview: low-rank solution to defend against adversarial attacks on
graphs, images, and recommender systems that leads to improvements in tasks including
node classification, image classification, product recommendation, and complementary prod-
uct recommendation.

tensor to represent product-to-product relations for users and applies tensor decomposition

techniques to jointly learn user and product embeddings that can be used to infer within-

basket recommendations. Products co-purchased in a single transaction are modeled in the

form of a tensor. Then, we leverage RESCAL tensor decomposition technique to capture

the latent factors that reveal the inherent user and product interactions. On the Instacart

dataset, our proposed tensor-based method achieves a recall@10 of 0.192, whereas recall@10

for triple2vec, which is the state-of-the-art, is 0.149. Figure 1.1 illustrates an overview of

our proposed methods in this dissertation.

4



Part I

Node Classification
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Chapter 2

Defense Against Adversarial Attacks

on Graphs

Chapter based on material published in WSDM 2020 [93].

2.1 Introduction

Graphs are widely used because of their strength in representing real-world data

in many domains, such as social networks, biological networks, and citation networks. Due

to the ubiquity of graphs, analyzing them has gained significant attention in recent years.

An important task in analyzing graph data is node classification. Given a partially labeled

(attributed) graph, the goal is to classify the entire graph and predict the labels of the

unknown nodes [48]. Graph representation learning [122, 225] and deep learning techniques

[155, 228] have shown outstanding results in addressing the problem of node classification.

6



Figure 2.1: A quick sketch of our proposed vaccination: Taking the SVD of the graph reveals
the spectrum of the attack and the healthy parts of the graph. Based on our extensive
empirical observations on the high-rankness of Nettack, we retain a truncated SVD that
contains only the top-k singular values for the graph, and reconstruct the graph from them.
The output is the vaccinated graph.

Deep Neural Networks deployed for analyzing graphs are also affected by adver-

sarial attacks. There are only a few studies investigating adversarial attacks on graph data

[288, 75, 51, 252]. Graph Convolutional Networks (GCN) have shown great success in node

classification task because of their non-linear nature and exploiting relational information of

nodes [155]. Despite their success, they suffer from vulnerabilities against small perturba-

tions. Changes to one node can lead to misclassification of other nodes in the graph [288].

Writing wrong or biased reviews on websites like Amazon and fake users on social networks

are examples of adversarial attacks on graph data. Such activities aim to mislead machine

learning techniques. Therefore, adversarial machine learning studies play a crucial role in

graph domain and their goal is to detect and defend attacks and also introduce techniques

that are more robust against perturbations.
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One of the most prominent studies on generating adversarial attacks for graphs is

called Nettack [288] proposed by Zügner et al. Their work shows that the classification

performance of GCN drops significantly when Nettack perturbations target a node. In

this dissertation, I investigate the properties of poisoning adversarial attacks generated by

the Nettack algorithm and propose a method to defend against attacks and “vaccinate” the

network. The term “vaccinate” was first introduced in [77] to describe a network equipped

with defense mechanism against adversarial attacks.

2.2 Related Work

2.2.1 Graph Representation Learning Methods

Our work focuses on defending adversarial attacks on graphs and we evaluate the

robustness of a node embeddings method against the attacks. In this section, we briefly

explain node embeddings for the task of node classification.

Recent years have witnessed an explosion in studying the problem of network rep-

resentation learning. This interest is stimulated by the “relatively” new advancements in

natural language processing (NLP) domain [197, 171, 196]. Specifically, the SkipGram

model [196] that has been largely adopted in developing network representation learning

techniques. DeepWalk [225], node2vec [122], and Walklets perozzi2016walklets are amongst

the methods that employ the SkipGram model for node representation learning after iden-

tifying node neighborhoods using the intuition of random walks and they have shown to be

very successful for the task of node classification.
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A recent study has proposed a tensor-based node embedding method that utilizes

tensor decomposition to learn network latent features using the CP decomposition of tensors

[30].

2.2.2 Adversarial Attacks for Graph Data

Research on adversarial attacks in machine learning has received lots of attention in

recent years [50, 192]. Adversarial attacks deliberately attempt to attenuate the performance

of machine learning algorithms by performing small and unnoticeable changes to the input.

Most of the researches on adversarial machine learning are focused on algorithms to fool

deep neural networks, mainly for the task of image classification [255, 169, 200].

Recently, a few work have investigated adversarial attacks on graph data [288, 51,

252, 75]. Zügner et al. [288] perform structure and feature perturbations on attributed

graphs by an algorithm called Nettack. They generate unnoticeable perturbations by

preserving graph’s degree distribution and features co-occurrences. The performance of

Nettack on attacking GCN shows that it can successfully fool GCN and lead to misclas-

sification of the target node.

In another study, Dai et al. [75] proposed a reinforcement learning based attack

that generates structure perturbations with full or limited information about the target

classifier. Their approach has shown to be successful for supervised node classification

problem. They also claim that adding adversarial examples during training can help to

defend the attacks.

The other group of studies, investigate the effects of adversarial attacks on unsu-

pervised node embeddings [288, 51, 252]. In [288], they transferred their attack model to
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DeepWalk embeddings [225] and observed that the performance of DeepWalk drops on a

perturbed graph.

Knowing the fact that graph neural networks and node embeddings are highly

vulnerable to adversarial attack, there is an urgent need to design defense mechanism or

effective methods that are more robust against attacks. There are some studies on defense

techniques in tasks like image classification [77, 49]. In [77], JPEG compression has been

used to “vaccinate” deep neural network. The idea is that adversarial attacks on images

add noise to high-frequency spectrum so that the noise is visually imperceptible, therefore,

JPEG compression can greatly destroy them. In another study, Bhagoji et al. [49], proposed

a defense mechanism that utilizes Principal Component Analysis (PCA) for dimensionality

reduction.

When it comes to physical adversaries and the goal is the detection of dense block-

like behavior, which points to fraud (e.g., fraudulent Twitter followers), [237] leverages

Singular Value Decomposition (SVD) and low-rank approximation of adjacency matrix of

users in Twitter and Amazon to detect suspicious behavior. They analyze the impacts of

evasion attacks in their study, where the malicious data are modified at test time to bypass

the result. Another group of attacks are poisoning attacks which perturb the training

instances and the classification model is retrained on the perturbed data. In our study, we

explore poisoning attacks on graph data and we propose a mechanism to defend the attacks.

2.3 Preliminaries

In this section, we describe concepts and notations used in the chapter.
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2.3.1 Singular Value Decomposition

Singular Value Decomposition (SVD) is one of the most popular matrix decom-

position techniques. SVD is a widely used tool to decompose a matrix into sum of rank-1

matrices. Let A ∈ RI×J be a real-valued matrix. The SVD of A is computed as follows:

A = UΣV T (2.1)

where U ∈ RI×I and V ∈ RJ×J are orthogonal matrices. Column of U are called the left

singular vectors and columns of V are the right singular vector. Σ ∈ RI×J is a non-negative

diagonal matrix such that Σi,i = σi where σi is the ith singular value and σ1 ≥ σ2 ≥ ... ≥

σmin(I,J).

The SVD is an elegant tool to compute the best rank-r approximation of matrix

A. The rank-r approximation of A is computed as follows:

Ar = UrΣrV
T
r =

r∑
i=1

uiσiv
T
i (2.2)

where Ar is the rank-r approximation of A derived from SVD of A. Ur and Vr are the

matrices containing the top r singular vectors and Σr is the diagonal matrix containing only

the r singular values.

According to Eckart-Young-Mirsky theorem [91], Ar is the optimal rank-r approx-

imation of matrix A. For any rank-r matrix B, the following holds:

‖A−Ar‖F ≤ ‖A−B‖F (2.3)
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2.3.2 Tensors

A tensor, denoted by X, is a multidimensional matrix. The order of a tensor is the

number of modes/ways which is the number of indices required to index the tensor [217]. In

this chapter, we deal with three-mode tensors. Given a three-mode tensor X ∈ RI×J×K its

CP decomposition (also know as CANDECOMP/PARAFAC) [61, 129] is defined as a sum

of rank-1 tensors and is formulated as follows:

X ≈
R∑
r=1

ar ◦ br ◦ cr (2.4)

where ar ∈ RI , br ∈ RJ , cr ∈ RK , and their three-way outer product is computed as (ar ◦br ◦

cr)(i, j, k) = ar(i)br(j)cr(k). The minimal value of R is called the tensor rank. For a more

compact representation, CP decomposition is usually represented by the factor matrices

A ∈ RI×R, B ∈ RJ×R, and C ∈ RK×R where ar, br and cr are the rth columns of A,B, and

C respectively.

X = A ◦B ◦ C (2.5)

For more details about tensors and tensor decomposition, we refer the interested

reader to [217, 160].

2.4 Proposed Method

In this section, we present our low-rank matrix approximation method to defend

adversarial attacks for graph data. In Section 2.4.1, we briefly explain the method to generate

adversarial attacks for graph data, known as Nettack [288] and we examine the charac-

teristics of the attacks generated by this approach. We show that these attacks impose
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high-rank changes to the graph which can be greatly ignored by discarding the high-rank

components of the graph. In Section 2.4.2, we present two low-rank methods that are ro-

bust to adversarial attacks generated by Nettack. Moreover, in Section 2.4.3 we propose

a low-rank attack and investigate its characteristics compared to Nettack.

2.4.1 Nettack: a High-Rank Attack

Recently, Zügner et al. [288] introduced an algorithm to generate adversarial at-

tacks for attributed graphs to fool Graph Convolutional Networks. Given an attributed

graph G = (A,X), where A ∈ {0, 1}N×N is the undirected adjacency matrix and X ∈

{0, 1}N×D represents the nodes’ feature matrix, the goal is to perform small perturbations

on the graph G(0) = (A(0), X(0)), so that the result graph G′ = (A′, X ′) has lower classi-

fication performance and leads to misclassification of the target node. Structure perturba-

tions refer to the changes to the adjacency matrix A, while feature perturbations refer to

the changes to the feature matrix X . Nettack produces unnoticeable perturbations by

imposing some restrictions to ensure that the attack preserves graph structure and node

features. To generate unnoticeable structure perturbations, attacks that preserve the degree

distribution of the graph are considered unnoticeable. Whereas, to generate unnoticeable

feature perturbations, co-occurrence of the features is taken into consideration. We refer the

interested reader to [288] for more details.
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Intuition: Nettack perturbations affect small number of nodes. Thus, the foot-

print of the spectrum of this attack will be comparably smaller than the footprint of

the regular structure in the graph, therefore, the attack will likely appear in small

singular values, corresponding to higher ranks in the singular value spectrum.

To experimentally validate our intuition and understand the characteristics of the

perturbations generated by the Nettack model, we examined the adjacency and feature

matrices before and after the attack. We plotted the singular values of matrices for the clean

and perturbed graphs to visualize the differences. Figure 2.2 illustrates the singular values

of the adjacency matrix on semi-logarithmic scale. The singular values shown in Figure 2.2

correspond to singular values of the adjacency matrix before and after one single attack on

the target node. Singular values of the clean and attacked matrices are mainly different at

higher ranks. We visualized singular values of adjacency and feature matrices for multiple

Figure 2.2: Singular values of adjacency matrix before and after the attack in a semi-
logarithmic scale
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attacks and observed that singular values are very close at lower ranks but vary at higher

ranks.

In Section 2.4.2, we take advantage of this intuition and present two low-rank

solutions that can effectively resist against Nettack.

2.4.2 Low-Rank Solutions to Resist Attacks

Vaccinating GCN with Low-Rank Approximation

To discard the high-rank perturbations generated by Nettack, we compute the

low-rank approximation of the adjacency and feature matrices derived from their SVD de-

composition according to Equation 2.2. We then retrain GCN with the low-rank approxi-

mation matrices. With a proper choice of r, the rank-r approximation of the attacked graph

can boost the performance of GCN and achieve a performance close to the performance of

GCN on the clean graph.

Let A and A′ be the adjacency matrices of the clean and attacked graphs respec-

tively. δA = A′−A is the difference between the clean and attacked graphs after a series of

perturbations. These are the edges added to the clean graph or removed from it as a result

of the attack. We compute the SVD of A and δA as follows:

A = UΣV T (2.6)

δA = UδΣδV
T
δ (2.7)

Let n be the number of perturbations performed during one attack on the target

node v0. According to [288], n = dv0 + 2, where dv0 is the degree of the target node.

Leveraging the proof from [237], the leading singular value of δA is computed as follows:
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σδ1 =
√
n =

√
dv0 + 2 (2.8)

In a rank-r approximation of the attacked graph, singular values smaller than σr

are discarded. Therefore, if σδ1 is smaller than σr, the perturbations will get eliminated.

The goal is to pick rank r so that with a high probability the following holds:

σr > σδ1

σr >
√
dv0 + 2

(2.9)

dv0 < σ2r − 2 (2.10)

In other words, a rank-r approximation may not detect attacks on target nodes

with degree greater than σ2r − 2. Formally, we pose the following problem:

Problem: Given an input graph adjacency matrix A with rth largest singular

value σr, find the value of r so that the probability of the nodes with degree greater than

σ2r is less than a given threshold τ :

Pr(X ≥ σ2r ) < τ (2.11)
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Degree distribution of graphs in real networks has a power-law form. We can write

the degree distribution of a graph in form of a discrete power-law with parameter α:

p(d) = Pr(X = d) =
d−α

dmax∑
k=dmin

k−α

=
d−α

dmax−dmin∑
k=0

(k + dmin)−α

=
d−α

ζ(α, dmin)− ζ(α, dmax + 1)

(2.12)

where ζ(α, x) =
∑∞

k=0(k + x)−α is the Hurwitz zeta function. dmin is the minimum degree

of a node required to be considered in the power-law distribution and dmax is the maximum

degree in the graph. Therefore, for a given graph G, we can write its degree distribution as

follows:

p(d)d∈DG
≈ d−α

ζ(α, dmin)− ζ(α, dmax + 1)
(2.13)

where DG = {dGv |v ∈ V, dGv ≥ dmin} is the list of node degrees in the graph G. Clauset et

al. [72] drived an approximate expression to estimate the scaling parameter α for a discrete

power-law distribution. For graph G:

α ≈ 1 + |DG|.

 ∑
di∈DG

log
di

dmin − 1
2

−1 (2.14)

To find the solution for Equation 2.11, we compute the reverse cumulative proba-

bility of power-law as follows:

Pr(X ≥ d) =

dmax∑
di=d

Pr(X = di)

ζ(α, dmin)− ζ(α, dmax + 1)

=

dmax∑
di=d

d−αi

ζ(α, dmin)− ζ(α, dmax + 1)

=
ζ(α, d)− ζ(α, dmax + 1)

ζ(α, dmin)− ζ(α, dmax + 1)

(2.15)
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Figure 2.3: Reverse cumulative degree distribution of CiteSeer dataset

And for graph G:

Pr(X ≥ d)d∈DG
≈ ζ(α, d)− ζ(α, dmax + 1)

ζ(α, dmin)− ζ(α, dmax + 1)
(2.16)

From equations 2.11 and 2.16, we can formulate the problem as follows:

Pr(X ≥ σ2r )DG
≈ ζ(α, σ2r )− ζ(α, dmax + 1)

ζ(α, dmin)− ζ(α, dmax + 1)
< τ (2.17)

Figure 2.3 shows the actual reverse cumulative degree distribution of the CiteSeer

dataset vs. its approximation using Equation 2.16. The behavior on Cora-ML and Polit-

icalBlogs datasets is very similar to Figure 2.3 as well. As illustrated in Figure 2.3, the

reverse cumulative probability quickly drops to zero. On CiteSeer dataset, the probability

of degrees greater than 20 is less than 1%. Thus, a low-rank approximation of the graph

with high probability can eliminate the perturbations.

In the experimental evaluations that follows, we evaluate Equation 2.11 for different

values of rank r on the real-world datasets and experimentally show that how big r needs

to be to successfully vaccinate GCN against adversarial perturbations.
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Robust Tensor-Based Node Embeddings: t-PINE

Recently, Al-Sayouri et al. [30] proposed a tensor-based node embedding method

that utilizes tensor’s CP decomposition to capture the relations between nodes using low-

dimensional latent components. They examined the performance of t-PINE in the context of

node embeddings, however the robustness of t-PINE has not been evaluated in an adversarial

context. Due to the inherent low-rank nature of t-PINE, it is a good candidate to defend

high-rank perturbations generated by Nettack. Here, we briefly explain t-PINE:

t-PINE jointly encodes explicit1 and implicit2 network structure [30] using CP

decomposition [61], which greatly allows for a systematic exploration of higher-order prox-

imities. Due to the use of multi-aspect data, t-PINE forms a three-mode tensor to represent

a network which has two slices: (1) The adjacency matrix, and (2) K-nearest neighbor

matrix computed for the feature matrix. Then, tensor x ∈ RN×N×2 is decomposed using

CP decomposition as given in Equation 2.4. The CP model is solved using the Alternating

Least Squares (ALS) algorithm [61]. For a predefined parameter d which is the embedding

dimension, tensor X is decomposed as:

L ≈ min ‖X−A ◦B ◦ C‖2F (2.18)

where A ∈ RN×d, B ∈ RN×d, and C ∈ R2×d are the factor matrices. When CP

decomposition is used in multi-label classification problem, the tensor rank R denotes the

number of classes, however, in t-PINE, R = d, indicates the embedding dimensionality, as

the CP decomposition is tailored for representation learning purpose.
1Refers to network first-order proximity connections
2Refers to second- or higher-order proximity connections
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In contrast to state-of-the-art approaches [225, 122, 226, 274, 126], t-PINE yields

highly predictable representations on different multi-label classification problems. Further,

it generates nicely interpretable embeddings, where we can understand how each view con-

tributes to the learned representation vectors. For more details, we refer the reader to

[30].

2.4.3 LowBlow : a Low-Rank Attack

As explained in Section 2.4.1, Nettack perturbations cause changes to high-rank

singular values which could be defended using a low-rank approximation of the graph. Now

a question that might arise is that what happens if we have a low-rank attack. Is a low-rank

perturbation able to successfully attack the graph and fool GCN and if so, are we able to

defend it using our proposed low-rank mechanism? Is the low-rank attack still unnoticeable?

We will answer these questions in the experimental evaluations. In this section, we will

manipulate the Nettack perturbations so that it results to low-rank attacks that can

hinder the performance of both GCN and t-PINE.

To generate a low-rank attack, we replace some of the most significant singular

values and vectors of δA with the corresponding singular values and vectors of A. In other

words, singular values of δA within range [i, j] (σδi, ..., σδj) are replaced by singular values of

A (σi, ..., σj). i and j are relatively small values so that the corresponding singular values are

significant (e.g. less than 100). Then we reconstruct the low-rank δA from altered singular

values and vectors. Adding this low-rank δA to the clean adjacency matrix A will result to

a low-rank attack that is able to perturb GCN and t-PINE.
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A′low−rank = A+ δAlow−rank (2.19)

We compute the low-rank perturbations on the feature matrix in an analogous

way. Let F and F ′ be the feature matrices of the clean and attacked graphs, respectively.

δF = F ′−F is the matrix representing features added to/removed from the original feature

matrix F . After computing the SVD of F and δF , we replace some of the most significant

singular values and vectors of δF with the corresponding singular values and vectors of F .

δFlow−rank is reconstructed using these modified singular values and vectors. To get the

low-rank feature perturbations, we add δFlow−rank to F .

F ′low−rank = F + δFlow−rank (2.20)

In the experimental evaluation that follows, we verify the effectiveness of LowBlow ,

and we also evaluate the extent to which LowBlow alters the perception of the graph to an

observer, in the form of the node degree distributions.

2.5 Experiments

2.5.1 Datasets and Experiment Setup

Datasets: In order to compare our results to the adversarial attack paper [288],

we use the same datasets in our experiments. The datasets are CiteSeer [116], Cora-ML[52],

and PoliticalBlogs [23]. Cora-ML is the subset of machine learning papers from the well-
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Dataset |V| |E| |VLCC| |ELCC| Classes
CiteSeer [116] 3312 4715 2110 3757 6
Cora-ML[52] 2995 8416 2810 7981 7
PoliticalBlogs[23] 1490 19025 1222 16714 2

Table 2.1: Datasets descriptions

know Cora dataset [191]. Table 2.1 provides the statistics for each dataset. All experiments

are performed on the largest connected component (LCC) of the graphs.

Setup: In section 2.4.1, we showed that Nettack perturbations are of high-

rank. To further investigate our intuition, we follow the same procedure as described in the

Nettack paper [288]. We split the network in labeled (20%) and unlabeled nodes(80%).

half of the labeled data is used for training and the other half is used for validation in the

process of training the GCN model. We perform five iterations where at each iteration a

different random splits of data is generated. We first train the GCN surrogate model on the

labeled data and then we select 40 target nodes from test set with the following conditions:

• 20 nodes which are correctly classified: 10 of them have the highest classification

margins and 10 of them have the lowest margin.

• 20 random nodes

According to the algorithm proposed in [288], there are two different ways to attack

a target node : direct attack called Nettack, and influence attack called Nettack-In

which attacks a node indirectly. In our experiments we only consider attacking each target

node directly, as it is a stronger attack compared to an indirect attack. We also combine

structure and feature perturbations which leads to a greater performance loss. To evaluate

the effectiveness of the attack, we compute X = Z∗v0,cold − maxc6=coldZ
∗
v0,c where Z is the
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class probabilities and cold is the ground truth label of the target node. X is called the

classification margin. A successful attack leads to lower values of X and a negative value

means the target node has been successfully misclassified.

2.5.2 Vaccinating GCN with Low-Rank Approximation

Figure 2.4: Fraction of target nodes correctly classified after vaccinating GCN on CiteSeer

In Section 2.4.2, we presented the low-rank approximation to defend Nettack

perturbations. In this section, we analyze the performance of our defense mechanism. To

this end, we examine different values of rank r = 5, 10, 15, and 50 to compute the approx-

(a) Unvaccinated (b) rank-5 (c) rank-10 (d) rank-15 (e) rank-50

Figure 2.5: Vaccinating GCN against Nettack
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Method CiteSeer Cora-ML PoliticalBlogs
GCN - Clean 0.83 0.82 0.90
GCN - Nettack 0.02 0.01 0.09
Vaccinated - Clean 0.80 0.76 0.84
Vaccinated - Nettack 0.64 0.59 0.62

Table 2.2: Vaccinating GCN against Nettack. Fraction of target nodes that are correctly
classified is reported.

imations. Figure 2.4 shows that the fraction of target nodes correctly classified after the

attack drops significantly with the full-rank attacked matrices. However, using the low-rank

SVD approximation, this number is close to the fraction of correctly classified nodes on the

clean graph. Figures 2.4 and 2.5 illustrate that using rank-10 approximation of the adja-

cency and feature matrices we are able to significantly alleviate the effects of Nettack.

Only 10 singular values/vectors is sufficient to have a robust approximation of the graph

structure and features and vaccinate GCN against attacks. As we discussed in Section 2.4.2

and Equation 2.11, if Pr(X ≥ σ210) is less than a threshold τ , with a high probability we dis-

card perturbations. Pr(X ≥ σ210) is 0.0013, 0.0019, and 0.0037 on CiteSeer, Cora-ML, and

PoliticalBlogs, respectively. These probabilities are nearly zero which shows that a rank-10

approximation of the graph ignores perturbations with a very high probability.

We performed this experiment on all three datasets and observed that r = 10

produces the best results. Table 2.2 shows the results. Here, for brevity, we only report the

results for r = 10.
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Figure 2.6: Robustness of t-PINE against Nettack for different embedding dimensions and
K on CiteSeer

2.5.3 Transferring Adversarial Attacks to t-PINE Embeddings

To evaluate the transferability of adversarial attacks to the tensor-based embed-

dings, we pursue the experiment as explained in Section 2.5.1 . After every attack, we

compute the t-PINE embeddings where the tensor slices are the attacked adjacency and

feature matrices.

We perform the experiment for different values of embedding dimensions d and

K to examine their effects on the robustness of t-PINE. Figure 2.6 shows the fraction of

target nodes that their prediction changed after the attack. This does not necessarily mean

that these nodes were correctly classified before the attack, but it shows that the Nettack

perturbations were able to change the prediction of the target nodes from one class to

another. Nettack might have even changed a node’s prediction from a wrong class to

the correct one. The plot shows that lower dimensions of t-PINE are more robust against

Nettack. As the embedding dimension gets larger, more nodes are affected by the attacks.

t-PINE performs very robust against the attacks. Even at dimension 512, less than 40%
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(a) GCN (b) K = 30 (c) K = 35 (d) K = 40 (e) K = 45

Figure 2.7: Poisoning of t-PINE with Nettack on CiteSeer. The embedding dimension is
32.

of target nodes are affected by the attacks. At lower dimensions, CP-decomposition can

greatly discard affected components of graph by the attack.

On the other hand, choice of K does not have a significant effect on the robustness

of t-PINE. We evaluated different values of K and observed that at a fixed dimension,

performance slightly improves for bigger values of K. However, the larger K is, t-PINE’s

runtime increases. The improvement over larger values of K is negligible. Therefore, for the

rest of the experiments, we only report the t-PINE results for d = 32 and K = 30 that leads

to robust results in a better runtime.

Figure 2.7 shows the result of transferring Nettack perturbations to t-PINE for

d = 32 and K = 30. The plot shows that t-PINE is very robust to the attacks and the

classification margins before and after the attack has remained nearly unchanged.

Method CiteSeer Cora-ML PoliticalBlogs

GCN Clean 0.83 0.82 0.90
Nettack 0.02 0.01 0.06

t-PINE Clean 0.74 0.68 0.87
Nettack 0.72 0.64 0.30

Table 2.3: Transferring Nettack to t-PINE embeddings. For t-PINE, fraction of target
nodes correctly classified after the attack is very close to values on the clean graph.
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In Table 2.3, we summarize the results of transferring Nettack perturbation to

t-PINE for different datasets. The values reported in the table are the fraction of target

nodes that get correctly classified. For t-PINE the values on clean and perturbed graphs are

very close for CiteSeer and Cora-ML datasets. However, on PoliticalBlogs, the performance

of t-PINE has dropped with Nettack perturbations. The degree of target nodes in Polit-

icalBlogs dataset are relatively larger compared to the other datasets. In our experiments,

we set the number of perturbations to a target node relevant to its degree. Therefore, in

the PoliticalBlogs dataset, we perform a larger number of perturbation and this could be

the reason to why the performance of t-PINE drops when facing Nettack perturbations.

2.5.4 LowBlow : A Low-Rank Attack

Here, we investigate the influence of the proposed low-rank attack, LowBlow on

GCN and t-PINE. To evaluate the effects of LowBlow , we compute the perturbed adjacency

and feature matrices as in Equations 2.19 and 2.20. Then we retrain GCN model with the

perturbed matrices. We also compute the t-PINE embeddings for the perturbed matrices.

LowBlow significantly decreases the performance of GCN. It is also able to attack t-PINE,

however, it is less successful compared to perturbing GCN.

In addition, we examined our defense mechanism against LowBlow . We used a

rank-10 approximation of graph to vaccinate it. In Table 2.4, we summarize the results for all

datasets. Vaccinating GCN has improved its performance but it decreased the performance

of t-PINE on CiteSeer and Cora. We observed that for a smaller embedding dimension e.g

27



Method CiteSeer Cora-ML PoliticalBlogs

G
C
N

Clean 0.83 0.82 0.90
Nettack 0.02 0.01 0.06
LowBlow 0.05 0.06 0.06
Vaccinated Nettack 0.64 0.59 0.62
Vaccinated LowBlow 0.31 0.35 0.38

t-
P
IN

E

Clean 0.74 0.68 0.87
Nettack 0.72 0.64 0.30
LowBlow 0.55 0.48 0.33
Vaccinated Nettack 0.73 0.65 0.52
Vaccinated LowBlow 0.29 0.27 0.48

Table 2.4: Results overview. Comparison of poisoning and vaccination of GCN and t-PINE
against Nettack and LowBlow

d = 8, vaccinating t-PINE against LowBlow has no significant impact on the performance

of t-PINE.

Due to the low-rank nature of LowBlow , it is more difficult to defend compared to

Nettack, and our vaccination method performs better on Nettack rather than LowBlow .

2.5.5 Degree Distributions After LowBlow

In the previous subsection we demonstrated the effectiveness of LowBlow in fooling

our proposed low-rank vaccination scheme, and deteriorating the performance of both GCN

and t-PINE. In addition to the effectiveness of the attack, another important aspect that

we would like to study experimentally is the effect of LowBlow in “what the graph looks

like”. In computer vision attacks, “look” can be easily defined by how a human perceives the

poisoned data point/image. In graphs, however, such an intuitive metric does not exist.

Instead, [288] studies a proxy, which is the node degree distribution and how it is

affected by the attack. In [288], the attack only affects one or a few nodes at a time, and

thus, the attack results in a statistically insignificant alteration of the degree distribution.
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LowBlow , on the other hand, by virtue of mixing the attack in high-valued singular com-

ponents of the graph, this mixing may affect a number of nodes, resulting in statistically

significant differences in the distributions, for some nodes.

(a) CiteSeer (b) Cora-ML (c) PoliticalBlogs

Figure 2.8: Degree distributions of the clean and attacked graphs on log-log scale. LowBlow
affects the degree distribution only for the high-degree nodes, while leaving the majority of
the nodes intact.

In Figure 2.8 we plot the degree distributions of the three real-world graphs we

use, before and after the attack, in log-log scale. What we uniformly observe is that only

the very high-degree nodes are affected by the attack, while the low and mid-degree nodes,

which constitute the vast majority of this heavy-tailed distribution, remain intact, as far as

their degree distribution is concerned.

To evaluate whether LowBlow perturbations are unnoticeable, we perform a sta-

tistical two-sample test for power-law distribution [288, 45] to see if the adjacency matrix

after LowBlow perturbations follows similar degree distribution as the input graph. The null

hypothesis H0 proposes that the two samples have similar power-law distributions. Here, we

compute the probability of not rejecting the null hypothesis where the two samples are from

different distributions (Type II error). Similar to [288], we set the p-value to 0.95 which is
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a very conservative threshold and two samples from the same distribution are rejected 95%

of the time. Following this conservative test, degree sequence of the graph after LowBlow

perturbations does not follow the same power-law distribution as the input graph, i.e. the

proposed low-rank attack is noticeable. To make the attack unnoticeable, we only consider

edges that if added or removed from the graph, degree distribution will not change. Af-

ter this step, we plotted the singular values of the graph before and after the attack and

observed that the singular values are mainly different in higher ranks and the behavior is

similar to Nettack. This implies that an unnoticeable perturbation affects high-frequency

spectrum of the graph. Consequently, our proposed vaccination mechanism successfully

defends against unnoticeable adversarial attacks.
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Part II

Image Classification
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Chapter 3

Defense Against Adversarial Attacks

on Images

Manuscript is available on arXiv [95].

3.1 Introduction

In the last few years, Deep Neural Networks (DNNs) have been tremendously

popular in various domains, including image processing and computer vision [131, 243, 254].

However, recently, the robustness of DNNs has been questioned when facing adversarial

inputs. The performance of DNNs can significantly drop even on slightly perturbed instances

[255]. For the task of image classification, attackers put constraints on perturbations such

that they remain unnoticeable to the human eye, but they are still able to greatly deteriorate

the performance of the model [222, 118, 28].
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Figure 3.1: System Overview: low-rank tensor approximation of images to “vaccinate" the
network against perturbations. (the term “vaccinate” was first used by Das et al. [77] to
refer to models equipped with a defense mechanism.)

Utilizing machine learning methods that are vulnerable to adversarial attacks in

a system where safety and security are critical factors may cause serious problems. There-

fore, it is crucial to have a robust model against adversaries, especially in security-sensitive

domains like autonomous driving and medical imaging. To address this concern, recent

studies have researched to analyze the vulnerability of deep learning methods to come up

with defense techniques against adversarial attacks [77, 49, 193, 223, 271].

To measure the strength of a perturbation, usually an l2 or l∞ norm is used.

Adversarial perturbations are mostly designed to have a small norm and are unnoticeable

to human inspection [184]. Designing a defense mechanism is a difficult task. Typically, the

defender has only access to the perturbed instances (and definitely not the original ones,

where there would be hope to identify which parts have been tampered with) and should be

able to defend against different types of perturbations. Moreover, a defense mechanism that

is specialized against a particular kind of attack could be easily defeated by new attacks
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which are optimized against its strategy. Therefore, designing a defense technique that

captures a universal pattern across various attacks is highly desirable since this will allow

to defend against most of the adversarial attacks.

Shield, proposed by Das et al. [77], is a real-time defense framework that performs

JPEG compression with random levels over local patches of images to eliminate impercep-

tible perturbations, which mostly appear in the high-frequency spectrum of images. In this

chapter, we propose a tensor decomposition approach to compute a low-rank approximation

of images that significantly discards high-rank perturbations. However, Shield considers

images in isolation and ignores the correlation of images when facing adversarial attacks.

Our contributions are as follows:

• Defense through the lens of factorization: We propose a novel defense against

adversarial attacks on images that utilizes tensor decomposition to reconstruct a low-

approximation of perturbed images before feeding them to the deep network for clas-

sification. Without any retraining of the model, our method can significantly mitigate

adversarial attacks.

• Efficient and effective method: Representing images with tensor allows processing

images in batches as a 4-mode tensor, which is able to capture the latent structure

of perturbations from multiple images rather than a single image and leads to more

performance improvements.
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3.2 Related Work

3.2.1 Adversarial Attacks

In this chapter, we focus on defending against adversarial attacks on deep learning

methods for the task of image classification. Here, we briefly outline some of the most

popular adversarial attacks on images.

Given a classifier C, the goal of an adversarial attack is to modify an instance x to

a perturbed instance x′ such that C(x) 6= C(x′), while keeping the distance ‖x−x′‖ between

perturbed and clean instance small [276]. By ‖.‖ we denote some norm which is also used

to express the strength of the perturbations. The popular choices are Euclidean distance

(l2 norm) and Chebyshev distance (l∞ norm). Here, we discuss some of the popular attacks

against which we evaluate our proposed method.

Fast Gradient Sign Method (FGSM)[118]: FGSM is a fast method to compute

perturbations that is based on computing first-order gradients. FGSM generates adversarial

images by introducing a perturbation as follows:

x′ = x+ ε sgn(∇Jx(θ, x, y)) (3.1)

where ε is a user-defined threshold that determines the strength of the perturbations and

controls the magnitude of perturbations per pixel. θ is the parameter of the model, y is the

true label of the instance x, and J is the cost of training the neural network.

Iterative Fast Gradient Sign Method (I-FGSM)[169]: I-FGSM is the itera-

tive version of the FGSM. In each iteration i, I-FGSM clips the pixel values to remain within
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the l∞ neighborhood of the corresponding values from a “clean” instance x:

x′i = x′i−1 + α sgn(∇Jx′i−1
(θ, x′i−1, y)) (3.2)

Projected Gradient Descent (PGD)[186]: PGD is one of the strongest gradient-

based attacks [186] Given a clean image x, PGD aims to find a small perturbation δ ∈ S to

generate the perturbed instance x′ = x + δ. PGD starts from a random perturbation and

iteratively updates the perturbation:

δi = ΠS [δi−1 + τ sgn(∇xL(x+ δi−1, y))] (3.3)

where τ is a fixed step size. ΠS projects the perturbation onto set S, set of allowed pertur-

bation in the ε neighborhood the “clean" instance x.

3.2.2 Defense Against Adversarial Attacks

Defense mechanisms against adversarial attacks fall into two main categories [276].

The first group of methods aim to train the classifier on adversarial examples to make it

robust against them [142, 118, 263]. This approach requires extensive training on vari-

ous adversarial examples. The second group of defenses try to remove perturbations from

the adversarial example by performing some transformation [77, 123, 49, 123, 89]. These

transformed examples are then fed to the model, and the objective is to achieve the same

classification as the clean instance. In this chapter, our focus is on the second approach.

Shield proposed by Das et al. [77], uses image preprocessing as a defense mech-

anism to reduce the effect of perturbations. Shield is based on the observation that the

attacks described above are high-frequency. Thus, eliminating those high-frequencies (which

36



are not generally visible by the human eye) will sanitize the image. Shield performs Stochas-

tic Local Quantization (SLQ) as a preprocessing step and subsequently employs JPEG com-

pression with qualities 20, 40, 60, and 80 on the image, then for each 8 × 8 block of the

image, randomly selects from one of the compressed images. Shield also retrains the model

on images compressed with different JPEG qualities and uses an ensemble of these models

to defends against adversarial attacks.

Variational Autoencoders (VAEs) [154, 86] have been used to defend against adver-

saries on images. In a study by Luo et. al. [185], they utilize VAE to map high-dimensional

images to a lower-dimensional latent space in which most of the perturbation is discarded.

Autoencoders [40] are a type of neural networks that learns a low-dimensional representation

of the data in an unsupervised manner and variational autoencoders incorporate random

sampling in the encoding and decoding process. The low-rank representation of images

learned by the autoencoder can improve the performance of the deep model when facing

adversarial examples. However, the drawback of autoencoder defenses is that they need to

be trained on the data, which makes them not a suitable option for online applications.

In this Chapter, we preprocess images using tensor decomposition techniques to

achieve a low-rank approximation of the image. We can significantly alleviate the effect of

perturbations without performing any training on the dataset.
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3.3 Proposed Method

In this section, we first investigate the characteristics of adversarial attacks on

networks designed for the task of image classification. Then we propose a tensor-based

defense mechanism against these attacks, which improves the performance of the network.

3.3.1 Characteristics of Image Perturbations

Assume a trained model C with high accuracy on clean images is given. Adversarial

attacks perform perturbations on the clean images in a way that they are imperceptible to

humans yet are successful in deceiving the model to misclassify the perturbed instances. In

other words, for a clean image x and its corresponding perturbed image x′, the goal is to

have: C(x) 6= C(x′). The adversarial attacks do not preserve the spectral characteristics of

images and add high-frequency components to images to remain unnoticeable to the human

eyes [77]. Perturbations in the image domain are crafted in a way that mostly affect the high-

frequency spectrum of images. Therefore, discarding the high-frequency factors of the image

using approaches like compression or low-rank approximation of images could be successful

defense mechanisms against these types of perturbations. Therefore, a mechanism that

only keeps the low-rank components of the image and discards the high-rank ones can be

successful in discarding the perturbations. In [77], the authors leverage JPEG compression

to remove high-frequency components of the image and alleviate the effect of perturbations.

In this chapter, we study the problem from a “matrix spectrum” point of view (i.e., the

singular value profile and the intrinsic low-rank dimensionality of the data) and use tensor

decomposition techniques to achieve a low-rank approximation of perturbed images.
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3.3.2 TensorShield : Tensor-based Defense Mechanism

In this section, we briefly the concepts and notations used in the chapter.

A tensor, denoted by X, is a multidimensional matrix. The order of a tensor is the

number of modes/ways and is the number of indices required to index the tensor [160, 217].

An RGB image is a three-mode tensor where the first and second modes correspond to the

pixels and the third mode corresponds to the red, green, and blue channels, i.e. the frontal

slices are red, green, and blue channels of the image. An RGB image of size W × H is a

3-mode tensor of size W ×H × 3, where W and H are the width and height of the image,

respectively.

To achieve a low-rank approximation of the perturbed images, we perform a tensor

decomposition technique on the image and by choosing small values for the rank of the ten-

sor, we reconstruct a low-rank approximation of the image which is fed to the deep network.

The low-rank approximation of image discards high-frequency perturbations which can im-

prove the performance of the network on the perturbed images. However, traditional tensor

decomposition techniques like CP/Parafac [129] and Tucker[265] are time-consuming and

may slow down the neural network performance which makes our proposed method imprac-

tical for real-time defense. To overcome this issue, we leverage Tensor-Train decomposition

[208] which scales linearly with respect to the dimension of the tensor and was especially

introduced to address the problem of curse of dimensionality [208]. This highly-desirable

property of the Tensor-Train allows us to process images in batches that form a 4-mode ten-

sor and perform the Tensor-Train decomposition on 4-mode tensors quite fast. For a batch

of N images, the size of the 4-mode tensor will be N ×W ×H × 3. Generally, decomposing
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Figure 3.2: Tensor-Train decomposition of a 4-mode tensor.

a 4-mode tensor is slower compared to a 3-mode one. However, by considering images in

batches, some of the I/O overhead is reduced, which results in almost the same processing

time on the entire dataset. Furthermore, processing images in batches improves the perfor-

mance of the model. The reason behind this is that decomposing images in batches extracts

latent structure corresponding to perturbations from multiple images and captures general

characteristics of perturbations.

For a 4-mode tensor, the Tensor-Train decomposition can be written as follows:

X(i, j, k, l) ≈
∑

r1,r2,r3

G1(i, r1)G2(r1, j, r2)G3(r2, k, r3)G4(r3, l) (3.4)

Figure 3.2 illustrates the Tensor-Train decomposition of a 4-mode tensor.

Another possible representation for the batch of images is to convert the 4-mode

tensor to a 3-mode tensor by stacking the images along the third mode, i.e., stacking RGB

channels and the result tensor will be of dimension W ×H × 3 ∗ N . Figure 3.3 illustrates

a 3-mode stacked tensor of N images. There are other ways to convert a 4-mode tensor

into a 3-mode one. For instance, another way is to flatten the RGB image into a matrix

with three columns corresponding to the channels of the image. With this representation,

the final tensor will be of size W ∗H × 3 × N . One disadvantage of this representation is
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that flattening the image ignores the spatial relationship of the pixels. Moreover, with this

vectorized representation, the first dimension is much bigger than the other two dimensions

and requires a larger value of rank to get a reasonable approximation of the image, and larger

ranks make the decomposition slower. For these reasons, we do not consider the vectorized

representation in our study. In the experimental evaluations that follow, we will examine

different representation including a single image versus batches of images and 3-mode tensors

versus 4-mode tensors.

3.4 Experimental Evaluation

In this section, we show how the proposed method can successfully remove adver-

sarial perturbations and we compare our results to Shield (SLQ). According to [73], original

Shield evaluations have gained benefit from central cropping of images in their evaluations,

whereas the perturbations were generated with cropping being off. In all our evaluations,

we disable the central cropping.

Figure 3.3: Stacking 3-mode images along the third mode.
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3.4.1 Experiment Setup

We performed experiments on the validation set of the ImageNet dataset, which

includes 50,000 images from 1,000 classes [84]. All experiments are performed on the ResNet-

v2 50 model [131] from the TF-Slim module of TensorFlow [15]. The adversarial attacks

are from the CleverHans package 1 [220]. We performed the experiments on a machine with

one NVIDIA Titan Xp (12 GB) GPU. We used TensorLy 2 library in Python to perform

tensor decomposition techniques [163].

3.4.2 Parameter Tuning

In our evaluations, we express different configurations in the form of a list as [tensor

decomposition, tensor representation, batch size, rank] and we investigate the accuracy

and runtime of the ResNet-v2 50 on 1000 images from the ImageNet dataset for different

configurations. The possible values for each part of the configuration list is as follows:

• Tensor decomposition: {Parafac, Tucker, Tensor-Train}

• Tensor representation: {3-mode, 3-mode-stacked, 4-mode}

• Batch size: {1, 5, 10, 20, 50}

• Rank: varies by choice of tensor representation and decomposition.

Performing tensor decomposition for a batch of images can reduce the decomposi-

tion overhead compared to decomposing a single image and accelerates the entire evaluation

process. Moreover, considering images in batches helps to better capture the pattern of per-

turbations from multiple images. However, the choice of the right batch size is important.
1https://github.com/tensorflow/cleverhans
2https://github.com/tensorly/tensorly

42



A large batch of images needs larger ranks for decomposition and could get very slow. Also,

in a large batch of images, the variety of images that are from different classes increases

which deteriorates the performance of the decomposition. To find the best batch size, we

perform a grid search on values 5, 10, 20, and 50. Tensor Train decomposition of a 4-mode

tensor requires setting 3 values for the ranks. The first value corresponds to compressing

the batches, the second value corresponds to compressing the image pixels, and the third

value corresponds to compressing the RGB channels. We fix the first rank to the number of

batches and the third rank to the number of channels i.e., 3. For the second rank, we search

within the range 40 to 150. Figure 3.4 shows the accuracy and runtime of the model for

different batch sizes for Tensor-Train decomposition with ranks ranging from 50 to 120 with

steps of 5. The figure also shows how processing single images (batch size 1) differs from

batch sizes greater than 5. In the case that we are processing single images, the runtime

increases as the rank gets larger, however, as the batch size increase, the runtime becomes

less sensitive to the ranks and for the batch size 50 it will become almost constant for all

the ranks. Batch size 5 produces the highest accuracy, while batch size 10 has the lowest

runtime. There is a trade-off between runtime and accuracy. Based on the priorities of the

system, one might sacrifice accuracy for speed.

Figure 3.5 shows the effect of different batch sizes on the 3-mode-stacked represen-

tation. Plots for batch sizes 5, 10, and 20 are almost identical in both accuracy and runtime.

Batch size 50 produces the curacy with the 3-mode-stacked representation. However, the

highest accuracy with the 3-mode-stacked representation is lower than the highest accuracy

achieved using the 4-mode representation.
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3.4.3 What If the Attack Is Low-Rank?

What happens if the attacker learns about our low-rank approximation defense

and attempts to generate perturbations which affect the lower end of the singular value

spectrum of the images? Here, we explore this question and show that crafting such per-

Figure 3.4: Accuracy (A) and runtime (B) of ResNet-v2 50 over 1000 images attacked by
FGSM (ε = 4). Tensor-Train decomposition is applied on a single image (batch size 1) or
4-mode tensor of batches of size 5, 10, 20, and 50 to defend against FGSM perturbations.

Figure 3.5: Accuracy (A) and runtime (B) of ResNet-v2 50 over 1000 images attacked
by FGSM (ε = 4). Tensor-Train decomposition is applied on a single image (batch size
1) or 3-mode-stacked tensor of batches of size 5, 10, 20, and 50 to defend against FGSM
perturbations.
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turbations creates noisy, low-quality images that are no longer indistinguishable from the

original images.

Our low-rank tensor-base defense mechanism relies on the intuition that image

perturbations mostly affect the high-frequency spectrum. This is because attackers aim

to craft perturbations that are unnoticeable to human eyes. To confirm this intuition, we

manipulated FGSM image perturbations to generate low-rank adversarial examples. To

generate a low-rank attack, we follow the steps mentioned in [93] to replace significant

singular components of FGSM perturbations within the range [20,30) with the corresponding

components of the clean image. Figure 3.6 shows images perturbed using the FGSM attack

versus the low-rank attack. Low-rank perturbed images are obviously noisy and pixelated

which are far from the objective of unnoticeable perturbations.

3.4.4 Results

As mentioned in Section 3.3, Tensor-Train performs much faster than Parafac and

Tucker. Therefore, for the Parafac and Tucker, we only report the result for the configuration

which corresponds to the maximum accuracy as a reference for comparison against Tensor-

Train.

Comparing Against SLQ on ImageNet

We compare the performance of ResNet-v2 50 model when vaccinated using SLQ

and TensorShield methods. PGD, FGSM, and I-FGSM attacks are used to generate adver-
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Figure 3.6: Examples of low-rank perturbation on images. Perturbations that mostly af-
fect high-frequency spectrum of images are not visible to human eyes, however, low-rank
perturbations generate noisy and pixelated images.

sarial examples. Table 3.1 summarizes the result. Different configurations of TensorShield

are reported in the table.

Configurations PGD FGSM I-FGSM Runtime
(ε = 4) (ε = 4) (ε = 4) (seconds)

No defense 11.10 18.40 7.49
[Tensor-Train, 4-mode, 5, [5,90,3]] 51.53 43.59 50.46 675
[Tensor-Train, 4-mode, 10, [10,100,3]] 51.01 43.10 49.95 605
[Tensor-Train, 3-mode, 1, 40] 49.75 42.32 48.52 530
[Tucker, 3-mode-stacked, 30, [105,105,90]] 49.37 40.07 48.79 1050
[Parafac, 3-mode, 1, 60] 48.11 41.38 49.75 5500
SLQ 44.60 29.40 38.60 410

Table 3.1: Summary of accuracies and runtime of ResNet-v2 50 on ImageNet validation set
against FGSM, I-FGSM, and PGD adversarial attacks for defenses with different configura-
tions.
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As illustrated in Table 3.1, Tensor-Train outperforms Tucker and Parafac with re-

spect to both accuracy and runtime. Tensor-Train performed on 4-mode tensor has produced

the highest accuracy. As explained earlier, processing images in batches better captures

latent components corresponding to perturbation by leveraging higher-order correlations.

Tensor-Train can be utilized with different tensor representations (3-mode, 3-mode-stacked,

or 4-mode) to adjust to needs for higher accuracy or higher speed. While the 4-mode rep-

resentation produces the highest accuracy, the 3-mode single image representation can be

used to speed up the process, with a small drop in the accuracy. SLQ is the fastest among

all defenses, but it has the lowest accuracy.

Comparing Against VAE on MNIST

Here, we compare our method against the variational autoencoder defense proposed

in [185] on the MNIST dataset. Defense mechanisms based on variational autoencoders,

require extensive training and hence they are not easily scalable to larger datasets. Therefore,

we compared our method against VAE defense on the MNIST dataset which is a small

dataset. CNN model used for the image classification has the same architecture as explained

in [185]. The CNN model contains 2 convolutional layers followed by a fully-connected layer.

Both of the convolutional layers use 5 × 5 filter size with 32 and 64 channels in the first

and second convolutional layers, respectively. After each convolutional layer, 2 × 2 max-

pooling with stride 2 is used. The fully-connected layer has 1024 hidden nodes that uses

Relu activation with a dropout rate of 0.4.
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Defense No attack PGD FGSM I-FGSM
(ε = 4) (ε = 4) (ε = 4)

No defense 99.12 97.85 97.80 97.50
JPEG-20 99.12 98.28 98.13 98.20
JPEG-40 99.12 98.35 98.20 98.27
JPEG-60 99.12 98.29 98.17 98.28
JPEG-80 98.11 98.25 98.09 98.10
VAE 98.87 98.30 98.23 98.18
TensorShield 99.12 98.44 98.32 98.31

Table 3.2: Summary of accuracies of CNN model on MNIST dataset against PGD, FGSM,
and I-FGSM adversarial attacks. The performance of the model is reported when it is
vaccinated using different defenses including TensorShield , VAE, and JPEG compression
with qualities 20, 40, 60, and 80.

Table 3.2 summarizes the performance of different defenses including TensorShield ,

VAE, and JPEG compression with qualities 20,40,60, and 80. For TensorShield we only

report the configuration with the best accuracy which is a 3-mode tensor containing batches

of 5 images (28×28×5). We used Tensor-Train decomposition with rank 30. Size of MNIST

images is 28× 28 and a tensor including a single image will be a 2-dimensional array and a

tensor composing a batch of N images will be a 3-mode tensor of size 28× 28×N .

Figure 3.7 shows the performance of TensorShield and VAE against the FGSM

attack. Also different quality of JPEG compression was applied on images as a preprocessing

step to resist against adversarial attacks. For small perturbations that are less noticeable to

human eyes, TensorShield is on par or better than VAE, but TensorShield has a higher drop

in performance for stronger attacks. Even for strong attacks, the performance improvement

achieved by TensorShield is significant and due to its scalability, TensorShield is a feasible

option for vaccinating models on large datasets.
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Figure 3.7: FGSM attack on CNN model for MNIST dataset. For small and less notice-
able perturbations, TensorShield outperforms other defenses, however as perturbations get
stronger, VAE outperforms our method. However, VAE requires extensive training which
makes it less applicable to large datasets, whereas TensorShield does not require any training
on the dataset and can be applied on large datasets.

Introducing Randomness to the Defense Framework

Incorporating randomness in the defense framework makes the job of the attacker

more difficult to deal with a random strategy rather than a fixed one. By selecting randomly

from a set of ranks, we can add randomness to the tensor decomposition process. Another

way is to split images into small patches, similar to local 8 × 8 patches from Shield, and

perform decomposition of a random rank on each patch and stitch up the patches to recon-

struct a randomized low-rank approximation of images. In a 4-mode tensor representation,

splitting images into patches creates smaller 4-mode tensors, e.g. splitting a 4-mode tensor

including 5 batches of images with size 300 × 300 × 3 into patches of size 50 × 50 creates

6 tensors of size 5, 50, 50, 3. Table 3.3 shows the results of incorporating randomness with

tensor decomposition. With smaller patch sizes, the decomposition will have more overhead,

and hence the runtime complexity increases.
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Patch size Ranks PGD FGSM I-FGSM Runtime
(ε = 4) (ε = 4) (ε = 4) (seconds)

[8, 8] {[5,3,3,[5,5,3],[5,7,3]} 47.89 41.04 48.36 2550
[50,50] {[5,10,3],[5,20,3],[5,30,3]} 48.35 41.97 48.12 1100
[150,150] {[5,40,3],[5,50,3],[5,60,3],[5,70,3]} 50.96 42.12 48.98 765
No patching {[5,70,3],[5,90,3],[5,110,3]} 50.48 42.73 49.68 710

Table 3.3: Accuracies and runtime of ResNet-v2 50 on ImageNet validation set against PGD,
FGSM, and I-FGSM adversarial attacks with ε = 4 vaccinated using Tensor-Train with 4-
mode tensor of batch size 5. Decomposition rank is randomly selected from a set of possible
ranks. No patching is equivalent to full size image.
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Part III

Recommender Systems
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Chapter 4

Defense Against Adversarial Attacks

on Recommender Systems

4.1 Introduction

Recommender systems are powerful tools to help users better and easier choose

between millions of options in different scenarios such as shopping and movie, book, or

song selection. Business owners also gain benefits from appropriate recommendations that

can potentially increase their revenue. Collaborative filtering techniques are widely used in

recommender systems due to their simplicity and strong performance. Collaborative filtering

relies on the user-item interactions in the past to predict future interactions. The idea is that

users with similar choices in the past are most likely to make similar choices in the future

[235]. Matrix factorization is a popular collaborative filtering technique that considers user-

item interactions and tries to learn latent factors for users and items [162, 161]. Recently,
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neural collaborative filtering models have also been utilized to model non-linear user-item

interaction [133].

Recent studies in adversarial machine learning show that machine learning algo-

rithms are susceptible to adversarial attacks [76, 118, 255], and recommender system models

are also susceptible to adversaries[83]. Attackers aim to fool recommender systems to rec-

ommend products (or items, in general) to users that serve their malicious intentions rather

than satisfying users’ needs. Attackers may achieve their objective by writing fake product

reviews, creating fake user profiles, manipulating product images, etc. It is crucial to detect

these adversaries and make recommender models robust against them. In this chapter, we

investigate characteristics of two of the adversarial attacks on recommender systems pro-

posed by Tang et al. [256] and Christakopoulou et al. [71]. Then we report our experimental

evaluations on how to make the recommender system more robust against these types of

attack.

4.2 Related Work

4.2.1 Adversarial Attacks on Recommender Systems

Recommender systems have always been a target of attackers. Traditionally at-

tackers tried to inject hand-engineered fake profiles to affect the recommender system to offer

their target items maliciously. Injecting fake user profiles is broadly called a shilling attack.

The shilling attack aims to augment some user profiles with limited item ratings. They can

diverge the recommendation result and force the recommender system to recommend some

target items to users. In recent years, poisoning attacks leveraged machine learning algo-
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rithms to generate fake user profiles [177, 109, 71]. Li et al. [177] proposed a data poisoning

attack on factorization-based recommender systems. In a recent work by Christakopoulou et

al. [71], Generative Adversarial Network (GAN) [117] is used to generate fake user profiles

with similar rating distribution of real users. This ensures that the fake users generated by

GAN are unnoticeable. Then by applying iterative gradient descent, a final set of fake user

profiles are generated and injected into the recommender system.

4.2.2 Defense Against Adversarial Attacks on Recommender Systems

Adversarial training is the most popular approach to make recommender systems

robust against adversaries [257]. In adversarial training, adversarial examples are generated

using an existing attack model, and then these adversarial examples are fed to the machine

learning model along with the benign examples. Machine learning models trained on the

adversarial instances will have a better performance on the adversarial examples and higher

generalization power. Adversarial training has been applied to recommender systems to have

a more robust model [257, 269]. Adversarial training is expensive as it requires retraining of

the model over benign and adversarial examples. Moreover, there are many attack models

with different attack strategies and the adversarially-trained model may not work well to

defend against unseen adversarial examples. Another group of defense techniques in the

literature performs a preprocessing step to transform an adversarial example into a similar

benign example. The goal of the transformation is to discard the adversarial artifacts. In

the image domain, this can be done by removing the high-frequency noise added to the

image [77, 95]. A similar idea was also applied to defend against attacks on graphs [93]. The

idea behind these methods is that attackers try to generate unnoticeable perturbations, and
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therefore perturbations primarily affect the high-frequency domain of images and graphs.

In this chapter, we explore the characteristics of adversarial attacks from [256] and [71] to

see how a low-rank approximation approach can help to defend against adversarial attacks.

4.3 Proposed Method

In Section 4.3.1, we first briefly talk about two of the recent adversarial attacks.

Next, in Section 4.3.2, we explain our proposed methods to improve the performance of the

recommender system when adversarial user profiles are present.

4.3.1 Adversarial Attacks in Recommender Systems

In this section, we investigate the characteristics of two different algorithms to

generate adversarial users to attack recommender systems. Below, we explain the threat

model for each method.

Attack I - RecSys20

The first adversarial model is proposed by Tang et al. [256]. This method uses

publicly available data used by recommender systems to learn about user preferences and

generates fake user profiles to maliciously influence the recommender system. The malicious

intention is to boost the chance of a target item being recommended to users. Using a

surrogate model, fake users profiles are learned as a bi-level optimization problem. The

inner objective is to minimize the loss of the surrogate model with the presence of the fake

users and the outer objective is to minimize the loss of the adversarial model by maximizing

the chance of recommending of target items to real users.
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Attack II - RecSys19

The second method is proposed by Christakopoulou et al.[71] which generates

fake users in two steps. Their proposed framework first uses deep convolutional generative

adversarial network (DCGAN) [230] to generate initial fake user profiles. These generated

user profiles have a similar rating distribution to the real users. Next, their model iteratively

updates the fake user profiles to maximize the hit ratio of a target item(s). GAN generates

realistic-looking user profiles that result in an unnoticeable attack. Figure 4.1 compares real

vs. fake user profiles generated using GAN.

(a) (b)

Figure 4.1: (a) Real user profiles vs. (b) fake user profiles learned by DCGAN for the
MovieLens dataset. Black pixels indicate missing ratings while bright pixels indicate ratings
for movies. The maximum rating is 5 that corresponds to white pixels.

In [71], the assumption is that the recommender system is oblivious to the existence

of an adversary, therefore it optimizes its loss over all given user profiles, including the fake

profiles.

Previous study on adversarial attacks on images and graphs [77, 93, 95] elaborated

the fact that adversaries mainly impact high-frequency components of the data to remain

unnoticeable. We are interested to examine if the same observation could be extended to
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adversarial recommender systems. In the next section, we propose different methods to

diminish the negative impact of adversarial users.

4.3.2 Defense Methods

In this section, we introduce three low-rank defense methods to lessen the harm of

fake users and improve the performance of the recommender system.

Fake User Detection

Our goal is to train a classifier on real and fake user profiles that can successfully

detect fake users. Once fake users are detected, they can be removed from the input data

fed to a recommender model to improve its performance. A good choice of a classifier is a

model that is simple and can run very fast during to be applicable in online recommendation.

Also, it should have high recall because false negatives are very costly and we do not want

to misclassify fake users as real ones, whereas classifying some of the real users as fake (false

positive) does not harm the recommendation. We use Support Vector Machine (SVM) model

to classify fake and real users. The training data is highly imbalanced (131 fake users vs.

13.1k real users) and extremely sparse (99.7% sparsity). For such a high-dimensional data

classifiers will have a poor performance. We use Principal Component Analysis (PCA) to

reduce the dimensionality of the data and then train the classifier in the lower-dimensional

space. A 2D visualization of data considering the first two principal components is illustrated

in Figure 4.2. As shown in Figure 4.2, points corresponding to fake and real users are

separable in the 2D space. A preferred model should detect fake users (true positives) with

high confidence while the number of false negatives is low. A fake user misclassified as a
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real user can harm the recommender system, but detecting a real user as a fake once is safe.

Therefore, a good model should have a high recall. Once a high-performing model is found,

detected fake users by the model are removed from the dataset and recommender model is

trained on the rest of the data.

Figure 4.2: 2D visualization of Gowalla dataset and learned fake users using PCA transfor-
mation.A simple SVM model is able to detect fake users, shown in blue, from real users,
depicted in red

Local Low-rank Reconstruction

Despite the successful performance of fake user detection defense technique, it has

some limitations. It is a supervised model and requires training instances and examples of

fake user profiles to train the classifier. Therefore, for different threat models, we require

to obtain fake user examples and train our model against them. It is not always feasible

to consider every different attack model and there are various unknown adversaries. The

goal of this section is to propose an unsupervised defense model that can be applied without

prior knowledge about the adversarial examples.
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The number of fake users generated by adversarial models is very small compared

to the number of real users in the system. Adversarial model generates fake users that mimic

the same behavior of real users to avoid being easily detected and remain unnoticeable. The

fake users added to the system forces the recommender model to boost the hit ratio for

the target items and the overall performance of the system is preserved for imperceptibility

reasons. The impact of these fake users are very subtle compared to the impact of large

number of real users and with similar intuition as [93], a low-rank solution is able to alleviate

the negative impact of fake users. For a large user-rating matrix, performing a low-rank

SVD requires a fairly large rank to capture main components of the data which makes the

reconstruction slow. Also, reconstruction will fill the missing values and adds new values

to the rating matrix. We perform local SVD low-rank reconstructions on small patches

of the rating matrix and put the reconstructed patches back together to reconstruct the

entire rating matrix. Reconstruction of small patches requires a very small SVD rank and

can be done in parallel to speed up the process. In the experimental evaluation that

follows, we consider two cases where adversarial users are absent or present and share how

the performance of the recommender system is affected by the local low-rank reconstruction

in both cases.

Low-rank Transformation

Low-rank SVD reconstruction is able to alleviate the impact of fake users. However,

we cannot infer that the performance improvement is due to the fact that the adversarial

attacks are high-rank. Low-rank reconstruction introduces some additional ratings that
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could lead to performance improvements. To investigate this, we try to answer the following

questions:

• What is the impact of low-rank SVD components?

• What is the impact of new rating values introduced from reconstruction?

To answer the first question, we transform latent factors of the matrix factorization

model into SVD space. We perform the following steps:

Given XA which is the attacked ratings matrix:

XAk
= UkΣkV

T
k (4.1)

where Pa = UkU
′
k and Pb = VkV

′
k are the transformation matrices. These Pa and Pb matrices

are used to transform latent factors A and B into the SVD space:

A′ = PaA and B′ = PbB (4.2)

Original latent factors A and B are replaced with the transformed latent factors A′ and

B′. According to our experimental evaluations described in Section 4.4.2, transforming MF

latent factors into SVD space improves the performance of the recommender system. This

shows that the performance improvement we gain from SVD low-rank reconstruction is not

all because of the new ratings, and SVD components are able to discard the adversarial

components.

To answer the second question regarding the impact of new rating values, we are

interested in comparing the impact of transformation vs. new rating values to see which one

yields higher improvements. We gradually add new rating values to the original attacked

profile matrix from 0% (no new value) to 100% (all of the new values considered). The
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experimental evaluations reveals that recommender systems gains a higher benefit when

we perform latent factor transformation along with new ratings generated after low-rank

reconstruction.

4.4 Experiments

We describe the dataset and experimental settings for our experiments and we

share the results for each adversarial model described in Section 4.3.1.

4.4.1 Attack I - RecSys20

Dataset and Experiment Setup

In this part of our experiments, we use Gowalla [69] dataset and we follow the same

procedure as explained in [256] to preprocess the data. Gowalla dataset is an undirected

location-based scocial network where users can share their locations. After preprocessing,

the dataset has 13.1k users and 14.0k items. Data is randomly split into training and test

set with ratio 80:20. Fake users are generated following the evaluation protocol explained

in [256]. Target items are randomly selected from 4 different click percentiles:

• Head: items with total clicks greater than 95th percentile.

• Upper torso: items with total clicks between 75 and 95 percentiles.

• Lower torso: items with total clicks between 50 and 75 percentiles.

• Tail: items with total clicks less than 50th percentile.

In our experiments we only consider head target items and Weighted Regularized

Matrix Factorization model [137] with stochastic gradient descent optimization (WRMF(SGD))
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Figure 4.3: Performance of SVM classifer on the imbalanced data. SVM with second degree
polynomial kernel achieves high recall with lower number of PCA components (n=20).

that achieves stronger adversarial performance according to the results shared in [256]. Num-

ber of fake users generated is 1% of real users, i.e. 131 fake users are generated to boost the

hit ratio of the target items (HR@50).

Fake User Detection

Figure 4.3 shows the results of 10-fold cross-validation for the SVM model with

different Kernels trained on various PCA dimensions. Also, we consider different cases

where the training data is imbalanced or down-sampled. In the case of imbalanced data we

use stratified cross-validation.

SVM model with second degree polynomial kernel achieved the highest recall at

PCA with 20 components. Lower number of PCA components are preferable as it is faster

to transform the data. We pick the SVM model with second degree polynomial to detect

and remove fake users. The SVM classifier first scans all the user profiles and predicted fake

users are removed from the data. Next, Recommender system recommends items to users

using the sanitized data. The Performance of the WRMF(SGD) model with and without
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Defense Data Overall Target Items
Recall@50 HR@50 Recall@50 HR@50

No Defense Clean 0.2895 0.7590 0.0207 0.1021
Attacked 0.2884 0.7580 0.0261 0.1415

2nd degree polynomial SVM Clean 0.2887 0.7580 0.0203 0.1008
Attacked 0.2898 0.7592 0.0252 0.1095

Table 4.1: Impact of the SVM fake user detection on the performance of WRMF(SGD)
model on clean and attacked data from Gowalla dataset.

the presence of the fake user detector is reported in Table 4.1. In our experiments, we report

the performance on the target items to show how the defense method reduces the chance of

target items being recommended to users. In addition, we report the overall performance

of the recommender system to show that the defense method does not adversely affect the

overall performance of the recommendation model.

SVM model is able to detect about 85% of fake users and causes the target items

HR@50 to drop about 4% which is very close to the performance of the recommender system

on the clean data.

Local Low-rank Reconstruction

In this section, we share the result for the impact of the low-rank reconstruction

on the recommender system’s performance. Table 4.2 summarizes the performance of the

WRMF(SGD) model with low-rank SVD reconstruction to defend against the fake users.

Parameters of the local SVD reconstruction is reported in the form of [patch size, SVD rank].

Patch size = x means the entire rating matrix is considered as a single patch. We report

63



different settings of hyperparameters that helped to reduce the hit ratio on the target items

while maintaining the overall performance of the recommender model.

4.4.2 Attack II: RecSys19

Dataset and Experiment Setup

We used the MovieLens 100k dataset [128] in our experiments. MovieLens 100K

dataset contains ratings for 1682 movies from 943 users. Ratings are within range 1 - 5. The

recommender system model in our experiments is probabilistic matrix factorization (PMF)

[199]. We use metrics such as recall@K and precision@K to report the performance of the

recommender system.

Defense Data Overall Target Items
Recall@50 HR@50 Recall@50 HR@50

No Defense Clean 0.2895 0.7590 0.0207 0.1021
Attacked 0.2884 0.7580 0.0261 0.1415

[100, 90] Clean 0.2893 0.7580 0.0241 0.1105
Attacked 0.2889 0.7612 0.0260 0.1138

[300, 80]] Clean 0.2855 0.7515 0.0216 0.0987
Attacked 0.2838 0.7514 0.0253 0.1091

[150, 20]] Clean 0.2609 0.7148 0.0238 0.1092
Attacked 0.2601 0.7168 0.0236 0.1004

[x, 3500] Clean 0.2500 0.7117 0.0209 0.0963
Attacked 0.2468 0.7090 0.0236 0.1029

[x, 5000] Clean 0.2866 0.7563 0.0231 0.1049
Attacked 0.2866 0.7582 0.0278 0.1226

Table 4.2: Impact of the local SVD reconstruction on the performance of WRMF(SGD)
model on clean and attacked data from Gowalla dataset.
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Figure 4.4: Performance of PMF recom-
mender with low-rank reconstruction of
clean and attacked user profiles.
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Figure 4.5: Impact of different PMF ranks
on the performance of recommender system
for clean and attacked data.

Low-rank Transformation

In our experiments, We performed low-rank reconstruction of the attacked user

profiles and fed it to the PMF model. Figure 4.4 illustrates how SVD low-rank reconstruc-

tion of the attacked profiles, improves the performance of the recommender system. We

performed this experiment for different PMF ranks to evaluate the impact of PMF ranks

on the performance of the recommender system and the result is shown in Figure 4.5. SVD

low-rank reconstruction is applied with different ranks ranging from 10 to 200. Both clean

and attacked user profiles gain benefits from low-rank reconstruction up to rank 120. SVD

reconstruction using Ranks greater than 120 incorporates the adversarial components and

leads to a performance drop.

Moreover, to investigate if the performance improvement is because of the high-

rank nature of the attack or due to the new rating values introduced after the reconstruction

which where originally missing, we performed another set of experiments following the steps
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explained in Section 4.3.2. The performance of the recommender system after the trans-

formation is shown in Figure 4.6 and we can observe that the recommender model benefits

from the transformation without considering the new rating values.

In another experiment, we gradually added new ratings from SVD reconstruction

together with transformation of latent factors. Figure 4.7 shows the results. 0% means

that no new rating values is added and the performance is reported on the original attacked

matrix. 100% means all of the new rating values is added to the ratings matrix. Dashed lines

show the performance of the recommender before transformation while gradually introducing

new rating values and the solid lines are the performance after the transformation and

introducing the new rating values. These plots show that the improvement gained from

transformation is much higher than what is gained from new ratings added. For SVD ranks

50 and 100, adding new values does not affect the performance of the recommender, but at

SVD ranks 150 and 200, adding more data yields higher recall@10 before transformation.

On the other hand, transformation improves the performance of the recommender slightly

when there are no new ratings added. With 100% new ratings added, transformation yields
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Figure 4.6: PMF latent factors of the attacked rating matrix are transformed into SVD
latent factor space.
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Figure 4.7: Transformation of PMF latent factors into SVD latent factor space vs. adding
new rating values from SVD low-rank reconstruction

significant improvement in recall@10. Therefore, transformation and adding new ratings do

not have a significant effect individually, but together they improve the result significantly.

Impact of fake profiles learned by GAN

In this section, we explore how fake profiles learned at different epochs of GAN

affect the performance of the recommender system. In this experiment we only consider fake

profiles generated by GAN and the second step of the attack which is iterative gradient is

not considered here. Performance of the recommender system with respect to recall@10 and

precision@10 is illustrated in Figure 4.8. The performance of the recommender system does
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not vary significantly over user profiles learned from various epochs of GAN. Performance

corresponding to epoch value 50 is slightly higher.
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Figure 4.8: Impact of fake profiles learned at different epoch of GAN on the performance of
the recommender system.

4.4.3 Combination of Attack I and Attack II

In this section, we are interested to see if our proposed method is able to defend

against multiple types of adversarial attacks. Evaluating the performance of our model on

a combination of different attacks is vital as in real world recommender systems there could

be various attackers with different adversarial objectives who try to inject a group of fake

users to serve their malicious purposes. We performed local low-rank reconstruction on

the attacked MovieLense 100k dataset with 250 fake users, half generated using attack I

(RecSys20) threat model and the other half generated using attack II (RecSys19) model. A

summary of results on the combined attacks is reported in Table 4.3. The Combination of

the two attacks i.e., RecSys19 + RecSys20, creates a stronger attack that achieves a higher

hit ratio on target items compared to the hit ratio of each individual attack. Despite a
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Defense Attack Overall HR@10 Target Items HR@10

No Defense None 0.8293 0.1432
RecSys19 0.8271 0.1505
RecSys20 0.8346 0.1824
RecSys19 + RecSys20 0.8452 0.2354

[200, 50] None 0.8006 0.1697
RecSys19 0.8165 0.1241
RecSys20 0.8250 0.1654
RecSys19 + RecSys20 0.8293 0.1569

Table 4.3: Impact of the local SVD reconstruction on the performance of WRMF(SGD)
model on MovieLens 100k dataset while various adversarial users are present.

more detrimental attack, our low-rank reconstruction defense is yet able to resist against

the attack and reduce the hit ratio on the target items.
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Chapter 5

Tensor-based Complementary

Product Recommendation

Chapter based on material published in IEEE Big Data 2021 [94].

5.1 Introduction

Customers face millions of products in an online grocery shopping experience, mak-

ing the shopping process an exhausting and confusing task for them. Recommender systems

are valuable tools that help the customer by narrowing down the search space to products

that the customer is desired to see and purchase. Personalized recommender systems are

critical components of online shopping platforms. Personalized recommendations based on

customers’ shopping habits are beneficial to customers and can lead to sales growth. In

online grocery shopping, customers often follow repetitive shopping habits. They tend to

purchase specific products over and over and rarely switch to other similar products. There-
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Figure 5.1: Example of complementary products recommended according to the current
product in the basket of the customer. Here different types of salsa are recommended to the
customer with a bag of chips in his/her shopping cart.

fore, analyzing customers’ shopping behavior and providing personalized recommendations

is of high importance in an online grocery shopping platform.

One of the main types of personalized recommendations is complementary rec-

ommendations. Considering a single shopping session, products that are often purchased

together in one basket are considered to be complementary to each other. Complementary

products are related to each other in some way and together fulfill customer needs. Chips

and salsa, burger and burger buns, peanut butter and jelly are examples of complementary

products often purchased together. To improve customer’s experience during online shop-

ping, it is vital to recommend relevant products according to what currently exists in the

customer’s basket.

A good complementary recommender system is essential for various reasons:

• Shopping efficiency: It helps the customer to build the shopping basket efficiently

and reduces exploration time. They can quickly find the relevant products from the
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recommendation list, instead of having to search for them. Thus, this can help cus-

tomers save time. According to Instacart platform, on average, it takes about 45

minutes to build a basket. By providing relevant and personalized recommendations,

this time can be reduced and the shopping process will get more convenient for the

customer.

• Novel product recommendation: Novel products for a customer are those that

the customer has never purchased before. Sometimes, customers have no idea about

what could be complementary to the products in their basket. Such basket-contextual,

personalized recommendations can help customers discover novel products, especially

at the end of the shopping process.

• Business growth: From a business perspective, novel product purchases can help to

increase the basket size of the customer and generates incremental Gross Merchandise

Value (GMV). Moreover, customers who have a seamless experience are highly likely

to come back for future shopping.

This chapter introduces a tensor-based method to address the complementary rec-

ommendation problem in online grocery shopping. Tensor is used to represent products

co-purchased by customers and tensor decomposition techniques are used to find product

and customer embeddings in low-dimensional space. In the next step, the embeddings are

used to score products with respect to the current basket of the customer and products with

the highest scores are recommended as complementary to the current basket. Tensor-based

recommender systems have shown great success by considering multiple aspects of data and

incorporating additional information such as context. Tensor modeling and factorization
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learns a joint representation of the items and the context, which has been shown to result

in richer representations that can provide better estimation for missing ratings/scores [272].

Our contributions are as follows:

1. Novel tensor-based formulation: We introduce a tensor-based method that rep-

resents complementary product pairs in the form of a three-mode tensor and we use

tensor decomposition techniques to infer product and user embeddings.

2. Efficient Solution: We consider mini-batch tensors that allow parallel and sequential

tensor decomposition to handle large-scale datasets.

5.2 Related Work

5.2.1 Frequent Purchase Mining

In the field of complementary product recommendation, one basic and trivial

method is to recommend products according to their frequency of purchase [127]. In a non-

personalized recommendation task, most frequently purchased products by all customers are

recommended to the user, whereas in a personalized task, most frequently bought products

by the current user are recommended to him/her. In both cases, recommended products

ignore the current basket content.

5.2.2 Collaborative Filtering and Matrix Factorization

Many of the recent work use collaborative filtering and matrix factorization tech-

niques to model user-product and product-product relationships. Basket-sensitive Factoriza-

tion Machine (BFM) and constrained BFM (CBFM) methods use a combination of matrix
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factorization and association rules to provide complementary recommendations [170]. Col-

laborative filtering and matrix factorization technique only consider user-item interactions

and do not take advantage of additional information available such as product/user features

and contextual information. However, tensor-based recommender systems are able to in-

corporate this additional information and improve the performance of the recommendation.

When there is an inherent structure between the interactions, then unfolding that structure

may not be efficient in terms of our ability to learn a good representation with the given

amount of data. This observation has also been shown in non-factorization-based scenarios

where structure is not ignored and helps learn better recommenders [46]. Powerful recom-

mender systems also consider contextual features and matrix factorization techniques only

consider first-order interaction of users and items and ignore the additional contextual fea-

tures that can improve personalized recommendation. For instance, considering contextual

information such as time and location lead to stronger recommendations [150], while matrix

factorization methods cannot be easily adapted to leverage such information.

5.2.3 Representation Learning

Another group of studies use popular word representation learning techniques in

NLP, like skip-gram, to generate product recommendations. Liang et al. [179] combined

matrix factorization and word2vec item embeddings to learn product recommendations.

Item2vec [42] is an extension of word2vec that infers item-item relations by learning items

representations in a low-dimensional space. Prod2vec [121] is another method in this

category that learns product representations from user purchase histories. An important

characteristic of a complementary recommender system is to jointly learn product-product
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and user-product relations, and the aforementioned methods fail in this aspect . In a three-

mode tensor representation where one aspect is product-product relationships and another

aspect is user-product interactions, tensor decomposition provides latent factors that capture

the hidden structure of data by jointly optimizing on both aspects. For instance, in a three-

mode tensor, tensor factorization’s objective is as follows:

minimize
A,B,C

‖X− [[A,B,C]]‖2F (5.1)

where A, B, and C are latent factor matrices derived from the tensor factorization and the

factor matrices that minimize the objective function are learned at the same time.

One of the state-of-the-art methods in complementary product recommendation

is the triple2vec method [268]. This method also utilizes skip-gram embedding learning

framework. Triple2vec performs Skip-gram with negative sampling over (product i, product

j, user u) triples. Two products co-purchased in a basket by a user form a triple. Triples

are used to generate product and user embeddings. Triple2vec inference time increases with

basket size. To address this problem, RTT2vec (Real-Time Triple2vec) [188] was proposed

by Mantha et al. that transforms inference into a similarity search problem and improves the

inference time by utilizing approximate nearest neighbor indexing methods such as ANNOY,

Faiss, and ScaNN[34], [148], [124].

5.2.4 Tensor-based Recommenders

Tensor-based methods can be considered as an extension of matrix factorization

recommender system . In matrix factorization, we are dealing with 2-dimensional data, while
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in tensor factorization techniques, data is represented in higher dimensions (≥ 3). Tensor-

based methods are able to analyze multiple aspects of data simultaneously and jointly.

Matrix factorization models extract user-product interactions, while tensors are able to cap-

ture multi-aspect interactions. Tensors are great tools to represent multidimensional data

and by considering multiple aspects of data into decomposition, they have been successful

in recommender systems [150, 113],[66, 286]. In this chapter, we leverage the multi-aspect

property of tensors to model product-product interaction within each basket for different

users as a three-mode tensor. Decomposing this tensor allows us to find latent components

that reveal product-product and user-product interaction to infer personalized complemen-

tary recommendations.

5.3 Proposed Method

5.3.1 Tensor decomposition to learn product and user embeddings

Let P = {p1, p2, ..., pM} be the set of M products and U = {u1, u2, ..., uN} be

the set of N users. Given Bu ⊂ P , the set of products in the current basket of user

u ∈ U , the goal of complementary product recommendation is to recommend top-k products

R = {p∗1, p∗2, ..., p∗k} such that p∗j /∈ Bu. Theses p∗j products are considered complementary

to products in the current basket Bu.

To model complementary products, we consider product-to-product relationships

for each user . Representing product-to-product relationships per user allows us to provide

personalized complementary recommendations. Two products that are always purchased

together by a user may not be complementary for another user. For instance, user A mostly
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purchases chips and salsa, but user B purchases chips and guacamole most of the time. If

we only consider global product-to-product relationships, complementary recommendations

may be compatible with the need of the majority of users, but it does not fulfill the needs of

users who do not behave like others and have their own preferences. For instance, assume

most of the users consume meat, but there are small number of users who are vegetarian.

By only considering the global product-to-product relations, we ignore the minority group.

However, someone who is vegetarian does not want to see meat recommendations. There-

fore, we require to capture the behavior of each user separately and recommend products

compatible with their shopping profile. We represent this information in the form of a

three-mode tensor (three-dimensional array) X. In this chapter, A tensor is denoted by

an underlined bold uppercase. Next, we learn product and user embeddings using tensor

decomposition techniques. The idea behind tensor factorization is to represent users and

products in a lower-dimensional space. Each element of the three-mode tensor X represents

the number of times two products have been purchased together by a user:

X (i, j, k) = cijk; pi, pj ∈ P and uk ∈ U (5.2)

where cijk is the number of times that user uk has purchased two products pi and pj together.

To capture complementary relationships between products, we need to track prod-

ucts that are co-purchased in a single basket. Traditional matrix factorization methods

ignore such information and only consider user-product interactions. To better elaborate

the difference between matrix and tensor representations, consider the following example.

Given 3 users uA, uB, and uc, assume the following transactions for them:

• User uA performs one transaction:
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– Hot dog, hot dog buns, coke, and mustard

• User uB performs the following three transactions separately:

– Basket #1: Hot dog and hot dog buns

– Basket #2: Coke

– Basket #3: Mustard

• User uC performs a single transaction:

– Hot dog, hot dog buns, and mustard

Figure 5.2 shows matrix vs. tensor representation corresponding to the aforemen-

tioned example. Using the matrix representation, users uA and uB are exactly similar

(a) Matrix representation

(b) Tensor representation

Figure 5.2: (a) Matrix representation vs. (b) Tensor representation of transactions data.
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because they have purchased the same products. However, using the tensor representation,

users uA is more similar to uC than user uB, and this is what we expect as users uA and

uB have performed similar transactions. Classical matrix factorization methods predict the

probability of recommending an item given a user (P (item|user), whereas for the task of

complementary recommendation, we are interested in computing the probability of recom-

mending an item given a user and their current basket (P (item|user, basket)).

Traditional and popular tensor decomposition like CANDECOMP/PARAFAC (CP)

[129] and Tucker [265] generate three different latent matrices corresponding to each mode

of the tensor. Here, in our problem, the first two modes of tensor X are identical and corre-

sponds to products. Therefore, we only require two of the latent factor matrices. Tucker-2

is a restricted form of Tucker decomposition in which two of the factor matrices are equal.

Another decomposition technique that can be applied to our problem is RESCAL [205].

RESCAL has been used to learn the inherent structure of relational data. Here, we are also

interested in learning the relationship between products purchased together and RESCAL

tensor decomposition method is able to capture this type of relationship between products.

Interested readers may refer to [217, 160] for a detailed comparison of tensor decomposition

techniques.

Figure 5.3: RESCAL tensor decomposition
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Figure 5.3 shows the RESCAL decomposition of user-product tensor X. RESCAL

decomposition can be formulated as follows:

X ≈ ARAT (5.3)

Xk = ARkA
T (5.4)

where A is an M × d latent factor matrix that contains products embeddings and tensor R

which is an d× d×N is the latent factor corresponding to user embeddings. Xk = X(:, :, k)

is called a frontal slice of the tensor X and represents product co-purchased by user uk.

Likewise, frontal slice Rk = R(:, :, k) is the user embedding corresponding to user uk.

The factor matrices A and R are computed by solving the regularized minimization

problem [205]:

minA,Rk
f(A,Rk) + g(A,Rk) (5.5)

f(A,Rk) =
1

2

(∑
k

‖Xk −ARkA
T ‖2F

)
(5.6)

g(A,Rk) =
1

2

(
‖A‖2F +

∑
k

‖Rk‖2F

)
(5.7)

where f(A,Rk) tries to minimise the distance and g(A,Rk) is the regularization part to

avoid overfitting.

The product embedding matrix A is shared across all users and by taking the dot

product of this matrix and its transpose, products most frequently bought together will have

a higher score. On the other hand, the user embedding matrix Rk captures the interaction

between products that are mostly purchased by a specific user uk. Therefore, the matrix

Rk is used to adjusts the product-to-product scores for the user uk and therefore product pj
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that maximizes AiRkA
T
j is the personalized complementary product with respect to product

pi . To elaborate the idea further, consider the element-wise form of the equation 5.6:

f(A,Rk) =
1

2

∑
i,j,k

(
Xijk −AiRkA

T
j

)2 (5.8)

where Ai = A(i, :) and Aj = A(j, :) are rows of latent factor matrix A that are embedding

vectors of length d corresponding to products pi and pj , respectively. Assume, user uk cur-

rently has product pi in their basket and our goal is to find a product that is complementary

to pi. To minimize f(A,Rk), the term AiRkA
T
j should be as close as possible to the value

Xijk. If products pi and pj are frequently purchased together by user uk, the value of Xijk

will be large and therefore the term AiRkA
T
j should be maximized. Given a product pi, its

complementary product pj will have an embedding which is closest to the embedding corre-

sponding to pi, i.e. the dot product of AiATj will have the highest score. Thus, product(s)

that maximize the following equations are considered as top N complementary products

with respect to product pi:

arg max
j∈P\Buk

AiRkA
T
j i ∈ Buk (5.9)

5.3.2 Optimizing RESCAL Decomposition

The algorithm to compute factor matrices in RESCAL decomposition performs

alternating updates of matrices A and Rk for all k until f(A,Rk)

‖X||2F
converges to some small

threshold or a maximum number of iterations is exceeded.
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For a large-scale dataset with millions of users and thousands of products, we

will have a huge sparse tensor, and the alternating algorithm is very slow and inefficient.

RESCAL is a restricted form of TUCKER decomposition in which one of the modes is left

uncompressed, i.e., one of the latent factors is the identity matrix. This restricted Tucker

decomposition is known as Tucker-2 [265]. To speed up the decomposition algorithm, we

use Higher-Order Singular Value Decomposition (HOSVD) algorithm [141]to approximate

factor matrices. HOSVD algorithm does not compute the optimal solution, however, it

is very popular due to its simplicity. HOSVD algorithm computes the factor matrices by

performing singular value decomposition on the matricized form of the tensor across each

mode (dimension).

Moreover, performing tensor decomposition on such a large tensor requires lots of

memory. To solve this problem, instead of performing decomposition on a single tensor

containing all users’ data, we split the tensor into smaller batches that only contain a subset

of users and perform decomposition on each batch separately. This allows us to run the

decomposition on datasets with millions of users. Also, adding new users to the dataset

does not require retraining the model on the entire dataset and we can only train our model

on the batch of recent users.

5.3.3 Optimizing Inference Time

To achieve real-time inference, we need further improvements. With a large number

of products in the dataset, computing product scores is very time-consuming and model

inference time increases with the basket size. To find top-k products that maximize the

score with respect to the current basket, we need to perform dot product between basket
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product embeddings and all other products in the dataset. To speed up the process, we

use hashing technique by using Approximation Nearest Neighbor (ANN) indexing library,

ANNOY1. This allows us to perform the approximate dot product efficiently. The dot

product of two vectors is maximized when they are most similar to each other. We create

the ANN index on all products in the dataset. For each basket, the query vector Qi is

AiRkfor all products pi ∈ Buk and we would like to find the products in the dataset which

are closest to the query vector. Therefore, the inference problem can be rewritten as follows:

arg max
j∈ANN(Qi)

QiA
T
j

Qi = AiRk; i ∈ Buk

(5.10)

Now, instead of searching through all products in the dataset to find top-K recom-

mendations, we only need to search through L products where L = |ANN(Qi)| << M .

5.4 Experiments

5.4.1 Dataset and Experiment Setup

In our experiments we used Instacart public dataset published for Kaggle compe-

tition in 20172. Th statistics of the Instacart dataset is reported in Table 5.1.

To split transaction data into train/validation/test sets, we follow the setting men-

tioned in [268]: Transactions are sorted chronologically. For each user, the most recent

transaction is used for testing, the second-to-last transaction is used for validation and all
1https://github.com/spotify/ annoy
2https://www.kaggle.com/c/instacart-market-basket-analysis/data
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No. of transactions 3,345,786
No. of users 206,209
No. of products 49,684
No. of products purchased at least 10 times 42,987
Average basket size 10.10

Table 5.1: Instacart Dataset statistics

other transactions are used for training. For users with only one transaction, it will be used

for training, and for users with two transactions, the first transaction is used for training

and the last one is used for testing.

5.4.2 Evaluation

Metrics

We evaluate the performance of models with the following metrics: Recall@K,

NDCG@K, and Precision@K. Recall@K measures the fraction of relevant items correctly

recommended in the top-K items. NDCG@K (Normalized Discounted Cumulative Gain) is

a ranking metric that uses position in the recommendation list to measure gain. Metrics are

reported at K=10.

Results

To evaluate the performance of our method on the test dataset, we randomly select

80% of the products in the basket as input, and the rest of the products are used as reference

for evaluation.
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Method Recall@10 NDCG@10 Precision@10

Popularity 0.104 0.081 0.029
triple2vec (d = 32) 0.103 0.162 0.022
tensor (d = 32) 0.145 0.172 0.037
triple2vec (d =128) 0.149 0.178 0.030
tensor (d=128) 0.192 0.193 0.047

Table 5.2: Peformance of the proposed model vs. popularity and triple2vec baseline methods.

We compare our method with two baselines: popularity, and triple2vec [268].

Popularity method always recommends the most frequently purchased products by all users.

For tensor-based and triple2vec methods, we report results for two different embedding

dimensions 32 and 128 to better understand the impact of embedding dimension on the

recommendation performance. Table 5.2 shows the results. Popularity does not consider

the context of the current basket and always recommends the most frequent products which

might be irrelevant with respect to the current basket. The popularity method memorizes

frequent purchases and lacks generalization power since it is unable to capture product

semantics. However, customers are often loyal to certain products and brands and repeatedly

purchase the same products and are reluctant to switch to some other products. Therefore,

the popularity method achieves an acceptable performance by memorizing the shopping

history of users. Our proposed tensor-based method outperforms popularity and triple2vec

in all cases. A larger value of the embedding dimension (d=128 vs. d=32) helps to better

estimate the original tensor and thus improves the performance of the model.

We also evaluate the proposed method and triple2vec for novel product recommen-

dations. Novel purchases are products that customer is purchasing for the first time. Intro-

ducing novel products to customers and encouraging them to purchase more products leads
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to larger basket size and higher GMV for the business. In the novel product recommendation

experiment, we are interested to see how many of the top K recommended items are novel

and the customer has never purchased them before. Sometimes customers are not aware of

possible complementary products and novel recommendations give them the chance to try

new complementary products that are frequently purchased by other customers. For the test

data in this experiment, we only considered transactions including at least 3 novel products.

These 3 novel products are used for inference and the rest of the basket is used as input of

the recommender system. The result for the novel complementary recommendation is shown

in Table 5.3. Both tensor-based method and triple2vec perform poorly in recommending

novel products. They mostly recommend products that have already been purchased by the

user. For future work, we aim to utilized coupled matrix-tensor factorization to leverage

product features and improve the performance of novel product recommendations.

Method Recall@10 NDCG@10 Precision@10

triple2vec-novel (d = 32) 0.012 0.0 0.005
triple2vec-novel (d = 128) 0.015 0.0 0.007
tensor-novel (d = 32) 0.010 0.0 0.005
tensor-novel (d = 128) 0.013 0.0 0.006

Table 5.3: Performance of the proposed model vs. triple2vec on novel complementary prod-
uct recommendation.

Handling Cold-Start Users

For new customers, we do not have a shopping history; therefore, it is not possible

to have a personalized recommendation. In this case, we can either have a non-personalized

recommendation and score products just based on the product embedding, or consider the
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average of all users’ embeddings as the user embedding for the new customer. In Table 5.4

we report the performance of the proposed model for the two mentioned cases. Here we only

report the result for the embedding dimension 128 that achieves a higher performance.

Method Recall@10 NDCG@10 Precision@10

tensor (d = 128)-average user 0.122 0.271 0.033
tensor (d = 128)-non-personalized 0.120 0.266 0.032

Table 5.4: Performance of tensor-based method in handling cold-start users.

The performance of personalized and non-personalized approaches to handle new

users are about the same and both have an acceptable performance to deal with cold-start

users.

Evaluating inference time

Here, We compare the inference time of the exact approach with the approximate

method using ANNOY library. Table 5.5 compares these two approaches for different bas-

ket sizes. The exact inference method which computes dot products between all product

embedding, gets very slow as the basket size increases and makes it inapplicable.

87



Inference Time (sec)

Basket size Exact method ANNOY

10 1.089 0.013
20 2.165 0.027
30 3.307 0.053
40 4.344 0.052
50 5.345 0.083
60 6.454 0.065
70 7.557 0.077
80 8.527 0.093
90 9.725 0.086
100 11.387 0.088
110 12.513 0.138
120 13.069 0.164

Table 5.5: Exact inference vs. approximate inference using ANNOY.
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Chapter 6

Conclusions

6.1 Conclusions

In this dissertation, we attempted to examine the characteristics of adversarial

attacks in various domains, including graphs, images, and recommender systems and we

aimed to find a unifying theme to defend against the adversarial attacks in these domains.

In Chapter 2, we investigated the properties of Nettack perturbations for graphs.

Due to the vulnerability of the node classification approaches to the adversarial attacks, we

highlighted the need for a defense system or robust node classification methods. We il-

lustrated that Nettack generates high-rank perturbations that can be discarded using a

low-rank approximation of the adjacency and feature matrices. We showed that a rank-10

approximation of the matrices is able to defend adversarial attacks with a high probability

and achieve a performance close to the performance on the clean graph. Furthermore, we

examined the robustness of t-PINE, a tensor-based node embedding against Nettack and

we observed that it is very robust for lower embedding dimensions and the robustness of the
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embedding decreases as the dimension gets bigger. In addition, we proposed an algorithm

to generate low-rank adversarial attacks that could fool both GCN and tensor-based em-

beddings. LowBlow perturbations are noticeable and the attacked graph does not have the

same degree distribution as the input graph. We also showed that modifying LowBlow to

only keep the edges that preserve the degree distribution makes it a high-rank attack similar

to Nettack. In conclusion, unnoticeable adversarial attacks on graphs impose high-rank

changes in singular values of the input graph which can be greatly eliminated with our

proposed low-rank defense mechanism.

In Chapter 3, we explored adversarial attacks on images and examined to what

extent low-rank tensor decomposition of perturbed images during the preprocessing step

helps to defend against adversarial attacks. The low-rank approximation of the perturbed

image is then fed to the deep network for the task of classification. We evaluated our

method against popular adversarial attacks: FGSM, I-FGSM, and PGD. We illustrated that

considering images in small batches better captures the latent structure of perturbations

and helps to improve the performance of the model. We also showed that how different

configurations allow to trade-off between accuracy and runtime.

In Chapter 4 of this dissertation, we attempted to defend against adversarial attacks

on recommender systems. we investigated two adversarial attacks on recommender systems

and demonstrated that low-rank reconstruction and transforming into SVD space helps to

reduce the impact of the attack and improve the performance of the recommender system.

We also demonstrated that our low-rank solution can resist adversarial users generated by

different threat models.
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Chapter 5, evaluates the effectiveness of low-rank solutions on recommender sys-

tems to address the problem of complementary product recommendation. To this aim, we

proposed a tensor-based model to address the complementary product recommendation task

in online grocery shopping. A three-mode tensor was used to model product-product co-

purchases by users. Next, RESCAL tensor decomposition technique was used to learn latent

factors of the tensor that correspond to product and user embeddings. These embeddings

were utilized to infer complementary products given a current basket of a user. To improve

the training process to handle large-scale datasets, we performed decomposition on small

tensors including a subset of users and their transactions. Decomposition of mini-batches

allows to train the model both in parallel and sequentially. If enough memory is available,

one can take advantage and run the decomposition in parallel. However, in limited memory

systems, we can perfectly run the model sequential but in a longer time. Moreover, we lever-

aged the approximate nearest neighbor indexing library, ANNOY, to speed up the inference

process and allow real-time inference.
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