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Abstract

Quantitative Ecology and the Conservation of Biodiversity:
Species Richness, Abundance, and Extinction in Human-Altered Landscapes

by

Justin Adam Kitzes

Doctor of Philosophy in Environmental Science, Policy, and Management

University of California, Berkeley

Professor Adina M. Merenlender, Co-chair

Professor John Harte, Co-chair

The goal of conservation biology is to understand and prevent the loss of biological
diversity. Modern conservation science relies heavily on four major quantitative methods:
reserve site selection algorithms, species distribution models, population viability analyses,
and species-area relationships. These methods, however, have several longstanding and un-
resolved shortcomings, including extensive data requirements, long computation times, and
important simplifying assumptions, that limit their ability to inform conservation decisions
in many real landscapes. This dissertation develops new approaches in quantitative ecology
that address these shortcomings through the use of simulation modeling, probability theory,
machine learning, modern statistics, and economic input-output analysis.

Chapter 2 examines the optimal design of reserve networks for preventing extinction of
terrestrial mammal species, demonstrating that the match between a species’ body size and
the spatial scale of a landscape can be used to determine which species will benefit from a
clustered reserve network design. Chapter 3 derives two new macroecological metrics, sim-
ilar to the species-area relationship, that provide probabilistic estimates of single-species
extinction risks and community-wide extinction rates in landscapes undergoing habitat
loss. Chapter 4 uses data from acoustic surveys to examine the road ecology of California
bats, finding that total bat activity, and the activity of four common species, is decreased
in the vicinity of large highways. Chapter 5 presents a “wildlife footprint” analysis that
combines global bird and mammal range maps, data on the human appropriation of net
primary productivity, and economic input-output tables to link specific human consumption
activities to decreases in wild bird and mammal populations.
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Chapter 1

Introduction

At the start of the twenty-first century, almost no corner of the globe remains untouched
by the influence of humans [1–3]. Humans currently occupy 38% of the Earth’s terrestrial
surface for agricultural production [4], appropriate 24% of global net primary productivity
[5], use 30% of the terrestrial renewable fresh water supply [6], and emit sufficient
greenhouse gases to change the workings of the global climate system [7]. The magnitude
of these and other impacts has led atmospheric scientist and Nobel Laureate Paul Crutzen
to propose that the planet has entered a new geological epoch, the Anthropocene, that is
defined by the presence of human-induced global change [8, 9].

The scope and scale of human influence on the planet has led unavoidably to negative
consequences for non-human species, with biologists suggesting that the planet may be in
the midst of a sixth great mass extinction event [10]. Currently, 25% of mammals, 13%
of birds, and 41% of amphibians are considered threatened, and most major indices of the
health of global biodiversity are in decline [11, 12]. Both because non-human organisms,
species, and communities arguably have intrinsic value in their own right and because the
services provided by natural ecosystems form the foundation for human societies [3, 13],
the potential for extensive losses of biodiversity represents a major concern for humanity.

Growing concerns about biodiversity loss led to the emergence in the mid-1980s of the
interdisciplinary field of conservation biology, which has been described as a “mission-
oriented discipline comprising both pure and applied science” that embodies the “overarch-
ing normative assumption. . . that biodiversity is good and ought to be preserved” [14–16].
Although the basic principles of conservation biology are not new [17], the field has been
distinguished by its strong foundation in quantitative theory and modeling, recognition of
the inherent value of biodiversity, and incorporation of tools and perspectives from outside
of the biological sciences [16].

Much previous academic research in conservation biology has focused on the development
of quantitative methods that assist practitioners in prioritizing management actions to
reduce biodiversity loss. Four such methods that have become particularly integral to
the practice of conservation biology are reserve site selection algorithms, which use
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optimization and decision science techniques to design networks of reserves to protect
biodiversity [18–20], species distribution models, which use niche theory and statistical
tools to predict the occurrence of a species across an unsurveyed landscape [21–23],
population viability analyses, which use stochastic modeling and other methods from
population biology to evaluate extinction risk for individual species [24, 25], and species-
area relationships, which use empirical data and ecological theory to predict the number of
species that will be lost as habitat area contracts [26–30].

While these methods have been widely successful in supporting the practice of conser-
vation, their real-world applications remain limited by several important shortcomings.
Reserve site selection and species distribution models, for example, require spatially-
explicit species occurrence data that may not be available for all species and landscapes
[23, 31]. Site selection algorithms are also often criticized for ignoring the long-term
persistence of species [32–34], and many niche-based investigations of species distributions
do not incorporate features of the built environment, such as roads or buildings, that
may have a significant influence on patterns of species occurrence in human-modified
landscapes. Population viability analyses require detailed data on the life history traits of
specific species in specific landscapes [25], and the long computation times associated with
these models may prohibit the evaluation of many hundreds or thousands of species. While
the species-area relationship requires little empirical data, it ignores critical realities of
population and community dynamics, including the possibility of extinction debt or small
population effects [35, 36], and predicts only expected extinction rates without providing
a measure of uncertainty around these predictions. Finally, these methods are not often
integrated with quantitative economic or social models, which would allow for better
evaluation of the human causes and consequences of biodiversity loss. While much recent
research has been directed towards addressing these shortcomings [e.g., 37–47], many of
these issues remain largely unresolved to the detriment of conservation practice.

In this dissertation, I develop new approaches in quantitative ecology that address many
of the important shortcomings described above through the use of emerging mathematical
and computational techniques, including simulation modeling, probability theory, machine
learning, modern statistics, and economic input-output analysis. These approaches collec-
tively provide improved methods for measuring and predicting species richness, abundance,
and extinction in human-altered landscapes. Throughout, I focus on the principles of
generality and reproducibility, with the goal of providing methods that can be applied by
conservation practitioners to a wide variety of landscapes and taxa.

Existing reserve site selection methods are often criticized for focusing on present-day
species representation without concern for long-term species persistence. The stochastic
population models that can be used to evaluate species persistence, however, require
extensive data on species’ life history traits that are often not available. Additionally,
two general reserve design principles that are often followed in an attempt to increase
species persistence probabilities, protecting large habitat patches and clustering habitat
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patches, are often in conflict in real landscapes. Chapter 2 combines site selection methods,
stochastic population viability models, and empirical allometric relationships to examine
how extinction risk for terrestrial mammals of different body sizes is affected by the
tradeoff between patch area and clustering in reserve networks. The results demonstrate
that the spatial scale at which the clustering of habitat patches reduces extinction risk is
different for species of different body sizes, and that there is thus no globally optimal level
of patch clustering that will benefit all species. The optimal level of clustering for any
specific species, however, can be predicted by matching the spatial scale of the reserve
network to a species’ dispersal distance, providing a rough rule of thumb that can be used
to choose a level of patch clustering to benefit any one species.

When detailed data on a biological community are unavailable, the species-area relation-
ship is often used to predict the number of species that will be driven extinct as habitat area
contracts. The species-area relationship, however, predicts only the expected number of
extinctions without any measure of uncertainty around this prediction, assumes implicitly
that a species with one individual remaining after habitat loss is protected, and does
not provide extinction risk predictions for individual species. Chapter 3 uses probability
theory and modern statistics to derive two new macroecological metrics, the extinction-
area relationship and the probabilistic species-area relationship, that address these three
limitations. A general framework for deriving these new metrics from two widely studied
macroecological distributions, the species abundance distribution and the species-level
spatial abundance distribution, is presented, and explicit equations for both metrics based
on a recently proposed maximum entropy theory of ecology are provided. Examination of
the behavior of these two metrics finds that extinction predictions are strongly influenced
by the choice of the minimum abundance required for a species to be considered protected,
a parameter that cannot be adjusted in the classic species-area relationship. In light of
this finding, ecologists and conservation biologists may wish to use these new metrics in
place of the classic species-area relationship when making extinction predictions in poorly
studied landscapes.

The niche-based study of species’ distributions often focuses on climatic and other
abiotic factors that determine patterns of species occurrence. In human-altered landscapes,
however, the built environment may significantly influence the locations at which species
are found. The factors that influence the spatial distribution of bat species are particularly
poorly understood. Combining passive acoustic recording technology, machine learning
techniques, and modern statistics, Chapter 4 presents the results of an empirical study
of the effects of roads on bat activity. Recordings of bat calls were collected near three
highways bordering San Francisco Bay, processed using a statistical classifier to identify
each call to the species level, and evaluated with generalized linear mixed models to
examine the extent to which bat activity is reduced in the vicinity of large roads. Total
bat activity across all species is found to be reduced by approximately one-half at sampled
points adjacent to roads as compared to control points 300 m from roadsides. The four
most frequently recorded species also individually show decreased activity near roads. The
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magnitude of this road effect, however, is found to vary with temperature, with differences
in activity between roadside and control points decreasing as daily maximum temperature
increases. These results have implications both for the conservation of bat species and for
the provision of insect control services.

Despite many decades of research evaluating the direct, on-the-ground causes of biodi-
versity loss, quantitative studies of the links between biodiversity loss and the indirect,
upstream economic activities that drive this loss remain uncommon. Such studies have the
potential to help better integrate biodiversity considerations into economic decision making
and better educate the general public on the ways in which their personal consumption
decisions lead to biodiversity loss. Chapter 5 combines global range maps of terrestrial
bird and mammal species, maps of the human appropriation of net primary productivity,
and economic input-output tables to create a global “wildlife footprint” that links 57 types
of human consumption activities in 113 regions of the world to global decreases in wild
bird and mammal populations. Current land use practices are found to decrease global
wildlife populations by 20–25% relative to the baseline populations that would be present
in the absence of human land uses, representing an ongoing loss of approximately 25 billion
individual birds and 1.1 trillion individual mammals. The nations of Brazil, China, India,
Indonesia, the Philippines, Russia, and the United States have the largest impacts on global
wildlife populations under several methods of measurement. Consumer purchases from
agricultural sectors lead to the majority of wildlife population losses, with one dollar spent
by a final consumer in several agricultural sectors leading to losses on the order of 0.1–1
individual birds or mammals. These results provide a new perspective on the global drivers
of biodiversity loss and may help to identify new, consumption-based points of leverage for
decreasing pressures on global biodiversity.

Chapter 6 concludes and suggests directions for future research.
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Chapter 2

Extinction risk and tradeoffs in reserve site selection for
species of different body sizes

Abstract

As natural landscapes become fragmented, species’ populations may become restricted
to remnant habitat patches. Choosing which patches to protect often requires a tradeoff
between maximizing local patch sizes to reduce local extinction risks and clustering
patches to increase colonization rates. Here, I examine how these two considerations affect
landscape-wide extinction risk for idealized terrestrial mammal species of different body
sizes. Spatially-explicit stochastic, demographic metapopulation models, parameterized
with empirical allometric relationships, are used to simulate extinction risk for 10 g to 100
kg species inhabiting patchy landscapes. An analysis of two-patch networks demonstrates
that patch clustering decreases extinction risk only when inter-patch distances are within
approximately 0.5 to 1.25 times a species’ maximum observed dispersal distance. In an
empirical, fragmented landscape in which a limited fraction of available habitat can be
protected, this pattern accurately predicts that, relative to a network that maximizes mean
patch area, a clustered patch network most decreases extinction risk for intermediate-sized
species and increases extinction risk for the largest species. These results demonstrate that
there is in principle no globally optimal level of patch clustering that minimizes extinction
risk for all species and highlight rules of thumb for reserve network design based on the
interaction of a species’ body size and landscape scale.

Introduction

As global habitat loss and fragmentation continues, species’ populations are becoming
increasingly restricted to remnant habitat patches surrounded by a relatively inhospitable
matrix [1, 2]. A major outstanding challenge in spatial ecology and conservation biology is
to predict the extinction risk faced by these newly fragmented populations and to use this
knowledge to prioritize the conservation of remaining patches to best minimize this risk.
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As suggested by island biogeography and metapopulation theory [3–6], the two first-
order factors that control diversity in patchy landscapes are local patch areas (primarily
by influencing the probability of local patch extinction) and patch isolation (primarily by
influencing the probability of the recolonization of a locally extinct patch). Land managers
and policy makers with a fixed budget for conservation have thus long been advised to
prioritize protection of the largest available habitat patches in a landscape and, presuming
a relatively homogeneous matrix between patches, to simultaneously ensure that these
patches are as close together as possible [7–9]. In any real landscape, however, it will
generally be impossible to simultaneously maximize mean patch area and minimize inter-
patch distance, barring the coincidental case in which the largest available habitat patches
form the tightest cluster. Managers are thus frequently faced with a tradeoff between these
two considerations, and the appropriate balance between the two should ideally be set by
examining the risk of a species’ extinction in each potential network.

Many methods have been proposed for estimating a species’ extinction risk in patchy
landscapes and selecting a network of patches to minimize this risk. Using detailed
empirical data gathered for specific species and landscapes, spatially-explicit stochastic
patch occupancy models [e.g., 10–13] and age or stage structured demographic models
[e.g., 14–17] can be constructed to predict extinction risk in any patch network. These
models lack generality, however, in that they are parameterized for a particular species
in a particular landscape, and the extent of their broader applicability is often unclear.
Conversely, more theoretical approaches have reached overarching conclusions about
extinction risk as a function of species and network characteristics [e.g., 18–21]. These
approaches, however, often do not consider the population dynamics of individual patches,
are fully or partially spatially implicit, use aggregate constants to represent species’ life
history traits, and assume relatively simple statistical distributions for model parameters.

Methods of intermediate detail that balance the needs for generality and specificity remain
relatively uncommon. A desirable method for patch selection should be broadly applicable
and flexible enough to be used to explore the effects of different modeling assumptions,
while also being detailed enough to directly incorporate key differences between species
and landscapes.

One promising approach to achieving this balance involves the combination of empirical
allometric relationships, known patterns in the relationship between body size and life
history traits [22–24], and dynamic population models [25, 26]. Here, I construct and
explore one such set of models for idealized terrestrial mammal species of different body
sizes and use it to analyze the tradeoff between patch size and patch clustering in protected
area networks. The models are spatially-explicit and account for decreases in reproductive
rates, decreases in population densities, and increases in dispersal distances associated
with increasing body size in mammals [27, 28]. These models are first used to examine
extinction risk by body size in two-patch networks, across a range of patch areas and
inter-patch distances, to identify general patterns in the relationship between extinction
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risk, body size, and network characteristics. The analysis is then extended to an empirical
landscape in northern California, where the patch networks that best minimize extinction
risk for species of different body sizes are identified and compared.

Overall, the results demonstrate that, at any spatial scale, selecting clustered patch networks
does not benefit all species equally and that the species that may benefit from clustering can
be identified by matching dispersal distances to inter-patch distances. In principle, there is
thus no globally optimal network design that best minimizes extinction risk for species of
all body sizes, and the selection of priority patches for conservation should be made with
the explicit knowledge of which species are advantaged and disadvantaged by any network
design. These general findings, as well as the full allometry-based models themselves,
could be broadly and rapidly extended to many taxonomic groups and landscapes and may
be particularly useful for the practice of conservation planning in landscapes where little is
known about resident species of conservation concern.

Methods

Population Models

To estimate extinction risk in patchy landscapes, spatially-explicit stochastic, demographic,
single-stage, discrete-time metapopulation models are constructed for idealized terrestrial
mammal species of different body sizes. Although these models describe a Markov process
and could in principle be solved analytically [e.g., 29, 30], the number of possible states of
the metapopulation grows as the product of the maximum population sizes of all patches,
rendering a simulation approach necessary for the networks treated here. All analyses were
carried out in R 2.13.2 [31].

The overarching goal is to create a model for each species that incorporates realistic
landscape features, such as individual patch areas and locations, while relying, to the extent
possible, only on life history parameters that can be predicted from body size. The models
proposed here are based on five parameters for each species: maximum female offspring per
year per adult female, y, mean female population density, s, maximum observed dispersal
distance, x, and two parameters, � and pe, that characterize environmental stochasticity in
the landscape. The first three of these can be estimated from a species’ adult body mass,
while the final two cannot be derived from first principles and must be assumed. A species’
relative extinction risk in different patch networks, however, is relatively insensitive to all
parameters except for dispersal distance (Appendix).

Beginning with a population in patch i at time t , N.t/i , the population of i at time t C 1,
N.t C 1/i , is calculated by sequentially simulating birth and recruitment, death due to
demographic stochasticity, and death due to environmental stochasticity.
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N.t/�i D N.t/i C PoissonŒ†j zijyN.t/j � (2.1a)
N.t/��i D N.t/

�
� BinomialŒN.t/�i ; d.t/i � (2.1b)

N.t C 1/i D BinomialŒN.t/��i ;BetaŒ�pe; �.1 � pe/�� (2.1c)

Equation (2.1a) models birth as a Poisson process with the mean number of recruits arriving
in patch i given by the sum over all patches j , including i D j , of the product of the
expected number of births in j , given by yN.t/j , and the probability that a new born
individual in patch j recruits to patch i , zij .

Calculating zij requires the choice and parameterization of a dispersal kernel for each
species. Dispersal is modeled here using a radially symmetric bivariate Gaussian distri-
bution, which, in a homogeneous landscape, can be interpreted phenomenologically as a
diffusion process or mechanistically as the result of each individual undertaking a non-
biased random walk from its place of birth [32, 33].

hij D
1

2��2
h

exp

 
�
d 2ij

2�2
h

!
(2.2)

zij D
hijAiPi
hijAi

(2.3)

Equation (2.2) gives the probability that an individual born at the center of source patch j
recruits to a point located at the center of destination patch i , hij . The product of hij and
the area of patch i , Ai , gives an approximate probability that an individual born in patch
j recruits to patch i . Equation (2.3) normalizes these probabilities for each source patch
across all possible destination patches so that all newborn individuals recruit to a patch.
Equation (2.2) represents only one reasonable choice for a dispersal kernel, and other “fat
tailed” or superdiffusive dispersal kernels could be explored as well [34, 35].

Equation (2.1b) models death due to demographic stochasticity as a binomial process in
which the mean per capita death rate for patch i at time t , d.t/i , is density dependent. A
general functional form for d.t/i should be chosen so that when N.t/�i D 0 there are no
deaths, when N.t/�i D Ki , the carrying capacity of patch i , the expected number of deaths
is equal to the expected number of births, and 0 � d.t/i � 1. These criteria are met simply
by Eq. (2.4).

d.t/i D 1 �
1

1C yŒN.t/�i =Ki �
(2.4)
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Ki is calculated as the product of mean female population density for a species, s, and
the area of patch i , multiplied conservatively by a factor of 10 to estimate a maximum
population size for each patch.

Finally, Eq. (2.1c) models death due to exogenous environmental stochasticity. Phe-
nomenologically, the desired expression should model simple “catastrophe” dynamics in
which (a) the two most likely outcomes each year are no additional death or local patch
extinction, with no additional death being the most likely outcome, and (b) the risk of local
patch extinction is a function of population size, with smaller populations subject to the
highest risk. These two goals are met flexibly by a beta-binomial distribution, which is
parameterized here with a single shape parameter � and a mean per capita yearly survival
probability pe [36]. In all simulations, � D 1, giving a strongly U-shaped distribution with
peaks at 0 and N.t/��i . The parameter pe is then varied to adjust the relative probabilities
of the two extrema, with lower values of pe leading to a higher probabilities of local patch
extinction.

These models are not intended to capture the complexity of the many population processes
that are present for any real species in any real landscape. I propose, however, that the
behavior of these simple, general models can provide a starting point for exploring the
extinction risk faced by different species in different types of landscapes.

Allometric Data

The population models described above are parameterized for idealized terrestrial mammal
species. Terrestrial mammals are chosen as a focal species assemblage for this analysis as
terrestrial mammals are often the target of conservation plans, have a wide range of body
sizes, and have well-characterized allometric relationships. For a species of any adult body
mass, m (g), log-log linear regressions using global data for terrestrial mammals [28] are
used to calculate yearly reproductive output, y (maximum female young per adult female
per year), as one-half the product of maximum litter size and the number of litters per year,
and population density, s (females per hectare).

log10 y D 0:72 .SE 0:03/ � 0:06 .SE 0:01/ log10m (2.5)

log10 s D 3:88 .SE 0:07/ � 0:74 .SE 0:02/ log10m (2.6)

The maximum litter size, litters per year, and population density values for each species,
as reported in [28], are the median values of all measures of central tendency, from all
localities, reported in all surveyed literature.

Maximum observed dispersal distance, x (km), is estimated from a log-log linear regression
for all species of terrestrial mammals presented by Sutherland et al. [27], here Eq. (2.7).
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log10 x D 6:46 .SE 1:23/C 0:68 .SE 0:08/ log10m (2.7)

The value of x is used to set the parameter �h, the variance of the Gaussian dispersal
kernel used in the models, by calculating x to be the distance below which 99% of newborn
individuals recruit. The relationship �h D 0:329x was determined by simulation to give this
probability. Further information on the definition and measurement of maximum observed
dispersal distance can be found in [27].

Values of these parameters for species of various body sizes are given in Table (2.1).

Two-Patch Networks

The models are first applied to two-patch networks to explore changes in extinction risk
with patch area and inter-patch distance. Models are parameterized for species with adult
body masses of 0.01 kg, 0.1 kg, 1 kg, 10 kg, and 100 kg, representing the approximate
range of body sizes of terrestrial mammals of western North America. The probability of
extinction by year 100, based on 1,000 replicate simulations, is calculated for each species
at combinations of patch area and inter-patch distance ranging from 1 to 200 hectares and
1 to 50 kilometers, respectively. Initial populations for each species in each patch are set to
one-half of the carrying capacity of that patch. Environmental stochasticity is set with the
parameter pe D 0:85.

As the distance between patches decreases to zero, the dynamics of these two-patch
networks do not approach the dynamics of a single patch, as the two patches experience
uncorrelated environmental stochasticity and the home ranges of individual organisms
cannot overlap both patches (see Discussion). In general, including positive correlations in
dynamics between nearby patches to reflect region-wide stochastic processes would tend
to increase extinction risks for species in clustered patch networks.

Multi-Patch Networks

The models are then applied to an empirical, multi-patch landscape from which a subset
of patches with a fixed total area are to be selected for conservation. For each species, the
goal is to select a subset of available patches to create a protected area network, with total
area less than a specified threshold, that minimizes the extinction risk for that species. This
approach is similar to the maximal covering problem in the reserve site selection literature
[37, 38] but with the use of single-species extinction risk as the objective function instead
of the number of species represented in the network.

Reserve networks are commonly selected with either exact global optimization [9, 37,
39, 40] or heuristic procedures [41]. While heuristics are not guaranteed to find globally
optimal reserve network designs, many heuristics have been shown to produce near optimal
solutions to other reserve design problems [41, 42]. At present, the long computation
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times associated with stochastic simulation of these population models preclude the use of
exact global optimization. Instead, a first-in greedy heuristic [43] is used to select reserve
networks. This heuristic begins by selecting the single patch that most decreases extinction
risk for the species (in these models, always the largest patch in the landscape) and adding
at each step the remaining patch whose addition leads to the lowest network-wide extinction
risk, until the maximum total area that can be protected is reached.

In a two-patch network, the probability of network-wide extinction can be used directly as
a metric for comparing different networks. In networks containing patches that vary widely
in area, however, the contribution of small patches to reducing extinction risk is dwarfed
by the variance in extinction risk associated with the stochastic dynamics of large patches
in the network. As such, the mean number of occupied patches in a candidate reserve
network is used in place of network-wide extinction risk as the site selection criterion in
the empirical, multi-patch landscape.

This procedure is used to select a reserve network that maximizes survival probability
for species of 0.01 kg, 0.1 kg, 1 kg, 10 kg, and 100 kg adult body masses in a 57 patch
fragmented landscape located east of Santa Rosa, California. This landscape is a low-
elevation mixed oak savannah [44] with 57 remnant patches of natural habitat interspersed
with urban and agricultural development [45]. Patch sizes range from approximately 5
hectares to 150 hectares, and pairwise inter-patch distances range from several hundred
meters to approximately 20 kilometers.

All multi-patch simulations use parameters identical to the two-patch simulations described
above, except for pe D 0:7. Habitat quality within all patches is assumed to be identical,
and the matrix between habitat patches is assumed to be homogeneous. To examine
qualitative patterns in the configuration of the networks selected by each species, complete
reserve networks containing up to 66% of the total available area are selected 10 times for
each species.

A quantitative examination of the tradeoff between patch area and patch clustering is also
conducted by calculating the extinction risk faced by each species in a reference network,
consisting of the four largest available patches in the landscape, and a clustered network, a
network of the same total area that includes three of these four patches and several smaller
patches nearby (Fig. 2.3, inset). Extinction risks are calculated for a 100 year time horizon
using 2,000 replicate simulations. For comparability between species, the value of pe for
each species that gives a 50% probability of extinction in the reference network in year 100
is identified, and the probability of extinction in the clustered network at this value of pe is
calculated for comparison.
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Results

In two-patch networks, extinction risk varies greatly as a function of body size, patch
area, and inter-patch distance (Fig. 2.1). Importantly, inter-patch distance does not affect
the probability of survival for a species evenly across all distances. Rather, each species
exhibits a unique and limited “characteristic range”, defined here as the range of inter-patch
distances within which inter-patch distance substantially influences survival probability,
that is indicated by the steeply sloping isoclines of survival probability in Fig. (2.1). Only
within this characteristic range do changes in inter-patch distance substantially increase
or decrease a species’ extinction risk, while outside of this range, inter-patch distance is
largely irrelevant to extinction risk. Broadly speaking, this range is defined by a lower
threshold below which a species can nearly equally disperse between patches at all
distances and an upper threshold above which a species cannot disperse between patches
regardless of distance.

Within the models presented here, any differences in extinction risk between species
reflects only differences in yearly reproductive rate, population density, and maximum
observed dispersal distance. The characteristic range of each species, however, is to a first
approximation only a function of that species’ maximum observed dispersal distance x
(Fig. 2.1, Appendix). The characteristic range falls at distances of 0.14 to 0.35 km for a
0.01 kg species, 0.67 to 1.69 km for a 0.1 kg species, 3.23 to 8.08 km for a 1 kg species,
15.5 to 38.6 km for a 10 kg species, and 74.0 to 185 km for a 100 kg species (Tab. 2.1).

In a multi-patch landscape, clustered patch networks will generally have shorter inter-patch
distances, more patches, and lower mean patch areas than a reference network selected to
maximize mean patch area. In general, the first two of these factors have the potential
to lead to lower extinction risks in clustered networks, while the third has the potential
to lead to higher extinction risks in clustered networks. The analysis of the differences
between a clustered network and a reference network that maximizes mean patch area
is thus reminiscent of the long-standing single large or several small (SLOSS) debate in
conservation biology [reviewed in 46], where here the relationship between inter-patch
distance and dispersal is explicitly modeled.

Considering specifically the importance of patch recolonization and local patch extinction
risk, the two-patch model results lead to an initial hypothesis regarding which species
might experience reduced extinction risk in a multi-patch network that is clustered at any
scale. Relative to the reference network that maximizes mean patch area, clustering may
specifically benefit, via increasing recolonization rates, those species whose characteristic
range matches the scale of the patch cluster. If, however, this clustering also results in a
decrease in mean patch area, all species may potentially experience an additional “cost”
associated with an increase in local patch extinction risk. As a first approximation, any
given scale of patch clustering might thus be expected to most reduce network-wide
extinction risk for species whose characteristic range matches the cluster scale.
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This hypothesis is first tested qualitatively in a empirical, multi-patch landscape in which a
reserve design heuristic is used to select a network that minimizes extinction risk for each
species, given that the entire set of patches cannot be protected (Fig. 2.2). In this landscape,
many pairwise inter-patch distances are on the order of 1 to 10 km, a spatial scale that
overlaps most substantially with the characteristic ranges of the 0.1 kg species and 1 kg
species (Tab. 2.1). For simplicity and generality, no specific differences in habitat within or
between patches are assumed.

As predicted, the chosen reserve network for the 0.1 kg species qualitatively displays
clustering at small spatial scales within this landscape, the 1 kg species network displays
clustering across larger scales, and the networks selected by both larger and smaller bodied
species are similar to the reference network. In a hypothetical landscape in which inter-
patch distances are artificially increased by a factor of five, the pattern of patch clustering
selected here by the 1 kg species is selected by the 10 kg species, also as predicted
(Appendix).

Figure (2.3) compares, for each species, extinction risk in a reference network consisting
of the four largest available patches and extinction risk in a clustered network of the same
total area consisting of three of these patches and a set of smaller nearby patches (similar
to the network selected by the 1 kg species). At a species-specific level of pe chosen such
that each species has a 50% probability of survival to year 100 in the reference network,
probabilities of survival to year 100 are 6%, 33% 49%, and 20% greater in the clustered
network for the 0.01 to 10 kg species, and 20% lower in the clustered network for the
100 kg species. As expected from the qualitative results, the species that most benefits
from a clustered network design is the intermediate-sized 1 kg species, with the benefits of
clustering decreasing for successively larger or smaller body sizes.

Discussion

The two-patch analysis finds that each idealized terrestrial mammal species of a given
body size has a unique “characteristic range” within which changes in inter-patch distance
influences extinction risk, but above and below which extinction risk is insensitive to
distance. This characteristic range is found from approximately 0.5 to 1.25 times a species’
maximum observed dispersal distance and varies greatly by species.

In any real landscape, inter-patch distances will fall within the characteristic range of
only a subset of all species inhabiting that landscape. These species may experience
lower extinction risk in clustered patch networks due to increased recolonization rates,
while species whose characteristic range does not match the scale of inter-patch distances
may experience higher extinction risk due to the inevitable decrease in mean patch area
associated with selecting clustered patches. These patterns are confirmed in the empirical
multi-patch analysis, where a clustered network most lowers extinction risk for medium
bodied species and increases extinction risk for the largest species.
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These findings violate two assumptions that may often be made by conservation planners
and managers when selecting patches for protection, which are that a clustered network of
patches (a) most benefits the largest bodied species in the landscape (which has the highest
probability of local extinction and hence supposedly will most benefit from increased
recolonization rates), and (b) will not substantially harm the probability of survival for
any species in the landscape. These intuitions may be behind the widespread application
of many methods that arbitrarily increase patch clustering in reserve network designs,
including the boundary length modifier in the popular conservation planning software
program MARXAN [47], the selection philosophy embodied in the worst-out heuristic
used in the software program Zonation [48], and attempts to incorporate spatial adjacency
into exact reserve network optimization models [e.g., 40, 49–51].

In the empirical landscape examined here, these assumptions are clearly violated, as
the largest bodied species exhibits substantially higher extinction risk in a clustered
patch network, while other species exhibit lower extinction risks. These results clearly
demonstrate that the decision to select a clustered or non-clustered network necessarily
represents an implicit decision to favor the protection of some species over others. There is
thus, in principle, no globally optimal level of patch clustering for all species.

Given these findings, conservation planners are left with three reasonable options when
attempting to design a reserve network to decrease extinction risk for multiple species of
different body sizes. First, network design decisions may be made for the largest bodied
species present in the landscape, which will generally have the highest absolute extinction
risk in any network. Second, if the basic body size structure of the community is known,
an explicit decision may be made to cluster patches or not to cluster patches based on the
characteristic ranges of the species present in the landscape and the overall scale of inter-
patch distances. In the empirical landscape examined here, for example, if species of 100 kg
are not present or not in need of conservation, a clustered network may be preferred simply
based on the knowledge of approximate dispersal distance for medium sized mammals
and the tens-of-kilometers scale of the network. Third, a detailed simulation such as the
one presented here could be conducted for any real landscape to help inform conservation
planning decisions.

Several limitations of the modeling framework and specific results presented here are
important to note. First, results for species of each body size should be interpreted in light of
the substantial variation around the allometric regressions used to parameterize the models
used here (Appendix). In empirical applications, ranges of parameters could be used in
place of central tendencies.

Second, the modeling framework presented here embodies a metapopulation perspective in
which the only movement between patches occurs as a result of natal dispersal. Additional
adult movements between patches, including those that would allow an individual to
combine multiple patches into a single home range, are not incorporated. While this ap-
proximation may be reasonable when the matrix between patches is relatively inhospitable,
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it will become less accurate for vagile species inhabiting patches that are very close together
and separated by very permeable matrix habitat.

Third, these models rely on substantial simplifications of the dynamics of species’ dispersal
in complex landscapes. Dispersal can be considered to be a product of both a species’ life
history traits and landscape features, and the models presented here are constructed for
landscapes in which the matrix between patches is homogeneous and no specific features
such as corridors or impermeable barriers are present between patches [52]. Additionally,
behavioral interactions between dispersing individuals and patch edges, which may be
species-specific, are not included [53]. More detailed knowledge of landscape features and
species’ traits, where available, could be incorporated in this modeling framework by using
this knowledge to increase or decrease dispersal probabilities between pairs of patches.

Fourth, like many general models of population dynamics in patchy landscapes [e.g.,
13, 19, 46], these models do not include correlation in environmental stochasticity between
patches, which, to the extent that populations physically closer together in space tend
to have correlated dynamics, would likely increase absolute predicted extinction risk for
clustered network designs, as nearby sites would be less likely to serve as a source of
colonists in the event of a local extinction.

Fifth, all models were simulated for a 100 year time horizon and do not include temporal
autocorrelation in patch dynamics. Longer time horizons and temporal correlations will
likely increase the probability of local extinction, and, in contrast to the above, may increase
the value of recolonization from nearby patches and hence the value of clustered designs.

Finally, empirical verification of extinction models such as these is critically important
to testing their utility for real world conservation. I am not aware, however, of any data
sets that record species persistence in fragmented landscapes over the century-long time
scales simulated here. As such, the results presented here should be interpreted as indicative
estimates of general patterns and should be used in empirical planning applications only
when better data and models are lacking.

Three additional extensions to these models could aid their application to empirical prob-
lems in conservation planning. First, the framework presented here could be applied to other
taxa with well-characterized allometric relationships, such as birds. Second, modifications
could be made to this modeling framework in the event that specific knowledge of a species’
life history traits or the characteristics of a specific landscape are known. Reproductive
output and population density, for example, could be modified on a patch-by-patch basis
to reflect variation in habitat quality, and information on the matrix between patches could
be used to modify inter-patch dispersal probabilities. Third, the extinction-based approach
described here could be combined with a representation-based reserve selection approach,
such as that implemented in the popular conservation software packages MARXAN [47]
or Zonation [48], to select networks that would represent the greatest number of species in
a reserve network at a future time horizon, rather than at present.
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Conclusion

The allometry-based models presented here provide a novel approach for estimating
the extinction risk faced by species of different body sizes in any network of habitat
patches. These models have the potential to inform the practice of conservation planning
in fragmented landscapes, where managers are likely to face a tradeoff between selecting a
protected area network that maximizes mean local patch area and a network that minimizes
inter-patch distances.

The results presented here for idealized terrestrial mammal species suggest that a species
may have a substantially lower extinction risk in a clustered network of patches when
inter-patch distances are approximately 0.5 to 1.25 times the species’ maximum observed
dispersal distance. Other species, however, may experience elevated extinction risks in
this clustered patch network due to the likely associated decrease in mean patch area.
The decision to select any particular design for a protected area network must thus be
made carefully in light of the unavoidable tradeoff between the extinction risks of different
species. Beyond these general findings, these models also provide a quantitative site-
selection method that can be used to provide a first-pass design for reserve networks based
explicitly on species’ extinction risk, even in the absence of detailed empirical data on the
species and landscape in question.
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Body mass (kg) y s x CR
0.01 2.26 6.91 0.28 0.14 – 0.35
0.1 1.96 1.26 1.35 0.67 – 1.69
1 1.70 0.23 6.46 3.23 – 8.08
10 1.47 0.04 31.0 15.5 – 38.6
100 1.28 0.01 148 74.0 – 185

Table 2.1: Life history parameters, including yearly reproductive output, y (maximum female
young per adult female per year), population density, s (females per hectare), and maximum
observed dispersal distance, x (km) for idealized terrestrial mammals of different body sizes (see
Methods). Each species’ characteristic range, CR (km), is calculated as 0.5 to 1.25 times x (see
Results).
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Figure 2.1: Isoclines of survival probability for species in two-patch networks with different patch
areas, Ai (hectares), and inter-patch distances, dij (km). Solid lines, from bottom to top, show
combinations ofAi and dij that give a 35% probability of survival to year 100 for species with adult
body masses of 0.1 kg, 1 kg, and 10 kg, with dashed lines showing 25% and 45% probabilities. (a)
Each species has a unique characteristic range, indicated by steeply sloping portions of the isoclines,
within which inter-patch distance substantially affects extinction risk. (b) As in (a), but with the
ratio of inter-patch distance to maximum observed dispersal distance on the x-axis and a log scale
for area. The characteristic range for all three species falls at approximately 0.5 to 1.25 times the
species’ maximum observed dispersal distance.
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Figure 2.2: Reserve networks selected from a 57 patch empirical landscape for species of different
body sizes, and a reference network that maximizes mean patch area. Darker colors indicate
patches that were selected the most frequently by replicate reserve network design simulations. The
characteristics of each species’ reserve network are predicted by the match of inter-patch distances
to that species’ characteristic range.
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Figure 2.3: Difference in probability of survival to year 100 between a clustered reserve network
and a reference network for species of different body sizes. pe for each species is chosen to give a
50% probability of survival in the reference network and ranges from 0.58 to 0.77. Medium-bodied
species have substantially higher survival probabilities in the clustered network, while the largest-
bodied species has a lower survival probability in the clustered network.
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Appendix

Figure 2.A1: Allometric relationships for terrestrial mammals based on data from Jones et al. 2009
(Ecological Archives E090-184-D1). (a) Maximum yearly reproductive output, y (female young
per adult female per year), calculated as one-half the product of litter size and litters per year,
as a function of body mass, m (g), for terrestrial mammals (n D 813). The shape of the log-log
relationship between y and m is arguably not linear, and a reasonable alternative would be to set
log10y for all species to a global mean near 0.5. As characteristic range is relatively insensitive to
y, this change would affect absolute probabilities of extinction for each species, but not preferred
reserve networks (see Fig. 2.A2). (b) Population density, s (females per hectare), as a function of
body mass, m (g), for terrestrial mammals (n D 927).
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Figure 2.A2: Influence of model parameters on extinction risk for a 1 kg species in two-patch
landscapes. Each sub-figure shows isoclines of 35% probability of survival to year 100 in solid
lines, with 25% and 45% isoclines in surrounding dashed lines, for three different levels of a model
parameter. (a) From bottom to top, yearly reproductive output y equal to 1, 5, and 0.2 times y
drawn from regression on body mass. (b) From bottom to top, population density s equal to 5, 1,
and 0.2 times s drawn from regression on body mass. (c) From left to right, maximum dispersal
distance x equal to 0.2, 1, and 5 times x drawn from regression on body mass. (d) From bottom to
top, environmental stochasticity parameter pe equal to 0.95, 0.85, and 0.8. While all parameters
influence absolute extinction risk (the height and shape of the isoclines), only x substantially
influences the location of the characteristic range, the range of inter-patch distances with steeply
sloping isoclines within which inter-patch distance substantially affects extinction risk.
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Figure 2.A3: Probability of survival to year 100 for species of (a) 0.1 kg, (b) 1 kg, and (c) 10 kg, and
(d) 100 kg body masses in a reference network (solid line) consisting of the four largest patches in
the empirical landscape and a clustered network (dashed line) (see Fig. 2.3, inset). The three smaller
bodied species have a higher probability of survival in the clustered network across all values of pe,
while the 100 kg species has a higher probability of survival in the reference network for all pe.
The preferred reserve network design for each species is thus independent of the chosen level of
environmental stochasticity. Results for the 0.01 kg species are not shown (survival probabilities in
the two networks are very similar for all levels of pe for this species).
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Figure 2.A4: As in Fig. 2.2, but with all inter-patch distances increased artificially by a factor of five
(distances not shown to scale). As predicted by the match between characteristic range and inter-
patch distances, the reserve network selected for the 10 kg species now demonstrates a clustered
design similar to that of the reserve network formerly selected for the 1 kg species, and the network
selected for the 1 kg species is now more similar to the reference network.
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Chapter 3

Beyond the species-area relationship: improved estimates
of extinction risks and rates following habitat loss and
climate change

Abstract

The species-area relationship is often used to predict extinction rates following habitat
loss when detailed species-level data are not available. The species-area relationship,
however, only predicts the expected number of extinctions without an associated measure
of uncertainty, assumes a species is protected if only one individual of a species remains,
and does not address extinction risk for individual species, all of which may limit its
utility for informing decisions in real landscapes. Here, I use two well-studied ecological
distributions, the species abundance and species-level spatial abundance distributions, to
derive two new extinction metrics that address these shortcomings: the extinction-area
relationship, the probability of a single species experiencing extinction following habitat
loss or range contraction, and the probabilistic species-area relationship, the probability of
any number of species, from zero to the original complement, remaining in a landscape
following habitat loss. I present explicit equations for these metrics based on predictions
from a recently proposed maximum entropy theory of ecology and provide methods for
parameterizing both metrics using types of limited empirical data that are commonly
available in real landscapes. Examination of the behavior of the two metrics demonstrates
that extinction predictions are strongly influenced by the choice of the minimum abundance
required for a species to be considered protected, a parameter that cannot be adjusted in the
classic species-area relationship. Given the importance of this parameter and of quantifying
the uncertainty of extinction predictions, ecologists and conservation biologists may wish
to consider using the two new metrics presented here in place of the classic species-area
relationship when estimating extinction risks and rates in poorly studied landscapes.
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Introduction

Habitat loss and climate change represent two of the most significant ongoing threats
to global biodiversity [1]. Many approaches have been developed to assess the expected
levels of species loss within a landscape due to these threats, including niche-based
species distribution models [2, 3], dynamic population viability analyses [4–6], and static
conservation planning algorithms [7–12]. These approaches, however, all share in common
the need for empirical data such as maps of species’ presence and absence across a
landscape or detailed knowledge of species’ life history traits.

In the absence of such data, extinction estimates are often based on applications of the
species-area relationship, a metric that predicts the scaling of species richness with habitat
area [13, 14]. Although many mathematical forms of the species-area relationship have
been proposed [15–17], a power law, S D cAz , with a slope z near 0.25 is often used for
predicting large-scale losses of biodiversity [18–20] and, at smaller spatial scales, as an
input into optimization methods used to design networks of protected areas to minimize
biodiversity loss [21–25].

The utility of the species-area relationship for estimating extinction rates, however, has
been called into question. Many critiques have centered on the accuracy of the assumptions
used to select particular forms of the relationship [26–28], with several specifically noting
that the assumption of a power law form for the species-area relationship is not often valid
[14, 29]. However, several additional limitations inherent to the species-area relationship
itself may also limit its usefulness for real-world conservation applications.

First, and perhaps most importantly, the classic species-area relationship provides an
estimate only of the expected number of species lost following a reduction in available
habitat, without information on uncertainty in this estimate. In practice, an estimate of 50%
species loss, for example, may have very different meaning if losses of 49% to 51% are
nearly guaranteed versus if losses from 10% to 90% are all plausible. A more useful metric
would thus estimate not only the expected level of species loss following habitat loss but
also a probability of any level of loss, ranging from zero to all species initially present.
Such a measure would allow the predictions of the species-area relationship to be used
in a risk assessment framework, similar to population viability analysis [4, 6], in which
managers could set an acceptable level of risk of loss for a given number of species. For
example, a manager or policy maker may wish to protect an amount of habitat such that
there is no more than a 95% chance of losing 50% or more of all species initially present
in a landscape.

Second, by its definition, the species-area relationship counts a species as present in an area
if at least one individual of that species is found in that area [27, 30]. In practice, however, a
single individual may be insufficient to allow for the long-term persistence of a species, and
it may be desirable to set a higher population threshold above which a species is considered
protected. The species-area relationship itself does not allow for this adjustment.
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Finally, the species-area relationship provides only an aggregate prediction of extinction
rates across all species without any information about differences in extinction risk for
individual species. The species-area relationship thus does not allow, for example, the
extinction of a rare species to be weighted differently, or analyzed apart, from that of a
common species. If available, species-level metrics similar to the species-area relationship
could be used for the assessment of extinction risk for individual species of conservation
concern when insufficient data are available for a fully informed population model. Such
metrics would be particularly useful for evaluating the impacts of climate change, as they
would allow for an estimate of a species’ extinction risk following a projected level of range
contraction [19].

To address these three shortcomings, I here present a probabilistic framework for deriving
two new ecological metrics that are similar to the species-area relationship but provide
richer estimates of extinction risks and rates. The first metric, which applies at the species
level, is the extinction-area relationship, ".a/, which gives the probability of an individual
species experiencing extinction following a given level of habitat loss or range contraction.
The second metric, which applies at the community level, is the probabilistic species-area
relationship, �.S/, which gives the probability of a given number of species being protected
in a landscape, from zero to the initial number present, following habitat loss.

These two new metrics can be derived from two well-studied ecological distributions, the
species abundance distribution and the species-level spatial abundance distribution. Using
predictions for these two underlying distributions from a recently proposed maximum
entropy theory of ecology [30, 31], I present equations for these metrics and demonstrate
how both metrics can be parameterized using limited empirical data of the type often
available in real landscapes. Examination of the behavior of these two metrics demonstrates
that the choice of the minimum abundance required for a species to be considered protected
has a significant influence on extinction predictions. In light of these results, ecologists
and conservation biologists may wish to consider using these two new metrics in place of
the classic species-area relationship when estimating extinction risks and rates in poorly
studied landscapes.

Methods

Two underlying distributions

Consider a single landscape or species’ range of original area A0 that contracts to area A
following habitat loss or climate change, and define a as the fraction of habitat that remains,
a D A=A0. Define n0 for any species as that species’ original abundance in area A0, and
S0 as the number of species originally present in A0. Finally, define a minimum critical
abundance, nc, as the minimum population size that must remain after habitat loss for a
species to be considered protected. Biologically, nc can be considered to be the critical
population size below which deterministic Allee effects or demographic stochasticity may
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be expected to produce to a very high probability of extinction. The parameter nc is thus
philosophically equivalent to the quasi-extinction thresholds or minimum viable population
sizes that are associated with demographic extinction analyses [4, 6, 32–34].

Within this context, the overall goal of this analysis is to derive explicit equations for
two new extinction metrics, the extinction-area relationship, ".a/, and the probabilistic
species-area relationship, �.s/. These metrics are derived using a static sampling approach
that, similar to previous derivations of the classic species-area relationship [35, 36], is
based on two underlying probability distributions: the species abundance distribution, �.n/,
and the species-level spatial abundance distribution, ….n/. This statistical approach does
not explicitly incorporate many of the features of empirical landscapes and communities,
including habitat heterogeneity, population dynamics, and other ecological mechanisms,
but instead represents these to the extent that they combine to produce particular forms of
these two underlying distributions.

The first underlying distribution is the species abundance distribution, the probability
that a randomly selected species from a community has abundance n, �.nj��/, where
�� represents parameters describing the shape of the distribution. Many forms for the
species abundance distribution have been described [35, 37, 38], with perhaps the two most
common being the logseries distribution [39] and the lognormal distribution [40, 41].

The second underlying distribution is the species-level spatial abundance distribution, the
probability that a randomly selected area A within a large landscape of area A0 will contain
n individuals of a given species that had n0 individuals present in A0, ….nja; n0;�…/,
where �ı represents additional parameters describing the shape of the distribution. An
associated cumulative distribution function, ….n � ncja; n0;�…/, giving the probability
that a randomly selected area A will contain nc or fewer individuals of a species, can be
calculated as the sum of ….n/ from zero to nc . Many distributions have been proposed
to describe ….n/ [30, 36, 42–44], including most prominently the Poisson or binomial
distributions, corresponding to the hypothesis that individuals of a species are randomly
placed in space [45] and the negative binomial distribution, which allows for variable levels
of species’ aggregation [35, 46–48].

In all analysis that follows, two key assumptions are made about the application of
these two distributions to species in real landscapes. First, the abundances of all species
present in a landscape are assumed to represent random draws from the species abundance
distribution. Second, the spatial distributions of species are assumed to be independent of
each other, so that the presence or absence of one species in an area A does not affect the
presence or absence of other species in that area. While this latter assumption is known to
be incorrect in many real landscapes, many major theories in spatial macroecology share
these assumptions and yet have been widely successful in reproducing empirically realistic
patterns of species abundance and distributions [30, 49]. As successful prediction of spatial
patterns, not mechanistic understanding of ecological processes, is the ultimate goal of the
present work, these two assumptions are used in subsequent derivations. Extreme violations
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of these assumptions, however, may lead real landscapes to deviate substantially from
predictions presented here.

Extinction-area relationship

The extinction-area relationship, ".ajnc; n0;�/, gives the probability that an individual
species experiences extinction when its habitat or range shrinks to a fractional area a D
A=A0, where A0 is the original area inhabited by the species and A is the area remaining
after habitat loss or range contraction. In addition to a, this metric also depends on nc,
the critical minimum abundance at or below which a species is considered extinct, n0, the
original abundance of the species in A0, and potentially a set of additional parameters � .
Like the classic species-area relationship, ".a/ is not a probability distribution, as the sum
of extinction probability across all a need not sum to one.

In terms of the underlying distributions, ".ajnc; n0;�/ is given simply by the cumulative
species-level spatial abundance distribution, ….n � ncja; n0;�…/.

".ajnc; n0;�…/ D ….n � ncja; n0;�…/ (3.1)

The value of nc need not be constant across species but could instead be a function of n0
or additional species-specific parameters. For example, if a certain fraction f of a species’
original population must remain following habitat loss for that species to be protected, nc

may be set equal to f n0.

If nc, n0, and the parameters �… are known, Eq. (3.1) may be used directly to calculate
the extinction-area relationship. Frequently, however, n0 and �… may not be known, but
repeated samples of a species’ abundance, nm, in several randomly selected small plots in
A0, each of areaAm, may be available. Using these samples, maximum likelihood estimates
and confidence intervals for the parameters n0 and �… may be obtained using Eq. (3.2).

L.n0;�…jnm/ D

kY
iD0

….ni jam; n0;�…/ (3.2)

With the resulting maximum likelihood estimates and confidence intervals for the param-
eters n0 and �…, a maximum likelihood estimate and confidence interval for ".a/ can be
obtained by translating associated values of n0 and �… into values of ".a/ using Eq. (3.1)
with the known values of am and nc [50].

Probabilistic species-area relationship

The probabilistic species-area relationship, �.S jS0; a;�/, gives the probability of S species
being protected in a landscape after habitat loss reduces available area to a D A=A0. In
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addition to a, �.S/ depends on S0, the number of species originally present in area A0
prior to habitat loss, and potentially on additional parameters � . �.n/ is a true probability
distribution, with the probability of all values of S from 0 to S0 summing to one. The
expected value of �.S/ for any value of a gives the expected number of surviving species
after habitat loss, similar to the prediction of the classic species-area relationship.

In the event that the species abundance distribution for species present in area A0, �.n0/,
is known or can be inferred from theory, the probability that a single randomly selected
species found in A0 will be protected after habitat loss can be calculated by combining
the species abundance distribution with the cumulative species-level spatial abundance
distribution.

g.a; nc;��;�…/ D

1X
n0D1

Œ1 �….n � ncja; n0;�…/� �.n0j��/ (3.3)

The value of g.a; nc;��;�…/ gives the probability that a randomly selected species from S0
is found in area A. This probability depends on the fraction of original area remaining after
habitat loss, a, the minimum critical abundance at or below which a species is considered
protected, nc, and any additional parameters �� and �… needed to describe the shapes
of the species abundance and species-level spatial abundance distributions. If the shape
of the distribution ….n � nc/ varies with species abundance, n0, as would occur, for
example, if more or less abundant species had systematically more or less aggregated
spatial distributions [42], the parameters �… may themselves be a function of n0 or other
variables.

If S0 is known, the abundance of each species in A0 can be considered to be a random
draw from �.n0/, and interspecific spatial patterns are independent (see Methods: Two
underlying distributions), the distribution �.S/ is the outcome of S0 Bernoulli trials, each
with probability g of success, and �.S/ is thus a binomial distribution.

�.S jS0; a; nc;��;�…/ D �.S jS0; g/ D

 
S0

S

!
gS.1 � g/S0�S (3.4)

The mean of �.S/ is S0g and the variance of �.S/ is S0g.1 � g/.

For conservation applications, it is reasonable to assume that the values of S0 and a will
be known, as these data are also required to use the classic species-area relationship for
extinction prediction. In the event that the parameters �� and �… are also known, in which
case the species abundance and species-level spatial abundance distributions are specified
exactly, Eqs. (3.3) and (3.4) can be used directly to calculate �.S/.
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Although the requirements of prior knowledge of �� and �… may appear limiting, under
the maximum entropy theory predictions for �.n0/ and ….n/, �� and �… represent only a
single unknown parameter �� . In the special case in which only one parameter is unknown,
this parameter can be inferred conveniently from repeated measurements of the number of
species found in small measurement plots of area Am. A maximum likelihood estimate
of �� , along with confidence intervals, can be calculated by first calculating a likelihood
profile for the parameter gm, the probability that a randomly selected species from S0 is
found in area am, using Eq. (3.4).

L.gmjSm/ D

kY
iD0

�.Si jS0; gm/ (3.5)

Because, in this scenario, any value of g is uniquely specified by a, nc, and the single
unknown �� , a likelihood profile for gm can be translated directly into a likelihood profile
for �� using Eq. (3.3) with a D am and nc D 0. A maximum likelihood estimate for
�.S/ at any area a can then be obtained by evaluating Eqs. (3.3) and (3.4) with the
maximum likelihood estimate of �� . A confidence interval for the distribution �.S/ can
also be calculated by evaluating �.S/ at all values of�� within a known confidence interval
calculated from the likelihood profile. In using this procedure, the measurement area Am

may be different from, and in most practical cases will be substantially smaller than, areas
A and A0.

In the special case that the exact abundance of every individual species in A0 is known
instead of the distribution �.n0/, a different procedure for estimating �.S/ may be used.
In this case, the probability of each individual species being protected in an area A can be
calculated directly using Eq. (3.1). Presuming statistical independence of all species, �.S/
will then be described by a Poisson-binomial distribution, a generalization of the binomial
distribution that allows for variable probabilities of success in each Bernoulli trial [51, 52].
As these data are very unlikely to be available in practice, this calculation method is not
pursued further.

Maximum entropy theory of ecology

Although the framework described above can be used with any choice of distributions for
�.n0/ and ….n/, this study uses the forms of these distributions that are predicted by a
recently proposed maximum entropy theory of ecology [30, 31]. In this theory, probability
distributions such as �.n0/ and ….n/ are derived by maximizing the information entropy
of the distribution in question, subject to a set of known constraints. This procedure
provides the “least-biased” distribution possible, or the distribution that assumes the least
information, given the constraints [53]. The maximum entropy theory predictions of the
�.n0/ and ….n/ distributions have been extensively tested and found to fit a wide range of
empirical data sets [29–31, 54].
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The maximum entropy theory of ecology predicts that the species abundance distribution
takes the form of a logseries distribution, which depends on only one parameter, p. The
parameter p can be related to the mean of the distribution �� , equal to the average number
of individuals per species [39].

�.n0j��/ D
�1

log.1 � p/
pn0

n0
(3.6)

�� D
�1

log.1 � p/
p

.1 � p/
(3.7)

Although the original maximum entropy theory of ecology [30, 31] proposes an upper-
truncated variant of the logseries distribution, the classic logseries distribution is used here
for mathematical simplicity, recognizing that as the total number of individual organisms
across all species becomes large relative to the mean number of individuals per species, the
difference between the truncated and non-truncated distributions becomes negligible.

The maximum entropy theory of ecology predicts that the species-level spatial abundance
distribution takes the form of an upper-truncated geometric distribution, which depends
only on the parameters a and n0 [30, 31].

….nja; n0/ D
.1 � q/qn

1 � qn0C1
for 0 � n � n0; otherwise 0 (3.8)

an0 D
q

1 � q
�
.n0 C 1/q

n0C1

1 � qn0C1
(3.9)

The cumulative distribution function ….n � nc/ is the sum from zero to nc of ….n/.

….n � ncja; n0/ D
qnC1 � 1

qn0C1 � 1
for 0 � n � n0 (3.10)

Although, as previously noted, any two distributions may be used to represent �.n0/ and
….n/, the use of Eqs. (3.6) and (3.8) for subsequent analysis is well supported by extensive
empirical testing [29–31, 54]. These equations arguably represent effective “null models”
for extinction prediction in the absence of data suggesting that other distributions would
be more appropriate. Due to the implicit equations needed to calculate the parameters p
and q from �� , a, and n0, equations for the extinction-area relationship and probabilistic
species-area relationship that are based on Eqs. (3.6) and (3.8) do not have simple closed
form solutions and must be evaluated numerically.
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Results

Extinction-area relationship

Using predictions of the maximum entropy theory of ecology, the extinction-area relation-
ship for a species with known initial abundance n0 is fully specified by n0, a, the fraction
of original area remaining after habitat loss, and nc, the critical minimum abundance at or
below which a species is considered extinct.

".ajnc; n0/ D
qncC1 � 1

qn0C1 � 1
(3.11)

The parameter q in Eq. (3.11) can be calculated from a and n0 using Eq. (3.9).

Figure (3.1) shows the extinction-area relationship for species with different initial abun-
dances and for assumptions of different minimum critical abundances. For all initial
abundances, extinction risk initially falls rapidly as a increases from zero. With nc D 0,
implying that the presence of a single individual is sufficient for a species to be protected,
species with an initial abundance of greater than approximately 1000 individuals in A0 are
very likely to be protected at all but the highest levels of habitat loss (Fig. 3.1a).

Increasing nc, however, substantially raises a species’ probability of extinction. Using a
critical abundance of nc D 10 instead of nc D 0, for example, raises the extinction risk for
a species with n0 D 100 to approximately that of a species with n0 D 10 (Fig. 3.1b). With
nc D 0, only 1% of A0 must be protected for a species with n0 D 100 to have more than
a 50% probability of survival. However, at nc D 10, over 15% of A0 must be protected to
achieve this same probability of protection.

If n0 for a species is not known, but samples of the species’ abundance, nm, at area Am

are available, a maximum likelihood estimate of n0 can be calculated by maximizing Eq.
(3.12) with respect to n0.

L.n0jnm/ D

kY
iD0

.1 � q/qni

1 � qn0C1
(3.12)

A 95% confidence interval for n0, based on the critical value of a one-tailed Chi-squared
test with one degree of freedom, can be found by locating values of n0 above and below the
maximized likelihood, OL, such that � log.L/ D � log. OL/C 1:92 [50]. The extinction-area
relationship for the maximum likelihood estimate of n0, and for lower and upper bounds of
the confidence interval for n0, can then be calculated using Eq. (3.11).

Figure (3.2) gives examples of two maximum likelihood estimates of ".a/, with confidence
intervals, for simulated samples consisting of 5 and 50 plots in which a species’ abundance
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is measured. A measurement area am D 0:001, an initial abundance n0 D 1000, and a
critical abundance nc D 0 are used for these illustrations.

Probabilistic species-area relationship

Using predictions of the maximum entropy theory of ecology, the probability of S species
remaining in a landscape after habitat loss can be calculated from knowledge of four
parameters: a, the fraction of habitat remaining after habitat loss, nc, the critical abundance
at or below which a species is considered extinct, S0, the total number of species in the
original landscape, and �� , the mean number of individuals per species in the original
landscape.

In the event that all four of these parameters are known or can be reasonably assumed, the
probability of S species remaining in A is given by Eqs. (3.13) and (3.14), with p and q
calculated from Eqs. (3.7) and (3.9).

�.S jS0; g/ D

 
S0

S

!
gS.1 � g/S0�S (3.13)

g.a; nc; ��/ D

1X
n0D1

��
1 �

qncC1 � 1

qn0C1 � 1

��
�pn0

n0 log.1 � p/

��
(3.14)

The summation in Eq. (3.14) has no apparent closed form solution and must be evaluated
numerically. However, if nc D 0 and A � A0, the first term in the summation is well-
approximated by an0=.an0 C 1/ [30], leading to the simplified Eq. (3.15).

g.a; nc; ��/ D �
a

log.1 � p/

1X
n0D1

pn0

an0 C 1
(3.15)

Figure (3.3) shows the probabilistic species-area relationship for different levels of a and
nc. In all calculations, S0 D 100 and �� D 1,000. As expected, the number of species
protected decreases as a decreases, with the distribution �.S/ taking the form of a binomial
distribution. The variance of this distribution is maximal at an expected value of S equal
to one half S0. As with the extinction-area relationship, the parameter nc has a significant
influence on the distribution �.S/. At a D 0:1, for example, changing nc from zero to ten
has approximately the same effect on extinction rates as decreasing the remaining habitat
area A by an order of magnitude.

In applications of the probabilistic species-area relationship, the values of S0, a, and nc

are likely to be known or can be assumed. The parameter �� , the mean of the species
abundance distribution �.n0/, however, will likely need to be inferred from empirical data.
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Given knowledge of S0, and recognizing that �� can be estimated by N0=S0, where N0 is
the total number of individuals of all species present in A0, a simple method for inferring
�� rests on the empirical observation that the number of individuals of all species in
a community generally scales linearly with area [30, 38]. As such, the total number of
individuals Nm in several small plots of area Am may be measured and averaged, giving
NNm, with which an estimate of �� can be obtained from Eq. (3.16).

O�� D
N0

S0
D
NNmA0

AmS0
(3.16)

While this approach ignores uncertainty in the measurement of Nm, this estimate may be
sufficiently accurate for many landscapes in which the total abundance of all species is
believed to scale linearly with area.

For some landscapes and communities, however, a count of individual organisms may be
difficult to obtain, but counts of the number of species found in many small census plots
of area Am, Sm, may be available. In this event, a maximum likelihood estimate for the
parameter gm, the probability that a randomly selected species from S0 is found in an area
Am, can be calculated using Eq. (3.17).

L.gmjSm/ D

kY
iD0

 
S0

Si

!
gSi

m .1 � gm/
S0�Si (3.17)

Presuming Am � A0, Eqs. (3.15) and (3.7) can be used with am D Am=A0 and nc D 0 to
translate each value of gm into a corresponding value of �� , giving L.��jSm/. Maximizing
this likelihood function gives a central estimate of �� , given the sampled data. Similar to
the extinction-area relationship, a 95% confidence interval for �� can be found by locating
values of �� above and below the maximum likelihood estimate such that � log.L/ D
� log. OL/ C 1:92, where OL is the maximized likelihood value. A confidence interval for
each value of S can then be found by calculating �.S/ for many values of �� within its
confidence interval and finding the maximum and minimum values of �.S/ for each S .

Figure (3.4) gives an example of three confidence intervals estimated for �.S/ at three
different levels of a, given a sample of 10 small measurement plots in which S is counted.
In all examples, am D 0:00001, S0 D 100, and �� D 10,000.

Discussion

To address several shortcomings inherent in applying the classic species-area relationship
to extinction prediction, this chapter has proposed two new metrics for estimating extinction
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risks and rates, the extinction-area relationship and the probabilistic species-area relation-
ship. The extinction-area relationship provides estimates of single-species extinction risk
as a function of the level of habitat contraction, a result that may be particularly useful
when applied in concert with species distribution models that predict changes in species’
ranges following climate change. The probabilistic species-area relationship provides the
probability of any number of species being protected, from zero to the original number
present, following habitat loss, a distribution that allows predictions of extinction rates to
be incorporated into a risk management framework for setting habitat protection targets.

Both of these extinction metrics can be derived from two well-studied underlying eco-
logical distributions, the species abundance distribution and species-level spatial abun-
dance distribution. By using the forms of these underlying distributions predicted by the
maximum entropy theory of ecology, explicit equations for both extinction metrics can
be derived. Using likelihood-based inference methods, both metrics can be parameterized
using limited empirical data of the type that is often available in real landscapes.

The ability to specify a minimum critical abundance at or below which a species is
considered extinct, nc, is a particularly important contribution of the two proposed metrics.
The results presented here show that even a relatively small increase in nc, from 0 to 10,
for example, can lead to substantial changes in the probability of a species’ extinction,
even for relatively abundant species. If a very low probability of extinction is desired
for a given species, even a small increase in nc may require dramatically more area to
be protected. These findings suggest that the appropriate level for the minimum critical
abundance parameter should be considered carefully in future applications of ecological
metrics to extinction estimation.

Although the specific results of this analysis are based on the predictions of the maximum
entropy theory of ecology, the general framework presented here can and should be
used to derive the extinction-area relationship and probabilistic species-area relationship
from other choices of underlying distributions, as different underlying distributions could
potentially lead to substantially different extinction predictions. For example, the logseries
species abundance distribution predicts a relatively large number of rare species (the
mode of the logseries is always at one individual per species), whereas other “humped”
distributions such as the lognormal [40, 41] or zero-sum multinomial [38, 55] predict
relatively less rarity for any value of �� . As extinction risk decreases rapidly as a species’
abundance increases, calculations of the probabilistic species-area relationship using the
logseries species abundance distribution will tend to estimate higher extinction rates than
estimates made using these other distributions.

With regard to the species-level spatial abundance distribution, more aggregated spatial
distributions will tend to increase the probability of extinction when nc is small. Consider,
for example, the case in which an original landscape of area A0 is divided into 10 plots,
only one of which will remain after habitat loss (a D 0:1), and nc D 0, such that every
plot in which a species is present can protect that species. If a species’ distribution is
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minimally aggregated, such that it appears in every plot, the probability of extinction will
be zero, while if a species is maximally aggregated, such that all individuals of that species
appear in a single plot, the probability of extinction will be 90%. In this case, increasing
aggregation clearly increases the probability of extinction. Compared to the truncated
geometric distribution used here, a binomial, or random placement, spatial abundance
distribution will thus lead to lower extinction risk, as will a negative binomial spatial
abundance distribution with a clustering parameter k > 1 [35, 42, 47, 48]. Conversely,
negative binomial spatial abundance distributions with 0 < k < 1 will lead to higher
predicted extinction risks.

This positive relationship between aggregation and extinction risk, however, applies only
when nc is small. Consider now the same landscape, but with nc D n0, such that all
individuals of a species must remain after habitat loss for a species to be protected. In
this case, maximal aggregation, in which all individuals are found in one of the 10 plots,
gives the species the same 90% probability of extinction, but if a species is less aggregated,
such that individuals are spread out across multiple plots, then extinction is certain. The
choice of nc thus has the potential to affect not only absolute extinction risk but the relative
risk associated with different types of spatial patterns.

Several limitations of this statistical framework and the equations presented here are
important to note. First, this approach does not account explicitly for the geometry of
habitat loss [56–59]. Within the sampling framework used here, the species-level spatial
abundance distribution gives the number of individuals of a species that are expected to
remain in an area A following habitat loss. To the extent that any given spatial abundance
distribution is believed to apply only to regularly shaped habitats, such as rectangles or
circles, the resulting predictions of both extinction metrics will also apply only when
the area A remaining after habitat loss takes these shapes. In the event that the spatial
abundance distribution depends on shape and habitat is instead lost in a regular shape,
metrics similar to the “endemics-area relationship” [27, 48, 57, 60] may be more applicable
and can be derived using the same general methods described here.

Second, and relatedly, this approach applies to the generic case in which suitable habitat
area shrinks from A0 to A. The case in which several patches of habitat remain after loss
is not explicitly treated here. In this scenario, two adjustments may be needed to improve
the predictions of the two extinction metrics presented here. First, information about the
overlap in species occurrence within remnant patches (i.e., beta diversity) could be used
in concert with the species-level spatial abundance distribution, applied to each individual
patch, to determine the landscape-wide forms of both extinction metrics. Second, a species-
level spatial abundance distribution that itself accounts for the number and configuration of
remnant habitat patches could also be used. In general, the prediction of spatial pattern in
multi-patch landscapes remains an ongoing area of research [e.g., 30, 61–64], and future
developments in this area will improve the accuracy of these extinction metrics when used
in complex, fragmented landscapes.
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Third, as previously noted, factors such as habitat heterogeneity and ecological mecha-
nisms, such as competition, mutualism, predation, and others, are incorporated in this
approach only insofar as they affect the shapes of the underlying species abundance and
species-level spatial abundance distributions. Understanding how these factors combine to
produce known forms of these underlying distributions is thus critical to understanding how
the proposed extinction metrics themselves are influenced by these factors. For example,
while events such as the extinction of a predator or competitor may tend to reduce a
target species’ extinction risk, extinction of a mutualist may have the opposite effect. The
potential for dynamic community-wide phenomena, such as coextinction, trophic cascades,
and extinction cascades, adds further uncertainty to the prediction of extinction rates using
the static statistical approach presented here [65–67].

Fourth, the sampling framework proposed here does not explicitly account for the temporal
dimension of extinction processes. In particular, the possibility of extinction debt [68–71],
time delayed extinctions that occur following habitat loss, is not directly addressed, and
thus the extinction metrics proposed here may ultimately understate the total number of
extinctions that follow habitat loss and climate change. This concern, however, may be
partially addressed by the ability to select a minimum critical abundance for protection,
which could be set to a population size that is presumed to have a negligible probability of
subsequent extinction within a target time horizon.

The two new metrics presented here, the extinction-area relationship and the probabilistic
species-area relationship, provide, in explicitly probabilistic terms, a new approach for
predicting extinction risks and rates in landscapes undergoing habitat loss and climate
change. The sampling framework presented here demonstrates that both metrics can be
derived from two well-studied ecological distributions, the species abundance distribution
and species-level spatial abundance distribution, and that both metrics can be parameterized
using limited empirical data. While further research may improve on the specific results in
this chapter, I suggest that in the absence of data to the contrary, the equations presented
here, based on the predictions of an extensively tested ecological theory, may be useful for
generating rich and useful first-pass predictions of extinction risks and rates in landscapes
that are experiencing habitat loss and climate change and where little is known about
resident species.
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Figure 3.1: Extinction-area relationships, giving the probability, P , of species extinction as a
function of the fraction of area remaining after habitat loss, a, for different values of (a) initial
abundance, n0, with critical abundance nc D 0, and (b) critical abundance, nc, for a species with
initial abundance n0 D 100.
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Figure 3.2: Example extinction-area relationships predicted from (a) 5 and (b) 50 simulated samples
of a species’ abundance in small plots of area am D 0:001. Plots show the probability, P , of species
extinction as a function of the fraction of area remaining after habitat loss, a. Estimated maximum
likelihood extinction-area relationships are shown with a dashed line, with gray indicating 95%
confidence intervals around this estimate. The true extinction-area relationship, based on n0 D
1000, is shown in solid line. nc D 0 for all calculations.
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Figure 3.3: Probabilistic species-area relationships for a community with S0 D 100 and �� D
10,000. (a) The probability, P , of protecting S species at three different levels of a, with nc D 0.
(b) The probability, P , of protecting S species at three different levels of nc, with a D 0:1
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Figure 3.4: Example probabilistic species-area relationships predicted from a simulated sample
of 10 presence-absence surveys of S in measurement plots of area am D 0:00001. Plot shows the
probability,P , of protecting S species at three different levels of a. Gray areas show 95% confidence
interval of estimated �.S/ curves. True curves with S0 D 100 and �� D 10; 000 are shown in black
lines. nc D 0 for all calculations.
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Chapter 4

California bats avoid roads

Abstract

Although the negative impacts of roads on terrestrial vertebrate and bird populations are
well documented, there have been few studies of the road ecology of bats. Here, I present
the results of acoustic surveys of bat activity along ten 300 m transects bordering three
large highways in northern California. Nightly counts of bat passes were analyzed with
generalized linear mixed models to determine the relationship between bat activity and
distance from a road. Total bat activity recorded at points adjacent to roads is found to be
approximately one-half of the level observed at 300 m. Statistically significant decreases in
activity near roads are also found for the Brazilian free-tailed bat (Tadarida brasiliensis),
big brown bat (Eptesicus fuscus), hoary bat (Lasiurus cinereus), and silver-haired bat
(Lasionycteris noctivagans). This road effect is temperature dependent, with hot days both
increasing total foraging activity at night and reducing the difference between activity
levels near and far from roads. Decreases in bat activity in the vicinity of roads may have
implications for both bat conservation and the provision of insect control services.

Introduction

Roads represent one of the most extensive human impacts on the biosphere [1, 2]. With
respect to wildlife, roads are known to cause direct mortality due to vehicle collisions, serve
as barriers to physical movement and gene flow across landscapes, and decrease the use of
otherwise suitable habitat [3, 4]. Two recent comprehensive reviews of the road effects
literature have found that most studied species showed decreased abundances or activity
levels in the vicinity of large roads, with effects extending to several hundred meters from
the roadside and beyond [5, 6].

The vast majority of road ecology studies, however, have examined the effects of roads
on terrestrial vertebrates and birds, and there have been few studies of the effects of roads
on bat populations. Several species of bats, including the endangered Indiana bat (Myotis
sodalis), have been identified in roadkill surveys [7, 8], suggesting that vehicle collisions
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may be a source of bat mortality. The presence of vehicles on a road has also been found
to serve as a barrier during foraging for some species of bats [9, 10], and traffic noise has
been found to reduce the foraging effectiveness of the greater mouse-eared bat (Myotis
myotis) [11, 12]. Lower levels of total bat activity and activity of the common Pipistrelle
(Pipistrellus pipistrellus) have also been observed within 1 km of a large road in Cumbria,
United Kingdom [13].

Here, I present the results of acoustic surveys documenting the effects of three large roads
on bat activity in northern California salt marshes. Consistent with previous research,
decreased bat activity levels are observed near roads, with bat activity at points adjacent
to roads approximately one-half of the level at control points located 300 m from a road.
The four most common individual species in these landscapes also show decreased activity
levels near roads. This road effect is found to be temperature dependent, with higher daily
maximum temperatures both increasing total bat activity and decreasing the difference in
activity between points adjacent to a road and far from a road.

Methods

Survey Locations and Methods

Acoustic surveys were conducted during August and September of 2010 and 2011 at three
sites bordering the San Francisco Bay and adjacent to a major highway: Don Edwards San
Francisco Bay National Wildlife Refuge (California State Road 84), Hayward Shoreline
Interpretive Center (California State Road 92), and San Pablo Bay National Wildlife Refuge
(California State Road 37). These sites were specifically selected due to their relatively
homogeneous salt marsh habitat, which allowed transects to be established within a single,
relatively uniform vegetation cover. All three roads have moderate to high traffic volumes,
with annual average daily traffic of 55,000 (SR84), 86,000 (SR92), and 33,500 (SR37)
vehicles in 2010 [14].

Sampling was conducted along 300 m transects running perpendicular to each highway,
with acoustic bat detectors placed at points located approximately 0-20 m, 100 m, and
300 m from the edge of the road. Four transects were established at Don Edwards, four
at San Pablo Bay, and two at Hayward Shoreline. The dominant vegetation cover along
transects consisted of pickleweed (Salicornia spp.) (6 transects), invasive grasses and forbs
(2 transects), and sand (2 transects). Due to equipment constraints and failures, the final
sampling design was unbalanced, with each combination of transect and distance sampled
for a total of 4-10 nights. Transects were located a minimum of 300 m apart with the
exception of two transects at Hayward Shoreline, where the two transect points at 100 m
from the road were separated by approximately 120 m.

In 2010, surveys were conducted using AnaBat SD2 zero-crossing bat detectors (Titley
Scientific Pty Ltd, Lawton, Queensland, Australia). In 2011, surveys were conducted
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using Songmeter SM2BAT 192kHz full-spectrum bat detectors (Wildlife Acoustics Inc.,
Concord, MA). Microphones were mounted on 1 m poles to avoid ground noise and reduce
recordings of reflected calls. Directional microphones were used with AnaBat detectors and
were pointed approximately perpendicular to the transect line and at a 45 degree upward
angle. Omnidirectional microphones were used with SM2BAT detectors, and a 6" x 6" foam
block was attached to each pole below these microphones to reduce recordings of ground-
level insects and noise. The AnaBat detectors were set to autotrigger, saving separate data
files for each bat pass, while the SM2BAT detectors recorded data continuously. Data were
collected from sunset to sunrise each night. Although the length of nights varied by as much
as one half hour during the course of the study, no clear trends in the number of recorded
bat passes with calendar date were observed for either year.

Data Processing and Species Identification

In order to use comparable methods for data analysis across both years, full-spectrum
recordings made in 2011 were converted to 8-division zero-crossing format using wac2wav
3.3.0 [15]. A minimum spacing of five seconds was used to separate passes, consistent with
the default five second setting used by the AnaBat detectors to separate passes. A single
pass was thus defined as a temporally contiguous set of calls with no more than a five
second gap between successive calls.

Call data were processed using AnaLookW 3.8s [16]. A filter was used to identify high
quality calls, defined as data sequences with a characteristic frequency between 5 and 60
kHz, a duration between 2 and 50 milliseconds, a body over 1 millisecond, and a Qual index
less than 0.3 [17, 18]. All parameters were calculated within AnalookW. Passes containing
no high quality calls were excluded from subsequent analysis. Counts of the number of
passes recorded per night were used as a measure of bat activity.

To allow statistical analysis of individual species activity, a random forest classifier was
constructed to classify each pass according to the species that produced it, following the
methods described in [18]. All classification analysis was carried out in Python 2.7.2 using
scikit-learn 0.11 [19]. To construct the classifier, a reference library was assembled for 15
bat species known to occur in the San Fransisco Bay area [20] (Table 4.1). The reference
library consisted of AnaBat recordings of bat passes made by known, expert-identified
individuals of each species (W. Rainey, personal communication). For each bat pass in the
reference library, high quality calls were identified by applying the filter described above,
and eleven features describing the shape of each high quality call were extracted using
AnaLookW [see 18].

The resulting set of reference calls and associated features was used to train a random
forest classifier, a machine learning algorithm that fits a set of classification trees each built
from a bootstrapped sample from a training data set [21, 22]. Among machine learning
algorithms, random forests are considered to be highly robust to correlation between
predictor variables and do not require specific distributional assumptions about the variation
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in call features among or between species [21]. The random forest approach was also
previously recommended for identifying bat calls to the species level in a comparative
analysis of several machine learning algorithms [18].

A classifier consisting of 100 trees was trained on 80% of reference calls, selected using
stratified random sampling to achieve proportional representation of each species, with
20% of calls held out for testing. All trees were fully built, with three randomly drawn
features used to split each node. The use of larger ensembles of trees did not substantially
improve classification accuracy. Ten replicate fits of the classifier had a mean accuracy
(proportion of calls in the testing set correctly identified) of 0.8411 (SD 0.0013), similar to
the accuracy achieved by random forest classifiers constructed for southwestern and Florida
bats [18] (Table 4.1).

The fitted random forest classifier was used to predict the probability that each high
quality call recorded during field surveys was made by each species. These probabilities
were summed across all calls within each pass, and the species with the highest summed
probability for a pass was identified as the species associated with that pass. Summed
counts of the total number of passes per night were used for all subsequent species-level
analysis.

Statistical Analysis

Statistical analyses were carried out using generalized linear mixed models (GLMMs) [23,
24] using R 2.14.2 [25] with the packages lme4 0.999375-42 [26] for Poisson models and
glmmADMB 0.7.2.12 [27, 28] for negative binomial models.

The statistical models included three main variables of interest that could potentially
influence total bat activity: distance from road (dist_road, three levels: 0-20 m, 100 m, and
300 m), presence of a light within 100 m of a sampling point (light_100, two levels: False,
True), and daily maximum temperature (temp_max, continuous). The latter two variables
were included due to substantial prior research that shows that light sources [29–32] and
ambient temperature [33–36] can affect bat activity levels. Lights were present within 100
m of four out of thirty sampled locations. Daily maximum temperature data were drawn
from records at the KOAK weather station at the Oakland International Airport [37]. As
ambient temperature at locations around the margins of San Francisco Bay are very similar,
and all three sampled sites were immediately adjacent to the bay, temperature data recorded
at this station were used as an estimate of daily maximum temperature at all sampled
locations.

In addition to these three main variables, four additional variables representing site (site,
three levels: DOED, HAYW, SAPA), year (year, two levels: 2010, 2011), night (night,
random effect), and transect (transect, random effect) were also included in statistical
models. The site and year variables were coded as fixed effects, as only three and two
levels of these variables were present, respectively. Because sampling was carried out
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using different detector models in 2010 and 2011, the estimated effect of year also includes
the effect of detector model. Additional interaction terms between dist_road and site and
between dist_road and temp_max were added to account for the biologically-reasonable
possibility that road effects may vary by site and with temperature. With all variables and
interactions, the final models had a total of 14 estimated fixed effect parameters (Table 4.2)
plus normally distributed crossed random effects for night and transect.

As appropriate for the analysis of count data, exploratory analyses were conducted using
Poisson generalized linear mixed models [24, 38]. Initial models containing all predictor
variables described above indicated that nightly count data were overdispersed, with the
ratio of summed squared Pearson residuals to residual degrees of freedom (accounting for
fixed effects only) equal to 13.67 for a model of the total number of passes and ranging
from 2.57 to 6.06 for five individual species models (see Results). To account for this
overdispersion, negative binomial generalized linear mixed models, specified with type
1 variance structure within the glmmADMB package and using a log-link function, were
used for subsequent modeling.

In specification of the model matrix, sum contrasts were used for the variables road, year,
and light_100, such that the sum of estimated coefficients for all levels of each variable
are equal to zero, as there is, philosophically, no control level of these variables. Treatment
contrasts were used for dist_road, with counts at 300 m from the road serving as the control
level. Temperature data were centered on the mean maximum daily temperature (75ı F).

Given this model matrix, the estimated intercept gives the number of bat passes expected
at a distance of 300 m at the mean daily maximum temperature. Estimates of the number
of passes at 0 m and 100 m are obtained by adding the dist_road_0 and dist_road_100
coefficients, respectively. The addition of the coefficient site1 gives estimates for San
Pablo Bay, the addition of the coefficient site2 gives estimates for Don Edwards, and the
subtraction of both coefficients gives estimates for Hayward Shoreline. Estimates of passes
in 2010 are obtained by adding the coefficient year, and estimates of passes in 2011 are
obtained by subtracting this coefficient. Estimates of passes at locations within 100 m of a
light are obtained by subtracting the coefficient light, and estimates of passes at locations
more than 100 m from a light are obtained by adding this coefficient. Similar logic applies
to the interpretation of the coefficients of the interaction terms.

The significance of each predictor variable was tested using likelihood ratio tests of the full
model containing all predictors and a reduced model omitting only that predictor, carried
out using the anova command of the package glmmADMB. Reduced models used to test
the direct effects of road, distance from road, and temperature necessarily excluded the
interaction terms that included those variables. Reduced models used to test interaction
terms retained all direct effects.

Fitted statistical models were used to generate predictions of the expected number of
recorded bat passes as a function of specified values of predictor variables. Expected
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numbers of bat passes were calculated as the matrix product of the vector of fixed effect
coefficients and Xp, a vector of specified levels of each fixed effect. Standard errors for
predictions were calculated as XpV. Ǒ/XT

p , where V. Ǒ/ is the covariance matrix of the
estimated fixed effect coefficients. This method of estimating standard errors accounts only
for uncertainty in the estimates of fixed effects.

Results

A total of 8,308 bat passes with at least one high quality call were recorded across 174
detector-nights of sampling. On 8 of 10 sampled transects, the highest mean nightly bat
activity occurred either at 100 m or 300 m from the road (Fig. 4.1), while the highest
activity occurred at 0-20 m at two transects at Don Edwards (see Discussion).

Of all recorded passes, more than 90% were identified by the random forest classifier
as either Tadarida brasiliensis, the Brazilian free-tailed bat (40%), Eptesicus fuscus, the
big brown bat (25%), Lasionycteris noctivagans, the silver-haired bat (15%), Lasiurus
cinereus, the hoary bat (7%), or Myotis yumanensis, the Yuma myotis (5%) (Table 4.1).
Statistical models of bat activity, measured as a nightly count of bat passes, were fit for the
total number of bat passes made by all species and for each of these five species separately.

The results of negative binomial generalized linear mixed models of nightly bat activity are
shown in Table (4.2). Total bat activity is positively correlated with distance from a road,
with average recorded bat activity of 16.5 passes per night at 0-20 m, 22.9 passes per night
at 100 m, and 32.7 passes per night at 300 m at a mean daily maximum temperature of
75ıF. A likelihood ratio test shows that this effect is statistically significant. Four of the five
individual species examined show higher activity away from roads, while M. yumanensis
shows no significant trend in activity with distance from a road (Fig. 4.2).

Maximum daily temperature prior to the recording night significantly influences bat
activity, with an increase in maximum daily temperature from 75 to 85 degrees F leading
to an increase in total nightly recorded bat passes from 32.7 to 43.9 at 300 m from a road.
A significant interaction between distance from a road and temperature is also observed for
the model of total bat activity, with the difference between activity levels at 0-20 m and at
300 m decreasing with an increase in temperature, as indicated by the positive coefficient
on the interaction of dist_road_0 and temp_max. This same qualitative pattern is observed
for the five individual species, although the distance and temperature interaction terms are
not statistically significant in the species-level models.

The number of recorded bat passes varies significantly by site for all species except M.
yumanensis. Overall, transects at Hayward Shoreline have substantially higher total bat
activity than those at Don Edwards or San Pablo Bay. The combination of main effects
and interaction terms confirms that the strongest road effect is observed at the Hayward
Shoreline site (see also Fig. 4.1), while at Don Edwards, unlike the other two roads, higher
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total bat activity and higher activity for E. fuscus, L. noctivagans, and M. yumanensis is
observed near roads than at 300 m.

The effect of year is significant for all species except M. yumanensis, with more T.
brasiliensis and L. cinereus passes recorded in 2010 with the AnaBat detectors and
more E. fuscus and L. noctivagans passes recorded in 2011 with the SM2BAT detectors.
These differences may reflect either year-to-year variability in activity levels or different
sensitivities of these two detector models to the calls of different species. The total number
of passes recorded is not significantly different between years. The presence of a light
within 100 m of a sampling point appeared to decrease total bat activity and activity for all
five species, but this effect was not statistically significant in any model.

Discussion

These results demonstrate that total bat activity and the activity of four common bat
species is consistently depressed near three large California highways as compared to
control points 300 m from these roads. Possible explanations for this road effect include
differences in traffic noise, illumination, wind speeds, or prey availability between points
near and far from roads. Prey availability could plausibly be influenced by local temperature
gradients (road surfaces are likely warmer than natural vegetation cover at night) or by
other differences in microhabitat within transects. While this study was not designed to
examine the causes of the observed road effect, distinguishing between these causes will
be an important future area of research, as this knowledge will be needed to inform efforts
to mitigate the negative impacts of roads on bat populations.

Field observations along the sampled transects suggest that small-scale differences in
vegetation structure may be an important factor in determining bat activity levels. In
particular, the two transects at Don Edwards at which bat activity was significantly higher
near the road had notably heterogeneous vegetation cover, with relatively prominent stands
of tall, invasive grasses found immediately adjacent to the road and pickleweed-dominated
marsh habitat found away from the road. This observation suggests that differences in
microhabitat, perhaps through an effect on prey availability, may influence bat activity
strongly enough to override the otherwise repulsive effect of roads.

Although previous studies have documented increases in bat activity with increasing
ambient temperature, a significant interaction between temperature and road avoidance
behavior in bats has apparently not been previously described. On the hottest days of
the study (daily maximum 95ıF), models for all species predict approximately constant
activity across all distances from a road, with road effects increasing in magnitude as
temperature decreases. This pattern could potentially result from crowding if higher overall
bat densities lead bats to spread out across the landscape, increasing activity in otherwise
less desirable habitat, or if road surfaces themselves retained more heat following hot
days, perhaps increasing insect activity near the roads during the subsequent night. The
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statistically and biologically significant effect of temperature on total bat activity, and the
significant interactions between temperature and the road effect, suggests that future road
ecology studies for bats should explicitly incorporate temperature effects. Future studies
might be specifically advised to improve on the daily maximum temperature variable used
here by instead recording nightly temperature data at each sampling point.

Bats provide several valuable ecosystem services [39], and the species T. brasiliensis is
known to provide an economically valuable pest control service in the southern United
States [40, 41]. The finding that T. brasiliensis shows decreaseed activity near roads thus
has specific implications for agricultural landscapes. In particular, if the observed road
effect is driven by abiotic factors and not by prey density, this finding would suggest that
insect control services may be reduced along the margins of large roads, potentially leading
to higher pest densities in these areas compared to areas away from roadsides.

While this study has documented the negative effects of roads on bat activity, the net effect
of large roads on bat populations may be more mixed. The availability of high quality
roosts is often considered to be the most important limiting factor for bat populations,
and highway overpasses and bridges often serve as important roosting sites for California
bats [42]. In areas with high levels of habitat transformation, however, foraging habitat
may also play a role in limiting populations [43], and an integrated strategy involving
roosting, foraging, and other required habitat types may be needed for successful long-
term bat conservation [44]. Given the ubiquitous nature of roads in many landscapes [2],
conservation efforts should be directed towards identifying methods for preserving the
beneficial aspects of road infrastructure while minimizing the negative consequences.

Overall, this study demonstrates that northern California bats display decreased activity
levels in the vicinity of major roads and that this road effect is temperature dependent,
with the strongest road effect occurring on nights following cold days. Roads have the
potential to influence bat populations and the provision of ecosystem services in human-
altered landscapes, but very little is known about the road ecology of bats. Particularly
important directions for future study include conducting road effects research in habitats
other than salt marsh, investigating the road ecology of species other than those present
in northern California, and determining the specific factors that cause the observed road
effects.
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Species Nref P R Nobs

Antrozous pallidus 353 0.78 0.78 50
Corynorhinus townsendii 148 0.86 0.77 6
Eptesicus fuscus 884 0.83 0.89 2094
Eumops perotis 204 0.98 0.99 51
Lasionycteris noctivagans 365 0.82 0.78 1258
Lasiurus blossevillii 98 0.86 0.64 155
Lasiurus cinereus 174 0.91 0.79 584
Myotis californicus 220 0.75 0.54 23
Myotis evotis 169 0.83 0.83 2
Myotis lucifugus 219 0.75 0.84 196
Myotis thysanodes 184 0.89 0.91 0
Myotis volans 198 0.79 0.62 26
Myotis yumanensis 650 0.87 0.96 441
Parastrellus hesperus 267 0.96 0.98 46
Tadarida brasiliensis 304 0.86 0.72 3376
Total 4437 8308

Table 4.1: Species present near San Francisco Bay and included in species classifier. Nref is the
number of passes for each species included in the reference library. P is precision, the fraction
of all calls in the testing data set identified as a species that were made by that species, and R
is recall, the fraction of all calls in the testing data set made by a species that were identified as
that species. Overall species classification accuracy, the fraction of all calls in the testing data set
identified correctly, was 84%. Nobs is the number of passes recorded during the study that were
identified as each species.
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Figure 4.1: Total nightly counts of bat passes at each transect (HAYW: Hayward Shoreline, DOED:
Don Edwards, SAPA: San Pablo Bay) as a function of distance from a road. Lines show mean
nightly counts of total bat passes at each distance.
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Figure 4.2: Predicted total and species-specific nightly counts of bat passes as a function of
distance from a road. Lines connect mean predicted activity levels across distances, and error bars
represent standard errors of predictions. Predictions are for a maximum daily temperature of 65ıF.
Gray points are observed data, with observed nightly counts greater than 150 not shown. TABR:
Tadarida brasiliensis (Brazilian free-tailed bat), EPFU: Eptesicus fuscus (big brown bat), LANO:
Lasionycteris noctivagans (silver-haired bat), LACI: Lasiurus cinereus (hoary bat), MYYU: Myotis
yumanensis (Yuma myotis).
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Chapter 5

The global wildlife footprint: linking bird and mammal
population losses to economic consumption

Abstract

Although the proximate causes of biodiversity loss, such as land use change, overharvest-
ing, and invasive species, are increasingly well understood, quantitative analyses of the
relationship between biodiversity loss and the indirect, upstream economic activities that
drive this loss remain uncommon. Here, I present the results of a global “wildlife footprint”
analysis that links decreases in global wildlife populations due to land use activities to 57
categories of economic consumption in 113 regions of the world. Current land use practices
are found to decrease global terrestrial bird and mammal populations by 20–25% below
the baseline levels that would be present in the absence of human land use activities.
This decrease represents ongoing losses of 26 billion individual birds and 1.1 trillion
individual mammals, or approximately 4 wild birds and 160 wild mammals per person alive
today. The largest wildlife population losses occur in regions with high baseline wildlife
populations, while the global wildlife population losses driven by economic consumption
within a region is closely correlated with that region’s human population size. Consumer
purchases from agricultural sectors lead to the majority of wildlife population losses, with
one dollar spent by a final consumer in several agricultural sectors displacing on the order of
0.1–1 individual birds or mammals. These results provide a new perspective on the global
drivers of biodiversity loss and highlight a potentially important approach for incorporating
biodiversity considerations into economic decision making.

Introduction

Despite growing recognition of the importance of biodiversity to natural and human
communities, global biodiversity loss continues at a rapid pace [1]. In response, substantial
efforts have been directed towards understanding the extent and location of the direct, on-
the-ground causes of biodiversity loss, such as land use change, climate change, invasive
species, over-exploitation, and pollution [2]. These direct causes, however, are themselves
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ultimately driven by the upstream economic production and consumption activities of
sectors and individual consumers. Deforestation in the tropics, for example, is not practiced
for its own sake, but rather ultimately is driven by demands, both local and global, for
heating, wood-based products, agricultural products such as beef and palm oil, and other
goods and services.

To date, however, relatively little effort has been directed towards studying these indirect
economic drivers of biodiversity loss. Building on recent advances in consumption-based
environmental accounting [3–5], I here calculate a first estimate of a global “wildlife
footprint” that allocates losses of global terrestrial bird and mammal populations due to
human land use activities to economic consumption in 113 regions and 57 economic
sectors. In the spirit of the carbon, water, and ecological footprints [4–9], the wildlife
footprint measures the total wildlife population losses caused indirectly by the everyday
activities of human populations.

Throughout, the term “populations” should be understood to refer to an unweighted or
weighted count of a number of individual organisms, not to a count of the number of
reproductively isolated groups within a species. Metrics based on wildlife population losses
arguably provide more sensitive measurements of human impacts on biodiversity than
metrics based on species extinctions [10, 11] and highlight potentially important changes in
the status of common as well as rare species [12, 13]. The population-based approach used
here thus complements existing estimates of species extinction risks and rates [14–16]. This
analysis focuses on decreases in global wild bird and mammal populations, as these taxa
are a common focus of conservation concern and are relatively well characterized at the
global scale.

This analysis addresses three key questions. First, in what regions are human land use
activities causing the greatest losses of wildlife populations, and what types of land use
activities are the proximate causes of these losses? Second, which regions are indirectly
driving wildlife population losses through their consumption demands, and are these the
same regions in which the losses are occurring (i.e., to what extent is the global wildlife
footprint traded internationally)? Third, which economic sectors play the largest roles in
promoting wildlife population losses, and what is the wildlife population loss associated
with each dollar spent by a consumer in each sector (i.e., what is the wildlife population-
intensity of each economic sector)?

Addressing the first question requires creating global maps of estimated wildlife popu-
lations in the absence of human land use activities. Baseline, pre-industrial age wildlife
populations are measured using two metrics: a count of a total number of individual
organisms at a location and a fractional-range metric equal to the sum across all species
of the fraction of each species’ range found at a location. These two measurements are
closely related to the first two IUCN criteria for assessing a species’ extinction risk
[16] and offer complementary perspectives on the value of different species. Specifically,
the individual approach assigns the highest wildlife footprints to activities that affect
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widespread, abundant species, while the fractional-range approach assigns the highest
wildlife footprints to activities that affect rare, range-restricted species. These baseline
wildlife population maps are then combined with global maps of the human appropriation
of net primary productivity (HANPP) related to four major human land use activities (crop
production, grazing, forestry, and infrastructure areas) to estimate the wildlife population
losses occurring at any location and their direct cause.

The second and third questions are answered using an environmentally-extended multi-
regional input-output analysis [17]. For this analysis, wildlife population losses are initially
allocated to the economic sector, within a specific geographic region, that is the proximate
cause of the losses. A matrix of monetary flows between sectors and end consumers
is then used to determine the upstream consumption activities, both from a regional
and a sectoral perspective, that drive global wildlife population losses. The total, global
losses of wildlife populations due to economic consumption in a region is defined as that
region’s wildlife footprint. This approach explicitly accounts for trade in embodied wildlife
footprint between regions, as the wildlife footprint of any region is equal to the wildlife
population losses within that region plus imports and minus exports of embodied wildlife
population losses in traded goods and services.

Throughout, wildlife population losses are defined as an ongoing rather than a static
phenomenon. All calculations reflects the premise that losses do not occur only once as
a result of the initial conversion of natural habitat, but rather on an ongoing basis as
continually occupied habitat fails to “produce” wildlife in each year that it is occupied.
For example, the complete occupation of a habitat that would support 100 individual birds
in the absence of humans is considered to represent a population loss of 100 individual birds
in each time period that the habitat is occupied, regardless of the date that the habitat was
first converted for human uses. This approach has the conceptual advantage of recognizing
the possibility for the recovery of wildlife populations on currently occupied lands and the
practical advantage of being feasible to calculate given existing global datasets.

Methods

Temporal aspects of population loss

Any effort to measure the causes of wildlife population losses must first determine a method
for accounting for the temporal dimension of population loss. A “marginal approach”
defines population loss as occurring only once, at the instant at which a natural land
cover is converted to a human-dominated state. This approach implicitly assumes that
continuing occupation of existing transformed land involves no associated continuing
wildlife population loss, thus ignoring the potential for the recovery and restoration of
existing human-used lands. An “ongoing approach” defines population loss as a process
that occurs on a continuous basis, such that habitat occupation in any time period, regardless
of the date of the original conversion of habitat, continues to represent a loss. This approach
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implicitly assumes unlimited potential for recovery and restoration of existing human used
lands. The marginal approach is consistent with considering wildlife populations to be a
stock, while the ongoing approach is consistent with considering wildlife populations to be
a flow.

Consider, for example, a plot of forest containing habitat for 100 birds that is cleared for
cropland. The marginal approach allocates 100 birds of population loss to the initial actor
who clears the plot, while any future actor who continues to harvest crops from the plot is
presumed to cause zero population loss, even though such continual harvest likely prevents
additional birds from recruiting to the plot. Conversely, the ongoing approach allocates a
wildlife footprint of 100 lost birds to the actor who harvests the plot in any time period,
regardless of when the original plot was harvested.

The marginal and ongoing approaches to measuring population loss represent two valid and
internally-consistent approaches to assigning responsibility for losses across time, as would
hybrid approaches that mix the two in a manner akin to depreciation of a capital investment
in finance. This analysis uses the ongoing approach, for which losses in any given year
can be estimated from maps of global baseline wildlife populations and existing land uses.
The marginal approach would instead require maps of global baseline wildlife populations
and land clearing, with each unit of cleared land assigned to the activity responsible for the
clearing.

While conceptual and not physical in nature, the differences between the ongoing and
marginal calculations of population loss are substantial, and comparison of the two
approaches will be an important area for future investigation. In general, the ongoing
approach will find the largest wildlife population losses to be occurring in regions with
the largest baseline wildlife populations and highest intensity of human land use, while the
marginal approach will find the largest wildlife population losses to be occurring in regions
with the largest baseline wildlife populations and current land conversion activity.

Spatially-explicit baseline wildlife population maps

To begin the analysis, spatially-explicit maps of baseline global wildlife populations in the
absence of human land use activities were estimated on a global 5 arc-minute grid.

Global species range data for 5,276 terrestrial mammal species, published by IUCN [16],
and 2,080 threatened bird species, published by Birdlife International [18], were used for
baseline wildlife population analysis. Baseline population estimates using the fractional-
range approach were calculated for both taxa, for each grid cell, as the sum over all species
of the fraction of each species’ total range that occurs within that grid cell. As no global
range maps for all bird species were available, only threatened birds were considered
for this fractional-range approach. To the extent that population density is approximately
constant across a species’ range, the fractional-range metric can be interpreted as a rarity-
weighted population metric.
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Baseline wildlife population estimates using the individual approach were calculated
differently for birds and mammals. For birds, the baseline number of individuals in a cell
was calculated from an estimate of breeding bird population density within different land
cover classes and a map of potential vegetation classes in the absence of human land use
activities [19, 20].

For mammals, the baseline number of individuals in a cell was calculated by assigning
each species a population density, taken to be constant across that species’ range and zero
otherwise, and, for each grid cell, summing across all species the product of cell area and
population density for each species. Mammal population densities were drawn from the
PanTHERIA database [21] when available (n D 908, 17% of species). When no measured
population density for a species was unavailable, population density was estimated from
adult body mass (Appendix, n D 2749, 52% of species). Mammal population densities
were capped at a maximum of 10,000 individuals per km2. This approach estimates a total
global baseline mammalian biomass of approximately 1012 kg, comparable to previous
estimates on the order of 1010–1011 kg for all wild mammals [22] and 1011 kg for all
mammals with body sizes greater than 44 kg [23].

The range maps and density database used to construct baseline population maps include
only extant or recently extant species, and, as such, baseline population levels should be
interpreted as approximately the populations that were present immediately prior to the
industrial age (i.e., several hundred years before present). Estimates of wildlife population
loss based on these baseline maps thus do not account for wildlife harvesting, landscape
conversion, and other human activities that occurred during pre-industrial management of
landscapes.

Spatially-explicit wildlife population loss maps

To create maps of global wildlife population losses, baseline population maps were
combined with maps that estimate the proportional losses of wildlife populations in each
grid cell. These proportional losses were estimated using maps of the human appropriation
of net primary productivity (HANPP) [24–27]. Although several definitions of HANPP
have been proposed, this study follows [27] in defining HANPP as the difference between
the amount of net primary productivity (NPP) (t C / ha yr) that would be available in a grid
cell in the absence of human activities, NPP0, and the amount of NPP that remains in the
grid cell following human harvest and land conversion.

The fractional wildlife population loss in each grid cell due to each of four different human
land use activities, crop production, grazing, forestry, and infrastructure areas (buildings
and roads), is calculated as the ratio of the HANPP associated with that activity to NPP0,
multiplied by the fraction of grid cell area associated with each land use [28]. Activities
wth negative associated HANPP in a grid cell, indicating that total available NPP in the
cell is increased due to that activity, are presumed to cause zero population loss. HANPP
and NPP0 for each land use activity were calculated as in [27] and are for the year 2000.
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This use of HANPP data to estimate wildlife population losses presumes a linear relation-
ship between NPP availability and wildlife population sizes. In the context of this analysis,
this assumption can be viewed as reflecting an individuals-area relationship, the scaling of
the number of individual organisms with area, which is linear when population density is
constant across a species’ range. If a species, rather than a population, perspective were
to be used to calculate a wildlife footprint, this assumption of linearity would be poor,
as species richness is well known to increase with area as approximately a power law
[29–31]. As a consequence of this assumption of linearity, these calculations are agnostic
to the intensity of land use, as the 100% occupation (i.e., zero NPP remaining in a grid
cell) of 10 hectares of land for human uses, for example, is calculated to lead to the
same population loss as a 50% occupation of 20 hectares of land. This assumption is
important both philosophically and practically in this analysis, as data on the configuration
and intensity of land uses within grid cells was not available.

This HANPP-based analysis provides a conservative estimate of wildlife population losses,
as it measures only the quantity of NPP available and does not consider changes in land
cover or the quality of the NPP remaining in a cell (e.g., if the NPP embodied in crop
residue remaining after harvest is equivalent to the NPP of a former, natural ecosystem,
wildlife population losses are taken to be zero). This approach also does not include other
non-NPP related disturbances that could lead to wildlife population losses.

Regional and sectoral drivers of wildlife population loss

An environmentally-extended multi-regional input-output analysis [17] is used to link
estimated wildlife population losses in each grid cell to upstream economic sectors and
human consumption activities. A multi-regional input-output table covering 57 sectors in
113 regions was extracted from the Global Trade Analysis Project (GTAP) database v7
[32] following [3]. The GTAP v7 database has a reference year of 2004, and all monetary
figures are in units of 2004 U.S. dollars.

For both the individual and fractional-range measures of wildlife populations, for both birds
and mammals, the direct population loss caused by each land use activity (crop production,
pasture, forestry, and infrastructure areas) within each region was calculated as the sum of
wildlife population loss due to each activity occurring within all grid cells in that region.

A direct requirements vector, f d , with 6441 elements giving the direct population loss
caused by each sector within each region, was then constructed by allocating the population
loss caused by each of the four major land use activities within each region to the relevant
economic sectors within that region (Appendix). The sum of f d across all sectors within a
region gives the total wildlife population loss that occurs within the borders of that region,
and the sum across all regions for a single sector gives an estimate of the total wildlife
population loss caused directly by the activities of a given economic sector.

A direct intensity vector, reflecting the wildlife population loss directly caused to create
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one dollar of output from a given sector within a given region, was calculated as the direct
requirements vector divided element-wise by a vector of total sectoral economic output, x.

FD D f d=x (5.1)

A total intensity vector, F T , reflecting the total wildlife population loss caused throughout
all sectors worldwide to produce one dollar of output from a given sector within a region,
was calculated using Eq. (5.2).

F T D FD.I � A/�1 (5.2)

In Eq. (5.2), I is the identity matrix and A is a matrix of input-output coefficients [3, 17].
The total intensity vector F T measures the wildlife footprint-intensity of final consumption
in each sector, or, equivalently, the total downstream wildlife population loss caused by an
end consumer spending one dollar to purchase goods or services from each sector.

The total wildlife population loss associated with final consumption in each sector in each
region can be calculated as the product of F T and the total final demand by households,
government, and industry (c) for goods and services from each sector within each region.

f c D F T c (5.3)

The final consumption vector f c measures the total wildlife population loss that is caused
directly and indirectly by the consumption of all goods and services sold by each sector
in each region. The sum of f c across all sectors within a region gives an estimate of the
global wildlife population loss, occurring anywhere in the world, that is associated with
economic consumption in each region, defined as that region’s wildlife footprint. The sum
across all regions provides a similar metric for each sector.

The difference between the sum of f d and f c for a given region represents the difference
between wildlife population loss that occurs within a region and global population loss
driven by consumption of residents of that region, giving net trade in embodied wildlife
footprint for that region.

Results

For both bird and mammal communities, using both the individual and fractional-range
measurement approaches, baseline populations in the absence of human land use activities
are largest in the tropics, decreasing towards the poles, with the highest levels found in
the Amazon basin and southeast Asia (Fig. 5.A1). As measured by counts of individuals,
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large baseline bird and mammal populations are also found in continental Europe and
the western United States. Locations with very high summed fractional-ranges occur
throughout the coastal tropics, where large numbers of endemic, range-restricted species
are found. Globally, baseline populations of approximately 120 billion individual birds and
5.4 trillion individual mammals are estimated [see also 20, 22, 23].

Based on a spatially-explicit analysis of the human appropriation of net primary productiv-
ity (HANPP), crop production leads to the vast majority of global wildlife population losses
due to land use activities, with grazing, forestry, and infrastructure areas locally important
in some regions (Fig. 5.A2). Central North America, continental Europe, south Asia, and
east Asia contain large areas in which high intensity of land use leads to greater than 50%
losses of baseline wildlife populations.

Combining baseline wildlife population and HANPP estimates, global ongoing wildlife
population losses are estimated as 22% of bird individuals, 24% of bird fractional-ranges,
21% of mammal individuals, and 22% of mammal fractional-ranges. In total, 26 billion
individual birds and 1.1 trillion individual mammals are currently displaced by human
land use activities. These 1.1 trillion individual lost mammals represent an estimated total
biomass of approximately 200 billion kg, which, given a global human population of 7
billion and an individual human mass on the order of 50–70 kg [23, 33], implies that
each human currently alive displaces approximately one-half his or her own mass in wild
mammals.

From a wildlife footprint perspective, seven nations, Brazil, China, India, Indonesia,
the Philippines, Russia, and the United States, have the most significant global impact
under several methods of measurement. For both birds and mammals and using both the
individual and fractional-range measurements of wildlife populations, 38–50% of all global
ongoing wildlife population losses occur within the borders of these nations, and 37–47%
of all global ongoing wildlife population losses are driven by consumption demands of
residents of these nations. For comparison, these seven nations contain 51% of the global
human population and represent 38% of global GDP. It is notable that among these seven
nations, wildlife population losses within Brazil and Russia are relatively low (9–23%),
indicating that these regions have large remaining, intact wildlife populations that could be
benefited by conservation efforts. Wildlife population losses within India, in contrast, are
currently 59–71%, suggesting that India has relatively less potential for experiencing large
additional losses in the future.

Using log-log linear regressions (Table 5.1), the wildlife population losses occurring within
each region are found to be best predicted by baseline wildlife populations in that region
(R2 D 0.64–0.87), indicating that the regions with the largest wildlife populations to
lose are those that generally experiences the largest losses. Regional GDP and human
population size predict regional wildlife population losses less strongly. Together, baseline
wildlife population size, human population size, and GDP explain 80–92% of variation in
the wildlife population losses occurring within regions. Conversely, the regional wildlife
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footprint (i.e., the global wildlife population losses due to a region’s consumption) is most
strongly correlated with a region’s human population size (R2 D 0.65–0.90). The slope of
the relationship between human population size and total regional wildlife footprint is less
than one, indicating a potential economy of scale in meeting human demands with lowered
impact on wild populations.

The per-person wildlife footprint is relatively poorly predicted by per-person GDP and
baseline biodiversity (Table 5.1). The largest per-person wildlife footprints occur in
different regions depending on whether the wildlife footprint is measured in units of
bird individuals (Australia, Botswana, Iceland and Liechtenstein), bird fractional-ranges
(Brunei Darussalam and Timor-Leste, Panama, Ecuador), mammal individuals (Kaza-
khstan, Luxembourg, Belarus), or mammal fractional-ranges (Madagascar, Panama, Costa
Rica) (Fig. 5.2).

The difference between wildlife population losses occurring within a region and the
regional wildlife footprint provides a measure of net international trade in embodied
wildlife footprint for that region. Depending on the method of baseline wildlife population
measurement, an estimated 24–26% of the global wildlife footprint is traded internationally,
amounting to total international trade flows of 6 billion embodied lost individual birds and
281 billion embodied lost individual mammals.

The importance of international trade for each region can be measured by calculating the
fraction of a region’s wildlife footprint that involves wildlife population losses occurring
outside of the borders of that region, a measure of imports of embodied wildlife footprint
(Fig. 5.3). Regions with large total wildlife footprints and large imported wildlife footprints
include the United States, western Europe, and Japan. Conversely, the wildlife footprints of
Russia, Brazil, India, China, and Australia are largely associated with wildlife population
losses occurring within the borders of those regions themselves.

The economic sectors whose output is associated with the largest total wildlife footprint
include those that are large in monetary terms and linked directly to activities that
affect land use, including all food products sectors, services (including government),
construction, and trade (retail purchases) (Fig. 5.A4). Consumer purchases of products
from food-related sectors involve the highest wildlife footprint per dollar, on the order of
0.1 individual birds and 1 individual mammal per 2004 U.S. dollar spent in these sectors by
final consumers. Patterns in the relative wildlife footprint associated with different sectors
are broadly consistent across all four measures of wildlife population losses.

Discussion

This analysis of the global wildlife footprint due to human land use activities highlights
the regions and economic sectors that are the most significant drivers of global wildlife
population losses. Globally, the largest wildlife population losses occur in areas with high
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estimated baseline wildlife populations, while the regions that drive the most wildlife
population losses through their consumption are those with large human populations.
Controlling for human population size, the list of regions with the largest per-person
wildlife footprint varies greatly depending on taxonomic group (birds or mammals) and
the method used to measure wildlife population losses (individuals or fractional-ranges).

On a sectoral basis, agricultural sectors are associated with the largest wildlife footprints,
a finding that reflects the land use basis of this analysis. The wildlife footprint intensity of
sectoral output can be interpreted as the average wildlife population losses associated with a
consumer purchase of one dollar of goods or services from a given sector. These intensities
indicate that, from the perspective of a developed nation consumer, seemingly minor daily
consumption activities can have significant impacts on wildlife populations. For example, a
person who purchases $10 of bovine meat products displaces approximately 0.1 wild birds
and 6 wild mammals for one year (Table 5.2).

The results presented here should be understood as a first-pass estimate of the global
wildlife footprint and interpreted in light of the many limitations of existing data sets
and the uncertainties in the calculation methods used here, of which three are especially
important. First, estimates of baseline wildlife populations rely on coarse approximations
of bird and mammal ranges and population densities that could be improved with finer
scale biodiversity data. Second, the assumption of a linear relationship between wildlife
population sizes, area, and human appropriation of net primary productivity is an approxi-
mation that ignores the potential for feedbacks between habitat loss and wildlife population
sizes. Third, multi-regional input-output analyses are linear models that are limited by
the regional and sectoral resolution of data tables and disparities in the collection and
standardization of raw data across regions [4], although newer input-output databases that
partially address these shortcomings are currently being developed [34, 35].

Several extensions of this analysis could further improve the utility of global wildlife
footprint calculations. First, the wildlife population losses due to land use activities, as
presented here, could be compared to estimated population losses due to other human
impacts such as climate change, which may become a driver of biodiversity loss as
important, if not more important, than land use change in the coming century [2]. The
differences between a land use and climate change perspective could be substantial, as
a climate-based analysis would find the largest biodiversity loss to be associated with
the activities that lead to the largest emissions of greenhouse gases [4, 5]. Second, the
aggregated bird and mammal population loss figures presented here could be further
disaggregated to finer taxonomic levels, such as individual species, where data permit. The
analysis presented here, for example, counts the loss of a single individual of all wildlife
species to be equivalent (i.e., the loss of a single elephant is equivalent to the loss of a single
shrew). While this approach allows the wildlife footprint to be measured in the single,
straightforward unit of individual organisms, further extensions of this analysis may wish
to focus on aggregate wildlife biomass losses or other weighted metrics.
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Third, the monetary input-output tables used here embody an accounting philosophy in
which financial flows and economic activity represent the links between direct wildlife
population losses and the upstream activities that drive these losses. This approach could
be compared to other methods, including those that use physical input-output tables,
that attempt instead to directly measure physical resource flows [e.g., 36–38]. Physical
flow accounting, however, is not an inherently preferable approach, as, for example,
measurements of physical flows will not account for the wildlife footprint embodied in
international trade in services.

Given the findings presented here, individuals and organizations may wish to examine ways
to reduce the wildlife footprint of their consumption activities. This could be achieved,
for example, by reducing purchases of products that lead to large wildlife population
losses (such as meat products) or by sourcing products from regions where relatively
lower wildlife population loss is associated with production, which will tend to be regions
with low baseline wildlife populations and relatively efficient production practices. More
generally, the quantification of the link between individual behavior and biodiversity
consequences may help to bring biodiversity considerations more centrally into public
discourse and decision making. Although more refined estimates of the wildlife footprint
will be necessary for much fine-scale decision making, the overall framework presented
here provides a useful path forward for future analyses.

Similar to the role that GDP plays in summarizing extensive and disparate economic
data into a single headline indicator, the global wildlife footprint has the potential to
serve as a useful aggregate measure of human impacts on global biodiversity. Despite
the limitations and coarse nature of this analysis, results such as these that explicitly link
human activities to global biodiversity outcomes have the potential to inform action to
stem ongoing losses of global biodiversity. Continued efforts to quantify the relationship
between economic activities and biodiversity loss will help conservation biologists to
identify new opportunities for interventions, decision makers to evaluate the relationships
between economic growth and wildlife populations, and the general public to better
understand their personal roles in determining the fate of global biodiversity.
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POP GDP BWP ALL
R2 Coeff R2 Coeff R2 Coeff R2

Total Local Bird Individs 0.37 1.52 0.07 0.56 0.87 0.94 0.88
Mamm Individs 0.35 1.60 0.08 0.64 0.64 1.69 0.80
Bird Range 0.35 0.38 0.05 0.12 0.86 0.62 0.92
Mamm Range 0.55 0.57 0.08 0.18 0.86 0.69 0.92

Cons Bird Individs 0.90 0.88 0.44 0.52 0.40 0.24 0.94
Mamm Individs 0.83 0.82 0.46 0.52 0.57 0.53 0.91
Bird Range 0.65 0.94 0.33 0.56 0.61 0.97 0.91
Mamm Range 0.79 0.88 0.31 0.47 0.61 0.75 0.91

Per-person Cons Bird Individs - - 0.31 0.17 0.01 0.02 0.52
Mamm Individs - - 0.29 0.22 0.16 0.18 0.63
Bird Range - - 0.06 0.17 0.40 0.47 0.55
Mamm Range - - 0.05 0.10 0.38 0.34 0.62

Table 5.1: Results of log-log linear regressions of wildlife population losses and regional human
population (POP), gross domestic product (GDP), baseline wildlife populations (BWP), and all
three variables with interactions (ALL) (n D 113). Rows indicated by “Local” indicate losses
occurring within the borders of a region, and rows indicated by “Cons” indicate the regional wildlife
footprint (i.e., wildlife population losses occurring anywhere in the world due to the consumption
of a region). Wildlife populations are measured in units of bird individuals, mammal individuals,
bird fractional-ranges, and mammal fractional-ranges. Per-person regressions use per person GDP
and BWP as predictor variables. P < 0:02 for all reported coefficients except for regression of per
person consumption of bird individuals and BWP (P D 0:2). All logarithms are natural log. BWP
estimates have a value of one added before log transformation to avoid log of zero errors.
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Purchase Bird
Individuals

Mammal
Individuals

US $10 on bovine meat products 0.13 6.57
US $10 on dairy products 0.05 2.57
US $10 on sugar 0.03 1.68
US $10 on vegetables, fruit, nuts 0.03 1.04
US $100 on general retail purchases 0.02 0.98
US $100 on petroleum products 0.01 0.70
US $100 on electronic equipment 0.01 0.66
US $100 on electricity (global average mix) 0.01 0.65
US $100 on air travel 0.01 0.64

Table 5.2: Estimates of the land use driven losses of bird and mammal individuals associated with
various consumer purchases, calculated using global average wildlife population loss intensities
(Eq. 5.2). Losses represent a one year decrease in global wild bird or mammal populations caused
by each purchase. Results should be interpreted in light of the relatively coarse global resolution
and various limitations of this study (see Discussion).
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Figure 5.1: Wildlife population losses per km2 caused by all human land use activities, measured
in units of (a) bird individuals, (b) bird fractional-ranges, (c) mammal individuals, and (d) mammal
fractional-ranges. All data are log10.
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Figure 5.2: Per-person wildlife footprints by region, measured in units of (a) bird individuals, (b)
bird fractional-ranges (log10 transformed), (c) mammal individuals, and (d) mammal fractional-
ranges (log10 transformed).
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Figure 5.3: Imports of embodied wildlife footprint, measured as the fraction of a region’s wildlife
footprint that represents wildlife population losses occurring outside of that region’s borders,
measured in units of (a) bird individuals, (b) bird fractional-ranges, (c) mammal individuals, and
(d) mammal fractional-ranges.
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Appendix

Supplemental maps

Figure (5.A1) shows the global distribution of baseline wildlife populations, with pop-
ulations measured as bird individuals, bird fractional-ranges, mammal individuals, and
mammal fractional-ranges. Figure (5.A2) shows the global intensity of human land use
activities leading to population losses. Figure (5.A3) shows the total wildlife footprint of
each region.

Wildlife population losses by economic sector

Figure (5.A4) shows the global wildlife population losses associated with consumer
purchases from 16 aggregated global economic sectors.

Initial allocation of wildlife population losses to economic sectors

Wildlife population losses are initially allocated to the sectors that are the direct causes
of those losses (i.e., the sectors that are the first “point of entry” where embodied wildlife
population losses enter the global economy). To allocate direct wildlife population losses
to economic sectors, total wildlife population losses within each region are first calculated
and divided among four major land use activities (crop production, grazing, forestry, and
infrastructure areas) as described in Methods. The wildlife population losses associated
with each of these four land use activities within each region are then allocated among the
57 economic sectors in each region as follows:

� Crop production. Wildlife population losses due to crop production were divided
among eight crop producing sectors (1 Paddy rice, 2 Wheat, 3 Cereal grains nec, 4
Vegetables, fruit, nuts, 5 Oil seeds, 6 Sugar cane, Sugar beet, 7 Plant-based fibers, 8
Crops nec) based on the fraction of harvested area in each cell devoted to each crop
group, as calculated from data in [1].

� Grazing. Wildlife population losses due to grazing were divided between two
unprocessed livestock product sectors (9 Bovine cattle, sheep and goats, horses, 11
Raw milk) in proportion to the economic output of these sectors within a region.

� Forestry. All wildlife population losses due to forestry activities (harvest of wood)
were allocated to the forestry sector (3 Forestry).

� Infrastructure areas. Wildlife population losses due to areas occupied by infrastruc-
ture (primarily buildings and roads) were divided among all 57 sectors in each region
in proportion to the total economic output of each sector within that region.

This process was used to create the f d vector described in Methods.
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Calculation of mammal population density

Data from the PanTHERIA database [2] were used to determine population density for
mammal species. Population density data (individs / km2) were extracted directly from
PanTHERIA (WR93 and WR95 datasets) for 908 species. For species without population
density data but with adult body mass data (2,749 species), densities were estimated from
an allometric relationship between body mass (g) and population density (individs / km2)
[see also 3–5].

log10 Density D 3:88 .SE 0:07/ � 0:74 .SE 0:02/ log10 Mass (5.A1)

Eq. (5.A1) was constructed from the subset of all species in the PanTHERIA WR05 dataset
with both population density and body mass data (927 species).

Species without population density or body mass data (1,619 species, representing 31%
of mammals with IUCN range maps) were excluded from subsequent analyses using the
mammal individuals measurement metric (all mammal range maps were used for mammal
fractional-range analysis).
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Figure 5.A1: Global estimated baseline wildlife populations per km2 in the absence of human
land use activities, measured in units of (a) bird individuals, (b) bird fractional-ranges, (c) mammal
individuals, and (d) mammal fractional-ranges. All values are log10.

92



Figure 5.A2: Fractional wildlife population losses caused by different human land use activities.
Maps show fractional losses for (a) all activities, (b) crop production, (c) grazing, and (d) forestry.
The map of losses due to the presence of infrastructure areas (buildings and roads) is not shown.
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Figure 5.A3: Total regional wildlife footprint, measured in units of (a) bird individuals, (b) bird
fractional-ranges, (c) mammal individuals, and (d) mammal fractional-ranges. All values are log10.
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Figure 5.A4: Total wildlife population losses and wildlife population losses per dollar of final con-
sumption in each of 16 aggregated global economic sectors, measured in units of (a) bird individuals,
(b) bird fractional-ranges, (c) mammal individuals, and (d) mammal fractional populations. Sector
abbreviations: CRO = Raw crop products, LVP = Raw livestock products, DAI = Dairy, PLA =
Processed plant products, MEA = Processed meat products, CLO = Clothing and textiles, COG
= Coal, oil, gas, minerals, chemicals, WOO = Wood and paper products, TRN = Transport, ELW
= Electricity and water, VEH = Vehicles, EMF = Electronics and manufactured products, CON =
Construction, TRA = Trade, SER = Services, government, and other.
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Chapter 6

Conclusion

This dissertation has developed several new approaches in quantitative ecology that can be
used to measure and predict species richness, abundance, and extinction in human-altered
landscapes. A number of particularly important future extensions to these approaches are
highlighted below.

The reserve design models presented in Chapter 2 could be improved by adding spatial
autocorrelation to the proposed metapopulation models, which would generally decrease
the value of reserve site clustering for all species. A second important improvement would
be to adjust the models to allow individual organisms to use multiple habitat patches
separated by short distances, a change that could perhaps substantially decrease predicted
extinction risk for large bodied, low density species. Beyond these improvements, maps of
landscape permeability could be used to modify species’ dispersal probabilities between
habitat patches when such maps are available. In addition to patch selection, the approach
described here could also be used for linkage selection by using optimization methods to
choose the set of linkages between patches whose presence most increases the probability
of species’ persistence. A final natural and practical extension of this analysis would
be to integrate the proposed extinction-based reserve design approach with widely used
representation-based tools, such as MARXAN, to create an integrated method that could
be used to maximize the number of species expected to be present in a reserve network
at a future time horizon. To accomplish this integration, however, the simulation methods
presented here will likely need to be replaced with analytical approximations to increase
the speed at which extinction risk can be estimated for many species.

The new extinction metrics presented in Chapter 3 are most limited by the lack of an explicit
treatment of how extinction risks and rates are affected by the number and configuration
of the habitat patches remaining after habitat loss. Incorporating habitat fragmentation into
these metrics will likely require explicit macroecological predictions of patterns of beta
diversity, predictions that have not yet been derived within the maximum entropy theory
of ecology. Future research might be directed towards calculating these new extinction
metrics using different forms of the underlying species abundance distribution and species-
level spatial abundance distribution, with the specific goal of identifying the underlying
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ecological and statistical assumptions to which extinction predictions are most sensitive.
Further evaluation of these extinction metrics using empirical data should also be carried
out where possible.

The study of the road ecology of bats presented in Chapter 4 could have been improved
substantially if temperature measurements had been recorded at each individual sampling
location. These data could replace the daily maximum regional temperature variable in
statistical analyses, potentially leading to more robust inferences about the relationship
between temperature and bat activity. Additional research should be directed towards
attempting to identify the specific causes of the observed road effect, which might include
differences in small scale habitat structure, abiotic conditions, or noise levels between
points near and far from roads. Similar research should also be carried out in habitats
other than salt marsh, and with species other than those present in northern California,
to examine whether the road effect observed here is also present for other species and in
other landscapes.

The accuracy of the global wildlife footprint calculations presented in Chapter 5 is limited
by the availability, accuracy, and resolution of global-scale data on species’ ranges, human
appropriation of net primary productivity, and monetary flows between global economic
sectors. In particular, the 57 sector level of aggregation in the monetary input-output
tables used in this analysis limit the resolution with which different types of consumption
activities can be distinguished, and future analyses may wish to incorporate higher
resolution multi-regional input-output tables that are currently being developed. Given the
communication value of footprint metrics and their ability to raise public awareness, a
useful follow-up to this analysis would be to develop non-academic materials, such as
an interactive website or literature directed towards general audiences, to popularize the
concept of the wildlife footprint and the results presented here.
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