
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
On Limiting & Limited Non-determinism in NEXP Lower Bounds

Permalink
https://escholarship.org/uc/item/2w9797pg

Author
Dhayal, Anant

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2w9797pg
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

On Limiting & Limited Non-determinism in NEXP Lower Bounds

A dissertation submitted in partial satisfaction of the

requirements for the degree

Doctor of Philosophy

in

Computer Science

by

Anant Dhayal

Committee in charge:

Professor Russell Impagliazzo, Chair
Professor Samuel Buss
Professor Sanjoy Dasgupta
Professor Ramamohan Paturi
Professor Jacques Verstraete

2021

Copyright

Anant Dhayal, 2021

All rights reserved.

The dissertation of Anant Dhayal is approved, and it is acceptable in

quality and form for publication on microfilm and electronically.

University of California San Diego

2021

iii

TABLE OF CONTENTS

Dissertation Approval Page . iii

Table of Contents . iv

List of Tables . vii

Acknowledgements . viii

Vita . ix

Abstract of the Dissertation . x

1 Introduction . 1

1.1 Fast (unambiguous) algorithms imply UEXP circuit lower bounds 4

1.2 UEXP lower bounds are constructive, useful, and unique 7

1.3 Gradually increasing the non-determinism in circuits for NEXP lower

bounds: with a hope to prove NEXP 6⊂ P/poly 10

1.4 Our techniques, interesting by-products, and previous work 14

1.5 Organization of the thesis . 22

2 Preliminaries . 23

3 EWL and KLT for UTIME and related classes 32

3.1 Search to decision reduction for UTIME 32

3.2 EWL and KLT for UTIME . 34

3.3 EWL and KLT for ZUTIME . 35

3.4 EWL and KLT for F̃ewTIME . 37

4 UEXP Lower Bounds from Fast Unambiguous Algorithms 39

iv

4.1 Lower bounds from unambiguous tautology and canonization algorithms 40

4.2 Lower bounds from unambiguous Π2SAT algorithms 42

4.3 Lower bounds from F̃ew tautology algorithms 42

4.4 Lower bounds from unambiguous learning and tautology algorithms . . 43

4.5 Generalization of lower bound frameworks 44

5 Unique Properties vs. Lower Bounds . 47

5.1 ZUE lower bounds vs P-U properties 49

5.2 UE lower bounds vs P/ logn-u≤1 properties 51

5.3 UE/n lower bounds vs P/ logn-U properties 53

5.4 ZNE lower bounds vs NP-U properties 54

5.5 ZNE lower bounds vs NP-N properties 56

5.6 NE lower bounds vs NP/ logn-U properties 58

6 Derandomization Using Unique Properties 60

7 Isolation of properties: EWL & KLT for ZNE 63

8 Lower bounds against prSV non-deterministic circuits 68

8.1 NEXP vs (NP∩Co−NP)/poly . 68

8.2 NEXP 6⊂ (NP∩Co−NP)/poly from super-polynomial savings 71

8.3 New gap theorems for CAPP and MA . 72

8.4 Fast algorithms imply lower bounds against circuits with limited prSV

non-determinism . 73

8.5 Uncodntional lower bounds against restricted circuits with limited prSV

non-determinism . 76

8.6 Unconditional fixed-polynomial lower bounds against unrestricted cir-

cuits that use prSV non-determinsim 77

v

9 Conclusions and Open Problems . 81

Bibliography . 83

vi

LIST OF TABLES

Table 5.1: Properties vs Lower Bounds . 47

vii

ACKNOWLEDGEMENTS

I would like to thank my advisor Prof. Russell Impagliazzo for all his help and encourage-

ment during my Ph.D. I would also like to thank Prof. Ramamohan Paturi and Prof. Jayalal Sarma

for teaching me the nuances of research and all the help they provided during various research

projects. I am very grateful to Prof. Sam Buss, Prof. Sanjoy Dasgupta, Prof. Jacques Verstraete

and Prof. Pavel Pevzner to serve on my exam committees. A special thanks to Prof. Valentine

Kabanets, Prof. Dieter van Melkbeek, Prof. Eric Allender and Prof. Ryan Williams for teaching me

the basics of circuit lower bounds, and to Sasank Mouli, Vaibhav Krishan, Marco Carmosino, Sam

McGuire, Sajin Koroth and Abhishek Bhrushundi for helpul discussions that made computational

complexity a bit less complex. I would also like to thank other UCSD theory group students Jiapeng

Zhang, Baiyu Li, Sankeerth Rao, Kaave Hosseini, Nick Genise, Jiawei Gao, Stefan Schneider,

Ivan Mihajlin, Jessica Sorrell, Mark Schultz, Rex Lei, Max Hopkins, Michael Borkowski, Michael

Walter, Daniel Moeller, Joseph Jaeger, Ken Hoover and Michael Jaber for uncountably infinite lunch

time gossip.

I am very grateful to my parents Bhanwar Lal and Sunil, brother Anchal, sister-in-law

Priyanka, and wife Radha who supported me throughout this Ph.D. program. My soccer team-

mates and other friends who deserve a special acknowledgement are, Aman Nougrahiya, Yash

Gehlot, Saurabh Mogre, Suganth Krishna, Nishant Bhaskar, Shubham Saini, Mainak Biswas, Pulak

Sarangi, Thyagarajan Venkatanarayanan, Suruj Deka, William Weston-Dawkes, Raquel Hakes,

Geoff Ganzberger, Adit Bhardwaj, Siddhartha Agarwal, Varun Garg, Kshitiz Gupta, Vineet Pandey,

Viraj Deshpande, Bharat Sridhar, Madhura Som, Animesh Gupta and Sahil Agarwal.

Chapters 1, 3-6, 8 and 9 contain material from “On Limiting & Limited Non-determinism in

NEXP Lower Bounds”, by Anant Dhayal and Russell Impagliazzo, which is currently under review

in ACM Transactions on Computation Theory (TOCT). The dissertation author was the primary

investigator and author of this paper.

viii

VITA

2012 B. Tech. in Computer Science & Engineering, LNM Institute of Information

Technology, Jaipur, India

2015 M. S. by Research in Computer Science, Indian Institute of Technology

Madras, Chennai, India

2021 Ph. D. in Computer Science, University of California San Diego

ix

ABSTRACT OF THE DISSERTATION

On Limiting & Limited Non-determinism in NEXP Lower Bounds

by

Anant Dhayal

Doctor of Philosophy in Computer Science

University of California San Diego, 2021

Professor Russell Impagliazzo, Chair

Proving circuit lower bounds is one of the most difficult tasks in computational complexity

theory. The NP vs. P/poly problem asks whether there are small non-uniform circuits that can

simulate circuit satisfiability. The answer is widely believed to be false, but so far progress has

only been made in the case of restricted circuits. In 1980s the progress stalled after it was shown

that NP doesn’t have non-uniform AC0 circuits that have MOD-m gates for any prime m. After almost

three decades, in 2010s Williams made progress in the relaxed case of NEXP lower bounds. He first

showed that non-trivial satisfiability algorithms for a circuit class entail NEXP lower bounds against

x

that class. Then he designed a fast satisfiability algorithm for ACC circuits (AC0 circuits with MOD-m

gates for any constant m) to show that NEXP doesn’t have non-uniform ACC circuits.

We make progress in bringing down the class NEXP, specifically by limiting non-determinism

(in terms of the number of non-deterministic branches that accept). We show that slightly faster

satisfiability algorithms entail lower bounds for UEXP and related classes. We believe this is progress

towards making similar connections, and thus proving lower bounds, for EXP and lower complexity

classes.

To investigate why progress again stalled around ACC lower bounds, and why TC0 (AC0

circuits with majority gates) lower bounds have not been established yet, Williams made rigorous

connections between NEXP lower bounds and variations of Natural Proofs. Razborov and Rudich

defined Natural Proofs to showcase the limitations of the current lower bound techniques. They

showed that any technique that entails Natural Proofs, i.e. Proofs that are (i) constructive, (ii)

useful, and (iii) large, fail to prove strong lower bounds. Williams showed that NEXP lower bounds,

regardless of the technique, entail Proofs that satisfy the first two of the three conditions of Natural

Proofs.

We make Williams connections more rigorous, and show that UEXP lower bounds entail

Proofs, that in addition to the first two conditions of Natural Proofs, satisfy a third condition that is

exactly the opposite of largeness condition. We call this condition, the uniqueness condition, and

these Proofs, the Unique Proofs. These connections showcase that NEXP⊇ UEXP⊇ EXP is a viable

path to approach EXP lower bounds.

We also discuss an alternate approach to improve NEXP lower bounds. We define a new form

of non-determinism to capture the non-uniform circuits from the class (NP∩Co−NP)/poly, and

call it promise-Single-Valued non-determinism. We show that in the current NEXP lower bounds,

we can allow the non-uniform circuits some limited non-determinism (in terms of the number

of non-deterministic inputs) of the type promise-Single-Valued. We also discuss that, how small

improvements in the amount of this special type of non-determinism, even in the restricted circuits

much weaker than ACC, would imply very strong lower bounds such as NEXP 6⊂ P/poly.

xi

Chapter 1

Introduction

The two fundamental problems in theoretical computer science are: (a) design non-trivial

algorithms for computational tasks; or (b) prove that such algorithms do not exist, i.e. prove (circuit)

lower bounds for the computational task in question. For instance, the famous 1970s question

of Cook and Levin, is NP= P or NP 6= P [25, 61]? Or its non-uniform version, is NP⊂ P/poly or

NP 6⊂ P/poly (it would also imply NP 6= P)? P/poly is the class of problems that have non-uniform

polynomial-size circuits. Non-uniform computation allows the sizes of programs to grow with the

sizes of inputs, and can be naturally represented as an infinite family of Boolean circuits (one for

each possible input length). They are very powerful and can simulate all undecidable problems

when there is no size restriction, and certain undecidable problems even with polynomial size

restriction. But it’s still not known if P/poly can simulate NP. In fact the answer is believed to be

false. One of the main reasons being the collapse of polynomial hierarchy. This is second to the

P= NP collapse, in the list of collapses that are widely believed to be false by complexity theorists.

No significant progress after decades of efforts lead to the pursuit of considerably relaxed

versions of the above pair of questions. Here we focus on the lower bounds side of the question.

Optimists started the bottom-up approach and started proving lower bounds for restricted circuit

classes with a hope that gradually they would lift the restrictions over time.

If we just consider size restrictions, the best known lower bound for any NP problem is

1

5n−o(n), for circuits over the basis of 2-bit AND, OR, and NOT gates [50, 60]. MA (with 1-bit of

advice) is the lowest class that contains functions with super-linear and fixed-polynomial (size nk

for any constant k) lower bounds [80]. If we consider restrictions on gate types (basis), monotone

circuits, i.e. circuits without negations or NOT gates are the most studied. A super-polynomial

lower bound was proved for NP in [76] (for CLIQUE to be specific), and improved to exponential

size in [5]. But later in [77] it was shown that these techniques for monotone circuit lower bounds

would not extend to general circuits.

Here we only focus on the depth restrictions. Constant depth restrictions are the most

studied ones. In 1980s it was shown that the parity function on n bits, which is in P (infact in even

lower complexity classes), can’t be computed by AC0 circuits [35, 2]: the class of constant depth

circuits over the basis of AND, OR, and NOT gates of arbitrary fan-in. Later the lower bound was

improved to exponential size in [103], and eventually an optimal lower bound was established in

[38]. Then the next question in line was about the power of AC0 circuits with parity gates. Let

AC0[⊕p] denote the class of AC0 circuits with MOD-p gates. An exponential size lower bound was

proved for AC0[⊕2]in [77] for the majority function on n bits. Majority too lies in P and lower

classes. For any two primes p 6= q, an exponential size lower bound for the MOD-p function was

proved for the AC0[⊕q] circuits in [87]. Based on these lower bounds, the logical next step was to

move towards the following two classes that are more expressive: (i) ACC, the class of AC0 circuits

with MOD-m gates for arbitrary constant m > 1; (ii) TC0, the class of AC0 circuits with majority (or

equivalently, threshold) gates. Note that, TC0 can simulate ACC.

Failing to prove that NP is not contained in polynomial-size non-uniform ACC circuits, the

lower bound question was relaxed further. The next question asked was, whether this lower bound

can be established for NEXP, or even EXPNP. Note that, MAEXP is the smallest class known to have

super-polynomial lower bounds for unrestricted Boolean circuits [13] (although, in [53] it was

shown that NEXPRP, that is contained in MAEXP, can’t have polynomial-size circuits of both types,

Boolean and arithmetic). MAEXP contains NEXP, and is incomparable to EXPNP. Even for EXPNP, the

super-polynomial lower bound for ACC (even depth-3 AC0[⊕6]) were elusive for about three decades.

2

In his seminal work in 2010s, Williams [100] showed super-polynomial ACC lower bounds for NEXP,

and exponential ACC lower bounds for EXPNP. He used connections between fast algorithms and

lower bounds from his prior work [99]. For TC0 lower bounds, MAEXP is still the smallest class we

know.

Pessimists on the other hand started formulating barriers to show that all the techniques used

in the bottom-up approach are not good enough to prove stronger lower bounds. There are three

main barriers in the literature that any lower bound technique should overcome: (i) Relativization

[10], (ii) Algebrization or Algebric Relativization [1], and (iii) Natural Proofs barrier [78]. The first

two barriers essentially say that techniques that relativize, i.e. work even in presence of arbitrary

oracles, fail to prove most of the lower bounds. This is because, for most of the lower bound

questions, there are some oracles relative to which the lower bound is known to hold, and there are

other oracles relative to which the lower bound is not known to hold. In this thesis we will only

focus on the third barrier.

The Natural Proofs barrier of Razborov and Rudich [78] argues that almost all known proofs

of nonuniform circuit lower bounds, entail algorithms/properties that: (i) are efficient (constructivity),

(ii) distinguish hard functions from easy by only accepting hard functions (usefulness), (iii) accept

many hard functions (largeness). Here by hard (resp. easy) we mean that the function requires bigger

(resp. smaller) circuits to compute, typically super-polynomial (resp. polynomial) in size. Any such

algorithm would refute widely believed cryptography primitives, and thus Natural Proofs are self-

limiting in the sense that: in order to prove weak lower bounds, they provide algorithms that refute

strong lower bounds that are also believed to be true. Even the small class TC0 supports cryptography

[69, 59, 64], and to prove lower bounds against it we would need un-Natural techniques.

Main results: We focus on three different directions in this thesis: (i) We describe ways

in which Williams fast algorithms to lower bounds connection from [99] can be extended to lower

bounds for classes smaller than NEXP, by limiting the non-determinism used by NEXP (in terms of

the number of non-deterministic branches that accept). This can be viewed as a progress towards

establishing similar connections, and hence proving lower bounds, for EXP and lower complexity

3

classes. (ii) Then we discuss how lower bounds for these smaller classes evade the Natural Proofs

barrier. (iii) Finally we extend the current NEXP lower bounds by allowing circuit classes a limited

amount of non-determinism. We also discuss how small increments in our results would lead to

much stronger lower bounds such as NEXP 6⊂ P/poly. This can also be viewed as a new bottom-up

approach, where gradually lifting the restriction on the amount of non-determinism used by the

circuits, would lead to NEXP 6⊂ P/poly.

1.1 Fast (unambiguous) algorithms imply UEXP circuit lower

bounds

In the direction of algorithm-design too, the questions were relaxed. The intial question was:

do NP-complete languages have polynomial time algorithms? The rlaxed version is: do they have

algorithms that beat the naive brute-force strategy? For solving circuit satisfiability (Ckt−SAT),

the canonical NP-complete language, the naive approach runs in 2nm deterministic time for n-input

m-size circuits. The relaxed questions are: Is it possible to design a 2cn poly(m) time algorithm for

any constant c < 1? Or even 2n poly(m)/sp(n) time algorithm for some super-polynomial function

sp? While pessimists formulated many conjunctures [46, 44, 20, 97] believing that no substantial

progress is possible, optimists took the bottom-up approach and started designing fast algorithms for

restricted classes. The most studied restrictions in this line are: 3−CNF⊆ k−CNF⊆ CNF⊆ AC0 ⊆

ACC⊆ TC0⊆ NC1⊆ NC⊆ P/poly [65, 75, 82, 74, 83, 17, 40, 67, 63, 18, 43, 100, 45, 102, 81, 85, 23].

We often think of algorithm design and lower bounds as being antithetical, for instance: the

two statements, P= NP and P 6= NP, can’t be simultaneously true. But there have been a series of

results showing that efficient algorithm for certain problem in certain computation model, implies

a lower bound for related problem in other computation model [42, 99, 100, 102, 68, 53]. The

intuition behind these connections is: if there is a fast algorithm for a circuit class, then the algorithm

must be exploiting a simple structure or pattern that exists in that class, and thus that class can’t

4

simulate complex classes.

Williams in his ACC lower bound result, first connects the relaxed versions of P= NP and

NP 6⊂ P/poly that we discussed above [99]: for any super-polynomial function sp, a 2n/sp(n)

time Ckt−SAT algorithm for polynomial-size Boolean circuits implies NEXP 6⊂ P/poly. Infact, an

equally fast non-deterministic algorithm for circuit tautology suffices. His connection (and many

others in the literature) also preserve the nature of circuits. That is, fast satifiability algorithm for a

restricted sub-class of Boolean circuits C , implies lower bounds against C circuits. He developed

fast satisfiability algorithm for ACC circuits, and then used this connection to establish NEXP and

EXPNP lower bounds [100].

Unfortunately, most of these connections are only known to show circuit lower bounds in

relatively large complexity classes such as NEXP or EXPNP (although [68] extends this to scaled-down

versions of these classes). Establishment of similar connections for lower classes like EXP, can be

seen as the first step towards establishing lower bounds for them.

One of the main focus of this thesis is to extend these connections to non-uniform lower

bounds for the class UEXP of languages recognized by unambiguous non-deterministic machines,

and to related classes. Since UEXP lies between EXP and NEXP, we believe that lower bounds for

UEXP based on algorithms would be progress towards making similar connections for EXP. We

don’t known how far UEXP is from NEXP. In [94] a randomized reduction was given from NP to

promise-UP which only succeeds with a low probability. In [27] it was shown that derandomizing

this reduction, or even increasing the success probability, will have unlikely consequences.

We show that fast unambiguous non-deterministic circuit analysis algorithms imply circuit

lower bounds for UEXP. In our first result we use fast tautology and canonization algorithms.

Roughly speaking, a canonization algorithm for a circuit class, is an algorithm that only accepts one

circuit per function or truth-table, from that class (see Section 4.1 for a technical definition).

Theorem 1. USUBE algorithms for tautology and canonization of C imply UE/O(n logn) 6⊂ C .

We use C to denote any non-uniform circuit class from the set {AC0,ACC0,TC0,NC1,NC,

5

P/poly}. This set is called typical in the literature. We measure the complexity of any circuit

analysis algorithm in terms of the input wires, and not the circuit size. We omit the size parameter

for circuits if it’s polynomial, i.e. C (poly) = C . Here by SUBE (sub-E) we denote the class of

languages that have 2εn-time algorithm for each ε > 0. USUBE is the extension to unambiguous

non-deterministic algorithms.

Since canonization is not prominently used circuit analysis algorithm in the lower bound

literature, we replace the assumption of fast canonization with different circuit analysis algorithms.

Based on the definition of canonization, a fast Π2SAT algorithm would be an ideal replacement. We

derive the following theorem.

Theorem 2. For every constant k1 there is a constant k2, such that if Π2SAT on n variables and n

clauses can be solved in UTIME(2n/(logn)k2), then UE/n 6⊂ SIZE(n(logn)k1).

Relaxing the unambiguity condition a little, helps us totally get rid of the fast canonization

assumption. One other well studied variant of UTIME(t) is FewTIME(t), which was first defined in

[3]. L ∈ FewTIME(t), if there exists a constant c and a non-deterministic verifier V , such that the

number of accepting certificates on any input is bounded by tc. We get results for a slightly relaxed

version of FewTIME, the class F̃ewTIME(t).

Definition 1.1.1. F̃ewTIME(t) is the class of problems decidable by NTIME(t) verifiers, where the

number of accepting paths are bounded by 22(log log t)2
.

Actually, even if we bound the number of accepting paths by 22sc(t) log log t
for any super

constant function sc, the definition would satisfy all our results. We use sc(t) = log log t for the sake

of cleaner presentation. Note that, this definition allows any F̃ewE verifier to have 22(logn)2+O(logn)

many accepting paths compared to the 22logn+O(1)
upper bound for the FewE verifiers. But it’s still

very ‘few’ compared to the maximum possible by an NE verifier, that is 22O(n)
. Definition of F̃ewSUBE

is analogous to USUBE. We derive the following result.

Theorem 3. F̃ewSUBE tautology algorithm for C circuits implies ∀k F̃ewE/O(n logn) 6⊂ C (nk).

6

Lastly, we replace canonization with exact proper learning (that makes membership and

equivalence queries) and derive the following result. Here by proper we mean that any hypothesis

produced by the learning algorithm is a polynomial-size C circuit, i.e., belongs to the class being

learned (see Section 4.4 for a technical definition).

Theorem 4. USUBE algorithms for tautology and proper-learning of C imply UE/O(n logn) 6⊂ C .

Almost all of our connections work for any typical restricted circuit class C . But still we

derive some translation results to show that, any lower bound frame work (that may be different

from ours), if uses certain set of fast unambiguous circuit analysis algorithms, and only works for

unrestricted Boolean circuits, now can be used for C . These translations are tight enough to be

useful in the scenario where the new framework only requires the algorithms to be UTIME(2n/sp(n))

for some super-polynomial function sp(n), as opposed to our frameworks that require USUBE

algorithms.

Theorem 5. Either P 6⊂ C , or:

1. UTIME(2n/nω(1)) tautology and canonization algorithms for C , imply UTIME(2n/nω(1)) tau-

tology and canonization algorithm for unrestricted Boolean circuits; and

2. F̃ewTIME(2n/nω(1)) tautology algorithm for C , implies F̃ewTIME(2n/nω(1)) tautology algo-

rithm for unrestricted Boolean circuits.

1.2 UEXP lower bounds are constructive, useful, and unique

To inquire why lower bounds for smaller classes like TC0 are still open after decades of

efforts, Williams proved rigorous equivalences between NEXP lower bounds and useful properties

that are constructive [101]. He showed that the lower bound NEXP 6⊂ C is equivalent to the existence

of P/ logn constructive property against C circuits. As it is believed that there can’t be any Natural

Proofs against TC0 and more expressive circuit classes, this is a negative result in the sense that any

7

NEXP lower bound, already satisfies two of the three conditions of Natural Proofs, regardless of the

technique used to obtain it.

We extend these results to characterize UEXP lower bounds. Our connections show that

the future of UEXP lower bounds is brighter in the sense that, they not only ‘not satisfy’ the third

condition of Natural Proofs, but they satisfy a different third condition that is totally opposite of

largeness. We introduce a new notion called Unique Proofs. Unique properties are those that contain

exactly one function of each input length. Useful unique properties are implicitly proving a circuit

lower bound for a specific function: the one function that has the property, but might not explicitly

spell out which function the lower bound holds for. We derive the following equivalence.

Theorem 6. UE/n 6⊂ C if and only if a P/ logn computable unique property exists against C .

In [72] the NE∩ Co−NE 6⊂ C lower bound was shown to yield a P computable property

against C . The equivalence was also conjectured to be true. We prove that conjecture for the case of

UE∩Co−UE lower bounds and P computable unique properties.

Theorem 7. UE∩Co−UE 6⊂ C if and only if a P computable unique property exists against C .

As an application of these connections, we get USUBEXP derandomization of BPP from

different UEXP lower bounds.

Theorem 8. 1. UEXP 6⊂ SIZE(poly) =⇒ BPP⊂ ∩ε>0 io-UTIME(nε)/nε

2. UEXP 6= BPP =⇒ BPP⊂ ∩ε>0 io-Heur-UTIME(nε)/nε

3. UEXP∩Co−UEXP 6⊂ SIZE(poly) =⇒ BPP⊂ ∩ε>0 io-UTIME(nε)

4. UEXP∩Co−UEXP 6= BPP =⇒ BPP⊂ ∩ε>0 io-Heur-UTIME(nε)

We also discuss unique properties with constructiviy higher than P. Rudich [79] was the first

to study NP computable natural properties. For Co−NP and higher constructivity, natural properties

are not that interesting to study. This is beacuse, Co−NP computable natural properties exists

8

against P/poly circuits or any typical circuit class C , unconditionaly (the algorithm just guesses a

polynomial size C circuit and verify if its truth-table is equal to the property’s input). For useful

properties that are not required to satisfy largeness, NP constructivity is shown to be equivalent to P

constructivity [4, 72]. So for such properties, both NP constructivity and Co−NP constructivity, are

not very interesting.

For the case of unique properties, their is no known equivalence between NP constructivity

and P constructivity. Even with Co−NP constructivity, we don’t know if unique properties exists

against P/poly, unconditionally. We only know such properties with PNP constructivity (we can

check if the input is the lexicographically first truth-table that requires at least nlogn size circuit)

or P/n constructivity (advice itself can provide a unique truth-table with super-polynomial circuit

complexity). So it makes sense to explore unique properties with NP constructivity (with and without

sub-linear advice). We derive the following equivalence.

Theorem 9. NE 6⊂ C if and only if an NP/ logn computable unique property exists against C

We also prove the conjecture of [72] for the case of NE∩ Co−NE lower bounds and NP

computable unique properties.

Theorem 10. NE∩Co−NE 6⊂ C if and only if an NP computable unique property exists against C

We extend the techniques to show isolation of properties with different versions of NP

constructivity, in the sense that, existence of a property implies existence of a unique property with

the same constructivity. These isolation results indicate that NP-computable properties are not too

powerful (since their largeness can be diluted).

Theorem 11. The following properties can be isolated within same constructivity:

1. an NP/ logn computable property against C

2. the set of NP/O(1) computable properties against C (nk) for each k ≥ 1

3. the set of NP computable promise properties against C (nk) for each k ≥ 1

9

Here by isolation of a set of properties we mean that, if all the properties in the set exist,

then each property has an equivalent unique property. Note that, for the case of P/ logn or NP/ logn

computable properties that are not unique or large, an equivalence is known between the existence

of a property against C , and the existence of the set of properties against C (nk) for each k≥ 1 [101].

Such equivalence is not known for the case of natural and unique properties.

By promise property we mean that, the property only needs to contain functions for the

input lengths where it is useful, and not on all input lengths. Note that, according to the definition

of Razborov and Rudich, a useful property is only required to be useful on infinitely many input

lengths, but needs to satisfy the largeness condition on all input lengths.

1.3 Gradually increasing the non-determinism in circuits for

NEXP lower bounds: with a hope to prove NEXP 6⊂ P/poly

We extend the known NEXP lower bounds by allowing the restricted circuit classes some

amount of non-determinism. We also discuss why it would be difficult to increase this non-

determinism without proving stronger lower bounds, such as NEXP 6⊂ P/poly. This can also be seen

as an approach to prove NEXP 6⊂ P/poly, by gradually increasing the non-determinism in circuits in

our current lower bounds.

We use a weaker version of non-determinism (due to technical difficulties that we discuss in

the next section), but we’ll see that even this kind of non-determinism is very powerful. We first

define all the types of non-determinism that circuits in our lower bounds would use.

P/poly is equivalent to the class of non-uniform polynomial size circuits. A language

L ∈ SIZE(s) if L is accepted by a sequence of deterministic Boolean circuits {Cn}n∈N of size

O(s(n)), where Cn computes Ln (nth-slice of L) and the size is measured by the number of wires.

Similarly NP/poly is equivalent to the class of non-uniform non-deterministic polynomial

size circuits. A non-deterministic circuit has extra guess inputs, and the circuit accepts an input, if

10

there is a setting of these guess inputs that makes the output 1.

Definition 1.3.1. A language L ∈ NSIZE(s) if L is accepted by a sequence of non-deterministic

Boolean circuits {Cn}n∈N of size O(s(n)). Cn receives two inputs, x of length n and guess input y.

The function fC : {0,1}n→{0,1} computed by C satisfies, fC(x) = 1 ⇐⇒ ∃y C(x,y) = 1.

NP/poly∩Co−NP/poly is equivalent to the class of languages that have non-deterministic

circuits for both, the language and its complement. These circuits can also be combined to output

an equivalent Single-Valued or SV circuit.

Definition 1.3.2. A language L ∈ SVSIZE(s) if L is accepted by a sequence of non-deterministic

Single-Valued Boolean circuits {Cn}n∈N of size O(s(n)). Cn receives two inputs, x of length n

and guess input y. Cn has two outputs, FlagCn and ValueCn . The circuit Cn computes function

fC : {0,1}n→{0,1} if it satisfies the following two promises for any input x: (a) ∃y FlagCn(x,y)= 1;

(b) ∀y FlagCn(x,y) = 1 =⇒ ValueCn(x,y) = fC(x).

We define a new type of non-determinism to capture the class (NP∩Co−NP)/poly. This

class is weaker than NP/poly∩Co−NP/poly as both the algorithms need to be complimentary on

all the advice sequences. For any language L ∈ (NTIME(t)∩Co−NTIME(t))/t, there is a DTIME(t2)

algorithm, that on any t size input (which is actually the advice), outputs a pair of non-deterministic

circuits (that correspond to the NTIME(t) and Co−NTIME(t) algorithms) that accept complimentary

set of inputs, and there is an infinite sequence of t(n)-size inputs (one for each n ∈ N) for which the

produced pair of circuits accept L and L. We call such pair of circuits promise-SV or prSV, since

there is an algorithm that produces these circuits, and the algorithm satisfies the promise of always

producing circuits that can be combined to become SV. We call the underlying algorithm, a prSV

algorithm.

Definition 1.3.3. A linear-time algorithm A is called prSV if on each input it outputs a pair of

non-deterministic circuits that accepts some n′-bit function fn′ and its compliment, for some n′ ≤ n.

We say L ∈ prSVASIZE(s), if for n ∈ N, Ln has O(s(n)) size non-deterministic circuits Cn and C′n,

11

deciding it and its compliment. Additionally, these circuits are produced by the prSV algorithm

A on some s(n)-length input. L ∈ prSVSIZE(s) denotes that L ∈ prSVASIZE(s) for some prSV

algorithm A .

The equation prSVSIZE(poly) = (NP∩Co−NP)/poly follows from the definition. We also

get, (NTIME(nk/2)∩Co−NTIME(nk/2))/nk/2⊆ prSVSIZE(nk)⊆ (NTIME(nk)∩Co−NTIME(nk))/nk.

These definitions of non-deterministic circuits naturally extend to any restricted circuit

class C of Boolean circuits. For the prSV circuits, the underlying prSV algorithm satisfies an extra

promise of always producing C circuits. This gives us C (s)⊆ prSV-C (s)⊆ SV-C (s)⊆ N-C (s) for

any size parameter n≤ s(n)≤ 2n. We use prSVa-C (s) to denote C (s) circuit that uses a amount of

prSV non-determinism. SVa-C (s) and Na-C (s) are defined similarly.

Now, we discuss why non-determinism, even the prSV type, is very powerful and can lead

to big lower bounds.

Theorem 12. The class SIZE(s) is contained in prSV-3−CNF(s logn).

Proof. For L ∈ SIZE(s) we give a prSV-3−CNF(s logn) circuit sequence. The underlying prSV

algorithm treats its inputs as SIZE(s) circuits, converts fan-in of each gate to two by adding more

gates, and then converts the input circuit and its compliment into two 3−CNF circuits with O(s logn)

guess inputs. The algorithm applies Tseitin transformation [91]: for each gate g(x,y) it introduces a

new variable y that it labels as guess input, and adds clauses for the equation y = g(x,y). Finally

adds a clause with just the guess variable that represents the output gate.

Such conversions were discussed in [66] for non-deterministic circuits, we observe that

they also extend to prSV circuits. In fact unambiguous prSV non-determinism suffices (the guess

inputs introduced in the proof represents gates of the original deterministic circuit, and take unique

values on any input). Also, the multiplicative logn factor can be removed if we start with fan-in two

unrestricted Boolean circuits.

The above theorem shows that lower bounds against restricted circuits that contain 3−CNF

and use prSV type of non-determinism, imply lower bounds against unrestricted Boolean circuits.

12

We derive lower bounds for NE and ENP against such classes, with limited non-determinism. In-

creasing the non-determinism in our results won’t be possible without proving lower bounds like

‘ENP is not simulated by linear-size fan-in-two unrestricted Boolean circuits’, which are still very

far from the reach of current lower bound techniques. Our results also give hope of obtaining TC0

lower bounds, if one can simulate threshold gates, by the use of less expressive gates and limited

non-determinism.

Theorem 13. ∩ε>0 prSV
nε

-ACC can’t simulate NE.

For ENP we get a variety of lower bounds where the amount of non-determinism increases as

we go down from ACC to k−CNF.

Theorem 14. ∩ε>0 prSV
n/(logn)ε

-AC0, ∩ε>0 prSV
εn/(logn)2

-k−CNF, or ∩ε>0 prSV
εn-AC0(n), can’t

simulate ENP.

One can directly get the lower bound ENP 6⊂ ∩ε>0 N
nε

-ACC by using Williams sub-exponential

size ACC lower bound. But this direct approach won’t work for lower bounds against sub-linear

non-determinism, and for NE lower bounds (see the next section for full details). Our lower bounds

follow from a more general connection that we build by extending Williams’s connection.

Theorem 15. For super-polynomial function sp and s(n)≤ O(n):

1. an NTIME(2n−s(n)c
/sp(n)) C -tautology algorithm for every c > 0 implies NE 6⊂ prSVs(n)-C

2. an NTIME(2n−3s(n)/sp(n)) C -tautology algorithm implies ENP 6⊂ prSVs(n)-C

We also extend Santhanam’s [80] lower bound against fixed-polynomial size deterministic

circuits to prSV circuits.

Theorem 16. ∀k ≥ 1 prAM 6⊂ prSVSIZE(nk) and ∀k ≥ 1 AM/ωn(1) 6⊂ prSVSIZE(nk).

We also extend Williams’s connection between non-trivial GAP-SAT algorithm and NEXP

lower bounds. GAP-SAT is the promise problem, where the positive inputs are tautology circuits, and

13

negative inputs are s-size circuits that have at most 2n(1−1/s) satisfying assignments. Note that, a

tautology or a CAPP algorithm also imply a GAP-SAT algorithm. CAPP is the problem of computing

the acceptance probability of s-size circuits within an additive error of ±1/s.

Theorem 17. An NTIME(2n/sp(n)) GAP-SAT algorithm for n-input polynomial-size (NP∩Co−NP)-

oracle circuits, for any super-polynomial function sp(n), implies NEXP 6⊂ (NP∩Co−NP)/poly.

As there is no complete language in NP∩Co−NP, we need a (possibly different) non-trivial

algorithm for each NP∩Co−NP oracle. Note that, for any A ∈ NP∩Co−NP, tautology (or CAPP)

for poly-size A-oracle circuits has a trivial algorithm that runs in non-deterministic poly(n)2n-time:

for all 2n inputs, non-deterministically guess the answers to all the oracle queries, and guess their

certificates (for A for any positive answer, for A for any negative answer).

One can also view NP∩Co−NP as PNP∩Co−NP. In this view, our result works separately for

any one NP∩Co−NP oracle A: a non-trivial GAP-SAT algorithm for A-oracle circuits implies NEXP 6⊂

PA/poly. So our result is essentially a relativized version of Williams’s result upto (NP∩Co−NP)

oracles.

1.4 Our techniques, interesting by-products, and previous work

Lower bounds from Karp-Lipton Theorems and fast tautology algorithms:

Previous work: The idea of fast algorithms to lower bounds, can be traced back to the first

paper where the non-uniform class P/poly was discussed (by Karp and Lipton [55]), where one

of the corollaries (credited to Meyer) is that P= NP =⇒ EXP 6⊂ P/poly. This can be interpreted

as: a polynomial time algorithm for Ckt−SAT (or any other NP-complete problem), implies EXP 6⊂

P/poly. The connection in [55] was established by first establishing EXP⊂ P/poly =⇒ EXP= ΣP
2.

Any such non-uniform to uniform collapse is famously called Karp-Lipton Theorem (or KLT for

short) in the literature. The assumed fast SAT algorithm, along with the assumption EXP⊂ P/poly,

implies EXP= ΣP
2 = P and thus contradicts the deterministic time hierarchy [37, 39].

14

A similar KLT was proved for NEXP in [42]. Similar KLTs have also been proved for EXPNP

[14], PSPACE [9], and related classes [29, 41]. Using the NEXP KLT, an NSUBEXP tautology algorithm

contradicts the non-deterministic time hierarchy [26, 84, 104, 33] by showing NEXP=ΣP
2 = NSUBEXP.

The collapse was extend from ΣP
2 ∩ΠP

2 to MA in [9]. This collapse yields NEXP 6⊂ P/poly from an

NSUBEXP CAPP algorithm.

Our work: As a starting point for our connection between fast algorithms and UEXP lower

bounds, we design similar KLTs for the intermediate classes: F̃ewEXP, UEXP, and UEXP∩Co−UEXP.

Theorem 18. For any k ≥ 1:

1. F̃ewE/n⊂ SIZE(nk) =⇒ F̃ewEXP= MA

2. UEXP⊂ SIZE(poly) =⇒ UEXP= MA

3. UEXP∩Co−UEXP⊂ SIZE(poly) =⇒ UEXP∩Co−UEXP= MA

Unfortunately our KLTs doesn’t give the desired lower bound from USUBEXP, or even SUBEXP

algorithms. This is because the first quantifiers of ΣP
2 and MA are not unambiguous. In any case,

SUBEXP tautology or CAPP algorithms are far from the reach of current algorithm design techniques.

Soon we’ll see that USUBE algorithms are sufficient for UEXP lower bounds.

Easy-witness Lemmas:

Previous work: Williams’s work [99] show that even a small progress in SAT and CAPP

algorithms will prove super-polynomial NEXP lower bounds. His connection is tighter because he

uses the easy-witness lemma (or EWL for short) from [42], which was the core of the collapse of

NEXP to EXP in the NEXP KLT. The easy-witness technique was first introduced in [52]. We also

derive analogous EWL for UEXP while establishing the UEXP KLT.

EWL for NEXP states that, if NEXP has P/poly circuits, then any NEXP verifier V , for every

input x that it accepts, has a certificate y with V (x,y) = 1 that is encoded by the truth-table of a

P/poly circuit (when the truth-table is seen as a concatenation of the 2n outputs). In short, if NEXP

15

has small circuits, than all NEXP verifiers have small witnesses (i.e., witness encoded by small

circuits). The proof is given by contradiction: if NEXP witnesses have high circuit complexity, then

they can be used to derandomize MA and contradict a certain lower bound.

Our techniques: We prove same connection between the circuit complexity of F̃ewEXP,

UEXP, and UEXP∩ Co−UEXP, and the witness complexity for corresponding verifiers [28]. Our

EWL for F̃ewEXP uses the technique from [42], and exploits the fact that derandomization of MA

only requires limited non-determinism. For UEXP and UEXP∩Co−UEXP EWLs, we use a simpler

technique that gives even stronger results. We show that a specific version of search problem (that

searches for the lexicographically smallest certificate) for UEXP verifiers lies within UEXP itself. The

circuit complexity of that search version is same as the circuit complexity of witnesses for UEXP

verifiers, so we directly get the EWL from this reduction. Note that, such reductions are not possible

for NEXP verifiers unless EXPNP = NEXP [47].

Lower bounds from Easy-witness Lemmas and fast tautology algorithms:

Previous work: Even in his approach with NEXP EWL, Williams proves his result by contra-

dicting the non-deterministic hierarchy. He only needs a NTIME(2n/sp(n)) tautology algorithm for

n-input polynomial-size circuits, for any super-polynomial function sp. This is a huge improvement

over the NSUBEXP tautology algorithm, that was required if one uses the NEXP KLT directly.

Our work and technique: We use Williams’s framework and get UEXP lower bounds

from USUBE (∪ε>0UTIME(2εn)) algorithm by using our UEXP EWL. The main reason why we need

faster algorithms is that we don’t have any hierarchy for UTIME that is as good as the hierarchies

for NTIME. Note that, before this no UEXP lower bound was obtained, even from a deterministic

SUBEXP tautology algorithm. Although our approach requires a canonization algorithm too, for

unambiguously guessing the witness circuits, we get rid of this requirement for the case of F̃ewEXP

lower bounds.

Related work: Similar results were also proved for BPEXP [22], where they require ran-

domized tautology algorithms (with two-sided error). They require algorithms to run in 2n/(logn)ω(1)
,

16

which is slightly faster than SUBE. Although, they get sharper lower bounds than BPEXP 6⊂ P/poly,

namely BPE 6⊂ SIZE(n(logn)O(1)), and only require the fast algorithm to run for quadratic-size

circuits, BPEXP is incomparable to NEXP. Only a fast randomized algorithm (with zero-sided error)

to ZPEXP lower bound, or a fast randomized algorithm (with one-sided error) to REXP lower bound,

would be considered a strict improvement over Williams’s connection for NEXP.

In [68], they extended Williams’s connection to NQP (non-deterministic quasi-polynomial

time). There are two major differences with our work. First, the NQP lower bounds require fast algo-

rithms for circuits with size sub-exponential or higher, whereas our results only need fast algorithms

for polynomial-size circuits. Second, there is no known comparison between NQP and F̃ewEXP. Even

if we try to distribute all non-deterministic branches of an NQP verifier within exponential time, the

new EXP verifier will have more branches that 2nO(logn)
(also note that, our results would go through

even for slightly strict definition of F̃ew).

Super-linear lower bounds from fast Π2SAT algorithms:

Previous work: In [22] they also showed that a randomized algorithm for Π2SAT with

linear-clauses that runs in 2n/(logn)ω(1)
time implies BPE 6⊂ SIZE(n(logn)O(1)).

Our work: We show an analogous result for unambiguous non-deterministic time. We show

that, a UTIME(2n/(logn)ω(1)
) algorithm for Π2SAT on linear clauses implies UE/n 6⊂ SIZE(n(logn)O(1)).

Our technique: We get this result by genaralizing Williams’s connection, whereas in [22]

they use altogether different techniques. Note that, one can’t directly get such connections between

non-deterministic Π2SAT algorithms and NE lower bounds, because the NEXP EWL is not as fine-

grained as our UEXP EWL.

Lower bounds from fast learning algorithms:

Previous work: The two commonly studied learning models are: “the Angluin’s exact

learning model” [6], and “the Valiant’s PAC model” [93]. Fast learning algorithms in these models

have been known to yield lower bounds [31, 73, 36, 57, 72].

17

In [31] it was implicit that, if a circuit (concept) class C is exact learnable in SUBEXPNP, then

EXPNP 6⊂ C . In [36, 57] it was improved to: SUBEXP learning algorithm implies EXP 6⊂ C . In [72]

it was implicit that: NSUBEXP learning algorithm (where on any input circuit regardless of its size,

there is one branch where the algorithm outputs a hypothesis, and the hypothesis is guaranteed to be

correct only for polynomial size circuits) implies NEXP 6⊂ C . In [73] it was shown that if C admits

2n/nω(1) randomized (weak) learning algorithm (with membership queries), then BPEXP 6⊂ C .

Our work: We show that unambiguous learning algorithm implies UE lower bounds. As

far as we know this is the first lower bound result from unambiguous learning. Our results are

weak in sense that: the lower bound requires UE to use O(n logn) bits of advice, we also need a

tautology algorithm to assist the learning, and our algorithm only makes membership queries to

polynomial-size circuits (it can make queries to sub-exponential size too, but then we would require

fast tautology algorithm for sub-exponential size circuits). Even with these small weaknesses, our

connection is not implied by any of the previous known connections, and our lower bound is strictly

better than EXPNP 6⊂ C and NEXP 6⊂ C , and incomparable to BPEXP 6⊂ C . For the EXP 6⊂ C lower

bound, they used a clever diagonalization argument in [57] that directly doesn’t work for UTIME

learning (and also NTIME learning, because it’s not clear how the diagonalization process will beat

all the non-deterministic branches for all the C circuits).

Our Technique: Unlike other results, we use Williams’s framework itself, and simulate

canonization using a learning algorithm that is assisted with a tautology algorithm.

Avoiding the Natural Proofs barrier:

Our work and technique: We avoid the barrier by taking the route NEXP⊇ UEXP⊇ EXP,

and hit the much safer unique properties. Using our UEXP EWL we prove equivalence between UEXP

lower bounds and natural properties that are not large, instead are unique. EXP lower bounds were

known to yield P computable unique properties, our work extends this to UEXP∩Co−UEXP lower

bounds, and also establish the equivalence.

Related work: We put an upper bound on the number of non-deterministic branches that

18

accept. If one wants to start by putting an lower bound, they would have to take the NEXP⊇ REXP⊇

EXP route. Williams work [101] also indicates that this other direction would not be feasible, if one

wants to use the easy-witness technique, as certain lower bounds for witnesses of REXP and ZPEXP

are equivalent to the existence of natural properties.

Other related work [24] that talks about properties sparser than natural properties, shows

that under the same cryptography primitives that indicates the non-existence of natural properties,

there is a property with density 1/2n(logn)O(1)
(vs. density 1/2O(n) of a natural property) against

P/poly, that establishes NP 6⊂ P/poly. In [21] they give hope of avoiding the Natural Proofs barrier

by establishing equivalence between NP 6⊂ P/poly and natural properties that accept SAT and are

useful against only those polynomial-size circuits that never error on SAT.

Lower bounds to derandomization:

Previous work: Relationship between derandomization and uniform/non-uniform lower

bounds has been studied extensively in the past [70, 71, 9, 49, 42, 101, 92, 89, 48, 19, 8]. In our

results we only focus on the lower end of this spectrum, i.e. derandomization that requires sub-

exponential time. Note that, BPP is a sub-class of P/poly, and we also don’t know if NEXP 6= BPP.

First in a series of work [9, 70, 71] non-uniform lower bounds were shown to yield deran-

domization of the class BPP. In the lower end of the spectrum it was shown that EXP 6⊂ P/poly

implies BPP⊂ io-SUBEXP. Later in [48] this connection was extended to the uniform lower bound

EXP 6= BPP. This lower bound was actually shown to be equivalent to BPP⊂ io-Heur-SUBEXP. In

[42, 101] these connections and equivalences were extended to NEXP and REXP lower bounds, and

derandomization that works in NSUBEXP and ZPSUBEXP.

Our work: We extend these connections to UEXP and UEXP∩Co−UEXP lower bounds, and

derandomization that works in USUBEXP.

Our technique: We use our connections between UEXP lower bounds and unique properties.

We only get the lower bounds to derandomization connections, and not the reverse connections. It

is due to the lack of complete languages and strong hierarchies for UEXP.

19

Unconditional super-polynomial lower bounds:

Previous work: Although, TC0 lower bounds are still untouchable, and at this point we don’t

even have NEXP lower bound for depth-two circuits with linear-threshold gates, some improvements

have been made after Williams’s ACC lower bound. In [102] it was shown that NEXP doesn’t have

ACC circuits where the bottom most layer is allowed to have linear-threshold gates. In [98] the

circuit class was further generalized by allowing the top gate to be any sparse symmetric function

(exact majority is one example).

Our work: We extend the NEXP lower bound against ACC by allowing the circuits to use

sub-polynomial amount of prSV non-determinism. For the case of ENP, our lower bounds allow

almost sub-linear amount of non-determinism as we go down to non-uniform k−CNF circuits.

Recall that, even k−CNF circuits are very powerful with such type of non-determinism (Theorem

12), and if we increase the amount to linear we will get super-linear lower bounds for ENP.

Our techniques: One can directly get the lower bounds against ∩ε>0 N
nε

-ACC for ENP and

NEXP witnesses, by using Williams sub-exponential size ACC lower bound. Any Nnε

-ACC circuit can

be converted to a sub-exponential size ACC circuit by OR-ing over all the non-deterministic inputs.

Williams used his fast ACC algorithm for sub-exponential size in his result.

There are two drawbacks of this direct approach. First, it requires a very large size. For

instance, for sub-linear non-deterministic inputs, the size of the resultant deterministic circuit is

∩ε>0SIZE(2εn). Second, even if we have fast algorithms for these large circuits, the lower bounds

don’t transfer to NEXP. The fast algorithms can only give lower bounds for NEXP witnesses, or ENP.

This is because the NEXP EWL is not that fine-grained.

So we design an NEXP EWL for prSV non-deterministic circuits. Our EWL also works for

the case of limited non-determinism. As far as we know, this is the first EWL that talks about

any kind of non-deterministic circuits. We use our EWL and combine the non-deterministic and

co-non-deterministic circuits for NEXP witnesses in a clever way, to yield NEXP 6⊂ ∩ε>0 prSV
nε

ACC.

Since our technique only requires fast algorithms for polynomial-size circuits, we also get lower

20

bounds with sub-linear non-determinism, for ENP against circuit classes lower than ACC.

Previous work: Note that, there was already an NEXP KLT for (NP∩Co−NP)/poly which

gives NEXP= AM [96], and can be extended to NEXP= MANP∩Co−NP using results from [16]. This KLT

implies that an NSUBEXP tautology algorithm would yield NEXP 6⊂ (NP∩Co−NP)/poly. But we use

the EWL to derive lower bounds from much slower algorithms.

Extension of NEXP KLT and new gap theorems:

Our work: While deriving the EWL we also prove the converse of this KLT and extend

it to the class EXPNP|| , where the subscript ‘||’ means that the algorithm is only allowed to make

non-adaptive queires. This extension also applies to the NEXP KLT for P/poly. The equivalence of

non-uniform lower bounds for NEXP and EXPNP|| were already known (attributed to Buhrman in [30]).

Our result proves an equivalence between uniform lower bounds, and thus results in a better gap

theorem for MA than what was previous known [42]. We also get similar gap theorem for MANP∩Co−NP.

As MA⊆ MANP∩Co−NP ⊆ AM, this can be seen as an intermediate step for proving a gap theorem for

AM.

Using the EWL we also get a gap/speed-up theorem for CAPP for (NP∩Co−NP)-oracle circuits.

We first extend Williams connection to show that, non-trivial CAPP algorithm for (NP∩Co−NP)-

oracle circuits imply NEXP 6⊂ (NP∩Co−NP)/poly. As this lower bound is equivalent to NSUBEXP

CAPP algorithm (that works infinitely often, and uses sub-polynomial advice), we get that non-trivial

savings in CAPP for (NP∩Co−NP)-oracle circuits imply sub-exponential savings.

Our technique: In the extension of the KLT to EXPNP|| , in some sense we derive an EWL for

EXPNP|| , where the witness circuit captures all the NP-oracle queries on all n-length inputs.

Unconditional fixed-polynomial size lower bounds:

Previous work: This work of fixed-polynomial size lower bounds was started by Kannan

in 1982 [54]. He used the low-end KLT for NP, which collapses the polynomial heirarchy to ΣP
2∩ΠP

2

[55], to prove fix-polynomial lower bounds for ΣP
2 ∩ΠP

2. Better lower bounds were proved using

21

improved low-end KLTs [56, 12, 15, 95, 62], before Santhnam [80] gave the lower bound for MA/1

and prMA, using the high-end KLT for PSPACE from [9].

For non-deterministic and SV non-deterministic circuits, the best high-end KLT was given in

[8], which collapses PSPACE to M(AM||Co−NP). In [88] this KLT was used to give fixed-polynomial

lower bounds for prM(AM||Co−NP) against non-deterministic and SV non-deterministic circuits.

The class M(AM||Co−NP) lies in the third-level of the polynomial hierarchy and contains AM and ΣP
2.

Our work and technique: We establish fixed-polynomial lower bounds for prAM against

prSV non-deterministic circuits. Note that, in this lower bound, the class has to have one lan-

guage that beats all of the (NTIME(nk)∩ Co−NTIME(nk))/nk algorithms for each k ≥ 1. The

main technical difficulty in proving this lower bound was the lack of complete problems for

NTIME(nk)∩ Co−NTIME(nk). Prior to our result, the best known lower bounds for prAM were

against fixed-polynomial deterministic circuits.

1.5 Organization of the thesis

In the Chapter 2 we discuss and define all the technical definitions that we use. In the

Chapter 3 we derive the EWL and KLT for UEXP and related classes. In the Chapter 4 we derive the

connections between fast unambiguous circuit analysis algorithms and circuit lower bounds. In the

Chapter 5 we derive connections between unique properties and UEXP lower bounds. In the Chapter

6 we derive fast unambiguous derandomization results from UEXP lower bounds. In the Chapter 7

we discuss the isolation of the NP computable properties. In the Chapter 8 we give all the results

regarding the prSV non-deterministic circuits. Finally in the Chapter 9 we give concluding remarks

and discuss some open problems.

Chapter 1 contains material from “On Limiting & Limited Non-determinism in NEXP Lower

Bounds”, by Anant Dhayal and Russell Impagliazzo, which is currently under review in ACM

Transactions on Computation Theory (TOCT). The dissertation author was the primary investigator

and author of this paper.

22

Chapter 2

Preliminaries

Basic notations: Unless a new range is declared during the usage, we use t for time-

constructible functions n≤ t(n)≤ 2nO(1)
, a for advice functions 0≤ a(n)≤ poly(n), s for circuit

sizes (number of wires) n≤ s(n)≤ 2n. For language L we use Ln = {x | x ∈ L∧|x|= n} to denote

the nth-slice of L (or the characteristic function of L on n-length inputs). For circuit C, we use tt(C)

to denote its truth-table, and |C| to denote its size.

Uniform classes: We assume that the reader is familiar with the standard complexity classes

such as P,NP,RP,UP,BPP,ZPP,MA,AM,ΣP
2,Π

P
2,PH (see [7]) and their corresponding complexity mea-

sures, DTIME, NTIME, RTIME, UTIME, BPTIME, ZPTIME, MATIME, AMTIME, Σ2TIME, Π2TIME. For the

special cases of ΣP
2,Π

P
2, we omit the superscript P and simply write Σ2,Π2. For C= D,N, R,U,BP,ZP,

MA,AM,Σ2,Π2: CTIME(t) denotes the class of languages accepted by CTIME machines that run

in O(t) time. CE, CEXP, CSUBE, CSUBEXP, denote the classes ∪c≥0CTIME(2cn), ∪c≥0CTIME(2nc
),

∩c≥0CTIME(2cn), ∩c≥0CTIME(2nc
) respectively. We assume familiarity with Ckt−SAT (circuit

satisfiability), Ckt−TAUT (circuit tautology), k−SAT, k−TAUT, CNF−SAT, DNF-TAUT, Σ2-SAT

and Π2-SAT.

Zero-error classes: We extend the concept of zero-error class to non-deterministic and

23

unambiguous classes. We do this for the sake of clarity in certain arguments, and specially for

distinguishing between certain non-uniform classes.

L ∈ ZCTIME(t) if there exists a Turing machine M, that for input (x,y) with |x| = n and

|y|= c · t(n) for some constant c, runs in time c · t(n) for ∀n ∈ N, and whose output lies in {1,?}

if x ∈ L, and in {0,?} if x 6∈ L. Additionally, the quantity Σy:M(x,y)∈{0,1}1 is equal to: 1 for C= U

(uniqueness), ≥ 1
2 ×2c·t(n) for C= R (largeness), ≥ 1 for C= N (existence). The verifier/predicate

corresponding to M is called zero-error non-deterministic. For the special cases of C= U and C= R,

its called zero-error unambiguous and zero-error randomized respectively.

Remark : ZRTIME = ZPTIME, and for C= N,R,U, ZCTIME(t) = CTIME(t)∩Co−CTIME(t)

follows by a similar argument that shows ZPTIME(t) = RTIME(t)∩Co−RTIME(t).

Circuit classes: We assume basic familiarity with Boolean circuits and their sub-classes. We

use C to denote any typical non-uniform circuit class, i.e., any class from the set {AC0,ACC0,TC0,NC1,

NC,P/poly}. All these circuit classes are of polynomial size. We use C (s) to denote the class of

O(s)-size C circuits. For truth-table tt, we use cktC (tt) to denote its exact C circuit complexity,

i.e. the minimum size of any C circuit C whose truth-table (when concatenated to make the string

C(00 . . .0) . . .C(11 . . .1)) is tt. In the case of unrestricted Boolean circuits, instead of C (s) and

cktC (tt), we use SIZE(s) and ckt(tt) respectively. cktM(tt) denotes the minimum size of any M-

oracle circuit whose truth-table is tt.

Non-uniform classes: L ∈ Γ/a if there exists an advice-taking Γ Turing Machine M, and

advice sequence {an}n∈N satisfying ∀n |an| = a(n), such that: x ∈ L ⇐⇒ M(x)/a|x| = 1. For

semantic classes, the machine M only needs to satisfy the semantic promise on the correct advice

sequence {an}n∈N (and not on all advice sequences). Below we define an exception for C= N,R,U:

1. L ∈ (CTIME(t)∩Co−CTIME(t))/a: If there are NTIME(t) Turing Machines M and M′, and

advice sequence {an}n∈N satisfying ∀n |an|= a(n), such that: (i) x ∈ L ⇐⇒ M(x)/a|x| = 1;

24

(ii) both M and M′ satisfy the semantic promise on {an}n∈N (for C= N there is no promise);

and (iii) both accept complement languages. For the other advice sequences, M and M′ are not

required to satisfy the semantic promise, but are required to accept complement languages.

2. L ∈ ZCTIME(t)/a: It’s the same as (1), except that in the “other advice sequences” part, M

and M′ are not required to accept complement languages. That is, both M and M′ are required

to accept complement languages just for some correct advice sequence, and simultaneously

satisfy the semantic promise. Equivalently, there is a ZCTIME(t) Turing Machine N, and

advice sequence {an}n∈N satisfying ∀n |an| = a(n), such that: x ∈ L ⇐⇒ N(x)/a|x| = 1;

and N satisfy the semantic promise. For other advice sequences N might: (i) fail to provide

uniqueness/largeness/existence; (ii) for some input, output both 0 and 1 (on different non-

deterministic branches); or (iii) for some input, output just ‘?’ (on all non-deterministic

branches).

3. L ∈ CTIME(t)/a∩ Co−CTIME(t)/a: It’s further relaxed than (2). We need two advice se-

quences {an}n∈N and {bn}n∈N, satisfying ∀n |bn|= b(n) and ∀n |bn|= b(n) (these sequences

need not be the same). M satisfy the semantic promise on {an}n∈N and accept L. M′ satisfy

the semantic promise on {bn}n∈N and accept L. There are no other conditions.

Remark: L ∈ ZCTIME(t)/a is equivalent to L having CTIME(t)/a and Co−CTIME(t)/a

algorithms that both use the same advice. This shows:

(CTIME(t)∩Co−CTIME(t))/a⊆ ZCTIME(t)/a⊆ CTIME(t)/a∩Co−CTIME(t)/a⊆ ZCTIME(t)/2a

So the difference between ZCTIME(t)/a and CTIME(t)/a∩Co−CTIME(t)/a only matters when the

amount of advice is precise.

Heuristic classes: For uniform/non-uniform class Λ, L ∈ Heur-Λ if ∃L′ ∈ Λ, such that for

all polynomially samplable distributions D , ∀n Prx∼D,|x|=n[Ln(x) = L′n(x)]≥ 1− 1
n .

25

Infinitely-often classes: For uniform/non-uniform, heuristic/non-heuristic class Λ, L ∈

io-Λ if ∃L′ ∈ Λ, and an infinite subset S⊂ N, such that n ∈ S =⇒ Ln = L′n.

Variety of witness complexities for CTIME: We define different ways of measuring com-

plexity of witnesses for non-deterministic verifiers. We will later see that lower-bounds based on

these measures are not always the same (see Table5.1).

1. Witnesses: A non-deterministic verifier V for L, has witnesses in s-size C circuits, if for

every x ∈ L, there is an s(|x|)-size C circuit Cx, such that V (x, tt(Cx)) = 1. If V uses a amount

of advice, then we say that V/a has witnesses in s-size C circuits, if for some correct advice

sequence {an}n∈N satisfying ∀n |an|= a(n), for every x ∈ L, there is an s(|x|)-size C circuit

Cx, such that V (x, tt(Cx))/a|x| = 1.

2. Hitting-sets for witnesses (all witnesses in one): A non-deterministic verifier V for L

has l-size hitting-sets in s-size C circuits, if ∀n ∈ N, there is an s(n)-size C circuit Cn

such that tt(Cn) when partitioned into l strings {str1, . . . ,strl} of equal lengths, satisfies

∀(x : |x|= n∧ x ∈ L) ∃(i ∈ [1, l]) V (x,stri) = 1. The default value of l is 2n. If V uses advice,

hitting-sets are defined analogous to witnesses in the advice setting.

3. Oblivious witnesses (ordered hitting-sets for witnesses): Let y1, . . . ,y2n denote the n-

length strings arranged in the lexicographical order. A non-deterministic verifier V for

L has oblivious witnesses in s-size C circuits, if ∀n ∈ N, there is an s(n)-size C circuit Cn

such that tt(Cn) when partitioned into 2n strings {str1, . . . ,str2n} of equal lengths, satisfies

∀(i ∈ [1,2n]) yi ∈ L =⇒ V (yi,stri) = 1. For i with yi 6∈ L, stri is the all 0s string. If V uses

advice, oblivious witnesses are defined analogous to the witnesses in advice setting.

We use CTIME(t)/a ⊂w C (s) to say that, any CTIME(t) verifier, for some correct advice

sequence, has witnesses in C (s) circuits. CTIME(t)/a 6⊂w C (s) means that, there is a CTIME(t)

verifier that: for any correct advice sequence, doesn’t have witness in C (s) circuits infinitely often.

26

⊂hw (6⊂hw) and ⊂ow (6⊂ow) are defined similarly for “hitting-sets for witnesses” and “oblivious

witnesses” respectively.

Variety of seed complexities for ZCTIME: Any language in ZCTIME has two, a CTIME

algorithm and a Co−CTIME algorithm deciding it. So instead of witnesses, we define a stronger

notion: seeds, which is nothing but a technical way of combining witnesses from the two algorithms.

1. Seeds: A zero-error non-deterministic verifier V for L has seeds in s-size C circuits, if for

every x, there is an s(|x|)-size C circuit Cx, such that V (x, tt(Cx)) ∈ {0,1}. If V uses a amount

of advice, then we say that V/a has seeds in s-size C circuits, if for some correct advice

sequence {an}n∈N satisfying ∀n |an|= a(n), for every x, there is an s(|x|)-size C circuit Cx,

such that V (x, tt(Cx))/a|x| ∈ {0,1}.

2. Hitting-sets for seeds (all seeds in one): A zero-error non-deterministic verifier V for

L has l-size hitting-sets in s-size C circuits, if ∀n ∈ N, there is an s(n)-size C circuit Cn

such that tt(Cn) when partitioned into l strings {str1, . . . ,strl} of equal lengths, satisfies

∀(x : |x| = n) ∃(i ∈ [1, l]) V (x,stri) ∈ {0,1}. The default value of l is 2n. If V uses advice,

hitting-sets are defined analogous to seeds in the advice setting.

3. Oblivious seeds (ordered hitting-sets for seeds): Let y1, . . . ,y2n denote the n-length strings

arranged in the lexicographical order. A zero-error non-deterministic verifier V for L has

oblivious seeds in s-size C circuits, if ∀n ∈ N, there is an s(n)-size C circuit Cn such that

tt(Cn) when partitioned into 2n strings {str1, . . . ,str2n} of equal lengths, satisfies ∀(i ∈

[1,2n]) V (yi,stri) ∈ {0,1}. If V uses advice, oblivious seeds are defined analogous to seeds

in the advice setting.

We use ZCTIME(t)/a⊂w C (s) to say that, any ZCTIME(t) verifier, for some correct advice

sequence, has seeds in s-size C circuits. ZCTIME(t)/a 6⊂w C (s) means that, there is a ZCTIME(t)

verifier that: for any correct advice sequence, doesn’t have seeds in s-size C circuits infinitely often.

27

⊂hs (6⊂hs) and ⊂os (6⊂os) are defined similarly for “hitting-sets for seeds” and “oblivious seeds”

respectively.

Useful properties: We define a generalized version of the natural properties.

Definition 2.0.1 (Useful uniform properties). A uniform Γ algorithm A is a Γ-C property if it

satisfies the first condition stated below, on the inputs that are powers of 2 (interpreted as truth-tables

of Boolean functions). A is said to be useful against s-size C circuits if it satisfies the second

condition stated below.

1. Size restrictions:

(a) Uniqueness for C= U: ∀n ∈ N Σx:|x|=2n∧A(x)=11 = 1

(b) Largeness for C= R: ∀n ∈ N Prx:|x|=2n[A(x) = 1]≥ 1
2n

(c) Existence for C= N: ∀n ∈ N Σx:|x|=2n∧A(x)=11≥ 1

2. Usefulness: for infinitely many n ∈ N, ∀(x : |x|= 2n) A(x) = 1 =⇒ cktC (x)> s(n)

Note that, in the case where s is poly(n), a single algorithm A should be useful against

nk-size C circuits for all k. That is, for each k, there should be infinitely many n ∈ N, such that

∀(x : |x|= 2n) A(x) = 1 =⇒ cktC (x)> nk.

Definition 2.0.2 (Useful properties that use advice). A Γ/a algorithm A is a Γ/a-C property if

it satisfies the first condition of Definition 2.0.1 on an advice sequence {an}n∈N that satisfies

∀n |an|= a(n). A is said to be useful against s-size C circuits if it satisfies the second condition of

Definition 2.0.1 on the same advice sequence {an}n∈N. For C= U, based on how A behaves on the

advice sequences other than {an}n∈N, it has two special categories:

1. Γ/a-strong-unique or Γ/a-u=1: ∀n ∈ N ∀(bn : |bn| ≤ a(n)) Σx:|x|=2n∧A(x)/bn=11 = 1

2. Γ/a-mild-unique or Γ/a-u≤1: ∀n ∈ N ∀(bn : |bn| ≤ a(n)) Σx:|x|=2n∧A(x)/bn=11≤ 1

28

Definition 2.0.3 (Promise useful properties). A Γ/a algorithm A is a Γ/a-prC property useful

against s-size C circuits if there is an advice sequence {an}n∈N satisfying ∀n |an|= a(n) such that:

for infinitely many n ∈ N, A satisfies the first and second conditions of Definition 2.0.1. Informally,

the only condition property satisfies is: it is simultaneously non-trivial/large/unique and useful for

infinitely many input lengths, and no conditions for the other input lengths (property is even allowed

to be empty).

For u ∈ {N,R,U,u=1,u≤1,prN,prR,prU}, we use Γ/a-u 6⊂tt C to say that there is a Γ/a-u

property useful against C (s) circuits. In other words, there is a Γ/a algorithm, whose set of accepting

inputs satisfies the size restrictions of u, and on infinitely many input lengths 2n, algorithm accepts

no truth-tables tt with cktC (tt)≤ s(n).

For u ∈ {N,R,U,u=1,u≤1} we use Γ/a-u 6⊂tt io-C to denote properties that are useful on all

but finitely many input lengths (i.e., there is a point after which the property is always useful).

Promise problems: A promise problem Π = (ΠY ,ΠN) is a pair of disjoint sets ΠY and ΠN .

In the special case where ΠY ∪ΠN = {0,1}∗, Π is also a language. We say that a language L agrees

with Π if: x ∈ΠY =⇒ x ∈ L and x ∈ΠN =⇒ x 6∈ L.

Infinitely-often promise classes: For semantic class Λ, a promise problem L is in the class

ip-Λ if: (i) the set of promise inputs include an infinite subset S ⊆ N of input lengths (contains

the entire nth-slice for any n ∈ S, and nothing from the other slices); (ii) there exists a Turing

machine M such that: for n ∈ S and for n-length input x, M is a Λ-type machine on x, and

M(x) = 1 ⇐⇒ L(x) = 1.

Remark: An infinitely-often promise class is different from an infinitely-often class in the

sense that, in the definition of the latter, the Turing machine M should be of Λ-type for all input

lengths. For example, io-MA is the class of languages that match any MA language for infinitely many

input lengths. But, ip-MA is the class of languages that have an MA algorithm for infinitely many

29

input lengths, and for all the other input lengths the algorithm is not required to satisfy the semantic

promise of MA.

Special ip-classes: We say that L ∈ ip-ZNE or L ∈ ip-(NE∩Co−NE) if there is an infinite

subset S⊆N, L1 ∈ NE and L2 ∈ NE such that: for n ∈ S and n-length input x, L(x) = 1 ⇐⇒ L1(x) =

1 ⇐⇒ L2(x) = 0. We define the classes ip-(AM∩ Co−AM) and ip-(MA∩ Co−MA) similarly (for

the MA case, the protocols for L1 and L2 are not required to satisfy the semantic promise on inputs

lengths not in the set S.

Upper and lower bounds for ip-classes: We say that ip-Λ ⊂ C (s) if any L ∈ ip-Λ, has

C (s) circuits for inputs lengths where the promise is met. We say that ip-Λ 6⊂ C (s) if there is an L ∈

ip-Λ, that for infinite subset of promise input lengths (where the promise is met) does not have C (s)

circuits. The upper and lower bounds for the ip-Λ seeds / hitting-sets for seeds / oblivious-seeds are

defined in the similar fashion.

Lower bounds against prSVΣi circuits:

The promise SVΣi circuits need special care in regards of lower bounds, as we need to deal

with each prSV algorithm separately. For any class Γ, we define the following upper bounds and

lower bounds against prSV circuits:

• Let A be a prSV algorithm. For any 2n-length truth-table tt, we use cktSV(A)(tt) to denote

the minimum size s(n) such that: A outputs C with tt(C) = tt on an s(n)-size input. We use

ckt f
prSV(tt) to denote the minimum size s(n) such that: any prSV algorithm with description

length at most f (n), outputs C with tt(C) = tt on an s(n)-size input.

• Γ 6⊂ prSVSIZE(s): There is an L∈ Γ, such that for every prSV algorithm A , there is an infinite

subset S⊂ N of input lengths, such that n ∈ S =⇒ ∀x : |x|= s(n) tt(A(x)) 6= Ln.

• Γ⊂ow/os/hw/hs/w/s prSVSIZE(s): For L ∈ Γ and Γ verifier V for L, there is a prSV algorithm

30

A , there is an input sequence {xs(n)}n∈N such that ∀n ∈ N tt(A(xs(n))) is the ‘oblivious

witness / oblivious seed / hitting-set for witnesses / hitting-set for seeds’ for V on n-length

inputs. For the case of ‘witnesses / seeds’, ∀n ∈ N ∀y : |y|= n there is an input xs(n) such that

tt(A(xs(n))} is the ‘witness / seed’ for V on input y.

• Γ 6⊂ow/os/hw/hs prSVSIZE(s): There is an L ∈ Γ and Γ verifier V for L, such that for every

prSV algorithm A , there is an infinite subset S ⊂ N of input lengths, such that n ∈ S =⇒

∀x : |x| = s(n) tt(A(x)) is not the ‘oblivious witness / oblivious seed / hitting-set for wit-

nesses / hitting-set for seeds’ for V on n-length inputs. For the case of ‘witnesses / seeds’,

n ∈ S =⇒ ∃y : |y|= n ∀x : |x|= s(n) tt(A(x)) is not the ‘ witness / seed’ for V on input y.

Hardness vs randomness: The process of using a function that is hard for a circuit class Λ

(i.e. requires large size of Λ circuits) to yield a pseudo random generator (PRG) that fools Λ circuits

(i.e. creates a sparse subset of inputs with roughly same fraction of inputs resulting in 1) is well

known in the literature. A PRG G creates this sparse subset by mapping a small input length to the

required larger output length (same as the input length of the circuit).

A PRG G : s(n)→ n is computable in Γ if the language LG = {(s, i,b) | the ith-bit of G(s) is b}

is in Γ. Inputs to G are called seeds, and their size (here s(n)) is called the seed length of G.

A PRG G is fooling a circuit C means: the fraction of inputs from the 2s(n) size image of G

that C accepts, is same as the fraction of all the inputs that C accepts (within error ±1/n). We use

the following theorem in all our derandomization results.

Theorem 19. [71, 58, 92, 86] There exists a universal constant g such that the following holds for

any class O of oracles and oracle M, and any constants ε > 0 and d ≥ 1: if a Boolean function

family f = { fn}n∈N computable in EO that satisfies ∀n ∈ N cktM(f (n))≥ ngd/ε, then there exists a

PRG family G = {Gn}n∈N computable in EO , such that Gn : nε→ nd fools nd-size B-oracle circuits.

Moreover, if circuit lower bound holds infinitely often, then G fools circuits infinitely often.

31

Chapter 3

EWL and KLT for UTIME and related classes

We first give a specific search to decision reduction for UTIME (Section 3.1). Using this

reduction we give the EWL and KLT for UTIME (Section 3.2). Then we describe similar results for

ZUTIME (Section 3.3) and F̃ewTIME (Section 3.4).

3.1 Search to decision reduction for UTIME

For L ∈ NP and verifier V for L, there is a standard PNP algorithm for the corresponding

search problem. This algorithm implicitly decides the following language:

Lewl(V) = {(x, i) | ∃y [V (x,y) = 1∧ (ith-bit of y is 1)∧∀(z <l.o. y) V (x,z) = 0]} (3.1)

where z <l.o. y stands for “z is lexicographically smaller than y”, and the subscript ewl(V) in Lewl(V)

stands for “easy-witness language for V ”.

So if P= NP, then Lewl(V) ∈ P. For L ∈ NEXP and verifier V for L, such results are not known.

In particular, it is not known whether NEXP= EXP yields an EXP algorithm for the corresponding

search problem, let alone Lewl(V).

NEXP ⊂w SIZE(poly) yields EXP algorithms for the NEXP search problems, by a simple

32

brute-force argument. It is known that NEXP ⊂w SIZE(poly) is equivalent to NEXP ⊂ SIZE(poly)

[42, 101], and to NEXP= MA [42] (reverse implication was attributed to van Melkebeek). In [42] it

was also shown that a weaker collapse, namely NEXP= AM, is sufficient to give EXP algorithms for

NEXP search problems. This is the weakest collapse known so far.

From [47] we get: ∀(L ∈ NEXP) ∀ (NEXP verifier V for L) Lewl(V) ∈ EXP ⇐⇒ EXPNP = EXP.

In this section we show that for L ∈ UTIME(t) and unambiguous verifier V for L, Lewl(V) ∈

UTIME(t). UTIME(t) languages also have O(t)-time verifiers that are ambiguous. We show why it

would be difficult to extend this result to all O(t)-time ambiguous verifiers for UTIME(t) languages.

Theorem 20. For L ∈ UTIME(t) and unambiguous verifier V for L, Lewl(V) ∈ UTIME(t(n)) (where

n is the input size for L and not Lewl(V)). Moreover if this statement is true for every O(t)-

time non-deterministic verifier (ambiguous and unambiguous) for every UTIME(t) language, then

ZNTIME(t) = ZUTIME(t).

Proof. Algorithm for Lewl(V): For input (x, i), guess a certificate y and simulate V (x,y). Accept if V

accepts and the ith-bit of y is 1, otherwise reject. This algorithm is correct and unambiguous as V is

unambiguous. It runs in time O(t(|x|)).

The moreover part: For L ∈ ZNTIME(t), let V1 and V0 be its NTIME(t) and Co−NTIME(t)

verifiers respectively. Consider the UTIME(t) language L′ = {0,1}∗.

Using V1 and V0 we first construct a verifier V ′ for L′: if the first bit of the certificate is i, V ′

simulates Vi using the rest of the certificate.

Now using a UTIME(t(n)) algorithm A for L′ewl(V ′) we give a UTIME(t) algorithm for L: on

input x, simulate A on (x,1). Accept iff A accepts.

If A accepts then we know that x ∈ L because there is no positive certificate for V ′ that starts

with 0 (or in other words, no positive certificate for V0). If A rejects, then x ∈ L because there is a

positive certificate for V ′ that starts with 0 (or in other words, a positive certificate for V0).

Similarly, there is a UTIME(t) algorithm for L, and thus L ∈ ZUTIME(t).

For the advice setting same proof goes through for the following adaptation of Lewl(V). For

33

non-deterministic verifier V/a, that uses a amount of advice to decide a language L, for any correct

advice sequence {an}n∈N:

Lewl(V/a) = {(x, i) | ∃y [V (x,y)/a|x| = 1∧ (ith-bit of y is 1)∧∀(z <l.o. y) V (x,z)/a|x| = 0]} (3.2)

Using this adaptation we get the following stronger corollary.

Corollary 3.1.1. For L ∈ UTIME(t)/a and unambiguous verifier V/a for L, Lewl(V/a) ∈ UTIME(t)/a.

3.2 EWL and KLT for UTIME

Using the search to decision reduction from Theorem 20 we derive EWL for unambiguous

verifiers of languages in UTIME(t). Here again we see why it might be difficult to extend this to all

ambiguous verifiers. Using the EWL we also get a KLT for UTIME.

Theorem 21. For time-constructible t ∈ 2O(n), and constants c and k:

1. UTIME(t)⊂C (nk) =⇒ UTIME(t)⊂ow C (nk). Moreover if this statement is true for every O(t)-

time non-deterministic verifier (ambiguous and unambiguous) for every UTIME(t) language,

even just for witnesses (let alone oblivious-witnesses), then ZNTIME(t)⊆ DTIME(2nk+1
).

2. UTIME(t)/a⊆ C (nk) =⇒ UTIME(t)/a⊂ow C (nk).

3. UTIME(2nc
)/a⊆ C (nk) =⇒ UTIME(2nc

)/a⊂ow C (nck).

4. UEXP/a⊆ SIZE(poly) =⇒ UEXP/a = MA/a.

Proof. Proof of (1): For L ∈ UTIME(t), let x ∈ L be an n-length input, and V be an unambiguous

verifier for L whose certificate length is ≤ d · t for some constant d. The UTIME(t) algorithm

for Lewl(V) from Theorem 20 puts it into C (mk) for input size m. The C circuit for input length

m = (|x|+ log t + logd) ∈ O(n) is the oblivious witness circuit for n-length inputs.

34

The moreover part: For L ∈ ZNTIME(t), construct the same verifier V ′ for the language

L′ = {0,1}∗ as in the proof of Theorem 20. As L′ ∈ UTIME(t), V ′ will have witness in C (nk). Now

a DTIME(2nk+1
) algorithm for L is: for n-length input x, go through all the circuits in C (nk logn) one

at a time, compute their truth-tables tt, and then compute V ′(x, tt). Due to the way V ′ is constructed,

all of its positive certificates have the same first bit. If V accepts on any tt whose first bit is 1, then

x ∈ L. Else x /∈ L.

Proofs of (2) & (3): They are analogous to the proof of (1), except that they use Corollary

3.1.1.

Proof of (4): Let L∈ UEXP/a, and V/a be an unambiguous (given the correct advice) verifier

V for L that runs in time O(2nc
) for some constant c. Since ∃k L ∈ SIZE(nk), from the proof of part

(3) we know that V/a has witnesses in SIZE(nck) for some constant k.

Using this we first give an EXP/a algorithm for L. On n-length input x, go through all the

circuits in SIZE(nck logn) one at a time, compute their truth-tables tt, and then compute V (x, tt)/a.

Accept if V/a accepts for any tt, else reject. This is an EXP/a algorithm as simulation of V/a needs

the original advice.

Once we get UEXP/a = EXP/a, EXP/a⊆ SIZE(poly) gives UEXP/a = MA/a [55].

3.3 EWL and KLT for ZUTIME

We extend the techniques from the previous section to give similar results for ZUTIME. The

main difference in the proof of our search to decision reduction is that, we adapt our definition of

Lewl(V) to capture seeds of zero-error non-deterministic verifiers. First let’s define this adaptation.

For zero-error non-deterministic verifier V for language L:

Lewl(V) = {(x, i) | ∃y [V (x,y) ∈ {0,1}∧ (ith-bit of y is 1)∧∀(z <l.o. y) V (x,z) =?]} (3.3)

The difference is that Lewl(V) captures the lexicographically first certificate that gives the

35

correct answer (doesn’t matter whether the answer is 1 or 0). Once the search to decision reduction

is established, the EWL and KLT follow from similar arguments as in the previous section. Here again

we see why it might be difficult to extend these results to all ambiguous zero-error verifiers.

Theorem 22. For time-constructible t ∈ 2O(n), and constants c and k:

1. For L ∈ ZUTIME(t) and zero-error unambiguous verifier V for L, Lewl(V) ∈ ZUTIME(t(n))

(where n is the input size for L). Moreover if this statement is true for all O(t)-time zero-error

non-deterministic verifiers (ambiguous and unambiguous) for every ZUTIME(t) language,

then ZNTIME(t) = ZUTIME(t).

2. ZUTIME(t)⊂ C (nk) =⇒ ZUTIME(t)⊂os C (nk). Moreover if this statement is true for all O(t)-

time zero-error non-deterministic verifiers (ambiguous and unambiguous) for every ZUTIME(t)

language, even just for seeds (let alone oblivious-seeds), then ZNTIME(t)⊆ DTIME(2nk+1
).

3. ZUTIME(2nc
)⊂ C (nk) =⇒ ZUTIME(2nc

)⊂os C (nck).

4. ZUEXP⊂ SIZE(poly) =⇒ ZUEXP= MA.

Proof. Proof of (1): Algorithm for Lewl(V): For input (x, i), guess a certificate y and simulate V (x,y).

Output ‘?’ is V outputs ‘?’. Output 1 if V outputs in {0,1} and the ith-bit of y is 1. Output 0 if V

outputs in {0,1} and the ith-bit of y is 0. This algorithm is correct and zero-error unambiguous as V

is zero-error unambiguous. It runs in time O(t(|x|)).

The moreover part: For L ∈ ZNTIME(t), let V be its ZNTIME(t) verifier. Consider the

ZUTIME(t) language L′ = {0,1}∗.

Using V we first construct a ZNTIME(t) verifier V ′ for L′: V ′ ignores the first bit of the

certificate and simulates V using the rest of the certificate. V ′ outputs ‘?’ if V outputs ‘?’, it outputs

1 if V outputs in {0,1} and its output matches the first bit of the certificate.

Now using a ZUTIME(t(n)) algorithm A for L′ewl(V ′) we give a ZUTIME(t) algorithm for L:

on input x, simulate A on (x,1). Output whatever A outputs.

Proofs of (2), (3) & (4): They are analogous to the proofs in Theorem 21.

36

3.4 EWL and KLT for F̃ewTIME

We use the following folklore result to translate our results for Boolean circuits to any

typical circuit class.

Lemma 3.4.1. If P ⊂ C , then there exists a constant c such that: for large enough n, any s-size

circuit has an equivalent sc-size C circuit.

Proof. Ckt−Eval is a problem in P whose input is a Boolean circuit C and a string x, and the

output is the output of C on x. If P⊂ C , then there is a constant c such that Ckt−Eval has nc/2-size

C circuits.

Let B be a P/poly circuit of size s. Let E be (n+ s logs)c/2-size circuit corresponding to

the (n+ s logs)th-slice of Ckt−Eval. Define D(x) = E(B,x). It is easy to check that: (i) D is an

sc-size C circuit; and (ii) D is equivalent to B.

Now we give the EWL and KLT for F̃ewE.

Theorem 23. For constant k ≥ 1:

1. F̃ewE/(a+n)⊂ C (nk) =⇒ ∃k′ F̃ewE/a⊂w C (nk′)

2. F̃ewE/(a+n)⊂ SIZE(nk) =⇒ F̃ewE/a⊆ MA/a

Proof. Proof of (1): We prove the result for unrestricted Boolean circuits. The result for the circuit

class C follows from the Lemma 3.4.1. The assumption implies P⊂ C , thus any SIZE(nk′) circuit

has an equivalent C (nck′) circuit, for some constant c.

Contradiction: F̃ewE/(a+ n) ⊂ SIZE(nk) implies EXP ⊂ SIZE(poly) and thus EXP = MA

[9]. Now we show that, if ∀k′ ≥ 1 F̃ewE/a 6⊂w SIZE(nk′), then MA⊂ io-F̃ewE/(a+n). Combined

with the above statement it leads to the contradiction EXP⊂ io-SIZE(nk) (since we can diagonalize

against fixed-polynomial size circuits in EXP).

Hardness tester: ∀k ≥ 1 F̃ewE/a 6⊂w SIZE(nk) implies that for every k ≥ 1, there is a

2
√

n-time F̃ew/a verifier Vk/a that has infinite set of inputs Sk that it accepts, and for x ∈ Sk

37

and 2
√
|x|-length certificate y such that Vk(x,y)/a = 1 (using the correct advice), the constraint

ckt(y)≥ nk is true (where y is truth-table of a
√

n-input circuit). If Vk with its original a amount of

advice, is also given elements of Sk as advice (one element per input length, and all 0s string for

the input lengths for which Sk contains no element), Vk becomes a F̃ewTIME(2
√

n)/(a+n) hardness

tester.

Derandomization: For L ∈ MA, we derandomize the MA protocol for L using the above

described F̃ew verifiers. After including the non-determinism of Merlin into Arthur’s input, let

the size of the circuit C that captures the BP computation of Arthur for L be bounded by nl (for

some constant l). We use the verifier Vk for k = lg, where g is the constant from Theorem 19.

Our algorithm guesses a 2n-bit string Y and simulates Vk on Y , using the a+n amount of advice

as described above. It rejects if Vk rejects, else it uses the certificate that Vk accepted. Note that,

infinitely often the accepted certificates Y will satisfy ckt(Y) ≥ nlg. We use the certificates to

construct a PRG G : n→ nl using the Theorem 19, that fools nl-size circuits. We brute-force through

the seeds of G to compute the acceptance probability of the circuit C in 2O(n)-time (within ±1/nl

error). If the acceptance probability is greater than 1/2, our algorithm accepts, else it rejects. The

running time of our non-deterministic algorithm is bounded by 2n, and the number of accepting

branches is bounded by 22(logn)2/4×2nl
, which is less that 22(logn)2

for large enough n.

Proof of (2): F̃ewE/(a+n)⊂ SIZE(nk) combined with (1) gives F̃ewE/a⊂w SIZE(nk′) for

some constant k′. This gives F̃ewE/a ⊂ EXP/a: by brute-forcing through the truth-tables of all

SIZE(nk′) circuits to find accepting certificates (if there are any). Finally we get F̃ewE/a⊆ MA/a

since EXP/a = MA/a by [55].

Chapter 3 contains material from “On Limiting & Limited Non-determinism in NEXP Lower

Bounds”, by Anant Dhayal and Russell Impagliazzo, which is currently under review in ACM

Transactions on Computation Theory (TOCT). The dissertation author was the primary investigator

and author of this paper.

38

Chapter 4

UEXP Lower Bounds from Fast

Unambiguous Algorithms

First we show how to get UEXP lower bounds from fast unambiguous algorithms for can-

onization and tautology (Section 4.1). Then we show how to replace canonization and tautology

by Π2SAT and get more fine-grained results (Section 4.2). Then we show how to completely get

rid of canonization for the case F̃ewE lower bounds (Section 4.3). Then we show how to simulate

canonization using proper learning (Section 4.4). Finally, we show how to generalize certain

lower bound frameworks for unrestricted Boolean circuits, to typical circuit classes, even when the

algorithms are very slow (Section 4.5). We use the following hierarchy for semantic classes in our

proofs.

Theorem 24 (Heirarchy for Semantic Classes [34]). For any time bound t such that n ≤ t ≤ 2n,

there is a constant ε > 0 and an advice bound a ∈ O(log(t) log(log(t))) such that UTIME(t)/a 6⊂

UTIME(tε)/(a+1) (resp. F̃ewTIME(t)/a 6⊂ F̃ewTIME(tε)/(a+1)).

39

4.1 Lower bounds from unambiguous tautology and canoniza-

tion algorithms

We use the following ‘tight reductions to 3−USAT’ in this section.

Theorem 25 (Efficient local reductions [51, 90, 32]). Every language L∈ UTIME(2n) can be reduced

to 3−USAT (uniquely satisfiable 3−SAT) instances of 2nnc-size, for some constant c. Moreover,

given an instance of L there is an nc-size C (P-uniform) circuit that, on an integer i ∈ [2nnc] in

binary as input, outputs the ith-clause of the resulting 3−USAT formula.

We first formally define canonization and related notations.

Canonization : A subset S of circuits is called CAN(s,C ,p), if for any s-size C circuit C, there

exists a unique circuit C′ ∈ S with tt(C) = tt(C′), and |C′| ≤ p(cktC (tt(C′))). CAN(s,C ,p) ∈ Γ/a

means there is a Γ/a algorithm that decides CAN(s,C ,p).

TAUT(s,C) (resp. SAT(s,C)) denotes the TAUT (resp. SAT) for s-size C circuits.

In these definitions we omit, the parameter s when it is poly(n), and the circuit class when

C = Boolean.

The main idea is to guess the witness circuit unambiguoulsy using the canonization algorithm,

and then combine the witness circuit with the reduction circuit in the same manner that Williams

did [99]. The existence of the witness circuit follows from the UTIME EWL.

Theorem 26. For δ≤ 1, let a,c and ε be the parameters of Theorems 24 and 25 for the time bound

t = 2δn. Then for constant k and function p(n)≥ n, UTIME(2δn)/a 6⊂ C (nk) if:

1. TAUT(p(nk+1)n+nc,C) ∈ UTIME(2εn) and CAN(nk+1,C ,p) ∈ UTIME(2εn)/1; or

2. TAUT(p(nk+1)n+nc,C) ∈ UTIME(2εn)/1 and CAN(nk+1,C ,p) ∈ UTIME(2εn).

Proof. Using the assumptions (1 or 2), we will contradict the UTIME hierarchy (Theorem 24) by

designing a UTIME(2εn)/(a+1) algorithm for arbitrary L ∈ UTIME(2δn)/a.

40

Reduction circuit: For L ∈ UTIME(2δn)/a and input x, let Fx be the 2nnc-size 3−USAT

formula we get by reducing from x (Theorem 25). There is an nc-size (P-uniform) C circuit D with

n+ c logn input wires, that outputs the ith-clause of F when given the input i ∈ [1,2nnc].

Special verifier: Let V be the verifier for L that first reduces input x to the 3−USAT formula

Fx, and then non-deterministically guesses a satisfying assignment for Fx.

Easy-witness circuit: From UTIME EWL (Theorem 21) and the assumption UTIME(2δn)/a⊂

C (nk) we know that V has witness circuits in C (nk). Let E be a witness circuit of this verifier for

the input length |x|= n.

Final circuit C: Combining D and E we construct a circuit C that satisfies: “C is a tautology

⇐⇒ x ∈ L”. On input i, the output of D is 3n+3c logn+3 bits long. The first 3n+3c logn bits

are the three variables of the ith-clause of F . Plug these output bits to three separate copies of E.

The last three bits indicate whether the corresponding literals are positive or negative. Use these

three bits and the three output bits from the three copies of E to compute the value of the ith-clause

(based on the assignment encoded by tt(E)).

Contradicting the first assumption: Non-deterministically guess a p(nk+1)-size C circuit

E. Simulate the CAN(nk+1,C ,p) algorithm on E. This requires UTIME(2εn)/1. Reject if the answer is

negative. Continue if it’s positive, and construct C as described above. |C| ≤ p(nk+1)n+nc. Note

that, for any truth-table only one non-deterministic branch will lead to a non-rejecting path. Now

simulate the TAUT(p(nk+1)n+nc,C) algorithm on C. This requires UTIME(2εn). Note that, C is accepted

if and only if, x ∈ L, and tt(E) is the unique witness of V . This whole process requires the advice

used in the UTIME(2δn)/a algorithm for L. So we get a UTIME(2εn)/(a+1) algorithm.

Contradicting the second assumption: The algorithm is exactly the same, expect that the

extra 1-bit of advice is used by the tautology algorithm, and not by the canonization algorithm.

We get the following corollary that is cleaner in presentation.

Corollary 4.1.1. UE/O(n logn) 6⊂ C , if TAUTC ∈ USUBE and CAN(C ,p) ∈ USUBE, for p(n) ∈ poly(n).

41

4.2 Lower bounds from unambiguous Π2SAT algorithms

Here the idea is to simulate canonization using a Π2SAT algorithm.

Theorem 27. For every constant k1 there is a constant k2, such that if Π2SAT on n variables and n

clauses can be solved in UTIME(2n/(logn)k2), then UE/n 6⊂ SIZE(n(logn)k1).

Proof. From the Theorem 24 we know that there is an a ≤ n such that UTIME(2n/(logn)2
)/a 6⊂

UTIME(2n/(logn)3
)/(a+1). UE/n⊂ SIZE(n(logn)k1) gives UTIME(2n/(logn)2

)/a⊂ SIZE(n(logn)k1).

From the UTIME EWL we get UTIME(2n/(logn)2
)/a⊂w SIZE(n(logn)k1).

Now the proof is similar to the proof of Theorem 26, except few changes. We prove that any

L ∈ UTIME(2n/(logn)2
)/a has an UTIME(2n/(logn)3

)/a algorithm. After guessing a SIZE(n(logn)k1)

witness circuit E, we use a fast Π2SAT algorithm on it (from our assumption) to make sure that

we move forward unambiguously. We check that, for all lexicographically small (in some fixed

encoding scheme) circuits D, there is at least one input z, such that E(z) 6= D(z). For the final circuit

C, we use three copies of E and a reduction circuit that is (P-uniform) linear-size (the nc-size circuit

in the Theorem 54 can be made linear [51]). Finally we run a fast tautology algorithm (from our

assumption) on the circuit C.

4.3 Lower bounds from F̃ew tautology algorithms

The idea is that there can only be exponential many possibilities for the witness circuit, and

thus the number of positive non-deterministic branches of the final algorithm remain within the

limits of a F̃ew verifier.

Theorem 28. TAUTC ∈ F̃ewSUBE =⇒ ∀k F̃ewE/O(n logn) 6⊂ C (nk).

Proof. For the sake of contradiction, assume that ∃k F̃ewE/O(n logn)⊂ C (nk). From the Theorem

23 (F̃ewTIME EWL) we get that ∃k′ F̃ewE/a⊂w C (k′), where a is the advice parameter of the Theorem

42

24 for time bound t = 2n. Using the fast F̃ew algorithm from our assumption we contradict the

Theorem 24 by showing that any arbitrary L ∈ FewE/a has an F̃ewSUBE/(a+1) algorithm.

Now again our proof follows the structure of Theorem 26 with some modifications. We

construct the final circuit C without using any canonization. There can only be 2O(nk′) many witness

circuits E. For designing a F̃ewTIME(2nε

)/a algorithm for any 0 < ε < 1, we use a F̃ewTIME(2nδ

)

tautology algorithm for some δ≤ ε. This makes the number of accepting paths for the final algorithm

at most 2O(nk′)×2(δn)log(δn) ≤ 2(εn)log(εn)
.

4.4 Lower bounds from unambiguous learning and tautology

algorithms

We first show how exact (proper) learning along with tautology algorithm imply canonization.

Then we plug this connection in the Theorem 26 to get lower bounds from learning and tautology

algorithms. Before we give our result, we first formally define the UTIME exact learning algorithm

that we use in our results.

Exact UTIME learning with membership and equivalence queries: Let s be the size of the

target concept C (the circuit to be learned). A UTIME(t) algorithm is called LRN(s,C,p), if for any

s-size C circuit C, it outputs a circuit C′ of size at most p(s) in time at most t(n) (where n is the

number of input wires) with tt(C) = tt(C′), on exactly one of its non-deterministic branches, and

rejects all the other branches. The algorithm is allowed to make “membership” and “equivalence”

queries. A membership query is of the type: “What is the value of C(x)?”. An equivalence query

is of the type: “Is the current hypothesis (H) equal to C?”. On any positive equivalence query, it

halts and outputs the current hypothesis. On any negative query, it gets x from the oracle, such that

H(x) 6=C(x).

If the output, and the equivalence queries are all polynomial-size C circuits, the algorithm is

called P-LRN(s,C,p) (proper learning).

43

Here again, we omit the size parameter when s(n) = poly(n), and the circuit class when

C = Boolean. Here we omit p(n) too, if it is poly(n). Unlike in CAN(C ,p), in LRN(C ,p) p decides the

size of the output (and not the input).

Theorem 29. For any polynomial p(n):

1. P-LRN(C ,p) ∈ UTIME(t) ∧ TAUTC ∈ UTIME(t ′) =⇒ CAN(C ,p) ∈ UTIME(t(t ′+ poly(n)))

2. P-LRN(C ,p) ∈ USUBE∧TAUTC ∈ USUBE =⇒ UE/O(n logn) 6⊂ C

Proof. Proof of (1): In an exact proper learning algorithm, if we have access to the circuit C that

we are learning, then we can get a canonization algorithm for C (because the learning algorithm

only cares about the truth-table of the circuit that it is learning, and outputs the same hypothesis for

all the circuits that have same truth-tables). As the final hypothesis will be of size at most p(s) for

s-size C circuits, we get a UTIME algorithm for CAN(C ,p). The membership queries can be handled

directly since we have the circuit with us. For the equivalence queries, we non-deterministically

guess the faith for the hypothesis H.

If we guess H ≡C, we use the tautology algorithm to verify it. If our guess is wrong, we

reject. If our guess is right, we accept if only if, H’s description is same as C.

If we guess H 6≡C, we have to output an input z, such that H(z) 6=C(z). We try to guess

the lexicographically smallest such z to keep the whole process unambiguous. After guessing z,

we check that H(z) 6=C(z) and use our tautology algorithm to check that ∀(z′ <l.o. z) H(z) =C(z),

where l.o. stands for lexicographical ordering (the test z′ <l.o. z can be encoded by any typical

circuit of linear size). We return z if both the checks pass, else we reject.

Proof of (2): We get this directly from (1) and the Corollary 4.1.1.

4.5 Generalization of lower bound frameworks

In the above sections we saw that fast UTIME algorithms for certain circuit analysis algorithms

for C circuits were fed to certain frameworks to yield lower bounds for UTIME against C . Consider

44

the scenario where: a framework is altogether different, or is a fine-grained version of one of the

current ones (in terms of size and depth of the circuits and running time of the algorithms), and

works for Boolean circuits, but not for some restriction C . Also consider that, the assumptions of

these frameworks are satisfied for that C , but not for unrestricted Boolean circuits. Do we get any

lower bounds? In this section we prove that this question has a positive answer.

We use win-win type arguments analogous to the ones used in [72] for fast NTIME algorithms.

We show that, either P 6⊂ C (i.e., a stronger lower bound exists against C), or fast unambiguous

algorithms for C circuits imply fast unambiguous algorithms for Boolean circuits (i.e., frameworks

that only work for Boolean circuits can now be used). To prove our results, we use the Lemma

3.4.1.

Theorem 30. Either P 6⊂ C , or ∃c, for p(m) = mk for any k ≥ 1, and t, t ′, t ′′ ≤ 2n:

1. CAN(C ,p) ∈ UTIME(t) =⇒ CANpc ∈ UTIME(t)

2. CAN(C ,p) ∈ UTIME(t) ∧ TAUTC ∈ UTIME(t ′) =⇒ TAUT ∈ UTIME((t + t ′)poly(n))

3. CAN(C ,p) ∈ UTIME(t) ∧ TAUTC ∈ UTIME(t ′) ∧ SATC ∈ UTIME(t ′′)

=⇒ SAT ∈ UTIME((t + t ′)poly(n)+ t ′′)

Proof. If P⊂ C , from the Lemma 3.4.1 we know there exists a constant c such that: for each s-size

Boolean circuit B, there is an equivalent sc-size C circuit C (for large enough n).

Proof of (1): By a simple modification of an algorithm A for CAN(C ,p), we obtain an

algorithm A ′ for CANpc . On input B, the algorithm A ′ first checks whether B belongs to C . It rejects

if the answer is negative. If the answer is positive it simulates A on B and accepts if and only if A

accepts.

Proof of (2): Let A be a UTIME(t) algorithm for CAN(C ,p), A ′ be a UTIME(t ′) algorithm for

TAUTC . Using A and A ′, we construct a UTIME algorithm A ′′ for TAUT.

For input B to A ′′, for each gate g of B, let Bg be the circuit corresponding to the output wire

of gate g. For the output gate o, A ′′ first guesses an equivalent C circuit C′o. To make sure that its

45

guess is unambiguous, it simulates A on C′o and rejects if A rejects. Then it simulates A ′ on C′o (to

check if C′o is a tautology) and rejects if it rejects. The only thing left to check is that C′o is actually

equivalent to Co.

For checking the consistency of C′o, A ′′ first guesses C circuit C′g, for each gate g. It then

simulates A on each C′g and rejects if A rejects on any of them. Finally it simulates A ′ on C′′g for each

g, where C′′g is the circuit that captures the tautology “C′g = op(C′g1
, . . . ,C′gl

)” for g = op(g1, . . . ,gl).

It accepts if and only if A accepts on all of them.

Proof of (3): For input B, with the same strategy as in the proof of 2, we first unambiguously

construct an equivalent C circuit C. Then, on this C we simulate a UTIME(t ′′) algorithm for

SATC .

For the case of F̃ew algorithms, we get the following theorem where we don’t need canon-

ization. The proof is same as of the above theorem, except that now we can skip all the canonization

steps. This change will not increase the number of positive non-deterministic branches of the final

algorithm by much, and thus the constraints of a F̃ew verifier are not violated.

Theorem 31. Either P 6⊂ C , or:

1. TAUTC ∈ F̃ewTIME(2n/nω(1)) =⇒ TAUT ∈ F̃ewTIME(2n/nω(1))

2. TAUTC ∈ F̃ewTIME(2n/nω(1)) ∧ SATC ∈ F̃ewTIME(2n/nω(1)) =⇒ SAT ∈ F̃ewTIME(2n/nω(1))

Chapter 4 contains material from “On Limiting & Limited Non-determinism in NEXP Lower

Bounds”, by Anant Dhayal and Russell Impagliazzo, which is currently under review in ACM

Transactions on Computation Theory (TOCT). The dissertation author was the primary investigator

and author of this paper.

46

Chapter 5

Unique Properties vs. Lower Bounds

In this chapter we establish relationships between different types of unique properties

and lower bounds against UTIME,ZUTIME,NTIME and ZNTIME. Main results of this chapter are

summarized in the Table 5.1.

Table 5.1: Properties vs Lower Bounds

Properties useful against C Witness LB HS LB Ob-witness LB Set LB

P/ logn-u=1 ≡ P-U ZUE 6⊂s C ZUE 6⊂hs C ZUE 6⊂os C ZUE 6⊂ C

P/ logn-u≤1 UE 6⊂w C

UE 6⊂hw C

UE 6⊂ow C UE 6⊂ C

P/ logn-U UE/n 6⊂w C UE/n 6⊂hw C UE/n 6⊂ow C UE/n 6⊂ C

NP/ logn-u=1 ≡ NP-U ZNE 6⊂ C

NP-N≡ P-N ZNE 6⊂s C ZNE 6⊂hs C ZNE 6⊂os C

NP/ logn-U≡ NP/ logn-N NE 6⊂w C NE 6⊂hw C NE 6⊂ow C NE 6⊂ C
≡ P/ logn-N

NP-prU ip-ZNE 6⊂ C

NP-prN≡ P-prN ip-ZNE 6⊂s C ip-ZNE 6⊂hs C ip-ZNE 6⊂os C

Lower bounds in any particular column are all equivalent, and lower bounds from any

column imply the lower bounds in the column just below it (except the columns that are separated by

47

double lines). Note that, as the lower bounds get weaker, the properties become less restrictive (or

the constructivity goes higher). Also note that, at any place in the Table 5.1 we can remove the logn

advice by assigning each advice a different input-length. But then the property no more remains a

property, instead gets converted into an useful algorithm (see [101]). An useful algorithm, unlike an

useful property, accepts inputs of all lengths and not just powers of 2. It appends zeros on the inputs

that are not powers of 2, to make it a truth-table. We stick to properties in our presentation.

In almost all of our connections we use the following connection (Lemma 5.0.1) between

UP-U and P-U properties. The proof of this connection is along the same lines as the original

connection [4, 72, 101]: an useful NP (resp. RP-natural) property yields an useful P (resp. P-natural)

property.

Lemma 5.0.1. UP/a property U can be converted into a P/a property P such that:

1. U is UP/a-U property =⇒ P is P/a-U property;

2. U is UP/a-u=1 property =⇒ P is P/a-u=1 property;

3. U is UP/a-u≤1 property =⇒ P is P/a-u≤1 property;

4. U is useful against C =⇒ P is useful against C .

Proof. Let V be the unambiguous verifier corresponding to U’s algorithm. Let c be a constant such

that 2cn−2n is the length of the certificates that V guesses for the inputs of size 2n. Now we design

P which satisfies the promises of the theorem statement. For m which is not a multiple of c, among

all the inputs of length 2m, P only accepts the all 0s string. For m = cn for some n, for any input xy

where |x|= 2n and |y|= 2cn−2n, P simulates V on (x,y), and accepts if and only if V accepts. For

any n ∈ N, P uses the same advice for 2cn-size inputs, that U uses for 2n-size inputs.

Proofs of (1), (2) & (3): The construction of P ensures this for the inputs of size 2m, where

m is not a multiple of c. For all the other input sizes this is ensured by the fact that U is a UP

property, and the behavior of U on different advice strings. For any n ∈ N, and any advice string,

the number of 2cn-size inputs P accepts, is same as the number of 2n-size inputs U accepts.

48

Proof of (4): If U is useful against C , then for each k there exists an infinite subset Sk such

that for each n ∈ Sk, U(x) = 1 =⇒ cktC (x) > nk. For any x, let y be the unique certificate such

that V (x,y) = 1. Since cktC (x)> nk =⇒ cktC (xy)> nk ≥ (cn)k−1 for each k, P is useful against

nk−1-size C circuits for each k, and hence is useful against C .

5.1 ZUE lower bounds vs P-U properties

Theorem 32. [Row 1 of Table 5.1] The following statements are equivalent:

1. ZUE 6⊂ C

2. ZUE 6⊂os C

3. ZUE 6⊂hs C

4. ZUE 6⊂s C

5. P-U 6⊂tt C

6. P/ logn-u=1 6⊂tt C

Proof. (1) =⇒ (5) Let L ∈ ZUE\C , and let V be 2O(n)-time zero-error unambiguous verifier for L.

For any n, Ln can be viewed as a function fn, where f−1
n (1) = {x ∈ L | |x|= n}.

Now using V we give a UP-U property U that is useful against C . Then the result follows

from the Lemma 5.0.1.

For any input y of length 2n, U simulates V on all the n-length strings, one by one. For each

i, it matches the ith bit of y, and the output of V on the ith n-length string. U accepts if and only if it

succeeds in all 2n verifications.

Constructivity & uniqueness: For n ∈ N, U unambiguously accepts the truth table of

function fn, and rejects all the other strings. As it runs for 2O(n)-time on 2n-length inputs, it is UP-U

(as V is ZUE).

49

Usefulness: As L 6∈ C , for each k, there are infinitely many input lengths n, such that fn

doesn’t have nk-size C circuits. Thus U is useful against C .

(5) =⇒ (4) Let P be a P-unique property useful against C . Using P we construct a

zero-error unambiguous verifier V for the ZUE language {0,1}∗ such that V doesn’t have seeds in C .

For any n-length input x, V guesses a string y of length 2n and accepts if and only if P

accepts y. Since P is P-unique property useful against C , the unique accepting witnesses of V are

not in C .

(4) =⇒ (3) This follows from the definitions.

(3) =⇒ (2) This follows from the definitions.

(2) =⇒ (1) The contrapositive follows from the ZUTIME EWL (Theorem 22).

(5) ⇐⇒ (6) The forward direction is trivial. For the reverse direction, for P/ logn-u=1

property P , we convert P to a P-U property P ′.

For odd m, among all the inputs of length 2m, P ′ only accepts the all 0s string. For m = 2n

for some n, for any 2m-length input x1x2 . . .x22n where ∀i |xi|= 2n, P ′ accepts if and only if for each

i: P accepts input xi with the advice yi (ith n-length string in the lexicographical order).

Constructivity & uniqueness: These both follow for P ′ directly from the fact that P is a

strong-unique P-property.

Usefulness: If P is useful against C with advice sequence {an}n∈N, then for each k there

exists an infinite subset Sk such that for each n ∈ Sk, P (x,an) = 1 =⇒ cktC (x) > nk. Among

all the 22n-length strings, let y be the unique string that P ′ accepts. y = x1 . . .xbn . . .x2n , where

∀i ∈ [1,2n] |xi|= 2n, bn is the lexicographical rank of an among all the n-length strings, and x = xbn .

Since cktC (x)> nk =⇒ cktC (y)> nk ≥ (2n)k−1 for each k, P ′ is useful against nk−1-size C circuits

for each k, and hence is useful against C .

50

5.2 UE lower bounds vs P/ logn-u≤1 properties

We use a fine-grained version of the techniques from [101], to prove the following two

theorems: (i) “witness lower bound ⇐⇒ P/ logn-u≤1 useful property” and (ii) “oblivious witness

lower bound ⇐⇒ UE lower bound”. Unfortunately, the “oblivious witness lower bound =⇒

witness lower bound” connection of NTIME doesn’t go through in the case of UTIME. If we try to

establish a “oblivious witness lower bound =⇒ P/ logn-u≤1 useful property” connection, we don’t

get a mild-unique property, but just a unique property. In the next section we will see that this

connection can be established in the presence of advice.

Theorem 33. [Row 2 of Table 5.1] The following statements are equivalent:

1. UE 6⊂w C

2. P/ logn-u≤1 6⊂tt C

Proof. (1) =⇒ (2) Let L′ be a UE language, and V ′ be an unambiguous verifier for L′ that doesn’t

have witnesses in C . By a simple padding argument we can construct L ∈ UTIME(2n), and an

unambiguous verifier V for L with certificate length 2n, that doesn’t have witnesses in C .

If the inputs are given as advice, and the certificates are given as inputs, then V becomes a

P/ logn property P , that is useful against C .

For P to be a u≤1 property, it should be unique with respect to the same advise that makes it

useful. At this point, all we know is that for every input length and every advise, P accepts at most

one truth-table (since V is unambiguous). The advise that makes P useful may not be present for all

input lengths. For some of these input lengths n where no such advise is present, it is also possible

that Ln is empty (i.e. no advice is present that makes the property non-empty).

We will be done if L is non-empty for all input lengths. Consider the two modifications of

V : (i) V0, that changes its behavior on the all 0s strings and always accepts them (unambiguously);

and (ii) V1, that changes its behavior on the all 1s strings and always accepts them (unambiguously).

The modified languages and their corresponding verifiers are also UTIME(2n), and have 2n-length

51

certificates. We show that at least one of these two modifications doesn’t have witness in C . If V0

has witnesses in C , then V ’s witnesses corresponding to the all 0s strings must be the ones that were

not in C (at least infinitely often), so then V1 doesn’t have witnesses in C (infinitely often).

(2) =⇒ (1) Let P be a P/ logn-u≤1 property that is useful against C . Define L =

{x | ∃y P (y)/x = 1}. Let V be the verifier for L, that on any n-length input x, guesses a string y

of length 2n, and simulates P on y using x as advice. V is a UE verifier since P is a mild-unique

property. V doesn’t have witnesses in C since P is useful against C .

Theorem 34. [Row 4 of Table 5.1] The following statements are equivalent:

1. UE/a 6⊂ C

2. UE/a 6⊂ow C

Proof. ¬(1) =⇒ ¬(2) This follows from the UTIME EWL (Theorem 21).

¬(2) =⇒ ¬(1) Assume that UE/a has oblivious witnesses (for all verifiers that are unam-

biguous given the correct advice) in C . Let L be a UE/a language and V/a be a UE/a verifier for L.

By our assumption, V/a has oblivious witnesses in nk-size C circuits. Now we show that L ∈ C .

Using V/a we construct an unambiguous verifier V ′/a for the UEXP/a language {0,1}∗

such that: for n ∈ N, an oblivious witness circuit for V ′/a on n-length inputs, computes Ln.

For x∈L (this can be verified by brute forcing through all the nk+1-size circuits), V ′(x,y)/a=

1 only when y is the all 1s string. For x /∈ L, V ′(x,y)/a = 1 only when y is the all 0s string. Since

UE/a has oblivious witnesses in C , by a simple padding argument UEXP/a too has oblivious wit-

nesses in C . Let {Cn}n∈N be the C circuit family encoding the oblivious witnesses of V ′. Then,

the C circuit family defined by Dn(x) =Cn(x,1) encodes the language L (since the first bit of the

unique accepting certificate of V ′/a on input x, dictates whether x ∈ L or not).

52

5.3 UE/n lower bounds vs P/ logn-U properties

The arguments from Section 5.1, when extended to the advice setting, circumvent the

problems from Section 5.2, and yield the following theorem.

Theorem 35. [Row 5 of Table 5.1] The following statements are equivalent for any constant k ≥ 1:

1. UE/nk 6⊂ C

2. UE/nk 6⊂ow C

3. UE/nk 6⊂hw C

4. UE/nk 6⊂w C

5. P/(logn)k-U 6⊂tt C

Proof. (1) =⇒ (5) Let L ∈ UE/nk \C , and let V be 2O(n)-time unambiguous verifier for L. For any

n, Ln can be viewed as a function fn, where f−1
n (1) = {x ∈ L | |x|= n}.

Now using V we give a UP/ logk m-U property U that is useful against C . Then the result

follows from the lemma 5.0.1.

For odd m, among all the inputs of length 2m, U only accepts the all 0s string. For m= 2n for

some n, for any 2m-length input yz with |y|= 2n and |z|= 22n−2n, U goes through all the n-length

strings, one by one. If the ith bit of y is 0, it does nothing. If the ith bit of y is 1, it simulates V on the

ith n-length string in the lexicographical order (to verify its inclusion in L). The first nk bits of advice

is the advice required for the simulation of V . The rest of the (log22n)k−nk = (2n)k−nk ≥ n bits

of advise encodes the number of n-length inputs that V accepts. U accepts if and only if: (i) it

succeeds in all 2n verifications; (ii) the hamming weight of y is equal to the number encoded by the

last (2n)k−nk bits of advise; and (iii) z is an all 0s string.

Constructivity & uniqueness: For n ∈ N, U unambiguously accepts the truth table of

function fn (followed by an all 0s string of length 22n−2n), and rejects all the other strings. As it

runs for 2O(n)-time for 2n-length inputs with nk-size advice, it is UP/(logn)k-U (as V is UE).

53

Usefulness: As L 6∈ C , for each l, there are infinitely many input lengths n, such that fn

doesn’t have nl+1-size C circuits. Corresponding to each such n, for the inputs of length 22n, U

accepts strings y that doesn’t have (2n)l-size C circuits because: any (2n)l-size circuit C with

tt(C) = y, decides Ln after we fix the first half of its input wires to 1s, and (2n)l ≤ nl+1.

(5) =⇒ (4) Let P be a P/(logn)k-U property useful against C . We construct an unambigu-

ous verifier V for the UE/nk language {0,1}∗, that doesn’t have witnesses in C . For any n-length

input x, guess a 2n-length string y and simulate P on y, and accept if an only if P accepts.

Since P is useful against C , V doesn’t have witnesses in C . As P is unique, V is UE/nk.

(4) =⇒ (3) This follows from the definitions.

(3) =⇒ (2) This follows from the definitions.

(2) =⇒ (1) The contrapositive follows from the UTIME EWL (Theorem 21).

5.4 ZNE lower bounds vs NP-U properties

In [72] it was conjectured, “ZNE 6⊂ C ⇐⇒ ∃ P-N (or NP-N) property useful against C ” while

only forward direction was proved. We use a fine-grained version of the proof to establish the

equivalence in the case of unique properties. So if this conjecture is true, then any NP-N property

has an equivalent NP-U property.

In the Section 5.5 we establish the equivalence between: NP-N properties and lower bounds

for ZNE seeds. Since NP-U properties imply NP-N properties, this result can be viewed as an reverse-

EWL for ZNE. Moreover, if the conjuncture of [72] is true, then we also get an EWL for ZNE.

In the Section 5.6 we show an equivalence between NP-N and NP-U properties, when they

are allowed to use logn amount of advice. This equivalence uses the EWL for NE. In the chapter 7

we reduce this advice to O(1), on the expense of making the lower bounds fixed-polynomial. This

gives us an EWL and reverse-EWL for ZNE/O(1) for fixed-polynomial upper/lower bounds.

Theorem 36. [Row 6 of Table 5.1] The following statements are equivalent:

54

1. ZNE 6⊂ C

2. NP/ logn-u=1 6⊂tt C

3. NP-U 6⊂tt C

Proof. (2) ⇐⇒ (3) The reverse direction is trivial. For the forward direction, we convert any

NP/ logn-u=1 property P into an NP-U property P ′. The conversion from the proof of Theorem 32

works for NP properties as well.

(1) =⇒ (3) Let L ∈ ZNE\C , and let V be 2O(n)-time zero-error non-deterministic verifier

for L. For any n, Ln can be viewed as a function fn, where f−1
n (1) = {x ∈ L | |x|= n}.

Now using V we give an NP-U property U that is useful against C . For any input y of length

2n, U simulates V on all the n-length strings, one by one. If the ith bit of y is 0, it verifies the

inclusion of the ith (lexicographically) n-length string in L. If the ith bit of y is 1, it verifies the

inclusion of the ith (lexicographically) n-length string in L. U accepts if and only if it succeeds in

all 2n verifications.

Constructivity & uniqueness: For n ∈N, U accepts the truth table of function fn, and rejects

all the other strings. As it runs for 2O(n)-time on 2n-length inputs, it is NP-U.

Usefulness: As L 6∈ C , for each k, there are infinitely many input lengths n, such that fn

doesn’t have nk-size C circuits. Thus U is useful against C .

(3) =⇒ (1) Let U be an NP-unique property useful against C . We construct a language L

in ZNE\C , whose ZNE verifier uses U.

For any n-length input x, V guesses a string y of length 2n and simulates U on it. Let the

lexicographical rank of x (among all n-bit strings) be i. V outputs ‘?’ if U rejects, else it proceeds

further. It outputs 1, if y’s ith-bit is equal to 1. Else it outputs 0.

Since U is NP-unique property, for each n the 2n-length string yn it accepts is unique. Thus

V accepts the language whose slices are represented by the strings yn (let’s call this language L),

and satisfies the promises of a ZNE verifier.

55

Since U is useful against C , for each k, there are infinitely many values of n where yn

doesn’t have nk-size C circuits. Thus L 6∈ C .

The above proof also gives an equivalence between NP-promise-unique properties and lower

bounds against ip-ZNE (the promise version of ZNE).

Theorem 37. [Row 9 of Table 5.1] The following statements are equivalent:

1. ip-ZNE 6⊂ C

2. NP-prU 6⊂tt C

Proof Idea: (=⇒) Any L ∈ ip-ZNE\C that satisfies the ZNE or (NE∩Co−NE)-promise on n-length

inputs for some n, yields a property that is unique on the input lengths 2n. Since L satisfies the lower

bound on the promise inputs, the property is useful on the inputs on which it is unique.

(⇐=) Any NP-unique useful property U that is unique on 2n-length inputs for some n,

yields a ZNE verifier that satisfies the ZNE-promise on n-length inputs. Since useful inputs of U also

satisfy the promise, the verifier satisfies the lower bound on the promise inputs.

5.5 ZNE lower bounds vs NP-N properties

Theorem 38. [Row 7 of Table 5.1] The following statements are equivalent:

1. ZNE 6⊂os C

2. ZNE 6⊂hs C

3. ZNE 6⊂s C

4. NP-N 6⊂tt C

5. P-N 6⊂tt C

56

Proof. (4) ⇐⇒ (5) It is proved in [72].

(3) =⇒ (2) This follows from the definitions.

(2) =⇒ (1) This follows from the definitions.

(1) =⇒ (5) Let V be a ZNE verifier that doesn’t have oblivious seeds in C . Let V ’s certificate

length be 2cn, for some constant c. Using V we construct a P-N property P useful against C . View

any 2(c+1)n-length input as a collection of 2n certificates. P accepts if and only if, for each i∈ [1,2n],

V outputs in {0,1} on the ith (lexicographically) n-length input when given the ith certificate from

the collection. Clearly, P is a P-N property. It is useful against C as it only accepts oblivious

witnesses of V .

(5) =⇒ (3) Let P be a P-N property useful against C . For each k, let Sk be the infinite set

of inputs where P only accepts strings str with cktC (str)≥ nk. Using P we construct a ZNE verifier

V for {0,1}∗ that doesn’t have seeds in C . For n-length input x, V guesses a string y of length 2n. V

outputs 1, if P accepts the string y. Otherwise V outputs ‘?’. For each k, for any n with 2n ∈ Sk, due

to the way it is constructed, V doesn’t have seeds in nk-size C . Thus V doesn’t have seeds in C .

The above proof also gives an equivalence between NP-promise properties and lower bounds

for ip-ZNE seeds. The proof idea is similar to the one given for the Theorem 37.

Theorem 39. [Row 10 of Table 5.1] The following statements are equivalent:

1. ip-ZNE 6⊂os C

2. ip-ZNE 6⊂hs C

3. ip-ZNE 6⊂s C

4. NP-prN 6⊂tt C

5. P-prN 6⊂tt C

57

5.6 NE lower bounds vs NP/ logn-U properties

Theorem 40. [Row 8 of Table 5.1] The following statements are equivalent:

1. NE 6⊂ C

2. NE 6⊂ow C

3. NE 6⊂hw C

4. NE 6⊂w C

5. NP/ logn-U 6⊂tt C

6. NP/ logn-N 6⊂tt C

7. P/ logn-N 6⊂tt C

Proof. Equivalence of (1), (2), (4), (6) & (7): It is proved in [101, 72].

Equivalence with (3): The implications, (4) =⇒ (3) and (3) =⇒ (2), follow from the

definitions.

Equivalence with (5): The implication (5) =⇒ (6) follows from the definitions. We will now

show the implication (1) =⇒ (5).

Let L ∈ NE\C , and let V be 2O(n)-time non-deterministic verifier for L. For any n, Ln can

be viewed as a function fn, where f−1
n (1) = {x ∈ L | |x|= n}.

Now using V we give an NP/ logn-U property U that is useful against C . For any input y of

length 2n, U goes through all the n-length strings, one by one. If the ith bit of y is 0, it does nothing.

If the ith bit of y is 1, it simulates V on the ith n-length string in the lexicographical order (to verify

its inclusion in L). U accepts if and only if it succeeds in all 2n verifications and the hamming

weight of y is equal to the number encoded by the advice. If the advice is equal to the size of Ln, U

accepts the truth table corresponding to the function fn, and rejects all the other strings. Since it

runs in 2O(n)-time on 2n-length inputs, it is NP/ logn-U. As L 6∈ C , U is useful against C .

58

Chapter 5 contains material from “On Limiting & Limited Non-determinism in NEXP Lower

Bounds”, by Anant Dhayal and Russell Impagliazzo, which is currently under review in ACM

Transactions on Computation Theory (TOCT). The dissertation author was the primary investigator

and author of this paper.

59

Chapter 6

Derandomization Using Unique Properties

Here we extend the “lower-bounds to derandomization” connection to UEXP and ZUEXP. We

use the following two connections from the Table 5.1:

1. ZUE 6⊂s C ⇐⇒ P-U 6⊂tt C

2. UE 6⊂w C ⇐⇒ P/ logn-U 6⊂tt C

The idea is to obtain unique properties from UEXP and ZUEXP lower bounds, and then use

these properties to unambiguously obtain hard functions, which then yield the desired derandomiza-

tion.

Theorem 41. [Unambiguous derandomization from UEXP and ZUEXP lower bounds]

1. ZUEXP 6= EXP =⇒ BPP⊂ ∩ε>0 io-ZUTIME(2nε

)

2. ZUEXP 6⊂ SIZE(poly) =⇒ BPP⊂ ∩ε>0 io-ZUTIME(2nε

)

3. ZUEXP 6= MA =⇒ BPP⊂ ∩ε>0 io-ZUTIME(2nε

)

4. ZUEXP 6= BPP =⇒ BPP⊂ ∩ε>0 io-Heur-ZUTIME(2nε

)

5. UEXP 6= EXP =⇒ BPP ∩ε>0 ⊂ io-ZUTIME(2nε

)/nε

60

6. UEXP 6⊂ SIZE(poly) =⇒ BPP⊂ ∩ε>0 io-ZUTIME(2nε

)/nε

7. UEXP 6= MA =⇒ BPP⊂ ∩ε>0 io-ZUTIME(2nε

)/nε

8. UEXP 6= BPP =⇒ BPP⊂ ∩ε>0 io-Heur-ZUTIME(2nε

)/nε

Proof. Proof of (1): Let’s assume that ZUEXP 6= EXP. Then ZUE can’t have seeds in SIZE(poly),

because brute-forcing through the seeds will prove ZUEXP= EXP. Thus, there exists a P-U property

P useful against SIZE(poly) (from the Table 5.1). For each c, let Sc be the infinite set of input

lengths where P only accept strings str satisfying ckt(str)≥ nc. These strings are truth-tables of

hard functions, and can be computed in UE using the constructivity of P .

For k,ε > 0,ε > ε′/2 and L ∈ BPTIME(nk/2), set c = gk/ε′ (where g is the constant from

Theorem 19). We give a ZCTIME(2nε

) algorithm for L that works for any input length n with 2n ∈ Sc.

For n-length input x of L, let Cx be the SIZE(nk) circuit capturing the BP computation of L.

Non-deterministically guess a string Y of length m = 2nε′
. Output ‘?’ if P (Y) = 0. Once

we have access to Y with P (Y) = 1 (or ckt(Y) ≥ nk), we can construct PRG G : nε→ nk from Y

(using the Theorem 19) that is computable in E. We brute-force through all the nε′-length seeds,

and on each of the output strings of length nk, compute the circuit Cx to calculate its acceptance

probability in time 2nε

(within ±1/nk error). Output 1 if this value is 1/2 or more, else output 0.

Since P (Y) = 1 holds for unique Y , the whole process is unambiguous.

Proofs of (2): We prove the contrapositive. Assume that ∃ε > 0 such that BPP 6⊂ io-

ZUTIME(2nε

). This gives us EXP ⊂ SIZE(poly) [9, 70, 71], and ZUEXP = EXP from (1). Thus,

ZUEXP⊂ SIZE(poly).

Proof of (3): Using (1), (2) and EXP KLT we get a series of implications that conclude the

61

proof.

ZUEXP 6= MA =⇒ ZUEXP 6= EXP or EXP 6= MA

=⇒ BPP⊂ ∩ε>0 io-ZUTIME(2nε

) or EXP 6⊂ SIZE(poly)

=⇒ BPP⊂ ∩ε>0 io-ZUTIME(2nε

) or ZUEXP 6⊂ SIZE(poly)

=⇒ BPP⊂ ∩ε>0 io-ZUTIME(2nε

)

Proof of (4): Its the same as above, except EXP 6= MA is replaced with EXP 6= BPP and the

derandomization from [49] is used.

Proof of (5): It’s analogous to the proof of (1), except that the property we get is P/ logn

and not P constructive. The logn-bit advice for this property is precisely the nε-bit advice for the

ZUTIME(2nε

) algorithm we get.

Proofs of (6), (7) & (8): They are analogous to the proofs of (2), (3) and (4). The advice

from the proof of (5) travels to them as well.

Chapter 6 contains material from “On Limiting & Limited Non-determinism in NEXP Lower

Bounds”, by Anant Dhayal and Russell Impagliazzo, which is currently under review in ACM

Transactions on Computation Theory (TOCT). The dissertation author was the primary investigator

and author of this paper.

62

Chapter 7

Isolation of properties: EWL & KLT for ZNE

In this chapter we discuss the consequences of isolating properties with different construc-

tivity. By isolation we mean: extracting (resp. proving existence of) an useful unique property from

(resp. from the existence of) an arbitrary useful property. From the Table 5.1 we know that:

1. Isolation of P-properties is equivalent to: ZUE⊂ C ⇐⇒ ZNE⊂os C .

2. Isolation of P/ logn-properties is equivalent to: UE/n⊂ C ⇐⇒ NE⊂ C .

3. Isolation of NP-properties is equivalent to: ZNE⊂ C ⇐⇒ ZNE⊂os C .

4. Isolation of NP-promise-properties is equivalent to: ip-ZNE⊂ C ⇐⇒ ip-ZNE⊂os C .

5. Isolation of NP/ logn-properties was already achieved in the Theorem 40.

In this chapter we focus on the points (3) and (4). For the case of fix-polynomial lower

bounds: we merge the rows 6 and 7 (in presence of O(1) advice), and rows 9 and 10 of the Table

5.1. Most of the equivalences follow from the arguments from the previous chapter: Theorems 36,

37, 38 and 39. The main technical results of this chapter are the implications: (i) ∀ k ≥ 1 ZNE 6⊂os

C (nk) =⇒ ∀ k ≥ 1 ZNE/1 6⊂ C (nk); (ii) ∀ k ≥ 1 ZNE 6⊂os io-C (nk) =⇒ ∀ k ≥ 1 ZNE 6⊂ C (nk); and

(iii) ∀ k ≥ 1 ip-ZNE 6⊂os C (nk) =⇒ ∀ k ≥ 1 ip-ZNE 6⊂ C (nk). Contrapositive of these can be viewed

63

as EWLs for ZNE. Using these EWLs we derive KLTs for ZNE, and isolation results for NP-properties.

We also use the Lemma 3.4.1 to make our EWLs work for typical circuit classes.

First we prove the ZNE EWL and KLT.

Theorem 42. For constant k ≥ 1:

1. ZNE/1⊂ C (nk) =⇒ ∃ k′ ≥ 1 ZNE⊂os C (nk′)

2. ZNE/O(1)⊂ C (nk) =⇒ ∃ k′ ≥ 1 ZNE/O(1)⊂os C (nk′)

3. ZNE⊂ C (nk) =⇒ ∃ k′ ≥ 1 ZNE⊂os io-C (nk′)

4. ip-ZNE⊂ C (nk) =⇒ ∃ k′ ≥ 1 ZNE⊂os C (nk′)

5. ip-ZNE⊂ C (nk) =⇒ ∃ k′ ≥ 1 ip-ZNE⊂os C (nk′)

Proof. We prove these results for the unrestricted Boolean circuits. The result for the circuit class

C follows from the Lemma 3.4.1. All the assumptions imply P⊂ C , thus any SIZE(nk′) circuit has

an equivalent C (nck′) circuit, for some constant c.

Proof of (1): ZNE/1 ⊂ SIZE(nk) implies EXP ⊂ SIZE(poly), and thus EXP = MA∩Co−MA

[9].

Now we show that, if ∀k′ ≥ 1 ZNE 6⊂os SIZE(nk′), then MA∩Co−MA⊂ io-ZNE/1. Combined

with the above statement it leads to the contradiction EXP⊂ io-SIZE(nk) (since we can diagonalize

against fix-polynomial size circuits in EXP).

∀k ≥ 1 ZNE 6⊂os SIZE(nk) =⇒ ∀k ≥ 1 P-N 6⊂tt SIZE(nk) (the arguments from Theorem 38

apply to the fix-polynomial lower bounds as well). For any L ∈ MA∩Co−MA: we derandomize the

MA protocols for L and L using the useful P-N properties to give an ZNE/1 algorithm that works

infinitely often. For any constant p let Np be a P-N property useful against np-size circuits.

The ZNE/1 algorithm: After including the non-determinism of Merlin into Arthur’s input:

let the size of the circuit C (resp. C′) that captures the BP computation of Arthur for L (resp. L′) be

bounded by nl , for some constant l. We use the property Nlg, where g is the constant from Theorem

64

19. The 1-bit of advice indicates whether the property is useful or not. If it’s 0, the algorithm always

outputs 0. If it’s 1, the algorithm guesses a 2n-bit string Y and simulates Nlg on Y . It outputs ‘?’

if Nlg rejects Y , else it proceeds further and guesses another bit b. If b = 0: it derandomizes C′

(after guessing Merlin’s non-determinism) and outputs 0 if the acceptance probability is ≥ 1/2, else

outputs ‘?’. If b = 1: it derandomizes C (after guessing Merlin’s non-determinism) and outputs 1 if

the acceptance probability is ≥ 1/2, else outputs ‘?’.

Derandomization: The property Nlg yields truth-tables that don’t have nlg-size circuits,

infinitely often. Once we have access to these truth-tables, we construct a PRG G : n→ nl using

the Theorem 19, that fools nl-size circuits. We brute-force through the seeds of G to compute the

acceptance probability of the circuits C and C′ in 2O(n)-time (within ±1/nl error).

Proof of (2): It’s same as (1), except we use the fact that the arguments from Theorem 38

also apply in the advice setting and yield: ∀k ≥ 1 ZNE/O(1) 6⊂os SIZE(nk) =⇒ ∀k ≥ 1 P/O(1)-

N 6⊂tt SIZE(nk). The extra 1-bit of advice used to indicate the usefulness of the property during

derandomization, now hides in the O(1) advice.

Proof of (3): It’s same as (1), except we use the fact that the arguments from Theorem 38

also yield: ∀k ≥ 1 ZNE 6⊂os io-SIZE(nk) =⇒ ∀k ≥ 1 P-N 6⊂tt io-SIZE(nk). That is, if we start with

a ZNE verifier V whose oblivious-seeds have high circuit complexity on all input lengths, then we

get a P-N property that is useful everywhere. Now, when we derandomize any L ∈ MA∩Co−MA, we

don’t need that one bit of advice.

Proof of (4): It’s same as (1), except if we don’t use that 1-bit of advice to encode the

usefulness of the property during derandomization, we get an ip-ZNE algorithm. The ZNE-promise

is met only when the property is useful.

Proof of (5): Since in (4) we don’t use advice to encode the usefulness, we might as well

use promise property. So we use the Theorem 39 instead, to get: ∀k ≥ 1 ip-ZNE 6⊂os SIZE(nk) =⇒

∀k ≥ 1 P-prN 6⊂tt SIZE(nk).

Using the above EWL we give the following KLT.

65

Theorem 43. For constant k ≥ 1:

1. ZNE/1⊂ SIZE(nk) =⇒ ZNE⊂ MA

2. ZNE/O(1)⊂ SIZE(nk) =⇒ ZNE/O(1)⊂ MA/O(1)

3. ZNE⊂ SIZE(nk) =⇒ ZNE⊂ io-MA

4. ip-ZNE⊂ SIZE(nk) =⇒ ZNE⊂ MA

5. ip-ZNE⊂ SIZE(nk) =⇒ ip-ZNE⊂ MA

Proof Idea: All the assumptions give EXP ⊂ SIZE(poly) or EXP/O(1) ⊂ SIZE(poly). This gives

EXP = MA or EXP/O(1) = MA/O(1) from [9]. From the Theorem 42, all these assumptions give

circuit upper bounds on the oblivious-seeds of ZNE, ZNE/O(1) or ip-ZNE. Brute-forcing through

these circuits that encode the seeds, we get collapses to EXP, EXP/O(1) or io-EXP.

Using the above EWL we also give the following isolation results.

Theorem 44. For constant k ≥ 1:

1. ∀ k ≥ 1 NP-N 6⊂tt C (nk) =⇒ ∀ k ≥ 1 NP/1-U 6⊂tt C (nk)

2. ∀ k ≥ 1 NP/O(1)-N 6⊂tt C (nk) ⇐⇒ ∀ k ≥ 1 NP/O(1)-U 6⊂tt C (nk)

3. ∀ k ≥ 1 NP-N 6⊂tt io-C (nk) =⇒ ∀ k ≥ 1 NP-U 6⊂tt C (nk)

4. ∀ k ≥ 1 NP-N 6⊂tt C (nk) =⇒ ∀ k ≥ 1 NP-prU 6⊂tt C (nk)

5. ∀ k ≥ 1 prN-N 6⊂tt C (nk) ⇐⇒ ∀ k ≥ 1 NP-prU 6⊂tt C (nk)

Proof Idea: The result follows if we replace the hypothesizes and the conclusions, in the contrapos-

itive of these statements, by equivalent hypothesizes and conclusions from the Theorems 36, 37, 38

and 39.

The points (2) and (5) of the above theorem also yield the following more general result.

66

Theorem 45. The following statements are equivalent:

1. ∀k ≥ 1 ZNE/O(1) 6⊂ C (nk) (resp. ∀k ≥ 1 ip-ZNE 6⊂ C (nk))

2. ∀k ≥ 1 ZNE/O(1) 6⊂os C (nk) (resp. ∀k ≥ 1 ip-ZNE 6⊂os C (nk))

3. ∀k ≥ 1 ZNE/O(1) 6⊂hs C (nk) (resp. ∀k ≥ 1 ip-ZNE 6⊂hs C (nk))

4. ∀k ≥ 1 ZNE/O(1) 6⊂s C (nk) (resp. ∀k ≥ 1 ip-ZNE 6⊂s C (nk))

5. ∀k ≥ 1 NP-U/O(1) 6⊂tt C (nk) (resp. ∀k ≥ 1 NP-prU 6⊂tt C (nk))

6. ∀k ≥ 1 NP-N/O(1) 6⊂tt C (nk) (resp. ∀k ≥ 1 NP-prN 6⊂tt C (nk))

7. ∀k ≥ 1 P-N/O(1) 6⊂tt C (nk) (resp. ∀k ≥ 1 P-prN 6⊂tt C (nk))

67

Chapter 8

Lower bounds against prSV

non-deterministic circuits

Here we discuss all the results regarding lower bounds against prSV non-deterministic

circuits. First we derive the EWL for the case of NEXP and (NP∩ Co−NP)/poly (Section 8.1)

and use it to derive the connection between non-trivial GAP-SAT algorithm and the lower bound

NEXP 6⊂ (NP∩ Co−NP)/poly (Section 8.2). Then we derive new gap theorems for MA and CAPP

(Section 8.3). Then we derive connections between fast algorithms and NE and ENP lower bounds

against circuits that use limited amount of prSV non-determinism (Section 8.4) and use that

connection to derive unconditional lower bounds (Section 8.5). Finally we show unconditional

lower bounds against fixed-polynomial prSV non-deterministic circuits (Section 8.6).

8.1 NEXP vs (NP∩Co−NP)/poly

Here we give NEXP EWL and KLT for (NP∩Co−NP)/poly, and the converses. We also extend

the results to ENP|| . These results work even if replace NP∩Co−NP with P (in circuit classes and as

oracles).

Theorem 46. The following statements are equivalent:

68

1. NE 6⊂ MANP∩Co−NP

2. ENP|| 6⊂ MANP∩Co−NP

3. ENP|| 6⊂ (NP∩Co−NP)/poly

4. NE 6⊂ (NP∩Co−NP)/poly

5. NE 6⊂w (NP∩Co−NP)/poly

6. NE 6⊂hw (NP∩Co−NP)/poly

7. NE 6⊂ow (NP∩Co−NP)/poly

8. prMANP∩Co−NP ⊂ ∩ε>0 io-NTIME(2nε

)/nε

Proof. (1) =⇒ (2) This is trivial.

(2) =⇒ (3) For the sake of contradiction, assume that ENP|| 6⊂ MANP∩Co−NP and ENP|| ⊂ (NP∩

Co−NP)/poly. The latter implies EXP= AM= MANP∩Co−NP. Thus the former implies ENP|| 6⊂ EXP and

∃k NE/O(n)⊂ NSIZE(nk) (using a linear time NE-complete language). AM⊂ io-NE/O(n), and these

implications, gives us the contradiction ∃k EXP⊂ io-NSIZE(nk).

We show AM ⊂ io-NE/O(n) by using a language L ∈ ENP|| , such that L 6∈ EXP (which again

follows from the assumptions). For any ENP|| algorithm A deciding L, for any constant k, for infinitely

many n, there can’t be any NP-oracle nk-size circuits encoding the witnesses for all the positive

oracle queries that A makes on all n-length inputs. This is because, brute-forcing through such

circuits will give an EXP algorithm for L. Now using A we get an NE/O(n) algorithm B , that

for each k, for infinitely many n, produces 2O(n)-length strings tt with cktNP(tt)> nk. The advice

encodes the number of positive oracle queries that A makes on that input length. For any n, B

simulates A on all n-length inputs and using advice guesses that many queries to be positive. It

verifiers its guesses by non-deterministically guessing certificates for the positive oracle queries.

After all the verification steps, it outputs the concatenation of all its non-deterministic certificates.

This concatenated string can’t have NP-oracle nk-size circuits, for any n where its sub-strings that

69

represent the positive oracle queries of A doesn’t have NP-oracle nk+1-size circuits (because a circuit

for the whole string, can be projected down to get a circuit for any sub-string). Now B gives us

AM⊂ io-NE/O(n), using the hardness to derandomization connection from [58].

(3) =⇒ (4) This follows from the result ENP|| ⊂ NE/O(n), where the advice gives the count

of the number of positive oracle queries on all n-length inputs.

(4) =⇒ (5) Let L∈ NE\(NP∩Co−NP)/poly. We construct a NE verifier V for the language

{0,1}∗ that doesn’t have witnesses in (NP∩Co−NP)/poly. V accepts any n-length string only on the

2n-length witness that represents the characteristic function of Ln. Since L 6∈ (NP∩Co−NP)/poly,

witness of V are also not in (NP∩Co−NP)/poly.

(5) =⇒ (6) This follows from the definitions.

(6) =⇒ (7) This follows from the definitions.

(7) =⇒ (8) The NE verifier V that doesn’t have oblivious-witnesses in (NP∩Co−NP)/poly,

yields a function sequence computable in NE/O(n) that, for any constant k, for any (NP∩Co−NP)-

oracle A, infinitely often, doesn’t have A-oracle circuits of size nk. The advice is used to encode the

number of inputs that the NE verifier accepts, and output sequence is just the oblivious-witnesses of

V . Moreover, by a simple padding argument, for any ε > 0, the function sequence can be computed

in NTIME(2nε

)/nε.

Any language L∈ prMANP∩Co−NP, has MA protocols where Arthur uses some A∈ NP∩Co−NP

as oracle. After including the non-determinism of Merlin into the input, Arthur’s computation

can be converted into an A-oracle nd-size circuit C for some constant d. This conversion only

takes NP. Now for any ε > 0, we derandomize these circuits for infinitely many input lengths n, in

NTIME(2nε

)/nε. This will establish prMANP∩Co−NP ⊂ ∩ε>0 io-NTIME(2nε

)/nε.

For any input length n, we first compute the function from the function sequence that doesn’t

have ngd/ε-size A-oracle circuits, and then use that function and the Theorem 19, to construct a PRG

G : nε→ nd . This PRG fools nd-size A-oracle circuits, and thus brute-forcing through its inputs, we

can estimate the acceptance probability of C, and output accordingly.

(8) =⇒ (1) If NE ⊂ MANP∩Co−NP and MANP∩Co−NP ⊂ ∩ε>0 io-NTIME(2nε

)/nε, then we get

70

EXP= NEXP⊂∩ε>0 io-NTIME(2nε

)/nε. This gives us EXP⊂∩ε>0 io-TIME(2nc
)/n for some constant

c. This is false due to the diagonalization result given in [42].

8.2 NEXP 6⊂ (NP∩Co−NP)/poly from super-polynomial savings

In this section we show that super-polynomial savings in non-deterministic algorithms for

GAP-SAT for (NP∩Co−NP)-oracle circuits, imply NEXP 6⊂ (NP∩Co−NP)/poly. We first state the

following PCP verifier for NEXP, and hierarchy theorem for NTIME, that we will need in our result.

Theorem 47 (see [11, 99]). For any L ∈ NTIME(2n), there exists a PCP verifier V (x,y,r) with

soundness 1/2, perfect completeness, randomness complexity n+ c logn, query complexity nc, and

verification time nc, for some constant c. That means:

• V has random access to x and y, uses at most |r|= n+ c logn random bits in any execution,

makes nc queries to the candidate proof y, and runs in at most nc steps.

• if x ∈ L, ∃y : |y|= nc Prr[V (x,y,r) = 1] = 1.

• if x 6∈ L, ∀y : |y|= nc Prr[V (x,y,r) = 1]≤ 1/2.

Theorem 48 (NTIME Hierarchy [104]). Let t1 and t2 be time constructible functions that satisfy

t1(n+1) ∈ o(t2(n)). There is a unary language in NTIME(t2(n)) that is not in NTIME(t1(n)).

Now we prove our result. Recall that, a CAPP or tautology algorithm can also solve GAP-SAT.

Theorem 49. For any super-polynomial function sp, an NTIME(2n/sp(n)) GAP-SAT algorithm

for n-input poly(n)-size A-oracle circuits, for every A ∈ (NP∩ Co−NP), implies NEXP 6⊂ (NP∩

Co−NP)/poly.

Proof. For L ∈ NTIME(2n) we design an NTIME(2n/sp(n)) algorithm, under the assumption NEXP⊂

(NP∩Co−NP)/poly. This will contradict the NTIME hierarchy from Theorem 48.

71

Reduction circuit: Let V be a PCP verifier for L from the Theorem 47. On any input x,

V (x,y,r) receives |r|= n+c logn random bits, makes oracle queries to the proof y of size 2nnc, and

runs for nc-time. Let Cx be an oracle circuit capturing this computation. For the oracle gates, we

will use copies of the following described easy-witness circuit Bx for a special verifier V ′.

Special NE verifier: On input x and certificate y, V ′(x,y) computes V (x,y,r) on each value

of r and outputs 1 if and only if ∀r V (x,y,r) = 1.

Easy-witness circuit: Since NEXP⊂ (NP∩Co−NP)/poly =⇒ NEXP= AM, from [42] we get

that the search problem for V ′ is in EXP. Thus, there is an algorithm A that: on any input x ∈ L

outputs y such that V ′(x,y) = 1; on any input x 6∈ L outputs an all zeros string. Now define a new

language L′ = {(x, i) | ith output bit of A on input x is 1}. L′ ∈ EXP and thus L′ ∈ PA/poly for some

A ∈ NP∩Co−NP. Let Bx be the A-oracle circuit whose truth-table is the witness for V ′ on input x

that is produced by A .

Final circuit Fx: (n+ c logn)-bits long input r is given to Cx. The oracle gates are replaced

by the circuit Bx. The final output is the output of Cx.

Final algorithm: On input x, we get Cx, non-deterministically guess Bx, construct Fx and

run the fast GAP-SAT algorithm on Fx.

Correctness: The GAP-SAT algorithm on Fx checks if the non-deterministic guess Bx satisfies

Prr [V (x, tt(Bx),r) = 1] ≥ 1/2, or equivalently V ′(x, tt(Bx)) = 1. If x 6∈ L, this is not possible for

any Bx due to the definition of V . If x ∈ L, as argued above, this is true for a poly-size A-oracle

circuit Bx that captures witnesses for V ′.

8.3 New gap theorems for CAPP and MA

Results from the previous two sections also gives us gap theorems for CAPP and MA. First

we saw that NEXP 6⊂ (NP∩Co−NP)/poly is equivalent to the derandomization of CAPP for (NP∩

Co−NP)-oracle circuits in NSUBEXP (infinitely often, with sub-polynomial advice). Then we saw

that a non-trivial derandomization is sufficient to prove NEXP 6⊂ (NP∩Co−NP)/poly. So we get the

72

following gap theorem for CAPP.

Theorem 50 (Gap theorem for CAPP on (NP∩ Co−NP)-oracle circuits). Let sp be any super-

polynomial function, then an NTIME(2n/sp(n)) CAPP algorithm for n-input poly(n)-size oracle

circuits, for every (NP∩Co−NP)-oracle, implies a ∩ε>0 io-NTIME(2nε

)/nε algorithm for n-input

poly(n)-size oracle circuits, for every (NP∩Co−NP)-oracle.

In [42] they used NEXP KLT and its converse to establish a gap theorem for MA: either MA is

as powerful as NEXP, or can be derandomized in NSUBEXP (infinitely often, with sub-polynomial

advice). From the arguments in Section 8.1 we can get an improved gap theorem where MA= EXPNP||

in the first case.

Theorem 51 (Gap theorem for MA). Exactly one of the following statements is true:

1. MA= EXPNP||

2. MA⊂ ∩ε>0 io-NTIME(2nε

)/nε

We also get a similar gap theorem for MANP∩Co−NP: either MANP∩Co−NP is as powerful as EXPNP|| ,

or can be derandomized in NSUBEXP (infinitely often, with sub-polynomial advice).

Theorem 52 (Gap theorem for MANP∩Co−NP). Exactly one of the following statements is true:

1. MANP∩Co−NP = EXPNP||

2. MANP∩Co−NP ⊂ ∩ε>0 io-NTIME(2nε

)/nε

8.4 Fast algorithms imply lower bounds against circuits with

limited prSV non-determinism

Here we show how fast tautology algorithms imply lower bounds for NE and ENP, against

circuits that use limited amount of prSV non-determinism.

73

Theorem 53. For s(n) ∈ O(n):

1. NE⊂ prSVs(n)-C =⇒ NE⊂ow prSVs(n)O(1)
-C

2. ENP ⊂ prSVs(n)-C =⇒ NE⊂ow prSVs(n)-C

Proof. Let L ∈ NE, and V be an NE verifier for L.

Proof of (1): Since NEXP⊂ (NP∩Co−NP)/poly =⇒ NEXP= AM, from [42] we get that the

search problem for V is in EXP. Thus, there is an algorithm A that: on any input x ∈ L outputs y

such that V (x,y) = 1; on any input x 6∈ L outputs an all zeros string. Now define a new language

L′ = {(x, i) | ith output bit of A on input x is 1}. L′ ∈ EXP and thus L′ ∈ prSVs(n)O(1)
-C . The circuit

sequence for L′ captures oblivious-witnesses for V .

Proof of (2): Let A that is defined above, output the lexicographically smallest witnesses for

V . Then its already known that the corresponding L′ language is in ENP (the algorithm does a binary

search over all the witnesses, and use the NP-oracle to check if there is any positive witness smaller

than the current witness).

Before giving our main result, we state the local reductions that we will use in our proof.

Theorem 54 (Efficient local reductions [51, 90, 32]). Every language L∈ NTIME(2n) can be reduced

to 3−SAT instances of 2nnd-size, for some constant c. Moreover, given an instance of L there is

an P-uniform deterministic circuit C that, on an integer i ∈ [2nnd] in binary as input, output the

ith-clause of the resulting 3−SAT formula. Each output bit of C depends on at most d input bits.

Now we prove our main result.

Theorem 55. For super-polynomial function sp and s(n)≤ O(n):

1. an NTIME(2n−s(n)c
/sp(n)) C -tautology algorithm for every c > 0 implies NE 6⊂ prSVs(n)-C

2. an NTIME(2n−3s(n)/sp(n)) C -tautology algorithm implies ENP 6⊂ prSVs(n)-C

74

Proof. Assume that NE⊂ prSVs(n)-C or ENP ⊂ prSVs(n)-C . We contradict the NTIME hierarchy by

giving an NTIME(2n/sp(n)) algorithm for arbitrary L ∈ NE.

Reduction circuit: From the Theorem 54 we get: any input x for L uniformly reduces to

a 3-SAT instance φx, where the number of variables and clauses in φx are bounded by nd2n for

some constant d. Moreover the reduction is local in the sense that: it can be uniformly converted

to a deterministic circuit Cx that on (n+d logn)-bits input i outputs the three variables xi1,xi2,xi3

(3n+3d logn bits) from the ith-clause of φx, along with three extra bits z1,z2,z3 that indicate for

each of these three variables, whether it appears as a positive literal or a negative literal.

Special verifier: Let V be a non-deterministic verifier for L, that first reduces L to 3−SAT,

and then non-deterministically guesses a satisfying assignment for the 3−SAT formula.

Witness Circuits Bx: We construct two witness circuits (after guessing the advice of the

(NP∩Co−NP)/poly algorithm A that has V ’s oblivious-witnesses): one non-deterministic B1
x , and

one co-non-deterministic B2
x .

Final Circuit Fx: Take the reduction circuit Cx. Cx outputs three literals. Plug any positive

literal into a copy of the co-non-deterministic circuit B2
x , and any negative literal into a copy of

the co-non-deterministic circuit B1
x . Output is the logical-or of the three copies used. To make

the circuit deterministic, include the non-deterministic inputs of the copies of B2
x and ¬B1

x into the

actual input.

Final algorithm: Get Cx. Non-deterministically guess the advice for A , and get B1
x and B2

x

(that are guaranteed to have complementary truth-tables). Construct the deterministic circuit Fx as

described above. Run the the fast TAUT algorithm on Fx.

Correctness: x ∈ L ⇐⇒ Fx is a tautology. The tautology algorithm on Fx checks if the pair

(B1
x ,B

2
x) satisfy, V (x, tt(B1

x)) = 1. If x 6∈ L, this is not possible for any B1
x and B2

x . If x ∈ L, this is

true for the witness circuits that exists due the easy-witness lemma proved in the above theorem.

While constructing Fx, we use the fact that tautology of a co-non-deterministic circuit, is same as

the tautology of the deterministic circuit we get after including the non-deterministic inputs into the

actual input.

75

Final contradiction: The final input size is increased by s(n)c +O(logn) if we use the EWL

from assumption NE 6⊂ prSVs(n)-C , and is increased by 3s(n)+O(logn) if we use the EWL from

assumption ENP 6⊂ prSVs(n)-C . So algorithms from our assumptions are fast enough to contradict

the NTIME hierarchy.

8.5 Uncodntional lower bounds against restricted circuits with

limited prSV non-determinism

Using the Theorem 55 from previous section we get uncondtional lower bounds against

restricted circuits that use limited prSV non-determinism. The following theorem follows from

TIME(2n−nε

) tautology algorithm for ACC circuits [100], where the constant ε depends on the depth

and the modulus function used by the circuits.

Theorem 56. NE 6⊂ ∩ε>0prSV
nε

-ACC

The following theorem follows from the ZPTIME(2n(1−1/(logn)ε)) tautology algorithm for

AC0 circuits [43], where the constant ε increases as the size or depth of the circuits increases.

Theorem 57. ENP 6⊂ ∩ε>0prSV
n/(logn)ε

-AC0

In the proof of the Theorem 55, the final circuit is constructed by giving the output bits of the

reduction circuit as input to the witness circuit. Each output bit of the reduction circuit of Theorem

54 only depends on constant number of inputs, so can be represented by a set of constant-width

clauses or terms, and thus can be plugged without increasing the depth. Thus the depth of the final

circuit is only increased by the top OR-gate. For the case of ENP, the final circuit also preserves

the size of the witness circuit upto a constant factor. So we get the following result using fast AC0

algorithms for different size and depth ranges [43].

Theorem 58. ENP 6⊂ ∩ε>0prSV
εn/(logn)2

-k−CNF and ENP 6⊂ ∩ε>0prSV
εn-AC0(n)

76

Note that, O(n) amount of prSV non-determinism in any of the above two lower bounds,

will give super-linear lower bounds for ENP.

8.6 Unconditional fixed-polynomial lower bounds against unre-

stricted circuits that use prSV non-determinsim

Here we give unconditional lower bounds for prAM against fixed-polynomial size prSV

non-deterministic circuits. We use the following PSPACE-complete language of Santhanam [80],

which was also a crucial technical step in his celebrated MA lower-bound.

Lemma 8.6.1. There is a PSPACE-complete language LS and probabilistic polynomial-time oracle

Turing machines M and M′ such that the following holds for any n-length input x:

1. M and M′ only query their oracle on strings of length n.

2. If M (resp. M′) is given LS as its oracle and x ∈ LS (resp. x 6∈ LS), then M (resp. M′) accepts

with probability 1.

3. If x 6∈ LS (resp. x ∈ LS), then irrespective of the oracle, M (resp. M′) rejects with probability

at least 2/3.

Like Santhanam’s proof, our proof is also split into two cases: (i) The easier case where

PSPACE ⊂ (NP∩Co−NP)/poly, we use the KLT from [16]. (ii) The difficult case where PSPACE

doesn’t have poly-size prSV circuits, we design AM protocol for a padded version of LS that doesn’t

have fixed-polynomial prSV circuits. We first prove an auxiliary lemma that we use for the second

case.

Lemma 8.6.2. For k ≥ 1 and super-constant function sc, using LS from Lemma 8.6.1 we define:

Lk = {x1y| x ∈ LS∧∃(z ∈ N) y = 2z ≥ |x|> 0,(2y+ |x|)k+1 ≥ cktsc
prSV(L

S
|x|)> (y+ |x|)k+1}

If PSPACE 6⊂ (NP∩Co−NP)/poly, then Lk 6∈ prSVNSIZE(nk) for every k ≥ 1.

77

Proof. For the sake of contradiction, let’s assume that Lk ∈ prSVN(nk). That means, there is a

prSVN algorithm A , that produces an nk-size SV non-deterministic circuit sequence, that decides

Lk. We modify this sequence to yield a sequence for LS (used in the definition of Lk). Any input

length n can be broken into unique m and y = 2z such that y ≥ m and m+ y = n. If y satisfies

(2y+m)k+1 ≥ cktsc
prSV(L

S
m)≥ (y+m)k+1, then a circuit for the nth-slice of Lk can be used to yield a

circuit for the mth-slice of LS (by fixing the last y input bits to 1s). Moreover for any m, there is a

unique y that satisfies (2y+m)k+1 ≥ cktsc
prSV(L

S
m)≥ (y+m)k+1 (since y is a power of 2).

For any input length m, the size of the circuit from this sequence will be (m+ y)k for

the unique y that is paired with m. This leads to the contradiction (m+ y)k ≥ cktprSV(A)(LS
m) ≥

cktsc
prSV(L

S
m) > (m + y)k+1 on input lengths m where LS requires more that mk+1 size (due to

LS 6∈ (NP∩Co−NP)/poly) and thus a positive y exits. The first inequality follows from the fact that

the circuit sequence is produced by A . The second inequality uses the fact that the measure cktsc
prSV,

beats the measure cktprSV(A) for any prSVN algorithm A , after a certain input length (because A’s

description is only of constant length, i.e. less than sc(m)). The third inequality follows from the

definition of Lk.

Now we prove one of the two main results of this section.

Theorem 59. For any super-constant function sc, ∀k AM/sc(n) 6⊂ prSVNSIZE(nk).

Proof. If PSPACE⊂ (NP∩Co−NP)/poly, then PSPACE= MANP∩Co−NP. As in PSPACE we can diago-

nalize against any fixed-polynomial size circuit class, we get the desired fixed-polynomial circuit

lower-bound for MANP∩Co−NP (without any advice). MANP∩Co−NP is contained MAM= AM (Idea: after

Arthur guesses its random bits, it sends them to Merlin, who then computes all the NP∩Co−NP

queries Arthur will make, and sends Arthur the replies along with the certificates for the queries and

their compliments).

If PSPACE 6⊂ (NP∩Co−NP)/poly . From the Lemma 8.6.2 we get languages (Lk for k ≥ 1)

with the desired lower bounds. We design AM/sc(n) protocols for these languages. Arthur rejects

everything if the first advice bit is 0. The first advice bit is 1 exactly for the input lengths n that

78

split into valid (m,y) pairs (see the proof of the Lemma 8.6.2 for the notion of valid pairs), when

Lk is defined using the measure cktsc−1
prSV . Arthur rejects if the input is not in the format x1y. Else, it

simulates the machine M from the Lemma 8.6.1 to check if x ∈ LS or not. It accepts if and only if

x ∈ LS. It uses the circuit C, that it computes from Merlin’s reply and the rest of the sc(n)−1 bits

of advice, as an oracle to M (from the Lemma 8.6.1).

The last sc(n)−1 bits of advice encodes a prSVN algorithm A . Correct advice encodes the

most efficient one of the most efficient prSVN algorithms for that input length, i.e. an algorithm

A such that cktSV(A)(LS
|x|) = cktprSV(LS

|x|). For n-length input x1y with |x| = m, Merlin sends an

(2y+m)k+1-length input w for A . Arthur produces the circuit C = A(w) to use as an oracle for M.

Arthur then guesses random bits for the simulation of M and sends them to Merlin. Merlin in return

sends the certificates that sets the flag bit of C to 1, on all the queries that M makes to C. Arthur

uses these certificates, to compute the value bits of C, and thus successfully simulates M on x (using

C as oracle).

Completeness follows easily. If x ∈ LS, Merlin can send the input on which the algorithm A

outputs the correct SV circuit for LS. If x /∈ LS, soundness follows from the fact that the algorithm A

always generates SV circuits, and thus the oracle used by M is consistent (to some language), and

thus M rejects with probability at least 2/3.

For each input length, assigning multiple input lengths corresponding to each possible

advice, and making the input lengths with the correct advice as the promise input lengths, we get

the following theorem. Also note that, for any class Γ, ip-(Γ∩co-Γ) is a special case of the class

pr(Γ∩co-Γ), which is a special case of prΓ∩prco-Γ.

Theorem 60. ∀k ip-(AM∩Co−AM) 6⊂ prSVNSIZE(nk).

Proof. In the proof of the Theorem 59 for sc(n) = 1+ logn, if we use the machine M′ from the

Lemma 8.6.1, we can get a Co−AM/(1+ logn) protocol for the language Lk that uses the same

advice that the AM/1+ logn protocol used. This protocol accepts if the input length n doesn’t split

into a valid m and y pair (using the first advice bit), and if the input is not in the x1y format. It both

79

these tests are passed by the input, then it accepts if M′ accepts x (i.e. x 6∈ LS). Only change is that

Arthur simulates M′ instead of M (using the same advice). Let’s denote these AM/(1+ logn) and

Co−AM/(1+ logn) protocols for Lk, by A and A ′ respectively.

Now, define a new modified language T k = {g1h | A accepts g on hth advice}. Any

input length n+ j in the range [n+ 1,3n] is dedicated to the simulation of A on the jth advice

(lexicographically jth among all the 1+ logn bits long advice strings). Now we create a promise

problem prT k using the language T k, whose promise input lengths are the ones, that correspond to

the correct advice for A and A ′.

The protocols A and A ′ decide T k and T k correctly on the promise inputs of prT k. A and

A ′ also satisfy the semantic promises on these input lengths. Thus prT k ∈ ip-(AM∩Co−AM), and

from the same arguments as in the proof of the Lemma 8.6.2, prT k 6∈ prSVNSIZE(nk−1).

Chapter 8 contains material from “On Limiting & Limited Non-determinism in NEXP Lower

Bounds”, by Anant Dhayal and Russell Impagliazzo, which is currently under review in ACM

Transactions on Computation Theory (TOCT). The dissertation author was the primary investigator

and author of this paper.

80

Chapter 9

Conclusions and Open Problems

The main open problem is whether there are any connections between fast algorithms and

non-uniform lower bounds possible within deterministic classes such as EXP. In almost all of the

prior connections, non-uniformity is simulated with non-determinism, by having a non-deterministic

machine guess the appropriate circuit. Can we substitute a recursive argument for non-determinism

here? Our results show that, while still allowing non-determinism, the form of non-determinism can

be weakened. In what other ways could we get such connections for smaller classes by restricting

the use of non-determinism? The circuit model combines two features: time and non-uniformity.

Can we get a fine-grained version of easy-witness lemma by distinguishing these two parameters?

Next obvious question in this line is whether we can get lower bounds for UEXP and related

classes using our connections. Designing fast algorithms is one direct strategy. One other, seemingly

easier strategy is to design tight hierarchy theorems for these semantic classes, possibly under the

assumption that they have small circuits.

Our results also show that, if we are using unrestricted non-determinism to simulate non-

uniformity, we can extract more out of it. That is, the guessed circuit is also allowed to use

non-determinism that is promise-single-valued. In what other ways can we extend this allowance?

Can we remove the promise condition? Specifically, can we prove NEXP easy-witness lemmas and

Karp-Lipton theorems for circuit classes above (NP∩Co−NP)/poly?

81

We also show unconditional NEXP lower bounds where sub-polynomial and sub-linear

amounts of promise-single-valued non-determinism is allowed. Can we increase the amount of

non-determinism allowed, to polynomial or linear? Designing fast algorithms is one direct strategy.

Can we do it without changing the satisfiability upper bounds? This would lead to super-linear and

super-polynomial lower bounds against unrestricted Boolean circuits. Or can we get lower bounds

against TC0 circuits by simulating threshold gates, by the use of less expressive gates and limited

non-determinism?

Chapter 9 contains material from “On Limiting & Limited Non-determinism in NEXP Lower

Bounds”, by Anant Dhayal and Russell Impagliazzo, which is currently under review in ACM

Transactions on Computation Theory (TOCT). The dissertation author was the primary investigator

and author of this paper.

82

Bibliography

[1] S. Aaronson and A. Wigderson. Algebrization: A new barrier in complexity theory. ACM
Trans. Comput. Theory, 1(1):2:1–2:54, 2009.

[2] M. Ajtai. ∑
1

1-formulae on finite structures. Ann. Pure Appl. Log., 24(1):1–48, 1983.

[3] E. Allender. The complexity of sparse sets in P. In Structure in Complexity Theory, Proceed-
ings of the Conference hold at the University of California, Berkeley, California, USA, June
2-5, 1986, pages 1–11, 1986.

[4] E. Allender. When worlds collide: Derandomization, lower bounds, and kolmogorov com-
plexity. In R. Hariharan, V. Vinay, and M. Mukund, editors, FST TCS 2001: Foundations
of Software Technology and Theoretical Computer Science, pages 1–15, Berlin, Heidelberg,
2001. Springer Berlin Heidelberg.

[5] N. Alon and R. Boppana. The monotone circuit complexity of boolean functions. Combina-
torica, 7(1):1–22, 1987.

[6] D. Angluin. Queries and concept learning. Machine Learning, 2(4):319–342, 1987.

[7] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge
University Press, New York, NY, USA, 1st edition, 2009.

[8] B. Aydinlioglu and D. van Melkebeek. Nondeterministic circuit lower bounds from mildly
derandomizing arthur-merlin games. Computational Complexity, 26(1):79–118, 2017.

[9] L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BPP has subexponential time simulations
unless EXPTIME has publishable proofs. Computational Complexity, 3:307–318, 1993.

[10] T. P. Baker, J. Gill, and R. Solovay. Relativizations of the P =? NP question. SIAM J.
Comput., 4(4):431–442, 1975.

[11] E. Ben-Sasson, O. Goldreich, P. Harsha, M. Sudan, and S. P. Vadhan. Short pcps verifiable in
polylogarithmic time. In 20th Annual IEEE Conference on Computational Complexity (CCC
2005), 11-15 June 2005, San Jose, CA, USA, pages 120–134. IEEE Computer Society, 2005.

[12] N. H. Bshouty, R. Cleve, R. Gavaldà, S. Kannan, and C. Tamon. Oracles and queries that are
sufficient for exact learning. J. Comput. Syst. Sci., 52(3):421–433, 1996.

83

[13] H. Buhrman, L. Fortnow, and T. Thierauf. Nonrelativizing separations. In Proceedings of the
13th Annual IEEE Conference on Computational Complexity, Buffalo, New York, USA, June
15-18, 1998, pages 8–12. IEEE Computer Society, 1998.

[14] H. Buhrman and S. Homer. Superpolynomial circuits, almost sparse oracles and the expo-
nential hierarchy. In R. K. Shyamasundar, editor, Foundations of Software Technology and
Theoretical Computer Science, 12th Conference, New Delhi, India, December 18-20, 1992,
Proceedings, volume 652 of Lecture Notes in Computer Science, pages 116–127. Springer,
1992.

[15] J. Cai. Sp
2 subseteq zppnp. In 42nd Annual Symposium on Foundations of Computer Science,

FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA, pages 620–629. IEEE Computer
Society, 2001.

[16] J.-Y. Cai, V. T. Chakaravarthy, L. A. Hemaspaandra, and M. Ogihara. Competing provers
yield improved karp–lipton collapse results. Information and Computation, 198(1):1 – 23,
2005.

[17] C. Calabro, R. Impagliazzo, and R. Paturi. A duality between clause width and clause density
for SAT. In 21st Annual IEEE Conference on Computational Complexity (CCC 2006), 16-20
July 2006, Prague, Czech Republic, pages 252–260. IEEE Computer Society, 2006.

[18] C. Calabro, R. Impagliazzo, and R. Paturi. The complexity of satisfiability of small depth
circuits. In J. Chen and F. V. Fomin, editors, Parameterized and Exact Computation, 4th
International Workshop, IWPEC 2009, Copenhagen, Denmark, September 10-11, 2009,
Revised Selected Papers, volume 5917 of Lecture Notes in Computer Science, pages 75–85.
Springer, 2009.

[19] M. Carmosino, R. Impagliazzo, V. Kabanets, and A. Kolokolova. Tighter connections between
derandomization and circuit lower bounds. In N. Garg, K. Jansen, A. Rao, and J. D. P. Rolim,
editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM 2015, August 24-26, 2015, Princeton, NJ, USA, volume 40
of LIPIcs, pages 645–658. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2015.

[20] M. L. Carmosino, J. Gao, R. Impagliazzo, I. Mihajlin, R. Paturi, and S. Schneider. Non-
deterministic extensions of the strong exponential time hypothesis and consequences for
non-reducibility. In M. Sudan, editor, Proceedings of the 2016 ACM Conference on Innova-
tions in Theoretical Computer Science, Cambridge, MA, USA, January 14-16, 2016, pages
261–270. ACM, 2016.

[21] B. Chapman and R. Williams. The circuit-input game, natural proofs, and testing circuits
with data. In Proceedings of the 2015 Conference on Innovations in Theoretical Computer
Science, ITCS ’15, page 263–270, New York, NY, USA, 2015. Association for Computing
Machinery.

[22] L. Chen, R. Rothblum, R. Tell, and E. Yogev. On exponential-time hypotheses, deran-
domization, and circuit lower bounds. Electron. Colloquium Comput. Complex., 26:169,
2019.

84

[23] R. Chen, V. Kabanets, A. Kolokolova, R. Shaltiel, and D. Zuckerman. Mining circuit lower
bound proofs for meta-algorithms. Comput. Complex., 24(2):333–392, 2015.

[24] T. Y. Chow. Almost-natural proofs. Journal of Computer and System Sciences, 77(4):728 –
737, 2011. JCSS IEEE AINA 2009.

[25] S. A. Cook. The complexity of theorem-proving procedures. In Proceedings of the 3rd
Annual ACM Symposium on Theory of Computing, May 3-5, 1971, Shaker Heights, Ohio,
USA, pages 151–158, 1971.

[26] S. A. Cook. A hierarchy for nondeterministic time complexity. In P. C. Fischer, H. P. Zeiger,
J. D. Ullman, and A. L. Rosenberg, editors, Proceedings of the 4th Annual ACM Symposium
on Theory of Computing, May 1-3, 1972, Denver, Colorado, USA, pages 187–192. ACM,
1972.

[27] H. Dell, V. Kabanets, D. van Melkebeek, and O. Watanabe. Is valiant-vazirani’s isolation
probability improvable? Computational Complexity, 22(2):345–383, 2013.

[28] A. Dhayal and R. Impagliazzo. UTIME easy-witness lemma & some consequences. Electron.
Colloquium Comput. Complex., 26:167, 2019.

[29] J. Feigenbaum and L. Fortnow. Random-self-reducibility of complete sets. SIAM J. Comput.,
22(5):994–1005, 1993.

[30] L. Fortnow and A. R. Klivans. NP with small advice. In 20th Annual IEEE Conference
on Computational Complexity (CCC 2005), 11-15 June 2005, San Jose, CA, USA, pages
228–234. IEEE Computer Society, 2005.

[31] L. Fortnow and A. R. Klivans. Efficient learning algorithms yield circuit lower bounds. J.
Comput. Syst. Sci., 75(1):27–36, 2009.

[32] L. Fortnow, R. Lipton, D. van Melkebeek, and A. Viglas. Time-space lower bounds for
satisfiability. J. ACM, 52(6):835–865, Nov. 2005.

[33] L. Fortnow and R. Santhanam. Robust simulations and significant separations. In L. Aceto,
M. Henzinger, and J. Sgall, editors, Automata, Languages and Programming - 38th Interna-
tional Colloquium, ICALP 2011, Zurich, Switzerland, July 4-8, 2011, Proceedings, Part I,
volume 6755 of Lecture Notes in Computer Science, pages 569–580. Springer, 2011.

[34] L. Fortnow, R. Santhanam, and L. Trevisan. Hierarchies for semantic classes. In Proceedings
of the Thirty-seventh Annual ACM Symposium on Theory of Computing, STOC ’05, pages
348–355, New York, NY, USA, 2005. ACM.

[35] M. L. Furst, J. B. Saxe, and M. Sipser. Parity, circuits, and the polynomial-time hierarchy.
Math. Syst. Theory, 17(1):13–27, 1984.

[36] R. C. Harkins and J. M. Hitchcock. Exact learning algorithms, betting games, and circuit
lower bounds. TOCT, 5(4):18:1–18:11, 2013.

85

[37] J. Hartmanis and R. E. Stearns. On the computational complexity of algorithms. Transactions
of the American Mathematical Society, 117:285–306, 1965.

[38] J. Håstad. Almost optimal lower bounds for small depth circuits. In J. Hartmanis, editor,
Proceedings of the 18th Annual ACM Symposium on Theory of Computing, May 28-30, 1986,
Berkeley, California, USA, pages 6–20. ACM, 1986.

[39] F. C. Hennie and R. E. Stearns. Two-tape simulation of multitape turing machines. J. ACM,
13(4):533–546, 1966.

[40] T. Hertli. 3-sat faster and simpler - unique-sat bounds for ppsz hold in general. In Proceedings
of the 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS ’11,
page 277–284, USA, 2011. IEEE Computer Society.

[41] R. Impagliazzo, V. Kabanets, and I. Volkovich. The power of natural properties as oracles.
In R. A. Servedio, editor, 33rd Computational Complexity Conference, CCC 2018, June
22-24, 2018, San Diego, CA, USA, volume 102 of LIPIcs, pages 7:1–7:20. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2018.

[42] R. Impagliazzo, V. Kabanets, and A. Wigderson. In search of an easy witness: exponential
time vs. probabilistic polynomial time. J. Comput. Syst. Sci., 65(4):672–694, 2002.

[43] R. Impagliazzo, W. Matthews, and R. Paturi. A satisfiability algorithm for ac0. In Y. Ra-
bani, editor, Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages 961–972. SIAM, 2012.

[44] R. Impagliazzo and R. Paturi. Complexity of k-sat. In Proceedings of the 14th Annual IEEE
Conference on Computational Complexity, Atlanta, Georgia, USA, May 4-6, 1999, pages
237–240, 1999.

[45] R. Impagliazzo, R. Paturi, and S. Schneider. A satisfiability algorithm for sparse depth two
threshold circuits. In 54th Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2013, 26-29 October, 2013, Berkeley, CA, USA, pages 479–488. IEEE Computer
Society, 2013.

[46] R. Impagliazzo, R. Paturi, and F. Zane. Which problems have strongly exponential complex-
ity? In 39th Annual Symposium on Foundations of Computer Science, FOCS ’98, November
8-11, 1998, Palo Alto, California, USA, pages 653–663, 1998.

[47] R. Impagliazzo and G. Tardos. Decision versus search problems in super-polynomial time. In
30th Annual Symposium on Foundations of Computer Science, Research Triangle Park, North
Carolina, USA, 30 October - 1 November 1989, pages 222–227. IEEE Computer Society,
1989.

[48] R. Impagliazzo and A. Wigderson. P = BPP if E requires exponential circuits: Derandomizing
the XOR lemma. In Proceedings of the Twenty-Ninth Annual ACM Symposium on the Theory
of Computing, El Paso, Texas, USA, May 4-6, 1997, pages 220–229, 1997.

86

[49] R. Impagliazzo and A. Wigderson. Randomness vs time: Derandomization under a uniform
assumption. J. Comput. Syst. Sci., 63(4):672–688, 2001.

[50] K. Iwama and H. Morizumi. An explicit lower bound of 5n - o(n) for boolean circuits. In
K. Diks and W. Rytter, editors, Mathematical Foundations of Computer Science 2002, 27th
International Symposium, MFCS 2002, Warsaw, Poland, August 26-30, 2002, Proceedings,
volume 2420 of Lecture Notes in Computer Science, pages 353–364. Springer, 2002.

[51] H. Jahanjou, E. Miles, and E. Viola. Local reductions. In Automata, Languages, and
Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015,
Proceedings, Part I, pages 749–760, 2015.

[52] V. Kabanets. Easiness assumptions and hardness tests: Trading time for zero error. J. Comput.
Syst. Sci., 63(2):236–252, 2001.

[53] V. Kabanets and R. Impagliazzo. Derandomizing polynomial identity tests means proving
circuit lower bounds. Computational Complexity, 13(1-2):1–46, 2004.

[54] R. Kannan. Circuit-size lower bounds and non-reducibility to sparse sets. Information and
Control, 55(1-3):40–56, 1982.

[55] R. M. Karp and R. J. Lipton. Some connections between nonuniform and uniform complexity
classes. In Proceedings of the Twelfth Annual ACM Symposium on Theory of Computing,
STOC ’80, pages 302–309, New York, NY, USA, 1980. ACM.

[56] J. Köbler and O. Watanabe. New collapse consequences of np having small circuits. SIAM
Journal on Computing, 28(1):311–324, 1998.

[57] A. R. Klivans, P. Kothari, and I. C. Oliveira. Constructing hard functions using learning
algorithms. In Proceedings of the 28th Conference on Computational Complexity, CCC 2013,
K.lo Alto, California, USA, 5-7 June, 2013, pages 86–97, 2013.

[58] A. R. Klivans and D. van Melkebeek. Graph nonisomorphism has subexponential size proofs
unless the polynomial-time hierarchy collapses. SIAM J. Comput., 31(5):1501–1526, 2002.

[59] M. Krause and S. Lucks. Pseudorandom functions in tc0 and cryptographic limitations to
proving lower bounds. Comput. Complex., 10(4):297–313, May 2002.

[60] O. Lachish and R. Raz. Explicit lower bound of 4.5n - o(n) for boolena circuits. In
Proceedings of the Thirty-Third Annual ACM Symposium on Theory of Computing, STOC
’01, page 399–408, New York, NY, USA, 2001. Association for Computing Machinery.

[61] L. A. Levin. Universal sorting problems. Problems of Information Transmission, 9:265–266,
1973.

[62] C. Lund, L. Fortnow, H. J. Karloff, and N. Nisan. Algebraic methods for interactive proof
systems. J. ACM, 39(4):859–868, 1992.

87

[63] K. Makino, S. Tamaki, and M. Yamamoto. Derandomizing the HSSW algorithm for 3-sat.
Algorithmica, 67(2):112–124, 2013.

[64] E. Miles and E. Viola. Substitution-permutation networks, pseudorandom functions, and
natural proofs. In R. Safavi-Naini and R. Canetti, editors, Advances in Cryptology – CRYPTO
2012, pages 68–85, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[65] B. Monien and E. Speckenmeyer. Solving satisfiability in less than 2n steps. Discret. Appl.
Math., 10(3):287–295, 1985.

[66] H. Morizumi. Lower bounds for the size of nondeterministic circuits. In D. Xu, D. Du,
and D. Du, editors, Computing and Combinatorics, pages 289–296, Cham, 2015. Springer
International Publishing.

[67] R. A. Moser and D. Scheder. A full derandomization of schöning’s k-sat algorithm. In
L. Fortnow and S. P. Vadhan, editors, Proceedings of the 43rd ACM Symposium on Theory of
Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages 245–252. ACM, 2011.

[68] C. Murray and R. R. Williams. Circuit lower bounds for nondeterministic quasi-polytime:
an easy witness lemma for NP and NQP. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018,
pages 890–901, 2018.

[69] M. Naor and O. Reingold. Number-theoretic constructions of efficient pseudo-random
functions. J. ACM, 51(2):231–262, Mar. 2004.

[70] N. Nisan. Pseudorandom bits for constant depth circuits. Combinatorica, 11(1):63–70, 1991.

[71] N. Nisan and A. Wigderson. Hardness vs randomness. J. Comput. Syst. Sci., 49(2):149–167,
1994.

[72] I. C. Oliveira. Algorithms versus circuit lower bounds. CoRR, abs/1309.0249, 2013.

[73] I. C. Oliveira and R. Santhanam. Conspiracies between learning algorithms, circuit lower
bounds, and pseudorandomness. In 32nd Computational Complexity Conference, CCC 2017,
July 6-9, 2017, Riga, Latvia, pages 18:1–18:49, 2017.

[74] R. Paturi, P. Pudlák, M. E. Saks, and F. Zane. An improved exponential-time algorithm for
k-sat. J. ACM, 52(3):337–364, 2005.

[75] R. Paturi, P. Pudlák, and F. Zane. Satisfiability coding lemma. Chicago J. Theor. Comput.
Sci., 1999, 1999.

[76] A. A. Razborov. Lower bounds for the monotone complexity of some boolean functions.
Soviet Math. Dokl., 31:354–357, 1985.

[77] A. A. Razborov. On the method of approximations. In D. S. Johnson, editor, Proceedings
of the 21st Annual ACM Symposium on Theory of Computing, May 14-17, 1989, Seattle,
Washigton, USA, pages 167–176. ACM, 1989.

88

[78] A. A. Razborov and S. Rudich. Natural proofs. Journal of Computer and System Sciences,
55(1):24 – 35, 1997.

[79] S. Rudich. Super-bits, demi-bits, and np/qpoly-natural proofs. 1269, 08 1997.

[80] R. Santhanam. Circuit lower bounds for merlin–arthur classes. SIAM J. Comput., 39(3):1038–
1061, 2009.

[81] R. Santhanam. Fighting perebor: New and improved algorithms for formula and QBF
satisfiability. In 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages 183–192. IEEE Computer
Society, 2010.

[82] U. Schöning. A probabilistic algorithm for k-sat and constraint satisfaction problems. In
40th Annual Symposium on Foundations of Computer Science, FOCS ’99, 17-18 October,
1999, New York, NY, USA, pages 410–414. IEEE Computer Society, 1999.

[83] R. Schuler. An algorithm for the satisfiability problem of formulas in conjunctive normal
form. J. Algorithms, 54(1):40–44, 2005.

[84] J. I. Seiferas, M. J. Fischer, and A. R. Meyer. Separating nondeterministic time complexity
classes. J. ACM, 25(1):146–167, 1978.

[85] K. Seto and S. Tamaki. A satisfiability algorithm and average-case hardness for formulas over
the full binary basis. In Proceedings of the 27th Conference on Computational Complexity,
CCC 2012, Porto, Portugal, June 26-29, 2012, pages 107–116. IEEE Computer Society,
2012.

[86] R. Shaltiel and C. Umans. Pseudorandomness for approximate counting and sampling.
Computational Complexity, 15(4):298–341, 2006.

[87] R. Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit com-
plexity. In A. V. Aho, editor, Proceedings of the 19th Annual ACM Symposium on Theory of
Computing, 1987, New York, New York, USA, pages 77–82. ACM, 1987.

[88] D. M. Stull. Some results on circuit lower bounds and derandomization of arthur-merlin
problems. CoRR, abs/1701.04428, 2017.

[89] M. Sudan, L. Trevisan, and S. P. Vadhan. Pseudorandom generators without the XOR lemma.
J. Comput. Syst. Sci., 62(2):236–266, 2001.

[90] I. Tourlakis. Time–space tradeoffs for sat on nonuniform machines. Journal of Computer
and System Sciences, 63(2):268 – 287, 2001.

[91] G. S. Tseitin. On the Complexity of Derivation in Propositional Calculus, pages 466–483.
Springer Berlin Heidelberg, Berlin, Heidelberg, 1983.

[92] C. Umans. Pseudo-random generators for all hardnesses. J. Comput. Syst. Sci., 67(2):419–440,
2003.

89

[93] L. G. Valiant. A theory of the learnable. Commun. ACM, 27(11):1134–1142, 1984.

[94] L. G. Valiant and V. V. Vazirani. NP is as easy as detecting unique solutions. Theor. Comput.
Sci., 47(3):85–93, 1986.

[95] N. Vinodchandran. A note on the circuit complexity of pp. Theoretical Computer Science,
347(1):415 – 418, 2005.

[96] N. V. Vinodchandran. Amexp[nsube](np[cap]conp)/poly. Inf. Process. Lett., 89(1):43–47,
2004.

[97] N. Vyas and R. Williams. On super strong eth. In M. Janota and I. Lynce, editors, Theory
and Applications of Satisfiability Testing – SAT 2019, pages 406–423, Cham, 2019. Springer
International Publishing.

[98] N. Vyas and R. R. Williams. Lower bounds against sparse symmetric functions of ACC
circuits: Expanding the reach of #sat algorithms. In C. Paul and M. Bläser, editors, 37th
International Symposium on Theoretical Aspects of Computer Science, STACS 2020, March
10-13, 2020, Montpellier, France, volume 154 of LIPIcs, pages 59:1–59:17. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2020.

[99] R. Williams. Improving exhaustive search implies superpolynomial lower bounds. SIAM J.
Comput., 42(3):1218–1244, 2013.

[100] R. Williams. Nonuniform ACC circuit lower bounds. J. ACM, 61(1):2:1–2:32, 2014.

[101] R. R. Williams. Natural proofs versus derandomization. SIAM J. Comput., 45(2):497–529,
2016.

[102] R. R. Williams. New algorithms and lower bounds for circuits with linear threshold gates.
Theory of Computing, 14(1):1–25, 2018.

[103] A. C. Yao. Separating the polynomial-time hierarchy by oracles (preliminary version). In
26th Annual Symposium on Foundations of Computer Science, Portland, Oregon, USA, 21-23
October 1985, pages 1–10. IEEE Computer Society, 1985.

[104] S. Zak. A turing machine time hierarchy. Theoretical Computer Science, 26(3):327 – 333,
1983.

90

	Dissertation Approval Page
	Table of Contents
	List of Tables
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Fast (unambiguous) algorithms imply UEXP circuit lower bounds
	UEXP lower bounds are constructive, useful, and unique
	Gradually increasing the non-determinism in circuits for NEXP lower bounds: with a hope to prove NEXPP/poly
	Our techniques, interesting by-products, and previous work
	Organization of the thesis

	Preliminaries
	EWL and KLT for UTIME and related classes
	Search to decision reduction for UTIME
	EWL and KLT for UTIME
	EWL and KLT for ZUTIME
	EWL and KLT for Few"0365FewTIME

	UEXP Lower Bounds from Fast Unambiguous Algorithms
	Lower bounds from unambiguous tautology and canonization algorithms
	Lower bounds from unambiguous 2SAT algorithms
	Lower bounds from Few"0365Few tautology algorithms
	Lower bounds from unambiguous learning and tautology algorithms
	Generalization of lower bound frameworks

	Unique Properties vs. Lower Bounds
	ZUE lower bounds vs P-U properties
	UE lower bounds vs P/logn-u1 properties
	UE/n lower bounds vs P/logn-U properties
	ZNE lower bounds vs NP-U properties
	ZNE lower bounds vs NP-N properties
	NE lower bounds vs NP/logn-U properties

	Derandomization Using Unique Properties
	Isolation of properties: EWL & KLT for ZNE
	Lower bounds against prSV non-deterministic circuits
	NEXP vs (NPCo-NP)/poly
	NEXP(NPCo-NP)/poly from super-polynomial savings
	New gap theorems for CAPP and MA
	Fast algorithms imply lower bounds against circuits with limited prSV non-determinism
	Uncodntional lower bounds against restricted circuits with limited prSV non-determinism
	Unconditional fixed-polynomial lower bounds against unrestricted circuits that use prSV non-determinsim

	Conclusions and Open Problems
	Bibliography

