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Abstract of the Dissertation

Non-Intrusive Analytical Approaches to Obstructive

Sleep Apnea Detection

by

Lauren Samy

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2016

Professor Majid Sarrafzadeh, Chair

Obstructive sleep apnea (OSA) is the most common type of sleep apnea and the

most prevalent sleep disorder in general. Approximately 22 million people in the United

States and more than 100 million people worldwide are affected by this serious disorder.

The disorder is characterized by repeated involuntary breathing cessations (apnea) or

reductions in breathing (hypopnea) during sleep, accompanied by oxygen desaturation

(hypoxia). The apneas occur due to the obstruction of the upper airway as a result of

the relaxing of throat tissue. The hypoxia triggers a brain activity arousal to restore

the normal breathing pattern until the next apneic episode occurs. OSA patients can

experience hundreds of apneas per night. The frequent sleep disruptions and the resulting

fragmented sleep pattern can have serious physical and psychological consequences and

can lead to premature death.

Because the apnea episodes rarely trigger a full awakening, patients are often unaware

of having difficulty breathing at night. As a result of this unawareness, OSA is severely

underdiagnosed. This problem is exacerbated by the intrusiveness of current diagnosis

methods. Polysomnography—the traditional gold-standard diagnosis method—requires

close overnight monitoring of patients’ body functions, making it an uncomfortable and

intrusive diagnostic test. Intrusive diagnosis methods discourage patients from getting

tested for OSA until they experience its serious health effects. As a result, many patients

remain untreated and OSA continues to be a major public health problem that places a

significant burden on health care systems worldwide.
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In an effort to increase the level of diagnosis and treatment of the disorder, this work

investigates the design and implementation of effective non-intrusive OSA diagnostic

methods. We explore two kinds of detection methods: nocturnal methods that rely

on diagnosing OSA by detecting apneic episodes from overnight recordings, as well as

daytime methods which use features and signals that can be obtained while the subject

is awake. This work involves identifying the data to be collected, building the appropriate

systems to obtain them, and using machine learning techniques to analyze them.

The effectiveness of our methods was proven using real data from clinical trials. Day-

time methods quickly revealed their advantages over the common nocturnal methods and

the few existing daytime methods. Experimental results show that our daytime methods

perform the initial diagnosis of OSA non-intrusively without significantly affecting the

diagnosis accuracy compared to the current state-of-the-art nocturnal methods.
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CHAPTER 1

Introduction

1.1 Sleep Apnea (SA)

Sleep apnea is a sleep disorder that is characterized by episodes of breathing cessation

(apnea) or abnormally low breathing (hypopnea) during sleep. Each apnea or hypopnea

event can last from a few seconds to a few minutes, and may occur 5 to 30 times or

more an hour. The lack of breathing causes a reduction in blood oxygen saturation and

an increase in the carbon dioxide levels in the blood. Oxygen depletion, especially to

the brain, can have detrimental health effects since brain cells need constant oxygen to

live. Furthermore, the imbalanced levels of respiratory gases signal the brain to wake

the sleeper up to start breathing again. Although the sleeper does not fully wake up,

these frequent arousals cause a transition into a lighter stage of sleep and result in a

fragmented sleep pattern. Fragmented sleep interrupts the physical and mental repair

and regeneration work carried out during sleep and can have serious physiological and

psychological effects. Even though the manifestation of SA is always the same, namely

repetitive episodes of decreased or total cessation of respiratory airflow during sleep, the

cause of these apnea/hypopnea episodes is often different. Based on the cause of the

breathing problem, SA can be categorized into three different types, which are briefly

explained in the next subsections.

1.1.1 Obstructive Sleep Apnea (OSA)

Obstructive sleep apnea is by far the most common type of SA and the most common

sleep disorder in general [Org]. When defined as >5 episodes of apnea or hypopnea per

hour of sleep, OSA affects 24% and 9% of middle-aged men and women, respectively

[YPD93]. OSA arises from what is essentially a mechanical problem. During sleep, the

1



muscle tone of the body relaxes. For OSA patients, when the throat muscles relax, the

tongue and soft tissues of the throat fall back into the airway and block airflow. Despite

efforts to breathe, breaths are hampered by a physical blockage to airflow. This work

is focused on this type of SA but, for the sake of completeness, the other two types are

explained in the next subsections.

1.1.2 Central Sleep Apnea (CSA)

Unlike OSA, central sleep apnea is characterized by a diminished or absent effort to

breathe. While OSA is caused by a physical obstruction in the airway, CSA is largely

caused by an imbalance in the brain and central nervous system during sleep. The brain is

responsible for monitoring and adjusting the oxygen levels in the blood. In healthy people,

this feedback mechanism results in a consistent intake of oxygen and outtake of carbon

dioxide. In CSA, the brain is slow to react to changes in the oxygen and carbon dioxide

levels in the body during sleep. As a result, the sleeper experiences long missed breaths,

followed by short rapid breaths (hyperpnea) as the brain attempts to increase the oxygen

levels by overcompensating for the missed breaths. Unlike obstructive apneas, there is no

effort made to breathe during a central apnea and there are no chest movements. CSA

is a much rarer type than OSA.

1.1.3 Mixed Sleep Apnea (MSA)

Mixed sleep apnea is the least common type of SA and, as the name implies, is a combi-

nation of OSA and CSA. MSA episodes usually begin with a reduced central respiratory

effort, followed by obstruction. When the symptoms of OSA are treated, the brain is

still unable to control the patient’s breathing properly. In other words, while treated for

OSA, the patient still suffers from CSA.

1.2 Obstructive Sleep Apnea

This section focuses on the OSA syndrome and explains the risk factors, symptoms, and

morbidities associated with it. It then goes on to describe the conventional method used
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in diagnosing the disorder, as well as its many shortcomings and drawbacks. Finally,

the treatment options for OSA are discussed and briefly explained. Understanding the

information presented in this section was essential for developing the solutions proposed

in this work.

1.2.1 Risk Factors

OSA is a very common disorder. In the US alone, 22 million people are affected by

it, making it as common as asthma (20 million) and type II diabetes (23.6 million)

[ASAa], not counting people who have the disorder but have not been diagnosed. Even

though OSA can strike anyone at any age (even children), there are some risk factors that

increase the probability of a person developing OSA. Some of the risk factors include the

male sex, obesity (BMI >30), excessive use of alcohol and sedatives, smoking, family

history of OSA, being age 40 or older, ethnicity (African-Americans, Pacific-Islanders

and Hispanics), and upper airway and facial abnormalities, like having a large tongue or

tonsils, a recessed chin, a large overbite, a small jaw, or a larger neck size (>17” for men,

>16” for women).

1.2.2 Symptoms

OSA is very difficult to detect because the disorder only occurs during sleep and because

the same signs and symptoms of OSA can also occur in healthy people. Most of the time,

OSA is discovered by the patient’s bed partner and not by the patient himself/herself. A

strong indicator of OSA is chronic snoring. The snoring sound results from air passing

through a partially blocked airway, which a sleep apneic would experience during a hy-

popnea episode. Also, at the end of an apnea episode, a sleep apneic can be heard gasping

for air, choking or coughing as breathing is resumed. Due to their fragmented sleep pat-

tern, which prevents them from attaining deep, regenerative sleep, OSA patients tend to

be sleep deprived and often suffer from excessive daytime sleepiness (EDS). EDS often

results in falling asleep at work, on the phone or while driving, as well as a wide range

of other symptoms, such as difficulty concentrating, lack of energy, morning headaches,

irritability, sexual dysfunction, learning and memory difficulties, and depression.
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1.2.3 Comorbidity & Mortality

Disorders or diseases that commonly co-occur with SA are called comorbidities of the

disorder. Even though there aren’t necessarily any causal relationships between the co-

morbid conditions and SA, the associations may reflect a role of SA in their origination.

Drug-resistant hypertension is one of the most prevalent comorbidities of SA and is char-

acterized by high blood pressure despite adherence to medication. 83% of people with

drug-resistant hypertension are also OSA patients [LPM01]. Other very common comor-

bidities include congestive heart failure (CHF), coronary artery disease (CAD), and type

II diabetes mellitus. 76% (40% CSA and 36% OSA) of all CHF patients, 30.5% (all

OSA) of all CAD patients, and 48% of all type II diabetes patients were found to have

SA [OLF06], [SKE99], [ESE07]. Other physiological comorbidities include stroke, cardiac

arrhythmia, heart attack, atrial fibrillation, as well as a three-fold increase in mortality

risk [YFP08]. Aside from the physiological comorbidities, OSA and SA in general, is as-

sociated with a variety of psychological comorbidities, including depression, anxiety and

stress.

One explanation for OSA’s accompanying diseases is the fragmented, non-restorative

sleep pattern that OSA causes. During a normal sleep cycle, human beings go through

different sleep stages. The two most important ones are the Non-Rapid-Eye-Movement-3

(NREM3) and Rapid-Eye-Movement (REM) sleep stages. The NREM3 stage is critical

for the renewal and repair of the body. In NREM3, the body’s immune system is re-

paired and the pituitary gland releases growth hormone, which stimulates tissue growth

and muscle repair. In the REM sleep stage, on the other hand, the body is in complete

paralysis and the brain is the center of attention. During REM, the brain dreams, reorga-

nizes information and consolidates memory, which facilitates learning and neural growth.

In short, NREM3 helps with physical recovery while REM sleep helps with mental re-

covery. Because of their frequent arousals from these two essential sleep stages, OSA

patients don’t get the necessary physical and mental recovery and therefore develop an

increased risk of the aforementioned physiological and psychological illnesses, as well as

mortality. The scientific processes by which OSA leads to the comorbidities mentioned

above are outside the scope of this work.
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1.2.4 Conventional Diagnosis: Polysomnography (PSG)

Polysomnography (PSG) is the conventional method for diagnosing OSA. PSG is an

overnight sleep test that is conducted in a specialized sleep laboratory. During the test,

the sleeper’s biophysical changes that occur during the night are monitored and later

analyzed and interpreted by a sleep technician to determine the presence of OSA.

The next two paragraphs explain the PSG mechanism in more detail and point out its

drawbacks that make it ineffective as an early-stage diagnostic tool, further contributing

to the underdiagnosis of OSA.

PSG Mechanism Polysomnography uses a comprehensive set of sensors to monitor

bodily functions during sleep and accurately identify the sleep stage that the sleeper is in.

These sensors are attached to the sleeper’s body and the wires for each sensor converge

into a central box, which in turn is connected to a computer system for recording, storing

and displaying the data. Figure 1.1 shows all PSG sensors and their respective locations

on the sleeper’s body. The recorded signals include:

• Electroencephalogram (EEG): Brain waves are recorded in order to detect sleep

stages, arousals and other aspects of the sleeper’s sleep quality. As shown in Figure

1.1 a), 8 EEG electrodes are attached to the sleeper’s head to measure brain activ-

ity. The electrodes measure the frontal (red), central (blue), medial (yellow) and

occipital (green) EEG signals which have different characteristics and frequencies

during the various stages of sleep.

• Electrooculogram (EOG): To measure eye movement, two EOG electrodes are at-

tached near the eyes as shown in Figure 1.1 b); one is attached above the right eye

and the other is attached below the left eye. Eye movement can help determine if

the sleeper is in the REM (Rapid Eye Movement) stage.

• Electromyogram (EMG): EMG electrodes measure muscle activity and are used

in two places. Three EMG electrodes are attached to the sleeper’s chin to detect

chin muscle movement which can be indicative of teeth grinding (bruxism) – a sign

of sleep apnea [Fou]. As shown in Figure 1.1 b), the two EMG electrodes to the

left and right of the chin midline are the negative and positive leads, respectively,
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while the one in the middle of the chin is the reference EMG lead. Figure 1.1

d) shows another pair of EMG electrodes which is attached to the legs, centered

between the knee and the ankle, to record leg movement. An excessive amount of

leg movements during sleep could be indicative of periodic limb movement disorder

(PLMD). EMG also helps determine when sleep occurs and when the REM stage

occurs. During sleep, the body is relaxed and there’s a significant decrease in muscle

tension. During REM sleep, the sleeper becomes partially paralyzed and there’s an

even bigger decrease in skeletal muscle tension. Since REM is when dreaming takes

place, the partial paralysis is a defense mechanism that prevents the sleeper from

acting out dreams.

• Electrocardiogram (ECG): As shown in Figure 1.1 c), two ECG electrodes are

attached to the sleeper; one is attached under the right clavicle (collarbone) and

the other one under the rib cage on the left side of the body. ECG measures the

electrical activity of the heart as it contracts and expands and can be an indicator

for the sleep stage the sleeper is in since the rate and regularity of heartbeats vary

for the different sleep stages.

• Nasal and oral airflow: As shown in Figure 1.1 b), a thermistor is placed directly

below the nostrils. The thermistor measures the nasal and oral airflow as the sleeper

inhales and exhales. In addition, a nasal cannula is placed on top of the thermistor

and directly inside the nostrils. This sensor detects the fluctuations in pressure

caused by inhalation and exhalation. These two sensors allow the sleep technician

to monitor the sleeper’s respiration rate and identify interruptions in breathing.

• Respiratory effort: In addition to nasal and oral airflow, respiratory effort is also

measured in order to monitor respiration. Respiratory effort is measured by means

of effort belts, as can be seen in Figure 1.1 c). The belts are worn around the

thorax and abdomen to measure the expansion of the chest and abdomen during

breathing. Respiratory effort is a better way of monitoring respiration rate because

nasal and oral airflow can produce false positives. Some OSA patients will open

and close their mouths during an apnea episode as they struggle to breath. This

forces air in and out of the mouth, but due to the obstruction in the airway, no
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air will enter the airway or lungs. In that case, the cannula and thermistor will

detect this diminished airflow and the respiratory event may be falsely identified

as a hypopnea, instead of an obstructive apnea. The belts, on the other hand, will

only expand if there’s air going in and out of the lungs and the sleeper is breathing.

• Pulse oximetry: As shown in Figure 1.1 d), a pulse oximeter is attached the the

ring finger of the sleeper. The pulse oximeter determines changes in blood oxygen

saturation that often occur with sleep apnea.

• Snoring: Figure 1.1 b) shows a microphone placed on the neck, lateral to the larynx,

to detect snoring. Snoring indicates airflow and can be used during hypopneas to

determine whether the hypopnea is due to OSA.

• Video: In addition, most sleep labs have a video camera in the room so the techni-

cian can observe the patient visually from an adjacent room.
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Figure 1.1: a) Birds eye view of a human head with 4 pairs of EEG electrodes attached

to it to measure frontal (red), central (blue), occipital (green), and medial (yellow) EEG

signals. b) 1 electrode is attached to the middle of the forehead for grounding, 2 EOG

sensors are attached diagonally above the right eye and below the left eye to measure

eye movement. 3 EMG electrodes are attached to the chin to measure chin movement.

A microphone is attached to the neck for snore detection. A thermistor is placed below

the nostrils to measure nasal and oral airflow and a nasal cannula is placed directly in

the nostrils to measure pressure. c) 4 sensors are placed on the chest: 2 ECG electrodes

(under clavicle and below rib cage) to measure heart rhythm and 2 belts to measure

thorax as well as abdominal effort. d) 3 sensors are place on the lower body: 2 EMG

electrodes between the knee and the ankle to measure leg movement and a pulse oximeter

on the ring finger of the right hand to measure SpO2, pulse and plethysmography.

PSG Drawbacks Even though PSG is a multi-parametric test that measures and

monitors a comprehensive set of signals and is considered the gold standard for sleep

disorder diagnosis in sleep medicine, there are a number of serious drawbacks associated

with that sleep test.

Because OSA does not trigger a full awakening and because it’s a disorder that only

manifests during sleep, an individual with OSA is rarely aware of having difficulty breath-

ing. As a result, many people in the U.S. and worldwide remain undiagnosed and un-

treated. It is estimated that only 10-20% of people with OSA have been diagnosed [Sle08].

Usually, the primary physician will evaluate a patient’s symptoms first and, based on it,

he/she will recommend PSG – the only definitive diagnostic tool for determining the

presence of OSA.
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Cost At a few thousand dollars per sleep study, PSG is prohibitively expensive

for many patients. Many patients are discouraged to spend that kind of money to get

tested for a disorder that they might not even have and doctors are sometimes hesitant

to recommend the test, let alone repeat it as is sometimes required.

Discomfort: First-Night Effect Another drawback is a phenomenon referred to

as the first-night effect [SMY07]. PSG is an overnight test conducted at a sleep labo-

ratory. The unfamiliar environment of the sleep laboratory as well as the inconvenience

that results from equipment and sensors attached to the participant’s body can greatly

decrease the participant’s quality of sleep and lead to distorted results. This is one of the

reasons a test might need to be repeated. The very nature of PSG can interfere with the

results and accuracy of the measured signals, especially on a patient’s first night at the

sleep laboratory.

Scarcity & Long Wait Times If a patient is willing to pay for PSG and endure

the discomfort of sleeping at a sleep laboratory with wires attached, he/she is faced with

another problem. The available resources for performing the sleep test, which include

the sleep technician, the laboratory, and the equipment, are relatively scarce. This leads

to very long wait times for patients, especially those with subtle symptoms who under-

standably end up being de-prioritized.

All these drawbacks contribute to a large population of OSA patients remaining un-

diagnosed. Undiagnosed, and thus untreated, OSA is estimated to cause $3.4 billion in

additional medical costs in the U.S. [KBS99].

1.2.5 Treatment Options

Surgery The goal of surgery is to increase the size of the airway and thus reduce the

apnea episodes. To do that, the surgeon may either reconstruct the jaw to enlarge the

upper airway or he/she can identify the site of obstruction in the upper airway and remove

excess tissue in that place. As this is a challenging task, if the surgeon does not treat the

correct area or only one of many areas of obstruction, it is unlikely that the OSA will
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be treated or even diminished to a degree that improves the patient’s sleep quality. In

some rare cases, OSA symptoms can even become worse after surgery. The success rate

of surgery this about 50% and in many cases, the patient would have to undergo multiple

operations before OSA is fully treated, which increases the risks of complications and

infections [ASAb]. After surgery, the patient would have to do a sleep study (PSG) to

get re-assessed for OSA to determine the success of the surgery.

Positional Therapy For some patients with mild OSA, the airway only collapses when

they are sleeping in the supine position. Those patients can eliminate or reduce airway

obstruction by learning to sleep on their side. To achieve that, the patient can sleep

wearing one of the many different kinds of positioners available. A positioner is a belt

that is worn around the upper torso and helps the sleeper stay off of his/her back.

Alternatively, the sleeper can place three or four tennis balls in a pocket sewn on the

back of a pajama top.

Continuous Positive Airway Pressure (CPAP) The most widely used treatment

for moderate and severe sleep apnea is CPAP. The CPAP device is a face mask that is

worn over the mouth and nose during sleep and whose purpose is to supply pressurized air

continuously into the sleeper’s throat. The increased air pressure keeps the sleeper’s lungs

full and prevents the airway from collapsing and causing obstruction. In order for CPAP

to be effective, it needs to be worn for at least 6 hours every night. If regularly worn,

CPAP is a very effective, but very intrusive, form of treatment. Due to the discomfort of

sleeping with a face mask, a lot of patients stop using the device during the first few days

of treatment. When adherence is defined as greater than 4 hours of nightly use, 46 to

83% of patients with OSA have been reported to be non-adherent to treatment [WG08a].

Mandibular Advancement Devices (MAD) An MAD is an oral appliance that is

worn in the mouth during sleep. This appliance is meant to position the lower jaw slightly

forward of its usual rest position. For some people, this small change is enough to keep

the airway open during sleep. These oral devices are a bit more comfortable than CPAP

but they’re not always as effective.
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Weight Loss The link between excess weight and OSA is well established. Overweight

people have extra tissue in the back of their throat, which can fall down over the airway

and block the airflow into the lungs while they sleep. About 70% of people with OSA are

overweight or obese. Despite the dearth of studies that show the effectiveness of weight

loss in diminishing the apnea episodes, practitioners report significant improvements in

OSA among patients who lose weight. A study from 1985 ([SGM85]) and another from

1991 ([SGS91]) show a significant reduction in apnea frequency (apneas/hour) as patients

decreased their weight. In some cases, physicians prescribe weight loss medications to

obese patients with OSA.

1.3 In Closing

This chapter served as a brief overview of the sleep apnea disorder, in general, and

obstructive sleep apnea in particular. The chapter discussed the conventional method of

diagnosis and its disadvantages, the diseases and disorders associated with OSA, as well

as the available methods of OSA treatment. The research in the wireless health field

that is focused on OSA attempts to either 1) come up with new, less intrusive methods

of diagnosing OSA, or 2) develop new approaches to improve OSA symptoms and treat

comorbidities to improve patients’ quality of life, or 3) prevent the progression of OSA

or reverse the disorder by designing new treatment methods that are more comfortable

and easier to adhere to.

This work focuses on the diagnosis problem. In the next two chapters, a variety of

novel diagnosis methods are presented.
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CHAPTER 2

Non-Intrusive Nocturnal Diagnosis Methods

2.1 Introduction

Since OSA is a disorder that manifests only during sleep, most diagnosis techniques have

focused on monitoring subjects while they are sleeping. These nocturnal techniques at-

tempt to ”witness” apnea episodes through the monitoring of biophysical changes and

symptoms that are good diagnostic predictors of an apnea episode. Polysomnography–

discussed in Section 1.2.4–is the conventional diagnosis method which monitors a com-

prehensive set of biophysical signals that change during the night. The amount of wires

and connections required to conduct such a multi-parametric assessment, as well as other

reasons discussed in Section 1.2.4, makes PSG an undesirable and intrusive test. This

chapter presents novel nocturnal methods that attempt to ”witness” apnea episodes using

completely non-intrusive monitoring tools and techniques.

2.2 Inconspicuous On-Bed Respiratory Rate Monitoring

As discussed in section 1.2.4, respiratory effort is one of the signals monitored during

a sleep study. The respiratory effort signal can capture episodes of breath cessation.

For OSA, the respiratory effort signal is more reliable than the airflow signal since some

OSA patients will open and close their mouths during an apena episode. While this

motion will create an airflow in and out of the mouth, it does not actually reflect any

breathing. Respiratory effort, on the other hand, will only be detected if the air enters

the airway and reaches the lungs and is therefore a better indicator of respiration. During

a sleep study, the respiratory signal is acquired by means of two effort belts worn around

the chest and abdomen. The pressure exerted on the belts corresponds to respiratory

effort. Work in this chapter provides an inconspicuous method for respiratory effort
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monitoring that can be used for unobtrusive OSA detection. An e-textile bed sheet

embedded with a dense pressure sensitive sensor array system is introduced to measure

human respiratory rate under a clinical or home environment. This system continuously

detects a patient’s pressure distribution on the bed. Respiratory rate is extracted via

analyzing time-stamped pressure map sequences. Using this system, a subject can sleep

freely without any wires or sensors attached to his/her body. Subjects under test may not

even notice that they are being monitored. This system is therefore a type of ambient

intelligence (AmI) that is integrated in a daily-life object and fits seamlessly into the

users’ environment without interfering with their everyday habits.

2.2.1 Related Works

In a typical hospital setting, respiratory rate is usually measured by manual observation

or, if continuous monitoring is required, by attaching sensors to the patient. In the

former case, the measurement is often inaccurate due to the different ways of measuring

respiratory rate. For instance, measuring respiratory rate using a stethoscope yields

different results than manually tracking the movement of a patient chest. Discrepancies

were also reported between counting the number of breaths within a 30-second period

and multiplying the result by 2 and counting breaths for 60 seconds [Fle10]. Also, if

patients are aware that their respiratory rate is being monitored, they may involuntarily

control their breathing, resulting in inaccurate measurements.

Because measuring respiration rate accurately is a challenging task, there are not many

sensor products commercially available to solve this problem. Most existing sensors are

for use in hospitals and are part of a larger medical system that aggregates data from

other sensors. One example is the Acoustic Respiration Rate monitor (RRa) designed

by Masimo [Mas], which uses an adhesive sensor to be placed on the patient’s neck

while he/she is sleeping in order to measure respiration rate. The sensor is an acoustic

transducer that generates an audio signal that is then interpreted to identify inhalation

and exhalation. Bates et al. placed 3-axis MEMS sensors composed of accelerometers

and gyroscopes on the patient’s torso to continuously infer respiratory rate from the

acceleration and angle acceleration information [BLM10]. Both authors considered their

system setup to be non-intrusive even though it clearly interferes with people’s sleep
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habits.

Because of the lack of commercial non-intrusive solutions, researchers have been at-

tempting to offer solutions where the sensors are hidden from the subjects as to not disrupt

their daily routine. One such solution is the 40-kHz ultrasound transmitter-receiver pair

proposed by Yamana et al [YTM11]. The transmitter-receiver is placed under the bed

mattress for monitoring. The transmitted ultrasound signal is reflected on the bottom

surface of the mattress and the amplitude of the received ultrasonic wave is modulated

by the particular shape of the mattress. This reflected signal is used to identify respi-

ratory activity. Though non-intrusive, this method of respiratory rate monitoring was

severely affected by human body movement, which was an unavoidable source of noise

that negatively affected the accuracy of the system. Another non-intrusive respiration

rate monitoring approach was proposed by Zhu et al [ZCN06]. Water-filled vinyl tubes

were placed under the user’s pillow to retrieve pressure signals. This pressure signal has

a static component that corresponds to the weight of the head and a dynamic compo-

nent that reflects the weight fluctuation of the head due to breathing movements. The

subjects had to sleep in the supine and recumbent positions for data collection. Though

non-intrusive, the system is limited to the mentioned sleep positions and the sleeping

subjects have to be well-controlled so as to have their whole head on the pillow at all

times. To slightly relax the restriction on human movement, Townsend et al. utilized an

array of pressure sensors which was placed above the bed mattress to identify respiratory

activity [THG09]. The device they used is a bed occupancy sensor equipped with 24

pressure sensors. The sensor is to be placed just below the pillow region in order to local-

ize on the areas of respiration, namely the chest. The authors had users sleep in prone,

supine and side positions and asked them to sleep apnea by holding their breath. The

results showed that there was correlation between pressure variance and the occurrences

of apnea. Using a pressure sensor array slightly relaxed the restriction of the human body

movement, but the sleeper is still limited to stay within the area covered by the sensor

array in order to be monitored.

The work proposed in this section describes a system and a series of methods that

utilize a full-size, e-textile-based, high density pressure-sensitive bed sheet that solves all

the issues mentioned above. With 8192 pressure sensors embedded in it, the proposed
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high-density sensor can capture the full pressure distribution of the sleeper’s body. High-

resolution, full-body pressure information enables accurate human sleep posture detection

and chest area localization. Hence, the system enables non-intrusive respiration rate

monitoring without any restrictions on sleeping posture or body movement. In addition,

the proposed e-textile-based bed sheet is a type of ambient intelligence that can be

seamlessly embedded in the environment and is an example of how technology should

adapt to the user’s behavior and not the other way around.

2.2.2 System Architecture

The e-textile-based hardware, as well as the overall operation of the accompanying soft-

ware are described below.

2.2.2.1 Hardware Architecture

E-textiles are fabrics that have electronics and interconnections woven into them. E-

textiles are perfectly suitable for monitoring applications because of their flexibility and

cost-effectiveness. E-textiles feel just as comfortable as regular fabrics but have one im-

portant difference that makes them suitable for serving as pressure sensors: the resistance

of e-textiles changes when a force is applied to them. E-textiles are built by sandwiching

a sheet of very thin piezoresistive fabric between two sheets of traditional textile fabric

[XLH11]. The middle e-textile layer has a couple of useful characteristics: 1) the electri-

cal resistance of the piezoelectric fabric decreases with increasing pressure force, 2) the

fabric’s thickness is on the order of microns, comparable to the diameter of a human hair.

These two characteristics enable us to build a highly flexible, comfortable and low-cost

pressure-sensing system that perfectly fits our respiration rate monitoring application.

The proposed system consists of an e-textile bed sheet that records the pressure distri-

bution of the body. The prototype bed sheet is 1.25 m wide x 2.5 m long and can fit

easily on any standard-size bed. The thickness of the bed sheet is 1.5 mm, which makes

it flexible and suitable for non-intrusive applications. The bed sheet is a matrix of 8192

pressure sensors generated by the intersections of 64 columns and 128 rows of conductive

buses. To build the sensors, we use a three-stacked-layer structure as shown in Figure
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2.1. The top layer is a conductive bus that is connected to a voltage supply via an analog

multiplexer (M1). The middle layer consists of the pressure-sensitive e-textile piezoresis-

tive fabric. Lastly, the bottom layer is a conductive bus that is orthogonal to the top bus.

This bottom layer connects to an analog-to-digital converter (ADC) via a second analog

multiplexer (M2) such that each input to the ADC is grounded via an offset resistor (R0).

The intersection areas between the orthogonal buses form the individual sensors. A mi-

crocontroller is used to set the addresses of both M1 and M2 to uniquely select a pressure

sensor. For example, when M1 connects bus i on the top layer to a voltage supply, and

M2 connects bus j to the ADC, the sensor located at row i, column j, which is denoted

as Vij in Figure 2.1 a), will be read. A sampling unit is connected to all conductive lines

and performs matrix scanning to measure pressure map sequences. Pressure map signals

retrieved from each of the 8192 sensors are converted by the ADC from a voltage to an

8-bit integer with a value of 0 representing no pressure (highest e-textile resistance) and

a value of 255 representing maximum pressure (lowest e-textile resistance). The sensor

values are then sent to an Android tablet over USB for storage and further analysis.

The sampling rate of the system is adjustable up to 10Hz, but 1.5Hz was used for the

respiratory rate measurement application. This allows the system to achieve a maximum

detectable breathing rate of up to 45 breaths per minute (bpm) according to the Nyquist

rule. As shown in Table 2.1, newborns have the fastest respiratory rate of 44 bpm due to

their small lung capacity, which results in frequent breathing. Since the highest frequency

component of our signal is 44 bpm, a low sampling rate of 1.5 Hz is more than sufficient

for our application and will reduce the power consumption of the system.

Figure 2.1 b) shows a cross-section view of the bed sheet. The e-textile piezoresistive

fabric is sandwiched between two orthogonal conductive bus layers, as described above.

The advantage of this design is that the top and bottom layers can be made out of

traditional fabric coated with parallel conductive buses with the e-textile piezoresistive

fabric embedded in between. Another advantage of this design is that the MxN sensor

structure only requires 2(M+N) I/O pins. Also, the matrix structure of the bed sheet

enables random access to an arbitrary sensor in the system. Figure 2.2 a) shows an

example of a user lying on the bed sheet and Figure 2.2 b) shows the corresponding

pressure map. Compared to other systems that use bed mattresses, sheets or pads for
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Table 2.1: The normal respiratory rates of the different age groups. As evident by

the table, the human respiratory rate becomes fixed after the 7th year of life. This is

because the lung volume have grown fully by that age. Newborns have the smallest lung

volume and therefore also the highest respiration rate in order to inhale enough oxygen

for sustaining their metabolism.

Normal Respiratory Rates By Age

Newborns 44 respirations per minute

Infants 20-40 respirations per minute

Children (1-7 years) 18-30 respirations per minute

Adults 12-20 respirations per minute

health applications ([MMK10], [KMB10]), the described system has the flexibility of e-

textiles as well as a dense high-resolution pressure map that enables high-quality medical

diagnosis.

2.2.2.2 Software Architecture

An Android application was created to acquire data from the bed sheet to a tablet, as

well as visualize them. The data can be sent to a server for analysis or the analysis can

be done locally on the tablet if no network is available. To visualize the data, the array

of pressure sensors is displayed in a 64 x 128 grid that matches the layout of the bed

sheet. Each cell in the visualized pressure map corresponds to a sensor on the bed sheet.

The cells are color coded to represent the magnitude of the data byte retrieved from the

corresponding sensor on the bed sheet. The different colors represent pressure values of

significantly different magnitudes, as shown in Figure 2.2 b). The high-level software flow

of the respiration rate monitoring system is depicted by the state machine in Figure 2.3.

NO USER: Initial System State The NO USER state is the initial state of the

system which indicates that no user is occupying the bed sheet. The system remains in

the NO USER state as long as the sum of pressure values in the current frame is below

an empirically determined threshold. From P =
F

A
, where F is the weight of the subject

and A is the surface area covered by his or her body, we can see that pressure and area
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Figure 2.1: E-textile bed sheet system hardware: a) The circuit used to scan the pressure

distribution of the bed sheet sensor array. b) Cross-section of the three-stacked-layer

structure of the e-textile bed sheet. The e-textile piezoresistive fabric is sandwiched

between two orthogonal conductive bus layers.

are directly proportional. Therefore, the threshold for the NO USER state was derived

from the pressure values of the subject with the lightest weight (45 kg/99 lb). To account

for an even bigger range of subjects the threshold was determined to be one third of the

threshold of the lightest subject in our dataset.

INITIALIZATION: Identifying Breaths Once the sum of the pressure values goes

over the preset pressure threshold described above, the system state immediately changes

to the INITIALIZATION state. As the label of the state indicates, this state is where

the system initializes itself to get ready to detect subjects’ breaths. During initialization,

the system waits 10 seconds for the incoming signal to settle because the movements

of getting on/off the bed are not relevant to the breath identification process. After

the signal settles, the system starts the breath detection algorithm. After successfully

detecting 3 breaths within a time interval of 20 seconds, corresponding to a minimum

breathing rate of 9 bpm, the system enters the RESPIRATION state. This requirement

ensures that only human beings, rather than heavy objects, could trigger the transition

to the RESPIRATION state.
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Figure 2.2: The bed sheet system as it is being used. a) A subject sleeping on the

pressure-sensitive bed sheet in the supine position. b) The corresponding pressure map

as displayed by the Android application on the tablet.
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Figure 2.3: High-Level Software State Machine

RESPIRATION: Detecting Breaths The RESPIRATION state is entered once a

stable representation of the subject’s breaths is identified. This state could be entered

either from the INITIALIZATION state or from the MOTION state. This is the state

where the breath detection algorithm described in section 2.2.3 is activated. The algo-

rithm calculates the instantaneous respiration rate of the user and determines if he/she

is experiencing an apneic episode.

APNEA: Respiratory Cessation There are two ways to enter the APNEA state:

either the user’s current respiration rate falls below 9 bpm or no breaths are detected

within 10 seconds. This period was chosen because sleep apnea is clinically defined as

the complete cessation of air flow for at least 10 seconds [Fou11]. To leave the APNEA

state and transition back to the RESPIRATION state, the system has to detect at least

3 breaths over a period of 20 seconds. This is again an approximation of a breathing rate

of 9 bpm.

MOTION: Observing Users’ Movements If a large amplitude of human move-

ment occurs (e.g. due to a change in sleep posture during sleep), the state changes to

MOTION. As in the INITIALIZATION state, the system waits until the pressure signal
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settles, except the waiting time is not preset in the MOTION state. Instead, a sleep

posture detection algorithm, which is part of the breath detection algorithm, is executed

continuously to identify when a user gets in a stable sleep posture. Once a stable sleep

posture is recognized, the state changes back to RESPIRATION.

2.2.3 Breath Detection Algorithm

The breath detection algorithm is partitioned into five stages, as shown in Figure 2.4. In

stage I, pressure matrices from the bed sheet platform are collected and formatted. Both

bed sheet pressure data and the ground truth information are collected and aligned with

the time-indexed frames. In stage II, geometric feature-based sleep posture recognition

is applied to the raw pressure matrix sequences in order to identify the sleeper’s sleep

posture. In this work, the sleep posture recognition algorithm is also used to identify

movement. Sleep posture recognition is a machine learning process described in the paper

proposed by Liu et al [LXA13]. Once the sleep posture is identified, the next stage (stage

III) locates the chest area of the sleeper. The chest localization algorithm continuously

tracks and calculates the location of the chest for each incoming frame. Hence, the

pressure values around the chest area can be extracted to increase the accuracy of breath

detection and respiratory rate identification.

Before extracting respiration-related features from the chest area, the time-drifting

phenomenon of e-textile materials needs to be compensated for in stage IV of the breath

detection algorithm. Sensor drift is an inherent property of piezoelectric pressure sen-

sors that often causes a signal to grow logarithmically over time until the system reaches

operating temperature [Mey08]. Such drift may cause inconsistent results, which is un-

acceptable in devices used for health monitoring where high accuracy is required at all

times. After drift compensation, four respiration-related features are analyzed in time

series: the maximum pressure sensor value, the sum of all pressure sensor values, the

standard deviation of all pressure sensor values and the maximum singular value of the

chest area. The respiratory signal can be observed directly by searching for peak values

of these timeseries feature signals. To automate this process, a peak detection algorithm

written in Matlab is applied in stage V to filter out noise and detect peaks.
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Figure 2.4: Algorithm flowchart for detecting respiration from the e-textile bed sheet.
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2.2.3.1 Stage I: Data Acquisistion

The Android application records pressure data acquired from the pressure sensitive bed

sheet over time into a log file. Any new frame (64 X 128 integer pressure matrix) read from

the bed sheet is stored to that log file. Each new row of a frame starts at the beginning

of a new line, and the individual values of a single row are separated by commas. An

additional blank line is printed between each data frame. The result is a CSV file that

could be easily imported into MATLAB or R as a two-dimensional matrix for post-

analysis. Because the collected data is utilized to identify features that represent breaths

of a typical subject, some type of ground truth was required to be synchronized with the

current data acquisition framework. The ground truth mechanism needed to be able to

identify every breath the user makes so that each one can be extracted from the acquired

data during the post-analysis review. This was achieved through manual annotation

by an observer as well was through a video recording of the sleeping participant. An

annotation was made whenever the participant breathed, since this can be clearly seen

through observation. To make the annotation process simple and synchronized with the

recorded data, a button was added to the data collection application so that the observer

can press it every time a breath is observed. The application then logs these respiration

events by saving the frame numbers and time of the annotated breaths to an additional

log file. This made it easy to correlate the observed breaths to the pressure data frames

being logged. To synchronize the video recordings with the logged data, the current

system frame number was included at the bottom of each recorded video frame. This

way, the video could be reviewed in a post-analysis session to observe any abnormal data

and synchronize it to the actual frame number it occurred at. This video recording could

be used to identify any unexpected changes in pressure (e.g. during movements) as well

as any possible breaths that the annotator may have missed. It is worth emphasizing

that the manual annotation and video recordings are for testing and evaluation purposes

only and are not needed by the proposed bed sheet system to measure respiratory rate.
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2.2.3.2 Stage II: Sleep Posture Recognition

For sleep posture analysis, Liu et al. extract a set of geometric features from the pressure

images obtained from the e-textile bed sheet and develop three heuristics based on sparse

representation to classify sleep postures. First, the pressure images are preprocessed to

remove noise; the images are aligned to a common center of mass and relocated to the

center of the image, then a smoothing filter is applied and the images are normalized so

that the sum of pixel weights is one. This step attempts to counteract the differences in

patient body mass. Next, the algorithm calculates geometric features from the pressure

images that reflect the physical characteristics of the body shape. The geometric features

include spatial features and bodypart features. Spatial features are features that describe

global aspects of the image such as the proportion of the image that is covered by the

subject, how symmetric the image is, and direction of any curvature in the pressure

image. Bodypart features are features that describe location and size of expected body

parts such as the hip and shoulder. [LXA13] has a list of all the geometric features. The

feature vectors for each of the samples form a sparse matrix. More formally, given a

data set of n samples, with each sample having m dimensions (features), the data matrix

A ∈ Rnxm is comprised of these m-element column vectors arranged side by side. Given

a new sample y ∈ Rm, a solution x ∈ Rn needs to found such that x is described in terms

of the data set, i.e. x needs to satisfy:

y = Ax (2.1)

So y is a linear combination of the columns in the data set, and x = [x1, x2, ..., xn]T is an

unknown vector of coefficients. Because there are more unknowns than equations, this

linear system in underdetermind and there are infinitely many solutions to x. The paper

imposes some constraints so that a unique solution to x can be found. In the last step

of the posture recognition algorithm, a heuristic is applied to select the class label for a

new sample y given a sparse solution for x. The classification has 83.5% precision, 82.9%

recall, and 83.2% accuracy.
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2.2.3.3 Stage III: Chest Localization & Feature Calculation

Once the sleep posture is identified, the location of the subject’s chest area can be derived

to increase the accuracy of breath detection. This is done by first calculating the subject’s

center of mass. The center of mass is the point at which all the mass can be considered to

be ”concentrated.” The center of mass of an object can be calculated by summing up the

partial masses at each position of the object and dividing by the total mass of the object.

Since the only information that can be obtained from the bed sheet is the pressure at

each pixel, we use the pressure values instead of mass. This is safe to do because pressure

is proportional to mass:

P =
F

A
=
mg

A
(2.2)

As seen in equation (2.2), pressure is defined as force per unit area. The force applied

to the bed sheet is the gravitational force, with a magnitude equal to the mass m times the

gravitational acceleration g. This force is applied to each sensor/pixel of the bed sheet.

Since the area of each of the 8192 pressure sensors and the gravitational acceleration are

constant, it can be seen that the pressure at each sensor is just a scaled mass.

To calculate the location (x, y coordinates) of the center of mass for the sleeping

subject, we use the following formulas:

comx =

127∑
i=0

63∑
j=0

xijpij

ptotal
(2.3)

comy =

127∑
i=0

63∑
j=0

yijpij

ptotal
(2.4)

, where xij, yij and pij are the x and y coordinates and the pressure value of the sensor

at row i and column j, respectively.

The location of the center of mass is com = (comx, comy). This is of course an ap-

proximation of a person’s true center of mass because a subject’s clothing will contribute

to the mass and will cause a shift in the center of mass, but it is nevertheless a very close

approximation.
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In the supine and prone positions, the center of mass lies around the umbilicus, both

in the x and y directions (Figure 2.5 a)). In the left and right fetal positions, the center

of mass is slightly higher (above the umbilicus) and more shifted towards the left or right,

respectively (Figure 2.5 b)).

After locating the center of mass, we make the assumption that the shoulder is located

in the top-most quarter of the pressure image. Since the chest area we are trying to locate

is below the shoulders and above the center of mass, we use the connected component

labeling algorithm to extract the part of the body between the shoulders and the center

of mass. The connected component analysis is meant to extract the pixels of the image

that have non-zero pressure values and are connected to each other (none of the pixels

is separated from another by a zero-valued pixel). The restriction for the non-zero pixels

to be connected attempts to prevent parts of the arms to be included in the localized

chest area. If the position reported by the posture recognition algorithm is the prone or

supine position, then the connected component analysis is restricted to the portion of the

image bounded by the y position of the center of mass from below and the y position of

the beginning of the second quarter of the pressure image from above. If the subject is

in one of the fetal positions, the connected component labeling algorithm is additionally

bounded by the center of the pressure image along the y-axis. This additional restriction

in the fetal positions reduces the chances of capturing the back of the subject as part of the

chest. Algorithm 1 shows the pseudocode for the chest localization. In the pseudocode,

the ”bounding box” refers to the restricted area that can be labeled for the prone, supine

and side positions. Figure 2.6 shows an example of a pressure image where the chest has

been localized using the above algorithm.

After the chest area is localized, respiration-related features can be derived from it.

We extract four different respiration-related features and analyze them in timeseries. The

four feature are 1) the maximum pressure value of the chest area (max), 2) the sum of all

pressure values in the chest area (sum), 3) the standard deviation of all pressure sensor

values in the chest area (std), and 4) the maximum singular value of the chest area (svd).

Each of the 4 features are computed for each pressure image and plotted over time. An

example sum-of-pressures signal is shown in Figure 2.7.
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Figure 2.5: The location of the center of mass in different sleeping postures. a) A pressure

map of a subject sleeping in the supine position. The center of mass is located at the

umbilicus as indicated by the yellow cross. b) A pressure map of a subject sleeping in

the right fetal position. The center of mass is located slightly above and to the right of

the umbilicus as indicated by the yellow cross.
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Algorithm 1 Chest localization algorithm

stack[]

chestPixels[]

currPixel = pressureFrame[comx][comy]

chestPixels.add(currPixel)

stack.push(currPixel)

while stack is not empty do

currP ixel ← stack.pop()

if currPixel is within bounding box then

N = currPixel’s neighbors

for neighbor in N do

if neighbor 6= 0 && neighbor 6∈ chestP ixels then

chestPixels.add(neighbor)

stack.push(neighbor)

end if

end for

end if

end while
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Figure 2.6: A pressure image of a subject sleeping in the supine position. The localized

chest area is shown in green. The dashed black lines are the boundaries of the bounding

box used in the chest localization algorithm.

Figure 2.7: An example sum-of-pressures signal: the sum of all pressure values in a frame

are plotted over time.
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2.2.3.4 Stage IV: Drift Compensation

Piezoelectric pressure sensors inherently suffer from the time drifting phenomenon. The

effect of drift is that when repetitive cycles of compressing and relaxing of the piezoelec-

tric fabric are performed, the pressure is different between the cycles at the same point of

compression. It has been shown that the pressure will continue to grow logarithmically

over time until the system reaches operating temperature. Figure 2.8 shows an example

sum-of-pressure signal and its best-fitting curve which corresponds to a logarithmic func-

tion. The drift phenomenon specifically affects our motion detection which is a simple

threshold-based algorithm that uses a moving average of the sum of pressures over the

last 5 frames. This is used to represent the average pressure the user exerts on the bed

sheet for his/her current position. When the user moves (e.g. to change sleeping posture),

he/she will lift some parts of the body off the bed sheet, causing a significant drop in

pressure and a noticeable drop in the moving average. The logarithmic drift, however,

will cause the moving average to always increase, making it harder to clearly identify

deviations from the average. To compensate for the e-textile drift, the first-order deriva-

tive of the signal is calculated. The first-order derivative curve has the same number of

peaks and troughs and succeeds in projecting the signal into a horizontal plane. Figure

2.9 shows the sum-of-pressure signal before and after drift compensation.

Even though the first-order derivative curve has different y values than the original

curve, it preserves the shape of the curve (peaks and troughs) and eliminates the loga-

rithmic growth of the signal. For the thresholding algorithm used to detect motion, it

is not important what the absolute amplitudes of the signal peaks are, but rather that

there are no big deviations among the different peak amplitudes. This way, if any big

deviation occurs, it can be classified as motion.

2.2.3.5 Stage V: Timeseries Signal Peak Detection

A single oscillation in any of the extracted signals represents a single breath made by

the user. This is the case because a breath involves an inhalation period followed by an

exhalation period, which corresponds to increases and decreases in the pressure exerted

on the bed sheet. The respiratory signal can therefore be observed directly by searching
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Figure 2.8: The sum of pressures signal with a best-fit line that models the logarithmic

drift of the pressure sensors.

Figure 2.9: The sum of pressures signal before and after drift compensation via first-order

derivation.
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for the peaks in the timeseries feature curves (max, sum, std, and svd). Since every

oscillation corresponds to a breath, identifying these breaths will allow us to calculate

an instantaneous respiration rate and determine if the sleeper is experiencing an apneic

episode. A peak detection algorithm was implemented to capture the occurrence of each

breath. A data structure was created to hold the occurrences of breaths over a 30-second

wide moving window. With a sampling rate of 1.5Hz, 30 seconds corresponds to 45

frames. The instantaneous respiration rate is calculated by multiplying the number of

detected breaths within the last 30-second period by 2 to obtain the number of breaths

per minute. An apneic episode is detected when the instantaneous respiration rate falls

below 9 bpm or when no breaths are detected within 10 seconds.

2.2.4 Results & Discussion

Data was collected from 14 subjects (males and females), ranging from 20 to 30 years of

age. The participants were asked to sleep on the bed sheet in three different positions:

prone(face down), supine (face up), and on their sides. A total of at least 6 minutes of

data was collected from each user (2 minutes per position). While the participants were

simulating sleeping, the system data acquisition framework was utilized to record their

pressure data over time and to create an annotated log of their breathing events.

The first experiment attempted to test if chest localization helped in respiratory iden-

tification. 14 subjects were asked to statically lie on the bed in supine position without

any posture changes. In order to assess whether chest localization helped in getting clean

respiratory signals, two pressure value matrices were derived from the raw pressure value

matrix sequence. One was a sub matrix which only related to each subject’s chest area

and the other one was the original pressure value matrix. The four respiration-related

features described earlier (sum, max, std, and svd) were utilized to visualize waveforms

from these two matrices. Figure 2.10 shows the sampled curves of all four features with

and without chest localization. As can be seen in Figure 2.10 b), the respiration signal

can be inferred from the chest area even via just visual identification. This is because

the movements around the chest area are directly related to the respiration signal, while

movements from other body parts simply disturb the respiration-related features, as can

be seen in Figure 2.10 a).
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Figure 2.10: Sampled curves of all four respiration-related features with and without

chest localization: a) The signals corresponding to the four respiration-related features

when extracted from the full bed sheet. b) The signals corresponding to the four respi-

ration-related features when extracted from the localized chest area.

In the second experiment, we evaluate the effectiveness of first-order derivation to re-

move the logarithmic drift of the respiration-related features and to improve the accuracy

of the breath detection. After drift compensation, the number of breaths missed by the

peak detection algorithm dropped significantly. Figure 2.11 shows the four respiratory

signals of one of the subjects before and after drift compensation. We observe that, after

drift compensation, the oscillations become more pronounced which greatly facilitates

breath detection.

In the third experiment, and only using the localized pressure signals, we attempt

to demonstrate that the proposed bed sheet system system can identify the respiratory

signal in the supine, prone, and side positions. This is essential since people constantly

change their sleeping posture during the night and the respiratory monitoring needs

to be continuous. In addition, the test subject could sleep on any corner of the bed

sheet without any restriction. In the posture detection step , the pressure distribution

maps are aligned to a common center of mass and shifted to the center of the pressure

image. Although the respiratory signals were always captured, different postures indeed

generated different pressure distributions on the bed sheet when the subject breathed.

Respiration-related features could still be visually compared with the ground truth in

the prone and supine postures. However, since, in the side postures, the contact area
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Figure 2.11: The chest-localized signals corresponding to the four respiration-related

features before and after drift compensation. The blue arrows mark the missed breaths.

between the human body and the bed sheet is the arm area or the side of the body

rather than the chest, side postures tended to obscure the breath signal. Therefore, even

if breathing made the chest area expand and shrink, the pressure on the bed sheet only

changed slightly. Figure 2.12 provides accuracy analysis among these sleep postures for

each of the four features and Figure 2.13 shows the overall average accuracy for the fours

features compared to ground truth.

2.2.5 Conclusion

In this work, we presented a non-intrusive nocturnal framework for respiration rate mon-

itoring and OSA detection. An e-textile based bed sheet was used to collect high density

pressure images. The bed sheet can be seamlessly integrated in a home or clinical en-

vironment, thereby eliminating any interferences with the subject’s sleep. In addition,

the bed sheet provides high-density pressure images and can capture the full body pres-

sure distribution. This is particularly important for localizing specific body parts, like

the chest area where the respiratory signal becomes more prominent. Body part local-

ization is only possible using a high-density array-based bed sheet, rather than sparse

pressure sensors on the bed as was done in some of the discussed related works. The

system continuously tracks the sleeper’s chest area based on his/her posture and extracts
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Figure 2.12: Accuracy of breath detection for the four respiratory related features in the

3 different sleeping postures.

Figure 2.13: Average accuracy of breath detection compared to ground truth.
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a clean, localized pressure signal. After drift compensation, a peak detection algorithm

is applied to extract individual breaths within a 30-second period and calculate the in-

stantaneous respiration rate of the sleeping subject. Using SVD as the feature gives an

overall accuracy of 96%.

2.3 Unobtrusive Sleep Stage Identification Using a Pressure-

Sensitive Bed Sheet

Since the e-textile bed sheet system proved to be effective at capturing the respiratory

signal, our goal was to try to extract other signals from the bed sheet. The more bio-

physical features we can extract from the bed sheet, the better the decisions we can make

about the presence of OSA. In this work, we focus on sleep stage analysis. As described

in Chapter 1, when an OSA patient experiences an apneic episode and the blood oxy-

gen levels start to drop, the brain is signaled to wake the sleeper up to start breathing

again. This does not result in a full awakening, but rather a transition from the deeper,

more restorative stages of sleep to lighter, shallower stages. These arousals and the ac-

companying sleep stage transitions occur frequently throughout the night and result in a

fragmented, non-restorative sleep pattern. In a PSG, the many signals being monitored

allow the sleep technician to interpret and analyze the subject’s sleep and draw conclu-

sions about his/her sleep cycle patterns and how they affect the subject’s sleep quality.

In this work, we extract other signals from the e-textile bed sheet, in addition to the

respiratory signal, and attempt to draw conclusions about the sleep stage pattern of the

subject being monitored. Identifying the sleeper’s sleep stages can help with diagnosing

OSA as well as with understanding more about how OSA affects a patient’s sleep and,

thereby, his/her quality of life.

2.3.1 Sleep Cycle Introduction

Sleep can be classified into two broad categories: Non-rapid eye movement (NREM) and

rapid eye movement (REM) sleep. The American Academy of Sleep Medicine (AASM)

further divides NREM sleep into three distinct stages: N1, N2, and N3 [SAB07]. As

shown in Figure 2.14, a healthy adult’s sleep cycle, which lasts between 90 and 100
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minutes, begins with 3 stages of NREM sleep followed by REM sleep. The first stage

(N1) is the lightest and shortest stage of sleep (1-7 minutes) and marks the transition

from wakefulness (W) to sleep. N1 is followed by N2, which lasts anywhere from 10

to 25 minutes. This stage is where the body reaches a state of complete relaxation in

preparation for the deeper sleep to come. After N2, a healthy adult enters N3, the last

stage of NREM which is also referred to as deep sleep. N3 lasts 20 to 40 minutes and is

the stage where the body does most of its repair and regeneration work. Following the

N3 stage of sleep, a healthy adult ascends to lighter NREM sleep stages, typically N2,

for 5 to 10 minutes before entering the REM sleep episode. REM sleep is characterized

by high brain activity and is where memory consolidation predominantly occurs. REM

sleep comprises about 20 to 25% of total sleep in typical healthy adults [Har], [Ame07].

In healthy subjects, this pattern continues to repeat in a cyclical fashion throughout the

night. Since each stage fulfills a vital biological function, sleep stage analysis is crucial to

the evaluation of the quality of sleep and is a proven biometric in diagnosing sleep apnea,

cardiovascular disease, diabetes, and depression [Tha06].

In sleep medicine, in order to evaluate sleep quality, a person gets a PSG. The standard

practice is then to divide the sleep time into 30-second epochs, and based on the recorded

signals, each epoch can be scored by sleep technicians as W, N1, N2, N3 or REM. Since

the pattern of the Wake-NREM-REM stages is highly modified for subjects with sleep

disorders and other diseases, sleep stage analysis can provide valuable information for

diagnosing these diseases. In this work, we again use the bed sheet system described

in Section 2.2.2.1 to do sleep stage analysis. Our contributions in this work can be

summarized as follows:

• To the best of our knowledge, our work is the first to perform sleep stage analysis

using a completely contact-free non-intrusive system.

• Our sleep stage analysis results are validated against over 50 hours of gold standard

polysomnography data–the current state-of-the-art in sleep analysis–and our results

are in the range of inter-rater agreements reported in the literature (70% and 72%

[DAZ09]).
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Figure 2.14: A healthy adults sleep cycle: The cycle starts at the NREM substage N1

and ends with REM.
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2.3.2 Related Works

While there are many academic and commercial sleep monitoring tools available, there is

a dearth of low-cost, non-intrusive solutions. This section surveys the major categories

of solutions and describes their characteristics and limitations.

Existing sleep monitoring tools can be classified into three categories. The first cate-

gory of tools extracts sleep stages from directly-measured physiological signals. Because

many body functions like breathing, heart rate and movement change during sleep, track-

ing these changes throughout the night can provide a good indication of the sleep stage

that a patient is in. Many of these tools distinguish themselves from full PSG by using

only a small subset of the PSG sensors. [RH06] shows that ECG and respiratory effort

alone can be sufficient to distinguish between the WAKE, NREM and REM stages with

moderate accuracy (67%). [EN10] uses features extracted from the EEG signal in addi-

tion to heart rate variability to detect the different sleep stages. [FLK12], on the other

hand, uses only the EEG signal to study brain activity and determine sleep stages based

on it. An accuracy of 83% is reported. Another example is Zeo, a commercial sleep

monitoring product that detects sleep stages based on brain activity. A headband, to be

worn during sleep, analyzes brain signals and identifies sleep stages based on the signals’

frequencies. The company went out of business as of 2013. Although these systems use

fewer sensors than a full PSG, they still require equipment to be attached to the patient’s

body during sleep and are often expensive.

The second category of tools tries to infer sleep stages from body movement. Actigra-

phy is a commonly used technique for sleep monitoring; it uses an accelerometer embed-

ded in a watch-like device to monitor activity and identify sleep stages [SBP03], [SA02],

[HPP04]. Sleeptracker [Tra], Actiwatch [Phi], and UP [Jaw] are a few examples of the

many commercial products available in this category. Though less invasive than the

products in the first category, these products still require a device to be attached to the

patient’s wrist. To overcome this limitation, [HDS13] presents a sleep monitoring system

based on RFID technology. WISP tags are added along the edge of the bed mattress and

accelerometer data is collected from these tags by an RFID reader. This system does not

require any attachments to the patient’s body but might represent a problem if it were
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to be deployed in a clinical setting since the RFID frequency can interfere with other

medical devices [YL10].

The third category of products uses audio and video signals to identify sleep stages.

[PLS06] uses audio and video sensors to infer sleep-wake stages. These systems are expen-

sive and raise obvious privacy concerns. In [BGK12], the authors attempt to solve the pri-

vacy problem by using an infrared camera. They analyze the temperature maps acquired

from the camera to detect the patient’s body and to extract body movement information.

Infrared cameras are a controversial technology, however, as the high-resolution thermal

images make it very simple to observe exactly what the patient is doing in bed and can be

considered a breach of privacy. Our proposed system opens the way for a fourth category

of sleep monitoring that is completely contact-free, non-intrusive, comfortable, cheap,

and avoids privacy violations.

2.3.3 System Architecture

The bed sheet used in this work is the same as the one described in Section 2.2.2.1, except

that the sampling rate was adjusted to be 1 Hz instead of 1.5 Hz in order to reduce the

amount of collected data. In addition to sleeping on the e-textile bed sheet, the test

subjects also had to get a polysomnography. The signals acquired by the PSG were used as

the reference gold standard for assessing the accuracy of our sleep identification algorithm.

The PSG system used in this work is the ”SOMNOscreen plus” system manufactured by

SOMNOmedics [SOM]. In this work, all the sensors used and signals collected are as

described in Section 1.2.4, except for video. The data collection on the bed sheet system

and the PSG system started simultaneously and synchronized.

2.3.4 Sleep Stage Identification Algorithm

In this section, we describe the features used for classification, how they are extracted

from the bed sheet pressure images and why they are suitable for sleep stage identification.

The pressure images from the entire night are divided into 30-second epochs, as is the

convention in sleep medicine, and the features are extracted for each epoch. Following

feature extraction, we describe the two-phase procedure used for identifying the Wake,
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NREM and REM stages.

2.3.4.1 Feature Extraction

As discussed earlier, several physiological signals change during normal sleep and vary

with each sleep stage. Three of those signals are respiratory effort, leg movement and

body movement. The following subsections describe each one in more detail and explain

how they were extracted from the pressure images.

Respiration Rate Respiration rate, as measured by the number of breaths observed

per minute, is another biophysical signal that changes during sleep. Respiration rate is

considerably faster during the REM and Wake sleep stages than in the NREM stage. So,

one respiratory feature used for sleep stage identification is the respiration rate observed

during a 30-second epoch. The breathing rate is extracted from the respiratory signal by

counting the number of breaths and multiplying by two to get the number of breaths per

minute. This process is described in Section 2.2.

Respiration Rate Variability Respiration is a physiological signal that undergoes

significant changes during sleep. During the NREM sleep stage, the breathing pattern

is regular, both in amplitude and frequency [HSK87], while in REM the signal becomes

irregular, much more rapid, and sudden changes in both amplitude and frequency can

be observed [KPR03]. To capture this behavior of the respiratory signal, we first extract

the respiration signal from the bed sheet.

In this work, we evaluate the accuracy of the extracted respiration signal by using

the thorax effort signal obtained from the PSG system as ground truth. The thorax

signal is generated by measuring the amount of pressure applied to the effort belt that

the user wears around the chest. The thorax effort signal is shown in Figure 2.15. It

is noteworthy to mention that, in contrast to the pressure signal obtained from the bed

sheet, this signal indicates an inhalation event at each local maximum when the subject

is in the supine position. The signals are inverted because, in the supine position, when

a subject inhales and his/her chest rises, the pressure exerted on the bed sheet decreases

while the pressure exerted on the effort belt increases. Another difference between the
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two signals under comparison is the sampling rate. While the bed sheet pressure image

is sampled at 1 pressure image per second, the thorax effort signal has a sampling rate of

32 Hz. While the bed sheet signal in Figure 2.16 shows 30 samples on the x-axis, Figure 9

shows 960 samples for the same period of time. As shown in the figure, the thorax effort

signal indicates a total of 8 inhalations and 8 exhalations (local maxima and minima,

respectively), for a total of 8 breaths. During the same time period, the pressure signal

obtained from the bed sheet indicates the same number of inhalations and exhalations.

Both systems would therefore result in a respiration rate of 8 breaths per 30 seconds, or

16 breaths per minute.

After extracting the respiration signal, we compute the mean amplitude and the mean

frequency of that signal in each 30-second epoch. Then, for each portion of the signal in

the 30-second epoch, we compute its variability from the mean in terms of both amplitude

and frequency. This is done as follows. Starting from the first sample in the signal, we

compute its standard deviation from the mean amplitude and the mean frequency of that

epoch. We incrementally grow the size of the signal by adding one sample at a time and

computing the amplitude standard deviation and the frequency standard deviation until

all 30 samples of an epoch are covered. We then move to the next epoch and repeat

the process. That way, we get a measure of the dispersion of the respiration signal from

the mean amplitude and the mean frequency of an epoch at each pressure frame. The

variability of the respiration signal is a very good feature to distinguish between the

NREM stage where the signal is regular and shows very little variability, and the Wake-

REM stages where the amplitude and frequency of the respiration signal vary significantly

and rapidly.

Leg Movement Leg movement is also an important indicator of sleep stage. During

the first stage of NREM, sleepers can experience sudden jerks of their legs. These jerks

are common while falling asleep but, if excessive, can also be a symptom of sleep disorders

like Periodic Limb Movements (PLM) and Restless Legs Syndrome (RLS) [Nat10]. In

either case, these jerks are associated with the NREM sleep stage and can be used as a

feature to distinguish the NREM sleep stage from the other stages.

To extract leg movement from the bed sheet, we assume that a subject’s legs while
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Figure 2.15: The thorax effort signal obtained from the PSG system. Each local maximum

(peak) indicates an expansion of the chest which corresponds to an inhalation event.

lying on the bed sheet will occupy the lower half of the sheet. To extract leg movement,

we sum all the pixels in the lower half of the pressure image and mark a leg movement

when a significant drop or increase in pressure is detected in that portion of the bed

sheet. This is a crude approximation of leg movement and can be improved in the future

by localizing the patient’s legs in the pressure images.

The ground truth for leg movement events is obtained from the PLM channel of the

PSG recording, as shown in Figure 2.17. This signal measures leg muscle movement over

time. The signal is obtained by sampling the leg EMG electrodes at 256 Hz. When com-

pared to the PLM signal obtained from the PSG system, our approximation accurately

detects 80.7% of all leg movements.

Body Movement In addition to leg movement, whole-body movement can also occur

during sleep. The movements are associated with the Wake stage and light stages of

NREM as a result of changes in sleep posture that occur every 5-10 minutes. REM sleep,

on the other hand, is characterized by muscle immobility and body paralysis to prevent

43



Figure 2.16: The pressure signal obtained from the bed sheet while the subject is in the

prone position. Each local maximum (peak) indicates an expansion of the chest which

corresponds to an inhalation event.

44



Figure 2.17: A sample polysomnogram that shows a subject transitioning from sleep stage

N1 to REM as indicated by the circles. The polysomnogram shows 19 of the PSG signals

and the three arrows are pointing to the three channels that are used as ground truth for

leg movement (PLM), respiration (Thorax) and whole-body movement (Posture).
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sleepers from acting out their dreams and hurting themselves [PAF01]. Therefore, the

lack of movement can be a good indication of the REM sleep stage. During movements,

certain body parts like arms, hands, elbows or knees are lifted off the bed sheet. This

abrupt release in pressure results in a significant drop in pressure intensity. This sudden

and significant change in pressure can be detected by a simple thresholding technique that

keeps track of the difference between local maxima and minima over a sliding window

and reporting a movement if the difference drops significantly. Our algorithm reports

a movement if there is a change of more than an order of magnitude in this peak-to-

peak amplitude. The detected movements are validated against the posture information

provided by the PSG system. Our thresholding algorithm correctly detects 96.5% of the

whole-body movement events.

Posture and Body Orientation Features In addition to the biophysical features

described above, we also extracted some geometric features from the pressure images.

The geometric features are motivated by the fact that the orientation of the body during

sleep as well as sleep posture can affect sleep stages. This is mainly because we are likely

to go into NREM and the deeper stages of sleep if our bodies are situated in a comfortable

position, especially when the body is in a ”mid-line” position, where both the head and

neck are kept straight. Furthermore, according to the British Snoring and Sleep Apnoea

Association [Ass], patients who sleep in the side positions often demonstrate a decrease in

the amount of NREM and an increase in the amount of REM sleep. We used 32 geometric

features including body symmetry, balance, hip location and shoulder location. These

features summarize posture and body orientation and are explained in more detail in

[LXA13].

2.3.4.2 Two-Phase Classification

To perform sleep stage identification, the pressure images from a full-night sleep are

divided into groups of 30 frames. Since the sampling rate for the bed sheet is 1 Hz, 30

frames corresponds to 30 seconds of sleep. It is common in polysomnography analysis to

split the night into 30-second epochs, so the same practice was followed in this work. For

each 30-second epoch, the respiration rate, the amplitude and frequency variability of the
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respiratory signal, the leg movement events as well as the geometric features described in

Section 4.1 are extracted. Since those features mostly distinguish the NREM stage from

the rest of the stages, these features are used for phase I classification into NREM and

Wake + REM. Phase I, therefore, acts as a filter for the NREM sleep stage. In phase 2,

the algorithm tries to distinguish between the Wake and REM stages. Since no strong

body movement can occur in the REM stage, as mentioned before, it can be used as a

feature to distinguish between Wake and REM. For all the epochs that were classified as

Wake + REM in phase I of the algorithm, body movement events are extracted and used

to determine if a given epoch should finally be classified as Wake or REM. The decision

tree for the described process is shown in Figure 2.18.

Three statistical classifiers were used to evaluate this two-phase procedure of clas-

sifying a sleep epoch to the NREM, Wake or REM sleep stage. The parameters for

each classifier were obtained by learning from our training dataset. In each phase of

classification, each target/non-target sample was labeled with the binary values 1 or 0,

respectively; each classifier was used to assign a testing data point - in our case a sleep

epoch - to one of these two labels which map to two different sleep stages. The overall

accuracy is determined by the percentage of the testing data that was assigned to the

correct sleep stage. The three classifiers used in this work are based on different statistical

principles and are described below.

The binary Support Vector Machine (SVM) classifier is a non-probabilistic linear

classifier. It constructs an optimized hyperplane in the feature space such that the sepa-

ration between two different types of samples is maximized. The hyper-plane is obtained

by learning from the training samples. Each training sample contains a binary label to

indicate the group it belongs to. Once the hyper-plane is calculated, the testing data can

be projected onto the feature space and classified by the hyper-plane into one of the two

categories.

The K-Nearest-Neighbor classifier uses the notion of distance between data points in

the feature space as the basis for classification. It assigns a testing data point to the

class which the majority of the k nearest neighbors are from. Similar to SVM training,

the labels of the nearest neighbors are obtained from the training data. In this work,

Euclidean distance is used as the distance metric and the majority rule is applied to the
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Figure 2.18: The steps of the sleep stage identification process. The pressure images

of a whole night are split into 30-second epochs from which biophysical signals are ex-

tracted. Phase I classification groups epochs into NREM and Wake+REM. In Phase II,

the Wake+REM epochs are then classified separately based on the extracted movement

information.
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k candidates in order to determine the group that the sample belongs to.

Naive Bayes is a probabilistic classifier based on the Bayesian theorem. It is partic-

ularly suitable when the dimensionality of the inputs is high. It assumes that features

contribute independently to the probability of a given sample belonging to a certain class.

Bayes’ Theorem finds the probability of an event given the probability of another event

that has already occurred.

2.3.5 Experimental Setup

Seven subjects participated in the sleep study. Three of the subjects were female, four

were male. Their ages ranged from 21 to 60 years and their weights from 93 to 190

pounds. Each subject underwent a full-night PSG study and had all the sensors described

in Section 1.2.4 attached to him/her. At the same time, each subject slept on the e-

textile bed sheet and his/her pressure images were continuously recorded overnight. The

50+ hours of PSG recordings from the seven subjects were scored by SOMNOmedics

Domino software. The thorax effort signal, leg EMG signal, sleep posture and sleep stage

information provided by the software served as ground truth for all extracted features.

The experiments for all 7 subjects were conducted under the same conditions. To ensure

the setting was comfortable for sleeping, the light was turned off, the air in the room was

in circulation and nearby noise sources were eliminated. The room temperature was set

to 68 degrees Fahrenheit, which is a comfortable temperature for sleeping. Figure 2.19

shows a subject wearing the PSG sensors and laying down on the bed sheet shortly before

the lights were turned off. Once the patient got in bed and before starting the overnight

recording, the so-called bio-calibrations were performed. Bio-calibrations are short tests

whose purpose is to discover any poor PSG signals or incorrect hookups prior to the

start of the study. The subjects were asked to blink 5 times in order to test the EOG

signal. They were then asked to point their toes towards their nose. This bio-cal tests the

EMG electrodes placed on the legs. Clenching the teeth verifies the accuracy of the chin

EMG signal, and breathing through the nose and mouth verifies the flow, pressure and

effort signals. To test the microphone, the patient was asked to make a snoring sound,

and to verify the posture detection provided by the PSG system, the subject was asked

to change the sleeping position. In the morning and before disconnecting the sensors,
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the same bio-calibrations are repeated to ensure that all the sensors remained in place

throughout the night. One out of the 7 all-night PSG recordings had a problem with

the morning bio-calibrations; the thorax effort belt loosened during the night, resulting

in a poor respiration signal. That recording had to be repeated the following night.

The pressure images obtained from the bed sheet were labeled using the sleep stage

information provided by the PSG software. Testing was done using Leave One Out Cross

Validation (LOOCV). One subject’s pressure images are left out for testing and the other

subjects’ images are used for training.

Figure 2.19: A male subject lying on the bed sheet with all PSG sensors attached to his

body shortly before the lights were turned off.

2.3.6 Results & Discussion

Table 2.3.6 shows the performance results of our sleep stage identification process based

on signals derived from the bed sheet. The results of three different classifiers after phase

I and phase II, as well as the overall results, are shown. It is noteworthy to mention

that the Naive Bayes classifier outperforms both SVM and KNN in terms of precision,

recall and accuracy despite the oversimplified assumptions it makes about the underlying

probability model of the data. This is likely the case because in each of the two phases

of classification, the correct class is more probable than the other class. In phase I, for

example, where we try to separate the NREM stage from the other stages, classifying

more samples as NREM than REM+Wake is likely to produce good results since the

NREM stage constitutes 75% - 80% of the night and is therefore more probable. The
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same argument can be made for phase II.

Classifier Precision Recall Phase I Accuracy Phase II Accuracy Overall Accuracy

K-Nearest Neighbor 55.9% 56.9% 68.75% 65.67% 67.12%

Support Vector Machines 67.7% 68.6% 73.1% 68.5% 70.33%

Naive Bayes 70.3% 71.1% 75.23% 69.2% 72.2%

Table 2.2: Comparison of different classifiers in terms of precision, recall, phase I perfor-

mance, phase II performance, and overall accuracy

Another point to observe is that the performance of phase II is significantly worse

than the performance of phase I. This performance degradation is expected since the

physical changes that occur during REM sleep are very similar to the ones that occur

during the Wake stage, making the task of separating REM and Wake epochs in phase

II a challenging task. Because of the similarity between the REM and Wake stages, the

REM sleep stage is sometimes referred to as paradoxical sleep. Even though it is one

of the stages of sleep, it is characterized by a brain wave pattern and physical signals

that are similar to that of wakefulness. Figure 2.20 visually shows the similarity between

REM and Wake, as well as the dissimilarity between those two stages and the NREM

stage. The figure shows the respiratory signal acquired by the PSG system during three

epochs of the N3 stage of NREM (top), REM (middle) and Wake (bottom) of a single

patient. As can be seen, the respiratory signal in the NREM stage is regular with very

little variation in amplitude and frequency. Both the REM and Wake stages, on the other

hand, show the same irregularity with clear variations in the amplitude and frequency of

the respiratory signal.

Figure 2.21 shows the hypnogram of one of the seven subjects. A hypnogram is a graph

commonly used in polysomnography that represents the stages of sleep as a function

of time, specifically as a function of epochs. In a clinical setting, a polysomnography

record is usually scored by more than one sleep technician and the hypnogram provides

a visual way to show the agreement between the scoring of the different technicians.

Here, we use a hypnogram to visually show the agreement between the sleep stages

obtained from the PSG system (top) and the ones obtained from the bed sheet after

feature extraction and classification (bottom). The classifier used in the creation of this

hypnogram is SVM. The hypnogram from the bed sheet shows 77.48% agreement with the

51



Figure 2.20: The respiration signal during three different epochs: one epoch during the

N3 stage of NREM (top), another epoch during REM (middle), and another during

wakefulness (bottom).

gold-standard hypnogram. It can be observed from the figure that a significant majority

of the NREM epochs are classified correctly as indicated by the matching NREM portions

of the hypnograms. It can also be observed that the REM and Wake stages are often

misclassified. The red bolded lines in the bottom hypnogram show the epochs that were

incorrectly classified as Wake as a result of our classification algorithm. The red bolded

lines in the top hypnogram show that these misclassified epochs were scored as REM

epochs by the PSG system.

Finally, Tables 2.3 and 2.4 show two confusion matrices for the same patient as in

the hypnograms. In Table 2.3, the confusion matrix shows the precision and recall values

for the two-phase classification algorithm described in Section 2.3.4.2. Again, we can

observe that phase II of the classification performs poorly compared to phase I due to the

similarity of the REM and Wake stages. If no significant body movements occur during

the Wake stages then separating REM and Wake becomes even more difficult. In Table

2.4, the confusion matrix corresponds to a one-phase classification procedure where we

attempt to classify all three stages without filtering out the NREM stage first. This one-

phase procedure leads to significantly worse precision and recall values because it leaves
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Figure 2.21: The top hypnogram shows sleep stages over time (epochs) as provided by the

PSG system. (Wake: 68 epochs, REM: 153 epochs, and NREM:880 epochs). The bot-

tom hypnogram shows sleep stages over time as obtained by the two-phase classification

procedure. (Wake: 218 epochs, REM: 110 epochs, and NREM: 773 epochs, Agreement:

77.48%)
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NREM REM Wake Recall

NREM 773 38 69 87.8%

REM 0 42 111 27.5%

Wake 0 30 38 55.9%

Precision 100% 38.2% 17.4% 77.5%

Table 2.3: Confusion matrix for one of the subjects when the SVM classifier is used in

two-phase classification.

NREM REM Wake Recall

NREM 729 76 113 79.4%

REM 2 12 139 7.8%

Wake 27 25 16 23.5%

Precision 96.2% 10.6% 6.0% 68.8%

Table 2.4: Confusion matrix for one of the subjects when the SVM classifier is used in

one-phase classification.

more room for error between all three classes, whereas the two-phase process eliminates

the epochs that are well distinguishable from the other ones first before it proceeds to

the more difficult task of separating the two similar classes - REM and Wake.

2.3.7 Conclusion

In this work, we proposed a non-intrusive, completely wireless and contact-free sleep stage

identification system. We extracted a set of sleep-related biophysical features as well as

geometric features from pressure images obtained from an e-textile bed sheet. These

features were used as part of a two-phase classification procedure that first separates

NREM from REM and Wake and then separates the two latter classes. The superiority

of the two-phase procedure over the one-phase procedure was shown. The system achieved

up to 70.3% precision and 71.1% recall on average. The proposed unobtrusive system

opens the way to a cheap, contact-free sleep diagnosis solution, eliminating some of the

drawbacks that the traditional PSG method presents. The combination of a flexible and

non-intrusive bed sheet system with simple signal processing and classification makes the
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described system a portable sleep screening solution that can be used in a clinical as

well as a home environment. The affordability of the system can make sleep screening

accessible to a bigger population which could lead to early diagnoses of sleep disorders

and chronic diseases.

2.4 In Closing

This chapter presented two nocturnal methods for diagnosing OSA. The methods utilized

a pressure-sensitive bed sheet that fit seamlessly into a person’s environment without

disrupting sleep. Although non-intrusive, these overnight methods continuously monitor

a patient over the duration of their sleep and produce a large amount of data that need

to be stored and analyzed. The next chapter discusses daytime diagnosis methods that,

in addition to being non-intrusive, also produce considerably less data for analysis.
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CHAPTER 3

Non-Intrusive Daytime Diagnosis Methods

3.1 Introduction

Chapter 2 discussed non-intrusive, nocturnal methods for the diagnosis of OSA. Nocturnal

diagnosis methods attempt to diagnose OSA by detecting signs of the disorder that occur

while the patient is sleeping. The great majority of OSA diagnosis methods available

in the literature fall under the nocturnal category. More recently, however, the research

community started shifting its focus to daytime diagnosis methods, which can detect the

OSA disorder while the patient is awake. These methods are very rare, but if proven

effective, they would have many advantages compared to nocturnal methods. The first

advantage is that the patient can stay awake while being tested. This means that the

patient’s sleep quality will not be affected in any way. Since the nocturnal methods

presented in Chapter 2 are contact-free and do not interfere with the subject’s sleep,

this particular benefit is not really applicable to the nocturnal methods presented in this

work. Another advantage of a daytime diagnostic test is the fact that it has to rely on

an inherent characteristic of OSA in order to be reliable. Since a daytime test cannot

detect apneic episodes, it would have to rely on detecting more permanent physiological

or psychological changes caused by the OSA disorder. This has two benefits: first, it can

help us understand more about the OSA disorder and its consequences and secondly, it

can detect the disorder in situations where a nocturnal test wouldn’t be able to detect it.

Some patients, for example, have positional OSA, where the apneic episodes do not occur

when the patient sleeps in the side position. If a patient with positional OSA sleeps in

the side position during the diagnostic test, nocturnal methods, that rely on breathing

cessations to make a diagnosis, will not be effective. Daytime methods, however, rely

on manifestations of the disorder that transcend sleep and can therefore always make a

diagnosis. Another advantage of daytime diagnosis methods is that they usually produce
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a lot less data. Unlike nocturnal methods that monitor patients and record their signals

over an 8-hour period, daytime methods are much shorter tests that produce small data

that can be stored and analyzed more efficiently.

This chapter presents novel daytime methods that attempt to detect permanent

changes caused by the OSA disorder using completely non-intrusive monitoring tools

and techniques.

3.2 An Automated Framework for Predicting Obstructive Sleep

Apnea Using a Brief, Daytime, Non-Intrusive Test Proce-

dure

Many different questionnaires have been designed for OSA screening. These question-

naires try to identify patients at risk of OSA by asking them questions about symptoms

(snoring, EDS, etc.), comorbidities (e.g. hypertension), risk factors (age, BMI, neck cir-

cumference, etc.) and family history. One of the most common validated questionnaires

for OSA screening is the Berlin questionnaire. It consists of 11 questions and stratifies

patients into high or low risk of having OSA based on their endorsement of symptom

severity [NSN99]. Though questionnaires like the Berlin questionnaire are validated and

commonly used by clinicians, they still primarily rely on self-report, which is prone to

error. Patients may not answer questions very accurately because of genuine forgetfulness

and lack of judgment. However, some patients may also deliberately provide the wrong

answers to the questions to exaggerate or minimize the severity of their condition. Even

though these questionnaires have the advantage of being short and providing a quick way

to exclude low-risk patients, they still cannot replace objective forms of evaluation. In

this work, we propose a daytime screening tool that combines the questionnaires with a

more objective protocol to assess the presence of OSA. Though it may seem counterin-

tuitive to diagnose a sleep disorder during wakefulness, the proposed protocol relies on

detecting changes that transcend the period of sleep. Specifically, it leverages the brain

structural changes that are caused by the OSA disorder. Studies have shown that OSA

is accompanied by brain injury as a result of oxygen depletion to the brain. The mech-

anisms by which OSA leads to brain injury have been demonstrated in both animal and
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human studies [MMQ03], [MKW08]. It has been shown that the injury specifically affects

central autonomic regulatory regions of the brain, which are responsible for regulating

cardiovascular functions, like blood pressure and heart rate. In this work, we present the

subjects with a set of autonomic challenges that are designed to trigger cardiovascular

responses. Analyzing the cardiovascular responses signaled by a healthy brain versus the

responses signaled by an injured brain provides insights into the existence of OSA.

3.2.1 Related Works

The serious negative impact of obstructive sleep apnea on human health makes monitor-

ing and diagnosing it a necessity. Due to its debilitating nature and in an effort to reduce

cost, waiting time, and the discomfort associated with the traditional OSA diagnostic

method, a plethora of novel OSA detection methods have been proposed in the litera-

ture. The great majority of these methods are nocturnal ones. Some of these methods

seek to detect OSA acoustically by analyzing breathing and snoring sounds ([YM09],

[AGK12]). Others use respiratory effort to detect if a subject has stopped breathing

([ANK00], [HXL13]). Other techniques rely on brain waves (EEG) and sleep stage in-

formation ([MSK09], [SHL14]), heart rate ([CHS03], [SZE00], [MPI00]) , or oximetry

([RRK14], [MHA09]), or a combination of these signals to detect OSA. A more detailed

explanation of these methods was provided in Section 2.3.2. Only very few works have

attempted to detect sleep apnea during wakefulness and they all have considerable draw-

backs. In [LRH09], the authors use ultrasound imaging to measure the width of the

subject’s tongue. They claim that the severity of the OSA disorder is correlated with

the width of the tongue base; however, no results to support that claim were shown. In

[SMK93], ultrafast MRI was used in an attempt to detect and localize the sites of obstruc-

tion in the pharyngeal airway. While the technique achieved good results (87%) when

performed on a sleeping subject, it performed worse than a random guess (47%) when

conducted during wakefulness. Another study tried to predict OSA during wakefulness

by using EEG and pupil size as predictors ([LPL08]). Sleepiness affects the beta and

theta brain wave patterns and the size of the pupils. The test relies on the OSA patients

exhibiting signs of excessive daytime sleepiness when they come in for the test. Even

though this test can be performed during wakefulness, it is still restrictive as it needs
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to be performed 12 hours after the subject’s mid-sleep period to increase the chance of

sleepiness occurring, and if sleepiness does not occur, the test is inconclusive. In [MM11],

a method based on tracheal breath sound analysis was proposed. The breath sounds

resulting from breathing through the nose and mouth were recorded using a microphone

placed over the suprasternal notch of the trachea in both the supine and upright posi-

tions. Based on the features extracted from the digitized acoustic signals, the authors

pictorially showed that the extracted features achieve good separability between the OSA

and non-OSA classes, but again, no quantitative classification results were provided.

Given all the aforementioned methods, the main contributions of this work are:

• An end-to-end OSA screening framework that can identify OSA patients while they

are awake using a novel technique that triggers brain responses that are indicative

of the OSA disorder. The technique does not rely on a specific time or patient

condition (e.g. sleepiness) and does not disrupt the patient’s sleep like the nocturnal

methods.

• The screening method is simple, non-intrusive, and requires no specialized person-

nel. It can be performed in a home environment or at the physician’s office.

3.2.2 Obstructive Sleep Apnea Screening Tool

In this section, we describe our OSA screening tool that consists of a) an Android phone

application for data collection and b) a data analytics component for OSA prediction.

This section also describes the clinical trial conducted to validate the viability of the

proposed screening tool.

3.2.2.1 Data Collection Framework

Our data collection system consists of a smartphone loaded with our data collection

software, a Bluetooth-enabled blood pressure monitor, and a Valsalva device. The data

collection software is an Android application that guides users through a 15-minute pro-

tocol. The structure of the protocol is shown in Figure 3.1. Phase I of the application

includes some setup instructions for the patient. It ensures that 1) patients are ready to
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Figure 3.1: 15-minute protocol implemented by the data collection system.

spend an uninterrupted 15 minutes taking the test, 2) the blood pressure (BP) cuff is on

and the BP monitor is ready to use and 3) the Valsalva device has been tested.

In phase II of the protocol, the application presents the user with a questionnaire. The

questionnaire consists of 15 questions that aim to assess the user’s sleep quality, sleepiness,

psychological status, as well as some aspects of the user’s context. The questionnaire

consists of a short form of the Pittsburgh Sleep Quality Index (PSQI) [BIM89], the

sleepiness screening (SS) tool [ZRF08], the Perceived Stress Scale (PSS-4) [CKM83], as

well as the Patient Health Questionnaire (PHQ-4) [KSW09], which are all short forms

of validated questionnaires used by health care professionals as symptom measures for

sleep quality, sleepiness, perceived stress, and psychological health, respectively. The

questionnaire also includes two contextual questions that aim at assessing the user’s level

of physical activity and if any unusual events have occurred in the user’s life on a given

day. Table 3.2.2.1 lists each of the 15 questions and what measure they each try to

assess. Following the questionnaire, the application visually guides the patient through

a 5-minute rest period and indicates the end of the rest period with a beeping sound.

The phase III rest period comes in preparation for the BP measurement to follow.

In M1, the patient is instructed and walked through the steps of taking his/her resting

BP (bp baseline) and resting heart rate (HR baseline) using the Bluetooth-enabled blood

pressure monitor.

After the BP measurement, phase IV – the challenge phase – starts. The challenge

phase consists of 3 parts: baseline (B), challenge (C), and recovery (R). In the baseline

period, users are instructed to stay calm for 60 seconds in order to reach their nor-

mal/resting BP and to prepare for the following challenge. In the challenge period, the

user is visually guided to perform the Valsalva maneuver wherein patients blow against
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Measure QID Question Validated Questionnaire

q 1 What time did you go to bed?

q 2 Approximately how long did it take for you to get to sleep?

Sleep Quality q 3 Approximately how many hours did you sleep? PSQI

q 4 What time did you get out of bed in the morning?

Sleepiness q 5 Please rate your sleepiness today (0 = none, 10 = extremely high). SS

q 7 In the last day, how often have you felt that you were unable to control the important things in your life?

q 8 In the last day, how often have you felt confident about your ability to handle your personal problems?

Perceived Stress q 9 In the last day, how often have you felt that things were going your way? PSS-4

q 10 In the last day, how often have you felt difficulties were piling up so high that you could not overcome them?

q 11 In the last day, how often have you experienced little interest or little pleasure in doing things?

Depression q 12 In the last day, how often have you felt down, depressed or hopeless?

q 13 In the last day, how often have you felt nervous, anxious or on edge? PHQ-4

Anxiety q 14 In the last day, how often have you not been able to stop or control worrying?

q 6 Did you experience anything out of your normal routine in the past 24 hours?

Context q 15 Rate your level of physical activity over the last 24 hour period. N/A

Table 3.1: Questionnaire presented at phase II of the data collection system. Column 1:

measure to be assessed, Column 2: question ID, Column 3: question text, Column 4: the

name of the validated questionnaire containing the questions

a closed airway connected to a pressure measuring device. Using the Valsalva device, the

patient is instructed to exhale for 18 seconds at a pressure of 40 mmHg, which is indicated

by a blue light on the Valsalva device used in this study. The Valsalva maneuver leads

to changes in blood pressure and heart rate and is usually used as a test of cardiovascu-

lar function [PBT84]. Since OSA is associated with a dysfunction in the cardiovascular

regulation, comparing the cardiovascular responses caused by the Valsalva maneuver as

signaled by an injured brain to the changes signaled by a healthy brain could provide

evidence of the presence of OSA. The challenge period is followed by a 90-second period

in which the user recovers from the challenge.

After phase IV, a second set of BP and heart rate measurements (bp end and HR end)

is taken at the end of the test. The BP and heart rate measurements (M1 and M2), as

well as the answers to the questionnaire, are collected by the application and uploaded

to a HIIPA-compliant server.

3.2.2.2 OSA Prediction Framework

The ultimate goal of the developed system is to classify a patient into one of the two

following classes: non-OSA (healthy) and OSA. This section describes the prediction

system which takes a set of features as input and, after analyzing the features, makes a
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decision about a specific patient.

A. Feature Extraction The first step of the prediction process is to extract a useful

set of features from the collected signals. This step is critical to the success of any

prediction system as an effective set of features decreases the computational complexity

of the system and increases classifier performance. Five categories of features are used

in the analysis: physiological, sleep quality-related, sleepiness-related, psychological, and

contextual features. The physiological features are extracted from the BP and heart rate

measurements, while the other features are extracted from the questionnaire responses.

Category I - Physiological The physiological features used in the analysis are

bp sys diff, bp dias diff, and HR diff, which correspond to the difference between the

systolic BP measurements M1 and M2, the difference between the diastolic BP measure-

ments M1 and M2, and the difference between the heart rate measurements M1 and M2,

respectively. The Valsalva maneuver performed in phase IV of the protocol is known to

evoke a sequence of blood pressure and heart rate changes. These changes involve a rapid

increase in blood pressure at the time of exhalation (BP rises above baseline), followed

by a rapid decrease in blood pressure at the time of air pressure release when the user

starts breathing normally (BP falls below baseline) and finally, recovery (BP goes back

to baseline). The heart rate shows a similar response but in the opposite direction of

blood pressure. Studies have shown that these same changes occur in healthy as well as

OSA subjects, but that a sleep apneic’s response is delayed and less pronounced. For

example, [MKW13] shows that the OSA subjects failed to raise heart rate to the same

extent as the healthy subjects and that the start of the increase is delayed compared

to healthy subjects. The three aforementioned features aim to capture the extent of

change in blood pressure and heart rate between the baseline measurement M1 and the

post-Valsalva measurement M2 to help distinguish between OSA and healthy subjects.

Category II - Sleep Quality The next set of features aims to distinguish between

the two populations based on the quality of their sleep.

• sleep latency: This metric is a measure of sleep deprivation and is derived from q
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2. Sleep latency is the amount of time it takes a person to fall asleep. Due to their

disorder, OSA patients are usually sleep deprived and fall asleep much faster than

a healthy person. We expect OSA patients to have a shorter sleep latency. Based

on PSQI, we differentiate among 4 different latency levels: ≤ 15 minutes (sleep

deprived), 16-30 minutes (normal), 31-60 minutes (long normal), and > 60 minutes

(insomniac).

• sleep efficiency: This metric is an important measure of sleep quality. It is the ratio

of time spent asleep to the amount of time spent in bed (
total time spent sleeping

total time spent in bed
).

It is derived from questions q 1, q 3 and q 4 and is calculated as
q 3

q 4− q 1
. OSA

patients can have a very high sleep efficiency since, due to sleep deprivation, they

fall asleep quickly and stay asleep for most of the time while they are in bed, even

though not in NREM3 and REM sleep, which are the sleep stages where the physical

and mental regeneration occur, respectively. Some OSA patients, however, can have

a low sleep efficiency if they suffer from depression – a common comorbidity of OSA.

Insomnia – a symptom of depression – can cause OSA patients to have a lower sleep

efficiency than healthy subjects. In both cases, OSA subjects’ sleepiness (explained

under Category III) will be negatively affected. We follow the same scoring scheme

used in PSQI and differentiate among 4 different levels of sleep efficiency: >85%

(very good), 75% - 85% (good), 65% - 74% (bad), and <65% (very bad).

• sleep duration: This metric is derived from q 3. Again based on PSQI, we differen-

tiate between 4 levels of durations: >7 hours, 6-7 hours, 5-6 hours, and <5 hours.

We expect sleep apnea patients to report longer sleep durations because their poor

sleep quality does not give them the rest they need, causing them to stay in bed

longer.

Category III - Sleepiness Another feature we use in our prediction system is

sleepiness. This metric is a measure of daytime sleepiness and is derived from q 5. We

expect OSA patients to have higher sleepiness values than healthy subjects since OSA

results in excessive daytime sleepiness.
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Category IV - Psychological The next set of features aims to distinguish between

OSA and non-OSA subjects based on their psychological health which is negatively af-

fected by the lack of efficient, regenerative sleep, as well as by the brain injury caused by

OSA. We expect OSA patients to have poorer psychological health than healthy subjects.

• perceived stress: This metric is a measure of the degree to which a person is expe-

riencing stress in his/her life. This feature is derived from questions q 7, q 8, q 9

and q 10 and scored according to PSS-4. Each of the perceived stress questions has

5 response alternatives corresponding to 0=never, 1=almost never, 2=sometimes,

3=fairly often, and 4=very often. This measure is calculated as q 7 ¬ q 8 + ¬ q 9

+ q 10, where the ¬ q x is the negation of the question’s answer, calculated as 4

minus the provided answer. The higher the calculated perceived stress metric, the

more stressed a subject is.

• depression: This metric is used by health care personnel to screen for depression.

The metric is derived from q 11 and q 12 and scored according to PHQ-4. Each

of the depression questions has 4 response alternatives: 0=not at all, 1=several

times, 2=very often, and 3=the whole day. This metric is calculated by summing

up the answers to both questions: q 11 + q 12. Based on PHQ-4, scores are rated

as depressive (3-4) and normal (0-2).

• anxiety: This metric is used by health care personnel to screen for anxiety. The

metric is derived from q 13 and q 14 and scored according to PHQ-4. Each of the

anxiety questions has 4 response alternatives: 0=not at all, 1=several times, 2=very

often, and 3=the whole day. This metric is calculated by summing up the answers

to both questions: q 13 + q 14. Based on PHQ-4, scores are rated as anxious (3-4)

and normal (0-2).

• psychological distress: This metric combines the depression and anxiety scores into

one global measure of psychological distress. It is calculated by adding the depres-

sion and anxiety scores (depression + anxiety). Based on PHQ-4, scores are rated

as normal (0-2), mild (3-5), moderate (6-8), and severe (9-12) and we differentiate

between these 4 levels of distress in our data.

64



Category V - Contextual The next couple of features help us understand the

user’s context.

• atypical events: This metric indicates whether or not patients have experienced

anything out of their normal routine during the last 24 hours. This question helps

us understand the user’s daily context and is very useful for eliminating outliers.

Unusual events can elicit OSA symptoms in non-OSA subjects. A non-OSA patient

who just got fired, for example, may exhibit the same symptoms of depression,

anxiety and poor sleep quality as an OSA subject. This metric is derived from q 6.

• physical activity: This metric is derived from q 15 and reflects how energetic a

subject is. The higher the level of physical activity of a certain subject, the more

likely it is that he/she is happier and less stressed and anxious.

B. Classification In the classification step, the feature vector including the aforemen-

tioned features for a specific subject on a specific day is provided to the classifier as

input. The classifier then maps the input to one of the two possible output classes: OSA

or non-OSA. Two statistical classifiers were used to classify a feature vector belonging

to a subject into the OSA or non-OSA category. A training dataset is used to train

the classifier and to obtain the parameters that will provide the best classification per-

formance. The training dataset contains multiple instances of feature vectors and their

corresponding class labels. A separate testing dataset contains unlabeled feature vectors

that the classifier will assign to a class label. The overall accuracy of the classifier is

determined by the percentage of the testing data that was assigned to the correct output

class. The classifiers used in this work are based on different statistical principles and are

described below.

• The Support Vector Machine (SVM) classifier is a binary non-probabilistic linear

classifier. Training a support vector machine consists of constructing an optimal

hyperplane in the feature space. The optimal hyperplane is the one that maximizes

the separation between the nearest training samples of the two different classes.

Once the hyperplane is constructed, the testing data can be projected onto the

feature space and classified by the hyperplane into one of the two classes. In this
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study, we used the sigmoid kernel function with a cost of 0.8 and an intercept

constant of 0.1.

• The k-Nearest-Neighbor (k-NN) classifier uses the notion of distance between data

points in the feature space as the basis for classification. In the training phase,

the algorithm simply stores the labeled feature vectors and the class labels of the

training samples. In the testing phase, it assigns a testing data point to the class

that is the most common among the testing point’s k nearest neighbors based on a

majority vote of its neighbors. In this work, k = 3 and the Manhattan distance is

used as the distance metric.

3.2.2.3 UCLA Obstructive Sleep Apnea Study

Our system has been deployed in a UCLA IRB approved pilot study of 16 subjects. 3

of the subjects had been diagnosed with sleep apnea through the gold standard PSG

method and the remaining 13 are healthy control subjects. All subjects were given kits

that consist of an Android phone, preloaded with our application, a Bluetooth-enabled

BP monitor, and a Valsalva device. Every subject completed the test protocol described

in Section 3.2.2.1 daily for a total period of 42 days. The data recorded by the phone

application is uploaded to our HIIPA-compliant server when each daily test is completed.

The uploaded data is then split into a training set and a testing set. The training set

is used by our prediction system to train the classifiers, while the testing set is used as

input to our trained classifiers to make predictions and to evaluate the performance of

our classifiers.

3.2.3 Results & Discussion

Experiment I To evaluate the performance of our classifiers, testing was done using

Leave-One-Out-Cross-Validation (LOOCV). For this study, this is the only kind of cross-

validation that can evaluate the accuracy of the classifiers without bias. Due to the fact

that the data includes 42 observations per subject, an n-fold cross-validation approach

would yield overly-optimistic results since a subset of those observations will be in the

training set and the rest of the observations will be in the testing set. Having observations
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Predicted Outcome

SVM k=3 NN

OSA? Yes No Yes No

Yes 68 34 80 22

No 72 352 109 315

Sensitivity/Specificity 66.7% 83.0% 78.4% 74.3%

Overall Accuracy 79.8% 75.1%

Table 3.2: Confusion matrix for the SVM and k -NN Classifiers

for the same subject in both the training and testing sets introduces bias into the results

since we expect observations for the same patient to be similar even if the test was

performed on different days. In this study, we employ a special case of LOOCV, namely

a leave-one-patient-out-cross-validation (LOPOCV) in which we omit all observations for

the same patient and train the classifier on the remaining data. The omitted subject’s

observations are then used for testing. After filtering out outliers, we are left with 424

observations for the non-OSA class and 102 observations for the OSA class. Due to the

imbalance in our dataset (3 OSA subjects, 102 observations vs. 13 control subjects, 424

observations), we also randomly undersampled the training dataset to balance the OSA

and non-OSA observations. Using the features described in Section 3.2.2.2 and LOPOCV,

we were able to achieve an overall classification accuracy of 75.1% and 79.8% using the

k=3 NN and SVM classifiers, respectively. Table 3.2.3 shows the confusion matrices for

the two classifiers.

We can see that even though the overall accuracy of the SVM classifier is ≈ 80%

as compared to the ≈ 75% accuracy of the k=3 NN classifier, the sensitivity of SVM is

much lower than the sensitivity of k=3 NN. For a medical classification task, it is very

important for the results to be both sensitive (all OSA patients are correctly classified as

OSA) and specific (all healthy subjects are correctly classified as healthy) since we would

not want people with the disorder to go unnoticed or people without the disorder to think

they’re sick when they really aren’t. With 78.4% sensitivity and 74.3% specificity and

an overall screening accuracy of 75.1%, the k=3 NN proves to be the better classifier for

this classification task.
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The SVM classifier builds a global model of the data, meaning that it uses the complete

training dataset to compute a global function that maps a feature vector to a class label.

k-NN, on the other hand, takes a local approach to classification where prediction is done

by local functions using only a subset of the training dataset – the neighboring points

in this case. The fact that the local performs better than the global approach for the

prediction of OSA suggests that not all members of the same class, whether OSA or non-

OSA, are similar to each other, but rather that within the same class there are different

clusters of subjects. For example, some healthy subjects can have very poor sleep quality

and some OSA subjects can be psychologically healthier than non-OSA subjects, but in

both cases, these subjects will share other properties with subjects from their class. SVM

constructs a hyperplane that partitions the feature space into two regions belonging to

each class. A test point has to fit into one of these two precomputed regions. In that

sense, SVM tends to oversimplify the two groups. The local approach works well because

decisions are made based on small local neighborhoods of similar clusters. This approach

assigns more significance to differences between subjects in the same class.

Experiment II Another important metric for evaluating a classifier, especially one

that is applied in the medical field, is the variance. In our study, each subject repeated

the screening test daily for a period of 42 days. Though the answers to the questionnaire

and the BP measurements may vary from day to day for the same subject, we don’t

expect the intra-subject variability to be very high and we certainly don’t expect the

decision as to whether or not a subject is suffering from OSA to change from one day

to the next. Therefore, the ideal classifier would assign all the observation for the same

patient to the same class label. The repeatability of a medical test is crucial to its validity

and reliability. To measure the repeatability of our test, we use statistical variance to

measure the variation in the predictions of a classifier; the lower the variance, the more

consistent the predictions are and the more repeatable the test is. Figure 3.2 shows the

variance for each subject’s predictions and the overall average variance of the k=3 nearest

neighbor classifier. Notice that a test can have a perfect (zero) variance if it always gives

the wrong prediction. In our results, we show that our classification results are both

accurate (75.1% accuracy) and repeatable (0.17 variance).

68



Figure 3.2: Shows the variance for each of the 16 subjects (S1-S16). The length of each

line is proportional to the number of observations for each subject after the removal of

outliers.

Experiment III In an attempt to better understand the importance of each feature

category (see Section 3.2.2.2) for the prediction of OSA, we successively eliminated one

feature category from our dataset. We then repeated the training and testing steps for the

reduced dataset using the k=3 NN classifier. Figure 3.3 shows the accuracy, sensitivity,

and specificity of the classification after eliminating each of the 5 feature categories. The

experiment results, as shown in the figure, indicate a decrease in classification accuracy

when any of the 5 feature categories is removed, compared to when all categories are

preserved. The decrease in accuracy is mainly due to the dramatic decrease in sensitivity.

As the figure shows, when any one of the 5 feature categories is missing, the test’s ability

to correctly identify OSA patients diminishes from ≈ 78%, when all features are present,

to ≈ 24% on average when one of the categories is missing. This shows that all the feature

categories play a vital role in the diagnosis of OSA. The results reveal the intricacy of

the OSA disorder which affects first, our sleep quality, and as a result, our body, mind

and daily activities.
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Figure 3.3: Shows the accuracy, sensitivity, and specificity of classification before elimi-

nating any feature categories and after eliminating each category at a time.

3.2.4 Conclusion

In this work, we proposed a daytime OSA screening tool, which is non-intrusive, afford-

able, and time-efficient. The presented method relies on triggering autonomous responses

that are indicative of the disorder. The accuracy of the proposed OSA classification sys-

tem has been validated in a UCLA IRB approved study and the results demonstrate

considerable potential in applying the k-NN classifier to data obtained from our Android

application to help a sleep specialist in the initial assessment of patients with suspected

OSA. The affordability and non-nocturnal nature of the tool will make OSA screening

accessible to a larger population, leading to an improved detection of this notoriously

under-diagnosed sleep disorder and the reduction of health care costs.

3.3 A Sex-Aware Framework for the Daytime Detection of Ob-

structive Sleep Apnea

To improve the accuracy of the daytime screening method described in Section 3.2.2, we

extend it by leveraging the insights we gained from the experiments we conducted. From

the experiments in that section, we conclude the following:
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• The physiological category of features plays a significant role in the classification of

OSA.

• From the fact that a simple k-NN classifier outperforms SVM alludes to the exis-

tence of different clusters within the same class.

Based on these two conclusions, we included more physiological features in the analysis

by adding a pulse oximeter as an additional sensor, as well as by adding a couple of new

autonomous challenges to the protocol described in Section 3.2.2.1. In addition to the

Valsalva challenge, which was described in Section 3.2.2.1, this work extends the protocol

by adding a breath hold challenge and a stroop challenge. These three challenges have

been shown to elicit clear cardiovascular responses in the human body and are therefore

ideal for assessing the state of the brain that signaled those responses. Also, the added

pulse oximeter enables us to extract more features from all three challenges that were

not possible before with the BPM as the only data source. The pulse oximeter provides

a blood oxygen saturation (SpO2) signal, as well as a continuous heart rate signal, which

can be derived from the plethysmographic waveform generated by the pulse oximeter.

Furthermore, to address the clustered nature of the data, this work utilizes unsuper-

vised learning and clustering techniques to find intrinsic hidden structures in the data.

Our analysis shows that, within each class of subjects, there exist clusters that happen

to correspond to the two different sexes. Based on this finding, we designed a different

classification model for each of those clusters, rather than one global model like we did

in our previous work.

3.3.1 Related Works

In an effort to reduce cost, waiting time, and the discomfort associated with the traditional

OSA diagnostic method, a plethora of OSA detection methods have been proposed in the

literature. Some techniques seek to detect sleep apnea acoustically by analyzing breathing

and snoring sounds ([YM09], [AGK12]). Others use respiratory effort to detect if a subject

has stopped breathing [ANK00], [HXL13]). Other techniques rely on brain waves (EEG)

and sleep stage information ([MSK09], [SHL14]), heart rate ([CHS03], [SZE00], [MPI00])

, or oximetry ([RRK14], [MHA09]), or a combination of these signals to detect OSA.
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Despite this wide variation in detection methods, the aforementioned techniques are

all nocturnal detection methods predicated on identifying the presence of OSA by de-

tecting apneic episodes. Since apneas only occur during sleep, these methods must be

performed overnight while the subject being tested for the disorder is sleeping. Exist-

ing methods that attempt to detect sleep apnea during wakefulness have considerable

drawbacks. In [LRH09], the authors use ultrasound imaging to measure the width of

the subject’s tongue, based on a relationship between OSA severity and the width of

the tongue base; however, no results to support that claim were shown. In [SMK93],

ultrafast MRI was used to localize sites of obstruction in the pharyngeal airway. While

the technique achieved good results (87%) when performed on a sleeping subject, it per-

formed worse than a random guess (47%) when conducted during wakefulness. Another

study tried to predict OSA during wakefulness by using EEG and pupil size as predictors

([LPL08]), based on sleepiness affecting the beta and theta brain wave patterns and the

pupil size. However, the test relies on OSA patients exhibiting signs of excessive daytime

sleepiness at the time of the test, which is therefore recommended to be performed 12

hours after the subject’s mid-sleep period to increase the chance of sleepiness occurring.

If sleepiness does not occur, the test is inconclusive. In [MM11], breath sounds resulting

from airflow through the nose and mouth were recorded using a microphone placed over

the suprasternal notch of the trachea in supine and upright positions. Based on the fea-

tures extracted from the digitized acoustic signals, the authors pictorially showed that

the extracted features achieve good separability between the OSA and non-OSA classes,

but again, no quantitative classification results were provided. The method in this work

addresses shortcomings in these existing approaches.

The main contributions of this work are:

• An OSA screening framework that can identify OSA patients while they are awake

using a novel technique that triggers brain responses that are indicative of the OSA

disorder. The technique does not rely on a specific time or patient condition (e.g.

sleepiness) and does not disrupt the patient’s sleep like the nocturnal methods.

• The screening method is simple, non-intrusive, and requires no specialized person-

nel. It can be performed in a home environment or at the physician’s office.

72



• The diagnosis accuracy is improved by taking into account sex-related differences,

which none of the existing diagnosis techniques consider.

3.3.2 Extended OSA Screening Protocol and Data Collection Framework

The OSA Screening protocol used in this work is an extension of the protocol explained

in Section 3.2.2. More specifically, phase IV of the protocol shown in Figure 3.1 was

extended to include the two new challenges. Phase IV is the core of the screening tool,

which visually and acoustically guides users through a series of tasks, which we call

challenges. These challenges have been shown to elicit clear cardiovascular responses in

the human body and are therefore ideal for assessing the state of the brain that signaled

those responses. Each challenge is preceded by a baseline period that is used as a reference

point when analyzing the changes that happen during the challenge. Each challenge is

also followed by a recovery period, which is designed to relax the subject and prepare

him/her for the next challenge. The three challenges and the cardiovascular responses

they trigger are described below. As shown in Figure 3.4, in this extended protocol, a

pulse oximeter continuously measures heart rate (3Hz), blood oxygen saturation (SpO2)

(3Hz) and photoplethysmograph waveform (75 Hz) starting at phase III until the end of

the 20-minute screening protocol. At the end of the protocol, the smartphone transmits

all the data it received from the devices over Bluetooth to a secure HIIPA-compliant

server for data storage and processing.

Challenge I: Valsalva Maneuver The Valsalva maneuver is usually used as a test

of cardiac function. The maneuver is performed by forcefully blowing against a closed

airway. In our study, the subject is provided with a Valsalva device, which is a tube that

is closed on one end and connected to a pressure measuring device. Using the Valsalva

device, the subject is instructed to exhale against the tube for 18 seconds at a pressure

of 40 mmHg, which is indicated by a blue LED on the Valsalva device. The Valsalva

maneuver has been shown to result in a distinct pattern of heart rate changes that is

mainly characterized by rapid tachycardia (increase in heart rate) during exhalation, an

undershoot after release, and a slow but steady increase towards the baseline heart rate

during the recovery period, as can be seen in Figure 3.5. Studies have shown that the
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Figure 3.4: The extended protocol implemented by the data collection system. The

extension includes two additional challenges in phase IV and continuous pulse oximeter

measurements starting at phase III.
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effect of the Valsalva maneuver is less pronounced and delayed in OSA patients than in

healthy controls [MKW13], reflecting the inability of the injured OSA brain to raise the

heart rate to the same extent as a healthy subject’s during the exhalation phase or lower

it to the same extent in the release phase, as shown in Figure 3.5.

Figure 3.5: The heart rate response to the Valsalva maneuver in Control and OSA sub-

jects. The x-axis shows the time relative to the start of the Valsalva maneuver and the

y-axis shows the % change in heart rate.

Challenge II: Breath Hold During the breath hold challenge, the subject is in-

structed to hold his/her breath for 30 seconds. The heart rate response to the breath

hold challenge is opposite to that of the Valsalva maneuver. The response is characterized

by bradychardia (slowing of the heart rate) during the breath hold, an overshoot after

release, and a steady decrease towards the baseline heart rate. Again here, we expect to

see a less pronounced cardiovascular response in the OSA patients.

Challenge III: Stroop The stroop challenge is a test in which the subject is pre-

sented with the name of a color that is printed in a different color than the name indicates

(e.g. the word blue is printed in green). In this study, we have a stroop baseline phase, in

which the name and the color match (congruent stroop), followed by the challenge phase

with mismatched names and colors (incongruent stroop). Subjects have 2 seconds to
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name each color that appears on the phone screen. Studies have shown that the stroop

test is characterized by heightened heart rate levels as a result of the stress it creates

[RB97]. Again, because stress is strongly linked to autonomic nervous system functions,

including heart rate and BP regulation, we expect to see an altered heart rate response

to stress in OSA patients.

3.3.3 OSA Analytics and Prediction Framework

21 subjects (15 controls and 6 OSA) were enrolled in a UCLA Institutional Review

Boards-approved pilot study. All controls are healthy without any major illnesses or

diagnosed cardiovascular disease. The OSA patients had been diagnosed with sleep apnea

using gold standard PSG, with AHI values ranging from 8 to 55. All subjects were given

kits consisting of a Bluetooth-enabled blood pressure monitor (BPM), a Blueooth-enabled

pulse oximeter, a Valsalva device, and a smartphone preloaded with our OSA screening

protocol and data collection application. Each of the 21 subjects performed the screening

protocol described in the previous section every day for a period of 42 days, for a total

of 882 observations. In this section, we describe how these data are used to make a

diagnosis.

3.3.3.1 Feature Extraction

After preprocessing the data and excluding flawed recordings and outliers, we perform

feature extraction. From the questionnaire responses, we extract a total of 15 sleep qual-

ity, sleepiness and psychological features, which we described in our previous work. In

this work, we focus on the new physiological features that reflect brain functionality. We

developed a peak detection algorithm in order to extract the instantaneous heart rate sig-

nal from the plethysmographic waveform provided by the pulse oximeter. Instantaneous

heart rate is used in all heart rate-related feature computation. Some of the features

are standard features and some were empirically derived. The most prominent features

derived from each challenge are presented below:

Valsalva The purpose of the features extracted from the Valsalva challenge is to cap-

ture the differences in both the magnitude and the timing of the autonomic response
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between OSA and control. To capture the magnitude or extent of heart rate increase

and undershoot during the Valsalva maneuver, we compute the tachycardia ratio and

the Valsalva ratio, respectively. The tachycardia ratio measures the heart rate increase

between baseline and the peak of the challenge, while the Valsalva ratio measures the

extent of the heart rate undershoot in the release period, compared to the peak during the

challenge. The area-under-the-curve feature captures the sustained increase in heart rate

during the challenge; the increase curve is usually blunted in OSA patients and would

result in a smaller area under the curve. To express the timing of the heart rate increase,

which is usually delayed in OSA patients, we calculate the slope of the increase curve.

These four feature are shown in Figure 3.6.

Figure 3.6: Features of the Valsalva challenge. 1. TR is the tachycardia ratio: (peak

HR during challenge/baseline HR), 2. S is the slope of the HR increase curve during the

challenge, 3. AUC is the area under the HR increase curve, 4. VR is the Valsalva ratio:

(peak HR during challenge/minimum HR during undershoot)

Breath Hold From the breath hold challenge, we extract the breath hold ratio feature,

which is similar to the valsalva ratio described above, except the heart rate decreases in

this case. The breath hold ratio captures the magnitude of heart rate decrease during

the challenge, compared to the baseline heart rate. Another feature we extracted is

the difference in blood oxygen saturation (SpO2) between the baseline period and the
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challenge period. Because of their disorder, OSA patients are more susceptible to oxygen

desaturation in response to pauses in breathing. This feature, therefore, captures the

rapid blood oxygen desaturation characteristic of OSA.

Stroop The features extracted from this challenge are the difference in heart rate be-

tween baseline and congruent stroop, and between baseline and incongruent stroop.

Other features used include average resting heart rate (usually higer in OSA), average

resting SpO2 (usually lower in OSA), and heart rate variability (HRV). HRV is a global

indication of how capable the brain is of responding to cardiovascular challenges by

decreasing and increasing the heart rate. The higher the HRV, the more responsive

the brain is to external stimuli. We use two measure of HRV: the standard deviation and

the interquartile range (IQR).

3.3.3.2 Sex-Aware Feature Selection And Classification

Though OSA is more prevalent in males, studies have shown that it has a more detrimen-

tal effect on females. Females showed a more pronounced heart rate response impairment

(lower amplitude, delayed onset, and slower rate changes) than males [MKW13]. Given

the different effects that OSA has on members of the different sexes and the different re-

sulting heart rate response patterns, designing a single global model for diagnosing OSA

patients of both sexes would be insufficient. In this work, we build two different predic-

tion models for male and female subjects and perform features selection for each group

separately. To make a diagnosis, we first cluster a subject into his/her appropriate sex

group and then perform classification using the specific model for the subject’s sex. This

sex-aware classification achieves more superior results than the sex-agnostic model. We

found that the Bayesian Network classifier achieved the best results for the male cluster,

while the k Nearest Neighbor (kNN ) classifier worked the best for the female group.

A Bayesian Network is a probabilistic graphical model in which the feature space is

represented as a directed acyclic graph (DAG). The nodes of the DAG correspond to

the features, while the edges of the DAG represent the influence of one feature on an-

other. Each node is annotated with a conditional probability distribution that represents

p(Xi|Pa(Xi)), where Xi is a feature and Pa(Xi) is the parent of that feature in the
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DAG. Probabilistic inference can then be used to make predictions about the class that

a feature vector belongs to.

The kNN classifier is a type of lazy learning that defers all computation till classi-

fication. In the training phase, a kNN classifier merely stores the feature vectors and

class labels. In the testing phase, it assigns a testing data point to the class label of the

majority of its k nearest neighbors based on a distance metric. In this work, k=3 and

the distance metric is the Manhattan distance.

To avoid pseudo-replication, we perform Leave-One-Subject-Out Cross-Validation

(LOOCV), where all observations for one subject are used for testing and the remaining

observations are used to train the gender-specific models.

3.3.4 Results And Discussion

To evaluate the merit of a sex-aware model for the diagnosis of OSA, we show the Receiver

Operating Characteristics (ROC) curves for the sex-agnostic and the sex-aware OSA

classifications in Figure 3.7. The classifier that achieved the best results for the entire

dataset (male + female subjects) was the Random Forest classifier. The Random Forest

classifier is an ensemble learning method that constructs multiple decision tree predictors

at training time. Each tree casts a vote about the class label for a specific feature vector

and the most popular class is assigned to the feature vector at testing time. As can be

seen in the figure, both the sex-agnostic and sex-aware models achieve excellent prediction

accuracy (AUC >0.97) as a result of the novel screening protocol and the extracted

physiological features. However, The importance of a sex-aware approach becomes clear

when comparing the sensitivity of the classification. Table 3.3.4 shows a more detailed

evaluation of the sex-aware and sex-agnostic approaches. While the sex-aware models

were successful at detecting OSA patients over 90% of the time, the sex-agnostic model

was only successful ≈74% of the time, making the sex-aware approach more suitable for

a medical diagnostic test. On closer investigation, we found that more than 90% of the

OSA instances that the sex-agnostic approach misclassified as Control are male subjects.

A possible explanation for this is that, when one model is used for males and females,

the male OSA patients appear healthy compared to their female counterparts who, as

stated earlier, get affected more seriously by the disorder. Again, this shows the need for
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a sex-aware approach.

Figure 3.7: ROC curves comparing the prediction accuracy of the gender-aware models

vs. the single gender-agnostic model.

3.3.5 Conclusion

In this work, we proposed a novel OSA screening method that can identify OSA patients

while they are awake without needing to monitor them during the night and disrupting

their sleep quality. Our approach relies on presenting the subjects with a sequence of

autonomic challenges that are designed to trigger specific cardiovascular responses. When

analyzed, these responses are indicative of brain alterations caused by the OSA disorder.

We also showed that a sex-aware classification approach performs much better than a sex-

agnostic model at detecting OSA patients. The proposed diagnosis framework offers an

affordable, and noninvasive screening tool for the prediction of OSA during wakefulness.
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Model Sensitivity Specificity Area Under ROC Overall Accuracy

Sex-Agnostic 0.736 0.989 0.972 91.8 %

Sex-Aware (M) 0.915 0.968 0.977 94.8 %

Sex-Aware (F) 0.933 0.984 0.995 97.7 %

Table 3.3: Classification results of the sex-agnostic and sex-aware approaches

3.4 A Daytime Obstructive Sleep Apnea Severity Assessment

Framework

Section 1.2.5 demonstrated the different treatment methods for the OSA disorder. Since

the therapeutic approach suitable for treating a specific patient largely relies on the

severity of the disorder, it is important for a diagnostic or screening tool to assess the

severity of the condition, as opposed to just its presence or absence. Assessing the severity

of the OSA condition can also enable a more optimal utilization of scarce PSG resources

by making it possible for patients with severe OSA to be more efficiently scheduled for

a PSG and to be given priority over other patients with a milder degree of the disorder.

A screening method that can provide severity analysis would also provide more detailed

results for the patient being screened and the severity of the condition might encourage

patients to go for a full PSG and get diagnosed. Furthermore, based on the guidelines

of the American Society of Anesthesiologist (ASA), patients undergoing surgery should

be screened for OSA to prevent possible perioperative (preoperative, intraoperative, and

postoperative) complications, which increase with the severity of the disorder [GBC06].

Since the screening needs to be done in a timely manner prior to surgery, the daytime

screening method proposed in Sections 3.2 and 3.3 would be ideal since it enables fast

screening without the need for a lengthy overnight study. In this work, we extend our

daytime screening tool to identify the different OSA severity levels. This is a challenging

task for two main reasons:

• Unlike our previous work, the problem of severity assessment is a multi-class classi-

fication problem that is significantly more challenging than the binary classification

problems investigated so far.

• In sleep medicine, the severity of sleep apnea is determined by the Apnea Hypopnea
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Index (AHI), which is the number of apneas or hypopneas recorded during PSG

per hour of sleep. Based on the AHI, the severity of OSA is classified as follows:

– None/Minimal: AHI <5/hour

– Mild: AHI ≥ 5/hour and <15/hour

– Moderate: AHI ≥ 15/hour and <30/hour

– Severe: AHI ≥ 30/hour

Because the AHI is, by definition, a nocturnal measure of the severity of OSA,

all the methods for the prediction of OSA severity available in the literature are

nocturnal methods. In this work, the goal is to use our daytime diagnosis method

to predict an inherently nocturnal measure.

3.4.1 Related Works

In an effort to overcome some of the limitations associated with PSG, research focused

on alternative diagnostic and severity identification methods has notably increased. New

techniques for OSA severity detection usually rely on the analysis of a reduced set of data

compared to PSG.

[MDV03] and [MHA12], for example, use only overnight oximetry to predict the AHI.

Because apneas and hypopneas are usually accompanied by oxygen desaturation due to

the lack of airflow, OSA patients tend to present unstable blood oxygen saturation (SpO2)

signals. In [MDV03], time-domain features like the number of O2 desaturations below

a certain threshold and the cumulative time spent below the normal saturation level

were used as severity predictors, while in [MHA12], frequency-domain features like the

power spectral density (PSD) of the oximetry signal were used in addition to time-domain

features to capture signal fluctuations due to repetitive apneas.

In [BTZ12] and [DTZ13], the signal of choice was an indirect measure of snoring

obtained overnight from a directional condenser microphone. The biological instability

of the upper airway structure across the night, especially during obstructive events, is

thought to change the snoring characteristics of apneic snorers compared to simple snor-

ers. Acoustic features representing intra- and inter-snore qualities were used to capture
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these characteristics and assess OSA severity.

In [SN14], disposable adhesive sensor patches embedded with ECG electrodes, a tri-

axial accelerometer and a Bluetooth Low Energy (BLE) module were used to collect ECG

and actigraphy data from sleeping patients. Heart rate, respiratory, posture and move-

ment features were extracted from 150-second sleep epochs and a Support Vector Machine

(SVM) classifier was trained to detect the presence/absence of apneas/hypopneas for each

epoch.

By reducing the number of sensors and the set of data that need to be analyzed

compared to a full PSG, and by eliminating the need for costly, complex equipment,

these methods achieve cheaper, more comfortable, and more portable early-stage OSA

severity screening that can significantly reduce screening wait times and increase access

to OSA diagnosis.

Despite the variation in the type and number of analyzed signals and extracted fea-

tures, two overarching themes characterize all the aforementioned screening methods.

First, they all rely on signals obtained overnight. The nocturnal nature of the methods

is expected since sleep is the time during which the obstructive events manifest and since

AHI is, by definition, a nocturnal measure. However, the dependence on sleep makes

nocturnal methods dependent on the subject’s sleep quality, which might be affected by

a variety of factors other than the OSA disorder. Also, the time required for a noctur-

nal screening method to provide severity results is not practical for perioperative risk

stratification. Second, all these methods first use regression analysis to estimate AHI

values, and then use the predicted values to categorize patients into the corresponding

severity group. This way, the assignment of patients into the correct severity category is

as accurate as the AHI prediction can be.

In the next section, we describe our daytime severity screening framework, which

relies on measurements obtained exclusively while subjects are awake without the need

for a lengthy overnight test. In addition, our method first solves the simpler problem of

assigning a subject into a coarse-grained OSA severity category using multi-class classifi-

cation, and then uses regression analysis to predict that subject’s AHI within the assigned

category.
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3.5 OSA Severity Screening Framework

It might seem counterintuitive that a disorder that only manifests during sleep can be

screened for while a subject is awake. While it is true that an OSA patient won’t expe-

rience any disordered breathing while awake, studies have shown that OSA is associated

with chronic physiologic changes that persist during wakefulness. One possible mecha-

nism for sustained physiologic changes is hypoxic brain injury. The lack of airflow during

apnea episodes and the accompanying hypoxia prevents oxygen from reaching the brain.

As a result, brain tissue is damaged [MKW08], and the damage has been shown to target

central autonomic regulatory regions of the brain, which are responsible for regulating

cardiovascular functions, like blood pressure and heart rate.

Based on these findings, we implemented an application that is designed to trigger

specific cardiovascular responses in the subject under test. The magnitude and delay

of the subject’s autonomic response reveals the presence/absence of brain dysfunction,

which is related to the underlying brain injury. [MKW13]. The more impeded the

response, the more severe the brain damage and the OSA condition. In our earlier work,

we used this application to collect data from which we can extract features that capture

this modified cardiovascular response and designed a binary classifier that can distinguish

between healthy subjects and OSA patients using those features. In this work, we use the

same data collection software but extend our earlier work to a multi-class classification

problem to distinguish different levels of OSA severity. Sections 3.2.2.2 and 3.3.3.1 have

a detailed description of the software architecture, the monitored signals, as well as the

computed features used for our earlier work.

3.5.1 Screening Protocol and Data Collection Framework

In addition to the 28 features described in 3.2.2.2 and 3.3.3.1, we compute four more

features for the severity classification. The four additional features are BP level, lowest

resting HR, lowest resting SpO2 and Body Mass Index (BMI), which are all correlated

with OSA severity, as shown in [WLR14], [CLG12], [ZMJ14] and [VBD07], respectively.

The BP level, lowest resting HR and SpO2 are all obtained during the rest period por-

tion of the application. We use the five BP ranges recognized by the American Heart
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Association as values for the BP level feature [Ame].

3.5.2 Two-Layer Analytics and Severity Prediction Framework

The second component of our severity screening framework is the prediction unit, which

we further divide into two subtasks. The first subtask is to categorize subjects into one of

the 4 OSA severity groups. As mentioned in Section 3.4, the severity groups are defined

by the AHI and are categorized as follows: healthy (AHI < 5 events/hr), mild (5 ≤ AHI

< 15), moderate (15 ≤ AHI < 30), and severe (AHI ≥ 30). Unlike these broad severity

categories, AHI can provide a measure of progress during the treatment stage. Therefore,

the second subtask of severity prediction is to also estimate the AHI value for a subject.

In the next sections, we describe how we approach those two subtasks.

3.5.2.1 Layer 1: Coarse-Grained Severity Prediction

Unlike past research surveyed in Section 3.4.1, we solve the coarse-grained problem of

predicting the categorical severity classes first, and use that knowledge to then solve the

more fined-grained problem of predicting AHI values within each severity class. To solve

the coarse-grained prediction problem, we designed a multi-class classifier that consists of

multiple binary classifiers. For each pair of severity classes, we trained a different binary

classifier to accurately distinguish between them. Due to the insufficient number of mild

OSA subjects, we had to eliminate the mild class from our analysis, but the methodology

could be applied to a larger dataset with more low severity patients. Leaving out mild

subjects is still consistent with common medical practice since healthy and mild cases

are often symptomatically indistinguishable. In fact, it is a controversial topic whether

mild OSA should be treated or not [Bro07][Lit07].

With the healthy, moderate and severe classes remaining, we built a healthy-vs.-

moderate (HvM), a healthy-vs.-severe (HvS) and a moderate-vs.-severe (MvS) model.

The HvM and HvS models are SVM classifiers. SVM is a binary classifier that constructs

an optimal hyperplane in the feature space to separate the samples belonging to two

different classes. The optimal hyperplane is the one that maximizes the distance between

the nearest training samples of the two classes. Once the hyperplane is constructed, the
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testing data can be projected onto the feature space and classified by the hyperplane into

one of the two classes. In this study, we used a third degree polynomial kernel function

with a cost of 1.1 and an intercept constant of 0.1 for both models.

The MvS model, on the other hand, is a Decision Tree classifier (DTC). A DTC is a

hierarchical structure that consists of directed edges, as well as internal and leaf nodes.

The internal nodes contain conditions that test a certain feature and separate the input

samples based on those test conditions until a final decision about class membership is

made in the leaf nodes. Once the tree is constructed, new samples can be classified by

starting from the root node of the tree and applying the test condition to the sample and

following the appropriate branch based on the outcome of the test until a leaf node is

reached. We used the Gini impurity as the measure split quality.

After the 3 pair-wise binary classifiers are trained, they are combined to form a multi-

class severity classifier. Fig. 3.8 (Layer 1) shows how a subject is classified into one of

the 3 severity classes. First, the feature vector is computed from the collected data and

then fed into each of the 3 classifiers. Each binary classifier assigns the test sample to

one of the 3 severity classes. If two out of three classifiers agree on a severity class, the

combined classifier predicts the class that got the most votes. In the case where there’s

no majority and each binary classifier predicts a different severity class, the final decision

is made based on the quality, rather than the quantity of the votes. The quality of a

classifier’s vote is determined by the classifier’s confidence about its prediction. For the

SVM classifiers, we use the distance of the test sample to the separating hyperplane as

the confidence score. The further the distance of the sample from the hyperplane, the

more confident the classifier is about the class membership. For the DT classifier, the

confidence score is the probability of the test sample belonging to the predicted class. In

case of a tie, the decision of the classifier with the highest confidence score is chosen.

3.5.2.2 Layer 2: Fine-Grained AHI Prediction

After assigning a test sample to one of the broad severity classes, we further predict the

AHI of the sample within its severity class. We solve this fine-grained prediction problem

using regression analysis. A regression model fits a curve to data points such that the

differences in the distances of data points from the curve are minimized. In this case, that
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best-fit curve is expressed by a function that, given the features as independent variables,

outputs the AHI as the dependent variable. We used an ElasticNet regression model to

predict the AHI for an input sample. ElasticNet is a hybrid regression approach that

penalizes both the L1 norm and L2 norm in its objective function. It is especially useful

when the input contains multiple correlated features.

For the AHI prediction step, we built two different ElasticNet regression models for

each of the OSA classes (moderate and severe). If, in the coarse-grained prediction step,

one of those classes is predicted, the corresponding sample is fed into the appropriate

regression model to predict the AHI, as shown in Fig. 3.8 (Layer 2). To further improve

the AHI estimation, we apply a heuristic that takes advantage of the coarse-grained

classification results. The heuristic adjusts the AHI predicted by the regression model

(AHIpred) by a factor in the range [0.8, 0.9] or [1.1, 1.2], depending on the direction of the

desired adjustment, i.e. whether AHIpred should be decreased or increased. The direction

of the adjustment is determined by the class that lost the majority vote in Layer 1 (Clost).

If Clost is a more severe class than the final predicted class (Cfinal), the adjustment factor

will increase AHIpred. If Clost is less severe than Cfinal, the adjustment factor decreases

AHIpred. The magnitude of the adjustment is determined by the probability of Clost. The

final adjustment factor is calculated as 1±(Pnp×α), where the sign is the direction of the

adjustment, Pnp is 1 minus the probability of Clost, and α is an empirically determined

value that depends on the severity and probability of Clost. The more severe and more

probable Clost is, the bigger the adjustment. Also, since both the direction and magnitude

of the adjustment depend on Clost, an adjustment is only made if Clost was predicted with

a probability ≥ 0.9. Fig. 3.8 clarifies how this heuristic works by showing an example

adjustment.

3.6 Results and Discussion

To evaluate the accuracy of our prediction framework with its coarse-grained and fine-

grained components, data were collected from 24 subjects (16 healthy, 8 OSA) every

day for 42 days using our Android application. For every day’s data, we calculate our

daytime features described in Section 3.5.1. Since the data includes 42 observations
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Figure 3.8: AHI Adjustment Heuristic: In this example α = 1

per subject, we perform Leave-One-Subject-Out-Cross-Validation (LOOCV), where all

observations for one subject are used for testing and the remaining observations are used

for training, to avoid pseudo-replication. The binary classifiers in the coarse-grained

prediction step are trained using observations from only the pair of classes the classifier

is meant to distinguish between. Each of the two regression models in the fine-grained

prediction step were trained using observations from one severity class. Feature selection

was performed separately for each classification and regression model and features were

z-score standardized.
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Figure 3.9: Predicted AHI and Adjusted AHI For 2 Severe OSA Patients

Table 3.6 shows the classification results for the 3 pair-wise binary classifiers and the

final combined severity classifier. The MvS classifier has the lowest sensitivity out of the

3 binary classifiers. This is expected since the moderate and severe classes are both OSA

classes and are more similar to each other than the healthy class is to either of them. The

combined classifier has high accuracy and only misclassifies a few moderate instances as

severe.

Classifier Sensitivity Specificity Accuracy

HvM 100% 100% 100%

HvS 99.4% 100% 99.5%

MvS 71.1% 100% 99.4%

Combined undef undef 99.6%

Table 3.4: Classification results of pair-wise binary classifiers and final multi-class severity

classifier

Fig. 3.9 shows the AHI values predicted by the ElasticNet regression model, as well

as the AHI values adjusted by the heuristic described in Section 3.5.2.2. As can be seen

in the figure, the heuristic brings the predicted AHI values closer to the true AHI, which

reduces the mean absolute error (MAE) from ≈ 5.6 to ≈ 4.5 events/hr on average. The

small mean absolute error is due to the accuracy of the coarse-grained classifier. The

coarse-grained classifier predicts the severity class for a specific sample, and then that
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sample is fed into the regression model belonging to the predicted severity class. This

order guarantees that the predicted AHI will stay within the range of values for the

predicted severity class. If the fine-grained AHI prediction were to be performed first,

the predicted AHI values would show a larger variation, and relying on those values for

categorizing patients into the severity groups would decrease the classification accuracy.

Table 3.5 shows the most important features used in the severe regression model. It

is interesting to see that four of our daytime physiological features appear in the list

of top five important features, while only one questionnaire feature, namely sleepiness,

made the list. A similar observation was made for the moderate regression model, where

3 out of 5 features were physiological. This shows the value of our daytime physiological

features for AHI prediction and their advantage over traditional questionnaire screening.

Feature Description

avg resting SpO2 Average SpO2 during rest period

avg val SpO2 Average SpO2 during Valsalva challenge

sleepiness Daytime sleepiness on a 0-10 scale

valsalva ratio The extent of the heart rate undershoot in release period, compared to the peak during challenge

avg resting hr Average heart rate during rest period

Table 3.5: Top-Ranked Features For Severe Regression Model (most important to least

important)

3.7 Conclusion

In this work, we proposed an OSA screening method that can accurately identify OSA

patients, the severity of their condition, and their AHI without any need for overnight

monitoring. Our approach presents the subjects with a sequence of autonomic challenges

that trigger specific cardiovascular responses. These responses are indicative of brain

alterations caused by the OSA disorder. The magnitude and delay of the responses are

correlated with the severity of the brain damage and the OSA condition. Features ex-

tracted from the responses are used in a two-layer prediction framework to first predict

the coarse-grained severity class (overall accuracy of 99.6%), followed by a fine-grained

prediction of the AHI (mean absolute error of 4.51 events/hour). The accuracy of our

AHI prediction is comparable to the best existing nocturnal method of AHI estimation,
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which achieved a mean absolute error of 3.5 events/hour [BTZ12]. Once being deployed

and validated in a large-scale study, the proposed severity screening framework will of-

fer affordable, noninvasive, and fast severity screening, resulting in more efficient PSG

scheduling, wider access to diagnosis and better perioperative risk stratification.

3.8 In Closing

This chapter presented non-intrusive daytime methods for diagnosing and assessing the

severity of OSA. The accuracy of our classification models has been validated in a UCLA

IRB approved pilot study and the results demonstrate considerable potential in using our

daytime features to design classification and regression models that provide an accurate

early-stage diagnosis of OSA and an assessment of its severity. Deploying this daytime

screening tool in a bigger clinical trial will prove its reliability as a cheap, fast and non-

intrusive OSA screening method.
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CHAPTER 4

Stress Reduction for OSA Patients With Resistant

Hypertension

4.1 Introduction

Chapters 2 and 3 discussed the main focus of this research, namely to design screen-

ing methods that can serve as cheaper, more convenient, non-intrusive alternatives to

polysomnography, as well as be more reliable than the existing screening questionnaires

that rely mostly on self report. The goal of designing such systems is to make OSA diag-

nosis more accessible and affordable, so that more people can be aware of their condition

and seek treatment.

In this chapter, we briefly touch on another aspect of the OSA disorder, namely its

comorbidities, i.e. its accompanying illnesses, which make the disorder a life-threatening

one. We specifically focus our attention on resistant hypertension, which is the most

prevalent comorbidity of sleep apnea, as shown in Figure 4.1.

4.2 Stress Reduction For Resistant Hypertension Treatment

Resistant hypertension is defined as blood pressure that remains above goal despite

lifestyle modification and administration of three anti-hypertensive drugs of different

classes. Section 1.2.3 discussed physiological and psychological comorbidities of sleep

apnea. Figure 4.1 shows the prevalence of sleep apnea in 8 different physiological comor-

bidities. As shown in the figure, 83% of all patients with resistant hypertension also have

sleep apnea–making resistant hypertension the most prevalent physiological comorbidity

of sleep apnea.

Unsurprisingly, studies have shown that treatment of the OSA disorder by the use of
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Figure 4.1: Health Conditions (Comorbidities) Associated With OSA

CPAP (see Section 1.2.5) results in a reduction of blood pressure, although the degree of

that reduction remains disputed [KPO13], [PDP13]. Because of the intrusiveness of the

CPAP mask, however, studies have shown that adherence to CPAP treatment is meager.

When adherence is defined as greater than 4 hours of nightly use, 46 to 83% of patients

with OSA have been reported to be non-adherent to treatment [WG08b]. As a result,

the research community has been investigating alternative strategies for the treatment of

resistant hypertension.

The fact that mental and emotional stress can raise blood pressure is long established.

Many studies addressed the effects of anxiety, stress, and depression on cardiac disease

in general and hypertension specifically [WB86], [KOE98], [GS98]. In this work, we

investigate the other side of the equation. What effect can the treatment of stress and

other emotional disorders have on resistant hypertension?

This chapter investigates the use of a smartphone protocol to guide hypertensive OSA

patients through stress reduction exercises in order to achieve a reduction in hyperten-

sion. In the next sections, we discuss previous research on drug-resistant hypertension

reduction, as well as our proposed method and the software system we designed to achieve

a reduction in hypertension.
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4.2.1 Related Works

In the medical field, there is a substantial number of studies on stress reduction and

its effect on blood pressure. The studies have shown that stress reduction exercises

can in fact result in a decline in blood pressure. In one study, a group of hypertensive

African American men and women practiced a form of meditation called transcendental

meditation. After 3 months, women showed a decline of ≈ 10 mm Hg in systolic blood

pressure and ≈ 6 mm Hg in diastolic blood pressure, while men showed a decline of ≈

13 mm Hg and ≈ 8 mm Hg, respectively [ASS96]. A similar result was shown in a study

where a group of hypertensive employees received stress reduction intervention at the

workplace. Three months post-intervention, the employees exhibited a reduction of ≈ 11

mm Hg in systolic blood pressure and ≈ 6 mm Hg in diastolic blood pressure [MAT04]. In

[RSN07], 17 interventions employing different stress reduction techniques were surveyed

and the results were consistent with the aforementioned studies.

This study differentiates itself from previous research as follows:

• To the extent of our knowledge, there haven’t been any clinical trials that inves-

tigated the effect of stress reduction on resistant hypertension. A few medical

papers state that stress reduction can be a way to reduce resistant hypertension

but this claim has not been backed up by data from clinical trials.

• The aforementioned studies considered stress reduction to be successful if an average

reduction in hypertension was observed among the participating patients. What

these studies failed to do is investigate why stress reduction is successful for some

people and not for others.

4.2.2 Stress Reduction Software System

Our stress reduction routine (SRP) is implemented as an extension of our Android appli-

cation described in Sections 3.2.2.1 and 3.3.2. After the challenge phase (phase IV) of the

protocol, the Android application guides hypertensive subjects through breathing aware-

ness meditation exercises, records their blood pressure before and after the exercises, and

transmits the blood pressure data to a HIPAA-compliant server.
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The stress reduction routine begins by prompting subjects to take their blood pres-

sure. The application textually and pictorially guides subjects to take a blood pressure

measurement. After the measurement is complete, the application acquires the data

from the blood pressure monitor over Bluetooth and transmits it over WiFi to a server

for storage.

The application then presents the subjects with information about stress, the physical

changes that stress sets off in humans, and the harmful health effects–physiological and

psychological–that sustained stress can cause or exacerbate. In this part of the routine,

subjects are also educated on what breathing awareness means and how it can help reduce

stress. They are also provided with instructions on how to practice breathing awareness,

including how to sit and how to focus on breathing. Subjects are also provided with

answers to a number of frequently asked questions about practicing breathing awareness.

The information is presented textually and pictorially to the subjects and is meant to raise

awareness about the effects of prolonged stress on our health, to encourage subjects to

adhere to the stress reduction routine, and to provide them with the necessary knowledge

that can enable them to perform the breathing awareness exercises correctly.

After the informative section is completed, the user can start the breathing awareness

exercises for stress reduction. The application presents the user with a choice between

a guided and an unguided breathing awareness routine. The guided routine consists of

10 minutes of Ananda music with a voice overlay guiding subjects through the breathing

awareness exercises. Once subjects are familiar with the exercises, they can choose the

unguided routine, which only consists of the Ananda music without the vocal instructions.

Breathing awareness is a form of meditation that uses the process of breathing as its

primary focus. During the exercises, subjects are instructed to pay attention to their

breath – how shallow or deep it is, its rhythm, if, how and when it stops, etc. Since our

emotional state has a direct effect on our breathing patterns–when we are upset or anxious

our breathing speeds up, when we are relaxed or sleeping, it slows down–becoming aware

of the breath or learning to breathe consciously can have a calming effect on the body and

mind. When subjects learn to observe the fact that breathing is a rhythmic process and

that it is constantly changing, it teaches them to be comfortable with change, which is an

essential aspect of stress management. The Ananda music accompanying the exercises is
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designed not to stir up one’s emotions, which makes it ideal for meditation and being in

a state of relaxation and complete focus on breathing.

After subjects are done with the breathing awareness exercises, the application prompts

them for another blood pressure measurement, which is again transmitted to the server.

After a subject completes the breathing awareness routine, the application displays a

message reminding subjects to take 30 seconds or more to focus on their breath at times

throughout the day. The next time the subject uses the application to practice breathing

awareness, they will be presented with a question about how often they took some time

to focus on their breath outside of the breathing awareness routine. This question is

meant as both a reminder for the subjects to focus on their breathing more often, and as

a way to gage how much they are benefiting from the routine and how it correlates with

the goal of reducing stress and the ultimate goal of reducing their blood pressure. Figure

4.2 shows the software protocol described above.

Figure 4.2: The Android protocol extended with the stress reduction routine.
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4.2.3 Stress Reduction Pilot Study and Preliminary Results

We are currently conducting a pilot study in collaboration with the School of Nursing

to test the effectiveness of stress reduction on lowering blood pressure. To date, one

hypertensive OSA patient and three control subjects used our software application to

practice breathing awareness. Each subject completed at least 28 days of the stress

reduction routine following a 14-day baseline.

Figures 4.3 and 4.4 show some preliminary results of the stress reduction routine and

its effect on blood pressure for 3 control subjects and one hypertensive OSA patient.

Although we cannot draw any conclusions from the data about the success of stress

reduction due to the small sample size, it is interesting to see that in Figure 4.4, the

trend of increase in systolic blood pressure is attenuated after the patient begins the

stress reduction routine.
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Figure 4.3: The systolic blood pressure (top) and diastolic blood pressure (bottom) values

over time of 3 control subjects before and after the stress reduction routine (SRP)

Figure 4.4: The systolic blood pressure (top) and diastolic blood pressure (bottom) values

over time of a hypertensive OSA patient before and after the stress reduction routine

(SRP)

Given a larger sample size, if stress reduction proves to be successful at reducing drug-

resistant hypertension for some of the patients, the goal of this work is to build machine

learning models to predict the success of stress reduction for any given hypertensive

patient. Based on those models, we can explore which features play a significant role

in the successful outcome of stress reduction with the goal of possibly securing positive

outcomes for other hypertensive patients.

To date, there are not enough data (only one hypertensive OSA patient) to conduct

this analysis, so we discuss possible methods of analysis and give general research guide-

lines on how to build machine learning models to predict the successful outcome of stress

reduction in the next chapter.
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4.3 In Closing

This chapter introduced the main comorbidity of sleep apnea, namely resistant hyper-

tension, and the problems with the traditional method of managing it. We introduced a

stress reduction routine as an alternative method of reducing blood pressure. The stress

reduction routine is a breathing awareness exercise that is implemented as an Android

application and is meant to reduce stress and lower blood pressure. The goal of this work

is to evaluate the effectiveness of the stress reduction routine on resistant hypertension

and, more importantly, to understand when and under which circumstances stress re-

duction is successful, which was not possible due to the small sample size. In the next

chapter, we propose a few research guidelines for the analysis of the stress reduction data

and discuss other research directions for future work.
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CHAPTER 5

Conclusion and Future Work

This dissertation addressed the most serious problem in the wide spectrum of sleep-

disordered breathing, namely the undertreatment of OSA, driven by the underdiagnosis

and poor treatment options. Despite being the most prevalent sleep disorder and the

most common type of apnea, OSA remains to be notoriously under-recognized and under-

diagnosed [Org]. When left undiagnosed and untreated, OSA significantly increases the

sufferer’s risk of developing life-threatening physical and psychological illnesses. Accord-

ing to the American Academy of Sleep Medicine, approximately 80% to 90% of adults

with OSA remain undiagnosed [Sle08]. The main reason for this alarming statistic is the

prohibitive cost and high level of intrusiveness of polysomnography–the sleep test used

to diagnose sleep apnea.

To remedy the phenomenon of underdiagnosis and make diagnosis accessible to a wider

population, this dissertation presented a number of cheap, non-intrusive methods for the

diagnosis of obstructive sleep apnea. The contributions of this work can be summarized

as follows:

• The design and implementation of a non-intrusive nocturnal diagnosis method that

utilizes an e-textile bed sheet. The bed sheet is seamlessly embedded with a 128 x

64 matrix of pressure sensors. Using signal and image processing techniques on the

pressure images acquired from the bed sheet, a number of PSG signals, including

respiration rate, leg movement, body movement, and sleep stages were extracted. A

number of biophysical features were extracted from these features and used, along

with other geometric features like body symmetry and sleep posture, to predict the

presence or absence of OSA. The system does not require any sensors to be attached

to patients while they’re sleeping and doesn’t need to be performed at a specialized

lab or using any specialized equipment, achieving both goals of affordability and
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non-intrusiveness.

• The design and implementation of a non-intrusive daytime diagnosis method that

does not require overnight monitoring of patients. As opposed to nocturnal meth-

ods, which make their diagnoses based on detected biophysical changes that occur

during sleep as a result of the obstructive events, this method leverages chronic

physiologic changes that persist during wakefulness. As a result of the oxygen de-

pletion to the brain during apneic episodes, brain tissue damage. This damage was

found to target central autonomic regions of the brain, which are responsible for

regulating cardiovascular functions like blood pressure and heart rate. Our daytime

method presents subjects with autonomic challenges that are designed to trigger

a response from the damaged regions of the brain. Physiological features are ex-

tracted from a blood pressure monitor, and a pulse oximeter while subjects perform

the autonomic challenges. Using those physiological features, in addition to psy-

chological features obtained from questionnaire responses, a diagnosis is made. The

test takes 20 minutes to complete and can be conducted at any time of day without

disrupting patients’ sleep.

• The implementation of a sex-aware diagnosis method as an extension to the afore-

mentioned daytime method. The sex-aware extension takes into account the dif-

ferent effects that OSA has on autonomic responses between males and females.

Instead of applying one global model to classify subjects into the OSA or healthy

categories, two different sex-aware models were designed to achieve better classifi-

cation results for both sexes.

• The design an implementation of an OSA severity assessment framework. Because

the severity of the OSA disorder plays an important role in its treatment, we de-

signed an extension to the daytime diagnosis framework, which assesses the severity

of the disorder, instead of just its presence or absence. Based on the severity level

a patient gets classified into, the framework can also predict the Apnea-Hypopnea

Index for a specific patient. In addition to its use in determining the appropriate

therapeutic approach, such a severity assessment framework is useful for perioper-

ative risk stratification and for enabling a more optimal utilization of scarce PSG
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resources.

• The deployment of the aforementioned diagnosis systems in clinical trials to validate

their success. In the field of wireless health research, it is crucial for the technological

solutions to undergo clinical trials and be tested on real patients to confirm their

effectiveness.

• The implementation of a breathing awareness stress reduction routine for the treat-

ment of the most prevalent comorbidity of sleep apnea, namely resistant hyperten-

sion. The goal is to investigate whether or not stress reduction can help reduce

blood pressure in OSA patients with resistant hypertension. If stress reduction

proves successful for some patients, the gaol is to investigate the criteria that cor-

relate with a successful outcome.

In addition to the contributions listed above, which mainly focused on the problem

of non-intrusive diagnosis, this work has identified a number of new problems related to

obstructive sleep apnea that can guide future research in this field. In the next sections,

we describe those research problems and offer some guidelines for future work.

5.1 Stress Reduction For Resistant Hypertension Treatment

Before any analysis concerning the success of stress reduction in reducing resistant hyper-

tension can take place, the following questions need to be answered: What constitutes a

successful outcome? Should any reduction in blood pressure be considered a success? To

answer these questions, future work would have to account for normal daily fluctuations

in blood pressure and investigate the use of appropriate statistical measures to define

outcome success. In addition to comparing the final blood pressure, after stress reduc-

tion is complete, to the initial blood pressure, future work could also analyze changes

in blood pressure over time. Such an analysis may reveal some information about when

stress reduction ceases to be effective or when it starts having an effect.

After outcome success is clearly defined, appropriate features (physiological, psycho-

logical, demographical) need to be extracted and used to build a classification model

that can successfully predict outcome success. The next step would be to explore which
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of those features are the most significant for classifying a hypertensive patient into the

success group. Different feature ranking algorithms, including both filter and wrapper

methods, can be experimented with. The feature ranking results may reveal that cer-

tain modifiable features contribute the most to the success of the resistant hypertension

treatment. Unlike age and sex, for example, modifiable features are those that can be

controlled and changed. If such modifiable features, e.g. physical activity or weight,

prove to play a significant role in the effectiveness of treatment, patients with hyperten-

sion can be advised to change their behavior in order to benefit from stress reduction to

lower their blood pressure. Alternatively, if the most effective features turn out not to be

modifiable, this knowledge can still help physicians to target stress reduction therapies at

patients who are more likely to respond to treatment. This could potentially save health

care costs, as well as clinician and participant time and resources.

5.2 Weight Loss Intervention For Curing Obstructive Sleep Ap-

nea

As explained in Section 1.2.1, obesity is a major risk factor for OSA. It is also the second

most prevalent comorbidity of sleep apnea, as shown in Figure 4.1. The extra tissue and

fat in the neck area compress the airway and lead to obstruction. Studies have shown

that weight loss is accompanied by improvement in or a complete reversal of the OSA

condition, suggesting that weight loss might be a cornerstone of the treatment of OSA

[RCL10].

However, the main obstacle standing in the way of weight loss for many OSA patients

is the sleep disorder itself. As a result of the breath stoppages and following arousals

during the night, many OSA patients are sleep deprived and suffer from excessive daytime

sleepiness (EDS). For patients who barely have enough energy to stay awake during simple

conversation, the concept of exercise can seem ludicrous.

The other commonly used treatment is CPAP, which is used to manage the OSA

disorder and prevent its adverse health effects. The CPAP device is a face mask that is

worn over the mouth and nose during sleep to supply pressurized air continuously into

the sleeper’s throat. CPAP keeps the airway open and unobstructed and improves sleep
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quality. Because of the intrusiveness of the CPAP mask, however, studies have shown

that adherence to CPAP treatment is meager. When adherence is defined as greater

than 4 hours of nightly use, 46 to 83% of patients with OSA have been reported to be

non-adherent to treatment [WG08b]. Also, since CPAP does not cure OSA, the prospect

of life-long CPAP is very discouraging for patients.

A possible solution lies in the combination of CPAP and exercise. Using CPAP

on a daily basis will enable patients to manage daytime sleepiness, which will in turn

make exercise and weight loss possible. Using Bluetooth-enabled CPAP machines, a

mobile software application can be designed to track a patient’s nightly use of CPAP.

Information such as usage duration and usage trend over time can be displayed to the

patients and reported to their physicians. Physicians will have a chance to track their

patients’ progress and follow up with them when necessary. The application can also

send automated reminders and notifications to encourage patients to use CPAP. Based

on the statistics collected by the application on daily CPAP usage and adherence over

time, the application can predict the type, duration and intensity of the workout a specific

patient would be able to perform and can recommend an appropriate workout routine.

One day the application might recommend 10 minutes of running, another day it might

suggest the patient to do 20 minutes of simple tongue and throat exercises to strengthen

throat muscles and decrease OSA symptoms. The application could also monitor the

activity performed by the patients and adjust the workout prediction model based on

the patients’ performance. Finally, the application could communicate with a Bluetooth-

enabled weight scale to keep track of patients’ weight and encourage them to keep losing,

so that they can reverse their condition.

While the approaches that facilitate behavior change remain a challenge, the greatest

benefit-to-cost ratio to society is possible through increasing health behaviors that prevent

or reverse OSA and its chronic comorbidities.
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5.3 Alertness Prediction For Preventing Motor Vehicle Acci-

dents Caused by Excessive Daytime Sleepiness

One of the most dangerous symptoms of obstructive sleep apnea is excessive daytime

sleepiness. Due to their frequent arousals and fragmented sleep pattern, OSA patients

tend to be sleep deprived and often suffer from excessive daytime sleepiness (EDS). EDS

often causes OSA patients to fall asleep at work, on the phone, during a conversation,

and–more seriously–while driving. A 2015 study found that OSA patients were 2.45

times as likely to be involved in motor vehicle accidents than people without the disorder

[KHH15].

One future research direction is to use a sleep tracker to track an OSA subject’s sleep

patterns. Sleep tracking usually relies on actigraphy–the analysis of muscular movement

during sleep–or brain wave analysis. Sleep trackers come in the form of wristbands

embedded with accelerometers to continuously measure activity and movement, or in

the form of headbands embedded with EEG electrodes that continuously monitor brain

activity. Based on the activity or brain wave data, those trackers can determine the sleep

stages a sleeper is in because each sleep stage has special markers that are reflected in

muscle movement and brain wave data. Based on this information, sleep trackers can

provide useful information on patients’ sleep patterns, like for instance, how long it took

them to fall asleep, how much time they spent awake during the night, the number of

arousals, the amount of time spent in each of the sleep stages, etc.

Based on the information provided by the sleep trackers, future work could extract

features that can capture the sleeper’s sleep quality. These features may include sleep

efficiency, sleep latency, sleep duration, number of arousals per hour of sleep, average cir-

cadian cycle, time of night the sleeper goes to sleep, etc. Based on these features, machine

learning models could be developed to predict the alertness and psychomotor abilities of

a given user on a specific day. Based on the predicted level of alertness, a patient may be

advised not to drive after a night with a poor sleep quality. Validated psychomotor skill

tests, such as the ones used to select pilots [Fle56], can be used as ground truth. These

psychomotor and alertness tests usually evaluate reaction time, attention, visuo-spatial

functions, multi-tasking, which are all important skills for operating a motor vehicle.
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Such a system would alert sleep deprived OSA patients to their decreased alertness

and motor skills level for a given day and would advise them not to drive if the risk is

too high. This can help protect patients from sleep-deprived driving and decrease the

number of OSA-related motor vehicle accidents.
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