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ABSTRACT 

The Intersection of Sample Size, Number of Indicators, and Class Enumeration in 

LCA: A Monte Carlo Study 

by 

Diane Morovati 

This Monte Carlo simulation study examined the performance of the most 

commonly used fit indices in selecting the “correct” latent class model while varying 

factors such as: the true number of latent classes, the size of the latent classes (i.e., 

class prevalence), the nature of the latent classes, the number of indicators, and 

sample size.  Specifically, the fit indices examined in this simulation study were the 

Akaike Information Criterion (AIC), the Consistent Akaike Information Criterion 

(CAIC), the Bayesian Information Criterion (BIC), the adjusted Bayesian Information 

Criterion (ABIC), the adjusted Lo-Mendell-Rubin likelihood ratio test (LMR-LRT), 

the parametric bootstrapped likelihood ratio test (BLRT), the approximate Bayes 

Factor (BF), and the correct model probability (cmP).  No study to date has examined 

the performance of the BF and cmP in recovering the correct latent class model.  

This simulation study also aimed to simultaneously examine and understand 

how sample size, the number of observed indicators, and class enumeration intersect 

in latent class analysis (LCA) models.  In other words, when sampling observations 

from a larger population, is there a critical point where the size of the sample and the 

number of indicators cannot uncover all existing heterogeneity?  That is, at what point 

is specificity of the emerging latent classes lost?   
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All data were generated and analyzed using Mplus latent variable software 

(Muthén & Muthén, 1998-2013).  The specific data generation and analysis 

conditions in this dissertation were created based on a literature search of Education 

and Psychology related databases.  Results from this study will help applied 

researchers using LCA models further understand which fit index to trust under 

various conditions when going through the class enumeration process in practice.  

Specifically, the ABIC and BLRT indices emerged as being the highest performing 

across a variety of conditions considered in this study.  Results also highlight the 

practical importance of thoughtfully considering sample size and the number of 

indicators included when estimating and interpreting LCA models.  Findings of this 

dissertation provide evidence for a relatively strong interplay between sample size, 

number of indicators, and class enumeration in LCA models. 
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Chapter 1 

Introduction 

1.1 Overview of Mixture Models and LCA 

Mixture modeling is a data analysis technique used to uncover and model 

unobserved heterogeneity in a population by identifying different groups of 

individuals based on their observed response patterns (Nylund, Asparouhov, & 

Muthén, 2007).  Membership into these groups (or latent classes) is often not known 

a priori, but is instead inferred from the data (Muthén & Muthén, 1998-2011).  This 

type of modeling is also known as finite mixture modeling in that it expresses the 

overall distribution of one or more variables as a mixture of a finite number of 

component distributions or subpopulations, usually more homogenous in nature when 

compared to the overall distribution (Masyn, 2013; McLachlan & Peel, 2000).  One 

type of cross-sectional
1
 mixture model is latent class analysis (LCA).  The main 

objective of LCA is to categorize people into latent groups, called classes, based on 

their response patterns to binary (or categorical) indicators.  Additionally, LCA aims 

to simultaneously identify indicators that best distinguish between these identified 

latent classes (Nylund et al., 2007a).  Furthermore, LCA treats the underlying class 

variable as an unobserved (or unknown), categorical latent variable.   

1.1.1 Applications and Advantages of LCA 

These statistical models that classify individuals into homogenous subgroups 

have been shown to have important applications in many substantive research areas, 

                                                        
1
 Data collected from a population at one specific point in time.  
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such as Education and Psychology.  For example, LCA has been used to classify 

adolescents in middle school based on their victimization experiences (Nylund, 

Bellmore, Nishina, & Graham, 2007).  Specifically, this study empirically derived 

three subgroups of students that differed in victimization severity rather than the 

specific type of victimization they experienced (e.g., physical versus verbal 

victimization) (Nylund et al., 2007b).  In other words, one class was composed of 

adolescents who were characterized by consistently high probabilities of 

victimization, while a second class included adolescents who were characterized by 

moderate probabilities of victimization, and a third class included adolescents who 

were characterized by extremely low probabilities of victimization (Nylund, et al., 

2007b).  Moreover, this study also compared these three empirically derived latent 

classes to more traditional methods of creating groups based on predetermined cut 

scores (i.e., both raw and standardized cut scores
2
).  LCA and creating groups based 

on cut scores are both ways to classify people into smaller, more homogenous groups.  

However, a key difference between LCA and various cut score methods is that class 

membership is treated as unknown in LCA.  Alternatively, the groups that are 

identified using cut score methods are based on some determined cutoff criteria.  

Findings of this study revealed that there was some overlap in classification between 

the LCA groups and the sample dependent cut score groups (Nylund et al., 2007b).  

                                                        
2
 Standardized cutoffs are often utilized in practice however this is potentially problematic because an 

individual’s group membership is sample dependent.  This means that the same individual with the 

same score on an observed variable can end up in different groups depending on varying 

characteristics in different samples (i.e., means and standard deviations of the observed variable) 

(Nylund, Bellmore, Nishina, & Graham, 2007).  LCA, on the other hand, is a model based or 

probabilistic approach, which implies that the latent classes can be replicated with independent 

samples (Muthén & Muthén, 2000).  
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However, compared to the LCA groups, the raw score cutoffs tended to underestimate 

students that were frequently victimized and the standardized cutoffs overestimated 

students that were frequently victimized (Nylund et al., 2007b). 

In another study, LCA was used to identify three subgroups of individuals that 

suffered from various eating disorders based on their observed symptoms and 

psychopathology (Eddy et al., 2010).  An advantage of using LCA over other 

classification methods in this study was that LCA provided a more holistic approach 

to creating groups that considered an array of variables and estimated different latent 

classes based on the patterns that emerged among these set of variables.  Therefore, 

the researchers were able to take a multivariate approach to empirically identifying 

and deriving subgroups of individuals that have an eating disorder.  Results indicated 

one latent class including individuals who reported binge eating and purging 

behaviors, another class comprised of individuals who reported excessive amounts of 

exercise and extreme eating cognitions, and a third class that was characterized by 

minimal eating behaviors (Eddy et al., 2010).  A second advantage of using LCA in 

this context was that researchers were then able to compare the empirically derived 

subgroups to established eating disorder categories in the Diagnostic and Statistical 

Manual of Mental Disorders (DSM-IV-TR).  This was an important advantage for the 

researchers because the empirically derived latent classes presented a more nuanced 

picture of eating disorder phenotypes when compared to the established DSM-IV-TR 

categories (Eddy et al., 2010).  Specifically, the authors concluded that the emergent 

latent classes could be used to improve the DSM-IV-TR categories.  



 

4 

 

 In a study looking at patterns of violence against women, LCA was used to 

understand and predict mental health outcomes later in life, such as depression and 

posttraumatic stress disorder (Cavanaugh et al., 2012).  The results indicated four 

different patterns of violence, which included a class experiencing low amounts of 

violence, a class experiencing high physical and psychological intimate partner 

violence, a class experiencing high physical and psychological workplace violence, 

and a class experiencing moderate to high childhood abuse.  When compared to the 

low violence class, those that experienced intimate partner violence and childhood 

abuse displayed more depressive symptoms later in life.  Additionally, those in the 

intimate partner violence class also experienced more symptoms of posttraumatic 

stress at a six month follow up assessment (Cavanaugh et al., 2012).  An advantage of 

using LCA in this context was that it allowed researchers to investigate and identify 

different combinations of violent experiences and how those experiences collectively 

related to various mental health outcomes later in life (i.e., depression and 

posttraumatic stress disorder), rather than how each experience related separately.  

Taken together, these various mixture model applications illustrate how LCA 

can be used to understand, classify, and summarize individuals based on their 

observed profiles.  Accurate classification of individuals into these various latent 

classes provides potential advantages.  Specifically, it allows researchers to tailor 

intervention and educational programs differently for individuals that vary in their 

observed characteristics and experiences.  For example, individuals reporting minimal 

eating behaviors in the Eddy et al. (2010) study might benefit from a different type of 
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intervention program than individuals reporting excessive binging and purging 

behaviors (Eddy et al., 2010).  Similarly, individuals that are victimized daily by their 

peers would benefit from a more intensive, frequent intervention program when 

compared to individuals who report only being victimized occasionally (Nylund et 

al., 2007b).  

Furthermore, researchers may want to classify people into more homogenous 

groups with the goal of comparing the empirically derived classes to proposed 

theoretical subgroups.  For example, a previous study empirically derived six latent 

classes of individuals diagnosed with attention deficit hyperactivity disorder (ADHD) 

and then compared them with already established DSM-IV ADHD subtypes (Elia et 

al., 2009).  Results showed that some of the latent classes corresponded to specific 

DSM subtypes, while other latent classes could be used to further define ADHD 

phenotypes (Elia et al., 2009).  Lastly, classifying individuals into homogenous 

groups allows researchers to explore whether the groups differ on various outcome 

measures (e.g., proximal or distal outcomes).  For example, research has shown that 

adolescents who are victimized display higher levels of depression later in life when 

compared to adolescents who are not victimized (Nylund et al., 2007b).  

1.2 Establishing Best Practices in Mixture Modeling 

 Since their gain in popularity (Muthén & Muthén, 2000; Nagin, 1999), there 

have been a lot of advances in the type and complexity of mixture models, but not 

nearly as much attention has been given to understanding how we best use these 

models in practice, and the consequences of different model specifications.  While the 
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applications of mixture models have provided insight into a wide range of substantive 

areas, there are still methodological questions about the best practices of these models 

that have yet to be addressed.  Although some progress has been made in this area, 

there are still many unanswered questions that would add to researcher confidence 

and knowledge about how to effectively apply LCA models in practice.  Thus, there 

is still work to be done in terms of establishing best practices in the application of 

mixture models, which can most effectively be demonstrated through the use of 

Monte Carlo simulation studies.  

1.2.1 Monte Carlo Simulation Studies 

Monte Carlo simulation studies allow researchers to generate data with a 

known set of truths or population parameters and then analyze it under different 

modeling conditions, which provide an ideal context to establish best practices in 

methodology.  Simulation studies are advantageous because knowing the underlying 

Truth in the data gives researchers an understanding of the utility of the statistical 

models employed, their ability to precisely recover model parameters under different 

modeling conditions (i.e., different sample sizes), and the accuracy of the fit indices 

that are used to evaluate model fit.  This differs from the process of working with real 

data where the Truth is unknown.  Many of the simulation studies that have focused 

on examining mixture models have aimed to understand how fit indices perform in 

identifying the correct number of latent classes under various models and data 

conditions, and to improve the overall accuracy of classifying individuals into these 

latent classes.  One influential study by Bauer and Curran (2003a) used simulation 
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study methodology and focused on the implications of having non-normal data when 

fitting growth mixture models using continuous outcomes.  They concluded that when 

data is non-normal, it might be difficult to distinguish between a single-class model 

with observed variables that are not normally distributed and a true mixture model.  

The findings of this study revealed that data drawn from a non-normal distribution 

may be more susceptible to over extracting latent classes and in turn may produce 

latent classes that are not substantively interpretable.  

These findings from Bauer and Curran (2003a) had important implications for 

research because they were the first to provide some cautions when using mixture 

models, skepticism of modeling results, while also offering recommendations for use.  

The recommendations made in this paper are useful since they discouraged poor 

applications of mixture models and also highlighted the possibility of alternative 

models that may fit the data equally well (Muthén, 2003).  In a rejoinder, Muthén 

(2003) argued that appropriate model checking procedures would help identify and 

differentiate between data that is truly composed of a mixture of normal distributions 

from data that is non-normal and homogenous in nature.  Additionally, Muthén 

(2003) argued that there are cases where alterative models exist, and that substantive 

theory should be used to guide researchers in selecting which final model to retain.  

He labeled this process of deciding on the best fitting model as “substantive and 

statistical checking” (Muthén, 2003), a modeling recommendation that is widely used 

across a host of mixture models today.  However, in instances where substantive 

theory cannot distinguish between two alternative models, mixture models may still 
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provide useful insights into the data (Bauer & Curran, 2003b).  It is now suggested 

that applied researchers think critically about the mixture models they are fitting and 

to always be open to the existing possibility of alternative models (Bauer & Curran, 

2003b; Muthén, 2003).  While these studies focused on growth mixture models, much 

of the modeling recommendations apply to what is currently considered to be best 

practices for all mixture models.  

Since Bauer and Curran’s (2003a) study, other simulation studies in LCA 

contexts often generate data with a set of known population parameters (e.g., a known 

number of latent classes, item distributions, class size, etc.) and then analyze these 

data under various modeling conditions (e.g., models with a different number of 

latent classes than the generated data).  The goal of these studies is to ultimately 

evaluate the performance of the various fit indices that are used to identify the “true” 

number of latent classes.  The majority of LCA simulation research thus far has 

focused on understanding the performance of various fit indices in deciding on the 

correct number of latent classes (Nylund et al., 2007a; Tofighi & Enders, 2007; Yang, 

2006).  Unfortunately this research is not substantial and there is still a need to 

generalize what we currently know about fit index performance across a variety of 

different contexts.  Another area of simulation research has also examined the 

connection between retaining the correct number of latent classes, within-class 

sample size, and mean differences between latent classes (i.e., class separation
3
) in 

                                                        
3
 For the purposes of this study, class separation can be defined as the physical distance between the 

latent classes and will be discussed in more detail in Chapter 3.4. 
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latent profile analysis (LPA) (Lubke & Neale, 2006).  LPA
4
 can be thought of as a 

latent class model with continuous, instead of binary indicators.  Findings from Lubke 

and Neal (2006) revealed that the number of latent classes retained was dependent on 

both within-class sample size and class separation.  That is, when class separation 

was small, increasing the within-class sample size increased the likelihood of 

recovering the correct number of latent classes.  Moreover, results from a more recent 

simulation study concluded that power to detect a true latent class solution is 

dependent on factors such as class separation (Tein, Coxe, & Cham, 2013).  

1.3 Practical and Unanswered LCA Questions 

Despite the contributions of previous simulation studies, there are still several 

important areas regarding the application of LCA models that have unanswered 

questions.  For example, researchers often ask “what is the required sample size 

needed to fit an LCA model?”  Unfortunately, there is no single answer to this 

question since there are many factors that need to be considered when answering this.  

Previous studies have concluded that an adequate sample size depends on several 

different factors, including but not limited to, the number of latent classes a 

researcher can foresee retaining and the number of indicators they wish to include in 

the model (Lubke & Muthén, 2005; Muthén & Muthén, 2002).  Another practical 

question researchers commonly ask is, “How many indicators can I use in an LCA 

model?”  Again, the answer to this question usually depends on factors such as 

                                                        
4 LPA can be viewed as the same type of analyses as LCA, with the only difference being the nature of 

the outcome variables and the type of estimated produced (Nylund et al., 2007a).  Specifically, LPA 

estimates class specific means and variances while LCA estimates class specific item probabilities.   
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sample size and the number of latent classes a researcher can foresee emerging.  In 

other words, the answer to practical questions related to sample size and the number 

of indicators in latent class models is confounded and thus there is no single answer.  

To date, there are some suggested modeling recommendations, however, there are no 

established best practices related to sample size and the ideal number of indicators to 

include in an LCA model.   

Having established best practices related to sample size and number of 

indicators is important because the class enumeration
5
 process in LCA is known to be 

highly dependent on sample size and the number of indicators included in the model 

(Lubke & Neale, 2008; Masyn, 2013).  Specifically, sample size and the number of 

observed indicators have been argued to play a critical role in the detection of what 

may be a less prevalent class in the population (Masyn, 2013).  As sample size and 

the number of indicators included increases, the number of latent classes a researcher 

identifies can also potentially increase.  This is because smaller samples may be 

underpowered and therefore less able to detect smaller and/or not well-separated 

latent classes (Masyn, 2013).  Additionally, applied researchers are often left unsure 

about what final latent class solution to retain because the fit indices may point to 

many different solutions.  This is due to the fact that the fit indices (specifically, the 

information criteria [ICs], described in more detail in Chapter 2.3) used to help decide 

on the number of latent classes are also influenced by sample size and the number of 

indicators included (i.e., the number of parameters estimated) in the model.  In fact, 

                                                        
5
 Class enumeration is defined as the process of determining the number of latent classes (e.g. 

unobserved subgroups) to retain in a latent class model (Nylund et al., 2007a). 
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the information criteria are calculated by applying “penalties” for the number of 

model parameters, sample size, or both (Nylund et al., 2007a).  

Researchers who have small samples but a large number of indicators often 

make decisions to delete items so that there is a better balance between the number of 

indicators, sample size, and the number of classes estimated.  The decision on which 

indicators to remove can be quite varied.  Some researchers will decide to remove 

redundant indicators (either by evaluating the content of the indicators, or using item 

correlations and deleting redundant items), some may remove indicators they deem 

unimportant, and some will use modeling results to delete indicators that do not seem 

to differentiate classes well.  Furthermore, while researchers do not know a priori 

how many classes will emerge, they sometimes hypothesize about the number and 

type of classes that will emerge based on theory and will use that prediction to guide 

how many indicators to keep.  While there are no current recommendations about 

sample size and number of indicators, there are different strategies that researchers 

use to make these decisions, none of which are grounded in empirical research.  

1.4 The Current Study 

Taken together, these practical issues that arise in the application of LCA 

models are important because they highlight the potential intersection between class 

enumeration, sample size, and the number of indicators included in these models.  To 

date, there is no published research that directly examines these issues together within 

the LCA framework.  Previous work has begun to establish a link between sample 

size and the number of latent classes retained in mixture models (Lubke & Neale, 
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2006; Masyn, 2013; Tein, Coxe, & Cham, 2013); however the current study explores 

the connection between sample size, the number of indicators, and class enumeration 

in LCA models.  

Given the known link between sample size, the number of observed 

indicators, and the number of latent classes extracted in factor mixture models (Lubke 

& Neale, 2008) and latent profile models (Tein, Coxe, & Cham, 2013), and what we 

currently know about fit index performance in mixture models (Nylund et al., 2007a; 

Tofighi & Enders, 2007; Yang, 2006), the purpose of this dissertation is twofold.  

First, this dissertation aims to examine and understand the interplay between sample 

size, the number of observed indicators, and class enumeration in LCA models.  In 

other words, this study wants to determine if there is a point where, with decreasing 

sample sizes and potentially limited indicators, the existing heterogeneity in a 

population can no longer be fully uncovered.  Specifically, at what point is specificity 

of the emerging latent classes lost?  Second, while empirically examining the 

interplay of these aforementioned factors, this study also investigates the performance 

of the most commonly used measures of model fit in recovering the “correct” latent 

class solution when factors such as sample size and number of observed indicators are 

varied.  This study also varies other population factors such as the true number of 

latent classes (either a 3 or 4-class solution), and the size and nature of the latent 

classes.   

The results of this study are important for a number of reasons.  First, they 

help researchers understand how factors such as sample size, and type of data 
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collected can directly influence the classes that emerge in LCA models.  Additionally, 

the results of this study help us to better understand the performance of the various fit 

indices commonly used to guide the class enumeration process in LCA models.  

Lastly, based on how the fit indices perform under a range of LCA conditions, this 

study provides “best practice” recommendations for researchers that currently use 

LCA models in their work.  

1.5 Preview of Dissertation 

 What follows is a description of the simulation study used in this dissertation.  

First, previous research findings are summarized and discussed to serve as a 

foundation and rationale for the empirical conditions that were explored in this Monte 

Carlo simulation study.  Additionally, the literature review (i.e., Chapter 2) discusses 

LCA models in more detail, as well as the fit indices that are commonly used in the 

class enumeration process of mixture models.  These fit indices include the Akaike 

Information Criterion (AIC), the Consistent Akaike Information Criterion (CAIC), 

the Bayesian Information Criterion (BIC), the adjusted Bayesian Information 

Criterion (ABIC), the adjusted Lo-Mendell-Rubin likelihood ratio test (LMR-LRT), 

the parametric bootstrapped likelihood ratio test (BLRT), the approximate Bayes 

Factor (BF), and the correct model probability (cmP).   

Second, the methods section (i.e., Chapter 3) presents and explains all data 

generation and analysis conditions considered in this study.  Next, Chapter 4 reports 

the results of this simulation study in regards to the recovery rates of the various fit 

indices (i.e., how the fit indices performed when deciding on the correct number of 
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latent classes).  The results section also reports findings related to how sample size, 

the number of indicators, and class enumeration intersect in LCA models.  Finally, 

the discussion (i.e., Chapter 5) recaps and summarizes the findings of this 

dissertation, provides recommendations for applied researchers, and discusses 

directions for future Monte Carlo simulation research.  
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Chapter 2 

Literature Review 

2.1 Overview of Latent Class Analysis (LCA) 

Lazarfeld and Henry (1968) first introduced latent class analysis as a way to 

relate a single categorical latent variable to a number of observed categorical 

indicators.  The main objective of LCA is to group people into classes based on 

multivariate response patterns to observed indicators and to identify indicators that 

best distinguish between classes (Nylund, Asparouhov, & Muthén, 2007).  The 

purpose of LCA is conceptually similar to other traditionally used classification 

methods (e.g., cluster analysis) however, LCA is a model based approach that 

operates in a latent variable framework where the underlying class variable is treated 

as an unobserved, categorical latent variable.  The LCA model with observed binary 

indicators
6
, u, has an unordered categorical latent variable c with K classes (c = k; k = 

1, 2, 3,…, K). The K classes are exhaustive and mutually exclusive such that each 

individual in the population has membership in exactly one of the K latent classes 

(Masyn, 2013; see Figure 1).  The marginal probability for item uj = 1 is 

 

 

                                                        
6
 Indicators do not need to be binary.  They can be ordinal, multinomial, and/or continuous.  A LCA 

with continuous indicators (i.e., LPA) will not be considered in this simulation study.  
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The joint probability for all of the observed us (i.e., u1, u2,…,ur), assuming 

conditional independence
7
 is 

 

 

Figure 1.  Standard latent class analysis model diagram 

 

 

2.1.1 Estimated LCA Parameters 

There are two types of parameters in the LCA model – class probability 

parameters and item parameters.  Class probabilities specify the relative size of each 

latent class (i.e., how many individuals are in each class), also known as class 

prevalence.  Item parameters, in LCA models with categorical outcomes, correspond 

to the conditional item probabilities for each latent class.  Specifically, these 

parameters are unique to a given latent class and provide information on the 

probability of an individual in a latent class endorsing a particular item.  For example, 

                                                        
7
 The assumption of conditional independence implies that the correlation among the indicators (i.e., 

u1, u2,…,ur) is completely explained by the latent class variable c (Nylund et al., 2007a), thus they are 

uncorrelated conditioned on class. 

c 
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a class specific conditional item probability of .90 indicates that 90% of individuals in 

that given class will endorse that particular item, while only 10% will not (Masyn, 

2013).  In practice, it is common to graph the conditional item probabilities in an item 

probability plot to get a clearer, more holistic understanding of the patterns that 

emerge within the data.  In fact, the item probability plots often aide in the 

substantive interpretation of the latent classes that emerge.  Some item probability 

plots are ordered latent class solutions and others are unordered latent class solutions.  

Specifically, ordered latent class solutions have latent classes that do not cross (see 

Figures 2 and 5) whereas the unordered latent class solutions do (see Figures 3 and 4).  

In other words, the latent classes in ordered solutions are differentiated by the degree 

to which individuals within a given class endorse the indicators.  On the other hand, 

the type of indicators individuals within a class do or do not endorse differentiated 

latent classes in unordered solutions.  

2.2 Assumptions of LCA Models 

The overall goal of LCA models is to group or classify similar individuals into 

one of K latent groups (or classes).  For this reason, an overarching assumption of 

these models is the existence of a latent exogenous variable (Heinen, 1996; Tueller & 

Lubke, 2010).  Therefore, if a researcher does not hypothesize that there are 

underlying subgroups (or latent classes) present in the data, this type of analysis is not 

justified.  LCA models also assume that an individuals’ class membership is discrete 

and mutually exclusive (Clogg, 1995), and that class membership is exhaustive, 

meaning that the latent classes account for 100% of the individuals in the observed 
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data.  Conditional (or local) independence is another fundamental assumption of LCA 

models.  This assumption implies that the underlying latent variable, c, accounts for 

all relationships between the observed variables (Clogg, 1995; McCutcheon, 1987; 

Nylund et al., 2007a).  In other words, conditional independence implies that there is 

no remaining relationship between the observed variables after controlling for class 

membership in the data. 

2.3 Fit Indices and Class Enumeration 

Deciding on the best fitting model is often the most difficult part of the 

modeling process.  In general, a researcher should consider both substantive theory 

and statistical fit when making this decision in practice (Muthén, 2003).  Specifically, 

LCA models require the examination of fit indices along with congruence of the 

modeling results with substantive theory.  It is recommended to begin the modeling 

process by specifying a one-class model and then fitting additional models, increasing 

the number of classes by one in each model, until the models are no longer well 

identified (Masyn, 2013).  Once this is completed, fit information is collected from 

each fitted latent class model and aides the researcher in deciding on the statistically 

best fitting model.  This process of deciding on the best fitting latent class model is 

also referred to as class enumeration.  The following fit indices were considered in 

the current simulation study: Akaike’s Information Criterion (AIC), Consistent 

Akaike’s Information Criterion (CAIC), Bayesian Information Criterion (BIC), 

adjusted Bayesian Information Criterion (ABIC), adjusted Lo-Mendell-Rubin 

likelihood ratio test (LMR-LRT), the parametric bootstrapped likelihood ratio test 
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(BLRT), the approximate Bayes Factor (BF), and the correct model probability 

(cmP).  The goal of examining these commonly used fit indices was to understand 

how well they perform in enumerating the correct latent class model.  

2.3.1 Information Criteria (ICs) 

Information Criteria (ICs) are fit indices that are commonly examined across a 

wide range of statistical models and are used to compare a set of models.  The ICs 

take model complexity into account and are also used to evaluate statistical fit.  These 

indices include the Akaike Information Criterion (AIC; Akaike, 1987), the Consistent 

Akaike Information Criterion (CAIC; Bozdogan, 1987), the Bayesian Information 

Criterion (BIC; Schwarz, 1978), and the adjusted Bayesian Information Criterion 

(ABIC), where lower values indicate a better fitting model.  The AIC can be defined 

as:  

AIC = -2(log-likelihood) + 2p,  

where p is the number of free model parameters.  The CAIC is a derivative of the AIC 

however it also penalizes the value of -2 times the log-likelihood of the model for the 

number of free model parameters and sample size (Bozdogan, 1987).  The CAIC is 

defined as:  

CAIC = -2(log-likelihood) + p [log (n) + 1],  

where p is the number of free parameters and n is the sample size.  The BIC also 

includes an adjustment for the sample size and is defined as:  

BIC = -2(log-likelihood) + plog (n),  
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where p is the number of free parameters and n is the sample size.  Lastly, the ABIC 

is a derivative of the BIC that reduces the penalty associated with sample size.  The 

ABIC is defined as:  

ABIC = -2(log-likelihood) + plog [(n+2)/24],  

where again p is the number of free parameters and n is the sample size.  

Many simulation studies support the BIC as being the IC that consistently 

identifies the correct number of classes for mixture models (Jedidi, Jagpal, & 

DeSarbo, 1997; Magidson & Vermunt, 2004; Peugh & Fan, 2013; Roeder & 

Wasserman, 1997; Tein, Coxe, & Cham, 2013; Tueller & Lubke, 2010).  In fact, a 

previous simulation study considered all of the aforementioned ICs and found the 

BIC to perform the best across various mixture models (Nylund et al., 2007a).  A 

more recent simulation study considered latent class, latent profile, and factor mixture 

models and further confirmed these results.  Specifically, findings revealed that the 

BIC tended to identify the correct solution with higher frequency than other indices, 

especially in models with more continuous than categorical indicators, or when rare 

classes were not present (Morgan, 2012).  Other simulation studies have found strong 

evidence for the ABIC (Peugh & Fan, 2013; Tein, Coxe, & Cham, 2013; Tofighi & 

Enders, 2007), even in instances where the sample size was relatively small (Yang, 

2006).  

Lastly, there is a consensus in regards to the AIC overestimating the number 

of classes in mixture models (Celeux & Soromenho, 1996; Koehler & Murphree, 

1988; Nylund et al., 2007a; Tein, Coxe, & Cham, 2013).  Specifically, research has 
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shown that the AIC overestimates the number of latent classes with larger sample 

sizes (Woodroofe, 1982).  In fact, Nylund, Asparouhov, and Muthén (2007) found 

that the AIC accuracy decreased as sample size increased and suggested this is due to 

the fact that the AIC includes no adjustment for sample size.  The CAIC however, has 

been shown to perform well across multiple conditions (Peugh & Fan, 2013), 

especially when the sample size is relatively large (i.e., n = 1000; Nylund et al., 

2007a).  This is likely due to the CAIC’s adjustment for the number of parameters 

using the sample size, but more studies are needed to fully understand the range of 

use of the CAIC.  

2.3.2 Likelihood Ratio Tests: Adjusted LMR-LRT and BLRT 

The adjusted Lo-Mendell-Rubin likelihood ratio test (adjusted LMR-LRT; Lo, 

Mendell, & Rubin, 2001) and parametric bootstrapped likelihood ratio test (BLRT) 

are commonly used to compare nested models and are implemented within Mplus.  

These tests compare the K-1 class model (the null model) with the K class model.  In 

other words, the null hypothesis for the adjusted LMR-LRT and BLRT states that the 

number of classes is equal to k-1 (H0: K = k-1), and the alternative hypotheses states 

that the number of classes is equal to k (H1: K = k) (Morgan, 2012).  Therefore, 

statistically significant p-values suggest that the K class model fits the data 

significantly better than the K-1 class model (Masyn, 2013).   

A previous simulation study examined the performance of these fit indices 

among others for 3 types of mixture models: LCA models, factor mixture models 

(FMM), and growth mixture models (GMM; Nylund et al., 2007a).  Findings from 
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this study showed the BLRT to be a very consistent indicator of classes across all of 

the models considered (Nylund et al., 2007a).  In fact, studies show that the BLRT 

often outperforms the adjusted LMR-LRT (Nylund et al., 2007a; Tein, Coxe, & 

Cham, 2013).  Other simulation studies however, have found strong evidence for the 

adjusted LMR-LRT (Lo, Mendell, & Rubin, 2001; Lubke & Muthén, 2007; Tofighi & 

Enders, 2007).  Specifically, Tofighi & Enders (2007) examined a series of GMM 

analyses and concluded that the LMR-LRT was a relatively consistent indicator of the 

correct number of latent classes, however, this study did not consider the BLRT as 

well.  Additionally, Lubke and Muthén (2007) explored a series of LPA models and 

found that the adjusted LMR-LRT performed extremely well in conditions where the 

latent classes were well separated.  

2.3.3 Bayesian Fit Indices: BF and cmP  

The approximate Bayes Factor (BF) and the approximate correct model 

probability (cmP) are two fit indices commonly used in the Bayesian framework that 

have more recently been suggested to be promising for mixture modeling (Masyn, 

2013).  The BF is a pair-wise comparison of relative fit between two competing 

models, Model A and Model B (Masyn, 2013).  Specifically, Model B is the smaller 

model, nested in Model A.  In practice, the BF is calculated by using the following 

equation:  

 

where SIC is the Schwarz Information Criterion (Schwarz, 1978), which is equal to -

0.5BIC (Masyn, 2013).  A BF greater than 1 and less than 3 is weak evidence for 
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Model A, greater than 3 and less than 10 is moderate evidence for Model A, and 

greater than 10 is strong evidence for Model A (Wasserman, 2000).  

The approximate correct model probability (cmP) on the other hand, allows a 

researcher to compare a set of more than two latent class models.  This statistic is 

calculated once all of the latent class models are fit and generally outside of the 

commonly used statistical software packages.  Specifically, there is a cmP value for 

each of the latent class models. Model A (A=1, …, J) is calculated by using the 

following equation:  
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where SICmax is the maximum SIC score of all the J models being considered (Masyn, 

2013).  If the sum of the cmP values across a set of models is equal to 1, then the 

“true” model is assumed to be one of the models in the set being compared (Masyn, 

2013).  No existing research to date has examined the performance of the BF and cmP 

in the class enumeration process with LCA models.  

In practice, researchers using the set of fit indices described above to fit a 

LCA model will often end up with the fit indices indicating a few competing models.  

Thus, it has been recommended that researchers should use these indices in concert 

with substantive theory to decide on the final model to retain (Masyn, 2013; Muthén, 

2003).   

Item probability plots are also often used to help a researcher decide on the 

best substantively fitting model.  These plots graphically show the various latent 
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classes that emerge and can help a researcher understand how classes differ in terms 

of the patterns they exhibit.  Additionally, item probability plots help researchers 

understand which indicators are most useful in producing meaningful latent classes.  

Specifically, “good” indicators should have both high within class homogeneity and 

high between-class separation (Masyn, 2013; discussed in more detail in Chapter 3.4).  

Lastly, model parsimony should also be considered while deciding on the statistically 

and substantively best fitting model.  In general, the model with the fewest number of 

classes that fits the data both statistically and substantively well is favored (Masyn, 

2013).  

2.4 Previous Findings and Future Directions 

Existing research thus far has highlighted the performance of these various fit 

indices in deciding on the statistically best fitting model, but has indicated some 

sensitivity to sample size.  In general, research has shown that top performers include 

the BLRT (Nylund et al., 2007a), BIC (Jedidi, Jagpal, & DeSarbo, 1997; Magidson & 

Vermunt, 2004; Nylund et al., 2007a; Peugh & Fan, 2013; Roeder & Wasserman, 

1997), and adjusted BIC fit indices (Peugh & Fan, 2013; Tofighi & Enders, 2007; 

Yang, 2006).  Yang (2006) noted that in general, small sample sizes tend to cause 

instability in the performance of the ICs.  That is, accurately deciding on the correct 

number of latent classes increases as sample size increases (Yang, 2006).  Morgan 

(2012) concluded that the BIC identified the correct solution in models with more 

continuous than categorical indicators, or when rare classes were not present.  

Additionally, this study noted that the AIC tended to identify the correct class 
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solution with higher frequency than the other indices when there was a small degree 

of separation between latent classes (Morgan, 2012).  

Taken together, this research suggests a connection between sample size, the 

nature of the latent classes, the metric level of the observed indicators, and the final 

number of latent classes extracted.  In fact, Lubke and Neale (2006) conducted a 

simulation study that revealed that retaining the correct number of latent classes is 

dependent on within-class sample size and between-class separation.  This study 

however, did not consider the number of indicators included in the model.  

Furthermore, Lubke and Neale (2008) conducted a simulation study using factor 

mixture modeling (FMM) concluding the number of latent classes extracted was 

heavily dependent on sample size, and the number of indicators included in the 

model.  Similarly, another simulation study examined a special case of FMM’s 

labeled structural equation mixture models (SEMM), which includes regressions 

between latent factors within each latent class.  Results indicated that sample size has 

a substantial effect on model performance, especially in cases where class separation 

is low (Tueller & Lubke, 2010).  Lastly, a recent simulation study found that power to 

detect the true latent class solution in LPA models depended on the number of 

indicators included in the model, distance between the latent classes, and sample size 

(Tein, Coxe, & Cham, 2013).  This study however, did not consider binary items, 

sample sizes greater than 1,000, and did not take the nature of the latent classes into 

account (i.e., ordered vs. unordered classes). 
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This interplay between sample size, number of indicators, and number of 

latent classes retained has been discussed to be true for latent class models as well 

(Masyn, 2013).  One reason could be because small sample sizes may be 

underpowered to detect smaller latent classes (Masyn, 2013; Muthén & Muthén, 

2002).  Further, this interplay is crucially important in applied research because often 

times, in practice, researchers do not have access to large datasets.  Social science 

researchers instead often collect data on a small sample of the larger population.  

Consequently, it is critical to understand how subsetting observations from a larger 

population influences fit index performance and thus the latent classes that emerge.  

Similarly, there is a practical need to understand how reducing the number of 

indicators (either because they do not help distinguish classes or because they are 

redundant) influences fit index performance and subsequently class enumeration in 

general.  

Therefore, this study aims to empirically understand the extent to which 

sample size, number of observed indicators, and number of latent classes extracted 

intersect in LCA models.  In other words, when sampling observations from a larger 

population, is there a critical point where the size of the sample and the number of 

indicators cannot uncover all of the existing heterogeneity?  That is, at what point is 

specificity of the emerging latent classes lost?  Additionally, this study aims to further 

understand the ability of the commonly used fit indices to uncover the correct latent 

class solution.  The answers to these questions have important implications for 

researchers using LCA models in their research.  Specifically, results will allow 
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researchers to understand how sample size, and the number of observed indicators 

(among other factors) influences the class enumeration process.  Results also 

highlight the importance of thoughtfully considering sample size and the number of 

indicators included when estimating and interpreting LCA models.  Lastly, results 

from this study will help researchers using LCA models further understand which fit 

index to trust under various conditions when going through the class enumeration 

process in practice.  



 

28 

 

Chapter 3 

Method 

3.1 Overview of Current Monte Carlo Study  

The purpose of this dissertation was to examine the performance of the most 

commonly used fit indices in selecting the “correct” latent class model while varying 

factors such as: the true number of latent classes, the size of the latent classes (i.e., 

class prevalence), the nature of the latent classes, the number of indicators, and 

sample size.  Secondly, this study aimed to examine and understand the intersection 

of sample size, the number of observed indicators, and class enumeration in LCA 

models.  The following methodological steps were taken in this Monte Carlo 

simulation study, and will be discussed in more detail below.  First, a total of eight 

data conditions (each with 500 replications) were generated within Mplus Version 7.1 

(Muthén & Muthén, 1998-2013), based on a known number of latent classes and a 

known set of population parameters.  Next, this data was read into Mplus and 

analyzed with a different sample size, and number of indicators than the generated 

data.  Modeling results were then tabulated to determine recovery rates for each of the 

fit indices considered.  Specifically, for the purposes of this study, a recovery rate is 

defined as the percentage for which the various fit indices were able to correctly 

identify the “true” latent class solution.  Finally, these tabulated results were further 

examined to understand the extent to which sample size, number of indicators, and 

class enumeration intersect in LCA models.   
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3.2 Creating Empirical Conditions: Meta-Analysis 

 The conditions for the current simulation study were created based on a 

review of recent (within the last 5 years) empirical research articles that used LCA.  

Specifically, articles were selected by searching the Elton B Stephens Company 

(EBSCO), Education Full Text, Education Resources Information Center (ERIC), 

PsycINFO, and PsycARTICLES databases.  Keywords used to find research studies 

were originally solely "latent class analysis."  However, these keywords alone yielded 

over 3,500 potential research articles.  Therefore, keywords used to find relevant 

studies were expanded to include: latent class analysis, LCA, binary, and finite 

mixture models.  The search was also limited to recent peer-reviewed, full text 

research articles available through the University of California, Santa Barbara library 

that were within the years of 2009 and 2013.  It is important to mention that searching 

large databases does not ensure that all relevant studies will be found.  

 A total of twenty studies
8
 were selected that used LCA between 2009 and 

2013 in peer-reviewed education and psychology journals.  Ten of the 20 articles 

(50%) using LCA reported identifying four-class solutions, followed by 6 out of 20 

(30%) identifying three-class solutions, and only 4 out of 20 (20%) identifying five or 

more latent classes.  Of these 20 latent class solutions, 10 out of 20 (50%) were 

unordered classes, 5 out of 20 (25%) were ordered classes, and another 5 out of 20 

                                                        
8
 The database search using the aforementioned keywords yielded a total of 24 potential articles.  Of 

these 24 articles, four articles did not meet the predetermined criteria for inclusion.  Specifically, some 

studies included continuous indicators and did not use latent class analysis procedures.  Therefore, 20 

final studies were selected.  



 

30 

 

(25%) did not provide enough information to decide (i.e., did not include item 

probabilities or item probability plots).  

In terms of the most commonly reported fit indices and procedures used to 

decide on the best fitting latent class solution, 16 out of 20 articles (80%) reported 

using the BIC, 10 out of 20 (50%) reported using substantive theory, 9 out of 20 

(45%) reported using the AIC, 5 out of 20 (25%) reported using the adjusted LMR-

LRT, 3 out of 20 (15%) reported using the ABIC, and 2 out of 20 (10%) reported 

using the CAIC
9
.  Sample sizes ranged from approximately 150 participants to 

approximately 20,000 participants (large-scale, nationally representative data).  A 

Pearson product moment correlation was used to explore a potential relationship 

between sample size and the number of latent classes extracted in these 20 studies.  

Results indicated that the relationship between sample size and latent classes was not 

statistically significant (r = -.02, n = 20, p = .948).  Lastly, these studies reported 

using anywhere from 2 to 33 indicators of class membership.  It is important to note 

that these values for the number of indicators were outliers and the majority of the 

studies (90%) reported using between 5 and 10 indicators of class membership. 

3.3 Data Generation 

3.3.1 Number of Latent Classes and Class Prevalence 

All generated data included a total of 10,000 observations and 10 binary 

indicators.  The true number of latent classes was either a three or four class model.  

The decision to generate data with a true three-class and four-class solution was based 

                                                        
9
 The usage of these fit indices is not mutually exclusive.  That is, 90% of the articles reported using 

more than one of the aforementioned fit indices when deciding on the best fitting latent class model.   
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on the previously mentioned review of recent empirical research.  In fact, 80% of the 

empirical studies retrieved in the meta-analysis identified either a three or four-class 

solution.  The relative size of the latent classes (i.e., class prevalence) were varied to 

be either equal (π1 = .33, π2 = .33, π3 = .33 for the three-class solution and π1 = .25, π2 

= .25, π3 = .25, π4 = .25 for the four-class solution), which was modeled from a 

simulation study by Nylund, Asparouhov, & Muthén (2007), or unequal in nature (π1 

= .10, π2 = .30, π3 = .60 for the three-class solution and π1 = .10, π2 = .20, π3 = .20, π4 

= .50 for the four-class solution).  The unequal sized three-class condition aimed to 

represent one large/normative class, one moderate class, and one relatively small 

latent class, a configuration that is commonly seen in applied research (Shin, Hong, & 

Hazen, 2010; Stormont, Herman, Reinke, David, & Goel, 2013; Von Stumm, Chung, 

& Furnham, 2011).  The unequal sized four-class condition was created to represent 

one large/normative latent class, one small latent class, and two relatively moderate 

classes, a configuration that has also been seen in previous applications (Bettencourt 

& Farrell, 2013; Cavanaugh et al., 2012; Grant et al., 2006; Shin, Hong, & Hazen, 

2010).  Previous simulation studies have also generated data with unequal class sizes 

but have done so in slightly different ways.  For example, Morgan (2012) generated 

data with both three and four unequal class sizes however, the specific parameter 

values were marginally different (π1 = .59, π2 = .26, π3 = .15 and π1 = .59, π2 = .19, π3 

= .13, π4 = .09, respectively).  Nylund, Asparouhov, & Muthén (2007) also generated 

data with four unequal class sizes however, there was only one large/normative class 
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and the remaining three classes were relatively small (π1 = .75, π2 = .05, π3 = .10, π4 = 

.15).  

3.3.2 Nature of the Latent Classes 

The four population latent classes were varied to be either ordered or 

unordered in nature (see Figures 2-5 below).  Figures 2 and 5 display a graphical 

representation of what the four and three ordered class conditions were generated to 

look like, respectively.  Specifically, the classes in the ordered latent class solutions 

were generated to not overlap and were solely differentiated by the degree to which a 

given class endorsed the various indicators.  There were also two types of unordered 

latent class conditions (see Figures 3 and 4 below).  The first one (unordered latent 

class model A) was modeled after latent classes that were well separated by multiple 

indicators (see Figure 3 below) whereas the second set (unordered latent class model 

B) of unordered profiles were more overlapping, and not as well separated (see Figure 

4 below).  The four classes in these unordered latent class solutions were generated to 

overlap and were differentiated by the type of indicators endorsed or the various class 

specific conditional item probabilities. 

After crossing all factors that were varied in this study, a total of eight 

generated data conditions were created (see Table 1 and Figure 6 below).  All of the 

conditions with four classes were fully crossed, yielding the following six four-class 

conditions: four equal sized ordered classes, four unequal sized ordered classes, four 

equal sized unordered classes A, four unequal sized unordered classes A, four equal 

sized unordered classes B, and four unequal sized unordered classes B (see Figures 2-
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4 below for graphical representations of the unequal class size conditions).  

Alternatively, the three-class models were not fully crossed.  Specifically, there were 

only two conditions with true three-class solutions.  One condition included three 

ordered and equal sized latent classes, and the other condition included three ordered 

and unequal sized latent classes (see Figure 5 below for an item probability plot of the 

unequal class size condition).  

Generated data were based on the above mentioned population specifications, 

which allowed the current study to investigate the performance of fit indices under 

different modeling conditions.  Data were randomly generated based on variations of 

these abovementioned structures using the Monte Carlo functions in Mplus (See 

appendices A-D for sample data generation input files).  Each of the eight generated 

datasets of 10,000 observations included 500 replications, which has been 

demonstrated to be a sufficient number of replications in previous simulation research 

(Morgan, 2010; Nylund et al., 2007a).  This resulted in a total of 4,000 generated 

datasets (8 conditions * 500 replications each = 4,000).   
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Figure 2.  Item probability plot for four ordered latent classes 

 

 

Figure 3.  Item probability plot for four unordered latent classes A  
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Figure 4.  Item probability plot for four unordered latent classes B  

 
 

 

Figure 5.  Item probability plot for three ordered latent classes 
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Table 1 

Data Generation Conditions 

 A B C 

 Number of 

Latent Classes 

Nature of 

Latent Classes 

Class  

Size 

Number 

of Levels 
2 3 2 

Details 

Three-class 

solutions, 

Four-class 

solutions* 

Ordered, 

Unordered A, 

Unordered B 

Equal class sizes: 33.3% each for 

three-class solutions and 25% each 

for four-class solutions  

 

Unequal class sizes: 

large/normative 60%, 30%, and 

small 10% for three-class solutions; 

large/normative class 50%, 20%, 

20%, and small 10% for four-class 

solutions 

*Note.  All conditions with four classes were fully crossed; however, conditions with 

three classes were not.  The eight generated data conditions were as follows: four 

equal sized ordered classes, four unequal sized ordered classes, four equal sized 

unordered classes A, four unequal sized unordered classes A, four equal sized 

unordered classes B, four unequal sized unordered classes B, three equal sized 

ordered classes, and three unequal sized ordered classes (see Figure 6 below). 
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Figure 6.  Data Generation Conditions Simulation Map 

 

 
 

3.4 Data Analysis  

After all 4,000 datasets were generated; they were subsequently read in as 

data and analyzed in Mplus.  All data were generated to have an original population 

sample size of 10,000 and to have latent classes that were created based on precise 

item probabilities across 10 binary indicators.  The number of indicators and sample 

size were later systematically varied across analyses conditions explored in this 

simulation study.  

3.4.1 Number of Indicators 

The numbers of indicators were varied in each of the analysis conditions; 

specifically, for each condition there were models with either 7 or 10 indicators.  The 

decision rule for eliminating indicators (i.e., in conditions where there were only 7 

indicators) was to eliminate 3 items that were purposely generated to be “poor” latent 

class indicators.  Specifically, “poor” indicators were defined as having low class 

homogeneity and/or low class separation (i.e., did not separate the latent classes well) 
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(Masyn, 2013).  Indicators with low class homogeneity had average item probabilities 

ranging between approximately .3 and .7 (e.g., items 3, 7, and 10 in Figure 3), 

meaning that participants in that given class responded potentially differently to that 

particular indicator (Masyn, 2013).  In other words, indicators that had low class 

homogeneity did not provide a good representation of the latent class since item 

endorsement was not “typical” or a “characteristic of” that latent class (Masyn, 2013, 

p.559).  Alternatively, indicators that had poor/low class separation did not help 

distinguish or differentiate the various latent classes (e.g., items 6, 9, and 10 in Figure 

4).  In other words, the conditional item probabilities overlapped across classes and 

there was close to no between-class separation among these items.  This process of 

eliminating items that have low class homogeneity and low class separation is also 

frequently done in practice with applied data (Collins & Lanza, 2010; Masyn, 2013).  

Given that the indicators in the ordered three and four-class solutions were designed 

to have relatively the same item endorsement probabilities within class (see Figures 2 

and 5), items 1, 5, and 10 were eliminated in conditions where the ordered latent 

classes were defined by only 7 indicators.  Eliminating items in the ordered latent 

class conditions aimed to represent removing potentially redundant latent class 

indicators.  In general, varying the number of indicators that were defining the latent 

classes to be either 7 or 10 indicators allowed the current study to understand how 

removing “poor” or potentially redundant indicators, which is often times done in 

practice (especially with small samples in the interest of parsimony), influenced the 

class enumeration process.  
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3.4.2 Sample Size 

Sample size was also varied in the analyses conditions.  Sample sizes 

considered in this study were partially mirrored from a previous simulation study by 

Nylund et al. (2007a) and were also informed through the previously mentioned 

literature search.  Specifically, sample sizes examined in this dissertation were 200, 

500, 1,000, 5,000 and 10,000.  Given that the generated data included 10,000 

observations, a random subset of 200, 500, 1,000, and 5,000 observations were 

selected when analyzing the data to assess the effect of sample size on the ability of 

the fit indices to uncover all existing heterogeneity in the overall population.  These 

subset sample sizes reflected 2%, 5%, 10%, and 50% of the overall population, 

respectively.  This approach of subsetting the population sample size when analyzing 

the generated data has not been previously done in published research.  All existing 

simulation studies that have examined the effects of sample size on class enumeration 

have generated populations that vary in their “true” population sample size. 

3.5 Data Analytic Procedures  

3.5.1 Subsetting Sample Size and Number of Indicators 

 The 4,000 generated datasets (8 conditions * 500 replications each = 4,000) 

were read in as data and analyzed in Mplus.  Though all data were generated to be N 

= 10,000, sample sizes were varied when analyzing the generated data to reflect a 

random subset of 200, 500, 1,000, and 5,000 observations from the original data set.  

These sample sizes were purposely chosen to represent 2%, 5%, 10%, and 50% of the 

overall population, respectively.  Specifically, an identification (ID) variable was 
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generated in all 4,000 datasets using Stata Version 13 (StataCorp, 2013).  This was 

done in Stata because Mplus does not currently include an option to generate an ID 

variable within the Monte Carlo context.  The data was then imported back into 

Mplus and using the newly generated ID variable, a random subset of 200, 500, 1,000 

and 5,000 observations were pulled from the original 10,000 observations via the 

“useobservations” command.  Additionally, the number of indicators included in the 

model (i.e., either 7 or 10) was varied using the “usevariables” command.  The 

rationale behind subsetting sample size and the number of indicators when analyzing 

the data was to understand how different sample sizes (achieved by subsetting 

observations from a larger population) and numbers of indicators influenced the class 

enumeration process.  That is, the current study wanted to understand the point in 

which decreasing sample sizes and potentially limited indicators were not able to 

uncover all of the true heterogeneity (i.e., latent classes) in the population.   

Given that applied researchers do not typically know the true number of latent 

classes when estimating an LCA model, a series of latent class solutions were 

explored in this Monte Carlo study.  Specifically, 1-5 latent class models were fit to 

the data, per each condition, using the MIXTURE option in Mplus 7.1.  Additionally, 

as mentioned above, latent class models with differing sample sizes and number of 

indicators were fit to the data, for each of the eight previously mentioned conditions.  

This process produced a total of 400 analysis conditions, which corresponded to 400 

results files (i.e., 8 (data conditions) * 5 (latent classes) * 5 (sample sizes) * 2 

(number of indicators) = 400 analyses; see Table 2).  Next, these Mplus generated 
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results files that included all model parameter estimates and fit index information for 

each replication of the analyses, were saved.  These results files were then combined 

for a given condition, merging the fit information for the 1-5 latent classes.  

Specifically, the results files for each condition were merged and summarized 

separately
10

.  This allowed the identification of how many latent classes each fit index 

identified, per condition.  Sample analysis Mplus input files are provided in 

Appendices E-G.  

Table 2 

Data Analysis Conditions 

 D
 

E F 

 Sample size, n  # of latent classes # of indicators 

Number of 

Conditions 
5 5 2 

Details 
200,500,1,000, 

5,000, 10,000 
1-5 classes 

7 indicators, 10 

indicators 

 

3.6 Expectation Maximization (EM) Algorithm 

When analyzing the data, Mplus used the expectation-maximization (EM) 

algorithm to obtain maximum likelihood estimates of LCA parameters (Masyn, 

2013).  The first step in obtaining these maximum likelihood parameter estimates is to 

specify the likelihood function.  Specifically, Masyn (2013) described this likelihood 

function as “the probability density of all of the data (the array of all values on all 

variables, latent and observed, in the model for all individuals in the sample) given a 

set of parameter values” (p. 561).  A maximum likelihood solution consists of 

                                                        
10

 Merging files across replications and making comparisons across conditions required fixing the 

random seed value that Mplus uses to be equal across all data generation models.  Specifically, this 

was done by using the “seed =” command and specifying the same unique value in all data generation 

input files (see Appendices A-D). 
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parameter values that maximize the likelihood function.  Obtaining these estimates is 

done through an iterative process.  The goal of this iterative process is to reach what 

is known as a global solution (or set of parameter values), however, mixture models 

are known to be susceptible to converging on local solutions (Nylund et al., 2007a).  

A global solution is attained when the peak (or the maximum) of the likelihood 

function is reached, whereas a local reaches a peak but it is not the highest of the 

entire likelihood function.  

Reaching a local, and not global solution is problematic and concerning 

because the maximum likelihood estimates you obtain can be unstable and not 

trustworthy (Masyn, 2013).  There are however some practical suggestions that can 

be employed to increase confidence that the estimation process converges on a global 

solution.  First, the use of multiple sets of random start values for the model was used 

to help ensure finding a global solution (Muthén & Muthén, 1998-2011; Nylund et 

al., 2007a; Masyn, 2013).  To help facilitate this, Mplus includes a random start value 

feature that generates different random start sets (Nylund et al., 2007a).  Next, the log 

likelihood value estimates in the model output were examined to make sure that they 

were replicated.  Mplus orders the log likelihood values from the random starts from 

highest to lowest in the output file.  If the best log likelihood value is not replicated at 

least twice (preferably more), is it possible that a local, not global solution has been 

reached (Muthén & Muthén, 1998-2011).  Lastly, a good set of model start values can 

improve the chances of locating the maximum of the likelihood function as opposed 

to the top of one of the smaller peaks (i.e., local maximum).  The default random start 
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setting was overridden in Mplus to increase the chances of locating a global solution.  

Specifically, the number of random starts for all LCA models in this simulation study 

was specified as “Starts=100 20.”  The first number in this command refers to the 

number of initial iterations and the second number refers to the number of final 

iterations.  In other words, the number of random sets of starting values was equal to 

100 and the 20 best likelihood values obtained were used as starting values for an 

optimization that continued until the models converged.  Thus, there was little chance 

that the results of this simulation study were based on local solutions.  Additionally, 

to avoid warnings about log likelihoods not being replicated in the bootstrap draws 

for the BLRT fit index, the default start settings for the LRTSTARTS option were 

also overridden (i.e., LRTSTARTS = 0 0 150 40;).  
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Chapter 4 

Results 

4.1 General Overview 

This chapter provides the results of the simulation study.  The purpose of this 

simulation study was twofold.  First, this study examined the performance of the most 

commonly used fit indices in selecting the “correct” latent class model while varying 

factors such as: the true number of latent classes, the size of the latent classes (i.e., 

class prevalence), the nature of the latent classes, the number of indicators, and 

sample size.  Second, this dissertation explored a potential intersection between 

sample size, the number of observed indicators, and class enumeration in LCA 

models.  Therefore, results of this study include detailed information about the 

performance of the ICs (i.e., AIC, CAIC, BIC, ABIC), the likelihood ratio tests (i.e., 

the adjusted LMR-LRT and BLRT), and the Bayesian fit indices (i.e., the BF and 

cmP) in identifying the LCA model with the correct number of classes.  Additionally, 

this chapter includes findings related to the degree to which sample size, the number 

of indicators, and class enumeration intersect in LCA models. 

4.2 Model Fitting and Checking 

4.2.1 Model Convergence  

The Monte Carlo capabilities in Mplus Version 7.1 (Muthén & Muthén, 1998-

2013) were used to both generate and analyze data.  Summary information was 

requested and provided across all completed replications.  P-values for the adjusted 

LMR-LRT and BLRT were provided for each replication that converged by 
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specifying TECH11 and TECH14 as an output option.  A previous study stated that 

“nonconvergence of any given replication may occur because of singularity of the 

information matrix or an inadmissible solution that was approached as a result of 

negative variances” (Nylund, Asparouhov, & Muthén, 2007, p. 551).  Moreover, non-

convergence is often considered an indication of model misfit, and used as evidence 

that the model with one fewer classes is superior (Nylund et al., 2007a).  However, 

one hundred percent of the replications converged across all conditions in this 

simulation study.  This is not surprising since in general, nonconvergence rates in 

previous simulation studies were documented to be extremely low (i.e., less than 1% 

of the time) with unconditional LCA models (Nylund et al., 2007a).  Additionally, 

this high convergence rate may be attributed to the fact that the latent classes in this 

simulation study were well defined, the specified indicator and population 

characteristics were relatively simple in nature (i.e., only binary indicators and 

unconditional LCA models were considered), and the default number of random starts 

within Mplus were overridden and increased during the data analysis stage.  

4.2.2 Coverage 

Coverage estimates were examined for each estimated parameter across all 

500 replications, per condition in this simulation study.  Coverage estimates are 

summary statistics that convey the ability of the analysis models to accurately recover 

the specified true population parameter values (i.e., the parameters that the data was 

generated based on).  These estimates are summarized by looking at average 

parameter values across 500 replications with 95% confidence intervals that contain 
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the true population parameter values (Nylund et al., 2007a).  For example, when data 

from a three-class LCA model are generated and analyzed with a three-class LCA 

model, it is expected that the estimated average parameter values (across 500 

replications) will be close to the true population parameter values that were used to 

generate the data.  If the estimated average parameter values in a correctly specified 

model are not close to the true population parameter values that were used to generate 

the data, the results of the simulation study have little meaning (Nylund et al., 2007a).  

For example, a coverage value of .94 for a given parameter would indicate that, 

across all 500 replications, 94% of the model estimates fall within a 95% confidence 

interval of the true population parameter value (Nylund et al., 2007a).  Coverage 

estimates for each of the estimated model parameters across all conditions of this 

simulation study fell within the recommended range of .91 and .98
11

 (Muthén & 

Muthén, 2002).  These high coverage estimates are important because they indicate 

that when specified correctly, the analysis models are able to accurately recover the 

true population values. 

4.3 Overview of Simulation Results 

Tables 3-6 summarize the results of the current simulation study.  

Specifically, the values in Tables 3-6 represent percentage recovery rates for all fit 

indices considered across all possible conditions.  In other words, the values indicated 

the percentage of times (out of 500 replications, per condition) that the fit indices 

                                                        
11

 It is important to note that when coverage is studied in the LCA context, the random starts option 

within Mplus is not used (i.e., starts=0).  If random starts are not turned off, “label switching” of the 

latent classes may occur across each replication and distort coverage estimates.   
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recovered each latent class solution across the various LCA conditions.  If all fit 

indices were able to correctly identify the true three or four-class solution, the 

percentages in columns identifying four latent classes in Tables 3-5 should result in 

the highest values, and the percentages in columns identifying three latent classes in 

Table 6 should result in the highest values.  For example, when looking at the first 

row in Table 4, the AIC recovered the correct 4-class solution 82% of the time when 

sample size was 200, classes were unordered and equal, and when only 7 items were 

included in the estimation process.  Figures 7-36 display various graphical 

representations of the recovery rates across all fit indices considered, both per 

condition and across conditions.  For the purposes of this simulation study, a recovery 

rate of 95% or higher was considered an indication of high fit index performance.  A 

95% threshold value has also been used in previous simulation studies that examined 

fit index performance (Lubke & Neale, 2006; Nylund et al., 2007a).  Therefore, to 

visually depict the level at which the fit indices should be performing to be 

considered “high performing” (i.e., 95% or higher), a red dotted line was included in 

Figures 7-36.   

4.4 Four Ordered Latent Class Model  

 The recovery rates across all conditions where data was generated to have a 

total of four ordered latent classes (see Figure 2) are presented in Table 3.  If all fit 

indices were able to correctly identify the true four-class solution, the percentages in 

columns identifying four latent classes in Table 3 should result in the highest values.  

However, in general, all fit indices did not perform well under this specific condition 
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(see Table 3).  In fact, across all fit indices considered, the true number of latent 

classes was vastly underestimated and in general, the percentages in the columns 

identifying three latent classes resulted in the highest values.  A possible explanation 

for these findings is that class 1 and class 2 in Figure 2 did not have good separation, 

meaning that the distance between those two latent classes was relatively small, 

which made it difficult to detect the true latent class solution.  Based upon these 

results, it appears that the results of this condition are not accurate and therefore will 

not be discussed further in detail since they do not represent the true ability of the fit 

indices considered.   

It is interesting to note however that a recent LCA simulation study concluded 

that the AIC was able to correctly identify the correct latent class solution at higher 

rates than the other fit indices even when between-class separation was small 

(Morgan, 2012).  The results in Table 3 below seem to indicate a similar trend with 

the AIC even though in general, recovery rates were extremely low.  The extremely 

low recovery rates for this condition prompted the current study to consider another 

ordered latent class solution that was generated to have greater between class 

separation and one fewer latent class (i.e., the ordered three class solution).  Results 

from this condition will be discussed in further detail in section 4.7. 

4.5 Four Unordered Latent Class Model A  

The recovery rates across all four unordered latent class A conditions (see 

Figure 3) are presented in Table 4.  If all fit indices were able to correctly identify the 

true four-class solution, the percentages in columns identifying four latent classes in 
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Table 4 should result in the highest values.  Figures 7-10 display a graphical 

representation of recovery rates for all fit indices considered across all four unordered 

latent class A conditions.  

4.5.1 Information Criteria (ICs)  

The AIC performed the worst among the ICs, with recovery rates well below 

the 95% benchmark across all unordered A conditions considered.  Specifically, 

results indicated that when the AIC failed (i.e., does not identify the correct latent 

class solution), there was a tendency to overestimate the correct number of latent 

classes (see Table 4).  The results in Table 4 indicate that the AIC index has a 

tendency to perform better as sample size decreases.  The CAIC, BIC, and ABIC, all 

performed extremely well across all conditions however, in general, performance 

seemed to decrease as sample sized decreased (see Figures 11-16).  When sample size 

was n = 200, class sizes were equal, and “poor” items were eliminated (i.e., there 

were only 7 indicators as opposed to all 10), the BIC performed best (see Table 4 and 

Figures 7, 8, and 11) of the ICs.  On the other hand, when sample size was n = 200 

and class sizes were unequal, the ABIC performed best (see Table 4, Figures 9 and 

10), especially when “poor” items were eliminated (see Figure 13).  These results 

indicate that as sample size decreased (i.e., when n = 200), the BIC and the CAIC 

were the most sensitive to unequal latent class sizes (see Figures 11 and 12) and the 

ABIC was most sensitive to the inclusion of “poor” indicators (see Figure 13).  
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4.5.2 Likelihood Ratio Tests: Adjusted LMR-LRT and BLRT 

The BLRT outperformed the adjusted LMR-LRT across every four unordered 

latent class A condition (see Table 4 and Figures 7-10).  In fact, recovery rates for the 

adjusted LMR-LRT index never reached the 95% threshold value across any of the 

conditions and tended to overestimate the number of latent classes (see Table 4).  

Recovery rates for the BLRT were extremely high across all conditions considered 

and interestingly, did not seem to be affected by a reduction in sample size, number 

of indicators included, or latent class size (see Figure 14).  Specifically, recovery rates 

for the BLRT ranged from 89% to 96% across all conditions considered, however, 

most conditions yielded recovery rates between 94% and 96%.  The recovery rate of 

89% was for the condition where sample size was small (i.e., n = 200), latent class 

sizes were unequal, and all 10 indicators were included in the model.  In other words, 

the recovery rates for the BLRT benefited and increased (from 89% to 94%) solely by 

removing “poor” indicators (see Figure 14).  

4.5.3 Bayesian Indices: BF and cmP  

The recovery rates for the Bayes Factor (BF) and Correct Model Probability 

(cmP) indices were high across most of the conditions considered (see Table 4 and 

Figures 7-10).  Specifically, these indices were able to correctly identify the correct 

latent class solution 100% of the time when sample size was equal to 10,000, 5,000, 

and 1,000 (see Figures 15 and 16).  Moreover, both the BF and cmP maintained high 

recovery rates (i.e., between 97% and 100%) when sample size dropped down to n = 

500, regardless of the number of indicators included in the model or latent class size 
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(see Figures 15 and 16).  On the other hand, when sample size decreased to n = 200, 

recovery rates decreased as well.  Specifically, only conditions with equal latent class 

sizes, and 7 indicators were able to still identify the true four-class solution near 95% 

of the time (see Figures 15 and 16).  Not surprisingly, given that the BF and cmP 

indices are direct derivatives of the BIC, there seemed to be a similar performance 

trend in that the cmP and BF were also sensitive to unequal class sizes as sample size 

decreased (see Figures 11, 15, and 16).  Lastly, when sample size was n = 200, the 

recovery rates for the BF index were higher than the cmP index, especially when 

classes sizes were unequal (see Figures 15 and 16).  

4.5.4 Summary of Four Unordered Latent Class Model A 

Taken together, results from this condition indicated a relationship between 

sample size and fit index performance.  Specifically, as sample size decreased, so did 

recovery rates for the most part (except for the BLRT, which remained relatively 

stable across all sample sizes and the AIC which counter-intuitively decreased in 

performance and sample size increased).  Moreover, as sample size decreased, 

recovery rates were generally higher when the latent classes were equal in size 

compared to unequal.   

Results also indicated sensitivity to the number of indicators included in the 

model.  Specifically, as sample size decreased, conditions with only 7 indicators had 

higher recovery rates than conditions with all 10 indicators when class size was held 

constant.  In other words, it looks like removing “poor” indicators in unordered latent 

class solutions increased the chances of recovering the true latent class solution, 
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especially when sample size was small.  Results from this unordered condition 

indicated that when sample size was small and latent classes were equal in size, the 

BIC performed the best among the ICs.  On the other hand, when sample size was 

small and the latent class sizes were unequal, the ABIC performed the best.  

Moreover, results from this condition also indicated that the BLRT is the most stable 

fit index when taking factors such as sample size, class size, and number of indicators 

into account (see Figures 11-16).  Lastly, results from this condition indicated that the 

BF index seems to perform marginally better than the cmP index in conditions where 

sample size is extremely small (i.e., n = 200; see Figures 15 and 16). 
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Table 3

Percentage of Times the Fit Indices Recovered Each Class in LCA with Four Ordered Classes

Model N ≥2 3 4 5 ≥2 3 4 5 ≥2 3 4 5 ≥2 3 4 5 ≥2 3 4 5 ≥2 3 4 5 ≥2 3 4 5 ≥2 3 4 5

200 6 74 18 2 98 2 0 0 91 9 0 0 9 79 12 0 55 40 4 1 24 72 4 0 91 9 0 0 85 15 0 0

500 0 72 24 4 51 49 0 0 33 67 0 0 0 99 0 1 9 80 10 1 0 96 3 0 33 67 0 0 20 80 0 0

1,000 0 69 25 6 1 99 0 0 0 100 0 0 0 100 0 0 1 83 15 1 0 93 7 1 0 100 0 0 0 100 0 0

5,000 0 39 44 17 0 100 0 0 0 100 0 0 0 100 0 0 0 78 20 2 0 78 21 0 0 100 0 0 0 100 0 0

10,000 0 11 64 25 0 100 0 0 0 100 0 0 0 99 1 0 0 60 37 3 0 47 52 1 0 100 0 0 0 100 0 0

200 0 50 32 19 68 32 0 0 39 61 0 0 0 62 30 8 27 67 5 1 1 95 3 1 39 61 0 0 30 70 0 0

500 0 39 38 24 0 100 0 0 0 100 0 0 0 96 4 0 2 91 7 0 0 90 9 1 0 100 0 0 0 100 0 0

1,000 0 23 39 38 0 100 0 0 0 100 0 0 0 97 3 0 0 88 11 1 0 76 22 1 0 100 0 0 0 100 0 0

5,000 0 0 42 58 0 100 0 0 0 98 2 0 0 43 57 0 0 12 79 8 0 1 95 5 0 98 2 0 0 97 0 0

10,000 0 0 37 63 0 52 48 0 0 31 69 0 0 1 99 0 0 0 90 9 0 0 95 5 0 31 69 0 0 23 77 0

200 21 64 11 4 100 0 0 0 99 1 0 0 29 61 8 2 72 26 2 0 52 46 2 0 99 1 0 0 98 2 0 0

500 1 73 21 5 96 4 0 0 84 16 0 0 12 87 1 0 38 56 6 0 8 88 4 0 84 16 0 0 75 25 0 0

1,000 0 68 25 7 42 58 0 0 26 74 0 0 0 100 0 0 7 81 11 1 0 92 8 0 26 74 0 0 17 83 0 0

5,000 0 46 39 15 0 100 0 0 0 100 0 0 0 100 0 0 0 80 19 1 0 87 13 0 0 100 0 0 0 100 0 0

10,000 0 29 53 18 0 100 0 0 0 100 0 0 0 100 0 0 0 72 26 2 0 75 25 1 0 100 0 0 0 100 0 0

200 2 52 29 18 96 4 0 0 82 18 0 0 3 65 23 10 55 42 3 0 10 86 4 0 82 18 0 0 74 26 0 0

500 0 44 32 23 30 70 0 0 15 85 0 0 0 97 3 0 12 78 9 1 0 91 9 0 15 85 0 0 8 92 0 0

1,000 0 34 37 29 0 100 0 0 0 100 0 0 0 99 1 0 1 89 9 1 0 87 11 1 0 100 0 0 0 100 0 0

5,000 0 0 40 60 0 100 0 0 0 100 0 0 0 90 10 0 0 39 55 6 0 14 83 3 0 100 0 0 0 100 0 0

10,000 0 0 37 63 0 98 2 0 0 95 5 0 0 35 65 0 0 5 83 12 0 0 96 4 0 95 5 0 0 92 8 0

ABIC LMR-LRT cmP BFBLRT

Recovery Rates for Four Ordered Latent Class Conditions

Unequal (10 items)

Equal (7 items)

Unequal (7 items)

Equal (10 items)

Classes Classes ClassesClasses Classes Classes Classes Classes

AIC CAIC BIC
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Table 4

Percentage of Times the Fit Indices Recovered Each Class in LCA with Four Unordered Classes A

Model N ≥2 3 4 5 ≥2 3 4 5 ≥2 3 4 5 ≥2 3 4 5 ≥2 3 4 5 ≥2 3 4 5 ≥2 3 4 5 ≥2 3 4 5

200 0 0 82 18 0 19 81 0 0 6 94 0 0 0 89 11 7 10 56 27 0 0 96 4 0 0 94 6 0 3 97 0

500 0 0 71 29 0 0 100 0 0 0 100 0 0 0 99 1 0 1 70 29 0 0 95 5 0 0 100 0 0 0 100 0

1,000 0 0 67 33 0 0 100 0 0 0 100 0 0 0 100 0 0 0 76 24 0 0 94 6 0 0 100 0 0 0 100 0

5,000 0 0 63 37 0 0 100 0 0 0 100 0 0 0 100 0 0 0 79 21 0 0 94 6 0 0 100 0 0 0 100 0

10,000 0 0 63 37 0 0 100 0 0 0 100 0 0 0 100 0 0 0 81 19 0 0 95 5 0 0 100 0 0 0 100 0

200 0 0 50 50 0 42 58 0 0 18 82 0 0 0 63 37 12 16 60 12 0 0 96 4 0 18 82 0 0 10 90 0

500 0 0 44 56 0 0 100 0 0 0 100 0 0 0 98 2 1 0 85 13 0 0 94 6 0 0 100 0 0 0 100 0

1,000 0 0 42 58 0 0 100 0 0 0 100 0 0 0 100 0 0 0 85 14 0 0 96 4 0 0 100 0 0 0 100 0

5,000 0 0 31 69 0 0 100 0 0 0 100 0 0 0 100 0 0 0 85 15 0 0 95 5 0 0 100 0 0 0 100 0

10,000 0 0 35 65 0 0 100 0 0 0 100 0 0 0 100 0 0 0 84 16 0 0 94 6 0 0 100 0 0 0 100 0

200 0 1 85 15 0 75 24 0 0 50 50 0 0 1 90 9 8 23 48 22 0 3 94 3 0 50 50 0 0 33 67 0

500 0 0 77 23 0 3 97 0 0 0 100 0 0 0 99 1 1 2 66 31 0 0 96 4 0 0 100 0 0 0 100 0

1,000 0 0 68 32 0 0 100 0 0 0 100 0 0 0 100 0 0 0 71 28 0 0 94 6 0 0 100 0 0 0 100 0

5,000 0 0 67 33 0 0 100 0 0 0 100 0 0 0 100 0 0 0 80 20 0 0 96 4 0 0 100 0 0 0 100 0

10,000 0 0 61 39 0 0 100 0 0 0 100 0 0 0 100 0 0 0 81 19 0 0 95 5 0 0 100 0 0 0 100 0

200 0 0 50 50 2 89 9 0 0 73 27 0 0 1 67 32 13 38 41 7 0 5 89 6 0 73 27 0 0 60 40 0

500 0 0 47 53 0 9 91 0 0 3 97 0 0 0 97 3 2 4 84 10 0 0 95 5 0 3 97 0 0 2 98 0

1,000 0 0 43 57 0 0 100 0 0 0 100 0 0 0 100 0 1 0 86 14 0 0 95 5 0 0 100 0 0 0 100 0

5,000 0 0 43 57 0 0 100 0 0 0 100 0 0 0 100 0 0 0 87 13 0 0 96 4 0 0 100 0 0 0 100 0

10,000 0 0 40 60 0 0 100 0 0 0 100 0 0 0 100 0 0 0 87 13 0 0 95 5 0 0 100 0 0 0 100 0

Recovery Rates for Four Unordered Latent Class A Conditions

Classes Classes Classes Classes Classes Classes Classes Classes

BFAIC CAIC BIC ABIC LMR-LRT cmP

Equal (10 items)

Unequal (10 items)

Equal (7 items)

BLRT 

Unequal (7 items)
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4.6 Four Unordered Latent Class Model B  

The recovery rates across all four unordered latent class B conditions (see 

Figure 4) are presented in Table 5.  If all fit indices were able to correctly identify the 

true four-class solution, the percentages in columns identifying four latent classes in 

Table 5 should result in the highest values.  Figures 17-20 display a graphical 

representation of recovery rates for all fit indices across all four unordered latent class 

B conditions.  In general, as sample size decreased, the fit indices yielded lower 

recovery rates in the unordered latent class B conditions when compared to the 

unordered latent class A conditions.  One highly plausible explanation for this finding 

is that the latent classes were generated to have greater between class separation in 

the unordered latent class A conditions when compared to the unordered latent class 

B conditions (see Figures 3 and 4), which allows for easier detection of the true latent 

class solution.  

4.6.1 Information Criteria (ICs)  

The AIC performed the worst among the ICs, with recovery rates well below 

the 95% benchmark across all unordered latent class B conditions considered (see 

Table 5 and Figures 17-20).  Similar to the four unordered class A condition, recovery 

rates for this condition show that the AIC is prone to overestimating the correct 

number of latent classes (see Table 5).  Additionally, recovery rates for the AIC 

tended to increase as sample size decreased (see Table 5).  When classes sizes were 

equal, the CAIC, BIC, and ABIC, all performed extremely and equally well (i.e., 

100% recovery rates) across all conditions with sample sizes of 1,000, 5,000 and 
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10,000 (see Figures 21-23).  However, as sample size decreased to n = 500, recovery 

rates for the BIC and CAIC began to decrease as well, but still remained high at 99% 

for the ABIC, regardless of the number of indicators included in the model (See 

Figures 21-23).  Additionally, as sample size decreased to n = 500, the BIC and CAIC 

displayed the greatest sensitivity to unequal latent classes (see Figures 21 and 22).  

When sample size decreased even further to n = 200, none of the ICs met the 95% 

threshold value, however the ABIC performed the best among the ICs (i.e., recovery 

rates fell between 74% and 85%) even with this reduction in sample size (see Figures 

21-23).  Moreover, the CAIC, BIC and ABIC showed sensitivity to “poor” indicators 

(see Figures 21 and 22) because when holding class size constant, recovery rates were 

marginally lower when all 10 indicators were included in the model as opposed to just 

7.  The ABIC did not show the same level of sensitivity to both a reduction in sample 

size and latent class size when compared to the BIC and CAIC (see Figures 21-23).  

In general, when taking all factors into account, the ABIC performed the best among 

the ICs under the four unordered latent class B condition (especially as sample size 

decreased).  

4.6.2 Likelihood Ratio Tests: Adjusted LMR-LRT and BLRT  

The BLRT once again outperformed the adjusted LMR-LRT across every four 

unordered latent class B condition (see Table 5 and Figures 17-20).  In fact, recovery 

rates for the adjusted LMR-LRT index never reached the 95% threshold value and 

showed a tendency to overestimate the correct number of latent classes when sample 

size was large and a tendency to underestimate the correct number of latent classes as 
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sample size decreased (see Table 5).  Recovery rates for the BLRT were high across 

all conditions (i.e., between 93% and 96%) except when sample size decreased to n = 

200 (in which case recovery rates for the BLRT fell between 65% and 85%; see 

Figure 24).  Although not as drastic as the ICs, the BLRT also showed sensitivity to 

sample size, unequal classes, and the inclusion of “poor” indicators (see Figure 24).  

4.6.3 Bayesian Indices: BF and cmP  

The recovery rates for the Bayes Factor (BF) and Correct Model Probability 

(cmP) indices were highest across conditions with large sample sizes (see Table 5 and 

Figures 25-26).  Specifically, these indices yielded high recovery rates (i.e., between 

97% and 100%) when sample size was equal to 10,000, 5,000, or 1,000 regardless of 

whether the number of indicators included and latent class size (see Table 5 and 

Figures 25-26).  When sample size dropped down to n = 500, recovery rates remained 

highest (i.e., between 96% and 99%) when classes were equal and only 7 indicators 

were included in the model (see Figures 25 and 26).  Additionally, when sample size 

was n = 500, the cmP and BF showed sensitivity to unequal latent classes (i.e., 

recovery rates dropped and fell in between 42% and 67%), especially when all 10 

indicators were included in the model.  When sample size dropped down to n = 200, 

recovery rates were extremely low across the board for both the BF and cmP (i.e., 

between 3% and 21%; see Figures 25 and 26).  Lastly, as sample size decreased, the 

recovery rates for the BF were slightly higher when compared to the cmP (see Table 

5).  
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4.6.4 Summary of Four Unordered Latent Class Model B 

Taken together, results from this condition also indicated a relationship 

between sample size and fit index performance.  Specifically, as sample size 

decreased, so did the recovery rates (except for the AIC).  Results also indicated that 

as sample size decreased, recovery rates were generally higher when latent class sizes 

were equal compared to unequal.  Additionally, results indicated sensitivity to the 

number of indicators included in the model.  Specifically, when holding class size 

constant and as sample size decreased, conditions with only 7 indicators had higher 

recovery rates than conditions with all 10 indicators.  In other words, it appears that 

removing “poor” indicators in unordered latent class solutions increased the chances 

of recovering the true latent class solution, especially when sample size was small.  

Lastly, when taking all fit indices into account, results from this condition indicated 

that the ABIC and BLRT are the least sensitive to (although still affected by) small 

sample sizes (see Figures 21-26).  
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Table 5

Percentage of Times the Fit Indices Recovered Each Class in LCA with Four Unordered Classes B

Model N ≥2 3 4 5 ≥2 3 4 5 ≥2 3 4 5 ≥2 3 4 5 ≥2 3 4 5 ≥2 3 4 5 ≥2 3 4 5 ≥2 3 4 5

200 0 1 79 20 75 22 3 0 45 46 9 0 0 2 85 13 42 27 26 5 0 8 85 6 45 46 9 0 27 52 21 0

500 0 0 77 23 0 11 89 0 0 4 96 0 0 0 99 1 12 6 70 12 0 0 96 4 0 4 96 0 0 1 99 0

1,000 0 0 77 23 0 0 100 0 0 0 100 0 0 0 100 0 3 0 83 14 0 0 95 5 0 0 100 0 0 0 100 0

5,000 0 0 71 29 0 0 100 0 0 0 100 0 0 0 100 0 0 0 82 18 0 0 95 5 0 0 100 0 0 0 100 0

10,000 0 0 69 31 0 0 100 0 0 0 100 0 0 0 100 0 0 0 82 18 0 0 95 5 0 0 100 0 0 0 100 0

200 0 1 66 33 92 8 0 0 67 30 3 0 0 2 74 24 53 28 17 2 0 12 82 6 67 30 3 0 50 44 6 0

500 0 0 60 40 2 26 72 0 0 12 88 0 0 0 99 1 12 9 69 9 0 0 96 4 0 12 88 0 0 7 93 0

1,000 0 0 55 45 0 0 100 0 0 0 100 0 0 0 100 0 1 0 87 12 0 0 94 6 0 0 100 0 0 0 100 0

5,000 0 0 46 54 0 0 100 0 0 0 100 0 0 0 100 0 0 0 84 16 0 0 93 7 0 0 100 0 0 0 100 0

10,000 0 0 43 57 0 0 100 0 0 0 100 0 0 0 100 0 0 0 86 14 0 0 94 6 0 0 100 0 0 0 100 0

200 0 14 75 11 72 28 0 0 40 57 3 0 0 17 76 7 42 35 19 4 0 28 70 2 40 57 3 0 24 69 8 0

500 0 0 82 18 0 66 34 0 0 45 55 0 0 1 98 1 17 20 53 10 0 0 95 5 0 45 55 0 0 33 67 0

1,000 0 0 77 23 0 6 94 0 0 3 97 0 0 0 100 0 7 2 78 13 0 0 94 6 0 3 97 0 0 1 99 0

5,000 0 0 70 30 0 0 100 0 0 0 100 0 0 0 100 0 0 0 83 17 0 0 94 6 0 0 100 0 0 0 100 0

10,000 0 0 73 27 0 0 100 0 0 0 100 0 0 0 100 0 0 0 80 20 0 0 94 6 0 0 100 0 0 0 100 0

200 0 8 67 25 94 6 0 0 75 24 2 0 0 11 75 14 57 30 12 1 0 31 65 3 75 24 2 0 60 38 2 0

500 0 0 58 42 3 77 20 0 0 58 42 0 0 2 97 1 25 26 43 6 0 1 94 6 0 58 42 0 0 46 53 0

1,000 0 0 54 46 0 8 92 0 0 3 97 0 0 0 100 0 11 1 80 9 0 0 96 4 0 3 97 0 0 0 100 0

5,000 0 0 51 49 0 0 100 0 0 0 100 0 0 0 100 0 0 0 86 14 0 0 94 6 0 0 100 0 0 0 100 0

10,000 0 0 46 54 0 0 100 0 0 0 100 0 0 0 100 0 0 0 87 13 0 0 94 6 0 0 100 0 0 0 100 0

Recovery Rates for Four Unordered Latent Class B Conditions

Classes Classes Classes Classes Classes Classes Classes Classes

BFLMR-LRT BLRT cmPCAIC BIC ABIC

Unequal (10 items)

Equal (7 items)

Unequal (7 items)

Equal (10 items)

AIC

 
 



 

   
 

6
2
 

 



 

   
 

6
3
 



 

64 
 

4.7 Three Ordered Latent Class Model  

The recovery rates across all conditions where data was generated to have 

three ordered latent classes (see Figure 5) are presented in Table 6.  As previously 

mentioned, the extremely low recovery rates for the four ordered latent class 

condition prompted the current simulation study to consider another ordered latent 

class solution that was generated to have greater between-class separation (i.e., the 

current three ordered class condition).  If all fit indices were able to correctly identify 

the true three-class solution, the percentages in columns identifying three latent 

classes in Table 6 should result in the highest values.  Figures 27-30 display a 

graphical representation of recovery rates for all fit indices considered across all 

conditions where data was generated to have three ordered latent classes.  In general, 

recovery rates for the ordered three-class conditions were extremely better than the 

recovery rates for the ordered four-class conditions (see Tables 3 and 6).  This is most 

likely due to the ordered three-class condition being generated to have greater 

between-class separation and therefore tended to underestimate the correct number of 

latent classes at a lower rate.  

4.7.1 Information Criteria (ICs)  

The AIC performed equally poorly across all three ordered latent class 

conditions (see Table 6 and Figures 27-30).  Similar to results from the four 

unordered class conditions, the AIC tended to overestimate the true number of latent 

classes (see Table 6).  Additionally, recovery rates for the AIC tended to increase as 

sample size decreased.  When class sizes were equal (regardless of the number of 
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indicators included in the model) or unequal with all 10 indicators included, the BIC 

and CAIC performed extremely well (i.e., recovery rates between 95% and 100%) 

when sample size was 10,000, 5,000, 1,000 and 500 (see Figures 31 and 32).  

However, under the same conditions, the BIC and CAIC displayed sensitivity to 

unequal latent classes that only included 7 indicators (i.e., recovery rates fell to 47% 

for the BIC and 26% for the CAIC; see Figures 31 and 32).  In other words, when 

ordered classes are unequal and sample size is small (i.e., n = 500), the BIC and 

CAIC perform a lot better (i.e., recovery rates between 96% and 99%) when all 10 

indicators are included in the model as opposed to only 7.  When sample size dropped 

even further to n = 200, the BIC and CAIC maintained high recovery rates of 99% 

and 94% respectively, when classes were equal and all 10 indicators were included in 

the model (see Figures 31 and 32).  When sample size was n = 200 and class sizes 

were unequal, the recovery rates for the BIC and CAIC decreased dramatically (i.e., 

between 0% and 41%) and yielded a preference for including all 10 indicators in the 

model (see Figures 31 and 32).  The ABIC yielded the highest recovery rates among 

the ICs when taking all factors into account (see Figure 33).  Specifically, regardless 

of sample size, the number of indicators included in the model, or latent class size, the 

ABIC performed extremely well (between 97% and 100%) when sample size was 

equal to 10,000, 5,000, 1,000, or 500 (see Figure 33).  As sample size decreased to n 

= 200, recovery rates for the ABIC decreased as well (i.e., fell between 69% and 

84%) and performed best with a recovery rate of 84% when classes were equal, and 

when the number of indicators included was reduced to 7.  
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4.7.2 Likelihood Ratio Tests: Adjusted LMR-LRT and BLRT  

The BLRT outperformed the adjusted LMR-LRT across all ordered three class 

conditions (see Table 6 and Figures 27-30).  In fact, recovery rates for the adjusted 

LMR-LRT index never reached the 95% threshold value and showed a tendency to 

overestimate the correct number of latent classes (see Table 6).  The BLRT yielded 

high recovery rates between 92% and 97% across all sample sizes and conditions 

with one exception.  Specifically, when class sizes were unequal, sample size was n = 

200, and only 7 items were included in the model, the recovery rate for the BLRT 

dropped down to 62% (see Figure 34).  This finding is most likely due to the fact that 

when classes are ordered in nature, fit index performance is generally higher when all 

10 indicators are included in the model as opposed to only 7 (see Table 6).  

4.7.3 Bayesian Indices: BF and cmP  

Recovery rates for the Bayes Factor (BF) and Correct Model Probability 

(cmP) were extremely high across all modeling conditions considered (i.e., between 

99% and 100%) when sample size was equal to 1,000, 5,000 or 10,000, regardless of 

latent class size and the number of indicators included in the model (see Figures 35 

and 36).  When sample size decreased to n = 500, recovery rates for the cmP and BF 

largely decreased (i.e., to 47% and 62%, respectively) only for conditions with 

unequal class sizes and only 7 items (see Figures 35 and 36).  In other words, when 

sample size was n = 500 and class sizes were unequal, the cmP and BF highly 

benefited from solely leaving in all available indicators (i.e., recovery rates (i.e., 

recovery rates increased and feel between 99% and 100%).  When sample size 



 

67 
 

decreased even more to n = 200, recovery rates for the cmP and BF were above the 

95% benchmark only when class sizes were equal and all 10 indicators were included 

in the model (see Figures 35 and 36).  These results indicate that as sample size 

decreased with ordered class solutions, the cmP and BF maintained the highest 

performance when all potential indicators were included in the model and class sizes 

were relatively equal.  In general, as sample size decreased, the BF seemed to 

marginally outperform the cmP. 

4.7.4 Summary of Three Ordered Latent Class Model  

Taken together, results from this condition also indicate a relationship 

between sample size and fit index performance.  Specifically, as sample size 

decreased, so did the recovery rates (except for the AIC).  Results also indicated that 

as sample size decreased, recovery rates were generally higher when latent class sizes 

were equal compared to unequal.  Moreover, results indicated sensitivity to the 

number of indicators included ordered latent class models.  Specifically, as sample 

size decreased with ordered class solutions, conditions with all 10 indicators generally 

had higher recovery rates than conditions with only 7 indicators when class size was 

held constant.  In other words, when latent classes are ordered, removing potentially 

redundant indicators tends to decrease the chances of recovering the true latent class 

solution, especially when sample size is small.  Lastly, when classes are ordered and 

sample size was small, the ABIC and BLRT had the highest recovery rates across the 

board (see Figures 31-36).   
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4.8 Sample Size, Number of Indicators, and Class Enumeration 

In addition to examining fit index performance, a second goal of this 

simulation study was to understand how sample size, number of indicators, and class 

enumeration intersect in LCA models.  As expected, results from this simulation 

study show a relatively strong interplay between sample size, number of indicators, 

and class enumeration.  Specifically, as sample size decreased, the majority of the fit 

indices decreased in their ability to recover the correct latent class solution (see 

Figure 11-16, 21-26, and 31-36).  Additionally, when the population sample was 

subsetted to n = 200 (or n = 500 in some cases), the majority of the fit indices showed 

a sensitivity to the number of indicators that were included in the model.  In other 

words, when sample size decreased, the number of indicators included in the LCA 

model became more important.  Specifically, when sample size was small, latent 

classes were unordered, and class size was held constant (i.e., recovery rates for 

conditions with 7 and 10 indicators were compared separately for equal class 

conditions and unequal class conditions), the fit indices performed best when “poor” 

indicators were eliminated (see Figures 11-16 and 21-26).  On the other hand, when 

sample size was small, latent classes were ordered, and class size was held constant, 

the fit indices performed best when all 10 indicators were included in the model (i.e., 

when all available information was included in the model; see Figures 31-36).  Lastly, 

as sample size decreased and the number of indicators included was held constant, the 

fit indices showed generally higher recovery rates when latent classes were equal in 

nature as opposed to unequal in nature.  This is most likely due to the fact that as the 
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analysis sample size decreased, the smallest latent class in the unequal conditions 

(i.e., the latent class comprised of solely 10% of the overall population) was 

underrepresented.  In fact, when looking at Tables 4-6, there seems to be a tendency 

for the fit indices to underestimate the correct number of latent classes in the unequal 

latent class conditions, as sample size decreases.
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Table 6

Percentage of Times the Fit Indices Recovered Each Class in LCA with Three Ordered Classes

≥2 3 4 5 ≥2 3 4 5 ≥2 3 4 5 ≥2 3 4 5 ≥2 3 4 5 ≥2 3 4 5 ≥2 3 4 5 ≥2 3 4 5

200 1 77 18 4 81 19 0 0 59 41 0 0 1 84 14 2 27 69 5 0 4 92 4 0 59 41 0 0 44 56 0 0

500 0 77 19 4 3 97 0 0 1 99 0 0 0 98 2 0 0 87 11 1 0 94 6 0 1 99 0 0 0 100 0 0

1,000 0 74 21 5 0 100 0 0 0 100 0 0 0 100 0 0 0 88 11 1 0 95 5 0 0 100 0 0 0 100 0 0

5,000 0 64 28 8 0 100 0 0 0 100 0 0 0 100 0 0 0 76 20 4 0 94 6 0 0 100 0 0 0 100 0 0

10,000 0 63 29 8 0 100 0 0 0 100 0 0 0 100 0 0 0 80 18 1 0 93 7 0 0 100 0 0 0 100 0 0

200 0 61 25 14 6 94 0 0 1 99 0 0 0 73 20 7 5 86 9 0 0 97 3 0 1 99 0 0 0 100 0 0

500 0 53 32 15 0 100 0 0 0 100 0 0 0 99 1 0 1 86 12 1 0 95 5 0 0 100 0 0 0 100 0 0

1,000 0 52 33 15 0 100 0 0 0 100 0 0 0 100 0 0 0 88 10 1 0 97 3 0 0 100 0 0 0 100 0 0

5,000 0 40 38 22 0 100 0 0 0 100 0 0 0 100 0 0 0 87 11 2 0 96 4 0 0 100 0 0 0 100 0 0

10,000 0 36 35 29 0 100 0 0 0 100 0 0 0 100 0 0 0 85 12 2 0 92 8 0 0 100 0 0 0 100 0 0

200 11 66 19 3 100 0 0 0 96 4 0 0 17 69 12 2 54 41 5 0 36 62 2 0 96 4 0 0 92 8 0 0

500 0 76 19 4 74 26 0 0 53 47 0 0 2 97 1 0 9 80 10 1 0 95 5 0 53 47 0 0 38 62 0 0

1,000 0 70 25 5 6 94 0 0 1 99 0 0 0 100 0 0 1 83 15 1 0 94 6 0 1 99 0 0 1 99 0 0

5,000 0 68 25 7 0 100 0 0 0 100 0 0 0 100 0 0 0 81 17 2 0 94 6 0 0 100 0 0 0 100 0 0

10,000 0 67 26 8 0 100 0 0 0 100 0 0 0 100 0 0 0 82 17 1 0 94 6 0 0 100 0 0 0 100 0 0

200 0 57 28 15 81 19 0 0 59 41 0 0 0 72 21 7 24 67 8 0 3 92 5 0 59 41 0 0 48 52 0 0

500 0 55 29 16 4 96 0 0 1 99 0 0 0 99 1 0 1 88 10 1 0 95 5 0 1 99 0 0 0 100 0 0

1,000 0 51 29 19 0 100 0 0 0 100 0 0 0 100 0 0 0 88 11 1 0 95 5 0 0 100 0 0 0 100 0 0

5,000 0 42 34 24 0 100 0 0 0 100 0 0 0 100 0 0 0 86 13 1 0 94 6 0 0 100 0 0 0 100 0 0

10,000 0 39 38 23 0 100 0 0 0 100 0 0 0 100 0 0 0 86 12 1 0 93 7 0 0 100 0 0 0 100 0 0

Recovery Rates for Three Ordered Latent Conditions

Classes Classes Classes Classes Classes Classes Classes Classes

Equal (10 items)

Unequal (10 items)

Equal (7 items)

Unequal (7 items)

CAICAIC BIC ABIC LMR-LRT

Model N
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Chapter 5 

Discussion 

5.1 Overview 

This study investigated the performance of the most commonly used fit 

indices in selecting the “correct” latent class model while varying factors such as: the 

true number of latent classes, the size of the latent classes (i.e., class prevalence), the 

nature of the latent classes, the number of indicators, and sample size.  Additionally, 

this study aimed to empirically examine the intersection of sample size, the number of 

observed indicators, and class enumeration in LCA models.  This discussion section 

will first address general trends and patterns that were gleamed from examining 

recovery rates across the various LCA conditions explored in this study.  While 

identifying these general trends, this chapter will also provide general 

recommendations for applied researchers that use LCA models in their research.  

Next, this discussion section will summarize results related to the performance of the 

ICs (i.e., the AIC, CAIC, BIC, and ABIC), the likelihood ratio tests (i.e., the adjusted 

LMR-LRT and BLRT), and the newer Bayesian indices (i.e., the BF and cmP), as 

well as provide specific recommendations for their use in practice.  Finally, 

limitations of this simulation study will be discussed and future directions will be 

suggested for forthcoming Monte Carlo simulation research.  

5.2. General Trends and Practical Recommendations  

 Taken together, results from this simulation study indicated that there is a 

strong relationship between sample size and fit index performance in LCA models.  
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As expected, as sample size decreased, fit index performance tended to decrease 

across all conditions considered (see Figures 7-36).  This finding is consistent with 

results from previous simulation studies (Yang, 2006; Tein, Coxe, & Cham, 2013; 

Tueller & Lubke, 2010).  It should be noted that all conditions explored in this 

simulation study were generated with an original population sample size of 10,000 

observations.  Therefore, analysis conditions that reduced sample size to n = 5,000, n 

= 1,000, n = 500, and n = 200, aimed to understand what happens to fit index 

performance when researchers do not have access to 100% of a population (which is 

often the case in practice).  Specifically, this study wanted to know how the 

performance of the most commonly used fit indices and thus potential LCA findings 

as a whole are affected if researchers are only able to access 50% (i.e., n = 5,000), 

10% (i.e., n = 1,000), 5% (i.e., n = 500) or 2% (i.e., n = 200) of a population.  This 

approach of subsetting random observations during the analysis stage, rather than 

generating data with truly different population sample sizes, was a novel way to 

understand the influence of sample size on fit index performance. With this in mind, 

findings of this simulation study are optimistic in that all fit indices considered 

(except the AIC and adjusted LMR-LRT) performed well (i.e., reached or nearly 

reached a 95% recovery rate) when at least 1,000 observations were included in the 

analysis (see Tables 4-6).  This finding is important for applied researchers that want 

to use LCA because they can aim to for a sample size of n = 1000 to ensure high fit 

index performance.  
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 As analysis sample size decreased even further (i.e., n = 500 and n = 200), the 

relative size of the latent classes became more important.  Specifically, when sample 

size decreased, fit indices generally performed better when latent classes were 

relatively equal in size compared to unequal (see Figures 11-16, 21-26, and 31-36).  

This finding could be attributed to the fact that when the analysis sample size is small 

(e.g., n = 500 or n = 200) and classes are unequal, within-class sample size is also 

influenced resulting in potentially small latent classes that are underpowered and 

therefore have a lower chance of being detected.  In fact, when looking at the 

recovery rates in rows that indicate a sample size of n = 200 in Tables 4-6, we can see 

a tendency for the fit indices to underestimate the correct latent class solution.  This 

result is in line with previous research findings related to sample size and statistical 

power.  Specifically, Muthén & Muthén (2002) found that as sample size decreased, 

power to detect the true model decreased as well, in both growth models and 

confirmatory factor analysis (CFA) models.  Similarly, Lubke and Neale (2006) 

found that increasing the within-class sample size increased the likelihood of 

recovering the correct number of latent classes in LPA models.  Building off the 

findings from Lubke and Neale (2006), Masyn (2013) suggested that small sample 

sizes might be underpowered to detect smaller latent classes in the LCA context as 

well.  The current simulation study was able to provide empirical support for this 

suggested positive relationship between sample size (specifically, within-class sample 

size) and power to detect the correct latent class solution in LCA models.  Therefore, 

researchers interested in studying small subpopulations within a larger population 



 

76 
 

(e.g., students that are victimized in school or minors that exhibit various symptoms 

of psychopathology) via LCA should consider over-sampling certain segments of 

their target population (e.g., those that experience extremely high levels of 

victimization or exhibit many/all symptoms of psychopathology) to ensure there is 

enough statistical power to detect these potentially small latent classes.  Additionally, 

researchers should be aware that the fit indices may often times underestimate the 

correct latent class solution if these small and often underpowered subpopulations 

exist, therefore, substantive theory should also be heavily relied on during the class 

enumeration process.  For example, if the fit indices point to either a three or four 

class solution, and substantive theory can justify adding an additional fourth class, 

researchers should allow substantive theory to drive the decision about which final 

LCA model they should retain.  Given this known relationship between small sample 

sizes, latent class size, and the underestimation of latent classes, it is suspected that 

existing LCA studies frequently do not detect the correct number of latent classes due 

to low statistical power. 

Another trend the results yielded was that as analysis sample size decreased, 

the number of indicators included in the model became more important.  In general, 

when class size was held constant, and when latent classes were unordered, removing 

“poor” indicators increased the likelihood of recovering the correct latent class 

solution when sample size was small (see Figures 11-16 and 21-26).  For example, 

Table 4 indicated that when classes were unequal and sample size was n = 200, the 

BIC identified the correct latent class solution 27% of the time when all 10 indicators 
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were included in the model.  However, when “poor” indicators were eliminated (i.e., 

only 7 indicators were included in the model), the BIC was able to correctly identify 

the correct model 50% of the time.  This increase in fit index performance when 

“poor” indicators were eliminated was consistent across most unordered latent class 

conditions (see Tables 4-5).   

On the other hand, when class size was held constant, and the latent classes 

were ordered, keeping all potential indicators in the model (regardless of whether or 

not they were potentially redundant or contributed to distinguishing latent classes) 

increased the likelihood of recovering the correct latent class solution when sample 

size was small (see Figures 31-36).  For example, Table 6 indicated that when classes 

were unequal and sample size was n = 200, the BIC identified the correct latent class 

solution 41% of the time when all 10 indicators were included in the model.  

However, when potentially redundant indicators were eliminated (i.e., only 7 

indicators were included in the model), the BIC was only able to correctly identify the 

correct model 4% of the time (see Table 6).  This decrease in fit index performance 

when potentially redundant indicators were eliminated was consistent across most 

ordered latent class conditions (see Tables 6).  Current “best practices” related to 

class enumeration suggest always removing “poor” indicators (i.e., indicators that do 

not separate classes well or that have low within-class homogeneity) when fitting 

LCA models (Masyn, 2013).  Therefore, these results are important because they 

empirically support the current suggestion of removing indicators that have low 

between class separation and low within-class homogeneity during the model fitting 
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process with unordered latent class solutions.  Additionally, researchers often decide 

to remove redundant indicators (either by evaluating the content of the indicators, or 

using item correlations and deleting redundant items) in practice.  Therefore, these 

results are also important because researchers should consider including all available 

indicators when estimating ordered LCA models (as long as the model is identified), 

even if the indicators are potentially redundant.  This finding is most likely due to the 

fact that as sample size decreases, including all available indicators in ordered LCA 

models provides more information and helps the estimation process. 

Taken together, the general trends highlighted in this section provide evidence 

for a relatively strong interplay between sample size, number of indicators, and class 

enumeration in LCA models.  Specifically, when sample size is large (i.e., between 

1,000 and 10,000), the inclusion of “poor” or potentially redundant indicators in LCA 

models is less important.  However, as sample size decreased, removing “poor” 

indicators in unordered latent class solutions and including all available indicators in 

ordered latent class solutions, as well as the relative size of the latent classes (i.e., 

equal vs. unequal classes) became rather important in ensuring high performance of 

the fit indices.  

5.3 Information Criteria and Practical Recommendations  

The results of this simulation study found the AIC to consistently perform the 

worst when compared the rest of the ICs (see Tables 4-6).  Specifically, results 

indicated that the AIC tended to overestimate the correct number of latent classes 

across all of the conditions considered.  This finding is in line with a host of other 
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simulation studies that focused on fit index performance in mixture models (Celeux & 

Soromenho, 1996; Koehler & Murphree, 1988; Nylund, Asparouhov, & Muthén, 

2007; Tein, Coxe, & Cham, 2013).  Additionally, the AIC tends to overestimate the 

number of latent classes the most when sample size was very large (i.e., n = 10,000).  

This finding is also consistent with previous research (Woodroofe, 1982).  Similarly, 

Nylund et al. (2007a) found that AIC accuracy decreased as sample size increased 

and suggested that this was due to the fact that the AIC has no adjustment for sample 

size.  Results of the current simulation study also support this negative relationship 

between sample size and AIC accuracy.  

The CAIC, on the other hand, performed much better across all conditions 

when compared to the AIC.  As previously mentioned, this is likely due to the 

CAIC’s adjustment for the number of parameters and sample size.  These findings are 

also consistent with previous research that found the CAIC to perform well across 

multiple conditions (Peugh & Fan, 2013).  Furthermore, there is evidence to support 

the CAIC’s ability to perform well when sample size is relatively large.  Specifically, 

this study was able to replicate the findings in Nylund et al. (2007a), that the CAIC 

performs well when sample size is equal to at least n = 1,000.  Additionally, findings 

from this study indicate that the CAIC tends to perform better when latent classes are 

relatively equal instead of unequal in nature.  

In line with previous research, the BIC was found to be a top performer 

among the ICs (Jedidi, Jagpal, & DeSarbo, 1997; Magidson & Vermunt, 2004; 

Morgan, 2012; Nylund et al., 2007a; Peugh & Fan, 2013; Roeder & Wasserman, 
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1997; Tein, Coxe, & Cham, 2013; Tueller & Lubke, 2010). However, in this study, 

the recovery rates for the BIC tended to decrease when sample size dropped down to 

n = 500.  For this reason, this study found the ABIC to be the best performer among 

the ICs overall, especially when sample size was small, which is in line with previous 

findings from Yang (2006).  Other simulation studies have also found the ABIC to be 

the best performer overall (Peugh & Fan, 2013; Tein, Coxe, & Cham, 2013; Tofighi 

& Enders, 2007).  

Taken together, when sample size was large (i.e., between 1,000 and 10,000), 

the CAIC, BIC, and ABIC were all high performing and applied researchers should 

therefore trust them when fitting LCA models that resemble the conditions explored 

in this study.  On the other hand, when sample size was smaller than n = 1,000, the 

ABIC should be trusted the most by applied researchers since simulation results 

indicated that ABIC is the least sensitive out of the ICs to a reduction in sample size.  

Findings of this study also suggest that the AIC should not be trusted at all in an LCA 

context.  Lastly, results indicate that when latent classes are unordered and sample 

size is small, researchers should remove “poor” indicators from their models to 

ensure the highest performance of the ICs.  Additionally, when latent classes are 

ordered, and sample size is small, applied researchers should leave in potentially 

redundant indicators in their models to ensure the highest performance of the ICs.  

When taking all of the conditions explored in this simulation study into account, 

results seem to indicate that the ABIC is the best performer among the ICs overall 

and should therefore be trusted the most in practice.  
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5.4 Likelihood Ratio Tests and Practical Recommendations  

In line with previous findings, the BLRT consistently outperformed the 

adjusted LMR-LRT (Nylund et al., 2007a; Tein, Coxe, & Cham, 2013) in the current 

study.  Contrary to this finding, a previous study explored a range of LPA models and 

found that the adjusted LMR-LRT performed extremely well in conditions where the 

latent classes were well separated (Lubke & Muthén, 2007).  Therefore, perhaps all 

conditions explored in this study needed greater between-class separation in order for 

recovery rates of the adjusted LMR-LRT to increase.  Results also indicated that 

when the adjusted LMR-LRT index failed, it displayed a tendency to overestimate the 

number of latent classes.  These findings are in line with previous simulation studies 

that compared the adjusted LMR-LRT and BLRT indices (Nylund et al., 2007a).  

This study also found the BLRT to be one of the least sensitive to smaller sample 

sizes (see Figures 14, 24, and 34).   

In fact, results indicated that the BLRT could be trusted regardless of the 

nature of the latent classes, the number of indicators included in the model, or the 

relative size of the latent classes if sample size was at least n = 500.  As sample size 

decreased even further (i.e., n = 200), the BLRT seemed to be influenced more in 

certain modeling contexts by the number of indicators included in the model and the 

relative size of the latent classes.  Specifically, when latent classes were unordered 

and sample size was n = 200, the BLRT performed best when classes were relatively 

equal in nature (see Figure 24).  When sample size was n = 200 and latent classes 

were unordered and unequal, the BLRT performed best when “poor” indicators were 
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removed from the model (see Figure 24).  On the other hand, when sample size was n 

= 200 and latent classes were ordered and unequal, the BLRT performed best when 

potentially redundant indicators were left in the model (see Figure 34).  Taken 

together, this implies that researchers should generally trust the BLRT more than the 

adjusted LMR-LRT in applied LCA research.  It is important to note that Mplus is the 

only software package that currently includes the BLRT index in statistical output.  

Additionally, when sample size is small (i.e., approximately n = 200), researchers 

should consider removing “poor” indicators in unordered latent class solutions and 

leaving in all available indicators in ordered latent class solutions to ensure the 

highest performance of the likelihood ratio tests.  

5.5 Bayesian Fit Indices and Practical Recommendations  

No previous research has examined the performance of the cmP and BF 

indices for use in class enumeration with LCA models.  Findings from this study 

indicated that the cmP and BF tended to agree on the true latent class model across all 

conditions considered, especially when sample size was large (see Tables 4-6).  

Specifically, when sample size was between n = 1,000 and n = 10,000 there was 

evidence that both the cmP and BF performed extremely well regardless of the nature 

of the latent classes, the number of indicators included in the model, or the relative 

size of the latent classes.  As sample size decreased, the nature of the latent classes, 

the number of indicators included, and the relative size of the latent classes influenced 

recovery rates more for the cmP and BF.  In fact, when sample size dropped below n 

= 1,000, the BF performed better than the cmP (see Tables 4-6).  Specifically, when 
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sample size was equal to n = 500 and n = 200, recovery rates for the BF were 

generally higher than recovery rates for the cmP.  Moreover, when sample size 

decreased to n = 500 and classes were unordered in nature, the cmP and BF tended to 

perform better when classes were equal in size compared to unequal, and when 

“poor” indicators were removed (see Figures 25 and 26).  On the other hand, when 

sample size was n = 500, and classes were ordered in nature, the cmP and BF 

performed best when potentially redundant indicators were left in the model, 

regardless of class size (see Figures 35 and 36).  When sample size decreased even 

further to n = 200 and classes were unordered, the cmP and BF performed best when 

classes were equal and “poor” indicators were eliminated (see Figures 15 and 16).  

Finally, when sample size was n = 200 and classes were ordered, the cmP and BF 

performed best when classes were equal and all available indicators were included in 

the model (see Figures 35 and 36).  

Taken together, recovery rates for the cmP and BF indices suggest that 

researchers using LCA with small samples should trust the BF more than the cmP.  

However, in most cases, these indices should agree on the same final latent class 

solution.  The BF tends to indicate the correct latent class solution as a higher rate 

than the cmP.  Also, not surprisingly, given that the cmP and BF are derivatives of the 

BIC, recovery rates for the cmP, BF, and BIC were consistent with each other across 

all conditions explored.  Therefore, as suspected, researchers are likely to see high 

agreement between the cmP, BF, and BIC in terms of class enumeration.  Lastly, 

similar to all the fit indices considered in this simulation study, applied researchers 
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should remove all “poor” indicators from unordered latent class solutions, and leave 

in all available indicators (even if they are potentially redundant) in ordered latent 

class solutions to ensure highest performance of the Bayesian indices.  

5.6 Key Findings and Recommendations 

For summary sake, the following set of general recommendations can be made 

based on the results of this dissertation.  First, as sample size decreased, fit index 

performance tended to decrease across all conditions considered.  Nonetheless, all fit 

indices considered (except the AIC and adjusted LMR-LRT) performed well (i.e., 

reached or nearly reached a 95% recovery rate) when at least 1,000 observations were 

included in the analysis.  Based on this finding, it is recommended that researchers 

wanting to use LCA should ideally aim to for a sample size of n = 1000 to ensure 

high fit index performance.  

Second, as analysis sample size decreased, the number of indicators included 

in the model became more important.  Specifically, when class size was held 

constant, and when latent classes were unordered, removing “poor” indicators 

increased the likelihood of recovering the correct latent class solution when sample 

size was small.  Based on this finding, it is recommended that researchers remove 

indicators that have low between class separation and low within-class homogeneity 

during the model fitting process with unordered latent class solutions.  On the other 

hand, when class size was held constant, and the latent classes were ordered, keeping 

all potential indicators in the model (regardless of whether or not they were 

potentially redundant or contributed to distinguishing latent classes) increased the 
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likelihood of recovering the correct latent class solution when sample size was small. 

Therefore, based on this finding, it is recommended that researchers include all 

available indicators when estimating ordered LCA models (as long as the model is 

identified), even if the indicators are potentially redundant. 

Third, when sample size was large (i.e., between 1,000 and 10,000), the 

CAIC, BIC, and ABIC were all high performing and should therefore be trusted in 

practice when the latent classes resemble the conditions explored in this study.  On 

the other hand, when sample size is smaller than n = 1,000, the ABIC should be 

trusted most since results of this study indicated that ABIC is the least sensitive out of 

the ICs to a reduction in sample size. 

Fourth, findings from this study suggest that researchers should generally trust 

the BLRT more than the adjusted LMR-LRT in applied LCA research.  Specifically, 

simulation results indicated that the BLRT could be trusted regardless of the nature of 

the latent classes, the number of indicators included in the model, or the relative size 

of the latent classes if sample size was at least n = 500.  Moreover, if sample size is 

close to n = 200 and latent classes are unordered, it is recommended that researchers 

remove “poor” indicators to ensure the highest performance of the BLRT.  On the 

other hand, if sample size is close to n = 200 and latent classes are ordered, it is 

recommended that researchers leave all available indicators in the LCA model to 

ensure the highest performance of the BLRT.  

Next, it is recommended that researchers using LCA with small samples trust 

the BF more than the cmP.  It is suspected that in most cases, the BF and cmP will 
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agree on the same final latent class solution.  However, results from this study imply 

that the BF tends to indicate the correct latent class solution as a higher rate than the 

cmP.  Additionally, since the cmP and BF are derivatives of the BIC, researchers are 

likely to see high agreement between the cmP, BF, and BIC during the class 

enumeration process. 

Lastly, due to the fact that this study used simulated data, the class 

enumeration process in this study was solely guided by statistical fit.  However, in 

practice, it is recommended that researchers also allow substantive theory to heavily 

guide the LCA model fitting process.  Although, it is important to understand how 

various fit indices perform when deciding the correct latent class solution, substantive 

theory should be used as a deciding factor (Muthén, 2003).  The existing simulation 

literature focusing on mixture models is starting to find some general trends in the 

performance of these commonly used fit indices, however, we still do not fully know 

which ones work perfectly in every context.  Therefore, fit indices should be used as a 

tool to help decide on the number of classes to retain, but they shouldn’t be used 

blindly and without incorporating substantive theory.  Based on the findings of this 

study, as well as previous simulation studies, a table summarizing the practical 

recommendations researchers should keep in mind when fitting LCA models was 

created and can be found in Appendix I.   

5.7 Limitations and Future Directions 

As with any Monte Carlo simulation study, the findings of this study are only 

generalizable to the LCA conditions generated in this study.  Therefore, even though 
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the conditions explored in this study were created based on an investigation of 

existing empirical research, the findings may not be directly applicable to all LCA 

research studies.  This study found some sensitivity in the performance of the fit 

indices when sample size was n = 500 and even more sensitivity when sample size 

was n = 200.  Therefore, more research needs to look at samples between n = 200 and 

n = 500 to further understand the optimal sample size needed for the fit indices to 

operate well.  This is especially important since smaller samples tend to be used 

frequently in practice.  In fact, the aforementioned meta-analysis of empirical LCA 

research conducted in this dissertation (refer back to Chapter 3.2 for more detail) 

found that approximately 25% of the existing LCA research used samples of n = 500 

and below.  

Also, the current simulation study only considered categorical indicators.  

While it is suspected that the results of this study generalize to a continuous setting 

(i.e., LPA models), future simulation research should also consider varying the class 

specific parameters that are estimated when latent classes are based on continuous 

indicators (i.e., means and variances).  Moreover, the current simulation study only 

varied the number of indicators to be equal to 7 or 10.  Therefore, future studies 

should vary the number of indicators more so that applied researchers could fully 

understand how the number of indicators included in the model influences class 

enumeration.  All LCA models in this study were unconditional in nature (i.e., did not 

include any covariates or distal outcomes) therefore, future research should examine 

how these fit indices operate among conditional LCA models.  Additionally, specific 
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parameter estimates (i.e., conditional item probabilities) were not directly examined 

in this study therefore future research could examine the influence of sample size and 

number of indicators included on estimated parameter bias in LCA models.   

Furthermore, LCA modeling is an exploratory process therefore the results of 

this dissertation may overly simplify a rather complex model fitting procedure.  

Specifically, researchers often go through an iterative process of fitting LCA models, 

potentially removing or changing indicators for various reasons, and refitting models.  

In fact, the LCA modeling process is likely different for every researcher.  Therefore, 

given that there is no fixed procedure for fitting LCA models, this simulation study 

by definition does not fully mimic the true modeling process.   

Next, all models in this study were generated from latent class analysis 

models, thus the data was generated to have latent subgroups.  However, researchers 

in applied settings have an additional challenge of deciding if a latent class model is 

even appropriate for the data they have.  Therefore, more research could focus on 

what happens to the performance of the fit indices when data is generated to have no 

true underlying latent class structure but then analyzed using latent class analysis.  In 

other words, would there be any indication via the fit indices that LCA is the incorrect 

model when analyzing data that was generated by a factor model?  One critique of 

LCA models is related to ordered latent class solutions, which were found in 

approximately 25% of the studies included in the meta-analysis in Chapter 3.2.  Some 

would argue that ordered latent class solutions are not appropriate because perhaps 

latent classes are being forced onto a truly continuous distribution.  Future research 
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can address this critique by generating data as a one-factor model, analyzing it with 

latent class analysis, and examining the performance of the fit indices in detecting the 

correct underlying structure of the data.  In general, although latent class analysis has 

its limitations (as with any other statistical model), it should be viewed as one type of 

statistical tool that can help researchers gain perspective into their data.  Researchers 

should still keep in mind that there might be other alternative models that can provide 

equally accurate perspectives and potentially different insights into their data.  

Latent class analysis has provided a lot of insight into social science 

phenomena and is a commonly used research tool.  This study is part of a larger body 

of work that examines the use and best practices of mixture models.  Specifically, this 

dissertation begins to answer some questions about how various model characteristics 

can influence the class enumeration process in LCA models however many 

unanswered questions still exist.  Nevertheless, the results of this dissertation 

contribute to a broader understanding of how various factors such as sample size, and 

the number of indicators included intersect and influence class enumeration in LCA 

models by providing insight into the performance of commonly used fit indices.  

Additionally, results of this study highlight the importance of taking other factors into 

account such as class prevalence and the nature of the latent classes (i.e., ordered vs. 

unordered classes) when making methodological decisions during the LCA modeling 

process.
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Appendix A: Sample Mplus data generation input file for a four ordered class model with 

sample size of 10,000, 10 binary indicators, and class prevalences of .10 (π1), .20 (π2), .20 

(π3), and .50 (π4) (see Figure 2 for item probablity plot of this model). 

 

Title: Example Input File #1 

 

Montecarlo: 

 Names are u1-u10; 

 Generate = u1-u10 (1); 

 Categorical=u1-u10; 

 Genclasses = c (4); 

    Classes=c (1); 

 Nobs=10000; 

 Nrep=500; 

     Repsave=ALL; 

 SAVE=4class_unequal_ord*.DAT; 

 Seed=46304630; 

 

Model Population: (See Appendix H for how to solve for latent class proportions) 

 

%OVERALL%  

  C1=10%, C2=20%, C3=20%, C4=50% 

  [c#1*-1.6094379124];  

  [c#2*-0.9162907319];  

  [c#3*-0.9162907319];   

 

FOUR ORDERED LATENT CLASSES 

%c#1% class 1: item probs of [.90, .92, .93, .95, .93, .90, .91, .92, .90, .93] for all U1-U10 

  [u1$1*-2.20 u2$1*-2.44 u3$1*-2.59 u4$1*-2.94 u5$1*-2.59  

  u6$1*-2.20 u7$1*-2.31 u8$1*-2.44 u9$1*-2.20 u10$1*-2.59]; 

 

%c#2% class 2: item probs of [.70, .75, .73, .76, .74, .69, .73, .72, .70, .72] for all U1-U10 

  [u1$1*-.85 u2$1*-1.10 u3$1*-.99 u4$1*-1.15 u5$1*-1.05  

  u6$1*-.80 u7$1*-.99 u8$1*-.95 u9$1*-.85 u10$1*-.95]; 

  

%c#3% class 3: item probs of [.40, .39, .42, .40, .39, .44, .43, .41, .42, .40] for all U1-U10 

  [u1$1*.41 u2$1*.45 u3$1*.32 u4$1*.41 u5$1*.45  

  u6$1*.24 u7$1*.28 u8$1*.36 u9$1*.32 u10$1*.41]; 

 

%c#4% class 4: item probs of [.07, .08, .07, .09, .07, .1, .1, .08, .09, .07] for all U1-U10 

  [u1$1*2.59 u2$1*2.44 u3$1*2.59 u4$1*2.31 u5$1*2.59  

  u6$1*2.20 u7$1*2.20 u8$1*2.44 u9$1*2.31 u10$1*2.59]; 

 

Analysis: 

 Type=mixture; 

 Starts=100 20; 

 Processor=4 (starts); 
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Appendix B: Sample Mplus data generation input file for a four class model (unordered A) 

with sample size of 10,000, 10 binary indicators, and class prevalences of .10 (π1), .20 (π2), 

.20 (π3), and .50 (π4) (see Figure 3 for item probablity plot of this model). 

 

Title: Example Input File #2 

 

Montecarlo: 

 Names are u1-u10; 

 Generate = u1-u10 (1); 

 Categorical=u1-u10; 

 Genclasses = c (4); 

     Classes=c (1); 

 Nobs=10000; 

 Nrep=500; 

     Repsave=ALL; 

     SAVE=4class_unequal_unord1*.DAT; 

 Seed=46304630; 

 

Model Population: 

 

%OVERALL%   

  C1=10%, C2=20%, C3=20%, C4=50% 

  [c#1*-1.6094379124];  

  [c#2*-0.9162907319];  

  [c#3*-0.9162907319];   

 

FOUR UNORDERED LATENT CLASSES A 

%c#1% class 1: item probs of [.82, .83, .65, .85, .82, .84, .69, .83, .83, .67] for all U1-U10 

  [u1$1*-1.52 u2$1*-1.59 u3$1*-.62 u4$1*-1.73 u5$1*-1.52  

   u6$1*-1.66 u7$1*-.80 u8$1*-1.59 u9$1*-1.59 u10$1*-.71]; 

 

%c#2% class 2: item probs of [.80, .80, .55, .80, .80, .10, .50, .10, .10, .40] for all U1-U10 

  [u1$1*-1.39 u2$1*-1.39 u3$1*-.21 u4$1*-1.39 u5$1*-1.39  

  u6$1*2.20 u7$1*-.00 u8$1*2.20 u9$1*2.20 u10$1*.41]; 

  

%c#3% class 3: item probs of [.10, .10, .40, .10, .10, .80, .55, .80, .80, .55] for all U1-U10 

  [u1$1*2.20 u2$1*2.20 u3$1*.41 u4$1*2.20 u5$1*2.20  

  u6$1*-1.39 u7$1*-.21 u8$1*-1.39 u9$1*-1.39 u10$1*-.21]; 

 

%c#4% class 4: item probs of [.07, .08, .30, .09, .07, .1, .33, .08, .09, .35] for all U1-U10 

  [u1$1*2.59 u2$1*2.44 u3$1*.85 u4$1*2.31 u5$1*2.59  

  u6$1*2.20 u7$1*.71 u8$1*2.44 u9$1*2.31 u10$1*.62]; 

 

Analysis: 

 Type=mixture; 

 Starts=100 20; 

 Processor=4 (starts); 



 

98 
 

Appendix C: Sample Mplus data generation input file for a four class model (unordered B) 

with sample size of 10,000, 10 binary indicators, and class prevalences of .10 (π1), .20 (π2), 

.20 (π3), and .50 (π4) (see Figure 4 for item probablity plot of this model). 

 

Title: Example Input File #3 

 

Montecarlo: 

 Names are u1-u10; 

 Generate = u1-u10 (1); 

 Categorical=u1-u10; 

 Genclasses = c (4); 

     Classes=c (1); 

 Nobs=10000; 

 Nrep=500; 

     Repsave=ALL; 

     SAVE=4class_unequal_unord2*.DAT; 

 Seed=46304630; 

 

Model Population: 

 

%OVERALL%  

   C1=10%, C2=20%, C3=20%, C4=50% 

   [c#1*-1.6094379124];  

   [c#2*-0.9162907319];  

   [c#3*-0.9162907319];   

 

FOUR UNORDERED LATENT CLASSES B 

%c#1% class 1: item probs of [.60, .30, .75, .70, .30, .83, .02, .10, .20, .90] for all U1-U10 

  [u1$1*-.41 u2$1*.85 u3$1*-1.10 u4$1*-.85 u5$1*.85 

  u6$1*-1.59 u7$1*3.89 u8$1*2.20 u9$1*1.39 u10$1*-2.20]; 

 

%c#2% class 2: item probs of [.05, .80, .20, .35, .75, .85, .01, .05, .01, .70] for all U1-U10 

  [u1$1*2.94 u2$1*-1.39 u3$1*1.39 u4$1*.62 u5$1*-1.10 

  u6$1*-1.73 u7$1*4.60 u8$1*2.94 u9$1*4.60 u10$1*-.85]; 

  

%c#3% class 3: item probs of [.15, .30, .30, .20, .22, .75, .70, .73, .18, .90] for all U1-U10 

  [u1$1*1.73 u2$1*.85 u3$1*.85 u4$1*1.39 u5$1*1.27 

  u6$1*-1.10 u7$1*-.85 u8$1*-.99 u9$1*1.52 u10$1*-2.20]; 

 

%c#4% class 4: item probs of [.15, .10, .05, .10, .07, .78, .02, .03, .09, .80] for all U1-U10 

  [u1$1*1.73 u2$1*2.20 u3$1*2.94 u4$1*2.20 u5$1*2.59 

  u6$1*-1.27 u7$1*3.89 u8$1*3.48 u9$1*2.31 u10$1*-1.39]; 

 

Analysis: 

 Type=mixture; 

 Starts=100 20; 

 Processor=4 (starts); 



 

99 
 

Appendix D: Sample Mplus data generation input file for a three ordered class model with 

sample size of 10,000, 10 binary indicators, and class prevalences of .10 (π1), .30 (π2), and .60 

(π3) (see Figure 5 for item probablity plot of this model). 

 

Title: Example Input File #4 

 

Montecarlo: 

 Names are u1-u10; 

 Generate = u1-u10 (1); 

 Categorical=u1-u10; 

 Genclasses = c (3); 

     Classes=c (1); 

 Nobs=10000; 

 Nrep=500; 

     Repsave=ALL; 

     SAVE=3class_unequal_ord_*.DAT; 

 Seed=46304630; 

 

Model Population: 

 

%OVERALL%  

   C1=10%, C2=30%, C3=60% 

   [c#1*-1.7957674906];  

   [c#2*-0.6931471806];  

 

THREE ORDERED LATENT CLASSES 

%c#1% class 1: item probs of [.90, .92, .93, .95, .93, .90, .91, .92, .90, .93] for all U1-U10 

  [u1$1*-2.20 u2$1*-2.44 u3$1*-2.59 u4$1*-2.94 u5$1*-2.59  

  u6$1*-2.20 u7$1*-2.31 u8$1*-2.44 u9$1*-2.20 u10$1*-2.59]; 

 

%c#2% class 3: item probs of [.50, .49, .52, .50, .49, .54, .53, .51, .52, .50] for all U1-U10 

  [u1$1*0 u2$1*.04 u3$1*-.08 u4$1*0 u5$1*.04  

  u6$1*-.16 u7$1*-.12 u8$1*-.04 u9$1*-.08 u10$1*0]; 

 

%c#3% class 4: item probs of [.07, .08, .07, .09, .07, .1, .1, .08, .09, .07] for all U1-U10 

  [u1$1*2.59 u2$1*2.44 u3$1*2.59 u4$1*2.31 u5$1*2.59  

  u6$1*2.20 u7$1*2.20 u8$1*2.44 u9$1*2.31 u10$1*2.59]; 

 

Analysis: 

 Type=mixture; 

 Starts=100 20; 

 Processor=4 (starts); 
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Appendix E: Sample Mplus analysis input file for population condition with four equal 

unordered classes A, and analysis sample size of 10,000, 10 binary indicators, and 4 latent 

classes. 

 

Title: Analysis 4class_equal_unord1_N10000_U10 

 

Data: 

File is 4class_equal_unord1_list.dat; 

Type=Montecarlo; 

 

Variable: 

      Names are 

      U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 C id; 

      USEVARIABLES = U1 U2 U3 U4 U5 U6 U7 U8 U9 U10; 

      CATEGORICAL = U1 U2 U3 U4 U5 U6 U7 U8 U9 U10; 

      Missing are all (-9999); 

      Classes=C (4); 

      IDVARIABLE=id; 

       

Analysis: 

      Type = mixture; 

      Starts=100 20; 

      LRTSTARTS=0 0 150 40; 

      Processor=16(starts); 

  

Output: 

      tech9 tech11 tech14; 

   

Savedata: 

      RESULTS=4class_equal_unord1_N10000_U10_C4.dat; 
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Appendix F: Sample Mplus analysis input file for population condition with four equal 

ordered classes and with analysis sample size of 5,000, 7 binary indicators, and 4 latent 

classes. 

   

Title: Analysis 4class_equal_ord_N5000_U7 

 

Data: 

File is 4class_equal_ord_list.dat; 

Type=Montecarlo; 

 

Variable: 

      Names are 

      U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 C id; 

      USEVARIABLES = U2 U3 U4 U6 U7 U8 U9; 

      CATEGORICAL = U2 U3 U4 U6 U7 U8 U9; 

      Missing are all (-9999); 

      Classes=C (4); 

      IDVARIABLE=id; 

      Useobs = id LE 5000; 

   

Analysis: 

      Type = mixture; 

      Starts=100 20; 

      LRTSTARTS=0 0 150 40; 

      Processor=16 (starts); 

   

Output: 

      tech9 tech11 tech14; 

  

 Savedata: 

      RESULTS=4class_equal_ord_N5000_U7_C4.dat; 
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Appendix G: Sample Mplus analysis input file for population condition with three unequal 

ordered classes and with analysis sample size of 200, 7 binary indicators, and 3 latent classes. 

 

Title: Analysis 3class_unequal_ord_N200_U7 

 

Data: 

File is 3class_unequal_ord_list.dat; 

Type=Montecarlo; 

 

Variable: 

      Names are 

      U1 U2 U3 U4 U5 U6 U7 U8 U9 U10 C id; 

      USEVARIABLES = U2 U3 U4 U6 U7 U8 U9; 

      CATEGORICAL = U2 U3 U4 U6 U7 U8 U9; 

      Missing are all (-9999); 

      Classes=C (3); 

      IDVARIABLE=id; 

      Useobs = id LE 200; 

 

Analysis: 

      Type = mixture; 

      Starts=100 20; 

      LRTSTARTS=0 0 150 40; 

      Processor=16 (starts); 

  

Output: 

      tech9 tech11 tech14; 

 

Savedata: 

      RESULTS=3class_unequal_ord_N200_U7_C3.dat; 
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Appendix I: Summary of findings, recommendations for researchers, and directions for future research. 

LCA Model Details 
Finding from Current 

Study 

Recommendation for 

Researchers Based on 

Finding from Current 

Study 

Previous Studies that 

Validate Current Findings 

Directions for Future 

Research 

All LCA models across 

all conditions explored 

in this study 

AIC consistently 

underestimated the correct 

number of latent classes 

 

 

Researchers should not trust 

the AIC in practice 

 

 

Celeux & Soromenho, 1996; 

Koehler & Murphree, 1988; 

Nylund, Asparouhov, & 

Muthén, 2007; Tein, Coxe, & 

Cham, 2013 

N/A; existing literature has 

reached a consensus 

regarding the poor 

performance of the AIC in 

mixture models. 

BLRT outperformed the 

adjusted LMR-LRT 

Researchers should trust the 

BLRT over the adjusted 

LMR-LRT. 

Nylund et al., 2007a; Tein, 

Coxe, & Cham, 2013 

Future research should 

further examine how the 

adjusted LMR-LRT is 

influenced by class 

separation 

All LCA conditions 

explored in this study 

with a sample size ≥ n 

= 1,000  

When sample size was at 

least 1,000, fit indices were 

generally high performing 

(with the exception of the 

AIC and LMR-LRT) across 

all conditions considered 

Researchers can trust all fit 

indices (except the AIC and 

LMR-LRT) when sample 

size is at least 1,000 and 

conditions resemble those 

explored in this study 

N/A; The specific 

combination of fit indices and 

the conditions explored in this 

study are not identical to 

previous studies 

Future research can extend 

upon these findings and 

attempt to validate them by 

exploring conditional LCA 

models as well as LPA 

models 

All LCA conditions 

explored in this study, 

especially those with a 

sample size < n = 1,000 

As sample size decreased, 

fit index performance 

decreased 

LCA researchers should aim 

for a sample size of n = 

1,000 

Nylund et al., 2007a; Yang, 

2006; Tein, Coxe, & Cham, 

2013; Tueller & Lubke, 2010 

 

Future research should 

explore sample sizes 

between 500-1,000, 

between 200-500, and < 

200 

ABIC and BLRT were the 

least sensitive out of the 

ICs to a reduction in sample 

size. 

Researchers should trust 

ABIC and BLRT most if 

sample size is below 1,000 

Nylund et al., 2007a; Peugh & 

Fan, 2013; Tein, Coxe, & 

Cham, 2013; Tofighi & 

Enders, 2007 

Future research should 

explore if the ABIC and 

BLRT remain high 

performing in conditional 

LCA models 

As sample size decreased, 

the number of indicators 

included became more 

important. Specifically, 

In order to ensure the 

highest fit index 

performance, researchers 

should remove indicators 

N/A; no previous simulation 

study has compared ordered 

vs. unordered latent classes 

Future research should look 

at other configurations of 

ordered and unordered 

latent class solutions. 

1
0
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when class size was held 

constant, and when latent 

classes were unordered, 

removing “poor” indicators 

increased the likelihood of 

recovering the correct latent 

class solution. When class 

size was held  

constant, and the latent 

classes were ordered, 

keeping all potential 

indicators in the model 

increased the likelihood of 

recovering the correct latent 

class solution. 

that have low between class 

separation and low within-

class homogeneity during 

the model fitting process 

with unordered latent class 

solutions. Also, researchers 

should include all available 

indicators when estimating 

ordered LCA models, even 

if the indicators are 

potentially redundant. 

Future research should also 

consider varying the 

number of indicators to be 

equal to values other than 7 

and 10. Lastly, future 

research should consider 

generating data with no 

underlying latent classes 

(i.e., a one-factor model) 

and analyze it using LCA. 

The BF outperformed the 

cmP, especially when 

sample size was small 

Researchers using LCA 

with small samples trust the 

BF more than the cmP 

N/A; no other simulation 

study has previously 

examined the performance of 

the BF and cmP among LCA 

models 

Future research should 

attempt to validate these 

findings of the BF and cmP 

with other mixture models 

and across other empirical 

conditions 
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