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ORIGINAL RESEARCH

Immune Defense Protein Expression in Highly Purified Mouse Lung
Epithelial Cells
Meenal Sinha and Clifford A. Lowell

Department of Laboratory Medicine and the Program in Immunology, University of California, San Francisco, San Francisco, California

Abstract

Lung epithelial cells play critical roles in initiating and modulating
immune responses during pulmonary infection or injury. To better
understand the spectrum of immune response–related proteins
present in lung epithelial cells, we developed an improved method
of isolating highly pure primary murine alveolar type (AT) II cells
andmurine tracheal epithelial cells (mTECs) using negative selection
for a variety of lineagemarkers andpositive selection for epithelial cell
adhesion molecule (EpCAM), a pan-epithelial cell marker. This
method yielded 2–33 106 ATII cells/mouse lung and 1–23 104

mTECs/trachea that were highly pure (.98%) and viable (.98%).
Using these preparations, we found that both ATII cells and mTECs
expressed the Lyn tyrosine kinase, which is best studied as an
inhibitory kinase in hematopoietic cells. However, we found little or
no expression of Syk in either ATII cells or mTECs, which is in
contrast to earlier published reports. Both cell types expressed
C-type lectin receptors, anaphylatoxin receptors, and various
Toll-like receptors (TLRs). In addition, stimulation of ATII cells with
TLR ligands led to secretion of various cytokines and chemokines.

Interestingly, lyn2/2 ATII cells were hyperresponsive to TLR3
stimulation, suggesting that, as in hematopoietic cells, Lyn might
be playing an inhibitory role in ATII cells. In conclusion, the
improved isolation method reported here, along with expression
profiles of various immune defense proteins, will help refocus
investigations of immune-related signaling events in pulmonary
epithelium.

Keywords: lung epithelial cells; Syk; Lyn; tyrosine kinases; Toll-
like receptors

Clinical Relevance

Lung epithelium is the first barrier to defense against pathogens
and allergens. This report defines the repertoire of immune
regulatory molecules present in alveolar epithelial type II cells
and murine tracheal epithelial cells, isolated by an improved
cell-sorting method.

The large internal surface of the lungs is
constantly exposed to a wide variety of
micro-organisms, some of which are
potentially pathogenic. Although an immune
response in the lungs is required to keep such
pathogen colonization in check, the levels of
inflammation must be tightly regulated to
prevent host tissue damage and consequent
reduction in efficient respiration.

The epithelial cells lining the inner
tracheal and lung surfaces are among the

first cells to encounter incoming pathogens;
hence, they play important roles in initiating
and regulating the ensuing immune
response in the lung (1). The trachea and
conducting airways are lined by club cells
(previously known as “Clara” cells) and
ciliated cells, which are armed with several
defense mechanisms (2, 3). Although club
cells secrete the major components of the
airway mucus layer, which capture many of
the micro-organisms coming in, the ciliated

cells keep the mucus moving upward and
outward in what is often referred to as
the large airway mucociliary “escalator”
(4, 5). Club cells also produce and
secrete several broad acting antimicrobial
proteins and peptides into the mucus
layer, which provide a first line of host
defense (6).

The alveoli are lined by alveolar type
(AT) I and ATII cells, which perform
distinct functions (7, 8). ATI cells are highly
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flattened to allow gas exchange across
their cell bodies into the blood vessels.
They are also thought to regulate alveolar
fluid levels. However, few immune
functions have been ascribed to ATI cells.
ATII cells are more numerous than ATI
cells, and are known for their roles in
surfactant production and secretion, for
serving as distal progenitors for ATI cell
development, and in immune responses
within the alveoli. However, much remains
unknown about the immune functions of
ATII cells and the pathways involved
therein.

Given our laboratory’s long-standing
interest in studying immune signaling
pathways in hematopoietic cells, we were
intrigued by reports of the expression of
spleen tyrosine kinase (Syk) in both human
and murine lung epithelial cells (9–11). We
attempted to confirm the presence of Syk
in mouse lung epithelial cells using highly
purified cell preparations, rather than
whole lung tissue, which is a highly vascular
organ containing hematopoietic cells
expressing high levels of Syk that could
ultimately yield false-positive results. To
obtain highly pure lung epithelial cell

preparations, we developed a cell-sorting
strategy that is an improvement over
existing methods that yielded preparations
contaminated with mesenchymal cells,
endothelial cells, and erythroid cells
among others (12–14). Using our improved
cell-sorting method, gene expression
profiling for Syk and related immune
defense molecules could be reliably
performed. In contrast to earlier reports
(9–11), we found no expression of Syk
protein in ATII cells, and only very faint
mRNA signal in both ATII cells and murine
tracheal epithelial cells (mTECs). In
addition, we found expression of some
members of the other families of related
immune defense proteins, such as Lyn
kinase, which opens up exciting avenues
for further exploring the function of
those proteins in lung epithelial cells both
in vitro and in vivo. We also found that
specific ligand-mediated stimulation of the
Toll-like receptors (TLRs) found to be
expressed in ATII cells led to a cytokine
and chemokine response. Finally, Lyn was
shown to mediate inhibition of chemokine
production downstream of TLR3 stimulation,
providing clues into regulatory networks

involved in pulmonary immune defense
mechanisms.

Materials and Methods

Mice, Reagents, and Antibodies
Wild-type (WT) C57BL/6 mice (Charles
River Laboratories, Hollister, CA), lyn2/2

mice (15) aged 8–10 weeks, and syk2/2

bone marrow chimeric mice (16, 17) aged
16–18 weeks were maintained in a specific
pathogen-free facility at the University of
California, San Francisco. For reagents and
antibodies used to isolate lung epithelial
cells, please refer to the online supplement.

Isolation of Highly PureMurine ATII Cells
Fluorescence-activated cell sorting (FACS)
was used to obtain highly pure ATII cells.
Lineage (Lin) markers CD45, CD16/32,
CD31, Ter119, and integrin b4 were used to
deplete hematopoietic cells, endothelial cells,
erythroid cells, distal lung progenitor cells,
and club cells (18), respectively. Epithelial cell
adhesion molecule (EpCAM) was used to
positively select for ATII cells. Full details are
provided in the online supplement.

Table 1. RT-PCR Primer Pairs

Gene Forward Primer Reverse Primer Product (bp) References

Src 59 GACTCCATCCAGGCTG 39 39 TTGCACACCAGGTTCTC 59 250 47
Yes 59 TGGCATGGCGTATATTGAAA 39 39 CAGGATCCTTCTTCCAGCAA 59 400 N/A*
Fyn 59 ATGGGCTGTGTGCAATGTAAGG 39 59 TTCCGTCCGTGCTTCATAGT 39 294 N/A*
Lck 59 GCACCAGAAGCCATTAACTATG 39 59 GGCTGTGTGAAGAAGTCATCCAGAAC 39 279 49
Hck 59 TAGCCCGCAAGTCTTCGTCG 39 59 CGGTGAATAGCCTCATAGTCGTA 39 339 50
Lyn 59 ATGCATCAGTCCCAAACCTC 39 59 GACCAGGACGTTAGCAGCTC 39 451 N/A*
Blk 59 AACCCTGAGGTCATCCGTAGC 39 59 CACCATTCTTCCCTGATTCTGC 39 317 50
Fgr 59 TAAGATCCGAAAGCTGGACACG 39 59 CGACACCACCGCATACAGC 39 385 50
Zap-70 59 GCACATATGCACTGTCCCTGGTCTA 39 59 GGGTCGCTGTAGGGACTCTCGTACA 39 350 51
Syk 59 GTGGCTGTGAAAATCCTGAAG 39 59 GAAATCGCTGATCTTGGCATA 39 345 N/A*
C3aR 59 TAACCAGATGAGCACCACCA 39 59 TGTGAATGTTGTGTGCATGG 39 280 52
C5aR 59 GAAGCGGCAACCTGGGGATGT 39 59 CGTCTGGCTCGAAGGCTGTCAC 39 150 53
Dectin-1 59 ATCAGCATTCTTCCCCAACTCG 39 59 CAGTTCCTTCTCACAGATACTGTATGA 39 280 54
Dectin-2 59 GGGGGCTCATCTGGTGGTG 39 59 ATGCTCCCTGGCTTGCTCTTC 39 631 55
TLR1 59 ATCGGTTTGGAACTGTCTAA 39 59 GAAATGGGCTAACTTGGGACG 39 412 56
TLR2 59 GAGCGAGCTGGGTAAAGTAGAAA 39 59 AGCCGAGGCAAGAACAAAGA 39 528 56
TLR3 59 TCTCTGGGCTGAAGTGGACAA 39 59 AGCAAGGGAGAATGAGCAAGTGAC 39 427 56
TLR4 59 CAGTGGGTCAAGGAACAGAAGC 39 59 GACAATGAAGATGATGCCAGAGC 39 540 56
TLR5 59 CGGCCTCTGTTGGGATGTT 39 59 GACCGCATGGCTTCCTCTTC 39 438 56
TLR6 59 GAAGCATGACCCCGTTCTCTAAT 39 59 AGGTTGCCAAATTCCTTACACAC 39 367 56
TLR7 59 GGGGTCCAAAGCCAATGTGT 39 59 CGAGGGCAATTTCCACTTAGG 39 471 56
TLR8 59 AATGGCATTTACACCCTCACAGA 39 59 AGCCAGCTTCGAAAATCACTTATG 39 581 56
TLR9 59 ACAGTATCGTCTCTGTGGTC 39 59 CAGAGATGGTGCAGTATAGG 39 348 56
Collagen 1 59 TTCTCCTGGCAAAGACGGACTCAA 39 59 AGGAAGCTGAAGTCATAACCGCCA 39 350 57
Vimentin 59 CAGCAGTATGAAAGCGTGG 39 59 GGAAGAAAAGGTTGGCAGAG 39 441 58

Definition of abbreviation: TLR, Toll-like receptor.
Listed are the sequences of the forward and reverse primers used for all the RT-PCRs performed in the study. Also given are the sizes of the amplified PCR
product and the references for the sequences.
*Self-designed primer sequence. For Fyn, reverse primer was self-designed.
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Figure 1. Cell-sorting strategy for isolating highly pure mouse alveolar type (AT) II cells and murine tracheal epithelial cells (mTECs). Representative flow
cytometric dot plots of (A) a crude single-cell preparation of mouse lung cells or (B) tracheal cell preparations, stained on the surface for epithelial cell
adhesion molecule (EpCAM)-allophycocyanin (APC) and intracellularly for cytokeratin-phycoerythrin (PE). (C) ATII cell–sorting strategy. Shown are
representative dot plots obtained from flow cytometric analysis of lung cells collected at various stages of ATII cell isolation (pre- and post-magnetic
enrichment, and post-sort) and stained for lineage (Lin) markers (CD45, CD16/32, CD31, Ter119, and integrin b4) versus EpCAM. Events displayed on the
plots were 49,6-diamidino-2-phenylindole–negative single cells. (D) Exclusion of club cell contamination during fluorescence-activated cell sorting for
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Isolation of Highly Pure mTECs by
FACS Sorting
mTECs were isolated similar to ATII cells.
Please refer to the online supplement for full
details.

Surface and Intracellular Staining for
Flow Cytometric Analysis
Methods for staining for cell surface
proteins (Lin markers, EpCAM, major
histocompatibility antigen [MHC] II, or
isotype controls), intracellular proteins
(pro-surfactant protein [SP]-C, club cell
secretory protein [CCSP], pancytokeratin,
cytokeratin-8, or rabbit IgG), or determining
intracellular alkaline phosphatase
enzymatic activity are described in detail
in the online supplement.

Immunofluorescent Staining and
Microscopy
Methods used for immunofluorescent
staining and microscopic analysis of cells
cytospun onto slides for pro–SP-C, CCSP,
pancytokeratin, cytokeratin-8, MHCII,
E-cadherin, Syk, and Lyn are described
in detail in the online supplement.

RNA Isolation and RT-PCR
RNA isolation methods and RT-PCR
detection of various immune-related proteins
in sorted ATII cells and mTECs are described
in detail in the online supplement. Primer pairs
used for RT-PCR analysis are listed in Table 1.

Western Blot
Methods used to analyze Lyn and Syk
protein expression by immunoblotting are
described in detail in the online supplement.

ATII Cell Culture and Stimulation by
TLR Ligands
Purified ATII cells were cultured on
Matrigel and 1.5% collagen I (BD
Biosciences, San Jose, CA) matrix mix in
small airway growth medium (Lonza,
Walkersville, MD) with or without TLR
ligands. Supernatant was collected after
24 hours and analyzed for cytokines
and chemokines by multiplex Luminex bead

assays (Bio-Rad, Hercules, CA). Please see
the online supplement for details.

Statistical Analysis
The statistical analysis is detailed in the
online supplement.

Results

Flow-Based Cell Sorting Strategy to
Isolate Highly Pure ATII Cells and
mTECs
To reliably analyze expression of Syk and
other related immune defense proteins in
mouse primary lung epithelial cells, an
improved FACS strategy was designed to
isolate highly pure ATII cells and mTECs. To
be able to sort live cells, the lung epithelial cells
were marked by surface staining for EpCAM,
a known pan-epithelial marker (19). In
dispase-digested, crude lung cell preparations
(Figure 1A), and also in dispase-digested,
crude tracheal cell preparations (Figure 1B),
prepared as described in MATERIALS AND

METHODS, we confirmed that EpCAM indeed
marked all the epithelial cells, instead of a
subpopulation, by costaining the cells
intracellularly for cytokeratin, another known
pan-epithelial cell marker, and finding that
all cytokeratin-positive cells were also
EpCAM positive.

Before ATII cell–sorting, the majority
of the non-epithelial cells in dispase-
digested, crude lung, single-cell
preparations were magnetically depleted by
staining for Lin markers CD45, CD16/32,
CD31, Ter119, and integrin b4 to exclude
hematopoietic cells, endothelial cells,
erythroid cells, distal progenitor cells,
and club cells, respectively (Figure 1C).
Magnetic depletion of Lin1 cells lead to
an enrichment of Lin2 EpCAM1 cells
from 25–30% to 80–90%. The enriched
population was then subjected to flow-
based cell sorting to produce a cellular
isolate that was greater than 98%
Lin2 EpCAM1 (Figure 1C).

To validate that this sorting strategy
resulted in minimal contamination of sorted
ATII cell preparations by club cells, an

abundant lung epithelial cell type present in
mouse lungs, we performed intracellular
staining for pro–SP-C, a specific ATII
marker, and CCSP, which is specific for
club cells. The Lin2 EpCAM1 cells present
in the sort gate stained for pro–SP-C (99%;
Figure 1D, lower panels) and lacked
CCSP expression. By contrast, the Linlow

EpCAM1 cells contained a fraction of
CCSP-expressing cells (29%; Figure 1D,
top panels). The other cells in the Linlow

EpCAM1 gate might include integrin
b4–positive distal lung progenitor cells
(18). Thus, by carefully gating out Linlow

EpCAM1 cells, club cell contamination was
avoided in the cell preparations.

The purity of the ATII epithelial cell
preparation was also confirmed by RT-PCR
analysis for a number of genes commonly
expressed in mesenchymal cells. The purified
ATII cells lacked expression of desmin,
vimentin, and collagen type I (Figure 1E).
Using these procedures, we routinely
obtained 2–33 106 ATII cells/mouse lung.
Cell viability was routinely 80–90% in
crude lung preparations and greater than
98% after cell sorting.

A similar strategy was used to sort highly
pure populations of mTECs (Figure 1F).
However, because the total crude tracheal cell
yield was small, a magnetic enrichment step
was not performed before sorting. Dispase-
digested crude tracheal cell preparations
consisted of approximately 30–45%
Lin2 EpCAM1 mTECs. After sorting, the
purity of the mTEC preparation was greater
than 98%. The yield of purified mTECs was
far less, averaging 1–23 104 cells/mouse
trachea. Cell viability was routinely 75–80%
in crude tracheal preparations and greater
than 98% after cell sorting.

Purity and Further Characterization of
Sorted ATII Cells
To assess purity, sorted Lin2 EpCAM1

ATII cell preparations were examined for
the expression of a number of proteins
known to be present in ATII cells.
Immunofluorescent staining of cytospun
cells in addition to flow cytometric analysis
allowed assessment of the cellular

Figure 1. (Continued). ATII cells. Representative flow cytometric dot plots of a crude single-cell preparation of lung cells stained for lineage markers
(CD45, CD16/32, CD31, Ter119, and integrin b4) in the pacific blue channel and EpCAM-APC. The cells were also stained intracellularly for either rabbit
isotype IgG, pro-surfactant protein (SP)-C or club cell secretory protein (CCSP), in the fluorescein isothiocyanate (FITC) channel and the distribution of this
staining is shown in both the lower Lin2 EpCAM1 gate, which was used to sort ATII cells, and the upper Linlow EpCAM1 gate. (E) RT-PCR analysis for the
indicated genes was conducted on the highly pure, flow-sorted ATII cells, as described in MATERIALS AND METHODS. Data shown are representative of three
independent experiments. (F) Shown are flow cytometric dot plots from a representative cell sort performed for the isolation of highly pure mTECs.
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Figure 2. Characterization of sorted Lin2 EpCAM1 ATII cells. Shown are representative images from immunofluorescence microscopy of lung cells
collected before magnetic enrichment and after sorting, cytospun, and stained for (A) Pro–SP-C, (B) CCSP, (C) cytokeratin-8, (D) major histocompatibility
antigen (MHC) II, (E) alkaline phosphatase (AP), and (F) epithelial cadherin (E-cadherin). For quantitative analysis of stain-positive cells, representative
histograms from flow cytometric analysis of lung cells collected pre-magnetic enrichment and post-sort are shown to the right. Percentages shown are
representative of three to five independent experiments. Isotype controls are plotted in shaded gray; specific immunostains are shown in blue. In the case
of AP staining, the shaded gray plot indicates unstained cells.
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distribution of the markers and accurate
quantitation. The purified ATII cells were
routinely greater than 98% positive for
pro–SP-C, which was found in intracellular
vesicle-like structures, presumably lamellar
bodies (Figure 2A). A small number of
club cells, marked by positive staining for
CCSP, were observed in multicell clumps in
crude lung preparations (Figure 2B), but
not in sorted ATII cell preparations. About
92% of sorted cells were also positive for
cytokeratin-8 (Figure 2C), a marker
commonly used to identify ATII cells. The
immunostaining was distributed in foci
under the plasma membrane, with finer
filaments extending in the cytoplasm as
reported previously (20). Interestingly,
remarkably higher levels of cytokeratin-8
expression were observed in Linlow

EpCAM1 cells and also in mTECs when
compared with ATII cells (Figure E1A).
Approximately 97% of sorted ATII cells
were also positive for surface MHCII
expression, as seen by surface staining
and flow cytometric analysis.
Immunofluorescent staining of cytospun
ATII cells revealed that the majority of
MHCII staining was localized in intracellular

vesicles (Figure 2D), as previously described
(21). Interestingly, the surface expression
level of MHCII on ATII cells was slightly
lower than that on Lin1 hematopoietic cells
present in crude lung preparations (Figure
E1B). Alkaline phosphatase, detected by its
enzymatic activity on a chromogenic
substrate, has also been used to stain for ATII
cells (22). A highly sensitive fluorescent
substrate-based flow cytometric analysis
revealed that crude lung cell preparations
contained a small fraction of cells that had
no alkaline phosphatase activity, a large
fraction that had intermediate activity,
and approximately 26% cells that
displayed high activity for alkaline
phosphatase (Figure 2E). After cell
sorting, approximately 96% of the cells
displayed high alkaline phosphatase
activity, as expected. The purified
ATII cells also positively stained for
E-cadherin, another well described
epithelial cell protein found in tight
junctions. As expected, the staining was
found primarily along the plasma
membrane (Figure 2F). These studies
helped confirm the purity of the ATII cell
isolations.

Expression of Syk Family Tyrosine
Kinases in Alveolar Epithelial and
Tracheal Epithelial Cells
The Syk family of non-receptor protein
tyrosine kinases is known to play significant
roles in multiple immune signaling
pathways in hematopoietic cells, and might
be involved in immune responses mediated
by lung epithelial cells (23). To analyze
the expression of Syk and Zap-70, the two
members of the Syk family tyrosine kinases,
in ATII cells and mTECs, we performed
RT-PCR using cDNA prepared from
mRNA isolated from highly purified FACS
sorted preparations of ATII cells and
mTECs. For semiquantitative assessment of
gene expression, ATII cDNA and positive
control cDNA, synthesized from equal
amounts of mRNA isolated from
splenocytes, brain, or liver, were used either
undiluted or at 1:3 and 1:9 dilutions for the
various PCR reactions. Due to limited
quantities of mTEC mRNA available, only a
single concentration of cDNA was used for
the PCR reactions. Positive control cDNA
was used at the same concentration.

Of the two family members, very faint
signal for Syk mRNA, but no expression
of Zap-70 mRNA, was observed in both sorted
ATII cells and mTECs (Figures 3A and 3B).
Western blotting for Syk protein showed no
expression in ATII cells (Figure 3C), even
when ATII protein was loaded in excess
compared with the splenocyte-positive control.
Sorted and cytospun ATII cells also stained
negative for Syk, whereas splenic B cells
showed bright Syk staining (data not shown).
Taken together, these data indicate that, in
contrast to several previous reports (9–11), Syk
family kinases are not expressed in either
murine ATII cells or mTECs.

Expression of Src Family Tyrosine
Kinases in Alveolar Epithelial and
Tracheal Epithelial Cells
Next, we analyzed expression of the Src
family of non-receptor tyrosine kinases that
act upstream of the Syk family of tyrosine
kinases and have multiple roles in
physiological and pathological immune
signaling (23, 24). Of the eight family
members, Lck, Hck, Lyn, Blk, and Fgr are
known to be predominantly expressed in
hematopoietic cells. Of these, we observed
surprisingly abundant expression of Lyn in
both ATII cells and mTECs (Figures 4A
and 4D). Low-level expression of Lck, Hck,
and Fgr mRNA was also observed in
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both cell types (Figures 4A and 4D). No
expression of Blk was observed in either cell
type (Figures 4A and 4D). High-level
expression of Src, Yes, and Fyn, which are
known to be expressed more ubiquitously,
was observed in both ATII cells and mTECs
(Figures 4B, 4C, 4E, and 4F). In addition,
we confirmed expression of Lyn in ATII

cells at the protein level (Figures 4G and
4H). Cytospun preparations of highly pure,
sorted ATII cells from WT mice, but not
lyn2/2 mice, stained for Lyn protein, which
was found to be localized along the plasma
membrane, likely within lipid rafts, as
previously described in immune cells (25)
(Figure 4G). Western blot analysis of total

protein lysates prepared from sorted WT
and lyn2/2 ATII cells revealed expression
of only the 56-kD LynA isoform in ATII
cells, unlike splenocytes that expressed both
the LynA (56 kD) and LynB (53 kD)
isoforms. To our knowledge, Lyn protein
has not been previously reported in murine
ATII cells or mTECs.
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Expression of Dectin Receptors and
Anaphylatoxin Receptors in Alveolar
Epithelial and Tracheal Epithelial Cells
Sorted ATII cells and mTECs were analyzed
for the expression of dectin-1 and dectin-2,
which are C-type lectin receptors that
bind fungal pattern recognition molecules
and are involved in the first-line defense
against fungal pathogens, such as Aspergillus
fumigatus, a major causative agent of
pulmonary invasive aspergillosis (26). We
observed low-level expression of dectin-2 in
both ATII cells and mTECs (Figures 5A
and 5B). However, dectin-1 expression was
not detectable for either of the cell types.
We also analyzed the expression of the
anaphylatoxin receptors, C3aR and C5aR,
in ATII cells (Figure 5C) and mTECs
(Figure 5D). Anaphylatoxin receptors are
important mediators in the innate immune
defense system, and are also known to
modulate the phenotype of allergic and
infectious lung diseases (27–30). Although
C5aR expression has been reported
in bronchial epithelial cells (28) by
immunostaining, our RT-PCR analysis
showed no expression of C5aR in either

ATII cells or mTECs (Figures 5C and 5D).
In contrast, high levels of expression of
C3aR were observed in ATII cells
(Figure 5C). C3aR was also expressed in
mTECs (Figure 5D), albeit at lower levels
compared with ATII cells. This is the first
report of the expression of C3aR in murine
ATII cells and mTECs, although C3aR
expression in bronchial epithelial cells has
been reported previously (28).

Expression of TLRs in Alveolar
Epithelial and Tracheal Epithelial
Cells
TLRs play critical roles in pathogen sensing
and initiation of immune responses in
hematopoietic cells (31). To determine if
ATII cells and mTECs might also sense
pathogens via TLRs, we examined the
complete repertoire of TLR expression in
these cell types by RT-PCR (Figure 6).
Abundant expression of TLR3, -4, and -5
was observed in both ATII cells and mTECs.
Low-level expression of TLR2 and TLR9 was
observed in both ATIIs and mTECs.

Cytokine and Chemokine Expression
in Response to TLR Ligation
To validate that the TLR expression
profile we observed for purified ATII
cells correlated with functional responses,
we stimulated purified ATII cells with TLR3
ligand polyinosinic:polycytidylic acid
(poly I:C), TLR4 ligand LPS, TLR5 ligand
flagellin, and TLR9 ligand CpG for 24 hours,
then measured cytokine production in the
cell culture supernatant using multiplexed
Luminex cytokine and chemokine bead
assays. Of the many cytokines and
chemokines assayed (fibroblast growth
factor [FGF]-basic, granulocyte/
macrophage colony–stimulating factor
[GM-CSF], IL-1b, IL-2, tumor necrosis
factor [TNF]-a, IL-4, IL-6, macrophage
inflammatory protein [MIP]-1a, IL-12
[p40/p70], IL-1a, interferon [IFN]-g, IL-13,
macrophage chemoattractant protein
[MCP]-1, interferon g-induced
protein [IP]-10, monokine induced by
interferon g [MIG], keratinocyte-
derived cytokine [KC], vascular endothelial
growth factor [VEGF], regulated upon
activation, normal T cell expressed
and secreted [RANTES], IL-17, IL-10,
IL-5, IL-25, and IL-33), most were
undetectable both before and after
stimulation. The TLR3 ligand poly I:C
stimulated production of MCP-1 (CCL2)
and KC (CXCL1) (Figure 7A). Interestingly,
poly I:C was the only ligand that stimulated
a significant amount of RANTES (CCL5)
release. The TLR4 ligand, LPS, induced
release of MCP-1, KC, IL-6, and GM-CSF in
the cell culture supernatant (Figure 7B).
Notably, compared with all the other
stimulants used, LPS induced the highest
levels of release of cytokines and chemokines
in the cell supernatant. The TLR5 ligand,
flagellin, stimulated production of MCP-1,
KC, IL-6, and GM-CSF (Figure 7C). The
TLR9 ligand, CpG, did not stimulate
production of any of the cytokines or
chemokines assayed (Figure 7D). Stimulation
with the TLR2 ligand, Pam3CSK, also failed
to stimulate production of cytokines/
chemokines (data not shown). These data
show that the TLRs found on highly purified
primary ATII cells were active, although, in
general, responses were much weaker than
seen with macrophages or dendritic cells.

Given the role of Lyn kinase in
modulating cytokine and chemokine
production in response to TLR stimulation
in myeloid cells (32), we were interested
in examining if Lyn might be playing a
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Figure 5. Expression of immune receptors in ATII cells and mTECs. RNA isolated from highly pure,
flow-sorted ATII cells (A and C) and mTECs (B and D) was analyzed by RT-PCR to assess expression
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similar role in lung epithelial cells. For this,
we TLR-stimulated equal numbers of
ATII cells purified from lyn2/2 mice
alongside ATII cells purified from WT mice
(Figure 7). Of note, the purified ATII cells
from lyn2/2 mice were similar to WT
ATII cells in their levels of surfactant
production, as measured by intracellular
pro–SP-C staining (see Figure E2 in the
online supplement). Upon stimulation
with poly I:C, lyn2/2 ATII cells produced
significantly higher levels of RANTES
compared with poly I:C–stimulated WT
ATII cells. These results suggest that Lyn
might be playing an inhibitory role
in alveolar epithelial RANTES production
downstream of TLR3 signaling, similar
to its function in hematopoietic cells.

Discussion

Using an improved cell isolation method
that yielded highly pure cell preparations,

we re-evaluated the expression of a
number of immune-related molecules in
lung ATII cells and mTECs. We were
driven to develop an improved ATII
isolation method, as we were unable to
convincingly reproduce previous reports
(9, 10), suggesting that the Syk kinase,
which we have studied extensively in
immune cells (17, 33, 34), is present in
ATII cells. Because high-quality anti-
mouse Syk antibodies do not exist, we
believed that it was important to look for
Syk expression at the mRNA level. To
convincingly address this question, we
needed to begin with highly pure epithelial
cells preparations. Because existing lung
epithelial isolation strategies do not yield
purities greater than 85–90%, we developed
an improved ATII and mTEC isolation
method that yielded highly pure
preparations (.98%). In contrast to reports
based only on immunostaining or whole
lung tissue Western blotting, we found very
little Syk mRNA in ATII cells and mTECs

and no Syk protein in ATII cells by
immunoblotting. By contrast, we did find
expression of Lyn mRNA in both ATII cells
and mTECs, as well as LynA protein isoform
in ATII cells. This was surprising, as Lyn
is thought to be expressed primarily in
hematopoietic cells. Lyn has been reported
to be present in other epithelial cell types
(35–38). Lyn is unique in that it initiates
both activating and inhibitory signaling in
hematopoietic cells, with the inhibitory
signaling role being dominant (25).
Macrophages and dendritic cells from
lyn2/2 display exaggerated signaling in
response to various TLR ligands. Similarly,
ATII cells from lyn2/2 mice overproduced
the RANTES chemokine in response to poly
I:C stimulation, suggesting that Lyn may
regulate similar TLR pathways in ATII cells.
The unanticipated finding that Lyn is
present in ATII cells will certainly lead
to further experiments to define what
intracellular signaling pathways are
regulated by this kinase.

Human airway epithelial cells have
been reported to express TLR1–6 and -9
(39). By contrast, our highly purified
murine ATII cells only expressed TLR2–5
and low levels of TLR9. Stimulation of
purified ATII cells with TLR3–5 and -9
ligands resulted in a modest production of a
limited number of cytokines, which seemed
less dramatic than past studies using less-
pure cell populations (40). More recent
studies with low-passage human airway
epithelial cells suggest that two stimuli
(IL-4 plus poly I:C) are required for
maximal cytokine production (41).
Obviously, further studies with highly
purified ATII cells, correlating with in vivo
findings, will be required to fully dissect
the role of these cells in pulmonary
inflammation.

Our improved airway epithelial
isolation method combines dispase-
mediated release of ATII cells (12, 13)
with positive selection using the specific
epithelial cell marker, EpCAM.
Most methods for isolation of murine
ATII cells are based on the original
description by Corti and colleagues (12),
which uses dispase digestion of lung tissue,
followed by magnetic bead depletion of
CD451 and CD321 cells, then culture of
ATII cells on fibronectin-coated surfaces.
Improvements to the purity of murine
ATII isolation have included culture on
Matrigel, which favors ATII survival
and maintenance of ATII phenotype (13),
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or inclusion of additional antibodies and
flow cell sorting for negative staining
cells (42). Although murine ATII cells
have been known to express EpCAM (43),
the use of this as a positive selection
marker, in combination with magnetic
bead–based negative selection against other
cell types in the lung, is not commonly
done. The use of EpCAM as a positive
selection marker in flow cell sorting has
been reported for isolation of human ATII
cells; however, this protocol required
careful removal of ATI cells and other
epithelial cell types, as initial cell preparations
were from tissue biopsy specimens (44).
Inclusion of an anti–integrin b4 antibody in
the protocol allowed us to deplete epithelial
cells that were not ATII cells. Because the
existing methods for isolation of murine ATII
cells yield preparations of approximately
85–90% pure cells, this method is a significant
improvement (12). Alternative methods for
isolation of pure murine ATII cells require
use of transgenic green fluorescent protein
(GFP) reporter mice driven by the ATII-
specific SP-C promoter, and even then tend
to yield heterogeneous cell populations from
adult animals (45). Our method is also the
first described method to obtain high-purity
mTEC preparations fresh from the mouse
trachea. Existing methods require extensive
culturing of crude digests of trachea on
air–liquid interface, where the gene
expression pattern of the cultured cells
might be different from that of the starting
material (46).

This improved lung epithelial
cell isolation strategy can also be used
as an important tool for examining
gene deletion frequency in lung
epithelial–specific conditional knockouts,
especially in cases where specific,
high-quality antibodies to proteins
of interest are not available. Studies of highly
purified ATII cells and mTECs isolated from
normal versus diseased lung using this
method should also significantly
improve our understanding of the role
of the epithelium in pulmonary diseases. n
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33. Mócsai A, Abram CL, Jakus Z, Hu Y, Lanier LL, Lowell CA. Integrin
signaling in neutrophils and macrophages uses adaptors containing
immunoreceptor tyrosine–based activation motifs. Nat Immunol
2006;7:1326–1333.

34. Van Ziffle JA, Lowell CA. Neutrophil-specific deletion of Syk kinase
results in reduced host defense to bacterial infection. Blood 2009;
114:4871–4882.

35. Choi YL, Bocanegra M, Kwon MJ, Shin YK, Nam SJ, Yang JH, Kao J,
Godwin AK, Pollack JR. LYN is a mediator of epithelial–mesenchymal
transition and a target of dasatinib in breast cancer. Cancer Res
2010;70:2296–2306.

36. Han J, Zhang G, Welch EJ, Liang Y, Fu J, Vogel SM, Lowell CA, Du X,
Cheresh DA, Malik AB, et al. A critical role for Lyn kinase in
strengthening endothelial integrity and barrier function. Blood 2013;
122:4140–4149.

37. Lepanto P, Bryant DM, Rossello J, Datta A, Mostov KE, Kierbel A.
Pseudomonas aeruginosa interacts with epithelial cells rapidly
forming aggregates that are internalized by a Lyn-dependent
mechanism. Cell Microbiol 2011;13:1212–1222.

38. Wang W, Ye Y, Li J, Li X, Zhou X, Tan D, Jin Y, Wu E, Cui Q, Wu M. Lyn
regulates cytotoxicity in respiratory epithelial cells challenged by
cigarette smoke extracts. Curr Mol Med 2014;14:663–672.

39. Iwamura C, Nakayama T. Toll-like receptors in the respiratory system:
their roles in inflammation. Curr Allergy Asthma Rep 2008;8:7–13.

40. Matsukura S, Kokubu F, Kurokawa M, Kawaguchi M, Ieki K, Kuga H,
Odaka M, Suzuki S, Watanabe S, Takeuchi H, et al. Synthetic double-
stranded RNA induces multiple genes related to inflammation through
Toll-like receptor 3 depending on NF-kB and/or IRF-3 in airway
epithelial cells. Clin Exp Allergy 2006;36:1049–1062.

41. Herbert C, Zeng QX, Shanmugasundaram R, Garthwaite L, Oliver BG,
Kumar RK. Response of airway epithelial cells to double-stranded
RNA in an allergic environment. Transl Respir Med 2014;2:11.
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