
UC Santa Cruz
UC Santa Cruz Electronic Theses and Dissertations

Title
OpenRAM: An Open-Source Memory Compiler

Permalink
https://escholarship.org/uc/item/2vv5q88z

Author
Butera, Jeffrey Thomas

Publication Date
2013

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2vv5q88z
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

SANTA CRUZ

OpenRAM: An Open-Source Memory Compiler

A thesis submitted in partial satisfaction
of the requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

Jeffrey T. Butera

September 2013

The Thesis of Jeffrey T. Butera
is approved:

————————————————
Professor Matthew Guthaus, Chair

————————————————
Professor Jose Renau

————————————————
Professor Patrick E. Mantey

————————————————–
Tyrus Miller
Vice Provost and Dean of Graduate Studies

Copyright c© by

Jeffrey T. Butera

2013

Table of Contents

List of Figures v

List of Tables vi

Abstract vii

Acknowledgments viii

1 Introduction 1

2 Background 3

2.1 SRAM Architecture . 3

2.1.1 The 6T Cell and Memory Array . 3

2.1.2 Precharge Circuitry . 6

2.1.3 Address Decoder and Word line Drivers 6

2.1.4 Column Multiplexer . 8

2.1.5 Sense Amplifier . 9

2.1.6 Write Driver . 10

2.1.7 Control Logic . 10

2.2 SRAM Operation . 13

2.2.1 Signals . 13

2.2.2 Timing Considerations . 14

2.2.3 Read Operation . 14

2.2.4 Write Operation . 15

3 Software Implementation 17

3.1 Main Compiler Components . 17

3.1.1 OpenRAM Design Hierarchy . 18

3.1.2 GdsMill . 20

3.1.3 Technology Directory . 21

3.2 OpenRAM Modules . 21

3.3 Physical Verification . 31

3.4 Memory Characterizer . 31

iii

4 Contributions 32

4.1 Snap-to-Grid . 32

4.2 Memory Characterizer . 33

4.2.1 Spice Stimulus . 33

4.2.2 Read and Write Delays . 34

4.2.3 Power . 34

4.2.4 Setup and Hold Time . 35

4.3 Characterizer Results . 37

4.4 Area . 42

5 Conclusion 43

5.1 Future Work . 44

References 45

Appendix A: Spice Netlist 47

iv

List of Figures

1 Memory Trends . 2

2 SRAM Architecture . 4

3 Schematic: 6T Cell . 4

4 Schematic: Precharge . 6

5 Schematic: NAND Decoder . 7

6 Schematic: Column Mux . 8

7 Schematic: Sense Amplifier . 10

8 Schematic: Write Driver . 11

9 Schematic: Control Logic . 12

10 Schematic: Master-Slave Flip-Flop . 13

11 Timing Diagram: Read Operation . 15

12 Timing Diagram: Write Operation . 16

13 Overall Compilation and Characterization Methodology 17

14 Class Hierarchy . 18

15 Layout: 6T Cell . 23

16 Layout: Bitcell Array . 24

17 Layout: Precharge Array . 24

18 Layout: NAND Decoder . 25

19 Layout: Column Mux . 26

20 Layout: Column Mux, Depth=2 . 26

21 Layout: Sense Amp . 27

22 Layout: Write Driver . 27

23 Layout: Master-slave flip-flop . 28

24 Layout: Control Logic . 29

25 Layout: Delay Chain . 30

26 Layout: SRAM 16x8 . 31

27 Plot: Delay . 39

28 Plot: Power . 40

29 Plot: PDP . 41

30 Plot: Clock . 41

31 Plot: Area . 42

v

List of Tables

1 Truth Table: NAND Decoder . 7

2 Truth Table: Column Mux . 8

3 Truth Table: Control Signals . 12

4 Flip-flop Characterization . 38

5 SRAM Write Delay and Power . 38

6 SRAM Read Delay and Power . 38

7 Clock Period and Freq. 38

8 SRAM Area . 42

vi

Abstract

OpenRAM: An Open-Source Memory Compiler

by

Jeffrey T. Butera

In academia, many Application Specific Integrated Circuits and System-on-Chip de-

sign methodologies are limited by the availability of memories. As process technologies

shrink, the size and number of memories on a chip are constantly increasing and memory

designs become a more significant part of the overall system performance, efficiency, and

cost. Random-Access Memories can be time consuming and tedious to custom design, and

there are not many options for automating this process. Process design kits from foundries

and vendors do not include memory compilers and commercial solutions require expensive

licenses and are often un-modifiable and process specific. This thesis introduces OpenRAM,

an open-source memory compiler and characterization methodology. The main objective of

the OpenRAM compiler is to promote memory research in academia by providing a flexible

and portable platform for generating and verifying memory designs across different tech-

nologies. Currently, the compiler generates GDSII layout and Spice netlists for single-port

SRAM’s using the FreePDK 45nm process design kit, and provides timing/power character-

ization through Spice simulation. Verification of OpenRAM designs in both 130nm (IBM

8RF) and 180nm (IBM 7SF) technologies are in progress.

vii

I would like to express my gratitude to Professor Matthew Guthaus for advising me

throughout my graduate studies and driving the OpenRAM project. I would also like to

thank the other members of the OpenRAM group: Bin Wu, James Stine, Brian Chen, Ping-

Yao Li, and Manju Subbarayappa. OpenRAM is a group effort and my work would not have

been completed without their valuable contributions.

I also extend my thanks to the members of the UC Santa Cruz VLSI Design and Au-

tomation Group (Rajsaktish Sankaranarayanan, Riadul Islam, Benjamin Lacara, and Hany

Famy) for being a sounding board for ideas and insight.

Lastly, a special thanks to my parents for their support and encouragement throughout

my academic endevours.

viii

1 Introduction

Static Random-Access Memory, or SRAM, has many applications and has become the stan-

dard for embedded memories in ASIC, SOC, and microprocessor designs. As process tech-

nologies shrink, the size and number of memories on a chip is constantly increasing and

memory designs are becoming a significant part of overall system performance, efficiency,

and cost. Currently, embedded memories can occupy up to 75% of the total chip area (Fig-

ures 1b and 1c). It has been reported that by 2020 the total memory area will increase

closer to 90% for SOC’s(Figure 1a). Consider the Itanium 2 processor with a 6MB on-die

L3 cache from Intel (Figure 1c) as an example. This is a 10 year old processor, developed

using a 130-nm technology, and the on-die memory dominates over 70% of the chip’s area.

With current technologies pushing below the 20-nm mark, even larger and more dense

memories are being placed on-chip. These newer, smaller technologies introduce very spe-

cific design challenges. The effects of variability, static power, stability, and supply noise

margins are magnified as technologies shrink. Specific countermeasures must be taken to

combat these effects, while still not significantly increasing the area, power, or speed of the

SRAM. Consequently, SRAM’s have become one of the most challenging and time consuming

components to design in an integrated circuit.

One redeeming factor of the SRAM is that it can have a very regular structure consisting

of cells that can be replicated many times across a single design. This promotes full custom

design and encourages the use of automation techniques such as compilers to automate the

design process.

Memory compilers are commonplace in industry. Two main flavors of memory compilers

exist: third party compilers released with standard cell libraries by vendors, and proprietary

compilers that are considered in-house intellectual property by companies. These compilers

usually have the capability of generating single and dual port RAM’s as well as ROM’s

(read only memories) and CAM’s (content addressable memories). The main drawback

with commercial compilers is that they require expensive licenses and may not allow cus-

tomization or changes to source code. Examples of industry memory compilers are: Global

Foundries’ design kit[6], ARM’s embedded IP memories[2], Synopsys DesignWare memory

compiler[21], Dolphin Technology’s memory IP[23], Faraday Technology’s library and mem-

ory compiler[22].

Due to funding restrictions and customization limitations, commercial memory compilers

are not a feasible solution for researchers in academia. Outside of commercial solutions,

1

(a)

(b) (c)

Figure 1: a)Trend of memory and logic area for SOC’s (Semico Research). b)Die photo of
the Intel i7 Sandy Bridge[18]. c)Die photo of the Itanium 2 from Intel[17].

the only alternative is full-custom design. This makes it difficult and time consuming for

researchers to prototype and verify new circuits and methodologies above the cell level.

In order to correctly verify certain aspects of a design, such as scalability and robustness,

memory designs should be considered at the system level. In attempt to combat these issues

and provide a common infrastructure for memory research in academia, we introduce the

OpenRAM memory compiler.

OpenRAM is an open-source memory compiler and characterization methodology. The

main objectives of the compiler are: easy generation of memory arrays, being portable across

many technologies and platforms, providing timing/power characterization of designs, being

independent of commercial tools, and providing silicon verified designs. The OpenRAM

project is funded by the National Science Foundation and is a collaboration between the

VLSI Design and Automation group (run by Prof. Matthew Guthaus) at the University of

California, Santa Cruz, and the VLSI Computer Architecture Research group (run by Prof.

2

James Stine) at Oklahoma State University.

This thesis will provide an in depth discussion of the OpenRAM memory compiler,

including its software implementation, features, and use. The thesis will also highlight

the specific contributions of the author. These contributions include: the data structure

hierarchy of the compiler, scripts to dynamically generate GDSII layouts and Spice netlists

of the various blocks of the SRAM, a snap-to-grid function for the dynamic layouts, and the

Spice memory characterizer.

The thesis is organized as follows. Section 2 provides a background of the SRAM archi-

tecture and operation. Section 3 discusses the implementation of the OpenRAM memory

compiler and details its main features. Section 4 highlights the author’s specific contri-

butions to the project and provides preliminary results from the characterizer. Finally,

Section 5 summarizes the OpenRAM memory compiler and discusses the future direction of

the project.

2 Background

Before discussing the details of the OpenRAM memory compiler this section will give an

overview of a typical SRAM architecture, its operation, and highlight several design chal-

lenges specifically associated with SRAM’s.

2.1 SRAM Architecture

SRAM’s typically consist of an array of memory cells with peripheral circuits and control

logic. Figure 2 depicts the memory array (large block in the center) as well as the other main

blocks: the address decoder, word line drivers, column multiplexer, precharge circuitry, write

drivers, sense amplifier, and control logic. The following sub-sections explain the operation

of each individual block within the SRAM, followed by a high level explanation as to how

these different blocks interact to function as a memory device. It is important to note that

the circuits described below are the ones that are used in the first release of the OpenRAM

memory compiler. By no means is this an exhaustive list of the possible circuits that can

be adapted into a SRAM architecture.

3

Precharge

Decoder

Column Mux

WL
Driver

Upper
Address

Lower
Address

Write Driver

Sense Amp

6T Cell

Data In/Out

Figure 2: Single Port SRAM Architecture

2.1.1 The 6T Cell and Memory Array

The 6T cell is the most commonly used memory cell in SRAM devices. It is named “6T

cell” because it consists of six transistors: two access transistors (M1 and M2) and two cross

coupled inverters as shown in Figure 3. The cross coupled inverters hold a data bit, X, and

its inverted value, X_bar. This bit can either be written into or read from the cell by the

bit lines. The access transistors are used to isolate the cell from the bit lines so that data is

not corrupted while a cell is idle.

VDD

GND

BL_barBL

WL

M1 M2

M3 M4

M5 M6

X

X_bar

Figure 3: Schematic of 6T cell.

The 6T cell can be accessed to perform the two main operations associated with memory:

reading and writing. When a read is to be performed, both bit lines are precharged to Vdd.

4

This precharging is done during the first half of the read cycle and is handled by the precharge

circuitry (see Section 2.1.2). In the second half of the read cycle the word line is asserted,

which enables the access transistors. If a 1 is stored in the cell then BL_bar is discharged to

Gnd, and BL is pulled up to Vdd. Conversely, if a 0 is stored, then BL is discharged to Gnd

and BL_bar is pulled up to Vdd. While performing a write operation, both bit lines are also

precharged to Vdd during the first half of the write cycle. Again, the world line is asserted,

and the access transistors are enabled. The value that is to be written into the cell is applied

to BL, and its complement is applied to BL_bar. The drivers that are applying the signals

to the bit lines must be appropriately sized so that the previous value in the cell can be

overwritten (see Section 2.1.6).

The transistors in the cell must be carefully sized to ensure reliable operation. For a

read operation, the M5 and M6 must be sized larger than access transistors M1 and M2. This

is necessary because when the word line is asserted, both X and X_bar are initially pulled up

to the precharge value. Assuming that a 1 is stored at X, X_bar must remain 0 regardless

of the voltage rise experienced when the word line is asserted. In order to prevent the value

in the cell from flipping, the resistance of the access transistors must be larger than that of

M5 and M6. During a write operation, the value stored in the cell is being overwritten. This

means that M1 and M2 must be strong enough to overpower the feedback inverter and must

be sized larger than M3 and M4[5],[13].

As previously stated, 6T cells are tiled together in both the horizontal and vertical

directions to make up the memory array. This means that the memory cell should be made

as small as possible so that the array can be as dense as possible. The size of the memory

array is directly related to the number of words and the size of the words that will need

to be stored in the RAM. For example, an 8kB memory with a word size of eight bits will

consist of eight columns and 1024 rows. It is common practice to keep the aspect ratio of

memory arrays as square as possible. This helps ensure that the bit lines do not become

too long, which can increase the bit line capacitance, slow down the operation, and lead

to increased leakage. To make the design more square, multiple words can share rows by

interleaving the bits of each word. If the 8Kb memory were rearranged to allow two words

per row, then the array would have 16 columns and 512 rows. Geometrically distributing

the bits of each word (by allowing multiple words per row with interleaved bits) improves

yield and soft-error robustness. The interleaving distance of the bits for a word can even

be optimized to improve power consumption[12]. Redundant rows and columns can also be

5

added to improve yield and robustness[14],[7],[11]. Redundancy can add some complexity

to other peripheral circuits, specifically the column multiplexer which handles selecting the

appropriate column for each bit in a word (see Section 2.1.4).

Other types of memory cells, such as 7T, 8T and 10T cells, can be used as alternatives to

the 6T cell. Each of these cells offer certain advantages. For example, the 8T cell provides

higher read and write noise margins in comparison to the 6T cell[3]. The 10T and 12T cells

provide improved soft error tolerance and operation at lower supply voltages[4],[10]. The

main disadvantage of these other cells is increased area.

2.1.2 Precharge Circuitry

The precharge circuit is used to precharge both bit lines during the first phase of the clock

in read and write operations and is depicted in Figure 4. It is a fairly simple circuit that

consists of three PMOS transistors. The input signal to the cell, PCLK, enables all three

transistors. M1 and M2 charge BL and BL_bar to Vdd and M3 helps to equalize the voltages

seen on the bit lines. The bit line voltages are equalized so that when the precharge phase

ends and one of the bit lines experiences a voltage drop, the sense amplifier can more quickly

sense the voltage difference between the two bit lines (see Section 2.1.5).

BL BL_bar

VDD

PCLK
M1 M2

M3

Figure 4: Schematic of a single precharge cell.

2.1.3 Address Decoder and Word line Drivers

The address decoder takes the row address bits from the address bus as inputs, and asserts

the appropriate word line in the row that data is to be read from or written to. An n-bit

input can control 2n word lines. Figure 5 illustrates a 2-to-4 dynamic NAND decoder which

6

operates as follows: during the first phase of the clock (i.e. while clock is low), the PCLK

signal enables the PMOS transistors which precharge all of the internal word lines (to the left

of the output inverters) to Vdd. During the second phase of the clock, the PMOS transistors

are disabled. Based on the input address, a specific internal word line is pulled down to

ground[1]. The output inverters ensure that no word lines are asserted during the precharge

phase and that only one is asserted during the second phase.

A0 A0_bar A1 A1_bar PCLK

VDD

VDD

VDD

VDD

WL3

WL2

WL1

WL0

Figure 5: Schematic of 2-to-4 NAND decoder.

Asserted WL Inp1 Inp2 Binary
WL0 A0 bar A1 bar 00
WL1 A0 A1 bar 01
WL2 A0 bar A1 10
WL3 A0 A1 11

Table 1: Truth table for 2-to-4 NAND decoder.

The truth table for the 2-to-4 decoder is depicted by Table 1. From the table it can be

seen that the inputs are connected to the address bits in a binary reduction pattern. This

7

pattern can be exploited to easily scale the dynamic decoder up to handle an array with

more rows. Word line drivers are inserted, as buffers, in-between the word line output of the

address decoder and the input of the 6T cell. The word line drivers ensure that as the size

of the memory array increases, and the word line capacitance increases, the signal is still

able to turn on the access transistors in all 6T cells.

2.1.4 Column Multiplexer

The column multiplexer takes in n-bits from the address bus and can select 2n bit line pairs

associated with one word in the memory array. The schematic for a 4-to-1 tree multiplexer

is shown in Figure 6. This type of tree multiplexer is bi-directional and is used for both the

read and write operations; it connects the bit lines of the memory array to both the sense

amplifier and the write driver.

BL BL_bar

BL0 BL0_bar BL1 BL1_bar BL2 BL2_bar BL3 BL3_bar

A0

A0_bar

A1

A1_bar

Figure 6: Schematic of 4-to-1 tree column mux that passes both of the bit lines.

As seen in Figure 6, the column mux is built of NMOS transistors in a tree-like structure.

The depth of the decoder is determined based on the number of words per row in the memory

array. The most basic column mux has a depth one which means that there are two words

per row. If there is only one word per row in the array, then no column mux is needed. As

8

BL Pair Inp1 Inp2 Binary
BL0/BL0 bar A0 bar A1 bar 00
BL1/BL1 bar A0 A1 bar 01
BL2/BL2 bar A0 bar A1 10
BL3/BL3 bar A0 A1 11

Table 2: Binary reduction pattern for 4-to-1 tree column mux.

the number of words per row in the memory array increases, the depth of the column mux

grows. The depth of the column mux is equal to the number of bits in the column address

bus.

Figure 6 illustrates a column mux with a depth of two. This means that there are four

words per row in the memory array and two select bits from the address bus are needed

to choose the bit line pairs for one of the four words. A binary reduction pattern, shown

in Table 2, is used to select the appropriate bit lines. In level one, A0, and its complement

A0_bar, select either the even numbered words or the odd numbered words in the row. In

level two, the most significant bit A1, and its complement A1_bar, then select one of the

words passed down from the previous level. Relative to other column mux designs, such as

pass transistor based decoders with NOR pre-decoders, the tree mux uses significantly less

devices. However, this type of design can provide poor performance if a large decoder with

many levels is needed. The delay of of a tree mux quadratically increases with each level[16].

Due to this fact, other types of column decoders should be considered for larger memory

arrays.

2.1.5 Sense Amplifier

The sense amplifier is used to sense the difference between the bit lines (BL and BL_bar)

while a read operation is performed. A sense amplifier is necessary to recover the signals

from the bit lines because they do not experience full voltage swing. As the size of the

memory array grows, the capacitive load of the bit lines increase and the voltage swing is

limited by the small memory cells driving this large load. A differential sense amplifier is

used to sense the small voltage difference between the bit lines and accelerates the read

operation[16].

The schematic for the sense amp is shown in Figure 7. The sense amplifier is enabled by

the SCLK signal, which initiates the read operation. Before the sense amplifier is enabled,

the bit lines are precharged to Vdd by the precharge unit. When the sense amp is enabled,

one of the bit lines experiences a voltage drop based on the value stored in the memory cell.

9

VDD

DATA

BL_barBL EN

ENEN

Figure 7: Schematic of a single sense amplifier cell.

If a zero is stored, the BL voltage drops. If a one is stored, the BL_bar voltage drops. The

voltage difference between BL and BL_bar is sensed and the output signal is then taken to a

true logic level and latched to the data bus.

2.1.6 Write Driver

The write driver is used to drive the input signal into the memory cell during a write

operation. It can be seen in Figure 8 that the write driver consists of two tristate buffers,

one inverting and one non-inverting. It takes in a data bit, from the data bus, and outputs

that value on the bit line, and its complement on bit line bar. Both tristates are enabled by

the EN signal. The bit lines always need to be complements to ensure that correct data is

stored in the 6T cell. Also, the drivers need to be appropriately sized as the memory array

grows and the bit line capacitance increases.

2.1.7 Control Logic

The control circuitry ensures that the SRAM operates as intended during a read or write

cycle by enabling the necessary structures in the SRAM. Typically, the control logic takes

three active low signals as inputs: chip select bar (CSb), output enable bar (OEb), and write

enable bar (WEb). CSb enables the entire SRAM chip. While CSb is low, the appropriate

10

VDD

EN

DATA

BL BL_bar

Figure 8: Schematic of a write driver cell, which consists of two tristates (non-inverting and
inverting) to drive the bit lines.

control signals are generated and sent to the architecture blocks. Conversely, if CSb is high

then no control signals are generated and various structures are turned off or disabled. The

OEb signal signifies a read operation; while it is low the value seen on the data bus will be an

output from the memory. Similarly, the WEb signal signifies a write operation and the data

seen on the data bus is meant to be stored.

As seen in Figure 9, these three control signals need to be combined with the global

clock signal to generate local signals used to enable or disable structures based on the

operation. The SCLK signal is used to enable the sense amplifier during a read operation.

The WD_EN signal enables the write driver during a write to the memory. Table 3 shows

the truth table for the control logic. The SCLK signal to enable the sense amplifier is true

when ¬(CSb ∨ OEb) ∧ CLK. Similarly, the write driver enable signal WD_EN, is true when

¬(CSb∨WEb)∧CLK. These signals are “anded” with the clock because the circuits should

only be enabled after the precharging of the bit lines has ended.

The control logic also generates a second, delayed clock signal to help with synchroniza-

tion. The delayed clock, DCLK, is created by feeding the normal clock through a delay chain,

11

Chain
Delay

SRAM

SCLK
Sense Amp

CLKWEbCSbOEb

D D D

D
Q

Q Q Q

D
Q

DATA

WD_EN Write Driver

DCLK

Figure 9: Control Logic Schematic

or a series of buffers. This DCLK signal is used as the precharge signal for the address de-

coder. The decoder needs a delayed clock signal to ensure that the precharging does not stop

until the address inputs have been registered. If the precharging stops before the address

inputs are ready, then the wrong word line could be temporarily asserted and data can be

destroyed.

Inputs Outputs
CSb CLK OEb WEb SCLK WD EN TRI EN

Disabled 1 ? ? ? 0 0 0
Precharge 0 0 ? ? 0 0 0

Read 0 1 0 1 1 0 1
Write 0 1 1 0 0 1 0

Table 3: Truth table for the control signals.

In a synchronous SRAM, all of the input control signals are latched with flip-flops (see

Figure 10 for master-slave flip-flop schematic). This ensures that the signals stay valid for

the entire clock cycle and that no structures are disabled prematurely during operation.

During a read operation, the latched OEb signal is inverted and used as an enable for the

tristates that drive the outputs onto the data bus.

12

Data

Q
Clk

Clk

Clk Clk

Clk

Clk

Clk

Clk

Figure 10: Schematic for simple master-slave flip-flop used in a synchronous SRAM

2.2 SRAM Operation

In order to explain the read and write operations of a SRAM, it is necessary to summarize

the internal and external signals as well as the important timing considerations.

2.2.1 Signals

The typical top-level signals for a SRAM are:

• ADDR - the address bus.

• DATA - the bi-directional data bus.

• CLK - the global clock.

• OE_B - the output enable signal (active low).

• CS_B - the chip select signal (active low).

• WE_B - the write enable signal (active low).

The internally generated control signals are:

• PCLK - enables the precharge unit.

• SCLK - enables the sense amplifier during a read operation.

• WD_EN - enables the write driver during a write operation.

• D_CLK - the delayed clock used for the NAND decoder precharge.

13

2.2.2 Timing Considerations

The main timing considerations for an SRAM are the setup and hold times for the input

signals, the memory read and write delays, and the minimum clock period. The setup and

hold times are defined as the time that an input signal needs to be stable either before

(setup) or after (hold) the clock edge that triggers the memory operation. The write delay

is the time that it takes from the clock edge of a write operation until valid data has been

driven into a memory cell. The read delay is defined as the time elapsed from the clock edge

until valid data appears as an output of the sense amplifier. The minimum clock period can

be calculated using Equation 1.

T ≥ max(tdelay) + tsetup (1)

The clock period, T, must be greater than or equal to the sum of the maximum delay,

for either the read or write operation, and the setup time. In a synchronous SRAM, all

inputs are registered using flip-flops. In this case, the setup and hold times of the memory

are equal those of the flip-flops being used. If the clock period decreases below T, then the

read or write operations may be interrupted and unable to be successfully completed.

2.2.3 Read Operation

Figure 11 displays the timing diagram for the SRAM read operation. It highlights the setup

and hold times for each signal as well as the memory read time. The list below provides a

step-by-step description of what is happening internally in the SRAM[9].

Read Operation:

1. Before the clock transition (low to high) that initiates the read operation:

(a) CS_B set low to enable the chip (setup time).

(b) OE_B set low for the control logic to generate the SCLK signal (setup time).

(c) WE_B set high to disable the write driver (setup time).

(d) The row and column addresses must be applied to the ADDR bus (setup time).

(e) Precharge bit lines to Vdd and the decoder while PCLK=CLK=0.

2. On the rising edge of the clock:

(a) ADDR and control signals are latched into flip-flops (hold time).

14

CLK

ADDR

CSb

OEb

WEb

DATA OUT

A0 A1

D0 D1

Setup Hold

Setup Hold

Read Delay

Setup

SCLK

Figure 11: Timing diagram for read operation showing the setup, hold, and read times.

(b) The precharging of the bit lines and row decoder stops.

(c) The decoder and column mux select the row and columns for the word that is to

be read.

(d) Once the word line has been asserted, the value stored in the memory cells pulls

down one of the bit lines (BL if a 0 is stored, BL_bar if a 1 is stored).

(e) SCLK signal is generated by the control logic, the sense amplifier is enabled, and

the output is produced (read delay).

(f) The output is then captured by flip-flops on the falling edge of the clock, the

output tristate is enabled by OEb, and the data remains valid on the data bus for

the rest of the clock cycle.

2.2.4 Write Operation

Figure 12 displays the timing diagram for the SRAM write operation. It highlights the setup

and hold times for each signal as well the memory write time. The write time is illustrated

by the “X” signal in the diagram, which is the internal storage node in the memory cell.

The list below provides a step-by-step description of what is happening internally in the

SRAM[9].

15

CLK

ADDR

CSb

OEb

WEb

DATA IN

A0 A1

D0
D1

Setup Hold

Setup Hold

Setup

WD_EN

Setup Hold

D0 D1X
Mem Cell

Write Delay

Figure 12: Timing diagram for write operation showing the setup, hold, and write times.

Write Operation:

1. Before the clock transition (low to high) that initiates the write operation:

(a) CS_B set low to enable the chip (setup time).

(b) OE_B set high to disable the sense amp (setup time).

(c) WE_B set low to generate the write driver enable signal (setup time).

(d) The row and column addresses must be applied to the ADDR bus (setup time).

(e) The data to be written must be applied to DATA (setup time).

(f) Precharge bit lines to Vdd and the decoder while PCLK=CLK=0.

2. On the rising edge of the clock (CLK):

(a) DATA, ADDR, and control signals are latched into flip-flops (hold time).

(b) The precharging of the bit lines and row decoder stops.

(c) The decoder and column mux select the row and columns for the word that is to

be written to.

(d) WD_EN is generated from the control logic and enables the write driver.

16

(e) Data is driven through the column mux and into the selected memory cells (write

delay).

3 Software Implementation

The compiler framework is divided into “front-end” and “back-end” methodologies as shown

in Figure 13. The “front-end” consists of the compiler, which generates Spice models and

GDSII layouts based on user inputs, and the characterizer, which calls a Spice simulator

and produces timing/power numbers. The “back-end” uses the spice netlists and GDSII

layout to generate annotated timing and power models using back-annotated characteriza-

tion. This section will discuss, in detail, the implementation of the OpenRAM compiler and

characterizer.

Memory Compiler

(Python)

Logical

LEF/FRAM

GDSII Liberty (.lib)
Spice/LVS

Verilog

Front-End

Physical Estimated

Timing/Power

Memory Characterizer

(Python)

Simulator

(e.g. ngspice, spectre)

Extractor

(e.g. Calibre)

Annotated

Timing/Power

Liberty (.lib)

Spice

Memory Characterizer

(Python)

Back-End
Methodology

Front-End
Methodology

Simulator

(e.g. ngspice, spectre)

Tech

Library

User Specification

(word size, memory size, aspect ratio, etc.

Figure 13: Overall Compilation and Characterization Methodology

3.1 Main Compiler Components

OpenRAM is implemented using object-oriented data structures in the Python programming

language[15]. Python was chosen because it is a simple, yet powerful language that is

easy to learn and has a syntax that is very human-readable. The open-source release also

includes the FreePDK45 technology kit developed by Stine, et al., at North Carolina State

University[19]. FreePDK45 is a free, 45 nm, process design kit that is used for designing,

modeling, verifying, and simulating integrated circuits. OpenRAM also utilizes GdsMill, a

17

Python interface developed by Michael Wieckowski that is used to create and manipulate

circuit layout in the GDSII format[25].

3.1.1 OpenRAM Design Hierarchy

All modules in OpenRAM are derived from the top-level design class. The design class is

a data structure that consists of a Spice netlist, a layout, and a name. The Spice netlist

capabilities are inherited from the hierarchy_spice class while the layout capabilities are

inherited from the hierarchy_layout class (see Figure 14).

module
(e.g., bit-cell array)

hierarchy
layout

hierarchy
layout

Design
Class

Figure 14: Class Hierarchy

Spice Hierarchy When the design class is initialized for a module, a data structure for

the Spice hierarchy is created. This hierarchy_spice class contains structures for the

modules, the pins of the modules, and the pin connections as well as useful functions to

add and connect instances in the hierarchy. The Spice data structure name becomes the

name of the top-level sub-circuit definition of the module. The list of pins for the module

are added to the sub-circuit definition by using the add_pin() function. The add_mod()

function adds an instance of a module, library cell, or parameterized cell as a sub-circuit to

the top-level structure. Each time a sub-module has been added to the hierarchy, the pins of

the sub-module must be connected using the connect_pins() function. One limitation of

the pin data structure is that the pins must be listed in the same order as they were added

to the sub-module. Also, the number of net connections must match that of the sub-circuit

definition. The hierarchy_spice class also contains functions for reading or writing Spice

files:

• sp_read(): this function is used to read in Spice netlists and parse the inputs defined

by the “subckt” definition.

• sp_write_file(): this function recursively writes the modules and sub-modules from

the Spice data structure into a Spice file.

18

Layout Hierarchy A data structure for the layout hierarchy is also created when an

instance of a design is initialized. This hierarchy_layout class has two main components:

a structure for the instances of sub-modules contained in the layout, and a structure for the

objects (such as shapes, labels, etc...) contained in the layout. Functions are also provided

to add these instances and shapes to the layout hierarchy:

• add_inst(self,name,mod,offset,mirror): adds an instance of a physical layout

(library cell, module, or parameterized cell) to the module. The parameters are:

name - name of the instance.

mod - the associated Spice module.

offset - the x-y coordinates, in microns, where the instance should be placed in the

layout.

mirror - mirror or rotate the instance before it is added to the layout. Accepted

values for mirror are: "R0", "R90", "R180", "R270"

"MX" or "x", "MY" or "y", "XY" or "xy"

• add_rect(self,layerNumber,offset,width,height): adds a rectangle to the mod-

ule’s layout. The parameters are:

layernumber - the layer that the rectangle is to be drawn in.

offset - the x-y coordinates, in microns, where the rectangle’s origin will be placed in

the layout.

width - the width of the rectangle, can be positive or negative value.

height - the height of the rectangle, can be positive or negative value.

• add_label(self,text,layerNumber,offset,zoom): adds a label to the layout. The

parameters are:

text - the text for the label

layernumber - the layer that the label is to be drawn in .

offset - the x-y coordinates, in microns, where the label will be placed in the layout.

zoom - magnification of the label (ex: “1e9”).

• gds_read(): reads in a GDSII file and creates a vlsiLayout() class for it (see Sec-

tion 3.1.2).

19

• gds_write(): writes the entire GDS of the object to a file by GdsMill vlsiLayout()

class and calling the gds2writer() (see Section 3.1.2).

• gds_write_file(): recursively writes all instances and objects in the layout data

structure to the gds file.

Library and Dynamically Generated Cells In OpenRAM, there are two flavors of

cells and designs: library and dynamically generated. The library cells are custom designed

cells that have been verified and imported by the user. These cells tend to be difficult

to implement dynamically or need to be custom designed based on area or performance

constraints. The memory cell in the SRAM is a prime example of a library cell. This cell

should be hand-designed to minimize area, because it is the most replicated cell, and to

ensure proper operation. Dynamically generated designs can contain instances of library

cells, parameterized cells(see Section 3.2), and GDSII shapes. These designs are created

using the GdsMill interface. Section 3.2 provides further explanation on the various library

and dynamically generated designs in the FreePDK45 technology.

3.1.2 GdsMill

GDSII is the standard file used in industry to store the layout information of an integrated

circuit. The GDSII file is a stream file that consists of records and data types that hold the

data for the various instances, shapes, and labels in the layout. In OpenRAM, we utilize

a tool called GdsMill to read, write, and manipulate GDSII files. GdsMill was developed

by Michael Wieckowski at the University of Michigan and has a completely unrestricted

license[24].

In GdsMill, the vlsilayout class contains all data relating to the structures and records

in a GDSII layout. The gds2_reader and gds2_writer classes contain the various functions

used to convert data between GDSII files and the vlsilayout class. The gds2_reader and

gds2_writer classes process the GDSII data by iterating through every record and structure

in the file. GDSII records are stored in the vlsilayout data structure so that they can be

easily utilized and/or manipulated by Python code. Each record type has a corresponding

class defined in the gdsPrimitives class. Thus, a vlsilayout should contain the following

member data:

• self.rootStructureName - name of the top-level design.

• self.structures -list of structures that are used in the class.

20

• self.xyTree - a list of all structure names that appear in the design.

In the compiler, dynamically generated cells and arrays each need to build a vlsiLayout

data structure to represent the hierarchical layout. This is performed using various functions

from the vlsiLayout class in GdsMill. To make things easier, OpenRAM has its own

wrapper class called geometry. This wrapper class aggregates the most important and

frequently used layout class methods and constructs data structures for the instances and

objects that will be added to the vlsiLayout class. The methods add_inst(), add_rect(),

add_label() in hierarchy_layout, add the structures to the geometry class, which is then

written out to a GDSII file using vlsiLayout and the gds2_writer.

3.1.3 Technology Directory

The open-source release of OpenRAM includes a fully implemented SRAM and supporting

technology directory for the default technology, FreePDK45. All process-specific information

and library cells are contained within the FreePDK45 technology directory. Technology

specific parameters, such as DRC rules and the GDS layer map, must be added to this

directory to ensure that dynamically generated designs are DRC clean. Similarly, modules

that utilize library cells check the GDS and Spice libraries in this directory for custom cells

to be added to the design hierarchy. Lastly, the technology directory includes any necessary

helper functions for porting the compiler to a new technology. Some technologies may have

very specific design requirements that may not be natively supported by OpenRAM. Any

helper functions should be added to the technology directory so that the main compiler can

remain free of dependencies to specific technologies.

3.2 OpenRAM Modules

OpenRAM provides design modules for the various blocks of a SRAM. Each module has a

corresponding Python class that instantiates a design data structure to hold the layout and

Spice hierarchies. The modules consist of library cells and/or dynamically generated designs

that are added as instances to the module’s design hierarchy. Below is brief description of

each module included in OpenRAM:

Parameterized Transistors OpenRAM provided a class, called ptx, that generates pa-

rameterized transistors of specified type and size. The ptx takes the transistor width,

number of fingers, and type (PMOS or NMOS) as inputs and dynamically generates the

21

design utilizing the various GdsMill functions described in Section 3.1.2. The parameterized

transistor is the basic building block for all dynamically generated modules in the OpenRAM

compiler.

Parameterized Inverter A second parameterized class, pinv, generates parameterized

inverters. This class takes the NMOS transistor size and desired cell height as inputs, and

uses instances of ptx transistors and GdsMill shapes to generate the inverter. If the cell

height cannot accommodate a single transistor of the specified size, the transistor is split

into multiple fingers. This makes the cell grow wider, but the effective drive strength of

the inverter is maintained. The parameterized inverter is utilized in various dynamically

generated designs and as the word line drivers for the row decoder.

Bitcell and Bitcell Array In OpenRAM, the 6T cell layout and Spice netlist are provided

as library cells (see Figure 15 for layout). The memory cell is a library cell for various reasons.

First, it allows the user to easily swap in different memory cell designs. Second, this cell

should always be custom to minimize area and optimize performance because it is the most

replicated cell in the RAM. Lastly, the transistors in the cell must be carefully sized to allow

for correct read and write operations as well as provide protection against corruption.

The bitcell class instantiates a single memory cell. The bitcell_array class dynami-

cally implements the memory array by instantiating a single memory cell and tiling it based

on the number of rows and columns (see Figure 16 for layout). Two simple python “for”

loops, one nested in the other, add the instances of the memory cells row by row. During

the tiling process, the cells are abutted so that all bit lines and word lines are connected

in the vertical and horizontal directions respectively. In order to share Vdd and Gnd rails,

cells added to an odd numbered row are flipped, or mirrored over the x-axis. To avoid

any extra routing, the power/ground rails, bit lines, and word lines should span the entire

width/height of the cell so they automatically connect when the cells are abutted.

Precharge and Precharge Array The precharge circuitry is dynamically generated

using the parameterized transistor (ptx) and various GdsMill functions used for drawing

rectangles and labels in the layout hierarchy. The precharge class dynamically generates

a single precharge cell. It adds two instances of ptx PMOS transistors, one for the larger

PMOS and one for the smaller, equalizing PMOS. These transistor sizes are input parameters

to the initialization function. Next, it connects the gate inputs and draws a metal2 rail for

22

Figure 15: Layout of 6T library cell.

the PCLK signal. Similarly, a Vdd rail and the vertical bit lines are drawn in metal2 and

metal1 respectively. The offsets of the bit lines and the width of the precharge cell must

be equal to those of the 6T cell so that the bit lines are correctly connected down to the

6T cell. The precharge_array class is then used to generate a precharge array, which is a

single row of n precharge cells, where n equals the number of columns in the bitcell array

(see Figure 17 for layout).

NAND Decoder The NAND decoder is dynamically generated and takes the NMOS and

PMOS sizes as inputs to the initialization method of the NAND_decoder class. The height

of each row in the decoder matches the height of the 6T cell so that the power and ground

rails can be abutted. First, the Vdd and Gnd rails are drawn using a “for” loop. Based on

the row address bus size, instances of ptx NMOS transistors are then added to each row.

The source of the first NMOS in each row is always connected to a ground rail. The gate

inputs of the NMOS are then connected (in the binary pattern mentioned is Section 2.1.3)

to the vertical address input rails. Next, the drain nets are connected to the source nets

of the next PMOS in the row. A single PMOS ptx instance, used for precharging, is then

added to each row and is connected to the Vdd rail and the last NMOS in the row. Finally,

23

Figure 16: Layout of a 4x4 bitcell array.

Figure 17: Layout of a four column precharge array

an inverter is placed at the end of each row using the parameterized inverter class (pinv).

This inverter also acts as the word line driver and can be sized accordingly (see Figure 18

for layout).

Column Mux In OpenRAM, the column mux is a dynamically generated design. The

column_mux_array is made up of two dynamically generated cells: muxa and mux_abar. The

only difference between these cells is that the input select signal is either hooked up to SEL

or SEL_bar. These cells are initialized in the the column_muxa and column_muxabar classes.

Instances of ptx PMOS transistors are added to the design and the necessary routing is

24

Figure 18: Layout of a four row NAND Decoder

performed using the add_rect() function. A horizontal rail is added in metal2 for both the

SEL and SEL_bar signals. Underneath those input rails, horizontal straps are added. These

straps are used to connect the BL and BL_bar outputs from muxa to the BL and BL_bar

outputs of mux_abar. Vertical connectors in metal3 are added at the bottom of the cell so

that connections can be made down to the sense amp. Vertical connectors are also added

in metal1 so that the cells can connect down to other mux cells when the depth of the tree

mux grows to more than one level.

The column_mux_array class is used to generate the tree mux. Instances of both the

muxa and mux_abar cells are instantiated and are tiled row by row. The offset of the cell

in a row is determined by the depth of that row in the tree mux. The pattern used to

determine the offset of the mux cells is muxa.width ∗ (i) ∗ (2 ∗ row depth) where i is the

column number. As the depth increases, the mux cells are placed further apart so that they

line up with the appropriate words in the memory array. A separate “for” loop is invoked

25

Muxa Mux_abar

Figure 19: Layout of a four column multiplexer

if the depth > 1, which extends the power/ground and select rails across the entire width

of the array. Similarly, if the depth > 1, Spice net names are created for the intermediate

connection nets made at the various levels of the tree. This is necessary to ensure that a

correct Spice netlist is generated and that the input/output pins of the column mux match

the pins in the modules that it is connected to. Figures 19 and 20 provide the layouts for a

single level column multiplexer and another with a depth of two.

Figure 20: Layout of an eight column multiplexer with a depth of two.

Sense Amp and Sense Amp Array In OpenRAM, the sense amplifier is a library cell

because it is a carefully designed analog circuit. The sense_amp class instantiates a single

instance of the sense amp library cell. The sense_amp_array class handles the tiling of

the sense amps cells. One sense amp cell is needed per data bit and the cells need to be

appropriately spaced so that they can hook up to the column mux bit line pairs. The spacing

is determined based on the number of words per row in the memory array. Instances are

added and then Vdd, Gnd and SCLK rails that span the entire width of the array are drawn

using the add_rect() function (see Figure 21 for layout).

We chose to leave the sense amp as a library cell so that custom amplifier designs can

be swapped into the memory as needed. The two major considerations while designing the

sense amplifier cell are the size of the cell and the bit line/input pitches. Optimally, the

cell should be no wider than the 6T cell so that it abuts to the column mux and no extra

26

Figure 21: Layout of four sense amplifier cells.

routing or space is needed. Also, the bit line inputs of the sense amp need to line up with the

outputs of the write driver. In the current version of OpenRAM, the write driver is situated

under the sense amp, which has bit lines spanning the entire height of the cell. In this case,

the sense amplifier is disabled during a write operation but the bit lines still connect the

write driver to the column mux without any extra routing.

Write Driver and Write Driver Array Currently, in OpenRAM, the write driver is a

library cell and the write_driver_array class tiles the write driver cells. One driver cell

is needed per data bit and Vdd, Gnd, and EN signals must be extended to span the entire

width of the cell (see Figure 22 for layout). It is not optimal to have the write driver as a

library cell because the driver needs to be sized based on the capacitance of the bit lines. A

large memory array needs a stronger driver to drive the data values into the memory cells.

We are working on creating a parameterized tristate class, which will dynamically generate

write driver cells of different sizes/strengths.

Figure 22: Layout of four write driver cells.

27

Flip-Flop Array In FreePDK45 we provide a library cell for a simple master-slave flip-

flop, see schematic in Figure 10 and layout in Figure 23. In our library cell we provide both

Q and Q_bar as outputs of the flop because inverted signals are used in various modules. The

ms_flop class instantiates a single master-slave flop, and the ms_flop_array class generates

an array of flip-flops. Arrays of flops are necessary for the data bus (an array for both the

inputs and outputs) as well as the address bus (an array for row and column inputs). The

ms_flop_array class takes the bus size and the type of array as inputs and dynamically

tiles the flip-flops.

Figure 23: Layout of an array of 4 master-slave flip-flop library cells.

Tristate Array The tristate_array class dynamically generates an array of tristate

gates used to output data onto the DATA bus. A single tristate is instantiated using the

parameterized tristate (ptri) and an array with length equal the the DATA bus size is created

by tiling the tristate cells. The parameterized tristate is still under construction, but a library

28

cell can be used in its place.

Control Logic The control logic module instantiates a control_logic class that arranges

all of the flip-flops and logic associated with the control signals into a single design. Flip-

flops are instantiated for each control signal input and library NAND and NOR cells are

used for the logic. A delay chain, of variable length, is also generated using parameterized

inverters. This delay chain is used to produce a “delayed” clock for use in precharging the

address row decoder. The decoder precharge must be delayed from the normal clock signal

to ensure that the address signals from the flip-flops reach the input before the precharge

cycle stops. See Figures 24 and 25 for the layouts of the control logic and delay chain.

Figure 24: Layout of the control logic.

Top-Level SRAM Module The top level of the hierarchy is the SRAM module. This

module handles the global organization of all sub-modules in the memory. Based on the

user inputs of the word size and number of words, the parameters needed to generate the

memory are calculated and passed to the sub-modules. Equations 2-9 below are used to

determine the number of words per row, the aspect ratio of the memory, and the DATA and

ADDR bus sizes.

total bits = word size ∗ num words (2)

words per row = sqrt(num words)/word size (3)

29

Figure 25: Layout of the delay chain.

num rows = num words/words per row (4)

num cols = words per row ∗ word size (5)

col addr size = log(words per row, 2) (6)

row addr size = log(num rows)/log(2) (7)

total addr size = row addr size+ col addr size (8)

data size = word size (9)

Once these values have been calculated, the arrays can be generated and placed in the

top level of the hierarchy based on the sizes of the different modules. It is important to note

that when considering the organization of the blocks in the memory, DRC rules for minimum

spacing of metals, wells, and other layers must be followed. Currently, for FreePDK45, all

of the major blocks that may have a conflict with p-well to n-well spacing are separated

by the technology parameter tech.drc{"pwell_extend_well"}. This gives a cushion of

0.250µ in-between the blocks, but the I/O pins must be adjusted in the corresponding cells

to handle this extra space. Figure 26 provides an example layout for a SRAM with sixteen

columns and eight rows. All modules, except for the tristate array, are included in the figure.

The control logic, delay chain, and flip-flops have not yet been routed. Appendix A also

provides an entire OpenRAM-generated Spice netlist for a 32-byte SRAM.

30

12

3

4

5

6

7

8
9

10

1 - Bitcell Array
2 - Decoder
3 - Precharge
4 - Column Mux
5 - Sense Amp
6 - Write Driver
7 - Data Flops
8 - Address Flops
9 - Delay Chain
10 - Control Logic

Figure 26: Layout of SRAM with 16 columns, 8 rows, and 2 words per row.

3.3 Physical Verification

OpenRAM interfaces with Calibre nmDRC and nmLVS to perform physical verification of

generated designs. Calibre, a Mentor Graphics tool, has two main functions. The DRC,

or design rule check, function uses pattern matching algorithms to ensure that all process

design rules have been met so that the circuit can be properly fabricated. The LVS, or layout

versus schematic, function provides a comparison of the physical layout to the schematic,

or Spice netlist, to ensure that the number of devices and connectivity of those devices

match[8]. The compiler can also interface with other physical verfification tools. There is a

wrapper function that can be edited to call other verification tools.

In OpenRAM, DRC and LVS can be performed at any level of the design hierarchy: cell

level, module level, and the top-level SRAM design. The compiler has a built in DRC_LVS()

function that uses the design hierarchy functions, sp_write() and gds_write(), to generate

the Spice netlist and GDSII layout. The DRC_LVS() function then calls the run_drc()

and run_lvs() functions, which prepare the Calibre runset files and perform the physical

verification checks in batch mode. When the checks have been completed, the output files

are then parsed to determine if there are any errors.

3.4 Memory Characterizer

The memory characterizer is a set of Python scripts that produces the timing and power

characteristics of OpenRAM-generated memories through extensive Spice simulations. The

31

characterizer has three main stages: generating the Spice stimulus and test structures, sim-

ulating the circuits, and parsing the simulator output. Currently the characterizer utilizes

the HSPICE circuit simulator from Synopsys[20]. An in depth description and results form

the characterizer are provided in Sections 4.2 and 4.3.

4 Contributions

This section provides details of the author’s significant contributions to the OpenRAM

memory compiler. The list below outlines the contributions that have been discussed is

previous sections. Sections 4.1 and 4.2 highlight contributions not yet discussed.

1. Design Hierarchy - restructuring the design hierarchy into two separate sub-classes:

one the Spice hierarchy, and another for the Layout hierarchy. (See Section 3.1.1)

2. Dynamically Generated Modules - implemented the following dynamically gener-

ated modules (See Section 3.2):

(a) Precharge and Precharge Array.

(b) NAND Decoder.

(c) Tree Column Multiplexer.

(d) Adapted the Sense Amplifier and Write Driver Arrays to handle more than one

word per row in the memory array.

(e) Control Logic.

(f) Delay Chain.

(g) Master-Slave flip-flop array.

3. Snap-to-Grid Function - See Section 4.1 below.

4. Memory Characterizer - See Sections 4.2 and 4.3 below.

4.1 Snap-to-Grid

The snap_to_grid() function ensures that every shape or instance added to the design hi-

erarchy is placed on the manufacturing grid. The manufacturing grid refers to the reference

lines used in the mask layer during the fabrication process. Each technology has can have

a different size manufacturing grid. In the case of the FreePDK45 technology, the manufac-

turing grid is set at 0.0025µ. This means that every instance or shape must be placed at a

32

coordinate that is a multiple of 0.0025µ in order to avoid DRC errors. To ensure that this

happens, the following function is used:

def s nap to g r i d (o f f s e t) :
g r i d = tech . drc [‘ ‘ g r i d ’ ’] #the manufacturing g r i d va lue
x = o f f s e t [0]
y = o f f s e t [1]
xgr id = round ((x/ g r id) ,0) #c l o s e s t i n t e g e r va lue
ygr id = round ((y/ g r id) ,0) #c l o s e s t i n t e g e r va lue
xo f f = xgr id ∗ g r id
y o f f = ygr id ∗ g r id
o u t o f f s e t = [xo f f , y o f f]
return o u t o f f s e t

The snap_to_grid() function first separates the x and y coordinates and divides them

by the manufacturing grid value. This division finds the nearest integer multiple of the

manufacturing grid. That integer is then multiplied by the grid value, effectively “snapping”

the coordinates to the manufacturing grid. The resulting offsets are then concatenated back

into an array and returned. This may seem like a very simple function, but it is extremely

powerful and can save users significant time while designing modules because any coordinate

given will be automatically snapped onto the manufacturing grid.

4.2 Memory Characterizer

The Memory Characterizer is a set of Python scripts that utilize a Spice circuit simulator

in order to produce timing and power numbers for OpenRAM generated SRAMs. The

characterizer performs four main operations: writing Spice stimulus, finding the read and

write delays, finding the setup and hold times for the SRAM inputs, and calculating the

average power for the read and write operations. There is also a stimulus parameters file

that can be edited by the user to define certain variables such as the supply voltage and

clock frequency for the simulation runs.

4.2.1 Spice Stimulus

The characterizer contains various functions that generate and write Spice stimulus and

test structures for the different operations that are to be performed. The test structure

refers to all devices that are needed for simulation that are not a part of the SRAM proper.

For OpenRAM-generated memories with bi-directional DATA buses, input signal buffers and

access pass gates are necessary for simulation purposes. When voltage sources are defined

in Spice, they are ideal sources with infinite drive strength. To ensure accurate results, all

input signals must be buffered so that a realistic signal strength is used. Also, pass gates are

33

used for the bi-directional DATA bus. This allows for the input stimulus to be cut off from

the DATA bus while a read operation occurs. In addition to the test structures, the following

functions can be used to generate stimulus:

• inst_sram() - adds the instance of the sram to the stimulus file with all ports.

• gen_data_pwl() - generates a piece-wise linear function for the DATA stimulus.

• gen_addr_pwl() - generates a piece-wise linear function for the ADDR stimulus.

• gen_pulse() - generates a pulse stimulus statement for a given signal.

• write_supply() - writes the Vdd and Gnd supply stimulus.

• write_include() - writes the include statements for the transistor models and SRAM

netlist.

4.2.2 Read and Write Delays

For the read and write delay simulation, a file called timing.sp is written, using the stimulus

functions, that contains the test structures and stimulus for all SRAM inputs. Also, Spice

.measure statements are written so that the Spice circuit simulator can measure the delays.

The Spice simulator is then called and the simulation is run. The duration of the simulation

is 4 clock cycles; the first and third cycles are dummy write and read cycles, the second

cycle performs the write, and the fourth cycle performs the read operation. The data is

always written to and read from the top right corner cell in the bitcell array. This cell will

always have the longest delay because it is the furthest from the address decoder in the

x-direction and the write driver in the y-direction. The write delay measures the time delay

from the clock edge until the data value has been written into the memory cell. The read

delay measures the time elapsed from the clock edge until there is valid data on the sense

amplifier output node. This simulation is run for both writing and reading a 1 and a 0 into

the cell. After the simulations have completed, the Spice output file is then parsed and the

measurement is extracted and stored.

4.2.3 Power

The average power for both the read and write operations is measured by the Spice simulator

during the delay simulations. Spice .measure statements measure the average power for

each operation using Equation 10. The power is measured over the entire clock period so

34

that the power from all circuits utilized during an operation are considered. After the power

numbers have been parsed from the Spice output files, and the other timing simulations have

completed, the Power Delay Product (PDP) is calculated. The PDP is used to classify the

energy efficiency and is defined as the average energy consumed per operation (Equation 11):

where Pavg =
1

T

∫ T

0

p(t) dt =
VDD

T

∫ T

0

iDD(t) dt (10)

PDP = Pavg(max(tdelay) +max(tsetup)) (11)

4.2.4 Setup and Hold Time

In a synchronous SRAM, all input signals are registered using flip-flops. This means that

the setup and hold times for the SRAM are equal to the setup and hold times of the flip-flop

being used. In order to find the setup time of the flip-flop, the clk-q delay must first be

measured. To measure the clk-q delay, a Spice stimulus file is written for the flip-flop netlist

and an initial simulation is run. This clk-q delay measured in the initial simulation is used

as the reference delay. The setup and hold times are calculated for both the low-high and

high-low data transitions.

Setup Time The setup time is defined as the time that a signal must be held valid before

the clock edge to ensure proper operation within an acceptable delay. In this case, an

acceptable delay is defined as no more than a 10% increase of the reference delay measured

in the initial simulation run. After the acceptable delay has been calculated, a bi-directional

search is performed by running two simultaneous simulations while varying the time that

the input switches on both sides of the clock transition. There are two reasons that both

sides of the clock transitions need to be checked. First, it is possible to have a flip-flop with

a negative setup time. The second reason is that we need to hone in, from both sides, on

the input transition time where the delay is forced out of the acceptable delay range. This

means that the right side search will move to explore the space where the input transition

forces the flip-flop into a meta-stable state and eventually converge to the acceptable delay

point. Below is an outline of the algorithm used:

def se tup t ime () :
#se t i n i t i a l l e f t and r i g h t po in t e r s
l p o i n t e r = c l k pe r i od −.5
r po i n t e r = c l k p e r i o d +.5
#determine accep tab l e de lay

35

delay = c l k q d e l a y ()
s e tup de l ay = lh de l ay +.10000000∗ l h d e l ay

def b i d i s e a r c h s e t up (l po i n t e r , r po i n t e r) :
#run s imu la t ion to f i nd l e f t and r i g h t de l ay s
l d e l a y = c l k q d e l a y (l p o i n t e r)
rde lay = c l k q d e l a y (rpo i n t e r)
#f ind the midpoint between the po in t e r s
mid point = f l o a t (l p o i n t e r + ((rpo in te r−l p o i n t e r) /2))

i f (se tup de lay−p r e c i s i o n)<l de lay <(s e tup de l ay+p r e c i s i o n) :
parse output (l d e l a y)
se tup t ime = clk−l p o i n t e r

e l i f (se tup de lay−p r e c i s i o n)<rde lay <(s e tup de l ay+p r e c i s i o n) :
parse output (rde lay)
se tup t ime = clk−r po i n t e r

e l i f rde lay==‘‘ f a i l ’ ’ or rde lay >(s e tup de l ay+p r e c i s i o n) :
b i d i s e a r c h s e t up (l po i n t e r , mid point)

e l i f l de lay <(se tup de lay−p r e c i s i o n) :
b i d i s e a r c h s e t up (l po i n t e r , mid point)

e l i f rde lay <(se tup de lay−p r e c i s i o n) :
b i d i s e a r c h s e t up (rpo in te r , r po i n t e r +.5)

else :
a s s e r t (l d e l a y==‘‘ f a i l ’ ’ or l de lay >(s e tup de l ay+p r e c i s i o n)) :
b i d i s e a r c h s e t up (l po i n t e r − .5 , l p o i n t e r)

b i d i s e a r c h s e t up (l po i n t e r , r p o i n t e r)

The basic idea for the bi-directional search is that simulations are run for the left and

right pointers to find the clk-q delay. If the delay from the left or right pointer is within the

specified precision of the acceptable delay, then the setup point has been found. If the right

side simulation fails or the delay is greater than the acceptable delay, the right pointer moves

to the midpoint and the function is run again. If the right pointer ever passes the setup

point, the left pointer moves to the right pointer position and the right pointer is pushed

further right. There are also case statements to ensure that the left or right pointers do not

end up on the same side of the setup point. Simulations are recursively run until the setup

point has been found. The Spice output is then parsed and the setup time is calculated

as the time difference between the clock edge and data transition. The precision of this

function can be tuned by the user; but an increase in precision results in more simulations

and a longer run-time.

Hold Time The hold time is defined as the time that an input signal must be held valid

after the clock edge to ensure proper operation with an acceptable delay. The hold time

of the flip-flop is calculated in the same way as the setup time; writing Spice stimulus and

performing a bi-directional search. The hold time algorithm actually uses the initial delay

and setup time found by the setup time function as input parameters. Using these values

allows for less calls to the Spice simulator. The left pointer can be initialized to the setup

point because the hold time can never be less than the setup time. The bi-directional hold

36

time search moves the right pointer to the midpoint if the right simulation fails or if the

delay is greater than the acceptable delay. If the right delay does not fail or the delay is less

than the acceptable delay point, the left pointer moves to the right pointer and the right

pointer moves further to the right. Below are the details of the algorithm:

def hold t ime (delay , se tup t ime) :
#determine l e f t and r i g h t po in t e r s
l p o i n t e r = c l k pe r i od−se tup t ime
rpo i n t e r = c l k p e r i o d +.5
#determine accep tab l e de lay
ho ld de lay = lh de l ay +.10000000∗ l h d e l ay

def b i d i s e a r c h ho l d (l po i n t e r , r po i n t e r) :
#run s imu la t ion to f i nd l e f t and r i g h t de l ay s
l d e l a y = c l k q d e l a y (l p o i n t e r)
rde lay = c l k q d e l a y (rpo i n t e r)
#f ind the midpoint between the po in t e r s
mid point = f l o a t (l p o i n t e r + ((rpo in te r−l p o i n t e r) /2))

i f (ho ld de lay−p r e c i s i o n)<l de lay <(ho ld de l ay+p r e c i s i o n) :
ho ld t ime = data−c l k

e l i f (ho ld de lay−p r e c i s i o n)<rde lay <(ho ld de l ay+p r e c i s i o n) :
ho ld t ime = data−c l k

e l i f rde lay==‘‘ f a i l ’ ’ or rde lay >(ho ld de l ay+p r e c i s i o n) :
b i d i s e a r c h ho l d (l po i n t e r , mid point)

e l i f rde lay != ‘ ‘ f a i l ’ ’ and rde lay <(ho ld de l ay+sim params . p r e c i s i o n) :
b i d i s e a r c h ho l d (rpo in te r , r po i n t e r+(rpo in te r−mid point))

b i d i s e a r c h ho l d (l po i n t e r , r po i n t e r)

Minimum Clock Period After the low-high and high-low setup, hold, and delays have

been calculated, the minimum clock period that the memory can operate at can be calculated

by Equation 12. The maximum clock frequency, in megahertz, can be calculated using

Equation 13.

Min Clk Period = max(delay) +max(setup) (12)

Clk Freq = 1/(min clk period ∗ 10−3) (13)

4.3 Characterizer Results

As previously stated, the characterizer reports the setup and hold time of the flip-flop, the

read and write delays, the average power for each operation, and the maximum operat-

ing frequency. The characterizer was run on four small memory designs generated by the

OpenRAM compiler. For fair comparison of results, all memories utilize the same size write

driver. Table 4 shows the results of the characterization of the master-slave flip-flop. Delay,

37

setup, and hold times are calculated for both the high to low and low to high data tran-

sitions. These results are somewhat optimistic because an un-loaded flip-flop is simulated;

the load that the flip-flop drives will inevitably have an effect of the delay. Table 5 displays

the delay, average power, and power delay product of the write operation for the different

size SRAMs. Similarly, Table 6 shows the delay, average power, and power delay product

of the read operation for the different size SRAMs. Finally, Table 7 reports the minimum

clock period and maximum operating frequency of the SRAMs. The results obtained for the

SRAM simulation are from the pre-back annotation characterizer.

Flip-Flop Characterization
Clk-Q (ps) Setup (ps) Hold (ps)

low-high high-low low-high high-low low-high high-low
31.0099 28.1670 13.300 11.200 -12.800 -10.000

Table 4: Clk-Q delay, setup, and hold times for the master-slave flip-flop.

Write Operation

SRAM Size ColsxRows
Delay (ps) Avg Power (MW)

PDP (fJ)
Write 0 Write 1 Write 0 Write 1

32B 16x16 167.8500 178.7582 0.13313 0.13738 24.5592
256B 32x64 258.0382 268.6272 0.33036 0.33804 90.8109
512B 64x64 375.4901 390.2605 0.67410 0.70459 274.9823
1kB 64x128 398.3297 403.8565 0.84978 0.89101 359.8524

Table 5: Delay, power, and PDP for the writing both a 0 and 1.

Read Operation

SRAM Size ColsxRows
Delay (ps) Avg Power (MW)

PDP (fJ)
Read 0 Read 1 Read 0 Read 1

32B 16x16 194.7432 193.2575 0.32047 0.59707 116.2835
256B 32x64 318.9401 313.5573 0.80970 1.2154 387.5283
512B 64x64 425.9756 414.0976 1.8481 2.2828 972.1053
1kB 64x128 499.0511 487.1450 2.1897 2.4994 1247.1617

Table 6: Delay, power, and PDP for the reading both a 0 and 1.

Clock Period and Frequency
SRAM Size ColsxRows Min. Period (ns) Max Freq. (Ghz)

32B 16x16 0.20804 4.8067
256B 32x64 0.33224 3.0099
512B 64x64 0.43930 2.2765
1kB 64x128 0.51235 1.9518

Table 7: Minimum clock period and maximum clock frequency for each size SRAM.

38

Many observations can be made from examining these results. Figure 27 shows that as

the size of the memory grows, the operation delay increases, as expected. It also shows

that the write operation is faster than the read operation for all memory sizes. The read

operation is slower due to the delay of the differential sense amplifier. It can also be seen

that writing a 0 is faster than writing a 1; the write driver can discharge the bit lines much

faster than it can drive a 1 into the memory cell. Conversely, it is slower to read a 0 than it

is a 1. This can be explained by the fact that the bit lines only experience a small voltage

swing and a sufficient differential signal needs to be established before the sense amplifier can

evaluate. The aspect ratio of the SRAM also has an impact on the delay. More significant

increases of delay occur when the number of columns increases, i.e. when the array becomes

wider.

0

100

200

300

400

500

32 256 512 1024

D
el

ay
(p

s)

SRAM Size (bytes)

Write 0
Write 1
Read 0
Read 1

Figure 27: The delays for the read and write operations.

Most of the dynamic power in an SRAM is a by-product of the charging and discharging

of the bit and word lines. During both memory operations, all bit lines are precharged to

Vdd and one word line is always asserted. When this word line is selected, all of the cells

in that row are activated and bit lines are discharged even if the column is not selected.

Figure 28 highlights the average power dissipation of the various SRAMs for both read and

write operations. The read operation consumes more power than a write because of the

power dissipation of the sense amplifier and because extra tristate buffers are used to drive

39

the output onto the bi-directional data bus. It is also apparent that reading a 1 consumes

more power than reading a 0. Again the sense amplifier is the cause of the power increase;

the sense amplifier mirrors the current seen by the bit line. The energy-efficiency of the write

operation versus the read operation is further highlighted by Figure 29. Figure 29 illustrates

the power-delay-product for both operations and shows that a write can be approximately

4x more efficient than a read.

0

0.5

1

1.5

2

2.5

3

32 256 512 1024

P
ow

er
(M

W
)

SRAM Size (bytes)

Write 0
Write 1
Read 0
Read 1

Figure 28: The average power for the read and write operations.

Lastly, Figure 30 displays the maximum operating frequencies of the different SRAM

sizes as calculated by Equations 12 and 13. As expected, the operating frequency decreases

as the size of the SRAM increases.

40

0

200

400

600

800

1000

1200

32 256 512 1024

P
D

P
(f

J
)

SRAM Size (bytes)

Write PDP
Read PDP

Figure 29: The power-delay products for the read and write operations.

0

1

2

3

4

5

32 256 512 1024

C
lo

ck
F

re
q
.

(G
h

z)

SRAM Size (bytes)

Max Freq.

Figure 30: The maximum operating frequency for the different size SRAM’s.

41

4.4 Area

Table 8 displays the area in mm2 for each block in the SRAM, including the extra whites-

pace, as well as the total area. Figure 31 provides a graphical representation of the numbers

in Table 8. It can be seen that the bitcell array dominates the total area of the SRAM for

all size; proving that this cell should be optimized to reduce its size. For the larger SRAM’s,

the bitcell array accounts for approximately 75-80% of the total area. The peripheral cir-

cuitry occupies a significantly smaller amount of area in comparison to the memory array,

but circuits such as the decoder and column multiplexer will grow much larger as the size

of the memory scales up. The whitespace, or unused area, is approximately 5% of the total

area for all memory sizes, but this area can be used for higher-level routing.

Area (mm2)
Size Bitcell Decoder Mux Precharge SA WD Control Space Total
32B 0.3731 0.1113 0.0233 0.0233 0.0681 0.0502 0.0416 0.1597 0.8866
256B 2.9850 0.2596 0.0933 0.0933 0.2726 0.2010 0.1304 0.5540 4.5892
512B 5.9699 0.5868 0.0933 0.0933 0.2726 0.2010 0.1304 0.4111 7.7584
1kB 11.9398 0.5868 0.1866 0.1866 0.5453 0.4020 0.2357 0.8132 14.8960

Table 8: Area (mm2) of each module and total area.

0

2

4

6

8

10

12

14

32 256 512 1024

A
re

a
(m
m

2
)

SRAM Size (bytes)

Bitcell
Decoder

Mux
Precharge

SA
WD

Control
Space

Figure 31: Total area of the different size SRAM’s and the area of each module in the SRAM.

42

5 Conclusion

Embedded memories, specifically SRAM’s, account for a significant portion of a chip’s total

performance, power, and area. This trend, and the importance of the SRAM design, is only

expected to grow over time. Due to this fact it is necessary to have an easy way to test and

prototype memory designs. Thankfully, SRAM’s have a very regular structure that can be

exploited by design automation tools. Memory compilers are not a new concept; many exist

as commercial products and intellectual property but few are open-source and modifiable. In

this thesis, an open-source memory compiler, OpenRAM, has been introduced to aid in the

memory design process. The main motivation behind the OpenRAM project is to promote

and simplify memory research in academia. OpenRAM is meant to be a flexible and portable

tool that can be used to generate memory designs across many different technologies.

OpenRAM is implemented in Python, using the object-oriented paradigm. It utilizes a

Python-GDSII interface, called GdsMill, and a set of data structures to construct a hierarchi-

cal representation of a GDSII layout and a corresponding Spice netlist. Modules, or blocks

of the SRAM, are dynamically generated by code or through the use of user designed library

cells and added to the design hierarchy. Once the design hierarchy has been populated, a

GDSII file and Spice netlist are written as outputs.

In addition to the compiler, a memory characterization methodology has been intro-

duced. The memory characterizer uses the OpenRAM generated Spice netlist and a Spice

simulator to produce the timing and power characteristics of the synchronous memory. The

characterizer writes Spice stimulus files and invokes a Spice simulator to measure the read

and write delays and average power. The library cell flip-flop is also characterized and

a bi-directional search and exhaustive Spice simulations are used to determine the setup

and hold times for the input signals as well as the maximum operating frequency. Lastly,

the characterizer was run on several OpenRAM generated memories and the results were

reported.

It is our hope that the OpenRAM compiler and characterization methodology will become

a widely adopted option for embedded memory design generation. OpenRAM provides a

simple way of generating memories that can be utilized in any SOC, ASIC, or microprocessor.

It also provides a platform to implement and test new memory cells and sub-circuits without

considerable overhead. Currently, the compiler is being ported over to the IBM 7SF (180nm)

and 8RF (130nm) technologies for fabrication.

43

5.1 Future Work

The OpenRAM memory compiler and characterizer are still in the early phases of devel-

opment. Many improvements and additions are currently under construction or in the

implementation queue:

1. Dynamic generation and sizing of write drivers based on the memory array size.

2. Adding helper functions to perform routing using GdsMill.

3. Expanding the types of OpenRAM library and dynamically generated cells.

4. Adding capability to generate multi-port RAM’s and register files.

5. Option to generate and characterize asynchronous SRAM’s.

6. Porting the compiler over to IBM 7SF and 8RF technologies for tape-out and fabrica-

tion.

7. Adding back-annotation and extracted parasitic characterization.

8. Writing .liberty files for the timing and power outputs.

44

References

[1] B.S. Amrutur and M.A. Horowitz. Fast low-power decoders for rams. Solid-State
Circuits, IEEE Journal on, 36(10):1506–1515, Oct 2001.

[2] ARM. Embedded memory IP. http://www.arm.com/products/physical-ip/

embedded-memory-ip/index.php, 2013.

[3] P. Athe and S. Dasgupta. A comparative study of 6t, 8t and 9t decanano sram cell. In
Industrial Electronics Applications, 2009. ISIEA 2009. IEEE Symposium on, volume 2,
pages 889–894, 2009.

[4] T. Calin, M. Nicolaidis, and R. Velazco. Upset hardened memory design for submicron
cmos technology. Nuclear Science, IEEE Transactions on, 43(6):2874–2878, 1996.

[5] A. Chandrakasan, W.J. Bowhill, and F. Fox. Design of High Performance Micropro-
cessor Circuits. IEEE Press, 2001.

[6] Global Foundries. Memory IP. http://www.globalfoundries.com/design/memory_

ip.aspx, 2013.

[7] M. Goudarzi and T. Ishihara. Sram leakage reduction by row/column redundancy under
random within-die delay variation. Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, 18(12):1660–1671, 2010.

[8] Mentor Graphics. Calibre nmdrc and nmlvs. http://www.mentor.com/products/ic_
nanometer_design/verification-signoff/physical-verification/, 2013.

[9] IBM. Understanding static ram operation. Technical report, Mar 1997.

[10] I. Jung, Y. Kim, and F. Lombardi. A novel sort error hardened 10t sram cells for low
voltage operation. In Circuits and Systems (MWSCAS), 2012 IEEE 55th International
Midwest Symposium on, pages 714–717, 2012.

[11] S. Kim and M. Guthaus. Leakage-aware redundancy for reliable sub-threshold memo-
ries. In Design Automation Conference (DAC), 2011 48th ACM/EDAC/IEEE, pages
435–440, 2011.

[12] S. Kim and M. Guthaus. Low-power multiple-bit upset tolerant memory optimization.
In Computer-Aided Design (ICCAD), 2011 IEEE/ACM International Conference on,
pages 577–581, 2011.

[13] S. Kim and M. Guthaus. Snm-aware power reduction and reliability improvement in
45nm srams. In VLSI and System-on-Chip (VLSI-SoC), 2011 IEEE/IFIP 19th Inter-
national Conference on, pages 204–207, 2011.

[14] F.J. Kurdahi, A.M. Eltawil, Y.H. Park, R.N Kanj, and S.R. Nassif. System-level sram
yield enhancement. Quality Electronic Design, 7th International Symposium on, Mar
2006.

[15] Python. The python programming language. http://www.python.org, 2013.

[16] J. Rabaey, A. Chandrakasan, and B. Nikoli. Digital Integrated Circuits: A Design
Perspective. Pearson Education, Inc., 2nd edition, 2003.

[17] S. Rusu, J. Stinson, S. Tam, J. Leung, H. Muljono, and B. Cherkauer. A 1.5-ghz 130-nm
itanium reg; 2 processor with 6-mb on-die l3 cache. Solid-State Circuits, IEEE Journal
of, 38(11):1887–1895, 2003.

45

http://www.arm.com/products/physical-ip/embedded-memory-ip/index.php
http://www.arm.com/products/physical-ip/embedded-memory-ip/index.php
http://www.globalfoundries.com/design/memory_ip.aspx
http://www.globalfoundries.com/design/memory_ip.aspx
http://www.mentor.com/products/ic_nanometer_design/verification-signoff/physical-verification/
http://www.mentor.com/products/ic_nanometer_design/verification-signoff/physical-verification/
http://www.python.org

[18] A. Shimpi. Intel core i7 3960x (sandy bridge) review: Keep-
ing the high-end alive. http://www.anandtech.com/show/5091/

intel-core-i7-3960x-sandy-bridge-e-review-keeping-the-high-end-alive,
Nov. 2011.

[19] J. Stine, I. Castellanos, M. Wood, J. Henson, and F. Love. FreePDK: An open-source
variation-aware design kit. International Conference on Computer-Aided Design, Jan
2007.

[20] Synopsis. Hspice. http://www.synopsys.com/tools/Verification/

AMSVerification/CircuitSimulation/HSPICE/Pages/default.aspx, 2013.

[21] Synopsys. Designware memory compilers. http://www.synopsys.com/dw/ipdir.php?
ds=dwc_sram_memory_compilers, 2013.

[22] Faraday Technologies. Memory compiler architecture. http://www.faraday-tech.

com/html/Product/IPProduct/LibraryMemoryCompiler/index.htm, 2013.

[23] Dolphin Technology. Memory products. http://www.dolphin-ic.com/

memory-products.html, 2011.

[24] M. Wieckowski. GDS Mill User Manual, 2010.

[25] Michael Wieckowski. Gds mill. http://michaelwieckowski.com/?page_id=190, 2010.

46

http://www.anandtech.com/show/5091/intel-core-i7-3960x-sandy-bridge-e-review-keeping-the-high-end-alive
http://www.anandtech.com/show/5091/intel-core-i7-3960x-sandy-bridge-e-review-keeping-the-high-end-alive
http://www.synopsys.com/tools/Verification/AMSVerification/CircuitSimulation/HSPICE/Pages/default.aspx
http://www.synopsys.com/tools/Verification/AMSVerification/CircuitSimulation/HSPICE/Pages/default.aspx
http://www.synopsys.com/dw/ipdir.php?ds=dwc_sram_memory_compilers
http://www.synopsys.com/dw/ipdir.php?ds=dwc_sram_memory_compilers
http://www.faraday-tech.com/html/Product/IPProduct/LibraryMemoryCompiler/index.htm
http://www.faraday-tech.com/html/Product/IPProduct/LibraryMemoryCompiler/index.htm
http://www.dolphin-ic.com/memory-products.html
http://www.dolphin-ic.com/memory-products.html
http://michaelwieckowski.com/?page_id=190

Appendix A: Spice Netlist

#OpenRAM Generated 16x16 (32B) SRAM

.SUBCKT c e l l 6 t BL BR WL vdd gnd
mPL x x bar vdd vdd pmos vtg w=90.000000n l =50.000000n
mNL x x bar gnd gnd nmos vtg w=205.000000n l =50.000000n
mPR x bar x vdd vdd pmos vtg w=90.000000n l =50.000000n
mNR x bar x gnd gnd nmos vtg w=205.000000n l =50.000000n
mAL BL WL x gnd nmos vtg w=135.000000n l =50.000000n
mAR BR WL x bar gnd nmos vtg w=135.000000n l =50.000000n
. ends c e l l 6 t

.SUBCKT b i t c e l l a r r a y BL [0] BR[0] BL [1] BR[1] BL [2] BR[2] BL [3] BR[3] BL [4] BR
[4] BL [5] BR[5] BL [6] BR[6] BL [7] BR[7] BL [8] BR[8] BL [9] BR[9] BL[1 0] BR
[1 0] BL[1 1] BR[1 1] BL[1 2] BR[1 2] BL[1 3] BR[1 3] BL[1 4] BR[1 4] BL[1 5] BR[1 5]
WL[0] WL[1] WL[2] WL[3] WL[4] WL[5] WL[6] WL[7] WL[8] WL[9] WL[1 0] WL[1 1]
WL[1 2] WL[1 3] WL[1 4] WL[1 5] vdd gnd

Xb i t r0 c0 BL [0] BR[0] WL[0] vdd gnd c e l l 6 t
Xb i t r0 c1 BL [1] BR[1] WL[0] vdd gnd c e l l 6 t
Xb i t r0 c2 BL [2] BR[2] WL[0] vdd gnd c e l l 6 t
Xb i t r0 c3 BL [3] BR[3] WL[0] vdd gnd c e l l 6 t
Xb i t r0 c4 BL [4] BR[4] WL[0] vdd gnd c e l l 6 t
Xb i t r0 c5 BL [5] BR[5] WL[0] vdd gnd c e l l 6 t
Xb i t r0 c6 BL [6] BR[6] WL[0] vdd gnd c e l l 6 t
Xb i t r0 c7 BL [7] BR[7] WL[0] vdd gnd c e l l 6 t
Xb i t r0 c8 BL [8] BR[8] WL[0] vdd gnd c e l l 6 t
Xb i t r0 c9 BL [9] BR[9] WL[0] vdd gnd c e l l 6 t
Xb i t r0 c10 BL[1 0] BR[1 0] WL[0] vdd gnd c e l l 6 t
Xb i t r0 c11 BL[1 1] BR[1 1] WL[0] vdd gnd c e l l 6 t
Xb i t r0 c12 BL[1 2] BR[1 2] WL[0] vdd gnd c e l l 6 t
Xb i t r0 c13 BL[1 3] BR[1 3] WL[0] vdd gnd c e l l 6 t
Xb i t r0 c14 BL[1 4] BR[1 4] WL[0] vdd gnd c e l l 6 t
Xb i t r0 c15 BL[1 5] BR[1 5] WL[0] vdd gnd c e l l 6 t
Xb i t r1 c0 BL [0] BR[0] WL[1] vdd gnd c e l l 6 t
Xb i t r1 c1 BL [1] BR[1] WL[1] vdd gnd c e l l 6 t
Xb i t r1 c2 BL [2] BR[2] WL[1] vdd gnd c e l l 6 t
Xb i t r1 c3 BL [3] BR[3] WL[1] vdd gnd c e l l 6 t
Xb i t r1 c4 BL [4] BR[4] WL[1] vdd gnd c e l l 6 t
Xb i t r1 c5 BL [5] BR[5] WL[1] vdd gnd c e l l 6 t
Xb i t r1 c6 BL [6] BR[6] WL[1] vdd gnd c e l l 6 t
Xb i t r1 c7 BL [7] BR[7] WL[1] vdd gnd c e l l 6 t
Xb i t r1 c8 BL [8] BR[8] WL[1] vdd gnd c e l l 6 t
Xb i t r1 c9 BL [9] BR[9] WL[1] vdd gnd c e l l 6 t
Xb i t r1 c10 BL[1 0] BR[1 0] WL[1] vdd gnd c e l l 6 t
Xb i t r1 c11 BL[1 1] BR[1 1] WL[1] vdd gnd c e l l 6 t
Xb i t r1 c12 BL[1 2] BR[1 2] WL[1] vdd gnd c e l l 6 t
Xb i t r1 c13 BL[1 3] BR[1 3] WL[1] vdd gnd c e l l 6 t
Xb i t r1 c14 BL[1 4] BR[1 4] WL[1] vdd gnd c e l l 6 t
Xb i t r1 c15 BL[1 5] BR[1 5] WL[1] vdd gnd c e l l 6 t
Xb i t r2 c0 BL [0] BR[0] WL[2] vdd gnd c e l l 6 t
Xb i t r2 c1 BL [1] BR[1] WL[2] vdd gnd c e l l 6 t
Xb i t r2 c2 BL [2] BR[2] WL[2] vdd gnd c e l l 6 t
Xb i t r2 c3 BL [3] BR[3] WL[2] vdd gnd c e l l 6 t
Xb i t r2 c4 BL [4] BR[4] WL[2] vdd gnd c e l l 6 t
Xb i t r2 c5 BL [5] BR[5] WL[2] vdd gnd c e l l 6 t
Xb i t r2 c6 BL [6] BR[6] WL[2] vdd gnd c e l l 6 t
Xb i t r2 c7 BL [7] BR[7] WL[2] vdd gnd c e l l 6 t
Xb i t r2 c8 BL [8] BR[8] WL[2] vdd gnd c e l l 6 t
Xb i t r2 c9 BL [9] BR[9] WL[2] vdd gnd c e l l 6 t
Xb i t r2 c10 BL[1 0] BR[1 0] WL[2] vdd gnd c e l l 6 t
Xb i t r2 c11 BL[1 1] BR[1 1] WL[2] vdd gnd c e l l 6 t
Xb i t r2 c12 BL[1 2] BR[1 2] WL[2] vdd gnd c e l l 6 t
Xb i t r2 c13 BL[1 3] BR[1 3] WL[2] vdd gnd c e l l 6 t
Xb i t r2 c14 BL[1 4] BR[1 4] WL[2] vdd gnd c e l l 6 t
Xb i t r2 c15 BL[1 5] BR[1 5] WL[2] vdd gnd c e l l 6 t
Xb i t r3 c0 BL [0] BR[0] WL[3] vdd gnd c e l l 6 t
Xb i t r3 c1 BL [1] BR[1] WL[3] vdd gnd c e l l 6 t
Xb i t r3 c2 BL [2] BR[2] WL[3] vdd gnd c e l l 6 t

47

Xbi t r3 c3 BL [3] BR[3] WL[3] vdd gnd c e l l 6 t
Xb i t r3 c4 BL [4] BR[4] WL[3] vdd gnd c e l l 6 t
Xb i t r3 c5 BL [5] BR[5] WL[3] vdd gnd c e l l 6 t
Xb i t r3 c6 BL [6] BR[6] WL[3] vdd gnd c e l l 6 t
Xb i t r3 c7 BL [7] BR[7] WL[3] vdd gnd c e l l 6 t
Xb i t r3 c8 BL [8] BR[8] WL[3] vdd gnd c e l l 6 t
Xb i t r3 c9 BL [9] BR[9] WL[3] vdd gnd c e l l 6 t
Xb i t r3 c10 BL[1 0] BR[1 0] WL[3] vdd gnd c e l l 6 t
Xb i t r3 c11 BL[1 1] BR[1 1] WL[3] vdd gnd c e l l 6 t
Xb i t r3 c12 BL[1 2] BR[1 2] WL[3] vdd gnd c e l l 6 t
Xb i t r3 c13 BL[1 3] BR[1 3] WL[3] vdd gnd c e l l 6 t
Xb i t r3 c14 BL[1 4] BR[1 4] WL[3] vdd gnd c e l l 6 t
Xb i t r3 c15 BL[1 5] BR[1 5] WL[3] vdd gnd c e l l 6 t
Xb i t r4 c0 BL [0] BR[0] WL[4] vdd gnd c e l l 6 t
Xb i t r4 c1 BL [1] BR[1] WL[4] vdd gnd c e l l 6 t
Xb i t r4 c2 BL [2] BR[2] WL[4] vdd gnd c e l l 6 t
Xb i t r4 c3 BL [3] BR[3] WL[4] vdd gnd c e l l 6 t
Xb i t r4 c4 BL [4] BR[4] WL[4] vdd gnd c e l l 6 t
Xb i t r4 c5 BL [5] BR[5] WL[4] vdd gnd c e l l 6 t
Xb i t r4 c6 BL [6] BR[6] WL[4] vdd gnd c e l l 6 t
Xb i t r4 c7 BL [7] BR[7] WL[4] vdd gnd c e l l 6 t
Xb i t r4 c8 BL [8] BR[8] WL[4] vdd gnd c e l l 6 t
Xb i t r4 c9 BL [9] BR[9] WL[4] vdd gnd c e l l 6 t
Xb i t r4 c10 BL[1 0] BR[1 0] WL[4] vdd gnd c e l l 6 t
Xb i t r4 c11 BL[1 1] BR[1 1] WL[4] vdd gnd c e l l 6 t
Xb i t r4 c12 BL[1 2] BR[1 2] WL[4] vdd gnd c e l l 6 t
Xb i t r4 c13 BL[1 3] BR[1 3] WL[4] vdd gnd c e l l 6 t
Xb i t r4 c14 BL[1 4] BR[1 4] WL[4] vdd gnd c e l l 6 t
Xb i t r4 c15 BL[1 5] BR[1 5] WL[4] vdd gnd c e l l 6 t
Xb i t r5 c0 BL [0] BR[0] WL[5] vdd gnd c e l l 6 t
Xb i t r5 c1 BL [1] BR[1] WL[5] vdd gnd c e l l 6 t
Xb i t r5 c2 BL [2] BR[2] WL[5] vdd gnd c e l l 6 t
Xb i t r5 c3 BL [3] BR[3] WL[5] vdd gnd c e l l 6 t
Xb i t r5 c4 BL [4] BR[4] WL[5] vdd gnd c e l l 6 t
Xb i t r5 c5 BL [5] BR[5] WL[5] vdd gnd c e l l 6 t
Xb i t r5 c6 BL [6] BR[6] WL[5] vdd gnd c e l l 6 t
Xb i t r5 c7 BL [7] BR[7] WL[5] vdd gnd c e l l 6 t
Xb i t r5 c8 BL [8] BR[8] WL[5] vdd gnd c e l l 6 t
Xb i t r5 c9 BL [9] BR[9] WL[5] vdd gnd c e l l 6 t
Xb i t r5 c10 BL[1 0] BR[1 0] WL[5] vdd gnd c e l l 6 t
Xb i t r5 c11 BL[1 1] BR[1 1] WL[5] vdd gnd c e l l 6 t
Xb i t r5 c12 BL[1 2] BR[1 2] WL[5] vdd gnd c e l l 6 t
Xb i t r5 c13 BL[1 3] BR[1 3] WL[5] vdd gnd c e l l 6 t
Xb i t r5 c14 BL[1 4] BR[1 4] WL[5] vdd gnd c e l l 6 t
Xb i t r5 c15 BL[1 5] BR[1 5] WL[5] vdd gnd c e l l 6 t
Xb i t r6 c0 BL [0] BR[0] WL[6] vdd gnd c e l l 6 t
Xb i t r6 c1 BL [1] BR[1] WL[6] vdd gnd c e l l 6 t
Xb i t r6 c2 BL [2] BR[2] WL[6] vdd gnd c e l l 6 t
Xb i t r6 c3 BL [3] BR[3] WL[6] vdd gnd c e l l 6 t
Xb i t r6 c4 BL [4] BR[4] WL[6] vdd gnd c e l l 6 t
Xb i t r6 c5 BL [5] BR[5] WL[6] vdd gnd c e l l 6 t
Xb i t r6 c6 BL [6] BR[6] WL[6] vdd gnd c e l l 6 t
Xb i t r6 c7 BL [7] BR[7] WL[6] vdd gnd c e l l 6 t
Xb i t r6 c8 BL [8] BR[8] WL[6] vdd gnd c e l l 6 t
Xb i t r6 c9 BL [9] BR[9] WL[6] vdd gnd c e l l 6 t
Xb i t r6 c10 BL[1 0] BR[1 0] WL[6] vdd gnd c e l l 6 t
Xb i t r6 c11 BL[1 1] BR[1 1] WL[6] vdd gnd c e l l 6 t
Xb i t r6 c12 BL[1 2] BR[1 2] WL[6] vdd gnd c e l l 6 t
Xb i t r6 c13 BL[1 3] BR[1 3] WL[6] vdd gnd c e l l 6 t
Xb i t r6 c14 BL[1 4] BR[1 4] WL[6] vdd gnd c e l l 6 t
Xb i t r6 c15 BL[1 5] BR[1 5] WL[6] vdd gnd c e l l 6 t
Xb i t r7 c0 BL [0] BR[0] WL[7] vdd gnd c e l l 6 t
Xb i t r7 c1 BL [1] BR[1] WL[7] vdd gnd c e l l 6 t
Xb i t r7 c2 BL [2] BR[2] WL[7] vdd gnd c e l l 6 t
Xb i t r7 c3 BL [3] BR[3] WL[7] vdd gnd c e l l 6 t
Xb i t r7 c4 BL [4] BR[4] WL[7] vdd gnd c e l l 6 t
Xb i t r7 c5 BL [5] BR[5] WL[7] vdd gnd c e l l 6 t
Xb i t r7 c6 BL [6] BR[6] WL[7] vdd gnd c e l l 6 t
Xb i t r7 c7 BL [7] BR[7] WL[7] vdd gnd c e l l 6 t

48

Xbi t r7 c8 BL [8] BR[8] WL[7] vdd gnd c e l l 6 t
Xb i t r7 c9 BL [9] BR[9] WL[7] vdd gnd c e l l 6 t
Xb i t r7 c10 BL[1 0] BR[1 0] WL[7] vdd gnd c e l l 6 t
Xb i t r7 c11 BL[1 1] BR[1 1] WL[7] vdd gnd c e l l 6 t
Xb i t r7 c12 BL[1 2] BR[1 2] WL[7] vdd gnd c e l l 6 t
Xb i t r7 c13 BL[1 3] BR[1 3] WL[7] vdd gnd c e l l 6 t
Xb i t r7 c14 BL[1 4] BR[1 4] WL[7] vdd gnd c e l l 6 t
Xb i t r7 c15 BL[1 5] BR[1 5] WL[7] vdd gnd c e l l 6 t
Xb i t r8 c0 BL [0] BR[0] WL[8] vdd gnd c e l l 6 t
Xb i t r8 c1 BL [1] BR[1] WL[8] vdd gnd c e l l 6 t
Xb i t r8 c2 BL [2] BR[2] WL[8] vdd gnd c e l l 6 t
Xb i t r8 c3 BL [3] BR[3] WL[8] vdd gnd c e l l 6 t
Xb i t r8 c4 BL [4] BR[4] WL[8] vdd gnd c e l l 6 t
Xb i t r8 c5 BL [5] BR[5] WL[8] vdd gnd c e l l 6 t
Xb i t r8 c6 BL [6] BR[6] WL[8] vdd gnd c e l l 6 t
Xb i t r8 c7 BL [7] BR[7] WL[8] vdd gnd c e l l 6 t
Xb i t r8 c8 BL [8] BR[8] WL[8] vdd gnd c e l l 6 t
Xb i t r8 c9 BL [9] BR[9] WL[8] vdd gnd c e l l 6 t
Xb i t r8 c10 BL[1 0] BR[1 0] WL[8] vdd gnd c e l l 6 t
Xb i t r8 c11 BL[1 1] BR[1 1] WL[8] vdd gnd c e l l 6 t
Xb i t r8 c12 BL[1 2] BR[1 2] WL[8] vdd gnd c e l l 6 t
Xb i t r8 c13 BL[1 3] BR[1 3] WL[8] vdd gnd c e l l 6 t
Xb i t r8 c14 BL[1 4] BR[1 4] WL[8] vdd gnd c e l l 6 t
Xb i t r8 c15 BL[1 5] BR[1 5] WL[8] vdd gnd c e l l 6 t
Xb i t r9 c0 BL [0] BR[0] WL[9] vdd gnd c e l l 6 t
Xb i t r9 c1 BL [1] BR[1] WL[9] vdd gnd c e l l 6 t
Xb i t r9 c2 BL [2] BR[2] WL[9] vdd gnd c e l l 6 t
Xb i t r9 c3 BL [3] BR[3] WL[9] vdd gnd c e l l 6 t
Xb i t r9 c4 BL [4] BR[4] WL[9] vdd gnd c e l l 6 t
Xb i t r9 c5 BL [5] BR[5] WL[9] vdd gnd c e l l 6 t
Xb i t r9 c6 BL [6] BR[6] WL[9] vdd gnd c e l l 6 t
Xb i t r9 c7 BL [7] BR[7] WL[9] vdd gnd c e l l 6 t
Xb i t r9 c8 BL [8] BR[8] WL[9] vdd gnd c e l l 6 t
Xb i t r9 c9 BL [9] BR[9] WL[9] vdd gnd c e l l 6 t
Xb i t r9 c10 BL[1 0] BR[1 0] WL[9] vdd gnd c e l l 6 t
Xb i t r9 c11 BL[1 1] BR[1 1] WL[9] vdd gnd c e l l 6 t
Xb i t r9 c12 BL[1 2] BR[1 2] WL[9] vdd gnd c e l l 6 t
Xb i t r9 c13 BL[1 3] BR[1 3] WL[9] vdd gnd c e l l 6 t
Xb i t r9 c14 BL[1 4] BR[1 4] WL[9] vdd gnd c e l l 6 t
Xb i t r9 c15 BL[1 5] BR[1 5] WL[9] vdd gnd c e l l 6 t
Xb i t r10 c0 BL [0] BR[0] WL[1 0] vdd gnd c e l l 6 t
Xb i t r10 c1 BL [1] BR[1] WL[1 0] vdd gnd c e l l 6 t
Xb i t r10 c2 BL [2] BR[2] WL[1 0] vdd gnd c e l l 6 t
Xb i t r10 c3 BL [3] BR[3] WL[1 0] vdd gnd c e l l 6 t
Xb i t r10 c4 BL [4] BR[4] WL[1 0] vdd gnd c e l l 6 t
Xb i t r10 c5 BL [5] BR[5] WL[1 0] vdd gnd c e l l 6 t
Xb i t r10 c6 BL [6] BR[6] WL[1 0] vdd gnd c e l l 6 t
Xb i t r10 c7 BL [7] BR[7] WL[1 0] vdd gnd c e l l 6 t
Xb i t r10 c8 BL [8] BR[8] WL[1 0] vdd gnd c e l l 6 t
Xb i t r10 c9 BL [9] BR[9] WL[1 0] vdd gnd c e l l 6 t
Xb i t r10 c10 BL[1 0] BR[1 0] WL[1 0] vdd gnd c e l l 6 t
Xb i t r10 c11 BL[1 1] BR[1 1] WL[1 0] vdd gnd c e l l 6 t
Xb i t r10 c12 BL[1 2] BR[1 2] WL[1 0] vdd gnd c e l l 6 t
Xb i t r10 c13 BL[1 3] BR[1 3] WL[1 0] vdd gnd c e l l 6 t
Xb i t r10 c14 BL[1 4] BR[1 4] WL[1 0] vdd gnd c e l l 6 t
Xb i t r10 c15 BL[1 5] BR[1 5] WL[1 0] vdd gnd c e l l 6 t
Xb i t r11 c0 BL [0] BR[0] WL[1 1] vdd gnd c e l l 6 t
Xb i t r11 c1 BL [1] BR[1] WL[1 1] vdd gnd c e l l 6 t
Xb i t r11 c2 BL [2] BR[2] WL[1 1] vdd gnd c e l l 6 t
Xb i t r11 c3 BL [3] BR[3] WL[1 1] vdd gnd c e l l 6 t
Xb i t r11 c4 BL [4] BR[4] WL[1 1] vdd gnd c e l l 6 t
Xb i t r11 c5 BL [5] BR[5] WL[1 1] vdd gnd c e l l 6 t
Xb i t r11 c6 BL [6] BR[6] WL[1 1] vdd gnd c e l l 6 t
Xb i t r11 c7 BL [7] BR[7] WL[1 1] vdd gnd c e l l 6 t
Xb i t r11 c8 BL [8] BR[8] WL[1 1] vdd gnd c e l l 6 t
Xb i t r11 c9 BL [9] BR[9] WL[1 1] vdd gnd c e l l 6 t
Xb i t r11 c10 BL[1 0] BR[1 0] WL[1 1] vdd gnd c e l l 6 t
Xb i t r11 c11 BL[1 1] BR[1 1] WL[1 1] vdd gnd c e l l 6 t
Xb i t r11 c12 BL[1 2] BR[1 2] WL[1 1] vdd gnd c e l l 6 t

49

Xbi t r11 c13 BL[1 3] BR[1 3] WL[1 1] vdd gnd c e l l 6 t
Xb i t r11 c14 BL[1 4] BR[1 4] WL[1 1] vdd gnd c e l l 6 t
Xb i t r11 c15 BL[1 5] BR[1 5] WL[1 1] vdd gnd c e l l 6 t
Xb i t r12 c0 BL [0] BR[0] WL[1 2] vdd gnd c e l l 6 t
Xb i t r12 c1 BL [1] BR[1] WL[1 2] vdd gnd c e l l 6 t
Xb i t r12 c2 BL [2] BR[2] WL[1 2] vdd gnd c e l l 6 t
Xb i t r12 c3 BL [3] BR[3] WL[1 2] vdd gnd c e l l 6 t
Xb i t r12 c4 BL [4] BR[4] WL[1 2] vdd gnd c e l l 6 t
Xb i t r12 c5 BL [5] BR[5] WL[1 2] vdd gnd c e l l 6 t
Xb i t r12 c6 BL [6] BR[6] WL[1 2] vdd gnd c e l l 6 t
Xb i t r12 c7 BL [7] BR[7] WL[1 2] vdd gnd c e l l 6 t
Xb i t r12 c8 BL [8] BR[8] WL[1 2] vdd gnd c e l l 6 t
Xb i t r12 c9 BL [9] BR[9] WL[1 2] vdd gnd c e l l 6 t
Xb i t r12 c10 BL[1 0] BR[1 0] WL[1 2] vdd gnd c e l l 6 t
Xb i t r12 c11 BL[1 1] BR[1 1] WL[1 2] vdd gnd c e l l 6 t
Xb i t r12 c12 BL[1 2] BR[1 2] WL[1 2] vdd gnd c e l l 6 t
Xb i t r12 c13 BL[1 3] BR[1 3] WL[1 2] vdd gnd c e l l 6 t
Xb i t r12 c14 BL[1 4] BR[1 4] WL[1 2] vdd gnd c e l l 6 t
Xb i t r12 c15 BL[1 5] BR[1 5] WL[1 2] vdd gnd c e l l 6 t
Xb i t r13 c0 BL [0] BR[0] WL[1 3] vdd gnd c e l l 6 t
Xb i t r13 c1 BL [1] BR[1] WL[1 3] vdd gnd c e l l 6 t
Xb i t r13 c2 BL [2] BR[2] WL[1 3] vdd gnd c e l l 6 t
Xb i t r13 c3 BL [3] BR[3] WL[1 3] vdd gnd c e l l 6 t
Xb i t r13 c4 BL [4] BR[4] WL[1 3] vdd gnd c e l l 6 t
Xb i t r13 c5 BL [5] BR[5] WL[1 3] vdd gnd c e l l 6 t
Xb i t r13 c6 BL [6] BR[6] WL[1 3] vdd gnd c e l l 6 t
Xb i t r13 c7 BL [7] BR[7] WL[1 3] vdd gnd c e l l 6 t
Xb i t r13 c8 BL [8] BR[8] WL[1 3] vdd gnd c e l l 6 t
Xb i t r13 c9 BL [9] BR[9] WL[1 3] vdd gnd c e l l 6 t
Xb i t r13 c10 BL[1 0] BR[1 0] WL[1 3] vdd gnd c e l l 6 t
Xb i t r13 c11 BL[1 1] BR[1 1] WL[1 3] vdd gnd c e l l 6 t
Xb i t r13 c12 BL[1 2] BR[1 2] WL[1 3] vdd gnd c e l l 6 t
Xb i t r13 c13 BL[1 3] BR[1 3] WL[1 3] vdd gnd c e l l 6 t
Xb i t r13 c14 BL[1 4] BR[1 4] WL[1 3] vdd gnd c e l l 6 t
Xb i t r13 c15 BL[1 5] BR[1 5] WL[1 3] vdd gnd c e l l 6 t
Xb i t r14 c0 BL [0] BR[0] WL[1 4] vdd gnd c e l l 6 t
Xb i t r14 c1 BL [1] BR[1] WL[1 4] vdd gnd c e l l 6 t
Xb i t r14 c2 BL [2] BR[2] WL[1 4] vdd gnd c e l l 6 t
Xb i t r14 c3 BL [3] BR[3] WL[1 4] vdd gnd c e l l 6 t
Xb i t r14 c4 BL [4] BR[4] WL[1 4] vdd gnd c e l l 6 t
Xb i t r14 c5 BL [5] BR[5] WL[1 4] vdd gnd c e l l 6 t
Xb i t r14 c6 BL [6] BR[6] WL[1 4] vdd gnd c e l l 6 t
Xb i t r14 c7 BL [7] BR[7] WL[1 4] vdd gnd c e l l 6 t
Xb i t r14 c8 BL [8] BR[8] WL[1 4] vdd gnd c e l l 6 t
Xb i t r14 c9 BL [9] BR[9] WL[1 4] vdd gnd c e l l 6 t
Xb i t r14 c10 BL[1 0] BR[1 0] WL[1 4] vdd gnd c e l l 6 t
Xb i t r14 c11 BL[1 1] BR[1 1] WL[1 4] vdd gnd c e l l 6 t
Xb i t r14 c12 BL[1 2] BR[1 2] WL[1 4] vdd gnd c e l l 6 t
Xb i t r14 c13 BL[1 3] BR[1 3] WL[1 4] vdd gnd c e l l 6 t
Xb i t r14 c14 BL[1 4] BR[1 4] WL[1 4] vdd gnd c e l l 6 t
Xb i t r14 c15 BL[1 5] BR[1 5] WL[1 4] vdd gnd c e l l 6 t
Xb i t r15 c0 BL [0] BR[0] WL[1 5] vdd gnd c e l l 6 t
Xb i t r15 c1 BL [1] BR[1] WL[1 5] vdd gnd c e l l 6 t
Xb i t r15 c2 BL [2] BR[2] WL[1 5] vdd gnd c e l l 6 t
Xb i t r15 c3 BL [3] BR[3] WL[1 5] vdd gnd c e l l 6 t
Xb i t r15 c4 BL [4] BR[4] WL[1 5] vdd gnd c e l l 6 t
Xb i t r15 c5 BL [5] BR[5] WL[1 5] vdd gnd c e l l 6 t
Xb i t r15 c6 BL [6] BR[6] WL[1 5] vdd gnd c e l l 6 t
Xb i t r15 c7 BL [7] BR[7] WL[1 5] vdd gnd c e l l 6 t
Xb i t r15 c8 BL [8] BR[8] WL[1 5] vdd gnd c e l l 6 t
Xb i t r15 c9 BL [9] BR[9] WL[1 5] vdd gnd c e l l 6 t
Xb i t r15 c10 BL[1 0] BR[1 0] WL[1 5] vdd gnd c e l l 6 t
Xb i t r15 c11 BL[1 1] BR[1 1] WL[1 5] vdd gnd c e l l 6 t
Xb i t r15 c12 BL[1 2] BR[1 2] WL[1 5] vdd gnd c e l l 6 t
Xb i t r15 c13 BL[1 3] BR[1 3] WL[1 5] vdd gnd c e l l 6 t
Xb i t r15 c14 BL[1 4] BR[1 4] WL[1 5] vdd gnd c e l l 6 t
Xb i t r15 c15 BL[1 5] BR[1 5] WL[1 5] vdd gnd c e l l 6 t
.ENDS b i t c e l l a r r a y

50

. subckt pmos3 D G S B
Mpmos D G S B pmos vtg m=1 w=0.090000u l =0.050000u
. ends pmos3

. subckt pmos1 D G S B
Mpmos D G S B pmos vtg m=1 w=0.180000u l =0.050000u
. ends pmos1

.SUBCKT precharge BL BR c lk vdd
xpmos1 BL c lk vdd vdd pmos1
xpmos2 BR c lk vdd vdd pmos1
xpmos3 BL c lk BR vdd pmos3
xpcont prechargecontact
.ENDS precharge

.SUBCKT precharge a r ray BL [0] BR[0] BL [1] BR[1] BL [2] BR[2] BL [3] BR[3] BL [4]
BR[4] BL [5] BR[5] BL [6] BR[6] BL [7] BR[7] BL [8] BR[8] BL [9] BR[9] BL[1 0]
BR[1 0] BL[1 1] BR[1 1] BL[1 2] BR[1 2] BL[1 3] BR[1 3] BL[1 4] BR[1 4] BL[1 5] BR
[1 5] c l k vdd

Xpre c0 BL [0] BR[0] c l k vdd precharge
Xpre c1 BL [1] BR[1] c l k vdd precharge
Xpre c2 BL [2] BR[2] c l k vdd precharge
Xpre c3 BL [3] BR[3] c l k vdd precharge
Xpre c4 BL [4] BR[4] c l k vdd precharge
Xpre c5 BL [5] BR[5] c l k vdd precharge
Xpre c6 BL [6] BR[6] c l k vdd precharge
Xpre c7 BL [7] BR[7] c l k vdd precharge
Xpre c8 BL [8] BR[8] c l k vdd precharge
Xpre c9 BL [9] BR[9] c l k vdd precharge
Xpre c10 BL[1 0] BR[1 0] c l k vdd precharge
Xpre c11 BL[1 1] BR[1 1] c l k vdd precharge
Xpre c12 BL[1 2] BR[1 2] c l k vdd precharge
Xpre c13 BL[1 3] BR[1 3] c l k vdd precharge
Xpre c14 BL[1 4] BR[1 4] c l k vdd precharge
Xpre c15 BL[1 5] BR[1 5] c l k vdd precharge
.ENDS precharge a r ray

. subckt a nmos1 D G S B
Mnmos D G S B nmos vtg m=1 w=0.180000u l =0.050000u
. ends a nmos1

.SUBCKT mux a BL BLB BL O BLB O s e l gnd
xa nmos1 BL s e l BL O gnd a nmos1
xa nmos2 BLB s e l BLB O gnd a nmos1
.ENDS mux a

. subckt a nmos2 D G S B
Mnmos D G S B nmos vtg m=1 w=0.180000u l =0.050000u
. ends a nmos2

.SUBCKT mux abar BL BLB BL O BLB O s e l b a r gnd
xa nmos3 BL s e l b a r BL O gnd a nmos2
xa nmos4 BLB s e l b a r BLB O gnd a nmos2
.ENDS mux abar

.SUBCKT column mux array BL [0] BR[0] BL [1] BR[1] BL [2] BR[2] BL [3] BR[3] BL [4]
BR[4] BL [5] BR[5] BL [6] BR[6] BL [7] BR[7] BL [8] BR[8] BL [9] BR[9] BL[1 0]

BR[1 0] BL[1 1] BR[1 1] BL[1 2] BR[1 2] BL[1 3] BR[1 3] BL[1 4] BR[1 4] BL[1 5] BR
[1 5] BL out [0] BR out [0] BL out [2] BR out [2] BL out [4] BR out [4] BL out [6]
BR out [6] BL out [8] BR out [8] BL out [1 0] BR out [1 0] BL out [1 2] BR out [1 2]
BL out [1 4] BR out [1 4] s e l [0] s e l b a r [0] gnd

Xmux a00 BL [0] BR[0] BL out [0] BR out [0] s e l [0] gnd mux a
Xmux abar01 BL [1] BR[1] BL out [0] BR out [0] s e l b a r [0] gnd mux abar
Xmux a02 BL [2] BR[2] BL out [2] BR out [2] s e l [0] gnd mux a
Xmux abar03 BL [3] BR[3] BL out [2] BR out [2] s e l b a r [0] gnd mux abar
Xmux a04 BL [4] BR[4] BL out [4] BR out [4] s e l [0] gnd mux a
Xmux abar05 BL [5] BR[5] BL out [4] BR out [4] s e l b a r [0] gnd mux abar
Xmux a06 BL [6] BR[6] BL out [6] BR out [6] s e l [0] gnd mux a
Xmux abar07 BL [7] BR[7] BL out [6] BR out [6] s e l b a r [0] gnd mux abar

51

Xmux a08 BL [8] BR[8] BL out [8] BR out [8] s e l [0] gnd mux a
Xmux abar09 BL [9] BR[9] BL out [8] BR out [8] s e l b a r [0] gnd mux abar
Xmux a010 BL[1 0] BR[1 0] BL out [1 0] BR out [1 0] s e l [0] gnd mux a
Xmux abar011 BL[1 1] BR[1 1] BL out [1 0] BR out [1 0] s e l b a r [0] gnd mux abar
Xmux a012 BL[1 2] BR[1 2] BL out [1 2] BR out [1 2] s e l [0] gnd mux a
Xmux abar013 BL[1 3] BR[1 3] BL out [1 2] BR out [1 2] s e l b a r [0] gnd mux abar
Xmux a014 BL[1 4] BR[1 4] BL out [1 4] BR out [1 4] s e l [0] gnd mux a
Xmux abar015 BL[1 5] BR[1 5] BL out [1 4] BR out [1 4] s e l b a r [0] gnd mux abar
.ENDS column mux array

. subckt sense amp BL BR s c l k D vdd gnd
mnl BL s c l k BL int gnd nmos vtg w=360.000000n l =50.000000n
mnr BR s c l k BR int gnd nmos vtg w=360.000000n l =50.000000n
mP1 D bar D bar vdd vdd pmos vtg w=360.000000n l =50.000000n
mP2 D D bar vdd vdd pmos vtg w=360.000000n l =50.000000n
mN1 D bar BL int vgnd gnd nmos vtg w=360.000000n l =50.000000n
mN2 D BR int vgnd gnd nmos vtg w=360.000000n l =50.000000n
ms vgnd s c l k gnd gnd nmos vtg w=720.000000n l =50.000000n
. ends s en s e amp ce l l

.SUBCKT sense amp array Data out [0] BL out [0] BR out [0] Data out [1] BL out [2]
BR out [2] Data out [2] BL out [4] BR out [4] Data out [3] BL out [6] BR out [6]
Data out [4] BL out [8] BR out [8] Data out [5] BL out [1 0] BR out [1 0] Data out
[6] BL out [1 2] BR out [1 2] Data out [7] BL out [1 4] BR out [1 4] SCLK vdd gnd

Xsa d0 BL out [0] BR out [0] SCLK Data out [0] vdd gnd sense amp
Xsa d1 BL out [2] BR out [2] SCLK Data out [1] vdd gnd sense amp
Xsa d2 BL out [4] BR out [4] SCLK Data out [2] vdd gnd sense amp
Xsa d3 BL out [6] BR out [6] SCLK Data out [3] vdd gnd sense amp
Xsa d4 BL out [8] BR out [8] SCLK Data out [4] vdd gnd sense amp
Xsa d5 BL out [1 0] BR out [1 0] SCLK Data out [5] vdd gnd sense amp
Xsa d6 BL out [1 2] BR out [1 2] SCLK Data out [6] vdd gnd sense amp
Xsa d7 BL out [1 4] BR out [1 4] SCLK Data out [7] vdd gnd sense amp
.ENDS sense amp array

. subckt w r i t e d r i v e r din BL BR en vdd gnd
#inv e r t e r s f o r enab le and data input
minP BL bar din vdd vdd pmos vtg w=450.000000n l =50.000000n
minN BL bar din gnd gnd nmos vtg w=225.000000n l =50.000000n
moutP en bar en vdd vdd pmos vtg w=450.000000n l =50.000000n
moutN en bar en gnd gnd nmos vtg w=225.000000n l =50.000000n
#t r i s t a t e f o r BL
mout0P in t1 BL bar vdd vdd pmos vtg w=450.000000n l =50.000000n
mout0P2 BL en bar in t1 vdd pmos vtg w=450.000000n l =50.000000n
mout0N BL en in t2 gnd nmos vtg w=225.000000n l =50.000000n
mout0N2 in t2 BL bar gnd gnd nmos vtg w=225.000000n l =50.000000n
#t r i s t a t e f o r BR
mout1P in t3 din vdd vdd pmos vtg w=450.000000n l =50.000000n
mout1P2 BR en bar in t3 vdd pmos vtg w=450.000000n l =50.000000n
mout1N BR en in t4 gnd nmos vtg w=225.000000n l =50.000000n
mout1N2 in t4 din gnd gnd nmos vtg w=225.000000n l =50.000000n
. ends w r i t e d r i v e r

.SUBCKT wr i t e d r i v e r a r r a y BL out [0] BR out [0] Data in [0] BL out [2] BR out [2]
Data in [1] BL out [4] BR out [4] Data in [2] BL out [6] BR out [6] Data in [3]
BL out [8] BR out [8] Data in [4] BL out [1 0] BR out [1 0] Data in [5] BL out [1 2]
BR out [1 2] Data in [6] BL out [1 4] BR out [1 4] Data in [7] EN vdd gnd

Xwrite d0 Data in [0] BL out [0] BR out [0] EN vdd gnd w r i t e d r i v e r
Xwrite d1 Data in [1] BL out [2] BR out [2] EN vdd gnd w r i t e d r i v e r
Xwrite d2 Data in [2] BL out [4] BR out [4] EN vdd gnd w r i t e d r i v e r
Xwrite d3 Data in [3] BL out [6] BR out [6] EN vdd gnd w r i t e d r i v e r
Xwrite d4 Data in [4] BL out [8] BR out [8] EN vdd gnd w r i t e d r i v e r
Xwrite d5 Data in [5] BL out [1 0] BR out [1 0] EN vdd gnd w r i t e d r i v e r
Xwrite d6 Data in [6] BL out [1 2] BR out [1 2] EN vdd gnd w r i t e d r i v e r
Xwrite d7 Data in [7] BL out [1 4] BR out [1 4] EN vdd gnd w r i t e d r i v e r
.ENDS wr i t e d r i v e r a r r a y

. subckt tx dec D G S B
Mnmos D G S B nmos vtg m=1 w=0.180000u l =0.050000u
. ends tx dec

52

. subckt Xnwl dr iver D G S B
Mnmos D G S B nmos vtg m=2 w=0.090000u l =0.050000u
. ends Xnwl dr iver

. subckt Xpwl dr iver D G S B
Mpmos D G S B pmos vtg m=2 w=0.270000u l =0.050000u
. ends Xpwl dr iver

.SUBCKT wl d r i v e r A Z vdd gnd
Xnwl dr iver Z A gnd gnd Xnwl dr iver
Xpwl dr iver Z A vdd vdd Xpwl dr iver
.ENDS w l d r i v e r

. subckt pr e tx D G S B
Mpmos D G S B pmos vtg m=1 w=0.180000u l =0.050000u
. ends pre tx

.SUBCKT addre s s decoder a in [0] a in bar [0] a in [1] a in bar [1] a in [2] a in bar [2]
a in [3] a in bar [3] WL[0] WL[1] WL[2] WL[3] WL[4] WL[5] WL[6] WL[7] WL[8] WL
[9] WL[1 0] WL[1 1] WL[1 2] WL[1 3] WL[1 4] WL[1 5] dc lk vdd gnd

Xinv0 WL bar [0] WL[0] vdd gnd w l d r i v e r
Xinv1 WL bar [1] WL[1] vdd gnd w l d r i v e r
Xinv2 WL bar [2] WL[2] vdd gnd w l d r i v e r
Xinv3 WL bar [3] WL[3] vdd gnd w l d r i v e r
Xinv4 WL bar [4] WL[4] vdd gnd w l d r i v e r
Xinv5 WL bar [5] WL[5] vdd gnd w l d r i v e r
Xinv6 WL bar [6] WL[6] vdd gnd w l d r i v e r
Xinv7 WL bar [7] WL[7] vdd gnd w l d r i v e r
Xinv8 WL bar [8] WL[8] vdd gnd w l d r i v e r
Xinv9 WL bar [9] WL[9] vdd gnd w l d r i v e r
Xinv10 WL bar [1 0] WL[1 0] vdd gnd w l d r i v e r
Xinv11 WL bar [1 1] WL[1 1] vdd gnd w l d r i v e r
Xinv12 WL bar [1 2] WL[1 2] vdd gnd w l d r i v e r
Xinv13 WL bar [1 3] WL[1 3] vdd gnd w l d r i v e r
Xinv14 WL bar [1 4] WL[1 4] vdd gnd w l d r i v e r
Xinv15 WL bar [1 5] WL[1 5] vdd gnd w l d r i v e r
Xpre0 vdd dc lk WL bar [0] vdd pre tx
Xpre1 vdd dc lk WL bar [1] vdd pre tx
Xpre2 vdd dc lk WL bar [2] vdd pre tx
Xpre3 vdd dc lk WL bar [3] vdd pre tx
Xpre4 vdd dc lk WL bar [4] vdd pre tx
Xpre5 vdd dc lk WL bar [5] vdd pre tx
Xpre6 vdd dc lk WL bar [6] vdd pre tx
Xpre7 vdd dc lk WL bar [7] vdd pre tx
Xpre8 vdd dc lk WL bar [8] vdd pre tx
Xpre9 vdd dc lk WL bar [9] vdd pre tx
Xpre10 vdd dc lk WL bar [1 0] vdd pre tx
Xpre11 vdd dc lk WL bar [1 1] vdd pre tx
Xpre12 vdd dc lk WL bar [1 2] vdd pre tx
Xpre13 vdd dc lk WL bar [1 3] vdd pre tx
Xpre14 vdd dc lk WL bar [1 4] vdd pre tx
Xpre15 vdd dc lk WL bar [1 5] vdd pre tx
xtx WL0 A0 gnd a in bar [0] i 0 0 gnd tx dec
xtx WL0 A1 i 0 0 a in bar [1] i 0 1 gnd tx dec
xtx WL0 A2 i 0 1 a in bar [2] i 0 2 gnd tx dec
xtx WL0 A3 i 0 2 a in bar [3] WL bar [0] gnd tx dec
xtx WL1 A0 gnd ain [0] i 1 0 gnd tx dec
xtx WL1 A1 i 1 0 a in bar [1] i 1 1 gnd tx dec
xtx WL1 A2 i 1 1 a in bar [2] i 1 2 gnd tx dec
xtx WL1 A3 i 1 2 a in bar [3] WL bar [1] gnd tx dec
xtx WL2 A0 gnd a in bar [0] i 2 0 gnd tx dec
xtx WL2 A1 i 2 0 a in [1] i 2 1 gnd tx dec
xtx WL2 A2 i 2 1 a in bar [2] i 2 2 gnd tx dec
xtx WL2 A3 i 2 2 a in bar [3] WL bar [2] gnd tx dec
xtx WL3 A0 gnd ain [0] i 3 0 gnd tx dec
xtx WL3 A1 i 3 0 a in [1] i 3 1 gnd tx dec
xtx WL3 A2 i 3 1 a in bar [2] i 3 2 gnd tx dec
xtx WL3 A3 i 3 2 a in bar [3] WL bar [3] gnd tx dec

53

xtx WL4 A0 gnd a in bar [0] i 4 0 gnd tx dec
xtx WL4 A1 i 4 0 a in bar [1] i 4 1 gnd tx dec
xtx WL4 A2 i 4 1 a in [2] i 4 2 gnd tx dec
xtx WL4 A3 i 4 2 a in bar [3] WL bar [4] gnd tx dec
xtx WL5 A0 gnd ain [0] i 5 0 gnd tx dec
xtx WL5 A1 i 5 0 a in bar [1] i 5 1 gnd tx dec
xtx WL5 A2 i 5 1 a in [2] i 5 2 gnd tx dec
xtx WL5 A3 i 5 2 a in bar [3] WL bar [5] gnd tx dec
xtx WL6 A0 gnd a in bar [0] i 6 0 gnd tx dec
xtx WL6 A1 i 6 0 a in [1] i 6 1 gnd tx dec
xtx WL6 A2 i 6 1 a in [2] i 6 2 gnd tx dec
xtx WL6 A3 i 6 2 a in bar [3] WL bar [6] gnd tx dec
xtx WL7 A0 gnd ain [0] i 7 0 gnd tx dec
xtx WL7 A1 i 7 0 a in [1] i 7 1 gnd tx dec
xtx WL7 A2 i 7 1 a in [2] i 7 2 gnd tx dec
xtx WL7 A3 i 7 2 a in bar [3] WL bar [7] gnd tx dec
xtx WL8 A0 gnd a in bar [0] i 8 0 gnd tx dec
xtx WL8 A1 i 8 0 a in bar [1] i 8 1 gnd tx dec
xtx WL8 A2 i 8 1 a in bar [2] i 8 2 gnd tx dec
xtx WL8 A3 i 8 2 a in [3] WL bar [8] gnd tx dec
xtx WL9 A0 gnd ain [0] i 9 0 gnd tx dec
xtx WL9 A1 i 9 0 a in bar [1] i 9 1 gnd tx dec
xtx WL9 A2 i 9 1 a in bar [2] i 9 2 gnd tx dec
xtx WL9 A3 i 9 2 a in [3] WL bar [9] gnd tx dec
xtx WL10 A0 gnd a in bar [0] i 1 0 0 gnd tx dec
xtx WL10 A1 i 10 0 a in [1] i 1 0 1 gnd tx dec
xtx WL10 A2 i 10 1 a in bar [2] i 1 0 2 gnd tx dec
xtx WL10 A3 i 10 2 a in [3] WL bar [1 0] gnd tx dec
xtx WL11 A0 gnd ain [0] i 1 1 0 gnd tx dec
xtx WL11 A1 i 11 0 a in [1] i 1 1 1 gnd tx dec
xtx WL11 A2 i 11 1 a in bar [2] i 1 1 2 gnd tx dec
xtx WL11 A3 i 11 2 a in [3] WL bar [1 1] gnd tx dec
xtx WL12 A0 gnd a in bar [0] i 1 2 0 gnd tx dec
xtx WL12 A1 i 12 0 a in bar [1] i 1 2 1 gnd tx dec
xtx WL12 A2 i 12 1 a in [2] i 1 2 2 gnd tx dec
xtx WL12 A3 i 12 2 a in [3] WL bar [1 2] gnd tx dec
xtx WL13 A0 gnd ain [0] i 1 3 0 gnd tx dec
xtx WL13 A1 i 13 0 a in bar [1] i 1 3 1 gnd tx dec
xtx WL13 A2 i 13 1 a in [2] i 1 3 2 gnd tx dec
xtx WL13 A3 i 13 2 a in [3] WL bar [1 3] gnd tx dec
xtx WL14 A0 gnd a in bar [0] i 1 4 0 gnd tx dec
xtx WL14 A1 i 14 0 a in [1] i 1 4 1 gnd tx dec
xtx WL14 A2 i 14 1 a in [2] i 1 4 2 gnd tx dec
xtx WL14 A3 i 14 2 a in [3] WL bar [1 4] gnd tx dec
xtx WL15 A0 gnd ain [0] i 1 5 0 gnd tx dec
xtx WL15 A1 i 15 0 a in [1] i 1 5 1 gnd tx dec
xtx WL15 A2 i 15 1 a in [2] i 1 5 2 gnd tx dec
xtx WL15 A3 i 15 2 a in [3] WL bar [1 5] gnd tx dec
.ENDS addre s s decoder

. subckt cont ro l nor nand a CSb c l k out vdd gnd
xcn t r l n o r a CSb in t vdd gnd con t r o l no r 2
xcntr l nand i n t c l k out vdd gnd contro l nand2
. ends cont ro l nor nand

. subckt c on t r o l no r 2 a b z vdd gnd
mP1 in t1 a vdd vdd pmos vtg w=360.000000n l =50.000000n
mP2 z b in t1 vdd pmos vtg w=360.000000n l =50.000000n
mN1 z b gnd gnd nmos vtg w=90.000000n l =50.000000n
mN2 z a gnd gnd nmos vtg w=90.000000n l =50.000000n
. ends con t r o l no r 2

. subckt contro l nand2 a b z vdd gnd
m1 z a net1 gnd NMOSVTG w=90.000000n l =50.000000n
m0 net1 b gnd gnd NMOSVTG w=90.000000n l =50.000000n
m3 z b vdd vdd PMOSVTG w=90.000000n l =50.000000n
m2 z a vdd vdd PMOSVTG w=90.000000n l =50.000000n
.ENDS contro l nand2

54

. subckt Xncntr l inv D G S B
Mnmos D G S B nmos vtg m=2 w=0.090000u l =0.050000u
. ends Xncntr l inv

. subckt Xpcntr l inv D G S B
Mpmos D G S B pmos vtg m=2 w=0.270000u l =0.050000u
. ends Xpcntr l inv

.SUBCKT cn t r l i n v A Z vdd gnd
Xncntr l inv Z A gnd gnd Xncntr l inv
Xpcntr l inv Z A vdd vdd Xpcntr l inv
.ENDS cn t r l i n v

. subckt ms f lop din dout dout bar c l k vdd gnd
xmaster din mout mout bar c l k c l k ba r vdd gnd d latch
xs l ave mout bar dout bar dout c l k ba r c lk nn vdd gnd d latch
. ends f l o p

. subckt d la tch din dout dout bar c l k c l k ba r vdd gnd
#c l k i n v e r t e r
mPff1 c l k ba r c l k vdd vdd PMOSVTG W=180.0n L=50n m=1
mNff1 c l k ba r c l k gnd gnd NMOSVTG W=90n L=50n m=1
#transmiss ion gate 1
mtmP1 din c l k in t1 vdd PMOSVTG W=180.0n L=50n m=1
mtmN1 din c l k ba r in t1 gnd NMOSVTG W=90n L=50n m=1
#foward i n v e r t e r
mPff3 dout bar in t1 vdd vdd PMOSVTG W=180.0n L=50n m=1
mNff3 dout bar in t1 gnd gnd NMOSVTG W=90n L=50n m=1
#backward i n v e r t e r
mPff4 dout dout bar vdd vdd PMOSVTG W=180.0n L=50n m=1
mNf4 dout dout bar gnd gnd NMOSVTG W=90n L=50n m=1
#transmiss ion gate 2
mtmP2 in t1 c l k ba r dout vdd PMOSVTG W=180.0n L=50n m=1
mtmN2 in t1 c l k dout gnd NMOSVTG W=90n L=50n m=1
. ends d latch

.SUBCKT c o n t r o l l o g i c CSb WEb OEb c lk OE EN SCLK vdd gnd
XflopCSb CSb CSbar CS c lk vdd gnd ms f lop
XflopOEb OEb OEbar OE c lk vdd gnd ms f lop
XcontrlOEb OEbar CSbar c l k SCLK bar vdd gnd cont ro l nor nand
XinvOEb SCLK bar SCLK vdd gnd c n t r l i n v
XflopWEb WEb WEbar WE c lk vdd gnd ms f lop
XcontrlWEb WEbar CSbar c l k EN bar vdd gnd cont ro l nor nand
XinvWEb EN bar EN vdd gnd c n t r l i n v
.ENDS c o n t r o l l o g i c

.SUBCKT addr row f l op a r r ay ADDR[0] a in [0] a in bar [0] ADDR[1] a in [1] a in bar
[1] ADDR[2] a in [2] a in bar [2] ADDR[3] a in [3] a in bar [3] c l k vdd gnd

Xflopaddr row0 ADDR[0] a in [0] a in bar [0] c l k vdd gnd ms f lop
Xflopaddr row1 ADDR[1] a in [1] a in bar [1] c l k vdd gnd ms f lop
Xflopaddr row2 ADDR[2] a in [2] a in bar [2] c l k vdd gnd ms f lop
Xflopaddr row3 ADDR[3] a in [3] a in bar [3] c l k vdd gnd ms f lop
.ENDS addr row f l op a r r ay

.SUBCKT add r c o l f l o p a r r a y ADDR[4] s e l b a r [0] s e l [0] c l k vdd gnd
Xf lopaddr co l0 ADDR[4] s e l b a r [0] s e l [0] c l k vdd gnd ms f lop
.ENDS add r c o l f l o p a r r a y

.SUBCKT da t a i n f l o p a r r a y DATA[0] Data in [0] Data in bar [0] DATA[1] Data in
[1] Data in bar [1] DATA[2] Data in [2] Data in bar [2] DATA[3] Data in [3]
Data in bar [3] DATA[4] Data in [4] Data in bar [4] DATA[5] Data in [5]
Data in bar [5] DATA[6] Data in [6] Data in bar [6] DATA[7] Data in [7]
Data in bar [7] c l k vdd gnd

Xf lopdata in0 DATA[0] Data in [0] Data in bar [0] c l k vdd gnd ms f lop
Xf lopdata in1 DATA[1] Data in [1] Data in bar [1] c l k vdd gnd ms f lop
Xf lopdata in2 DATA[2] Data in [2] Data in bar [2] c l k vdd gnd ms f lop
Xf lopdata in3 DATA[3] Data in [3] Data in bar [3] c l k vdd gnd ms f lop
Xf lopdata in4 DATA[4] Data in [4] Data in bar [4] c l k vdd gnd ms f lop
Xf lopdata in5 DATA[5] Data in [5] Data in bar [5] c l k vdd gnd ms f lop

55

Xf lopdata in6 DATA[6] Data in [6] Data in bar [6] c l k vdd gnd ms f lop
Xf lopdata in7 DATA[7] Data in [7] Data in bar [7] c l k vdd gnd ms f lop
.ENDS da t a i n f l o p a r r a y

.SUBCKT da t a ou t f l o p a r r a y Data out [0] fdata [0] f da ta ba r [0] Data out [1]
fdata [1] f da ta ba r [1] Data out [2] fdata [2] f da ta ba r [2] Data out [3] fdata
[3] f da ta ba r [3] Data out [4] fdata [4] f da ta ba r [4] Data out [5] fdata [5]
f da ta ba r [5] Data out [6] fdata [6] f da ta ba r [6] Data out [7] fdata [7]
f da ta ba r [7] c l k ba r vdd gnd

Xf lopdata out0 Data out [0] fdata [0] f da ta ba r [0] c l k ba r vdd gnd ms f lop
Xf lopdata out1 Data out [1] fdata [1] f da ta ba r [1] c l k ba r vdd gnd ms f lop
Xf lopdata out2 Data out [2] fdata [2] f da ta ba r [2] c l k ba r vdd gnd ms f lop
Xf lopdata out3 Data out [3] fdata [3] f da ta ba r [3] c l k ba r vdd gnd ms f lop
Xf lopdata out4 Data out [4] fdata [4] f da ta ba r [4] c l k ba r vdd gnd ms f lop
Xf lopdata out5 Data out [5] fdata [5] f da ta ba r [5] c l k ba r vdd gnd ms f lop
Xf lopdata out6 Data out [6] fdata [6] f da ta ba r [6] c l k ba r vdd gnd ms f lop
Xf lopdata out7 Data out [7] fdata [7] f da ta ba r [7] c l k ba r vdd gnd ms f lop
.ENDS da t a ou t f l o p a r r a y

. subckt Xnchain inv D G S B
Mnmos D G S B nmos vtg m=2 w=0.090000u l =0.050000u
. ends Xnchain inv

. subckt Xpchain inv D G S B
Mpmos D G S B pmos vtg m=2 w=0.270000u l =0.050000u
. ends Xpchain inv

.SUBCKT cha in inv A Z vdd gnd
Xnchain inv Z A gnd gnd Xnchain inv
Xpchain inv Z A vdd vdd Xpchain inv
.ENDS cha in inv

.SUBCKT de lay cha in c l k c l k ba r dc lk vdd gnd
Xinv1 chain0 c l k [4] c l k [5] vdd gnd cha in inv
Xinv2 chain0 c l k c l k ba r vdd gnd cha in inv
Xinv1 chain1 c l k [5] c l k [6] vdd gnd cha in inv
Xinv2 chain1 c l k ba r c l k [1] vdd gnd cha in inv
Xinv1 chain2 c l k [6] c l k [7] vdd gnd cha in inv
Xinv2 chain2 c l k [1] c l k [2] vdd gnd cha in inv
Xinv1 chain3 c l k [7] c l k [8] vdd gnd cha in inv
Xinv2 chain3 c l k [2] c l k [3] vdd gnd cha in inv
Xinv1 chain4 c l k [8] dc lk vdd gnd cha in inv
Xinv2 chain4 c l k [3] c l k [4] vdd gnd cha in inv
.ENDS de lay cha in

.SUBCKT t r i s t a t e in out en vdd gnd
minP in ba r in vdd vdd pmos vtg w=180.000000n l =50.000000n
minN in ba r in gnd gnd nmos vtg w=90.000000n l =50.000000n
moutP en bar en vdd vdd pmos vtg w=180.000000n l =50.000000n
moutN en bar en gnd gnd nmos vtg w=90.000000n l =50.000000n
#t r i s t a t e f o r BL
moutP1 in t1 in ba r vdd vdd pmos vtg w=180.000000n l =50.000000n
moutP2 out en bar in t1 vdd pmos vtg w=180.000000n l =50.000000n
moutN1 out en in t2 gnd nmos vtg w=90.000000n l =50.000000n
moutN2 in t2 in ba r gnd gnd nmos vtg w=90.000000n l =50.000000n
. ends t r i s t a t e

.SUBCKT t r i s t a t e a r r a y fdata [0] fdata [1] fdata [2] fdata [3] fdata [4] fdata [5]
fdata [6] fdata [7] DATA[0] DATA[1] DATA[2] DATA[3] DATA[4] DATA[5] DATA[6]
DATA[7] OE vdd gnd

Xtr i out0 fdata [0] DATA[0] OE vdd gnd t r i s t a t e
Xtr i out1 fdata [1] DATA[1] OE vdd gnd t r i s t a t e
Xtr i out2 fdata [2] DATA[2] OE vdd gnd t r i s t a t e
Xtr i out3 fdata [3] DATA[3] OE vdd gnd t r i s t a t e
Xtr i out4 fdata [4] DATA[4] OE vdd gnd t r i s t a t e
Xtr i out5 fdata [5] DATA[5] OE vdd gnd t r i s t a t e
Xtr i out6 fdata [6] DATA[6] OE vdd gnd t r i s t a t e
Xtr i out7 fdata [7] DATA[7] OE vdd gnd t r i s t a t e
.ENDS t r i s t a t e a r r a y

56

.SUBCKT tes t s ram DATA[0] DATA[1] DATA[2] DATA[3] DATA[4] DATA[5] DATA[6] DATA
[7] ADDR[0] ADDR[1] ADDR[2] ADDR[3] ADDR[4] CSb WEb OEb c lk vdd gnd

Xb i t c e l l a r r a y BL [0] BR[0] BL [1] BR[1] BL [2] BR[2] BL [3] BR[3] BL [4] BR[4] BL
[5] BR[5] BL [6] BR[6] BL [7] BR[7] BL [8] BR[8] BL [9] BR[9] BL[1 0] BR[1 0] BL
[1 1] BR[1 1] BL[1 2] BR[1 2] BL[1 3] BR[1 3] BL[1 4] BR[1 4] BL[1 5] BR[1 5] WL[0]
WL[1] WL[2] WL[3] WL[4] WL[5] WL[6] WL[7] WL[8] WL[9] WL[1 0] WL[1 1] WL[1 2]
WL[1 3] WL[1 4] WL[1 5] vdd gnd b i t c e l l a r r a y

Xprecharge array BL [0] BR[0] BL [1] BR[1] BL [2] BR[2] BL [3] BR[3] BL [4] BR[4]
BL [5] BR[5] BL [6] BR[6] BL [7] BR[7] BL [8] BR[8] BL [9] BR[9] BL[1 0] BR[1 0]
BL[1 1] BR[1 1] BL[1 2] BR[1 2] BL[1 3] BR[1 3] BL[1 4] BR[1 4] BL[1 5] BR[1 5] c l k
vdd precharge a r ray

Xcolumn mux array BL [0] BR[0] BL [1] BR[1] BL [2] BR[2] BL [3] BR[3] BL [4] BR[4]
BL [5] BR[5] BL [6] BR[6] BL [7] BR[7] BL [8] BR[8] BL [9] BR[9] BL[1 0] BR[1 0]
BL[1 1] BR[1 1] BL[1 2] BR[1 2] BL[1 3] BR[1 3] BL[1 4] BR[1 4] BL[1 5] BR[1 5]
BL out [0] BR out [0] BL out [2] BR out [2] BL out [4] BR out [4] BL out [6]
BR out [6] BL out [8] BR out [8] BL out [1 0] BR out [1 0] BL out [1 2] BR out [1 2]
BL out [1 4] BR out [1 4] s e l [0] s e l b a r [0] gnd column mux array

Xsense amp array Data out [0] BL out [0] BR out [0] Data out [1] BL out [2] BR out
[2] Data out [2] BL out [4] BR out [4] Data out [3] BL out [6] BR out [6]
Data out [4] BL out [8] BR out [8] Data out [5] BL out [1 0] BR out [1 0] Data out
[6] BL out [1 2] BR out [1 2] Data out [7] BL out [1 4] BR out [1 4] SCLK vdd gnd
sense amp array

Xwr i t e d r i v e r a r r ay BL out [0] BR out [0] Data in [0] BL out [2] BR out [2] Data in
[1] BL out [4] BR out [4] Data in [2] BL out [6] BR out [6] Data in [3] BL out
[8] BR out [8] Data in [4] BL out [1 0] BR out [1 0] Data in [5] BL out [1 2]
BR out [1 2] Data in [6] BL out [1 4] BR out [1 4] Data in [7] EN vdd gnd
w r i t e d r i v e r a r r a y

Xaddress decoder a in [0] a in bar [0] a in [1] a in bar [1] a in [2] a in bar [2] a in [3]
a in bar [3] WL[0] WL[1] WL[2] WL[3] WL[4] WL[5] WL[6] WL[7] WL[8] WL[9] WL
[1 0] WL[1 1] WL[1 2] WL[1 3] WL[1 4] WL[1 5] dc lk vdd gnd addre s s decoder

Xcntr l CSb WEb OEb c lk OE EN SCLK vdd gnd c o n t r o l l o g i c
Xarow f lop array ADDR[0] a in [0] a in bar [0] ADDR[1] a in [1] a in bar [1] ADDR[2]

a in [2] a in bar [2] ADDR[3] a in [3] a in bar [3] c l k vdd gnd
addr row f l op a r r ay

Xaco l f l o p a r r ay ADDR[4] s e l b a r [0] s e l [0] c l k vdd gnd add r c o l f l o p a r r a y
Xdata in f l op a r r ay DATA[0] Data in [0] Data in bar [0] DATA[1] Data in [1]

Data in bar [1] DATA[2] Data in [2] Data in bar [2] DATA[3] Data in [3]
Data in bar [3] DATA[4] Data in [4] Data in bar [4] DATA[5] Data in [5]
Data in bar [5] DATA[6] Data in [6] Data in bar [6] DATA[7] Data in [7]
Data in bar [7] c l k vdd gnd da t a i n f l o p a r r a y

Xdataout f l op ar ray Data out [0] fdata [0] f da ta ba r [0] Data out [1] fdata [1]
f da ta ba r [1] Data out [2] fdata [2] f da ta ba r [2] Data out [3] fdata [3]
f da ta ba r [3] Data out [4] fdata [4] f da ta ba r [4] Data out [5] fdata [5]
f da ta ba r [5] Data out [6] fdata [6] f da ta ba r [6] Data out [7] fdata [7]
f da ta ba r [7] c l k ba r vdd gnd da t a ou t f l o p a r r a y

Xdchain c l k c l k ba r dc lk vdd gnd de l ay cha in
Xtr i fdata [0] fdata [1] fdata [2] fdata [3] fdata [4] fdata [5] fdata [6] fdata [7]

DATA[0] DATA[1] DATA[2] DATA[3] DATA[4] DATA[5] DATA[6] DATA[7] OE vdd gnd
t r i s t a t e a r r a y

.ENDS tes t s ram

57

	List of Figures
	List of Tables
	Abstract
	Acknowledgments
	Introduction
	Background
	SRAM Architecture
	The 6T Cell and Memory Array
	Precharge Circuitry
	Address Decoder and Word line Drivers
	Column Multiplexer
	Sense Amplifier
	Write Driver
	Control Logic

	SRAM Operation
	Signals
	Timing Considerations
	Read Operation
	Write Operation

	Software Implementation
	Main Compiler Components
	OpenRAM Design Hierarchy
	GdsMill
	Technology Directory

	OpenRAM Modules
	Physical Verification
	Memory Characterizer

	Contributions
	Snap-to-Grid
	Memory Characterizer
	Spice Stimulus
	Read and Write Delays
	Power
	Setup and Hold Time

	Characterizer Results
	Area

	Conclusion
	Future Work

	References
	Appendix A: Spice Netlist

