
UCLA
UCLA Electronic Theses and Dissertations

Title
Building Efficient, Reconfigurable Hardware using Hierarchical Interconnects

Permalink
https://escholarship.org/uc/item/2vt0b5cb

Author
Wang, Chengcheng

Publication Date
2013

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2vt0b5cb
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Building Efficient, Reconfigurable Hardware using

Hierarchical Interconnects

A thesis submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Electrical Engineering

by

Chengcheng Wang

2013

© Copyright by

Chengcheng Wang

2013

iii

ABSTRACT OF THE DISSERTATION

Building Efficient, Reconfigurable Hardware using Hierarchical

Interconnects

by

Chengcheng Wang

Doctor of Philosophy in Electrical Engineering

University of California, Los Angeles, 2013

Professor Dejan Marković, Chair

In the semiconductor industry today, ASICs are able to offer 10x-1000x higher energy

and area efficiencies than non-dedicated chips, such as programmable DSP processers, field-

programmable gate arrays (FPGAs), and microprocessors. Not surprisingly, SoCs today have

become an integration of many ASIC blocks, each performing a few dedicated tasks. The

growing size of modern SoC chips, accelerated by the increasing demands for functionalities, has

exposed the major drawback of ASIC: design cost. These large SoCs are re-designed a few times

a year to rectify hardware-bugs and to support new features. Because ASICs are not

reconfigurable, even the smallest hardware change would require a re-design. Additionally,

design cost is rising exponentially with every technology generation.

The rising design cost of ASICs has exposed a huge need today: efficiency and flexibility

must co-exist. But among flexible hardware candidates, microprocessors and programmable DSP

iv

processors are far too slow to meet the throughput requirements of ASICs. FPGAs do come close

in terms of performance, but are extremely inefficient due to its high energy and large area

overhead. We must bridge the huge gap in efficiency for FPGA to become a viable contender to

ASICs.

The primary culprit for FPGA inefficiency is interconnect, which accounts for over 75%

of area and delay. For over 20 years, 2D-mesh network has been the back-bone of FPGA

interconnects, but full connectivity in a 2D-mesh require O(N2) switches, requiring interconnects

to grow much faster than Moore‟s Law. As a result, various heuristics are used to simplify

switch-box arrays at the cost of resource utilization, but interconnect area of modern FPGA is

still around 80%. This work builds FPGA using hierarchical interconnects based on Beneš

networks, requiring O(N∙log∙N) switches. Although Beneš is commonly used in

telecommunication, this work is its first silicon realization of a FPGA. To realize a highly

efficient interconnect architecture, significant pruning of the network is required. Novel

techniques such as fast-path U-turns and unbalanced branching are also implemented. A custom

place-and-route software is developed to map benchmark designs on a variety of interconnect

candidates. From mapping results, the architecture is updated based on network utilization until

an optimized design is converged. The large area of FPGA chip requires aggressive power gating

(PG), but interconnect signals often lack spatial locality, make it block-level PG difficult. A

novel PG circuit technique is developed to power-gate individual interconnect switches with very

small overhead in area and performance. Such technique requires fundamental circuit changes,

even modifying the CMOS inverter.

With innovations in chip architecture, circuit design, and extensive software

development, this work has demonstrated 5 user-mappable FPGAs (from 1K–16K LUTs) all

v

with around 50% interconnect area: a 3–4x reduction from commercial FPGAs while preserving

connectivity. An energy efficiency of 1.1 GOPS/mW is the highest among reported FPGAs, and

is 22x more efficient than the most efficient commercial FPGA today, significantly bridging the

efficiency gap between FPGA and ASIC.

vi

The dissertation of Chengcheng Wang is approved.

Mani B. Srivastava

William J. Kaiser

Mario Gerla

Dejan Marković, Committee Chair

University of California, Los Angeles

2013

vii

TABLE OF CONTENTS

I Introduction ..1

 1.1 The Drive Towards Efficiency...1

 1.2 What is Efficiency? ..2

 1.3 The Efficiency Tradeoff ...3

 1.4 Efficiency and Flexibility – Current Solutions ..5

 1.5 Keeping Up with the Standards ...7

 1.6 The Cost of Chip Design..8

 1.7 Candidates for Reconfigurable Hardware ..9

 1.8 Thesis Outline ..11

II FPGA Interconnects: the Source of its Inefficiency ..12

 2.1 Brief History of FPGAs ...12

 2.2 Interconnects: the Backbone of an FPGA ..18

 2.3 Scaling a 2D-mesh Network ..21

 2.4 Hierarchical Network – A Scalable Solution ...23

 2.5 Prior Attempts at Hierarchical FPGAs ..28

 2.6 Our Challenges...31

viii

III Architecture Design of Hierarchical FPGAs ...33

 3.1 Realizing Large-Scale Beneš Networks...33

 3.2 Implementing a 2048-LUT FPGA Interconnect ..36

 3.3 Radix-3 Boundary-less Interconnect ..38

 3.4 Fast-Path Interconnect ...44

 3.5 Interconnect Cost vs. Gate Cost ...47

 3.6 Local Interconnect vs. Branch Interconnect ..48

 3.7 Micro-architecture of a Switch Matrix ..50

 3.8 Implementing a 16K-LUT FPGA Interconnect ...52

IV Interconnect Circuit Design ..58

 4.1 Key Building Blocks in Interconnect Circuits ...58

 4.2 Static Multiplexers and Area-Performance Tradeoff59

 4.3 Strategies for Interconnect Buffering...63

 4.4 Designing Configuration Bit-Cells ..66

 4.5 Power-gating Switch Matrices ...68

 4.6 Power-On Sequence of the Interconnect Network73

ix

V Configurable Logic Block Design and Chip Integration79

 5.1 Configurable Logic Blocks for the 2048-LUT FPGA79

 5.2 Macro-based Chip Integration for the 2048-LUT FPGA86

 5.3 Fine-Grained CLBs for the 16K-LUT FPGA ..91

 5.4 Medium-Grained CLBs for the 16K-LUT FPGA98

 5.5 Coarse-Grained CLBs for the 16K-LUT FPGA102

 5.6 Macro-based Chip Integration for the 16K-LUT FPGA105

VI Software Flow and Design Mapping ..113

 6.1 Overview of FPGA Software Mapping Flow ..113

 6.2 FPGA Synthesis and LUT Packing..116

 6.3 FPGA Partitioning and Placement ...120

 6.4 FPGA Routing ...124

 6.5 Bitstream Generation ...129

VII Test Infrastructure and Measurement Results ...130

 6.1 Matlab Simulink-based Testing Infrastructure ..130

 6.2 Measurement Results of our 2048-LUT FPGA134

 6.3 Updated Testing Infrastructure ..138

 6.4 Measurement Results of our 16K-LUT FPGA ..140

 6.5 Chips Summary and Die Photos ..142

VIII Conclusion and Future Outlook ...147

x

References ...150

xi

LIST OF FIGURES

1-1 Energy and area efficiency of the ISSCC/VLSI chips from the past decade.4

1-2 Block diagram of an NVIDIA Tegra 2 SoC for smartphones.5

1-3 Evolution of common multimedia and radio standards. ..7

1-4 Cost of chip design with every technology node. ..8

2-1 Schematic diagram from a Xilinx XC2000 of CLB and interconnects.12

2-2 Illustration of Stacked-Silicon Technology in Xilinx Virtex-7.14

2-3 CLB diagram of Xilinx XC3000, XC4000, and XC5200.16

2-4 CLB diagram of Xilinx a Virtex-6 and 7 series FPGA. ...17

2-5 A sample 2D-mesh architecture with I/O connections and switch boxes.19

2-6 Interconnect architecture of a Xilinx XC4000 FPGA..20

2-7 Area, delay and power breakdown of a modern 2D-mesh FPGA21

2-8 Interconnect resources per CLB for Xilinx Virtex-4 vs. Virtex-522

2-9 A simple 3-stage Beneš network connecting 2 LUTs ..24

2-10 A 5-stage Beneš network merged into a 3-stage using 2-bit 2x2 switches25

2-11 A 5-stage Beneš network connecting 8 LUTs ...26

2-12 A 3-stage folded Beneš network connecting 8 LUTs ..27

2-13 A hierarchical Beneš interconnect architecture using alternated x-y routing28

2-14 A 5-stage Beneš network merged into a 3-stage using 2-bit 2x2 switches29

2-15 The HSRA architecture without and with wiring shortcuts30

2-16 The multilevel hierarchical FPGA architecture ...31

xii

3-1 A hierarchical macro-based implementation of a 2D-Beneš network35

3-2 Interconnect architecture for our 2048-LUT FPGA, one quadrant shown36

3-3 Interconnect architecture for our 2048-LUT FPGA, one quadrant shown37

3-4 An original 16-LUT Beneš network, with isomorphic transformation to shorten

nearest-neighbor lengths, and with boundary-less radix-3 switches in stage 139

3-5 A 16-LUT Beneš network with boundary-less radix-3 switches in stage 1, and

with boundary-less radix-3 switches in stages 1 and 2 ..40

3-6 A 16-LUT Beneš network, with boundary-less radix-3 switches in stages 1 and

2, with boundary-less radix-3 switches in stage 1-3, and rearranged for

distributed routing ..43

3-8 An original radix-4 16-LUT Beneš network and with boundary-less radix-6

switches in stage 1 ...44

3-9 A routing example from LUT 2 to 16 without fast path and with fast path45

3-10 A routing example with routing obstruction that still allows a slower fast-path

and allowing no fast-path ...46

3-11 Two SM design with same gate cost, but a) with more wiring than b)47

3-12 An example where traditional-Beneš based SM experiences local interconnect

congestion, whereas a SM design with more local interconnects can utilize the

fast path ..49

3-13 A switch-matrix example with more local interconnects than branch

interconnects ..50

3-14 Internal mux interconnect of an example radix-3 switch matrix51

3-15 1-D SM architecture of the 16K-LUT FPGA, showing the lower 10 SM stages ..55

xiii

3-16 2-D SM architecture of the 16K-LUT FPGA, showing the top 5 stages of

wiring ...56

4-1 An example switch matrix with its internal circuitry ...58

4-2 A static pass-transistor mux with high VDD for the bit-cells60

4-3 A 10-input static pass-transistor mux with 2 critical-path inputs and 8 non-

critical-path inputs, requiring 8 bit-cells ..62

4-4 Illustration of input-buffer sharing inside a switch matrix64

4-5 Illustration of signal buffer across interconnects of a non-inverting mux, an

inverting mux with input inverters, and an inverting mux with output inverters ..65

4-6 Physical design of the configuration bit-cells in 5T SRAM and 6T SRAM68

4-7 A 4-input static mux with output inverter and traditional power gating69

4-8 A 4-input static mux with output inverter and our proposed power gating71

4-9 A 4-input static mux with output inverter and our proposed, tri-state PG72

4-10 An example of an unconfigured mux where s0 and s3 are both conducting73

4-11 An example of an unconfigured mux where VDDL is „0‟, no current flows74

4-12 An example of an unconfigured mux from Figure 4.8, where VDDL is „0‟ but

PG is „1‟, causing current flow ..75

4-13 An example of an unconfigured mux from Figure 4.9, where VDDL is „0‟ but

PG is „1‟, causing current flow ..75

4-14 Example illustration with an updated design that uses VDDL signals, applied on

a) the design from Figure 4.8 and b) the design from Figure 4.976

4-15 Example illustration with an updated design that uses VDDH,LATE signals,

applied on the design from Figure 4.8 and the design from Figure 4.977

xiv

5-1 Resource allocation for interconnects and CLBs ...80

5-2 Block diagram of a Logic CLB and a DSP CLB ...81

5-3 Block diagram of a Logic CLB and a DSP CLB ...82

5-4 The 6 BRAM modes: dual 8-bit read, 16-bit read, 8-bit masked write, 16-bit

read, 16-bit masked write, 8-bit write, dual 8-bit read, and 16-bit write, 16-bit

read ...84

5-5 Write-logic architecture of the 1Kb reconfigurable dual-port BRAM85

5-6 Read-logic architecture of the 1Kb reconfigurable dual-port BRAM86

5-7 Design of a bit-cell (BC) array with its bit-line (BL) and word-line (WL)

controls ...87

5-8 Layout of a CLB-SM macro with 4 SMs, a BC array, and BL and WL controls ..88

5-9 Top-level layout floorplan of the 2048-LUT FPGA with 512 CLBs90

5-10 Area impact of our work: a 1:1 logic-to-interconnect ratio90

5-11 Micro-architecture of a Slice L/M CLB with dual-edged clocking93

5-12 Slice M microarchitecture of the memory and shift-register logic97

5-13 Architecture of a commercial FPGA DSP accelerator ..99

5-14 A commercial dual-port block RAM and its block architecture and datapath101

5-15 Core schematic and interconnect architecture of a 16-core DSP processor102

5-16 Example communication applications of the DSP processor103

5-17 The FFT architecture and radix factorizations of different FFT resolutions105

5-18 An example physical design of a SM macro ...106

5-19 Illustration of the hierarchical design methodology used for chip integration108

xv

5-20 Layout examples of a) Slice L, b) Slice M, c) DSP, and d) BRAM CLBs and

SMs ..109

5-21 Top level CLB and SM architecture, illustrating scan chain for BL and WL111

5-22 Area impact of our two FPGAs: a 1:1 logic-to-interconnect ratio.......................112

6-1 Software mapping flow of commercial FPGA tools and our flow115

6-2 A snapshot of a synthesized netlist using our custom standard-cell library117

6-3 The updated software mapping flow for our new FPGA119

6-4 Hierarchical partitioning performed on top-level, and one quadrant121

6-5 A routing-preference example for a point-to-point connection, LUT to LUT125

7-1 A IBOB platform use for Matlab Simulink-based testing infrastructure131

7-2 An example IBOB Simulink testbench for chip configuration and testing132

7-3 Energy efficiency and power ratio at maximum frequency and minimum energy

..136

7-4 Comparison of energy efficiencies against state-of-the-art reconfigurable

hardware ...137

7-5 Xilinx evaluation platforms – Kintex-7 KC705 and Virtex-7 KC707139

7-6 Board layout of the chip-on-board testboard with two FMC connectors140

7-7 Chip photo and summary our 2048-LUT FPGA and our 16K-LUT FPGA143

8-1 Energy and area efficiency from modern VLSI chips and our chips146

8-2 NEM relays as PMOS and NMOS-equivalent devices, a static switch, and

a SRAM bit-cell ...148

8-3 A relay-interconnect concept with CMOS logic on the bottom and NEM-

interconnects on the top 2 metal layers ..149

xvi

LIST OF TABLES

I-I ASIC vs. FPGA – efficiency vs. flexibility ..10

VI-I Routing time of our original router vs. PathFinder-based router126

VII-I Key measurement results from our 2048-LUT FPGA chip135

VII-1I Chip performance comparison against commercial FPGA and ASIC

implementations, based on design mapping and conservative timing

estimations

...141

VII-III Coarse-grain accelerator performance against commercial FPGA

implementations ..142

xvii

ACKNOWLEDGEMENTS

It has been six years since I started my graduate life at UCLA, and it has certainly been

the best six years of my life so far. First of all, I am wholeheartedly thankful to my advisor,

Dejan Marković, for his patience, knowledge, and sheer passion for this work. Additionally, I‟ve

also learned a great lot from him about presentation and communication skills.

 I wish to thank Professor Mani Srivastava, William Kaiser, and Mario Gerla for being on

my dissertation committee. Their helpful and thoughtful comments are definitely appreciated.

 I am also grateful for having the best group members, especially Fang-Li Yuan and

Tsung-Han Yu, who have endurance endless nights with me during tape-out madness and chip

testing. They are the hardest working colleagues I‟ve ever had, and yet also exert such positive

energy. I would also like to acknowledge other lab members, especially Vaibhav Karkare and

Yuta Toriyama for incessant discussions in the cubicles, technical or not. It is really difficult to

find a group so diverse, and yet so unified; so technically strong, and yet so pleasant and

interesting to be around.

 I sincerely thank my parents for their never-ending care, and for always being my closest

teacher and counselor. They shaped me the way I am today, and I am forever indebted to them. I

also wish to thank my (soon-to-be-wife) Helen for her daily support and for being the biggest

blessing in my life. Above all, I thank my God and Savior. His patience, grace, and love have

been my greatest strength.

xviii

CURRICULUM VITAE

EDUCATION

M.S., Electrical Engineering, University of California, Los Angeles, (GPA 3.76)

 2007-2009

B.S., Electrical Engineering and Computer Sciences, University of California, Berkeley,

 (GPA 3.8)

 2003-2005

EMPLOYMENT HISTORY

Graduate Student Researcher – UCLA Electrical Engineering: Fall 2007 – Spring 2013

Design and Optimization of Low-Power ASIC and FPGA

 Developing FPGA with a novel interconnect architecture that significantly reduces

interconnect area and power by 3-4x compared to existing FPGA architectures. Chips

fabricated using IBM90, ST65, TSMC65, IBM45SOI, and TSMC40 processes. Single-

handedly performing all aspects of the project, from chip architecture, circuit design, to

software tool design. The most recent test chip is by far the largest VLSI chip made in

UCLA, and is one of the most complex chips made by any academic institution.

 Extensive experience in high-performance, low-power digital circuit design. Developed

novel circuits for low-leakage power gating and high-speed interconnect performance.

Also developed a more accurate delay model to compensate for the lack of accuracy in

logical effort models under low-power optimizations.

Nano-electro-mechanical Relays

 Designing circuits using nano-electro-mechanical relays, which have infinite off-

impedance, low on-impedance, and low threshold voltage, making them attractive for

digital-circuit, power-gating, and especially FPGA applications.

Word-length Optimization

 Developed and maintained a word-length optimization too to automatically determines

the optimal word-lengths of every logic block given a quantization-error requirement.

Very effective for power-performance optimization in the system level, especially when

combined with architectural optimizations.

VLSI Design Engineer - Zoran Corporation, Sunnyvale, CA: Fall 2005 - Fall 2007

Designed numerous blocks for HDTV applications, including H*264 decoding, HD video

capture (component and HDMI), histogram computation, MPEG post-processing, and

others.

Involved with the entire design flow, including RTL design, verification, synthesis, timing-

closure, place & route, ECO, FIB, driver design, SIMD microcode design, and chip-

testing (using ATPG and FPGA).

HDTV Intern - Zoran Corporation, Sunnyvale, CA: Summer 2005 - Fall 2005

Developed and maintained a co-simulation environment that runs the RTL testbench in

parallel with a software model

Developed Specmen code to randomly generate SIMD instructions for the co-simulation

testbench.

xix

Co-developed a complete set of microcode for H*264 that runs on the SIMD processor,

including all modes of intra-/inter- prediction and reconstruction, for Luma and Chroma

modes.

HONORS AND AWARDS

Outstand Dissertation Award, UCLA Electrical Engineering, 2013

Broadcom Fellowship (co-recipient), 2012

Jack Raper Award for Outstanding Technology Directions (co-recipient), ISSCC 2010

Department Fellowship, UCLA, 2007-2009

High Honors, UC Berkeley, 2003-2005

PUBLICATIONS:

Journals:

C. C. Wang, C. Shi, R. W. Brodersen, and D. Markovic, "An Automated Fixed-Point

Optimization Tool in MATLAB XSG/SynDSP Enviornment," ISRN Signal Processing,

Volume 2011

M. Spencer, F. Chen, C. C. Wang, R. Nathanael, H. Fariborzi, A. Gupta, H. Kam, V. Pott, J.

Jeon, T-J. K. Liu, D. Markovic, E. Alon, V. Stojanovic, "Demonstration of Integrated Micro-

Electro-Mechanical Relay Circuits for VLSI Applications," IEEE Journal of Solid State

Circuits, Jan. 2011

C. C. Wang and D. Markovic, “Delay Estimation and Sizing of CMOS Logic Using Logical

Effort with Slope Correction,” IEEE Trans. of Circuits and Systems-II, vol. 56, issue 8, pp.

634-638, August 2009

Conferences:

C. C. Wang, F.-L. Yuan, H. Chen, D. Marković, "A 1.1 GOPS/mW FPGA Chip with

Hierarchical Interconnect Fabric," in Proc. Int. Symposium on VLSI Circuits (VLSI'11), pp.

136-137, June 2011

F. Chen, M. Spencer, R. Nathanael, C. C. Wang, H. Fariborzi, A. Gupta, H. Kam, V. Pott, J.

Jeon, T-J. K. Liu, D. Markovic, V. Stojanovic, E. Alon, "Demonstration of Integrated Micro-

Electro-Mechanical Switch Circuits for VLSI Applications," in Proc. IEEE Int. Solid-State

Conference (ISSCC'10), pp. 26-27, Feb. 2010

Magazine Articles:

D. Markovic, C. C. Wang, L. Alarcon, T.-T. Liu, and J. Rabaey, "Ultralow-Power Design in

Near-Threshold Region," Proceedings of the IEEE, vol. 98, no. 2, pp. 237-252, Feb. 2010

Book Chapters:

D. Marković and R. W. Brodersen, DSP Architecture Design Essentials (Book Chapter 10 on

Word-length Optimization), Springer, July 2012

Patents:

C. C. Wang, D. Markovic, “A Radix-3 Network Architecture For Boundary-Less

Hierarchical Interconnects”, March 2013, Application No. 61/786,676

C. C. Wang, D. Markovic, “Fine-Grained Power Gating in FPGA Interconnects”, March

2013, Application No. 61/791,243

1

CHAPTER I

Introduction

1.1 The Drive Towards Efficiency

For 50 years, Moore‟s law has driven the rapid scaling in transistor count and feature

size. Transistor performance also increased at this pace, essentially doubling its operation

frequency with every generation. Few seemed to care that doubling the performance also doubles

the power consumption, and by the early 2000s, consumer CPUs have reached over 3 GHz,

consuming around 100 watts of power. It then became clear that frequency scaling is reaching

the end of the road: power, thermal, and physical constraints became just as important as circuit

performance.

“I don‟t want a kilowatt in my laptop,” said Gordon Moore at the International Solid-

Sates Circuits Conference (ISSCC) Keynote in 2003 [Moore03]. The industry was recognizing a

turning point towards efficiency: design tradeoffs that balance performance, power, and area

requirements. Often times, obtaining efficiency requires fundamental hardware changes.

“General-purpose hardware is generally not power-efficient," said Shekhar Borkar of Intel at the

same conference. Over the past 10 years, the industry has shifted from high-frequency, single-

core CPUS, to a heterogeneous integration of multi-core CPUs and dedicated accelerators.

In 2003, many were concerned to maintain the 100W power budget. But in just a few

years, the industry has commercialized sub-10W processors that fit in thin ultra-books, and even

sub-1W processors for smartphones. Dictated by the changes in the scaling trend, these products

are designed with efficiency in mind.

2

1.2 What is Efficiency?

Efficiency, unlike many traditional criteria, requires a combination of metrics. Energy

efficiency (or power efficiency) is arguably the most common efficiency metric. It quantifies

work per unit energy, and is generally measured in billions of operations per second (GOPS) per

milliwatt (GOPS/mW). In VLSI circuits, this translates directly to battery life, thermal limit, and

reliability.

One may wonder, for example, how energy efficiency differs from just low power. The

difference is in operations. In an extreme case, any chip can consume 0 watts if it‟s off! But that

is trivial because it is not performing not performing any operations. A similar analogy applies

for performance: many smartphone processors today include 4 or 8 cores, but delivering peak

performance in all cores will drain the battery very quickly, and can even exceed the phone‟s

thermal budget. From these examples, it should be clear that low power, or high performance

alone are not sufficient quantifications for real-life suitability. Efficiency balances these

tradeoffs, to perform the most operations performed using the least amount of resources.

Area efficiency is also a common criterion, quantifying work per unit of area, generally

measured in billions of operations per second per mm
2
 (GOPS/mm

2
). This translates directly to

die size, cost, and yield. Naturally, we would like the smallest die size for the same functionality

just to save cost. Although Moore‟s law is providing ever-increasing transistor density, designing

a large chip is still expensive, and die yield remains an issue for large designs. Many complex

VLSI designs are even divided into multi-chip modules (MCM) to avoid large die sizes,

improving yield and easing debugging.

3

1.3 The Efficiency Tradeoff

Depending on the application, the designer may emphasize one efficiency metric over

another (e.g. smartphone processors place huge requirements for energy efficiency, but a low-

cost USB microcontroller would need high area efficiency). Energy and area efficiencies also

contain a mutual tradeoff: a low-power chip may employ low-frequency cores with very low

supply voltage (VDD), but utilize massive parallelism to achieve its required throughput. Such a

chip will have high energy efficiency, but lower area efficiency due to parallelism. In contrast, a

single high-performance core running at nominal VDD is generally less energy efficient, but

achieves high area efficiency.

To have a fair comparison, it is necessary to evaluate a chip based on both criteria. This

leads us to an interesting question: how efficient are today‟s chips? We have gathered VLSI chip

data from ISSCC and VLSI Symposia (VLSI) conferences in the past decade, along with

published data from field-programmable-gate-arrays (FPGAs). Normalizing and averaging all

chips to 65nm technologies, we observe a clear trend in Figure 1.1.

4

Figure 1.1: Energy and area efficiency of the ISSCC/VLSI chips from the past decade, averaged.

From Figure 1.1, we observe more than 1000× difference in efficiency between

microprocessors and dedicated hardware (ASIC), with FPGAs and programmable digital-signal-

processors (DSPs) in between. This exposes a key tradeoff between efficiency and flexibility,

Intuitively, whenever we take a dedicated portion of a chip and make it programmable, we need

to implement additional hardware. In the extreme case of a microprocessor, the actual arithmetic-

logic-unit (ALU) becomes only a small portion of the entire chip, leading to its low energy and

area efficiencies.

Today‟s semiconductor industry has a strong push for efficiency, so not surprisingly,

more and more designs require specialized hardware. However, what if we need

programmability? In the example of a smartphone, a microprocessor must remain, or else it

cannot run any software. In addition to running an operating system, the smartphone must

perform different multimedia tasks on-demand, while maintaining communications through the

1010.1

Average Area Efficiency (GOPS/mm2)

0.001

1

10

0.01

A
ve

ra
ge

 E
n

e
rg

y
Ef

fi
ci

e
n

cy

(G
O

P
S/

m
W

)

µProc

Prog. DSP

Dedicated

100

0.1

FPGA

ISSCC & VLSI 1999-2011, averaged

Effi
cie

ncy

Fle
xib

ili
ty

5

digital-front-end. At the same time, the smartphone must have good battery life and maintain a

reasonable cost. These conflicting requirements call for both efficiency and programmability, but

how can we have both?

1.4 Efficiency and Flexibility – Current Solutions

Since no single hardware today can match the efficiency of dedicated chips, modern

VLSI designs have integrated many dedicated blocks onto a single chip, centrally controlled by

one or more microprocessors. This creates a system-on-a-chip (SoC) design where the flexible,

inefficient microprocessors run the operating system, and then invokes dedicated, highly-

efficient accelerators when necessary. Originally, SoCs were designed to integrate on-chip

memory, I/O peripheries, and components to assist the central microprocessor. Modern SoCs

have outsourced many more tasks to the accelerators, such that the microprocessor has become

more like an arbiter.

Figure 1.2: Block diagram of an NVIDIA Tegra 2 SoC for smartphones.

Actual

Processor

Dedicated

DFE

6

As shown in Figure 1.2, the NVIDIA Tegra 2 is marketed as a 1 GHz dual-core processor

for Android smartphones. However, we see that the actual processor only occupies a small

fraction of the total chip area. The majority of the chip is occupied by dedicated accelerators, and

the digital-front-end (DFE) uses another ASIC chip. Recent research [Goulding11] has even

proposed to use dedicated accelerator cores to replace portions of the operating system software

to further improve chip efficiency. This accelerator-dominated SoC design exists in every

smartphone today, and has enabled us to integrate unprecedented functionalities into our phones

while still maintaining decent battery life. However, this is not a fully scalable solution.

First, this approach leads to large portions of “dark silicon” [Taylor12]. As smartphones

are required to pack more functionality, the number of dedicated blocks will increase. Given the

strict power budget in today‟s SoCs, generally only one or few blocks can be active at a time,

while the remaining sections of the chip are idle or power gated. Mmodern SoCs are designed for

this scenario, and enabling all the blocks will actually melt the chip. As technology scales, some

predicted that only 25% of the chip is exploitable at 22nm, and only 10% is usable at 11nm

[Donovan10]. Although energy efficiency of the idling blocks is remedied by power-gating, area

efficiency is still reduced.

Second, and more importantly, the accelerators are dedicated hardware. Although the

operating system can be updated via software, the accelerators cannot. As a result, a single

change in one of the blocks would require a re-design. By integrating more blocks, we are more

prone towards having this issue. Even when the hardware changes are not caused by design

error, there are many other factors what would require a re-design.

7

1.5 Keeping Up with the Standards

Modern SoCs, especially for smartphones, integrate many multimedia and

communication features, and most of these features are based on common standards. Since the

accelerators are designed for these standards, whenever a communication or multimedia standard

needs to be changed or updated, a re-design of the chip is required.

Unfortunately, standards for communication and multimedia are constantly evolving, and

are being introduced at an accelerated pace (Figure 1.3). This figure is already not showing many

additional features such as Bluetooth and near-field communications (NFC), or revisions within

a current standard.

Figure 1.3: Evolution of common multimedia and radio standards.

As a result of frequent updates, the chips often need to “keep up” with the standards. It is

common for ASIC chips to be re-designed at least once a year, even though most of the blocks

on the chip are legacy designs. One or more additional revisions are often done between new

designs to correct for hardware bugs. Therefore, it is common to see design teams taping out

around the year. This may not be a big issue if chip designs are cheap. At almost 50 years after

AMPS ETACSNMT

GSM
HSPAIS-95

802.11a 802.11g 802.11n

802.16e 802.16m

CDMA
Analog

TDMA

OFDM

OFDMA
EDGE

HSPA+IS-2000 EV-DO

LTE-Adv.
LTE

Radio Tech.

Year

1 G
2 G 3 G

4 G

WLAN

1980 1990 2000

JPEG

2010

MPEG-1
Video CD

Video

Image

Media Type

Year

Audio
MPEG-2

HDTV, MP3

JPEG
2000

MPEG-4
WMV/VC1H.261 H.263

H.264
Blu-ray

H.265MPEG A–E

JPEG XR

H.264 MVC
3D

PCM
Audio-CD

PDM
SACD

1980 1990 2000 2010

Media Standards

Radio Standards
802.11ac

8

Moore‟s Law, we would expect chip costs to have dropped down significantly, but what is really

the cost of chip design?

1.6 The Cost of Chip Design

Even though Moore‟s Law provides lower transistor cost per generation, ASICs are still

expensive to design, and are becoming increasingly so with every technology generation. The

majority of the chip-design cost is not in the transistors. As shown in Figure 1.4, the increasing

design complexity, increasing man-hours per design, expensive CAD licenses, and higher

fabrication costs are driving up total cost at an accelerated pace. At 28nm, the non-reoccurring

engineering (NRE) cost of a custom-made IC is more than $50 million [Sperling12].

Figure 1.4: Cost of chip design with every technology node [Merritt13].

In the very near future, we will no longer be able to afford re-designing chips on an

annual basis. Actually, most ASIC designs are now cost-limited to 65nm and older technologies,

about 3 generations behind state-of-the-art processes. Only a few high-volume, high-profit

chipmakers are able to maintain cutting-edge processes in their design. The newest processes are

also far costlier for foundries to develop. Without many customers able to afford the newest

products, it will take foundries far longer to recuperate the costs, thus creating a vicious cycle

Total Development Cost ($M)

40

30

20

10

0
180 150 130 90 65 45

Design/Verification

Software Licenses

Testing/Board Design

Masks & Wafers

Technology Node (nm)

9

that slows down the progress for new technologies.

How can more chip-makers afford the newest technology? They need to amortize the

design cost. They need volume. Chips can no longer be designed, used for 1 year, and then

thrown away. We need to enable hardware re-use. The designed chips need to remain

competitive and up-to-date for more than one product cycle. To achieve such flexibility, we need

reconfigurable hardware. But to maintain the efficiencies of current SoCs, we need efficient,

reconfigurable hardware.

1.7 Candidates for Reconfigurable Hardware

Among the candidates for reconfigurable hardware, microprocessors are least efficient.

They will not replace ASICs. In fact, the heterogeneous SoCs today is a result of processor

inefficiency. Apart from microprocessors, FPGAs and programmable DSPs are possible

candidates for reconfiguration, but they are very different. Programmable DSPs are software

controlled, and it is difficult for them to execute the bit-true, cycle-true behaviors of a dedicated

hardware. In addition, they generally have lower throughput unless massively-parallel

architectures are used, such as single-instruction-multiple-data (SIMD). But in the case of a

SIMD, all cores must perform the identical function, which is often not the behavior of a

dedicated hardware. SIMD does find its use, for example, in image processors where all cores

are required to perform the same operations on a massive array of data [Nakajima06, Noda07,

Kurafuji11].

Among these candidates, FPGAs come closest in mimicking ASIC functionalities. They

are designed to emulate dedicated hardware in a bit-true, cycle-true manner. They have high

throughput due to the implicitly parallel, independent logic blocks, just like ASICs. In terms of

10

functionalities for the end-user, it is indistinguishable whether the chip is an ASIC or an FPGA.

In terms of the design process, the difference is “night-and-day”.

Comparing ASIC design versus FPGA design (Table I), FPGA is really appealing from a

design perspective, especially for design verifications and prototypes. With supporting software,

the user designs can be mapped to run on the FPGA in a matter of hours. Comparing to the

expensive process of metallization rework or chip fabrication, the hardware reconfigurability of

FPGAs places it in another league. For many VLSI designers, the ability to rapidly verify design

changes in silicon without any fabrication rework is an indispensable tool. In many designs that

require constant changes, or for small companies that cannot afford to support an entire physical

design team (followed by a million-dollar fabrication process), FPGA is becoming used in end-

products as well. In recent years, even analog FPGAs are being proposed in research [Scholo12].

Table 1-I: ASIC vs. FPGA – efficiency vs. flexibility.

But if FPGAs can behave just like ASICs, and are so much easier to design with, why are

they not taking over? FPGA companies often use cost comparisons (as in Figure 1.4) for

marketing purposes to steer designers away from building ASICs, but the fact is, modern SoCs

rarely employ FPGA hardware. Why are chip designers still opting for the difficult, and

expensive, ASIC design process? Because FPGAs pose a huge efficiency gap; it pays significant

Logic Design, Physical Design Logic Design only

Licenses: Synthesis, P&R, etc. Fewer Licenses

90nm or older 32nm or newer

2 – 4 months fabrication time None

Expensive to Design Inexpensive to Design

Efficient Operation Inefficient Operation

Efficiency (ASIC) Flexibility (FPGA)vs.

11

penalties in area (17–54x), speed (2.5–6.7x), and power (5.7–62x) compared to ASIC designs

[Kuon07, Kuon207, Ahmed10]. Such overheads are still prohibitively high for many ASIC

designers to adopt an FPGA design.

For FPGA to be implemented in a mass-consumer market, especially in power-

constrained environments such as smartphones, the inefficiency of FPGA operations must be

corrected, or else our cellphone battery will last just a few minutes!

1.8 Thesis Outline

The focus of this work is to build efficient, reconfigurable hardware. In Chapter II, we

first identify the source of inefficiency from today‟s FPGAs, and propose to use a hierarchical

interconnect architecture to reduce the interconnect area. Chapter III highlights the interconnect

architecture design and optimization techniques for hierarchical FPGA realization. Chapter IV

illustrates the circuit-level techniques used in designing an energy-efficient large-scale

hierarchical network. Chapter V illustrates the design process and hardware features of our

FPGAs that achieve 3-4x interconnect area reduction over commercial FPGAs. Chapter VI

discusses the algorithms and features of the software tool used for mapping designs onto our

FPGA. Chapter VII highlights our testing platform and provides key measurement results.

Chapter VIII concludes the thesis and provides an outlook on nano-electro-mechanical (NEM)

relays as FPGA interconnects.

12

CHAPTER II

FPGA Interconnects: the Source of its Inefficiency

2.1 Brief History of FPGAs

The concept of a reconfigurable hardware started over 30 years ago, but it was regarded

as prohibitively expensive because of its large overhead in area over ASICs. Transistors were

expensive, and no one wanted to pay the huge area penalty for reconfigurability. Fortunately, the

semiconductor industry rapidly expanded at the pace of Moore‟s law, and such large area

overhead became more tolerable, finally leading to a first FPGA by Xilinx Corporation in 1985.

The original FPGA, XC2000 series, had 64 or 128 look-up-tables (LUTs). As shown in Figure

2.1 a), each configurable-logic block (CLB) contains just one LUT and one selectable flip-flop.

With so few CLBs, the interconnect network is also simple. The interconnects run in x- and y-

direction around the CLBs, twisting with every segment, and some of the intersections have

switch matrices placed diagonally, consisting of 6 pass-transistors per switch (Figure 2.1 b)

[Brown92].

The initial perceptions of the XC2000 were “small, slow, expensive, and „different‟”

[Alfke07], but the XC3000 introduced in 1987 became very successful even with very

rudimentary software support. Fast-forward to today, FPGAs can support up to 500,000 LUTs

per die, and the largest Xilinx Virtex-7 even supports 2 million LUTs using Stacked-Silicon

Technology (Figure 2.2) [Saban12].

13

a)

b)

Figure 2.1: Schematic diagram from a Xilinx XC2000 of a) CLB and b) interconnects.

CLB

Interconnect

14

Figure 2.2: Illustration of Stacked-Silicon Technology in Xilinx Virtex-7.

Due to yield and fabrication constraints, each die is limited to around 500,000 LUTs,

occupying 529 mm
2
 in 28nm. “Stitching” the 4 chips together requires a very large interconnect

bandwidth, far greater than that offered by standard packaging solutions. Therefore, a 65-nm

passive silicon interposer is mounted onto the 4 FPGA dies to create a high-bandwidth

interconnect, providing more than 10,000 connections between each adjacent die. For

communication with external I/Os, the interposer uses through-silicon vias (TSVs) to connect the

FPGA die to the C4 bumps on the package. Although the stacked silicon technology is not

monolithic, many of the performance and cost benefits of a 3-D monolithic FPGA from [Lin07]

still apply.

Of course, FPGA progressions are more than just area expansion, the CLB core of the

FPGAs has also evolved over the years (Figure 2.3) [Rose93]. Many features are added to

implement commonly-used ASIC features very effectively, such as multiple flip-flops with

clock-enables (XC3000), a dedicated ripple-carry chain (XC4000), and LUT-combining

multiplexers (XC5200).

15

a)

b)

XC3000

XC4000

16

c)

Figure 2.3: CLB diagram of Xilinx a) XC3000, b) XC4000, and c) XC5200.

Over the past ten years, CLB sizes grew even more. Xilinx has transitioned to four 4-

input LUTs per CLB in its Virtex-4 [XlinxV408], then to four 6-input LUTs per CLB in Virtex-5

[XlinxV512]. The newer Virtex-6 and 7 even have dual flip-flops mated to each of the 6-input

LUTs (Figure 2.4) [XilinxV6CLB12].

The newer CLBs place an even greater emphasis on software design. The performance of

the FPGA depends heavily on the mapping algorithm – packing critical-path gates within a CLB

would provide much faster performance than spreading the critical path across multiple CLBs.

Since the interconnect network cannot provide full connectivity across all CLBs (Chapter III),

packing LUTs locally into CLBs can reduce the number of I/Os required by the CLB [Betz98],

and the software tool also needs to provide quality place-and-route results to ensure feasible

design mapping.

XC5200

17

Figure 2.4: CLB diagram of Xilinx a Virtex-6 and 7 series FPGA.

Virtex 6/7

18

Over the years, the FPGA software support has developed into a complete design suite.

With extensive support for automated design mapping from HDL into bitstream, very little effort

is required by the end-user. High-level synthesis tools even support mapping software programs

(such as C or Matlab models) directly onto the FPGA. This many layers of abstraction provide a

simple user experience, but it also shields us from seeing the intricate details of a FPGA design,

especially interconnect routing.

2.2 Interconnects: the Backbone of an FPGA

In FPGA design, great emphasis is placed on the CLBs and other programmable blocks,

and documentations are widely available. On the other hand, interconnects have mostly remained

in the dark. Although FPGAs have grown enormously in size since the XC2000, the fundamental

interconnect architecture still remains (Figure 2.5). In 2D-mesh interconnects, LUTs are placed

in configurable logic blocks (CLBs), and interconnects run in the x- and y- direction surrounding

the CLBs. I/O connection switches tie the CLB I/O to the interconnect network. Arrays of switch

boxes are placed at interconnect crossings to select and buffer the programmed path. Each

switch-box contains pass-transistors programmable by the configuration memory. Since a full

switch-box array at every interconnect crossing requires too much area, various heuristics are

used to simplify the arrays at the cost of interconnect connectivity [DeHon99, Tessier00, Lin09].

In Figure 2.5, the example network only implements switch boxes along one main diagonal and

two sub-diagonals of the switch-box array. In this simplistic case, each interconnect trace enters

a switch-box at every interconnect crossing, the selected path is then buffered to drive the next

trace.

19

Figure 2.5: A sample 2D-mesh architecture with I/O connections and switch boxes.

To improve routing performance and add path diversity, each interconnect trace can be

heuristically designed to travel for 1, 2, 4, 6, or even more CLBs before reaching the next switch.

A path from one switch to the next is called a “hop”. From an illustration in Xilinx XC4000

interconnects (Figure 2.6) [XilinxXC99], we see different interconnects labeled as “single”,

“double”, “quad”, “long”, or even “global” based on the distance of each hop. Coming out of a

CLB, a signal can be connected to a selection of hop lengths, giving the router freedom to choose

a longer or shorter hop based on its routing requirements. Modern FPGAs have also migrated

towards uni-directional routing, thus removing bi-directional buffers and significantly reducing

interconnect loading [Lemieux04, Lee06].

CLB

LUT LUT

LUT LUT

CLB

LUT LUT

LUT LUT

20

Figure 2.6: Interconnect architecture of a Xilinx XC4000 FPGA [XilinxXC99].

With extensive techniques in interconnect pruning, along with ever more complex CLBs,

one may expect the FPGA area to be dominated by CLBs. It is called a “gate-array” after all.

Surprisingly, even with such heuristics, 80% or more of the area on modern FPGAs are occupied

by interconnects [Bolsens06]. The interconnect area is actually 4 times the logic area! In

addition, interconnect also accounts for the majority of the delay and power in today‟s FPGAs

(Figure 2.7). The reality could be even worse: if we were to remove the larger IP blocks and

accelerators from the FPGA, and compare the area of interconnect versus the area of CLBs, the

ratio could be closer to 10:1.

21

Figure 2.7: Area, delay and power breakdown of a modern 2D-mesh FPGA.

2.3 Scaling a 2D-mesh Network

The key cause for interconnect overhead is the scalability of 2D-mesh interconnects. In

the worst case, the number of switch boxes grows as O(N
 2

) with the number of LUTs. Although

heuristics are able to reduce the number of switches, there is a limit. Rent‟s rule (T = t∙g
 p

) can be

used to model interconnects, where g is the number of gates, exponent p is the Rent‟s coefficient

for modeling the number of I/Os, and t is a constant of proportionality. In typical cases, the

interconnect complexity per logic block is O(N
 0.75

) for random logic, which is still O(N
 1.75

) for a

chip of N logic blocks [Landman71].

For very regular designs, such as a memory banks, the complexity per logic is O(N
 0.5

).

Since FPGA mapping software employs intelligent gate placements, the logic is not completely

random, but it is certainly not as regular as memory banks. We therefore expect the actual Rent‟s

exponent p to be between 0.5 and 0.75 [Tessier00]. But for very large designs (large N), O(N
 0.5

)

to O(N
 0.75

) provides too large of a range for this model to be useful. Nevertheless, it provides us

theoretical lower and upper bounds on interconnect complexity.

Even using an optimistic exponent of p = 0.5, the total complexity of O(N
 1.5

) still

Clock

20%

Logic

20%

Interconnect

60%

Logic

25%

Interconnect

75%

Logic

20%

Interconnect

80%

Area Delay Power

22

requires FPGA sizes to scale much faster than Moore‟s Law. Figure 2.8 shows the interconnect

expansion from Xilinx Virtex-4 to Virtex-5 [XlinxV506, Minev09]. Adding 50% of interconnect

logic per CLB poses a significant area increase even for just 1 product generation. Scaling N

from 64 in XC2000 to 500,000 in modern FPGAs, it becomes clear why interconnect area is a

key concern today.

Figure 2.8: Interconnect resources per CLB for Xilinx Virtex-4 vs. Virtex-5 [XlinxV506].

In more recent years, many have proposed asynchronous architecture for FPGAs, aiming

to improve its performance [Teifel04, Teifel204, Manohar06]. Such techniques have claimed to

achieve > 1 GHz performance from FPGAs by using asynchronous hand-shake and token-based

heavy pipelining. However, such technique failed to recognize the root cause of FPGA overhead,

which is the scalability of the interconnect area. In contrast, asynchronous FPGAs require a 3x

Virtex-4 vs. Virtex-5

23

overhead in interconnect area: replacing 1 signal with 3 asynchronous hand-shake signals,

further exacerbating the effect of interconnect overhead. Whenever signal fan-outs are required,

complex acknowledgement circuitry is required to wait for the slowest path to return the token

before passing it on. More recent work by [LaFrieda10] acknowledged the large area and power

overhead required by asynchronous FPGAs, and proposed a two-phase logic and voltage-scaling

in the acknowledge signals to reduce the power consumption, but the large overhead in area

remains. Although asynchronous FPGAs claims to run up to 3x faster than their synchronous

counterparts, the 3x penalty in interconnect area will quickly nullify any performance advantages

on large designs. Recent work in [Devlin11] uses dual pipeline (separate pipelines for precharge

and evaluation phases) to further improve asynchronous performance, but requires 5 physical

wires for 1 interconnect signal. Clearly, these approaches are not scalable to larger designs. For

efficient, high-performance FPGAs, what we need is an interconnect architecture that is scalable

in area and performance, and not brute-force circuit implementations.

2.4 Hierarchical Network – A Scalable Solution

To address the non-scalability of 2D-mesh, we adopted a hierarchical interconnect

architecture based on a Beneš network. In telecommunication, Clos, Beneš, and similar

hierarchical networks are well-known to be rearrangeably non-blocking network for point-to-

point connections, and are commonly used in communications [Clos53, Benes62, Kleinrock77,

Yang99, Dally04]. There has not been a silicon realization of a Beneš network for FPGAs until

this work. To demonstrate its feasibility, the original Beneš network is first modified into a

realizable FPGA architecture.

As a demonstration, we start with 2 LUTs, each with just 2 inputs and 2 outputs (Figure

24

2.9). This network requires 3 stages, and each stage uses 2x2 switch matrices (SMs) for signal

routing. Each SM can support both uni-cast and multi-cast of incoming signals, as shown. This

network is rearrangeably non-blocking for uni-cast, meaning the signal routing can be rearranged

to support arbitrary LUT-to-LUT connections.

Figure 2.9: A simple 3-stage Beneš network connecting 2 LUTs.

In FPGA applications, it is common to use 4 to 6 input LUTs with 2 outputs. To illustrate

a 4-input, 2-output LUT network, the 3 stage network is recursively extended to a 5-stage

network (Figure 2.10), and can be further extended to larger networks. This network remains

non-blocking for uni-cast, and because there are only half as many LUT outputs as inputs, it is

virtually non-blocking even for multi-cast based on our simulations. Since each LUT only has 2

outputs, the red SMs can always multi-cast the signals, and can be removed. In addition, the 4

inputs to a LUT may arrive in any order, therefore the gray SMs can be removed as well. Note

that for some CLBs, such as DSP accelerators or control signals, the inputs may not arrive in any

order, and in those cases the grey SMs must remain. For simplicity, the center 3 stages are

LUT
1

LUT
2

LUT
1

LUT
2

Switch
Matrix

uni-cast multi-cast

25

abstracted as a single 4-input, 4-output SM, which is essentially a 2-bit 2x2 switch because it

propagates two paths in each direction. The simplified diagram is shown on the bottom of Figure

2.10.

Figure 2.10: A 5-stage Beneš network merged into a 3-stage using 2-bit 2x2 switches.

Scaling to a larger network, we observe one key problem with the original Beneš

network. Figure 2.11 shows an 8-LUT network using 5 SM stages. The downside is that all paths

are required to traverse on all 5 stages regardless of the physical distance between the source and

destination. As shown in Figure 2.11, LUT 7 and 8 are physically adjacent to each other, but the

network requires the signal to traverse through all hierarchies while a simple switch in the first

stage would suffice. Another issue with this network is input/output locality. In an FPGA, the

input and output of a LUT is coming from one hardware block, but in this network, the inputs

and outputs are split across two sides of the network. Since this diagram is not representing

physical implementation, it can be misleading to the FPGA designer.

LUT
1

LUT
2

LUT
1

LUT
2

LUT
1

LUT
2

LUT
1

LUT
2

SM

Switch
Matrix

26

Figure 2.11: A 5-stage Beneš network connecting 8 LUTs.

To avoid traversing unnecessary hierarchies to speed up interconnect routing, and to

provide an interconnect that closely resembles the physical implementation, we employ a folded

Beneš network (Figure 2.12), also called a fat-tree network by [Leiserson85]. This similar

architecture has been employed in supercomputing machines, such as the Connection Machine

CM-5 with 256, 544, and even over 1000 processing nodes [Leiserson96].

As shown, 4 LUTs are connected via 2 stages of SM, and another 4 LUTs are to be

connected with a 3rd SM stage. This effectively leads to an interconnect complexity of

O(N∙logN), which scales much better than O(N
 2

) in 2D-mesh interconnects.

LUT
1

LUT
2

LUT
3

LUT
4

LUT
5

LUT
6

LUT
7

LUT
8

LUT
1

LUT
2

LUT
3

LUT
4

LUT
5

LUT
6

LUT
7

LUT
8

27

Figure 2.12: A 3-stage folded Beneš network connecting 8 LUTs (4 LUTs shown).

Although drawn with 2 arrows, each trace is actually 2 uni-directional signals. Each

switch matrix then performs 4 uni-directional connections both upwards and downwards. Signals

will come from the LUT output, traverse up to the required hierarchy, and traverse back down to

the LUT input. Because the network is still rearrangeably non-blocking, full connectivity can be

obtained.

Although this architecture reduces interconnect complexity by reducing the number of

switches, routing congestion remains an issue. In Figure 2.12, the first SM stage has 2x2 wires

crossing each other, but the second stage has 4x4 wires crossing, and the 3
rd

 stages has 8x8. Each

additional SM stage doubles the routing congestion. This O(N) congestion requires much larger

area for higher level SMs, making physical design more difficult and less area-efficient.

Fortunately, implementing a Beneš network on silicon gives us freedom in both x- and y-

directions. Although [Manuel 07] illustrated a manual layout method for a Beneš layout on a 1-

dimensional array, most silicon implementations allow for a 2-dimensional layout. To alleviate

congestion, routing is alternated between the x-y directions, doubling the routing congestion for

every 2 stages. The routing congestion is reduced from O(N) to O(N
 0.5

) (Figure 2.13), and the

fully symmetrical implementation also eases physical design.

Switch
Matrix

LUT
1

LUT
2

LUT
3

LUT
4

CLB

SM

28

Figure 2.13: A hierarchical Beneš interconnect architecture using alternated x-y routing.

Another change from the original Beneš network is unequal wire lengths. At every

hierarchy, the LUTs near the center are connected to create shorter routes, and the LUTs near the

edges have longer routes. In terms of logic connectivity, this wiring difference is an isomorphic

transformation from the original network, thus the interconnect connectivity remains unchanged

[Wu80, Duato02, Konda08]. Yet this difference in wire lengths gives routing tools options for

faster paths on timing-critical routes. In physical design, this also allows the center routes to

remain at the lower metal layers without crossing over the longer routes on the upper metal

layers, further avoiding congestion.

2.5 Prior Attempts at Hierarchical FPGAs

Numerous publications have discussed hierarchical FPGA implemented as tree-of-

meshes (Figure 2.14) [Greenberg88, Lai97, Tsu99, Wong04, DeHon04]. It is a limited bisection

network, where the mesh connectivity decreases for upper hierarchies. In some implementations

[Tsu 99], even connectivity at local levels is limited. Additionally, a centralized routing network

is required at every hierarchy, which increases routing congestion, and central switches are still

29

based on 2D-mesh. The layout in [Greenberg88] intelligently distributes the meshes across the

layout into “cubies”, but the complexity of every hierarchy remains that of a mesh-based switch.

Figure 2.14: A hierarchical interconnect architecture using alternated x-y routing [DeHon04].

Unlike tree-of-mesh interconnects, our Beneš interconnect architecture evenly distributes

routing across all LUTs instead of crowding them into centralized “hubs,” easing routing

congestion and shortening the wire length significantly. This is different from the butterfly layout

in [DeHon00, Wong04] where centralized hubs are used, but hubs are distributed across different

“cubies,” thus requiring each signal to traverse across different hubs in different cubies just to

switch hierarchy, significantly increasing interconnect delay.

There is one known silicon implementation of a tree-of-mesh FPGA, the hierarchical,

synchronous reconfigurable array (HRSA) [Tsu99]. The architecture uses a Radix-4 topology

with centralized switches and bi-directional routing. Rent‟s exponent of 0.5 is used, so every

hierarchy prunes the interconnect connectivity by 50%. Due to the centralized hubs used in this

architecture, processing elements (PEs, equivalent to LUTs) that are physically close to each

other may be required to use a detour routing. A heuristic is then employed to add “shortcuts” to

30

connect these PEs using additional wiring (Figure 2.15).

Figure 2.15: The HSRA architecture without (left) and with (right) wiring shortcuts.

The HSRA architecture was able to maintain good operation frequency due to its heavy

pipelining, but the interconnect network with a Rent‟s exponent of 0.5 offered “very limited”

connectivity. There has not been a follow-up chip after the original HSRA in 1999.

 A multilevel hierarchical FPGA was published by [Mrabet06], although no silicon

realization is attempted. The architectures use a Radix-4 topology with a Rent‟s exponent of 1,

but only on the downward paths. The upward path, on the other hand, provides no path diversity

(Figure 2.16). Therefore, the overall path diversity of this architecture is very limited, and the

interconnect connectivity when mapping real-world designs is about 30-50%, often requiring a

2K-LUT FPGA to map 1K-LUT designs.

No Shortcut With Shortcuts

31

Figure 2.16: The multilevel hierarchical FPGA architecture.

2.6 Our Challenges

Although hierarchical FPGA has great appeal on paper, it has not received much attention

in practice. The main reason is that it has yet to demonstrate any advantage over 2D-mesh: its

30-50% logic utilization is significantly lower than the 85% utilization achievable by commercial

FPGAs, and it has yet to demonstrate any notable performance, power, or area advantage. The

speed improvement in HRSA is due to heavy pipelining, not interconnect improvements.

On the other hand, commercial FPGAs today are already very mature products, often

made as full-custom designs with state-of-the-art processes (and needing more than 10 layers of

metal). The CAD tools are also capable of delivering very high quality-of-results (QoR) within a

easy-to-use framework.

For our work to be considered worthwhile, we need to demonstrate and realize a

Upward: no Radix Downward: Radix 4

32

hierarchical FPGA with significant benefits in performance and efficiency. To demonstrate its

practical values, software development is also needed to allow users to map their own designs.

Overall, this project requires innovation and extensive work in creating an interconnect

architecture, realizing it in silicon, and developing software tools to demonstrate its advantages.

These details are covered in the following chapters of this thesis.

33

CHAPTER III

Architecture Design of Hierarchical FPGAs

3.1 Realizing Large-Scale Beneš Networks

To illustrate the silicon realization of the Beneš network, we start with the architecture

design applied to our two FPGAs. The two chips shown in this dissertation have approximately

10× difference in logic capacity, and have different interconnect architecture as well. The first

chip is a more straight-forward implementation, while the second chip utilized extensive

architectural optimization techniques illustrated in Section 3.3 through 3.7.

The first test chip we published in [Wang11] contained 2048 look-up-tables (LUTs), each

with 4 inputs and 2 outputs. Built on a Radix-2 architecture, it requires 11 levels of

interconnects. Since every level translates to one SM stage, 11 levels of SMs are required. To

ensure 100% connectivity in all cases, every LUT would need to have 11 levels of SM to

preserve the full Beneš network. Using the 2D-layout method illustrated in Figure 2.13,

expanding from 4 stages for 16 LUTs to 11 stages for 2048 LUTs would still be feasible to route,

but it would occupy a significant amount of area. According Rent‟s rule, this brute-force

implementation represents a Rent‟s exponent of p = 1. Realistically, there is no need to

implement an interconnect network with more than p = 0.75 connectivity, as the area penalty

associated with building larger interconnects far outweighs the benefits from chip utilization

[Tessier00].

Mathematically speaking, implementing a network with p < 1 requires interconnect

pruning at every stage. For example, when p = 0.75, every additional stage should implement

25% fewer wires than the previous stage. For FPGA realizations, there are three key reasons that

34

make this exact implementation impractical.

First, mapping FPGA design is a very non-deterministic process that depends heavily on

the design to be mapped and the algorithms used by the place-and-route (P&R) software. The

design to be mapped can have a Rent‟s exponent p anywhere between 0.5 and 0.75, which is a

very wide range for interconnect routing. A very regular design, such as a feed-forward finite-

impulse-response (FIR) filter, combined with a high-quality P&R tool, could be easily mapped

onto an architecture with p = 0.5. On the other hand, a more complex design such as fast Fourier

transform (FFT) will consume significantly more interconnect resources. There is no single

exponent that can accurately represent all design complexities.

Second, the interconnect utilization is uneven across the SM stages. An effective P&R

software would attempt to keep most of the signals local, thus shortening the critical path and

reducing the active wire lengths. As a result, it is important to have sufficient routing resources

for the lower levels to provide sufficient path diversity for the P&R tool. It can be worthwhile to

use a Rent‟s exponent of p = 1 for the lower hierarchies, and use a more aggressive pruning (e.g.

p = 0.5) for the upper hierarchies. From our architecture evaluations, pruning the lower

hierarchies, even with p = 0.75, can lead to sever routing problems and performance degradation.

Lastly, and most importantly, the FPGA architecture needs to be realized in a 2-

dimensional layout, and its large size can lead to a very complex physical design if not planned

carefully. As shown in Figure 3.1, an efficient physical implementation can allow the FPGA chip

designer to start with creating just one LUT macro and its SMs. Although the interconnect wire

length between the macros can be different, the hardware logic and the I/O port for each macro

are identical. The fully symmetrical architecture allows the LUT macro to be replicated

throughout the entire chip, drastically improving design time. The designer can also add more

35

hierarchies to the physical design flow, such as creating a 4-LUT macro out of the 1-LUT macro,

then creating a 16-LUT macro from the 4-LUT macro. However, if the interconnect is to be

pruned at every stage, the regularity of the layout can no longer be preserved: assuming all LUTs

have SMs at stage 1, using p = 0.75, only 75% of the LUTs will have stage-2 SM, and only 56%

of the LUTs will have stage-3 SM, and so on. Without regularity in the layout, not only will the

interconnect take much longer to design, the reduced SM does not necessarily lead to reduced

area. In Figure 3.1, if SMs are reduced for LUT 4, 8, 12, and 16, it would leave a gap in the

middle of the layout because the surround macros are larger. This results in a worst-case

situation of lost interconnect connectivity and lower layout density due to wasted area. When

pruning SMs, the designer needs to make sure the reduced SM actually leads to reduced area,

and must not over-complicate the layout process. This requires very judicious SM pruning at

very strategic locations.

Figure 3.1: A hierarchical macro-based implementation of a 2D-Beneš network.

Overall, realizing a large Beneš network in FPGAs requires 3 things to keep in mind:

interconnect connectivity, layout regularity, and layout density.

LUT
1

LUT
2

LUT
3

LUT
4

LUT
6

LUT
5

LUT
8

LUT
7

LUT
11

LUT
12

LUT
9

LUT
10

LUT
16

LUT
15

LUT
14

LUT
13

36

3.2 Implementing a 2048-LUT FPGA Interconnect

The 2048-LUT test chip requires 11 levels of interconnects. To preserve interconnect

connectivity for lower levels, we maintained connectivity (Rent‟s p = 1) until SM stage 7,

followed by 2 stages of p = 0.5, and full connectivity for the top 2 stages. One quadrant of the

FPGA architecture is shown in Figure 3.2: the quadrant is divided into 4 macros, each containing

128 LUTs. Inside each 128-LUT macro, all the LUT macros are identical; they are implemented

similarly to Figure 3.1, but with 7 stages of SM per LUT. The half-SMs shown in yellow allow 2

out of 4 inputs to propagate upwards, realizing Rent‟s p = 0.5. Two concatenated half-SMs leads

to a top-level connectivity of 25%.

Figure 3.2: Interconnect architecture for our 2048-LUT FPGA, one quadrant shown.

21 43 65 8 9 107 11

128
LUT

128
LUT

128
LUT

128
LUT

N8:2

N6:1

N6:1

N6:2

SM Stage

 : Full SM
 : Half SM

N8:2 N6:2

N6:1 N6:1

37

The interconnect network is partitioned into three sub-networks: N8:2, N6:2, and N6:1,

where NP:Q represent a network of P full-SMs and Q half-SMs. Intelligent SM-pruning also

requires the pruned SM to translate to an area reduction. From the architecture in Figure 3.2, it is

clear that the 3 types of SM macros, N8:2, N6:2, and N6:1, will each occupy a different area,

because they each contain different number of SM stages. N8:2 is the largest macro, followed by

N6:2, with N6:1 being the smallest. To avoid gaps in the layout area, all SMs have the same width.

Therefore N6:1 macros are shorter. N6:2 is also shorter than N8:2, leading to some open space. In

Chapter V, we will see that the opened space is used by Block RAMs. Because BRAM CLBs are

larger than regular CLBs, the area pieces together very densely.

The top level of the chip is shown in Figure 3.3 with the 4 hierarchies of top-level wires

shown in colors corresponding to those in Figure 3.2. The top-level layout is symmetrical in the

x- and y- direction, allowing the single 512-LUT quadrant to be replicated to form the other 3

quadrants. The chip is divided into 16 macros of 128 LUTs each: macros with N8:2 interconnects

are placed near the center for shorter top-level routing, branching into N6:2 on the left and right.

N8:2 and N6:2 then both branch into N6:1 on the top and bottom. This physical placement avoids

long wires at the top level, and therefore minimizes interconnect buffers and further reduces area.

Figure 3.3: Interconnect architecture for our 2048-LUT FPGA, one quadrant shown.

N8:2

N6:1

N6:1

N6:2N6:2

38

This 2048-LUT architecture is relatively straightforward, using only 2 types of SMs to

form 3 types of LUT macros. Scaling into larger designs with even more hierarchies, more

advanced architectural techniques are used to further optimize the design. They are highlighted

in the following sections (3.3 – 3.6).

3.3 Radix-3 Boundary-less Interconnect

Although hierarchical routing‟s O(N∙logN) complexity is much better than O(N
 2

) from

2D-mesh, it is sometimes inefficient for local routing if the leaves are crossing a high-radix

boundary. For example, In Figure 3.4a), LUT 8 and 9 are neighbors, but signals have to traverse

up 4 stages of network, and then zig-zag their way down the hierarchy to for LUTs to

communicate with each other. Such lack of spatial locality is not desirable.

One method to shorten the nearest-neighbor routing lengths is an isomorphic

transformation, as shown in Figure 3.4b). Connections from LUT 8 to LUT 9 can now traverse

directly up to stage 4, make a U-turn, and traverse straight down. In terms of connectivity, it is

well known that isomorphic butterfly structures maintain the same logic connectivity [Wu80].

Although the wire length travelled has reduced, the number of switches has not: the signal still

needs to traverse up and down 4 hierarchies for communication between LUT 8 and 9.

39

a) b) c)

Figure 3.4: a) An original 16-LUT Beneš network, b) with isomorphic transformation to shorten

nearest-neighbor lengths, and c) with boundary-less radix-3 switches in stage 1.

In this section, we propose a method of applying higher radix switches on the lower SM

levels to utilize spatial locality in routing, allowing efficient interconnect routing for direct

neighbors. We call such network a boundary-less radix-3 network [Wang13].

To convert a radix-2 network to a boundary-less radix-3 network, we first identify the

center 2x2 routing of each stage, shown in the dashed circle in Figure 3.4b). It is noted that such

center 2x2 routing only connects across an interconnect length of 1 (2
0
). The first stage

transformation into a radix-3 boundary-less interconnect is shown in Figure 3.4c). All center 2x2

routing in the dashed circles are moved to stage 1. This converts stage 1 into a radix-3

interconnect, and all stage-1 switches are capable of communicating with their immediate

neighbors, both up and down the SM stages.

LUT
9

LUT
10

LUT
11

LUT
12

LUT
13

LUT
14

LUT
15

LUT
16

LUT
1

LUT
2

LUT
3

LUT
4

LUT
5

LUT
6

LUT
7

LUT
8

Stage 1 2 3 4

LUT
9

LUT
10

LUT
11

LUT
12

LUT
13

LUT
14

LUT
15

LUT
16

LUT
1

LUT
2

LUT
3

LUT
4

LUT
5

LUT
6

LUT
7

LUT
8

Stage 1 2 3 4

LUT
9

LUT
10

LUT
11

LUT
12

LUT
13

LUT
14

LUT
15

LUT
16

LUT
1

LUT
2

LUT
3

LUT
4

LUT
5

LUT
6

LUT
7

LUT
8

Stage 1 2 3 4

40

With stage 1 completes, we now convert stage 2 to a boundary-less radix-3 switch. We

first identify the remaining center 2x2 routing above stage 2 (Figure 3.5a), shown in dashed

circles. Note that these 2x2 routings only connect across an interconnect length of 3 (2
1
+1).

These 2x2 routings are then moved down to between stages 1 and 2 (Figure 3.5b), converting the

second stage into a radix-3 boundary-less interconnect.

a) b)

Figure 3.5: A 16-LUT Beneš network with a) boundary-less radix-3 switches in stage 1, and b)

with boundary-less radix-3 switches in stages 1 and 2.

The same transformation continues for stage 3-4: we first identify the remaining center

2x2 switches above stage 3, shown in dashed circle (Figure 3.6a). For stage 2-3, we can note the

remaining 2x2 switches are actually double pairs, one for LUTs 6−11, and one for LUTs 5−12.

The inner 2x2 of the double pair connects across a distance of 5 (2
2
+1), while the outer 2x2

connects across a distance of 7 (2
2
+3). To maintain consistency, we then move the center double

LUT
9

LUT
10

LUT
11

LUT
12

LUT
13

LUT
14

LUT
15

LUT
16

LUT
1

LUT
2

LUT
3

LUT
4

LUT
5

LUT
6

LUT
7

LUT
8

Stage 1 2 3 4

LUT
9

LUT
10

LUT
11

LUT
12

LUT
13

LUT
14

LUT
15

LUT
16

LUT
1

LUT
2

LUT
3

LUT
4

LUT
5

LUT
6

LUT
7

LUT
8

Stage 1 2 3 4

41

pair from stage 3-4 (dashed circle) down to stage 2-3 (Figure 3.6b), transforming stages 2-3 into

a boundary-less interconnect. It is clear that this stage-by-stage transformation can be continued

to the top of the hierarchy. Alternatively, the designer may also choose to stop the transformation

at any hierarchy, and preserve the remaining upper hierarchies as traditional radix-2 network.

a) b) c)

Figure 3.6: A 16-LUT Beneš network, a) with boundary-less radix-3 switches in stages 1 and 2,

b) with boundary-less radix-3 switches in stage 1-3, and c) rearranged for distributed routing.

From the intermediate result in Figure 3.6b), we have shown that 50% of the wires

branching out above stage 1 have been removed, and the wires on the bottom-most stage have

doubled. Since the upper-stage wires are long, and the bottom-stage wires are very short, such

tradeoff results in significant wire-length reduction for the architecture. Though shown for a 16-

LUT example, this methodology can be extended to a network of arbitrary size.

From this illustration, we see that all stages above stage 1 have unevenly distributed

LUT
9

LUT
10

LUT
11

LUT
12

LUT
13

LUT
14

LUT
15

LUT
16

LUT
1

LUT
2

LUT
3

LUT
4

LUT
5

LUT
6

LUT
7

LUT
8

Stage 1 2 3 4

LUT
9

LUT
10

LUT
11

LUT
12

LUT
13

LUT
14

LUT
15

LUT
16

LUT
1

LUT
2

LUT
3

LUT
4

LUT
5

LUT
6

LUT
7

LUT
8

Stage 1 2 3 4

LUT
9

LUT
10

LUT
11

LUT
12

LUT
13

LUT
14

LUT
15

LUT
16

LUT
1

LUT
2

LUT
3

LUT
4

LUT
5

LUT
6

LUT
7

LUT
8

Stage 1 2 3 4

42

routing: some switches have to connect more routing than others. This scenario occurs because

the wires above stage 1 have been reduced by 50%. To form a regular routing pattern, one

method is to evenly re-distribute the interconnect routing: the dual routes branching out of stages

1-4 are re-distributed across all switches, resulting in the final routing architecture shown in

Figure 3.6c). We see that the re-distributed routes for stages 1-4 use only single 2x2 butterflies,

as opposed to the double 2x2 butterflies used below stage 1.

Given the 50% wiring reduction above stage 1, an alternative method of wire re-

distribution is to prune the number of switches above a certain hierarchy. As shown in Figure

3.7a), one method is to prune the switches in stage 3 by moving some wires to a double wire,

reducing the number of stage-3 switches by half. Since the remaining stage-3 switches are

centered, this results in shorter interconnect length for stage 3-4, and reduces the number of

switches in stage 4 by 50%.

Another method is to prune the switches in stage 4 by moving some wires to a double

wire, reducing the number of stage-4 switches by half (Figure 3.7b). This can allow the stage-4

switches to reside on 1 half of the network, which can be useful in reducing the wire length of

upper hierarchies. For example, for the 2048-LUT FPGA in Figure 3.2, SM stages 7 and 8 can

benefit from this technique because the wires are merged toward the center, where the N8:2

interconnects reside.

43

a) b)

Figure 3.7: A boundary-less radix-3 network with switches pruned at a) stage 3 and b) stage 4.

Although the illustrations above use a radix-3 boundary-less architecture as an expansion

to radix-2, it is not limited to this case. For example, a radix-6 architecture can be used as an

expansion to radix-4; a radix-12 architecture can be used as an expansion to radix-8; and so on.

For the sake of completeness, Figure 3.8a) illustrates a radix-4 Fat Tree using 4x4

switches. Two stages of radix-4 switches are required to implement a 16-LUT network. To

construct a boundary-less network, we first identify the wires in stage 1-2 that have a distance of

4 (4
0
): these wires are bolded in Figure 3.8a). These selected wires are then moved down to

below stage 1 (Figure 3.8b) to form a boundary-less network in the first stage. The center

switches for LUTs 5-12 are radix-6, while LUTs 1-4 and LUTs 13-16 are only radix-5 in this

illustration because they rest on the boundary of the network.

LUT
9

LUT
10

LUT
11

LUT
12

LUT
13

LUT
14

LUT
15

LUT
16

LUT
1

LUT
2

LUT
3

LUT
4

LUT
5

LUT
6

LUT
7

LUT
8

Stage 1 2 3 4

LUT
9

LUT
10

LUT
11

LUT
12

LUT
13

LUT
14

LUT
15

LUT
16

LUT
1

LUT
2

LUT
3

LUT
4

LUT
5

LUT
6

LUT
7

LUT
8

Stage 1 2 3 4

44

a) b)

Figure 3.8: a) An original radix-4 16-LUT Beneš network and b) with boundary-less radix-6

switches in stage 1.

3.4 Fast-Path Interconnect

In VLSI designs, there usually exists a critical path, that is, a path that is more difficult to

meet timing constraints. In most VLSI designs, the vast majority of the paths do not reside on the

critical path, but those that are on the critical path usually determine the performance of the

entire design. We therefore propose an addition to the interconnect SMs to allow faster

performance for critical-path gate: fast path.

In the example in Figure 3.9a), we see an example routing from LUT 2 to LUT 16. One

possible route is highlighted. Beneš network offers many path diversity (thus it is rearrangeably

LUT
9

LUT
10

LUT
11

LUT
12

LUT
13

LUT
14

LUT
15

LUT
16

LUT
1

LUT
2

LUT
3

LUT
4

LUT
5

LUT
6

LUT
7

LUT
8

Stage 1 2 Stage 1 2

LUT
9

LUT
10

LUT
11

LUT
12

LUT
13

LUT
14

LUT
15

LUT
16

LUT
1

LUT
2

LUT
3

LUT
4

LUT
5

LUT
6

LUT
7

LUT
8

45

non-blocking; without path diversity, the network offers very limited connectivity (such as

[Mrabet06] from Section 2.5)), and we are simply choosing one path as an example. The signal

needs to traverse up to stage 4 before U-turning back down. With the addition of fast-path,

signals are allowed to travel from the LUT output directly to all SMs within its macro (Figure

3.9b). Therefore, the signal is able to travel directly from the output of LUT 2 to the SM on stage

4, and then U-turning back down. Following the macro-based design methodology highlighted in

Figure 3.1, a LUT is placed with all its SMs in one macro during physical design, so adding fath-

path routing within the macro does not add any interconnect routing outside the macro.

a) b)

Figure 3.9: A routing example from LUT 2 to 16 a) without fast path and b) with fast path.

For each point-to-point connection, there is always at least one fast-path available, but

other routes that conflict with the fast-path routes must take the slower route. In a timing-driven

place-and-route flow, this gives the software tool freedom to choose a faster path for more

LUT
9

LUT
10

LUT
11

LUT
12

LUT
13

LUT
14

LUT
15

LUT
16

LUT
1

LUT
2

LUT
3

LUT
4

LUT
5

LUT
6

LUT
7

LUT
8

Stage 1 2 3 4

LUT
9

LUT
10

LUT
11

LUT
12

LUT
13

LUT
14

LUT
15

LUT
16

LUT
1

LUT
2

LUT
3

LUT
4

LUT
5

LUT
6

LUT
7

LUT
8

Stage 1 2 3 4

SM

Macro

46

timing-critical routes.

In cases where routing obstructions occur, it is sometimes still possible to utilize portions

of a fast-path, and use regular routing for the remainder of the routes. One such example is

illustrated in Figure 3.10a), although it would be ideal to have fast-path directly connected to SM

stage 4, the router can still connect fast-path to SM stage 3, and use regular routing to complete

the route. In other cases, it is sometime impossible to use any fast-path, and regular routing must

be used entirely (Figure 3.10b). Even under such cases, path-diversity allows for many routing

choices, and the boundary-less radix-3 network sometimes even allows for fewer SM stages. In

Figure 3.10b), one example route requires 4 SM stages, while another requires just 3 SM stages.

It is up to the timing-driven P&R tool to select the faster path for timing-critical nets.

a) b)

Figure 3.10: A routing example with routing obstruction that a) still allows a slower fast-path and

b) allowing no fast-path.

LUT
9

LUT
10

LUT
11

LUT
12

LUT
13

LUT
14

LUT
15

LUT
16

LUT
1

LUT
2

LUT
3

LUT
4

LUT
5

LUT
6

LUT
7

LUT
8

Stage 1 2 3 4

SM

Macro

LUT
9

LUT
10

LUT
11

LUT
12

LUT
13

LUT
14

LUT
15

LUT
16

LUT
1

LUT
2

LUT
3

LUT
4

LUT
5

LUT
6

LUT
7

LUT
8

Stage 1 2 3 4

47

3.5 Interconnect Cost vs. Gate Cost

In an FPGA, upper-level interconnects are often required to travel long distances, and it

would be beneficial to reduce the number of these nets. On the other hand, interconnect switches

are also a dominating factor for chip area, and it would be beneficial to reduce the number of

these gates as well. Although it is ideal to reduce both, there also exists a trade-off between these

two factors.

From the simple example in Figure 3.11, the two types of SMs have the same gate cost.

Actually the 4-input muxes in Figure 3.11b) cost more when implemented as a traditional mux,

as it takes three 2-input muxes to implement. As a static parallel mux (Chapter IV), a 4-input

mux occupies as much area as two 2-input muxes. The muxes in Figure 3.11a) only allow for

odd-to-odd and even-to-even switching, but the SM has double the number of muxes.

a) b)

Figure 3.11: Two SM design with same gate cost, but a) with more wiring than b).

In terms of connectivity, the design in Figure 3.11a) is superior. For example, if input (1)

travels to output (1), the design in Figure 3.11b) will not be able to send another signal in the

horizontal direction. But the design in a) is still able to send another signal through output (2) as

long as it does not need to route input (3). Overall, design in a) provides more path diversity for

SM

1

2

3

4

1

2

3

4

SM

1

2

3

4

1

3

1

3

1

2

4

2

1

3

3

2

4

4

1

3
1

2

4

1

3
3

2

4

48

routing.

A different scenario arises when the wire lengths are long, and signals (3) and (4) would

need to be buffered (sometimes more than once). When the wires are long and the buffers are

large, the signal buffering area can easily outweigh the mux area. In this case, the design in a) is

clearly inferior: it requires double the number of buffers but does not provide double the

connectivity of b).

For lower-level SMs, where the wiring is short and does not require additional buffers, it

is beneficial to use limited-input muxes, but implement more of them to improve path diversity.

For upper-level SMs with high wiring cost, it is beneficial to reduce to number of wires, in which

case full-input muxes should be used, but fewer should be implemented to save wiring cost.

3.6 Local Interconnect vs. Branch Interconnect

In FPGA, interconnect wiring is expensive, because it contributes to routing congestion

and buffer gate area. But local interconnects are much cheaper to implement. In traditional Beneš

networks, each SM provides just as much local interconnects as branch interconnects (Figure

3.12), even though interconnects that branch to long wires cost significantly more hardware area.

To reduce hardware, it is more effective to prune branch interconnects before pruning local

interconnects. Local interconnects alone can also contribute to path diversity. In the example in

Figure 3.12 (right), the fastest route from LUT 2 to LUT 14 is using the fast path, but let us

assume two downward paths between SM stage 1 and 2 are blocked by other timing-critical

signals. In this case, a design with traditional SM switches would be required to take a longer

route, but a SM design with more local interconnects (4 in this example) can still provide a

downward path for this route.

49

Figure 3.12: An example where traditional-Beneš based SM experiences local interconnect

congestion, whereas a SM design with more local interconnects can utilize the fast path.

An example SM design with 4 local interconnect and 1 branch interconnect is shown in

Figure 3.13. When implemented as a SM macro, the local interconnects are contained inside the

macro. Compared to the traditional-Beneš based SM design, the new design reduces the

interconnect wiring in and out of the macro by 50%, but doubles the local interconnects. Such

SM design is very effective for upper-level SMs where the branch interconnects are expensive.

This essentially follows the same optimization strategy from Section 3.5: it adds more wires and

uses simpler muxes when the wire cost is low, but use larger muxes and fewer wires when the

wire costs are high.

SM

LUT
9

LUT
10

LUT
11

LUT
12

LUT
13

LUT
14

LUT
15

LUT
16

LUT
1

LUT
2

LUT
3

LUT
4

LUT
5

LUT
6

LUT
7

LUT
8

Stage 1 2 3 4

SM

50

Figure 3.13: A switch-matrix example with more local interconnects than branch interconnects.

3.7 Micro-architecture of a Switch Matrix

A switch matrix (SM) is the most commonly used building block in the hierarchical

FPGA – our FPGA has more than 10x as much SMs as LUTs. It is therefore important to have an

SM design that is as small as possible, yet provides sufficient connectivity. Figure 3.14 shows an

example SM micro-architecture of a radix-3 SM used in our most recent FPGA (details in

Section 3.8). Not surprisingly, a SM consists of simply of a collection of muxes. The number of

SM outputs determines the number of muxes it needs, but we need to carefully decide how much

connectivity to build into each mux, for that has a large impact on the SM area, which has a

significant impact on the final chip area.

SM

1

3
2

4

1

3
2

4
1

3
2

4

1

3
2

4

5 5

1‒4

5

1‒4

5

1

5

2
3
4

5

5

1

5

2
3
45 5

SM SM SM
SM

Macro

1‒4

1‒4

51

Figure 3.14: Internal mux interconnect of an example radix-3 switch matrix.

In Figure 3.14, signals 1–4 are upstream signals. Signals 1 and 2 travel internally inside

the SM macro, and signals 3 and 4 are branches. From the mux design of 1 and 2, we see the first

pruning heuristic: muxes 1 and 2 are allowed to propagate only signals 1 and 2 upwards,

respectively, and both 3 and 4 are allowed. This is because outputs 1 and 2 travel in the same

path. Not allowing switching between paths 1 and 2 has minimal impact on routing results, but

reduces the mux complexity for 1 and 2. Using this simplification, the incoming signal from

branch 3 and 4 will be assigned to path 1 or 2 (or both if decided by the router), and remain in

the assigned path until it branches out again.

Similar approach applies for the downward paths: incoming signals can be assigned

downward paths 5, 6, or 7, and are not allowed to switch between these paths until the signal

branches out again. For U-turns, another simplification can be made. For example, there is no

need to U-turn from input 1 and 2 back down to output 5, 6, or 7, because they come from the

SM

6

8

7
6

8

7

1

3

2
1

3

2

5 5

3

1

4

2

4

1

4 4

9 9

3

4

1

2

4

3

3 1

4

2

3 2

3

4

8

55

6

7

9

3

4

8

6

9

3

4

8

7

9

2

4

6

58

7

1

9

2

3

6

59

7

1

8

52

same SM. There is never a need to ascend one hierarchy and U-turn back to the same SM.

Similarly, output 8 travels back to the same SM that input 3 is coming from, so there is no need

to performance that U-turn either; the same case applies to output 9 and input 4.

These micro-architectural techniques are effective in reducing SM complexity, thus

reducing area and improving mux performance. But even with these techniques, the muxes still

poses a large overhead on area and performance. Many circuit-level techniques are applied to

implement these SMs efficiently, as discussed in Chapter IV.

3.8 Implementing a 16K-LUT FPGA Interconnect

In the previous 2048-LUT FPGA chip (Section 3.2), the architecture was optimized

manually, and two types of SMs are utilized. To fully demonstrate the scalability of hierarchical

interconnects, the new FPGA has expanded the interconnect architecture by 10x. Since there is

no theoretical method to calculate the optimal connectivity at every level of the hierarchy, we

have also developed a software tool to map designs onto our architecture (Chapter VI), which

allows us to explore the optimal interconnect architecture using an iterative, closed-loop design

process: we explore different architectures by mapping benchmarks and commonly-used designs,

then examine the interconnect usage across different SM stages and locations, then refine the

architecture accordingly and perform the mapping process again.

This FPGA consists of 16K “LUTs” arranged on a 64×320 array. Because it is a

heterogeneous FPGA (Chapter V), each “LUT” is limited not to a look-up table, but is more like

a SM macro that provides I/O capabilities: in this case, each SM macro provides 5 inputs and 2

outputs to any CLBs, logic, memory, DSP, or others. For example, a SLICE L CLB contains 30

inputs and 12 outputs, it therefore requires 6 SM macros to implement its interconnect; on the

53

other hand a DSP CLB requires 165 inputs and 66 outputs, requiring 33 SM macros in a 3×11

array.

The SM architecture of the 16K-LUT FPGA is shown in Figure 3.15 and 3.16. Figure

3.15 illustrates the lower 10 SM levels on a 1-dimensional drawing, although physical

implementation is 2-D. Figure 3.16 illustrates the top-level physical architecture, highlighting

wiring for the top 5 SM stages. The SM architecture is symmetrical across horizontal bisection,

and is composed of 7 types SM macros, ranging from 10 to 14 stages of SM. The bottom 10

stages of SM are common across all SM macros, and are illustrated in Figure 3.15.

The CLB-input requirements in this chip ranges from 30, 35, 165, or 180 inputs, therefore

the switch matrix in this architecture is chosen to contain 5 inputs and 2 outputs as a common

denominator. From Figure 3.15, it shows each LUT to provide 5 inputs and 4 outputs, that is

because each output is multi-casted to both local and branch interconnects, similar to the multi-

cast concept from Section 2.4. The bottom 5 stages of the SM utilizes boundary-less radix-3

interconnect, providing short routing distance to neighbors and providing extra path diversity for

the network. Above stage 5, we transition back to a radix-2 network to save interconnect area.

Additionally, having all radix-3 network in all hierarchies would make the entire architecture

boundary-less, which drastically increases place-and-route time. The current timing-driving

routing algorithm is based on breadth-first search, and by having radix-2 in the upper hierarchies,

the P&R tool is able to converge more quickly due to its reduced search radius. From our P&R

evaluations, a radix-3 to radix-2 transition at SM stage 5 provides sufficient path diversity and

routing performance.

This SM architecture uses 2 local interconnects per SM on the upward path, but 3 local

interconnects per SM on the downward path. This is due to the assistance of fast-path, which

54

allows many signals to travel directly from the LUT output to the upper-level SM without

occupying local interconnects along the way. This alleviates the routing congestion upwards, but

does not alleviate the congestion downwards (the fast-path signals still need to traverse

downwards on regular interconnects).

Another key distinction between the lower 5 SM stages and upper stages are the upward

branch interconnects. From Figure 3.15, we the lower 5 SM stages to have branching on the

upward path, but above stage 5, upward branching has been pruned, and only local upward

interconnects remain. The exception is for SM stages 10, 11, and 12, for those stages allow the

SM to branch upwards upon the termination of the SM macro. As shown in Figure 3.15, the SMs

on the bottom half only have 9 stages, and therefore must branch into the SMs on the top half at

stage 10 to continue signal propagation, else the signal would reach a “dead-end”. This pruning

methodology trades off local vs. branch interconnects: it allows branching when the wire costs

are low, therefore providing more path diversity, but for the upper hierarchies, path diversity is

sacrificed to reduce interconnect congestion and gate area. However, local interconnects are not

pruned even for upper hierarchies, because those wire costs remain low, and having 3 local

interconnects on the downward paths provides additional path diversity without increasing the

area significantly.

55

Figure 3.15: 1-D SM architecture of the 16K-LUT FPGA, showing the lower 10 SM stages.

7 8 9 101 2 2 6

4
SMs

4
SMs

4
SMs

4
SMs

3 4 5 6

64
SMs

64
SMs

64
SMs

64
SMs

64
SMs

64
SMs

64
SMs

64
SMs

64
SMs

64
SMs

64
SMs

64
SMs

64
SMs

64
SMs

64
SMs

64
SMs

Radix 3 Radix 2

4
SMs

4
SMs

4
SMs

4
SMs

4
SMs

4
SMs

4
SMs

4
SMs

4
SMs

4
SMs

4
SMs

4
SMs

Stage

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

56

Figure 3.16: 2-D SM architecture of the 16K-LUT FPGA, showing the top 5 stages of wiring.

In the top level, the SM architecture is divided into 40 macros, each containing 512 SM

macros. From the iterative interconnect optimization process, we‟ve converged to an architecture

shown in Figure 3.16. There are 7 types of SM macros, shown in 7 different colors. The most

commonly-used SM macro has 9 stages, spanning across rows 2, 4, 7, and 9. The remaining SM

macros have 11, 13, or 14 stages of SM (labeled in Figure 3.16). The largest SM has 14 stages,

shown in the inset of Figure 3.16. These SMs reside in the center of the top and bottom halves of

64 SM macros

3
2

0
 S

M
 m

ac
ro

s

512 SM

macros

16 SM macros3
2

 S
M

 m
ac

ro
s

1 SM macro

1 2 3 4 5 6 7 8 9 10 1211 13 148

9 9 9 9

11 13 13 11

11 11

9 9 9 9

13 13

11 14 14 11

11 14 14 11

11 13 13 11

11 13 13 11

9 9 9 9

9 9 9 9

57

the network.

Figure 3.16 also illustrates the mixed-radix implementation in the top level. SM stages 10

and 11 are actually radix 3, but are not boundary-less (with the exception of some stage-10

routing that crosses the horizontal bi-section). This is partially because the number of rows (320)

is not a radix-2 number. Without utilizing radix-3 SM, another stage of SM would be required.

However, since 320 is not much larger than 256, adding a SM stage appears wasteful. The other

reason is due to the wiring cost of stage-14 routing, which needs to span half the height of the

FPGA. This results in very long wires, and are very expensive to buffer. To reduce the

requirements on the number of stage-14 routing, boundary-less stage-10 routes are implemented

along the horizontal bisection. This addition allows gates that are placed near the horizontal

bisection to use the shorter, and faster, stage-10 routing. Only the gates that are required to

communicate across the entire chip need to occupy stage-14 routing.

The final architecture in Figure 3.16 is arrived through extensive iterative improvements

to the architecture. The automated P&R flow (Chapter VI) greatly expedited the evaluation

process, and gives us confidence in the routability and performance of the optimized design. The

architecture techniques discussed in 3.3−3.6 have greatly improved the routing quality of the

interconnect network, and reduced interconnect area. Although we have expanded from 3 types

of SM macros to 7, it remains a feasible implementation. The circuit-level implementation of the

interconnect are detailed in Chapter IV, and the physical integration details are discussed in

Chapter V.

58

CHAPTER IV

Interconnect Circuit Design

4.1 Key Building Blocks in Interconnect Circuits

FPGA interconnect is a complex network that spans the entire area of the chip, but it

consists of just three families of circuits: multiplexers, buffers, and configuration bit-cells (BC).

In Figure 4.1, an example switch matrix (SM) is illustrated with its internal circuitry.

Figure 4.1: An example switch matrix with its internal circuitry.

As previously shown in Section 3.7, each mux propagates interconnect signal from one of

its inputs to its output. The input to be propagated is pre-configured and stored in the bit-cells.

The bit-cells are generally SRAM-based, though non-volatile configurations generally use flash

memories, and are used to drive pass transistors to perform signal selection.

SM

BC

Output

BC

59

Buffers can be inverting or non-inverting, generally composed of one of more CMOS

inverters. The buffering requirements are generally determined by the number of pass-transistors

used and the interconnect wire-length.

Although the individual components of the interconnect network can appear simple, each

component is replicated thousands or even millions of times on the entire chip. Therefore even a

small reduction in area, delay, or power of an individual block can have a significant impact on

the chip level. The following sections highlight the circuit-level techniques used to optimize

these individual blocks.

4.2 Static Multiplexers and Area-Performance Tradeoff

In traditional CMOS circuits, muxes are generally implemented in a tree structure, where

N inputs are controlled by log2N select lines, such as the mux in Figure 4.1. This structure has its

benefits for CMOS circuits, because it uses the fewest number of select lines, and the output of

the mux is always deterministic (that is, there is always one input driving the output, and there

will never be more than 1 input “fighting” for the same output). Although Figure 4.1 has only

NMOS pass-transistors, they are generally not used as stand-alone pass-gates, each pass

transistor is usually constructed using a NMOS-PMOS transistor pair, whose gates are driven by

true and complement select-line signals.

FPGA interconnect pass-transistors are used differently: the select lines of the mux come

from bit-cells, which are static: the user (or the software tool) controls the data to write into the

BCs, which are programmed before the chip starts its operation, and the BCs remain static during

the operation of the FPGA. We can utilize this scenario to enhance the performance of the

60

muxes.

The BCs drive the gate of the pass-transistors, which turns the pass transistor on and off

by effectively changing the resistance across the source and drain of the pass-transistor. We can

improve the performance of the pass-transistors by operating the BCs on a higher VDD. This

effectively over-drives the gate of the pass-transistors to reduce its on-resistance. Although

increasing the VDD generally increases the active power quadratically, it does not affect the

active power of the FPGA at all: the switching signals travel across the source and drain of the

pass transistors are still toggling at the lower VDD (Figure 4-2). This is especially useful when

VDDL, is scaled down. In this scenario, total energy will decrease as C∙VDDL
2
, just like normal

circuits, but system performance will not degrade by as much, because the on-resistance of the

pass-transistors remains constant. The only power penalty of this implementation is increased

leakage through the bit-cells, and increased gate-leakage through the gate of the pass-transistor.

This implementation also has a potential area penalty with implementing two voltage domains,

one for BCs and one for the remaining circuits. But having two voltage domains enables us to

further optimize the multiplexer circuits, as shown in the next section. In the chip design chapter

(Chapter V), we see will that the area overhead from dual-VDD is kept to a minimum.

Figure 4.2: A static pass-transistor mux with high VDD for the bit-cells.

BC

BC

BC

BC

VDDHBL

WL

VDDL

VDDLVDDH: 1.0V
VDDL : 0.4 – 1.0V

Output

BL

WL

61

Since the BCs are controlled by the user or the software tool, and are static during the

operation of the FPGA, we can convert to a static, one-hot-bit mux design (Figure 4.2) [Lewis05,

Lee06]. In this case design, N independent BCs are used to control an N-input mux. To avoid

driving conflicts, the user or the software tool must ensure that one and only one of the BCs are

enabled at all times. The BCs must not be all off either, as that would cause the output buffer of

the mux to be floating.

The static muxes have a significant performance advantage over traditional muxes, for it

reduces the number of pass-transistor stages from log2N to 1. It also results in smaller mux area,

but pays a much larger penalty in BC area, because it now requires N BCs instead of log2N BCs.

It also requires the BCs to be configured properly before the rest of the circuitry (VDDL) can be

powered-on [Calhoun10, Ryan10].

The performance benefit of static pass-transistor mux is clear, but the area penalty of N

bit-cells per N-input mux can become significant. For example, an 8-input mux implemented as a

parallel mux requires 8 bit-cells, doubling the area compared to a traditional 8-input mux with 3

bit-cells. We mitigate the area overhead by adopting a partially-parallel approach, as illustrated

in Figure 4.3. For the 10-input mux, a traditional mux would require 4 BCs, with a critical path

of 3 or 4 pass-transistors. Using a fully-parallel mux would require 10 BCs, but a critical path of

1 pass-transistor. However, for very wide parallel muxes, the leakage through the 9 “off” pass-

transistors can also be significant. The design in Figure 4.3 provides a viable compromise

between performance, area, and leakage. Assuming input 1 and 2 are critical-path inputs

(generally branch inputs into the SM), and the remaining inputs are less timing-critical (such as

local inputs or U-turns), the micro-architecture in Figure 4.3 allows the critical-path inputs to

propagate with just 1 pass-transistor. Inputs 3-10 requires 2 pass-transistors, but it is still much

62

faster than the 4 pass-transistors otherwise required by a traditional mux. The total BC count of

this design compromise is 8 bits. For large-input muxes, the inputs can often be categorized into

timing-critical and non-timing-critical, and this design approach has proven to be very

effectively in providing faster performance for timing-critical nets, yet with a smaller area and

leakage penalty.

Figure 4.3: A 10-input static pass-transistor mux with 2 critical-path inputs and 8 non-critical-

path inputs, requiring 8 bit-cells.

In addition to parallel static muxes and dual-VDD, additional techniques such as using

multi-threshold-voltage transistors, multi-oxide-thickness transistors [Curd07], and even body

biasing [Rahman04] can be applied to interconnect pass-transistors to further exploit the static-

nature of the gate signals. They can be implemented when available. In our process, the lack of

BC

BC

VDDL

BC

BC

BC

BC

BC

In 1

In 2

In 3

In 4

In 5

In 7

In 8

In 9

BC

In 6

In 10

63

triple-oxide process disallows us from applying body biasing, and unlike Virtex FPGAs

[Curd07], we do not have a separate medium-thickness oxide transistor for interconnects.

4.3 Strategies for Interconnect Buffering

The mux designs illustrated in this chapter have been non-inverting – CMOS inverters

always exist at both the input and output of each multiplexer, so the polarity of the signal is

preserved. Having the input of the cell tied to the gate of the transistor makes the cell more

immune to latch-up issues, and such robust design is a standard practice in almost all standard-

cells. If the input is tied to source or drain of the transistor, the designer needs to make sure the

input voltage never exceeds the body voltage of the PMOS transistors, else latch-up will occur.

In designing our FPGA chips, we separated the input buffer from the remaining of the

mux, essentially creating inverting muxes (Figure 4.4). Inverters are placed at the input to buffer

the incoming signals. The inverted signals are then used to drive the inverting muxes. By sharing

the input buffers among all the muxes, we can reduce the buffer area and buffer power. For

example, input 3 in Figure 4.4 is tied to 4 muxes. Previously, it would be required to drive all 4

input inverters inside the 4 muxes, even if it only needs to drive one of the 4 muxes. With the

new design, it drives just one input inverter, and the inverter will only drive the pass-transistors

that are turned on.

64

Figure 4.4: Illustration of input-buffer sharing inside a switch matrix.

Generally, not all muxes are propagating from the same input, therefore moving to a

single, larger input inverter actually improves performance in most cases (e.g. we can use a 4x

input inverter instead of 4 1x inverters, so if the incoming signal only needs to propagate to 1

mux, the mux can switch faster because the 4x inverter offers more drive strength).

In pass-transistor design, the general rule is to not exceed 2 pass-transistors per inverter

or buffer [Sutherland99, Rabaey03]. In cases where larger capacitances are involved, such as

wires or large gate capacitances, anything more than one pass-transistor per buffer results in

performance loss. Based on our simulation results, we do not implement 2 pass-transistor designs

unless the 2 pass-transistors are placed in close proximity, within the same macro, such as the

mux design from Figure 4.3.

In the non-inverting mux designs, the output inverter drives the input inverter directly,

albeit with some wiring parasitic in between (Figure 4.5a). Such scenario of “over-buffering”

actually results in performance loss. There are two alternative approaches, illustrated in Figure

4.5b) and c), that both result in one inverter per pass-transistor. Although the two approaches

SM
1

3

2
1

3

2

3

1

4

2

4

1

4 4

3

4

1

2

4

3

3 1

4

2

3 2

1 1

2 2

3 3

4 4

65

appear similar, they result in very different functionalities. Generally, the output inverter of the

mux is larger than the input inverter. If design b) is applied, its input inverters would all need to

be upsized due to its lack of output inverter. However, b) still results in a performance loss: the

wire parasitic is generally dominated by capacitance, while the pass-transistor parasitic is

generally dominated by resistance. Using simple Elmore delay model, design b) has a large

capacitance driven by the pass-transistor, while design c) has the buffer directly driving the large

wire capacitance, followed by the pass-transistor. Design c) is clearly the superior design, and

matches our simulations.

a)

b) c)

Figure 4.5: Illustration of signal buffer across interconnects of a) a non-inverting mux, b) an

inverting mux with input inverters, and c) an inverting mux with output inverters.

Based on our simulations, design c) consistently resulted in faster performance than a)

and b) even when the wire capacitance is large. Given its smaller area and faster performance,

Wire

Wire Wire

66

we have utilized this inverting-mux design extensively in our design.

The disadvantage of inverting muxes is the alteration of signal polarity. Based on the

route of the signal, the routing tool needs to determine the final polarity of the signal when it

reaches the input of the CLBs. A selectable inverter is placed at the input of the CLB to invert

the signal back if the polarity is flipped. Although the selectable inverter adds an inverter and a

mux to the critical path, the overall performance benefits from inverting muxes far outweigh this

overhead.

4.4 Designing Configuration Bit-Cells

The interconnect muxes and the CLBs are all configured by bit-cells. In our FPGA, the

bit-cells are created as distributed arrays of SRAM cells. Unlike traditional SRAM arrays, the

values stored inside the SRAM cells needs not be read out by an address-decoder. Instead, the

configuration values stored in the SRAM cells are routed directly to the gate of the muxes.

Traditional SRAM cells are not suitable because all bits cannot be accessed simultaneously, and

an address decoder is required for reading. A scan-chain approach is another alternative, as

adopted in Intel‟s 32nm DSP CLB [Agarwal10]; this was feasible for 6 CLBs, but is not scalable

to larger designs. Because bit-cells are heavily used (millions of bits per FPGA), any area

savings from the individual bit-cells can result in a large saving in chip area.

The low-powered FPGA designed in [Ryan10] uses a 5-transistor (5T) SRAM cell to

save chip area. We have evaluated this approach against a more traditional 6T SRAM. Although

SRAM arrays can benefit from the area savings by switching to 5T [Carlson04, Nalam11], our

bit-cell designs are different. Our design not only requires the storage node of the bit-cell to be

directly routable during physical design, the bit-cell also needs to conform to the design height

67

and width requirements of a standard-cell-based design. Therefore, the height of the SRAM cells

must be same as that of regular standard-cells, its N-well must be at the same location, and the

cell width and all pin locations must be a multiple of the routing pitch.

After careful physical design, the corresponding 5T and 6T SRAM designs are shown in

Figure 4.6. We see they occupy the same area, although the 5T SRAM is routable with only the

first metal layer (M1). Since the WL needs to travel vertically, a vertical WL on M2 is still

required when routing the 5T SRAM, but the 6T design has the vertical WL embedded into its

design. Since the stored value (and often times its complement) need to be routed out, the 5T

SRAM would need M2 routing to access the OUT and OUTb pins. The 6T SRAM, on the other

hand, has OUT and OUTb already on the M2 layer. Even though at a first glance, the 5T design

occupies less metal layer, the actual metallization usage of the two designs are very similar once

all the pins are routed. Under a closer look, we see that the 6T SRAM has only 50% of its BL and

BLb geometries inside its area boundary. That is because its BL and BLb pins can be shared with

its neighbors when the neighboring cells are mirrored across the y-axis. The 5T SRAM cells do

not have such symmetry because it lacks a BLb signal, therefore it cannot share geometries with

its neighbors.

68

a) b)

Figure 4.6: Physical design of the configuration bit-cells in a) 5T SRAM and b) 6T SRAM.

Overall, the 5T SRAM has not demonstrated an advantage in area or metal usage for our

application. Additionally, it requires write-assist to be able to successfully write in a „1‟ due to its

asymmetric design. Designing the write-assist circuitry would require another voltage domain.

Since the 6T SRAM poses no area or metal overhead for our application, it was chosen for our

bit-cell implementation. It also provides a more stable write, and avoids adding a third voltage

domain to our design.

4.5 Power-gating Switch Matrices

The interconnect network in an FPGA can involve long wires, which requires large

output buffers and inverters to drive them. These buffers contribute significantly to leakage. To

alleviate leakage, power gating is employed in many modern designs to power off the output

driver when unused. Power gating is generally achieved by adding a footer transistor that turns

WL

BL

W
L

BL

BLb OUT

O
U

T

O
U

Tb

OUTb

69

off during power-gating mode. Footer transistors work well to power-gate an entire block, but

interconnect signals are long, and long signals lack spatial locality. It is therefore difficult to

power-gate an entire block of interconnects, because even one active interconnect buffer would

prevent an entire region from being power-gated. Therefore, power-gating circuitry needs to be

implemented at a fine-grained level, such as adding footer transistors and power-gating (PG)

control to individual buffers (Figure 4.7). The footer transistor can be NMOS or PMOS, as in

[Anderson04].

Figure 4.7: A 4-input static mux with output inverter and traditional power gating.

In FPGA multiplexers, the output buffers are already large (often 8x or more). Because

the power-gating footer transistors are high-threshold-voltage (HVT) devices, they need to be

made larger just to conduct the same amount of current, and because these transistors are in

series with the NMOS transistor of the inverter, the footer transistors need to be even larger than

Out

s[3:0]

PG

VDDHBL

WL

s0

BL

WL

s0

SRAM bitcell

in0

in1

in2

in3

in0

in1

in2

in3

s0

s1

s2

s3

s0

s1

s2

s3

out out Out

VDDL

in0

in1

in2

in3

PG

70

the output inverter to not significantly impact the circuit performance. Such large area overhead

from the footer makes this fine-grained implementation impractical.

We suggest a novel power-gating method for interconnects that requires minimal area

overhead and has no significant performance impact [Wang13b]. The PG signal is used to drive

an additional PMOS pass-gate (Figure 4.8). During power gating, the select bits s[N-1:0] are

programmed to „0‟, and PG is programmed to „1‟ to enable power gating. Since the PG signal is

from VDDH domain, this drives the gate input to the inverter to VDDH, which is above the supply

voltage of the inverter, VDDL. Such voltage drastically reduces the leakage current of the PMOS

transistor, thus reducing the leakage of the inverter. The performance penalty of this circuit is

minimal, for adding a minimum-sized PMOS pass-gate in parallel to the other N pass gates

produces very little performance impact on the static mux. However, the drawback of such

implementation is that the NMOS transistor of the inverter remains fully on, driving the output of

the inverter to '0'. Since this output node is connected to other pass gates, even when those gates

are off, leakage current can occur through those gates. In addition, having an output wire driven

to '0' does not reduce the coupling capacitance experienced by neighboring wires (Figure 4.8,

bottom right).

71

Figure 4.8: A 4-input static mux with output inverter and our proposed power gating.

For further leakage reduction, we propose another static multiplexer that achieves tri-state

output during power-gating (Figure 4.9). The inputs to the output inverter is separated into pmos

and nmos inputs, joined by a minimum-size, high-threshold-voltage (HVT) transmission gate as

keeper. During power gating, PG is „1‟, the keeper is off, and the pmos and nmos signals are

driven to opposite polarities, „1‟ and „0‟, respectively. This not only drastically reduces the

leakage current of the PMOS transistor, but also turns off the NMOS transistor. The output

therefore enters tri-state mode during power gating. This tri-state buffer will not cause leakage

current through other pass gates, and also drastically reduces the coupling capacitance

experienced by neighboring wires by forming a capacitive divider.

Out

s[3:0]

PG

in0

in1

in2

in3

in0

in1

in2

in3

s0

s1

s2

s3

s0

s1

s2

s3

out out Out

VDDL
in0

in1

in2

in3

PG

Out

Neighboring

wire

During power-gating

VDDH

72

Figure 4.9: A 4-input static mux with output inverter and our proposed, tri-state PG.

When one of the select bits, s[N-1:0] is on, power-gating is disabled. In this case, the

static multiplexer must transmit the selected input to the output inverter rapidly. The NMOS and

PMOS transistors of the transmission gate in the static mux are drawn separately for clarity. The

NMOS pass gate is fast when conducting a '0', but is unable to rapidly conduct a '1' (it only pulls

up to VDDH – VT). In contrast, the PMOS pass gate is fast when conducting a '1', but is slow

when conducting a '0' (it only pulls down to VT). This invention exploits such driving property of

pass gates: the NMOS pass gate is connected to the wire pmos to rapidly turn on the PMOS

inverter, and the PMOS pass gate is connected to the wire nmos to rapidly turn on the NMOS

inverter. When one transistor in the output inverter is turning on, the other is not yet fully off (its

gate voltage hovers around VT until the keeper finishes the transition), but the current difference

between the two transistors is large enough to not impact the performance by more than 5%.

Eventually, the keeper connects the pmos and nmos nets to the same voltage, and the static

leakage behavior is no different from a traditional CMOS inverter. This novel power gating

circuitry allows the usage of low-threshold-voltage (LVT) inverters at the multiplexer output,

Out

s[3:0]

PG

in0

in1

in2

in3

in0

in1

in2

in3

s0

s1

s2

s3

s0

s1

s2

s3
pmos nmos

Out

VDDL
in0

in1

in2

in3

PG

Out

Neighboring

wire

During power-gating

VDDH GND

PG

PG PG

pmos

nmos

Minimum sized,
HVT keeper

73

thus compensating for the 5% performance penalty to reach comparable performance as

traditional CMOS inverters.

The downside of the design in Figure 4.9 is that the outputs cannot directly drive CMOS

gates, because a floating net can lead to large short-circuit currents. Therefore, all nets driven by

tri-state buffers must be set as dont_touch during the synthesis and physical-design flow. For

very long nets that would require buffering, the design from Figure 4.8 is applied. Commercial

place-and-route tools can then be used for buffer insertion during physical design.

4.6 Power-On Sequence of the Interconnect Network

This section describes the power-on sequence associated with the dual-VDD interconnect

circuit design. It will then discuss the potential power-on issues with the designs proposed in

Section 4.5, and suggest 2 viable solutions.

When the bit-cells are not programmed, they can contain arbitrary value. For example,

Figure 4.10 shows a pass-transistor mux when both s0 and s3 are „1‟, while s1, s2, and PG are

„0‟.

Figure 4.10: An example of an unconfigured mux where s0 and s3 are both conducting.

in0

Outpmos

in1

in2

in3

VDDL

in0

nmos

in1

in2

in3

GND

VDDL

pmos

nmos

s0

s3

s0

s3

conducting

conducting

74

From this example, we see that in0 and in3 are now conducting. Since the chip is not yet

programmed, we have no control over the voltages at in0 and in3. This can be catastrophic if in0

and in3 are at different voltages, causing large current to flow and potentially damaging the chip.

One way to ensure safe operation is to set VDDL to „0‟ before the bit-cells are

programmed. When VDDL is „0‟, all the output inverters and buffers will output „0‟. Since the

inputs of a mux are driven by the output of other muxes, the inputs are always at „0‟ when VDDL

is „0‟. This way, even when multiple pass-transistors are turned on, there is no current flowing

(Figure 4.11).

Figure 4.11: An example of an unconfigured mux where VDDL is „0‟, no current flows.

A different issue arises when power-gating signals are involved. When PG happens to be

„1‟ in the unconfigured state, the proposed designs from Section 4.5 may still cause current to

flow. Figure 4.12 shows the potential issue with the proposed design from Figure 4.8. Because

PG is driven by VDDH, it can be producing a VDDH signal while the inputs in0 through in3 are

producing a „0‟. This causes current to flow through the pass-transistors, again causing large

current and potential chip failure.

‘0’

Out = 0pmos

in1

in2

‘0’

VDDL

‘0’

nmos

in1

in2

‘0’

GND

VDDL = 0

pmos

nmos

s0

s3

s0

s3

75

Figure 4.12: An example of an unconfigured mux from Figure 4.8, where VDDL is „0‟ but PG is

„1‟, causing current flow.

Similar issue exists for the proposed design from Figure 4.9. As shown in Figure 4.13,

the PG signal in VDDH domain can conduct current with the „0‟ at the inputs of the mux. The

pmos and nmos wires are also shorted when PG is on, causing additional conduction paths from

pmos to nmos to ground.

Figure 4.13: An example of an unconfigured mux from Figure 4.9, where VDDL is „0‟ but PG is

„1‟, causing current flow.

out

s0

s3

s0

s3

out

‘0’

in1

in2

‘0’

‘0’

in1

in2

‘0’

Out = 0

VDDL = 0

conducting

PG

VDDH

pmos nmos

pmos

nmos

s0

s3

s0

s3

PG PG

PG PG
Out = 0

VDDL = 0

conducting

‘0’

in1

in2

‘0’

‘0’

in1

in2

‘0’

conductin
g

conducting

VDDH GND

76

Figure 4.14 present a simple fix by tying the source input of the PG pass-transistor to

VDDL instead of VDDH, which ensures all mux inputs to be „0‟ when VDDL is „0‟, causing no

current to flow.

The downside of the design in Figure 4.14 from Figure 4.8 and 4.9 is a less effective

power-gating during normal operation: since the VDD of the output inverter is VDDL, power-

gating with a signal of VDDL only presents a VGS of 0 for the PMOS (green, Figure 4.14), instead

of a negative VGS of VDDL‒VDDH, which is more effective at leakage reduction.

a)

b)

Figure 4.14: Example illustration with an updated design that uses VDDL signals, applied on a)

the design from Figure 4.8 and b) the design from Figure 4.9.

out

s0

s3

s0

s3

PG

VDDL = 0

out

‘0’

in1

in2

‘0’

‘0’

in1

in2

‘0’

Out = 0

VDDL = 0

pmos nmos

GND

pmos

nmos

s0

s3

s0

s3

PG PG

PG PG
Out = 0

VDDL = 0

‘0’

in1

in2

‘0’

‘0’

in1

in2

‘0’

VDDL = 0

77

Figure 4.15 presents an alternative fix by tying the source input of the PG signal to a 3
rd

VDD domain, VDDH,LATE, which remains „0‟ until after the SRAMs are programmed. This design

maintains the benefits of power-gating with a high VDD, VDDH, but without the potential large

currents, because VDDH,LATE remains „0‟ when the chip is unconfigured. Once VDDH,LATE is

powered-on, the power-gating behavior is the same as the original proposal from Figures 4.8 and

4.9.

a)

b)

Figure 4.15: Example illustration with an updated design that uses VDDH,LATE signals, applied on

a) the design from Figure 4.8 and b) the design from Figure 4.9.

out

s0

s3

s0

s3

PG

VDDH,LATE = 0

out

‘0’

in1

in2

‘0’

‘0’

in1

in2

‘0’

Out = 0

VDDL = 0

pmos nmos

GND

pmos

nmos

s0

s3

s0

s3

PG PG

PG PG
Out = 0

VDDL = 0

‘0’

in1

in2

‘0’

‘0’

in1

in2

‘0’

VDDH,LATE = 0

78

The downside with the above implementation is that a 3
rd

 VDD domain is required, which

poses a penalty in chip area. In our chip design, we decided to maintain only 2 VDD domains due

to area constraint. We therefore employed the design from Figure 4.14 for power gating. The

chip design details and physical implementation flow are discussed in Chapter V.

79

CHAPTER V

Configurable Logic Block Design and Chip Integration

The previous two sections have described the architecture design and circuit-level

techniques of the hierarchical interconnect network. To realize a FPGA hardware, the

interconnect switch matrices (SMs) are implemented with the configurable logic blocks (CLBs)

make a complete macro. Different CLB-SM macros are then integrated to form the complete

chip. This section illustrates the design process of the CLBs, and the chip integration process.

5.1 Configurable Logic Blocks for the 2048-LUT FPGA

From the architecture discussions in Chapter III, the interconnect resources of the 2048-

LUT FPGA are allocated into 16 macros of 128 SM-macros each, shown in Figure 5.1a).

Analogously, the resource allocations of the CLBs are arranged in a similar way, shown in

Figure 5.1b). The chip has 2048 LUTs divided into 16 CLB macros, and each macro contains a

heterogeneous integration of different types of CLBs. To map a variety of designs, the resource

allocation is as follows: 1024 LUTs are logic-only, 896 LUTs are configurable for logic or

arithmetic functions, and 128 LUTs are used for block RAMs (BRAMs). These LUTs are

grouped into configurable logic blocks (CLBs): 4 logic-only LUTs form a Logic CLB, 4

logic/arithmetic LUTs form a DSP CLB, and 8 BRAM LUTs form a 1 Kb, dual-port BRAM

CLB. Since some DSP and BRAM operations require many input bits, this grouping allows

input-sharing between the LUTs within a CLB.

80

a) b)

Figure 5.1: Resource allocation for a) interconnects and b) CLBs.

Four LUTs are combined with intermediate arithmetic blocks to form a Logic or DSP

CLB. Each Logic CLB is composed of four 4-input LUTs, a carry chain, and 4 output stages

with selectable flip-flops (Figure 5.2a). Each LUT is configurable as one 4-input LUT, or two 3-

input LUTs with up to 4 unique inputs. The carry chain supports 4b additions where Propagate

and Generate are driven from LUTs. Since each output stage support two outputs, the Logic CLB

is especially useful when two outputs per bit are required, such as in 3:2 compressors.

a)

N8:2

N6:1

N6:1

N6:2N6:2

DSP

DSP

DSP

Logic

Logic

BRAM BRAM

4

inD
inC

inB
inA

3-/4-
input
LUT Cin

Cout

Output
Stage

2

outD
outC

outB
outA

From Hier. Network To Hier. Network

Carry Chain

81

b)

Figure 5.2: Block diagram of a) a Logic CLB and b) a DSP CLB.

The DSP CLBs are a more flexible for intensive arithmetic computing demands. Each

DSP CLB is composed of four 4-input LUTs, a LUT combiner, a partial product generator, a

configurable adder tree, and 4 parallel output stages (Figure 5.2b). The detailed block diagram is

shown in Figure 5.3. Each 4-LUT is able to perform one 4-input logic, two 3-input logic by

sharing two common inputs (same as Logic CLB), or functions with 5 or 6 inputs by combining

LUTs. Two 4b ripple-carry adders can perform two separate 4b, one 8b, or one 3-operand 4b

addition with the support of 3:2 compressors (built from LUTs). The Wallace-tree multiplier

reuses the adder cells, and uses dedicated partial-product generators. Overall, the CLB has the

flexibility to support 10 operating modes, which includes (i) random logic with 3 to 6 inputs; (ii)

4 to 8b addition/subtraction for 2 to 3 operands; and (iii) 4b×4b signed/unsigned multiplication.

To achieve this degree of configurability, the synthesized CLB has 50 gates on its critical path

(shaded in Figure 5.3), amounting to a 1.1ns delay.

4

inD
inC

inB
inA

3-/4-
input
LUT Cin

Cout

Output
Stage

2

outD
outC

outB
outA

From Hier. Network To Hier. Network

Configurable Adder /
Mult5-/6- input LUT combiner

82

Figure 5.3: Block diagram of a) a Logic CLB and b) a DSP CLB.

The 1Kb block-RAM (BRAM) is a custom dual-port memory with two 7-bit addresses

(addr0 and addr1), an 8-bit data (din) and 8-bit write mask (wr_mask), and two 8-bit outputs

(dout0 and dout1). The memory modes are selectable by a 2-bit control signal (wr_mode), and in

certain cases, wr_mask[7] bit is also used for configuration. The BRAM configurations are

shown in Figure 5.4.

×7Critical
Path: + ×8

0
/1

C6
S2

C2

S0M1

LUT5_AB

LUT6

LUT5_CD

LUT4_A
LUT3_A

4

inD

4

inC

4

inB

4

inA

C
I0

CI1

CO0

CO1

A[0]

A[3]

A[1]

A[2]

C[0]

C[2]

B[0]

D[0]

B[1]

D[1]

B[2]

D[2]

B[3]

D[3]

CO0

0/1

0/1

CI2

CO2

M0

P23

P33

S4M2

M3

M4

M5

M6

M7

P
0

1

P02

P03

P13

P32

P30

C4
C0

S5

C5
S1

C1

S6

S7

C7
S3

C3
S8

C8

LUT4_B

LUT3_B

LUT4_C

LUT3_C

LUT4_D

LUT3_D

P10

P11

P20

P21

P12

P22

P31

C[1]

C[3]LU
T5

LU
T6

LU
T5

LUT

LUT

LUT

LUT

To Output
Stage

5/6 input LUT Combiner

Configurable Adder / Mult

83

a) b)

c) d)

40 00
41 01
42 02
43 03
44 04
45 05
46 06

: :

7A 3A
7B 3B
7C 3C
7D 3D
7E 3E
7F 3F

a
d

d
r0

[5
:0

]

R
e

a
d

 A
d

d
re

s
s

dout1[7:0] dout0[7:0]

Read Data

addr0[6]

40 00
41 01
42 02
43 03
44 04
45 05
46 06

: :

7A 3A
7B 3B
7C 3C
7D 3D
7E 3E
7F 3F

a
d

d
r0

[5
:0

]

addr0[6]

a
d

d
r1

[5
:0

]

addr1[6]

R
e

a
d

 A
d

d
re

s
s

dout0[7:0]dout1[7:0]

Read Data

R
e

a
d

 A
d

d
re

s
s

Mode 00-0
Dual 8-bit read

Configuration: wr_mode[1:0] = 00, wr_mask[7] = 0

Write Address: Not Supported

Write Data: Not Supported

Write Mask: Not Supported

Read Address0: addr0[6:0]

Read Data0: dout0 = Read(addr0[6:0])

Read Address1: addr1[6:0]

Read Data1: dout1 = Read(addr1[6:0])

Mode 00-1
16-bit read

Configuration: wr_mode[1:0] = 00, wr_mask[7] = 1

Write Address: Not Supported

Write Data: Not Supported

Write Mask: Not Supported

Read Address0: addr0[6:0]

Read Data0: dout0 = Read(addr0[6:0])

Read Data1: dout1 = Read({ 1, addr0[5:0] })

Mode 11
16-bit write with 2-bit-precision write-mask

Configuration: wr_mode[1:0] = 11

Write Address: addr1[5:0]

Write Data: { addr1[6], addr0[6:0], din[7:0] }

Write Mask: { wr_mask[7:0] }, each mask-bit controls 2 data bits

Read Address: Not Supported

Read Data: Not Supported

a
d

d
r1

[5
:0

]

Write Mask

Write Data

W
ri
te

 A
d

d
re

s
s

addr1[6] addr0[6:0] din[7:0]

wr_mask[7:0]

40 00
41 01
42 02
43 03
44 04
45 05
46 06

: :

7A 3A
7B 3B
7C 3C
7D 3D
7E 3E
7F 3F

W
ri
te

 A
d

d
re

s
s

40 00
41 01
42 02
43 03
44 04
45 05
46 06

: :

7A 3A
7B 3B
7C 3C
7D 3D
7E 3E
7F 3F

a
d

d
r0

[5
:0

]

Read Address

R
e

a
d

 A
d

d
re

s
s

dout1[7:0] dout0[7:0]

Read Data

Write Data

a
d

d
r1

[5
:0

]

addr0[6]

addr1[6]

din[7:0]

wr_mask[7:0]

Write Mask

Mode 01
8-bit write with 1-bit precision write mask, 16-bit read

Configuration: wr_mode[1:0] = 01

Write Address: addr1[6:0]

Write Data: din[7:0]

Write Mask: wr_mask[7:0]

Read Address0: addr0[6:0]

Read Data0: dout0 = Read(addr0[6:0])

Read Data1: dout1 = Read({ 1, addr0[5:0] })

84

e) f)

Figure 5.4: The 6 BRAM modes: a) dual 8-bit read, b) 16-bit read, c) 8-bit masked write, 16-bit

read, d) 16-bit masked write, e) 8-bit write, dual 8-bit read, and f) 16-bit write, 16-bit read.

In certain configurations, this BRAM is even configurable as a tri-port memory, with one

8-bit write and two independent 8-bit reads (Figure 5.4e). The mode selections are propagated to

the interconnect network as regular signals, and can be changed during chip operation. The

detailed diagrams in Figure 5.4 also illustrates the actual memory locations that each mode

accesses. No explicit write-enable signals exist; write is disabled by toggling wr_mode back to

„00‟.

Although the BRAM supports many user-programmable modes, the actual

implementation is done without too much hardware overhead by utilizing hardware sharing and

optimized control design. The physical implementation of the BRAM is realized in two 64x8b

arrays for reconfigurability into 128x8b or 64x16b modes. The memory array is implemented

din[7:0]

Write Data

w
r_

m
a

s
k
[5

:0
]

W
ri
te

 A
d

d
re

s
s

wr_mask[6]

40 00
41 01
42 02
43 03
44 04
45 05
46 06

: :

7A 3A
7B 3B
7C 3C
7D 3D
7E 3E
7F 3F

a
d

d
r0

[5
:0

]

addr0[6]

a
d

d
r1

[5
:0

]

addr1[6]

R
e

a
d

 A
d

d
re

s
s

dout0[7:0]dout1[7:0]

Read Data

W
ri
te

 A
d

d
re

s
s

40 00
41 01
42 02
43 03
44 04
45 05
46 06

: :

7A 3A
7B 3B
7C 3C
7D 3D
7E 3E
7F 3F

a
d

d
r0

[5
:0

]

R
e

a
d

 A
d

d
re

s
s

dout1[7:0] dout0[7:0]

Read Data

Write Data

addr1[6] wr_mask[6:0] din[7:0]

a
d

d
r1

[5
:0

]

addr0[6]

Mode 10-0
8-bit write with dual 8-bit read

Configuration: wr_mode[1:0] = 10, wr_mask[7] = 0

Write Address: wr_mask[6:0]

Write Data: din[7:0]

Write Mask: FF

Read Address0: addr0[6:0]

Read Data0: dout0 = Read(addr0[6:0])

Read Address1: addr1[6:0]

Read Data1: dout1 = Read(addr1[6:0])

Mode 10-1
16-bit write with 16-bit read

Configuration: wr_mode[1:0] = 10, wr_mask[7] = 1

Write Address: addr1[5:0]

Write Data: { addr1[6], wr_mask[6:0], din[7:0] }

Write Mask: FFFF

Read Address: addr0[6:0]

Read Data0: dout0 = Read(addr0[6:0])

Read Data1: dout1 = Read({ 1, addr0[5:0] })

85

using regular flip-flops, because 1 Kb is not large enough for compiled register-file or SRAM to

achieve sufficient area savings. The write-logic architecture is highlighted in Figure 5.5, and the

read-logic architecture is highlighted in Figure 5.6.

Figure 5.5: Write-logic architecture of the 1Kb reconfigurable dual-port BRAM.

wr_mask

8

8

din

addr1

7

7

addr0

2

wr_mode

0
1
2
3
:
:

60
61
62
63

0
1
2
3
:
:

60
61
62
63

0 1
wr_mode = 10
&&
~wr_mask[7]

addr1[5:0] wr_mask[5:0]

write-enable demux

(wr_mode[0]
&& ~addr1[6])
||
(wr_mode[1] &&
(wr_mode[0] ||
~wr_mask[6] ||
wr_mask[7]))

(wr_mode[0]
&& addr1[6])
||
(wr_mode[1] &&
(wr_mode[0] ||
wr_mask[6] ||
wr_mask[7]))

D we

0 1

~wr_mode[0]

wr_mode[1]

wr_mask0[7] [3]

D we

0 1

~wr_mode[0]

wr_mode[1]

D we

0 1

~wr_mode[0]

wr_mode[1]

D we

0 1

~wr_mode[0]

wr_mode[1]

...

D we

0 1

~wr_mode[0]

wr_mode[1]

D we

0 1

~wr_mode[0]

wr_mode[1]

din[7] din[6] din[5] din[0]

msb[7] msb[6]

0
1

msb[7:0]

~wr_mode[1] ||
(~wr_mode[0] && ~wr_mask1[7])

din[7:0]

0
1

{ addr1[6], addr0[6:0] }

{ addr1[6], wr_mask1[6:0] }

wr_mode[0
]

0
1

0

wr_mask[7:0] wr_mask0[7:0]

0
1

0

wr_mask[7:0]
wr_mask1[7:0]

wr_mask0[6] [3] wr_mask0[5] [2] wr_mask0[0] [0]

D we

0 1

~wr_mode[0]

wr_mode[1]

D we

0 1

~wr_mode[0]

wr_mode[1]

...

wr_mask1[5] [6] wr_mask1[0] [4]wr_mask1[6] [7]wr_mask1[7] [7]

msb[5] msb[0]

storage array

Write-Logic Architecture

86

Figure 5.6: Read-logic architecture of the 1Kb reconfigurable dual-port BRAM.

5.2 Macro-based Chip Integration for the 2048-LUT FPGA

A macro-based design approach is used for efficient integration. Each CLB is integrated

with its switch matrices into a complete macro. From Figure 5.1, we see that the chip is divided

into 3 types of interconnects (N6:1, N6:2, and N8:2) and 3 types of CLBs (Logic, DSP, and

BRAM). Based on the location of each CLB, it will be integrated with the corresponding

interconnect SM, making a total of 7 combinations: N8:2 Logic, N8:2 DSP, N6:2 Logic, N6:2 DSP,

N6:2 BRAM, N6:1 Logic, and N6:1 DSP.

Both the CLBs and the interconnect SMs require configuration at power-up. Scan-chains

0
1
2
3
:
:

60
61
62
63

0
1
2
3
:
:

60
61
62
63

addr1

7

7

addr0

2

wr_mode

Q Q Q Q

Q Q Q Q

wr_mask

8

...

...

0
1
2
3
:
:

60
61
62
63

0
1
2
3
:
:

60
61
62
63

Q Q Q Q

...

Q[7] Q[6] Q[5] Q[0]

Q[7] Q[6] Q[5] Q[0]

Q[7] Q[6] Q[5] Q[0]

Q Q Q Q

...

Q[7] Q[6] Q[5] Q[0]

addr1[6:0]

addr0[5:0]

addr0[5:0]

0

1

addr0[6]

0

1

{ 1 , addr0[5:0] } addr[6:0]

~wr_ mask[7]
&& ~wr_mode[0]

addr[5:0]

addr[5:0]

0

1

addr[6]

Flip-Flop storage
array

read-data mux

dout1

8

dout0

8

Q 0[7:0]

Q 63[7:0]

Q 0[7:0]

Q 63[7:0]

dout0[7:0]

D Q

0

1

D Q
0

1

dout1[7:0]

Read-Logic Architecture

87

are the easiest approach, but the area overhead from scan is very high because we need a very

large number of configuration bits (320,000 in this “small” FPGA). We therefore implemented a

custom 6T SRAM bit-cell (BC), and an array of BCs is placed inside each CLB, alongside the

CLB and SM blocks, and the output of each BC is routed directly to the SM and CLB for

configuration. The SRAM-based BCs achieve a 5x area reduction over scan flip-flops. The

schematic diagram is shown in Figure 5.7.

Figure 5.7: Design of a bit-cell (BC) array with its bit-line (BL) and word-line (WL) controls.

Scan-chains are used to implement the word-line (WL) and bit-line (BL) controls. The

bit-line control signals (BL and BLb) of each CLB are generated from a BL scan chain, which is

14b per CLB. Once all configuration bits are shifted into the scan chain, BSE stops the shifting

and activates the word-line (WL) control circuit. The WL scan chain shifts a single „1‟ down the

scan chain, and its writing operation has two phases: (i) write-scan-enable (WSE) shifts the WL

scan chain forward for one clock cycle, propagating the „1‟ to the next row; (ii) write-evaluate

(WEV) then changes to „1‟, which is AND‟ed with the WL scan chain values to enable just one

BC

BC

…BC

…

BC

… …

BC BC …

BC BC …
… … …

FFFFFFBIN

WIN WEV

BSE

BC
Outputs

…

BL Control

W
L
 C

o
n
tr

o
l FF

FF

FF

BLBLb
WL

Bit Cell

BC
Output

BC

WSE

5× area reduction over DFF

BOUT

SM
&

CLB

88

row of BCs for programming. The selected row of BCs is then programmed with the value from

the BL scan chain. WEV is then de-asserted to stop the writing process. We then shift in the next

row of configuration bits through the BL scan chain, and the WL scan chain advances by another

row and repeats the writing process. This scan-chain based writing process avoids the use of an

area-inefficient address decoder, utilizing that fact that no random-access read and writes are

required for configuration bits.

The physical integration of a complete CLB-SM macro is shown in Figure 5.8. A CLB is

integrated with 4 SM-macros. Each SM macro contains 8 SMs in this case (N6:2). The WL

controls run down the center, and BL control runs down the bottom of the BC arrays.

Figure 5.8: Layout of a CLB-SM macro with 4 SMs, a BC array, and BL and WL controls.

 S
w

it
ch

 M
at

ri
x

B
C

 A
rr

ay
 (

4
1

×7
)

W
L

C
o

n
tr

o
l

B
C

 A
rr

ay
 (

4
1

×7
)

CLB

BL
Control

BC Output

 S
w

it
ch

 M
at

ri
x

 S
w

it
ch

 M
at

ri
x

 S
w

it
ch

 M
at

ri
x

SM

BC Routing

Bit Cell
(BC)

89

From the physical design in Figure 5.8, we see that the 2 SM macros reside on each side

of the BC array. Therefore the configuration bits must route from the BC output, through the SM

macro on the inside, to reach the SM macro on the outside. To not use additional metal layer,

each SM is designed to use no more than half of the resources on metal M3, so the BC routing

for the other SM can route in the other half (Figure 5.8, upper left, green).

Although commercial place-and-route tools are used for physical design, the SM macros,

the BL and WL controls, and the BC arrays are placed manually, using scripts and hand-

placement. The manually-placed design is then routed using the automated router. In the case of

the SM macros, the routes are then altered manually to occupy no more than half of the M3

resources. The physical designs for the CLBs are synthesized and placed-and-routed using only

automated, commercial flows. Overall, the CLB-SM macros are constructed with 98-99% layout

density.

Intermediate macros are constructed by integrating 32 CLBs (128 LUTs), and 16

intermediate macros are integrated in the top level. The top-level of the chip floorplan is shown

in Figure 5.9, labeled into 7 different types of SM-CLB combinations. Because of the x- and y-

symmetry of the top-level design, only 4 of the 16 macros need to be designed. Additionally, 2

out of the 4 macros are identical (both are Slice L N6:1), so only 3 unique macros are designed,

and are then replicated in top-level. The intermediate macros are not shown, but we can directly

see the CLBs placed on the floorplan. The red areas inside the macros are the regions occupied

by switch matrices.

90

Figure 5.9: Top-level layout floorplan of the 2048-LUT FPGA with 512 CLBs.

Inside the FPGA core, the layout area occupied interconnects is 51%. Compared to

commercial 2D-mesh FPGAs, where interconnects occupy 80% of the total chip area or more

[Lin07], we have achieved a 3-4x reduction in interconnects area for a fixed logic area. The

interconnect-to-logic ratio is reduced from 4:1 to 1:1 (Figure 5.10).

Figure 5.10: Area impact of our work: a 1:1 logic-to-interconnect ratio.

SLICE_DSP_6_1

SLICE_DSP_6_1

SLICE_L_6_1

SLICE_L_6_1

L_6_2 L_6_2

L_6_2 L_6_2

DSP_6_2 DSP_6_2

DSP_6_2 DSP_6_2

BRAM_6_2 BRAM_6_2

SLICE_L_8_2

SLICE_L_8_2

SLICE_DSP_8_2

Interc+Rout
36%

Logic
35%

Logic Area

Mem
15%

Mem
13%

Interconnects + Routing
43%

Logic
14%

Memory
 35%

Mem
8%

Interconnect Area

2D-Mesh

This Work
3–4× interconnect

area reduction

91

Unlike heuristics in previous attempts that resulted in limited interconnect connectivity,

this area reduction is achieved without sacrificing connectivity, thus usable logic density is

preserved. Therefore, this 2.5x reduction in chip area actually translates to 2.5x higher logic

density.

5.3 Fine-Grained CLBs for the 16K-LUT FPGA

Our initial 2048-LUT FPGA has demonstrated significant area reduction from

commercial FPGAs. Building from its initial design, the new 16K-LUT FPGA expands the logic

capability by 10x, and it is designed to be a heterogeneous integration of CLBs with different

granularities. The chip incorporates 3 granularities of CLBs: fine-grained reconfigurable blocks

such as LUTs, simple arithmetics, and distributed memories, medium-grain blocks such as DSP

accelerators and block RAMs (Section 5.4), and coarse-grain accelerators for targeted

applications, in this case a 64-8192 point Fast-Fourier-Transform (FFT) processor and a 16-core

communications signal processor (Section 5.5).

The fine-grained CLBs are mainly composed of LUTs and its surrounding logic. In our

prior design, we utilized 4-input LUTs with 4 LUTs per CLB, similar to the structure in Xilinx

Virtex-4. We then add our own improvements to the Logic CLB, and even create a DSP CLB

that allows 8-bit additions and multiplications. The Logic and DSP CLB designs where efficient,

but they have two shortcomings in mapping real-life designs. First, the CLBs that we designed

were not compatible with the CLBs from commercial FPGAs, so when the users perform logic

synthesis to map their designs, they cannot use commercial FPGA synthesis tools. In Chapter VI,

we see that we first created a custom standard-cell library for our LUTs, enabling the user to

synthesize designs for our FPGA using commercial ASIC synthesis tools. Although this

92

approach works, FPGA synthesis tools in general create much better quality-of-results for FPGA

mapping. Second, the critical-path of our CLBs is longer than that of commercial FPGAs, which

is caused by having too many configuration modes, causing too much logic to reside on the

critical path. The CLBs need to be modified so each CLB‟s most commonly-used features need

to be executed as fast as possible.

The new fine-grained CLBs are designed to target these issues. The CLBs are made to be

logically-compatible with the newest CLB designs from Xilinx Virtex-6 and Virtex-7, and is also

backward-compatible with Virtex-5. We have added our own improvements to the CLBs, but we

were careful to maintain the compatibility with commercial CLBs. This not only allows our

FPGA to be synthesized with commercial synthesis tools (e.g. Synplify Pro or Xilinx ISE), it

also allows a true apple-to-apple comparison of performance and power between our FPGAs and

commercial FPGAs, while mapping and executing the same user-design.

To avoid having excessive configuration modes that slow down the CLB, we have

separated the logic CLBs from DSP features such as multipliers and 3-input adders, which are

now built into dedicated DSP (non-LUT) CLBs. The logic CLBs now consist of Slice L and

Slice M, each support four 6-input LUTs per CLB (reconfigurable into dual 5-input LUTs), a fast

ripple-carry-chain, and 8 configurable flip-flops. These CLBs are built efficiently for

combinational logic and flip-flops; each LUT is able to propagate its out directly to an output of

the CLB (into the interconnect network) without passing other logic. The detailed micro-

architecture of a Slice L/M CLB is shown in Figure 5.11.

93

Figure 5.11: Micro-architecture of a Slice L/M CLB with dual-edged clocking.

Secondary FF

Clock-Enable/Reset Generation

AFF/
LAT

6LUT
A6:1

AX

O6

O5

CIN

A
A5
AX

XOR
CY
F7

A5

AX

AQ

A

A
A5

XOR
CY
F7

A5Q

AMUX

AFFD

CLKb

CLK

Q

QD

D

A5FF

A5FFD

CLKb

CLK

Q

QD

D

A5Q

BFF/
LAT

6LUT
B6:1

BX

O6

O5

B
B5
BX

XOR
CY
F8

B5

BX
BQ

B

B
B5

XOR
CY
F8

B5Q

BMUX

BFFD

CLKb

CLK

Q

QD

D

B5FF

B5FFD

CLKb

CLK

Q

QD

D

B5Q

CFF/
LAT

6LUT
C6:1

CX

O6

O5

C
C5
CX

XOR
CY
F7

C5

CX

CQ

C

C
C5

XOR
CY
F7

C5Q

CMUX

CFFD

CLKb

CLK

Q

QD

D C5FF

C5FFD

CLKb

CLK

Q

QD

D

C5Q

DFF/
LAT

6LUT
D6:1

DX

O6

O5

D
D5
DX

XOR
CY

MC31

D5

DX

DQ

D

D
D5

XOR
CY

MC31
D5Q

DMUX

DFFD

CLKb

CLK

Q

QD

D

D5FF

D5FFD

CLKb

CLK

Q

QD

D

D5Q

COUT

PRECYINIT[1]
PRECYINIT[0]

PRECYINIT[2]

xFFD

xFF/LAT
SR

SR

D Q
FF

CK QN
RN

SN
D Q
Neg Latch

CK
RN

SN
D Q
Neg Latch

CK
RN

CLK

LAT

SR
GSR

SRLOW

SRHIGH
GSR

INIT1

GSR

DUAL_EDGE

SR
RFF

RFFD

CLKb

CLK

Q

QD

D

SYNC/
ASYNC

SR

MC31:
Shift-register output

(SLICE M only)

CE

94

Figure 5.11 illustrates the programmable dual-edged flip-flops (FFs) used in our CLBs,

designed to reduce clocking power, and effectively implement divide-by-two clocks without

requiring a separate clock domain. The dual-edge flip-flop is designed using only standard-cell

logic to avoid having custom flip-flops as in [Pedram98], which would have to be characterized

for timing and performance for our process. By having two clocks running on inverted edges of

the clocks, combined with 3 XOR gates, we can efficiently build a dual-edged flip-flop. During

synthesis and physical design, commercial CAD tools are able to compute the timing

relationships and report timing for this dual flip-flop. To support configurability, the dual-edged

flip-flop needs to support more features, such as set/reset for global reset, set/reset for local reset,

latch mode, and single-edge mode. These features are implemented, and are shown in the inset

on the top-right of Figure 5.11, separated by xFF/LAT for the “master” flip-flop running on the

positive-edge of the clock, and xFFD for the “slave” flip-flop running on the negative-edge of

the clock. The “slave” flip-flop always resets to „0‟ whenever global or local reset is assert. It

also remains „0‟ in single-edge mode. The “master” flip-flop is configurable to set or reset to a

„1‟ or a „0‟, respectively, and independently configurable for global or local resets. Since the

“master” flip-flop is built with two latches, latch mode is supported by simply making the slave

latch transparent.

A set of 4 secondary flip-flops are implemented, configurable to store the 5-input LUT

outputs (A5 – D5) or the auxiliary signals (AX – DX). Another dual-edge flip-flop is implemented

for reconfigurable synchronous or asynchronous reset (SYNC/ASYNC) based on the incoming SR

signal. Clock-enable signal, CE, is configured to drive two clock-gating latches (not shown) that

propagate CLK and CLKb throughout the CLB.

The 6-input LUTs are used to drive the high-speed carry-chain. Unlike our previous CLB

95

design, no reconfigurable logic is added to the critical path of the carry-chain. Although the carry

chain is used to drive CLB outputs and flip-flops, inverters and buffers are inserted to separate

the critical-path from its external loading. Each carry stage also inverts the polarity of the carry

for performance improvements. With these design considerations, each CLB is able to propagate

its carry in under 100ps. The carry chain is also able to accept auxiliary inputs (AX – DX), which

is especially useful for adding partial products in a multiplier. The auxiliary inputs (AX – CX)

also function as select signals for merging 6-input LUTs into 7- or 8- input LUTs.

The Slice L LUTs each contain 64 bit-cells of configuration, useful for building glue

logic or read-only memories (ROMs). Slice M CLBs add distributed memory features – each

CLB can function as a 256-bit single- or dual-port memory, or a 128-bit shift register, distributed

across 4 LUTs inside the CLB. Therefore the LUTs are selectable to propagate their inputs from

bit-cells, memory latches, or shift registers (Figure 5.12). Our CLB design even allows each of

the 4 LUTs in Slice M to function independently as LUT, memory, or shift register. Similar to

commercial FPGAs, the 8-bit write address of Slice M is implemented using other inputs,

namely {BX, CX, D[6:1]}. Therefore each CLB only has one write port. Since the read ports are

implemented through LUT logic, each CLB can have 4 independent read ports, each with 6 bits

of address, or use 5-input LUTs to split to 5-bit addresses with 2-bit outputs per LUT. Read

address can also be combined across neighboring LUTs into forming two memories with 7-bit

read address, or one single memory with 8-bit read address. More memory examples are

illustrated in [XilinxV6CLB12], all of which are supported by our CLB design. Distributed

memories allow for asynchronous read-access, because the read operation is performed using

LUTs. If synchronous read is desired, the user can enable the output flip-flops of the CLB.

To reduce area usage and share resources, write-address decoder is separated into 3

96

stages. The first stage decodes 3 bits WA1, WA2, and WA3 (Figure 5.12, left), requiring 8 logic

combinations total. Another parallel stage decodes WA4, WA5, and write-enable signal RAMWE.

These two stages are then AND‟ed into a 32-bit memory decoder. The top-level decoders for the

upper 3 bits are formed by 8 complex logic gates, each controlling half a LUT of memory.

Address bit WA6 is OR‟ed with RAM32 modes, because 32-bit RAM modes do not require

WA6; similarly, WA7 and WA8 are enabled only when used.

The memory cell design is shown in the inset of Figure 5.12. It is shared with shift-

registers: each memory cell is configurable for outputting two memory bits and one shift-

register. Each memory bit is controlled by a latch, and a write is executed when both the lower 5-

bit decoder and the upper 3-bit decoder are enabled.

The shift-register is configurable for dual-edge or single-edge operations. It is

implemented as 4 latches, 2 of which are shared with the memory cell. The upper 2 latches are

only enabled for dual-edge modes, and output a „0‟ otherwise. Due to its larger footprint, each

LUT only support 32 bits of shift registers, configurable as a single 32-bit or two 16-bit shift

registers. The 32-bit shift registers can be concatenated with the shift registers from adjacent

LUTs, forming a 128-bit shift register per CLB. The final shift-register output from LUT D is

signal MC31, which can be selected as a CLB output. This allows a CLB to concatenate its shift

register with other CLBs to form even longer shift registers.

97

Figure 5.12: Slice M microarchitecture of the memory and shift-register logic.

Address Decoder Synchronous Write

RAMWE

FF

CLK

QD

FF

CLK

QD

~& RAMEN_A/B/C/Db

WA[8:1]

FF

CLK

QD

FF

CLK

QD

WA[8:1]

WA[8:1]

WE_CE
WE_CEQ

WA1
WA2
WA3

WA4
WA5

WE31
DC07

DC824

WA1
WA2
WA3

WE30

DC06

DC824

WA1
WA2
WA3

WA4
WA5

WE1
DC01

DC80

WA1
WA2
WA3

WE0

DC00

DC80

RAMWE

RAMWE

RAM68D31:0

RAM68C31:0

RAM68B31:0

RAM68A31:0

RAM32_D
WA6

RAM32_C
WA6

RAM32_B
WA6

RAM32_A
WA6

WA8USEDb
WA8

WA7USEDb
WA7

RAM68D63:32

RAM68C63:32

RAM68B63:32

RAM68A63:32

WA8USEDb
WA8

WA7USEDb
WA7

WA8USEDb
WA8

WA7USEDb
WA7

WA8USEDb
WA8

WA7USEDb
WA7

RAM32_D
WA6

RAM32_C
WA6

RAM32_B
WA6

RAM32_A
WA6

RAMEN_Db

RAMEN_Cb

RAMEN_Bb

RAMEN_Ab

WA8USEDb
WA8

WA7USEDb
WA7

WA8USEDb
WA8

WA7USEDb
WA7

WA8USEDb
WA8

WA7USEDb
WA7

WA8USEDb
WA8

WA7USEDb
WA7

RAMEN_Db

RAMEN_Cb

RAMEN_Bb

RAMEN_Ab

…

A1
A2

A3
A4

A5

FF

DI1

10

DI2

MC31

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

FF

SRL16_A/B/C/D

||

RAM32_A/B/C/D

0

1

DI1

RAMEN_A/B/C/D

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

MC15

MC15

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

A6

0
1

LH
QD

LH
QD

LH
D
RN

LH
QD

SRLin
DI

DI

SRLout

CLK
WE1

WE0 DUAL_EDGE
RAM68A

RAM68A

MEM0

MEM1

CLK

SR
LEN

_A
/B

/C
/D

D
U

A
L_ED

G
E

Q

O6

O5

Bit-cell

A1
A2

A3
A4

A5

Memory / Shift Register Cell

98

5.4 Medium-Grained CLBs for the 16K-LUT FPGA

Although Slice L and M are effective for basic arithmetic and small distributed

memories, these fine-grained reconfigurable blocks have their limitations. More intensive

arithmetic such as wide multiplications and multi-input additions would require a more dedicated

DSP accelerators, and larger memories would require a more dedicated memory IP. These

requirements lead us to the next granularity of reconfigurable blocks, medium-grain DSP and

Block RAM CLBs.

Our previous DSP CLB were designed in-house, thus no commercial FPGA synthesis

tools can easily utilize these CLBs. We therefore adopted an ASIC synthesis flow for our FPGA

macros, and have coded Synopsys DesignWare macros to automatically translate arithmetic into

our DSP CLB, but the results were less than satisfactory. For this DSP CLB, we designed the

DSP accelerators to be compatible with the DSP48E1 accelerators from Xilinx Virtex-6 and 7, as

shown in Figure 5.13 [XilinxV6DSP11]. We can therefore use commercial FPGA synthesis to

map to DSP CLBs. This DSP CLB has no LUTs, and is a dedicated DSP accelerator,

reconfigurable for various addition/subtraction, multiplication, and Boolean operations. Various

pipeline modes are implemented to support a maximum operation frequency of 800 MHz, and all

pipelines stages have programmable latencies of 0, 1 or (sometimes) 2 clock cycles. In our

implementation, all pipeline registers support dual-edge flip-flops, making them timing-

compatible with Slice L/M.

As shown in the left half of Figure 5.13, the datapath first integrates a pipelined adder for

inputs A and D, feeding into a 25×18 bit multiplier that multiplies with input B. Note that the

inputs of the multiplier can also be selectable to ACIN and BCIN, which is locally propagated to

ACOUT and BCOUT. This is very useful in some applications (e.g. filters) where one of the

99

multiplier‟s input needs to be constant, and this local propagation allows such operation without

using extra interconnect resources. The operation modes can be changed during chip operation

by changing the INMODE selections, which is connected to the interconnect network.

Figure 5.13: Architecture of a commercial FPGA DSP accelerator [XilinxV6DSP11]..

The right half of Figure 5.13 illustrates a 3-input datapath, operating on local inputs X, Y,

and Z. These inputs can come from the interconnect network (inputs A, B, C, and D), the

multiplier output, or locally-propagated input PCIN from the previous ALU. Carry-out

information are also locally propagated in MULTSIGNIN and CARRYCASCIN, allowing the

ALU to correctly compute data when carried across multiple DSP CLBs. This allows the ALU

support wider multiplication and arithmetic operations. Operations such as addition, subtraction,

Boolean operations, and pattern detections are supported. The ALU may function as a single 48-

bit operator, or function as a single-instruction, multiple-data (SIMD) ALU for two 24-bit

operations or four 12-bit operations.

From mapping Block RAM designs on our previous chip, we noticed a similar

100

inconvenience with the mapping flow. The Block RAM CLBs were highly reconfigurable, and

support many modes, but none of these modes can be mapped automatically. Because the ASIC

synthesis flow will not map designs onto our BRAM CLBS, every Block RAM must be

instantiated manually, and synthesized as a black-box. The suitable BRAM modes must also be

configured by the user. For this design, we decided to design a BRAM CLB that is compatible

with the RAMB36 designs from Xilinx Virtex-6 and 7 [XilinxV6BRAM11]. Not only does this

resolve the issue of mapping automation, allowing commercial FPGA synthesis tools, it also

provides a much larger memory (36Kb instead of 1Kb). Because the number of address bits is

only a log of the number of elements, the number of I/O bits remains manageable.

Figure 5.14 shows the top-level architecture of the 36 Kb BRAM and a datapath for one

of its ports. A total port width of 36 bits is supported. Virtex-6 BRAMs allow 4 bits to store the

error-correction codes (ECC) for the other 32 bits of data. Our implementation does not support

ECC, and all 36 bits are used for data storage. The reconfigurable BRAM supports memory sizes

of 32Kx1b, 16Kx2b, 8Kx4b, 4Kx9b, 2Kx18b, 1Kx36b, or 512x72b, and the two ports can be

configured for different memory sizes. Although in 512x72b mode, the dual-port memory can

only function as a simple dual-port, because all 72 bits of data inputs (from port A and B) are

used for writing, and all 72 bits of data outputs are used for reading. Byte-wise masking is

provided, although the granularity is 9-bits per “byte” (8 bits from DIA/B and 1 bit from DIPA/B)

due to the 36-bit data width. In 32Kx1b mode, the BRAM can be locally concatenated with its

neighbor into forming a larger, 64Kx1b BRAM. Therefore the address input can be up to 16 bits.

Unlike the distributed memory from SLICE M, the BRAM CLB supports only

synchronous read and synchronous write (Figure 5.14b), and an additional pipeline register may

be added to the output to improve timing. This pipeline register has its dedicated reset

101

(RSTREGA/B) and clock enable (RSTCEA/B) signals. The read/write operation of each port is

synchronous to its own clock input. When attempting to read and write from the same address,

the user may select the output port to output the memory data before or after the overwrite

process, or remain unchanged.

a) b)

Figure 5.14: A commercial dual-port block RAM and its a) block architecture and b) datapath

[XilinxV6BRAM11].

In our implementation, we used a memory-compiled IP of 512x72b, dual-port, 8-

transistor SRAM. The dual-port IP supports independent clock domains for each port, making it

suitable for this reconfigurable implementation. For other memory sizes, additional address

decoding is used to mask the data to perform the read and write operations on proper memory

locations. Due to the limitation on the memory IP, the BRAM CLB can only operate on one

clock edge. However, if dual-edged clocking is necessary, the two ports of the memory can run

on two opposite edges of the clock, and external logic can be used to transition this BRAM into a

dual-edged, single-port BRAM.

102

5.5 Coarse-Grained CLBs for the 16K-LUT FPGA

Since this chip primarily targets high-throughput communication applications, we have

integrated two coarse-grain accelerators. The first block is a 16-core, highly-efficient

communications DSP accelerator, reconfigurable to perform many common communications

algorithms very efficiently. The 16-core architecture is illustrated in Figure 5.15. Core-to-core

communications utilize both local, fast-path interconnects running vertically and horizontally, as

well as a 4-stage hierarchical interconnect network spanning the 16 cores.

Figure 5.15: Core schematic and interconnect architecture of a 16-core DSP processor.

Each core is realized using radix-2 butterfly architecture, performing 2×2 matrix

computations, called a butterfly-computation element (BCE). This provides the versatility for

various fundamental 2×2 operations, e.g. permutation, CORDIC, multiplication-and-

accumulation (MAC), unitary transformation, etc. Higher level of integration such as multi-stage

pipeline is achievable with multiple cores. Each BCE is designed to be run-time reconfigurable

BCE

BCE

BCE

BCE

BCE

BCE

BCE

BCE

BCE

BCE

BCE

BCE

BCE

BCE

BCE

BCE

Quad Core #0 Quad Core #1

Quad Core #2 Quad Core #3

Horizontal Fastpath

Hier. Interconnect
Sy

st
e

m
 O

u
tp

u
t

to
 Q

u
ad

 C
o

re
 #

2

fr
o

m
 Q

u
ad

 C
o

re
 #

1
Sy

st
e

m
 In

p
u

t

P
o

st
-P

ro
c.

P
re

-P
ro

c.

P
at

h
 S

e
lc

.

P
at

h
 S

e
lc

.fastpath

interconnect

data mem.

data mem.

fastpath

interconnect

Shifter & Multiplier

Vertical Fastpath

103

by leveraging the processor-style instruction set architecture (ISA). However, the overhead from

traditional control loops (fetch-decode-operate-save) can be reduced since the output of each

core is not stored back, but mostly transmitted to neighboring cores. The complexity of

instruction fetch and decode can also be greatly reduced by using a specific instruction set

combined with bit-cell-level programming. The concept of “real-time instruction redefinition” is

therefore established: the same command can cause totally different operations in different cores

based on their bit-cell programming.

At a first glance, the 2×2 butterfly design does not seem to relate to many communication

applications. But as shown in Figure 5.16, many commonly used applications, such as the lattice

filter, 2-way FIR filter, and zero-forcing (ZF) or minimum-mean-square-error (MMSE) signal

equalization can all be mapped very efficiently. Even more complex algorithms such as QR

factorization (where Q is an orthogonal matrix and R is an upper triangular matrix) and breadth-

first sphere detector (SD) can be decomposed into multiple 2×2 BF stages. Though seemingly

unrelated, these functions for spectrum shaping, channel factorization, and signal detection are

neatly unified into a common architecture. This is therefore called a “universal DSP” (UDSP).

Figure 5.16: Example communication applications of the DSP processor.

Lattice Filter

…

…

2-way FIR Filter

…

…

…

…

…

…

2-way ZF/MMSE Equalization

QR Factorization (scaling part) QR Factorization (rotation part)

tr
an

sp
o

se

A + jB

K + j0

(A2 + B2)0.5

tr
an

sp
o

se

exp(jΘ)
s

s

tr
an

sp
o

se

A + jB

C + jD

A+ jC

B + jD

tr
an

sp
o

se

sw
ap

E + jF

G + jH

G + jE

H + jF

MEU| |2

MCU

PED

Fixed-complexity SD

104

A key enabler for this technology is efficient interconnects: three layers of interconnects,

the core‟s internal feedback, the 2-D unidirectional fast-path, and the radix-2 hierarchical

network are implemented. Each layer of interconnect deals with the corresponding scale of

datapath, from the folding architecture for equalization and QR factorization, the pipelined

architecture for filters and SDs, to the signal broadcasting for inter-core communications.

The other coarse-grain reconfigurable block we implemented is a 64 – 8192 point

reconfigurable Fast Fourier Transform (FFT) processor. Because FFT processors, especially

those with fine resolution, require large memories, this FFT processor is designed to utilize the

BRAM and distributed Slice-L memories on the FPGA, instead of having its dedicated

memories. This resource sharing reduced the area of the FFT processor by more than 50%. To

achieve high energy efficiency, the FFT processor is designed with 16 parallel cores, each with

reconfigurable pipelines (Figure 5.17).

The 16 FFT cores can each support frequency resolutions from 64 to 512 points. It is

implemented as a 3-stage pipelined FFT to further ease the timing requirements and improve

energy efficiency. Extensive analysis in radix factorization is performed in [Yang12] to

determine the optimal radix per pipeline stage that minimizes the energy and area requirements.

The 16 parallel cores are processed by a final 16-point FFT to realize a 64 to 8192 point FFT

processor. An extensive exploration and illustration of radix factorization, energy-area

minimization, and parallel FFT are documented in [Yang12, Yu12].

105

Figure 5.17: The FFT architecture and radix factorizations of different FFT resolutions.

5.6 Macro-based Chip Integration for the 16K-LUT FPGA

Due to the large size of the chip, and the very limited man-power available, this chip is

designed using macro-based hierarchical physical design. In the previous 2048-LUT FPGA, only

2 types of SMs are used, forming 3 different types of SM macros. In this design, over 10 types of

SMs are used, forming into 7 different types of SM macros with 10 different physical footprints.

As a result, we can no longer create individual SMs and integrate a collection of them into a

physical layout. The area discrepancies between the individual SMs will cause gaps in the

integrated layout, causing wasted area.

To maximum area utilization, each of the 7 SM macros is realized as a complete layout,

16-point
Parallel

FFT

TW

2
16

Reconfigurable
Pipeline FFT

1

TW: twiddle factor

D1

Radix-2k
 PE

D4 D2

TW

D8

Radix-2k
 PE

D32 D16D64

Radix-2k
 PE

D256 D128

k: reconfigurable radix

FFT size Pipeline FFT Radix (k)

64 - - 4

128 - - 8

256 - 4 4

512 - 4 8

1024 - 8 8

2048 4 4 8

4096 4 8 8

8192 8 8 8

106

including all SM stages with their bit-cells, muxes, and output buffers. Each SM macro is

designed to support 5 inputs and 2 outputs from the CLB, although some support 3 or 2 inputs

and 2 outputs, depending on the CLB it is tied to. To not cause gaps in physical integration, all

SM macros are designed to have a fixed width, and all SM macros residing in the same

horizontal row have the same height as well. This ensures a gap-less physical integration.

An example SM macro layout is shown in Figure 5.18. The top half of the SM layout is

filled by an array of bit-cells. Each of the BC is an optimized 6T SRAM cell, as previously

described in Section 4.4. The true and complement bit-lines (BL and BLb) runs horizontal, and

the word-line (WL) runs vertically within the cell, and all the bit-lines and word-lines of an

SRAM array are connect through physical placement. In addition, the bit-lines and word-lines

also connect to the boundaries of the SM macro, so any SM macros placed adjacent to it will

have its bit-lines and word-lines easily connected.

Figure 5.18: An example physical design of a SM macro.

The SM macro is separated into two voltage domains, VDDH for the bit-cells, and VDDL

for the muxes and buffers. However, it is common for the bit-cell arrays to fill up an integer

multiple of rows, because the width of the SM macro is fixed across all macros. The result is a

U-shaped bit-cell array, as shown in Figure 5.18. This leaves an area gap in the VDDH domain.

To not waste area, we place pass-gate muxes in this region. Pass-gate muxes do not have buffers,

nor do they have any power-gating signal (which requires VDDL). These pass-gates can be safely

VDDHVDDLGND

Bit-cell Array

Muxes and Buffers
BL[0]
BLb[0]

BL[1]
BLb[1]

BL[2]
BLb[2]

BL[3]
BLb[3]

WL[92:0]
BLb

WL

BL

VDDH

GND

107

placed in VDDH domain. The PMOS body of these gates is tied to VDDH, but since the gate

voltages are driven by bit-cells, the gate voltages are also in VDDH, causing no leakage issues.

As previously described in Section 4.5, the true and complement outputs of the bit-cells

are driven directly from the bit-cell to the gate of the pass-gate muxes. This causes routing

congestion inside the SM macro; for example, an 8-input static mux with power-gating requires

9 bit-cells, which is 18 true-and-complement control signals in a very small area. As a result, no

automated placement is used. The bit-cell array is designed with spatial locality in mind. Instead

of assigning a bit-line and word-line to each bit-cell, and placing it in an array, we first analyze

the muxes each bit-cell is tied to. The bit-cells are then arranged to minimize routing distance

and minimize wire cross-over. For example, if a mux has 9 different bit-cell inputs from left to

right, it is best to arrange the bit-cells in the array in the same order to simplify routing.

Additionally, if an SM input is driving 4 muxes, for example, it is best to place these 4 muxes

locally, and not on opposite sides of the SM macro. As a result, the bit-cells associated with these

muxes must also be placed close together.

Once the bit-cell array is determined, each mux and buffer is then placed manually. The

location of each mux is chosen to minimize routing distance and minimize wire cross-over. The

buffers are also placed close to the mux output. In the end, routing is performed automatically

using commercial routing tools. Timing characterization is then analyzed, and the design is

iterated if necessary. The SM macros are all designed with layout density of 98% or higher.

The chip integration hierarchy is illustrated in Figure 5.19. Starting from the SM macro,

it is integrated with a corresponding CLB into one CLB macro. The CLB macro includes all the

SM macros required to network its inputs and outputs. A heterogeneous collection of CLB

macros are then integrated into a tile, and 9 heterogeneous tiles are integrated in the top level.

108

Figure 5.19: Illustration of the hierarchical design methodology used for chip integration.

Depending on the interconnect requirements of each CLB, different number of CLBs are

instantiated to integrate with the CLB into one macro. Example layouts of these CLBs are shown

in Figure 5.20. A Slice L CLB requires 30 inputs and 12 inputs, therefore requiring 6 SM macros

(5-input, 2-output each). A Slice M CLB requires 7 SM macros. The DSP CLB requires 33 SM

macros due to its large input requirement. A BRAM CLB has large output requirements (72),

requiring 36 SM macros, but its input requires are smaller (124), and are composed with 28 3-

input, 2-output SMs and 8 5-input, 2-output SMs. The 36 SM macros are best arranged in a 4x9

array, but as shown in Figure 5.20d), the physical footprint of the 512x72b memory IP is far too

wide for 4 SM macros; it is approximately the width of 8 SM macros. Therefore, 2 BRAM CLBs

are integrated together, their SM macros are placed side-by-side, forming an 8x9 array of SM

DSP DSP DSP DSP

Switch Matrix SLICE L
SLICE M

BRAM

DSP

BRAM

L

BRAM

L L L L L L L

DSP

BRAM

L L L L

DSP DSP DSP

L L L L L L L L L L L L

L L L L L L L L L L L L
CLB

Tile

Chip

Tile

Tile
Tile

Tile

Tile

Tile
Tile

Tile
Tile

109

macros, and the two memory IPs are stacked vertically. The area in the middle is used by the

control logic for both BRAMs.

 a) b) c)

d)

Figure 5.20: Layout examples of a) Slice L, b) Slice M, c) DSP, and d) BRAM CLBs and SMs.

Switch Matrix
Switch Matrix
Switch Matrix

Switch Matrix
Switch Matrix
Switch Matrix

Slice-M Logic

Switch Matrix

Switch Matrix
Switch Matrix
Switch Matrix

Switch Matrix
Switch Matrix
Switch Matrix

Slice-L Logic
5x3 Switch Matrix Array

6x3 Switch Matrix Array

Slice DSP Core

5x8 Switch Matrix Array

512x72b Memory IP

4x8 Switch Matrix Array

512x72b Memory IP

Control Logic for dual BRAMs

110

By integrating each CLB with its SMs, the actual I/Os of each CLB is completely

abstracted away. The only remaining I/Os are the I/Os of the SM macro that each CLB connects

to. This creates a slightly more systematic I/O netlist for tile-level and top-level integrations.

Since the interconnect architecture is optimized by our software mapping tool, we coded the tool

to automatically generate the interconnect Verilog associated with every tile. Since each tile

integrates hundreds of CLBs with thousands of SMs, each tiles has 50,000 to 100,000

interconnect signals. This automated Verilog creation method is robust, error-free, and ensure the

created Verilog to be an exact match to the optimized interconnect architecture.

The top-level architecture of the 16K-LUT FPGA is shown in Figure 5.21. It is divided

into 9 tiles of heterogeneous CLBs. Unlike the 2048-LUT FPGA design, the WL scan chains do

not run inside every CLB, instead, there is only one set of BL scan chain and one set of WL scan

chain, propagating across the entire chip. To avoid hold-time issues, the scan flip-flops are

implemented as master-slave latches, running on a non-overlapping clock P1 and P2 for

maximum robustness in timing and reliability. Inside each tile, the BL and WL signals are

buffered to meet transition time requirements for electromigration. The buffering overhead is far

less than the area of implementing a separate scan chain inside every CLB. Because the BL and

WL are routed to the boundaries of every SM macro, which are then routed to the boundaries of

every CLB macro, connecting the BL and WL signals in the tile level and the top level requires

minimal effort.

111

Figure 5.21: Top level CLB and SM architecture, illustrating scan chain for BL and WL.

As shown in Figure 5.21, the heterogeneous integration in the top level requires various

CLB and SM combinations. The colors in Figure 5.21 illustrate the different SM macros used for

interconnects, matching the colors used in Figure 3.16 for interconnect illustration. A total of

16K SM macros are used.

Even with a 10x interconnect complexity, the overall interconnect area is 52%, still

maintaining a logic to interconnect ratio of 1:1. This 16K FPGA has demonstrated the O(N∙logN)

the scalability of the hierarchical interconnect network.

Scan Configuration

L

P1

L

P2

BLSI B0 L

P1

L

P2

B1 L

P1

L

P2

B2 L

P1

L

P2

BLSO

L

P1

L

P2

WLSI L

P1

L

P2

L

P1

L

P2

L

P1

L

P2

WLEN

WL0 WL1 WL2

BLSE

WLSE

WLSO

…

…

64-8k
FFT

Slice L/M

Slice L/M

Slice L/M

Slice L

Slice L/M

Slice L/M

Slice L/M

16-core UDSP

DSP-48, Slice L, BRAM

BL Scan Chain

WL Scan Chain

Chip Overview

11k 6-input LUTs
576 distributed memories

42 DSP accelerators
16 block RAMs

350 I/Os
16-core FFT + 16-core UDSP

24.5 mm2 in 40nm CMOS
143 million transistors

112

Figure 5.22: Area impact of our two FPGAs: a 1:1 logic-to-interconnect ratio.

Overall, this FPGA integrates 11,008 6-input LUTs in 2752 CLBs, 2176 of which are

Slice L, and 576 are Slice M. Following conventional FPGA scaling, this 11K 6-input LUT

FPGA is approximately a 16K 4-input LUT FPGA. A total of 350 configurable data I/Os are

implemented. There are 42 DSP CLBs and 16 BRAM CLBs, all integrated in the center tile. The

16-core parallel FFT and the 16-core universal DSP macros are located near the bottom. Overall,

this chip occupies 24.5 mm
2
 in 40nm CMOS technology, and is comprised of 143 million

transistors.

M. Lin, et al., TCAD-ICS, Feb. 2007

Interc+Rout
36%

Logic
35%

Logic Area

Mem
15%

Mem
13%

Interconnects + Routing
43%

Logic
14%

Memory
 35%

Mem
8%

Interconnect Area

2D-Mesh

2048-LUT FPGA 3–4× interconnect
area reduction

Interc
+Rout
24%

Logic
30%

Mem
28%

Mem
7%

16K-LUT FPGA

Acc.
11%

113

CHAPTER VI

Software Flow and Design Mapping

6.1 Overview of FPGA Software Mapping Flow

A key feature of reconfigurable hardware is software programmability. Unlike dedicated

chips, FPGA chips are accompanied by complete software flows to enable users the map their

designs onto the FPGA. At a high level, FPGA mapping and ASIC physical design do not appear

too different, they even use similar terminology, from logic synthesis to gate placement,

followed by interconnect routing. Although a few algorithms do apply to both flows, in reality

the two software flows are designed very differently, and are generally not inter-compatible.

Figure 6.1a) shows a general software flow for mapping user design onto commercial

FPGAs. The user supplies a hardware-description language (HDL), generally in Verilog or

VHDL, and feeds into the tool. Modern FPGA tools are very complete, and require the users to

perform very few manual preparations to have a mappable design. Unlike ASIC synthesis, FPGA

synthesis often does not require a user-supplied timing constraint or timing library. The user

simply selects the FPGA platform to be targeting, and the tool applies the timing libraries

automatically, and also synthesizes its logic into the appropriate LUTs for the target FPGA. In

case timing constraints are not provided, the tool would generally attempt to create the fastest-

possible design.

Once synthesized into LUTs for the target FPGA, LUT packing is performed. LUT

packing is designed to efficiently “pack” LUTs into CLBs, which generally consist of 4 LUTs

and their supporting logic. Depending on the target application, LUT packing may be performed

to minimize inter-CLB routing (connection-driven), or to minimize critical-path delay (timing-

114

driven), or a combination of the two [Marquardt99]. Once the LUTs are packed into CLBs, the

CLB is ready for placement and routing.

Logic gate placements are generally performed to utilize spatial locality, either based on

connections or timing. In other words, gates with many communication between them, or are lies

on a critical path, should be placed closely to each other. Such task is generally realized as

hierarchical partitions, where a large network of gates is partitioned into 2 or more sections with

the goal of minimizing the total communication between the sections (min-cut). The partition

scheme can be applied hierarchically to reduce the large network into small clusters of gates,

which is then mapped locally onto CLBs.

Routing is executed once the gates are placed. It is generally executed in two stages,

global routing and detailed routing. Global routing is first performed to route all connections

onto the interconnect network while disregarding routing resource conflicts. This not only

provides a best-case timing of the design, the routing conflicts also serve as an indication of

routing congestion (e.g. how many nets are trying to use the same routing resource). Detailed

routing is then executed to resolve routing conflicts to create a fully routable design where each

routing resource is only occupied by one net. In an FPGA, routing resource is often scarce, and

extensive research is done in this field to resolve routing conflicts.

From the fully routed design, the tool has full visibility into the configuration of each

CLB, and the path of each route. From this information, it is then able to determine the proper

configuration for all the bit-cells. The bit-cells are then written and created into a bitstream,

which is used to program the target FPGA to perform the configured design.

115

a) b)

Figure 6.1: Software mapping flow of a) commercial FPGA tools and b) our flow.

Our FPGAs are designed to serve a similar user experience (Figure 6.1b). However, our

first 2048-LUT FPGA employed custom CLBs that are not compatible with commercial FPGAs.

This required us to create a custom synthesis flow. To avoid writing our own FPGA synthesis

tool, we designed custom a standard-cell library of our LUTs and a custom DesignWare® library

for our DSP blocks to perform logic synthesis using ASIC synthesis tools. The resulting netlist is

then sent into our custom software tool for packing LUTs into CLBs. The details of our custom

synthesis and packing flow are discussed in Section 6.2.

Since our hierarchical FPGA has a different chip architecture from commercial FPGAs,

Commercial

Custom

Place & Route

Bitstream
Creation

LUT
Packing

Netlist

Bitstream

DesignWare
Library

Standard Cell
Library

Logic
Synthesis

HDL

Logic
Synthesis

HDL

Place & Route

Bitstream
Creation

LUT
Packing

Bitstream

Commercial FPGA Our FPGA

116

and our netlist consists of custom CLBs, commercial software for logic placement cannot be

used. We therefore developed a custom gate-placement flowing using hierarchical partitioning

techniques. Partition is performed hierarchically, following the radix boundaries of our FPGA,

until the sub-partitions are small enough to be directly mapped to the appropriate CLBs. The

placement details are discussed in Section 6.3.

A custom router is also developed. Global wiring is generally based on a shortest-path

algorithm [Nair87], and the hierarchical architectures allows for very deterministic global

routing. Our detailed routing was first based on a “rip-up-and-reroute” approach to resolve

routing conflicts [Dees81], but it poses a timing penalty, and because the routing order of the

nets matter, the router does not produce consistent results. We then adopted a negotiation-based,

timing-driven algorithm called Pathfinder [McMurchie95], and modified it to improve runtime

for our applications. Bitstream is then created based on the placed-and-routed design. The router

details are discussed in Section 6.4.

6.2 FPGA Synthesis and LUT Packing

For our first, 2048-LUT FPGA, the CLBs are not compatible with the CLBs in

commercial FPGAs, disallowing us from using a commercial synthesis flow. To avoid writing a

custom synthesis tool, we create a custom standard-cell library to use ASIC synthesis tools to

map HDL onto our LUTs. The standard-cell library is created to contain 2-, 3- and 4-input LUTs,

summing to around 4,000 different types of cells. Each LUT is assigned a constant area and a

constant logic delay. A snapshot of a synthesized netlist is shown in Figure 6.2. Each LUT

configuration maps to a unique standard cell name, so the software tool can determine the LUT

mapping, and the connections are described by the net names.

117

For arithmetic functions, Synopsys DesignWare® libraries are created to automatically

instantiate DSP CLBs to perform additions and subtractions. For memories that require block

RAM instantiations, the user needs to instantiate BRAM CLBs in their HDL, else the synthesis

tool will realize the memory array using flip-flops from the CLB resources.

Figure 6.2: A snapshot of a synthesized netlist using our custom standard-cell library.

From the synthesized netlist, the software tool can “pack” LUTs into CLBs, which

consist of 4 LUTs per CLB. The packing algorithm we implemented is based on the “timing-

driven packing” proposed in [Marquardt99]. As expected, the interconnect delay for intra-CLB

LUTs are much shorter than the delay for inter-CLB LUTs, these delay are added in addition to

the internal logic delay of each LUT. Based on these 3 delay models (which is can be just 1

constant value for each model for simplicity, and inter-CLB delay would remain unknown until

place-and-route is complete), the delay for each path can be modeled. Based on the delay of each

path, divided by the maximum path delay, each net is assigned a net-criticality ratio between 0

and 1. In reality, the affinity between two LUTs is often not only defined by the timing-critically

of the net, but also the number of connections between the two LUTs. Therefore a second ratio,

…

LUT4_0x0x_x0x0_0xx0_x00x_1 U85(.A (n28), .B (n9), .C (mult3_N3), .D(n53),

.Y (mult3_DP_OP_7J4_127_4559_n160));

LUT4_0000_1 U86(.A (mult1_N1), .B (mult1_N5), .C (mult1_N2), .D(mult1_N3),

.Y (n65));

LUT3_010_100_1 U87(.A (mult1_DP_OP_7J4_125_9370_n214),

.B(mult1_DP_OP_7J4_125_9370_n146), .C (mult1_N7), .Y (n66));

LUT4_1xx1_x0x1_xx01_1 U88(.A (mult1_N6), .B (n65), .C (n66), .D(mult1_N18),

.Y (mult1_N25));

LUT3_010_100_1 U89(.A (mult2_DP_OP_7J4_126_8975_n217),

.B(mult2_DP_OP_7J4_126_8975_n135), .C(mult2_DP_OP_7J4_126_8975_n133),

.Y (n67));

LUT3_011_1 U91(.A (mult4_add_x_26_1_n1), .B (mult4_n6), .C(mult4_n4), .Y

(n69));

LUT2_01_10_1 U92(.A (mult4_n7), .B (n69), .Y (M_OUT4[2]));

…

118

called “net attraction” is defined as the number of nets shared by the two LUTs, divided by the

total number of nets they can accommodate, which also results in a ratio between 0 and 1. The

total attraction between two LUTs is then computed as the weighted-sum of the net-criticality

ratio and the net-attraction ratio. The weight essentially trades off delay minimization with net

sharing.

Packing is not only useful in realizing a CLB netlist that can be used for place-and-route,

it also effectively reduces the number of gates (by up to 4x in our case), which significantly

reduces the problem size for placement algorithms [Betz97].

Although the synthesis and packing flow is functional, from our experience mapping our

first 2048-LUT FPGA, the synthesis results were not always ideal. ASIC synthesis tools always

perform technology-independent mapping, and then try to allocate suitable standard-cells from

the technology library to map the appropriate functions. Most of the ASIC algorithm assumes

that small, simple CMOS gates are fast, and complex gates are slow. This is intrinsically

different from FPGA synthesis [Sangiovanni93], where a logic gate of arbitrary function is

realizable, but adding every LUT to the critical path can significantly impact timing. ASIC

synthesis can also impact packing results, for example, a multiplexer can be integrated into the

CLB by directly using the F7 or F8 logic gates, but the ASIC synthesis tools often implement the

multiplexer as LUTs, which can no longer packed as efficiently.

From our mapping experience, ASIC synthesis tools often results 50% or more gates on

the critical path than FPGA synthesis. Additionally, although 2048-LUTs are still reasonable to

map, large designs (10,000 LUTs or more) often cause our ASIC synthesis tool to struggle, and

sometimes crash unexpectedly. These concerns have motivated us to migrate to a CLB design

that is compatible with commercial FPGA synthesis tools.

119

The updated software-mapping flow for our new 16K-LUT FPGA is shown in Figure 6.3.

By using commercially-compatible CLBs, we are able to utilize commercial FPGA synthesis

tools such as Synopsys Synplify Pro for logic synthesis. The synthesized netlist can be fed into

commercial FPGA place-and-route tools, which create a benchmark comparison for our design,

and also outputs packet netlist and place-and-route results. In Mode 1 of our new design flow,

the tool is able to parse the packed netlist from the commercial tools and perform place-and-

route onto our FPGA architecture. This allows for a direct comparison between commercial

FPGA and our FPGA while mapping the same netlist. In Mode 2, the synthesized netlist is

processed to instantiate of our coarse-grain CLBs, which are used as accelerators and kernels.

This new netlist is then fed into our place-and-route flow to perform LUT packing, as well as

place-and-route. The accelerator/kernel insertion tool is still being developed.

Figure 6.3: The updated software mapping flow for our new FPGA.

The updated software mapping flow allows us to utilize mature, commercial synthesis

tools for mapping designs onto our FPGA. The quality of results is significantly improved

Our ToolXilinx ISE

Synplify Pro

User Input

Synthesized Netlist:
2-6in LUTs,

XOR+MUX (carry),
FF, RAM, ROM

DSP48E1

LUT Packing

Verilog Files

Logic Synthesis

Placement

Routing

Packed Netlist:
Slice L
Slice M

DSP48E1
BRAM

Bitstream for
Xilinx FPGAs

Post P&R Netlist:
Slice Locations

Wire paths
Pass-transistors

Our Tool

Accelerator/Kernel
Insertion

Mode 1:
Xilinx-compatible P&R

Our Tool

Placement

Routing

Our Bitstream

Mode 2:
Accelerater/Kernel P&R

Placement

Routing

LUT Packing

Our Bitstream

120

compared to using ASIC synthesis tools. The Mode 1 even allows us to utilize the LUT packing

tool from commercial FPGAs, which is made possible because our new FPGA is CLB-

compatible with that of Virtex 6 and 7. The CLB netlist still needs to be placed and routed onto

our FPGA, which is covered in the next two sections.

6.3 FPGA Partitioning and Placement

For large VLSI designs, partitioning is an essential step towards reducing the problem

size. In case of large problems, clustering is one effective method to further reduce the problem

size by combining individual gates into larger “clusters”, then perform partition on the clusters,

followed by a coarsening phase of unclustering the gates. Partitioning can be performed

hierarchically to form successively-smaller partitions, eventually converging to partitions small

enough to place individual gates, and then the placement process can be completed. Figure 6.4

illustrates the concept of hierarchical partitioning. Figure 6.4a) shows a chip top-level divided

into 4 quadrants, where partitioning is performed to minimize the number of wire crossing the

horizontal, vertical, and diagonal boundaries (min-cut). The gates that have wires crossing these

boundaries are shown. Figure 6.4b) illustrates the next step, where the hierarchical partition tool

descends into a quadrant, one quadrant at a time, and performs the min-cut partition on the

quadrant. The gates that have wires crossing the new partition boundary are shown. In our

implementation, we have modified the min-cut algorithm to not only count the number of nets,

but also to weigh the wire cost by the timing-criticality of the net. This allows for a timing-driven

and connectivity-driven partitioning.

121

a) b)

Figure 6.4: Hierarchical partitioning performed on a) top-level, and b) one quadrant.

In the partitioning algorithm, only the gates whose wires cross the partition boundary

contribute to the cost function, and the goal of a min-cut partition is to reduce the total cost. In

the field of computer-aided-design (CAD), the most commonly-used algorithms are the

Kernighan-Lin [Kernighan70] algorithm and the modifications proposed by Fiduccia-Mattheyses

[Fiduccia82]. The KL algorithm finds the best pair of gates, from two partitions, to swap

between the two partitions, and repeat until the cost is minimized. The FM algorithm modified

the KL algorithm to move only one gate at a time, and to keep a sorted “bucket list” of cost

functions for more efficient memory management. Krishnamurthy then proposed an improved

algorithm based on FM partitioning to provide “foresight” into moving gates [Krishnamurthy84].

The algorithm not only chooses the gate that will reduce the total wire cost, it is able to “foresee”

wire costs. For example, if two gates need to be moved in order to reduce a wire cost, these two

gates are assigned to a second-order “bucket list”; the same applies for third-order and higher.

Therefore, even if multiple gates have the same effect on the first-order wiring cost, the second

order “bucket list” can be used as tie-breakers, and the third order can be a tiebreaker for the

second order. Although many other algorithms exist, such as simulated annealing [Bui89] or

122

ratio cut [Wei91, Hagen92], surveys have shown the techniques based upon KLFM can still

produce better results [Hauck95].

Although partitioning is generally applied to bisections, called bipartition, multi-way

partitioning has been introduced by Sanchis in [Sanchis89]. The first multi-way partitioning is to

reduce the wire cross any boundary, thus wires with gates residing in 4 partitions, for example,

are treated with the same cost as wires with gates residing in just 2 partitions. Sanchis later

proposed a different cost function in [Sanchis93] where reducing the wire cost from 1 partition

will still reduce the total wiring cost, which is more applicable for FPGA applications.

When hierarchical partitioning is used, it is best to keep the gates with boundary-crossing

nets closer to the boundary, as shown in Figure 6.4. This reduces the wiring length for these

gates. In Figure 6.4b), partitioning is performed on the quadrant shown, and it would be best for

the gates in blue to remain in the lower right partition, because that results in the shortest wire-

lengths when they need to communicate diagonally in the top level. To implement such location

preference, a concept called “terminal propagation” from [Dunlop85] is implemented. Terminal

propagation adds bias to a partition when the gate has higher-level nets closer to that partition.

For large-scale partition problems, clustering is an indispensable tool. Since the

partitioning problem is NP-complete, the iterative algorithms are heuristic methods. When the

problem size gets large, these algorithms tend to remain in local optima and often fail to find a

global optimum [Cong93]. Additionally, it has been shown that FM-based method is more

effective on gates on average have at least 6 nets [McMurchie95]. Such constraint is not always

met in regular circuits, especially when 4-input LUTs dominate. Once clustering is performed,

all these issues can be resolved – the problem size is reduced, and each gate cluster has far more

than 6 nets on average. Many clustering techniques has been proposed over the years [Schuler72,

123

Garbers90, Hagen292, Cong93, Ding01], and they are generally used as a pre-partition process.

After partitioning of the clustered gates are done, the unclustering step can be performed in one

step, or be gradually “uncoarsened” into smaller clusters, performing additional FM iterations

between each uncoarsening step [Karypis98].

Although clustering is indispensable for many partitioning algorithms, we do not find it

very effective once LUT is packed into CLBs. In our new FPGA, each CLB can have anywhere

from 42 to hundreds of connections. Although not all connections are utilized, the number of

nets per gate is far more than 6, and FM-based methods work very effectively. LUT packing also

reduces the effective number of CLBs to no more than 3,000, which is well-manageable by our

software tool even without additional clustering.

In our partitioning implementation, we implemented a KLFM-based, iterative min-cut

partitioning algorithm with terminal propagation. Both 2-way and multi-way partition are

considered, and generally 2-way partitioning produces better results, and does not increase

routing wire length when used with terminal propagation. Multi-way partition is still necessary

because parts of the radix-3 architecture require 3-way partition at those hierarchies. Random-

walk-based clustering was implemented initially, but is not used for partitioning CLBs after LUT

packing. The only clustering that is implemented is to cluster CLBs that reside on a carry chain.

In these cases, the CLBs must be placed in a particular order to ensure proper carry propagation

between CLBs. These CLBs are clustered into a large cluster, and is only unclustered when the

hierarchically-partitioned area of the next hierarchy is too small to fit the entire cluster. Upon

unclustering, the CLBs are placed at the current partition. In many of our mapped designs, carry-

chain CLBs can account for as much as 50% of all CLBs. As a result, further clustering has

proved unnecessary. For the non-clustered gates, placement is performed when partitioning has

124

reached the bottom hierarchy, resulting in a partition size of 1 CLB. The corresponding CLB is

then placed in the current partition.

6.4 FPGA Routing

Due to the large overhead of interconnect area, FPGA routing is performed on very

limited routing resources. In our hierarchical FPGA design, the interconnect architecture is also

designed to provide just sufficient routing resources to avoid area waste. As a result, FPGA

routing places large emphasis on the quality of the software router. The router need to not only

resolve all routing congestions, minimize critical-path, and complete the task in a reasonable

(hours of less) run-time even for large designs.

As shown in Figure 6.5, the hierarchical interconnect architecture was implemented to

have many path diversities, therefore improving connectivity. However, not all paths result in the

same timing performance, as illustrated by the routing preferences. It is generally preferred to

travel the shortest routings, using fast-path whenever possible, to reduce overall interconnect

capacitance. But in the case of routing congestion, re-routing must be done, and some nets may

be required to take non-preferred routes.

Modern routers generally employ global routing before detailed routing. The purpose of

global routing is to provide a best-case timing performance of the design, and to estimate routing

congestion. Being agnostic to routing congestion, the router is able to perform global routing

very quickly, such as using the shortest-path algorithm [Nair82] and [Nair87]. In our hierarchical

interconnects, the hierarchical architectures allows for very deterministic global routing. The

router may utilize fast-path to perform no branching on the upward path, make a U-turn at the

required hierarchy, and the downward path is very deterministic (computed by the radix-2

125

boundaries).

Figure 6.5: A routing-preference example for a point-to-point connection, LUT (S) to LUT (E).

Global routing gives the router valuable information, such as timing feasibility and

routing congestion, but all congestions must be resolved for the design to be realizable. The

initial version of our router employs rip-up-and-reroute detailed routing to resolve routing

congestions [Dees81]. However, the algorithm we implemented was not timing-driven, and is

dependent on the routing order of the nets. Therefore the routing results often have inconsistent

timing, and sometimes fail to converge. Unsatisfied with our routing results, we implemented a

new routing algorithm to the PathFinder router [McMurchie95, Ebeling95].

The PathFinder is a negotiation-based router that iteratively improves routing congestion

by de-touring the lesser-performance-critical gates. It is able to incorporate global routing and

detailed routing into a unified algorithm. The first iteration of the router is performed only based

on interconnect delay, and not routing congestion, resulting in a minimum-delay design with

many routing conflicts. However, the router does not attempt to rip-up the conflicting nets,

instead it reroutes the design iteratively, but each successive iteration places a higher cost on

routing conflicts. Eventually, the cost of routing through a faster, congested net will outweigh the

LUT

LUT

LUT

LUT
(S)

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT

LUT
(E)

Routing

Preference

1

2

126

cost of routing through a slower, non-congested net, and the slower route will then be applied.

Although the above approach resolves first-order congestion, it requires the second net to be

rerouted when the resources are occupied by the first net. However, a good routing algorithm

should be agonistic to the routing order of the nets, because sometimes the second net may not be

able to re-route itself, but the first net could. A history factor is therefore implemented: every

time a routing resource is congested, a history coefficient is incremented on the net. The history

coefficient also contributes to the routing costs, and eventually, the cost of a congested resource

may be high enough that the first net will not occupy that routing resource anymore, and the

second net can then occupy the space.

Based on our implementation of the algorithm, the routing time has been significantly

decreased, as shown in Table VI.I, and many previously-unroutable designs are now routable.

This router has not only accelerated the mapping process, its improved quality-of-result has

allowed us to further prune the interconnect network and realize a smaller interconnect area.

Table VI.I: Routing time of our original router vs. PathFinder-based router.

Based on the improved routing algorithm, we further modified the PathFinder router for

concurrent delay optimization and run-time improvements. The original PathFinder paper

[McMurchie95] has suggested a congestion/delay-based router that computes the cost function as

a weighted-sum of the interconnect delay and the total wiring cost. Note the wire cost not only

include interconnect delay, but also costs from the congestion history and the current routing

Design Original Router PathFinder Router

ex5p > 2 hours 6 minutes

ex1010 > 1 day (not feasible) 41 minutes

clma > 1 week (not feasible) 3 hours

127

congestion of the routing resource. The suggestion in [McMurchie95] is to compute the critical-

path coefficient of each net, normalized to the worse-case delay. The coefficient is then used to

weight the non-timing-critical routes to have a larger cost impact from routing congestion, while

the timing-critical nets to have little cost impact from routing congestion, but mostly from

routing delay. Using this method, timing-critical nets are routed without much regard for routing

congestion, and the non-timing-critical nets would then detour around the critical nets to avoid

occupying their routing resources. Although the paper suggested the coefficient can be as large 1,

we find that to not always be feasible. A coefficient of 1 causes the router to be completely

agnostic to routing congestion, thus two conflicting nets both with coefficient of 1 will never be

resolved. We have limited the maximum coefficient to 0.99.

The PathFinder algorithm is based on Nair‟s algorithm from global routing [Nair87],

which is a breadth-first search. To ensure routing quality, we cannot convert to a depth-first

search, but reducing the search radius will significantly reduce its routing cost. As a result, at

each intermediate node, the minimum cost from the intermediate node to the final destination is

added to the current cost. This prevents the router from searching for too large of a radius before

converging to a destination. This modification is called A* routing [McMurchie95, Tessier98],

and has speed up the run-time of PathFinder by as much as 2x, as confirmed by our

implementation.

In our implementation, we made key modification to the PathFinder router to further

improve run-time. We noticed that the majority of the nets are not on the critical-path, and can be

routed without timing-driven algorithms. We therefore use a non-timing driven algorithm to

arrive at a feasible routing solution more quickly, and then enable timing-driven mode. The first

iteration is still global routing, which is used to compute the minimum routing delay. Starting

128

from the second iteration, we completely ignore net delay in routing – all nets are assigned a

delay cost of 0, unless a routing conflict occur. As a result, the router will always avoid routing

conflict whenever a possible, because a routing conflicts results in a non-zeros wiring cost. Many

intermediate nodes will then have a cost of 0. To avoid excessive search radius, the node that are

the closest to the destination are chosen as the “wavefront” [Nair87] for the next iteration. This

allows the router to converge to a feasible result very quickly. Once a feasible design is routed,

timing is computed, and the critical-path coefficient is applied to each net. Timing-driven

PathFinder is then applied on the net that exceed the coefficient threshold: for example, if the

minimum-routable timing is 5 ns, but the current timing is 7 ns, the coefficient threshold is set to

71%; all nets with a critical-path coefficient greater than 0.71 is then re-routed. From our

experience, this two-stage approach of congestion-followed-by-timing routing has produced

equally good results as the original PathFinder algorithm, but in a faster runtime.

In more recent years, Boolean Satisfiability (SAT) approaches has been suggested for

routing. There are efficient SAT solvers available, as listed in [Nam04], and unlike PathFinder,

SAT-based routing simultaneously considers all routes, which allows higher degrees of freedom

and potentially better routing results [Nam04]. However, the FPGA interconnect routing problem

is often too large for SAT solvers, and the router in [Nam04] is limited to detailed routing, and

unable to choose a different route when global-re-routing is required. We initially decided not to

consider SAT-based routing for our FPGA, but a recent paper [Gort11] suggests a good

compromise. PathFinder-based routing can converge very quickly to an almost-feasible solution,

but spends most of its run-time resolving the few-remaining conflicts. Paper [Gort11] suggested

using PathFinder to perform global routing and coarse detailed routing, where multiple tracks are

routed together as a “coarse” track, and then use SAT-based formulations for detailed routing.

129

Although the coarse routing technique may not always apply to our hierarchical routes, the

concept of a two-stage PathFinder-followed-by-SAT routing approach is interesting to consider.

6.5 Bitstream Generation

Based on the placement and routing results, the software tool has complete knowledge of

the mapped design. The function of each LUT and the configuration of each CLB are determined

by the netlist, and the switch matrix (SM) configurations are derived from the interconnect

routing. We implemented bit-accurate information about the bit-cell mapping in all CLBs and

SMs, as well as the word-line (WL) and bit-line (BL) information of each bit-cell. The tool then

configures the individual bit-cells based on the place-and-route results, and power-gates the

unutilized blocks when possible. The output bitstream is in a 2D-array following the WL and BL

structure implemented on the chip. The testbench is able to stimulate the scan logic to shift in

one row of BL at a time. The details of the testbench and measurements are in Chapter VII.

130

CHAPTER VII

Test Infrastructure and Measurement Results

7.1 Matlab Simulink-based Testing Infrastructure

Unlike testing dedicated chips, bringing up a reconfigurable hardware generally involves

an extensive configuration process before the chip is able to execute data-processing tasks. Even

our first “small” FPGA of 2048 LUTs involves close to 300,000 configuration bits, all of which

must be set properly for correct functionality. When configuration bits are set improperly, it is

often very difficult to isolate the exact location of the programming fault, making debugging

process very difficult. This not only places a heavy emphasis on a proper bitstream generation

process from the software tool, but also an importance on an easy-to-use, easy-to-configure

testbench.

Due to the large number of configuration bits, the initial chip-bring-up process requires

extensive iterations between bitstream generation and chip programming. It is therefore desirable

to have the two processes in an integrated platform. We therefore employed a Matlab Simulink-

based testing platform using the Interconnect Break-Out-Board (IBOB) developed by UC

Berkeley and Collaboration for Astronomy Signal Processing and Electronics Research

(CASPER) [IBOB10]. The IBOB hardware is programmable using Matlab Simulink, as shown

in Figure 7.1, and communicates to our 2048-LUT FPGA using 2 high-speed ZDOK+

connectors, each supporting 40 single-ended or 20 differential I/Os. The IBOB is reconfigurable

through a Xilinx Virtex-II-Pro FPGA, capable of up to 300 MHz operation when fully pipelined.

The IBOB platform is responsible for the scan-configuration for programming our FPGA, as

well as the input generation and output capture.

131

Figure 7.1: A IBOB platform use for Matlab Simulink-based testing infrastructure.

The Matlab-based testing platform provides a unified testing environment, because our

software mapper is also developed in the Matlab environment. The bitstream can then be directly

written to the block RAMs on the IBOB from within the Matlab environment. Similarly, input

test vectors are generated in the Matlab environment, and written onto the IBOB block RAMs.

The IBOB block RAMs are also used for captures the outputs of our FPGA, which can be read

back into the Matlab environment for data analysis. The configuration of the IBOB platform is

executed completely in the Matlab Simulink environment, as shown in a sample Simulink

testbench in Figure 7.2. Because it operates on a Xilinx FPGA, most of the building blocks are

compatible with Xilinx System Generator blocks, which are Simulink blocks that can be

simulated in Simulink, as well as mapped onto a Xilinx FPGA. These blocks are colored in blue

in Figure 7.2. In addition to the Xilinx FPGA, the IBOB integrates many peripheries such as

clock source, on-board block RAMs, Ethernet interface, GPIO headers, and ZDOK+ connectors.

To support a seamless integration with Simulink, IBOB support built-in Simulink blocks, shown

in yellow in Figure 7.2 These IBOB interface blocks can be simulated in Simulink, and when

mapped, can also instantiate the corresponding IBOB peripheral blocks.

IBOB /
Matlab

Simulink
Testbench

Bitstream

IBOB

Board

Our

FPGA

Z
D

O
K

+
Z
D

O
K

+

Input
Vectors

Chip
Outputs

132

Figure 7.2: An example IBOB Simulink testbench for chip configuration and testing.

As shown in Figure 7.2, the entire testbench can be first simulated in Simulink, and many

output scopes are placed to verify the logic functionalities. This is especially for the control logic

of bit-lines (BL) and word-lines (WL). The testbench just scan in 7168 bits of the bitstream,

pause BL scan chain, increment WL scan chain by one bit, perform the write, and perform the

same operation 50 times to configure all 50 WLs. The IBOB block RAM (BRAM) has a

maximum depth of 8192 by 32 bits, therefore 2 BRAMs are instantiated to contain all

Xilinx
SysGen
Blocks

IBOB
Interface

Blocks

Input

Vector

BRAM

Data

ZDOK

Input

to Chip

Clock

Scan

ZDOK

Output

from

Chip

Chip

Output

BRAM

Scan

Config.

BRAM
Control

Regs

BL/WL Logic

133

configuration bits. Although the BL and WL bits reside on a 2D array, it is serialized line-by-line

to fit into a 32-bit data width. The BL and WL logic is responsible for computing the correct

location of each serialized bit during scan configuration.

The input BRAM on the IBOB is used to store test vectors. Because the I/O pins on our

FPGA are reconfigurable, each I/O pin corresponds to a different I/O on the mapped design. For

example, if the mapped design has a 16-bit input, our software tool will utilize 16 different I/O

pins on the FPGA to accept these inputs, where each I/O pin is tied to a ZDOK+ connector pin

on our testboard. Therefore the user must specify the input pin mapping from the IBOB BRAM

to the ZDOK+ connector, else the testbench will not stimulate the correct input pins on our

FPGA.

The same scenario applies for outputs of the chip, which is determined during design

mapping to map to a set of I/O pins. These chip pins are tied to ZDOK+ connector pins on the

testboard. The user needs to specify in the testbench the ZDOK+ pins based on a pin-out

mapping table. The output bits are then stored in the on-board IBOB BRAM.

Before the chip is powered up, the Simulink testbench is first mapped to a bitstream, and

the IBOB testboard FPGA is configured via standard JTAG interface. Configuration bits and

input test-vectors are then written into the BRAM on the IBOB via a serial interface, while IBOB

control registers are used to hold the chip in its reset state before power-up. The scan mode is

then initiated to write to all bit-cells on our FPGA, one row at a time, controlled by the BL/WL

logic on the IBOB. Once configuration mode is complete, the configuration registers are set to

place the chip out of reset mode and start normal operation.

For designs that require a more elaborate testbench, the Reconfigurable Open

Architecture Computing Hardware (ROACH) [ROACH13], also developed by CASPER,

134

provides an upgraded capacity using a Xilinx Virtex-5 FPGA. The ROACH blocks in Simulink

are very similar to IBOB blocks, and a separate PowerPC processer is placed on board to allow

for much faster interface between the BRAMs/FIFOs on the FPGA and the external devices,

such as Matlab, using Ethernet instead of serial port. In terms of hardware capability, the same

two ZDOK+ connectors on our testboard also fits onto a ROACH platform.

7.2 Measurement Results of our 2048-LUT FPGA

Many designs are mapped onto our FPGA to verify functionality and performance, even

successfully mapping designs-of-interest from commercial companies. Table VII.I illustrates the

measurement results from 4 key designs we have mapped. Like any hardware, area efficiency is

maximized when most of the blocks are utilized (thus why “dark silicon” is inefficient). Our chip

achieves 16.4 GOPS/mm
2
 when all Logic and DSP CLBs are utilized; executing 175 16b

accumulators at 370MHz. Since a 16b adder can be implemented with 2 DSP CLBs but requires

4 Logic CLBs to propagate the carry chain, the DSP adders are faster, reaching 400MHz.

However, the area efficiency of the DSP-only accumulator is lower, because the logic CLBs are

mostly idle, additionally, energy efficiency of the DSP-only CLBs are also lower due to idling

CLBs. Leakage is well-controlled even without power gating. A 1.08 GOPS/mW is attainable

with only 112 DSP accumulators active and most of the Logic CLBs idle.

Accumulators are implemented because the IBOB testbench is only capable of reaching

300 MHz even with a fully-pipelined testbench, it is a limitation of both the FPGA hardware and

the FPGA PLL. The ROACH platform [ROACH13] is unable to run faster due to its Block RAM

timing, which is un-pipelined. Since we are unable to toggle any inputs beyond 300 MHz, the

inputs are held constant, and our FPGA is tied to an external SMA clock source to perform the

135

accumulator operation. Without BRAM capabilities for data capturing, the functionality of the

accumulator is examined on the oscilloscope. Performance is hindered by equipment limitations

due to a 0.25ns input-clock jitter at 400MHz.

Table VII.I: Key measurement results from our 2048-LUT FPGA chip.

A 32-tap finite-impulse-response (FIR) filter is mapped to utilize most of the DSP CLBs,

configured for a 16-bit datapath. The FIR filter achieves 274MHz due to longer routing, but

interconnect delay is still under 50%. Fast-Fourier-Transform (FFT) hardware generally require

extensive memory usage to implement the delay lines. A 2×2 MIMO 64-point is mapped to

exercise most of the BRAM CLBs, as well as most of the Logic CLBs for FIFO control and

butterfly implementations. With many control signals and a critical path of 11 CLBs, the FFT

achieves 83MHz.

The energy efficiency (GOPS/mW) shown is computed for 16-bit arithmetic operations.

Not surprisingly, the FPGA produces higher efficiency when mapping more arithmetic-heavy

designs, such as accumulators and filters, while efficiency is significantly lower for control-

heavy designs such as FFT and microcontrollers. The energy-delay curve and power-breakdown

Resource Utilization Performance

Logic
(256)

DSP
(224)

BRAM
(16)

Power
(mW)

VDD

(V)
Freq.

(MHz)
GOPS
/mW

175 L/DSP 16b Acc. 256 224 0
179
8.6

1.0
0.5

370
55

0.36
1.13

112 DSP 16b Acc. 4 224 0
123
6.2

1.0
0.51

400
60

0.57
1.08

32-tap 16b FIR 132 209 0
120
10.2

1.0
0.56

274
50

0.21
0.45

2x2 MIMO 64-pt FFT 196 93 10
82.7
26.5

1.0
0.78

83
40

0.05
0.07

Result

Design

136

of the FPGA when mapping the 175-accumulator design are shown in Figure 7.3. Minimum-

energy point for the accumulator occurs at 0.5V, which happens when the leakage increments

caused by a slower design offsets the energy reduction. For other designs where leakage

occupies a larger percent of the total power, the minimum energy-point occurs at a higher VDD.

Figure 7.3 – Energy efficiency and power ratio at maximum frequency and minimum energy.

This chips achieves a maximum energy efficiency of 1.13 GOPS/mW. In comparison,

Intel‟s work [Agarwal10] has no interconnects and lower energy efficiency, though the full-

custom CLB in 32-nm LVT is 2.5x faster. It achieves 2.6 GOPS/mW at 0.34V for 8b operations,

which is 0.65 GOPS/mW for 16b (2 CLBs per operation at half the speed). In comparison, our

65nm chip achieves 1.7x the energy even including interconnect power and delay (Figure 7.4).

Among commercial FPGAs, the highest-reported efficiency is 0.05 GOPS/mW from an Altera

Straix IV [George11]. In comparison, our chip is 22x more energy efficient even with an older

process technology.

1

1.5

2

0 5 10 15 Delay (ns)

370MHz
1.0V

300MHz
0.88V

200MHz
0.74V

100MHz
0.59V

55MHz
0.5V

E
n
e
rg

y
 (

p
J
/
O

p
)

Power Ratio
@ Fmax

Power Ratio
@ Emin

Active
38%

Clock
18%

Leak.
44%

Active
46%

Leak.
26%

Clock
28%2.5

3
Clock

18%

Active

38%

Leak.

44%

Clock

28%
Active

46%Leak.

26%

137

Figure 7.4 – Comparison of energy efficiencies against state-of-the-art reconfigurable hardware.

Although our FPGA is far more efficient than commercial FPGA today, it can only

maintain its efficiency when it is mapping designs that effectively utilize its architecture. Based

on our experience in mapping designs onto our FPGA, computation-intensive designs such as

finite-impulse-response (FIR) filters and arithmetic blocks such as parallel accumulators are

highly efficient when mapped onto our FPGA. However, control-heavy designs such as Fast-

Fourier Transform (FFT) cannot be mapped very efficiently. As shown in Table VII.I, the

measured energy efficiency of a FFT is up to 16x lower than the maximum efficiency of our

FPGA.

Fortunately, because many of these inefficient blocks are core blocks, we can implement

some of these designs as coarse-grain accelerator cores on our FPGA instead of using the fine-

grained DSP CLB. These observations motivated us to implement the 64 – 8192 point

programmable FFT and the 16-core Universal DSP accelerator on our 16K-LUT FPGA. We

have also decided to implemented coarser, medium-grain DSP CLBs to implement arithmetics

Flexible DSP
32nm custom

50MHz @ 0.34V
[A. Agarwal]

This Work
65nm synthesized

55MHz @ 0.5V

1.7×

1.0

0.8

0.6

0.4

0.2

1.2

C
LB

 O
n

ly

C
LB

 +
 In

te
rc

o
n

n
.

1.13

0.65

GOPS/mW (16b op)

Commercial FPGA
40nm custom

0.9V
[A. George]

0.05
22×

138

and multiplications more efficiently than fine-grain DSP CLBs. Even though medium- and

coarse-grain accelerators are still not as efficient as fully dedicated chips, embedding them on the

FPGA enables us to push the efficiency gap much closer.

7.3 Updated Testing Infrastructure

Our 16K-LUT FPGA requires even higher performance and a larger number of I/Os from

the testing platform. Therefore the IBOB and ROACH boards, supporting 80 singled-ended data

pin through ZDOK+, are no longer sufficient for our testing. In search for a new hardware, we

would also like to preserve the compatibility with Matlab Simulink interface to simplify

testbench development. The Xilinx evaluation platforms for based on the newest 7-series FPGAs

are an ideal candidate. Two suitable platforms are shown in Figure 7.5. The Virtex-7 platform

offers more than 50% additional capacity, and provides 276 reconfigurable I/Os through its two

FPGA-Mezzanine-Card (FMC) connectors. For our applications, we decided to go with the

Kintex-7 platform for our initial testing. It is less than half the price of the Virtex-7 platform, and

offers more than sufficient capacity for our testbench purposes. Although our chip has 350

programmable I/Os, our initial board design only bonded 180 I/O pins due to limitations of chip-

on-board bonding. All Xilinx 7-series FPGAs are marketed with high-performance DSPs to run

up to 600 MHz [Mehta12].

139

a) b)

Figure 7.5 –Xilinx evaluation platforms – a) Kintex-7 KC705 and b) Virtex-7 KC707.

Based on our choices of Kintex-7 KC705 evaluation board, we designed a new testboard

to interface to the FMC connectors on the test platform. Due to the high pin-count requirement of

this FPGA even when bonding just a subset of I/Os (194 signal pins and 150 power/ground pins),

there is no commercially-available package that offers enough performance (500 MHz or more),

enough pin-counts, and a small-enough cavity to avoid long bond wires. As a result, we migrated

to a chip-on-board solution, where the chip is mounted and bonded onto the board without a

package (Figure 7.6).

Chip-on-board wire-bonding poses many design limitations on the PCB. The board needs

to be small enough to fit inside the wire-bond machine, thus constraining our size (to 6 inches by

2.5 inches in this case). The backside of the board needs to have no components when bonding.

The components on the top must also not exceed a height a constraint. Due to the height of the

FMC connectors, the board must be assembled after the chip is bonded and protected in a

hermetic seal.

Kintex-7 KC705 Virtex-7 KC707

2 FMC connectors with
184 reconfigurable I/Os

2 FMC connectors with
276 reconfigurable I/Os

140

Figure 7.6 – Board layout of the chip-on-board testboard with two FMC connectors.

7.4 Measurement Results of our 16K-LUT FPGA

As of May 2013, the chip testing of the new FPGA is not yet complete, though we have

fully debugged our 9-Mb bitstream generation process, and verified all standalone blocks on the

chip for functionality. To estimate actual performance, we chose the most conservative timing

estimations from chip design (0.8V, slow-slow corner, 125ºC) and added the timing information

into our software mapper to perform a preliminary timing estimation. The propagation delay for

signal path can be determined by tracing the interconnect path that the signal travels, and

summing the delays for each wiring segment (from one SM to the next SM) to compute the net

delay. The power information, however, depends on the activity factor of the mapped design, and

cannot be easily estimated by modeling. The FPGA mapping results are compared with the post-

place-and-route timing from a Xilinx Virtex-6 LX75T, also in 40-nm technology. Although

LX75T is the smallest Virtex-6 offered, it still has more than 4 times the number of LUTs than

our FPGA, and 7 times the number of DSP elements, along with much more BRAM in both

6 in.

2
.5

 in
.

141

18Kb and 36Kb variants. Measurement results from their ASIC counterparts, when available, are

also included.

The performance estimations of our chip, compared with post place-and-routes timing

estimations from Xilinx Virtex 6 and ASIC implementation are shown in Table VIII. Even with

very rudimentary software tools for place and route, along with a non-full-custom chip design,

we are able to achieve performance similar to commercial FPGAs. We are actively improving

our place-and-route software to achieve better quality-of-results. Based on our prior chip results,

we can expect 10 ‒ 20x improvements in power consumption and energy efficiency compared to

commercial FPGAs. The ASIC implementation of the 2x2 MIMO 256-pt FFT is from [Yuan08] ,

and the Digital Baseband Process is from [Nanda12].

Table VII.II: Chip performance comparison against commercial FPGA and ASIC

implementations, based on design mapping and conservative timing estimations.

Although the ASIC designs are spread across multiple technologies, we may observe that

FPGAs performance are within the margins of ASIC designs, at least for these smaller design

examples. When design complexity grows, the interconnect delay of commercial FPGAs began

to show its effects, especially for control-heavy designs. The 8192-point FFT design

Resource Utilization ASIC

Slice M
(576)

Slice L
(2176)

DSP
(42)

Freq.
(MHz)

Viterbi Decoder 0 1010 0 ‒ ‒

MSP430
Microcontroller

0 425 1 25

2x2 MIMO 256-pt FFT 1 2571 4 80

Result

Design
BRAM
(16)

8

0

0

Our Performance

Power
(mW)

VDD

(V)
Freq.

(MS/s)
GOPS
/mW

-
-

0.9
0.5 -

-
-

-

-

0.9
0.6

50

-

-

-
-

-

0.9
0.5

100

-

-

-

Virtex-6

Freq.
(MHz)

193

85

131

Process
Tech.

‒ ‒

180nm

130nm
(ULP)

Digital Baseband
Processor

13 2100 40 560
-
-

0.9
0.7 -

-
-

6665nm
30

150

x86-compatible
Microprocessor

0 797 1 100
-0.9

0.6
60 -

- - -983um

*Synthesis + P&R Estimates

142

implemented on our FPGA is also mapped onto a large Xilinx Virtex-6 FPGA. Our FFT was

designed for 400-500 MHz per core, thus capable of aggressive voltage scaling due to its 16-way

parallelism. In contrast, the commercial FPGA can only achieve 54 MHz while taking a very

large area footprint. For efficient implementation of FPGAs as ASIC replacements, it is essential

to have coarse-grain reconfigurable blocks.

Table VII.III: Coarse-grain accelerator performance against commercial FPGA implementations.

As discussed in Section 5.5, the 16-core Universal DSP processor is capable of

performing many common communication applications. A conservative post place-and-route

estimate of 450 MHz throughput is achievable. Because the UDSP design is mapped using a

reconfigurable instruction-set-architecture (ISA), no HDL is used, thus its hardware-equivalent

design is not available.

7.5 Chips Summary and Die Photos

This chapter is highlighted the measurement results and performance characteristics of

two of our FPGAs: a 2048-LUT FPGA (Figure 7.7a) and a 16K-LUT FPGA with heterogeneous,

multi-granularity reconfigurable blocks (Figure 7.7b). There die photos are shown on the same

scale.

Resource Utilization

Slice M Slice L DSP

8192-point
16-way parallel FFT

893 19362 295

Spherical Decoder
(UDSP)

-- -- --

Result

Design
BRAM

17

--

Our Performance

Power
(mW)

VDD

(V)
Freq.

(MS/s)
GOPS
/mW

-
-

0.9
0.5

-
-

- -
-0.9

0.5
450 -

(Virtex-6)

Freq.
(MHz)

54

--

400

*Synthesis + P&R Estimates

50

40

143

a) b)

Figure 7.7 –Chip photo and summary of a) our 2048-LUT FPGA and b) our 16K-LUT FPGA.

The newer design is not a mere expansion in size. It demonstrates that hierarchical

interconnect can scale to large (10x) the complexity without occupying additional area overhead.

It also demonstrates the need for coarser-grain reconfigurable blocks, especially for control-

Slice L/M

Slice L/M

Slice L/M

Slice L

DSP-48, Slice L, BRAM

Slice L/M

Slice L/M

Slice L/M

64-8k
FFT 16-core UDSP

Technology 65nm 1P9M CMOS

Core Size

CLB Count

Block RAMs

Gate Count

Config. Bits

Core VDD

Frequency

I/Os

0.34 to 1.0V

40 to 400 MHz

75 bidirectional

2.52mm × 1.56mm

2.73M

256 Logic, 224 DSP

16 128×8b

297,472b

3.06mm

2
.1

0
m

m

DSP

Logic

DSP BRAMBRAM

Logic

DSP

4.25mm

5
.7

2
m

m

Technology 40nm 1P10M CMOS

Core Size

L/M CLB

DSP Accel.

Gate Count

Config. Bits

Core VDD

Frequency

I/Os

0.3 to 0.9V

50 to 1000 MS/s

350 bidirectional

3.84mm × 5.31mm

35.75M

2176 Logic, 576 Mem

21 DSP

297,472b

Block RAMs 16 36Kb

144

heavy designs. Once matched with a more mature place-and-route software, we believe this

hierarchical FPGA can pose significant improvements over commercial FPGAs in performance,

along with orders-of-magnitudes improvement in energy efficiency.

145

CHAPTER VIII

Conclusion and Future Outlook

8.1 Concluding Remarks

Efficiency is important. Efficient hardware has led to unprecedented possibilities of

mobile and personal computing. It is driven by the ever-more stringent product requirements on

chip features, battery life, and heat dissipation. It is realized by a vertical integration of suitable

architecture, advanced circuit design, and easy programmability. Recapping from the

introduction, chips today are efficient when implement as dedicated hardware, or ASICs. But

ASICs are not programmable, so they are integrated with microprocessors as a system-on-a-chip

(SoC). Although today‟s large SoCs provide efficient, programmable designs, it come at a great

price: the growing feature requirements, standard changes, and design fixes require frequent re-

design, and the cost of chip design is increasing with every technology generation.

Many companies, especially FPGA companies, have suggested FPGA as a cost-effective

replacement for today‟s ASICs. FPGAs are very flexible, but are orders-of-magnitude less

efficient then ASICs. In order to be realized in today‟s SoCs, large improvements on energy and

area efficiencies must be made.

This work noted FPGA interconnects as the bottleneck for its inefficiency: often

accounting for over 80% of the chip area, delay, and power. A method for constructing FPGA

interconnects using hierarchical network is proposed in architecture, realized in silicon, and

tested in mapping user-designs. To demonstrate the scalability of hierarchical interconnects, two

chips are demonstrated in this thesis with 10x difference in interconnect complexity, both with

interconnects occupying 51-52% of total area – a 3–4x reduction from commercial FPGAs.

146

Compared to commercial FPGAs today, we have achieved one order-of-magnitude

improvements in energy and area efficiencies, approaching the efficiencies of ASIC designs

(Figure 8.1).

Figure 8.1: Energy and area efficiency from modern VLSI chips and our chips.

In addition to improvements interconnects, we realized that some arithmetic-heavy

designs can be mapped efficiently in FPGAs, while other control-heavy designs cannot. We

therefore implemented coarse-grain, reconfigurable accelerators for our applications. Although

reconfigurable accelerators are still not as efficient as fully dedicated chips, embedding them on

the FPGA enables us to push the efficiency gap even closer. Reconfigurable hardware will never

be as efficient as ASICs, but given a small enough penalty in efficiency and performance, we are

convinced that the reduced design-time and cost of reconfigurable hardware will make a strong

candidate for ASIC replacement.

1010.1

Average Area Efficiency (GOPS/mm2)

0.001

1

10

0.01

A
v

e
ra

g
e

 E
n

e
rg

y
 E

ff
ic

ie
n

c
y

(G
O

P
S

/m
W

)

µProc

Prog. DSP

Dedicated

100

0.1

FPGA

147

8.2 Outlook: Nano-Electrical-Mechanical Devices

Many people believe CMOS technology is here to stay, at least for the near decade. It is

true that there are no promising devices in the near horizon that can provide the speed, density,

and robustness of CMOS technologies, which our industry has been heavily investing in for

almost 50 years. For FPGAs, however, having fast and dense logic gates are not sufficient; we

also need fast and dense interconnect switches. This is where nano-electro-mechanical (NEM)

relays can come in.

Micro-electro-mechanical relays are very ideal for interconnect switches. A single relay

is able to function as a “NMOS” and a “PMOS” depending on its body voltage (Figure 8.2a)

[Chen10, Spencer11]. Although they are considered slow due to their long mechanical delay,

because it takes micro-seconds to physically open and close the gate. However, such delay is

irrelevant for our static pass-transistor mux (Figure 8.2b), because the gate remains stationary

after programming. The same scenario applies for bit-cells: we can construct NEM-based SRAM

cells (Figure 8.2c), and for controlling static muxes, the actual SRAM performance is irrelevant.

The major benefit of NEM based interconnect is the low on-resistance (< 1kΩ) of NEM

switches, which drastically improves the interconnect speed. Since NEM switches provides an

ohmic contact, the on-resistance remains constant throughout all regions of transistor operation.

The interconnect performance is therefore unaffected by voltage scaling on the core transistors.

Additionally, the NEM switch provides 0 off-current, thus drastically reducing the overall chip

leakage by at least 2x.

148

a)

b) c)

Figure 8.2: NEM relays as a) PMOS and NMOS-equivalent devices, b) a static switch, and

c) a SRAM bit-cell (BC).

Another benefit of NEM relays is its simplicity of fabrication: no silicon substrate is

required, and fabrication can be done with just 2 metal layers. Therefore, relays can even be

“stacked” on top of CMOS designs. Ideally, the CLB and core logic can be implemented in

CMOS, and the NEM-based interconnect can be stacked on the relays layer, effectively cutting

chip area by 2x! We have already designed relays-based FPGA interconnects (currently in

fabrication), and this seemingly far-fetched idea may not be that far into the future!

S D

G

B

“NMOS”“PMOS”

BLwr

WLwr

Output

VDDH: 1 – 2V

BC

BC

BC

BC

VDDL

VDDL

CMOS

CMOS

relays

149

Figure 8.3: A relay-interconnect concept with CMOS logic on the bottom and NEM-

interconnects on the top 2 metal layers.

CMOS

relays

BC

BC

150

Conclusion and Future Outlook

[Agarwal10]

A. Agarwal , et al, “A 320mV-to-1.2V On-Die Fine-Grained Reconfigurable Fabric for

DSP/Media Accelerators in 32nm CMOS,” Proc. IEEE Int. Solid-State Circuits Conf., pp.

328-329, Feb. 2010.

[Ahmed10]

S. Z. Ahmed, G. Sassateli, L. Torres, L. Rouge, “Survey of new trends in industry for

Programmable hardware,” Int. Conf on FPGA, Aug. 2010.

[Alfke07]

P. Alfke, “20 Years of FPGA Evolution,” Hot Chips 19, Aug. 2007.

[Anderson04]

J. H. Anderson, F. N. Najm, “A Novel Low-Power FPGA Routing Switch,” IEEE Custom

Int. Circuits. Conf., pp. 719-722, Sep. 2004.

[Benes62]

V. E. Benes, “Heuristic Remarks and Mathematical Problems Regarding the Theory of

Switching Systems,” Bell Syst. Tech. J., vol. 41, pp. 1201-1247, 1962.

[Betz97]

V. Betz, J. Rose, “Cluster-Based Logic Blocks for FPGAs: Area-Efficiency vs. Input Sharing

and Size,” IEEE Custom Int. Circuits Conference, pp. 551-554, Sep. 1997.

[Betz98]

V. Betz, J. Rose, “How much logic should go in an FPGA logic block?” IEEE Design & Test

of Computers, vol. 15, no, 1, pp. 10-15, Jan. 1998.

[Bolsens06]

I. Bolsens, “Programming Modern FPGAs,” Int. Forum on Embedded Multiprocessor SoC,

Keynote, Aug. 2006.

[Brown92]

S. D. Brown, Routing Algorithms and Architecutres for Field-Programmable Gate Arrays,

Ph. D. Thesis, University of Toronto, Jan. 1992.

[Bui89]

T. Bui, C. Heigham, C. Jones, T. Leighton, “Improving the Performance of the Kernighan-

Lin and Simulated Annealing Graph Bisection Algorithms,” Proc. Design Automation Conf.,

pp. 775-778, June 1989.

[Calhoun10]

B. H. Calhoun, J. F. Ryan. S. Khanna, M. Putic, J. Lach, “Flexible Circuits and Architectures

for Ultralow Power,” Proc. of the IEEE, vol. 98, no. 2, pp. 267-282, Feb. 2010.

151

[Carlson04]

I. Carlson, S. Andersson, S. Natarajan, A. Alvandpour, “A high density, low leakage, 5T

SRAM for embedded caches,” in Proc. European Solid-State Circuits Conf., pp. 215–218,

Sep. 2004.

[Chen10]

F. Chen, et al, “Demonstration of Integrated Micro-Electro-Mechanical Switch Circuits for

VLSI Applications," in Proc. IEEE Int. Solid-State Conference, pp. 26-27, Feb. 2010

[Clos53]

C. Clos, “A Study of Non-blocking Switching Networks,” Bell Syst. Tech. J., vol. 32, pp.

406-424, 1953.

[Cong93]

J. Cong, M. Smith, “A Parallel Bottom-up Clustering Algorithm with Applications to Circuit

Partitioning in VLSI Design,” Proc. Design Automation Conf., pp. 755-760, Jun 1993

[Curd07]

D. Curd, “Power Consumption in 65nm FPGAs”, White Paper: Virtex-5 FPGAs WP246,

Xilinx Inc., Feb. 2007.

[Dally04]

W. J. Dally, B. Towles, Principles and Practices of Interconnection Networks, Morgan

Kaufmann, 2004.

[Dees81]

W. Dees, R. Smith, “Performance of Interconnection Rip-Up and Reroute Strategies,” Proc.

Design Automation Conf., pp. 382-390, June 1981.

[DeHon99]

A. DeHon, “Balancing Interconnect and Computation in a Reconfigurable Computing

Array,” ACM Int. Symp. on FPGA, pp. 69-78, Feb. 1999.

[DeHon00]

A. DeHon, “Compact, Multilayer Layout for Butterfly Fat-tree," Proc. ACM Symp. on

Parallel Algorithms and Archi., pp. 206-215, 2000.

[DeHon04]

A. DeHon, “Unifying Mesh- and Tree-Based Programmable Interconnect,” IEEE Trans. on

Very Large Scale Int. Systems, vol. 12, no. 10, pp. 1051-1065, Oct. 2004.

[Devlin11]

B. Devlin, M. Ikeda, K. Asada, “A 65nm Gate-Level Pipelined Self-Synchronous FPGA for

High Performance and Variation Robust Operation”, IEEE J. of Solid-State Circuits, vol. 46,

no. 11, pp. 2500-2513, Nov. 2011.

[Ding01]

C. H. Q. Ding, et al, “A Min-max Cut Algorithm for Graph Partitioning and Data

Clustering,” Proc. Int. Conf. on Data Mining, pp. 107-114, 2001.

152

[Donovan10]

J. Donovan, “ARM CTO warns of dark silicon,” EE Times, March 22, 2010

http://www.eetimes.com/electronics-news/4136890/ARM-CTO-warns-of-dark-silicon

[Duato02]

J. Duato, S. Valamanchili, L. Ni, Interconnection Networks, An Engineering Approach,

Morgan Kaufmann, 2002.

[Dunlop85]

A. E. Dunlop, B. W. Kernighan, “A Procedure for Placement of Standard-Cell VLSI

Circuits,” IEEE Trans. on Computer-Aided-Design, vol. CAD-4, no. 1, pp. 92-98, Jan. 1985.

[Ebeling95]

C. Ebeling, L. McMurchie, S. A. Hauck, S. Burns, “Placement and Routing Tools for the

Triptych FPGA,” IEEE Trans. on Very Lage Scale Int. Systems, vol. 3, no. 4, pp. 473-482,

Dec. 1995.

[Fiduccia82]

C. M. Fiduccia, R. M. Mattheyses, “Partitioning Very Large Circuits Using Analytical

Placement Techniques,” Proc. Design Automation Conf., pp. 175-181, June 1982.

[Garbers90]

J. Garbers, H. J. Promel, A. Steger, “Finding Clusters in VLSI Circuits,” Proc. Int. Conf. on

Computer-Aided Design, pp. 520-523, Nov. 1990.

[George11]

A. Geroge, H. Lam, G. Stitt, “Novo-g: At the Forefront of Scalable Reconfigurable

Supercomputing,” IEEE Computing in Science and Eng., vol. 13, no. 1, pp.82-86, Jan. 2011.

[Gort11]

M. Gort, J. H. Anderson, “Reducing FPGA Router Run-Time Through Algorithm and

Architecture,” IEEE Int. Conf. on Field Prog. Logic and App., pp. 336-342, Sep. 2011.

[Goulding11]

N. Goulding-Hotta, et al., “The GreenDroid Mobile Application Processor: An Architecture

for Silicon‟s Dark Future,” IEEE Mirco, vol. 31, no. 2, Mar. 2011.

[Greenberg88]

R. I. Greenberg, C. E. Leiserson, “A compact layout for the tree-dimensional tree of

meshes,” Appl. Math Lett., vol. 1, no. 2, pp. 171-176, Feb. 1988.

[Hagen92]

L. Hagen, A. B. Kahng, “New Spectral methods for Ratio Cut Partitioning and Clustering,”

IEEE Trans. on Computer-Aided-Design, vol. 11, no. 9, pp. 1074-1085, Sep. 1992.

[Hagen292]

L. Hagen, A. B. Kahng, “A New Approach to Effective Circuit Clustering,” Proc. Int. Conf.

on Computer-Aided Design, pp. 422-428, Nov. 1992.

153

[Hauck95]

S. Hauck, G. Borriello, “An Evalution of Bipartitioning Techniques,” Chapel Hill Conf. on

Adv. Researc in VLSI, pp. 383-402, Mar. 1995.

[IBOB10]

IBOB: Interconnect Break-out Board, Center for Astronomy Signal Processing and

Electronics Research. http://casper.berkeley.edu/wiki/IBOB

[Karypis98]

G. Karypis, V. Kumar, “A Fast and High Quality Multilevel Scheme for Partitioning

Irregular Graphs,”, SIAM J. of Sci. Computing, vol. 20, no. 1, pp. 359-392, Jan. 1998.

[Kernighan70]

B. W. Kernighan, S. Lin, “An Efficient Heuristic Procedure for Partition of Electrical

Circuits,” Bell Systems Tech. Journal, vol. 49, no. 2, pp. 291-307, Feb. 1970

[Kleinrock77]

L. Klienrock, F. Kamoun, “Hierarchical Routing for Large Networks”, Computer Networks,

vol. 1, pp. 155-174, 1977.

[Konda08]

V. Konda, “VLSI layouts of fully connected generalized networks,” WO 2008/147928,

World Intellectual Property Organization, Dec. 2008.

[Krishnamurthy84]

B. Krishnamurthy, “An Improved Min-Cut Algorithm for Partitioning VLSI Networks,”

IEEE Tran. On Computers, vol. c-33, no. 5, pp. 438-445, May 1984.

[Kurafuji11]

T. Kurafuji, et al., “A Scalable Massively Parallel Processor for Real-Time Image

Processing,” IEEE J. of Solid-State Circuits, vol. 46, no. 10, pp. 2363-2373, Oct. 2011.

[Kuon07]

I. Kuon, J. Rose, “Measuring the Gap Between FPGAs and ASICs,” IEEE Trans. on

Computer-aided Design of Int. Circuits and Systems, vol. 26, no. 2, pp. 203-215, Feb. 2007.

[Kuon207]

I. Kuon, R. Tessier, J. Rose, “FPGA Architecture: Survey and Challenges,” Found. and

Trends in Elec. Design Automation, vol. 2, no. 2, 2007.

[LaFrieda10]

C. LaFrieda, B. Hill, R. Manohar, “An Asynchronous FPGA with Two-Phase Enable-Scaled

Routing”, Proc. of IEEE Int. Symp. On Async. Circuits and Systems (ASYNC), May 2010.

[Lai97]

Y.-T. Lai, P.-T. Wang, “Hierarchical Interconnection Structures for Field Programmable

Gate Arrays,”, IEEE Trans. on Very Large Scale Int. Systems, vol. 5, no. 2, pp. 186-196, June

1997.

154

[Landman71]

B. S. Landman, R. L. Russo, “On a Pin Versus Block Relationship For Partitions of Logic

Graphs,” IEEE Trans. on Computers, vol. c-20, no. 12, pp. 1469-1479, Dec. 1971.

[Lee06]

Interconnect Driver Design for Long Wires in Field-Programmable Gate Arrays, M.S.

Thesis, University of British Columbia, June 2006.

[Leiserson85]

C. E. Leiseron, “Fat-Trees: Universal Networks for Hardware-Efficient Supercomputing,”

IEEE Trans. on Computers, vol. 34, no. 10, pp. 892-901, Oct. 1985.

[Leiserson96]

C. E. Leiseron, et al, “The Network Architecture of the Connection Machine CM-5,” J. of

Parallel and Distributed Computing, vol 33, no. 2, pp. 145-158, Mar. 1996.

[Lemieux04]

G. Lemieum, E. Lee, M. Tom, A. Yu, “Directional Single-Driver Wires in FPGA

Interconnect,” Inc. Conf. on Field Prog. Tech, pp. 41-48, Dec. 2004.

[Lewis05]

D. Lewis, et al, “The Stratix II Logic and Routing Architecture”, ACM Int. Symp. on FPGA,

pp. 14-20, Feb. 2005.

[Lin07]

M. Lin, A. El Gamal, Y.-C. Lu, S. Wong, “Performance Benefits of Monolithically Stacked

3-D FPGA,” IEEE Tran. Computer-Aided Design of Integrated Circuits and Systems, vol.

26, no. 2, pp.216-229, Feb. 2007.

[Lin09]

M. Lin, A. El Gamal, “A Low-Power Field-Programmable Gate Array Routing Fabric,”

IEEE Tran. On Very Large Scale Int. Systems, vol. 17, no. 10, pp.1481-1494, Oct. 2009.

[Manohar06]

R. Manohar, “Reconfigurable Asynchronous Logic,” Proc. of IEEE Custom Int. Cricuits

Conf., Sept. 2006.

[Manuel07]

P. Manuel, W. K. Qureshi, A. William, A. Muthumalai, “VLSI layout of Benes networks,”,

J. of Discrete Math. Sci. & Cryptography, vol. 10, no, 4, pp. 461-472, 2007.

[Marquardt99]

A. R. Marquardt, Cluster-Based Architecture, Timing-Driven Packing and Timing-Driven

Placement for FPGAs, M.S. Thesis, University of Toronto, 1999.

[McMurchie95]

L. MMurchie, C. Ebeling, “PathFinder: A Negotiation-Based Performance-Driven Router for

FPGAs,” ACM Int. Symp. on FPGAs, pp. 111-117, Feb. 1995.

155

[Mehta12]

N. Mehta, Xilinx Redefines Power, Performance, and Design Productivity with Three

Innovative 28nm FPGA Families: Virtex-7, Kintex-7, and Arteix-7 Devices, WP373, Xilinx,

Inc., Oct. 2012.

[Merritt13]

R. Merritt, “FPGAs add comms cores amid ASIC debate,”, EE Times, Mar. 2013.

[Minev09]

P. B. Minev and V. S. Kukenska, “The Virtex-5 Routing and Logic Architecture,” Annual J.

of Electronics, pp. 107-110, 2009.

[Moore93]

G. Moore, International Solid-State Circuit Conference, February 10, 2003.

Intel Keynote Transcript,

http://www.intel.com/pressroom/archive/speeches/moore20030210.htm

[Mrabet06]

H. Mrabet, Z. Marrakchi, P. Souillot, H. Mehrez, “Performances improvement of FPGA

using novel multilevel hierarchical interconnection structure,” IEEE/ACM Int. Conf. on

Computer-Aided Design, pp. 675-679, Nov. 2006.

[Nair82]

R. Nair, S. J. Hong. S. Liles, R. Villani, “Global Wiring on a Wiring Routing Machine,”,

Proc. Design Automation Conf., pp. 224-231, 1982.

[Nair87]

R. Nair, “A Simple Yet Effective Technique for Global Wiring,”, IEEE Trans. on Computer-

Aided Design, vol. CAD-6, no. 2, pp. 165-172, Mar. 1987.

[Nakajima06]

M. Nakajima, et al, “A 40GOPS 250 mW Massively Parallel Processor Based on Matrix

Architecture,” Proc. IEEE Int. Solid-State Circuits Conf., pp. 1616-1617, Feb. 2006.

[Nalam11]

S. Nalam, B. Calhoun, “5T SRAM with Asymmetric Sizing for Improved Read Stability,”

IEEE J. of Solid-State Circuits, vol. 46, no. 10, pp. 2431-2442, Oct. 2011.

[Nam04]

G.-J. Nam, F. Aloul, K. A. Sakallah, R. A. Rutenbar, “A Comparative Study of Two Boolean

Formulations of FPGA Detailed Routing Constraints,” IEEE Tran. on Computers, vol. 53,

no. 6, pp. 688-696, June 2004.

[Nanda12]

R. Nanda, D. Marković, “Digitally Intensive Receiver Design: Opportunities and

Challenges”, IEEE Design & Test of Computers, vol. 29, no. 6, pp. 19-25, Dec. 2012.

156

[Noda07]

H. Noda, et al, “The Design and Implementation of the Massively Parallel Processor Based

on the Matrix Architecture,” IEEE J. of Solid-State Circuits, Vol 42, No. 1, pp. 183-192, Jan.

2007.

[Pedram98]

M. Pedram Q. Wu, X. Wu, “A new design of double edge tripped flip-flops,” Asia and South

Pacific Design Auto. Conf., pp. 417-421, Feb. 1998.

[Rabaey03]

J. M. Rabaey, A. Chandrakasan, B. Nikolic, Digital Integrated Circuits, Second Edition,

Prentice Hall, 2003.

[Rahman04]

A. Rahman, V. Polavarapu, “Evealuation of Low-Leakage Design Techniques of Field

Programmable Gate Arrays,” ACM Int. Symp. on FPGA, pp. 23-30, Feb. 2004.

[ROACH13]

ROACH: Reconfigurable Open Architecture Computing Hardware, Center for Astronomy

Signal Processing and Electronics Research. http://casper.berkeley.edu/wiki/IBOB

[Rose93]

J. Rose, A. El Gamal, A. Sangiovanni-Vincentelli, “Architecture of Field-Programmable

Gate Arrays,” Proc. of IEEE, Vol. 81, No. 7, pp. 1013-1029, July 1993.

[Ryan10]

J. F. Ryan, B. H. Calhoun, “A sub-threshold FPGA with low-swing dual-VDD interconnect

in 90nm CMOS,” IEEE Custom Int. Circuits. Conf., pp. 1-4, Sep. 2010.

[Saban12]

K. Saban, “Xilinx Stacked Silicon Interconnect Technology Delivers Breakthrough FPGA

Capacity, Bandwidth and Power Efficiency”, Xilinx White Paper: Virtex-7 FPGAs, WP380,

Dec. 2012.

[Sanchis89]

L. A. Sanchis, “Multiple-Way Network Partitioning,” IEEE Trans. on Computers, vol. 38,

no. 1, pp. 62-74, Jan. 1989.

[Sanchis93]

L. A. Sanchis, “Multiple-Way Network Partitioning with Different Cost Functions,” IEEE

Trans. on Computers, vol. 42, no. 12, pp. 1500-1504, Dec. 1993.

[Sangiovanni93]

A. Sangiovanni-Vincentelli, A. El Gamal, J. Rose, “Synthesis Methods for Field

Programmable Gate Arrays,” Proc. of the IEEE, vol. 81, no. 7, pp. 1057-1083. July 1993.

157

[Scholo12]

C. R. Scholottmann, S. Shapero, S. Nease, P. Hasler, “A Digitally Enhanced Dynamically

Reconfigurable Analog Platform for Low-Power Signal Processing,” IEEE J. of Solid-State

Circuits, vol. 47, no. 9, pp. 2174-2184, Sept. 2012.

[Schuler72]

D. M. Schuler, E. G. Ulrich, “Clustering and Linear Placement,” Proc. Design Automation

Conf., pp. 50-56, 1972.

[Spencer11]

M. Spencer, F. Chen, C. C. Wang, et al, "Demonstration of Integrated Micro-Electro-

Mechanical Relay Circuits for VLSI Applications," IEEE J. of Solid State Circuits, vol. 46,

no. 1, pp. 308-320, Jan. 2011.

[Sperling12]

E. Sperling, "Designing at 28nm and Beyond," Chip Design Magazine, Mar. 2012.

[Sutherland99]

I. Sutherland, B. Sproull, D. Harris, Logical Effort: Designing Fast CMOS Circuits, Morgan

Kaufmann, 1999.

[Taylor12]

M. B. Taylor, “Is Dark Silicon Useful?” Proc. of Design Automation Conf., pp. 1131-1136,

June 2012.

[Tessier98]

R. Tessier, “Negotiated A* Routing for FPGAs,” Proc. Canadian Workshop on Field Prog.

Devices, vol. 6, 1998.

[Tessier00]

R. Tessier, H. Giza, “Balancing Logic Utilization and Area Efficiency in FPGAs”, Int.

Workshop on Field-Prog. Logic and App, pp. 535-544, 2000.

[Teifel04]

J. Teifel, R. Manohar, “Highly Pipelined Asynchronous FPGAs,” ACM Int. Symp. On

FPGAs (FPGA’04), Feb. 2004.

[Teifel204]

J. Teifel, R. Manohar, “Asynchronous Dataflow FPGA Architecture,” IEEE Trans. on

Computers, vol. 53, no. 11, pp. 1376-1392, Nov. 2004.

[Tsu99]

W. Tsu, et al, “HSRA: High-Speed, Hierarchical Synchronous Reconfigurable Array,” Int.

Symp. on FPGA, pp. 125-134, Feb. 1999

[Wang11]

C. C. Wang, F.-L. Yuan, H. Chen, D. Marković, "A 1.1 GOPS/mW FPGA Chip with

Hierarchical Interconnect Fabric," Proc. Int. Symp. on VLSI Circuits, pp. 136-137, June

2011.

158

[Wang13]

C. C. Wang, D. Marković, “A Radix-3 Network Architecture For Boundary-Less

Hierarchical Interconnects”, March 2013, US Application No. 61/786,676

[Wang13b]

C. C. Wang, D. Marković, “Fine-Grained Power Gating in FPGA Interconnects”, March

2013, US Application No. 61/791,243

[Wei91]

Y.-C. Wei, C.-K. Cheng, “Ratio Cut Partitioning for Hierarchical Designs,”, IEEE Trans. on

Computer-Aided-Design, vol. 10, no. 7, pp. 911-921, July 1991.

[Wong04]

D. Wong, “Interconnection network for a field programmable gate array,” US 6,693,456 B2,

United States Patent, Feb. 2004.

[Wu80]

C.-L. Wu, T.Y. Feng “On a Class of Multistage Interconnection Networks,” IEEE Trans. on

Computers, vol. c-29, no. 8, pp. 694-702, Aug. 1980.

[XlinxV408]

Virtex-4 FPGA User Guide, UG070, Xilinx, Inc., Dec. 2008.

[XlinxV506]

Virtex-5 Platform FPGA Family Technical Backgrounder, Xilinx, Inc., May 2006.

[XlinxV512]

Virtex-5 FPGA User Guide, UG190, Xilinx, Inc., Mar. 2012.

[XilinxV6CLB12]

Virtex-6 FPGA Configurable Logic Block User Guide, UG364, Xilinx, Inc., Feb. 2012.

[XilinxV6DSP11]

Virtex-6 FPGA DSP48E1 Slice User Guide, UG369, Xilinx, Inc., Feb. 2011.

[XilinxV6BRAM11]

Virtex-6 FPGA Memory Resources User Guide, UG363, Xilinx, Inc., Apr. 2011.

[XilinxXC99]

XC4000E and XC4000X Series Field Programmable Gate Arrays, Product Specification,

Xilinx, Inc., May 1999.

[Yang99]

Y. Yang, G. M. Masson, “The Necessary Conditions for Clos-Type Nonblocking Multicast

Networks”, IEEE Trans. on Computers, vol. 48, no. 11, pp. 1214-1227, Nov. 1999.

[Yang12]

C.-H. Yang, T.-H. Yu, D. Marković, "Power and Area Minimization of Reconfigurable FFT

Processors: A 3GPP-LTE Example," IEEE J. Solid-State Circuits, vol. 47, no.3, pp. 757-768,

Mar. 2012.

159

[Yu12]

T.-H. Yu, C.-H. Yang, D. Čabrić, D. Marković, "A 7.4 mW 200 MS/s Wideband Spectrum

Sensing Digital Baseband Processor for Cognitive Radios," IEEE J. Solid-State Circuits, vol.

47, no. 9, pp. 2235-2245, Sep. 2012.

[Yuan08]

F.-L. Yuan, Y.-H. Lin, C.-F. Wu, M.-T. Shiue and C.-K. Wang, “A 256-Point Dataflow

Scheduling 2x2 MIMO FFT/IFFT Processor for IEEE 802.16 WMAN,” Proc. Asian Solid-

State Circuits Conf., pp. 309-312, Nov. 2008.

