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ABSTRACT OF THE DISSERTATION 

 

Building Efficient, Reconfigurable Hardware using Hierarchical 

Interconnects 

 

by 

Chengcheng Wang 

Doctor of Philosophy  in Electrical Engineering 

University of California, Los Angeles, 2013 

Professor Dejan Marković, Chair 

 

In the semiconductor industry today, ASICs are able to offer 10x-1000x higher energy 

and area efficiencies than non-dedicated chips, such as programmable DSP processers, field-

programmable gate arrays (FPGAs), and microprocessors. Not surprisingly, SoCs today have 

become an integration of many ASIC blocks, each performing a few dedicated tasks. The 

growing size of modern SoC chips, accelerated by the increasing demands for functionalities, has 

exposed the major drawback of ASIC: design cost. These large SoCs are re-designed a few times 

a year to rectify hardware-bugs and to support new features. Because ASICs are not 

reconfigurable, even the smallest hardware change would require a re-design. Additionally, 

design cost is rising exponentially with every technology generation. 

The rising design cost of ASICs has exposed a huge need today: efficiency and flexibility 

must co-exist. But among flexible hardware candidates, microprocessors and programmable DSP 
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processors are far too slow to meet the throughput requirements of ASICs. FPGAs do come close 

in terms of performance, but are extremely inefficient due to its high energy and large area 

overhead. We must bridge the huge gap in efficiency for FPGA to become a viable contender to 

ASICs. 

The primary culprit for FPGA inefficiency is interconnect, which accounts for over 75% 

of area and delay. For over 20 years, 2D-mesh network has been the back-bone of FPGA 

interconnects, but full connectivity in a 2D-mesh require O(N2) switches, requiring interconnects 

to grow much faster than Moore‟s Law. As a result, various heuristics are used to simplify 

switch-box arrays at the cost of resource utilization, but interconnect area of modern FPGA is 

still around 80%. This work builds FPGA using hierarchical interconnects based on Beneš 

networks, requiring O(N∙log∙N) switches. Although Beneš is commonly used in 

telecommunication, this work is its first silicon realization of a FPGA. To realize a highly 

efficient interconnect architecture, significant pruning of the network is required. Novel 

techniques such as fast-path U-turns and unbalanced branching are also implemented. A custom 

place-and-route software is developed to map benchmark designs on a variety of interconnect 

candidates. From mapping results, the architecture is updated based on network utilization until 

an optimized design is converged. The large area of FPGA chip requires aggressive power gating 

(PG), but interconnect signals often lack spatial locality, make it block-level PG difficult. A 

novel PG circuit technique is developed to power-gate individual interconnect switches with very 

small overhead in area and performance. Such technique requires fundamental circuit changes, 

even modifying the CMOS inverter. 

With innovations in chip architecture, circuit design, and extensive software 

development, this work has demonstrated 5 user-mappable FPGAs (from 1K–16K LUTs) all 
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with around 50% interconnect area: a 3–4x reduction from commercial FPGAs while preserving 

connectivity. An energy efficiency of 1.1 GOPS/mW is the highest among reported FPGAs, and 

is 22x more efficient than the most efficient commercial FPGA today, significantly bridging the 

efficiency gap between FPGA and ASIC. 
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CHAPTER I 

Introduction 

1.1 The Drive Towards Efficiency 

For 50 years, Moore‟s law has driven the rapid scaling in transistor count and feature 

size. Transistor performance also increased at this pace, essentially doubling its operation 

frequency with every generation. Few seemed to care that doubling the performance also doubles 

the power consumption, and by the early 2000s, consumer CPUs have reached over 3 GHz, 

consuming around 100 watts of power. It then became clear that frequency scaling is reaching 

the end of the road: power, thermal, and physical constraints became just as important as circuit 

performance.  

“I don‟t want a kilowatt in my laptop,” said Gordon Moore at the International Solid-

Sates Circuits Conference (ISSCC) Keynote in 2003 [Moore03]. The industry was recognizing a 

turning point towards efficiency: design tradeoffs that balance performance, power, and area 

requirements. Often times, obtaining efficiency requires fundamental hardware changes. 

“General-purpose hardware is generally not power-efficient," said Shekhar Borkar of Intel at the 

same conference. Over the past 10 years, the industry has shifted from high-frequency, single-

core CPUS, to a heterogeneous integration of multi-core CPUs and dedicated accelerators. 

In 2003, many were concerned to maintain the 100W power budget. But in just a few 

years, the industry has commercialized sub-10W processors that fit in thin ultra-books, and even 

sub-1W processors for smartphones. Dictated by the changes in the scaling trend, these products 

are designed with efficiency in mind.  
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1.2 What is Efficiency? 

Efficiency, unlike many traditional criteria, requires a combination of metrics. Energy 

efficiency (or power efficiency) is arguably the most common efficiency metric. It quantifies 

work per unit energy, and is generally measured in billions of operations per second (GOPS) per 

milliwatt (GOPS/mW). In VLSI circuits, this translates directly to battery life, thermal limit, and 

reliability.  

One may wonder, for example, how energy efficiency differs from just low power. The 

difference is in operations. In an extreme case, any chip can consume 0 watts if it‟s off! But that 

is trivial because it is not performing not performing any operations. A similar analogy applies 

for performance: many smartphone processors today include 4 or 8 cores, but delivering peak 

performance in all cores will drain the battery very quickly, and can even exceed the phone‟s 

thermal budget. From these examples, it should be clear that low power, or high performance 

alone are not sufficient quantifications for real-life suitability. Efficiency balances these 

tradeoffs, to perform the most operations performed using the least amount of resources. 

Area efficiency is also a common criterion, quantifying work per unit of area, generally 

measured in billions of operations per second per mm
2
 (GOPS/mm

2
). This translates directly to 

die size, cost, and yield. Naturally, we would like the smallest die size for the same functionality 

just to save cost. Although Moore‟s law is providing ever-increasing transistor density, designing 

a large chip is still expensive, and die yield remains an issue for large designs. Many complex 

VLSI designs are even divided into multi-chip modules (MCM) to avoid large die sizes, 

improving yield and easing debugging. 
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1.3 The Efficiency Tradeoff 

Depending on the application, the designer may emphasize one efficiency metric over 

another (e.g. smartphone processors place huge requirements for energy efficiency, but a low-

cost USB microcontroller would need high area efficiency).  Energy and area efficiencies also 

contain a mutual tradeoff: a low-power chip may employ low-frequency cores with very low 

supply voltage (VDD), but utilize massive parallelism to achieve its required throughput. Such a 

chip will have high energy efficiency, but lower area efficiency due to parallelism. In contrast, a 

single high-performance core running at nominal VDD is generally less energy efficient, but 

achieves high area efficiency. 

To have a fair comparison, it is necessary to evaluate a chip based on both criteria. This 

leads us to an interesting question: how efficient are today‟s chips? We have gathered VLSI chip 

data from ISSCC and VLSI Symposia (VLSI) conferences in the past decade, along with 

published data from field-programmable-gate-arrays (FPGAs). Normalizing and averaging all 

chips to 65nm technologies, we observe a clear trend in Figure 1.1. 



 
4 

 

Figure 1.1: Energy and area efficiency of the ISSCC/VLSI chips from the past decade, averaged.  

From Figure 1.1, we observe more than 1000× difference in efficiency between 

microprocessors and dedicated hardware (ASIC), with FPGAs and programmable digital-signal-

processors (DSPs) in between. This exposes a key tradeoff between efficiency and flexibility, 

Intuitively, whenever we take a dedicated portion of a chip and make it programmable, we need 

to implement additional hardware. In the extreme case of a microprocessor, the actual arithmetic-

logic-unit (ALU) becomes only a small portion of the entire chip, leading to its low energy and 

area efficiencies. 

Today‟s semiconductor industry has a strong push for efficiency, so not surprisingly, 

more and more designs require specialized hardware. However, what if we need 

programmability? In the example of a smartphone, a microprocessor must remain, or else it 

cannot run any software. In addition to running an operating system, the smartphone must 

perform different multimedia tasks on-demand, while maintaining communications through the 
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digital-front-end. At the same time, the smartphone must have good battery life and maintain a 

reasonable cost. These conflicting requirements call for both efficiency and programmability, but 

how can we have both? 

 

1.4 Efficiency and Flexibility – Current Solutions 

Since no single hardware today can match the efficiency of dedicated chips, modern 

VLSI designs have integrated many dedicated blocks onto a single chip, centrally controlled by 

one or more microprocessors. This creates a system-on-a-chip (SoC) design where the flexible, 

inefficient microprocessors run the operating system, and then invokes dedicated, highly-

efficient accelerators when necessary. Originally, SoCs were designed to integrate on-chip 

memory, I/O peripheries, and components to assist the central microprocessor. Modern SoCs 

have outsourced many more tasks to the accelerators, such that the microprocessor has become 

more like an arbiter. 

   

Figure 1.2: Block diagram of an NVIDIA Tegra 2 SoC for smartphones. 
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As shown in Figure 1.2, the NVIDIA Tegra 2 is marketed as a 1 GHz dual-core processor 

for Android smartphones. However, we see that the actual processor only occupies a small 

fraction of the total chip area. The majority of the chip is occupied by dedicated accelerators, and 

the digital-front-end (DFE) uses another ASIC chip. Recent research [Goulding11] has even 

proposed to use dedicated accelerator cores to replace portions of the operating system software 

to further improve chip efficiency. This accelerator-dominated SoC design exists in every 

smartphone today, and has enabled us to integrate unprecedented functionalities into our phones 

while still maintaining decent battery life. However, this is not a fully scalable solution. 

First, this approach leads to large portions of “dark silicon” [Taylor12]. As smartphones 

are required to pack more functionality, the number of dedicated blocks will increase. Given the 

strict power budget in today‟s SoCs, generally only one or few blocks can be active at a time, 

while the remaining sections of the chip are idle or power gated. Mmodern SoCs are designed for 

this scenario, and enabling all the blocks will actually melt the chip. As technology scales, some 

predicted that only 25% of the chip is exploitable at 22nm, and only 10% is usable at 11nm 

[Donovan10]. Although energy efficiency of the idling blocks is remedied by power-gating, area 

efficiency is still reduced. 

Second, and more importantly, the accelerators are dedicated hardware. Although the 

operating system can be updated via software, the accelerators cannot. As a result, a single 

change in one of the blocks would require a re-design. By integrating more blocks, we are more 

prone towards having this issue. Even when the hardware changes are not caused by design 

error, there are many other factors what would require a re-design.  
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1.5 Keeping Up with the Standards 

Modern SoCs, especially for smartphones, integrate many multimedia and 

communication features, and most of these features are based on common standards. Since the 

accelerators are designed for these standards, whenever a communication or multimedia standard 

needs to be changed or updated, a re-design of the chip is required.  

Unfortunately, standards for communication and multimedia are constantly evolving, and 

are being introduced at an accelerated pace (Figure 1.3). This figure is already not showing many 

additional features such as Bluetooth and near-field communications (NFC), or revisions within 

a current standard. 

  

Figure 1.3: Evolution of common multimedia and radio standards. 

As a result of frequent updates, the chips often need to “keep up” with the standards. It is 

common for ASIC chips to be re-designed at least once a year, even though most of the blocks 

on the chip are legacy designs. One or more additional revisions are often done between new 

designs to correct for hardware bugs. Therefore, it is common to see design teams taping out 

around the year. This may not be a big issue if chip designs are cheap. At almost 50 years after 
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Moore‟s Law, we would expect chip costs to have dropped down significantly, but what is really 

the cost of chip design?  

 

1.6 The Cost of Chip Design 

Even though Moore‟s Law provides lower transistor cost per generation, ASICs are still 

expensive to design, and are becoming increasingly so with every technology generation. The 

majority of the chip-design cost is not in the transistors. As shown in Figure 1.4, the increasing 

design complexity, increasing man-hours per design, expensive CAD licenses, and higher 

fabrication costs are driving up total cost at an accelerated pace. At 28nm, the non-reoccurring 

engineering (NRE) cost of a custom-made IC is more than $50 million [Sperling12]. 

  

Figure 1.4: Cost of chip design with every technology node [Merritt13]. 

In the very near future, we will no longer be able to afford re-designing chips on an 

annual basis. Actually, most ASIC designs are now cost-limited to 65nm and older technologies, 

about 3 generations behind state-of-the-art processes. Only a few high-volume, high-profit 

chipmakers are able to maintain cutting-edge processes in their design. The newest processes are 

also far costlier for foundries to develop. Without many customers able to afford the newest 

products, it will take foundries far longer to recuperate the costs, thus creating a vicious cycle 
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that slows down the progress for new technologies. 

How can more chip-makers afford the newest technology? They need to amortize the 

design cost. They need volume. Chips can no longer be designed, used for 1 year, and then 

thrown away. We need to enable hardware re-use. The designed chips need to remain 

competitive and up-to-date for more than one product cycle. To achieve such flexibility, we need 

reconfigurable hardware. But to maintain the efficiencies of current SoCs, we need efficient, 

reconfigurable hardware. 

 

1.7 Candidates for Reconfigurable Hardware 

Among the candidates for reconfigurable hardware, microprocessors are least efficient. 

They will not replace ASICs. In fact, the heterogeneous SoCs today is a result of processor 

inefficiency. Apart from microprocessors, FPGAs and programmable DSPs are possible 

candidates for reconfiguration, but they are very different. Programmable DSPs are software 

controlled, and it is difficult for them to execute the bit-true, cycle-true behaviors of a dedicated 

hardware. In addition, they generally have lower throughput unless massively-parallel 

architectures are used, such as single-instruction-multiple-data (SIMD). But in the case of a 

SIMD, all cores must perform the identical function, which is often not the behavior of a 

dedicated hardware. SIMD does find its use, for example, in image processors where all cores 

are required to perform the same operations on a massive array of data [Nakajima06, Noda07, 

Kurafuji11]. 

Among these candidates, FPGAs come closest in mimicking ASIC functionalities. They 

are designed to emulate dedicated hardware in a bit-true, cycle-true manner. They have high 

throughput due to the implicitly parallel, independent logic blocks, just like ASICs. In terms of 
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functionalities for the end-user, it is indistinguishable whether the chip is an ASIC or an FPGA. 

In terms of the design process, the difference is “night-and-day”. 

Comparing ASIC design versus FPGA design (Table I), FPGA is really appealing from a 

design perspective, especially for design verifications and prototypes. With supporting software, 

the user designs can be mapped to run on the FPGA in a matter of hours. Comparing to the 

expensive process of metallization rework or chip fabrication, the hardware reconfigurability of 

FPGAs places it in another league. For many VLSI designers, the ability to rapidly verify design 

changes in silicon without any fabrication rework is an indispensable tool. In many designs that 

require constant changes, or for small companies that cannot afford to support an entire physical 

design team (followed by a million-dollar fabrication process), FPGA is becoming used in end-

products as well. In recent years, even analog FPGAs are being proposed in research [Scholo12]. 

  

Table 1-I: ASIC vs. FPGA – efficiency vs. flexibility. 

But if FPGAs can behave just like ASICs, and are so much easier to design with, why are 

they not taking over? FPGA companies often use cost comparisons (as in Figure 1.4) for 

marketing purposes to steer designers away from building ASICs, but the fact is, modern SoCs 

rarely employ FPGA hardware. Why are chip designers still opting for the difficult, and 

expensive, ASIC design process? Because FPGAs pose a huge efficiency gap; it pays significant 

Logic Design, Physical Design Logic Design only

Licenses: Synthesis, P&R, etc. Fewer Licenses

90nm or older 32nm or newer

2 – 4 months fabrication time None

Expensive to Design Inexpensive to Design

Efficient Operation Inefficient Operation

Efficiency (ASIC) Flexibility (FPGA)vs.
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penalties in area (17–54x), speed (2.5–6.7x), and power (5.7–62x) compared to ASIC designs 

[Kuon07, Kuon207, Ahmed10]. Such overheads are still prohibitively high for many ASIC 

designers to adopt an FPGA design. 

For FPGA to be implemented in a mass-consumer market, especially in power-

constrained environments such as smartphones, the inefficiency of FPGA operations must be 

corrected, or else our cellphone battery will last just a few minutes!  

 

1.8 Thesis Outline 

The focus of this work is to build efficient, reconfigurable hardware. In Chapter II, we 

first identify the source of inefficiency from today‟s FPGAs, and propose to use a hierarchical 

interconnect architecture to reduce the interconnect area. Chapter III highlights the interconnect 

architecture design and optimization techniques for hierarchical FPGA realization. Chapter IV 

illustrates the circuit-level techniques used in designing an energy-efficient large-scale 

hierarchical network. Chapter V illustrates the design process and hardware features of our 

FPGAs that achieve 3-4x interconnect area reduction over commercial FPGAs. Chapter VI 

discusses the algorithms and features of the software tool used for mapping designs onto our 

FPGA. Chapter VII highlights our testing platform and provides key measurement results. 

Chapter VIII concludes the thesis and provides an outlook on nano-electro-mechanical (NEM) 

relays as FPGA interconnects. 
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CHAPTER II 

FPGA Interconnects: the Source of its Inefficiency 

2.1 Brief History of FPGAs 

The concept of a reconfigurable hardware started over 30 years ago, but it was regarded 

as prohibitively expensive because of its large overhead in area over ASICs. Transistors were 

expensive, and no one wanted to pay the huge area penalty for reconfigurability. Fortunately, the 

semiconductor industry rapidly expanded at the pace of Moore‟s law, and such large area 

overhead became more tolerable, finally leading to a first FPGA by Xilinx Corporation in 1985. 

The original FPGA, XC2000 series, had 64 or 128 look-up-tables (LUTs). As shown in Figure 

2.1 a), each configurable-logic block (CLB) contains just one LUT and one selectable flip-flop. 

With so few CLBs, the interconnect network is also simple. The interconnects run in x- and y- 

direction around the CLBs, twisting with every segment, and some of the intersections have 

switch matrices placed diagonally, consisting of 6 pass-transistors per switch (Figure 2.1 b) 

[Brown92]. 

The initial perceptions of the XC2000 were “small, slow, expensive, and „different‟” 

[Alfke07], but the XC3000 introduced in 1987 became very successful even with very 

rudimentary software support. Fast-forward to today, FPGAs can support up to 500,000 LUTs 

per die, and the largest Xilinx Virtex-7 even supports 2 million LUTs using Stacked-Silicon 

Technology (Figure 2.2) [Saban12]. 
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a) 

 
b) 

Figure 2.1: Schematic diagram from a Xilinx XC2000 of a) CLB and b) interconnects. 

CLB

Interconnect
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Figure 2.2: Illustration of Stacked-Silicon Technology in Xilinx Virtex-7. 

Due to yield and fabrication constraints, each die is limited to around 500,000 LUTs, 

occupying 529 mm
2
 in 28nm. “Stitching” the 4 chips together requires a very large interconnect 

bandwidth, far greater than that offered by standard packaging solutions. Therefore, a 65-nm 

passive silicon interposer is mounted onto the 4 FPGA dies to create a high-bandwidth 

interconnect, providing more than 10,000 connections between each adjacent die. For 

communication with external I/Os, the interposer uses through-silicon vias (TSVs) to connect the 

FPGA die to the C4 bumps on the package. Although the stacked silicon technology is not 

monolithic, many of the performance and cost benefits of a 3-D monolithic FPGA from [Lin07] 

still apply. 

Of course, FPGA progressions are more than just area expansion, the CLB core of the 

FPGAs has also evolved over the years (Figure 2.3) [Rose93]. Many features are added to 

implement commonly-used ASIC features very effectively, such as multiple flip-flops with 

clock-enables (XC3000), a dedicated ripple-carry chain (XC4000), and LUT-combining 

multiplexers (XC5200). 
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a) 

  
b) 

XC3000

XC4000
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c)  

Figure 2.3: CLB diagram of Xilinx a) XC3000, b) XC4000, and c) XC5200. 

Over the past ten years, CLB sizes grew even more. Xilinx has transitioned to four 4-

input LUTs per CLB in its Virtex-4 [XlinxV408], then to four 6-input LUTs per CLB in Virtex-5 

[XlinxV512]. The newer Virtex-6 and 7 even have dual flip-flops mated to each of the 6-input 

LUTs (Figure 2.4) [XilinxV6CLB12].  

The newer CLBs place an even greater emphasis on software design. The performance of 

the FPGA depends heavily on the mapping algorithm – packing critical-path gates within a CLB 

would provide much faster performance than spreading the critical path across multiple CLBs. 

Since the interconnect network cannot provide full connectivity across all CLBs (Chapter III), 

packing LUTs locally into CLBs can reduce the number of I/Os required by the CLB [Betz98], 

and the software tool also needs to provide quality place-and-route results to ensure feasible 

design mapping. 

XC5200
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Figure 2.4: CLB diagram of Xilinx a Virtex-6 and 7 series FPGA. 
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Over the years, the FPGA software support has developed into a complete design suite. 

With extensive support for automated design mapping from HDL into bitstream, very little effort 

is required by the end-user. High-level synthesis tools even support mapping software programs 

(such as C or Matlab models) directly onto the FPGA. This many layers of abstraction provide a 

simple user experience, but it also shields us from seeing the intricate details of a FPGA design, 

especially interconnect routing. 

 

2.2 Interconnects: the Backbone of an FPGA 

In FPGA design, great emphasis is placed on the CLBs and other programmable blocks, 

and documentations are widely available. On the other hand, interconnects have mostly remained 

in the dark. Although FPGAs have grown enormously in size since the XC2000, the fundamental 

interconnect architecture still remains (Figure 2.5). In 2D-mesh interconnects, LUTs are placed 

in configurable logic blocks (CLBs), and interconnects run in the x- and y- direction surrounding 

the CLBs. I/O connection switches tie the CLB I/O to the interconnect network. Arrays of switch 

boxes are placed at interconnect crossings to select and buffer the programmed path. Each 

switch-box contains pass-transistors programmable by the configuration memory. Since a full 

switch-box array at every interconnect crossing requires too much area, various heuristics are 

used to simplify the arrays at the cost of interconnect connectivity [DeHon99, Tessier00, Lin09]. 

In Figure 2.5, the example network only implements switch boxes along one main diagonal and 

two sub-diagonals of the switch-box array. In this simplistic case, each interconnect trace enters 

a switch-box at every interconnect crossing, the selected path is then buffered to drive the next 

trace. 
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Figure 2.5: A sample 2D-mesh architecture with I/O connections and switch boxes. 

To improve routing performance and add path diversity, each interconnect trace can be 

heuristically designed to travel for 1, 2, 4, 6, or even more CLBs before reaching the next switch. 

A path from one switch to the next is called a “hop”. From an illustration in Xilinx XC4000 

interconnects (Figure 2.6) [XilinxXC99], we see different interconnects labeled as “single”, 

“double”, “quad”, “long”, or even “global” based on the distance of each hop. Coming out of a 

CLB, a signal can be connected to a selection of hop lengths, giving the router freedom to choose 

a longer or shorter hop based on its routing requirements. Modern FPGAs have also migrated 

towards uni-directional routing, thus removing bi-directional buffers and significantly reducing 

interconnect loading [Lemieux04, Lee06]. 

CLB

LUT LUT

LUT LUT

CLB

LUT LUT

LUT LUT
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Figure 2.6: Interconnect architecture of a Xilinx XC4000 FPGA [XilinxXC99]. 

With extensive techniques in interconnect pruning, along with ever more complex CLBs, 

one may expect the FPGA area to be dominated by CLBs. It is called a “gate-array” after all. 

Surprisingly, even with such heuristics, 80% or more of the area on modern FPGAs are occupied 

by interconnects [Bolsens06]. The interconnect area is actually 4 times the logic area! In 

addition, interconnect also accounts for the majority of the delay and power in today‟s FPGAs 

(Figure 2.7). The reality could be even worse: if we were to remove the larger IP blocks and 

accelerators from the FPGA, and compare the area of interconnect versus the area of CLBs, the 

ratio could be closer to 10:1. 
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Figure 2.7: Area, delay and power breakdown of a modern 2D-mesh FPGA. 

 

2.3 Scaling a 2D-mesh Network  

The key cause for interconnect overhead is the scalability of 2D-mesh interconnects. In 

the worst case, the number of switch boxes grows as O(N
 2

) with the number of LUTs. Although 

heuristics are able to reduce the number of switches, there is a limit. Rent‟s rule (T = t∙g
 p

) can be 

used to model interconnects, where g is the number of gates, exponent p is the Rent‟s coefficient 

for modeling the number of I/Os, and t is a constant of proportionality. In typical cases, the 

interconnect complexity per logic block is O(N
 0.75

) for random logic, which is still O(N
 1.75

) for a 

chip of N logic blocks [Landman71]. 

For very regular designs, such as a memory banks, the complexity per logic is O(N
 0.5

). 

Since FPGA mapping software employs intelligent gate placements, the logic is not completely 

random, but it is certainly not as regular as memory banks. We therefore expect the actual Rent‟s 

exponent p to be between 0.5 and 0.75 [Tessier00]. But for very large designs (large N), O(N
 0.5

) 

to O(N
 0.75

) provides too large of a range for this model to be useful. Nevertheless, it provides us 

theoretical lower and upper bounds on interconnect complexity. 

Even using an optimistic exponent of p = 0.5, the total complexity of O(N
 1.5

) still 
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requires FPGA sizes to scale much faster than Moore‟s Law. Figure 2.8 shows the interconnect 

expansion from Xilinx Virtex-4 to Virtex-5 [XlinxV506, Minev09]. Adding 50% of interconnect 

logic per CLB poses a significant area increase even for just 1 product generation. Scaling N 

from 64 in XC2000 to 500,000 in modern FPGAs, it becomes clear why interconnect area is a 

key concern today. 

  

Figure 2.8: Interconnect resources per CLB for Xilinx Virtex-4 vs. Virtex-5 [XlinxV506]. 

In more recent years, many have proposed asynchronous architecture for FPGAs, aiming 

to improve its performance [Teifel04, Teifel204, Manohar06]. Such techniques have claimed to 

achieve > 1 GHz performance from FPGAs by using asynchronous hand-shake and token-based 

heavy pipelining. However, such technique failed to recognize the root cause of FPGA overhead, 

which is the scalability of the interconnect area. In contrast, asynchronous FPGAs require a 3x 

Virtex-4 vs. Virtex-5
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overhead in interconnect area: replacing 1 signal with 3 asynchronous hand-shake signals, 

further exacerbating the effect of interconnect overhead. Whenever signal fan-outs are required, 

complex acknowledgement circuitry is required to wait for the slowest path to return the token 

before passing it on. More recent work by [LaFrieda10] acknowledged the large area and power 

overhead required by asynchronous FPGAs, and proposed a two-phase logic and voltage-scaling 

in the acknowledge signals to reduce the power consumption, but the large overhead in area 

remains. Although asynchronous FPGAs claims to run up to 3x faster than their synchronous 

counterparts, the 3x penalty in interconnect area will quickly nullify any performance advantages 

on large designs. Recent work in [Devlin11] uses dual pipeline (separate pipelines for precharge 

and evaluation phases) to further improve asynchronous performance, but requires 5 physical 

wires for 1 interconnect signal. Clearly, these approaches are not scalable to larger designs. For 

efficient, high-performance FPGAs, what we need is an interconnect architecture that is scalable 

in area and performance, and not brute-force circuit implementations. 

 

2.4 Hierarchical Network – A Scalable Solution 

To address the non-scalability of 2D-mesh, we adopted a hierarchical interconnect 

architecture based on a Beneš network. In telecommunication, Clos, Beneš, and similar 

hierarchical networks are well-known to be rearrangeably non-blocking network for point-to-

point connections, and are commonly used in communications [Clos53, Benes62, Kleinrock77, 

Yang99, Dally04]. There has not been a silicon realization of a Beneš network for FPGAs until 

this work. To demonstrate its feasibility, the original Beneš network is first modified into a 

realizable FPGA architecture. 

As a demonstration, we start with 2 LUTs, each with just 2 inputs and 2 outputs (Figure 



 
24 

2.9). This network requires 3 stages, and each stage uses 2x2 switch matrices (SMs) for signal 

routing. Each SM can support both uni-cast and multi-cast of incoming signals, as shown. This 

network is rearrangeably non-blocking for uni-cast, meaning the signal routing can be rearranged 

to support arbitrary LUT-to-LUT connections. 

  

Figure 2.9: A simple 3-stage Beneš network connecting 2 LUTs. 

In FPGA applications, it is common to use 4 to 6 input LUTs with 2 outputs. To illustrate 

a 4-input, 2-output LUT network, the 3 stage network is recursively extended to a 5-stage 

network (Figure 2.10), and can be further extended to larger networks. This network remains 

non-blocking for uni-cast, and because there are only half as many LUT outputs as inputs, it is 

virtually non-blocking even for multi-cast based on our simulations. Since each LUT only has 2 

outputs, the red SMs can always multi-cast the signals, and can be removed. In addition, the 4 

inputs to a LUT may arrive in any order, therefore the gray SMs can be removed as well. Note 

that for some CLBs, such as DSP accelerators or control signals, the inputs may not arrive in any 

order, and in those cases the grey SMs must remain. For simplicity, the center 3 stages are 
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abstracted as a single 4-input, 4-output SM, which is essentially a 2-bit 2x2 switch because it 

propagates two paths in each direction. The simplified diagram is shown on the bottom of Figure 

2.10. 

  

Figure 2.10: A 5-stage Beneš network merged into a 3-stage using 2-bit 2x2 switches. 

Scaling to a larger network, we observe one key problem with the original Beneš 

network. Figure 2.11 shows an 8-LUT network using 5 SM stages. The downside is that all paths 

are required to traverse on all 5 stages regardless of the physical distance between the source and 

destination. As shown in Figure 2.11, LUT 7 and 8 are physically adjacent to each other, but the 

network requires the signal to traverse through all hierarchies while a simple switch in the first 

stage would suffice. Another issue with this network is input/output locality. In an FPGA, the 

input and output of a LUT is coming from one hardware block, but in this network, the inputs 

and outputs are split across two sides of the network. Since this diagram is not representing 

physical implementation, it can be misleading to the FPGA designer. 
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Figure 2.11: A 5-stage Beneš network connecting 8 LUTs. 

To avoid traversing unnecessary hierarchies to speed up interconnect routing, and to 

provide an interconnect that closely resembles the physical implementation, we employ a folded 

Beneš network (Figure 2.12), also called a fat-tree network by [Leiserson85]. This similar 

architecture has been employed in supercomputing machines, such as the Connection Machine 

CM-5 with 256, 544, and even over 1000 processing nodes [Leiserson96]. 

As shown, 4 LUTs are connected via 2 stages of SM, and another 4 LUTs are to be 

connected with a 3rd SM stage. This effectively leads to an interconnect complexity of 

O(N∙logN), which scales much better than O(N
 2

) in 2D-mesh interconnects.  
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Figure 2.12: A 3-stage folded Beneš network connecting 8 LUTs (4 LUTs shown). 

Although drawn with 2 arrows, each trace is actually 2 uni-directional signals. Each 

switch matrix then performs 4 uni-directional connections both upwards and downwards. Signals 

will come from the LUT output, traverse up to the required hierarchy, and traverse back down to 

the LUT input. Because the network is still rearrangeably non-blocking, full connectivity can be 

obtained. 

Although this architecture reduces interconnect complexity by reducing the number of 

switches, routing congestion remains an issue. In Figure 2.12, the first SM stage has 2x2 wires 

crossing each other, but the second stage has 4x4 wires crossing, and the 3
rd

 stages has 8x8. Each 

additional SM stage doubles the routing congestion. This O(N) congestion requires much larger 

area for higher level SMs, making physical design more difficult and less area-efficient. 

Fortunately, implementing a Beneš network on silicon gives us freedom in both x- and y- 

directions. Although [Manuel 07] illustrated a manual layout method for a Beneš layout on a 1-

dimensional array, most silicon implementations allow for a 2-dimensional layout. To alleviate 

congestion, routing is alternated between the x-y directions, doubling the routing congestion for 

every 2 stages. The routing congestion is reduced from O(N) to O(N
 0.5

) (Figure 2.13), and the 

fully symmetrical implementation also eases physical design. 
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Figure 2.13: A hierarchical Beneš interconnect architecture using alternated x-y routing. 

Another change from the original Beneš network is unequal wire lengths. At every 

hierarchy, the LUTs near the center are connected to create shorter routes, and the LUTs near the 

edges have longer routes. In terms of logic connectivity, this wiring difference is an isomorphic 

transformation from the original network, thus the interconnect connectivity remains unchanged 

[Wu80, Duato02, Konda08]. Yet this difference in wire lengths gives routing tools options for 

faster paths on timing-critical routes. In physical design, this also allows the center routes to 

remain at the lower metal layers without crossing over the longer routes on the upper metal 

layers, further avoiding congestion. 

 

2.5 Prior Attempts at Hierarchical FPGAs 

Numerous publications have discussed hierarchical FPGA implemented as tree-of-

meshes (Figure 2.14) [Greenberg88, Lai97, Tsu99, Wong04, DeHon04]. It is a limited bisection 

network, where the mesh connectivity decreases for upper hierarchies. In some implementations 

[Tsu 99], even connectivity at local levels is limited. Additionally, a centralized routing network 

is required at every hierarchy, which increases routing congestion, and central switches are still 
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based on 2D-mesh. The layout in [Greenberg88] intelligently distributes the meshes across the 

layout into “cubies”, but the complexity of every hierarchy remains that of a mesh-based switch. 

  

Figure 2.14: A hierarchical interconnect architecture using alternated x-y routing [DeHon04]. 

Unlike tree-of-mesh interconnects, our Beneš interconnect architecture evenly distributes 

routing across all LUTs instead of crowding them into centralized “hubs,” easing routing 

congestion and shortening the wire length significantly. This is different from the butterfly layout 

in [DeHon00, Wong04] where centralized hubs are used, but hubs are distributed across different 

“cubies,” thus requiring each signal to traverse across different hubs in different cubies just to 

switch hierarchy, significantly increasing interconnect delay. 

There is one known silicon implementation of a tree-of-mesh FPGA, the hierarchical, 

synchronous reconfigurable array (HRSA) [Tsu99]. The architecture uses a Radix-4 topology 

with centralized switches and bi-directional routing. Rent‟s exponent of 0.5 is used, so every 

hierarchy prunes the interconnect connectivity by 50%. Due to the centralized hubs used in this 

architecture, processing elements (PEs, equivalent to LUTs) that are physically close to each 

other may be required to use a detour routing. A heuristic is then employed to add “shortcuts” to 
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connect these PEs using additional wiring (Figure 2.15). 

  

Figure 2.15: The HSRA architecture without (left) and with (right) wiring shortcuts. 

The HSRA architecture was able to maintain good operation frequency due to its heavy 

pipelining, but the interconnect network with a Rent‟s exponent of 0.5 offered “very limited” 

connectivity. There has not been a follow-up chip after the original HSRA in 1999. 

 A multilevel hierarchical FPGA was published by [Mrabet06], although no silicon 

realization is attempted. The architectures use a Radix-4 topology with a Rent‟s exponent of 1, 

but only on the downward paths. The upward path, on the other hand, provides no path diversity 

(Figure 2.16). Therefore, the overall path diversity of this architecture is very limited, and the 

interconnect connectivity when mapping real-world designs is about 30-50%, often requiring a 

2K-LUT FPGA to map 1K-LUT designs. 

No Shortcut With Shortcuts
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Figure 2.16: The multilevel hierarchical FPGA architecture. 

 

2.6 Our Challenges 

Although hierarchical FPGA has great appeal on paper, it has not received much attention 

in practice. The main reason is that it has yet to demonstrate any advantage over 2D-mesh: its 

30-50% logic utilization is significantly lower than the 85% utilization achievable by commercial 

FPGAs, and it has yet to demonstrate any notable performance, power, or area advantage. The 

speed improvement in HRSA is due to heavy pipelining, not interconnect improvements. 

On the other hand, commercial FPGAs today are already very mature products, often 

made as full-custom designs with state-of-the-art processes (and needing more than 10 layers of 

metal). The CAD tools are also capable of delivering very high quality-of-results (QoR) within a 

easy-to-use framework. 

For our work to be considered worthwhile, we need to demonstrate and realize a 

Upward: no Radix Downward: Radix 4
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hierarchical FPGA with significant benefits in performance and efficiency. To demonstrate its 

practical values, software development is also needed to allow users to map their own designs. 

Overall, this project requires innovation and extensive work in creating an interconnect 

architecture, realizing it in silicon, and developing software tools to demonstrate its advantages. 

These details are covered in the following chapters of this thesis. 
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CHAPTER III 

Architecture Design of Hierarchical FPGAs 

3.1 Realizing Large-Scale Beneš Networks 

To illustrate the silicon realization of the Beneš network, we start with the architecture 

design applied to our two FPGAs. The two chips shown in this dissertation have approximately 

10× difference in logic capacity, and have different interconnect architecture as well. The first 

chip is a more straight-forward implementation, while the second chip utilized extensive 

architectural optimization techniques illustrated in Section 3.3 through 3.7. 

The first test chip we published in [Wang11] contained 2048 look-up-tables (LUTs), each 

with 4 inputs and 2 outputs. Built on a Radix-2 architecture, it requires 11 levels of 

interconnects. Since every level translates to one SM stage, 11 levels of SMs are required. To 

ensure 100% connectivity in all cases, every LUT would need to have 11 levels of SM to 

preserve the full Beneš network. Using the 2D-layout method illustrated in Figure 2.13, 

expanding from 4 stages for 16 LUTs to 11 stages for 2048 LUTs would still be feasible to route, 

but it would occupy a significant amount of area. According Rent‟s rule, this brute-force 

implementation represents a Rent‟s exponent of p = 1. Realistically, there is no need to 

implement an interconnect network with more than p = 0.75 connectivity, as the area penalty 

associated with building larger interconnects far outweighs the benefits from chip utilization 

[Tessier00]. 

Mathematically speaking, implementing a network with p < 1 requires interconnect 

pruning at every stage. For example, when p = 0.75, every additional stage should implement 

25% fewer wires than the previous stage. For FPGA realizations, there are three key reasons that 
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make this exact implementation impractical. 

First, mapping FPGA design is a very non-deterministic process that depends heavily on 

the design to be mapped and the algorithms used by the place-and-route (P&R) software. The 

design to be mapped can have a Rent‟s exponent p anywhere between 0.5 and 0.75, which is a 

very wide range for interconnect routing. A very regular design, such as a feed-forward finite-

impulse-response (FIR) filter, combined with a high-quality P&R tool, could be easily mapped 

onto an architecture with p = 0.5. On the other hand, a more complex design such as fast Fourier 

transform (FFT) will consume significantly more interconnect resources. There is no single 

exponent that can accurately represent all design complexities. 

Second, the interconnect utilization is uneven across the SM stages. An effective P&R 

software would attempt to keep most of the signals local, thus shortening the critical path and 

reducing the active wire lengths. As a result, it is important to have sufficient routing resources 

for the lower levels to provide sufficient path diversity for the P&R tool. It can be worthwhile to 

use a Rent‟s exponent of p = 1 for the lower hierarchies, and use a more aggressive pruning (e.g. 

p = 0.5) for the upper hierarchies. From our architecture evaluations, pruning the lower 

hierarchies, even with p = 0.75, can lead to sever routing problems and performance degradation. 

Lastly, and most importantly, the FPGA architecture needs to be realized in a 2-

dimensional layout, and its large size can lead to a very complex physical design if not planned 

carefully. As shown in Figure 3.1, an efficient physical implementation can allow the FPGA chip 

designer to start with creating just one LUT macro and its SMs. Although the interconnect wire 

length between the macros can be different, the hardware logic and the I/O port for each macro 

are identical. The fully symmetrical architecture allows the LUT macro to be replicated 

throughout the entire chip, drastically improving design time. The designer can also add more 
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hierarchies to the physical design flow, such as creating a 4-LUT macro out of the 1-LUT macro, 

then creating a 16-LUT macro from the 4-LUT macro. However, if the interconnect is to be 

pruned at every stage, the regularity of the layout can no longer be preserved: assuming all LUTs 

have SMs at stage 1, using p = 0.75, only 75% of the LUTs will have stage-2 SM, and only 56% 

of the LUTs will have stage-3 SM, and so on. Without regularity in the layout, not only will the 

interconnect take much longer to design, the reduced SM does not necessarily lead to reduced 

area. In Figure 3.1, if SMs are reduced for LUT 4, 8, 12, and 16, it would leave a gap in the 

middle of the layout because the surround macros are larger. This results in a worst-case 

situation of lost interconnect connectivity and lower layout density due to wasted area. When 

pruning SMs, the designer needs to make sure the reduced SM actually leads to reduced area, 

and must not over-complicate the layout process. This requires very judicious SM pruning at 

very strategic locations. 

  

Figure 3.1: A hierarchical macro-based implementation of a 2D-Beneš network. 

Overall, realizing a large Beneš network in FPGAs requires 3 things to keep in mind: 

interconnect connectivity, layout regularity, and layout density. 

 

LUT
1

LUT
2

LUT
3

LUT
4

LUT
6

LUT
5

LUT
8

LUT
7

LUT
11

LUT
12

LUT
9

LUT
10

LUT
16

LUT
15

LUT
14

LUT
13



 
36 

3.2 Implementing a 2048-LUT FPGA Interconnect 

The 2048-LUT test chip requires 11 levels of interconnects. To preserve interconnect 

connectivity for lower levels, we maintained connectivity (Rent‟s p = 1) until SM stage 7, 

followed by 2 stages of p = 0.5, and full connectivity for the top 2 stages. One quadrant of the 

FPGA architecture is shown in Figure 3.2: the quadrant is divided into 4 macros, each containing 

128 LUTs. Inside each 128-LUT macro, all the LUT macros are identical; they are implemented 

similarly to Figure 3.1, but with 7 stages of SM per LUT. The half-SMs shown in yellow allow 2 

out of 4 inputs to propagate upwards, realizing Rent‟s p = 0.5. Two concatenated half-SMs leads 

to a top-level connectivity of 25%.  

  

Figure 3.2: Interconnect architecture for our 2048-LUT FPGA, one quadrant shown. 
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The interconnect network is partitioned into three sub-networks: N8:2, N6:2, and N6:1, 

where NP:Q represent a network of P full-SMs and Q half-SMs. Intelligent SM-pruning also 

requires the pruned SM to translate to an area reduction. From the architecture in Figure 3.2, it is 

clear that the 3 types of SM macros, N8:2, N6:2, and N6:1, will each occupy a different area, 

because they each contain different number of SM stages. N8:2 is the largest macro, followed by 

N6:2, with N6:1 being the smallest. To avoid gaps in the layout area, all SMs have the same width. 

Therefore N6:1 macros are shorter. N6:2 is also shorter than N8:2, leading to some open space. In 

Chapter V, we will see that the opened space is used by Block RAMs. Because BRAM CLBs are 

larger than regular CLBs, the area pieces together very densely. 

The top level of the chip is shown in Figure 3.3 with the 4 hierarchies of top-level wires 

shown in colors corresponding to those in Figure 3.2. The top-level layout is symmetrical in the 

x- and y- direction, allowing the single 512-LUT quadrant to be replicated to form the other 3 

quadrants. The chip is divided into 16 macros of 128 LUTs each: macros with N8:2 interconnects 

are placed near the center for shorter top-level routing, branching into N6:2 on the left and right. 

N8:2 and N6:2 then both branch into N6:1 on the top and bottom. This physical placement avoids 

long wires at the top level, and therefore minimizes interconnect buffers and further reduces area. 

  

Figure 3.3: Interconnect architecture for our 2048-LUT FPGA, one quadrant shown. 

N8:2

N6:1

N6:1

N6:2N6:2



 
38 

This 2048-LUT architecture is relatively straightforward, using only 2 types of SMs to 

form 3 types of LUT macros. Scaling into larger designs with even more hierarchies, more 

advanced architectural techniques are used to further optimize the design. They are highlighted 

in the following sections (3.3 – 3.6). 

 

3.3 Radix-3 Boundary-less Interconnect 

Although hierarchical routing‟s O(N∙logN) complexity is much better than O(N
 2

) from 

2D-mesh, it is sometimes inefficient for local routing if the leaves are crossing a high-radix 

boundary. For example, In Figure 3.4a), LUT 8 and 9 are neighbors, but signals have to traverse 

up 4 stages of network, and then zig-zag their way down the hierarchy to for LUTs to 

communicate with each other. Such lack of spatial locality is not desirable.  

One method to shorten the nearest-neighbor routing lengths is an isomorphic 

transformation, as shown in Figure 3.4b). Connections from LUT 8 to LUT 9 can now traverse 

directly up to stage 4, make a U-turn, and traverse straight down. In terms of connectivity, it is 

well known that isomorphic butterfly structures maintain the same logic connectivity [Wu80]. 

Although the wire length travelled has reduced, the number of switches has not: the signal still 

needs to traverse up and down 4 hierarchies for communication between LUT 8 and 9. 
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a)     b)     c) 

Figure 3.4: a) An original 16-LUT Beneš network, b) with isomorphic transformation to shorten 

nearest-neighbor lengths, and c) with boundary-less radix-3 switches in stage 1. 

In this section, we propose a method of applying higher radix switches on the lower SM 

levels to utilize spatial locality in routing, allowing efficient interconnect routing for direct 

neighbors. We call such network a boundary-less radix-3 network [Wang13]. 

To convert a radix-2 network to a boundary-less radix-3 network, we first identify the 

center 2x2 routing of each stage, shown in the dashed circle in Figure 3.4b). It is noted that such 

center 2x2 routing only connects across an interconnect length of 1 (2
0
). The first stage 

transformation into a radix-3 boundary-less interconnect is shown in Figure 3.4c). All center 2x2 

routing in the dashed circles are moved to stage 1. This converts stage 1 into a radix-3 

interconnect, and all stage-1 switches are capable of communicating with their immediate 

neighbors, both up and down the SM stages. 
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With stage 1 completes, we now convert stage 2 to a boundary-less radix-3 switch. We 

first identify the remaining center 2x2 routing above stage 2 (Figure 3.5a), shown in dashed 

circles. Note that these 2x2 routings only connect across an interconnect length of 3 (2
1
+1). 

These 2x2 routings are then moved down to between stages 1 and 2 (Figure 3.5b), converting the 

second stage into a radix-3 boundary-less interconnect. 

  
a)     b) 

Figure 3.5: A 16-LUT Beneš network with a) boundary-less radix-3 switches in stage 1, and b) 

with boundary-less radix-3 switches in stages 1 and 2. 

The same transformation continues for stage 3-4: we first identify the remaining center 

2x2 switches above stage 3, shown in dashed circle (Figure 3.6a). For stage 2-3, we can note the 

remaining 2x2 switches are actually double pairs, one for LUTs 6−11, and one for LUTs 5−12. 

The inner 2x2 of the double pair connects across a distance of 5 (2
2
+1), while the outer 2x2 

connects across a distance of 7 (2
2
+3). To maintain consistency, we then move the center double 
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pair from stage 3-4 (dashed circle) down to stage 2-3 (Figure 3.6b), transforming stages 2-3 into 

a boundary-less interconnect. It is clear that this stage-by-stage transformation can be continued 

to the top of the hierarchy. Alternatively, the designer may also choose to stop the transformation 

at any hierarchy, and preserve the remaining upper hierarchies as traditional radix-2 network. 

  
a)     b)     c) 

Figure 3.6: A 16-LUT Beneš network, a) with boundary-less radix-3 switches in stages 1 and 2, 

b) with boundary-less radix-3 switches in stage 1-3, and c) rearranged for distributed routing. 

From the intermediate result in Figure 3.6b), we have shown that 50% of the wires 

branching out above stage 1 have been removed, and the wires on the bottom-most stage have 

doubled. Since the upper-stage wires are long, and the bottom-stage wires are very short, such 

tradeoff results in significant wire-length reduction for the architecture. Though shown for a 16-

LUT example, this methodology can be extended to a network of arbitrary size. 

From this illustration, we see that all stages above stage 1 have unevenly distributed 
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routing: some switches have to connect more routing than others. This scenario occurs because 

the wires above stage 1 have been reduced by 50%. To form a regular routing pattern, one 

method is to evenly re-distribute the interconnect routing: the dual routes branching out of stages 

1-4 are re-distributed across all switches, resulting in the final routing architecture shown in 

Figure 3.6c). We see that the re-distributed routes for stages 1-4 use only single 2x2 butterflies, 

as opposed to the double 2x2 butterflies used below stage 1. 

Given the 50% wiring reduction above stage 1, an alternative method of wire re-

distribution is to prune the number of switches above a certain hierarchy. As shown in Figure 

3.7a), one method is to prune the switches in stage 3 by moving some wires to a double wire, 

reducing the number of stage-3 switches by half. Since the remaining stage-3 switches are 

centered, this results in shorter interconnect length for stage 3-4, and reduces the number of 

switches in stage 4 by 50%. 

Another method is to prune the switches in stage 4 by moving some wires to a double 

wire, reducing the number of stage-4 switches by half (Figure 3.7b). This can allow the stage-4 

switches to reside on 1 half of the network, which can be useful in reducing the wire length of 

upper hierarchies. For example, for the 2048-LUT FPGA in Figure 3.2, SM stages 7 and 8 can 

benefit from this technique because the wires are merged toward the center, where the N8:2 

interconnects reside. 
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a)     b) 

Figure 3.7: A boundary-less radix-3 network with switches pruned at a) stage 3 and b) stage 4. 

Although the illustrations above use a radix-3 boundary-less architecture as an expansion 

to radix-2, it is not limited to this case. For example, a radix-6 architecture can be used as an 

expansion to radix-4; a radix-12 architecture can be used as an expansion to radix-8; and so on. 

For the sake of completeness, Figure 3.8a) illustrates a radix-4 Fat Tree using 4x4 

switches. Two stages of radix-4 switches are required to implement a 16-LUT network. To 

construct a boundary-less network, we first identify the wires in stage 1-2 that have a distance of 

4 (4
0
): these wires are bolded in Figure 3.8a). These selected wires are then moved down to 

below stage 1 (Figure 3.8b) to form a boundary-less network in the first stage. The center 

switches for LUTs 5-12 are radix-6, while LUTs 1-4 and LUTs 13-16 are only radix-5 in this 

illustration because they rest on the boundary of the network. 
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a)     b) 

Figure 3.8: a) An original radix-4 16-LUT Beneš network and b) with boundary-less radix-6 

switches in stage 1. 

 

3.4 Fast-Path Interconnect 

In VLSI designs, there usually exists a critical path, that is, a path that is more difficult to 

meet timing constraints. In most VLSI designs, the vast majority of the paths do not reside on the 

critical path, but those that are on the critical path usually determine the performance of the 

entire design. We therefore propose an addition to the interconnect SMs to allow faster 

performance for critical-path gate: fast path. 

In the example in Figure 3.9a), we see an example routing from LUT 2 to LUT 16. One 

possible route is highlighted. Beneš network offers many path diversity (thus it is rearrangeably 
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non-blocking; without path diversity, the network offers very limited connectivity (such as 

[Mrabet06] from Section 2.5)), and we are simply choosing one path as an example. The signal 

needs to traverse up to stage 4 before U-turning back down. With the addition of fast-path, 

signals are allowed to travel from the LUT output directly to all SMs within its macro (Figure 

3.9b). Therefore, the signal is able to travel directly from the output of LUT 2 to the SM on stage 

4, and then U-turning back down. Following the macro-based design methodology highlighted in 

Figure 3.1, a LUT is placed with all its SMs in one macro during physical design, so adding fath-

path routing within the macro does not add any interconnect routing outside the macro. 

  
a)     b) 

Figure 3.9: A routing example from LUT 2 to 16 a) without fast path and b) with fast path. 

For each point-to-point connection, there is always at least one fast-path available, but 

other routes that conflict with the fast-path routes must take the slower route. In a timing-driven 

place-and-route flow, this gives the software tool freedom to choose a faster path for more 
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timing-critical routes. 

In cases where routing obstructions occur, it is sometimes still possible to utilize portions 

of a fast-path, and use regular routing for the remainder of the routes. One such example is 

illustrated in Figure 3.10a), although it would be ideal to have fast-path directly connected to SM 

stage 4, the router can still connect fast-path to SM stage 3, and use regular routing to complete 

the route. In other cases, it is sometime impossible to use any fast-path, and regular routing must 

be used entirely (Figure 3.10b). Even under such cases, path-diversity allows for many routing 

choices, and the boundary-less radix-3 network sometimes even allows for fewer SM stages. In 

Figure 3.10b), one example route requires 4 SM stages, while another requires just 3 SM stages. 

It is up to the timing-driven P&R tool to select the faster path for timing-critical nets. 

  
a)     b) 

Figure 3.10: A routing example with routing obstruction that a) still allows a slower fast-path and 

b) allowing no fast-path. 
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3.5 Interconnect Cost vs. Gate Cost 

In an FPGA, upper-level interconnects are often required to travel long distances, and it 

would be beneficial to reduce the number of these nets. On the other hand, interconnect switches 

are also a dominating factor for chip area, and it would be beneficial to reduce the number of 

these gates as well. Although it is ideal to reduce both, there also exists a trade-off between these 

two factors. 

From the simple example in Figure 3.11, the two types of SMs have the same gate cost. 

Actually the 4-input muxes in Figure 3.11b) cost more when implemented as a traditional mux, 

as it takes three 2-input muxes to implement. As a static parallel mux (Chapter IV), a 4-input 

mux occupies as much area as two 2-input muxes. The muxes in Figure 3.11a) only allow for 

odd-to-odd and even-to-even switching, but the SM has double the number of muxes. 

 
a)    b) 

Figure 3.11: Two SM design with same gate cost, but a) with more wiring than b). 

In terms of connectivity, the design in Figure 3.11a) is superior. For example, if input (1) 

travels to output (1), the design in Figure 3.11b) will not be able to send another signal in the 

horizontal direction. But the design in a) is still able to send another signal through output (2) as 

long as it does not need to route input (3). Overall, design in a) provides more path diversity for 
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routing. 

A different scenario arises when the wire lengths are long, and signals (3) and (4) would 

need to be buffered (sometimes more than once). When the wires are long and the buffers are 

large, the signal buffering area can easily outweigh the mux area. In this case, the design in a) is 

clearly inferior: it requires double the number of buffers but does not provide double the 

connectivity of b). 

For lower-level SMs, where the wiring is short and does not require additional buffers, it 

is beneficial to use limited-input muxes, but implement more of them to improve path diversity. 

For upper-level SMs with high wiring cost, it is beneficial to reduce to number of wires, in which 

case full-input muxes should be used, but fewer should be implemented to save wiring cost. 

 

3.6 Local Interconnect vs. Branch Interconnect 

In FPGA, interconnect wiring is expensive, because it contributes to routing congestion 

and buffer gate area. But local interconnects are much cheaper to implement. In traditional Beneš 

networks, each SM provides just as much local interconnects as branch interconnects (Figure 

3.12), even though interconnects that branch to long wires cost significantly more hardware area. 

To reduce hardware, it is more effective to prune branch interconnects before pruning local 

interconnects. Local interconnects alone can also contribute to path diversity. In the example in 

Figure 3.12 (right), the fastest route from LUT 2 to LUT 14 is using the fast path, but let us 

assume two downward paths between SM stage 1 and 2 are blocked by other timing-critical 

signals. In this case, a design with traditional SM switches would be required to take a longer 

route, but a SM design with more local interconnects (4 in this example) can still provide a 

downward path for this route. 
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Figure 3.12: An example where traditional-Beneš based SM experiences local interconnect 

congestion, whereas a SM design with more local interconnects can utilize the fast path. 

An example SM design with 4 local interconnect and 1 branch interconnect is shown in 

Figure 3.13. When implemented as a SM macro, the local interconnects are contained inside the 

macro. Compared to the traditional-Beneš based SM design, the new design reduces the 

interconnect wiring in and out of the macro by 50%, but doubles the local interconnects. Such 

SM design is very effective for upper-level SMs where the branch interconnects are expensive. 

This essentially follows the same optimization strategy from Section 3.5: it adds more wires and 

uses simpler muxes when the wire cost is low, but use larger muxes and fewer wires when the 

wire costs are high. 
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Figure 3.13: A switch-matrix example with more local interconnects than branch interconnects. 

 

3.7 Micro-architecture of a Switch Matrix 
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SM outputs determines the number of muxes it needs, but we need to carefully decide how much 

connectivity to build into each mux, for that has a large impact on the SM area, which has a 
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Figure 3.14: Internal mux interconnect of an example radix-3 switch matrix. 

In Figure 3.14, signals 1–4 are upstream signals. Signals 1 and 2 travel internally inside 

the SM macro, and signals 3 and 4 are branches. From the mux design of 1 and 2, we see the first 

pruning heuristic: muxes 1 and 2 are allowed to propagate only signals 1 and 2 upwards, 

respectively, and both 3 and 4 are allowed. This is because outputs 1 and 2 travel in the same 

path. Not allowing switching between paths 1 and 2 has minimal impact on routing results, but 
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same SM. There is never a need to ascend one hierarchy and U-turn back to the same SM. 

Similarly, output 8 travels back to the same SM that input 3 is coming from, so there is no need 

to performance that U-turn either; the same case applies to output 9 and input 4. 

These micro-architectural techniques are effective in reducing SM complexity, thus 

reducing area and improving mux performance. But even with these techniques, the muxes still 

poses a large overhead on area and performance. Many circuit-level techniques are applied to 

implement these SMs efficiently, as discussed in Chapter IV. 

 

3.8 Implementing a 16K-LUT FPGA Interconnect 

In the previous 2048-LUT FPGA chip (Section 3.2), the architecture was optimized 

manually, and two types of SMs are utilized. To fully demonstrate the scalability of hierarchical 

interconnects, the new FPGA has expanded the interconnect architecture by 10x. Since there is 

no theoretical method to calculate the optimal connectivity at every level of the hierarchy, we 

have also developed a software tool to map designs onto our architecture (Chapter VI), which 

allows us to explore the optimal interconnect architecture using an iterative, closed-loop design 

process: we explore different architectures by mapping benchmarks and commonly-used designs, 

then examine the interconnect usage across different SM stages and locations, then refine the 

architecture accordingly and perform the mapping process again. 

This FPGA consists of 16K “LUTs” arranged on a 64×320 array. Because it is a 

heterogeneous FPGA (Chapter V), each “LUT” is limited not to a look-up table, but is more like 

a SM macro that provides I/O capabilities: in this case, each SM macro provides 5 inputs and 2 

outputs to any CLBs, logic, memory, DSP, or others. For example, a SLICE L CLB contains 30 

inputs and 12 outputs, it therefore requires 6 SM macros to implement its interconnect; on the 
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other hand a DSP CLB requires 165 inputs and 66 outputs, requiring 33 SM macros in a 3×11 

array. 

The SM architecture of the 16K-LUT FPGA is shown in Figure 3.15 and 3.16. Figure 

3.15 illustrates the lower 10 SM levels on a 1-dimensional drawing, although physical 

implementation is 2-D. Figure 3.16 illustrates the top-level physical architecture, highlighting 

wiring for the top 5 SM stages. The SM architecture is symmetrical across horizontal bisection, 

and is composed of 7 types SM macros, ranging from 10 to 14 stages of SM. The bottom 10 

stages of SM are common across all SM macros, and are illustrated in Figure 3.15. 

The CLB-input requirements in this chip ranges from 30, 35, 165, or 180 inputs, therefore 

the switch matrix in this architecture is chosen to contain 5 inputs and 2 outputs as a common 

denominator. From Figure 3.15, it shows each LUT to provide 5 inputs and 4 outputs, that is 

because each output is multi-casted to both local and branch interconnects, similar to the multi-

cast concept from Section 2.4. The bottom 5 stages of the SM utilizes boundary-less radix-3 

interconnect, providing short routing distance to neighbors and providing extra path diversity for 

the network. Above stage 5, we transition back to a radix-2 network to save interconnect area. 

Additionally, having all radix-3 network in all hierarchies would make the entire architecture 

boundary-less, which drastically increases place-and-route time. The current timing-driving 

routing algorithm is based on breadth-first search, and by having radix-2 in the upper hierarchies, 

the P&R tool is able to converge more quickly due to its reduced search radius. From our P&R 

evaluations, a radix-3 to radix-2 transition at SM stage 5 provides sufficient path diversity and 

routing performance. 

This SM architecture uses 2 local interconnects per SM on the upward path, but 3 local 

interconnects per SM on the downward path. This is due to the assistance of fast-path, which 
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allows many signals to travel directly from the LUT output to the upper-level SM without 

occupying local interconnects along the way. This alleviates the routing congestion upwards, but 

does not alleviate the congestion downwards (the fast-path signals still need to traverse 

downwards on regular interconnects). 

Another key distinction between the lower 5 SM stages and upper stages are the upward 

branch interconnects. From Figure 3.15, we the lower 5 SM stages to have branching on the 

upward path, but above stage 5, upward branching has been pruned, and only local upward 

interconnects remain. The exception is for SM stages 10, 11, and 12, for those stages allow the 

SM to branch upwards upon the termination of the SM macro. As shown in Figure 3.15, the SMs 

on the bottom half only have 9 stages, and therefore must branch into the SMs on the top half at 

stage 10 to continue signal propagation, else the signal would reach a “dead-end”. This pruning 

methodology trades off local vs. branch interconnects: it allows branching when the wire costs 

are low, therefore providing more path diversity, but for the upper hierarchies, path diversity is 

sacrificed to reduce interconnect congestion and gate area. However, local interconnects are not 

pruned even for upper hierarchies, because those wire costs remain low, and having 3 local 

interconnects on the downward paths provides additional path diversity without increasing the 

area significantly. 
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Figure 3.15: 1-D SM architecture of the 16K-LUT FPGA, showing the lower 10 SM stages. 
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Figure 3.16: 2-D SM architecture of the 16K-LUT FPGA, showing the top 5 stages of wiring. 
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the network. 

Figure 3.16 also illustrates the mixed-radix implementation in the top level. SM stages 10 

and 11 are actually radix 3, but are not boundary-less (with the exception of some stage-10 

routing that crosses the horizontal bi-section). This is partially because the number of rows (320) 

is not a radix-2 number. Without utilizing radix-3 SM, another stage of SM would be required. 

However, since 320 is not much larger than 256, adding a SM stage appears wasteful. The other 

reason is due to the wiring cost of stage-14 routing, which needs to span half the height of the 

FPGA. This results in very long wires, and are very expensive to buffer. To reduce the 

requirements on the number of stage-14 routing, boundary-less stage-10 routes are implemented 

along the horizontal bisection. This addition allows gates that are placed near the horizontal 

bisection to use the shorter, and faster, stage-10 routing. Only the gates that are required to 

communicate across the entire chip need to occupy stage-14 routing. 

The final architecture in Figure 3.16 is arrived through extensive iterative improvements 

to the architecture. The automated P&R flow (Chapter VI) greatly expedited the evaluation 

process, and gives us confidence in the routability and performance of the optimized design. The 

architecture techniques discussed in 3.3−3.6 have greatly improved the routing quality of the 

interconnect network, and reduced interconnect area. Although we have expanded from 3 types 

of SM macros to 7, it remains a feasible implementation. The circuit-level implementation of the 

interconnect are detailed in Chapter IV, and the physical integration details are discussed in 

Chapter V. 
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CHAPTER IV 

Interconnect Circuit Design 

4.1 Key Building Blocks in Interconnect Circuits 

FPGA interconnect is a complex network that spans the entire area of the chip, but it 

consists of just three families of circuits: multiplexers, buffers, and configuration bit-cells (BC). 

In Figure 4.1, an example switch matrix (SM) is illustrated with its internal circuitry. 

  

Figure 4.1: An example switch matrix with its internal circuitry. 

As previously shown in Section 3.7, each mux propagates interconnect signal from one of 

its inputs to its output. The input to be propagated is pre-configured and stored in the bit-cells. 

The bit-cells are generally SRAM-based, though non-volatile configurations generally use flash 

memories, and are used to drive pass transistors to perform signal selection. 
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Buffers can be inverting or non-inverting, generally composed of one of more CMOS 

inverters. The buffering requirements are generally determined by the number of pass-transistors 

used and the interconnect wire-length. 

Although the individual components of the interconnect network can appear simple, each 

component is replicated thousands or even millions of times on the entire chip. Therefore even a 

small reduction in area, delay, or power of an individual block can have a significant impact on 

the chip level. The following sections highlight the circuit-level techniques used to optimize 

these individual blocks. 

 

4.2 Static Multiplexers and Area-Performance Tradeoff 

In traditional CMOS circuits, muxes are generally implemented in a tree structure, where 

N inputs are controlled by log2N select lines, such as the mux in Figure 4.1. This structure has its 

benefits for CMOS circuits, because it uses the fewest number of select lines, and the output of 

the mux is always deterministic (that is, there is always one input driving the output, and there 

will never be more than 1 input “fighting” for the same output). Although Figure 4.1 has only 

NMOS pass-transistors, they are generally not used as stand-alone pass-gates, each pass 

transistor is usually constructed using a NMOS-PMOS transistor pair, whose gates are driven by 

true and complement select-line signals. 

FPGA interconnect pass-transistors are used differently: the select lines of the mux come 

from bit-cells, which are static: the user (or the software tool) controls the data to write into the 

BCs, which are programmed before the chip starts its operation, and the BCs remain static during 

the operation of the FPGA. We can utilize this scenario to enhance the performance of the 
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muxes. 

The BCs drive the gate of the pass-transistors, which turns the pass transistor on and off 

by effectively changing the resistance across the source and drain of the pass-transistor. We can 

improve the performance of the pass-transistors by operating the BCs on a higher VDD. This 

effectively over-drives the gate of the pass-transistors to reduce its on-resistance. Although 

increasing the VDD generally increases the active power quadratically, it does not affect the 

active power of the FPGA at all: the switching signals travel across the source and drain of the 

pass transistors are still toggling at the lower VDD (Figure 4-2). This is especially useful when 

VDDL, is scaled down. In this scenario, total energy will decrease as C∙VDDL
2
, just like normal 

circuits, but system performance will not degrade by as much, because the on-resistance of the 

pass-transistors remains constant. The only power penalty of this implementation is increased 

leakage through the bit-cells, and increased gate-leakage through the gate of the pass-transistor. 

This implementation also has a potential area penalty with implementing two voltage domains, 

one for BCs and one for the remaining circuits. But having two voltage domains enables us to 

further optimize the multiplexer circuits, as shown in the next section. In the chip design chapter 

(Chapter V), we see will that the area overhead from dual-VDD is kept to a minimum. 

  

Figure 4.2: A static pass-transistor mux with high VDD for the bit-cells. 
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Since the BCs are controlled by the user or the software tool, and are static during the 

operation of the FPGA, we can convert to a static, one-hot-bit mux design (Figure 4.2) [Lewis05, 

Lee06]. In this case design, N independent BCs are used to control an N-input mux. To avoid 

driving conflicts, the user or the software tool must ensure that one and only one of the BCs are 

enabled at all times. The BCs must not be all off either, as that would cause the output buffer of 

the mux to be floating. 

The static muxes have a significant performance advantage over traditional muxes, for it 

reduces the number of pass-transistor stages from log2N to 1. It also results in smaller mux area, 

but pays a much larger penalty in BC area, because it now requires N BCs instead of log2N BCs. 

It also requires the BCs to be configured properly before the rest of the circuitry (VDDL) can be 

powered-on [Calhoun10, Ryan10]. 

The performance benefit of static pass-transistor mux is clear, but the area penalty of N 

bit-cells per N-input mux can become significant. For example, an 8-input mux implemented as a 

parallel mux requires 8 bit-cells, doubling the area compared to a traditional 8-input mux with 3 

bit-cells. We mitigate the area overhead by adopting a partially-parallel approach, as illustrated 

in Figure 4.3. For the 10-input mux, a traditional mux would require 4 BCs, with a critical path 

of 3 or 4 pass-transistors. Using a fully-parallel mux would require 10 BCs, but a critical path of 

1 pass-transistor. However, for very wide parallel muxes, the leakage through the 9 “off” pass-

transistors can also be significant. The design in Figure 4.3 provides a viable compromise 

between performance, area, and leakage. Assuming input 1 and 2 are critical-path inputs 

(generally branch inputs into the SM), and the remaining inputs are less timing-critical (such as 

local inputs or U-turns), the micro-architecture in Figure 4.3 allows the critical-path inputs to 

propagate with just 1 pass-transistor. Inputs 3-10 requires 2 pass-transistors, but it is still much 
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faster than the 4 pass-transistors otherwise required by a traditional mux. The total BC count of 

this design compromise is 8 bits. For large-input muxes, the inputs can often be categorized into 

timing-critical and non-timing-critical, and this design approach has proven to be very 

effectively in providing faster performance for timing-critical nets, yet with a smaller area and 

leakage penalty. 

  

Figure 4.3: A 10-input static pass-transistor mux with 2 critical-path inputs and 8 non-critical-

path inputs, requiring 8 bit-cells. 
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triple-oxide process disallows us from applying body biasing, and unlike Virtex FPGAs 

[Curd07], we do not have a separate medium-thickness oxide transistor for interconnects. 

 

4.3 Strategies for Interconnect Buffering 

The mux designs illustrated in this chapter have been non-inverting – CMOS inverters 

always exist at both the input and output of each multiplexer, so the polarity of the signal is 

preserved. Having the input of the cell tied to the gate of the transistor makes the cell more 

immune to latch-up issues, and such robust design is a standard practice in almost all standard-

cells. If the input is tied to source or drain of the transistor, the designer needs to make sure the 

input voltage never exceeds the body voltage of the PMOS transistors, else latch-up will occur. 

In designing our FPGA chips, we separated the input buffer from the remaining of the 

mux, essentially creating inverting muxes (Figure 4.4). Inverters are placed at the input to buffer 

the incoming signals. The inverted signals are then used to drive the inverting muxes. By sharing 

the input buffers among all the muxes, we can reduce the buffer area and buffer power. For 

example, input 3 in Figure 4.4 is tied to 4 muxes. Previously, it would be required to drive all 4 

input inverters inside the 4 muxes, even if it only needs to drive one of the 4 muxes. With the 

new design, it drives just one input inverter, and the inverter will only drive the pass-transistors 

that are turned on. 
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Figure 4.4: Illustration of input-buffer sharing inside a switch matrix. 

Generally, not all muxes are propagating from the same input, therefore moving to a 

single, larger input inverter actually improves performance in most cases (e.g. we can use a 4x 

input inverter instead of 4 1x inverters, so if the incoming signal only needs to propagate to 1 

mux, the mux can switch faster because the 4x inverter offers more drive strength). 

In pass-transistor design, the general rule is to not exceed 2 pass-transistors per inverter 
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mux design from Figure 4.3. 
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appear similar, they result in very different functionalities. Generally, the output inverter of the 

mux is larger than the input inverter. If design b) is applied, its input inverters would all need to 

be upsized due to its lack of output inverter. However, b) still results in a performance loss: the 

wire parasitic is generally dominated by capacitance, while the pass-transistor parasitic is 

generally dominated by resistance. Using simple Elmore delay model, design b) has a large 

capacitance driven by the pass-transistor, while design c) has the buffer directly driving the large 

wire capacitance, followed by the pass-transistor. Design c) is clearly the superior design, and 

matches our simulations. 

  
a) 

  
b)       c) 

Figure 4.5: Illustration of signal buffer across interconnects of a) a non-inverting mux, b) an 

inverting mux with input inverters, and c) an inverting mux with output inverters. 

Based on our simulations, design c) consistently resulted in faster performance than a) 

and b) even when the wire capacitance is large. Given its smaller area and faster performance, 
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we have utilized this inverting-mux design extensively in our design. 

The disadvantage of inverting muxes is the alteration of signal polarity. Based on the 

route of the signal, the routing tool needs to determine the final polarity of the signal when it 

reaches the input of the CLBs. A selectable inverter is placed at the input of the CLB to invert 

the signal back if the polarity is flipped. Although the selectable inverter adds an inverter and a 

mux to the critical path, the overall performance benefits from inverting muxes far outweigh this 

overhead. 

 

4.4 Designing Configuration Bit-Cells 

The interconnect muxes and the CLBs are all configured by bit-cells. In our FPGA, the 

bit-cells are created as distributed arrays of SRAM cells. Unlike traditional SRAM arrays, the 

values stored inside the SRAM cells needs not be read out by an address-decoder. Instead, the 

configuration values stored in the SRAM cells are routed directly to the gate of the muxes. 

Traditional SRAM cells are not suitable because all bits cannot be accessed simultaneously, and 

an address decoder is required for reading. A scan-chain approach is another alternative, as 

adopted in Intel‟s 32nm DSP CLB [Agarwal10]; this was feasible for 6 CLBs, but is not scalable 

to larger designs. Because bit-cells are heavily used (millions of bits per FPGA), any area 

savings from the individual bit-cells can result in a large saving in chip area. 

The low-powered FPGA designed in [Ryan10] uses a 5-transistor (5T) SRAM cell to 

save chip area. We have evaluated this approach against a more traditional 6T SRAM. Although 

SRAM arrays can benefit from the area savings by switching to 5T [Carlson04, Nalam11], our 

bit-cell designs are different. Our design not only requires the storage node of the bit-cell to be 

directly routable during physical design, the bit-cell also needs to conform to the design height 
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and width requirements of a standard-cell-based design. Therefore, the height of the SRAM cells 

must be same as that of regular standard-cells, its N-well must be at the same location, and the 

cell width and all pin locations must be a multiple of the routing pitch. 

After careful physical design, the corresponding 5T and 6T SRAM designs are shown in 

Figure 4.6. We see they occupy the same area, although the 5T SRAM is routable with only the 

first metal layer (M1). Since the WL needs to travel vertically, a vertical WL on M2 is still 

required when routing the 5T SRAM, but the 6T design has the vertical WL embedded into its 

design. Since the stored value (and often times its complement) need to be routed out, the 5T 

SRAM would need M2 routing to access the OUT and OUTb pins. The 6T SRAM, on the other 

hand, has OUT and OUTb already on the M2 layer. Even though at a first glance, the 5T design 

occupies less metal layer, the actual metallization usage of the two designs are very similar once 

all the pins are routed. Under a closer look, we see that the 6T SRAM has only 50% of its BL and 

BLb geometries inside its area boundary. That is because its BL and BLb pins can be shared with 

its neighbors when the neighboring cells are mirrored across the y-axis. The 5T SRAM cells do 

not have such symmetry because it lacks a BLb signal, therefore it cannot share geometries with 

its neighbors. 
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a)       b) 

Figure 4.6: Physical design of the configuration bit-cells in a) 5T SRAM and b) 6T SRAM. 

Overall, the 5T SRAM has not demonstrated an advantage in area or metal usage for our 

application. Additionally, it requires write-assist to be able to successfully write in a „1‟ due to its 

asymmetric design. Designing the write-assist circuitry would require another voltage domain. 

Since the 6T SRAM poses no area or metal overhead for our application, it was chosen for our 

bit-cell implementation. It also provides a more stable write, and avoids adding a third voltage 

domain to our design.  
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The interconnect network in an FPGA can involve long wires, which requires large 

output buffers and inverters to drive them. These buffers contribute significantly to leakage. To 

alleviate leakage, power gating is employed in many modern designs to power off the output 

driver when unused. Power gating is generally achieved by adding a footer transistor that turns 
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off during power-gating mode. Footer transistors work well to power-gate an entire block, but 

interconnect signals are long, and long signals lack spatial locality. It is therefore difficult to 

power-gate an entire block of interconnects, because even one active interconnect buffer would 

prevent an entire region from being power-gated. Therefore, power-gating circuitry needs to be 

implemented at a fine-grained level, such as adding footer transistors and power-gating (PG) 

control to individual buffers (Figure 4.7). The footer transistor can be NMOS or PMOS, as in 

[Anderson04]. 

  

Figure 4.7: A 4-input static mux with output inverter and traditional power gating. 

In FPGA multiplexers, the output buffers are already large (often 8x or more). Because 

the power-gating footer transistors are high-threshold-voltage (HVT) devices, they need to be 
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series with the NMOS transistor of the inverter, the footer transistors need to be even larger than 
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the output inverter to not significantly impact the circuit performance. Such large area overhead 

from the footer makes this fine-grained implementation impractical. 

We suggest a novel power-gating method for interconnects that requires minimal area 

overhead and has no significant performance impact [Wang13b]. The PG signal is used to drive 

an additional PMOS pass-gate (Figure 4.8). During power gating, the select bits s[N-1:0] are 

programmed to „0‟, and PG is programmed to „1‟ to enable power gating. Since the PG signal is 

from VDDH domain, this drives the gate input to the inverter to VDDH, which is above the supply 

voltage of the inverter, VDDL. Such voltage drastically reduces the leakage current of the PMOS 

transistor, thus reducing the leakage of the inverter. The performance penalty of this circuit is 

minimal, for adding a minimum-sized PMOS pass-gate in parallel to the other N pass gates 

produces very little performance impact on the static mux. However, the drawback of such 

implementation is that the NMOS transistor of the inverter remains fully on, driving the output of 

the inverter to '0'. Since this output node is connected to other pass gates, even when those gates 

are off, leakage current can occur through those gates. In addition, having an output wire driven 

to '0' does not reduce the coupling capacitance experienced by neighboring wires (Figure 4.8, 

bottom right). 
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Figure 4.8: A 4-input static mux with output inverter and our proposed power gating. 

For further leakage reduction, we propose another static multiplexer that achieves tri-state 

output during power-gating (Figure 4.9). The inputs to the output inverter is separated into pmos 

and nmos inputs, joined by a minimum-size, high-threshold-voltage (HVT) transmission gate as 

keeper. During power gating, PG is „1‟, the keeper is off, and the pmos and nmos signals are 

driven to opposite polarities, „1‟ and „0‟, respectively. This not only drastically reduces the 

leakage current of the PMOS transistor, but also turns off the NMOS transistor. The output 

therefore enters tri-state mode during power gating. This tri-state buffer will not cause leakage 

current through other pass gates, and also drastically reduces the coupling capacitance 

experienced by neighboring wires by forming a capacitive divider. 
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Figure 4.9: A 4-input static mux with output inverter and our proposed, tri-state PG. 

When one of the select bits, s[N-1:0] is on, power-gating is disabled. In this case, the 

static multiplexer must transmit the selected input to the output inverter rapidly. The NMOS and 

PMOS transistors of the transmission gate in the static mux are drawn separately for clarity. The 

NMOS pass gate is fast when conducting a '0', but is unable to rapidly conduct a '1' (it only pulls 

up to VDDH – VT). In contrast, the PMOS pass gate is fast when conducting a '1', but is slow 

when conducting a '0' (it only pulls down to VT). This invention exploits such driving property of 

pass gates: the NMOS pass gate is connected to the wire pmos to rapidly turn on the PMOS 

inverter, and the PMOS pass gate is connected to the wire nmos to rapidly turn on the NMOS 

inverter. When one transistor in the output inverter is turning on, the other is not yet fully off (its 

gate voltage hovers around VT until the keeper finishes the transition), but the current difference 

between the two transistors is large enough to not impact the performance by more than 5%. 

Eventually, the keeper connects the pmos and nmos nets to the same voltage, and the static 

leakage behavior is no different from a traditional CMOS inverter. This novel power gating 

circuitry allows the usage of low-threshold-voltage (LVT) inverters at the multiplexer output, 
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thus compensating for the 5% performance penalty to reach comparable performance as 

traditional CMOS inverters. 

The downside of the design in Figure 4.9 is that the outputs cannot directly drive CMOS 

gates, because a floating net can lead to large short-circuit currents. Therefore, all nets driven by 

tri-state buffers must be set as dont_touch during the synthesis and physical-design flow. For 

very long nets that would require buffering, the design from Figure 4.8 is applied. Commercial 

place-and-route tools can then be used for buffer insertion during physical design. 

 

4.6 Power-On Sequence of the Interconnect Network 

This section describes the power-on sequence associated with the dual-VDD interconnect 

circuit design. It will then discuss the potential power-on issues with the designs proposed in 

Section 4.5, and suggest 2 viable solutions. 

When the bit-cells are not programmed, they can contain arbitrary value. For example, 

Figure 4.10 shows a pass-transistor mux when both s0 and s3 are „1‟, while s1, s2, and PG are 

„0‟. 

  

Figure 4.10: An example of an unconfigured mux where s0 and s3 are both conducting. 
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From this example, we see that in0 and in3 are now conducting. Since the chip is not yet 

programmed, we have no control over the voltages at in0 and in3. This can be catastrophic if in0 

and in3 are at different voltages, causing large current to flow and potentially damaging the chip. 

One way to ensure safe operation is to set VDDL to „0‟ before the bit-cells are 

programmed. When VDDL is „0‟, all the output inverters and buffers will output „0‟. Since the 

inputs of a mux are driven by the output of other muxes, the inputs are always at „0‟ when VDDL 

is „0‟. This way, even when multiple pass-transistors are turned on, there is no current flowing 

(Figure 4.11). 

  

Figure 4.11: An example of an unconfigured mux where VDDL is „0‟, no current flows. 

A different issue arises when power-gating signals are involved. When PG happens to be 

„1‟ in the unconfigured state, the proposed designs from Section 4.5 may still cause current to 

flow. Figure 4.12 shows the potential issue with the proposed design from Figure 4.8. Because 

PG is driven by VDDH, it can be producing a VDDH signal while the inputs in0 through in3 are 

producing a „0‟. This causes current to flow through the pass-transistors, again causing large 

current and potential chip failure. 
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Figure 4.12: An example of an unconfigured mux from Figure 4.8, where VDDL is „0‟ but PG is 

„1‟, causing current flow. 

Similar issue exists for the proposed design from Figure 4.9. As shown in Figure 4.13, 

the PG signal in VDDH domain can conduct current with the „0‟ at the inputs of the mux. The 

pmos and nmos wires are also shorted when PG is on, causing additional conduction paths from 

pmos to nmos to ground. 

  

Figure 4.13: An example of an unconfigured mux from Figure 4.9, where VDDL is „0‟ but PG is 

„1‟, causing current flow. 
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Figure 4.14 present a simple fix by tying the source input of the PG pass-transistor to 

VDDL instead of VDDH, which ensures all mux inputs to be „0‟ when VDDL is „0‟, causing no 

current to flow. 

The downside of the design in Figure 4.14 from Figure 4.8 and 4.9 is a less effective 

power-gating during normal operation: since the VDD of the output inverter is VDDL, power-

gating with a signal of VDDL only presents a VGS of 0 for the PMOS (green, Figure 4.14), instead 

of a negative VGS of VDDL‒VDDH, which is more effective at leakage reduction. 

  
a) 

  
b) 

Figure 4.14: Example illustration with an updated design that uses VDDL signals, applied on a) 

the design from Figure 4.8 and b) the design from Figure 4.9. 
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Figure 4.15 presents an alternative fix by tying the source input of the PG signal to a 3
rd

 

VDD domain, VDDH,LATE, which remains „0‟ until after the SRAMs are programmed. This design 

maintains the benefits of power-gating with a high VDD, VDDH, but without the potential large 

currents, because VDDH,LATE remains „0‟ when the chip is unconfigured. Once VDDH,LATE is 

powered-on, the power-gating behavior is the same as the original proposal from Figures 4.8 and 

4.9. 

  
a) 

 
b) 

Figure 4.15: Example illustration with an updated design that uses VDDH,LATE signals, applied on 

a) the design from Figure 4.8 and b) the design from Figure 4.9. 
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The downside with the above implementation is that a 3
rd

 VDD domain is required, which 

poses a penalty in chip area. In our chip design, we decided to maintain only 2 VDD domains due 

to area constraint. We therefore employed the design from Figure 4.14 for power gating. The 

chip design details and physical implementation flow are discussed in Chapter V. 
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CHAPTER V 

Configurable Logic Block Design and Chip Integration 

The previous two sections have described the architecture design and circuit-level 

techniques of the hierarchical interconnect network. To realize a FPGA hardware, the 

interconnect switch matrices (SMs) are implemented with the configurable logic blocks (CLBs) 

make a complete macro. Different CLB-SM macros are then integrated to form the complete 

chip. This section illustrates the design process of the CLBs, and the chip integration process. 

 

5.1 Configurable Logic Blocks for the 2048-LUT FPGA 

From the architecture discussions in Chapter III, the interconnect resources of the 2048-

LUT FPGA are allocated into 16 macros of 128 SM-macros each, shown in Figure 5.1a). 

Analogously, the resource allocations of the CLBs are arranged in a similar way, shown in 

Figure 5.1b). The chip has 2048 LUTs divided into 16 CLB macros, and each macro contains a 

heterogeneous integration of different types of CLBs. To map a variety of designs, the resource 

allocation is as follows: 1024 LUTs are logic-only, 896 LUTs are configurable for logic or 

arithmetic functions, and 128 LUTs are used for block RAMs (BRAMs). These LUTs are 

grouped into configurable logic blocks (CLBs): 4 logic-only LUTs form a Logic CLB, 4 

logic/arithmetic LUTs form a DSP CLB, and 8 BRAM LUTs form a 1 Kb, dual-port BRAM 

CLB. Since some DSP and BRAM operations require many input bits, this grouping allows 

input-sharing between the LUTs within a CLB. 
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a)       b) 

Figure 5.1: Resource allocation for a) interconnects and b) CLBs. 

Four LUTs are combined with intermediate arithmetic blocks to form a Logic or DSP 

CLB. Each Logic CLB is composed of four 4-input LUTs, a carry chain, and 4 output stages 

with selectable flip-flops (Figure 5.2a). Each LUT is configurable as one 4-input LUT, or two 3-

input LUTs with up to 4 unique inputs. The carry chain supports 4b additions where Propagate 

and Generate are driven from LUTs. Since each output stage support two outputs, the Logic CLB 

is especially useful when two outputs per bit are required, such as in 3:2 compressors. 
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b) 

Figure 5.2: Block diagram of a) a Logic CLB and b) a DSP CLB. 

The DSP CLBs are a more flexible for intensive arithmetic computing demands. Each 

DSP CLB is composed of four 4-input LUTs, a LUT combiner, a partial product generator, a 

configurable adder tree, and 4 parallel output stages (Figure 5.2b). The detailed block diagram is 

shown in Figure 5.3. Each 4-LUT is able to perform one 4-input logic, two 3-input logic by 

sharing two common inputs (same as Logic CLB), or functions with 5 or 6 inputs by combining 

LUTs. Two 4b ripple-carry adders can perform two separate 4b, one 8b, or one 3-operand 4b 

addition with the support of 3:2 compressors (built from LUTs). The Wallace-tree multiplier 

reuses the adder cells, and uses dedicated partial-product generators. Overall, the CLB has the 

flexibility to support 10 operating modes, which includes (i) random logic with 3 to 6 inputs; (ii) 

4 to 8b addition/subtraction for 2 to 3 operands; and (iii) 4b×4b signed/unsigned multiplication. 

To achieve this degree of configurability, the synthesized CLB has 50 gates on its critical path 

(shaded in Figure 5.3), amounting to a 1.1ns delay. 
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Figure 5.3: Block diagram of a) a Logic CLB and b) a DSP CLB. 

The 1Kb block-RAM (BRAM) is a custom dual-port memory with two 7-bit addresses 

(addr0 and addr1), an 8-bit data (din) and 8-bit write mask (wr_mask), and two 8-bit outputs 

(dout0 and dout1). The memory modes are selectable by a 2-bit control signal (wr_mode), and in 

certain cases, wr_mask[7] bit is also used for configuration. The BRAM configurations are 

shown in Figure 5.4.  
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e)       f) 

Figure 5.4: The 6 BRAM modes: a) dual 8-bit read, b) 16-bit read, c) 8-bit masked write, 16-bit 

read, d) 16-bit masked write, e) 8-bit write, dual 8-bit read, and f) 16-bit write, 16-bit read. 

In certain configurations, this BRAM is even configurable as a tri-port memory, with one 

8-bit write and two independent 8-bit reads (Figure 5.4e). The mode selections are propagated to 
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„00‟.  
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using regular flip-flops, because 1 Kb is not large enough for compiled register-file or SRAM to 

achieve sufficient area savings. The write-logic architecture is highlighted in Figure 5.5, and the 

read-logic architecture is highlighted in Figure 5.6. 

  

Figure 5.5: Write-logic architecture of the 1Kb reconfigurable dual-port BRAM. 
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Figure 5.6: Read-logic architecture of the 1Kb reconfigurable dual-port BRAM. 
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are the easiest approach, but the area overhead from scan is very high because we need a very 

large number of configuration bits (320,000 in this “small” FPGA). We therefore implemented a 

custom 6T SRAM bit-cell (BC), and an array of BCs is placed inside each CLB, alongside the 

CLB and SM blocks, and the output of each BC is routed directly to the SM and CLB for 

configuration. The SRAM-based BCs achieve a 5x area reduction over scan flip-flops. The 

schematic diagram is shown in Figure 5.7. 

  

Figure 5.7: Design of a bit-cell (BC) array with its bit-line (BL) and word-line (WL) controls. 
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row of BCs for programming. The selected row of BCs is then programmed with the value from 

the BL scan chain. WEV is then de-asserted to stop the writing process. We then shift in the next 

row of configuration bits through the BL scan chain, and the WL scan chain advances by another 

row and repeats the writing process. This scan-chain based writing process avoids the use of an 

area-inefficient address decoder, utilizing that fact that no random-access read and writes are 

required for configuration bits. 

The physical integration of a complete CLB-SM macro is shown in Figure 5.8. A CLB is 

integrated with 4 SM-macros. Each SM macro contains 8 SMs in this case (N6:2). The WL 

controls run down the center, and BL control runs down the bottom of the BC arrays. 

  

Figure 5.8: Layout of a CLB-SM macro with 4 SMs, a BC array, and BL and WL controls. 
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From the physical design in Figure 5.8, we see that the 2 SM macros reside on each side 

of the BC array. Therefore the configuration bits must route from the BC output, through the SM 

macro on the inside, to reach the SM macro on the outside. To not use additional metal layer, 

each SM is designed to use no more than half of the resources on metal M3, so the BC routing 

for the other SM can route in the other half (Figure 5.8, upper left, green). 

Although commercial place-and-route tools are used for physical design, the SM macros, 

the BL and WL controls, and the BC arrays are placed manually, using scripts and hand-

placement. The manually-placed design is then routed using the automated router. In the case of 

the SM macros, the routes are then altered manually to occupy no more than half of the M3 

resources. The physical designs for the CLBs are synthesized and placed-and-routed using only 

automated, commercial flows. Overall, the CLB-SM macros are constructed with 98-99% layout 

density. 

Intermediate macros are constructed by integrating 32 CLBs (128 LUTs), and 16 

intermediate macros are integrated in the top level. The top-level of the chip floorplan is shown 

in Figure 5.9, labeled into 7 different types of SM-CLB combinations. Because of the x- and y- 

symmetry of the top-level design, only 4 of the 16 macros need to be designed. Additionally, 2 

out of the 4 macros are identical (both are Slice L N6:1), so only 3 unique macros are designed, 

and are then replicated in top-level. The intermediate macros are not shown, but we can directly 

see the CLBs placed on the floorplan. The red areas inside the macros are the regions occupied 

by switch matrices. 
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Figure 5.9: Top-level layout floorplan of the 2048-LUT FPGA with 512 CLBs. 
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[Lin07], we have achieved a 3-4x reduction in interconnects area for a fixed logic area. The 

interconnect-to-logic ratio is reduced from 4:1 to 1:1 (Figure 5.10).  

  

Figure 5.10: Area impact of our work: a 1:1 logic-to-interconnect ratio. 
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Unlike heuristics in previous attempts that resulted in limited interconnect connectivity, 

this area reduction is achieved without sacrificing connectivity, thus usable logic density is 

preserved.  Therefore, this 2.5x reduction in chip area actually translates to 2.5x higher logic 

density. 

 

5.3 Fine-Grained CLBs for the 16K-LUT FPGA 

Our initial 2048-LUT FPGA has demonstrated significant area reduction from 

commercial FPGAs. Building from its initial design, the new 16K-LUT FPGA expands the logic 

capability by 10x, and it is designed to be a heterogeneous integration of CLBs with different 

granularities. The chip incorporates 3 granularities of CLBs: fine-grained reconfigurable blocks 

such as LUTs, simple arithmetics, and distributed memories, medium-grain blocks such as DSP 

accelerators and block RAMs (Section 5.4), and coarse-grain accelerators for targeted 

applications, in this case a 64-8192 point Fast-Fourier-Transform (FFT) processor and a 16-core 

communications signal processor (Section 5.5). 

The fine-grained CLBs are mainly composed of LUTs and its surrounding logic. In our 

prior design, we utilized 4-input LUTs with 4 LUTs per CLB, similar to the structure in Xilinx 

Virtex-4. We then add our own improvements to the Logic CLB, and even create a DSP CLB 

that allows 8-bit additions and multiplications. The Logic and DSP CLB designs where efficient, 

but they have two shortcomings in mapping real-life designs. First, the CLBs that we designed 

were not compatible with the CLBs from commercial FPGAs, so when the users perform logic 

synthesis to map their designs, they cannot use commercial FPGA synthesis tools. In Chapter VI, 

we see that we first created a custom standard-cell library for our LUTs, enabling the user to 

synthesize designs for our FPGA using commercial ASIC synthesis tools. Although this 
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approach works, FPGA synthesis tools in general create much better quality-of-results for FPGA 

mapping. Second, the critical-path of our CLBs is longer than that of commercial FPGAs, which 

is caused by having too many configuration modes, causing too much logic to reside on the 

critical path. The CLBs need to be modified so each CLB‟s most commonly-used features need 

to be executed as fast as possible. 

The new fine-grained CLBs are designed to target these issues. The CLBs are made to be 

logically-compatible with the newest CLB designs from Xilinx Virtex-6 and Virtex-7, and is also 

backward-compatible with Virtex-5. We have added our own improvements to the CLBs, but we 

were careful to maintain the compatibility with commercial CLBs. This not only allows our 

FPGA to be synthesized with commercial synthesis tools (e.g. Synplify Pro or Xilinx ISE), it 

also allows a true apple-to-apple comparison of performance and power between our FPGAs and 

commercial FPGAs, while mapping and executing the same user-design. 

To avoid having excessive configuration modes that slow down the CLB, we have 

separated the logic CLBs from DSP features such as multipliers and 3-input adders, which are 

now built into dedicated DSP (non-LUT) CLBs. The logic CLBs now consist of Slice L and 

Slice M, each support four 6-input LUTs per CLB (reconfigurable into dual 5-input LUTs), a fast 

ripple-carry-chain, and 8 configurable flip-flops. These CLBs are built efficiently for 

combinational logic and flip-flops; each LUT is able to propagate its out directly to an output of 

the CLB (into the interconnect network) without passing other logic. The detailed micro-

architecture of a Slice L/M CLB is shown in Figure 5.11. 
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Figure 5.11: Micro-architecture of a Slice L/M CLB with dual-edged clocking. 
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Figure 5.11 illustrates the programmable dual-edged flip-flops (FFs) used in our CLBs, 

designed to reduce clocking power, and effectively implement divide-by-two clocks without 

requiring a separate clock domain. The dual-edge flip-flop is designed using only standard-cell 

logic to avoid having custom flip-flops as in [Pedram98], which would have to be characterized 

for timing and performance for our process. By having two clocks running on inverted edges of 

the clocks, combined with 3 XOR gates, we can efficiently build a dual-edged flip-flop. During 

synthesis and physical design, commercial CAD tools are able to compute the timing 

relationships and report timing for this dual flip-flop.  To support configurability, the dual-edged 

flip-flop needs to support more features, such as set/reset for global reset, set/reset for local reset, 

latch mode, and single-edge mode. These features are implemented, and are shown in the inset 

on the top-right of Figure 5.11, separated by xFF/LAT for the “master” flip-flop running on the 

positive-edge of the clock, and xFFD for the “slave” flip-flop running on the negative-edge of 

the clock. The “slave” flip-flop always resets to „0‟ whenever global or local reset is assert. It 

also remains „0‟ in single-edge mode. The “master” flip-flop is configurable to set or reset to a 

„1‟ or a „0‟, respectively, and independently configurable for global or local resets. Since the 

“master” flip-flop is built with two latches, latch mode is supported by simply making the slave 

latch transparent. 

A set of 4 secondary flip-flops are implemented, configurable to store the 5-input LUT 

outputs (A5 – D5) or the auxiliary signals (AX – DX). Another dual-edge flip-flop is implemented 

for reconfigurable synchronous or asynchronous reset (SYNC/ASYNC) based on the incoming SR 

signal. Clock-enable signal, CE, is configured to drive two clock-gating latches (not shown) that 

propagate CLK and CLKb throughout the CLB. 

The 6-input LUTs are used to drive the high-speed carry-chain. Unlike our previous CLB 
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design, no reconfigurable logic is added to the critical path of the carry-chain. Although the carry 

chain is used to drive CLB outputs and flip-flops, inverters and buffers are inserted to separate 

the critical-path from its external loading. Each carry stage also inverts the polarity of the carry 

for performance improvements. With these design considerations, each CLB is able to propagate 

its carry in under 100ps. The carry chain is also able to accept auxiliary inputs (AX – DX), which 

is especially useful for adding partial products in a multiplier. The auxiliary inputs (AX – CX) 

also function as select signals for merging 6-input LUTs into 7- or 8- input LUTs. 

The Slice L LUTs each contain 64 bit-cells of configuration, useful for building glue 

logic or read-only memories (ROMs). Slice M CLBs add distributed memory features – each 

CLB can function as a 256-bit single- or dual-port memory, or a 128-bit shift register, distributed 

across 4 LUTs inside the CLB. Therefore the LUTs are selectable to propagate their inputs from 

bit-cells, memory latches, or shift registers (Figure 5.12). Our CLB design even allows each of 

the 4 LUTs in Slice M to function independently as LUT, memory, or shift register. Similar to 

commercial FPGAs, the 8-bit write address of Slice M is implemented using other inputs, 

namely {BX, CX, D[6:1]}. Therefore each CLB only has one write port. Since the read ports are 

implemented through LUT logic, each CLB can have 4 independent read ports, each with 6 bits 

of address, or  use 5-input LUTs to split to 5-bit addresses with 2-bit outputs per LUT. Read 

address can also be combined across neighboring LUTs into forming two memories with 7-bit 

read address, or one single memory with 8-bit read address. More memory examples are 

illustrated in [XilinxV6CLB12], all of which are supported by our CLB design. Distributed 

memories allow for asynchronous read-access, because the read operation is performed using 

LUTs. If synchronous read is desired, the user can enable the output flip-flops of the CLB. 

To reduce area usage and share resources, write-address decoder is separated into 3 



 
96 

stages. The first stage decodes 3 bits WA1, WA2, and WA3 (Figure 5.12, left), requiring 8 logic 

combinations total. Another parallel stage decodes WA4, WA5, and write-enable signal RAMWE. 

These two stages are then AND‟ed into a 32-bit memory decoder. The top-level decoders for the 

upper 3 bits are formed by 8 complex logic gates, each controlling half a LUT of memory. 

Address bit WA6 is OR‟ed with RAM32 modes, because 32-bit RAM modes do not require 

WA6; similarly, WA7 and WA8 are enabled only when used. 

The memory cell design is shown in the inset of Figure 5.12. It is shared with shift-

registers: each memory cell is configurable for outputting two memory bits and one shift-

register. Each memory bit is controlled by a latch, and a write is executed when both the lower 5-

bit decoder and the upper 3-bit decoder are enabled.  

The shift-register is configurable for dual-edge or single-edge operations. It is 

implemented as 4 latches, 2 of which are shared with the memory cell. The upper 2 latches are 

only enabled for dual-edge modes, and output a „0‟ otherwise. Due to its larger footprint, each 

LUT only support 32 bits of shift registers, configurable as a single 32-bit or two 16-bit shift 

registers. The 32-bit shift registers can be concatenated with the shift registers from adjacent 

LUTs, forming a 128-bit shift register per CLB. The final shift-register output from LUT D is 

signal MC31, which can be selected as a CLB output. This allows a CLB to concatenate its shift 

register with other CLBs to form even longer shift registers. 



 
97 

  

Figure 5.12: Slice M microarchitecture of the memory and shift-register logic. 
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5.4 Medium-Grained CLBs for the 16K-LUT FPGA 

Although Slice L and M are effective for basic arithmetic and small distributed 

memories, these fine-grained reconfigurable blocks have their limitations. More intensive 

arithmetic such as wide multiplications and multi-input additions would require a more dedicated 

DSP accelerators, and larger memories would require a more dedicated memory IP. These 

requirements lead us to the next granularity of reconfigurable blocks, medium-grain DSP and 

Block RAM CLBs. 

Our previous DSP CLB were designed in-house, thus no commercial FPGA synthesis 

tools can easily utilize these CLBs. We therefore adopted an ASIC synthesis flow for our FPGA 

macros, and have coded Synopsys DesignWare macros to automatically translate arithmetic into 

our DSP CLB, but the results were less than satisfactory. For this DSP CLB, we designed the 

DSP accelerators to be compatible with the DSP48E1 accelerators from Xilinx Virtex-6 and 7, as 

shown in Figure 5.13 [XilinxV6DSP11]. We can therefore use commercial FPGA synthesis to 

map to DSP CLBs. This DSP CLB has no LUTs, and is a dedicated DSP accelerator, 

reconfigurable for various addition/subtraction, multiplication, and Boolean operations. Various 

pipeline modes are implemented to support a maximum operation frequency of 800 MHz, and all 

pipelines stages have programmable latencies of 0, 1 or (sometimes) 2 clock cycles. In our 

implementation, all pipeline registers support dual-edge flip-flops, making them timing-

compatible with Slice L/M. 

As shown in the left half of Figure 5.13, the datapath first integrates a pipelined adder for 

inputs A and D, feeding into a 25×18 bit multiplier that multiplies with input B. Note that the 

inputs of the multiplier can also be selectable to ACIN and BCIN, which is locally propagated to 

ACOUT and BCOUT. This is very useful in some applications (e.g. filters) where one of the 



 
99 

multiplier‟s input needs to be constant, and this local propagation allows such operation without 

using extra interconnect resources. The operation modes can be changed during chip operation 

by changing the INMODE selections, which is connected to the interconnect network. 

  

Figure 5.13: Architecture of a commercial FPGA DSP accelerator [XilinxV6DSP11].. 

The right half of Figure 5.13 illustrates a 3-input datapath, operating on local inputs X, Y, 

and Z. These inputs can come from the interconnect network (inputs A, B, C, and D), the 

multiplier output, or locally-propagated input PCIN from the previous ALU. Carry-out 

information are also locally propagated in MULTSIGNIN and CARRYCASCIN, allowing the 

ALU to correctly compute data when carried across multiple DSP CLBs. This allows the ALU 

support wider multiplication and arithmetic operations. Operations such as addition, subtraction, 

Boolean operations, and pattern detections are supported. The ALU may function as a single 48-

bit operator, or function as a single-instruction, multiple-data (SIMD) ALU for two 24-bit 

operations or four 12-bit operations. 

From mapping Block RAM designs on our previous chip, we noticed a similar 
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inconvenience with the mapping flow. The Block RAM CLBs were highly reconfigurable, and 

support many modes, but none of these modes can be mapped automatically. Because the ASIC 

synthesis flow will not map designs onto our BRAM CLBS, every Block RAM must be 

instantiated manually, and synthesized as a black-box. The suitable BRAM modes must also be 

configured by the user. For this design, we decided to design a BRAM CLB that is compatible 

with the RAMB36 designs from Xilinx Virtex-6 and 7 [XilinxV6BRAM11]. Not only does this 

resolve the issue of mapping automation, allowing commercial FPGA synthesis tools, it also 

provides a much larger memory (36Kb instead of 1Kb). Because the number of address bits is 

only a log of the number of elements, the number of I/O bits remains manageable. 

Figure 5.14 shows the top-level architecture of the 36 Kb BRAM and a datapath for one 

of its ports. A total port width of 36 bits is supported. Virtex-6 BRAMs allow 4 bits to store the 

error-correction codes (ECC) for the other 32 bits of data. Our implementation does not support 

ECC, and all 36 bits are used for data storage. The reconfigurable BRAM supports memory sizes 

of 32Kx1b, 16Kx2b, 8Kx4b, 4Kx9b, 2Kx18b, 1Kx36b, or 512x72b, and the two ports can be 

configured for different memory sizes. Although in 512x72b mode, the dual-port memory can 

only function as a simple dual-port, because all 72 bits of data inputs (from port A and B) are 

used for writing, and all 72 bits of data outputs are used for reading. Byte-wise masking is 

provided, although the granularity is 9-bits per “byte” (8 bits from DIA/B and 1 bit from DIPA/B) 

due to the 36-bit data width. In 32Kx1b mode, the BRAM can be locally concatenated with its 

neighbor into forming a larger, 64Kx1b BRAM. Therefore the address input can be up to 16 bits. 

Unlike the distributed memory from SLICE M, the BRAM CLB supports only 

synchronous read and synchronous write (Figure 5.14b), and an additional pipeline register may 

be added to the output to improve timing. This pipeline register has its dedicated reset 
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(RSTREGA/B) and clock enable (RSTCEA/B) signals. The read/write operation of each port is 

synchronous to its own clock input. When attempting to read and write from the same address, 

the user may select the output port to output the memory data before or after the overwrite 

process, or remain unchanged. 

  
a)       b) 

Figure 5.14: A commercial dual-port block RAM and its a) block architecture and b) datapath 

[XilinxV6BRAM11]. 

In our implementation, we used a memory-compiled IP of 512x72b, dual-port, 8-

transistor SRAM. The dual-port IP supports independent clock domains for each port, making it 

suitable for this reconfigurable implementation. For other memory sizes, additional address 

decoding is used to mask the data to perform the read and write operations on proper memory 

locations. Due to the limitation on the memory IP, the BRAM CLB can only operate on one 

clock edge. However, if dual-edged clocking is necessary, the two ports of the memory can run 

on two opposite edges of the clock, and external logic can be used to transition this BRAM into a 

dual-edged, single-port BRAM. 
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5.5 Coarse-Grained CLBs for the 16K-LUT FPGA 

Since this chip primarily targets high-throughput communication applications, we have 

integrated two coarse-grain accelerators. The first block is a 16-core, highly-efficient 

communications DSP accelerator, reconfigurable to perform many common communications 

algorithms very efficiently. The 16-core architecture is illustrated in Figure 5.15. Core-to-core 

communications utilize both local, fast-path interconnects running vertically and horizontally, as 

well as a 4-stage hierarchical interconnect network spanning the 16 cores. 

  

Figure 5.15: Core schematic and interconnect architecture of a 16-core DSP processor. 

Each core is realized using radix-2 butterfly architecture, performing 2×2 matrix 

computations, called a butterfly-computation element (BCE). This provides the versatility for 

various fundamental 2×2 operations, e.g. permutation, CORDIC, multiplication-and-

accumulation (MAC), unitary transformation, etc. Higher level of integration such as multi-stage 

pipeline is achievable with multiple cores. Each BCE is designed to be run-time reconfigurable 
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by leveraging the processor-style instruction set architecture (ISA). However, the overhead from 

traditional control loops (fetch-decode-operate-save) can be reduced since the output of each 

core is not stored back, but mostly transmitted to neighboring cores. The complexity of 

instruction fetch and decode can also be greatly reduced by using a specific instruction set 

combined with bit-cell-level programming. The concept of “real-time instruction redefinition” is 

therefore established: the same command can cause totally different operations in different cores 

based on their bit-cell programming. 

At a first glance, the 2×2 butterfly design does not seem to relate to many communication 

applications. But as shown in Figure 5.16, many commonly used applications, such as the lattice 

filter, 2-way FIR filter, and zero-forcing (ZF) or minimum-mean-square-error (MMSE) signal 

equalization can all be mapped very efficiently. Even more complex algorithms such as QR 

factorization (where Q is an orthogonal matrix and R is an upper triangular matrix) and breadth-

first sphere detector (SD) can be decomposed into multiple 2×2 BF stages. Though seemingly 

unrelated, these functions for spectrum shaping, channel factorization, and signal detection are 

neatly unified into a common architecture. This is therefore called a “universal DSP” (UDSP). 

  

Figure 5.16: Example communication applications of the DSP processor. 
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A key enabler for this technology is efficient interconnects: three layers of interconnects, 

the core‟s internal feedback, the 2-D unidirectional fast-path, and the radix-2 hierarchical 

network are implemented. Each layer of interconnect deals with the corresponding scale of 

datapath, from the folding architecture for equalization and QR factorization, the pipelined 

architecture for filters and SDs, to the signal broadcasting for inter-core communications. 

The other coarse-grain reconfigurable block we implemented is a 64 – 8192 point 

reconfigurable Fast Fourier Transform (FFT) processor. Because FFT processors, especially 

those with fine resolution, require large memories, this FFT processor is designed to utilize the 

BRAM and distributed Slice-L memories on the FPGA, instead of having its dedicated 

memories. This resource sharing reduced the area of the FFT processor by more than 50%. To 

achieve high energy efficiency, the FFT processor is designed with 16 parallel cores, each with 

reconfigurable pipelines (Figure 5.17). 

The 16 FFT cores can each support frequency resolutions from 64 to 512 points. It is 

implemented as a 3-stage pipelined FFT to further ease the timing requirements and improve 

energy efficiency. Extensive analysis in radix factorization is performed in [Yang12] to 

determine the optimal radix per pipeline stage that minimizes the energy and area requirements. 

The 16 parallel cores are processed by a final 16-point FFT to realize a 64 to 8192 point FFT 

processor. An extensive exploration and illustration of radix factorization, energy-area 

minimization, and parallel FFT are documented in [Yang12, Yu12]. 
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Figure 5.17: The FFT architecture and radix factorizations of different FFT resolutions. 

 

5.6 Macro-based Chip Integration for the 16K-LUT FPGA 

Due to the large size of the chip, and the very limited man-power available, this chip is 

designed using macro-based hierarchical physical design. In the previous 2048-LUT FPGA, only 

2 types of SMs are used, forming 3 different types of SM macros. In this design, over 10 types of 

SMs are used, forming into 7 different types of SM macros with 10 different physical footprints. 

As a result, we can no longer create individual SMs and integrate a collection of them into a 

physical layout. The area discrepancies between the individual SMs will cause gaps in the 

integrated layout, causing wasted area. 

To maximum area utilization, each of the 7 SM macros is realized as a complete layout, 
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including all SM stages with their bit-cells, muxes, and output buffers. Each SM macro is 

designed to support 5 inputs and 2 outputs from the CLB, although some support 3 or 2 inputs 

and 2 outputs, depending on the CLB it is tied to. To not cause gaps in physical integration, all 

SM macros are designed to have a fixed width, and all SM macros residing in the same 

horizontal row have the same height as well. This ensures a gap-less physical integration. 

An example SM macro layout is shown in Figure 5.18. The top half of the SM layout is 

filled by an array of bit-cells. Each of the BC is an optimized 6T SRAM cell, as previously 

described in Section 4.4. The true and complement bit-lines (BL and BLb) runs horizontal, and 

the word-line (WL) runs vertically within the cell, and all the bit-lines and word-lines of an 

SRAM array are connect through physical placement. In addition, the bit-lines and word-lines 

also connect to the boundaries of the SM macro, so any SM macros placed adjacent to it will 

have its bit-lines and word-lines easily connected. 

  

Figure 5.18: An example physical design of a SM macro. 

The SM macro is separated into two voltage domains, VDDH for the bit-cells, and VDDL 

for the muxes and buffers. However, it is common for the bit-cell arrays to fill up an integer 

multiple of rows, because the width of the SM macro is fixed across all macros. The result is a 

U-shaped bit-cell array, as shown in Figure 5.18. This leaves an area gap in the VDDH domain. 

To not waste area, we place pass-gate muxes in this region. Pass-gate muxes do not have buffers, 

nor do they have any power-gating signal (which requires VDDL). These pass-gates can be safely 
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placed in VDDH domain. The PMOS body of these gates is tied to VDDH, but since the gate 

voltages are driven by bit-cells, the gate voltages are also in VDDH, causing no leakage issues. 

As previously described in Section 4.5, the true and complement outputs of the bit-cells 

are driven directly from the bit-cell to the gate of the pass-gate muxes. This causes routing 

congestion inside the SM macro; for example, an 8-input static mux with power-gating requires 

9 bit-cells, which is 18 true-and-complement control signals in a very small area. As a result, no 

automated placement is used. The bit-cell array is designed with spatial locality in mind. Instead 

of assigning a bit-line and word-line to each bit-cell, and placing it in an array, we first analyze 

the muxes each bit-cell is tied to. The bit-cells are then arranged to minimize routing distance 

and minimize wire cross-over. For example, if a mux has 9 different bit-cell inputs from left to 

right, it is best to arrange the bit-cells in the array in the same order to simplify routing. 

Additionally, if an SM input is driving 4 muxes, for example, it is best to place these 4 muxes 

locally, and not on opposite sides of the SM macro. As a result, the bit-cells associated with these 

muxes must also be placed close together. 

Once the bit-cell array is determined, each mux and buffer is then placed manually. The 

location of each mux is chosen to minimize routing distance and minimize wire cross-over. The 

buffers are also placed close to the mux output. In the end, routing is performed automatically 

using commercial routing tools. Timing characterization is then analyzed, and the design is 

iterated if necessary. The SM macros are all designed with layout density of 98% or higher. 

The chip integration hierarchy is illustrated in Figure 5.19. Starting from the SM macro, 

it is integrated with a corresponding CLB into one CLB macro. The CLB macro includes all the 

SM macros required to network its inputs and outputs. A heterogeneous collection of CLB 

macros are then integrated into a tile, and 9 heterogeneous tiles are integrated in the top level. 
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Figure 5.19: Illustration of the hierarchical design methodology used for chip integration. 

Depending on the interconnect requirements of each CLB, different number of CLBs are 

instantiated to integrate with the CLB into one macro. Example layouts of these CLBs are shown 

in Figure 5.20. A Slice L CLB requires 30 inputs and 12 inputs, therefore requiring 6 SM macros 

(5-input, 2-output each). A Slice M CLB requires 7 SM macros. The DSP CLB requires 33 SM 

macros due to its large input requirement. A BRAM CLB has large output requirements (72), 

requiring 36 SM macros, but its input requires are smaller (124), and are composed with 28 3-

input, 2-output SMs and 8 5-input, 2-output SMs. The 36 SM macros are best arranged in a 4x9 

array, but as shown in Figure 5.20d), the physical footprint of the 512x72b memory IP is far too 

wide for 4 SM macros; it is approximately the width of 8 SM macros. Therefore, 2 BRAM CLBs 

are integrated together, their SM macros are placed side-by-side, forming an 8x9 array of SM 
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macros, and the two memory IPs are stacked vertically. The area in the middle is used by the 

control logic for both BRAMs. 

  
     a)     b)     c)    

  
d) 

Figure 5.20: Layout examples of a) Slice L, b) Slice M, c) DSP, and d) BRAM CLBs and SMs. 
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By integrating each CLB with its SMs, the actual I/Os of each CLB is completely 

abstracted away. The only remaining I/Os are the I/Os of the SM macro that each CLB connects 

to. This creates a slightly more systematic I/O netlist for tile-level and top-level integrations. 

Since the interconnect architecture is optimized by our software mapping tool, we coded the tool 

to automatically generate the interconnect Verilog associated with every tile. Since each tile 

integrates hundreds of CLBs with thousands of SMs, each tiles has 50,000 to 100,000 

interconnect signals. This automated Verilog creation method is robust, error-free, and ensure the 

created Verilog to be an exact match to the optimized interconnect architecture. 

The top-level architecture of the 16K-LUT FPGA is shown in Figure 5.21. It is divided 

into 9 tiles of heterogeneous CLBs. Unlike the 2048-LUT FPGA design, the WL scan chains do 

not run inside every CLB, instead, there is only one set of BL scan chain and one set of WL scan 

chain, propagating across the entire chip. To avoid hold-time issues, the scan flip-flops are 

implemented as master-slave latches, running on a non-overlapping clock P1 and P2 for 

maximum robustness in timing and reliability. Inside each tile, the BL and WL signals are 

buffered to meet transition time requirements for electromigration. The buffering overhead is far 

less than the area of implementing a separate scan chain inside every CLB. Because the BL and 

WL are routed to the boundaries of every SM macro, which are then routed to the boundaries of 

every CLB macro, connecting the BL and WL signals in the tile level and the top level requires 

minimal effort.  
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Figure 5.21: Top level CLB and SM architecture, illustrating scan chain for BL and WL. 

As shown in Figure 5.21, the heterogeneous integration in the top level requires various 

CLB and SM combinations. The colors in Figure 5.21 illustrate the different SM macros used for 

interconnects, matching the colors used in Figure 3.16 for interconnect illustration. A total of 

16K SM macros are used. 

Even with a 10x interconnect complexity, the overall interconnect area is 52%, still 

maintaining a logic to interconnect ratio of 1:1. This 16K FPGA has demonstrated the O(N∙logN) 

the scalability of the hierarchical interconnect network. 
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Figure 5.22: Area impact of our two FPGAs: a 1:1 logic-to-interconnect ratio. 

Overall, this FPGA integrates 11,008 6-input LUTs in 2752 CLBs, 2176 of which are 

Slice L, and 576 are Slice M. Following conventional FPGA scaling, this 11K 6-input LUT 

FPGA is approximately a 16K 4-input LUT FPGA. A total of 350 configurable data I/Os are 

implemented. There are 42 DSP CLBs and 16 BRAM CLBs, all integrated in the center tile. The 

16-core parallel FFT and the 16-core universal DSP macros are located near the bottom. Overall, 

this chip occupies 24.5 mm
2
 in 40nm CMOS technology, and is comprised of 143 million 

transistors. 
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CHAPTER VI 

Software Flow and Design Mapping 

6.1 Overview of FPGA Software Mapping Flow 

A key feature of reconfigurable hardware is software programmability. Unlike dedicated 

chips, FPGA chips are accompanied by complete software flows to enable users the map their 

designs onto the FPGA. At a high level, FPGA mapping and ASIC physical design do not appear 

too different, they even use similar terminology, from logic synthesis to gate placement, 

followed by interconnect routing. Although a few algorithms do apply to both flows, in reality 

the two software flows are designed very differently, and are generally not inter-compatible. 

Figure 6.1a) shows a general software flow for mapping user design onto commercial 

FPGAs. The user supplies a hardware-description language (HDL), generally in Verilog or 

VHDL, and feeds into the tool. Modern FPGA tools are very complete, and require the users to 

perform very few manual preparations to have a mappable design. Unlike ASIC synthesis, FPGA 

synthesis often does not require a user-supplied timing constraint or timing library. The user 

simply selects the FPGA platform to be targeting, and the tool applies the timing libraries 

automatically, and also synthesizes its logic into the appropriate LUTs for the target FPGA. In 

case timing constraints are not provided, the tool would generally attempt to create the fastest-

possible design. 

Once synthesized into LUTs for the target FPGA, LUT packing is performed. LUT 

packing is designed to efficiently “pack” LUTs into CLBs, which generally consist of 4 LUTs 

and their supporting logic. Depending on the target application, LUT packing may be performed 

to minimize inter-CLB routing (connection-driven), or to minimize critical-path delay (timing-
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driven), or a combination of the two [Marquardt99]. Once the LUTs are packed into CLBs, the 

CLB is ready for placement and routing. 

Logic gate placements are generally performed to utilize spatial locality, either based on 

connections or timing. In other words, gates with many communication between them, or are lies 

on a critical path, should be placed closely to each other. Such task is generally realized as 

hierarchical partitions, where a large network of gates is partitioned into 2 or more sections with 

the goal of minimizing the total communication between the sections (min-cut). The partition 

scheme can be applied hierarchically to reduce the large network into small clusters of gates, 

which is then mapped locally onto CLBs. 

Routing is executed once the gates are placed. It is generally executed in two stages, 

global routing and detailed routing. Global routing is first performed to route all connections 

onto the interconnect network while disregarding routing resource conflicts. This not only 

provides a best-case timing of the design, the routing conflicts also serve as an indication of 

routing congestion (e.g. how many nets are trying to use the same routing resource). Detailed 

routing is then executed to resolve routing conflicts to create a fully routable design where each 

routing resource is only occupied by one net. In an FPGA, routing resource is often scarce, and 

extensive research is done in this field to resolve routing conflicts. 

From the fully routed design, the tool has full visibility into the configuration of each 

CLB, and the path of each route. From this information, it is then able to determine the proper 

configuration for all the bit-cells. The bit-cells are then written and created into a bitstream, 

which is used to program the target FPGA to perform the configured design. 
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a)      b) 

Figure 6.1: Software mapping flow of a) commercial FPGA tools and b) our flow. 

Our FPGAs are designed to serve a similar user experience (Figure 6.1b). However, our 

first 2048-LUT FPGA employed custom CLBs that are not compatible with commercial FPGAs. 

This required us to create a custom synthesis flow. To avoid writing our own FPGA synthesis 

tool, we designed custom a standard-cell library of our LUTs and a custom DesignWare® library 

for our DSP blocks to perform logic synthesis using ASIC synthesis tools. The resulting netlist is 

then sent into our custom software tool for packing LUTs into CLBs. The details of our custom 

synthesis and packing flow are discussed in Section 6.2. 
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and our netlist consists of custom CLBs, commercial software for logic placement cannot be 

used. We therefore developed a custom gate-placement flowing using hierarchical partitioning 

techniques. Partition is performed hierarchically, following the radix boundaries of our FPGA, 

until the sub-partitions are small enough to be directly mapped to the appropriate CLBs. The 

placement details are discussed in Section 6.3. 

A custom router is also developed. Global wiring is generally based on a shortest-path 

algorithm [Nair87], and the hierarchical architectures allows for very deterministic global 

routing. Our detailed routing was first based on a “rip-up-and-reroute” approach to resolve 

routing conflicts [Dees81], but it poses a timing penalty, and because the routing order of the 

nets matter, the router does not produce consistent results. We then adopted a negotiation-based, 

timing-driven algorithm called Pathfinder [McMurchie95], and modified it to improve runtime 

for our applications. Bitstream is then created based on the placed-and-routed design. The router 

details are discussed in Section 6.4. 

 

6.2 FPGA Synthesis and LUT Packing 

For our first, 2048-LUT FPGA, the CLBs are not compatible with the CLBs in 

commercial FPGAs, disallowing us from using a commercial synthesis flow. To avoid writing a 

custom synthesis tool, we create a custom standard-cell library to use ASIC synthesis tools to 

map HDL onto our LUTs. The standard-cell library is created to contain 2-, 3- and 4-input LUTs, 

summing to around 4,000 different types of cells. Each LUT is assigned a constant area and a 

constant logic delay. A snapshot of a synthesized netlist is shown in Figure 6.2. Each LUT 

configuration maps to a unique standard cell name, so the software tool can determine the LUT 

mapping, and the connections are described by the net names. 
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For arithmetic functions, Synopsys DesignWare® libraries are created to automatically 

instantiate DSP CLBs to perform additions and subtractions. For memories that require block 

RAM instantiations, the user needs to instantiate BRAM CLBs in their HDL, else the synthesis 

tool will realize the memory array using flip-flops from the CLB resources. 

  

Figure 6.2: A snapshot of a synthesized netlist using our custom standard-cell library. 

From the synthesized netlist, the software tool can “pack” LUTs into CLBs, which 

consist of 4 LUTs per CLB. The packing algorithm we implemented is based on the “timing-

driven packing” proposed in [Marquardt99]. As expected, the interconnect delay for intra-CLB 

LUTs are much shorter than the delay for inter-CLB LUTs, these delay are added in addition to 

the internal logic delay of each LUT. Based on these 3 delay models (which is can be just 1 

constant value for each model for simplicity, and inter-CLB delay would remain unknown until 

place-and-route is complete), the delay for each path can be modeled. Based on the delay of each 

path, divided by the maximum path delay, each net is assigned a net-criticality ratio between 0 

and 1. In reality, the affinity between two LUTs is often not only defined by the timing-critically 

of the net, but also the number of connections between the two LUTs. Therefore a second ratio, 

…

LUT4_0x0x_x0x0_0xx0_x00x_1 U85(.A (n28), .B (n9), .C (mult3_N3), .D(n53), 

.Y (mult3_DP_OP_7J4_127_4559_n160));

LUT4_0000_1 U86(.A (mult1_N1), .B (mult1_N5), .C (mult1_N2), .D(mult1_N3), 

.Y (n65));

LUT3_010_100_1 U87(.A (mult1_DP_OP_7J4_125_9370_n214), 

.B(mult1_DP_OP_7J4_125_9370_n146), .C (mult1_N7), .Y (n66));

LUT4_1xx1_x0x1_xx01_1 U88(.A (mult1_N6), .B (n65), .C (n66), .D(mult1_N18), 

.Y (mult1_N25));

LUT3_010_100_1 U89(.A (mult2_DP_OP_7J4_126_8975_n217), 

.B(mult2_DP_OP_7J4_126_8975_n135), .C(mult2_DP_OP_7J4_126_8975_n133), 

.Y (n67));

LUT3_011_1 U91(.A (mult4_add_x_26_1_n1), .B (mult4_n6), .C(mult4_n4), .Y 

(n69));

LUT2_01_10_1 U92(.A (mult4_n7), .B (n69), .Y (M_OUT4[2]));

…
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called “net attraction” is defined as the number of nets shared by the two LUTs, divided by the 

total number of nets they can accommodate, which also results in a ratio between 0 and 1. The 

total attraction between two LUTs is then computed as the weighted-sum of the net-criticality 

ratio and the net-attraction ratio. The weight essentially trades off delay minimization with net 

sharing. 

Packing is not only useful in realizing a CLB netlist that can be used for place-and-route, 

it also effectively reduces the number of gates (by up to 4x in our case), which significantly 

reduces the problem size for placement algorithms [Betz97]. 

Although the synthesis and packing flow is functional, from our experience mapping our 

first 2048-LUT FPGA, the synthesis results were not always ideal. ASIC synthesis tools always 

perform technology-independent mapping, and then try to allocate suitable standard-cells from 

the technology library to map the appropriate functions. Most of the ASIC algorithm assumes 

that small, simple CMOS gates are fast, and complex gates are slow. This is intrinsically 

different from FPGA synthesis [Sangiovanni93], where a logic gate of arbitrary function is 

realizable, but adding every LUT to the critical path can significantly impact timing. ASIC 

synthesis can also impact packing results, for example, a multiplexer can be integrated into the 

CLB by directly using the F7 or F8 logic gates, but the ASIC synthesis tools often implement the 

multiplexer as LUTs, which can no longer packed as efficiently. 

From our mapping experience, ASIC synthesis tools often results 50% or more gates on 

the critical path than FPGA synthesis. Additionally, although 2048-LUTs are still reasonable to 

map, large designs (10,000 LUTs or more) often cause our ASIC synthesis tool to struggle, and 

sometimes crash unexpectedly. These concerns have motivated us to migrate to a CLB design 

that is compatible with commercial FPGA synthesis tools. 
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The updated software-mapping flow for our new 16K-LUT FPGA is shown in Figure 6.3. 

By using commercially-compatible CLBs, we are able to utilize commercial FPGA synthesis 

tools such as Synopsys Synplify Pro for logic synthesis. The synthesized netlist can be fed into 

commercial FPGA place-and-route tools, which create a benchmark comparison for our design, 

and also outputs packet netlist and place-and-route results. In Mode 1 of our new design flow, 

the tool is able to parse the packed netlist from the commercial tools and perform place-and-

route onto our FPGA architecture. This allows for a direct comparison between commercial 

FPGA and our FPGA while mapping the same netlist. In Mode 2, the synthesized netlist is 

processed to instantiate of our coarse-grain CLBs, which are used as accelerators and kernels. 

This new netlist is then fed into our place-and-route flow to perform LUT packing, as well as 

place-and-route. The accelerator/kernel insertion tool is still being developed. 

  

Figure 6.3: The updated software mapping flow for our new FPGA. 

The updated software mapping flow allows us to utilize mature, commercial synthesis 

tools for mapping designs onto our FPGA. The quality of results is significantly improved 
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compared to using ASIC synthesis tools. The Mode 1 even allows us to utilize the LUT packing 

tool from commercial FPGAs, which is made possible because our new FPGA is CLB-

compatible with that of Virtex 6 and 7. The CLB netlist still needs to be placed and routed onto 

our FPGA, which is covered in the next two sections. 

 

6.3 FPGA Partitioning and Placement 

For large VLSI designs, partitioning is an essential step towards reducing the problem 

size. In case of large problems, clustering is one effective method to further reduce the problem 

size by combining individual gates into larger “clusters”, then perform partition on the clusters, 

followed by a coarsening phase of unclustering the gates. Partitioning can be performed 

hierarchically to form successively-smaller partitions, eventually converging to partitions small 

enough to place individual gates, and then the placement process can be completed. Figure 6.4 

illustrates the concept of hierarchical partitioning. Figure 6.4a) shows a chip top-level divided 

into 4 quadrants, where partitioning is performed to minimize the number of wire crossing the 

horizontal, vertical, and diagonal boundaries (min-cut). The gates that have wires crossing these 

boundaries are shown. Figure 6.4b) illustrates the next step, where the hierarchical partition tool 

descends into a quadrant, one quadrant at a time, and performs the min-cut partition on the 

quadrant. The gates that have wires crossing the new partition boundary are shown. In our 

implementation, we have modified the min-cut algorithm to not only count the number of nets, 

but also to weigh the wire cost by the timing-criticality of the net. This allows for a timing-driven 

and connectivity-driven partitioning. 
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a)       b) 

Figure 6.4: Hierarchical partitioning performed on a) top-level, and b) one quadrant. 

In the partitioning algorithm, only the gates whose wires cross the partition boundary 

contribute to the cost function, and the goal of a min-cut partition is to reduce the total cost. In 

the field of computer-aided-design (CAD), the most commonly-used algorithms are the 

Kernighan-Lin [Kernighan70] algorithm and the modifications proposed by Fiduccia-Mattheyses 

[Fiduccia82]. The KL algorithm finds the best pair of gates, from two partitions, to swap 

between the two partitions, and repeat until the cost is minimized. The FM algorithm modified 

the KL algorithm to move only one gate at a time, and to keep a sorted “bucket list” of cost 

functions for more efficient memory management. Krishnamurthy then proposed an improved 

algorithm based on FM partitioning to provide “foresight” into moving gates [Krishnamurthy84]. 

The algorithm not only chooses the gate that will reduce the total wire cost, it is able to “foresee” 

wire costs. For example, if two gates need to be moved in order to reduce a wire cost, these two 

gates are assigned to a second-order “bucket list”; the same applies for third-order and higher. 

Therefore, even if multiple gates have the same effect on the first-order wiring cost, the second 

order “bucket list” can be used as tie-breakers, and the third order can be a tiebreaker for the 

second order. Although many other algorithms exist, such as simulated annealing [Bui89] or 
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ratio cut [Wei91, Hagen92], surveys have shown the techniques based upon KLFM can still 

produce better results [Hauck95]. 

Although partitioning is generally applied to bisections, called bipartition, multi-way 

partitioning has been introduced by Sanchis in [Sanchis89]. The first multi-way partitioning is to 

reduce the wire cross any boundary, thus wires with gates residing in 4 partitions, for example, 

are treated with the same cost as wires with gates residing in just 2 partitions. Sanchis later 

proposed a different cost function in [Sanchis93] where reducing the wire cost from 1 partition 

will still reduce the total wiring cost, which is more applicable for FPGA applications. 

When hierarchical partitioning is used, it is best to keep the gates with boundary-crossing 

nets closer to the boundary, as shown in Figure 6.4. This reduces the wiring length for these 

gates. In Figure 6.4b), partitioning is performed on the quadrant shown, and it would be best for 

the gates in blue to remain in the lower right partition, because that results in the shortest wire-

lengths when they need to communicate diagonally in the top level. To implement such location 

preference, a concept called “terminal propagation” from [Dunlop85] is implemented. Terminal 

propagation adds bias to a partition when the gate has higher-level nets closer to that partition. 

For large-scale partition problems, clustering is an indispensable tool. Since the 

partitioning problem is NP-complete, the iterative algorithms are heuristic methods. When the 

problem size gets large, these algorithms tend to remain in local optima and often fail to find a 

global optimum [Cong93]. Additionally, it has been shown that FM-based method is more 

effective on gates on average have at least 6 nets [McMurchie95]. Such constraint is not always 

met in regular circuits, especially when 4-input LUTs dominate. Once clustering is performed, 

all these issues can be resolved – the problem size is reduced, and each gate cluster has far more 

than 6 nets on average. Many clustering techniques has been proposed over the years [Schuler72, 
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Garbers90, Hagen292, Cong93, Ding01], and they are generally used as a pre-partition process. 

After partitioning of the clustered gates are done, the unclustering step can be performed in one 

step, or be gradually “uncoarsened” into smaller clusters, performing additional FM iterations 

between each uncoarsening step [Karypis98]. 

Although clustering is indispensable for many partitioning algorithms, we do not find it 

very effective once LUT is packed into CLBs. In our new FPGA, each CLB can have anywhere 

from 42 to hundreds of connections. Although not all connections are utilized, the number of 

nets per gate is far more than 6, and FM-based methods work very effectively. LUT packing also 

reduces the effective number of CLBs to no more than 3,000, which is well-manageable by our 

software tool even without additional clustering. 

In our partitioning implementation, we implemented a KLFM-based, iterative min-cut 

partitioning algorithm with terminal propagation. Both 2-way and multi-way partition are 

considered, and generally 2-way partitioning produces better results, and does not increase 

routing wire length when used with terminal propagation. Multi-way partition is still necessary 

because parts of the radix-3 architecture require 3-way partition at those hierarchies. Random-

walk-based clustering was implemented initially, but is not used for partitioning CLBs after LUT 

packing. The only clustering that is implemented is to cluster CLBs that reside on a carry chain. 

In these cases, the CLBs must be placed in a particular order to ensure proper carry propagation 

between CLBs. These CLBs are clustered into a large cluster, and is only unclustered when the 

hierarchically-partitioned area of the next hierarchy is too small to fit the entire cluster. Upon 

unclustering, the CLBs are placed at the current partition. In many of our mapped designs, carry-

chain CLBs can account for as much as 50% of all CLBs. As a result, further clustering has 

proved unnecessary. For the non-clustered gates, placement is performed when partitioning has 
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reached the bottom hierarchy, resulting in a partition size of 1 CLB. The corresponding CLB is 

then placed in the current partition. 

 

6.4 FPGA Routing 

Due to the large overhead of interconnect area, FPGA routing is performed on very 

limited routing resources. In our hierarchical FPGA design, the interconnect architecture is also 

designed to provide just sufficient routing resources to avoid area waste. As a result, FPGA 

routing places large emphasis on the quality of the software router. The router need to not only 

resolve all routing congestions, minimize critical-path, and complete the task in a reasonable 

(hours of less) run-time even for large designs. 

As shown in Figure 6.5, the hierarchical interconnect architecture was implemented to 

have many path diversities, therefore improving connectivity. However, not all paths result in the 

same timing performance, as illustrated by the routing preferences. It is generally preferred to 

travel the shortest routings, using fast-path whenever possible, to reduce overall interconnect 

capacitance. But in the case of routing congestion, re-routing must be done, and some nets may 

be required to take non-preferred routes. 

Modern routers generally employ global routing before detailed routing. The purpose of 

global routing is to provide a best-case timing performance of the design, and to estimate routing 

congestion. Being agnostic to routing congestion, the router is able to perform global routing 

very quickly, such as using the shortest-path algorithm [Nair82] and [Nair87]. In our hierarchical 

interconnects, the hierarchical architectures allows for very deterministic global routing. The 

router may utilize fast-path to perform no branching on the upward path, make a U-turn at the 

required hierarchy, and the downward path is very deterministic (computed by the radix-2 
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boundaries). 

  

Figure 6.5: A routing-preference example for a point-to-point connection, LUT (S) to LUT (E). 

Global routing gives the router valuable information, such as timing feasibility and 

routing congestion, but all congestions must be resolved for the design to be realizable. The 

initial version of our router employs rip-up-and-reroute detailed routing to resolve routing 

congestions [Dees81]. However, the algorithm we implemented was not timing-driven, and is 

dependent on the routing order of the nets. Therefore the routing results often have inconsistent 

timing, and sometimes fail to converge. Unsatisfied with our routing results, we implemented a 

new routing algorithm to the PathFinder router [McMurchie95, Ebeling95]. 

The PathFinder is a negotiation-based router that iteratively improves routing congestion 

by de-touring the lesser-performance-critical gates. It is able to incorporate global routing and 

detailed routing into a unified algorithm. The first iteration of the router is performed only based 

on interconnect delay, and not routing congestion, resulting in a minimum-delay design with 

many routing conflicts. However, the router does not attempt to rip-up the conflicting nets, 

instead it reroutes the design iteratively, but each successive iteration places a higher cost on 

routing conflicts. Eventually, the cost of routing through a faster, congested net will outweigh the 
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cost of routing through a slower, non-congested net, and the slower route will then be applied. 

Although the above approach resolves first-order congestion, it requires the second net to be 

rerouted when the resources are occupied by the first net. However, a good routing algorithm 

should be agonistic to the routing order of the nets, because sometimes the second net may not be 

able to re-route itself, but the first net could. A history factor is therefore implemented: every 

time a routing resource is congested, a history coefficient is incremented on the net. The history 

coefficient also contributes to the routing costs, and eventually, the cost of a congested resource 

may be high enough that the first net will not occupy that routing resource anymore, and the 

second net can then occupy the space. 

Based on our implementation of the algorithm, the routing time has been significantly 

decreased, as shown in Table VI.I, and many previously-unroutable designs are now routable. 

This router has not only accelerated the mapping process, its improved quality-of-result has 

allowed us to further prune the interconnect network and realize a smaller interconnect area. 

  

Table VI.I: Routing time of our original router vs. PathFinder-based router. 

Based on the improved routing algorithm, we further modified the PathFinder router for 

concurrent delay optimization and run-time improvements. The original PathFinder paper 

[McMurchie95] has suggested a congestion/delay-based router that computes the cost function as 

a weighted-sum of the interconnect delay and the total wiring cost. Note the wire cost not only 

include interconnect delay, but also costs from the congestion history and the current routing 

Design Original Router PathFinder Router

ex5p > 2 hours 6 minutes

ex1010 > 1 day (not feasible) 41 minutes

clma > 1 week (not feasible) 3 hours
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congestion of the routing resource. The suggestion in [McMurchie95] is to compute the critical-

path coefficient of each net, normalized to the worse-case delay. The coefficient is then used to 

weight the non-timing-critical routes to have a larger cost impact from routing congestion, while 

the timing-critical nets to have little cost impact from routing congestion, but mostly from 

routing delay. Using this method, timing-critical nets are routed without much regard for routing 

congestion, and the non-timing-critical nets would then detour around the critical nets to avoid 

occupying their routing resources. Although the paper suggested the coefficient can be as large 1, 

we find that to not always be feasible. A coefficient of 1 causes the router to be completely 

agnostic to routing congestion, thus two conflicting nets both with coefficient of 1 will never be 

resolved. We have limited the maximum coefficient to 0.99. 

The PathFinder algorithm is based on Nair‟s algorithm from global routing [Nair87], 

which is a breadth-first search. To ensure routing quality, we cannot convert to a depth-first 

search, but reducing the search radius will significantly reduce its routing cost. As a result, at 

each intermediate node, the minimum cost from the intermediate node to the final destination is 

added to the current cost. This prevents the router from searching for too large of a radius before 

converging to a destination. This modification is called A* routing [McMurchie95, Tessier98], 

and has speed up the run-time of PathFinder by as much as 2x, as confirmed by our 

implementation. 

In our implementation, we made key modification to the PathFinder router to further 

improve run-time. We noticed that the majority of the nets are not on the critical-path, and can be 

routed without timing-driven algorithms. We therefore use a non-timing driven algorithm to 

arrive at a feasible routing solution more quickly, and then enable timing-driven mode. The first 

iteration is still global routing, which is used to compute the minimum routing delay. Starting 
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from the second iteration, we completely ignore net delay in routing – all nets are assigned a 

delay cost of 0, unless a routing conflict occur. As a result, the router will always avoid routing 

conflict whenever a possible, because a routing conflicts results in a non-zeros wiring cost. Many 

intermediate nodes will then have a cost of 0. To avoid excessive search radius, the node that are 

the closest to the destination are chosen as the “wavefront” [Nair87] for the next iteration. This 

allows the router to converge to a feasible result very quickly. Once a feasible design is routed, 

timing is computed, and the critical-path coefficient is applied to each net. Timing-driven 

PathFinder is then applied on the net that exceed the coefficient threshold: for example, if the 

minimum-routable timing is 5 ns, but the current timing is 7 ns, the coefficient threshold is set to 

71%; all nets with a critical-path coefficient greater than 0.71 is then re-routed. From our 

experience, this two-stage approach of congestion-followed-by-timing routing has produced 

equally good results as the original PathFinder algorithm, but in a faster runtime. 

In more recent years, Boolean Satisfiability (SAT) approaches has been suggested for 

routing. There are efficient SAT solvers available, as listed in [Nam04], and unlike PathFinder, 

SAT-based routing simultaneously considers all routes, which allows higher degrees of freedom 

and potentially better routing results [Nam04]. However, the FPGA interconnect routing problem 

is often too large for SAT solvers, and the router in [Nam04] is limited to detailed routing, and 

unable to choose a different route when global-re-routing is required. We initially decided not to 

consider SAT-based routing for our FPGA, but a recent paper [Gort11] suggests a good 

compromise. PathFinder-based routing can converge very quickly to an almost-feasible solution, 

but spends most of its run-time resolving the few-remaining conflicts. Paper [Gort11] suggested 

using PathFinder to perform global routing and coarse detailed routing, where multiple tracks are 

routed together as a “coarse” track, and then use SAT-based formulations for detailed routing. 
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Although the coarse routing technique may not always apply to our hierarchical routes, the 

concept of a two-stage PathFinder-followed-by-SAT routing approach is interesting to consider. 

 

6.5 Bitstream Generation 

Based on the placement and routing results, the software tool has complete knowledge of 

the mapped design. The function of each LUT and the configuration of each CLB are determined 

by the netlist, and the switch matrix (SM) configurations are derived from the interconnect 

routing. We implemented bit-accurate information about the bit-cell mapping in all CLBs and 

SMs, as well as the word-line (WL) and bit-line (BL) information of each bit-cell. The tool then 

configures the individual bit-cells based on the place-and-route results, and power-gates the 

unutilized blocks when possible. The output bitstream is in a 2D-array following the WL and BL 

structure implemented on the chip. The testbench is able to stimulate the scan logic to shift in 

one row of BL at a time. The details of the testbench and measurements are in Chapter VII. 
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CHAPTER VII 

Test Infrastructure and Measurement Results 

7.1 Matlab Simulink-based Testing Infrastructure 

Unlike testing dedicated chips, bringing up a reconfigurable hardware generally involves 

an extensive configuration process before the chip is able to execute data-processing tasks. Even 

our first “small” FPGA of 2048 LUTs involves close to 300,000 configuration bits, all of which 

must be set properly for correct functionality. When configuration bits are set improperly, it is 

often very difficult to isolate the exact location of the programming fault, making debugging 

process very difficult. This not only places a heavy emphasis on a proper bitstream generation 

process from the software tool, but also an importance on an easy-to-use, easy-to-configure 

testbench. 

Due to the large number of configuration bits, the initial chip-bring-up process requires 

extensive iterations between bitstream generation and chip programming. It is therefore desirable 

to have the two processes in an integrated platform. We therefore employed a Matlab Simulink-

based testing platform using the Interconnect Break-Out-Board (IBOB) developed by UC 

Berkeley and Collaboration for Astronomy Signal Processing and Electronics Research 

(CASPER) [IBOB10]. The IBOB hardware is programmable using Matlab Simulink, as shown 

in Figure 7.1, and communicates to our 2048-LUT FPGA using 2 high-speed ZDOK+ 

connectors, each supporting 40 single-ended or 20 differential I/Os. The IBOB is reconfigurable 

through a Xilinx Virtex-II-Pro FPGA, capable of up to 300 MHz operation when fully pipelined. 

The IBOB platform is responsible for the scan-configuration for programming our FPGA, as 

well as the input generation and output capture. 
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Figure 7.1: A IBOB platform use for Matlab Simulink-based testing infrastructure. 

The Matlab-based testing platform provides a unified testing environment, because our 

software mapper is also developed in the Matlab environment. The bitstream can then be directly 

written to the block RAMs on the IBOB from within the Matlab environment. Similarly, input 

test vectors are generated in the Matlab environment, and written onto the IBOB block RAMs. 

The IBOB block RAMs are also used for captures the outputs of our FPGA, which can be read 

back into the Matlab environment for data analysis. The configuration of the IBOB platform is 

executed completely in the Matlab Simulink environment, as shown in a sample Simulink 

testbench in Figure 7.2. Because it operates on a Xilinx FPGA, most of the building blocks are 

compatible with Xilinx System Generator blocks, which are Simulink blocks that can be 

simulated in Simulink, as well as mapped onto a Xilinx FPGA. These blocks are colored in blue 

in Figure 7.2. In addition to the Xilinx FPGA, the IBOB integrates many peripheries such as 

clock source, on-board block RAMs, Ethernet interface, GPIO headers, and ZDOK+ connectors. 

To support a seamless integration with Simulink, IBOB support built-in Simulink blocks, shown 

in yellow in Figure 7.2 These IBOB interface blocks can be simulated in Simulink, and when 

mapped, can also instantiate the corresponding IBOB peripheral blocks. 
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Figure 7.2: An example IBOB Simulink testbench for chip configuration and testing. 

As shown in Figure 7.2, the entire testbench can be first simulated in Simulink, and many 

output scopes are placed to verify the logic functionalities. This is especially for the control logic 

of bit-lines (BL) and word-lines (WL). The testbench just scan in 7168 bits of the bitstream, 

pause BL scan chain, increment WL scan chain by one bit, perform the write, and perform the 

same operation 50 times to configure all 50 WLs. The IBOB block RAM (BRAM) has a 

maximum depth of 8192 by 32 bits, therefore 2 BRAMs are instantiated to contain all 
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configuration bits. Although the BL and WL bits reside on a 2D array, it is serialized line-by-line 

to fit into a 32-bit data width. The BL and WL logic is responsible for computing the correct 

location of each serialized bit during scan configuration. 

The input BRAM on the IBOB is used to store test vectors. Because the I/O pins on our 

FPGA are reconfigurable, each I/O pin corresponds to a different I/O on the mapped design. For 

example, if the mapped design has a 16-bit input, our software tool will utilize 16 different I/O 

pins on the FPGA to accept these inputs, where each I/O pin is tied to a ZDOK+ connector pin 

on our testboard. Therefore the user must specify the input pin mapping from the IBOB BRAM 

to the ZDOK+ connector, else the testbench will not stimulate the correct input pins on our 

FPGA. 

The same scenario applies for outputs of the chip, which is determined during design 

mapping to map to a set of I/O pins. These chip pins are tied to ZDOK+ connector pins on the 

testboard. The user needs to specify in the testbench the ZDOK+ pins based on a pin-out 

mapping table. The output bits are then stored in the on-board IBOB BRAM. 

Before the chip is powered up, the Simulink testbench is first mapped to a bitstream, and 

the IBOB testboard FPGA is configured via standard JTAG interface. Configuration bits and 

input test-vectors are then written into the BRAM on the IBOB via a serial interface, while IBOB 

control registers are used to hold the chip in its reset state before power-up. The scan mode is 

then initiated to write to all bit-cells on our FPGA, one row at a time, controlled by the BL/WL 

logic on the IBOB. Once configuration mode is complete, the configuration registers are set to 

place the chip out of reset mode and start normal operation. 

For designs that require a more elaborate testbench, the Reconfigurable Open 

Architecture Computing Hardware (ROACH) [ROACH13], also developed by CASPER, 
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provides an upgraded capacity using a Xilinx Virtex-5 FPGA. The ROACH blocks in Simulink 

are very similar to IBOB blocks, and a separate PowerPC processer is placed on board to allow 

for much faster interface between the BRAMs/FIFOs on the FPGA and the external devices, 

such as Matlab, using Ethernet instead of serial port. In terms of hardware capability, the same 

two ZDOK+ connectors on our testboard also fits onto a ROACH platform. 

 

7.2 Measurement Results of our 2048-LUT FPGA 

Many designs are mapped onto our FPGA to verify functionality and performance, even 

successfully mapping designs-of-interest from commercial companies. Table VII.I illustrates the 

measurement results from 4 key designs we have mapped. Like any hardware, area efficiency is 

maximized when most of the blocks are utilized (thus why “dark silicon” is inefficient). Our chip 

achieves 16.4 GOPS/mm
2
 when all Logic and DSP CLBs are utilized; executing 175 16b 

accumulators at 370MHz. Since a 16b adder can be implemented with 2 DSP CLBs but requires 

4 Logic CLBs to propagate the carry chain, the DSP adders are faster, reaching 400MHz. 

However, the area efficiency of the DSP-only accumulator is lower, because the logic CLBs are 

mostly idle, additionally, energy efficiency of the DSP-only CLBs are also lower due to idling 

CLBs. Leakage is well-controlled even without power gating. A 1.08 GOPS/mW is attainable 

with only 112 DSP accumulators active and most of the Logic CLBs idle. 

Accumulators are implemented because the IBOB testbench is only capable of reaching 

300 MHz even with a fully-pipelined testbench, it is a limitation of both the FPGA hardware and 

the FPGA PLL. The ROACH platform [ROACH13] is unable to run faster due to its Block RAM 

timing, which is un-pipelined. Since we are unable to toggle any inputs beyond 300 MHz, the 

inputs are held constant, and our FPGA is tied to an external SMA clock source to perform the 
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accumulator operation. Without BRAM capabilities for data capturing, the functionality of the 

accumulator is examined on the oscilloscope. Performance is hindered by equipment limitations 

due to a 0.25ns input-clock jitter at 400MHz. 

  

Table VII.I: Key measurement results from our 2048-LUT FPGA chip. 

A 32-tap finite-impulse-response (FIR) filter is mapped to utilize most of the DSP CLBs, 

configured for a 16-bit datapath. The FIR filter achieves 274MHz due to longer routing, but 

interconnect delay is still under 50%. Fast-Fourier-Transform (FFT) hardware generally require 

extensive memory usage to implement the delay lines. A 2×2 MIMO 64-point is mapped to 

exercise most of the BRAM CLBs, as well as most of the Logic CLBs for FIFO control and 

butterfly implementations. With many control signals and a critical path of 11 CLBs, the FFT 

achieves 83MHz. 

The energy efficiency (GOPS/mW) shown is computed for 16-bit arithmetic operations. 

Not surprisingly, the FPGA produces higher efficiency when mapping more arithmetic-heavy 

designs, such as accumulators and filters, while efficiency is significantly lower for control-

heavy designs such as FFT and microcontrollers. The energy-delay curve and power-breakdown 

Resource Utilization Performance

Logic
(256)

DSP
(224)
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Power
(mW)

VDD

(V)
Freq. 

(MHz)
GOPS
/mW

175 L/DSP 16b Acc. 256 224 0
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8.6

1.0
0.5

370
55

0.36
1.13

112 DSP 16b Acc. 4 224 0
123
6.2

1.0
0.51

400
60

0.57
1.08

32-tap 16b FIR 132 209 0
120
10.2

1.0
0.56

274
50

0.21
0.45

2x2 MIMO 64-pt FFT 196 93 10
82.7
26.5

1.0
0.78

83
40

0.05
0.07

Result

Design
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of the FPGA when mapping the 175-accumulator design are shown in Figure 7.3. Minimum-

energy point for the accumulator occurs at 0.5V, which happens when the leakage increments 

caused by a slower design offsets the energy reduction. For other designs where leakage 

occupies a larger percent of the total power, the minimum energy-point occurs at a higher VDD. 

  

Figure 7.3 – Energy efficiency and power ratio at maximum frequency and minimum energy. 

This chips achieves a maximum energy efficiency of 1.13 GOPS/mW. In comparison, 

Intel‟s work [Agarwal10] has no interconnects and lower energy efficiency, though the full-

custom CLB in 32-nm LVT is 2.5x faster. It achieves 2.6 GOPS/mW at 0.34V for 8b operations, 

which is 0.65 GOPS/mW for 16b (2 CLBs per operation at half the speed). In comparison, our 

65nm chip achieves 1.7x the energy even including interconnect power and delay (Figure 7.4). 

Among commercial FPGAs, the highest-reported efficiency is 0.05 GOPS/mW from an Altera 

Straix IV [George11]. In comparison, our chip is 22x more energy efficient even with an older 

process technology. 
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Figure 7.4 – Comparison of energy efficiencies against state-of-the-art reconfigurable hardware. 

Although our FPGA is far more efficient than commercial FPGA today, it can only 

maintain its efficiency when it is mapping designs that effectively utilize its architecture. Based 

on our experience in mapping designs onto our FPGA, computation-intensive designs such as 

finite-impulse-response (FIR) filters and arithmetic blocks such as parallel accumulators are 

highly efficient when mapped onto our FPGA. However, control-heavy designs such as Fast-

Fourier Transform (FFT) cannot be mapped very efficiently. As shown in Table VII.I, the 

measured energy efficiency of a FFT is up to 16x lower than the maximum efficiency of our 

FPGA. 

Fortunately, because many of these inefficient blocks are core blocks, we can implement 

some of these designs as coarse-grain accelerator cores on our FPGA instead of using the fine-

grained DSP CLB. These observations motivated us to implement the 64 – 8192 point 

programmable FFT and the 16-core Universal DSP accelerator on our 16K-LUT FPGA. We 

have also decided to implemented coarser, medium-grain DSP CLBs to implement arithmetics 
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and multiplications more efficiently than fine-grain DSP CLBs. Even though medium- and 

coarse-grain accelerators are still not as efficient as fully dedicated chips, embedding them on the 

FPGA enables us to push the efficiency gap much closer. 

 

7.3 Updated Testing Infrastructure 

Our 16K-LUT FPGA requires even higher performance and a larger number of I/Os from 

the testing platform. Therefore the IBOB and ROACH boards, supporting 80 singled-ended data 

pin through ZDOK+, are no longer sufficient for our testing. In search for a new hardware, we 

would also like to preserve the compatibility with Matlab Simulink interface to simplify 

testbench development. The Xilinx evaluation platforms for based on the newest 7-series FPGAs 

are an ideal candidate. Two suitable platforms are shown in Figure 7.5. The Virtex-7 platform 

offers more than 50% additional capacity, and provides 276 reconfigurable I/Os through its two 

FPGA-Mezzanine-Card (FMC) connectors. For our applications, we decided to go with the 

Kintex-7 platform for our initial testing. It is less than half the price of the Virtex-7 platform, and 

offers more than sufficient capacity for our testbench purposes. Although our chip has 350 

programmable I/Os, our initial board design only bonded 180 I/O pins due to limitations of chip-

on-board bonding. All Xilinx 7-series FPGAs are marketed with high-performance DSPs to run 

up to 600 MHz [Mehta12].  
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a)       b) 

Figure 7.5 –Xilinx evaluation platforms – a) Kintex-7 KC705 and b) Virtex-7 KC707. 

Based on our choices of Kintex-7 KC705 evaluation board, we designed a new testboard 

to interface to the FMC connectors on the test platform. Due to the high pin-count requirement of 

this FPGA even when bonding just a subset of I/Os (194 signal pins and 150 power/ground pins), 

there is no commercially-available package that offers enough performance (500 MHz or more), 

enough pin-counts, and a small-enough cavity to avoid long bond wires. As a result, we migrated 

to a chip-on-board solution, where the chip is mounted and bonded onto the board without a 

package (Figure 7.6). 

Chip-on-board wire-bonding poses many design limitations on the PCB. The board needs 

to be small enough to fit inside the wire-bond machine, thus constraining our size (to 6 inches by 

2.5 inches in this case). The backside of the board needs to have no components when bonding. 

The components on the top must also not exceed a height a constraint. Due to the height of the 

FMC connectors, the board must be assembled after the chip is bonded and protected in a 

hermetic seal. 

Kintex-7 KC705 Virtex-7 KC707

2 FMC connectors with
184 reconfigurable I/Os

2 FMC connectors with
276 reconfigurable I/Os
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Figure 7.6 – Board layout of the chip-on-board testboard with two FMC connectors. 

 

7.4 Measurement Results of our 16K-LUT FPGA 

As of May 2013, the chip testing of the new FPGA is not yet complete, though we have 

fully debugged our 9-Mb bitstream generation process, and verified all standalone blocks on the 

chip for functionality. To estimate actual performance, we chose the most conservative timing 

estimations from chip design (0.8V, slow-slow corner, 125ºC) and added the timing information 

into our software mapper to perform a preliminary timing estimation. The propagation delay for 

signal path can be determined by tracing the interconnect path that the signal travels, and 

summing the delays for each wiring segment (from one SM to the next SM) to compute the net 

delay. The power information, however, depends on the activity factor of the mapped design, and 

cannot be easily estimated by modeling. The FPGA mapping results are compared with the post-

place-and-route timing from a Xilinx Virtex-6 LX75T, also in 40-nm technology. Although 

LX75T is the smallest Virtex-6 offered, it still has more than 4 times the number of LUTs than 

our FPGA, and 7 times the number of DSP elements, along with much more BRAM in both 
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18Kb and 36Kb variants. Measurement results from their ASIC counterparts, when available, are 

also included. 

The performance estimations of our chip, compared with post place-and-routes timing 

estimations from Xilinx Virtex 6 and ASIC implementation are shown in Table VIII. Even with 

very rudimentary software tools for place and route, along with a non-full-custom chip design, 

we are able to achieve performance similar to commercial FPGAs. We are actively improving 

our place-and-route software to achieve better quality-of-results. Based on our prior chip results, 

we can expect 10 ‒ 20x improvements in power consumption and energy efficiency compared to 

commercial FPGAs. The ASIC implementation of the 2x2 MIMO 256-pt FFT is from [Yuan08] , 

and the Digital Baseband Process is from [Nanda12]. 

  

Table VII.II: Chip performance comparison against commercial FPGA and ASIC 

implementations, based on design mapping and conservative timing estimations. 

Although the ASIC designs are spread across multiple technologies, we may observe that 

FPGAs performance are within the margins of ASIC designs, at least for these smaller design 

examples. When design complexity grows, the interconnect delay of commercial FPGAs began 

to show its effects, especially for control-heavy designs. The 8192-point FFT design 
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implemented on our FPGA is also mapped onto a large Xilinx Virtex-6 FPGA. Our FFT was 

designed for 400-500 MHz per core, thus capable of aggressive voltage scaling due to its 16-way 

parallelism. In contrast, the commercial FPGA can only achieve 54 MHz while taking a very 

large area footprint. For efficient implementation of FPGAs as ASIC replacements, it is essential 

to have coarse-grain reconfigurable blocks. 

  

Table VII.III: Coarse-grain accelerator performance against commercial FPGA implementations. 

As discussed in Section 5.5, the 16-core Universal DSP processor is capable of 

performing many common communication applications. A conservative post place-and-route 

estimate of 450 MHz throughput is achievable. Because the UDSP design is mapped using a 

reconfigurable instruction-set-architecture (ISA), no HDL is used, thus its hardware-equivalent 

design is not available. 

 

7.5 Chips Summary and Die Photos 

This chapter is highlighted the measurement results and performance characteristics of 

two of our FPGAs: a 2048-LUT FPGA (Figure 7.7a) and a 16K-LUT FPGA with heterogeneous, 

multi-granularity reconfigurable blocks (Figure 7.7b). There die photos are shown on the same 

scale. 
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a)       b) 

Figure 7.7 –Chip photo and summary of a) our 2048-LUT FPGA and b) our 16K-LUT FPGA. 

The newer design is not a mere expansion in size. It demonstrates that hierarchical 

interconnect can scale to large (10x) the complexity without occupying additional area overhead. 

It also demonstrates the need for coarser-grain reconfigurable blocks, especially for control-
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heavy designs. Once matched with a more mature place-and-route software, we believe this 

hierarchical FPGA can pose significant improvements over commercial FPGAs in performance, 

along with orders-of-magnitudes improvement in energy efficiency. 
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CHAPTER VIII 

Conclusion and Future Outlook 

8.1 Concluding Remarks 

Efficiency is important. Efficient hardware has led to unprecedented possibilities of 

mobile and personal computing. It is driven by the ever-more stringent product requirements on 

chip features, battery life, and heat dissipation. It is realized by a vertical integration of suitable 

architecture, advanced circuit design, and easy programmability. Recapping from the 

introduction, chips today are efficient when implement as dedicated hardware, or ASICs. But 

ASICs are not programmable, so they are integrated with microprocessors as a system-on-a-chip 

(SoC). Although today‟s large SoCs provide efficient, programmable designs, it come at a great 

price: the growing feature requirements, standard changes, and design fixes require frequent re-

design, and the cost of chip design is increasing with every technology generation. 

Many companies, especially FPGA companies, have suggested FPGA as a cost-effective 

replacement for today‟s ASICs. FPGAs are very flexible, but are orders-of-magnitude less 

efficient then ASICs. In order to be realized in today‟s SoCs, large improvements on energy and 

area efficiencies must be made. 

This work noted FPGA interconnects as the bottleneck for its inefficiency: often 

accounting for over 80% of the chip area, delay, and power. A method for constructing FPGA 

interconnects using hierarchical network is proposed in architecture, realized in silicon, and 

tested in mapping user-designs. To demonstrate the scalability of hierarchical interconnects, two 

chips are demonstrated in this thesis with 10x difference in interconnect complexity, both with 

interconnects occupying 51-52% of total area – a 3–4x reduction from commercial FPGAs. 
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Compared to commercial FPGAs today, we have achieved one order-of-magnitude 

improvements in energy and area efficiencies, approaching the efficiencies of ASIC designs 

(Figure 8.1). 

  

Figure 8.1: Energy and area efficiency from modern VLSI chips and our chips. 

In addition to improvements interconnects, we realized that some arithmetic-heavy 

designs can be mapped efficiently in FPGAs, while other control-heavy designs cannot. We 

therefore implemented coarse-grain, reconfigurable accelerators for our applications. Although 

reconfigurable accelerators are still not as efficient as fully dedicated chips, embedding them on 

the FPGA enables us to push the efficiency gap even closer. Reconfigurable hardware will never 

be as efficient as ASICs, but given a small enough penalty in efficiency and performance, we are 

convinced that the reduced design-time and cost of reconfigurable hardware will make a strong 

candidate for ASIC replacement. 
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8.2 Outlook: Nano-Electrical-Mechanical Devices  

Many people believe CMOS technology is here to stay, at least for the near decade. It is 

true that there are no promising devices in the near horizon that can provide the speed, density, 

and robustness of CMOS technologies, which our industry has been heavily investing in for 

almost 50 years. For FPGAs, however, having fast and dense logic gates are not sufficient; we 

also need fast and dense interconnect switches. This is where nano-electro-mechanical (NEM) 

relays can come in. 

Micro-electro-mechanical relays are very ideal for interconnect switches. A single relay 

is able to function as a “NMOS” and a “PMOS” depending on its body voltage (Figure 8.2a) 

[Chen10, Spencer11]. Although they are considered slow due to their long mechanical delay, 

because it takes micro-seconds to physically open and close the gate. However, such delay is 

irrelevant for our static pass-transistor mux (Figure 8.2b), because the gate remains stationary 

after programming. The same scenario applies for bit-cells: we can construct NEM-based SRAM 

cells (Figure 8.2c), and for controlling static muxes, the actual SRAM performance is irrelevant. 

The major benefit of NEM based interconnect is the low on-resistance (< 1kΩ) of NEM 

switches, which drastically improves the interconnect speed. Since NEM switches provides an 

ohmic contact, the on-resistance remains constant throughout all regions of transistor operation. 

The interconnect performance is therefore unaffected by voltage scaling on the core transistors. 

Additionally, the NEM switch provides 0 off-current, thus drastically reducing the overall chip 

leakage by at least 2x. 
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a) 

  

b)      c) 

Figure 8.2: NEM relays as a) PMOS and NMOS-equivalent devices, b) a static switch, and 

c) a SRAM bit-cell (BC). 

Another benefit of NEM relays is its simplicity of fabrication: no silicon substrate is 

required, and fabrication can be done with just 2 metal layers. Therefore, relays can even be 

“stacked” on top of CMOS designs. Ideally, the CLB and core logic can be implemented in 

CMOS, and the NEM-based interconnect can be stacked on the relays layer, effectively cutting 

chip area by 2x! We have already designed relays-based FPGA interconnects (currently in 

fabrication), and this seemingly far-fetched idea may not be that far into the future! 
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Figure 8.3: A relay-interconnect concept with CMOS logic on the bottom and NEM-

interconnects on the top 2 metal layers. 
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