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Estuarine environments are uniquely diverse coastal subsystems located at the land-river-ocean 

interface.  Across different systems, carbon dioxide (CO2) parameters and anthropogenic inputs can vary 

greatly given the heterogeneity between individual estuarine systems, which makes it difficult to 

characterize coastal ocean systems as a whole. The Agua Hedionda Lagoon (AHL) is a tidal estuary 

located on the southern California coast, which supports a diverse ecosystem while serving numerous 
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recreation activities, a marine fish hatchery, a shellfish hatchery (Carlsbad Aquafarm, CAF), and the 

largest desalination plant in the western hemisphere.  

This dissertation contains three main chapters. Chapter 1 provides the information about sampling 

design and instrumentation used for biogeochemical data collection at the AHL. The detailed steps and 

procedures required for quality control and processing of the data are also included. In Chapter 2, a one-

year time series of carbon dioxide (CO2) data is used to establish baseline and seasonal average inorganic 

carbon conditions in the AHL.  Based on a mass balance model of the lagoon, we propose that the outer 

lagoon of the AHL is a source of inorganic carbon to the adjacent ocean, through advective export, and a 

direct source of CO2 to the atmosphere. In Chapter 3, a time series from autonomous sensors deployed in 

AHL captured the effects of a massive red tide occurring along the Southern & Baja California coast 

during the spring of 2020.  Biogeochemical data (pH and O2) were examined using an open-source model 

designed to filter out the influence of tides and estimate net ecosystem metabolism (NEM). 

Contemporaneous pH and O2 observations allowed simultaneous, independent evaluations of production, 

respiration and NEM.   
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Introduction 

Coastal marine systems are uniquely diverse environments and often exhibit great 

biogeochemical heterogeneity (Bauer et al., 2013; Paulsen et al., 2018). These coastal systems are 

affected by many of the same sets of local drivers, including the adjacent ocean and surrounding 

landscape through runoff and river discharge (Paerl et al., 2006; Howarth et al., 2011; Windham-Myers et 

al., 2018). In comparison to offshore ecosystems, near-shore ecosystems are more often subjected to 

anthropogenic stressors, which makes understanding the metabolic state of these systems of great 

importance (Hewitt et al., 2005). Semi-enclosed coastal systems (e.g. estuaries, lagoons, intertidal zones, 

wetlands) are important to a wide number of natural processes in addition to societal and commercial uses 

(Ramesh et al., 2015).  In many cases, the proximity to civilization makes the ecosystems operating 

within these coastal systems highly influenced by anthropogenic effects such as eutrophication from 

nutrient loading and habitat loss due to land use change (Bauer et al., 2013; Howarth et al., 2011; 

Windham-Myers et al., 2018).  In addition to these long-recognized issues, climate change (warming, 

acidification, deoxygenation) in the coastal ocean (Hauri et al., 2009; Gruber et al., 2012; Kessouri et al., 

2021) and shallow coastal systems (Feely et al., 2010; Waldbusser et al., 2014; Cai et al., 2021) is now a 

well-established area of research.  

Over the past decade observation programs have become particularly important in coastal 

systems, particularly in the Pacific Northwest due to an upwelling event in 2009, which led to 

unambiguous demonstration that oyster larval mortality was impacted by abnormally low saturation state 

of the intake water at a commercial shellfish hatchery (Barton et al., 2012).  This observation along with 

other studies (Waldbusser et. al., 2015, Doney et.al., 2020) documenting the sensitivity of shelled 

organisms to increased dissolved CO2 and acidification has led to the installment of continuous flow, 

shore station systems which measure the aqueous CO2 chemistry parameters at various shellfish 

hatcheries and aquafarms along the Pacific coast. This initiative was part of the Integrated Ocean 

Observing System (IOOS) program through NOAA, to provide real-time information to assist local 
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stakeholders and shellfish growers on the CO2 content of the waters at the intake of the aquafarms and 

shellfish hatcheries. Understanding the carbonate system is also an important step in attempting to 

constrain net fluxes on a more global scale which requires better estimates from semi-enclosed coastal 

lagoons and estuaries (e.g., Cai, 2011; Wang et al., 2016). Existing studies are limited and those that exist 

have a wide range of flux estimates and thus are not well constrained (Cai, 2011; Paulsen et al., 2018).  

In this work, we make biogeochemical observations at the Agua Hedionda Lagoon, an urbanized 

lagoon located in Carlsbad, CA, making up a total of about 1.6 × 106 m2 along the Southern California 

coastline. The original wetland was converted into the present lagoon structure in 1954 by the Encina 

Power Station and is maintained in its present form by semi-annual dredging. The lagoon is comprised of 

three interconnected basins, including an outer (26.7 × 104 m2), middle (10.9 × 104 m2), and inner basin 

(1.2 × 106 m2) (Figure 1) (Elwany et al., 2005). The Ocean, connected by an inlet located on the western 

side of the outer basin, dominates physical forcing in all three basins, with tidal lags of up to 4 hours at 

the creek (Jenkins and Wasyl, 2006). The inner basin receives freshwater input from Agua Hedionda 

Creek during rain events which occur primarily in winter and spring. During the rest of the year, the creek 

is dry, and the lagoon is purely tidal.  

The AHL is highly utilized and a popular destination for the Carlsbad community and tourists and 

provides a thriving ecosystem for many diverse species of plants and animals. There are two primary 

industrial features, which include the Encina Power Station (fully decommissioned by January 2019) and 

the Carlsbad Desalination Plant, both of which rely on water intake from the outer basin for once-through 

cooling of the power plant and as desalination source water. Other features of the AHL include 

agriculture (primarily strawberry fields bordering the inner basin), the Hubbs-SeaWorld Marine Fish 

Hatchery, which breeds white seabass, and the Carlsbad Aquafarm (CAF)—a sustainable mussel and 

oyster farm, which operates in the outer basin. Both the fish hatchery and aquafarm (which grows 

calcifying organisms sensitive to pH) rely on adequate flushing of the lagoon by the ambient ocean in 

order to maintain oxygen and calcium carbonate saturation levels above thresholds critical to growth.  
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The CAF, which was the primary location of our observations, has been in operation since 1990 

as a sustainable aquaculture facility that uses a suspension system method to culture mussels and oysters. 

The aquafarm typically raises over one million pounds of Mediterranean Blue Mussels (Mytilus edulis) 

and Pacific oysters (Crassostrea gigas) every year.  In order to maintain the quality and quantity of 

shellfish production for the community, local restaurants, and wholesale industry, the CAF is reliant on 

the condition of the lagoon's water chemistry.  Mussels and oysters are filter feeders and rely on clean 

water that is free of contaminants and waste build up.  Accordingly, it is important for aquafarms to 

operate in well-flushed lagoons and/or actively pump water from the nearby ocean into the aquafarm for 

water quality purposes. This dissertation improves our understanding of the baseline chemical distribution 

and variability in estuarine systems by implementing spatio-temporal measurements of biogeochemical 

observations for the conservation of lagoon systems in a changing climate.  

References 

Barton A, Hales B, Waldbusser GG, Langdon C, Feely RA. 2012. The Pacific oyster, Crassostrea gigas, 

shows negative correlation to naturally elevated carbon dioxide levels: Implications for near-term ocean 

acidification effects. Limnology and Oceanography 57(3): 698–710. doi: 10.4319/lo.2012.57.3.0698 

Bauer JE, Cai W-J, Raymond PA, Bianchi TS, Hopkinson CS, Regnier PAG. 2013. The changing carbon 

cycle of the coastal ocean. Nature 504(7478): 61–70. doi: 10.1038/nature12857 

Cai W-J. 2011. Estuarine and coastal ocean carbon paradox: CO2 sinks or sites of terrestrial carbon 

incineration? Annual review of marine science 3: 123–45. doi: 10.1146/annurev-marine-120709-142723 

Cai WJ, Feely RA, Testa JM, Li M, Evans W, Alin SR, Xu YY, Pelletier G, Ahmed A, Greeley DJ, 

Newton JA, Bednarscaronek N. 2021. Natural and Anthropogenic Drivers of Acidification in Large 

Estuaries. https://doi.org/101146/annurev-marine-010419-011004 13: 23–55.  Annual Reviews . doi: 

10.1146/ANNUREV-MARINE-010419-011004 

Doney SC, Busch DS, Cooley SR, Kroeker KJ. 2020. The impacts of Ocean acidification on marine 

ecosystems and reliant human communities. Annual Review of Environment and Resources 45: 83–112. 

Elwany H, Flick R, White M. 2005. Agua Hedionda Lagoon hydrodynamic studies. 

Feely RA, Alin SR, Newton J, Sabine CL, Warner M, Devol A, Krembs C, Maloy C. 2010. The 

combined effects of ocean acidification, mixing, and respiration on pH and carbonate saturation in an 

urbanized estuary. Estuarine, Coastal and Shelf Science 88(4): 442–449. doi: 10.1016/j.ecss.2010.05.004 

Gruber N, Hauri C, Lachkar Z, Loher D, Frolicher TL, Plattner G-K. 2012. Rapid Progression of Ocean 

Acidification in the California Current System. Science 337(6091): 220–223. doi: 

10.1126/science.1216773 



4 

 

Hauri C, Gruber N, Plattner G-K, Alin S, Feely RA, Hales B, Wheeler PA. 2009. Ocean acidification in 

the California current system. Oceanography 22(4): 60–71. 

Hewitt JE, Anderson MJ, Thrush SF. 2005. Assessing and monitoring ecological community health in 

marine systems. Ecological Applications 15(3): 942–953. doi: 10.1890/04-0732 

Howarth R, Chan F, Conley DJ, Garnier J, Doney SC, Marino R, Billen G. 2011. Coupled 

biogeochemical cycles: Eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. 

Frontiers in Ecology and the Environment 9(1): 18–26. doi: 10.1890/100008 

Jenkins SA, Wasyl J. 2006. Coastal Processes Effects of Reduced Intake Flows at Agua Hedionda 

Lagoon. 

Kessouri F, McWilliams JC, Bianchi D, Sutula M, Renault L, Deutsch C, Feely RA, McLaughlin K, Ho 

M, Howard EM, Bednaršek N, Damien P, Molemaker J, Weisberg SB. 2021. Coastal eutrophication 

drives acidification, oxygen loss, and ecosystem change in a major oceanic upwelling system. 

Proceedings of the National Academy of Sciences of the United States of America 118(21): 1–8. doi: 

10.1073/pnas.2018856118 

Paerl HW, Valdes LM, Peierls BL, Adolf JE, Harding LW. 2006. Anthropogenic and climatic influences 

on the eutrophication of large estuarine ecosystems. Limnology and Oceanography 51(1 II): 448–462. 

doi: 10.4319/lo.2006.51.1_part_2.0448 

Paulsen M-L, Andersson AJ, Aluwihare L, Cyronak T, D’Angelo S, Davidson C, Elwany H, Giddings 

SN, Page HN, Porrachia M, Schroeter S. 2018. Temporal changes in seawater carbonate chemistry and 

carbon export from a Southern California estuary. Estuaries and Coasts 41(4): 1050–1068. doi: 

10.1007/s12237-017-0345-8 

Ramesh R, Chen Z, Cummins V, Day J, D’Elia C, Dennison B, Forbes DL, Glaeser B, Glaser M, 

Glavovic B, Kremer H, Lange M, Larsen JN, Le Tissier M, Newton A, Pelling M, Purvaja R, Wolanski E. 

2015. Land-Ocean Interactions in the Coastal Zone: Past, present & future. Anthropocene 12(2015): 85–

98. Elsevier B.V. doi: 10.1016/j.ancene.2016.01.005 

Waldbusser GG, Hales B, Langdon CJ, Haley BA, Schrader P, Brunner EL, Gray MW, Miller CA, 

Gimenez I. 2015. Saturation-state sensitivity of marine bivalve larvae to ocean acidification. Nature 

Climate Change 5(3): 273–280. doi: 10.1038/NCLIMATE2479 

Waldbusser GG, Salisbury JE. 2014. Ocean Acidification in the Coastal Zone from an Organism’s 

Perspective: Multiple System Parameters, Frequency Domains, and Habitats. Annual Review of Marine 

Science 6(1): 221–247. doi: 10.1146/annurev-marine-121211-172238 

Wang ZA, Kroeger KD, Ganju NK, Gonneea ME, Chu SN. 2016. Intertidal salt marshes as an important 

source of inorganic carbon to the coastal ocean. Limnology and Oceanography 61(5): 1916–1931. doi: 

10.1002/lno.10347 

Windham-Myers L, Cai W-J, Alin SR, Andersson A, Crosswell J, Dunton KH, Hernandez-Ayon JM, 

Herrmann M, Hinson AL, Hopkinson CS, Howard J, Hu X, Knox SH, Kroeger K, Lagomasino D, 

Megonigal P, Najjar RG, Paulsen M-L, Peteet D et al. 2018. Tidal wetlands and estuaries. Second state of 

the carbon cycle report (SOCCR2): A sustained assessment report. doi: 10.7930/soccr2.2018.ch15 



5 

 

Chapter 1: Field Sampling and Observations in the Agua Hedionda Lagoon 

1.1. Abstract  

Estuarine environments are uniquely diverse coastal subsystems located at the land-river-ocean 

interface.  Across different systems, carbon dioxide (CO2) parameters and anthropogenic inputs can vary 

greatly given the heterogeneity between individual estuarine systems, which makes it difficult to 

characterize coastal ocean systems without continuous, long-term observations. The Agua Hedionda 

Lagoon (AHL) is a highly dynamic lagoon subject to impacts from the surrounding urbanization, land 

use, and densely populated community. This chapter will focus on the technical details of the 

observational techniques and sensors used for the collection of data at the AHL. It will also describe the 

various methods used for quality control (QC) and processing of the collected data from a continuous 

flow-through carbon dioxide (CO2) instrument and in-situ mooring sensors. AHL data was collected 

intermittently from 2015 through 2018 with the CO2 instrument and during periods from 2018 to 2020 

with the in-situ sensors. Descriptions of each instrument including measurements made and sampling 

mechanisms are provided, as they were an integral part of the data collection and are specific to the 

instruments used in this research. In addition, the steps taken for QC and data processing required for 

each dataset are described in detail below.  

1.2. Introduction 

Understanding the various physical and chemical processes within a coastal ecosystem requires 

obtaining quality data with a certain level of accuracy (Dickson, 2010; Pierrot et al., 2009). There are 

standard practices and guidelines for the collection and processing of oceanographic data, in order to 

achieve a dataset with a certain level of uncertainty. For this research, the uncertainties achieved were in 

line with weather objective goals, which can be used to establish baseline conditions and address many 

aspects of the carbon budget and biogeochemical parameters in highly variable coastal marine 

environments. Field sampling was conducted at the Agua Hedionda Lagoon (AHL) (Figure 1.1) and 

implemented the use of two instruments to achieve long-term and continuous measurements within a 

coastal environment. 
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The automated CO2 instrument (Figure 1.2) was in operation at the AHL (Figure 1.1) from 2015-

2018 and provided long term, continuous measurements including partial pressure of CO2 (pCO2), 

dissolved inorganic carbon (DIC), pH, temperature, and salinity. The in situ mooring sensors (Figure 1.3), 

which included a SeapHOx and miniDOT were deployed at various locations within the AHL at different 

periods from 2018-2020 (see Table 1.1) and made biogeochemical measurements, which included 

dissolved oxygen (DO), temperature, salinity, pH, and pressure. The following sections are dedicated to 

describing the various steps taken to QC and process data to obtain high quality datasets used in the 

analyses performed in chapters 2 and 3 of this dissertation. 

1.3. Materials and Methods  

1.3.1. CO2 Instrument Sampling 

 The CO2 instrument (Figure 1.2) is an autonomous instrument developed by Prof. Burke Hales at 

OSU, which measures the aqueous CO2 parameters in a continuous flowing seawater stream. The 

measured CO2 parameters include pCO2, DIC, pH, temperature, salinity, total alkalinity (AT), and the 

saturation state of aragonite (ΩArag). This system was installed at the Carlsbad Aquafarm (CAF), located 

in the outer basin of the AHL with an intake near the docks of the CAF at 1 m below the surface (Figure 

1.1). The lagoon water was pumped through about 25 m of PVC piping to a small lab at the CAF where 

the CO2 instrument was housed. The incoming lagoon water is first filtered through a nylon screen T-

strainer to remove large debris from the sample water, which then passes through a line containing a 

Honeywell 4905 conductivity probe and a Honeywell Durafet sensor to obtain in situ salinity, 

temperature, and pH (total scale) measurements. Water then enters an enclosed headspace showerhead 

equilibrator, which contains a bubbling tube to facilitate equilibration of the CO2 between the headspace 

and water (Fairchild and Hales, 2021, Hales et al., 2004). The CO2 gas is circulated to a LI-820A non-

dispersive infrared (NDIR) detector to measure the mole fraction of the CO2 (xCO2) gas. At hourly 

intervals, the instrument switches to DIC mode and the sample water flows through a separate DIC 

sample line where it passes through a stainless-steel tangential flow filter to remove micron size particles 

from the sample water. The filtered sample water is then acidified with 10% hydrochloric acid (HCl) and 
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is passed through a mixing coil. The acidified sample water flows through the inside of a hydrophobic gas 

permeable membrane contactor (Liqui-Cel, G543), while simultaneously, a CO2 free gas flows opposite 

of the liquid stream at a specified flow rate on the outside of the membrane contactor. The effluent CO2 

gas is extracted, then dried, and directed to the NDIR detector to determine the xCO2 (Bandstra et al., 

2006) and obtain the DIC of the sample water. Additional CO2 system calculations for AT and Ω for 

aragonite and calcite are performed within the LabView program which operates through the instrument’s 

computer. The sample frequency and storage of the data were specified at 15 sec intervals for in situ and 

pCO2 data, and hourly intervals for DIC and calculated parameters.  

The CO2 system required regular maintenance including daily cleaning of the T-strainer, monthly 

flushing of the sample lines with bleach and hydrochloric acid to remove biological material and build-up 

within the tubing, and bi-monthly liquid DIC standard and HCl acid preparation. The system was also 

monitored daily via remote desktop to monitor real-time data to identify any discrepancies or issues with 

the measurements. The data collected using this instrument occurred from 2015-2018 with many gaps and 

inconsistencies in data over the first several years due to repairs and power failures and in Jan 2019, the 

instrument was taken offline. Data collected from Dec 2017 to Dec 2018 provided the most consistent 

dataset, which was used in the following, chapter 2 analyses.  

1.3.2. In-situ Mooring Sampling 

The in-situ mooring consists of two primary sensors that measure multiple biogeochemical 

properties. The diagram in Figure 1.3 provides the schematic of the deployed mooring, which includes an 

oxygen-temperature logger (PME miniDOT) to measure temperature and dissolved oxygen (DO) at the 

surface and a SeapHOx sensor package to measure pH (Honeywell Durafet), DO (Aanderaa optode), 

temperature and salinity (Sea-Bird SBE-37) and pressure (Honeywell M5200 series) at depth (Bresnahan 

et al., 2014). Both sensors were set to make measurements at 30-minute intervals. The surface buoy 

shown in the diagram, houses a cellular modem and controller connected directly to the SeapHOx, 

allowing hourly updated, real-time data access (Bresnahan et al., 2020). The SeapHOx data were made 

publicly available by the Southern California Coastal Ocean Observing System (SCCOOS) through an 
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online database (ERDDAP): see https://sccoos.org/ocean-acidification/ and 

https://erddap.sccoos.org/erddap/tabledap/pH-AHL.html. The lagoon moorings were deployed in the 

outer basin and middle basin, and an additional mooring was deployed with Prof. Uwe Send’s group 

approximately 1 mile offshore from the AHL, which had a slightly different design as it was deployed in 

the Ocean, but included the same sensors shown in Figure 1.3. Mooring deployment began August 2018 

with dates and lengths of deployment shown in Table 1.1. The data were monitored using the real-time 

observation capabilities to determine when recovery was necessary and on average, was after the sensor 

had been deployed for 3-4 months, except in 2020 where the mooring was deployed closer to 5-months 

due to the pandemic restrictions. Locations of the deployments were chosen based on several factors 

including accessibility, depth, and flow (ideally low to moderate in order to minimize mooring drag due 

to tidal current).  

1.3.3. Data Processing and QC 

CO2 Instrument 

This section describes the detailed steps that were implemented for the QC and processing of the 

dataset used in chapter 2.  The CO2 instrument undergoes a real-time automated calibration sequence 

using CO2 gas and DIC liquid standards every 6 hours. The concentrations of the set of gas standards are 

200, 800, and 1500 µatm which were purchased from Scott-Marin and provided in gas cylinders. The set 

of DIC liquid standards contained a solution mixture of ultrapure water (>18 MΩ resistivity), sodium 

bicarbonate-NaHCO3, oven dried sodium carbonate-Na2CO3 and 0.1 M HCl. The standards were 

gravimetrically prepared at the Scripps Institution of Oceanography (SIO) in concentrations of 1900, 

2100, and 2300 µmol kg-1 every 12-14 days and stored in custom made gas impermeable Mylar bags 

(IMPAK P75C0919). As further described in (Fairchild and Hales, 2021), during a gas calibration 

sequence, a linear regression is performed in real-time to verify the accuracy of the NDIR detector and 

apply a correction to the respective pCO2 data to account for any offsets in the raw xCO2 measurements. 

It is also during the gas standard sequence that an atmospheric CO2 measurement is made from a separate 
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line that extends outside. The liquid standard sequence occurs directly after the gas standards and also 

produces a linear regression in real-time. While the gas standard regressions typically achieved high 

linearity with R2 = 0.999 or better, the liquid standards frequently experienced R2  ≤ 0.999.  In cases 

where linearity was lower in the liquid standard regression, it was identified that when the liquid standard 

bags became too low or if air was trapped inside the bag, air bubbles were able to enter the line. This 

resulted in additional QC steps in post processing which are described below.  

Bottle samples were collected monthly from the main sample water line of the instrument into 

250 mL borosilicate bottles (3x rinsed and filled) for laboratory analyses on the benchtop density meter 

(Mettler-Toledo DM45) which was calibrated with seawater and an air measurement. The density 

measurement was converted to salinity (PSU) using the density conversion function from the GSW 

toolbox in MATLAB. The recorded instrument salinity and density meter salinity were compared and any 

difference between the two was applied via remote desktop access where the adjusted data were then 

automatically stored in an output file. Salinity corrections were only applied if the check sample salinity 

was off by more than ±0.05. Bottle samples were also collected and poisoned with mercuric chloride for 

DIC and pH validation. A total of 4 bottle samples were collected and analyzed on the benchtop 

spectrophotometric pH system and the DIC analyzer which were compared against certified reference 

materials (CRMs) (Table 1.2). A pH offset of -0.18 was applied directly to the durafet sensor output in 

April 2018 based on bottle sample analyses and this offset was also applied to the Dec. 2017 – April 2018 

to bring the full pH timeseries into agreement (Figure 1.4).  Bottle samples analyzed in 2019 determined 

an insignificant drift in pH (< 0.005) and no additional pH offsets were applied.  

As mentioned previously, there were additional steps required to QC the DIC data based on bad 

calibration data that were applied to the raw DIC data, resulting in significant step changes (Figure 1.5). A 

monthly running average of the calibration data from liquid and gas standards, which include the slope 

and intercept, were taken for the full year, and the DIC is recalculated using the following equation,  
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𝐷𝐼𝐶 =
(𝒙𝑪𝑶𝟐 ×𝒈𝒄𝒂𝒍𝒎+𝒈𝒄𝒂𝒍𝒃)(𝒍𝒊𝒒𝒄𝒂𝒍𝒎+𝒍𝒊𝒒𝒄𝒂𝒍𝒃)

𝝆𝒔𝒘
    (1.1) 

 

where xCO2 is the mole fraction of CO2 measured during hourly DIC measurements, multiplied by the 

sum of the gas and liquid calibration slopes and intercepts, and divided by the seawater density. This 

leveled out the DIC date to more reasonable values. The remaining step taken to QC the DIC data utilized 

the analyses of bottle samples described above, on the benchtop DIC analyzer, which was calibrated using 

CRM’s. Three bottle samples were analyzed and revealed an offset in the corrected instrument DIC and 

20 µmol kg-1  were added to the final DIC dataset to account for the difference (Figure 1.6). The initial 

instrument pCO2 measurements were determined to be compromised (Figure 1.7) due to an air leak and 

the final pCO2 dataset analyzed in this study was derived in CO2SYS from the QC’d DIC and pH data. 

The additional calculated parameters including AT  and Ωarag were also recalculated in CO2SYS using the 

QC’d DIC and pH data (Figure 1.8 and 1.9).  

Prior to analyses, all data were processed using a 30-d low pass filter (LPF) using the filtfilt 

MATLAB function to isolate the seasonal cycle and a 24 hr LPF to remove the daily variability and or 

noise, except temperature, which required a 7-d LPF due to diel temperature amplitude measured by the 

instrument being unduly high. The source of this problem was a delivery line from the lagoon to the 

instrument, extended across the roof of a building where the line underwent excessive heating throughout 

the day.  Based on in situ mooring measurements in the lagoon the LPF instrument temperature agrees 

with average lagoon temperature, making the LPF temperature a viable approximation of the lagoon.  

In-situ Mooring  

While additional data were collected (see Figure 1.10), the following steps described are those 

applied to outer basin sampling from the SeapHOx during Nov-Dec 2018 and Feb-June 2020, which are 

used in chapter 3 analyses. Prior to each mooring deployment, the SeapHOx undergoes pre-conditioning 

to test the sensor accuracy and obtain a set of internal calibration coefficients, which are used to derive 

the pH upon recovery of the mooring (Bresnahan 2014). Due to a discrepancy between the January 2020 
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and August 2019 calibration points, the previous calibration points from 2019 were used in the initial 

calculations of pH, which produced more reasonable pH values based on additional data observed in the 

lagoon (Figure 1.11). Initial processing of the raw, 30-minute data included interpolating data to a 

common hourly timestamp. It was also observed for 2020 data that during the first two weeks the sensors 

were still conditioning (based on measurements being out of agreement with the remaining time series) 

and this period was removed to begin the time series on Feb. 5th. Raw oxygen data were salinity 

corrected, using data from the SBE-37 following the equation from the Aanderaa manufacturer manual,  

 

𝑂2𝐶 = [𝑂2] ∙ 𝑒(𝑆−𝑆0)(𝐵0+ 𝐵1𝑇𝑆 +𝐵2 𝑇𝑆
2+𝐵3𝑇𝑆

3)+𝐶0(𝑆2−𝑆0
2)     (1.2) 

 

where, S is measured salinity, and B0,1,2,3 and Co are constants and Ts is measured temperature converted to 

Kelvin. The final DO dataset used in the chapter 3 analyses were converted to mg L-1. 

Validation samples were collected during the recovery of the mooring at the beginning of 2019 

but were not possible in 2020 due to restrictions associated with the pandemic. For a bottle validation 

sample, a Niskin was filled near the sensor and then subsampled into a 250 ml borosilicate bottle and 

poisoned with mercuric chloride (HgCl2). The sample was later analyzed for pH using a benchtop 

spectrophotometric pH system. This bottle sample measurement is used to adjust the mooring pH values 

by applying a constant offset determined at the time of sampling, which is corrected to in situ temperature 

from the mooring at the time of bottle collection. This offset was applied to the 2018 dataset, but because 

the pandemic did not allow for validation samples during the 2020 deployment, the pH sensor offset 

determined in 2019 was also carried forward for the 2020 dataset (the same Durafet pH sensor was used 

in the SeapHOx). Based on our previous experience, we estimate the accuracy of the time series to be 

0.05 pH, and in line with the manufacturer’s stated accuracy for oxygen (±2 mmol m-3) and salinity 

(±0.003).  
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CO2 system calculations to derive DIC and pCO2 were performed using CO2SYS for MATLAB 

(van Heuven et al., 2011), using equilibrium constants as recommended by (Dickson and Millero, 1987). 

Phosphate and silicate as inputs to CO2SYS were set to zero because, although they were not measured in 

this study, a brief campaign in 2016 observed concentrations in these nutrients at levels (maximum 

observed: Phosphate = .35 µmol L-1; Silicate = 6.7 µmol L-1) that are near-negligible in their effect on pH 

(~0.001 pH unit). The derived parameters use measured temperature, salinity, pH, and a local AT-S 

relationship was established from data recorded during a runoff event in 2018 where five paired pH and 

DIC measurements were used to establish the relationship: AT (µmol kg-1) = 29.2×S+1238 (RMSE = 6.3, 

R2 = .98, n = 5).  

1.4. Conclusions 

 The data processing involves a series of straightforward steps that currently require a fair amount 

of manual data manipulation.  Automating this process on any level will increase our efficiency, given 

that data QC were a critical component of obtaining finalized datasets for analyses in chapters 2 and 3. 

Although there were several methods utilized, the collection and analyses of bottle samples provided the 

most accurate source for determining and applying offsets in pH and DIC space. The CO2 instrument’s 

automated slope-intercept corrections for pCO2 and DIC through the standard calibration sequences were 

a useful step for implementing data QC in real-time. However, the step changes in DIC measurements 

that continually arose as a result of a bad liquid standard calibration resulted in additional QC steps, 

which under ideal circumstances would not have been required. This issue was unusual and was in most 

cases, a result of bags being depleted before replacement liquid standards were ready. An additional and 

likely explanation is that the positioning of the bags (laying flat, see Figure 1.2) impacted the flow from 

out of the bag during a liquid standard sequence or in some cases due to bags not being completely free of 

excess air after being filled with the standards. While this issue was inconvenient, the real-time access to 

the data through remote desktop allowed this issue to be seen and addressed in a timely manner. 

Unfortunately, the gas leak issues that arose with pCO2 were not identifiable remotely, but the issues were 

potentially preventable if there had been additional steps in place to check and compare seawater pCO2 
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and atmospheric CO2 measurements on a regular basis by plotting these specific parameters. This 

additional check would have allowed the operator to see that seawater pCO2 levels were very similar to 

atmospheric pCO2 which is a clear indicator of a leak (e.g., pCO2 gas escaping before being measured on 

the NDIR detector) or other issue that needs to be addressed. While, certain checks are implemented to 

identify leaks, they are difficult to pinpoint and thus can go on for long periods as in the case of 2018 

measurements.      

A total of three sensors were used to obtain field measurements with each sensor requiring 

different steps for downloading and processing data. Streamlining steps to incorporate multiple sensors, 

specifically for merging, averaging, and interpolating data to a common timestamp is a particularly 

critical first step. Future sampling efforts would benefit from a more standardized process since 

timestamp errors can be particularly problematic and difficult to identify immediately. The in-situ 

mooring did not require the same degree of technical oversight when deployed, compared to the CO2 

instrument. One downfall, regarding data QC was that accessibility to the mooring was reliant on CAF 

staff, which prevented more bottle samples to be collected during deployments. The mooring design 

element, which allowed the almost real-time data access was a novel feature that provided a good 

indicator of battery life and sensor activity. This feature enabled better efficiency in determining when 

sensors or batteries needed to be replaced rather than waiting until the recovery of the instrument. As 

possibly the first major sampling effort at the AHL utilizing multiple sensors, over several years, it was a 

major feat that resulted in several valuable datasets that were made publicly available.  
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1.6. Tables and Figures 

 

Table 1.1. Lists the locations and depth of mooring sensor deployments, periods deployed, and 

measurements made. 

Location Description Measurements Sensor Start date Days deployed 

Outer Lagoon         

1 m below surface pCO2, DIC, pH, S, T BoL 11/1/2015 1,192 

6-7 m below surface S, pH, DO, T, P SeapHOx1 8/20/2018 73 

10 m below surface S, pH, DO, T, P SeapHOx2 11/2/2018 69 

surface DO, T miniDOT-1 8/20/2018 288 

5-6 m below surface S, pH, DO, T, P SeapHOx2 1/22/2020 146 

Middle Lagoon 
    

6-7 m below surface S, pH, DO, T, P SeapHOx 9/21/2018 112 

surface DO, T miniDOT-2 9/21/2018 112 

surface S, T CTD 9/21/2018 112 

Carlsbad Offshore 
    

6-7 m below surface S, pH, DO, T, P SeapHOx 8/17/2018 285 
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Table 1.2. Provides CO2 instrument bottle sample information and lab analyses results for DIC and pH 

along with the corrections applied. 
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Figure 1.1. Map of AHL including locations of the sensors (red X), features of the lagoon and sites of 

interest, which include the Carlsbad Aquafarm (CAF), Encina Power Station (EPS), Desalination Plant 

(DP), Strawberry fields (SF), Recreational water sports and activities (RS), and the Hubbs-SeaWorld Fish 

Hatchery (HFH). Image from Google Earth.  
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Figure 1.2. Image of CO2 instrument setup at the CAF. 
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Figure 1.3. Schematic of in situ mooring design including sensors, hardware, and cell modem used in 

real-time data acquisition 
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Figure 1.4. Shows the pH data measured from the CO2 instrument. Raw data is shown in black, and data 

corrected based on a bottle sample analysis is shown in red. 
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Figure 1.5. Figure of DIC measured on the CO2 instrument prior to processing with monthly averaged 

calibrations and bottle sample offset.  
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Figure 1.6. Figure of corrected DIC with 24-hr LPF in red and no filter in black. Monthly averaged 

calibration data and the bottle sample offset has been applied. 
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Figure 1.7. Plot of measured pCO2 and atmospheric CO2 from the CO2 instrument.  
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Figure 1.8. Example of 2-month period of QC’d data collected from all the in situ mooring sensors at the 

AHL. 
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Figure 1.9. Figure showing the 2020 pH measured on the outer basin SeapHOx. Black shows the pH 

calculated using the 2019 calibration point (used in Ch.3 analyses) and the red showing the 2019 

calibration point calculation. 
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Figure 1.10. Figure showing initial derived AT (black) based on CO2 instrument measurements and the 

recalculated AT (red) after data QC and processing. 
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Figure 1.11. Figure showing initial derived ΩAr (black) based on the CO2 instruments raw measurements 

and the recalculated ΩAr (red) after data QC and processing. 
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Chapter 2. Physical and Biological Controls on the Seasonal CO2 Cycle in the and Agua 

Hedionda Lagoon, Carlsbad, CA 

2.1. Abstract 

The Agua Hedionda Lagoon (AHL), a tidal estuary located on the southern California coast, 

supports a diverse ecosystem while serving numerous recreation activities, a marine fish hatchery, a 

shellfish hatchery (Carlsbad Aquafarm, CAF), and the largest desalination plant in the western 

hemisphere.  In this work, a one-year time series of carbon dioxide (CO2) data is used to establish 

baseline and seasonal average inorganic carbon conditions in the AHL.  Based on a mass balance model 

of the lagoon, we propose that the outer basin of AHL is a source of inorganic carbon to the adjacent 

ocean, through advective export, at a rate of 2.4 × 106 mol C yr-1, and a source of CO2 to the atmosphere 

of 0.17 × 106 mol C yr-1 (0.9 mol C m-2 yr-1 ), implying a net heterotrophic system on the order  of 2.5 × 

106 mol C yr-1 (12 mol C m-2 yr-1 ). Although heterotrophic on average, the lagoon may shift into a net 

autotrophic state during the late summer. The combination of drivers including advection, ecosystem 

metabolism, and temperature act to balance a seasonal cycle in properties (pH, pCO2 and CaCO3 

saturation state) of importance to both natural and human-made components of this complex environment. 

2.2. Introduction 

Semi-enclosed coastal systems (e.g. estuaries, lagoons, intertidal zones, wetlands) are important 

to a wide number of natural processes in addition to societal and commercial uses (Ramesh et al., 2015).  

In many cases, the proximity to civilization makes the ecosystems operating within these coastal systems 

highly influenced by anthropogenic effects such as eutrophication from nutrient loading and habitat loss 

due to land use change (Bauer et al., 2013; Howarth et al., 2011; Windham-Myers et al., 2018).  In 

addition to these long-recognized issues, climate change (warming, acidification, deoxygenation) in the 

coastal ocean (Hauri et al., 2009; Gruber et al., 2012; Kessouri et al., 2021) and shallow coastal systems 

(Feely et al., 2010; Waldbusser et al., 2014; Cai et al., 2021) is now a well-established area of research.  
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Over the past decade, the US Pacific Northwest has been recognized as a bellwether in the study 

of coastal acidification (Hales et al., 2005; Feely et al., 2008; Evans et al., 2011).  Of particular note, an 

upwelling event in 2009 led to unambiguous demonstration that oyster larval mortality was impacted by 

abnormally low saturation state of the intake water at a commercial shellfish hatchery (Barton et al., 

2012).  This finding, along with other growing evidence of organismal sensitivity to increasing dissolved 

CO2 and acidification (Doney et al., 2020) has led to the widespread recognition of the need to better 

observe the coastal ocean carbonate system globally. In particular, there is a need to understand the 

carbonate system within semi-enclosed coastal lagoons and estuaries and their net fluxes to the coastal 

ocean and to the atmosphere (e.g., Cai, 2011; Wang et al., 2016). Existing studies are limited and those 

that exist have a wide range of flux estimates and thus are not well constrained (Cai, 2011; Paulsen et al., 

2018).  

In parallel with OA research, coastal ocean observing systems are steadily growing in breadth and 

autonomy (Tilbrook et al., 2019; Barth et al., 2019); and coastal management and stewardship programs 

such as the National Estuarine Research Reserves (NERR) increasingly rely on observing system data to 

develop their strategies (NOAA, 2017).  Among these is an initiative by NOAA to partner with a 

selection of shellfish growers in an effort to better understand the baseline conditions of the growers’ 

local lagoons and estuarine systems (Barton et al., 2015; Hales et al., 2017).  A central piece of equipment 

that has been deployed in this effort is a continuous flow multiparameter instrument developed at Oregon 

State University (OSU) (Hales et al., 2004; Bandstra et al., 2006; Fairchild and Hales, 2021).  This system 

characterizes the full suite of CO2 chemistry parameters (partial pressure of CO2 - pCO2, total dissolved 

inorganic carbon - DIC, pH, total alkalinity - AT, and CaCO3 saturation state - Ω) either directly or by 

derivation using well-established thermodynamic relationships. 

The Agua Hedionda Lagoon (AHL) is one of six tidal estuaries located along the northern San 

Diego County coast (Beller et al., 2014), although it is characterized as a low-inflow estuary, an estuarine 

type found worldwide. Low-inflow estuaries (LIEs) are estuaries where the total freshwater inflow is 
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small, episodic, and/or seasonal. LIEs are found throughout Southern California (e.g., Southern California 

Wetlands Recovery Project, 2018; Doughty et al., 2018), but also worldwide in regions with steep 

watersheds and/or Mediterranean climates (Largier et al. 1997; Largier et al. 2010).  

In this work we analyze and interpret a full year of CO2 system observations at the AHL, 

collected using the OSU continuous flow system.  Salinity data are first used in a simple mixing model to 

establish a robust estimate of the mean flushing time of the lagoon. Flushing time is then used in a mass 

balance of the outer basin to estimate the rate of advection and net ecosystem metabolism (NEM).  In 

addition to presenting average seasonality in all CO2 parameters mentioned above, the results of the mass 

balance are used to perform a decomposition of pH, pCO2 and Ω.  We found the decomposition to be an 

instructive step in visualizing how the effect of each driver (temperature, advection, NEM, gas exchange) 

evolves throughout the year to determine the composite average and seasonal cycle of CO2 in the AHL. 

Given the need to understand semi-enclosed coastal carbonate chemistry, this analysis contributes to the 

growing body of knowledge on estuarine carbonate chemistry, but also adds specifically to understanding 

these dynamics within LIEs. 

2.3. Materials and Methods 

2.3.1. Study Site  

 The AHL, Carlsbad, CA, comprises three interconnected lagoons, commonly referred to as the 

outer (connected to the ocean), middle, and inner basins. The original wetland was converted into the 

present lagoon structure in 1954 by the Encina Power Station (EPS) and is maintained in its present form 

by semi-annual dredging. The AHL consists of >75% open water with the remainder being marsh and 

mudflats (Beller et al., 2014). Water depths range from very shallow (< 1 m) up to approximately 14 m in 

certain areas, with an average depth of 8 m (Elwany et al., 2005). The ocean, connected by an inlet on the 

western side of the outer basin, dominates physical forcing in all three basins, with tidal lags of up to 4 

hours at the head of the lagoon where Agua Hedionda Creek enters (Jenkins and Wasyl, 2006). The inner 
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basin receives episodic freshwater input from Agua Hedionda Creek, predominantly in winter and spring 

during rain events. During the rest of the year the creek is dry, and the lagoon is purely tidal.  

Located in an urbanized area, the AHL is a highly utilized and popular destination for the 

Carlsbad community and tourists; and provides a thriving ecosystem for diverse species of plants and 

animals. The two primary industrial features include the EPS and the Carlsbad Desalination Plant, both of 

which rely on water intake from the outer basin for once-through cooling of the power plant boilers and as 

desalination source water. The EPS was decommissioned Jan. 2019 but may have operated intermittently 

during the course of this study, drawing water from the outer lagoon. The desalination plant diverts from 

the EPS intake and its byproduct (brine) outflow is released through the EPS discharge channel into a 

small basin connected directly to the ocean, and adjacent to the outer basin (Figure 2.1).  Total intake 

volume of the EPS and desalination facilities is variable and at peak periods may represent a significant 

fraction of the daily tidal prism (Elwany et al., 2005; City of Carlsbad, 2005). Other features of the AHL 

include agriculture (primarily strawberry fields bordering the inner basin), the Hubbs Marine Fish 

Hatchery, and the Carlsbad Aquafarm (CAF) - a sustainable mussel and oyster farm, which operates in 

the outer basin. Both the fish hatchery and aquafarm (which grows calcifying organisms) rely on adequate 

lagoon flushing by the ambient ocean in order to maintain oxygen, pH and calcium carbonate saturation 

state (Ω) above thresholds critical to growth. The CAF was one of the sites along the Pacific West Coast 

provided with the automated instrument (described above) through NOAA’s Integrated Ocean Observing 

System (IOOS) program for real-time monitoring of the CO2  system by local stakeholders and shellfish 

growers. In collaboration with the IOOS regional associations (NANOOS, AOOS, CeNCOOS, and 

SCCOOS), the common goal of the instrument was to provide real-time information on the CO2 content 

of the waters along the coastal ocean and its impact on carbonate organisms at the aquafarm intake. 

2.3.2. Sampling 

Continuous pCO2 and DIC measurements were carried out using the automated instrument 

supplied by OSU. The instrument’s water intake line was positioned near the CAF facility docks (Figure 

2.1) approximately 1 m below the surface. The lagoon water was pumped through about 25 m of PVC 
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piping to the instrument, which was housed in a small lab at the CAF.  The incoming water is first filtered 

through a nylon screen T-strainer to remove large debris from the water, which then passes through a line 

containing a Honeywell 4905 conductivity probe and a Honeywell Durafet sensor to obtain salinity, 

temperature, and pH measurements. Water then enters an enclosed headspace showerhead equilibrator, 

which contains a bubbling tube to facilitate equilibration of the CO2 between the headspace and water 

(Fairchild and Hales, 2021, Hales et al., 2004). The CO2 gas is circulated to a LI-820A non-dispersive 

infrared (NDIR) detector to measure the mole fraction of the CO2 (xCO2) gas. At hourly intervals, the 

instrument switches to DIC mode and the sample water flows through a separate DIC sample line where it 

passes through a stainless-steel tangential flow filter to remove micron size particles from the sample 

water. The filtered sample water is then acidified with 10% hydrochloric acid and is passed through a 

mixing coil. CO2 is extracted in a hydrophobic gas permeable membrane contactor (Liqui-Cel, G543), 

where the evolved CO2 gas stream is dried and directed to the NDIR detector to determine the xCO2 

(Bandstra et al., 2006). Additional CO2 system calculations for seawater AT and Ω for aragonite and 

calcite are performed within the LabView program which operates through the instrument’s computer. 

The sample frequency and data storage were specified at 15 sec intervals for in situ and pCO2 data, and 

hourly intervals for DIC and calculated parameters. This study reflects data collected during a 365 day 

period of minimal instrument interruption from Dec 6, 2017 to Dec 5, 2018.    

2.3.3. Instrument Calibration 

The instrument’s automated calibration sequence using CO2 gas and DIC liquid standards occurs 

every 6 hours. The set of gas standards were purchased from Scott-Marin at concentrations of 200, 800, 

and 1500 µatm stored in gas cylinders. The set of DIC liquid standards contained a solution mixture of 

ultrapure water (>18 MΩ resistivity), NaHCO3, oven dried Na2CO3 and 0.1 M HCl. The standards were 

gravimetrically prepared at the Scripps Institution of Oceanography (SIO) in concentrations of 1900, 

2100, and 2300 µmol kg-1 every 12-14 days and stored in custom made gas impermeable Mylar bags 

(IMPAK P75C0919). As further described in (Fairchild and Hales, 2021), during a gas calibration 

sequence, a linear regression is performed in real-time to verify the accuracy of the NDIR and apply a 
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correction to the respective pCO2 data to account for any offsets in the raw xCO2 measurements. It is also 

during the gas standard sequence that an atmospheric CO2 measurement is made from a separate line that 

extends outside (Figure 2.2A). The liquid standard sequence occurs directly after the gas standards and 

also produces a linear regression in real-time. While the gas standard regressions typically achieved high 

linearity with R2 = 0.999 or better, the liquid standards experienced R2  ≤ 0.999.  In cases where linearity 

was lower in the liquid standard regression, it was identified that when the liquid standard bags became 

too low, air bubbles were able to enter the line. To address this issue, a monthly averaged liquid standard 

and gas standard calibration was applied to the raw xCO2 detector data in post processing to achieve 

corrected DIC data.  

Bottle samples were collected monthly from the main sample water line of the instrument into 

250 mL borosilicate bottles (3x rinsed and filled) for laboratory analyses on the benchtop density meter 

(Mettler-Toledo DM45). The recorded instrument salinity and density meter salinity were compared and 

any difference between the two was applied via remote desktop access where the adjusted data were then 

automatically stored in an output file. Salinity corrections were only applied if the check sample salinity 

was off by more than ±0.05. Bottle samples were also collected and poisoned with mercuric chloride for 

DIC and pH validation. During this study, a total of 4 bottle samples were collected and analyzed on the 

benchtop spectrophotometric pH system and the DIC analyzer which were compared against certified 

reference materials (CRMs). A pH offset of -0.18 was applied based on an April 2018 bottle sample 

comparison. Samples analyzed at the end of 2018 determined an insignificant drift in pH (< 0.005) and no 

additional pH offsets were applied. DIC laboratory analysis of three bottle samples did reveal an offset in 

the instrument DIC of 29 ± 16 µmol kg-1 (n = 3), which was added to the final DIC dataset to account for 

the difference. The initial instrument pCO2 measurements were determined to be compromised due to an 

air leak and the final pCO2 dataset analyzed in this study was derived in CO2SYS from QC’d DIC and pH 

data. The additional calculated parameters including AT  and Ωarag were recalculated in CO2SYS using 

corrected pH and corrected DIC.   
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2.3.4. Data Processing 

Data from the flow-through instrument pCO2, pH, salinity, and temperature were interpolated to 

hourly (the frequency of DIC data) and, combined with other publicly-available data including wind 

speed and rain, both obtained from the NOAA climate database for the weather station at McClellan-

Palomar airport in Carlsbad, CA approximately four miles from the AHL 

(https://www.ncdc.noaa.gov/cdo-web/datasets/LCD/stations/WBAN:03177/detail). All data were 

interpolated onto a common 1-hour time stamp. 

All data were processed using a 30-d or 24-hr low pass filter (LPF, MATLAB filtfilt zero phase 

filter) to isolate the seasonal cycle in both temperature and DIC (Figure 2.2).  The high frequency time 

series undoubtedly contains additional information, yet we chose to focus this analysis on the LPF data 

because: 1) mixing in tidal systems becomes increasingly difficult to parameterize as the model 

approaches tidal timescales; and data at these timescales (e.g. flow rates, bathymetry, etc.) were not 

available, and 2) some of the data were determined to be compromised in terms of noise and the LPF is 

capable of eliminating this. In regard to the latter, instrument salinity exhibited pronounced noise during 

the first 4-months of the time series due to an electrical ground fault and step changes that may have been 

due to fouling. The LPF averages over these errors but consequently removes real signals associated with 

rain events.  Without high quality salinity data, it would be impossible to constrain a high-resolution 

hydrodynamic model of this system.  In addition to salinity, diel temperature amplitude measured by the 

instrument was unduly high. The source of this problem was a delivery line from the lagoon to the 

instrument, extended across the roof of a building where the line underwent excessive heating and cooling 

due to its contact with the atmosphere.  Based on in situ measurements from SeapHOx sensors in the 

lagoon (Shipley, 2022) we were able to determine that the LPF instrument temperature agrees with 

average lagoon temperature, making the LPF temperature a viable approximation of the lagoon 

temperature. Correcting the hourly instrument data to reflect in situ temperature is possible, given a 

continuous measurement of in situ temperature. A validated in situ temperature was not available 

https://www.ncdc.noaa.gov/cdo-web/datasets/LCD/stations/WBAN:03177/detail
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throughout the full span of the 365 d time series presented here, and though beyond the scope of this 

analysis, such data, if available, may provide additional information for further analysis of this dataset.  

2.3.5. Mixing Model 

To model the annual CO2 cycle, based on the LPF time series, it is necessary to first approximate 

the average rate of exchange between the lagoon and the ocean.  In order to accomplish this, we focus on 

a one-month period during Dec 2018 where two significant rain events occurred while the salinity 

measurement was functional and accurate. Rain events also took place during the previous winter of 

2017/2018 (Figure 2.2C), but, as noted above, this period also coincided with noisy salinity data that 

would not facilitate a mixing model. 

During Dec 2018, mixing is approximated using the tidal prism equation (Monsen et al., 2002) 

𝑇𝑓 =
𝑉𝑜𝑢𝑡𝑒𝑟×𝑇𝑝𝑒𝑟𝑖𝑜𝑑

(1−𝑅)𝑉𝑝𝑟𝑖𝑠𝑚
     (2.1) 

Where Tf is flushing time, Vouter is the average volume of the outer lagoon, Tperiod is the tidal period (set to 

24hr here as this is the largest component even though tides are mixed semidiurnal), Vprism is the tidal 

prism of the outer lagoon and R is the return flow factor that accounts for several processes, some poorly 

constrained, including inefficient mixing and intake volumes of the EPS and desalination plant. Vprism is 

calculated as the mean daily tidal range (0.87 m) multiplied by the mean area of the outer lagoon (2×105 

m2).  The return flow factor is the average of flood and ebb return factors: R = (RF + RE)/2, that are 

determined using a 4-box model including three boxes representing the lagoon and one for the ocean 

(Figure 2.3). In the 4-box model, Equation 2a and 2b represent the outer lagoon (superscript 1) and are 

used to calculate mixing between it, the adjacent ocean (superscript 0) and the middle lagoon (superscript 

2) during the flood (Equation 2.2a) and ebb tide (Equation 2.2b).  

 

𝑆𝑡
1 =

𝑆𝑡−1
1 𝑉𝑡−1

1 +𝑑𝑉𝑡
1(1−𝑅𝐹)𝑆𝑡−1

0 +𝑑𝑉𝑡
1𝑅𝐹𝑆𝑡−1

1 −𝑑𝑉𝑡
2𝑆𝑡−1

1

𝑉𝑡−1
1 +𝑑𝑉𝑡

1− 𝑑𝑉𝑡
1+𝑉𝑟

      (2.2a) 

𝑆𝑡
1 =

𝑆𝑡−1
1 𝑉𝑡−1

1 −𝑑𝑉𝑡
1𝑆𝑡−1

1 +𝑑𝑉𝑡
2(1−𝑅𝐸)𝑆𝑡−1

2 +𝑑𝑉𝑡
2𝑅𝐸𝑆𝑡−1

1

𝑉𝑡−1
1 −𝑑𝑉𝑡

1+ 𝑑𝑉𝑡
2+𝑉𝑟

      (2.2b) 
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Similar equations (not shown) are used for the middle and inner lagoons. For Equation 2.2a,b, 

superscripts represent box number, t is time step and dV is calculated from change in tide height 

multiplied by the area of the respective box. Return flow factors are only considered for the outer lagoon 

(i.e. for the middle and inner lagoon boxes RF = RE = 0). We found that tuning additional return flow 

factors for boxes 2 and 3 did not provide improvement and furthermore, the dataset being limited to the 

outer lagoon provides little constraint on adjacent lagoon return flow parameterizations.  

Though it is not a gauged stream, we believe, based on empirical observations (e.g. hypersaline 

summer conditions in the inner basin, lack of visible creek flow during summertime visits) that freshwater 

input from the Agua Hedionda Creek is exclusively associated with rain events and therefore, Vr (runoff) 

is computed from hourly rainfall data with freshwater input otherwise set to zero.  Rainfall is multiplied 

by catchment area and given a delay time of 1 day (established by matching modeled results to the phase 

of the freshwater spikes in observed salinity) to allow for runoff. Since the effective catchment area may 

depend on factors such as storm patchiness and soil permeability, Vr is treated as a tunable parameter 

(through CF below) along with RF and RE. The total watershed of the Agua Hedionda Creek is 76 km2, 

representing approximately 80× the area of the Agua Hedionda Lagoon and ~14% of the greater Carlsbad 

Hydrologic Unit which is divided among four separate lagoons (City of Carlsbad, 2021).  The effective 

catchment area was allowed to vary as a multiple of the area of the AHL using, 

 

𝐴𝑐𝑎𝑡𝑐ℎ𝑚𝑒𝑛𝑡 = 𝐶𝐹(𝐴𝑜𝑢𝑡𝑒𝑟 + 𝐴𝑚𝑖𝑑𝑑𝑙𝑒 + 𝐴𝑖𝑛𝑛𝑒𝑟)    (2.3) 

 

where CF is the catchment factor, which must represent less than the 80× watershed/lagoon area.    

Although the simple 4-box mixing model based on Equation 2.2 and presented in Figure 2.4 does 

not adequately capture tidal range in salinity, the underlying mixing trend representing the flushing time 

is the most important result for operating a seasonal model of the one-yr time series of LPF data.  In 

tuning the mixing model, we used a 24hr LPF of salinity observed in the outer lagoon during a 1-month 

period where several rain events occurred (Nov 24 - Dec 24); extending just beyond the 365 d DIC time 
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series. During this period, the CO2 instrument experienced a failure, but the salinity sensor continued to 

operate, capturing valuable information on the physical mixing of the lagoon.  The three adjustable model 

parameters: CF, RF, and RE were tuned using the MATLAB function “fmincon” (interior-point method), 

resulting in values of CF = 21, RF= 0.0, and RE = 0.95 with a resulting RMSE of 0.14 in salinity (Figure 

2.4).  The multiplier for runoff (CF) represents an area 21× greater than the lagoon itself, which seems 

quite reasonable given a watershed area of 80×. The flood return flow factor of 0 indicates that the 

outgoing plume from the lagoon is swept away from the mouth by the open ocean before the tide comes 

back in.  This result also seems appropriate as the inlet of the outer lagoon is directly connected to the 

ocean where an alongshore flow often persists (Nam and Send, 2011). The very high ebb tide return flow 

factor of 0.95 is not surprising, as the much smaller middle basin receives all of the outer basin flood tide 

(Figure 2.1). The difference between a zero flood return flow factor, and non-zero ebb factor is also 

consistent with a well-mixed box model potentially being more representative during the flood tide, 

consistent with flood tides typically exhibiting more vertical mixing and less stratification in many 

estuarine systems (e.g., Simpson et al., 1990; Geyer and MacCready, 2014) 

Based on the results of the 30-d 4-box mixing model, an average R = 0.48 was used in Equation 

1.1 to compute a mean flushing time of 7.3 d. The flushing time determined in this way is nearly twice 

what one would estimate based purely on the tidal prism. For example, the average 24-hr tidal range 

throughout the time series is 1.6 m. Combining this value with the area of the outer basin and the average 

volume of the outer basin (Table 2.1) gives a flushing time of only 3.8 d. Similar approaches based 

strictly on tidal prism, but accounting for temporal variability in tidal stage, estimate flushing times across 

the different boxes ranging from 1-5 days but with roughly the same average of ~3 d (Elwany et al., 

2005). As discussed by Monsen et al. (2002) it is not uncommon for flushing time approximated by basin 

geometry to differ from that derived from actual measurements of bulk properties such as salinity (or 

other closely related concepts such as residence time and age) by a factor of two or more. Moreover, 

recent studies utilizing high resolution numerical models have shown that flushing time estimates can 

vary dramatically depending upon the method (Lemagie and Lerczak, 2015) and that simple geometric 
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flushing time estimates typically underpredict true residence time due to incomplete vertical mixing and 

return flows (MacCready et al., 2020). Furthermore, evidence suggests that flushing times determined 

from bulk properties during rain events (as done in Figure 2.3) may underestimate average flushing time 

(Alber and Sheldon, 1999).  

Exchange flow calculations from velocity measurements conducted during Spring 2016 

(averaging 0.1 m s-1), combined with the dimensions of the full lagoon (Table 2.1) and an approximate 

cross sectional area of 36 - 54 m2 at the mouth, suggest Tf in the range of 6.3 - 9.5 d. Thus, flushing time 

determined from salinity observations during a rain event in 2018 (Figure 2.3) is in excellent agreement 

with that determined from exchange flow during a longer period, absent rain.  Combining the two 

observation-based estimates, we selected the range Tf = 6 - 8 d for use in the biogeochemical model, with 

7d as the central vale used to report averages.  In summary, transport could be characterized in a number 

of different ways for this particular time series, but, based on observations of salinity and velocity, we 

suspect that our estimate represents a more accurate value than that obtained based on geometry alone 

(Lemagie and Lerczak, 2015; MacCready et al., 2021).  

2.3.6. Biogeochemical Model 

In the biogeochemical model, an hourly mass balance is estimated from the 30-d LPF time series 

using  

 

𝑑𝐷𝐼𝐶

𝑑𝑡
ℎ = 𝐹𝑎𝑑𝑣 + 𝐹𝑔𝑎𝑠 + 𝑁𝐸𝑀     (2.4) 

 

where Fadv is the advective flux, Fgas is flux due to gas exchange with the atmosphere, NEM is the net 

ecosystem metabolism, and the term on the left is the finite difference in observed DIC for each time step 

multiplied by water depth (h). Due to the interpolation interval of 1 hr (see above), all of the terms used in 

Equation 4 are on an hourly time step even though the observations and advection terms have been passed 

through a low pass digital filter.  Because the mass balance is framed in carbon units from the perspective 
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of bulk seawater composition a gain (loss) of carbon is reflected as positive (negative) such that ingassing 

is positive, outgassing is negative, net heterotrophic NEM is positive and net autotrophic NEM is 

negative.   Fgas is calculated from Wanninkhof, 2014, 

 

𝐹𝑔𝑎𝑠  = 7.7 × 10−4 × 𝑈2 ×  ∆𝑝𝐶𝑂2/(365 × 24)   (2.5) 

 

where U is hourly wind speed (m s-1). The ∆pCO2 is the difference between the measured atmospheric 

pCO2 and pCO2 derived from pH and DIC measurements.  

Advective flux, Fadv, is calculated from the gradient between the lagoon and ocean using 

 

𝐹𝑎𝑑𝑣 = 𝑄 × (𝐷𝐼𝐶𝑙𝑎𝑔𝑜𝑜𝑛 − 𝐷𝐼𝐶𝑜𝑐𝑒𝑎𝑛)    (2.6) 

 

where the average flow rate, (Q = 7.7×103 m3 hr-1) is the flushing time determined above (Tf = 7d) 

combined with the average volume of the outer lagoon:   

 

𝑄 =
𝑉𝑜𝑢𝑡𝑒𝑟

𝑇𝑓
      (2.7) 

 

DIClagoon is a dynamic value, estimated from the instrument in the outer lagoon and the ocean endmember, 

DICocean, is taken as a constant 2019 ± 13 µmol kg-1 based on observations previously reported for the surf 

zone at the nearby Scripps Pier (Takeshita et al., 2015). Based on the absence of a distinguishable annual 

cycle in the LPF AT, advection of AT is not parameterized in the biogeochemical model. The mean AT of 

the instrument in the lagoon (2232 from the LPF data) falls in-between two previously published values 

in the nearby coastal ocean (2240 ± 7 µmol kg-1; Takeshita et al., 2015) and 2223 ± 11 µmol kg-1; 

Bockmon et al., 2013).   

Rearranging the mass balance, 
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𝑁𝐸𝑀 =
𝑑𝐷𝐼𝐶

𝑑𝑡
ℎ − 𝐹𝑎𝑑𝑣 − 𝐹𝑔𝑎𝑠     (2.8) 

 

To approximate uncertainty, the error for each term on the RHS of Equation 2.8 was estimated and 

propagated by re-calculation of the NEM time series.  For the observational term (dDIC/dt) an error of ± 

10 µmol kg-1 was introduced.  The gas exchange error was based on a 25% change in gas transfer 

velocity.  Advection error was estimated from a combined error of TF ± 1 day and DICocean of ± 13.  

2.3.7. Driver Decomposition 

 The results from the biogeochemical model are used to assess the change in observed parameters 

(Figure 2.2) due to each “driver”: temperature, advection, gas exchange, and NEM. The effect of each 

driver throughout the year is assessed by holding all other variables constant while allowing one to vary. 

Williams et. al. (2018) applied this approach using the equations (with pH as the example): 

 

∆𝑝𝐻𝑡
𝑡𝑒𝑚𝑝

= 𝑝𝐻(𝑇𝐴𝑡0, 𝐷𝐼𝐶𝑡0, 𝑆𝑡0, 𝑇𝑡) − 𝑝𝐻𝑡0    (2.9) 

∆𝑝𝐻𝑡
𝑎𝑑𝑣 = 𝑝𝐻(𝑇𝐴𝑡0, 𝐷𝐼𝐶𝑡

𝑎𝑑𝑣, 𝑆𝑡0, 𝑇𝑡0) − 𝑝𝐻𝑡0    (2.10) 

∆𝑝𝐻𝑡
𝑔𝑎𝑠

= 𝑝𝐻(𝑇𝐴𝑡0, 𝐷𝐼𝐶𝑡
𝑔𝑎𝑠

, 𝑆𝑡0, 𝑇𝑡0) − 𝑝𝐻𝑡0    (2.11) 

∆𝑝𝐻𝑡
𝑁𝐸𝑀 = 𝑝𝐻(𝑇𝐴𝑡0, 𝐷𝐼𝐶𝑡

𝑁𝐸𝑀, 𝑆𝑡0, 𝑇𝑡0) − 𝑝𝐻𝑡0    (2.12) 

 

Where the driver in each equation is represented as an array of time, t, while all other terms are scalars 

equal to the first point in the time series, t0. The integrated effect of advection, gas exchange, and NEM 

on DIC (𝐷𝐼𝐶𝑡
𝑎𝑑𝑣, 𝐷𝐼𝐶𝑡

𝑔𝑎𝑠
, and 𝐷𝐼𝐶𝑡

𝑁𝐸𝑀) have been determined previously in the mass balance. Treating 

the time series as a closed system and using the driver terms as shown in Equations 2.9-2.12 works 

reasonably well when a given DIC driver exhibits a seasonal cycle resulting in little net change annually 

and varies on the same order as the observed DIC, in this case ~130 µmol kg-1 (ca. 2100 to 1970, Figure 

2.2B). In a system such as the AHL, where large uni-directional terms (i.e. advection and NEM) balance 
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a much smaller observed annual signal, the decomposition calculation cannot be treated as a closed 

system as in Williams et al. (2018). This would effectively allow Equations 2.10 and 2.12 to freely drive 

DIC outside of the observed range, which is problematic due to the nonlinear nature of the CO2 system. 

For example, converting integrated Fadv into an accumulated annual change in DIC results in a DIC 

decrease of nearly 2000 µmol kg-1 which would reduce the initial DICt0 of 2048 µmol kg-1 to a near-zero 

value; whereas the actual observed DIC never falls below 1970 µmol kg-1. Partial derivatives (aka Revelle 

Factors, Egleston et al., 2010; Frankignoulle, 1994) of the CO2 system are far different at near zero vs. the 

observed range in this work (DIC = 2100 – 1970) resulting in unrealistic results when using Equations 

2.10 and 2.12. A more realistic approach to driver decomposition in a system such as the AHL requires 

linearizing Equations 2.10 and 2.12 from partial derivatives representative of the local temperature, 

salinity, alkalinity and observed range of DIC.  Here, the linearization is performed over a 100 µmol kg-1 

range of DIC (2000 – 2100) at temperature and salinity at time = 0 to obtain 

𝜕𝑝𝐻

𝜕𝐷𝐼𝐶
= 0.0023;    

𝜕𝑝𝐶𝑂2

𝜕𝐷𝐼𝐶
= 3.1;    

𝜕𝛺𝑎𝑟𝑎𝑔

𝜕𝐷𝐼𝐶
= 0.0094;  

and equations 2.10 and 2.12 become 

∆𝑝𝐻𝑡
𝑎𝑑𝑣 =

𝜕𝑝𝐻

𝜕𝐷𝐼𝐶
𝐷𝐼𝐶𝑡

𝑎𝑑𝑣 − 𝑝𝐻𝑡0     (2.13) 

∆𝑝𝐻𝑡
𝑁𝐸𝑀 =

𝜕𝑝𝐻

𝜕𝐷𝐼𝐶
𝐷𝐼𝐶𝑡

𝑁𝐸𝑀 − 𝑝𝐻𝑡0    (2.14) 

 

2.4. Results 

The measured and derived CO2 parameters from January to December 2018 are shown in Figure 

2.2 panels A-F. Each panel shows LPF processed data with the exception of atmospheric pCO2 in panel 

A.  The LPF pCO2 ranges from ~ 400 μatm to 800 µatm with a maximum in the spring and a minimum in 

the summer (Figure 2.2A). The pH ranges from 7.7 to 8.1 annually, showing an inverse correlation with 

pCO2 (Figure 2.2D). The annual cycle of both properties is convoluted due to the competing effects of 

transport, NEM and temperature. The atmospheric CO2 signal fluctuates from 400 to 500 μatm over the 
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year and does not surpass the AHL pCO2, except during very short-lived spikes where a local atmospheric 

plume may interact with the system’s intake port. DIC peaks in early spring to a maximum of 2100 μmol 

kg-1 and reaches a minimum of ~1975 μmol kg-1 by summer, resulting in an annual amplitude of ~125 

μmol kg-1. Salinity (Figure 2.2C) and AT (Figure 2.2E), remain relatively stable over the annual cycle, 

except during major rain events; in particular during January and December. During a pronounced rain, 

salinity may decrease to as low as 30. Saturation state Ωarag (Figure 2.2F) ranges between roughly 2 - 3, 

with short term excursions that may briefly approach 1.5 and >3. An Ωarag < 1 is indicative of 

undersaturated waters and is considered unfavorable to calcifying organisms (Harris et al., 2013), and 

while the AHL surface waters do not go below this threshold, there are periods, especially during the 

winter months where Ωarag briefly reaches levels close to undersaturation.  

Areal flux and the associated depth + time integrated changes in each driver are shown in Figure 

2.5 A and B, respectively and reported in Table 2.3. Although the observed DIC (solid black line) is close 

to balanced over the 1 yr period, the most significant drivers are far from balanced (Figure 2.5B). The 

negative flux due to gas exchange represents a continuous source of CO2 to the atmosphere throughout 

the year (on average 2.4 mmol C m-2 d-1, Table 2.3), the advective flux reverses direction for nearly 3 

months in late summer acting as a net sink, presumably due to a state of net autotrophy in the lagoon. 

Similar to the gas flux, the characteristics of advective flux are also evident in Figure 2.2B, where DIC of 

the lagoon is higher than the ocean endmember for 10 months of the year but lower during the period of 

the reversal. Because Fadv is the largest calculated term in Equation 2.4 (Figure 2.5) the NEM balance 

(Equation 2.8) is necessarily a reflection of the Fadv input.  The result is a mass balance where NEM 

exhibits net heterotrophy during the 9 months of advective export to the ocean and 3 months of net 

autotrophy during the summer reversal, leading to an annualized NEM of 34 mmol C m-2 d-1 (Table 2.3). 

. 

Following its peak in March, the observed DIC begins a 6 month decrease (Figure 2.2B, Figure 

4B), corresponding to a change in sign in the solid black line in Figure 2.5A. This decrease might be 

separated into two periods, the first consisting of a gradual drop from March to late May followed by a 
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second period of rapid decrease from June to Aug (Figure 2.5B). The first period corresponds to the 

highest rates of gas exchange (Figure 2.5A) under the largest gradients in both pCO2 (Figure 2.2A) and 

DIC (Figure 2.2B). Based on the mass balance, the lagoon remains net heterotrophic during the course of 

the first period defined above. Assuming for the moment that Fadv is accurate, beginning in late May, 

NEM rapidly moves from net respiration to net production, reaching a net autotrophic state in late June 

(Figure 2.5A). When the observed DIC changes inflect again in early August (Figure 2.5A), the reversal 

leads the change in trophic state by only 1 month, compared to a 3-month lead time during the first 

reversal.  

The decomposition results (Figure 2.6A-C) represent the accumulated effect on pH, pCO2, and 

Ωarag throughout the year due to temperature, advection, gas exchange, and NEM. Because 

(mathematically in our model) NEM is the balance of the other processes, and advection is by far the 

greatest driver, NEM mirrors advection in all cases. Advection and NEM drove opposing accumulated 

changes of roughly ± 4 in pH, ± 5000 in pCO2 and ± 15 in Ωarag, representing a roughly 10-fold greater 

effect than gas exchange and temperature (compare left vs. right axis ranges). The advective export of 

DIC from the lagoon (Figure 2.5B) results in a very large forcing to drive pH and Ω higher and pCO2 

lower (Figure 2.6), which must be balanced by equally high respiration through the NEM.   

2.5. Discussion 

Similar to most of the open ocean, the system described in this study experiences an annual CO2 

cycle. However, unlike the ocean where temperature is often the dominant driver of the CO2 system 

(Takahashi et al., 2002), the annual cycle of CO2 in the AHL appears (based on our model) to be almost 

entirely influenced by seasonality in advective flux and NEM (Figure 2.6). Temperature drives a seasonal 

cycle in every case but this signal is masked by the overlapping and much larger reversal in advection and 

NEM noted above.  From the perspective of organisms sensitive to Ω, pH, or pCO2, it is clear from Figure 

2.6 that these parameters are primarily influenced by flushing and metabolic rate such that any 

perturbation to the advection (flushing of the lagoon) or respiration rate (organic and nutrient loads) may 
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result in dramatic changes in these parameters of the CO2 system. Thus, stakeholders (shellfish growers, 

for example) should be aware of changes that might impact flushing time, in particular.   

Based on the estimated fluxes and their effects on DIC concentration (Figure 2.5B), in a mass 

balance of the AHL, the magnitude of advection will ultimately determine the estimate of NEM.  Over the 

course of the one-year time series, the integrated NEM was 42 mmol C m-2 d-1. As a simple arithmetic 

check on this number one can take a steady-state approximation where dDIC/dt = 0 and, ignoring Fgas, 

arrive at the simplified approximation: 

𝑁𝐸𝑀 =
(𝐷𝐼𝐶𝑙𝑎𝑔𝑜𝑜𝑛−𝐷𝐼𝐶𝑜𝑐𝑒𝑎𝑛)

𝑇𝑟𝑒𝑠
ℎ     (2.15) 

It is evident that, from the average lateral DIC anomaly between the ocean and the lagoon (29 mmol m-3), 

the average depth of 8 m and average flushing time of 7 days, the resulting average NEM (33 mmol C m-2 

d-1) is essentially identical to that obtained by a more rigorous balancing of terms in Equation 2.8. 

Nevertheless, it is instructive to use a temporally evolving mass balance rather than a steady state 

simplification because it enables an examination of seasonality and driver decompositions as presented 

here. Furthermore, it is only possible to accurately assess the mean gradient (Figure 2.2B) after collecting 

a near continuous annual time series, as sporadic point sampling throughout the year would lead to 

significant misrepresentation of a gradient that might be used in a steady state approximation.  

A NEM of 34 mmol C m-2 d-1 falls slightly below the average of 55 mmol C m-2 d-1 (range of -21 

to 180) reported in the compilation of US estuaries assembled by Caffrey (2004).  Although the name 

Agua Hedionda, or “foul-smelling water”, suggests a high rate of respiration, the heterotrophic rate is 

actually on the lower end of the range reported by Caffrey across the 42 NERRs sites.  This is explained 

by the fact that, when the lagoon was named, it was not connected to the ocean.  The opening of AHL in 

1954 radically altered the flushing leading to a system with metabolic rates similar to other tidal estuaries.  

For comparison to other local data, in a recent study, under similar conditions in the AHL but over short 

periods we estimated NEM in the range -20 to 20 mmol C m-2 d-1 (Shipley et al., 2022).  Interestingly, the 

Shipley et. al. (2022) NEM estimates are based on the analysis of daily amplitudes from a different 
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instrument using an approach that is independent of flushing time.  Due to the differences in observational 

data and approach to NEM computation, The Shipley et al. (2022) NEM values could be considered as 

mostly independent from the model approach used in this study. Of particular importance is the one 

month of corresponding data between the analysis of Shipley et. al., 2022 and this work. During the 

month of Nov 2018, the in situ sensor used by Shipley et al., (2022) overlapped in time and was located 

within ~100 m of the instrument used in this study. For Nov 2018, the NEM derived from daily amplitude 

of the in situ sensor was ~20 mmol C m-2 d-1, while the LPF-based mass balance used in this study 

returned a value of 25 mmol C m-2 d-1. This level of agreement is quite encouraging, given the different 

approaches used between the two studies.  

Since the outer lagoon is the only part of the AHL connected directly to the ocean, and the 

biogeochemical model estimates advection based on measurements in the outer lagoon, the advective flux 

reported in Table 2.3 should reflect the export of the entire AHL. The most noteworthy comparison to this 

study is the work of Paulsen et al. (2017) in the nearby San Dieguito Lagoon (SDL).   The SDL provides 

an excellent comparison because it shares the neighboring watershed to the AHL and, thus, a highly 

similar climate, ecosystem and geomorphology.  Using a classic approach of point sampling during 

selected periods of high/low tide, Paulsen et al. (2017) developed an estimate of the annual carbon export 

for the SDL.  In their work, the combined inorganic and organic (DIC + TOC) export is estimated to be 

10 to 25 × 106 mol C yr-1. As pointed out by Paulsen et al., the inorganic to organic composition of carbon 

export is sensitive to runoff and frequency of storm events but, on average, total carbon export consisted 

of ~80% DIC, suggesting a DIC export from the SDL of ~8 to 20 × 106 mol C yr-1 or roughly 3 to 8x that 

estimated for the AHL in this study.   It stands to reason that the much larger natural watershed area of the 

SDL compared to the AHL (more than 10×) should lead to a greater export flux.  On the other hand, the 

vast majority of river flow in all of San Diego County is captured by reclamation, leading to tidal lagoons 

with little to zero river input during much of the year and therefore making natural watershed area less 

important than a more immediate or “effective” catchment area as defined above in the mixing model 
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used here.  In short, human driven changes in land use may help to explain how a >10× difference in 

natural watershed may translate into a 3-8× difference in export between the SDL and AHL. 

One of the most counterintuitive properties of coastal systems is the distinction between pCO2 

saturation and trophic status (net autotrophic vs heterotrophic).  Many coastal embayments, lagoons, and 

estuaries exist in a net heterotrophic state that help to sustain a pCO2 that is higher than the atmosphere.  

However, since NEM (not pCO2) defines trophic state, it is insufficient and incorrect to judge trophic 

status based on pCO2 (or similarly O2) alone.  For example, in the AHL, pCO2 is supersaturated with 

respect to the atmosphere acting as a consistent source of CO2 throughout the year 2018 (Figure 2.2A, 

Figure 2.5A), yet, the system is net autotrophic for two months of the year (July-Aug, Figure 2.5A).  

Interesting in its own right is a comparison of the gas exchange flux between 2018 and 2020 (Figure 2.7). 

As discussed by Shipley et al. (2022), a red tide in early 2020 resulted in an extreme event that drove the 

AHL into a brief state of hypoxia. During a period of only a few weeks in May 2020, the outer lagoon 

reached peak heterotrophic rates of 140 mmol C m-2 d-1 and off-gassed the equivalent of >50% of the full 

year of CO2 flux observed in 2018. Interestingly, the peak NEM rates observed in 2020 during the 

hypoxic event were only moderately higher than the peak rates observed in 2018 (~120 mmol C m-2 d-1 

during March 2018, Figure 2.5A). This again highlights the importance of distinguishing between pCO2 

flux and trophic state.  Based on nearby data at the Scripps Pier (Clements et al., 2020), the widespread 

nature of the 2020 red tide likely led to a high DIC in the adjacent ocean, which would result in 

diminished advective export, driving pCO2 very high in the lagoon without the requirement for a massive 

jump in NEM.  In summary, we hope that the simple comparison in Figure 2.7 provides some insight on 

the potential for shallow coastal environments to exhibit abrupt changes. This observation also highlights 

the need for improved spatiotemporal observations in estuaries to better assess their contributions to the 

global carbon budget.   

2.6. Conclusions 

In the work, we have demonstrated the temporal variability of carbonate species and attempted to 

quantify the annual inorganic carbon budget of the AHL.  In this first-of-its kind attempt to quantify 
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carbon fluxes in this lagoon, we identified the importance of collecting a temporally-resolved dataset 

along with various challenges associated with interpreting data in a highly dynamic environment such as 

the AHL.  While the average results of our simple biogeochemical model are in line with expectations 

based on similar lagoon systems, the rather large estimates of uncertainty associated with the reported 

annual budget reflect room for improvement in observing strategy.  

The model used in this study is part mechanistic and part inverse.  Physical processes (mixing, 

gas flux) have been parameterized mechanistically while the biological component (NEM) is determined 

as the balance of these physical processes along with observations.  A full mechanistic model of the 

system could provide additional insight. For example, in forecasting AHL conditions under a new 

scenario such as enhanced circulation associated with the desalination plant and dredging, NEM might be 

assumed to follow the average or seasonal pattern determined in this study, combined with a new flushing 

time. This approach would only provide satisfactory estimates of lagoon conditions if metabolic rates 

truly remain unchanged by flow.  In the case where flow rates affect metabolic rates (e.g. by modulating 

nutrient and organic matter inputs), parameterization of NEM from variables such as nutrient and organic 

matter concentration, irradiance, and chlorophyll may prove useful. Similarly, a more complex treatment 

of physics through a hydrodynamic model coupled with a DIC mass balance could provide a more 

realistic description of the lagoon at the shorter time scales that were intentionally removed by the LPF in 

our analysis. Based on the demonstrated importance of advection, perhaps the most meaningful 

improvement to the model developed in this study would involve a better constraint on the temporal 

changes in DIC in the adjacent ocean by additional SeapHOx sensor(s) and a more comprehensive set of 

total alkalinity data.  In addition, the important role of organic carbon should be addressed in the planning 

of any future study.  

 

 

 

  



48 

 

2.7. Acknowledgements 

The authors would like to thank Stephanie Smith provided essential technical assistance to 

maintain the instrument in the field. We thank Thomas Grimm and the Carlsbad Aquafarm for providing 

space and support for the automated analyzer.  We also thank Clarissa Anderson and others at SCCOOS 

for supporting observations at the AHL.  

 

Chapter 2, in full, is being prepared for submission as: Shipley, K., Martz, T., Hales, B., 

Giddings, S., Andersson, A. (2022) Physical and Biological Controls on the Seasonal CO2 Cycle in the 

Agua Hedionda Lagoon, Carlsbad, CA. The dissertation author was the primary investigator and first 

author of this paper. 

  



49 

 

2.8. Tables and Figures 

Table 2.1. Inputs to the 4-box mixing model.  Areas and volumes at MLLW taken from Elwany et al., 

2005. 

 

Input Value 

Area outer lagoon 2.0 ×105 m2 

Area middle lagoon 1.0 ×105 m2 

Area inner lagoon 6.1 ×105 m2 

Volume outer lagoon 1.2×106 m3 

Volume middle lagoon 4.0×105 m3 

Volume inner lagoon 1.3×106 m3 

Tide height hourly tide height 

Rain hourly cm hr-1 
 

 

 

 

Table 2.2. Inputs to the 1-box biogeochemical model, in addition to other terms for the outer lagoon 

noted above in Table 2.1. 

Input Value 

CF 21 

RF 0.0 

RE 0.95 

pCO2 meas. variable (µatm) 

DIClagoon meas. variable (µmol kg-1) 

DICocean 2019 µmol kg-1 
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Table 2.3. Results of the 2018 mass balance. Negative values represent a loss from the lagoon. The range 

indicated by ± represents the propagated errors from the uncertainty estimates used in Equation 2.8. Gas 

exchange and NEM flux is normalized to the area of the outer lagoon. 

Process Flux 

mmol C m-2 d-1 

Transport 

×106 mol C yr-1 

Advection 

(FAdv) 

N/A -2.4 ± 1.6 

Gas Exchange 

(Fgas) 

-2.3 ± 0.6 -0.17 ± 0.04 

Net Ecosystem 

Metabolism 

(FNEM) 

34 ± 22.5 2.5 ± 1.7 
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Figure 2.1. Map of the Agua Hedionda Lagoon showing the instrument location (red X) and additional 

features of interest including the Desalination plant (DP), Encina power station (EPS), the Carlsbad 

Aquafarm (CAF), Hubbs-SeaWorld fish hatchery (HFH), Strawberry fields (SF), and recreational sports 

and boating activities (RS). Image from Google Earth. 
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Figure 2.2. Measured CO2 parameters for 2018 (A-F) from the shore station system.  The data shown are 

low pass filtered at 24 hr (7-day for Temp) and 30-days for each parameter. In panel B, the Ocean average 

at 2019 (solid line) and the 1𝜎 sd of ± 13 µmol kg-1 (dashed lines). 
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Figure 2.3. Mixing model (left) used to determine flushing time based on salinity observations during 

Nov 2018.   Exchange between the ocean and three basins of the lagoon is driven by tidal mixing and 

basin geometry. Freshwater input is parameterized based on rain and effective catchment area.  Flow 

represented by grey arrows was not parameterized, but its effect is included in observed data that are used 

to constrain the model (see text). Biogeochemical model (right) used to estimate NEM based on dissolved 

inorganic carbon data.  NEM is the balance of observed changes, gas flux and advection. 
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Figure 2.4. Results of the 4-box mixing model compared to salinity observed in the outer lagoon during 

two major rain events in Dec 2018. Mixing parameters are tuned based on the 24-hr LPF data. 
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Figure 2.5. (A) Areal flux from mass balance (Equation 2.8) and (B) the time and depth integrated 

changes. 
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Figure 2.6. Driver decomposition for pCO2 (A), pH (B), and ΩArag (C). Blue lines correspond to the left 

y-axis and black lines to the right y-axis. 
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Figure 2.7. Accumulated CO2 air-sea flux during the 365-d period of 2017/2018 and a 4 mo period of 

2020 (2020 data from Shipley et al., 2022). 
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Chapter 3. Metabolic Rates in the Agua Hedionda Lagoon during the 2020 Southern 

California Red Tide Event 

3.1. Abstract 

A standing SCCOOS time series from autonomous sensors (pH, dissolved oxygen (DO), salinity, 

temperature) in the Agua Hedionda Lagoon, Carlsbad, CA (AHL) captured the effects of a massive red 

tide occurring along the Southern & Baja California coast during the spring of 2020. Biogeochemical data 

(pH and DO) were examined using an open-source model designed to filter out the influence of tides and 

estimate net ecosystem metabolism (NEM). Contemporaneous pH and DO observations allowed 

simultaneous, independent evaluations of production, respiration and NEM. Under normal conditions, the 

AHL tends toward net heterotrophy, averaging 10 mmol C m-2 d-1. During a 2-month period, centered 

around the peak of the event, trophic status in the lagoon shifted multiple times between net heterotrophic 

and net autotrophic, with a pronounced period of anoxia. Fueled by the intense local bloom, at its peak, 

respiration reached rates of 140 mmol C m-2d-1. We found that the co-location of pH and oxygen sensors 

affords independent assessment of metabolic rates, which often agree, as expected under baseline (oxic) 

conditions, but diverge during an extreme event.  This observation allowed us to identify non-Redfieldian 

behavior and speculate on the source of anoxic reactions. 

3.2. Introduction 

Estuarine environments are uniquely diverse ecosystems located at the land-river-ocean interface. 

While these systems exhibit great biogeochemical heterogeneity (Bauer et al., 2013; Paulsen et al., 2018), 

coastal ocean systems are affected by many of the same sets of local drivers, including the adjacent ocean 

and surrounding landscape through runoff and river discharge (Paerl et al., 2006; Howarth et al., 2011; 

Windham-Myers et al., 2018). In comparison to offshore ecosystems, near-shore ecosystems are more 

often subjected to anthropogenic stressors, which makes understanding the metabolic state of these 

systems of great importance (Hewitt et al., 2005). Foremost, the balance between production and 

respiration is necessary for estimating net ecosystem metabolism (NEM), which defines whether a system 
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is heterotrophic or autotrophic (Caffrey, 2003). Many estuarine systems experience both trophic states in 

a single day, some shift between states on a seasonal basis, and the vast majority appear to exhibit net 

heterotrophy, on average, presumably due to organic loading from land runoff (Smith and Hollibaugh, 

1993; Hopkinson and Vallino, 1995; Gattuso et al., 1998; Caffrey, 2004). DO is the most common 

measurement used to assess trophic conditions, as the value provides immediate information about the 

various thresholds (e.g., hypoxia, anoxia). DO is also the variable most widely used to establish NEM 

rates for coastal ocean systems (Breitburg et al., 2008). Both oxic status and NEM rates are fundamental 

to understanding ecosystem health and, specifically, deleterious effects of eutrophication and red tides 

(Conley et al., 2009).  

Though not fully predictable, red tides can develop whenever conditions favor a strong 

phytoplankton bloom and tend to correspond to both natural processes such as upwelling and human 

sources such as nutrient and wastewater runoff from land (Horner et al., 1997). A particularly intense red 

tide event occurred from the end of March 2020 through June 2020 off the southern California coast. 

Based on satellite data, the bloom extended from Baja California to Los Angeles; with peak Chl-a 

concentrations (sampled manually at the Scripps Pier) reaching 867 mg m-3 on April 27, 2020 (Kahru et 

al., 2021). This event was driven by the bioluminescent phytoplankton Lingulodinium polyedra, a 

predominantly non-toxic species in the Southern California region, but known to cause discoloration and 

post-bloom oxygen depletion (Horner et al., 1997; Armstrong and Kudela, 2006).  During the peak of the 

bloom at the Scripps Pier, L. Polyedra counts were 9,170 cells mL-1 (Kahru et al., 2021). Non-toxic red 

tide events can be dangerous to aquatic species, often resulting in adverse impacts to ecosystem health by 

creating anoxic conditions that lead to fish kills (Anderson et al., 2012).  

The primary objective of this study was to analyze biogeochemical observations from two 

different periods at the Agua Hedionda Lagoon (AHL), Carlsbad, California: a “normal” period in 2018 

serving as the baseline condition against which we compare the extreme conditions observed during 2020, 

when a heavy storm preceded a red tide event. The datasets used in this work derive from a Southern 

California Coastal Ocean Observing System (SCCOOS) monitoring site that was originally installed for 
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the purpose of providing near real time water quality information to an aquaculture facility. Due to a 

continuous presence in the lagoon, the sensor-based time series captured an event that would have 

otherwise been missed due to the transient nature of the bloom and the considerable time required 

(typically months) to plan, mobilize, and deploy in situ assets. As an opportunistic study of an 

acidification/hypoxic event (at the height of a global pandemic), the data are naturally limited to assets in 

the water at the time of the bloom.  Because the ancillary measurements (e.g. concentrations of various 

sulfur and nitrogen species) that would normally be employed in a planned study of hypoxia/anoxia are 

not available, the work we present here is limited to an assessment of biogeochemical rates that can be 

derived from pH and Oxygen data. To achieve this, a weighted regression model (WRM) was used to 

filter out the tidal influence on DO and dissolved inorganic carbon (DIC) in order to obtain the biological 

signal, expressed here as the metabolic rate of production, respiration, and the net (production – 

respiration). Following this, we offer a purely speculative discussion of the chemical pathways that could 

be invoked to explain the observed dynamics in oxygen and pH; however, we must stress that the limited 

data prevent a definitive statement about the dominant hypoxic/anoxic reactions present during the study. 

3.3. Materials and Methods 

3.3.1. Study Site 

The AHL, located in Carlsbad, CA, is comprised of three interconnected basins, including an 

outer (26.7 × 104 m2), middle (10.9 × 104 m2), and inner basin (1.2 × 106 m2) (Figure 3.1) (Elwany et al., 

2005). The ocean, connected by an inlet in the western side of the outer basin, dominates physical forcing 

in all three basins, with tidal lags of up to 4 hours at the creek (Jenkins and Wasyl, 2006). The original 

wetland was converted into the present lagoon structure in 1954 by the Encina Power Station and is 

maintained in its present form by semi-annual dredging. The AHL consists of >75% open water with the 

remainder being marsh and mud flats (Beller et al., 2014). Water depths at the lagoon range from very 

shallow (i.e. < 1 m) up to approximately 14 m in certain areas, with an average depth of 8 m (Elwany et 

al., 2005). The inner basin receives freshwater input from Agua Hedionda Creek during rain events which 
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occur primarily in winter and spring. During the rest of the year, the creek runs dry and the lagoon is 

purely tidal.  

The AHL is highly utilized and a popular destination for the Carlsbad community and tourists and 

provides a thriving ecosystem for many diverse species of plants and animals. The locations of the 

various businesses within and surrounding the lagoon are also shown in Figure 3.1. The two primary 

industrial features include the Encina Power Station (fully decommissioned by Jan/2019) and the 

Carlsbad Desalination Plant, both of which rely on water intake from the outer basin for once-through 

cooling of the power plant and as desalination source water. During peak operation, the power plant 

intake, located in the outer basin, could divert greater than 90% of the tidal prism over a tidal cycle; on 

average, around 50% of the tidal prism was diverted (Elwany et al., 2005). The desalination plant, which 

began operating in 2016, continues to divert water from the outer basin in order to generate freshwater at 

a rate of 2.3 × 108 L d-1, which would account for around 20% of the tidal prism being diverted on a daily 

basis. Other features of the AHL include agriculture (primarily strawberry fields bordering the inner 

basin), the Hubbs Marine Fish Hatchery, and the Carlsbad Aquafarm (CAF)—a sustainable mussel and 

oyster farm, which operates in the outer basin. Both the fish hatchery and aquafarm (which grows 

calcifying organisms sensitive to pH) rely on adequate flushing of the lagoon by the ambient ocean in 

order to maintain oxygen and calcium carbonate saturation levels above thresholds critical to growth.  The 

primary tool used to accomplish the desired state of the ecosystem in AHL is dredging, which began in 

1954 for the power station and transformed the lagoon from a backwater slough into an ocean-connected 

tidal lagoon. 

3.3.2. Sampling 

Continuous biogeochemical observations were made from a mooring deployed in the outer basin 

of the AHL (Figure 3.2). The 2018 mooring was deployed for 69 days, from 11/02/2018 – 01/10/2019. In 

2020, the mooring was deployed for 145 days, 01/22/2020 – 06/15/2020. Sensors deployed on the 

mooring include a SeapHOx (Bresnahan et al., 2014) at a fixed height of 1 m above bottom to measure 

pH (Honeywell Durafet), DO (Aanderaa optode), temperature and salinity (Sea-Bird SBE-37) and 
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pressure (Honeywell M5200 series). An additional oxygen-temperature logger (PME miniDOT) was 

deployed near the surface, but due to lack of anti-fouling protection, the data were determined to be 

compromised and not used in the analysis.  Each sensor was set to record measurements at 30-minute 

intervals. A surface buoy houses a cellular modem and controller connected directly to the SeapHOx, 

allowing hourly, real-time data access (Bresnahan et al., 2020). The data are quality controlled and made 

publicly available by the Southern California Coastal Ocean Observing System (SCCOOS) through an 

online database (ERDDAP): see https://sccoos.org/ocean-acidification/ and 

https://erddap.sccoos.org/erddap/tabledap/pH-AHL.html. The mooring was deployed near the CAF 

mussel and oyster cages (see Figure 3.1) for accessibility and relatively gentle flow (to minimize mooring 

drag due to tidal current).  

3.3.3. Data Processing 

Raw, 30-minute data stored onboard were re-processed and quality controlled following recovery 

of the mooring. Raw oxygen data were salinity corrected, following the manufacturer manual, using data 

from the SBE-37. pH validation samples were taken during the recovery of the mooring at the beginning 

of 2019 but were not possible in 2020 due to restrictions associated with the pandemic. For a bottle 

validation sample, a Niskin was filled near the sensor and then subsampled into a 250 ml borosilicate 

bottle and poisoned with mercuric chloride (HgCl2). The sample was later analyzed for pH using a 

benchtop spectrophotometric pH system. A pH correction was applied to the 2018 dataset following 

Bresnahan et al. (2014). Because the pandemic did not allow for validation samples during the 2020 

deployment, the pH sensor offset determined in 2019 was carried forward for 2020 (the same Durafet pH 

sensor was used in the SeapHOx). Based on our previous experience, we estimate the accuracy of the 

time series to be 0.05 pH, and in line with the manufacturer’s stated accuracy for oxygen (±2 mmol m-3) 

and salinity (±0.003). As discussed previously (Takeshita et al., 2014; Kapsenberg et al., 2017; 

Shangguan et al., 2022) the ability of a Durafet pH sensor to accurately resolve short-term (e.g. hourly, 

diel) changes is > 10× the stated accuracy because, once deployed and conditioned, the sensors have been 

shown to remain highly stable and exhibit ideal Nernstian behavior. Based on the sensor resolution of 
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~0.0005 pH, a conditioned sensor can reliably observe relative changes in pH on the order of 0.001, 

making this a highly capable sensor for capturing the amplitude of diel pH cycles, which range from 0.6 

to 0.006 in this study.  

CO2 system calculations were performed using CO2SYS for MATLAB (van Heuven et al., 

2011), using equilibrium constants as recommended by (Dickson and Millero, 1987). Phosphate and 

silicate as inputs to CO2SYS were set to zero because, although they were not measured in this study, a 

brief campaign in 2016 observed concentrations in these nutrients at levels (maximum observed: 

Phosphate = .35 µmol L-1; Silicate = 6.7 µmol L-1) that are near-negligible in their effect on pH (~0.001 

pH unit). In our analysis, the partial pressure of carbon dioxide (pCO2) and dissolved inorganic carbon 

(DIC) were calculated from SeapHOx temperature, salinity, and pH (total proton scale) combined with 

Total Alkalinity (AT), estimated from salinity. A local AT-S relationship was established from data 

recorded during a runoff event in 2018 where five paired pH and DIC measurements were used to 

establish the relationship: AT (µmol kg-1) = 29.2×S+1238 (RMSE = 6.3, R2 = .98, n = 5)  (Shipley 2022). 

Based on this, an error of 10 µmol kg-1 in AT was used in the sensitivity analysis below. In converting pH 

to DIC, we have treated AT as a property conservative with salinity because the canonical factor of 

ΔAT:ΔDIC = 0.16 associated with Redfieldian stoichiometry is small relative to the pH signals observed 

and errors introduced by estimated AT from S. In order to account for gas exchange, the hourly CO2 flux 

(outgassing = negative, ingassing = positive) was calculated using Eq. 3.1 (Wanninkhof, 2014),  

 

𝐹 = 7.7 × 10−4 × 𝑈2 × ∆𝑝𝐶𝑂2/(365 × 24)                                                     (3.1) 

 

where hourly wind speed (U) was available through the NOAA climate database, measured at the 

McClellan-Palomar airport in Carlsbad, CA approximately four miles from the AHL 

(https://www.ncdc.noaa.gov/cdo-web/datasets/LCD/stations/WBAN:03177/detail). The ∆pCO2 is the 

difference between the measured atmospheric pCO2 (2018) and an average atmospheric pCO2 of 411 

µatm for 2020 and pCO2 calculated from pH and AT(S) in CO2SYS. The sensitivity to atmospheric pCO2 
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is very small compared to the uncertainty due to pH. A 0.05 pH error translates to a 60 µatm change in 

pCO2, making the error in the ∆pCO2 term completely dominated by errors in the pH sensor. Any error 

within a few µatm in our knowledge of atmospheric pCO2 is not significant for the output of the WRM 

(see below). For the model (next section) the cumulative sum of the flux (F), in µmol kg-1 hr-1, is 

calculated over the time period of each dataset and then subtracted from the derived DIC in µmol kg-1 to 

obtain a DIC value that is corrected for gas exchange. A comprehensive analysis of the errors in gas 

exchange estimates was not performed as it was determined that this term is a relatively small factor in 

the WRM’s estimate of rates.  

3.3.4. Weighted Regression Model 

The weighted regression model (WRM) developed for riverine systems by Robert Hirsch (USGS) 

and modified for tidal systems by Marcus Beck (Tampa Bay Estuary Program) was used to filter out 

variability in DO and DIC due to tidal effects (Hirsch et al., 2010; Beck et al., 2015). The model code 

(written in R) was accessed on 05/20/2020 through the Github repository 

(https://github.com/fawda123/WtRegDO). Briefly, the WRM includes a series of functions that remove 

tidal influence (detide), estimate NEM, and evaluate metrics associated with performance criteria. The 

detiding function (Eq. 3.2) is a multiple linear regression of observed properties (DO or DIC) in time (t) 

and tidal height (H).  

 

𝐷𝑂𝑜𝑏𝑠 =  𝛽0 +  𝛽1𝑡 +  𝛽2𝐻                                                             (3.2a) 

𝐷𝐼𝐶𝑜𝑏𝑠 =  𝛽3 + 𝛽4𝑡 + 𝛽5𝐻                                                             (3.2b) 

 

See below for determination of 𝛽. The detided output is used to estimate daily NEM 

independently for DO (Caffrey, 2003) and DIC using Equations 3.3 and 3.4, respectively.  

 

 𝑁𝐸𝑀𝐷𝑂  = 𝑃𝑔 (𝐷𝑂) + 𝑅𝑡(𝐷𝑂) + 𝐹𝑂2               (3.3) 
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 𝑁𝐸𝑀𝐷𝐼𝐶  = 𝑃𝑔(𝐷𝐼𝐶) + 𝑅𝑡(𝐷𝐼𝐶)  + 𝐹𝐶𝑂2          (3.4) 

 

Total respiration (Rt), is calculated as the average nighttime rate of change for DO or DIC during 

night hours, multiplied by 24. Gross production (Pg) represents the bulk biologically driven change in DO 

or DIC during the day. The F term represents air-sea gas exchange. O2 gas exchange is handled within the 

WRM as originally written by Beck et al., (2015). The O2 gas flux is computed from the difference 

between the DO at saturation (calculated as a function of temperature and salinity) and the observed 

value, multiplied by a volumetric reaeration coefficient, ka (Beck et al., 2015).  

Because the original version of the model was developed for DO only, several minor 

modifications were necessary in order to process the DIC time series. The primary change was to simply 

omit the gas exchange portion of the code during a DIC run and feed the model with the CO2 gas 

exchange–corrected DIC, applied outside of the model (see above). Some additional unit changes were 

made to the model for the purpose of running DIC, including conversion of initial input of DIC to mmol 

m-3 and several DO-specific unit conversions were omitted. To compare the two NEM values, NEMDO 

was converted to carbon units using the canonical Redfield ratio of -106 C:138 O2. Using this convention, 

Pg in C units is negative and a negative NEM represents net autotrophy; and Rt in C units is positive, 

corresponding to net heterotrophy. 

The WRM applies adjustable half-window width settings (day, hour of day, tide height) to tune 

the model by adjusting each of the 𝛽 variables as a function of time. The window widths are applied to 

time series data to achieve gradual weighting from the center of the window over a specified range where 

values that fall outside of this range are given a weight of zero. Beck et al. (2015) extensively tested the 

WRM by using it to extract NEM from a simulated control case with various random and systematic 

sources of error. For a thorough discussion of these results including uncertainty analysis and comparison 

of NEM derived from detided vs unfiltered time series, please refer to Beck et al. (2015). 

3.4. Results 
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3.4.1. Model Tuning 

In tuning the WRM, we followed the approach as prescribed by Beck et al., which involved using 

a span of five different widths for each of the three half-window width settings (day, hour, and tidal 

height) resulting in a total of 125 unique combinations of window width settings (we used the exact same 

125 combinations outlined in Beck et al., pg 739). The tuned model is then considered to be the case out 

of the 125 which results in the optimal set of performance metrics provided in the summary statistics 

function of the model and outlined as follows. The first metric includes the correlations for DOobs, Pg, and 

Rt, which should decrease after filtering. Standard deviation for Pg and Rt is the second metric, which 

should also show a maximum decrease in the filtered output. The final metric is the percent of anomalous 

results, which is defined as the percentage of points in the timeseries with a negative Pg or positive Rt (for 

DO units). This percentage should be maximally reduced and ideally would be zero after detiding. The 

goal in tuning the model was to find the combination of weights where all three criteria were met. It was 

not possible to find maximal reductions for each of the three metrics for any given combination of weight 

settings; therefore, a combination in which all three metrics were reduced in comparison to the unfiltered 

data was considered the optimal result for the 2018 and 2020 datasets (Table 3.1). There is one additional 

metric described in Beck (2015) using the annual mean for Pg and Rt, which was not applied to the AHL 

datasets due to the shorter timeseries used. A sensitivity test was performed to determine potential error in 

the WRM NEM output by introducing the associated sensor errors of 0.05 unit for pH and 2 mmol m-3 for 

DO. This resulted in no change for NEMDO and a 0.2% error for NEMDIC. An additional test for AT was 

performed where an error of 10 µmol kg-1 was introduced, this also yielded a 0.2% error in NEMDIC. The 

insensitivity of the WRM to systematic errors (representing sensor accuracy error) is not surprising, as the 

model depends on short term changes in pH and DO, both of which are retained quite accurately even 

when pH and DO sensors may be slightly out of calibration.   

3.4.2. Field Observations 

 In Figure 3.3 we compare baseline conditions of 2018 (panels A-E) to the anomalous red tide 

conditions observed during 2020 (panels F-J). The two-month period from Nov-Dec 2018 was selected 
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because it covers both dry and wet (rain) conditions. Temperature during both 2018 and 2020 ranged 

between 14°C and 20°C, although, due to the difference in time of year observed, the lagoon was cooling 

and heating during the 2018 and 2020 datasets, respectively. In the absence of rain, salinity remains very 

close to 33.8 PSU during both years. Depending on duration and intensity, rain events can drive salinity 

down by several units, such as during a strong storm in 2020 when salinity briefly fell below 30. 

Following a rain event, salinity fully recovers in roughly one week, reflecting the average residence time 

of the entire AHL. During long periods without rain, the inner reaches of the lagoon trend toward slightly 

hypersaline relative to the surrounding ocean salinity of 33.6 (i.e., behaving as an inverse estuary). 

Average pressure (Figure 3.3, C, H) reflects a difference of several meters between deployment locations 

in 2018 and 2020, with the latter deployment at a shallower depth of ~5m. It appears that in 2020 the 

pressure sensor became obstructed in mid-March around the time of a rain event but resumed regular 

operation by April 1. The rainfall in 2020 was more intense than that observed in 2018, with measured 

rainfall rates occasionally reaching close to 1 cm hr-1 (Figure 3.3, B and G).  

Biogeochemical observations (Figure 3.3 D, E, I, J) show nominal conditions of pH and DO in 

late 2018 (D, E) and early 2020 (I, J) where pH ranges between 7.9 and 8.1 and DO ranges from 212 to 

262.5 mmol m-3 with O2 % saturation ranging from 87 to 110. These ranges typify the lagoon as slightly 

lower in both pH and DO than the adjacent surface ocean (Shipley 2022), as expected in a nearly 

balanced but, on average, net heterotrophic system. Following intense rain events in March and April 

2020, the observed range of both pH and DO increase dramatically with pH reaching a maximum of 8.5 

and a minimum of 6.9 in May. In connection with these extreme pH conditions, DO climbed as high as 

517 mmol m-3, which corresponds to a % saturation of about 225 and fell to zero (anoxic) on several days 

(Figure 3.3).  

3.4.2. Model Output 

In Figure 3.4, panels A-D show the 2018 and 2020 estimated rates for Pg, Rt, and NEM. Panels A 

and C show DO output for each period, and B and D show the DIC results. The average values for each 

rate are listed in Table 3.2 (with 2020 divided into phases as discussed below), where 2018 DO and DIC 
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averages for Pg (-150 and -144) and Rt (156 and 158) are quite similar although, NEMDIC is almost double 

the average of NEMDO during that time. The 2020 plots in C and D show a much larger range due to the 

red tide event. Comparing Phase-I 2020 conditions to 2018, Pg and Rt are somewhat smaller in magnitude 

in Phase I and NEM for Phase-I appears to be in a net autotrophic state.  

The 2018 model output for DO and DIC is shown in Figure 3.5. As seen in panel A and B, 

detiding removes both high and low spikes associated with tidal mixing, resulting in an overall reduction 

in diel amplitude, sometimes of greater than 50%. It is noteworthy that the detiding step does not remove 

variability on timescales longer than 24 hours. Implications of this preservation of low-frequency 

variability are addressed in the discussion. NEM for DO and DIC generally run at a positive value with 

day-to-day changes (Figure 3.5C), which reflect conditions typical of a coastal lagoon where factors such 

as precipitation, sunlight, and spring and neap tide introduce variability. All daily NEM estimates fall 

within reasonable bounds, making it difficult to assign outliers resulting from model noise (e.g., 

insufficient removal of tides). However, it is warranted to question the validity of spikes or abrupt shifts 

of NEM between adjacent days. Accordingly, to address noise in model NEM, a 6-day low-pass filter 

(LPF) was used to generate a smoothed time series (Figure 3.5C and Figure 3.6C). The NEM LPF is also 

helpful in defining the four phases discussed below for the 2020 data. On average, NEMDO in Nov-Dec 

2018 was 6.75 ± 9 mmol C m-2 d-1 and NEMDIC was 14 ± 11 mmol C m-2 d-1. Although the NEMDIC 

average is twice that of NEMDO, the two-month mean (or integrated daily) NEM is not statistically 

different between NEMDO and NEMDIC and the daily and low-pass filtered (LPF) time series are in good 

agreement (Figure 3.5C).  

The early portion of the 2020 time series (Figure 3.6, Phase-I) is quite similar to the “baseline” 

conditions observed during 2018 with a net autotrophic Phase-I NEMDO average of -6.6 ± 9.6 and an 

NEMDIC average of -8 ± 16.1 mmol C m-2 d-1. Somewhat problematic is that variability in daily NEM is 

large relative to the mean, even under baseline conditions in both years, leading to mean NEM values that 

are statistically indistinguishable from zero. The question arises of whether or not late 2018 could be 

considered slightly net heterotrophic and Phase-I 2020 slightly net autotrophic as we have stated above. 
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Regardless of the trophic labeling of these time periods, the result of the model is that both periods appear 

to be operating in a near steady state of balanced NEM.  

The massive red tide which developed during the spring of 2020 along hundreds of miles of 

coastline began influencing the AHL around mid-April. We defined the bloom onset (corresponding to 

the transition between Phase-I and II) as the point where both NEM LPF lines have inflected toward net 

autotrophy. Phase-II culminates in a period of bloom termination and “hyperventilation” (Beck and 

Bruland, 2000), characterized by pronounced daily amplitude in both DO and DIC. Phase-III, defined as 

the point when NEM LPF values from both DO and DIC exceed the largest rates observed under baseline 

conditions (~50 mmol C m-2 d-1), represents bloom demise and abnormally high respiration rate, ending in 

a weeklong period of sustained hypoxia (DO ranging between 0-100 and on average 49 mmol m-3) and 

sporadic, limited anoxia.  Phase-IV, defined by the re-emergence of sustained presence of oxygen 

represents a weeks-long recovery and return to baseline conditions. Similar to 2018, detiding reduces 

daily extreme values, while retaining the lower frequency shift to a very low average DO (<100 mmol m-

3) and higher average DIC (>2300 mmol m-3) during the peak conditions of Phase-III. Within one month 

of anoxic conditions, DO and DIC had fully recovered back to baseline conditions (note that, due to 

temperature change between Phase-I and -IV, DO recovery is slightly lower, but O2% saturation (Figure 

3J) recovers back to 100%.  

3.5. Discussion  

In general, detided results are devoid of the occasional spikes and steps observed during Phase-I 

in both DO and DIC (Figure 3.6). As noted by Beck et. al., (2015), suboptimal conditions for estimating 

NEM with the WRM include high correlation between sun angle and tide, and (surprisingly) decreased 

magnitude of the advection signal. In our data, the sun angle to tidal correlation was verified to be within 

the acceptable range for both time series, albeit, closer to the acceptable limit within ±0.2 in 2018. There 

may also be true metabolic variability as a result of tides (Nidzieko et al., 2014) which the WRM might 

incidentally remove. Moreover, tidal stage is an imperfect proxy for advection. The effect of advection or, 
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rather, gradients in general, is more difficult to assess. In their error analysis using simulated data, Beck et 

al. treat advection as a tidal term, linked to tide height, which is almost certainly the primary driver of 

signals associated with gradients. However, signals associated with phenomena such as diffusion, internal 

tides, and intake by the power plant in 2018 or desalination plant in 2020 may escape the detiding process 

of the WRM. In regard to this, perhaps most noteworthy are two periods during 2020 (April 26-28 and 

May 22-25) where NEMDIC significantly overshoots NEMDO in the negative (net autotrophic) direction 

(Figure 3.6 C). Assuming no massive shift in C:O stoichiometry during these two oxygenated periods, the 

most likely source of the discrepancy is a physical process that escapes detiding. Around both anomalies, 

the unfiltered DIC and DO (black line, Figure 3.6 A, B) both exhibit pronounced, low amplitude (> daily) 

variability, however, the detided DIC (blue line Figure 3.6 B) retains a greater slope (particularly in late 

April). While this subtle retention of low amplitude structure may be the source of discrepancy between 

NEMDO and NEMDIC at times, we do not believe that it explains the difference observed during peak 

respiration of Phase-III, when NEMDIC overshoots NEMDO in the positive (net heterotrophic) direction to 

extreme values.  

Performance of the WRM under differing conditions is captured in 7-day snapshots of three 

different periods (Figure 3.7, Figure 3.8, Figure 3.9). Both 2018 (Figure 3.7) and 2020 Phase-1 (Figure 

3.8) demonstrate the remarkable capability of the WRM to isolate the biological signal. In both cases, 

detided DO and DIC are in phase with the day/night cycle (shown in vertical bars) as expected.  Figure 

3.9 and Figure 3.4C, D show the one anomalous period (inverted Pg or Rt, as defined above) during the 

hypoxic event in mid-May 2020. During this period, the tidal signal is observed in the detided time series, 

and, as discussed next, leads to questionable results.  

One of the most intriguing and perplexing features of the 2020 time series is a marked difference 

between the NEMDO and NEMDIC during Phase-III (Figure 3.6C), indicating a DIC respiration signal 

much stronger than that of DO. Peak NEMDIC reaches 140 mmol C m-2 d-1 compared to a peak of around 

50 mmol C m-2 d-1 for DO. A somewhat independent check was performed to verify the approximate 

magnitude of the daily NEM rates generated by the model (Figure 3.10A, B). This approach involves 
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applying a simple regression to arbitrarily selected multi-day periods of the detided DIC time series. The 

difference between the multi-day regression and the model output daily NEM therefore fundamentally 

lies in the difference between high frequency (daily period, peak-trough diel cycles) and low frequency 

(trend over multiple days) in the detided data. In theory, if detiding is perfectly efficient and NEM is a 

constant value, then a linear trend over multiple days will exactly match that obtained from the model’s 

peak-to-trough calculation of daily NEM. Of course, neither of these conditions holds true in practice, but 

as seen in Figure 3.10, the four trendlines corresponding to Phases I-IV are in reasonably good agreement 

with the daily NEM output of the model. The trendline check was only performed for NEMDIC because 

the filtered (detided) DIC is already corrected for gas exchange (in the modified version we fed the model 

gas exchange corrected DIC), whereas, the original model, as designed for DO, performs a gas exchange 

correction internally and does not supply a gas exchange corrected detided DO value in the output file. In 

summary, the leap of faith required to evaluate Phase-III data shown in Figure 3.6C is that one must trust 

the average (LPF) output even though it is clear that daily NEM contains additional noise due to the tidal 

signal making it through the filtering process during the week of extreme conditions. While our results are 

not 100% efficient, the detiding efforts may offer some improvement to the more commonly used 

methods for assessing estuarine trophic status (Odum, 1956; Caffrey, 2003), which do not account for 

tidal influences. If the model noise over multiple days is random, then some of the underlying trend in the 

detided data will still influence the daily calculated Pg, Rt, and NEM. In this case, the LPF value still 

reflects the correct number as it averages over the 6 days.  

If the differences in Phase-III between LPF NEMDIC and NEMDO reflect a real signal, what 

process is responsible? The simple observation that average pH continues to decrease during the hypoxic 

portion of Phase-III (Figure 3.3 I, J), suggests that oxic respiration remained the dominant process. In 

order to visualize the multiple processes that may be present, we present Figure 3.11 to illustrate the 

effect of selected oxic and anoxic reactions in pH-DO space.  The vector origins for each condition (oxic, 

anoxic) are somewhat arbitrary. For example, the symbol representing oxic conditions at pH = 8, DO = 

200 along with the four vectors representing photosynthesis, respiration, calcification, and calcite 
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dissolution could be located anywhere in the range of observed data where DO > 0.  Similarly, the anoxic 

condition could be selected over a wide range of pH where DO = 0 (note the anoxic vectors in Figure 3.11 

are offset from zero DO for clarity).   Important features of Figure 3.11 include: 1) a clockwise hysteretic 

cycle from Phase I through IV; 2) a primary signal due to P-R along with, perhaps, a secondary signal due 

to either mixing or CaCO3 reactions seen most clearly in Phase I and II as a decrease in slope of the 

subset; 3) a wide range of pH under near-zero oxygen concentrations.   

In regard to the final feature of Figure 3.11, if, for example, denitrification became significant, the 

AT increase relative to DIC increase associated with the reaction  

 

5(CH2O)106 (NH3)16 (H3PO4)1 + 4(106)NO3
- → 

106CO2 + 3(106)H2O + 4(106)HCO3
- + 2(106)N2 + 5(16)NH3 + 5(1)H3PO4 

 

would be 0.96 rather than the Redfieldian 0.16 (Tromp et al., 1995). Thus, under denitrification in a 

closed system, ΔDIC:ΔTA is close to 1 resulting in a near-zero pH change, counter to what we observe in 

Figure 3.3 I and J during Phase-III. Under similar conditions, in the case of sulfate reduction, following 

the reaction (Tromp et al., 1995), 

 

2(CH2O)106 (NH3)16 (H3PO4)1 + 106SO4
2- → 

106H2S + 2(106)HCO3
- + 2(16)NH3 + 2(1)H3PO4 

 

the pH shows an overall increase, which is the opposite of what we observe during Phase-III where pH 

continues to decrease. Additionally, sulfide (pyrite) precipitation and oxidation reactions (Łukawska-

Matuszewska and Graca, 2018) 

 

Fe2+ + H2S + S→FeS2 + 2H+ (precipitation) 
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HS- + 2O2 → SO4
2- + 2H+ (oxidation) 

 

show that, during these processes, AT can decrease resulting in a drop in pH. In a closed system, sulfide 

formation followed by precipitation or oxidation will balance, resulting in no changes in AT or pH. 

However, if decoupling occurs when sulfide is formed vs. consumed, this will result in a pH change. In 

Figure 3.11, the sulfide arrow is shown in the direction of decreasing pH, which could occur from a pulse 

of sulfide from the upper lagoon or an imbalance in sediment flux. While it is difficult to determine the 

exact processes responsible for decoupling during the hypoxic/anoxic period in 2020, it is possible that 

part of the continued decrease in pH was driven by imbalances in the sulfur cycle within the AHL.  

We hypothesize that, although several brief (1-6 hr) anoxic periods occurred (Figure 3.9), oxygen 

remained in sufficient supply (in part through gas exchange) to fuel continued respiration of the 

terminating bloom. To represent this process, we include an additional vector in Figure 3.11 for cryptic 

oxygen consumption (Garcia-Robledo et al., 2017) in the direction of negative pH.  This vector represents 

a system poised at near-zero oxygen where oxygen supplied (in this case through gas exchange rather 

than photosynthesis as proposed for Anoxic Marine Zone (AMZ) systems by Garcia-Robledo et al., 

(2017) is immediately consumed with little or no accumulation, driving pH lower through normal oxic 

respiration channels.    

Average rates for Pg, Rt, and NEM are reported in Table 3.2, along with ranges from a 

compilation of US estuaries (Caffrey, 2003; Caffrey, 2004) for comparison. Caffrey’s NEM compilation 

(Table 3.2 in Caffrey, 2004) for US estuaries ranges from -21 to 180 mmol C m-2 d-1, with an average of 

55 mmol C m-2 d-1 (g O2 reported by Caffrey is converted to mmol C using -106 C:138 O2 and 32 g/mol 

O2). Recent estimates of the regional averages for the US East coast fall between 5.5 and 20 mmol C m-2 

d-1 (Najjar et al., 2018). These estimates are in line with our findings for the AHL, where we observed a 

range of short-term NEM of -50 to 150 mmol C m-2 d-1 and baseline averages of -8 to 14 mmol C m-2 d-1. 

The Pg and Rt time series (Figure 3.4 A-D) generally fall within the ranges for US estuaries. The 2018 Pg 

and Rt rates for DO at the AHL (Figure 3.4 A, B) fall within the lower half of the range reported by 
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Caffrey (2004) with Pg ranging from -62 to -236 mmol C m-2 d-1 and Rt rates from about 60 to 243 mmol 

C m-2 d-1. We see the Pg and Rt rates reaching the extremes reported by Caffrey (2004) during Phase-II of 

the 2020 red tide. Perhaps the most noteworthy feature across Table 3.2 (and Figure 3.4 and Figure 3.6) is 

that the most extreme Pg and Rt occur during Phase-II while the most extreme NEM occurs during Phase-

III.  This apparent decoupling between gross and net rates is not a widely reported observation, likely due 

to the requirement of continuous observations to derive the rate terms.  

3.6. Conclusions  

Applying an open source WRM to observations before, during, and after a red tide event provides 

insight on the temporal progression of metabolic rates in a tidal estuary. While physical forcing through 

tidal advection is a major driver of variability in the lagoon, the WRM successfully isolated the local 

biological signal and quantified metabolic rates that drove the lagoon into a state of hypoxia. Baseline 

NEM established for 2018 and Phase-I of 2020 are in line with estimates from other estuaries (Caffrey, 

2003; Caffrey, 2004; Najjar et al., 2018), providing some confidence in the rates determined by the same 

model under extreme conditions in 2020. The wide range of pH observed near zero DO suggests that 

anoxic reactions related to sulfur may have occurred. The low pH signal expected for denitrification 

makes it impossible to state whether or not this process occurred based solely on pH and DO data. 

However, it can be stated that processes other than denitrification were at work during the anoxic period 

since denitrification alone cannot explain the pH variability. In addition to the sulfur cycle decoupling, we 

hypothesize that there may have been a brief occurrence of a cryptic oxygen cycle similar to those 

discovered recently in AMZs (Garcia-Robledo et al., 2017). As an opportunistic and unplanned study of 

hypoxia, the suite of measurements employed was limited for studying anoxic reactions. As such we 

would recommend that any future study planned expressly for this purpose should include, at minimum, 

an autonomous nitrate sensor (e.g., Sea-Bird SUNA) alongside the pH and DO sensors.  

The WRM was shown to be a useful tool that required minimal inputs to obtain NEM estimates 

for both baseline and extreme conditions in a coastal ocean setting. The production and respiration rates 

estimated in the model show the occurrence of anomalous periods, which are likely a result of the WRM 
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not being able to completely filter out tidal signals under extreme conditions (particularly for DO near 

anoxia), stratification, or significant calcification (in the case of DIC as a model input). Though beyond 

the scope of this work, a multi-box model of the AHL, including features of the lagoon such as sediments 

and aquaculture, would be a useful tool to further investigate the rise in DIC (decrease in pH) during the 

hypoxic period. Such a model could also demonstrate the influence of the desalination plant on residence 

time and differences in residence time between DO and DIC that may lead to the decoupling observed in 

Phase-III. 

Given some of the concerns mentioned above, one alternative approach is to estimate NEM from 

trendlines (or secants, finite differences, etc.) in the detided time series over multiple days to weeks of 

LPF detided data rather than attempting to pull out meaningful results from short peak to trough diel 

signals. An additional approach to interpret the data more efficiently and possibly yield better NEM 

estimates would be to focus on specific time periods in the data that exhibit the lowest sun angle 

correlation or when the correlation is zero as suggested in Beck (2015). In summary, we found the WRM 

and the novelty of the DIC addition to be a great resource and hope that our contributions outlined here 

may encourage others to explore similar uses of this tool.  
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3.8. Tables and Figures  

Table 3.1. Performance metrics (correlation and anomaly) of model output, determined as the optimal set 

of Weight Settings from 125 model runs.  The final weight settings were chosen based on the significant 

reduction in all or most of the correlation and anomaly parameters listed, when compared to observed 

correlation and anomaly data. 

 

 

  

 
Weight (𝜷0…5) Correlation Anomaly (%) 

Model Day, hour, tidal 

height 

Pg corr Rt corr DO corr Anom Pg Anom Rt 

2018 DO 9, 6, 0.4 0.42 0.29 -0.22 0 0 

2018 DIC 9, 6, 0.4 -0.29 -0.18 0.21 0 0 

2020 DO 12, 3, 0.6 -0.01 -0.09 -0.07 3.9 3.9 

2020 DIC 9, 6, 0.4 -0.19 -0.02 0.05 28 29 
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Table 3.2. Summary of metabolic rates, reported as average (±1σ) over period indicated. NEMDIC from 

slopes in Figure 3.10 are also included for 2020. 

 

 

  

Data period Pg 

mmol C m-2 d-1 

Rt 

mmol C m-2 d-1 

NEM 

mmol C m-2 d-1 

AHL 2018 

Nov-Dec 

Pg-DO:  -150 

Pg-DIC:  -144 

Rr-DO:  156 

Rt-DIC: 158 

NEMDO: 6.75 ± 9 

NEMDIC: 14 ± 11 

AHL 2020 

Phase I 

Pg-DO: -123.8 

Pg-DIC: -90.6 

Rr-DO: 117.2 

Rt-DIC: 82.7 

NEMDO: -6.6 ± 9.6 

NEMDIC: -8 ± 16 

NEMDIC-Slope: -13 

AHL 2020 

Phase II 

Pg-DO: -721.9 

Pg-DIC: -688.4 

Rr-DO: 732.9 

Rt-DIC: 670.5 

NEMDO: 11 ± 27 

NEMDIC: -17.8 ± 42 

NEMDIC-Slope: -67 

AHL 2020 

Phase III 

Pg-DO: -112.8 

Pg-DIC: -78.4 

Rr-DO: 152.8 

Rt-DIC: 166.4 

NEMDO: 40 ± 27 

NEMDIC: 88 ± 40 

NEMDIC-Slope: 155 

AHL 2020 

Phase IV 

Pg-DO: -126 

Pg-DIC: -150 

Rr-DO: 114 

Rt-DIC: 119 

NEMDO: -12 ± 10 

NEMDIC: -31 ± 23 

NEMDIC-Slope: -30 

 US Estuaries 

Caffrey (2004) 

-55 - -675 105 - 775 -21 - 180 
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Figure 3.1.  Map of the AHL. Map shows the major features of the lagoon and sites of interest. The 

location of the mooring deployment for 2018 and 2020 in the outer basin is indicated by the red X. Image 

from Google Earth. 
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Figure 3.2. Schematic of the mooring design including hardware, sensors, and cellular modem used for 

real-time data acquisition. 
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Figure 3.4. WRM output for Pg, Rt, and NEM for 2018 and 2020. Panels A, B show the 2018 output for 

DO and DIC respectively. Panels C, D are the DO and DIC output for 2020. 
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Figure 3.5. 2018 WRM output. Panels A and B provide the initial detiding results in blue along with the 

observed data in black for DO and DIC, respectively. Panel C includes NEM estimates for DO in C units 

and DIC after applying a 6 day, lowpass Butterworth filter function shown as solid lines and unfiltered 

NEM as dotted lines. 
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Figure 3.6. 2020 model output. Panel A) 2020 observed and detided DO, B) 2020 observed and detided 

DIC, C) NEM estimates for DO in C units and DIC after applying a 6 day, lowpass Butterworth filter 

function shown as solid lines and unfiltered NEM as dotted lines. Panel A and B provide detided results 

in blue and the original data used as model input in black. Phase I-IV represent the different periods of 

2020, Phase I corresponds to baseline conditions, Phase II is the bloom onset, culminating in 

hyperventilation, Phase III is the bloom termination leading to hypoxic/anoxic conditions.  Phase IV 

represents the post event recovery period characterized by reventilation and a return to near zero NEM. 

 

  



88 

 

 

 

Figure 3.7. 2018 7-day snapshot of a normal period without anomalies. DO output in panels A, B and 

DIC in C, D. Panel A and C include the observed and detided data, the tide data in red, and grey shaded 

bars to represent night hours. Bottom panels B and D are the corresponding Rt, Pg, and NEM for the 

above panels. 
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Figure 3.8. 2020 7-day snapshot of a period without anomalies. DO output in panels A, B and DIC in C, 

D. Panel A and C include the observed and detided data, the tide data in red, and grey shaded bars to 

represent night hours. Bottom panels B and D are the corresponding Rt, Pg, and NEM for the above 

panels. 
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Figure 3.9. 2020 7-day snapshot of a period with anomalies. DO output in panels A, B and DIC in C, D. 

Panel A and C include the observed and detided data, the tide data in red, and grey shaded bars to 

represent night hours. Bottom panels B and D are the corresponding Rt, Pg, and NEM for the above 

panels. 
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Figure 3.10. (A) 2020 detided DIC data including regression results for each phase as defined in Figure 

3.6.  (B) 2020 NEM daily rates (from Figure 3.6C) and slopes (yellow bars). 
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Figure 3.11. DO vs. pH during 2020 (data from Figure 3.3 I, J). Marker color denotes phase, as indicated 

in Figure 3.6.  Line P-R represents photosynthesis and respiration effects under oxic conditions and line 

C-D shows the effects of calcium carbonate precipitation and dissolution. Anoxic processes shown at zero 

oxygen (arrows offset negative for clarity) include denitrification, sulfate reduction, sulfide consumption 

(by precipitation and/or oxidation) and cryptic O2.  P-R, denitrification, sulfate reduction and cryptic O2 

represent the effect of 1 µmol of organic matter and the length of the C-D vector represents ± 100 µmol 

CaCO3. The sulfide precipitation or oxidation represents the effect of 10 µmol L-1. 
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