# Lawrence Berkeley National Laboratory 

 Recent WorkTitle
THE CIRCULAR DICHROISM STUDY OF NINE SPECIES OF TRANSFER RIBONUCLEIC ACID

## Permalink

https://escholarship.org/uc/item/2v66k8fm

## Author

Blum, Arlene Diane.
Publication Date
1971-11-01

# THE CIRCULAR DICHROISM STUDY OF NINE SPECIES OF TRANSFER RIBONUCLEIC ACID 

Arlene Diane Blum<br>(Ph. D. thesis)

November 1971

## AEC Contract No. W-7405-eng-48



## For Reference

## DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

This thesis is
dedicated to John.

## ACKNOWLEDGEMENTS

I would like to express my sincere appreciation to Nacho Tinoco, my research director, for stimulating my interest in nucleic acids, for useful advice and criticism, for many friendly discussion on varied topics during the past four years, and for good belays at Indian Rock. The imaginative ideas, wide knowledge, and semi-infinite enthusiasm which Olke Uhienbeck generously shared with me were vital to this work. I would especially like to thank him for making laboratory work really fun. Barbara Dengler has provided consistent friendship and expert knowledge on subjects ranging from chromatography to yogurt making to coping with the University.

I have greatly benefited from useful suggestions and warm friendships with the members of our research group. They have helped me so much that I cannot thank them appropriately. My efforts at computer programming were aided by Marty Itzkowitz, Phil Borer, Mark Levine, and Fritz Allen. The studies of the effect of magnesium upon the structure of tRNA were done in collaboration with Kashy Javaherian who I would also like to thank for Persian cooking lessons. Extinction coefficient measurements were done in collaboration with Marc Maestre who also has greatly helped me to clarify my thoughts on the geometry of nucleic acids. Carl Formoso measured some of the dimer $C D$ spectra and Don Grey and

Dana Carroll measured the double strand polymer spectra used in this work. In my early days in this group I was greatly helped by Curt Johnson, Dave Lloyd, Barrett Tomlinson, Sunil Podder, Dick Jaskunas, Mitch Berman, and Rick Schwartz. More recently I have profited from stimulating conversations with Lily Sun, Eric Wickstrom, Carol Cech, and David Koh.

The comraderie of the third floor of Hildebrand has made the last four years most pleasant. For that and for assistance of many sorts I would like to thank John Hearst and the members of his group--Frank Rinehart, Burt Dorman, Jim Allen, Mike Botchan, Carl Schmid, Ken Marx, Andrei Laszlo, and Ralph Kram. Also Jim Wang and the members of his group--Walter Baase, Kathy Martin, Don Brezinski, Donna George, John Carlson--and Dea Baumgarten.

The excellent typing, patience, and friendship of Sharon McConnell made preparing this thesis somewhat less of a chore. Tanya Kmit prepared some of the figures and helped tabulate data. The program used to prepare most of the figures in this thesis was based on a program written by Wendell Brunner. Special thanks to all those who helped me proofread this thesis, especially Olke Uhlenbeck, Mark Levine, Marc Maestre, and Howard Simon. Bob Harris's friendship and the use of his office were also much appreciated.

I was supported for the last three years by an NIH predoctoral fellowship. The use of facilities of the

Laboratory of Chemical Biodynamics of the Lawrence Radiation Laboratory is gratefully acknowledged.

And, finally, I would like to thank Ester, Denali, Andy, and Howard for making the last years more fun.

LIST OF ABBREVIATIONS

| $A, U, C, G$ | The ribonucleosides adenosine, uridine, cytidine, and guanosine, respectively. (Abbreviations |
| :---: | :---: |
| * | used for modified nucleosides |
|  | are given in Fig. 3-4.) |
| X, Y | A general nucleoside. |
| XY | 3'-5' nucleoside diphosphate. |
| poly rX | Homopolymer of ribonucleoside X . |
| poly rXY | Homopolymer of alternating $X$ and $Y$ |
|  | residues. |
| poly X:poly $\mathrm{X}^{\prime}$ | I: 1 complex of poly $X$ and poly $X^{\prime}$. |
| poly XY:poly X!Y' | 1:1 complex of poly $X Y$ and poly $\mathrm{X}^{\prime} Y^{\prime}$. |
| RNA | Ribonucleic acid. |
| DNA | Deoxyribonucleic acid. |
| $\operatorname{tRNA}^{\text {F. Met (E. coli }}$ ) | Formyl methionine transfer RNA from |
|  | E. coli. Similar abbreviations are |
|  | used for the other species of trNA |
|  | discussed here. |
| mRNA | Messenger RNA. |
| rRNA | Ribosomal RNA. |
| ORD | Optical rotatory dispersion. |
| CD | Circular dichroism. |
| UV | Ultraviolet. |
| O.D. | Optical density. |
| $\begin{aligned} & \text { O.D. unit } \\ & \text { or } A_{260} \text { unit } \end{aligned}$ | An amount which when dissolved in l ml, has an optical density at |
|  | $260 \mathrm{~m} \mathrm{\mu}$ of 1 in a 1 cm path length cell |

$\lambda$
[ $\theta$ ]
$\varepsilon_{\lambda}$

EDTA
NMR
BD cellulose
tris HCl
F. Met

Leu
Phe
Tryp
Tyr
Val
monomer
dimer
trimer

Wavelength.
Mean molar ellipticity.
Extinction coefficient (Ifters/
mole cm ) at wavelength $\lambda$ (mu);
expressed per mole of monomer for polymers.

Ethylenediamine tetraacetic acid.
Nuclear Magnetic Resonance.
Benzoylated DEAE cellulose.
tris (hydroxymethyl) aminomethane.
adjusted to pH indicated with HCl .
Formyl methionine.
Leucine.
Phenylalanine.
Tryptophan.
Tyrosine.
Valine.
Mononucleotide.
Dinucleoside monophosphate.
Trinucleoside diphosphate.

# The Circular Dichroism Study of Nine Species of Transfer Ribonucleic Acid 

Arlene Diane Blum

## Abstract

A detailed CD study of nine species of tRNA was undertaken to see how much information about the structure of these molecules could be obtained from their $C D$ spectra. The purification of three of these tRNAs is described. Accurate extinction coefficients are measured for all nine tRNAs.

Methods for calculating the $C D$ of single and double stranded regions of tRNA are discussed. The change in the characteristics of calculated CD spectra of RNA with changes in base composition, sequence, and per cent double strand are shown. $C D$ spectra are calculated from sums of mononucleotides, dinucleoside monophosphates, and double strand polynucleotide spectra and compared with experimental tRNA spectra.

Single stranded tRNA is prepared by dialysing tRNA solutions until the concentration of magnesium is less than $10^{-5} \mathrm{M}$, and heating to $40^{\circ} \mathrm{C}$. Temperatureabsorbance profiles show that at $40^{\circ} \mathrm{C}$ the dialysed tRNA is single stranded while tRNA in the presence of 1 mM magnesium is native. Comparison of the $C D$ of this single stranded tRNA with appropriate sums of dinucleoside monophosphate spectra shows that the $C D$ of the
dinucleoside monophosphates is not a good model for the $C D$ of single stranded tRNA.

The CD of native tRNA at $40^{\circ} \mathrm{C}$ may be calculated with reasonable accuracy using the experimental single strand spectrum to represent the $C D$ of the single stranded regions of the tRNA, and double stranded pairing interaction spectra based upon polymer spectra to represent the double strand regions. No CD contributions for tertiary structure were used. The approximations necessary for this calculation are discussed in some detail. Quantitative comparisons between calculated and experiméntal spectra for native tRNA were made assuming various models for the structure. For most tRNAs about three base pairing interactions in addition to those due to the cloverleaf secondary strusture of the molecule are suggested.

The difference between the $C D$ of native and denatured tRNA Leu and tRNA Tryp are compared with sums of pairing interactions correspoding to the opening of the various double strand regions of these tRNAs. This comparison suggests the native to denatured transition for tRNA Leu involves the loss of about four base pairing Interactions and for tRNA Tryp some sort of major rearrangement. $A$ and $B$ forms of $5 S$ RNA exhibit similar CD behavior to that of native and denatured forms of tRNA Tryp.

A new model for the tertiary structure of tRNA is
proposed based on the extensive published work in addition to the present $C D$ work. This model consists of a continuous stack from the $A C C$ end to the $T \psi C$ loop with the dihydrouridine loop interacting with the TWC loop, and the anticodon helix parallel to the $\mathrm{T} \psi C$ helix. It is similar to other recent models.

## TABLE OF CONTENTS

Page
Dedication ..... 1
Acknowledgements ..... 11
List of Abbreviations ..... v
Abstract ..... vii
Chapter I. Introduction ..... 1

1. Transfer RNA has a Complex Life History ..... 2
2. A Model Building Study Suggests Possible Conformations of tRNA ..... 4
A. Different Species of tRNA Have Similar Unique Secondary Structure ..... 41
B. A Plausible Structure for tRNA Resembles an $H$ ..... 10
C. Many Models for tRNA Structure Have Been Suggested ..... 11
3. Transfer RNA Structure Has Been Studied by Diverse Techniques. ..... 15
A. Crystallography ..... 15
B. Chemical Studies of tRNA Structure ..... 16
C. Physical Studies ..... 17
4. What Can Circular Dichroism Spectroscopy Tell Us about the Structure of tRNA? ..... 20
A. Past $C D$ and ORD Studies of tRNA Structure ..... 21
B. Approach to be Used in this Study ..... 22
References ..... 25
Chapter II. Materials and Methods
5. Preparation of Crude Aminoacyl-tRNA Synthetases ..... 30
 ..... 2
Page
A. E. coli Synthetase ..... 30
B. Yeast Synthetase ..... 31
6. Assay for Amino Acid Acceptor Activity of tRNA ..... 32
7. Purification of tRNAs ..... 33
A. E. coli Tryptophan tRNA ..... 33
B. Yeast Phenylalanine and Tyrosine tRNAs ..... 36
8. Sources of other tRNAs Used in this Work ..... 38
9. Sources of Dimers ..... 40
10. Extinction Coefficients and Concentration Determinations ..... 40
11. Atomic Absorption Measurements ..... 42
12. Desalting Procedures ..... 42
13. Optical Measurements ..... 43
A. Cells and Solutions ..... 43
B. Absorption and CD Measurements ..... 44
References ..... 46
Chapter III. Calculation of CD Spectra and Data Analysis ..... 48
14. CD Spectra May be Used to Characterize RNAs: ..... 48
15. The Optical Properties of Trinucleoside Diphosphates and Homopolynucleotides May be Calculated from those of Dinucleoside Monophosphates ..... 51
16. The CD of Single Strand tRNA May be Approximated by a Sum of Dinucleoside Monophosphate Basis Spectra ..... 58
A. Single Strand Basis Spectra ..... 58
B. Modified Nucleoside Approximations ..... 60
Page
C. Single Strand RNA Spectra are Sensitive to Base Composition and Sequence ..... 66
D. Variation in earest Neighbor Frequencies of Nine tRNAs ..... 70
17. The CD of Double Strand Regions of RNA Maybe A proximated by a Sum of Double StrandPolymer Spectra70
A. Double Strand Polymer Approximations. ..... 72
B. Double Strand RNA Spectra Vary with Type of Base Pairs Present ..... 74
C. Variation of Double Strand Interaction Frequencies in Nine tRNAs ..... 76
18. The CD Spectra of Native tRNA May be Approximated by a Sum of CD Spectra of Simpler RNAs ..... 78
A. Calculation of tRNA at $25^{\circ} \mathrm{C}$ from Dimer and Polymer Sum ..... 78
B. Calculation of tRNA CD Spectra at $40^{\circ} \mathrm{C}$ from a Sum of Single Strand tRNA and Base Pairing Interaction Basis Spectra ..... 80
C. Change in Calculated tRNA Spectrum with Base Composition ..... 82
19. Computers are Used to Record and Analyze Data. ..... 82
A. Data is Recorded by an On-Line Computer ..... 82
B. Further Analysis is Carried Out by a CDC 6600 ..... 85
C. Calculation of Spectra from Basis Spectra ..... 86
References ..... 89
Chapter IV. Results ..... 91
20. The UV Absorption of tRNA in the Presenceand Absence of Magnesium is QuiteDifferent91
A. Choice of a Temperature at Which to Study the Differences between Native and Single Stranded tRNA ..... 102
B. Parameters Describing Changes in Absorption with Temperature ..... 103
21. CD Spectra of Native tRNAs at $25^{\circ} \mathrm{C}$ ..... 106
A. Different Species of tRNA Have Different CD Spectra ..... 106
B. Comparison of Calculated and Experi- mental tRNA Spectra at $25^{\circ} \mathrm{C}$ ..... 112
22. CD Spectra of Single Stranded tRNA at $40^{\circ} \mathrm{C}$ ..... 117
23. CD Spectra of Native tRNAs at $40^{\circ} \mathrm{C}$ ..... 124
A. There is a Large Difference between the $C D$ of Native and Single Stranded tRNA at $40^{\circ} \mathrm{C}$ ..... 124
B. Calculation of Native tRNA Spectra at $40^{\circ} \mathrm{C}$ ..... 133
24. Applications ..... 141
A. Native and Denatured tRNAs ..... 142
B. The $A$ and $B$ Forms of $5 S$ RNA ..... 151
References ..... 154
Chapter V. Discussion and Summary ..... 155
25. Calculated RNA Spectra Provide Models for Interpreting Changes in tRNA Spectra ..... 155
26. Experimental CD of Native tRNAs May be Fit Fairly Well with Appropriate Sums of Other RNA Spectra ..... 156
27. Suggestions for Improvement ..... 157
28. What CD Has Told Us about the Structure of tRNA ..... 164
29. Yet Another Model for the Tertiary Struc- ture of tRNA ..... 166
References ..... 170

## Page

Appendix 1. Single Strand CD Basis Spectra ..... 172
Appendix 2. Double Strand Polymer CD ..... 183
Appendix 3. Computer Programs ..... 187.

## CHAPTER I

## INTRODUCTION

> "The time has come," the walrus said, "To talk of many things:
> of shoes--and ships--and sealing wax-Of cabbages and kings-And why the sea is boiling hot-And whether pigs have wings." (1)

For a better understanding of cabbages, kings, and whether pigs have wings, we study DNA, RNA, and proteins. What is their structure, their function, and most important, how do the molecular structure and biological function of these macromolecules influence each other?

The structure of DNA is regular and may be simply and elegantly related to many of the biological functions of this macromolecule. The secondary and tertary structure of protein molecules is much more complex, and has not in most cases yet been clearly correlated with protein function, although it is known that function is very senstive to secondary and tertiary protein structure. The RNAs share characteristics of both the regularity of DNA and the complexity of proteins.

The many roles of the various types of RNA in protein syntheses are well-known, but the physical details of the way in which these processes occur will probably remain unknown until the three-dimensional structure of these molecules is understood. The
relatively small tRNA molecules are a good place to begin the study of the relation between the biological function and molecular structure of RNA. The ultimate goal of such a study is to propose a reasonable model for the secondary and tertiary structure of tRNA and use it to explain how tRNA functions in protein synthesis.

## 1. Transfer RNA Has a Complex Life History

Transfer RNA molecules are of central importance in the transfer of information from the nuclelc acids to the proteins. In order for successful protein synthesis to occur, tRNA must interact with great specificity with the other components of the protein synthesizing system.

Transfer RNA has a complex and intriguing life history. The precursor tRNA (2) is synthesized in a chain of about 120 nucleotides with a lengthy $5^{\prime}$ segment that might be responsible for regulating the amount of tRNA in the cell. This precursor tRNA contains no modified bases but does contain the sequence ACC at the $3^{\prime}$ end. It has been suggested that the precursor has a similar structure to the functional tRNA. Endonucleases remove the extra nucleotides resulting in a chain about 76 nucleosides long. Then about $10 \%$ of the bases are modified by methylases and other enzymes. For example, there are enzymes that
$0,4 \quad \dot{3} \quad 4 \quad \because \quad 2 \quad 4 \quad 4$
convert uracil to pseudouracil.
Detailed explanations of the processes that are summarized very briefly here may be found in Reference (3). The tRNA interacts with the aminoacyl synthetase which adds the correct amino acid to the $3^{\prime}$ OH terminal adenosine. The tRNA is then "charged." The specificity of this step is extremely high, with errors thought to occur less than one time in $10^{3}(4)$. The question of how the synthetase recognizes the correct tRNA and discriminates against all others is an important unsolvec problem central to molecular biology (3).

The tRNA then interacts with various transfer factors. In E. coli, charged tRNA, the transfer factor $T_{U}$, and GTP form a complex in all cases except that of tRNA . Met.

The complex migrates to the aminoacyl site (A) of the ribosome, and the 3 nucleotides of the anticodon bind to the messenger RNA. The first two anticodon nucleotides bind to their complementary bases, but the third nucleotide may "wobble" allowing one tRNA to bind to more than one type of tripiet (5). This step provides for the specificity of information transfer from the messenger RNA to the polypeptide.

Then the growing polypeptide chain is transferred from the peptidyl site ( P ) to the ( $A$ ) site where it is joined to the amino acid on the tRNA, and then the tRNA moves from the (A) site to the (P) site. The polypeptide is removed and the deacylated tRNA is released.

This tRNA may be charged again and take part in protein synthesis many times before 1 t is degraded.

A knowledge of the correct three dimensional structure of tRNA should help explain the physical details of all these processes. It is quite possible that tRNA exhibits different structures at different times in its life history.

## 2. A Model Building Study Suggests Possible Conformations of tRNA

A. Different Species of tRNA Have Similar Unique Secondary Structure.

Presentiy the primary structure, or sequence of the nucleotides, in at least 25 species of tRNA are known. Several review articles discuss the striking similarity between these sequences $(6-8)$. There are 16 positions that contain same base in all the species of tRNA that have been sequenced. These homologous nucleotides are mostly located in single strand regions of the molecule.

The secondary structure of tRNA is defined by the base paired double helical regions of the molecule. The cloverleaf secondary structure was proposed by Holsey when he determined the first known tRNA primary sequence (9). This structure was designed to maximize base pairing according to the Watson and Crick rule that guanine pairs with cytosine and that adenine pairs
with uracil. All known tRNA sequences can be fitted into the Holley cloverleaf structure.

Figures l-l to l-3 show the primary and likely secondary structure of the nine species of tRNA being studied in this work. There are obvious similarities between these nine tRNA structures. At the $3^{\prime}$ end of each molecule is the ACC which provides the attachment site for the amino acid through the hydroxyl group on the terminal adenosine residue. Then there is a nelix consisting of 12 base pairs and a loop which contains the sequence $T \psi C$. This loop is often called the $T \psi C$ loop as this sequence has been found in this position in all known tRNA primary structures. It has been suggested that this sequence is necessary for rebosomal binding (10). Next to the $T \psi C$ loop there is a variable length region consisting of from 5 to 12 nucleotides. Across from the $T \psi C$ loop in the figures is the anticodon loop, so called since its middle three bases pair with the codon of the messenger RNA on the ribosome. This loop is always closed with five base pairs. Then there is a single base and then another double strand region of three of four base pairs. These pairs close a loop which consists of nire to 12 nucleotides and usually contains one or more dihydrouridine residues. It is commonly referred to as the D loop. Thus each tRNA molecule consists of three large loops, three double stranded helical regions,
Figures 1-1 to 1-3. Nucleotide sequences of the nine species of tRNA studied in this work. The sources and sequences of these tRNAs are listed in Table 2-1. Structures of modified nucleotides are shown in Figure 3-4.

tRNA3 (yeast)
tRNA Phe (E. Coli)






Figure 1-3
and a variable length region.
In addition to this secondary structure, it has been shown that tRNA has a three-dimensional structure that is more compact and stable than would result from merely an unordered combination of these helical regions (11). This is called the tertiary structure of tRNA. Evidence for tertiary structure is provided by a large change in the sedimentation coefficient of the molecule below the temperature where secondary structure is lost (12). Also the small radius of gyration (13-15) of tRNA and its stability to phosphorolysis (16). suggest a compact defined strucutre. The integrity of this tertiary structure is requisite for the proper function of tRNA (17).
B. A Plausible Structure for tRNA Resembles an H

A molecular model building study was used to gain insights into the nature of reasonable tertiary structures for tRNA. Corey, Pauling, and Koltun spacefilling models were used to construct a molecular model of tRNA Phe (Yeast) as shown in Fig. 1-2. The prinary structure of this molecule was put together - by students in Biochemistry 206 at Berkeley during the winter of $1968 \%$

The tRNA was oriented in a manner that would maximize the length of the helical double strand regions
and the amount of stacking in the single strand regions. Assuming the secondary structure proposed by Holley, we looked for a tertiary structure that would apply equally well to all the tRNAs whose primary sequence was known. We tried to make the molecule as compact as possible with a constant distance between the anticodon and the amino acid.

Furthermore, we used results of $X$-ray studies on reovirus RNA which suggest that double strand regions are composed of an l2-fold double helix consisting of Watson Crick base pairs (18). The plane of the base pairs was tilted from the helix axis.

This model building study suggested that tRNA might be stable in a conformation resembling an $H$. This model consists of two long parallel helical regions as is shown in Figs. 1-4 and 1-5. The anticodon loop is across from the $T \psi C$ loop and the $D$ loop is across froin the ACC terminus. This is a preliminary model of the tertiary structure which may be altered to agree with experimental observations on the structure of tRNA.
C. Many Models for tRNA Structure Have Been Suggested

Since our model building study, numerous other models for the three dimensional structure of tRNA have been proposed. Six of these models were recently


Fig. 1-4


CBB 685-3184
Fig. 1-5
reviewed by Arnott (8). He compares the models proposed by Cramer (19), Levitt (20), Connors (21), Fuller (22), Ninio (23), and Melher (24) with a number of experimental results and structural requirements. Arnott concludes that the model that best fits these requirements is the model of Arnott which consists of a long helix from the ACC to the $T \psi C$ loop. Coaxial with this is the anticodon helix. Only the D and anticodon loops are excluded from the stack.

In a similar review by Cramer, the same models and evidence of the same sort are examined.(11). The conclusion is quite different. Cramer concludes that the best model is that of Cramer which consists of a continuous double strand helix from the anticodon through to the CCA end with the T $T \mathcal{C}$ and $D$ loops bent toward the CCA and forming additional base pairs with each other and with the CCA.

Danchin recently suggested an imaginative dynamic model for the structure of tRNA (25). He suggests that charged and uncharged forms of tRNA have different structures and proposed that the D loop forms a sort of "slip-knot" around the main helix during movement between the two structures.

In summary, it should be noted that model building studies may provide an unlimited number of possible structures for tRNA, but experiments are necessary to show whether these structures are correct.
3. Transfer RNA Structure Has Been Studied by Diverse

## Techniques

There have been an incredible number of studies of tRNA structure in the past few years. For example, Reference 26 contains a bibliography of 712 items giving "recent results of tRNA research." To thoroughly review ali the literature on the structure of tRNA is neither plausible nor interesting. In this work, only a few appropriate experiments will be discussed. For further information, there are a large number of review articles that may be consulted (6-8, 12, 27-29).
A. Crystallography

Eventually, crystallographic studies should provide reasonably exact information about tRNA structure in a crystalline lattice. Many investigators have succeeded in crystallizing tRNA (30-33). Resolution of the $X$ ray patterns varies from no better than $20 \AA$ in most cases to as low as $3 \AA$ in some cases (8).

Some qualitative results have emerged from these studies. Doctor et al. find evidence that the helices within each tRNA molecule are more nearly parallel to each other than perpendicular. They "favor an H-type model for tRNA ${ }^{T y r}$ (E. coli) in which the stem to which the amino acid is attached is stacked to the $T \psi C$ arm and the anticodon arm is stacked on the arm which in tRNAs usually contains D residues" (34). The
crystallization of mixed yeast tRNA by Fresco (35) suggest that all species of tRNA do have a similar tertiary structure. Of course, it is not known whether the crystalline structure of tRNA is the same as its structure in the cell or in solution. This is the major objection to results obtained on crystalline tRNA. To learn more directly about the structure of tRNA in solution other physicai and chemical techniques are employed.
B. Chemical Studies of tRNA Structure

A number of structural investigations have involved reacting tRNA with reagents that are specific for certain bases. Information is obtained concerning what parts of the tRNA are accessible to these reagents. The inaccessible regions are assumed to be involved in or shielded by the tertiary structure of the tRNA. Furthermore, the ability of this modified tRNA to carry out its normal functions should provide clues concerning what parts of the molecule are involved in these functions.

Kethoxal was found to interact with $G$ in tRNA Phe (yeast) at positions 20 and 34 , thereby destroying acceptor activity (36). Radioactive carbodimides react with most single strand bases that are outside the THC loop (37). It is found to destroy acceptor activity but not ribosome binding (38). The conversion
of $C$ to $U$ by bisulphite treatment is found not to destroy the ability of tRNA to accept an amino acid (39). Other studies involving $N$-bromosuccinimide (40) and nitrous acid ( 40,41 ) indicate that the $T \psi C$ loop is least accessible to modification. A covalent bond may be formed between the $4 t \mathrm{U}$ in position 8 and the $C$ in position 13 by UV irradiation at $335 \mathrm{~m} \mu$ of several species of tRNA. $(42,43)$. This modiffed tRNA is capable of participating in all phases of protein synthesis although its affinity for the aminoacyl synthetase is decreased somewhat (44,45). The objection that may be raised to some of studies is that the addition of bulky reagents or the formation of covalent bonds within the molecule may greatly alter the structure of the tRNA. The modified tRNA may have an entirely different structure from that of the native tRNA.

For this reason, physical measurements which perturb the system less should prove more satisfactory.

## こ. Physical Studies

Examples of some physical techniques that have been used to study the structure of tRNA and the sort of information that may be derived from them will be given.

Equilibrium dialysis has been used to determine the availability of the various regions of several species of tRNA for binding complementary oligonucleo-
tides (47). Only the four 3 ' terminal bases, the 5 bases on the $5^{\prime}$ side of the anticodon loop, several bases on the $3^{1}$ or 5 : side of the D loop, and part of the variable length region would bind complementary radioactive oligomers. Oligomers, would not bind to the double strand regions or to the $T \psi C$ loop. Binding of oligomers to one part of the tRNA is shown not to affect binding to other parts, suggesting that the tertiary structure of the molecule is not greatly altered by the binding of oligomers. Thus a good model for the tertiary structure of tRNA should have the T $\psi C$ loop protected and allow for the accessibility of those regions that will bind complementary oligomers.

Most ultraviolet spectral studies have involved analysis of the change in the UV spectrum upon thermal denaturation of the tRNA. A detailed investigation of the melting behavior of tRNA Phe (Yeast) in solutions containing various amounts of $\mathrm{Mg}^{++}$and $\mathrm{K}^{+}$indicates the $\mathrm{Mg}^{++}$ions are essential for the native structure of tRNA (48). Using differential melting and temperature jump techniques three conformation transition of tRNA Ala (Yeast), and five transitions of tRNA Phe (Yeast) have been characterizied $(49,50)$. The difference in the UV spectra of the native and denatured forms of tPNA Leu (Yeast) have been compared with spectra for the formation of $A: U$ and $G: C$ base pairs. This comparison suggests that denatured tRNA contains 3 or 4 less
base pairs than does native tRNA (51).
Infrared spectroscopy has been used to determine the fractions of $A: U$ and $G: C$ base pairs in partly double helical RNAs in solution (52). The relative intensities of the IR bands of tRNA F.Met (E. coli) in solution agree with those predicted by the Holley coverleaf model (53).

Fluorescence measurements utilizing the fluorescent base adjacent to the anticodon in tRNA Phe (Yeast) indicate that the anticodon is more than $40 \stackrel{\circ}{\mathrm{~A}}$ away from the CCA end of this molecule (54). Fluorescence may also re used to monitor the interaction between the amino acyl synthetase and the tRNA (55).

Nuclear magnetic resonance is most useful in studying the modified bases as the four major nucleosides in tRNA all exhibit similar chemical shifts. Recently, high resolution PMR studies at 220 MHZ have shown that the protons of most of the minor bases may be distinguished (56). The resistance of areas containing these nucleosides to solvent denaturation in dimethylsulfoxide has been investigated. Segments containing $T$ and $C_{M e}$ were found to be most resistant (57).

Other physical techniques that provide some information include electron paramagnetic resonance of spin labelled tRNA (58), and electron microscopy (59).

The varied physical techniques just discussed provide different ways of probing the structure of
tRNA and complement one another to some extent. However, there is one physical technique that is very sensitive to molecular conformation that has not yet been mentioned.
4. What can Circular Dichroism Spectroscopy Tell U.S About the Structure of tRNA?

CD spectroscopy is a tool with great potential for the study of the structure of nucleic acids. It is a solution measurement so that pH , temperature, and salt concentration may be varied continuously to observe conformation changes dependent on small changes in the environment. Only very small amounts of sample are necessary to obtain a $C D$ spectrum.

The CD spectrum of a nucleic acid is much more sensitive to small conformational changes than is the UV spectrum. Most of the intensity of UV absorption bands is a result of transitions within one base. Interactions with transitions on neighboring bases will perturb the UV absorption, but are not responsible for most of its intensity. The intensity of a $C D$ spectrum is directly dependent upon the asymmetry of its environment. For example, nucleotides have a very small $C D$ due to the asymmetric sugar, but quite considerable UV absorption. Thus, $C D$ spectra are much more sensitive to changes in the geometry of adjacent bases than are UV spectra.

$$
\begin{array}{llllllllll}
0 & 0 & 0 & 0 & 1 & 7 & 0 & -1 & 0 & 1
\end{array} 0
$$

## A. Past $C D$ and ORD Studies of tRNA Structure

ORD spectra have been reported for tRNA ${ }^{A l a}$ and tRNA'lyr from yeast (61), and tRNA Asp, tRNA Gly, and tRNA Lys from yeast (62), as have the CD spectra of tRNA Val and tRNA ${ }^{\text {F.Met from E. colj. (63), two species }}$ of tRNA ${ }^{\text {ala }}$ (Yeast), mixed yeast tRNA (64), and trNA Phe, (65), tRNA $A r g$, and tRNA ${ }^{\text {Gly }}$ from E. coli (66). ORD spectra may be corverted to CD using the Kronig Kramers transform ( 60 ), which should allow qualjtative compari.son of these spectra. In general, though, careful. comparison of these spectra is difficult as these spectra were measured in various buffers. Moreover, some of the values used for molar extinction coefficients ( $\varepsilon$ ) are questionable. Some authors (63) incorrectly state that all speries of tRNA have the same value of $\varepsilon=7.5 \times 10^{-3}$ in a given buffer. In other papers (64), values of $\varepsilon$ as low as $5.56 \times 10^{-3}$ have been used under similar conditions. Thus a reliable set of $C D$ or $O R D$ spectra of tRNAs is not available.
$C D$ has been used for a number of specialized studies of thNA structure. $C D$ studies of charged and uncharged purified tRNAs have shown that there is no large structural change when tRNA is charged $(63,67)$. Also, it has been shown that tRNA structure is very sensitive to magnesium concentration as there is a large change in the CD spectrum when $\mathrm{Mg}^{++}$is removed (43,64,66).
species of tRNA results in a CD band at about 335 mu. $C D$ studies $(66,68)$ of the base $4 t U$ in purified tRNA have been carried out using quite concentrated tRNA soiutions $\left(A_{260} \approx 40\right)$. The variability of these spectra suggests that $4 t U$ is in fairly different environments in the different species of tRNA. A study of the $C D$ of $4 t U$ in charged and uncharged tRNA F.Met (E. coli) indicates conformation changes upon charging of this tRNA (69). Since the CD of this molecule as a whole is not greatly altered, the site of change is localized to the vicinity of the 4tu residue. It is in studies of small structural changes of nucleic acids such as this that $C D$ has the greatest potential.
B. Approach to be Used in this Study

The goal of this study is to determine how much structural information may be obtained from a thorough analysis of the $C D$ spectra of different species of tRNA between 210 and $310 \mathrm{~m} \mathrm{\mu}$. We will study nine tRNAs from three organisms that are specific for six different amino acids. It will be possible to compare the spectra of the same tRNA from different organisms as well as different tRNAs from the same organism.

First, methods for calculating the $C D$ of single and double strand regions of $t$ RNA from the $C D$ of simpler nucleic acids will be discussed. Examples showing the change in the characteristics of RNA CD
spectra with base composition, sequence, and percent double strand will be given.

It is assumed that the $C D$ of native tRNA may be represented by a sum of contributions from the single strand regions, the double strand regions, and the tertiary structure of the molecule. Although tertiary structure probably does contribute to the $C D$ spectrum, we presently have no knowledge of the details and will assume that the contribution of tertiary structure is negligible. Then, experimental spectra of the native tRNAs will be qualitatively discussed and compared with spectra constructed from simpler nucleic acids. A similar discussion and comparison will be carried out for single stranded tRNA and sums of dimer spectra. This should provide a good test for the "nearest neighbor" approximation.

A number of previous studies of the CD of tRNA involved analysis of the difference between the conformation of the tRNA in the presence and absence of magnesium at room temperature. We will show that room temperature corresponds to an arbitrary point in the helix-coil transition of the tRNA and therefore does not correspond to a well defined conformation of the tRNA molecule in the absence of magnesium. A temperature where the tRNA molecule is totally single stranded can be determined from the temperature-absorbance profile. We will study the difference between the spectra of tRNA in the presence and absence of magnesium at
this temperature, which should correspond to the formation of the secondary and perhaps tertiary structure of the molecule. This difference will be shown to agree fairly well with a sum of the $C D$ spectra corresponding to the formation of the base pairing interactions of the structures in Figs. l-1 to l-3.

Thus the usefulness of $C D$ as an analytic tool for providing information on the secondary and tertiary structure of tRNAs will be investigated. A judicious summing of experimental and calculated spectra, will allow quite accurate calculation of the CD of native tRNA.

Examples of the application of these techniques to an analysis of the difference between native and denatured tRNAs and also 5 S RNA will be given. It will be shown that the sensitivity of $C D$ to details of RNA structure may be exploited to provide fairly accurate information concerning conformational change in nucleic acids.

## REFERENCES TO CHAPTER I

1. Lewis Carroll, Allce's Adventures in Wonderland, Whitney Co., 1954, p. 154.
2. S. Altman and J. Smith, Nature, New Biology, 233, 35 (1971).
3. Nold Spring Harbor Symposia, 34 (1969).
4. J. D. Watson, Molecular Biology of the Gene,
W. A. Benjamin, New York, 1965.
5. ㅍ.. H. C. Crick, J. Mol. Biol., 19, 548 (1966).
6. J. T. Madison, Ann. Rev. Biochem., ${\underset{\sim}{2}}_{\sim 1}$, 131 (1968).
7. H. G. Zachau, Angew. Chem. Int. Ed. Engl., 8, 711 (1969).
8. S. Arnott, Progress in Biophysics and Molecular Biology, 22, 181 (1971).
9. R. W. Holley, J. Apgar, G. A. Everett, J. T. Madison, M. Marquisee, S.H. Merrill, J. R. Penswick, and Z. Zamir, Science, $\underset{\sim}{147}, 1462$ (1965).
10. R. W. Holley, Sci. American, 214(2), 30 (1966).
11. F. Cramer, Progress in Nucleic Acid Research and Molecular Biology, $\underset{\sim}{11}, 391$ (1971).
12. D. Henley, T. Lindahl, and J. Fresco, Proc. Natl. Acad. Sci. U.S., 55, 191 (1966).
13. W. R. Krigbaum and R. W. Goodwin, Science, 154 , 423 (1966).
14. J. A. Lake and W. W. Beeman, J. Mol. Biol., $\underset{\sim}{ } 31$, 115 (1968).
15. W. Krigbaum and R. W. Godwin, Macromolecules, ${ }_{\sim}^{1}$, 375 (1968).
16. M. N. Thang, B. Beltchev, and M. Grunberg-Manago, Eur. J. Biochem., 19 , 184 (1971).
17. J. Fresco, A. Adams, R. Ascione, D. Henley, and T. Lindahl, Cold Spring Harbor Symposia, $\underset{\sim}{31}$, 527.(1966).
18. W. Fuller, F. Hutchison, M. Spencer, and M. H. F. Wilkins, J. Mol. Biol., ${\underset{\sim}{c}}_{27}$, 507 (1967).
19. F. Cramer, H. Dupner, F. Von der Haar, E.

Schlimme, and H. Seidel, Proc. Natl. Acad. Sci. U.S., ${ }_{\sim}^{61}, 1384(1968)$.
20. M. Levitt, Nature, $\underset{\sim \sim}{224,} 759$ (1969).
21. P. G. Connors, M. Labanauskas, and W. W. Beeman, Science, 166,1528 (1969).
22. W. Fuller, S. Arnott, and J. Creek, Biochem. J., ที~, 269 (1969).
23. J. Ninio, A. Faure, and M. Yaniv, Nature, 223 , 1333 (1969).
24. G. Melcher, FEBS Lett., ${\underset{\sim}{n}}^{3}, 185$ (1969).
25. A. Danchin, FEBS Lett., 13,152 (1971).
26. D. H. Gauss, F. Von der Haar, A. Maelicke, and F. Cramer, Ann. Rev. Biochem., 40, 1045 (1971).
27. K. Miura, Progress in Nucleic Acid Research and Mōlecular Biology, 6, 39 (1967).
28. R. W. Chambers, Progress in Nucleic Acid Research and Molecular Biology, 11 , 489 (1971).
29. T. H. Jukes, Curr. Top. Microbiol. Immunol., 4~, 178 (1970).
30. B. Vold, Biochem. Biophys. Res. Commun., $\sim_{\sim}^{35}$, 222 (1969).
31. A. Hampel, M. Labanauskas, P. G. Connors, L. Kirkegard, U. L. RajBhandary, P. B. Sigler, and R. M. Bock, Science, N~N $_{\sim}$, 1381 (1968).
32. H. Kim and A. Rich, Science, 162,1381 (1968).
33. M. Labanauskas, P. G. Connors, J. D. Young, P.. M. Bock, J. W. Anderegg, and W. W. Beeman, Science, ${ }_{\text {~~ }}^{\text {166, }} 1527$ (1969).
34. B. P. Doctor, W. Fuller, and N. L. Webb, Nature, 221, 58 (1969).
35. J. R. Fresco, R. D. Blake, and R. Langridge, Nature, ${\underset{\sim}{2}}_{\sim}^{220}, 1285$ (1968).
36. M. Litt, Biochemistry, 10, 2223 (1971).
37. S. W. Brostoff and V. M. Ingram, Science, 158 , 668 (1967).
38. D. H. Metz and G. L. Brown, Biochemistry, 只, 2329 (1969).
39. Z. Kucan, K. Freude, I. Kucan, Nature, $\underset{\sim}{232}$, 178 (1971).
40. J. Nelson, S. Ristow, and R. Holley, Biochim. Biophys. Acta, 149 , 590 (1967).
41. M. S. May and R. W. Holley, J. Mol. Biol., 52 , 19 (1970).
42. A: Favre, M. Yaniv, and A. M. Michelson, Biochem. B1ophys. Res. Commun., 37,266 (1969).
43. M. Yaniv, A. Chestier, and F. Gros, J. Mol. Biol., 5~, 381 (1971).
44. A. Favre, A. Michelson, and M. Yaniv, J. Mol. Biol., 58, 367 (1971).
45. L. Chaffin, D. Omilianowski, and R. M. Bock, Science, $7_{\sim} 72,854$ (1971).
46. O. C. Uhlenbeck, J. Baller, and P. Doty, Nature, 225, 508 (1970).
47. O. C. Uhlenbeck, J. Mol. Biol., submitted.
48. F. A. Fried, Thesis, University of Oregon (1970).
49. R. Römer, D. Riesner, and G. Mass, FEBS Lett., ~~~ 352 (1970).
50. D. Riesner, R. Römer, and G. Maas, Eur. J. Biochem., 15, 85 (1970).
51. A. Adams, T. Lindah1, and J. Fresco, Proc. Natl. Acad. Sci.U.S., $\sim_{\sim}^{57}, 1685$ (1967).
52. G. Thomas, Biopolymers, 7, 325 (1969).
53. M. Tsuboi, S. Higuchi, Y. Kyogoku, and S.

Nishimura, Blochim. Biophys. Acta, 195, 23 (1969).
54. K. Beardsley and C. R. Cantor, Proc. Natl. Acad. Sci. U.S., 67 , 39 (1970).
55. C. Hélène, F. Brun, and M. Yaniv, J. Mol. Biol., $\sim_{\sim}^{58}, 349(1971)$.
56. I. Smith, T. Yamane, and R. Schulman, Science; ~~~ 21360 (1968).
$0 \quad 0 \quad 67144013$
57. J. Carwford, S. Chan, and M. Schweizer, Biochem. Biophys. Res. Commun., 44; l (1971).
58. B. Hoffman, B. Schofield, and A. Rich, Proc. Natl. Acad. Sci. U.S., ${ }_{\sim} 22,1195$ (1969).
59. L. O. Froholm and B. R. Olsen, FEBS Lett., $\sim_{2}^{3}, 182$ (1969).
60. J. R. MacDonald and M. K. Brackmen, Rev. Mod. Phys., 28, 393 (1956).
61. J. N. Vournakis and H. A. Scheraga, Biochemistry, 5, 2997 (1966).
62. P. S. Sarin, P. C. Zamènik, P. Z. Bergquist, and J. F. Scott, Biochemistry, N~, $_{\text {5 }} 579$ (1966).
63. A. J. Adler and G. D. Fasman, Biochim. Biophys. Acta, 204, 183 (1970).
64. R. H. Reeves, C. R. Cantor, and R. W. Chambers, Biochemistry, 9,3993 (1970).
65. B. Robison and T. P. Zimmerman, J. Biol. Chem., 2~~ 246 (1971).
66. G. E. Willick and C. M. Kay, Biochemistry, ${\underset{\sim}{r}}_{\sim}^{10}$, 2216 (1971).
67. E. Wickstrom, Biochem. Biophys. Res. Commun., $4_{2}$, 976 (1971).
68. J. F. Scott and P. Schofield, Biochemistry, ${ }_{\sim}{ }_{\sim}^{4}$, 931 (1969).
69. K. Watanabe and K. Imahore, Biochem. Biophys. Res. Commun., 45 , 488 (1971).

CHAPTER II

MATERIALS AND METHODS

## 1. Preparation of Crude Aminoacyl-tRNA Synthetases

A. E. Coli Synthetase

In a typical E. Coli synthetase preparation (1), one part frozen E. Coli B cells (Grain Processing) were ground with one and a half parts aluminum oxide (Baker) and a pinch of Macaloid (Barroid) in a mortar and pestle at $4^{\circ} \mathrm{C}$ until lysis (about 10 minutes). Two parts grinding buffer (. 01 M Tris buffer, pH 7.4, . $01 \mathrm{M} \mathrm{MgCl}_{2}, .05 \mathrm{M} \mathrm{NH}_{4} \mathrm{Cl}$, and $5 \mathrm{~mm} \beta$-mercaptol ethanol) and one-half mg electrophoretically pure pancreatic DNase (Worthington) were added to the paste. The mixture was allowed to react for 15 min at $4^{\circ} \mathrm{C}$, and then the debris was spun out in a Sorvall RC2-B centrifuge at $30,000 \mathrm{~g}$. Ribosomes were pelleted at $100,000 \mathrm{~g}$ for 3 hrs in a Beckman Model L uitracentrifuge. The top three quarters of the supernatant was carefully removed and gradually brought to $67 \%$ saturation with solid ammonium sulfate ( $4.36 \mathrm{~g} / 10 \mathrm{cc}$ ) while stirring at $4^{\circ} \mathrm{C}$. The precipitated protein was spun at $15,000 \mathrm{~g}$ for 20 minutes. The pellet was dissolved in a small volume of grinding buffer and dialysed overnight versus grinding buffer in . 3 M ammonium chloride. The synthetase mixture was then assayed for its ability to charge tRNAs. Usually 1 li of enzyme would fully charge an
$A_{260}$ unit of mixed E. coli tRNA under assay conditions described below. The synthetase was frozen in small aliquots at $-20^{\circ} \mathrm{C}$.
B. Yeast Synthetase

Yeast synthetase was purified in a manner similar to trat described by Morris and Herbert (2).

One-half lb.crumbled cake yeast from Virginia Bakery, Berkeley, was added to 750 ml toluene cooled to $-40^{\circ} \mathrm{C}$ in a dry ice-acetone bath. The yeast was allowed to freeze for three hrs with occasional stirring. Toluene was poured off through cheesecloth and the frozen cells thawed for 8 hrs . One hundred ml of 1 M Tris $\mathrm{HCl}, .5 \mathrm{M} \mathrm{HCl}$, ( pH about 8 ), was added and the cells were allowed to autolyze until enzyme activity was maximized. For charging of tRNA ${ }^{\text {Phe }}$ (yeast), 11 hrs autolysis time was found to be optimal. After this time, solution was spun at $15,000 \mathrm{~g}$ for 20 minutes two times to remove debris. The pellet and lipids floating on the top surface were discarded. The solution was then spun in the Beckman Model L ultracentrifuge at $100,000 \mathrm{~g}$ for two hrs to remove ribosomes.

Ammonium sulfate was added to precipitate the protein as before. The solution was spun at $15,000 \mathrm{~g}$ for 20 min , the pellet dissolved in $10 \mathrm{mM} \mathrm{KH} \mathrm{PO}_{4}$ ( pH 7.5 ) , $10^{-4} \mathrm{M}$ EDTA, and dialysed overnight against
this solvent. The yield was about 40 ml of enzyme with arr $A_{280}=88$, and an $A_{260} / A_{280}=1.3$. The synthetase mixture was stored in $40 \%$ glycerol at $-20^{\circ} \mathrm{C}$.

## 2. Assay for Amino Acid Acceptor Activity of tRNA

A typical assay mixture consisted of about 2 mumoles of mixed tRNA or .04 muMoles of purified tRNA, . 05 pCuries of $\mathrm{L}-\left[{ }^{14} \mathrm{C}\right]$ amino acid (specific activity $=50 \mathrm{c} / \mathrm{M}$ ), several $\mu \mathrm{l}$ of synthetase mixture and enough distilled water to bring the total volume of the assay mixture to $50 \mu \mathrm{l}$ in a solution of 1 M Tris $\mathrm{HCl}(\mathrm{pH} 7.4)$, $10 \mathrm{mM} \mathrm{MgCl} 2, ~ 5 \mathrm{mM} \beta$-mercaptoethanol, and 2 mM ATP (sodium salt).(1).

The reaction mixture was incubated for ten min at $37^{\circ} \mathrm{C}$, stopped with 3 ml of ice-cold $5 \%$ trichloroacetic acid (TCA), and the precipitated tRNA collected on a millipore filter (HA . $45 \mu$ ) which had been soaked in cold TCA. The filters were rinsed with 3 ml more TCA, and dried under an infrared lamp. The amount of L- $\left[^{14} C\right]$ amino acid incorporated was determined by counting in 5 ml of toluene based PPO-POPOP scintillation fluid (Amershan Searle), in a Beckman LS-250 liquid scintillation counter. Counting efficiency was found to be $93 \%$ by counting a known amount of $\left[{ }^{14} \mathrm{C}\right]$ amfno acid. The increase in specific activity (cpm/OD $\mu \mathrm{l}$ ) upon purification was compared with published estimates of the relative amounts of different

0 子
tRNAs in mixed tRNA (3,4). Most tRNAs were assayed for biological activity before and after optical measurements to verify that degradation had not occurred.

The amount of charged tRNA in column fractions was simply determined by precipitating a volume of the column fraction corresponding to about . $05 \mathrm{~A}_{260}$ units of tRNA in cold TCA, filtering on a Millipore filter, and counting.

## 3. Purification of tRNAs

A. E. coli Tryptophan tRNA
E. coli tryptophan tRNA was purified in a manner similar to that developed by Maxwell et al. (5) for the purification of yeast tryptophan tRNA. First the fraction of the mixed tRNA that elutes from benzoylated DEAE (BD) cellulose only in ethanol was separated on a 200 ml column. Most of the other species of tRNA had already been eluted with $1 \mathrm{M} \mathrm{NaCl}$. resulted in a six-fold enrichment for tryptophan tRNA.

A 50 ml column was packed with BD cellulose, washed with 2 M NaCl , and equilibrated with 1 M NaCl , .OI M $\mathrm{MgCl}_{2}$, and . $01 \mathrm{M} \mathrm{NaAcetate}, \mathrm{(pH} 4.5$ ).

The enriched fraction was loaded with $L-\left[{ }^{14} C\right]$ tryptophan (Schwartz) using a scaled up version of the assay conditions described in Section 2. The charged氏RँNA was precipitated with ice-cold ethanol, dissolved

Figure 2-1. Purification of trNA ${ }^{\text {Tryp }}$ (E. coli). Absorbance ( - ) and specific activity (X) of fractions eluted from a $B D$ cellulose column with a gradient of ethanol ( $0-20 \% \mathrm{v} / \mathrm{v}$ ). Peak $I$ is tRNA Tryp (E. coli) and peak II is other tRNAs. Three successive columns were run as shown in (a), (b), and (c) resulting in highly purified tRNA ${ }^{\text {Tryp }}$.
$0,003 \% 0 \% 315$




Figure 2-1
in . 3 M NaCl , and applied to the column. . The column was washed with 1 M NaCl until the materlal being eluted had a very low $O D$. Then the sample was eluted with a linear gradient of ethanol varying from $0 \%$ to $20 \%$ EtOH (v/v) in $1 \mathrm{M} \mathrm{NaCl}(800 \mathrm{ml}$ total volume). The flow rate was 30 ml an hour and 5 ml aliquots were collected.

The absorbance and acceptor activity of the column fractions is shown in Fig. 2-1a. The fractions of highest specific activity (tubes 52 to 80 ) were pooled, diluted with 1 M NaCl to reduce ethanol concentration by a factor of 3 or 4, and reapplied to the column. This time separation was better as shown in Figure 2-1b. The fractions of highest specific activity were pqoled, diluted, and chromatographed under the same conditions a third time as shown in Figure 2-lc. The tRNA was deacylated by incubation at pH 9.0 in Tris-Cl buffer for 20 min at $37^{\circ} \mathrm{C}$. The tRNA was then assajed and found to be at least 90 -fold purified relative to the mixed E. coli tRNA. Since Tryp is about $1 \%$ of mixed tRNA, this corresponds to a purity of about $90 \%$ (4).
B. Yeast Phenylalanine and Tyrosine tRNAs.

Two grams of mixed Baker's yeast tRNA (Plenum Laboratories) were dissolved in 60 ml of water. $A$ 300 ml column ( 3.5 cm by 32 cm ) was packed with BD
cellulose in 2 M NaCl and then equilibrated with .4 M NaCl. The sample was applied and the column washed with . 4 M NaCl. The eluted material was enriched for methionine tRNA. Elution was continued with . 7 M NaCl resulting in a fraction enriched for tryptophan tRNA. Next a tyrosine enriched fraction was obtained by eluting with 1 M NaCl . Finally the column was eluted with $10 \%$ ethanol resulting in a fraction containing mostly tRNA ${ }^{\text {Phe }}$.

The fractions were each concentrated by ultrafiltration in a Diaflo apparatus (Amicon Corporation, Cambridge, Massachusetts) using a UM-3 membrane. They were then assayed for Phe and Tyr acceptor activity. The ethanol fraction was found to be 12 fold enriched for tRNA ${ }^{\text {Phe }}$, and the 1 M NaCl fraction was 2 fold enriched for tRNA Tyr.

Yeast tRNA ${ }^{\text {Phe }}$ was further purified in a manner similar to that described by Litt (6). The fraction that eluted in ethanol was charged with $\left.L-{ }^{14} C\right]$ phenylalanine (Schwartz Stanistar) using standard assay conditions. This tRNA was applied to a 50 ml BD cellulose column equilibrated with .9 M NaCl . Then the column was eluted with 150 ml of a gradient from . 8. M to l M NaCl in $15 \%$ ethanol, followed by 350 ml of 1 M NaCl in $15 \%$ ethanol. The fractions were counted and those of highest specific activity were pooled and rechromatographed with a similar gradient. The fractions of highest specific activity were concentrated
by ultrafiltration, deacylated, and assayed for aminoacylacceptor activity. The tRNA Phe was found to be 17-fold purified which corresponds to a purity of about $95 \%$ (7).

Then the fraction of the tRNA which had been enriched for tyrosine was charged with $L-\left[{ }^{4} C\right]$ tyrosine (Schwartz), and loaded on a BD cellulose column following the method of Maxwell et al. (5). It was eluted with a one liter linear gradient from $0 \%$ to $10 \%(\mathrm{v} / \mathrm{v})$ ethanol in 1 M NaCl. Most of the tyrosine activity was found to elute between 5 and $8 \%$ ethanol. These fractions were pooled and deacylated by incubation at pH 8.1 for 20 minutes at $37^{\circ} \mathrm{C}$. The deacylated tRNA was ethanol precipitated and rechromatographed on $B D$ cellulose in a gradient from .4 M to 1.1 M NaCl $(600 \mathrm{ml}$ total volume). The tubes of highest activity were pooled, concentrated, and assayed. The tRNA Tyr was 25-fold enriched, corresponding to a purity of about 90\% (5).

## 4. Sources of Other tRNAS Used in This Work/

As can be seen from Table 2-1, three of the tRNAs befng studied were purffied as part of this work, and the other six were gifts from Oak Ridge National Laboratory, Dr. Olke Uhlenbeck, Dr. J. Fresco, and Dr. B. S. Dudock. The 5S RNA was a gift from Dr. Jim Lewis. The source of the sequences shown in Figures

## Table 2-1

| tRNA | Source of tRNA | Sequence |
| :---: | :---: | :---: |
| F. Met (E. coli) | Gift, Oak Ridge National Laboratory | S. K. Dube, et al. (8) |
| Leu (Yeast) | Gift, J. Fresco, Princeton University | J. Fresco (9) |
| Phe (E. coll) | Gift, O. Uhlenbeck, University of Illinois | B. G. Barrell and F. Sanger (10) |
| Phe (Wheat) | Gift, B. S. Dudock, State University of New York, Stonybrook, New York | B. S. Dudock, et al. (11) |
| Phe (Yeast) | This work | U. L. RajBhandary et al. (12) |
| Tryp (E. coli) | This work | D. Hirsh (13) |
| Tyr (E. coli) | Gift, O. Uhlenbeck, University of Illinois | H. M. Goodman et al. (14) |
| Tyr (Yeast) | This work | J. T. Madison et al. (15) |
| Val (E. coli) | Gift, Oak Ridge National Laboratory | M. Yaniv and B. G. Barrell (16) |

1-1 to $1-3$ are also listed.

## 5. Sources of Dimers

The $C D$ of 16 dimers and 4 monomers were measured at $40^{\circ} \mathrm{C}$ in $10 \mathrm{mM} \operatorname{Tris}-\mathrm{HCl}(\mathrm{pH} 7.8), 1 \mathrm{mM} \mathrm{MgCl} 2$. The GG was purchased from Nutritional Biochemicals, and the other 15 dimers from Calbiochem and Amersham Searle. Purity was checked by spotting $2 \mu \mathrm{l}$ of each dimer on paper and chromatographing overnight in $7.0 \%$ EtOH, $30 \% \mathrm{NH}_{4} \mathrm{Ac}$.
6. Extinction Coefficients and Concentration Determinations

In collaboration with Dr. Marc Maestre, extinction coefificients for all nine species of purified tRNA were determined by degrading the tRNAs to nucleotides and using the known nucleotide extinction coefficients (17). The UV spectra of stock solutions of tRNA ( 1 OD unit/ml) in $10 \mathrm{mM} \operatorname{Tris-HCl}$ ( pH 7.8 ), $1 \mathrm{mM} \mathrm{MgCl}{ }_{2}$ were recorded. $30 \mu \mathrm{l}$ of 5 M NaOH was added to duplicate blanks and samples of the 9 species of tRNA each of volume .5 ml . Tubes were weighed after the addition of each solution, incubated for 24 hrs at $37^{\circ} \mathrm{C}$, heated to $60^{\circ} \mathrm{C}$ for 2 min to insure degradation, incubated 12 more hours at $37^{\circ} \mathrm{C}$ and reweighed. The samples and blanks were neutralized with $30 \mu l$ of 5 mm HCl and $20 \mu \mathrm{l}$ of 1 M Tris-HCl, pH 7.8 . Volumes of each solution added were calculated from their density
( $\mathrm{g} / \mathrm{cc}$ ). The $O D$ at $258 \mathrm{~m} \mu$ of the degraded tRNA was obtained and corrected for dilution.

The initial extinction coefficient could then be calculated from:

where $\varepsilon$ is the extinction coefficient at 258 mp in 10 mM Tris- HCl and $\mathrm{I} \mathrm{mM} \mathrm{MgCl}{ }_{2}, V$ is the volume of the solution, and $A_{258}$ is the absorbance at $258 \mathrm{~m} \mathrm{\mu}$. Agreement between duplicate samples was within 1\%. The extinction coefficients so determined are listed in Table 2-2.

> Table 2-2

## Extinction Coefficients of Nine tRNAs in <br> . Ol M Tris-HCl (pH 7.8)

tRNA $\quad \varepsilon_{258} \times 10^{-3}$
F. Met (E. coli) $\quad 7.06$

Leu (Yeast) 7.37
Phe (E. coli) $\quad 7.15$
Phe (Wheat) 7.42
Phe (Yeast)
6.63

Tryp (E. coli) 6.71
Tyr (E. coli) $\quad 7.40$
Tyr (Yeast) 7.11
$\operatorname{Val}(\underline{E} \cdot \underline{\text { coli })} \quad 7.52$

## 7. Atomic Absorption Measurements

Magnesium concentrations were measured with a Perkin Elmer Model 303 Atomic Absorption Spectrophotometer equipped.with a Westinghouse hollow cathode lamp. An air acetylene flame was used and the absorption was monitored at $285 \mathrm{~m} \mathrm{\mu}$. Standard solutions containing between . 1 and 1 ppm of $\mathrm{MgCl}_{2}$ were measured and a linear plot of absorbance versus concentration was made before each run. About 1.cc of solution was used for each measurement. The per cent absorption of the standards and samples was measured at least three times unless there was an insufficient amount of sample to allow this. Error was less than $10 \%$ except in very dilute solution.

## 8. Desalting Procedures

Extensive dialysis was used to remove as much $\mathrm{Mg}^{++}$ and other salts from tRNA solutions. The following buffers were prepared using twice distilled water: (a) $0.5 \mathrm{M} \mathrm{NaCl}, 10 \mathrm{mM}$ EDTA pH 7.5 ; (b) 0.2 M NaCl , 1 mM EDTA pH 7.5 ; (c) 1 mM EDTA pH 7.5 ; (d) .01 mM EDTA pH 8.5. Solutions were dialysed for about 6 hours at $4^{\circ} \mathrm{C}$ against four changes each of buffers (a), (b), and (c), and against 8 changes of buffer (d). After desalting, the concentration of $\mathrm{Mg}^{++}$was measured by atomic absorption, and found to be about $1 \mathrm{Mg}^{++}$per tRNA molecule. Spectral measurements of low salt tRNA
were made in $10^{-5} \mathrm{M}$ EDTA which is about 1 EDTA per $\mathrm{Mg}^{++}$, and should ensure there is no more than $1 \mathrm{Mg}^{++}$ bound to each tRNA molecule.

## 9. Optical Measurements

A. Cells and Solutions

All CD measurements were made using a standard strain-free cylindrical fused quartz cell (Opticel) of 1.0 cm pathlength and about .6 ml volume. Cells were frequently washed in chromic-sulfuric acid cleaning solution and rinsed at least 20 times with glass distilled water. Cells to be used for measurements in very low salt were soaked in dilute EDTA and then thoroughly rinsed with glass distilled water. The concentration of $\mathrm{Mg}^{++}$in the distilied water was periodically checked using atomic absorption and found to be less than $10^{-5} \mathrm{M}$.

For all measurements above room temperature, cells were closed with ground glass stoppers wrapped in Teflon tape to assure a tight seal. Cells were weighed before and after high temperature measurements to verify that no evaporation had occurred.

UV measurements were either made in the CD cell or in rectangular quartz stoppered cells of 1 cm pathlength and 1 ml volume (Pyrocel).
"Native" RNA spectra were measured in solutions of $10^{-2} \mathrm{M}$ Tris-HCl $(\mathrm{pH} 7.5), 10^{-3} \mathrm{M} \mathrm{MgCl} 2$. There was
found to be no change in the magnitude of absorption or CD in this buffer between pH 7.0 and pH 9.0 . Spectra of "single stranded" RNA in low salt were obtained in $10^{-5}$ M EDTA adjusted to pH 8.5. The EDTA was used to insure the absence of $\mathrm{Mg}^{++}$bound to the tRNA as atomic absorption measurements had indicated a $\mathrm{Mg}^{++}$concentration of about $10^{-5}$. No additional buffer was added to avoid adding divalent cation impurities. The pH of these solutions was checked after optical measurements with a Beckman Expandomatic pH meter equipped with a microelectrode to verify that it had not dropped below 7.0 .

Samples used in optical studies had A $260^{\prime \prime}$ s at $260 \mathrm{~m} \mathrm{\mu}$ between .5 and 1.0 .
B. Absorption and CD Measurements

All UV absorption spectra were measured at room temperature $\left(25^{\circ} \mathrm{C}\right)$ on a Cary 15 spectrophotometer. Absorption spectra were recorded for all solutions prior to $C D$ studies.

The change in absorbance with temperature at $260 \mathrm{~m} \mu$ was recorded between $10^{\circ} \mathrm{C}$ and $95^{\circ} \mathrm{C}$ using a modified Beckman DU spectrophotometer on a Gilford Model 2000 multiple sample absorbance recorder. Temperature was increased at a rate of about $20^{\circ} \mathrm{C} / \mathrm{hr}$ by means of a temperature programmer connected to a Haake Model I circulating bath. Absorbance and temperature
were recorded very two minutes. Three samples and one blank were run simultaneously.

CD measurements were made using a Cary Model 60 spectropolarimeter equipped with a circular dichroism attachment (Model 6001). Temperatune was controlled using a circulating water bath and electronic cell block designed by Dr. Donald Gray (18). Control could be maintained to $\pm 0.1^{\circ} \mathrm{C}$ with an accuracy of $\pm 0.5^{\circ} \mathrm{C}$. The Cary 60 was operated at a scan rate of about $3 \mathrm{~m} \mu$ per minute, a pen time constant of 0.3 seconds and a full range scale of 0.04 . Spectra were measured between 350 and $205 \mathrm{~m} \mathrm{\mu}$. Base line spectra of the solvent in the same cell were obtained before and after each set of $C D$ spectra.

## REFERENCES TO CHAPTER II

I. 0. C. Uhlenbeck, personal communication.
2. P. W. Morris and E. Herbert, Biochemistry, ${ }_{\sim}^{9}$, 4819 (1970).
3. I. Gillam, S. Millward, D. Blew, M. von Tigerstrom, E. Wimmer, and G. M. Tener, Biochemistry, $\underset{\sim}{6}, 3043$ (1967).
4. K. H. Muench and P. A. Safille, Biochemistry, 7, 2799 (1968).
5. E. Wimmer, I. H. Maxwell, and G. M. Tener, Biochemistry, 7, 2623(1968).
6. M. Litt, Biochem. Biophys. Res. Commun., 32,507 (1968).
7. I.H. Maxwell, E. Wimmer, and G. M. Tener, Biochemistry, 7, 2629 (1968).
8. S. K. Dube, K. A. Marcker, B. F. C. Clark, and S. Cory, Nature, 218,232 (1968).
9. J. Fresco, personal communication.
10.. B. G. Barrell and F. Sanger, FEBS Lett., 3, 275 (1969).
11. B. S. Dudock, G. Katz, E. Taylor, and R. Holley, Proc. Natl. Acad. Sci. U.S., 62, 941 (1969).
12. U. L. RajBhandary', S. H. Chano, A. Stuart, R. D. Faulkner, R. M. Hoskinson, and H. G. Khorana, Biochemistry, 57,751 (1967).
13. D. Hirsh, Nature, 228,57 (1970).
14. H. M. Goodman, J. Abelson, A. Landy, S. Brenner, and J. D. Smith, Nature, 217 , 1019 (1968).
15. J. T. Madison, G. A. Everett, and H. King, Science, 153,531 (1966).
16. M. Yaniv ánd B. G. Barrell, Nature, 222,278 (1969).
17. P-L Biochemicals, Inc., Circular OR-10. Values used for $\varepsilon_{258}$ were 15.4 for AMP, 9.7 for UMP, 7.0 for CMP, and 12.7 for GMP.
18. F.S. Allen, D. M. Gray, G. P. Roberts, and I. Tinoco, Jr., Biopolymers, submitted.

CALCULATION OF CD SPECTRA AND DATA ANALYSIS

1. CD Spectra May be Used to Characterize RNAs

The positions, magnitudes, and shapes of the bands in a $C D$ spectrum of an RNA provide information about the structure of this molecule. It is informative to consider the general characteristics of some $C D$ spectra of RNA that have been calculated by summing appropriate spectra of simpler RNAs. The nature of this calculation will be discussed in detall laterin this chapter.

Figure 3-1 shows some typical CD spectra of an RNA that is equimolar in $A, U, C$, and $G$ calculated as a function of the percent of the nucleosides that are In hydrogen-bonded double strand regions. There are several characteristics of these spectra that are of special interest.

Scanning from high wavelength, the first feature of note is a small negative $C D$ band centered around $295 \mathrm{~m} \mathrm{\mu}$. This band was first observed by Sarkar et al. (1) who noted that it is more sensitive to melting of secondary structure of RNAs than is the large positive band around 270 mu . Upon heating the ERNA, this band disappears at lower temperature than those necessary to melt the secondary structure of the polymers. This implies that the $295 \mathrm{~m} \mathrm{\mu}$ band corresponds to some sort of structure other than secondary, perhaps to tertiary


$$
\begin{gathered}
c \\
6 \\
6 \\
6 \\
6 \\
6 \\
6 \\
6
\end{gathered}
$$

Spectra were calculated from sums of monomer, dimer, and polymer spectra using Equation 3-11.
structure.
Calculated spectra in Fig. 3-1 show that the band at $295 \mathrm{~m} \mu$ decreases in magnitude with an increase In the single strand character of the RNA. Figure 3-6 shows that for double stranded RNA, the band decreases with an increase in the percent of $G: C$ pairing interactions.

The next feature of the spectrum is a large positive peak between 260 and 280 mp which is caused by several $\pi-\pi^{*}$ transitions. This large $C D$ is the result of interactions between the $260 \mathrm{~m} \mathrm{\mu}$ transitions of one base with the electronic transitions of its neighbor bases (2,3). The magnitude of this peak is quite sensitive to the pairing and stacking interactions of the bases in the RNA. As shown in Fig. 3-1, its position will shift to the red with a decrease in the number of hydrogen-bonded bases in the molecule. A change in the type of bases that are paired also produces a change in this spectrum, as shown in Fig. 3-6.

The position of the crossover wavelength in the vicinity of 240 mH will also vary with the type and amount of hydrogen-bonding in the molecule. There may be a small negative band centered around $235 \mathrm{~m} \mathrm{\mu}$. Finally, there is a small positive band around $220 \mathrm{~m} \mathrm{\mu}$; this band is particularly sensitive to the base composition of the single strand RNA as shown in Fig. 3-5.
$0 \quad 1 \quad 3 \quad 3 \quad 0 \quad 1 \quad 2 \quad 2$

Most past $C D$ studies of tRNA structure have involved tabulation of the positions and magnitudes of extrema and of crossovers. In this work, computer data analysis makes it possible to study the entire spectral curve of each RNA. This allows a maximal amount of structural information to be extracted from the $C D$ spectra.

In order to calculate the spectra of native tRNA, it is necessary to calculate the single strand and double strand contributions to the CD. Each of these will be considered separately and in some detail.

## 2. The Optical Properties of Trinucleoside Diphosphates

 and Homopolynucleotides May be Calculated from Those of Dinucleoside Monophosphates:The optical properties of some RNAs have been derived from those of oligomers with qualitative success $(4,5)$. These calculations are based upon the spectra of dinucleoside monophosphates (dimers) and mononucleosides (monomers) and two assumptions. First, it is assumed that base. stacking and geometry are similar in dimers and in longer RNA molecules. Second, it.is assumed that all of the optical properties observed are caused by interactions among nearest neignbors. This latter assumption is called the nearest neighbor approximation.

For example, consider some optical property of the $\stackrel{1}{1}$ trinucleoside diphosphates (trimer) XYZ, such as [ $\theta$ ],
the mean molar ellipticity per residue. [ $\theta$ ] can be approximated at each wavelength by:

$$
\begin{equation*}
(X Y Z)=\frac{1}{3}(2(X Y)+2(Y Z)-(Y)) \tag{3-1}
\end{equation*}
$$

where the mean molar ellipticity of the trimer XYZ, the dimers $X Y$ and $Y Z$, and the monomer $Y$ are given by ( $X Y Z$ ), $(X Y),(Y Z)$, and (Y) respectively at each wavelength. In this work, parentheses () will denote experimental CD spectra.

Equation 3-1 has been used to calculate the ORD of several trimers (4). $C D$ and $O R D$ are related by the Kronig-Kramers transform and may be used almost interchangeably (6). In most cases good agreement is found between measured trimer spectra and those based on nearest neighbor calculations. Figure 3-2 shows this agreement for the ORD of the trimers $A_{3}$, AAC, AAU, GAU, and AGU as measured by Cantor and Tinoco (4). It should be noted that in the first three of these trimers, the calculated spectra are shifted to slightly higher wavelengths than the experimental spectra.

Similarly, optical properties of homopolyribonucleotides (homopolymers) may be calculated from the nearest... neighbor approximation:

$$
\begin{equation*}
(\text { poly } X)=2(X X)-(X) \tag{3-2}
\end{equation*}
$$

The ellipticity of poly $X$ is thus simply two times the ellipticity of the dimer $X X$ minus the ellipticity of the monomer X .

Figure 3-2. A comparison of the measured ORD of some trimers. (—) and the ORD calculated from the nearest neighbor approximation (-----). These spectra were obtained by C. R. Cantor and I. Tinoco, Jr. (4).


Figure 3-2

The ORD of the homopolymers of the four common RNA bases (5) and the CD of poly $I$ (7) have been compared with the nearest neighbor calculation using Equation 3-2. The calculated and experimental spectra of poly rá, poly rU, poly $r C$, and poly $r G$ are shown in Fig. 3-3.

Qualitative agreement is fairly good, though less so than in the case of trimer calculations. The agreement is best in the case of poly $r U$ and worst for poly rG , which is probably aggregated (5). Again the calculated spectra are shifted to higher wavelengths relative to the experimental spectra. This shift is much larger for polymers than for trimers.

This discrepancy suggests that dimers and polymers have different spectral properties. This could be caused either by a difference in polymer geonetry or by long range interactions in the polymer. The fact that poly rU , which is the least stacked polymer, agrees best with the nearest neighbor approximation suggests that long range symmetry of similarly stacked bases might alter the optical properties of the homopolymers. Another possibility is that intrastrand phosphate repulsion could change the orientation of the bases in the polymer.

It should be noted that dimers are a better model for trimers than for homopolymers.

Figure 3-3. The experimental ORD of four homopolymers at reutral $\mathrm{pH}(-)$ is compared with the nearest neighbor calculation (----). (a) poly A, (b) poly C, (c) poly U, and (d) poly G. These curves were taken from S. R. Jaskunas (5).


Figure 3-3
3. The CD of Single Strand tRNA May be Approximated
by a Sum of Dinucleoside Monophosphate Basts

## Suectra.

Ignoring end effects, the CD of any single strand RNA of known nearest reighbor frequency may be calculated in a manner similar to that described for trimers and homopolymers using the nearest neighbor approximation:

$$
\begin{equation*}
(\mathrm{RNA})=\sum_{x=1}^{N} \sum_{y=1}^{N} 2 F_{x y}(X Y)-\sum_{x=1}^{N} F_{x}(X) \tag{3-3}
\end{equation*}
$$

where the RNA consists of N different types of bases. $\mathrm{F}_{\mathrm{xy}}$ and $\mathrm{F}_{\mathrm{x}}$ are the number of times that the dimer $X Y$ and the monomer $X$ occur divided by the total number of bases in the RNA, and (XY) and (X) are their respective $C D$ spectra. The mole fractions are obtained by counting the number of times an interaction occurs in the polymer and dividing by the total number of interactions present in the RNA.

## A. Single Strand Basis Spectra

For ease in calculating the CD of large RNAs it is convenient to define a basis spectrum corresponding to the contribution of the $C D$ of the dimer XY. to the CD of an RNA:

$$
\begin{equation*}
[X Y]=2(X Y)-\frac{1}{2}(X)-\frac{1}{2}(Y) \tag{3-4}
\end{equation*}
$$

where the quantities are as previously defined and [XY]
is a single strand basis spectrum.
Then, to calculate a spectrum it is necesṣary to merely count the number of each type of nearest neighbor interactions present and add a term for the two monomers at the end of the chain. For example, consider the oligomer $A B C D E:$
$\frac{1}{5}\left((\mathrm{ABCDE})=[A B]+[B C]+[C D]+[D E]+\frac{1}{2}(A)+\frac{1}{2}(E)\right)$

The single strand basis spectra of the four common bases at $25^{\circ} \mathrm{C}$ were obtained from 16 dimer and 4 monomer spectra of Cantor, et al. (10). Single strand basis spectra at $40^{\circ} \mathrm{C}$ were also needed for this study. The $C D$ spectra of the 16 dimers and 4 monomers were measured at $40^{\circ} \mathrm{C}$ and are listed in Appendix 1 along with four spectra of dimers containing dihydrouridine measured by Dr. Carl Formoso (11).

The dimer spectra at $40^{\circ} \mathrm{C}$ have the same shapes and positions of extrema as at $25^{\circ} \mathrm{C}$. However, the magnitudes of many of the peaks and troughs are decreased at $40^{\circ} \mathrm{C}$. Different buffers were used for the $25^{\circ} \mathrm{C}$ and $40^{\circ} \mathrm{C}$ dimer measurements. Since the CD of the dimers is not very sensitive to salt concentration (8), the difference between these two sets of spectra is attributable to unstacking due to temperature, rather than to solvent effects.
B. Modified Nucleoside Approximations

In addition to the four'usual nucleosides $A, U, C$, and $G$, nearly all species of tRNA contain an average of $10 \%$ of modified bases, commonly referred to as minor or "odd" bases. Figure 3-4 shows the structures of most of these unusual nucleosides along with the abbreviations that will be used to represent them in this work. The frequency with which they occur in the single and double strand regions of the nine species of tRNA being studied here is listed in Table 3-l. A* and $X$ are bases whose structures are presently unknown.

The function of these minor bases in the activities of tRNA is one of the intriguing mysteries surrounding this molecule. It is reasonable to assume that they influence the structure or have some definite role in the function of tRNA. If the unusual bases have no function it seems likely that they would disappear, thereby saving the cell the unnecessary work of synthesizing the enzymes to modify the precursor tRNA (7).

It should be noted that $91 \%$ of the modified bases in these tRNAs are found in single strand regions of the molecule (Table 3-1).: The $N_{2}$-dimethyl, l-methyl or greatly modified purines, D, 4 tU and 3-methyl C will not form proper Watson-Crick base pairs. This suggests that at least some of the odd bases function to pre-

$N^{2}$-dimethyl guanosine


1-melhyl odenosine AMe.


I

$G_{M c}$



 $i^{5}-L^{2}$ isopentenyl $N$ odenosine 2 methylthiocienosine $A_{\mathrm{mel}}$

$N^{6}-L^{2}$ isopen!enyl $A_{1}$ :



3-methyl cylidine
$C_{\text {Me }}$

psuedouridine

## 4-thiouridine

 4tU
## Figure 3-4

Some of the modified nucleosides found in tRNA and abbreviations used to represent them. ( $R=$ ribose). Taken from C. J. Formoso (7).

# Table 3-1 <br> Frequency of Modified Nucleosides in Nine tRNAS 

Single Strand Regions Double Strand Regions

Adenine

| $A_{M e}$ |  |
| :--- | ---: |
| $A_{\text {msi }}$ | 4 |
| $A_{1}$ | 2 |
| $A^{*}$ | $\ddots$ |

Uracil
D : 19
$T: 9$
$\psi \quad 13$
6
$4 t \mathrm{U}$
5

Cytosize

| $\mathrm{C}_{\text {Me }}$ |  |  |
| :--- | :--- | :--- |
| $\mathrm{C}_{\text {OMe }}$ | 2 |  |
|  | 3 | $\therefore$ |

Guanine

vent the tRNA from assuming an incorrect secondary structure.

Dr. Carl Formoso carried out a study of the optical properties of two of the minor nucleosides, I and C (7), His CD spectra of $A D, D A, G D, D D$, and D at $40^{\circ} \mathrm{C}$ and $25^{\circ} \mathrm{C}$ are used in this work. The extrema of the dimers: containing $D$ are smaller and different in shape from those of their U-containing counterparts. Of the 28 nearest neighbor interactions involving $D$ in these nine tRNAs, 20 are either $D A, A D, G D$, or $D D$. The remaining interactions involving $D$ are assumed to have the same $C D$ spectrum as $D D$, which consists of only a small peak and trough below $240 \mathrm{~m} \mathrm{\mu}$. This is better than assuming these dimers have the same spectral properties as the analogus dimers containing $U$ since D is not aromatic and doesn't absorb at $260 \mathrm{~m} \mathrm{\mu}$. The CD of the 4 dimers containing $D$ at $40^{\circ} \mathrm{C}$ are also tabulated in Appendix 1.

It would be very useful to have data on the optical properties of $\psi$ which accounts for $22 \%$ of the modifications in these tRNAs and $16 \%$ of the total number of U's present. Only the $C D$ of the dimers $A \psi$ and $\psi A$ have been studied (12). They exhibit a CD spectrum of opposite sign but similar shape to those of $A U$ and UA. To see if this was also the case for the $\psi$ in the sequence $T \psi C G$, the $C D$ of this sequence was calculated using the nearest neighbor approximation and assuming that $[T \psi]=-[U U]$ and that $[\psi C]=-[U C]$.

Agreement with the experimental T $\psi C G$ CD spectrum measured by Dr. Carl Formoso (7) was very poor (Fig. 3-5).

Thus it was not valid to assume that dimers containing $\psi$ exhibit the negative $C D$ behavior of analogous dimers containing U. $\psi$ does behave like $U$ in that it forms stable base pairs with A. Until more information is available, it is assumed that $U$ and $\psi$ have the same optical properties.

One-third of the modifications in these tRNAs involve only the addition of one or two methyl groups to a base. This should not cause a great change in the $C D$ of the nucleotide, and it is valid to assume that the spectral properties of methylated bases approximate those of their unmethylated counterparts.

In this study, it is assumed that the CD spectral properties of the other odd bases in tRNA are also the same as those of the unmodified bases. The more exotic bases, especially the heavily modified purines usually found on the $3^{\prime}$ end of the anticodon, will probably have different $C D$ spectra. (12). However, until the optical properties of these bases have been studied, it must be assumed that they too resemble their unmodified counterparts. Since about $2 \%$ of the bases in the tRNAs are of this sort, only a small amount of error is introduced into the nearest neighbor calculations by this assumption.


C $\therefore$ Single Strand RNA Spectra are Sensitive to Base Composition and Sequence

To obtain some feeling for the meaning of changes in the $C D$ spectra of single strand RNAs it is useful to calculate the spectra as a function of base composition. It is assumed that $G$ and $C$ are present in equal amounts as are $A$ and $U$, and that otherwise nearest neighbor interactions are random. The CD of single strand RNA between $0 \%$ and $100 \%$ GC may be calculated using Equation $3-3$ and the single strand basis spectra as defined in Equation 3-4;

$$
(R N A)=\sum_{x=1}^{4} \sum_{y=1}^{4} F_{x y}[X Y]+\frac{1}{2} \sum_{x=1}^{2} F_{x}(X) \quad(3-6)
$$

where all terms are as previously defined and the second sum is taken over the two end nucleosides. The result is shown in Fig. 3-6 for polymers where end effects are ignored.

It should be noted that the peak at 221 mu is particularly sensitive to the base composition and shows an almost linear decrease in magnitude with an increase in the percent of $G$ and $C$ present. A similar effect has been observed in DNA (13).

The magnitude of the large peak also decreases with increasing $G$ and $C$ until $80 \%$ GC, when it begins to increase again: The position of this peak shifts to higher wavelengths while the crossover shifts to lower

$$
0 \quad 0 \quad 0 \quad 7 \quad 0 \quad \because \quad 2<3
$$



Figure 3-6
Spectra were calculated from sums of dimer basis spectra using Equation 3*6.
wavelengths with increasing $G$ and $C$.
There is a large negative trough at about $250 \mathrm{~m} \mu$ in RNA that is composed of all $A^{\prime}$ s and U's. This band decreases with an increase in the percent $G$ and C and completely disappears in the sample that is all G's and C's. There is no band observed around $295 \mathrm{~m} \mathrm{\mu}$ In any of the single strand RNAs.

The $C D$ of an RNA is aiso quite sensitive to sequence effects. To better understand this, we consider a somewhat extreme example of sequence variation. The calculated $C D$ of four equimolar RNAs of different sequence are shown in Fig. 3-7. These RNAs each contain only four of the 16 possible nearest neighbor interactions. Although this example is somewhat artificial, it shows that $C D$ spectra will vary with sequence.

Thus it is seen that $C D$ spectra are quite sensitive to base composition and to sequence. The CD spectrum could plausibly be used as an analytic tool to obtain some measure of the composition of an unknown single strand RNA.

Figure 3-7. CD of equimolar single strand RNAs of varying sequence calculated using Equation 3-6 and assuming only certain nearest neighbor interactions are present.

D. Variation in Nearest Neighbor Frequencies of Nine tRNAs

From the sequences of the nine tRNAs the frequency of each of 20 nearest neighbor interactions is tabulated in Table 3-2. As previously discussed, it was assumed that the minor nucleosides other than $D$ had the same $C D$ as their unmodified counterparts.

Then the calculated $C D$ of these tRNAs was found by summing the basis spectra corresponding to these nearest neighbor frequencies using Equation 3-6. The results of these calculations are tabulated and compared with the experimental $C D$ of these single strand tRNAs in the next chapter.
4. The CD of Double Strand Regions of RNA May be

Approximated by a Sum of Double Strand Polymer. Spectra.

The $C D$ of the double strand regions of $t R N A$ may be calculated similarly to the method used for single strand RNA. To do this, it is necessary to know the spectra corresponding to the ten possible double strand polymer interactions:

## Table 3-2

Variation in Nearest Neighbor Frequencies of Nine tRNAs

|  | AA | AU | AC | AG | UA | UU | UC | UG | CA | CU | CC | CG | GA | GU | GC | GG | DD | AD | DA | GD |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F. Met (E. coli ) | 5 | 2 | 2 | 4 | 1 | 1 | 7 | 2 | 5 | 3 | 9 | 9 | 2 | 5 | 7 | 10 | 0 | 0 | 1. | 1 |
| Leu (Yeast) | 6 | 4 | 2 | 8 | 3 | 6 | 6 | 4 | 7 | 4 | 4 | 5 | 5. | 5 | 7 | 5 | 2 | 0 | 0 | 1 |
| Phe (E. coll) | 3 | 4 | 1 | 6 | 1 | 4 | 6 | 3 | 4 | 2 | 9 | 6 | 5 | 4 | 4 | 8 | 1 | 0 | 1 | 2 |
| Phe (Wheat) | 4 | 3 | 4 | 6 | 1 | 1 | 6 | 3 | 6 | 4 | 3 | 7 | 7 | 3 | 6 | 6 | 3 | 0 | 0 | 2 |
| Phe (Yeast) | 4 | 4 | 3 | 7 | 1 | 4 | 5 | 5 | 6 | 4 | 3 | 4 | 8 | 3 | 6 | 5 | 2 | 0 | 0 | 1 |
| Tryp (E. coli) | 4 | 0 | 3 | 6 | 2 | 3 | 7 | 2 | 3 | 4 | 8 | 5 | 3 | 7 | 3 | 9 | 2 | 1 | 1 | 1. |
| Tyr (E. coli) | 6 | 3 | 4 | 5 | 1 | 4 | 8 | 3 | 6 | 4 | 11 | 6 | 6 | 5 | 4 | 8 | 0 | 0 | 0 | 0 |
| Tyr (Yeast) | 5 | 1 | 3 | 6 | 2 | 2 | 5 | 2 | 3 | 5 | 6 | 7 | 6 | 3 | 5 | 7 | 5 | 1 | 1 | 2 |
| Val (E. coli) | 1 | 3 | 4 | 6 | 2 | 3 | 7 | 1 | 7 | 3 | 8 | 4 | 5 | 4 | 4 | 11 | 2 | 0 | 0 | 0 |



Then, at each wavelength; the $C D$ of a double strand RNA is given by:

$$
\begin{equation*}
(\mathrm{RNA})=\sum_{P=1}^{10} F_{P}(P) \tag{3-7}
\end{equation*}
$$

where $F_{P}$ is the frequency of the interaction $P$ and the sum is taken over 10 interactions listed above.

Work is in progress in this laboratory to obtain the optical properties of all 10 of these interactions from a set of double-strand RNA oligomers (14). However, this information is not yet available, and the calculations in this work are based on the spectra of five RNA double strand polymers and several approximations.
A. Double Strand Polymer Approximations

The polymer spectra which have been measured in this laboratory by Dr. Donald Gray and Dr. Dana Carroll are listed in Appendix 2. These polymers are poly A:poly U', poly G:poly C, poly AU:poly AU, poly GC:poly GC, and poly CA:poly GU. In order to approximate the double strand regions of tRNA using only these polymer spectra, a number of approximations are necessary:
(i) It was assumed that the following interactions were the same:

This assumption will be valid if either the spectra of the two interactions are similar or there are nearly the same number of each of a pair of interactions. We have no information about the former assumption but the validity of the latter for the nine species of tRNA being studied can be determined from Table 3-3 which lists the frequency of each of the 10 interactions for the nine tRNAs being studied.
(ii). The CD spectrum of the double strand riopolymer poly GA:poly CU has not been measured. It is approximated using the observation that this polymer consists of one strand of purines and another of pyrimidines. Switching every second base from one chain to the other would result in the poly GU:poly CA whose optical properties are known. Since a similar
 assumed that

Spectra corresponding to several other methods of approximating this interaction were tried. However, this method was chosen as $1 t$ gave the best agreement with experimental results.
(iii) Since there are no polymer spectra avail$a b l e$ to represent interactions involving the $G: U$ base pairs which are occasionally found in tRNA, these interactions are approximated by the average of the corresponding interactions involving $G: C$ and $A: U$ base pairs. For example, it is assumed that

$$
\begin{equation*}
\binom{\stackrel{\rightharpoonup}{\mathrm{AGU}}}{\mathrm{UUA}}=\frac{1}{2}\binom{\stackrel{\rightharpoonup}{\mathrm{AG}}}{\mathrm{UC}}+\frac{1}{2}\binom{\stackrel{\mathrm{AA}}{\mathrm{UU}}}{\mathrm{UU}}+\frac{1}{2}\binom{\mathrm{GU}}{\mathrm{CA}}+\frac{1}{2}\binom{\widehat{\mathrm{AU}}}{\mathrm{UA}} . \tag{3-10}
\end{equation*}
$$

(iv) Odd base approximations are not nearly so important in the calculation of double strand regions of tRNA as in single strand regions. Since only $1 \%$ of the nucleosides in double strand regions of tRNA are modified, the assumption that their spectra are the same as of the unmodified nucleosides should not greatly affect the validity of the calculation of the $C D$ of double strand regions of tRNA.
B. Double Strand RNA Spectra Vary with Type of Base Pairs Present

Figure $3-8$ shows the change in the $C D$ spectra of random double strand RNA as the relative percent of A:U and G:C base pairs present varies. These curves were salculated using Equation $3-7$, five experimental double strand RNA polymer spectra and approximation (ii) discussed above for the unknown polymer spectrum.

Again there is a linear variation in the magnitude of the band at $220 \mathrm{~m} \mu$ with percent of $G: C$ pairs. There


Figure 3-8
Double strand RNA spectra were calculated from sums of polymer spectra using Equation 3-7.
is a similar change in the $260 \mathrm{~m} \mu$ band, which also shifts to slightly higher wavelengths with an increase in $G: C$. At the same time, the crossover around $240 \mathrm{~m} \mu$ shifts to lower wavelengths. The trough at 295 m $\mu$ increases with increasing percent $G: C$ interactions:

## c. Variation of Double Strand Interaction Frequencies in Nine tRNAs

The double strand regions of tRNA may be thought of as three helical regions. The first helix, which contains ll double strand interactions, extends from the ACCX to the $T \psi C$ loop. The second helix of four interactions closes the anticodon loop. The third helix contains two or three double strand interactions and is adjacent to the D loop.

The number of each of the 10 possible double strand interactions in each of these three helical regions were counted for each tRNA and are listed in Table 3-3. It can be seen that there is considerable variation in interaction frequencies among the tRNAs being studied though in general these regions are much more rich in GC interactions than in $A U$ interactions.

## Table 3-3 <br> Variation in Polymer Interaction Frequencies of Nine tRNAs

|  | $\leftarrow$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | AA | GG | AU | UA | GC | GG | GU | UG | GA | AG |
|  | UU | CC | UA | AU | CG | GC | CA | AC | CU | UC |
|  | $\rightarrow$ |
| F. met (E. coli) | 0 | 15 | 0 | 0 | 5 | 6 | 1 | 0 | 5 | 2 |
| Leu (Yeast) | 5 | 6 | 2 | 3 | 3 | 1 | 5 | 2 | 6 | 7 |
| Phe (E. coli) | 2 | 14 | 0 | 0 | 4 | 3 | 2 | 1 | 7 | 4 |
| Phe (Wheat) | 0 | 4 | 0 | 0 | 6 | 4 | 3 | 5 | 8 | 6 |
| Phe (Yeast) | 6 | 6 | 2 | 0 | 4 | $z$ | 2 | 6 | 8 | 6 |
| $\operatorname{Tryp}$ (E. coli) | 1 | 14 | 0 | 0 | 3 | 4 | 3 | 0 | 5 | 6 |
| Tyr (E. coli ) | 2 | 16 | 0 | 0 | 2 | 0 | 4 | 4 | 5 | 4 |
| Tyr (Yeast) | 2 | 12 | 0 | 0 | 4 | 4 | 0 | 3 | 5 | 4 |
| $\operatorname{Val}$ (E. coli) | 0 | 2 | 2 | 0 | 3 | 2 | 3 | 4 | 7 | 4 |

5. The CD Spectra of Native tRNA May be Approximated by a Sum of CD Spectra of Simpler RNAs.
A. Calculation of tRNA at $25^{\circ} \mathrm{C}$ from Dimer and Polymer Sum

The $C D$ spectrum of a native tRNA at $25^{\circ} \mathrm{C}$ can be considered as the sum of contributions from the single strand parts of the molecule, the double strand parts, and the tertiary structure:

$$
\begin{equation*}
(t R N A)=\sum_{x=1}^{5} \sum_{y=1}^{5} F_{x y}[X Y]+\sum_{P=1}^{6} F_{P}(P)+\sum_{M=1}^{2} F_{M}(M)+(T) \tag{3-11}
\end{equation*}
$$

[XY] is a dimer basis spectrum and the sum is taken over the bases $A, U, C, G$, and $D,(P)$ is a polymer spectrum and the sum is taken over the six double strand polyrers, (M) is the $C D$ of the monomers at the ends of the RNA chain, and (T) is the contribution of the tertiary structure to the $C D$ of tRNA.

Ways of approximating all of these quantities except the tertiary structure have been discussed. For the present the tertiary structure contribution to the $C D$ spectrum of the tRNA will be ignored, and ( $T$ ) will be set equal to zero.

End effects between single and double strand regions are accounted for by including these nucleosides in both the single and double strand regions.

This method can be better understood by considering in detail the interactions present in one loop of a tRNA molecule.

For example, let us consider the $T \psi C$ loop of tRNA Phe (Yeast) which contains 17 nucleosides:

$\begin{aligned}(\text { locip })= & \frac{1}{17}\left\{2\binom{\stackrel{(C U}{G A}}{G}+2 \times 2\binom{\widetilde{U G}}{A C}+2\binom{G U}{C A}+[G U]+[U U]\right. \\ & +[U C]+[C G]+[G A]+[A U]+[U C] \\ & \left.+[C C]+\frac{1}{2}(C)+\frac{1}{2}(G)\right\}\end{aligned}$
Square brackets denote single strand basis spectra, terms such as $\left(\begin{array}{c}\stackrel{\boxed{C U}}{G A}\end{array}\right)$ are double strand polymer $C D$ spectra and (C) and (G) are monomer CD spectra.

It should be noted that the CD of the interactions involving $T, \psi$, and $U_{M e}$ are assumed to be the same as those involving $U$. Tertiary structure is not considered in this calculation. It is assumed that the spectra of the bases in a loop is the same as that of the bases in single stranded RNA.
B. Calculation of tRNA CD Spectra at $40^{\circ} \mathrm{C}$ from a Sum of Single Strand tRNA and. Base Pairing Interaction Basis Spectra

An alternate method for approximating the $C D$ of the loop above is as the sum of the CD of the single stranded loop and the $C D$ from the formation of the appropriate base pair interactions.

$$
\begin{equation*}
(R N A, N)_{T}=(R N A, S S)_{T}+\sum_{P=1}^{6} F_{P}\{P\} \tag{3-13}
\end{equation*}
$$

where (RNA,N) $T_{T}$ is the $C D$ of the native RNA at some temperature $T$, (RNA,SS) $T$ is the $C D$ of the RNA in a single stranded form at, $T, F_{P}$ is the frequency of the base pairing interaction $\{P\}$ at $T$, and the sum is taken over the six polymer pairing interactions.

As will be shown in Chapter IV, temperatures of about $40^{\circ} \mathrm{C}$ and very low salt are needed for the formation of single stranded tRNA. Therefore, it is necessary to construct a set of double strand basis spectra corresponding to the formation of base pairs at $40^{\circ} \mathrm{C}$; that is, the difference between the single stranded and double stranded polymers. The approximations previously discussed were used along with the five experimental spectra for the double strand polymers. The single strand polymers were approximated using the nearest neighbor approximation and the dimer and monomer spectra at $40^{\circ} \mathrm{C}$ listed in

Appendix l. Since the spectra of both the dimers and the polymers approach those of the monomers at high temperatures, it is likely that the dimers at. $40^{\circ} \mathrm{C}$ provide a better model for the single strand polymers at this temperature than do the dimers at $25^{\circ} \mathrm{C}$ for the polymers at $25^{\circ} \mathrm{C}$.

A base pairing interaction basis spectrum is defined as:

$$
\left\{\begin{array}{l}
\leftarrow Y  \tag{3-14}\\
\underset{X}{X} Y^{\prime}
\end{array}\right\}=\binom{\widetilde{X \cdot Y}}{\xrightarrow{X \cdot Y}}-\frac{1}{4}[X Y]-\frac{1}{4}[Y X]-\frac{1}{4}\left[X^{\prime} Y^{\prime}\right]-\frac{1}{4}[Y \cdot X \cdot]
$$

where square brackets, [], denote dimer basis spectra which according to the nearest neighbor approximation represent the single strand polymer spectra, and curly brackets, \{\}, represent the double strand pairing basis spectrum of the poly rXY:poly rX'Y', and, as usual, curved brackets, (), represent an experimental $C D$ spectrum.

Using these basis spectra, we may approximate the $C D$ of the above $T \psi C$ loop in a second manner:
$(100 \mathrm{p}, \mathrm{N})_{40^{\circ}}=\frac{1}{17}\left(9(100 \mathrm{p}, \mathrm{SS})_{40^{\circ}}+2\left\{\begin{array}{l}\stackrel{\rightharpoonup}{\mathrm{CU}} \mathrm{GA}\end{array}\right\}+2 \times 2\left\{\begin{array}{l}\underset{\mathrm{UG}}{\mathrm{AC}}\end{array}\right\}+2\left\{\begin{array}{l}\overrightarrow{G U} \\ \mathrm{CA} \\ \rightarrow\end{array}\right\}\right)$
where the terms are as previously defined.
C. Change in Calculated tRNA Spectrum with Base Composition

According to the Holley model, about one-half of the nucleotides in a tRNA molecule are in double stranded regions. Therefore, it is of interest to consider the effect of base composition upon an RNA that is $50 \%$ double strand and $50 \%$ single strand. Assuming that the amounts of $G$ and $C$ are equal and the amounts of $A$ and $U$ are also equal, curves may be calculated corresponding to the $C D$ spectra as a function of percent $G$ and $C$. A set of such curves are shown in Fig. 3-9. With an increase in percent GC, both peaks decrease, the crossover shifts to lower wavelengths, and the peak at $295 \mathrm{~m} \mu$ increases in magnitude. The shifts in the position of the large maximum observed in the cases of single strand and double strand RNA considered separately seem to cancel each other, so this peak does not move much.

The position and magnitude of the maxima of the calculated curves as a function of percent GC for in $00 \%, 50 \%$ and $0 \%$ double strand RNA are tabulated in Table 3-4.
6. Computers äre Used to Record and Analyze Data
A. Data is Recorded by an On-Line Computer

CD data were recorded by a Digital Equipment


Figure 3-9

Table 3-4

## Position and Magnitude of CD Maximum in Calculated RNA Spectra



Corporation PDP 8/S computer. SUPERSPECTRUM, a program written by Dr. B. L. Tomlinson, was used to calculate data points from the average of about 300 points taken over $1 \mathrm{~m} \mu$ (15). The CD data, expressed as molar ellipticity per residue was calculated from:

$$
\begin{equation*}
\text { data }=\text { (spectrum - baseline) } \times \varepsilon / O D \tag{3-16}
\end{equation*}
$$

where $\varepsilon$ is the extinction coefficient at $258 \mathrm{~m} \mathrm{\mu}$ as previously discussed. The CD data was punched onto a paper tape following the recording of each spectrum. Data points were recorded every l mu. For the analytic procedures, 100 data points between 310 and 210 m . were used.
B. Further Analysis is Carried out by a CDC 6600

The paper tapes are converted to cards using BAKER, a program written by Dr. Martin Itzkowitz.

The spectra are then plotted by a program entitled GLACER,* which also corrects for baseline shifts and provides the opportunity to change the values of $\varepsilon$ and OD that were originally used to calculate the data points. This program and those that will be subsequently discussed are listed in Appendix 3.

The data p'lots are examined by eye for obviously bad points due to mispunched tapes or errors in recording the spectra. These points are replaced with values

Titles of the 6600 computer are limited to six letters and names of mountains are therefore abbreviated.
interpolated from the points adjacent to the bad point. The data is then read into the program TAHOMA which fits 13 data points with a cubic which reduces the noise level of the data (16). The smoothed data for each of two or three similar scans is then averaged at each wavelength by RANIER. . The experimental tRNA spectra being studied are thus the average of several smoothed spectra taken at different times. STHLNS was used to obtain difference spectra between sets of experimental or between calculated and experimental spectra at 100 wavelengths.
C. Calculation of Spectra from Basis Spectra
$C D$ spectra for tRNA were calculated from dimer and polymer basis spectra using SHASTA which is based upon Equation 3-1l. Double strand pairing interactions were calculated using MrADMS which is based on Equation 3-12. Both of these programs were adopted from NNPOLY which was written by Mr. Phil Borer (17). Single strand basis spectra were calculated using LASSEN, and double strand pairing interactions were calculated from a slightly modified version of SHASTA. Another version of SHASTA called TINA was used to generate sets of $C D$ curves as a function of base composition and percent single strand such as Figures $3-6$ to 3-8. Calculated and experimental spectra were compared by MTHOOD, which calculated the root mean square
deviation between the two spectra and normalizes by dividing by the square of the experimental values:

$$
\begin{equation*}
\text { Fit }=\left(\frac{\sum_{i=1}^{N}\left(E_{1}-C_{1}\right)^{2}}{\sum_{1=1}^{N}\left(E_{1}\right)^{2}}\right)^{1 / 2} \tag{3-17}
\end{equation*}
$$

Where $E_{1}$ is the value of the experimental curve at the i-th wavelength, $C_{1}$ is the value of the calculated $C D$ curve at this same wavelength, and the sum is taken over $N$ wavelengths. Thus "Fit" is a measure of how well two curves agree. Values of "Fit" will be later tabulated comparing experimental and calculated $C D$ spectra.

The relationship of the programs just described is shown in Fig. 3-IO. Listings of these programs and a discussion of their use is to be found in Appendix 3.


Figure 3-10
The relationship of computer programs used to analyse, calculate, and compare $C D$ spectra of tRNAs.

## REFERENCES TO CHAPTER IIT

1. P. K. Sarkar, B. Wells, and J. T. Yang, J. Mol. Biol., 25, 563 (1967).
2. M. M. Warshaw and I. Tinoco, Jr., J. Mol. Biol., 근, 29 (1966).
3. M. M. Warshaw and I. Tinoco, Jr., J. Mol. Biol., 13, 54 (1965).
4. C. R. Cantor and I. Tinoco, Jr., Biopolymers, 5, 821 (1967).
5. S. R. Jaskunas, Jr., Thesis, University of California, Berkeley (1968).
6. J. R. MacDonald and M. K. Brackmen, Rev. Mod. Phys., ${\underset{\sim}{2}}_{28} 393$ (1956).
7. C. J. Formoso, Thesis, University of California, Berkeley (1970).
8. R. Davis, Thesis, University of California, Berkeley (1967).
9. C. Cantor, S. Jaskunas, and I. Tinoco, Jr., J. Mol. Biol., 20,39 (1966).
10. M. Warshaw and C. Cantor, Biopolymers, $9 \sim \sim 1079$ (1970).
11. C. Formoso and I. Tinoco, Jr., Biopolymers, 10 , 1533 (1971).
12. M. P. Schweizer, R. Thedford, and J. Stama, Biochim. Biophys. Acta, 232,217 (1971).
13. F. S. Allen, D. M. Grey, G. P. Roberts, and I. Tinoco, Jr., Biopolymers, submitted.
14. P. Borer, personal communication.
15. B. L. Tomlinson, Thesis, University of California, Berkeley (1968).
16. A. Savitzy and J. J. E. Golay, Anal. Chem., $\sim_{\sim}^{36}$, 1627 (1964).
17. P. Borer, personal communication.

CHAPTER IV

## RESULTS

1. The UV Absorption of tRNA in the Presence and Absence of Magnesium is Quite Different

The temperature dependence of the 260 mu absorbance of nine species of tRNA in $10^{-5} \mathrm{M}$ EDTA and 1 mM $\mathrm{MgCl}_{2}(\mathrm{pH} 7.8)$ is shown in Figs. 4-1 to 4-9. The two curves shown in each figure were obtained ffom one sample of tRNA that was first heated in the absence of $\mathrm{Mg}^{++}$, cooled, and then reheated in the presence of $\mathrm{Mg}^{++}$.

There is qualitative similarity between the temperature versus absorption curves for these nine tRNAs. In the absence of $\mathrm{Mg}^{++}$, there is a gradual increase in absorption with temperature which is nearly complete at $40^{\circ} \mathrm{C}$. The addition of $10^{-3} \mathrm{M} \mathrm{Mg}^{++}$, which is about $10 \mathrm{Mg}^{++}$ions per tRNA nucleotide, causes the curve to become much steeper and to shift to higher temperatures. The peculiar looking decrease in absorption around $50^{\circ} \mathrm{C}$ in the curves for trna ${ }^{\text {Leu (Fig. } 4-2 \text { ) and tRNA Tryp }}$ (Fig. 4-6) in the presence of $\mathrm{Mg}^{++}$is due to the existence of two stable forms of these tRNAs which are called native and denatured. This phenomenon will be discussed in detail later in this chapter.

Figures 4-1 to 4-9. The change in absorption of the nine species of tRNA with temperature. The curve on the left was measured in $10^{-5} \mathrm{M}$ EDTA at pH 8.5 after sample had been dialysed to remove as much salt as possible. The curve on the right was measured in $1 \mathrm{mM} \mathrm{MgCl}_{2}, 10 \mathrm{mM}$ tris $\mathrm{HCl}, \mathrm{pH} 7.8$. The se conditions were also used for the measurement of single strand and native $C D$ spectra shown in Figures 4-10 to 4-27.

$$
0.5067 \text { o a a } 10
$$



Figure 4-1


Figure 4-2

$$
04 y 03704041
$$



Figure 4-3


Figure 4-4


Figure 4-5


Figure 4-6

$$
04063704040
$$



Figure 4-7


Figure 4-8

$$
0 \quad, \quad 0 \quad 3: 7 \quad 0 \quad \cdots \quad 4 \quad 4
$$



Figure 4-9
A. Choice of a Temperature at Which to Study The Differences between Native and Single Stranded tRNA

These nine sets of curves (Figs. 4-1 to 4-9) In the presence and absence of $\mathrm{Mg}^{++}$were obtained in order to find a temperature at which the low salt form of the tRNA is mostly single stranded and the structure of the native molecule is still intact. At this temperature the difference in properties between the native and single strand forms of the tRNA are attributed to the formation of secondary and tertiary structure.

Figures $4-1$ to $4-9$ show that most of the change In absorption of the single strand tRNA has occurred by $40^{\circ} \mathrm{C}$. In the case of tRNA F.Met (E. coli) which contains an unusually large number of $G: C$ base pairs, the corresponding temperature is $50^{\circ} \mathrm{C}$. The absorption of the native tRNA molecule in the presence of $\mathrm{Mg}^{++}$ has not yet begun to increase at this temperature in any case.

For several of the single strand melting curves there is some change in the absorption above $40^{\circ} \mathrm{C}$. However, this change is less than $10 \%$ of the total absorption change and may be attributed to unstacking or the breaking of a very few base pairs. At $40^{\circ} \mathrm{C}$ (or $50^{\circ} \mathrm{C}$ for tRNA ${ }^{\text {F.Met }}$ ), the properties of the tRNAs in $10^{-5} \mathrm{M}$ EDTA are those of a molecule that is mostly
single stranded, and the properties of the tRNA in $1 \mathrm{mM} \mathrm{Mg}{ }^{++}$are those of the native molecule.
B. Parameters Describing Changes in Absorption with Temperature

Curves showing the change in absorption of a nucleic acid'with temperature are called melting curves. The bases in RNA have strong absorption bands in the UV near 260 mu . The magnitude of this absorption depends upon the local environment of the bases. The extinction coefficient of a free nucleotide in solution is greater than that of a nucleotide in RNA. Absorption of the base in a polymer will increase with temperature or other denaturing conditions, and will approach that of the free nucleotides at high temperatures. Breaking of hydrogen bonds in double strand regions, unstacking of the bases, and alteration of the tertiary structure cause the observed change in the absorption of the RNA.

The melting temperature $\left(T_{m}\right)$ of a nucleic acid is defined as the temperature at which half the total change between the low and high temperature limits of the melting curves has occurred. The low temperature limit of the melting curve of tRNA in the presence of $\mathrm{Mg}^{++}$ is well defined. However, the high temperature limit for several species of tRNA is difficult to determine. There is probably some magnesium catalysed hydrolysis of the tRNA at temperatures above $70^{\circ} \mathrm{C}(1)$. The $\mathbb{T}_{\mathrm{m}}$ of
several of the native tRNAs must be approximated from the shape of the melting curve. The melting temperatures of the nine species of tRNA in $1 \mathrm{mM} \mathrm{Mg}{ }^{++}$vary between $73^{\circ}$ ard $90^{\circ} \mathrm{C}$ as listed in Table 4-1.

In the absence of $\mathrm{Mg}^{++}$, the high temperature limits may be obtained readily, but the low temperature limits are not well defined. Thus the melting temperatures in the absence of $\mathrm{Mg}^{++}$listed In Table $4-1$ are only approximate. However, it should be noted that upon the addition of $\mathrm{Mg}^{++}$there is an increase of at least $50^{\circ} \mathrm{C}$ in the melting temperature of all the species of tRNA being studied. This change reflects a major structural change in the molecule.

It should be noted that for most of the tRNAs studied here, the melting curve in the absence of $\mathrm{Mg}^{++}$ has a greater upper limit than does the melting curve in $1 \mathrm{mM} \mathrm{Mg}{ }^{++}$. This difference may also be observed in the melting curves of mixed yeast tRNA obtained by Fried (1). It suggests that even at quite high temperatures there is interaction between $\mathrm{Mg}^{++}$and the tRNA. Apparently the $\mathrm{Mg}^{++}$somewhat alters the geometry of the bases or the overall structure of the tRNA, even at $90^{\circ} \mathrm{C}$. It would be interesting to compare the upper limit for the melting of single strand and double strand oligomers in the presence and absence of $\mathrm{Mg}^{++}$ to see if their structure is also sensitive to $\mathrm{Mg}^{++}$ at high temperatures, and to see if any of the optical properties of monomers change in the presence of magnesium.


Melting behavior is further characterized by the hyperchromicity or the increase in absorption upon melting relative to the low temperature absorption limit. Hyperchromicity may be calculated from:

$$
\begin{equation*}
\% h=\left(\frac{A_{m}}{A_{p}}-1\right) \quad 100 \tag{4-1}
\end{equation*}
$$

where $A_{m}$ is the absorption limit at high temperatures, and $A_{p}$ is the polynucleotide absorption at low temperature limit. The percent hyperchromicity of the tRNAs In the presence of $\mathrm{Mg}^{++}$are listed in Table $4-1$.

There is a large change in the melting behavior of all nine tRNAs upon the addition of $\mathrm{Mg}^{++}$. The shape and position of these curves are different for different species of tRNA. Work is in progress in this laboratory to relate the characteristics of the melting curves of various tRNAs to the sequence of these RNAs (12).
2. $\operatorname{CD}$ Spectra of Native tRNA at $25^{\circ} \mathrm{C}$
A. Different Species of tRNA Have Different CD Spectra

Although it was shown that $40^{\circ} \mathrm{C}$ was a better temperature to study tRNA than $25^{\circ} \mathrm{C}$, most other studies have been carried out at $25^{\circ} \mathrm{C}$, so we will begin by presenting our results at $25^{\circ} \mathrm{C}$.

The CD spectra of nine tRNAs at $25^{\circ} \mathrm{C}$ are shown in Figs. 3-10 to 3-12. The extrema and crossovers of these spectra are tabulated in Table 4-2. The first observation that may be made on the basis of these spectra is that different species of tRNA do exhibit

Table-4-2
Compirison of CD or Experimental and Calculated Native tRNA at $25^{\circ} \mathrm{C}$

|  |  | $\lambda_{\text {min }}$ | $\begin{gathered} {[\theta]_{\min }} \\ \left(\times 10^{-4}\right) \end{gathered}$ | $\lambda_{\text {max }}$ | $\begin{gathered} {[\theta]_{\max }} \\ \left(\times 10^{-4}\right) \end{gathered}$ | $\lambda_{c}$ | $\lambda_{\text {max }}$ | $\begin{gathered} {[\theta]_{\text {max }}} \\ \left(\times 10^{-4}\right) \end{gathered}$ | Fit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F. Met (E. coll $)$ | exp | 295 | -. 17 | 267 | 2.31 | 245 | 226 | -. 41 |  |
|  | cal | 299 | -. 10 | 270 | 1.76 | 250 | 221 | -. 04 | . 395 |
| Leu (Yeast) | exp | --- | ---- | 263 | 2.58 | 242 | 222 | -. 16 |  |
|  | cal | 300 | -. 08 | 268 | 1.63 | 249 | 221 | +. 10 | . 465 |
| Phe (E. coll) | exp | 297 | -. 01 | 262 | 2.32 | 239 | 226 | -. 05 |  |
|  | cal | 299 | -. 10 | 269 | 1.55 | 248. | 221 | -. 02 | . 542 |
| Phe (Wheat) |  | $\alpha$ |  |  |  |  |  |  |  |
|  | exp | 296 | -. 15 | 264 | 1.98 | 245 | 227 | -. 50 |  |
|  | cal | 298 | -. 17 | 268 | 1.55 | 248 | 221 | +. 13 | . 411 |
| Phe (Yeast) | exp | 295 | -. 19 | 263 | 2.19 | 246 | 226 | -. 31 |  |
|  | cal | 300 | -. 13 | 268 | 1.64 | 248 | 221 | +. 16 | . 397 |
| Tryp (E. coll) | exp | 299 | -. 04 | 265 | 2.02 | 242 | 225 | -. 43 |  |
|  | cal | 299 | -. 10 | 270 | 1.61 | 247 | 235 | -. 44 | . 410 |
| Tyr (E. coli ) | $\exp$ | --- | ---- | 264 | 2.28 | 243 | 224 | -. 16 |  |
|  | cal | 301 | -. 06 | 271 | 2.86 | 249 | 221 | +. 03 | . 452 |
| Tyr (Yeast) | $\exp$ | --- | ---- | 264 | 2.04 | 239 | 225 | +. 04 |  |
|  | cal | 298 | 0.11 | 270 | 2.53 | 250 | 221 | +. 04 | . 489 |
| $\operatorname{Val}$ (E. $\underline{\text { coli }}$ ) | exp | 301 | -. 04 | 267 | 2.13 | 243 | 226 | -. 40 |  |
|  | cal | 300 | -. 10 | 269 | 1.59 | 245 . | 221 | -. 08 | . 291 |





040 u $y 70 \%-49$
different $C D$ behavior.
This study includes tRNA Phe from three organisms, and tRNA Tyr from two. If a common tertiary structure is assumed for tRNAs from these organisms, the observed differences in the $C D$ spectra of the tRNAs may be explained by variation in the primary and secondary structure. Figure $4-12$ shows the $C D$ of tRNA Tyr from yeast and E. coli. The shape and crossovers of these two spectra are similar although their magnitudes are somewhat different. The larger magnitude of the peak at $264 \mathrm{~m} \mathrm{\mu}$ and smaller magnitude at $225 \mathrm{~m} \mathrm{\mu}$ observed in tRNA Tyr (E. coli) may be attributed to additional base pairing in the variable length region of this tRNA (Fig. 1-3). The spectra of tRNA Phe from wheat germ and yeast are also quite similar as shown in Fig. 4-11. The larger magnitude of tRNA Phe (yeast) is probably due to the larger number of $A: U$ pairing interactions In this tRNA. tRNA Phe (E. coli) has a fairly different primary sequence and $C D$ spectrum from the other two Phe tRNAs.

In Figure $4-10$ the spectra of tRNA ${ }^{\text {F.Met }}$ and $t_{R N A}{ }^{\text {Phe }}$ from E. coli are quite different from each other, reflecting differences in percent $A: U$ and $G: C$ interactions in these tRNAs. The same species of tRNA from different organisms can have quite similar $C D$ and different species of tRNA from the same organism may have relatively large differences in their CD spectra.

These similarities and differences may qualitatively be related to the sequence and pairing interactions of the tRNA. Thus the observation that tRNAs from different organisms have similar structure is confirmed by CD spectra.
B. Comparison of Calculated and Experimental tRNA Spectra at $25^{\circ} \mathrm{C}$

The experimental spectra of native $t R N A$ at $25^{\circ} \mathrm{C}$ may be approximated by sums of monomer, dimer, and double strand polymer spectra using Equation 3-11 and setting (T) equal to zero. The extrema of these calculated spectra and the "Fit" with the experimental spectra are listed in Table 4-2. "Fit" is a measure of the normalized root mean square deviation between the two curves as defined in Equqtion 3-17. This gives a quantiative measure of how well calculated and experimental spectra agree. The calculated and experimental spectra at $25^{\circ} \mathrm{C}$ for the three species of tRNA that were purified as part of this work are shown in Figs 4-13 to 4-15.

Agreement between the calculated and experimental spectra is qualitative only. The main peak and crossover of the calculated spectra are shifted about $5 \mathrm{~m} \mu$ to higher wavelengths than those experimentally observed. Also, the magnitude of this large positive peak is decreased in the calculated spectra. Examination of

Figures 4-13 to 4-15. Comparison of experimental native CD spectra of three tRNAs at $25^{\circ} \mathrm{C}$ and spectra calculated from sum of dimer basis spectra and double strand polymer spectra using Equation 3-1.




Figure 4-15


Fig. 3-1 shows that this sort of change corresponds to more single strand character in an RNA. This suggests that the native structure of tRNA may have more paired bases than is predicted by the Holley cloverleaf. These could be part of the tertiary structure of the molecule.

Other possible causes of this discrepancy are that the single strand basis spectra, the double strand polymers, or both are not good models for the nuicleotides in tRNA. To investigate this, we will consider separately how well the dimers basis spectra and Qouble strand polymers spectra will fit experimental CD data.

## 3. $C D$ Spectra of Single Stranded tRNA at $40^{\circ} \mathrm{C}$

Single stranded tRNA was prepared by dialysing the tRNA to reduce $\mathrm{Mg}^{++}$concentration to less than $10^{-5} \mathrm{M}$ and heating to $40^{\circ} \mathrm{C}$ in the presence of $10^{-5} \mathrm{M}$ EDTA. Examination of the melting curves in Figs. 3-1 to 3-9 shows that at this temperature most of the secondary structure has melted. The extrema of the $C D$ of the experimental single strand spectra are tabulated in Table 4-3. The band at 295 mp has completely disappeared and the large peak is shifted to the red and diminished in magnitude relative to the native tRNA at $25^{\circ} \mathrm{C}$.

According to the nearest neighbor approximation,
these experimental spectra should be similar to an appropriate sum of dimer basis spectra. Single strand spectra for the nine tRNAs were calculated from Equation $3-6$ using the 20 dimer and 5 monomer spectra listed in Appendix 1 , and the nearest neighbor frequencies listed in Table 3-2. Extrema of these spectra are tabulated in Table 4-3. The experimental and calculated single strand spectra are compared for three species of tRNA in Figs. 4-16 to 4-18. The calculated spectra are shifted to the red relative to the experimental single strand spectra. The position of the low wavelength peak is accurately predicted in all cases. However, the magnitude of the calculated spectra is usually too low. "Fit" values are slightly larger than those for native tRNA at $25^{\circ} \mathrm{C}$ indicating a somewhat worse agreement between experimental and calculated CD.

As previously discussed, about $2 \%$ of the bases in these tRNAs are modified bases whose spectral properties are not known. These bases may be responsible for part of the discrepancy observed. An attempt was made to improve the "Fit" by using an experimental spectrum of $T \psi C G$ measured by Dr. Carl Formoso (2) at $40^{\circ} \mathrm{C}$ in the place of the dimers. Unfortunately, this did rot result in any better agreement.

Figure 3-3 shows that when calculated ORD of homopolymers is compared with the experimental spectra,

Table 4-3
Comparison of $C D$ of Experimental and Calculated Single Strand tRNA at $40^{\circ} \mathrm{C}$

|  |  | $\lambda_{\text {max }}$ | $\begin{gathered} {[\theta]_{\max }} \\ \left(\times 10^{-4}\right) \end{gathered}$ | $\lambda_{c}$ | $\lambda_{\text {min }}$ | $\begin{gathered} {[\theta]_{\min }} \\ \left(\times 10^{-4}\right) \end{gathered}$ | $\lambda_{\text {max }}$ | $\begin{gathered} {[\theta]_{\max }} \\ \left(\times 10^{-4}\right) \end{gathered}$ | F1t |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| F. Met (E. colis) | exp | 274 | 1.37 | 254 | 237 | -. 46 | 222 | -. 12 |  |
|  | cal | 277 | 1.31 | 259 | 241 | -. 82 | 221 | +.11 | 372 |
| Leu (Yeast) | exp | 271 | 1.58 | 252 | 237 | -. 33 | 221 | +. 17 |  |
|  | cal | 275 | 1.22 | 260 | 246 | -. 80 | 220 | +. 17 | 582 |
| Phe (E. coil) | exp | 276 | 1.13 | 245 | 231 | -. 31 | 222 | -. 04 |  |
|  | cal | 276 | 1.17 | 259 | 241 | -. 74 | 221 | +. 09 | . 639 |
| Phe (Wheat) | exp | 271 | 1.38 | 250 | 235 | -. 43 | 221 | -. 18 |  |
|  | cal | 275 | 1.12 | 260 | 242 | -. 80 | 220 | +. 16 | . 613 |
| Phe (Yeast) | exp | 274 | 1.08 | 252 | 237 | -. 40 | 219 | -. 08 |  |
|  | cal | 275 | 1.14 | 260 | 244 | -. 79 | 220 | +. 16 | . 576 |
| Tryp (E. coli). | exp | 274 | 1.37 | 250 | 233 | -. 43 | 219 | -. 08 |  |
|  | cal | 277 | 1.21 | 260 | 241 | -. 79 | 219 | +. 14 | . 511 |
| Tyr (E. coll | exp | 271 | 1.75 | 249 | 235 | -. 3 | 221 | +. 18 |  |
|  | cal | 276 | 1.45 | 259 | 241 | -. 85 | 221 | +. 16 | . 561 |
| Tyr (Yeast) | exp | 273 | 1.27 | 249 | 237 | -. 22 | 221 | +. 14 |  |
|  | cal | 276 | 1.14 | 260 | 242 | -. 76 | 219 | +. 15 | . 638 |
| Val (E. coli) | exp | 273 | 1.73 | 247 | 236 | -. 32 | 221 | +. 15 |  |
|  | cal | 276 | 1.20 | 259 | 240 | -. 93 | 221 | +. 04 | . 598 |

Figures 4-16 to 4-18. Spectra of "single stranded" tRNA at $40^{\circ} \mathrm{C}$ in $10^{-5} \mathrm{M}$ EDTA are compared with sums of 20 dimer spectra calculated using Equation 3-6.



Figure 4-17

there is a similar red shift of the calculated ORD. This lack of agreement was originally thought to be due to long range symmetry in homopolymers (3). Observation of a similar shift for all nịne tRNAs suggests that dimers are not a good model for polymers.

We must conclude that the nearest neighbor approximation is only qualitatively useful in predicting the spectra of single strand tRNAs.
4. CD Spectra of Native tRNAs at $40^{\circ} \mathrm{C}$
A. There is a Large Difference between the CD of Native and Single Stranded tRNA at $40^{\circ} \mathrm{C}$

The addition of $1 \mathrm{mM} \mathrm{Mg}{ }^{++}$to single stranded tRNA results in a large change in the $C D$ spectra as shown in Figs. 3-19 to 3-21. The addition of $1 \mathrm{Mg}^{++}$for each two bases is sufficient to produce this change (4). The position of the maximum shifts about $10 \mathrm{~m} \mu$ to lower wavelengths and its magnitude increases markedly. For some tRNAs there is now a band at $295 \mathrm{~m} \mathrm{\mu}$. These large changes parallel the $20 \%$ decreases in absorption shown in Figs. 4-1 to 4-9.

The difference spectra corresponding to this change were calculated for the tRNAs and their extrema are tabulated in Table 4-4. The spectra for the three species of tRNA that were purified as part of this work are shown (Figs. 3-22 to 3-24) to provide examples of the sorts of spectra obtained. These difference

$$
0400370933
$$



Figure 4-19.


Figure 4-20

$$
0,00670 \times 396
$$



Figure 4-21

Table 4-4
Comparison of Difference Between CD of Native and Single Strand tRNA with the Sum of Double Strand Pairing Interactions at $40^{\circ} \mathrm{C}$

|  |  | $\lambda_{\text {min }}$ | $\begin{aligned} & {[\theta]_{\min }} \\ & \left(\times 10^{-4}\right) \end{aligned}$ | $\lambda_{c}$ | $\lambda_{\text {max }}$ | $\begin{aligned} & {[\theta]_{\max }} \\ & \left(\times 10^{-4}\right) \end{aligned}$ | $\lambda_{c}$ | Fit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | exp | 286 | -. 58 | 276 | 261 | 1.26 | 229 |  |
| F. Met (E. coli) | cal | 285 | -. 51 | 274 | 264 | . 65 | -234 | .401 |
|  | exp | 286 | -. 39 | 275 | 258 | 1.73 | 233 |  |
| Leu (Yeast) | cal | 288 | -. 11 | 277 | 257 | 1.15 | 223 | . 357 |
|  | $\exp$ | 285 | -. 48 | 275 | 260 | 1.68 | 223 |  |
| Phe (E. Coll) | cal | 285 | -. 36 | 275 | 258 | . 80 | 233. | . 455 |
|  | exp | 286 | -. 52 | 274 | 259 | 1.19 | 238 |  |
| Phe (Wheat) | cal | 285 | -. 30 | 275 | 260 | . 99 | 237 | . 252 |
| Pre (Yeast) | exp | 290 | -. 56 | 276 | 260 | 1.58 | 242 |  |
| Phe (Yeast) | cal | 285 | -. 14 | 276 | 258 | 1.11 | 222. | . 406 |
|  | exp | 285 | -. 46 | 274 | 260 | 1.23 | 237 |  |
| Tryp (E. coll | cal | 285 | -. 36 | 275 | 258 | . 80 | 233 | . 307 |
|  | exp | 281 | -. 45 | 272 | 258 | 1.17 | 240 |  |
| Tyr (E. coli) | cal | 285 | -. 25 | 276 | 257 | . 80 | 232 | .441 |
|  | exp | 286 | $\cdots$ | 275 | 259 | 1.02 | 227 |  |
| Tyr (Yeast) | cal | 285 | -. 41 | 275 | 260 | . 80 | 234 | . 197 |
|  | exp | 285 | -. 48 | 274 | 259 | 1.03 | 242 |  |
| $\operatorname{Val}$ (E. coli ) | cal | 284 | -. 29 | 275 | 257 | . 89 | 232 | .455 |

Figures 4-22 to 4-24. A comparison of the difference between native and single strand ERNA CD spectra at $40^{\circ}$ with a sum of double strand pairing interactions as defined in Equation 3-14 corresponding to the double strand regions shown in Figures l-1 to 1-3.



Figure 4-23


Figure 4-24
spectra correspond to the change in the structure of molecule upon the formation of secondary and tertiary structure.

This change was approximated with a sum of polymer pairing basis spectra as defined by Equation 3-14. The spectral properties and "Fit" of these calculated difference spectra are also listed in Table 4-4. Agreement is fairly good. "Fit" is seen to be better than In either of the previous cases. Still the magnitude of the experimental curve is greater than that of the calculated curve.

This difference is probably due to the double strand polymers not being a really good model for the short double strand regions in tRNA. Another possibility is that more double strand interactions are needed to fit the data. Several models for the tertiary structure of tRNA suggest additional base pairs.
B. Calculation of Native tRNA Spectra at $40^{\circ} \mathrm{C}$

The agreement between calculated and experimental CD spectra of double strand regions of tRNA is better than for single strand regions. Thus, the major source of the large error in the calculation of native tRNA at $25^{\circ} \mathrm{C}$ appears to lie in the nearest neighbor approximation that the dimers, are good models for single strand tRNA.

To avoid this difficulty, the experimental single strand at $40^{\circ} \mathrm{C}$ may be used to calculate the $C D$ spectra
of native tRNA at $40^{\circ} \mathrm{C}$ :
$($ tRNA, native $) 40^{\circ}=($ tRNA, single strand $) 40^{\circ}+\sum_{P=1}^{6} p_{p}\{P\}$
$(4-2)$
where $F_{p}$ is the frequency of the double strand pairing interaction $\{P\}$ defined by Equation $3-14$ and the sum is taken over the six polymers in Appendix 2.

The extrema of these calculated curves are compared with the experimental spectra in Table 4-5. Figures 4-25 to 4-27 show examples of relatively bad, average, and good agreement. The "Fit" is much improved from that involving the dimers instead of the experimental single strand spectra. In general positions and magnitudes agree reasonably well with the experimental curves.

The reason for this fit may be qualitatively understood by comparing the base composition and $C D$ curves of some of these tRNAs with the calculated curves in Chapter III.

The position of the maximum of the large positive band of the native tRNA varies from 262 to $267 \mathrm{~m} \mathrm{\mu}$. There is some correlation between the position of this band and the base composition of the tRNAs. Table 4-6 lists the base composition, percent $A$ and $U$, and percent $G$ and $C$ in these tRNAs. With the exception of tRNA Phe (E. coli) which has a very low $\lambda_{\max }$, the posi-

Table 4-5
Comparison of CD of Experimental Native tRNA at $40^{\circ} \mathrm{C}$ and Single Strand Plus Base Pairing Interactions at $40^{\circ} \mathrm{C}$

|  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Figures 4-25 to 4-27. A comparison of CD spectra of native tRNAs at $40^{\circ} \mathrm{C}$ with a sum of experimental single strand spectra and double strand pairing interaction spectra as defined in Equation 3-13.



Figure 4-25




$$
000 \quad 0 \quad 7 \quad \infty \quad 5 \quad 3
$$

tion of $\lambda_{\text {max }}$ decreases with a decrease in percent $G$ and C. This is the result that would be predicted from examination of Figs. 3-5 and 3-6.

The negative band at about $298 \mathrm{~m} \mathrm{\mu}$ is a variable feature that is found in six of the nine species of tRNA. The absence of this band in the two species of tRNA ${ }^{\text {Tyr }}$, and in tRNA ${ }^{\text {Leu }}$ can be explained by differences in the sequence or the structure of these three species of tRNA. Examination of double strand Interaction frequencies in Table 3-2 shows that these three tRNAs contain more of the interaction ( $\left.\begin{array}{l}\mathrm{AA} \\ \mathrm{UU}\end{array}\right)$ than do most of the other tRNAs. Figure 3-6 indicates that the magnitude of the band at 295 mu decreases with an increase in A:U pairing interactions.

The double strand polymers are a fairly good model for the double strand regions in tRNA in spite of the many approximations discussed in Chapter III. Thus, the CD of tRNA at $40^{\circ} \mathrm{C}$ may be calculated from a sum of double strand polymer interactions and the spectrum of the single strand tRNA at this temperature.

## 5. Applications

Examples of the sorts of information about the structure of RNA that may be obtained from RNA CD spectra will be given.
A. Native and Denatured tRNAs

Certain species of tRNA exist in two conformations that are stable at room temperature, only one of which is biologically active (5-9). It is customary to call the form that will accept the correct amino acid the native form, (N), and the inactive form, the denatured form, (D). To denature the native form of these tRNAs, it is necessary to heat it to some temperature $T$ in the presence of 1 mM EDTA for 10 minutes and then cool it. This denatured tRNA is stable until heated to $T$ for 10 minutes in the presence of 10 mM $\mathrm{Mg}^{++}$. This process results in the renaturation of the fully active tRNA:

$$
\text { Native } \underset{\mathrm{Mg}^{++}, \mathrm{T}^{\circ}}{\stackrel{\text { EDTA, T}}{ }} \text { Denatured }
$$

Two of the nine tRNAs being studied in this work, tRNA ${ }^{\text {Leu }}$ (Yeast) and tRNA ${ }^{\operatorname{Tryp}}$ (E. coli), exist in two such forms. The temperature for interconversion of forms is $50^{\circ} \mathrm{C}$ for tRNA Tryp and $60^{\circ} \mathrm{C}$ for tRNA Leu. As long as the temperature is kept below $40^{\circ} \mathrm{C}$ there will be no interconversion and both forms will be stable in the same solvent. $\because$ It is of interest to consider what sort of structural difference in these two forms is responsible for the loss of biological activity of the denatured molecule. This should provide some insight into the nature of the specificity of the recognition
of the tRNA by the aminoacyl synthetase.
A number of studies have probed this difference in structure between the native and denatured forms of these tRNAs. Hydrodynamic studies on tRNA Leu suggest that the denatured form has a volume about $25 \%$ larger than does the native form (7). Also, the denatured form is much more sensitive to pancreatic RNase (8). From the increase in UV absorption in the denatured molecule relative to the native, it has been suggested that the structural change between the two forms involves a loss in about four base pairs in the denatured molecule (7).

It is of interest to see if this result is also obtained from an analysis of the $C D$ spectra of the two forms. Since $C D$ is more sensitive than $U V$ to molecular conformation, it should be able to provide more information about the nature of this change. $C D$ spectra of the native and denatured forms of tRNATryp and tRNA ${ }^{\text {Leu }}$ are shown in Figs. 4-28 and 4-29. For each tRNA the spectra of the native and denatured forms were measured in the Cary 6001 consecutively without moving the cell. First the spectrum of the denatured tRNA in the presence of $10 \mathrm{mM} \mathrm{Mg}{ }^{++}$was recorded. Then the sample was heated to $50^{\prime}$ or $60^{\circ} \mathrm{C}$ for 10 minutes, cooled, and the spectrum of the native form was recorded. Doing the measurement without moving the cell allowed the difference spectra for the change



Figure 4-29
between the two forms to be determined with considerable accuracy.

The extrema of these spectra are listed in Table 4-6 along with the UV extinction coefficients. The denaturation of tRNA Leu results in an increase in absorption and a decrease in the magnitude of the $C D$ maximum accompanied by a red shift of $2 \mathrm{~m} \mu$. All these changes suggest the loss of base pairing interactions. For tRNA Tryp, denaturation is also accompanied by an increase in absorption, and a slight red shift of the $C D$ maximum. However, the magnitude of the $C D$ increases upon denaturation. This result is somewhat surprising and seems contradictory at first. However, the change from 60 to $100 \%$ single strand RNA in Fig. 3-1 provides. a model for this sort of phenomena. In that case, there is also an increase in absorption accompanied by an increase in the magnitude of the $C D$ maximum.

The difference spectra between the native and denatured tRNAs, N-D, are shown in Figs. 4-30 and 4-31. Using the double strand pairing spectra at $25^{\circ} \mathrm{C}$, the change in CD accompanying the opening up of the various double strand regions in these tRNAs may be approximated. This comparison is shown in Figs. $4-30$ and 4-31.

The $C D$ of the four regions are in both cases quite different, and theoretically we should be able to distinguish between the various double strand regions of the tRNA. There is fairly good agreement between the

Figures 4-30 and 4-31. Comparis on of difference between the $C D$ of native and denatured eRNA ${ }^{\text {Leu }}$ (Yeast) and ERNA ${ }^{\text {Try }}$ (E. coli) with sum of double strand pairing interactions corresponding to various helical regions of the $H$ model shown in Figs. l-1 to 1-3. Experimental difference spectrum (-). Base pairs in D helix ( $\cdot \cdots$ ). Base pairs in anticodon helix (-----). Base pairs in ACC helix (----). Base pairs in $T \psi C$ helix $(-\rightarrow)$.


difference spectrum for tRNA ${ }^{\text {Leu }}$ and the opening of the helix that closes the anticodon loop (Fig. 4-30). Comparison of the difference spectra for tRNA Leu with average double strand spectra corresponding to different numbers of base pairs indicates that the difference between native and denatured tRNA corresponds to the loss of four base pairing interactions or five base pairs.

Similar comparisons involving tRNA Tryp do not work so well (Fig. 4-31). The somewhat anomalous increase in the $C D$ upon denaturation leads to a difference spectrum with the crossover shifted so far to the blue that it will not fit well with any combination of double strand polymers. This suggests a structural rearrangement upon denaturation of tRNA Tryp that is different form than observed in trNA Leu. It should be noted that the native to denatured change occurs at temperatures lower than the $T_{m}$ of the tRNAs (Figs. 4-2 and 4-6).

There is evidence that the change in denatured tRNA Tryp does involve base pairing in the helix of the D loop. A supressor tRNA Tryp (E. coli) has been isolated and sequenced which does not exist in a denatured form (13). The only sequence difference between this tRNA and the wild type is that a mismatched $G$ in a $G: U$ base pair in the $D$ loop helix is changed to an $A$ resulting in an $A: U$ base pair that stabilizes the double strand region. It is possible that this change is also
involved in tertiary structure in some manner, but it is strongly suggested that the helix of the $D$ loop is implicated in the change. However, the CD change upon the loss of these base pairs is quite different from the observed native-denatured difference (Fig. 4-31).
B. The $A$ and $B$ Forms of $5 S$ RNA

Two forms of E. coli 5 S RNA which are similar in some respects to the native and denatured forms of tRNA have been observed (10). The forms, called the A form and the $B$ forms, may be separated from one another by chromatography on Sephadex G-100 or methylated albumin silicic acid. The $B$ form does not bind to the 5 S RNA binding site on the $50 S$ ribosome subunit. B form can be converted by heating in the presence of $\mathrm{Mg}^{++}$to a form that will bind to the ribosome and has the same optical and chromatographic properties as the A form.

The optical properties of these two forms have been studied (Il), and found to be different. A has a slightly larger hyperchromism than $B$ suggesting that $B$ contains fewer base pairs than $A$. The magnitude of the $C D$ maximum is much greater for the $B$ form, which suggests greater stacking. Dr. Jim Lewis gave us the samples of 5 S RNA whose $C D$ spectra are shown in Fig. 4-32. The maximum of the $B$ forms is shifted about $2 \mathrm{~m} \mathrm{\mu}$ to higher wavelengths relative to the $A$ form as would


Figure 4-32
be expected upon the loss of double strand regions. However, there is a large increase in magnitude. This behavior is similar to that observed during the native to denatured tränsition in E. coli $T$ tRNA ${ }^{\operatorname{Tryp}}$ (E. coli).

The experimental $C D$ of both forms of 5 S RNA were compared with a series of calculated curves of RNAs with the same base composition as E. coli 5S RNA. These comparisons suggest that the A form is about $50 \%$ double stranded and the $B$ form is about $60 \%$ double stranded. This result does not agree with the greater hyperchromicity of the $A$ form. Further study of the physical differences between these two forms of 5 S RNA should be interesting as it might help explain the anomalous optical properties of E. coli 5 S RNA.

Dr. C. R. Cantor suggested that native 5 S RNA was about $70 \%$ double stranded based on comparison of experimental and calculated ORD and UV curves (14). The discrepancy between our result and his result is probably due to the different basis spectra used in these two studies. Also the properties of the A form of 5 S RNA are somewhat different from those of the native molecule (11).

## REFERENCES TO CHAPTER IV

1. V. A. Freid, Thesis, University of Oregon (1970).
2. C. J. Formoso, Thesis, University of California, Berkeley (1970).
3. S.R.Jaskunas, Thesis, University of California, Berkeley (1968).
4. K. Javaherian and A. Blum, Biochemistry, submitted for publication.
5. T. Ishida and N. Sueoka, Proc. Natl. Acad. Sci. U.S., $\underset{\sim}{58}, 1081$ (1967).
6. W. J. Gartland and N. Sueoka, Proc. Natl. Acad. Sci. U.S., $\sim_{\sim}^{55}$, 948 (1966).
7. D. Henley, T. Lindahl, and $J_{i}$ Fresco, Proc. Natl. Acad. Sci. U.S., 55, 191 (1966).
8. A. Adames, T. Lindahl, and J. Fresco, Proc. Natl. Acad. Sci. U.S., ${\underset{\sim}{c}}_{\sim}^{57}, 1685$ (1967).
9. T. Lindahl, A. Adams, M. Geroch, and J. Fresco,

10. M. Aubert, J. Scott, M. Renier, end R. Monier, Proc. Natl. Acad. Sci. U.S., ${ }_{\sim}^{61}$, 292 (1968).
11. J. F. Scott, R. Monier, M. Aubert, and M. Reynier, Biochem. Biophys. Res. Commun., 33, 5 (1968).
12. M. Levine, personal communication.
13. D. Hirsh and L. Gold, J. Mol. B101., 5 ~~, 459 (1971).
14. C. Cantor, Proc. Natl. Acad. Sci. U.S., ñ $_{2}, 478$ (1968).

## CHAPTER V

## DISCUSSION AND SUMMARY

> "If seven maids with seven mops Swept it for half a year Do you suppose the Walrus said That they could get it clear?" "I doubt it," said the carpenter. And shed a bitter tear." (I)

## 1. Calculated RNA Spectra Provide Models for Inter-

 preting Changes in tRNA SpectraIn Chapter III, spectra are calculated that show the variation of the $C D$ of RNAs with base composition, sequence, and percent double strand. Methods for obtaining these spectra are presented. Single strand regions are calculated using the nearəst neighbor approximation and the spectra of 20 dimers. It is assumed that the spectra of the unusual nucleosides that account for about 10 percent of the bases in the tRNA are the same as those of the ana: ogous unmodified nucleosides.

The $C D$ of the double strand regions is calculated using 5 double strand polymer spectra. Since there are 10 double strand interactions, a number of approximations are necessary. Still, this calculation should be more accurate than previous ones which were based on only two double strand spectra, those of $G: C$ and $A: U(2,3)$.

It is assumed that the $C D$ spectrum of tRNA may
be divided into contributions from bases in single strand, and double strand regions, and from tertiary structure. Methods of calculating these contributions are discussed in some detail. Examples of the variation of single and double strand RNA CD spectra with percent $A U$ and $G C$, and with sequence of equimolar single strand RNA show the sensitivity of CD to primary structure of RNA. Changes in the spectrum of equimolar RNA as it changes from all single stranded to all double stranded show how $C D$ is affected by secondary structure of tRNA. These changes may be used to help understand changes in the experimental spectra of tRNAs.

## 2. Experimental CD of Native tRNAs May be Fit Fairly

Well with Appropriate Sums of Other RNA Spectra

In Chapter IV, we considered the manner in which the experimental spectra of nine native tRNAs could best be fit by calculated spectra. First we compared the spectra of the native tRNA at $25^{\circ} \mathrm{C}$ with a sum of dimer and monomer $C D$ representing the single strand regions and polymer CD representing the double strand regions. Tertiary structure was set equal to zero. The fit was only qualitative.

Then we asked if the poor fit was due to lack of agreement between calculated and experimental spectra in single or double strand regionis. The spectrum of
tRNA under salt and temperature conditions such that it was single stranded was compared with a sum of single strand basis spectra. Agreement was not very good. Then the change in the CD upon the formation of base pairs was compared with a sum of double strand pairing basis spectra. Agreement was much better in the latter case than in the former suggesting that the source of error in the original attempt to fit the spectra of native tRNA at $25^{\circ} \mathrm{C}$ was mostly in the calculation of the single strand regions. The conclusion that the $C D$ of dimers is only a qualitative model for polymer $C D$ agrees with previous comparisons between the ORD of dimers and polymers (2).

The experimental spectra of the native tRNAs at $40^{\circ} \mathrm{C}$ was then compared with a sum of the experimental single strand spectrum and double strand base pairing spectra. Agreement was quite good in most cases suggesting that double strand polymers are a fairly good model for the short double strand regions of the tRNAs. Much of the $C D$ of the tRNAs could be accounted for on the basis of the double strand polymers although in most cases the calculated spectra were lower in magnitude than the experimental spectra.

## 3. Suggestions for Improvement

The agreement between the experimental and calculated $C D$ is much better for some tRNAs such as tRNA Tyr
(Yeast) than for others such as trNA Phe (Yeast) as shown in Figs. 4-27 and 4-25. At present we do not know if this difference indicates structural variation between the two tRNAs or merely poor calculated spectra. The least valid of the many approximations used in the calculation of the tRNA spectra was probably the construction of the spectrum of poly rGA:poly rCU. Since the double strand regions of tRNA Phe (Yeast) contain more of this interaction than of any other (see Table 3-3), the calculated spectrum for this tRNA is certainly open to doubt. A good experimental $C D$ spectrum of poly rAG: rUC should improve all of the tRNA calculated spectra, particularly that of tRNA Phe (Yeast).

In general, the calculated spectra have somewhat lower magnitude than the experimental spectra. This might be because the double strand polymers are not good models for the short helical regions of tRNA. Presently, work is in progress in this laboratory to obtain a Iibrary of CD spectra of the 10 double strand interactions based upon the $C D$ of a set of RNA oligomers. A preliminary result is the $C D$ of the interaction $A A$ which was obtained by Mr. Phil Borer (4). Figure 5-1 compares this. spectrum with the slectrum of poly rA:poly $r$ which was used to represent the interaction in this work. The oligomer spectrum is seen to have considerably greater magnitude than the polymer spectrum. The reason for this is presently unknown.

$$
0.0 .0 \% \text { y } 0712
$$

Figure 5-1.

If this were a general phenomena, applicable to the other double strand polymers, it might explain the difference between the calculated and experimental CD: When the $C D$ of the 10 double strand interactions are available, it should be possible to calculate the $C D$ of the double strand regions of tRNA with greater accuracy and fewer approximations.

Single strand spectra calculated from a sum of dimer basis spectra are not a very good model for single strand tRNA or single strand homopolymers. To avoid this problem, we used the experimental tRNA single strand in our calculations. However, it would be very useful to have a suitable model for the single strand regions of tRNA. Such single strand basis spectra could be constructed from an appropriate set of polymer and oligomer spectra.

It would also be quite useful to have a library of the 4 single strand homopolymers and the 8 alternatIng polymers at $40^{\circ} \mathrm{C}$ to be used in calculating the double strand pairing interaction in Equation 3-14.

The base $\psi$ accounts for $2 \%$ of the nucleotides in tRNA. Knowledge of the CD behavior of $\psi$ and some of the other more exotic basis such as $4 t U$ and $A_{i}$ would be very useful.' $C D$ spectra of the dimers $A \psi A_{i}$ and $A_{i} A$ have been measured and found to be quite different from those of their unmodified analogues (5). The $C D$ of $A \psi$ is opposite in sign from that of $A p U$. This work suggests that this is not generally true for
single strand interactions involving $\psi$.
Further information could also be obtained by measuring both basis spectra and experimental spectra between 185 and $350 \mathrm{~m} \mathrm{\mu}$ rather than between 210 and 310 as was done in this work. For example, using tRNA solutions of $A_{260}=30$ in .5 mm pathlength cells, $C D$ spectra have 'been obtained down to $200 \mathrm{~m} \mathrm{\mu} .(6)$. However, it is likely that the tRNA is aggregated at this coricentration (7). The $4 t U C D$ presert in many E. coli tRNAs at about $335 \mathrm{~m} \mathrm{\mu}$ may also be stidied using concentrated solutions in a 1 cm pathlengtr cell. This base is in a region of the molecule that may change conformation upon charging of the tRNA (8), and a detailed study of its $C D$ should prove interesting.

Another reason why the magnitude of the calculated $C D$ is lower than that of the experimental spectrum may be that the native molecule has extra base pairs that stabilize the tertiary structure of the tRNA in addition to those predicted by the Holley model. This has been suggested in many of the models for the tertiary structure of tRNA that were discussed in Chapter I.

It is of interest to calculate the spectra of the tRNAs including the extra base pairs stabilizing tertiary structure to see if the $C D$ predicted for these structures fits the experimental spectra any better than does the $H$ model. Unfortunately, this procedure is not straightforward as many of the proposed interactions are triple strand or involve non-Watson-Crick base
pairs such as $A: A$ and $G: A .$. There is presently no model for the $C D$ of these sorts of interactions. Furthermore, many of the suggested interactions involve only one or two consecutive base pairs, and as the method of calculating being used counts interactions rather than base pairs, it is difficult to properly represent these very short regions. Still it is possible to roughly approximate the contribution of extra base pairs required by the tertiary structure models proposed by Levitt (9) and Cramer (10). The "Fit" of these models with the experimental $C D$ spectrum of native tRNA at $40^{\circ} \mathrm{C}$ are compared with that of the H model in Table 5-l.

The model of Levitt is approximated as involving three additional double strand pairing interactions, and that of Cramer as having six more such interactions. Thus, in cases where the calculated $C D$ is too low assuming only the double strand regions predicted by the $H$ model, both these models give improved agreement. Unfortunately, it is not presently known if the double strand pairing interactions predicted from polymers are too low in magnitude as suggested by Fig. 5-l. Thus, on the basis of comparison of these calculated $C D$ spectra we tentatively suggest that the correct structure of tRNA contains more double strand interactions than are predicted by the H model. The number of additional base pairs needed for a better

## Table 5-1

"Fit" of CD Spectra of Native tRNAs with CD Spectra Calculated Assuming Various Models for Tertiary Structure of the tRNAs

| $\begin{gathered} \mathrm{H} \\ \text { model } \end{gathered}$ | Levitt mode1 | Cramer model |
| :---: | :---: | :---: |
| F. Met (E. coll ) . 244 | . 176 | . 130 |
| Leu (Yeast) . 216 | . 178 | . 129 |
| Phe (E. coli) . 315 | . 248 | . 193 |
| Phe (Wheat) . 139 | . 156 | . 173 |
| Phe (Yeast) . 276 | . 251 | . 225 |
| Tryp (E. coli) . 177 | . 148 | . 143 |
| Tyr (E. coli) . 209 | . 213 | . 216 |
| Tyr (Yeast) . 103 | . 106 | . 170 |
| Val (E. coli) . 217 | . 234 | . 253 |
| $*_{\text {Fit }}=\left(\frac{\sum_{1=1}^{N}\left(E_{1}-C_{1}\right)^{2}}{\sum_{1=1}^{N}\left(E_{1}\right)^{2}}\right)^{1 / 2}$ |  |  |

where $E_{i}$ is the value of the experimental curve at the i-th wavelength, $c_{1}$ is the value of the calculated $C D$ curve at this same wavelength, and the sum is taken over N wavelengths.
value of "Fit" varies for the different tRNAs. In . general, though, the experimental CD agrees best with a calculated spectrum containing from two to four more base pairing interactions than are predicted by the H model.
4. What $C D$ Has Told Us about the Structure of tRNA

In this work, a large difference between the optical properties of nine purified species of tRNA in the presence and absence of $\mathrm{Mg}^{++}$, at $40^{\circ} \mathrm{C}$ has been observed. The difference between the $C D$ spectra of these two forms may be fit with a sum of the base pairing interaction spectra based on the $H$ model shown in Figs. 1-1 to 1-3. An additional three or four base pairing interactions will improve this fit. The comparison of calculated and experimental spectra was made quantitatively at many wavelengths, rather than by just considering the extrema of the $C D$ curves.

The general shape of the $C D$ curves of the native and single stranded tRNA suggest that the bases of these two forms may have different relative geometry. X-ray studies of RNA fibers show double stranded RNA to be similar to the $A$ form of DNA with bases tilted from the helix axis (11). It is likely that bases in the double strand regions of $t$ RNA are also in this $A$ form. This is substantiated by comparing native and single strand RNA spectra as shown in Figs. 4-19 to 4-21 with
$C D$ spectra of DNA films in the $A$ and $B$ forms that have been measured by Schneider and Maestre (12,13). It Is seen that the $C D$ of $D N A$ in the $A$ form is qualitatively similar to that of native tRNA. "When the relative humidity of the film is increased the DNA assumes the B conformation with its bases perpendicular to the helix axis. The $C D$ of the $B$ form of $D N A$ i; qualitatively similar to that of single strand tRNA. This suggests that in the absence of $\mathrm{Mg}^{++}$the single strand form has bases that are stacked are nearly planar. Furthermore, the change in the band at $220 \mathrm{~m} \mathrm{\mu}$ in single strand RNA with percent $A$ and $U$, and $G$ and $C$ is very similar to that observed in DNA in the $B$ form.

The sensitivity of $C D$ to small changes in conformation makes it quite useful in studying such phenomena as the change between the native and denatured conformations of some tRNAs. Our studies suggest that the transition between the native and denatured forms of tRNA Leu (Yeast) involves the loss of about four base pairs. The change in tRNA ${ }^{\operatorname{Tryp}}$ (E. coli) seems to involve something more. Perhaps the structure of the whole molecule is being rearranged or the tertiary structure is changing. This same sort of $C D$ behavior was observed for the native and denatured forms of 5 S RNA.

Thus we see that $C D$ studies can provide information about the structure of tRNA. Presently, $C D$ is
most useful for investigation of conformational change. Better basis spectra should lead to better flt agreement between calculated and experimental CD spectra. By subtracting spectra calculated on the basis of the primary and secondary structure of the tRNAs from the experimental spectra, a constant difference spectrum might be obtained. This difference should correspond to the $C D$ of the tertiary structure of the tRNA. Another way of obtaining some measure of the contribution of tertiary structure to the CD of tRNA would be from the difference between the $C D$ of native tRNA and fragments such as two half molecules. In any case, our work has shown that the contribution of tertiary structure to the CD of tRNA is not large.

## 5. Yet Another Model for the Tertiary Structure of tRNA

Presently only tentative conclusions may be drawn from our $C D$ results due to the many approximations necessary for the calculation of the experimental spectra as previously discussed. Nevertheless, having used CD to study the conformation of tRNA, I would like to suggest yet another model for the structure of tRNA.

On the basis of evidence summarized in the introduction and presented here, preliminary conclusions about the tertiary structure of tRNA may be drawn. A good model should have a long continuous helical region from the ACC to the $T \psi C$ loop, and the other helices
$0640376 \div 6 / 6$

parallel or nearly so to this helix. The $\psi C$ loop should be involved in tertiary structure in a manner that makes it unavailable for chemical mod fication or oligomer binding, perhaps by hydrogen bonding of some sort with the bases in the part of the D loop. Residues 8 and 13 should be in close proximity. Our CD results suggest that a good model should heve about three base pairing interactions in addition to those due to the cloverleaf secondary structure.

Most of the models that have been prorosed for the tertiary structure of tRNA do not agree with the oligomer binding results of Uhlenbeck (14) and the methoxyamine reaction results of Cashmore and Brown (15) as to which bases of the tRNAs are protected. Dotted circles in Fig. 5-2 show the areas in two tRNAs that will bind radioactive oligomers. It. is assumed that these areas are not directly involved in the tertiary structure of the tRNA.

A refinement of the $H$ model for the tertiary structure of tRNA presented in Chapter I that does agree with these results is also shown in Fig. 5-2. The areas enclosed with solid lines are postulated to interact with the other areas to which they are connected. The D loop bends over the T $\psi C$ loop and the bases AGC in the D loop interact with the bases $\psi C G$ in the $T \psi C$ loop. The $T G$ in the $T \psi C$ loop interacts with the UU or the GU in the single strand region between the stem and the $D$ helix further stabilizing this interaction. This results in about three additional base
pairing interactions as suggested by the CD spectra. With minor modification, this model will apply to all the species of tRNA whose sequences are presently known. The overall structure of this model is somewhat similar to that of Levitt (9).

As for more than speculation as to the tertiary structure of tRNA, and how this molecule carries out its many functions with such great specificity:
"We dance round in a ring and suppose But the secret sits in the middle and knows."

REFERENCES TO CHAPTER $V$

1. Lewis Carroll, Alice's Adventures in Wonderland, Whitney Co. (1945), p. 154.
2. C. R. Cantor, S. R. Jaskunas, and I. Tinoco, Jr., J. Mol. Biol., $\operatorname{\sim \sim }_{\sim}^{20} 39$ (1966).
3. C. R. Cantor, Proc. Natl. Acad. Sci. U.S., ${ }_{\sim} 9$, 478 (1968).
4. P. Borer, personal communtcation.
5. M. P. Schweizer, R. Thedford, and J. Stama, Biochim. Biophys. Acta, 232,217 (1971).
6. G. E. Willick and C. M. Yay, Biochemistry, 10 , 2216 (1971).
7. D. B. Millar and R. F. Steiner, Biochemistry, ~ 2,2289 (1966).
8. K. Watanabe and K. Imahore, Biochem. Biophys.

Res. Commun., 45 , 488 (1971).
9. M. Levitt, Nature, 224, 759 (1969).
10. F. Cramer, H. Dapner, F. von der Haar, E. Schlimme, and H. Seidel, Proc. Natl. Acad. Sci. U.S., ~1~ 1384 (1968).
11. S. Arnott, S. D. Dover, and A. J. Wonacott, Acta Cryst., $\underset{\sim}{\operatorname{B2}} 25,2192$ (1969).
12. M. F. Maestre, J. Mol. Biol., 52,543 (1970).
13. M. J. B. Tunis-Schneider and M. F. Maestre,
J. Mol. Biol., ${\underset{\sim}{c}}_{52}$, 521 (1970).
14. O.C. Uhlenbeck, J. Mol. Biol., submitted.
15. A. R. Cashmore and J. D. Smith, J. Mol. Biol., in press (1971).

Appendix 1

Single Strand CD Basis Spectra

Basis spectra for 20 nearest neighbor interactions at $40^{\circ} \mathrm{C}$ are listed betweer 310 and $210 \mathrm{~m} \mathrm{\mu}$. Ellipticity values listed are times $10^{-4}$. These spectra were calculated from dimer and monomer spectra using Equation 3-4. The first 16 of these spectra were measured as part of this work in $1 \mathrm{mM} \mathrm{MgCl}, 10 \mathrm{mM}$ tris HCl , pH 7.8. The last four dimer spectra involving $D$ were measured by Dr. Carl Formoso. These 20 basis spectra were used to calculate the $C D$ of single strand tRNA and double strand pairing interactions at $40^{\circ} \mathrm{C}$.

| wavelengim | ELLJPIICITY | Wavelengin | Ellipticify | wavelengim | ELIIOTICITY |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 318. | $\begin{array}{r} .025 \\ .0109 \end{array}$ | $\begin{array}{r} 276 \\ 375 \end{array}$ | 2.3916 | 202 | -1.a>79 |
| 3 nR | . 0258 | P19 | 2.709? |  | -1.5404 |
| 307 306 | -011年 | 273 | 2.E2nA | 230 | -1.2035 |
| 305 | . 0.0024 | 272 $>71$ | 2.906? | 238 | -.9i9? |
| 304 | -. 0071 | 270 | 2.9180 2.9234 | 237 | -.An76 |
| 303 302 | -0171 | 269 | 2.864 a | 235 | -.4477 |
| 302 301 | -.0200 | 268 | $2.743 n$ | 234 | -.3127 -.1557 |
| 300 | -.0249 | 767 | 2.5396 2.3557 | 233 | -.0456 |
| 299 298 | -.0309 | 265 | 1.8901 | 232 | -0367 |
| 298 | -. 0.0357 | 264 | 1.4637 | 230 | -0709 |
| 296 | -.0325 | 263 | -9794 | 229 | -726? |
| 295 | -.0401 | 262 | -.4331 | 228 | .3529 |
| 294 | -.0611 | 260 | -. 8995 | 227 | . 5187 |
| 293 | -.0372 .0263 | 259 | -1.416? | 225 | i. 1.713 A |
| 291 | -.0.158 | 258 | -1.9945 | 224 | $1.5 n 88$ |
| 290 | . 0000 | 256 | -2.4869 | 223 | 1.9017 |
| 289 | . 0900 | 255 | -3.2961 | 222 | 2.2487 |
| 288 287 | -1221 | ? 54 | -3.5856 | 221 | 2.5044 2.6709 |
| 286 | .1975 .3029 | 253 | -3.7845 | 219 | 2.6709 2.6046 |
| 285 | . 4254 | 252 | -3.8516 -3.8462 | 218 | 2.2469 |
| 284 | . 5977 | 250 | -3.8462 -3.8095 | 217 216 | 1.5586 |
| 283 282 | .7798 1.0018 | 249 | -3.692n | 216 215 | - |
| 282 | 1.0018 1.2280 | 248 | -3.5205 | 214 | -1.114 |
| 280 | 1.4667 | 247 | -3.3089 -3.0678 | 213 | -2.2591 |
| 279 | 1.7160 | 245 | -2.7403 | 212 | -3.7679 |
| 278 277 | 1.9470 | $? 44$ | -2.4437 | 211 | -4.0564 |
| 277 | 2.1954 | 243 | -2.1229 | 1 | ! |

AU EXPERIMENTAL SPECTRUM AT 40 DEG C

| WAVELENGTH | ELIPTICITY | WAVELENGTM | EwLIPTICITY | Wavelensth | ELLIOTICITY |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 310 $\cdots \quad 309$ |  | 276 | .8386 | 241 | -1.0294 |
| 308 | -. 0526 | 274 | 1.1224 | 240 | -. 8908 |
| 307 | ..0671 | 273 | 1.2422 | 239 | -.8360 |
| 306 | -. 0678 | 272 | 1.336n | 238 | -. 7469 |
| 305 | -. 0734 | 271 | 1.3854 | 237 | -.6610 |
| 304 | -. 0773 | 270 | 1.4146 | 236 | -. 5996 |
| 303 | -.0849 | 269 | 1.4168 | 235 | -.5351 |
| 302 | -. 0738 | 268 | 1.3810 | 236 | -. 6778 |
| 301 | -. 0797 | 267 | 1.2936 | 233 | -. 3951 |
| 390 | -.0827 | 266 | 1.1807 | 232 | -. 3522 |
| 299 | - 0.095 | 265 | 1.0363 | 231 | -. 2899 |
| 298 | -. 1092 | 264 | . 8526 | 230 | -. 1893 |
| 297 | -. 1208 | 263 | . 6371 | 229 | -0.043 |
| 296 | - 1294 | 262 | .3964 | $28^{8}$ | -0098i |
| 295 | -.1271 | 261 | .1717 | $2{ }^{\circ}$ | -10n1 |
| 294 | - 1251 | 250 | -00385 | 226 | .3675 |
| 293 | -. 1266 | 259 | $\cdots 303 n$ | 225 | . 0088 |
| 292 | - 1192 | 258 | -. 5274 | 236 | -6938 |
| 291 | -.1183 | 25.7 | -. 7290 | 223 | - 5925 |
| 290 | -.1114 | 256 | -.n888 | 222 | -6987 |
| 289 | -.1195 | 255 | -1.0160 | 221 | . 7 fizi |
| 288 | -. 1230 | 254 | -1.1205 | 220 | -6257 |
| 287 | -.1260 | 253 | -1.2161 | 219 | -9125 |
| 286 | -. 1130 | 252 | -1.239 | 218 | -R59? |
| 285 | -. 0938 | 251 | -1.3449 | 217 | . 7469 |
| 284 | -. 0537 | 250 | -1.3856 | 216 | - 5704 |
| 283 | -. 0004 | 249 | -1.353? | 215 | - ${ }^{-788}$ |
| $28 ?$ | . 0678 | 248 | -1.3496 | 214 | -37An |
| 281 | . 1592 | ? 47 | -1.3338 | 213 | - 0 aris |
| 280 | . 2733 | 246 | -1.319月 | 212 | -.2186 |
| 279 | . 3895 | 245 | -1.2654 | 211 | -. $\mathrm{A}_{485}$ |
| 278 | . 5241 | 744 | -1.192A | $!$ | 1 |
| 277 | . 6786 | P4 | -1.104? | . 1 | . 1 |

AC EXPEQIMENTAL SPFCTRUM AT－OEGC

| WAVELENGTH | ELliPTICITY | WAVELENGTH | ELLIPTICITY | WAVFLEVGTH | ELLIDTICITY |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 310 | －．0483 | 276 | 2.5237 | 242 | －1．8日a号 |
| 309 | －．0987 | 275 | 2.5210 | 241. | $-1.9048$ |
| 308 | －．0594 | 774 | 2．492？ | 240 | －1．7nac |
| 307 | －．0623 | 273 | 2.4125 | 239 | －1．895 |
| 306 | －．0537 | 712 | 2．306R | 238 | －1．RQ34 |
| 305 | －． 0455 | 271 | 2.1726 | 237 | －1．9441 |
| 304 | －． 0405 | 270 | 2．n325 | 236 | －1．767 |
| 303 | －．c36？ | P6\％ | 1．A67A | 235 | －1．6710 |
| 302 | －． 0176 | 7n8 | 1.627 n | 234 | －1．cana |
| 301 | －．n169 | 267 | 1.3901 | 233 | －1．451？ |
| 300 | ． 0012 | 366 | i．1234 | 232 | －1．3114 |
| 299 | ． 0125 | ？ 55 | ． 2630 | 231 | －1．1491 |
| 29月 | － 0378 | 364 | ．5726 | 230 | －．9an |
| 297 | ． 0621 | 263 | ． 7968 | 229 | －． 7535 |
| 296 | ． 1049 | 262 | ． 0190 | 228 | －． 5749 |
| 295 | ． 1601 | 261 | －． 2511 | 227 | －．2611 |
| 294 | $.2347$ |  | －． 4987 |  |  |
| 293 | $.3135$ | $259$ | －．726n | $225$ | $.3340$ |
| $\begin{aligned} & 292 \\ & 291 \end{aligned}$ | .4109 .5223 | 258 257 | .0 .9121 -1.0755 | 224 223 |  |
| 290 | ． 6486 | 256 | －1．2235 | 222 |  |
| 289 | .7640. | 255 | －1．3291 | 221 | 1.1An? |
| 288 | .9081 | 254 | －1．4388 | 220 | 1.2055 |
| 287 | 1.0429 | 253 | －1．5137 | 219 | 1.1289 |
| 286 | 1．1755 | 252 | －1．5971 | 218 | ． 97944 |
| 285 | 1.3135 | 251 | －1．6289 | 217 | ． 7779 |
| 284 283 | 1.4595 | 250 | －1．7131 | 216 | ． 5434 |
| 283 282 | 1.6082 | 249 | －1．7649 | 215 | ． 1738 |
| 282 | 1.7865 | 248 | －1．8025 | 214 | －． 1328 |
| 281 | 1.9520 | 247 | －1．8263 | 213 | －． 3154 |
| 280 | 2.1118 | 246 | －1．8456 | 212 | －． 5558 |
| 279 | 2.2584 | 245 | －1．8476 | 211 | ． .8402 |
| 278 | 2.3715 | 244 | －1．8668 | 1 | －I |
| 277 | 2.6658 | 243 | －1．8663 | 1 |  |


| WAVELENGTH | ELLIPTICITY |
| :---: | :---: |
| 310 | －． 0790 |
| 309 | －． 0605 |
| 308 | －． 0424 |
| 307 | －． 0387 |
| 306 | －．0351 |
| 305 | －． 0.0366 |
| 304 | －． 0417 |
| 303 | －． 0535 |
| 302 | －． 0694 |
| 301 | ． .0742 |
| 300 | －．0531 |
| 299 | －． 0264 |
| 298 | －． 0133 |
| 297 | .0324 |
| 296 | －0885 |
| 295 | .1270 |
| 294 | ． 1959 |
| 293 292 | $\begin{array}{r} 2446 \\ .2948 \end{array}$ |
| 291 | ． 3655 |
| 290 | －4349 |
| 289 | ． 500 ？ |
| 288 | ． 5868 |
| 287 | ． 6627 |
| 286 | .7278 |
| 285 | ． 7936 |
| 284 | ．8580 |
| 2 A 3 | ． 8927 |
| 2 FL | ． 9287 |
| 281 | ． 9341 |
| 280 | .9342 |
| 279 | ． 9227 |
| 278 | － 8786 |
| 277 | ． 7844 |


| Wavelenath | ELLIPPICITY | －avelengia | ELLIPTICITY |
| :---: | :---: | :---: | :---: |
| 276 | ．6780 | 242 | －． 5539 |
| 275 | ． 5003 | 241 | －．5155 |
| 274 | .3078 | 240 | －． 4764 |
| 273 | ． 0877 | 239 | －． 4175 |
| 272 | －．162j | 218 | 0.3748 |
| 271 | $\therefore 4301$ | 237 | － 304 ？ |
| 270 | －．6740 | 236 | －． 3742 |
| 269 | －． 9468 | 235 | －．2576 |
| 268 | －1．2096 | 234 | －$-2 \geq 12$ |
| 267 | －1．463i | 233 | －． 2668 |
| 266 | －1．6968 | 232 | －． 2440 |
| 265 | $-1.8991$ | 231 | －． 2757 |
| 264 | －2．0630 | 230 | －． 2657 |
| 263 | －2．2190 | 229 | －2200 |
| 262 | －2．3123 | 228 | －．1869 |
| 261 | －2．3979 | 227 | －．1516 |
| 260 | －2．4179 | 226 | －． 1254 |
| 259 | －2．393i | 225 | －． 0790 |
| 258 | －2．3019 | 226 | －． 0194 |
| 257 $? 56$ | -2.1967 -2.0775 | $\begin{array}{r} 223 \\ 222 \end{array}$ | $\begin{array}{r} \bullet 0077 \\ 0.0959 \end{array}$ |
| 255 | －1．9335 | 221 | －16？？ |
| 754 | －1，7499 | 220 | －26an |
| 253 | －1．6021 | 219 | ． 3353 |
| 252 | －1．4436 | 218 | －4433 |
| 251 | $-1.289 n$ | 217 | ．6431 |
| 750 | －1．1635 | 216 | －APAA |
| 249 | －1．0357 | 215 | ． 3919 |
| 948 | －．9094 | 214 | ． 2317 |
| 747 | －． 7993 | 213 | .0133 |
| ？ 46 | ． .6939 | 212 | ． 0461 |
| 345 | －．6277 | 211 | －2．0351 |
| 244 | －．583n | ， | 1 |
| 243 | －．9622 | $t$ | 1 |

UA EXPEQTMENTAL SPECTRUM AT 40 DFGC

| GAVELENGTH | ELLPTICPTY | Wavelengin | ELLIPTICITY | wavelevatm | ELLIOTICITY |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 317 \\ & 309 \end{aligned}$ | $\begin{aligned} & =: 0676 \\ & =0661 \end{aligned}$ | $\begin{array}{r} 76 \\ 375 \end{array}$ | $\begin{aligned} & .4817 \\ & : 5934 \end{aligned}$ | $\begin{aligned} & 242 \\ & 241 \end{aligned}$ | $\begin{aligned} & =.7979 \\ & =.7774 \end{aligned}$ |
| 308 | -.0510 | P14 | . 6409 | 240 | -.74?? |
| 307 | -. 0523 | 213 | -6992 | 239 | -.792n |
| 306 | . 0.0575 | 212 | . 7830 | 238 | -.7A11 |
| 305 | -. 0.0770 | 271 | . 860 ? | 237 | -. 77 cis |
| 304 | -. 0919 | 270 | .9094 | 236 | . 7750 |
| 303 | -. 105 ? | 269 | .932? | 235 | -.747h |
| 302 | -. 1214 | 768 | .9394 | 234 | -.797? |
| 3 nl | -. 105 A | 267 | .927n | 233 | -.7919 |
| 300 | -. 0901 | ? 66 | . 8775 | 232 | -.7653 |
| 299 | -0852 | 265 | . 2565 | 231 | $=.7913$ |
| 29R | -.0814 | 764 | $.773 n$ | 230 | $\because 7465$ |
| 297 | -. 0704 | 263 | . 6813 | 229 | -. 7161 |
| 296 | -. 0638 | 262 | .576n | $22^{8}$ | -. 6957 |
| 295 | -. 0645 | 261 | .4517 | 227 | -.8944 |
| 294 | -. 0755 | 260 | . 3681 | 226 | -.7100 |
| 293 | -. 0730 | 259 | .2316 | 225 | -.8096 |
| 292 | -.068? | 258 | . 1046 | 224 | -.753) |
| 291 | -. 0631 | 257 | -. 0539 | 223 | -.735? |
| 290 | -. 0566 | 256 | -. 1890 | 222 | -.6559 |
| 289 | -. 0461 | 255 | -. 2897 | 221 | -. 5109 |
| 288 | -. 0492 | 254 | -. 4251 | 220 | -.6019 |
| 287 | -. 0500 | 253 | -.4927 | 219 | - 2900 |
| 286 | -. 0314 | 252 | -. 5704 | 218 | $-.1327$ |
| 285 | .0002 | 251 | -. 6157 | 217 | $\because 0349$ |
| 284 283 | .0217 | 250 249 | $=.6714$ $=.7049$ | 216 | $\begin{aligned} & =0070 \\ & =2290 \end{aligned}$ |
| 282 281 | $\begin{array}{r}\text {-1000 } \\ \cdot 1492 \\ \hline 12135\end{array}$ | 248 247 | -. .7104 | 214 | $\begin{array}{r} -.1432 \\ -.3072 \end{array}$ |
| 280 | - 2135 | 246 745 | -. 7526 | 212 | - -1.9558 |
| 278 277 | .3297 .4058 | 244 243 | - 77594 | 1 | I |

UU EXPERIMENTAL SPECTRUM AT to DEG C

| WAVELENGTH | ELLIPTICITY | WAVELENGTM | ELLIPTICITY | mavelenath | ELLIPTICITY |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 310 \\ & 309 \end{aligned}$ | $\begin{aligned} & =0102 \\ & =0183 \end{aligned}$ | $\begin{aligned} & 276 \\ & 275 \end{aligned}$ | $1.7252$ | $\begin{aligned} & 242 \\ & 241 \end{aligned}$ | $.9955$ |
| 308 | -.0291 | 274 | 1.884 | 240 | -.9942 |
| 307 | -. 0335 | 273 | 1.9298 | 239 | -.94i7 |
| 306 | -. 0370 | 272 | 1.9398 | 238 | -9986 |
| 305 | -. 0437 | 211 | 1.9212 | 237 | -.8578 |
| 304 | -. 0465 | 270 | 1.882? | 236 | -. 8278 |
| 303 | -. 0486 | 269 | 1.816n | 235 | -.762? |
| 302 | -. 0465 | 268 | 1.7261 | 234 | -. 7733 |
| 301 | -. 0456 | 267 | 1.6052 | 233 | - 6 bab |
| 300 | -. 0416 | 266 | 1.4566 | 232 | -.6522 |
| $299$ | -. 0388 | 265 | 1.3197 | 231 | -.6i3i |
| 298 | -. 0329 | 264 | 1.1617 | 230 | -.5620 |
| 297 | -. 0370 | 263 | . 9956 | 229 | -. 5169 |
| 296 | -. 0313 | 262 | . 8223 | 229 | -. 4715 |
| 295 | . .0131 | 261 | . 6587 | 227 | -.3966 |
| 294 | . 0038 | 260 | .4781 | 226 | -. 3n+ 4 |
| 293 | . 0301 | 259 | . 2898 | 225 | -. 7479 |
| 292 | . 0683 | 259 | . 1316 | 224 | -. 2 - 56 |
| 291 | . 1108 | 257 | -.0177 | 223 | -. 1496 |
| 290 | - 1589 | 256 | -. 1673 | $22 ?$ | -. 1258 |
| 28.9 | . 2188 | 255 | -.327 | 221 | -.12n3 |
| $288$ | - 2990 | 254 | -. .4656 | 220 | -. 1713 |
| 287 | . 3919 | 253 | -. 5891 | 219 | -. 2 n5s |
| 286 | . 4963 | 252 | -.7058 | 215 | -. 1751 |
| 285 | . 6059 | 251 | -. 8208 | 217 | -.196a |
| 284 | . 7308 | 250 | -. 8973 | 216 | -. 1693 |
| 283 | . 8592 | 249 | -.9428 | 215 | - -1865 |
| 282 | . 9980 | 248 | -. 9975 | 214 | -.1535 |
| 281 | 1.1305 | 24.7 | -1.9317 | 213 | -. 338 n |
| 280 | 1.2735 | 246 | -1.0145 | 212 | -. 532 n |
| 279 | 1.4004 | ? 45 | -1.024 7 | 211 | -. 0264 |
| 278 | 1.5092 | ? 44 | -1.0255 | $t$ | - 1 |
| 277 | 1.4261 | 243 | -1.0185 | 1 | 1 |

UC EXDERYMENTAL SPECTRUM AT $\triangle O$ OFGC

| Yavelengit. | ELLIPTICITY | WAVELENGTH | ELLPTICITY | wavelevstm | Ellioticity |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 318 | .0327 | 376 | \%:1197 | 342 | $=: 4747$ |
| 30 A | . 0257 | 274 | $2.0{ }^{\text {H6 }}$ ? | 240 | -. 5056 |
| 307 | . 0244 | ? 7 | 2.0437 | 239 | -.4077 |
| 306 | -0201 | 372 | 1.9882 | 238 | -4825 |
| 305 | . 0160 | 271 | 1.8964 | 337 | -. 4778 |
| 304 | . 0097 | 210 | 1.8307 | 236 | -.47R |
| 303 | .0075 | 769 | 1.7355 | 235 | -.4A5n |
| 302 | .0125 | 268 | 1.6187 | 234 | -.0.3 35 |
| 301 | . 0247 | 267 | 1.6927 | 233 | -. 3771 |
| 300 | . 0352 | 266 | 1.3550 | 232 | -.3nf2 |
| 299 | . 0525 | 265 | 1.2119 | 231 | -. 3572 |
| 298 | . 0787 | 264 | 1.0639 | 230 | -1949 |
| 297 | . 1006 | 263 | . 9246 | 229 | -.1563 |
| 296 | . 1375 | 262 | .8124 | 228 | -. 0.093 |
| 295 | -1891 | 261 | .7101 | 227 | -.0903 |
| 294 | - 2558 | 260 | . 6063 | 226 | -.0420 |
| 293 | . 3332 | 259 | .4968 | 225 | -.n54? |
| 292 | - 4220 | 258 | - A169 | 224 | -. 1132 |
| 291 | . 5276 | 257 | - 3155 | 223 | - 154 ? |
| 290 | .6717 | 256 | . 2306 | 222 | -. 1895 |
| $289 .:$ | .8105 | 255 | . 1316 | 221 | -. 3018 |
| 288 | .9582 | 254 | -0573 | 220 | -. 3775 |
| 287 | 1.0968 | 253 | -.0283 | 219 | -. 4791 |
| 286 | 1.2750 | 252 | -. 1189 | 218 | -. 6011 |
| 285 | 1.3715 | 251 | -.1618 | 217 | -. 7130 |
| 284 | 1.5056 | 250 | -. 227 ? | 216 | -. 7963 |
| 283 | 1.6225 | 249 | -. 275 n | 215 | -. 6544 |
| 282 | 1.7582 | 248 | -. 3036 | 214 | -.6R22 |
| 281 | 1.8637 | 347 | -. 3556 | 213 | -. 7715 |
| 280 | 1.9700 | 246 | -. 4043 | 212 | -. 5102 |
| 279 | 2.0210 | 245 | -.4193 | 21. | -. 5231 |
| 278 | 2.0812 | 244 | -. 4497 | 1 | I |
| 277 | 2.1082 | 243 | -. 4584 | - I. | 1. |

UG EXPERIMENTAL SPECTRUM AT 40 DEG C

| Wavelengit | ELLIPTICITY | wavelengin | ELIPPTICITY | mavelengia | Elliditeify |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 310 | -0248 | 276 | . 6003 | 242 | -.005 |
| 309 | -0160 | 275 | . 5087 | 241 | -.0037 |
| 308 | . 0095 | 274 | - 41.99 | 240 | -. 0178 |
| 307 | -0034 | 273 | . 3491 | 239 | -. 0285 |
| 306 | . 0119 | 272 | .2506 | 238 | -0.313 |
| 305 | . 0100 | 271 | $.143_{1}$ | 237 | - 0.0408 |
| 304 303 | .0116 | 278 | .0594 -0376 | 236 | -. 0521 |
| 302 | .0278 | 26B | -. 1021 | 234 | -. 0648 |
| 301 | . 0433 | 267 | -. 2077 | 233 | -. 0598 |
| 300 | .0570 | 266 | -. 2907 | 232 | -. 0724 |
| 299 | . 0718 | 265 | -.3759 | 231 | -. 0.532 |
| 298 | . 0925 | 264 | -. 4424 | 230 | -. 0.092 |
| 297 | . 1047 | 263 | -. 5027 | 229 | -. 0410 |
| 296 | .1346 | 262 | -. 5396 | 228 | - 0.091 |
| 295 | -1788 | 261 | -. 5505 | 227 | - 172 |
| 294. | - 2274 | 260 | -. 5535 | 226 | - ${ }^{\text {nis9 }}$ |
| 293 | - 2682 | 259 | -. 5495 | 225 | - 0 asto. |
| 292 | . 3230 | 258 | -. 5015 | 224 | -í79 |
| 291 | . 3718 | 257 | -. 466 n | 223 | . 1158 |
| 290 | . 4435 | 256 | -. 3966 | 222 | -1234 |
| 289 | . 4985 | 355 | -.354? | 221 | - ก79? |
| 288 | . 5541. | 354 | -. 2788 | 220 | . 1423 |
| 287 | .6136 | 353 | -. 2675 | 219 | . 0425 |
| 296 | .664? | 252 | -. 2124 | 216 | . 2940 |
| 285 | .1184 | 251 | -.1713 | 217 | - 0450 |
| 284 | . 7632 | 250 | -. .1455 | 216 | -. 0477 |
| 283 | . 7893 | 349 | -. 1040 | 215 | - 01139 |
| 282 | . 8.095 | 248 | - 0.04 R | 214 | .1535 |
| 281 | .8151 | 267 | -. 0421 | 213 | .2731 |
| 280 270 | -8122 | 246 | .0010 | 212 | -. 5755 |
| 279 279 | -7744 | 245 | -. 0113 | 211 | . 1649 |
| 278 | -7277 | 744 | -. 0025 | $!$ | 1 |
| 277 | .669? | 243 | . 0054 | - 1 | 1 |

a
3
4 3
3 3 $\stackrel{3}{4}$ 3

CA EXPRAIMENTAL SPECTRUM AT 40 DEG $C$

| mavelength | ELLJPTICITY | Wavelength | ELliPricity | wavelevota | ELLIOTICITY |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 310 - | -.3331 | >76 | 1.R6A4 | 2*? | -1.3465 |
| 309 | -. 3456 | 375 | 1.9193 | 241 | -1.6.345 |
| 300 | -. 3450 |  | 1.944 | 240 | -1.4969 |
| 307 | -. $34 \mathrm{H}_{1}$ | 273 | 1.9305 | 239 | -1.550a |
| 306 | -. 3547 | 272 | 1.1898 n | 238 | -1.0.790 |
| 305 | -. 3553 | 271 | $1 .{ }^{\text {R }}$ 064 | 237 | -1.6717 |
| 304 | -. 3411 | 770 | 1.7169 | 236 | -1.7115 |
| 303 | -.3494 | 269 | 1.5069 | 235 | -1.7445 |
| 302 | -. 3238 | 368 | 1.3106 | 234 | -1.77R |
| 301 | -. 3117 | 267 | 1.1799 | 233 | -1.751? |
| 300 | -. 2834 | >66 | ${ }^{.9931}$ | 23? | -1.755n |
| 299 | -. 2725 | 265 | .7947 | 231 | -1.7225 |
| 29月 | -. 2466 | 264 |  |  |  |
| 297 | -. 2296 | 263 | - 49988 | 230 229 | 1.6960 -1.5650 |
| 296 | -. 1936 | 262 | . 2060 | $22^{6}$ | -1.46R4 |
| 295 | -. 1504 | 361 | . 0.143 | 227 | -1.3177 |
| 294 | -.1125 | 260 | -. 1755 | 226 | -1.141? |
| 293 | -.0471 | 259 | -.339A | 225 | -. 9.9430 |
| 292 | -0450 | 358 | -. 4585 | 220 | -.7n96 |
| 291 | . 1354 | 357 | . .5877 | 223 | -. 5170 |
| 290 289 | .2576 .3644 | ? 36 | .7211 | 222 | -.5179 -.3777 |
| 289 288 | .3644 .4902 | ? 55 354 | -.7945 | 221 | -. 2779 |
| 287 | .4902 .6158 | ? 254 | -.8444 . .8859 | 220 219 | - 2957 -3873 |
| 286 | . 7455 | 252 | -. 9403 | 218 | -. 5100 |
| 285 | .8612 | 251. | -. 9633 | 217 | -. -7710 |
| 294 | . 9911 | 250 | -1.n395 | 216 | -1.nil6 |
| 283 | 1.1092 | 249 | -1.0651 | 215 | -1.4436 |
| 282 | 1.2443 | 248 | -1.0997 | 214 | -1.9038 |
| 291 | 1.3770 | 247 | -1.1267 | 213 | -2.007? |
| 280 | 1.5026 | 246 | -1.1426 | 212 | -2.9260 |
| 279 | 1.6055 | 245 | -1.1864 | 211 | -2.9130 |
| 278 277 | 1.7122 | 244 | -1.2696 | ! | 2.9130 |
| 277 | 1.7892 | 243 | -1.2967 | 1 | 1 |

CU EXPERIMENTAL SPECTRUM AI 40 DEG C

| vavelength | ELLIPTICITY | wavelengit | ELLIPTICITY | Wavelength | Ellipitcity |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 310 | -0217 | $\begin{aligned} & 276 \\ & 275 \end{aligned}$ | $2.7459$ $2.7416$ | $\begin{aligned} & 242 \\ & 241 \end{aligned}$ | $\begin{aligned} & =9237 \\ & =9672 \end{aligned}$ |
| 309 308 | . 0218 | 275 274 | 2.7416 2.7078 | 240 | -1.0006 |
| 308 307 | . 0169 | 274 273 | 2.7078 2.6323 | 239 | -1.n423 |
| 306 | .0261 | 272 | 2.5226 | 238 | -1.0677 |
| 305 | . 0278 | 271 | 2.3976 | 237 | -1.0966 |
| 304 | -0277 | 270 | 2.2495 | 236 | -1.1.65 |
| 303 | . 0357 | 269 | 2.6777 | 235 | -1.0970 |
| 302 | -0485 | 268 | 1.8747 | 234 | -1.0751 |
| 301 | . 0610 | 267 | 1.6790 | 233 | -1.0429 |
| 300 | . 0760 | 266 | 1.4712 | 232 | -.9859 |
| 299 | .0897 | 265 | 1.2681 | 231 | -.9271 |
| 298 | . 1195 | 264 | 1.0629 | 230 | -. 8593 |
| 297 | +1484 | 763 | . 8946 | 229 | -. 7749 |
| 296 | -1959 | 262 | . 7294 | 228 | -.678n |
| 295 | -2685 | 261 | .5871 | 227 | -.5041 |
| 294 | . 3578 | 260 | .4573 | 226 | - 5i9a |
| 293 | . 4624 | 259 | .3307 | 225 | -617n |
| 292 | .76014 | 258 257 | .2179 .1619 | 236 | $\begin{gathered} =3074 \\ =3062 \end{gathered}$ |
| 296 | 1.19263 | 256 255 | -.0112 | 222 | $\begin{array}{r} \because 107 \\ \because 1186 \end{array}$ |
| 288 287 | 1.89784 | 254 | - -2897 | 328 | - -1769 |
| 286 285 | 1.6792 1.8581 | 252 751 | -. 3883 -.596 | 218 | $\begin{aligned} & =.2746 \\ & =.379 ? \end{aligned}$ |
| 284 | 2.0280 | 250 | -. $523 ?$ | 216 | -. 4079 |
| $2 \mathrm{P3}$ | 2.1808 | 249 | -. 5736 | 215 | -.6744 |
| 282 | 2.3263 | 348 | -. 6268 | 216 | -.7616 |
| $2 \mathrm{Cl}_{1}$ | 2.4601 | 247 | -.6898 | 213 | 0.7965 |
| $2 \mathrm{BO}_{0}$ | 2.5606 | 246 | -. 7299 | 212 | -1.1502 |
| 279 | 2.6388 | 745 | -. 7967 | 211 | -. 5971 |
| 279 | 2.7109 | 744 | -. 4469 | t | - |
| 277 | 2.7387 | 743 | -.8974 | 1 | 1 |

CC EXDERIMENTAL SPECTRUM AT 40 DEG $C$

| WAVELENGTH | ELEIPYICITY | wavelengtm | ELLIPTICITY | wavelevgta | Eltipiteify |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 318 | . 0309 | $\begin{aligned} & 27 \alpha \\ & 275 \end{aligned}$ | 3.5617 | $\begin{aligned} & 202 \\ & 241 \end{aligned}$ | - 17884 |
| 308 307 | . 0372 | $\begin{aligned} & 374 \\ & ? 73 \end{aligned}$ | $3.223 A$ 3.0134 | 248 | $=.31>8$ |
| 304 305 | .0500 .0503 | $? 72$ | 2.7856 | 238 237 | -. 4760 |
| 305 304 | .0503 .0607 | 271 270 | 2.5237 $2.263 n$ | 237 236 | -5167 -.5749 |
| 303 | -0864 | 269 | 2.0041 | 235 | - 0221 |
| 302 | . 1167 | 268 | 1.7566 | 234 | -. 6914 |
| 301 | . 1561 | 267 | 1.5255 | 233 | -.7602 |
| 300 | . 2087 | 266 | 1.3254 | 232 | -. 7995 |
| 299 | . 2727 | 265 | 1.1413 | 231 | -. $\mathrm{Bl}_{14}$ |
| 298 | -3707 | $2 \mathrm{C4}$ | . 9757 | 230 | - AnB1 $^{\text {a }}$ |
| 297 | .4788 | ? 63 | .8333 | 229 | -. 7599 |
| 296 | . 6264 | 262 | .7082 | 228 | -. 6948 |
| 295 | . 8444 | ? 61 | .6095 | $22^{7}$ | - $\quad$ - 192 |
| 294 | 1.0774 | 260 | .5206 | 226 | -.564 ${ }^{\text {c }}$ |
| 293 | 1.3173 | ? 59 | . 4410 | 225 | -.4905 |
| 292 | 1.5822 | 258 | . 3900 | 224 | -0470? |
| 291 | 1.8561 | 757 | . 3677 | 223 | -. 3923 |
| 290 | 2.1404 | 256 | .3393 | 222 | -. 3956 |
| 289 | 2.4232 | 255 | . 3109 | 221 | -.462? |
| 288 | 2.6812 | 254 | . 3011 | 220 | -. 0.5563 |
| 287 | 2.9132 | 253 | $.2^{840}$ | 219 | -. 5696 |
| 286 | 3.1290 | 252 | .2517 | 218 | -.7110 |
| 285 | 3.3133 | 251 | . 2403 | 217 | -.7960 |
| 284 | 3.4895 | 350 | . 2214 | 216 | .. 9166 |
| 283 | 3.6401 | 249 | -1998 | 215 | -.975i |
| 282 | 3.7409 | 248 | .1713 | 214 | -1.in96 |
| 281 | 3.7891 | 247 | .1341 | 213 | -1.0615 |
| 290 | 3.8037 | 246 | . 0965 | 212 | -. 6633 |
| 279 | 3.7851 | 245 | . 0386 | 211 | -.8913 |
| 278 | 3.7577 | 244 | -. 0156 | 1 | $\because \mathrm{I}$ |
| 277 | 3.6780 | 243 | -.j89? | , | 1 |

CG EXPERIMENTAL SPECTRUM AT 40 DEG $C$

| Wavelengin | ELLIOPICITY | Wavelemath | ELLIPTICITY | WAVELENGIH | Elitptieity |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 318 | - 0.0149 | $\begin{aligned} & 276 \\ & 275 \end{aligned}$ | $1: 8579$ | $\begin{aligned} & 242 \\ & 241 \end{aligned}$ | $\begin{aligned} & =.6539 \\ & =.6511 \end{aligned}$ |
| 308 | -. 81818 | 273 | .83888 | 239 | $\because 6778$ |
| 306 305 | $\square .0178$ -0065 | 271 | .6304 | 238 238 | $\begin{aligned} & =.6803 \\ & =8764 \end{aligned}$ |
| 383 | .8045 | 278 | : 4683 | 235 | $=.66412$ |
| 302 361 | - 0490 | 268 267 | .2797 | 234 | -.6208 |
| 300 299 | -1235 .1613 | 266 | .0935 | 232 | $\begin{aligned} & =.6500 \\ & -.6494 \end{aligned}$ |
| 298 297 | -2153 | 264 | -. 0371 -1102 | 238 | $\begin{aligned} & =6341 \\ & =6536 \end{aligned}$ |
| 296 | .3378 .6301 | 262 | - 1757 $=0347$ | 228 | $\begin{array}{r} =.6226 \\ -.6133 \end{array}$ |
| 294 293 | . 5298 | 260 259 258 | $=.2922$ $=.3449$ | 226 225 | - 5495 $=5097$ |
| 292 | .7770 | 258 | -. 3066 | 224 | -.6712 |
| 291 290 | .9076 1.0369 | 257 756 | $=.4272$ $=.5071$ | 223 | -.4741 .0 .3941 |
| 289 | 1.1534 | 255 | -.5460 | 221 | $-3672$ |
| 288 | 1.2537 | 254 | -. 5599 | 220 | -. 3999 |
| 287 | 1.3419 | 253 | -.6016 | 219 | $.416 n$ .4259 |
| 286 | 1.4082 | 252 | -. 6365 | 218 | -.5259 |
| 2 2\% | 1.4401 | 251 | -.6351 | 217 | -.5950 |
| 2 A 4 | 1.4558 | 250 | 0.6716 | 216 | -.671A |
| $2 \mathrm{A3}$ | 1.4663 | 249 | -. 6766 | 215 | -.7959 |
| $2{ }^{2}$ | 1.4567 | 748 | -.6877 | 214 | -.950i |
| $2{ }^{2} 1$ | 1.4296 | 247 | -.657n | 213 | -1.0308 |
| 2989 | 1.3913 320 | ? 745 | -6897 -.6217 | 212 | -. -.5539 |
| $\begin{aligned} & 278 \\ & 277 \end{aligned}$ | 1.2454 1.1530 | 24.4 | .6409 $=.6405$ | i | $!$ |

GA EXPERTMENTAL SPECTRUM AT $\triangle O$ DFG C

| Wavelentith | ELLIPTICITY | WAVElfingin | Elurpitcity | mavelengin | Ellioficify |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 310 | -.0318 | > 76 | .0200 | 262 | -.5497 |
| $30^{\circ}$ | -.0370 | 375 | . 1661 | 241 | - 5 5n73 |
| 308 | -0420 | 274 | . 2874 | 240 | -. 4575 |
| 3 3 | -.0523 | 773 | -4287 | 239 | -.6165 |
| 306 | -.0611 | 272 | . 573 n | 238 | -. 3477 |
| 305 | -. 0682 | 71 | . 6905 | 237 | -. 3164 |
| 304 | -.0725 | 270 | . A236 | 236 | -.3n30 |
| 303 | -. 0869 | 269 | . 9214 | 235 | -. 2704 |
| 302 | - 0 092 | P68 | .985n | 234 | -. 2364 |
| 301 | -. 1094 | 367 | 1.0545 | 233 | -. ${ }^{\text {P3 }}$ 88 |
| 300 | -. 1189 | 266 | 2.0538 | 232 | -. 3884 |
| 299 | -. 1296 | 265 | 1.0552 | 231 | -. 2411 |
| 298 297 | - 1491 -1578 | 264 263 | 1.0244 1.0060 | 230 229 | -.2473 -.1776 |
| 296 295 | - -1766 | 262 761 | . 8.961 | 228 227 | $\begin{array}{r} =1776 \\ =-1787 \\ =.1427 \end{array}$ |
| 294 293 | $=.2536$ | 268 | . 73786 | 226 225 | ( 01035 |
| 292 291 | -. 28927 | 258 257 | -4692 | 220 | $=0.0546$ |
| 290 289 | -. 3950 | 256 255 | .1646 .0657 | 222 | .0016 -.0496 |
| 288 | -. 5069 | 254 | -. 0565 | 220 | -.005i |
| 287 | -. 5601 | 253 | -. 1723 | 219 | -. 1025 |
| 286 | -. 6057 | 252 | -.2550 | ? 10 | -.1609 |
| 285 | -. 6396 | 251 | -. 3008 | 217 | -. 0.065 |
| 284 | -. 6406 | 250 | -. 3987 | 216 | . 0416 |
| 283 | -. 6333 | ?49 | -. 4265 | 215 | -0081 |
| 282 | -. 5943 | 248 | -. 4928 | 214 | - 0369 |
| 281 | -. 9287 | ? 47 | -.5145 | 213 | -. 01594 |
| 280 | -. 4541 | 246 | -. ${ }^{\text {. }}$ : 03 | 212 | .6R38 |
| 279 | -. 3535 | ? 45 | -. 5475 | 211 | -. 5909 |
| 278 | -. 2358 | 244 | -.6.899 | t | , |
| 277 | -. 1128 | 243 | -. 54, | 1 | I |

GU EXPERIMENTAL SPECTRUM AT 10 DEGC

| waveleng th | ELLIPTICITY | wavelength | ELLPTICITY | mavelength | ELLIDIICITY |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\therefore 310$ | -.0088 | 276 | -2123 | 242 | -1480 |
| 309 | -. 0095 | 275 | . 1929 | 241 | -1137 |
| 308 | -. 0050 | 274 | -1710 | 240 | -0996 |
| 307 | -.0092 | 273 | . 1515 | 239 | - 2753 |
| 306 | -. 0057 | 272 | . 1324 | 238 | - 0563 |
| 305 | -. 0118 | 271 | -1059 | 237 | - $i$ - ${ }^{\text {a }}$ |
| 304 | -. 0210 | 270 | - 0806 | 236 | -0091 |
| 303 | -. 0352 | 269 | -0780 | 235 | -0048 |
| 302 | -.0434 | 268 | -078.3 | 234 | . 0015 |
| 301 | -. 0355 | 267 | .0761 | 233 | . 0035 |
| 300 | -. 0352 | 266 | . 1025 | 232 | . 0056 |
| 299 | -. 0292 | 265 | -1486 | 231 | . 0205 |
| 298 | -. 0256 | 264 | .1912 | 230 | -0428 |
| 297 | -.0221 | 263 | . 2367 | 229 | - 0558 |
| 296 | -. 0127 | 262 | . 2712 | 229 | -1021 |
| 295 | -. 0079 | ? 61 | . 3039 | 227 | -1158 |
| 294 | . 0008 | 260 | . 3398 | 226 | -1148 |
| 293 | . 0164 | 259 | . 3495 | 225 | .1374 |
| 292 | . 0263 | 258 | . 3465 | 224 | -1488 |
| 291 | . 0310 | 757 | . 3758 | 223 | -1950 |
| 290 | . 0699 | 256 | .3853 | 222 | - 2444 |
| 289 | . 0605 | 255 | . 4107 | 221 | - 2A7? |
| 288 | . 0721 | 254 | . 463 ? | 220 | . 349 n |
| 287 | . 0903 | 253 | -4302 | 219 | - 3689 |
| 2 A 6 | . 1020 | 252 | -4236 | 218 | . 4994 |
| 285 | . 1174 | 251 | .4253 | 217 | . 5774 |
| 294 | .1320 | 250 | . 4081 | 216 | .5395 |
| 283 | .1355 | 249 | .3946 | 2.15 | .6041 |
| 282 | .1591 | 248 | .3500 | 214 | $.7 n 43$ |
| 281 | . 1814 | 347 | .3271 | 213 | .6727 |
| 280 | .1995 | 346 | .2834 | 212 | - 0817 |
| 279 | . 2110 | 745 | - ? 469 | 211 | -.0309 |
| 278 | .2107 | ? 44 | .2245 | I | , |
| 277 | .2079 | 243 | . $186{ }^{\circ}$ | - | 1 |

GC EXPERIMENTAL SPECTRUM AT $4 O$ OEG C

| WAVELENTTH | ELLIPTICITY | WAVELENGTH | ELLIPTICITY | Wavelengim | ELLIOPICITY |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 318 308 | $=0430$ | $\begin{array}{r} 276 \\ 375 \end{array}$ | $\begin{array}{r} .9989 \\ 1: 0290 \end{array}$ | $\begin{aligned} & 24 \\ & 241 \end{aligned}$ |  |
| $\begin{aligned} & 308 \\ & 307 \end{aligned}$ | $=.0338$ -.0263 | $\begin{aligned} & 274 \\ & 973 \end{aligned}$ | $\begin{aligned} & 1.0494 \\ & 1.0836 \end{aligned}$ | $\begin{aligned} & 240 \\ & 23{ }^{\circ} \end{aligned}$ | $\begin{aligned} & =1024 \\ & \because 1 \geqslant 42 \end{aligned}$ |
| 306 305 | $=.0182$ -.0195 | 272 271 | 1.1012 1.1197 | 238 237 | - 1776 -236 |
| 304 | -. 0237 | 770 | 1.129i | 236 | -. 2934 |
| 303 | -. 0177 | 269 | 1.1393 | 235 | -.3508 |
| 302 | -.0160 | 268 | 1.1478 | 234 | -.4114 |
| 301 | -. 0007 | 267 | 1.1251 | 233 | -. 4578 |
| 300 | .0140 | 266 | 1.1051 | $23 ?$ | -. 4835 |
| 299 | . 034.1 | 265 | 1.0622 | 231 | -. 5726 |
| 298 | . 0566 | 264 | 1.0155 | 230 | -. 5755 |
| 297 | . 0853 | 763 | . 9543 | $22^{\circ}$ | -.526n |
| 296 | -1278 | 262 | .8753 | $22^{8}$ | 0.532 ? |
| 295 | .1715 | 261 | -8169 | 227 | -. 0973 |
| 294 | . 2204 | 260 | .7336 | 226 | -. 4567 |
| 293 | -2816 | 759 | . 6571 | 225 | -. 4139 |
| 292 | .3484 | 258 | . 5941 | 224 | -.348n |
| 291 | . 4056 | 257 | .5197 | 223 | -. 3025 |
| 290 | . 4689 | 256 | -4281 | 222 | -. 2371 |
| 289 | .5154 | 255 | .3390 | 221 | -. 2214 |
| 288 | . 5625 | 254 | .2730 | 220 | -. 2019 |
| 287 | .6107 | 253 | . 1662 | 219 | -. 1676 |
| 286 285 | $\begin{aligned} & .6490 \\ & .6801 \end{aligned}$ | 252 251 | $\begin{array}{r} .0979 \\ .0739 \end{array}$ | 218 | $\begin{array}{r} =.2169 \\ -.3384 \end{array}$ |
| 284 | .7174 | 250 | . 0544 | 216 | 0.3914 |
| 233 | .7520 | 249 | . 0696 | 215 | -. 3351 |
| 282 | . 7809 | 248 | . 5704 | 214 | -. 5959 |
| 281 | -8280 | 247. | . 0915 | 213 | -. 5706 |
| 280 | . 8662 | 246 | .1127 | 212 | - 5009 |
| 279 | . 8963 | 245 | - 1125 | 211 | -.1480 |
| 278 277 | -9404 | 244 | . 0877 | 1 | I |
| 27.1 | .9612 | 243 | . 0557 | 1 | 1 |

06 EXPERIMENTAL SPECTRUM AT 40 OEG C

| GAVELENGTH | ELLIPTICITY | WAVELENGTM | ELLIPTIEITY | WAVELENETH | ELliptictir |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 318 | $=: 0994$ | 376 | $\begin{aligned} & =.7588 \\ & =.7036 \end{aligned}$ | 292 | -2.3756 |
| 308 307 | -.0884 | 274 | -.8118 | 248 <br> 238 | -2.4516 -2.989 |
| 306 305 | -. 0106 $=.0144$ | 272 | -.7822 | 238 | -2.181? |
| 305 | -. 0144 | 271 | -.8010 | 237 | -2.0472 |
| 304 303 | $=00284$ | 278 | -. 69896 | 236 235 | -1.8964 -1.6264 |
| 302 | -. 0958 | 268 | -. 4274 | 234 | -1.3234 |
| 391 | -. 1336 | 267 | -. 2106 | 233 | -.9072 |
| 300 | -. 1498 | 266 | -.1082 | 232 | -. 5126 |
| 299 | -. 1310 | 265 | . 1542 | 231 | -.0688 |
| 298. | -.0826 | 264 | .2980 | 230 | . 0153 |
| 297 | - 0648 | 263 | . 5136 | 229 | .0482 |
| 296 | . 0624 | 262 | . 5942 | 228 | - 1 ¢ 24 |
| 275 | -0868 | 261 | . 6768 | 227 | -1728 |
| 294 | -0876 | 260 | .6728 | 226 | - 1289 |
| 293 | .1642 | 259 | .7506 | 225 | .1679 |
| 292 | - 2060 | 258 | .611n | 224 | -1987 |
| 291 | - 3502 | 257 | .5130 | 223 | .2271 |
| 290 | . 3516 | 256 | . 5034 | 222 | .2529 |
| 269 | . 3214 | 255 | . 4036 | 221 | . 2466 |
| 288 287 | . 2426 | 254 753 | a $.056 \%$ .1444 | 220 219 | $\begin{array}{r} 3354 \\ .3544 \end{array}$ |
| 286 | . 0888 | 252 | -.524 | 21.8 | . 3663 |
| 285 | -. 0166 | 251 | -.62日? | 217 | . 4.498 |
| 284 | -. 0938 | 250 | - ${ }^{\text {POOR }}$ | 216 | - 4176 |
| 2 A 3 | -. 3082 | 249 | -1.0650 | 215 | . 3713 |
| 282 | -. 4234 | 248 | -1.33n7 | 214 | . 3640 |
| 281 | -.4424 | 7.7 | $-1.5570$ | 213 | . 2839 |
| 280 379 | -. 4562 | 246 | -1.9296 | 212 | . 2516 |
| 279 | . .5048 | ? 45 | -2.0786 | 211 | -. 1632 |
| 278 277 | -. .6176 | 244 | -2.0944 | $!$ | 1 |
| 277 | -. 6978 | 243 | -2.2月84 | 1 | 1 |

DO EXPERIMENTAL SPFCTRUM AT 0 DFG

\begin{tabular}{|c|c|c|c|c|c|}
\hline wavelengin \& ELLIPTICITY \& Wavflemgtia \& ELtPTICITY \& wavelengin \& Ellioticity <br>
\hline $$
318
$$ \& $$
\begin{array}{r}
.0438 \\
: 0416
\end{array}
$$ \& $$
\begin{aligned}
& 276 \\
& 275
\end{aligned}
$$ \& $$
\begin{array}{r}
039 ? \\
0 \\
0395
\end{array}
$$ \& $$
\begin{aligned}
& 242 \\
& 241
\end{aligned}
$$ \& $$
\begin{aligned}
& =0955 \\
& =00902
\end{aligned}
$$ <br>
\hline $$
\begin{array}{r}
308 \\
307
\end{array}
$$ \& $$
\begin{array}{r}
0.336 \\
0.00^{9} 2
\end{array}
$$ \& $$
\begin{aligned}
& 274 \\
& >73
\end{aligned}
$$ \& $$
\begin{aligned}
& .01567 \\
& .0723
\end{aligned}
$$ \& $$
\begin{aligned}
& 240 \\
& 239
\end{aligned}
$$ \& $$
\begin{aligned}
& =076 \text { A } \\
& \because 07 n 3
\end{aligned}
$$ <br>
\hline 306 \& -. 0104 \& 272 \& . 0804 \& 238 \& -.n911 <br>
\hline 305 \& -.714A \& 271 \& - 0 -05 \& 237 \& - $\rightarrow$ ORAn <br>
\hline 304 \& -. 0120 \& 270 \& .8776 \& 236 \& - 0 - ${ }^{\text {a }}$ <br>
\hline 303 \& -0.020 \& P69 \& - 0 d4, \& 235 \& - nara <br>
\hline $$
302
$$ \& -. 0216 \& 768 \& .0893 \& 234 \& -. 0961 <br>
\hline $$
301
$$ \& -. .0264 \& 267 \& .1148 \& 233 \& -.097? <br>
\hline $$
300
$$ \& -.0479 \& 766 \& . 1218 \& 232 \& -.0790 <br>
\hline $$
299
$$ \& $=.0384$ \& P65 \& .1450 \& 231 \& -.0870 <br>
\hline $$
29 \mathrm{~A}
$$ \& - 035 A \& 2 64 \& -1542 \& 230 \& -0087
$-\quad .098$ <br>
\hline $$
297
$$ \& -.0070 \& 263 \& -143i \& 229 \& -. 0.0792 <br>
\hline 296 \& -.027? \& 262 \& -1427 \& 22 ¢ \& - $-0.074{ }^{\text {- }}$ <br>
\hline 295
294 \& -.0123
-.0200 \& 261
760 \& .1167 \& 227 \& - $n$ - 021 <br>
\hline 294 \& -. 0.0200 \& 260
259 \& .0856
.0559 \& 226
225 \& -.0963
-0.0976 <br>
\hline 292 \& -. 0023 \& ? 258 \& . 050029 \& 225
224 \& - $\because 9876$
$=. n 832$ <br>
\hline 291 \& -. 00067 \& 257 \& . .0225 \& 223 \& -.0982 <br>
\hline 290 \& . 0035 \& 256 \& -. 0467 \& 222 \& -. 1058 <br>
\hline 289 \& -. 00.18 \& 255 \& -.0547 \& 221 \& -. 098 n <br>
\hline 288
289 \& . 0075 \& 254 \& -.0650 \& 220 \& $$
=.075 R
$$ <br>
\hline $$
289
$$ \& . 0008 \& 253

253 \& -.0653 \& 219 \& $$
\begin{array}{r}
\because \\
-1518 \\
-15
\end{array}
$$ <br>

\hline 286
285 \& . 00688 \& 252
251 \& .0870

-1090 \& 218 \& $$
\begin{array}{r}
\because 1264 \\
\because 1222
\end{array}
$$ <br>

\hline $$
284
$$ \& . 0320 \& 250 \& -.0959 \& - 216 \& -.127i <br>

\hline $$
\begin{array}{r}
283 \\
282
\end{array}
$$ \& . 0376 \& 249

248 \& -1114

-.1197 \& - 215 \& | -. 1749 |
| :--- |
| .1702 | <br>

\hline 281 \& .0363 \& 247 \& $$
\begin{array}{r}
1228 \\
-1294
\end{array}
$$ \& 213 \& \[

$$
\begin{array}{r}
2186 \\
-. ? 099
\end{array}
$$
\] <br>

\hline $$
\begin{aligned}
& 279 \\
& 278
\end{aligned}
$$ \& \[

$$
\begin{array}{r}
.0392 \\
.0426
\end{array}
$$
\] \& 245 \& -1111

-.1009 \& 211 \& -. 2251 <br>
\hline 277 \& . 0406 \& 243 \& -.087t \& + \& 1 <br>
\hline
\end{tabular}

EXPERIMENTAL SPECTRUM AT 40 DEG C

| WAVELENGTK | ELLIPTICITY | Wavelengim | Ellipticity | wavelenatm | ELLIPTICITY |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 310 | . 0833 | 276 | - 1.1454 | 242 | $=.6046$ |
| 309 | . 0486 | 275 | -1.2741 | 261 | $-.5 n 97$ |
| 308 | . 0502 | 276 | -1.3535 | 240 | -. 4488 |
| 307 | . 0245 | 273 | -1.4773 | 239 | -. 3554 |
| 306 | -. 0103 | 272 | -1.549? | 238 | -.3029 |
| 305 | -. 0548 | 271 | -1.5967 | 237 | -. 2615 |
| 304 | -. 0723 | 270 | -1.6581 | 236 | - 01844 |
| 303 | -. 0829 | 269 | -1.7319 | 235 | -. 1246 |
| 302 | -. 0931 | 268 | -1.726? | 234 | - 0.922 |
| 301 | . . 0939 | 267 | -1.7761 | 233 | . 0284 |
| 300 | -. 0701 | ?66 | $-1.8743$ | 232 | -1414 |
| 299 | -. 0856 | 265 | -1.8824 | 231 | -2713 |
| 298 | -.0984 | 264 | $=1.9575$ | 230 | -3571 |
| 297 | -.0785 | 263 | -1.969? | 229 | -6011 |
| 296 | -. 0835 | 262 | -1.9292 | 228 | - 4186 |
| 295 | -. 1012 | 261 | -1.9194 | 227 | .4803 |
| 294 | -. 1342 | 260 | -1.9316 | 226 | -4470 |
| 293 | -. 1643 | 259 | -1.935? | 225 | .4766 |
|  | -. 1774 |  |  |  | . 4920 |
| 291 | -.1914 | 257 | -1.9081 | 223 | -4003 |
| 290 | -. 1907 | 256 | -1.8324 | 222 | - 2050 |
| 289 | -. 1961 | 255 | -1.0394 | 221 | -1.3120 |
| 288 | -. 2072 | 254 | -1.8222 | 220 | 1.030日 |
| 287 | -.2240 | 253 | -1.7364 | 219 | 2.9748 |
| 286 | -. 2623 | 252 | - 1.6754 | 218 | 3.5925 |
| 285 | -. 2969 | 251 | -1.5964 | 217 | 3.3926 |
| 284 | -. 3462 | 250 | -1.484? | 216 | 4.5796 |
| 283 | -. 3920 | 249 | - 2.6030 | 215 | 3.0762 |
| 282 | -. 4701 | 248 | -1.3405 | 214 | 4.2117 |
| - 281 | -.5771 | 247 | -1.2201 | 213 | 4.7535 |
| - 280 | -. 6589 | 246 | -1.099? | 212 | $4.7748$ |
| 279 | -. 7234 | 245 | -.9960 | 211 | 3.7039 |
| 279 277 | 0.8752 | 244 | -. F 355 | 1 | $!$ |
| 277 | -.9960 | 243 | -.7209 |  |  |

DA EXPERTMENTAL SPEGTRUM AT $\triangle O$ DEGC

| Gavelengin | ELLIPYICty | mavelengia | ELETPTICITY | wavelenoth | Ellipiteity |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 318. | :7187 | 375 | -囘58 | 342 | 1.9894 |
| 308 307 | .7486 .7501 | 274 | $\begin{array}{r} .9475 \\ 1: 026 n \end{array}$ | 248 | .0521 .7174 |
| 306 305 | 7422 .7428 | 272 271 | 1.1124 1.174 | $\begin{array}{r} 236 \\ 737 \end{array}$ | - BARA |
| 304 303 | 7436 .7338 | 278 | 1.2185 | 236 235 |  |
| 302 301 | .7325 .7340 | 268 | 1.2643 1.2625 | 234 233 | $\begin{aligned} & . \operatorname{HaS}_{0} \\ & .4 ? 16 \end{aligned}$ |
| 300 299 | 77437 $\therefore 7600$ | 266 265 | $1.239 ?$ 1.2231 | \% $\begin{array}{r}232 \\ \because 231\end{array}$ | .5531 .5087 .5781 |
| 298 | .78.5 | ? 64 | 1.1974 | 230 | -481 |
| 297 | .8178 | 263 | 1.1874 | - 229 | . 4605 |
| 296 | -8190 | 262 | 1.1850 | 228 | . 4.430 |
| 295 | . 8202 | 261 | 1.1799 | 227 | -4387 |
| 294 293 | .8001 | 260 $? 59$ | 1.1887 1.1925 | 226 $\cdot 225$ | .4754 .3944 |
| 292 | .7654 .7442 | 258 257 | 1.2199 | 224 | $\begin{array}{r} 2889 \\ -\quad \begin{array}{r} 2855 \end{array} \end{array}$ |
| 290 289 | .7287 .7283 | 256 +55 | 1.2194 1.2052 | 222 221 | - 0.0706 $=.3944$ |
| 288 | . 7300 | 254 | 1.1712 | 220 | -.5P67 |
| 287 | . 7344 | 253 | 1.1516 | 219 | -.7928 |
| 286 | .7413 | 252. | $1.127 ?$ | 218 | -. 9569 |
| 285 | . 7506 | 251 | 1.109 A | 217 | -.9P84 |
| 284 | .7579 | 250 | 1.0844 | 216 | -. 09.3 ? |
| 283 | .7558 | 249 | 1.0702 | 215 | -1.0447 |
| 282 | .7465 | 248 | 1.0653 | 214 | 0.9795 |
| 281 | . 7338 | 247 | 1.0626 | 213 | -.9108 |
| 280 | .7283 | 266 | 1.00640 | 212 | -.5738 |
| 279 | . 7274 | 245 | 1.9730 | 211 | -. 227 ? |
| 278 | . 7350 | 244 | 1.0621 | 1 | $1$ |
| 277 | .7748 | 243 | 1.0409 | 1 | 1. |

GO EXPERIMENTAL SPECTRUM AT 40 DEG C

| WAVELENGTH | ELLIPTICITY | WAVELENGTM | ELLIPPTCYTY | Wavelengit | ELLIDTIEITY |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 318 308 | $\begin{aligned} & =0518 \\ & =0290 \\ & 0 \end{aligned}$ | 276 | -. 5789 | $\begin{aligned} & 342 \\ & 241 \end{aligned}$ | $\begin{aligned} & =1732 \\ & =8550 \end{aligned}$ |
| $\begin{array}{r} 308 \\ 307 \end{array}$ | $\begin{array}{r} .0096 \\ .0198 \end{array}$ | $\begin{aligned} & 274 \\ & 273 \end{aligned}$ | $\begin{aligned} & .5336 \\ & =5136 \end{aligned}$ | $\begin{aligned} & 248 \\ & 236 \end{aligned}$ | $.0533$ |
| . 306 | -0198 | 272 | -. 5.5268 | 238 238 | .1620 .2092 |
| 305 | -0202 | 271 | -. 5099 | 237 | -. 2535 |
| 304 | -0180 | 270 | -. 5033 | 236 | - 3140 |
| 303 | -0192 | 269 | - 5207 | 235 | -31468 |
| 302 | -. 0955 | ?68 | -. 5338 | 234 | -43i8 |
| 301 | -. 1145 | ? 67 | -. 5394 | 233 | .4762 |
| 300 | -. 1573 | ? 66 | -. 5538 | 232 | -4836 |
| 299 | -. 1547 | 265 | -. 5293 | 231 | .5iz4 |
| 298 | -.1629 | 264 | -. 525 n | 230 | . 6514 |
| 297 | -. 1368 | 263 | -. 4632 | 229 | . 7501 |
| 296 | -.1321 | 262 | -. 0.668 | 228 | - H 510 |
| 295 | -. 1566 | 261 | -. 0688 | 227 | - 078 c |
| 294 | -.1755 | 760 | -.6761 | 226 | . 9671 |
| 293 | -. 2071 | 259 | -.4183 | 225 |  |
| 292 | -. 2387 | 258 | -.459 | 224 | .9702 |
| $291$ | -. 2869 | 257 | -.457n | 223 | .9626 |
| $290$ | -. 3210 | ? 56 | -.486 | 222 | . .8636 |
| $289$ | $-.3297$ | 255 | -. 5133 | 221 | -8436 |
| $28 \mathrm{~B}$ | -. 3606 | 254 | -. 5235 | 220 | .490 i |
| $287$ | -.3928 | 753 | -.4717 | 219 | - 2709 |
| 286 285 | $0.4151$ | 252 | -.6080 | 219 | -1314 |
|  | $\begin{array}{r} -.3829 \\ =.4165 \end{array}$ | 751 750 | -.3374 | 217 | - -1349 -877 |
| 284 283 | -. 0.4165 | 250 749 | -.322年 | 216 | -.3n7a |
| 283 282 | $\begin{array}{r}. .4547 \\ \hline .0726\end{array}$ | 249 748 | -. 2879 -.2567 | 215 | - 0861 |
| 281 | -. 5250 | 247 | -. 2117 | 213 | .7434 $.9 n 92$ |
| 280 279 | $\begin{aligned} & \quad .5769 \\ & -5685 \end{aligned}$ | 246 745 | -. 2123 | 212 | -9979 |
| 278 | -.5169 | 245 | -. 200 A | 211 | . 9568 |
| 277 | $\because 69 \mathrm{A6}$ | 743 | . . 2124 | 1 | - 1 |

CD spectra of six polymers at $25^{\circ} \mathrm{C}$ are listed between 310 and $210 \mathrm{~m} \mathrm{\mu}$. Ellipticity values are times
 Dr. Dana Carroll; the poly G:poly C, Doly AU:poly AU, poly GC:poly GC, and poly GU:poly CA were measured by Dr. Donald Grey. The poly GA:poly CU spectrum was constructed as described in the text. These polymer spectra were used to calculate basis spectra for double strand regions of tRNA.

POLY AA POLY UJ EXPFOIMENTAL SPECTQUM AT ? 25 UEG


POLY GG POLYCC
EXPEAIMENTAL SPECTRUM AT 25 DEG

| MAVELENGTH | ELLIPTICITY | Waveliengit | ELLPPTICITY | wavelengin | ELLIpticity |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & 318 \\ & 3 \end{aligned}$ | 8. | $\begin{array}{r} 376 \\ 275 \end{array}$ | $\begin{aligned} & 1 \cdot 176 \overline{1} \\ & 1.4984 \end{aligned}$ | 242 | $\begin{array}{r} .4348 \\ .2946 \end{array}$ |
| $\begin{aligned} & 309 \\ & 307 \end{aligned}$ | 0. | 274 | $\begin{aligned} & 109124 \\ & 105109 \end{aligned}$ | 2418 | $\begin{array}{r} 1584 \\ 0 \end{array}$ |
| 306 | 0. | 272 | 1.5911 | 238 | -1in |
| 305 | 0. | 271 | 1.6488 | 231 | -. 2344 |
| 304 | -. 0029 | 270 | 1.6799 | 236 | -. 3376 |
| 303 | -. 0098 | 269 | 1.6829 | 235 | -. 4402 |
| 302 | -.0175 | 268 | 1.6553 | 234 | -. 53 ¢99 |
| 301 | -.0274 | 267 | 1.6009 | 233 | -. $6 n 69$ |
| 300 | -.0407 | 266 | 1.529 n | 232 | -.6669 |
| 299 | -. 0544 | 265 | 1.4504 | 231 | -.7i? |
| 298 | -. 0628 | 264 | 1.3762 | 230 | -.7479 |
| 297 | -. 0616 | 263 | 1.3162 | 229 | -.776i |
| 296 | $\cdots=0474$ | 262 | 1.2749 | 228 | -.8nit |
| - 295 | $\therefore .0193$ | 261 | 1.2529 | 227 | $\because A>B 7$. |
| $294$ | ¢ 0.0198 | 250 | 1.2483 | 226 | $\therefore$-154i: |
| $293$ | $0.0667$ | 259 | $1.256{ }^{\text {a }}$ | 225 | -.A899 |
| $292$ | -1199 | 258 | 1.2719 | 224 | -.9346 |
| $291$ | $.1773$ | 257 | 1.2895 | 223 | $\therefore$ - 7987 |
| $\begin{aligned} & 290 \\ & 289 \end{aligned}$ | 2351 .2980 | 256 $? 55$ | 1.3023 1.3075 | 22? | -1.0509 |
| $\begin{array}{r} 289 \\ 289 \end{array}$ | 2480 -3329 | ? 25 | 1.3075 1.3073 | 221 | -1.1190 -1.1927 |
| $\begin{aligned} & \text { 28月 } \\ & 287 \end{aligned}$ | - 33729 | 754 753 | 1.3073 1.3040 | 280 219 | $\begin{aligned} & 1.1927 \\ & -1: 3003 \end{aligned}$ |
| 296 285 | .4093 | 252 $? 51$ | 1.2977 1.2849 | 218 | $\begin{aligned} & =1.3 \times 00 \\ & -1.4400 n \end{aligned}$ |
| $\begin{aligned} & 284 \\ & 283 \end{aligned}$ | - 04788 | 259 | 1.2599 1.2181 | 216 | $\begin{aligned} & -1.5>n o \\ & -1.6300 \end{aligned}$ |
| 282 281 | .5776 .6457 | ?488 | 1.1564 1.0747 | 214 | $\begin{aligned} & =1.689 n \\ & =1.760 n \end{aligned}$ |
| 280 $-\quad 279$ | $\begin{array}{r} 7284 \\ .8253 \end{array}$ | $\begin{aligned} & 346 \\ & 345 \end{aligned}$ | 9737 .9545 | $\begin{aligned} & 212 \\ & 211 \end{aligned}$ | $\begin{aligned} & \text { - } 1.9 n 00 \\ & -1: 9900 \end{aligned}$ |
| $\begin{aligned} & 2714 \\ & 277 \end{aligned}$ | $\begin{array}{r} .935 n \\ 1.0533 \end{array}$ | $\begin{aligned} & 244 \\ & 243 \end{aligned}$ | $\begin{array}{r} 72 n 9 \\ .57 \mathrm{Bn} \end{array}$ |  |  |

polyau polyau
ERPERIMENTAL SPECTRUM AT PG DEG

| wavelengith | ELLIPTICITY | wavflenatm | Ellipitcity | mavelengin | Eldiertcitr |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 310 | 0. | P76 | .575) | 242 | .1873 |
| 309 | 0. | 275 | .6571 | 241 | . ${ }^{\text {P140 }}$ |
| 3 cs | 0. | 274 | $.745 n$ | 240 | . 2768 |
| 307 | 0. | 973 | . 8393 | 239 | . 346 ? |
| 306 | 0 - | 272 | . 9383 | 239 | $.417 n$ |
| - 305 | 0. | \$71 | 1.0404 | P37 | $\text { . } 4 \text { RA } 7$ |
| 304 | . 0038 | 270 | 1.1447 | 236 | . 5473 |
| 303 | . 0035 | 369 | 1.2561 | 235 | - $\mathrm{A} \cap 25$ |
| 302 | -. 0003 | 268 | 1.3835 | 234 | . 6495 |
| 301 | -. 0062 | ? 67 | 1.531 h | 233 | . 4847 |
| 300 | -. 0125 | 266 | 1.7020 | 232 | .7925 |
| 299 | -. 0192 | 265 | 1.891 n | 231 | . 7 ¢27 |
| 294 | $=0.0273$ | 264 | 2.0961 | 238 | . 685 |
| 296. | -. 0.0493 $=-0656$ | 263 362 | 2.3176 2.547 2.774 | 228 228 227 | .6497 .5955 .5737 |
| 294. | -.0833 | 260 | $2.988{ }^{\circ}$ | 226 | - 0765 |
| 293 | -. 0986 | 259 | 3.1668 | ?25 | .3765 |
| 292 | -. 1111 | 258 | 3.2833 | 224 | -2973 |
| 291 | -. 1221 | 257 | 3.3328 | 223 | .1109 |
| 290 | -. 1306 | 256 | 3.3001 | 222 | -. 0106 |
| 289 | -. 1325 | ? 55 | 3.1743 | 221 | -. 1336 |
| 288 | -. 1247 | 254 | 2.9558 | 220 | -. 2522 |
| 287 | -. 1066 | 253 | 2.6519 | 219 | -. 3AnA |
| 286 | -. 0769 | 252 | 2.2854 | 218 |  |
| 285 | -. 0345 | 751 | 1.8883 | 217 | -. 573 \% |
| 284 | .0173 | 250 | 1.0883 | 216 | -. 573 B |
| 283 | . 0748 | ? 49 | 1.1143 | 215 | -. 6000 |
| 282 | .1377 | 248 | .7911 | 214 | -. $5988^{\circ}$ |
| 281 | . 2060 | ? 4 ? | .5297 | 213 | -. 6300 |
| 280 | - 2774 | 346 | . 3369 | 212 | -.6900 |
| 279 | . 3495 | ? 45 | . 215 A | 211 | -. 7700 |
| 278 | .4221 | 244 | . 1549 | 1 | 1 |
| 277 | . 4971 | 243 | . 1426 | I | -1 |

POLY GC POLY GC
EXPERIMENTAL SPECTRUM AT 25 DEG

| WAVELENGTH | ELLIPTICITY |
| :---: | :---: |
| 310 | -. 1000 |
| 309 | -. 1.080 |
| 308 | -. 1320 |
| 307 | -.1736 |
| 306 | -. 2352 |
| 305 | -. 3000 |
| 304 | -. 3507 |
| 303 | -.4217 |
| 302 | -.6966 |
| 389 | -. 85333 |
| 298 | $\begin{aligned} & =8107 \\ & -8817 \end{aligned}$ |
| 296 | -.9408 |
| 294 293 | -1.0241 -1.0463 |
| 292 | -1.0560 |
| 290 | -1.0464 |
| 289 | -1.0321 |
| 288 | -1.0143 |
| 287 | -. 9934 |
| 286 285 | $\begin{array}{r} .9735 \\ -.95 月 2 \end{array}$ |
| 284 | -.9463 |
| 283 | -.9348 |
| $2 \mathrm{F2}$ | -.9174 |
| 2 F 1 | -. 8884 |
| 28. | 0.8277 |
| 279 | -. 7379 |
| 278 | -.604? |
| 277 | -.6229 |

Waveleng m e



| WAVELENGTM | ELLIPTICITY | wavelengin | ELLIPTICITY | WAVELEVSTH | ELLIOTICJTY |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 310 | -.0500 | 716 | .5718 | 242 | - $00 \rightarrow$ ? |
| 309 | -.notin | 275 | .6414 | 2.61 | $-179 n$ |
| 308 | -.0960 | 274 | .7252 | 240 | -. 3344 |
| 307 | -.1176 | 713 | . P 284 | 239 | -. 4565 |
| 306 | -. 1612 | 212 | . 9535 | 238 | -.5377 |
| 305 | -. 2000 | 271 | 1.n985 | 237 | -.5778 |
| 304 | -. 2170 | 770 | 1.2578 | 236 | -.5876 |
| 303 | -. 2457 | 769 | 1.4241 | 235 | -.5418 |
| 302 | -. 2688 | 26 A | 1.5897 | 234 | $\because-.5180$ |
| 301 | -. 2 A5 5 | 267 | 1.7456 | 233 | -. 4567 |
| 300 | -. 294 B | 266 | 1.8435 | 232 | - 3900 |
| 299 | -. 2981 | 265 | 2.0001. | 231 | -. 2989 |
| 298 | -. 2980 | 764 | 2.096n | 230 | -.219n |
| 297 | -. 2942 | 263 | 2.1713 | 229 | - $14 n 9$ |
| 296 | -. 2823 | ? 62 | 2.2293 | $22^{8}$ | - 0664 |
| 295 | -. 2595 | ? 61 | 2.2719 | 227. | -nn18 |
| 294 | -. 2282 | 360 | 2.3033 | 226 | - 0hll |
| 293 | -. 1929 | 759 | 2.3196 | 225 | . 1064 |
| 292 | -. 1562 | 258. | 2.3149 | 224 | . 1343 |
| 291 | -. 1195 | 757 | 2.2869 | 223 | .1655 |
| 290 | -. 0835 | ? 56 | 2.2397 | 222 | . 1444 |
| 289 | -. 0469 | ? 55 | 2.1793 | 221 | . 1345 |
| 288 | -. 0077 | 254 | 2.1021 | 220 | . 1137 |
| 267 | . 0332 | 253 | 1.9977 | 219 | . 0708 |
| 286 | . 0731 | 252 | 1.8629 | 218 | . 0304 |
| 285 | .1123 | 251 | 1.7045 | 217 | -.0380 |
| 284 | . 1552 | 250 | 1.5324 | 216 | -. 1320 |
| 283 | . 2043 | 249 | 1.3522 | 215 | -. 2500 |
| 282 | . 2569 | 248 | 1.1656 | 214 | -. 3920 |
| 281 | .3094 | 24.7 | . 9720 | 213 | -. 4500 |
| 280 | . 3618 | 246 | .7701 | 212 | -.5600 |
| 279 | . 4136 | $? 45$ | .5649 | 211 | . 6.6100 |
| 278 | . 4634 | 344 | $.366 ?$ | I | 1 |
| 277 | .5138 | 243 | .1780 | 1 | 1 |

Poly ga poly cu : Expeaimental spectrum at 25 deg

| WAVELENGTH | ELLIPTICITY | waveliength | ELLIPTICITY | WAVELENGTA | Elljpticity |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 310 | 0.0100 | 276 | 2.3069 | 242 | -. 5834 |
| 309 | -. 0100 | 275 | 2.3366 | 241 | -7199 |
| 308 | -. 0200 | 274 | 2.3569 | 240 | -.8399 |
| 307 | -.0308 | 273 | 2.3177 | 239 | -. 9 -956 |
| 306 | -.0436 | 272 | 2.4079 | 230 | -.9799 |
| 305 | -. 0500 | 271 | 2.4506 | 237 | -.937 |
| 304 | -0.0448 | 278 | 2.5020 | 236 | -. 9040 |
| 303 | -.0417 | 264 | 2.5526 | 235 | -9683 |
| 302 | -. 0317 | 268 | 2.5910 | 234 | -. 7756 |
| 301 | -.0135 | 267 | 2.6075 | 233 | -.6466 |
| 300 | . 0143 | 266 | 2.5959 | 232 | -. 5848 |
| 299 | .0506 | 265 | 2.5570 | 231 | -. +769 |
| 29月 | .0944 | 264 | 2.4931 | 230 | -.367 8 |
| 297 | . 1461 | 263 | 2.4066 | 229 | -. 3558 |
| 296 | -2121 | 262 | 2.3054 | 228 | -. 1403 |
| 295 | -2971 | 261 | 2.1976 | 227 | - 0 ? ${ }^{\text {? }}$ |
| 294 | .3969 | ?60 | 2.08855 | 226 | -TARA |
| 293 | . 5044 | 259 | 1.9713 | 225 | .1919 |
| 292 | . 6165 | 258 | 1.957 ? | 226 | . 2815 |
| 291 | . 7322 | 257 | 1.7426 | 223 | .3556 |
| 290 | .8496 | 256 | 1.6300 | 222 | .4172 |
| 239 | . 9681 | 255 | 1.5265 | 221 | -4*82 |
| 288 | 1.0878 | 254 | 1.4284 | 220 | . 5 n63 |
| 247 | 1.2072 | 253 | 1.3208 | 219 | .5214 |
| 286 285 | 1.3226 1.4339 1.5482 | 252 | 1.1941 | 219 | . 5292 |
| 294 | 1.54 AL | P50 | . $\mathrm{Be8} 2$ | 216 | -taon |
| 283 | 1.6708 | 249 | . 7133 | 215 | .4750 |
| 2 Cz | 1.7967 | 748 | - 5239 | 214 | . 3500 |
| $2{ }^{19}$ | 1.9171 | 747 | . 3247 | 213 | .5350 |
| 270 | 2.0281 | $? 46$ | . 1211 | 212 | -. 0100 |
| 279 | 2.1257 | 345 | -. 019 A | 211 | . 2 月00 |
| 278 | 2.2044 | 344 | -. 2663 | $t$ | - 1 |
| 277 | 2.2635 | 263 | -. 4327 | 1 | $\pm 1$ |

## Appendix 3

## Computer Programs

The following programs, written in Fortran IV for use on a CDC 6600 computer, perform simple arithmetic operations on CD spectra. The s:ubroutines PRNPLT and PLSCAL which are repeatedly usec by these programs were written by Dr. Marty Itzkowitz, and are listed at the end of this Appendix. NNPOL:, which was written by Phil Borer, served as the besis for MTADMS and SHASTA.

All the programs to be listed are quite similar in their input and output. To begin, it is useful to define the sorts of cards that repeatedly occur in the Input and Output of these programs, and the usual order in which they occur.
(1) IDEXP or IDCAL card contains a 72 cha acter identification of the spectrum.
(2) Control card contains an 8 character ID and 6 controls. In order, the controls are starting wavelength ( $\mathrm{m} \mu$ ), ending wavelength ( $\mathrm{m} \mu$ ), wavelength increment between data points ( $\AA$ ) , wavelength interval during which pen is to be averaged for each point ( $\AA$ ), $\mathrm{OD}_{258}$, and extinction coefficient.
(3) Data cards contain 10 data points per card in a 10F8. 4 format.
(4) * card contains * in all 80 columns. This type of card is useful in separating sets of data cards.
(5) IPUNPR card may precede all the sets of spectra.

It specifies whether punched data and a plot of the spectrum are desired YES is columns 1 to 3 indicated that data is to be punched. YES in columns 4 to 6 indicates that a plot of the spectrum is desired.

Paper tapes from the PDP 8\%S are converted to cards by BAKER. The output deck consists of a series of spectra each of which begins with an * card, followed by a Control card, the data cards, and ends with another * card. The * card preceding each set of data is replaced by an IDEXP card. The spectra are then run through GLACER which corrects for baseline shifts, TAHOMA which smooths the spectra, RANIER which averages several spectra, and STHLNS which obtains difference spectra.

The Input and Output for all these programs is quite similar: IDEXP card, Control card, data cards, * card. All the data cards in the Input of GLACER and TAHOMA are preceded by an IPUNPR card. The end of the deck of input spectra for each of these programs is signalled by two blank cards. The punched output has a similar format except there is no IPUNPR card. The printed output in all cases consists of a listing and plot of the spectra. The Input for RANIER begins with a card telling how many spectra are to be averaged in an I4 format. Data for STHLNS, which calculates difference spectra, is arranged in sets of two spectra and the second spectrum is subtracted from the first.

The difference spectrum is then punched, listed, and plotted. Parameters specified when calling PRNPLT in all these cases determine the scale of the abscissa of the plotted spectrum.

```
        PROGRAM GLACER(INPUT,OUTPLT,PUNCH)
        OIMENSION CONTRL(6), CD(200), [PUNPR(3), XWAVE'(200), IDEXP(12)
        CONTRGLS ARE(1) LAMBDA MAX, (2) LAMBDA MIN, (3). A PER POINT, (5)DO
        (6) IS EXTINCTION COEFFIECIENT
        IPUNPK INOICATES WHETHER PUNCIED DATA AND : A PLOT OF THE SPECTRLMM
        ARE DESIREO (3) INOICATES WHETHER CU IS TO BE CALCULATEO
        BLANK CARD AT END OF DATA SIGNALS STOP
        AVERAGE IS TAKEN BETHEEN 345 AND 325 MU FOR BASELINE CORRECTION
    5CO FORMAT(10F8.4)
    501 FORMAT(3A3)
        FCRMAT(AB,2X,4(F8.3,2X),2(E13.6,2X))
        FORMAT(5(E.13.6,2X))
        FORMATI*ISPECTRUM ID= *,A8,20X,*BASELINE CORRECTION=*,E13,4,10X.
        s*USING*, 13; * POINTS*)
905 FORMAT(IX)
906. FORMAT(IHI)
    907 FCRMAT(80(1H*))
    908 FGRMAT(3(13x,F6.0,3X,F13.4))
    909 FORMAT(1246)
    109 FORMAT(7FB.4)
    910 FORMAT(/!, 3115X,*LAMBDA*;3X,*ELLIPTIC/TY*),//I
    912 FORMAT (*l*)
    913 FCRMAT(F8.4)
        READ 501, (IPUNPR(I), I= 1,3)
        PRINT }91
302 CONTINUE
    READ 909, IDEXP
    READ 902,ID;CONTRL
    IFIID.EQ.8H ISTOP
    XMAX=CONTRL{1)
    XINC=CONTRL(3)/10.
    NPTS=(CONTRL(1)-CONTAL(2))*10./CONITRL(3)
    READ 500,(CD{1),I=1,NPTS)
    REAC }90
        NPTAV=0
        SUM=0
C AVERAGE IS TAKEN BETWEEN LIMITS OF DO LOOP BELOW
    DO 3 1= 11,30
    NPTAV = NPIAV+1
    3 SUM = SUM +CD(1)
    CRCN = SUM/NPTAV
    PRINT 904, IO, CRCN, NPTAV
    PRINT 909, IIDEXP(I), I=1,12)
    DO }51=1,NPT
    XHAVE(I)=CONTRL{1)-FLOAT(I-1)*CONTRL(3)/10.
    IF(IPUNPR(3).EQ.3HYES)2,4
    2 CD(I) =CO(I)*IC.
    GO TO 5
    4. CD(I)=CD(1)-CRCN
    5 CONTINUE
    IF (IPUNPR(1).EQ.3HYESI8,9
    8 PUNCH 909,(IDEXP(I): I=1,12)
    PUNCH 902.ID,CUNTRL
    PUNCH SOO.(CDIII, I=1,NPTS)
    PUNCH 90%
    9 CONTINUF
    PRINT 910
    II=NPTS/3.+1.
    DO 20 1=1.II
    J=I+11
    K=J+III, WWAVE(II, CDII), XWAVE(J), CD(J), XWAVE(K), CD(K)
    20 PRINT 908, XWAVEIII, CD
    NUM = NPTS-40.
    XMAX=XMAX-40.
    IF(IPUNPR{2):EQ.3HYES) 7,302
    7.CALL PRNPLT(XWAVE(41),CD(41),XMAX,XINC,2,5,.1,0,0,NUM)
        GO TO 302
        END
```



```
        PROGRAM TAHOMA(INPUT,OUTPUT,PUNCH)
        DIMENSION CONTRL(6); CD(2CO), IPUNPR(3), XWAVE(200), IDEXP(12),T(1
        13), R(200)
C PROGRAM APPLIES A I3 POINT SMOUTH (CUBICI TO INPUT DATA.
C CONTROLS AREI1) LAMBDA MAX, (2) LAMHDA MIN, (3) A PER POINT, (5IOO
C (6) IS EXTINCTION COEFFIECIENI
C IPUNPR INDICATES WHEIHER PUNCHED DATA AND A PLOT OF THE SPECTRUM
C ARE DESIRED
C BLANK CARD AT END OF DATA SIGNALS STDP
    900 FDRMAT(*1*)
    903 FORMAT(X,A8,2X,4(FB.3,2X),2(E13.6,2X))
    501 FORMAT (2A3)
902 FORMAT(AB, 2X,4(F8.3,2X),2(E13,6,2X))
    904 FORMAT(12A6)
905 FORMAT(IX)
906 FRRMAT(IHI)
    907 FORMAT(80(1H*))
    908 FORMAT(3(13X,F6,0,3X,F13.4))
    909 FORMAT(*1*,12A6)
    109 FORMAT (7F8.4)
    500 FORMAT (10F8.4)
    910 FORMAT!/|,3115x,*LAMBDA*,3X,*ELLIPTICITY*),//I
    913 FORMAT(F8.4)
        READ 501, (IPUNPR(I), I= 1,2)
        PRINT 900
302 CONTINUE
    READ 904, IDEXP
        READ 902:10.CONTRL
        IFIID.EG. 8H
        ISTOP
        PRINT 909, (IDEXP(1), I=1,12)
        XMAXI=CONTRL(1)
        XINC=CONTRL(3)/10.
        NPTS=(CONTRL(1)-CONTRL(2))*10./CONTRL(3)
        READ 500,(R(II,I=1,NPTS)
        READ 905
C R=UNSMOOTHED DATA, CD= SMOOTHED DATA, T= TEMPORARY STORAGE
    N = NPTS - 12
    O0 10 I=2,13
    J= I-1
        10 T(I) = R(J)
            OO 200 I=1,N
            J = I+12
            00 11 K= 1012
            KK=K+1
        11T(K)=T(KK)
            T(13)=R(J)
            SUM = 25.*T(7) + 24.*(T(6)+T(8)) + 21.*(T(5)+T(9)) +16.*(T(4)+T(1
            10)1.+ 9.*(T(3)+T(11)) - 11*(T(1)+T(13))
            L=I+6
            CO(L)=SUM/143.
        200 CONTINUE
            PRINT 903, ID, CONIRL
            NSMTH=NPTS-6
            DO 21 1:1,6
        21 CD(I)=R(I)
            DO 22 I= NSMTH,NPTS
```

$22 C D(I)=R(I)$
DO 5 [ $=1$, NPTS
5 XWAVE(I) $=$ CONTRL (1)-FLCAT (I-1) *CONTRL(3)/10.
IF (IPUNPR(1), EQ.3HYESI8.9
8 PUNCH 909, (IDEXP(I), $I=1,121$
PUNCH 902,10, CONTRL
PUNCH 5JO. (CD(1).I =1,NPTS)
PUNCH 907
9 CONTINUE
PRINT 910
$I I=N P T S / 3 .+1$.
DC $201=1.1 I$
$J=I+I I$
$K=J+11$
20 PRINT 908, XHAVE(I), CD(I), XWAVE(J), CD(J), XWAVE(K), CO(K) NUM $=$ NPTS -40 .
$X M A X=X M A X-40$.
PRINT 909, (IDEXP(I), $1=1.121$
IFIIPUNPR(2).EQ.3HYES) 7.302
7 CALL PRNPLTIXWAVE(41),CO(41), XMAX,XINC.2.5., 1,0,0,NUM)
GO TO 302
END

```
        PROGRAM KANIERI INPUT,OUTPUT,PUNCH)
        OIMENSION C.ONTRL(6), CD(200, 1C),XWAVE(200),IDEN(12),CDAV(200)
        THIS PROGRAM avERAGES SETS OF NAV SPECTRA
C
    CONTROLS ARE(1) LAMBDA MAX, (2) LAMBDA MIN, (3) A PER POINT, (5)OD
    (6) IS EXIINCTION COEFFIECIENT
    NPTS IS the numeer of wavelengths
    BLANK CARD AT END OF DATA SIGNALS STOP
    900 FORMAT (12A6).
    901 FORMAT(I4)
    902 FORMAT(X,A8,2X,4(F8.3,2X),2(E13.6,2X))
    903 FORMATIIOF8.41
    904 FORMAT(*1*:12AG,14;* SPECTRA AVERAGED*)
    905 FORMAT(X,A8,2X,4(F8.3,2X),2(E13.6,2X ) )
    906 FORMAT(1H1)
    907 FORMAT(80(1H*))
    90B FORMAT(3(13x,FG.1, 3X,F13.5))
    909 FORMAT(*1*; [4, *SPECTRA AVERAGED*)
    910 FORMATI /, 3(15X,*LAMBDA*,3X,*ELLIPIICITY*),/)
    911 fORMATI%%* ID LAMBDA MAX LAMDA MIN A PTS AV
    S OD EXT CDEFFICIENT*I
    912 FORMAT(X: 12A6)
    915 FORMAT(*1*)
        FRINT 915
        READ 901, NAV
302 CONTINUE
    PRINT 909: NAV
    PRINT 911
    OO 1 J=1,NAV
    READ 900, IOEN
    IFIIDEN.EQ.GHSTOP ISTOP
    NPTS = 100
    READ 903,(CDSI,J),I=1,NPTSI
    PRINT 912, IDEN
    1 CONTINUE
    XMAX=31G.
    XINC=1.0
    DO 2 I=I,NPTS
    XWAVE(I)= 310. -FLOAT(I-1)
    SUM =0.
    DO 3 J=1.NAV
    3 SUM = SUM+CD(I,J)
    2 CDAV(I)=SUM/NAV
        II=NPTS/3.+1.
        PRINT 910
    OO 20 I= 1,11
    J=I+II
    K=J+II
20 PRINT 908, XHAVEII),CDAV(II, XWAVE(J), CDAV(J), XWAVE(K), CDAV(K)
    PRINT 906
    PRINT 904. IDEN.NAV
    NUM=NPTS
    PUNCH 912,IDEN
    PUNCH 905, ID, CONTRL
    PUNCH. 903, ICDAV(I), I=1,NPTS)
    PUNCH 901
    7 CALL PRNPLTIXWAVES 1),CDAVI 1),XMAX,XINC,2.S,.1,0,0,NUM)
    GO TO }30
    END
```

```
            PROGRAM STHLNSIINPUT,OUTPUT,PUNCH)
    1,IDENA(12),10ENB(12)
    THIS PROGRAM CALCULATES OIFFERENCE SPECTRA APII-BIl)
    NPTS IS THE NUMBER OF WAVELENGIHS
    CONTROLS ARE(1) LAMBDA MAX, (2) LAMBDA MIN, (3) A PER POINT, (5)00
    (6) IS EXIINCYION COEFFIECIENT
    BLANK CARD AT END OF DATA SIGNALS STOP
    900 FORMAT(12A4)
    902 FORMAT(X,A8, 2X,4(F8.3,2X),2(E13.6.,2X))
    903 FORMAT(10F8.4)
    906 FORMAT(1HI)
    907 FORMAT(80(1H*))
    908 FORMATI 3(13X,F6.1, 3X,F13.5))
```



```
    $ OD EXT COEFFICIENT*I
    912 FORMAT(/,X,12A40* MINUS*, 12A4)
    913 FORMAT(12A4; MINUS*, 12A4)
    915 FORMAT(*1*)
        PRINT }91
    CONTINUE
    READ 900, IDENA
    IFIIDENA.EQ.4H ISTOP
    READ 902,10,CONTRL
    PRINT 915
    PRINT 911
    PRINT 902, 10, CONTRL
    XMAX=CONTRL(1)
    XINC=CONTRL(3)/10.
    NPTS=(CONTRL(1)-CONTRL(2))*10./CONTRL(3)
    READ 903, (A(I),I=1,NPTS)
    READ 906
    READ 900, IUENB
    READ 902,1D,CONTRL
    PRINT 902.ID,CONTRL
    READ 903. (B(1),I=1,NPTS)
    READ }90
    OO 2 I=1,NPTS
    XWAVE(I)=CONTRL(1)-FLOAT(I-1)*CONTRL(3)/10.
    2CD(I)= A1I)-8(1)
    PUNCH 913.IDENA,IDENB
    PUNCH 902, 10,CONTRL
    PUNCH 903, (CD(1): 1=1,NPTS).
    PUNCH 907
    II=NPTS/3.+1.
    PRINT 912. IDENA,IDENB
    PRINT 910
    OO 20 I= 1,II
    J=I+II
    K=J+II
    20 PRINT 908, XHAVE(I), CD(I), XWAVE{J), CD(J), XWAVE(K), CO(K)
    NUM=NPTS-40.
    XMAX=XMAX-40.
    PRINT }91
    PRINT GIT. INFNA. INFNR
    CALL PKNPLT(XWAVE(41),CD(41),XMAX,XINC,1.0,.04,0,0,NUM)
    PRINT }91
    GO TO }30
    END
```

MTHOOD compares a set of calculated spectra with an experimental spectrum to see how well they fit. The first data card tells at how many wavelengths the fit is to be computed in an I4 format. The input consists next of a set of calculated spectra. Each of these spectra consists of 12 cards: an IDCAL card, 10 data cards, and an * card. The end of the set of calculated spectra is signalled by STOP ir the first four columns of an IDCAL card. The program then goes on to read the experimental spectra which will be compared with these calculated spectra. These experimental spectra are arranged in the same manner previously described: an IDEXP card, a control card, data cards, and an * card. The end of the set of experimental spectra is signalled.by two blank cards. IDCAL, IDEXP, the fit between the two spectra being compared as defined in Equation 3-17, and the numerator and denominator of this equation are printed out for each set of spectra being compared.

```
    PROGRAM MTHOOD(INPUT,OUTPUTI
    DIMENSION CONTRL(6), CDCAL(20C,18), CDEXP( 200), XWAVE(200),
    1DIFF(200),IDEXP(12),10CAL(25,13)
        thIS PROGRAM CALCULATES HOW WELL AN EXPERIMENTAL CD SPEGTRUM.IS FIT BY A
        SERIES OF CALCULATED CD SPECTRA
        M IS THE NUMBER OF WAVELENGTHS AT WHICH RMS DEV IS COMPUTED BEGINNING
        WITH 310 AND CONTINUING EVERY 1 MU
        NPTS IS THE NUMRER OF WAVELENGTHS
        put a Card saying stJp at the eno of the calculated spectra
        PUT A BLANK CARD AFTER EACH SET OF CALCULATED SPECTRA
        put TwO blaNk CARDS at the end of the data
        FITNESS =RMS DEVIATION BIN CALC AND EXP SPECTRUMDIVIDED BY RMS OF
        EXP SPECTRUM CALC AT M WAVELENGHTS9
        FORMAT (12A6)
    901 FORMAT (14)
    902 FORMAT(X,AB, 2X,4(F8.3,2X),2(E13.6,2X))
    903 FORMAT(10F8.4)
    904 FORMAT(*1*, 12AG,*EXPERIMENTAL SPECTRUM TO BE FIT*)
    905 FORMAT(*1*)
    907 FORMAT(//;* FIT WITH*, 12AG, *CALCULATED SPECTRUM*)
    911 FORMATI//.* ID*)
    912 FORMATI/.*FITNESS EQUALS*;F7.31* DIVIDED BY*,F7.3,* EQUALS*,F7.3
    1,//1
    915 FORMATI//. 12A6,* CALCULATED SPECTRUM*)
    920 FORMAT (1H1)
        READ 901,M
        K=1
    4 READ 900; (IDCAL(K,L), L=1,12)
        PRINT 900, (IDCAI.(K,L),L=1,12)
        IFIIOCAL(K,1).EQ.GHSTOP JGO TO I
        READ 903, (COCAL(J,K): J=1,100 )
        READ 920
        K=K+1
        GO TO 4
    l KISS=K-1
300 CONTINUE
        READ 900, IDEXP
        IFIIDEXP.EQ.6H ISTOP
        PRINT 904; 1DEXP
        READ 902, ID, CONTRL
        PRINT 911
        PRINT 902, IO, CONTRL
        XMAX=CONTRL(1)
        XINC=CONTRL(3)/10.
        NPTS={CONTRL(1)-CONTRL(2))*10./CONTRL(3)
        READ 903,(CDEXP(1),I=1,NPTS)
        READ 905
        DO 2 I=1,NPTS
    2 XWAVEII)=CONTRL(1)-FLOAT(I-1)*CONTRL(3)/10.
    DO 6 JO=L,KISS
    PRINT 915, (IDCAL(JO,L), L=1,12).
    SUMDIF=0.
    SUMEXP=0.
    DO S K=1,M
    J=K
    I=40+K
    D[FF(K)={CDCAL(J,JO )-CDEXP(1))**2
    SUMOIF=SUMDIF+DIFF(K)
    5 SUMEXP=SUMEXP+(CDEXP(1)**2)
    EXP=SQRT(SUMEXP)
    OIFSQ=SORT(SUMDIF)
    FIT=DIFSQ/EXP
    PRINT 912, DIFSQ,EXP,FIT
    6 CONTINUE
    GO TO 300
    END
```

SHASTA, which is used to calculate sums of monomer, dimer, and polymer spectra, and MTADMS, which calcu ates double strand pairing interaction sums, are quite similar. The Input deck for SHASTA begins with a card specifying the number of output spectra, the number of input spectra, and the number of wavelengths at which the $C D$ is to be calculated per spectrum in a $3 I 4$ format. This is followed by 20 single strand basis spectra, 6 double strand basis spectra, 4 monomer basis spectra, a possible T $\psi C G$ basis spectrum, and a zero basis spfctrum. Each basis spectrum consisted of 12 cards: an ID cerd, 10 data cards, and an * card or blank card.

Following the basis spectra are groups of four cards, each corresponding to a spectrum to be calcu.ated. The first of these cards specifies FNAME, an 80 character identification for the calculated spectrum. The second card lists the number of times each of the 20 nearest neighbor interactions occurs in the single strand regions of the RNA in a 20F2.0 format. The third cerd lists how many times each of the 6 double strand interactions occurs in hydrogen bonded regions of the molecule in a 6F3.0 format. The fourth card specifies the monomers at either end of the RNA in a 4 F 2.0 format. After these sets of four cards, there is a final card specifying the maximum wavelength and the interval between data points in $m \mu$ in a 2 FlO. 3 format.

```
    PROGRAM SHASTAIINPUT,OUTPUT,PUIICH I
    NN= NUMPER OF OUTPUT SPECTRA
    N= NUMLER OF INPUT SPECTRA
        M = NUMBER DF WAVELENGTHS PER SPECTRUM
        NSM = NUMBER OF NUCLEOTIDES IN NUCLEIC ACID
        C(I,K) IS THE FREQUENCY OF THE KTH COMPONENT FOR THE ITH POLYMER
        DIMENSION ENN(35,100),C(35,35),EPOLY(35,100),ENATIVE(IOJ),NSMi35
    1). FNAME(25.25) ,ID(8)
        COMMON N,JDI,M,JD2,ENN,EPOLY,D3(25,25),D4(25,25),D5(25,25),C, NSM
    l ,FNAML
    100 FORMAT(6F3.0)
    102 FORMAT(20F2.0)
    2C2 FORMAI(GF2.0)
    103 FORMAT(10F8.4)
    104 FORMAT(314)
    108 FORMAT(2X, 2OF6.3).
    109 FORMAT (8A10)
    901 FCRMAT(* *,8A10)
    110 FORMAT(X,12)
    501 FORMAT(/)
    5 0 2 ~ F O R M A T ( * 1 * ) ,
    99 FORMAT(IHI)
        READ 1O4,NN,N,M
        PRINT 502
        DO 98 1=1,32
        READ 1C9,(ID(I),I=1,8 )
        READ 103, IENN{I,JI,J=1,M}
        PRINT 901,(IDIII,I=1.8 )
        PRINT 501
        READ 99
    98 CONTINUE
        PRINT 502
        DO B I =1,NN
        READ 109,(|FNAME(I ,j), J=1,8))
        .READ COEFFICIENTS OF SINGLE STRAND NN INTERACTIONS
        READ 102, (C(I,K), K=1,20)
        READ COEFFICIENTS OF DOUBLE STRAND POLYMER INTERACTIDNS
        READ 100, (C(1),K), K=21,26)
C READ COEFFICIENTS OF MONOMER SPECTRA, TSCG, AND 2 FOR EADCH -C(I,K)
    READ 202, (C(1;K), K=27;32)
    DO 7 K=1,26
    C(I,K)=(C(I,K)*2.)
    7 CONTINUE
        DO 9 K=31,32
        C(I,K)=(C(I,K)*2.)
    9. CONTINUE
    8 CONTINUE
        DO 107 I=1,NN
        NSM(1) =0.
        DO 107 K=1,N
        NSM(I) = C(I,K) + NSM(I)
    107 CONTINUE
        DO }6\textrm{I}=1\mathrm{ ,NN
        NSM(1)=NSM(1)/2
    C CONTINUE
        DO 105 I=1,NN
        DO 105 K=1,N
        C(I,K)=C(I;K)/2.
    105C(I;K)=C(I,K)/NSM(I).
    OO 20 I= 1,NN
    DO 20 J=1,M
    EPOLY(I,J)=0.
    OO 20 K=1,N
    20 EPOLY(I,J) = ENN(K,J) * C(I,K) + EPOLY(I,J)
        CALL SETPLY(0,1,NN)
        STOP
        END
```

```
        SURROUTINE SETPLTIIFLAG,OKFLAG,NN)
        OIMENSION A(35,100),CD(35,100),C(35,35),WAVE(100),FNAME(25,25),Y(1
        1001. NSM(35)
            COMMON N,JDL,M,L,A,CD,D3(25,25),D4(25,25),D5(25,25),C,NSM
    1, FNAME
        SUBRUUTINE SETPLT, PHILIP HORER, JULY 6, 1969
        PROGRAM SETS UP USE OF PROGRAMS PRNPLT AND PLSCAL WRITTEN BY
    M.S. ITZKOWITZ. IFLAG =O CAUSES INPUT NEAREST NEIGHBOR
    frequencies to be displayed. the x axis for the plot is generated
    FROM WAVMAX ANO DELT.
    FNAME IS A NAME (70 CHARACTERS OF LESS) FOR THE OUTPUT POLYMER
    WAVMAX = MAXIMUM WAVELENGTH IN MMU
    DELT = WAVELENGTH INTERVAL IN MMU
    100 FORMAT(//* INTERACTINN FREQUENCIES ARE*//I
    102 FOKMAT(14F8.4)
    103 FORMAT(10F8.4)
    105 FORMAT(*1*,8A10)
    502 FORMAT (* *. 7ALO)
    106 FOKMAT(*1*)
    107 FORMAT(16,* BASES*)
    1.10 FORMAT (2F10.3)
    908 FORMAT(3(13X,F6.0, 3X;F13.4))
    910 FORMATI// ,3(15X,*LAMBDA*,3X,*ELLIPTICITY*),///)
    113 FORMAT(IOF&.4)
    11 FORMAT t* *)
    006 I=1,NN
    PUNCH 502, (FNAME(I.J). J=1.7)
    PUNCH 711
    PUNCH 711
    PUNCH }71
    PUNCH 711.
    PUNCH 1.13, (CD(1,J). J=1,100)
    PUNCH 711
    PUNCH 711
        CONTINUE
        READ 110. WAVMAX,DELT
        WAVE(M) = WAVMAX
        MM=M-1
        OO 10 I= 1,MM
    10 WAVE(M-1)=WAVE(M-1+1)-DELT
    REVERSE Y VECTOR SO: SMALL WAVELENGHTS HAVE SMALL Y SUOSCRIPTS.
    PRINT AND PLOT.
    00 60 I=1,NN
    PRINT 105, (FNAME{1.d). dm1.7)
    DOES USER. WANT DISPLAY OF INPUT MEAREST NEIGHBOR FREQUENCIES
    IF IIFLAG .NE.O.1 GO TO 20
    PAINT 107. NSM(I)
    PRINT 100.
    PRINT 102, (C(I,K),K=I,N)
    20 K=M
    IFIKFLAG .NE. O) GO TO 35
    OO 30 J=1,M
    Y(K)=A(I.J)
    30. K=k-1
    GO TO 50
    3500 40 J=1.M
    Y(K)=CD(I.J)
    40 K=K-1
    50 CONTINUE
    PRINT 910
    NPTS=M
    II=NPTS/3.+1.
    DO 21 L= 1,1I
    J=L+1I
    K=j+II
    21 PRINT 908, WAVE(L)., Y(L), HAVE(J), Y(J), WAVE(X), Y(K)
    PRINT 105. (FNAME(I,J), J=1,7)
    CALL PRNPLTIWAVE;Y,WAVMAX,1.,3.0,.12,0,0,M)
    60 CONTINUE
    RETURN
    ENO
```

The input data for MTADMS is simjlar except that the card specifying FNAME follows the three cards specifying the number of various sorts of interactions, and there are only 6 double strand pairing spectra in basis spectra deck.

The punched output for these programs consists of a series of calculated CD spectra consisting of an IDCAL card, and 10 data cards. Also, the calculated spectra are listed and plotted by PRNPLT.

```
    PROGRAM MTADMS (INPUT,OUTPUT,PUNCH)
    DIMENSION ENN(25,100),C(30,30), EPOLY(30.100), ENATIVE(100),NSM(25)
    C I SURE HDPE THIS DAMN THING WORKS THIS TIME.
    C. NN= NUMEER OF GUTPUT SPEG,TRA
C. N= NUMBER OF INPUT SPECTRA
C M= NUMBER OF WAVELENGTHS PER SPECTRUM
C NSM = NUMBER DF NUCLEOTIDES IN NUCLEIC ACIO
C C(I,K) IS THE FREQUENCY OF THE KTH COMPONENT FOR THE ITH POLYMER
    1.,FNAME(25,25),D(25,25)
        COMMON N,JOL,M,JD2,ENN,EPOLY,D3(25,25),D4(25,25),D5(25,25),C, NSM
    1. FNAME
    100 FORMAT(6F2.0)
    99 FORMAT (IH1)
    101 FORMAT(/16F8.4)
    102 FORMAT (20F2.0)
    103 FORMAT (10F8.4)
    104 FORMAT(314)
    108 FORMAT (2X, 20F6.3)
    109 FORMAT (8A10)
    110 FORMAT(1HL)
    501 FORMATI/I
    READ 104,NN,N,M
    DO 98 I=1,N
    READ 99
    READ 103, (ENN{I,J),J=1,M)
    PRINT108, ({ENN(I,J),J=1,M))
    PRINT 501
    98 CONTINUE
    DO 5 I =1,NN
    READ 102,(D(1,K), K=1,20)
    READ 100,(C(I,K), K=1,N)
    READ 110
    READ 109,((FNAME(I ;J), J=1,8))
    PRINT 109,(|FNAME(I ,J), J=1,8))
        5 CONTINUE
            DO 6 J=1,NN
            NSM(J) =0.
            DO 107 [=1,N
            NSM(J)=NSM(J)+C(J,1)
    107 CONTINUE
    OO 6 K=1.17
    NSM(J)=NSM(J)+D(J,K)
        6 CONTINUE
            DO 105 I=1,NN
            DO 105 K=1,N
    105C(I,K)=C(I,K)/NSM(I)
    DO 20 1=1.NN
    DO 20 J=1,M
    EPOLY(I,J)=0.
    DO 20 K=1.N
    20 EPOLY(I,J) = ENN(K,J)*C(I,K) + EPOLY(I,J)
    CALL SETPLT(0,1,NN)
    STOP
    END
```

```
        SUARTUTINE SFIPLIIIFLAG,KFLAG,NNI
        DIMEN:ION A(35,100),CD(35,100),C(35,35),WAVE(100),FNAME(25,25),Y(1
        100). N:M(35)
            COMMUN ,',JD1,M,L,A,CD,D3(25,25),D4(25,25),D5(25,25),C,NSM
        1. FNAME
            SUBROUTINE SETPLT, PHILIP BORER, JULY G; }196
            PROGRAM SETS UP USE OF PROGRAMS PRNPLT AND PLSCAL WRITTEN BY
            M.S. ITIKOWITZ. IFLAG = S CAUSES INPUT NEAREST NEIGHPOR
            frequencIES TO be DISPLAYED. THE x aXIS fOK THE PLOT IS GENERATEO
            FROM NAVHAX AND DELT.
            FNAME IS A NAME (70 CHARACTERS OF LESS) FOR THE OUTPUT POLYMER
            WAVMAX = MAXIMUM WAVELENGTH IN MMU
            DELT = WAVELENGTH INIERVAL IN MMU
```




```
    104 FORMAT(F6.4, OF THE INTERACTIONS INVOLVE UH2 AND ARE SET = O* 1)
    401 FORMAT (* APD=*,F6.4,*DPA=*,F6.4,*GPD=*,F6.4)
    101 FORMAT (% INTERACTION FREQUENCIES ARE*/* G/U G/C
        1 AU/AU GC/GC AC/GU AG/CU*)
    102 FORMAT(16F8.4)
    103 FORMAT(10F8.4)
    301 FORMAT(# A=*;F6.4,* U=*,F6.4,* C=#,F6.4,* G=*,F6.4.)
    105 FORMAT(#1**8A10)
    502 FORMAT (* *, 7A10)
    106 FORMAT(#1*)
    107 FORMAT(16;* BASES*)
    110 FORMAT (2F10.3)
    908 FORMAI(3)13x,F6,0,3x,F13.4))
    910 FORMAT(// .3115x, LAMBDA*,3X, *ELLIPTICITY*).//I
    113 FORMAT(1OFB.4)
        DO 6 1=1,NN
        PUNCH 532. (FNAME(1,J), J=1,7)
        PUNCH 113, (COII,J), J=1,1001
            CONTINUE
        READ 11O, WAVMAX,DELT
        WAVE(M)=MAVMAX
        MM=M-1
        DO 10 I=1,MM
    10 WAVE(M-I)=WAVE(M-I+1)-DELT
    REVERSE Y VECTOR SO SMALL WAVELENGHTS HAVE SMALL Y SUBSCRIPTS.
    PRINT AND PLOT.
    OO 6O I=1,NN
    PRINT 105, (FNAME(I,JI, J=1.7)
    DOES USER WANT DISPLAY OF INPUT NEAREST NEIGHBOR FREQUENCIES
    IF IIFLAG .NE.OI GO TO }2
    PRINT 1OT.NSM(I)
    PRINT }10
    F-PRINT 102, (C(I,K),K=1,16)
    PRINT 104, C(1,17)
    PRINT 401,(C(I;K),K=18,201
    PRINT 101
    PRINT 103, (CII,K),K=21,26)
    PRINT 301, (C(I,K),K=27,301
    20 K=M
    IF(KFLAG .NE. O) GO TO }3
    DO 30 J=1,M
    Y(K)=A(1.j)
    30 K=K-1
    GO TO 50
    35 DO 40 J=1.M
    Y(K)=CD(I,J)
    40 K=K-1
    SO GONTINUE
    PRINT 9IO
    NPTS=M
    II=NPIS/3.+1.
    DO 21 L= 1.11
    J=L+II
    K=\+1I
    21 PRINT 908, WAVE(L), Y(L), WAVEIJ), Y(J), WAVE(K): Y(K)
    PRINT 105, (FNAME.II,J), J=1;7)
    CALL PKNPLT(WAYE,Y,WAVMAX;1.,3.0,.12,0,0,M)
    60 CONPINUE
    RETURN
    END
```

```
    PROGRAM LASSEN(INPUT,OUTPUT,PUNCHI
    DIMENSION CONTRL(6), CD(2CO), IPUAPR(3), XWAVE(200), IDEXP(12)
    1 ,ZM(150,5), BASVEC(150), M(5), ZMON(150)
    REPLACE IST * CARD. IN FACH OIMER WITH BASE COMPOSIIIION CARD
    CONTROLS ARE(1) LAMBDA MAX, (2) LAMBDA MIN, (3) A PER POINT; (5)OD
    (6) IS EXTINCTION COEFFIECIENT
    BLANK CARO AT END OF DATA SIGNALS STOP
        SOO FORMAT(1OF&.4)
902 FORMAT(A8,2X,4(F8.3,2X),2(E13.6,2X))
903 FORMAT(S(E13.6.2X))
    904 FORMAT(*IBASIS SPECTRUM CALCULATED FROM DIMER. *, AB)
905 FORMAT(1X)
906 FORMAI(IHI)
    907 FORMAT(8O(1HF))
    908 FORMAT(3(13X,F6.0,3X,F13.4))
    909 FORMAT(12A6)
    109 FORMAT(7F8.4)
    910 FORMAT(// ,3115X,*LAMBDA*,3X,*ELLLPTICITY*),//)
    912 FORMAT (*1*)
    913 FORMAT(10F8.4)
    914 FORMAT(5I1)
    915 FORMAT(X;A8)
    PRINT }91
    DO 11 J=1,5
            READ 913,(ZM(I,J), I=1,150)
            PRINT 913, (LM(I.J), 1=1,150)
        11 CONTINUE
            PRINT Y12
302 CONTINUE
    READ 914,(M(J), J=1,5)
    READ 902,ID,CONTRL
    IF(ID.EQ.8H ISTOP
    XMAX=CONTRL(1)
    XINC=CDNTRL(3)/10.
    NPTS=(CONTRLII)-CONTRL(2))*10./CONTRL(3)
    READ 500,(CD(II,I*1,NPTS)
    READ 905
    DO 5 {=1,NPTS
    XWAVE(I)=CONTRL(1)-FLOAT(I-1)*CONTRL(3)/10.
        5 CONTINUE
            DO 10 I=1,NPTS
            2MON(1)=0.
                DO 20 J=1,5
            ZMON(I)= M(J)*ZM(I.J) +ZMON(I)
        20 continue
            8ASVEC(I) =2.*CD(I)-2MON(I)/2.
        10 contINUE
            PUNCH 915, ID
            PUNCH 500,(BASVEC(1), 1=41,140)
            PUNCH 907
        g CONTINUE
            PRINT 90&: IO
            PRINT 910
            DO 30 I=1.NPTS
            CD(I)= BASVEC(I)
        30 CCNTINUE
            II=NPTS/3.+1.
            00 25 I= 1,iI
            J=1+II
            K=j+11
        25 PRINT 908, XWAVEIII, CDII), XWAVE(J), CD(J), XWAVE(K), CD(K)
            NUM = NPTS-40.
            XMAX =XMAX-40.
            PRINT 904, IO
        7.CALL PRNPLTIXWAVE(41),CO(41),XMAX,XINC,3.,.12,0,0,NUM)
            GO TO }30
            END
```

The following two subroutines PRIVPLT and PLSCAL, are used by most of the preceding prosrams and were written by Marty Itzkowitz.


```
C
    C
    C
    C
    c
    10
    30
    20
    40
    C
    C
    43
    41
    42
    50
    C
    C
    5 2
    5 1
    5 3
    RANGE=RANGE*2.0
        IF(RANGE-10.) 43,43,54
        RANGE=R ANGE/10.
        IRANGE=IRANGE + I
        GO TO 43
        VMAX =XMAX
        VMIN=XMAX-TRANGE
        RETURN
    8000 PRINT 980C
9800 FORMATI45HIPLSCAL CALLED TO SCALE ARRAY HITH TFRN RANRFI
    CALL EXIT
    END
```

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.

TECHNICAL INFORIUATION DIVISION LAWRENCE BERKELEY LABORATORY

UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720

