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ABSTRACT OF THE THESIS

Extending Stochastic Representations of Geomagnetic Axial Dipole

Evolution

by

Mayuri Sadhasivan

Master of Science in Earth Sciences

University of California San Diego, 2018

Professor Catherine Constable, Chair

Stochastic models have been developed to describe the time-varying axial

dipole moment of the geomagnetic field sustained by turbulent fluid motions

in Earth’s outer core. Previous stochastic models failed to predict the high-

frequency variations present in the frequency spectrum of the axial dipole mo-

ment. In this study, we recast the Langevin model - which describes tempo-

ral variations in the axial dipole moment as a nonlinear tug-of-war between

the moment’s slow drift towards and higher-frequency fluctuations away from

equilibrium - as an order-3 continuous-autoregressive model, which is a linear

differential equation driven by white noise. Both models are parametrized by a

diffusion coefficient Deq that dictates the relative influence between fluctuations

xiii



and drift on axial dipole behavior, timescales {τm, τs} by which fluctuations

away from steady state occur, and a drift timescale τl by which the axial dipole

moment returns to steady state. Numerical simulations of our new model have

frequency spectra that resemble a recently-published composite spectrum for the

geomagnetic axial dipole moment. The latter goes like f 0 at lowest frequencies,

f−2 at intermediate frequencies, f−4 at higher frequencies and f−6 at highest

frequencies. Our model parameters facilitate such a shape; Deq dictates the

scale of the total spectrum and {τl, τm, τs} dictate the transition frequencies be-

tween adjacent regimes. Estimating the model parameters by comparison with

the composite spectrum, we infer that {τl, τm, τs} correspond to the timescales

expected for Ohmic diffusion, MAC waves, and torsional oscillations, respec-

tively in Earth’s outer core while Deq reflects a rate at which Ohmic diffusion

re-stabilizes the axial dipole field on ten-thousand year timescales while MAC

waves and torsional oscillations render it unstable on decadal and sub-decadal

timescales.
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Chapter 1

Earth’s Magnetic Field and a

Review of Basic Stochastic Models

1.1 Background

The geomagnetic field acts as an energy barrier that shields Earth’s atmo-

sphere from cosmic radiation and the solar wind, potentially protecting life on

Earth. Awareness of the geomagnetic field has shaped human history. The

geomagnetic field was used as early as the Age of Exploration for ship naviga-

tion [Jackson et al., 2000] and even prior to that, the field was used by ancient

cultures to develop an observational understanding of the elements in nature.

Today, precise measurements of the geomagnetic field strength and direc-

tion facilitate our understanding of deep Earth structure and composition. Any

magnetic field must originate from a current source [Griffiths, 2017]. The ge-

omagnetic field was initially presumed to be of external origin since the Earth

was assumed to be entirely solid. Yet in 1838 Gauss demonstrated that the field

is of primarily internal origin by fitting a spherical harmonic model to his field
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measurements. The fit predicted negligible influence from external sources, indi-

cating that the source current lies in Earth’s interior [Glassmeier and Tsurutani,

2014].

Seismic tomography, akin to an ultrasound of the Earth, helps scientists vi-

sualize and model Earth’s internal structure. Vanishing shear wave velocities in

seismic velocity inversion models indicate the presence of a fluid shell at about

2891 km depth [Shearer, 2009]. Iron being an abundant element in the solar

system, Earth’s moment of inertia requiring a density increase towards the cen-

ter [Gutenberg, 1951], and iron being heavy enough to sink towards Earth’s cen-

ter during accretion, all point to an iron-rich outer core. The outer core current

and resulting field are called the geodynamo and it is believed to have existed

for as long as 4.2 billion years. The longevity of the geomagnetic field and its

temporal evolution are tied to Earth’s thermal evolution as entropy production

in the Earth’s outer core drives the vigorous convection required to sustain a

global magnetic field over geologic timescales [Moffatt, 1978], [O’Rourke et al.,

2017].
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1.2 Representing the Geomagnetic Field Using

Spherical Harmonics

Figure 1.1: Spherical coordinate system. The field ~B(r, θ, φ) is measured at
point P, with colatitude θ, longitude φ and radius r.

Fluid motions in the outer core produce changes in the externally-measured

field. We define (r, θ, φ) according to Figure 1.1. As shown by Gauss, the pre-

sumed source-free region in Earth’s mantle and above allow the representation

of the geomagnetic field, ~B(r, θ, φ), by a magnetic potential ψ(r, θ, φ) with

~B(r, θ, φ) = −∇ψ. (1.1)

This implies that the potential satisfies Laplace’s equation in the region

because a magnetic field never diverges, i.e.

0 = ∇ · ~B = −∇2ψ. (1.2)

We prefer to solve for the potential in spherical coordinates because it allows

for a more physically useful solution relevant to the Earth. Applying separation

of variables, Gauss demonstrated that the solution looks like

3



ψ(r, θ, φ) = a

∞∑
l=1

l∑
m=0

(a
r

)l+1(
gml cos(mφ) + hml sin(mφ)

)
Pm
l

(
cos(θ)

)
(1.3)

where each Pm
l (x) is called an “associated Legendre polynomial”. Each as-

sociated Legendre polynomial is identified by a degree and order pair, (l,m),

where m ∈ [−l, l]. The first few associated Legendre polynomials are

P 0
0 (x) = 1

P 0
1 (x) = x

P 1
1 (x) = −(1− x2)

1
2

P 0
2 (x) =

1

2
(3x2 − 1) (1.4)

P 1
2 (x) = −3x(1− x2)

1
2

P 2
2 (x) = 3(1− x2)

P 0
3 (x) =

1

2
x(5x2 − 3).

Often times the series solution is written as

ψ(r, θ, φ) = a

∞∑
l=1

l∑
m=0

(a
r

)l+1

cml e
imφPm

l

(
cos(θ)

)
(1.5)

where cml is assumed to be a complex amplitude instead of {gml , hml }, which

are assumed to be real amplitudes. Each angular term, Y m
l (θ, φ) = eimφPm

l

(
cos(θ)

)
,

is called a spherical harmonic. Note that solutions to Laplace’s equation that

explode at infinite radius have been removed because we study the part of the

geomagnetic field that exists at the surface of Earth and outward.
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The first few spherical harmonics are

Y 0
0 (θ, φ) =

( 1

4π

) 1
2

Y 0
1 (θ, φ) =

( 3

4π

) 1
2

cos(θ)

Y ±1
1 (θ, φ) = ∓

( 3

8π

) 1
2

sin(θ)e±iφ

Y 0
2 (θ, φ) =

( 5

16π

) 1
2
(3 cos2(θ)− 1) (1.6)

Y ±1
2 (θ, φ) = ∓

( 15

8π

) 1
2

sin(θ) cos(θ)e±iφ

Y ±2
2 (θ, φ) =

( 15

32π

) 1
2

sin2(θ)e±2iφ

Y 0
3 (θ, φ) =

( 7

16π

) 1
2
(

5 cos3(θ)− 3 cos(θ)
)
.

Recognizing that eimφ = cos(mφ) + i sin(mφ), we show the structure of

the real part, corresponding to the cosine, and the magnitude of the first few

spherical harmonic functions in Figure 1.2 to help with visualization. The mag-

nitudes are colored to show the role of the complex exponential before taking

the magnitude because |eimφ| = 1.

5



Figure 1.2: The real components of the first few spherical harmonics are
on the left. On the right, the absolute values of and the wavelengths in φ
in the first few spherical harmonics are given as the shape and the color,
respectively. [Wang et al., 2016]

On the left in Figure 1.2, red indicates where the real part of the spherical

harmonic is positive and blue indicates where the real part is negative. The

shape caves in where the value of the real part approaches 0 and likewise balloons

out where the real part approaches a large absolute value. Computing the

absolute value of each spherical harmonic yields the plots on the right in Figure

1.2. Again, each shape caves in where the value of the absolute value approaches

0 and balloons out where the absolute value is large. The spherical harmonic

order m dictates the color pattern on the surface; the real and the imaginary

part of eimφ = cos(mφ) + i sin(mφ) each have m repeated wavelengths within

the domain φ ∈ [0, 2π]. Each rainbow cycle in Figure 1.2 represents one, full

wavelength in φ so we see the cycle repeat once when m = 1, twice when m = 2,

and so on.

The spherical harmonics are useful because they give us a way to decompose

any function of θ and φ into a linear combination of simpler, more tractable

parts. Just as we need a linear combination of three orthogonal directions

6



to uniquely describe the net direction of a vector in space, we use a linear

combination of spherical harmonic functions to uniquely describe the shape of

our geomagnetic potential, ψ(r, θ, φ). The spherical harmonics are all mutually

orthogonal on a spherical surface.

The amplitude, cml or equivalently gml and hml , of each spherical harmonic is

called a Gauss coefficient and plays an analogous role to the amplitude of each

sinusoidal term in a Fourier series decomposition for an analogous function of

one independent variable. Each spherical harmonic is identified by its degree

and order pair, (l,m), where m ∈ [−l,+l]. This is analogous to how each

sinusoid in a Fourier series is identified by its unique integer frequency.

We use the real Gauss coefficients gml and hml to describe the geomagnetic

field. They are estimated from comparisons between spherical harmonic models

and data. Equation 1.1 tells us that the magnetic field is the gradient of the

geomagnetic potential so each directional component of ~B(r, θ, φ) can also be

written as a spherical harmonic series by taking the appropriate derivative of

ψ(r, θ, φ).

After doing so, we can compare the field components predicted by the model

with actual field observations made at specific locations on Earth’s surface,

(a, θ, φ), where a is Earth’s radius. Changing∞ to an arbitrary lmax in Equation

1.3 and recasting the equation into matrix form, we apply least squares or

regularized inversion to estimate the first several Gauss coefficients {gml , hml }

that describe the geomagnetic field.

Our understanding of the geomagnetic field has been significantly improved

by plotting spherical harmonics’ relative contributions to the total field as a

function of degree l and comparing which has more and less influence. The

Lowes spatial spectrum
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Rl = (l + 1)
(a
r

)2l+4
l∑

m=0

(
(gml )2 + (hml )2

)
(1.7)

reflects the energy contribution of each spherical harmonic degree to the

total signal [Hulot et al., 2011]. Rl is actually derived as the average squared

field strength over a surface radius r. The Lowes spectrum for geomagnetic

field data pertaining to a time-varying global field model, which we will discuss

later on, is plotted in Figure 1.3. By plotting the Lowes spectrum, studies have

consistently shown that the dipole field, corresponding to l = 1, dominates the

geomagnetic field [Backus et al., 1996]. A description of the dipole field can thus

be considered an analysis of the total geomagnetic field, to first approximation.

Figure 1.3: The Lowes spectrum for geomagnetic field model CHAOS6 [Finlay
et al., 2016]. CHAOS6 incorporates field measurements via SWARM satellites
and ground observatories.

Earth’s dipole field consists of contributions from spherical harmonic orders

8



m = {0, 1,−1}. The three m values each correspond to a dipolar field with

its central axis oriented in one of three Cartesian directions as indicated in

Figure 1.6 [Backus et al., 1996]. It is well-known that today the axis of the

dipole field is offset from Earth’s geographic axis by 11◦. Yet measurements of

the geomagnetic field have shown that the dipole tilt wobbles around Earth’s

rotational axis and so averages to a 0◦ tilt across time. We thus deduce that

the spherical harmonic with the strongest energy contribution and the most

temporal variability in the total geomagnetic field is the axial dipole with its

axis oriented along the rotation axis of the Earth. This assumption that field

measurements at Earth’s surface approximately reflect a purely g0
1 field is called

the geocentric axial dipole approximation (GAD).

The axial dipole field strength is given by the Gauss coefficient g0
1(t) and is

directly related to a vector quantity called the axial dipole moment, ϕ(t), via

g0
1(t) =

µ0ϕ(t)

4πa3
. (1.8)

µ0 is the magnetic permeability in a vacuum and a is Earth’s radius [Backus

et al., 1996]. Since the axial dipole field contribution seems to dominate the

time-varying geomagnetic field, temporal variations in the geomagnetic axial

dipole moment serve as a useful proxy for variations in the total geomagnetic

field. We discuss the GAD and other similar approximations later.
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1.3 Measurements of the Field

1.3.1 Data Types

Figure 1.4: Geomagnetic reversals are recorded by the spreading sea floor. a),
b) and c) depict the sea floor 6 million years ago, 3 million years ago, and in the
present day, respectively. Not shown here, a geomagnetic excursion is when
the geomagnetic dipole moment shrinks to near-zero, hinting at a possible
reversal, but then grows back to its original polarity without reversing and
then stabilizing in the opposite polarity. It is speculated that excursions and
reversals are driven by the same geodynamo mechanism.

Various types of field data record the field on various timescales. Million-

year changes in the geomagnetic field are observed in the magnetostratigraphic

record and marine magnetic anomalies at the ocean floor. After erupting out

of a mid-ocean ridge, each new “stripe” of magma cools, becomes magnetized

parallel to the ambient field, and is rafted away from the ridge. Stripes further

from the ridge are older and carry a remanent magnetization parallel to the

ambient field from a longer time ago. The sequence of cooled magma strips

hence records local field variations over time and can capture field reversals
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when they occur. This phenomenon results in magnetic stripes on the seafloor

that are associated with lineated marine magnetic anomalies measured at the

sea surface, as illustrated in Figure 1.4.

For the ancient field, we rely predominantly on sedimentary, archeological,

and igneous data [Tauxe, 2010]. As magnetic lake and ocean sediments sink,

settle and eventually compact, the magnetic particles acquire a net (small) pref-

erential alignment parallel to the ambient geomagnetic field as the sediment is

lithified. This process is subject to more physical and chemical perturbations

than the remanence acquisition process of igneous rock and archeological ar-

tifacts (like pottery). The latter are originally heated by the Earth or in a

kiln, and acquire a thermal remanent magnetization as they cool through their

Curie temperature. Like each magnetic stripe on the moving ocean floor, each

archeological or igneous sample captures a time-snapshot of the ambient field.

Meanwhile, the sequence of stripes along the seafloor and sedimentary media

both record time series of field variations.

At more recent times, the historical field record, which bridges the gap from

1590 to 1980 C.E., comes from ship logs during the Age of Exploration [Jackson

et al., 2000]. In 2000 C.E., Jackson et al. compiled all of these data and

constructed a time-varying spherical harmonic model for the historical field.

The Gauss coefficients in Equation 1.3 were treated as functions of time and

the resulting spherical harmonic model was fit to data. Jackson et al. (2000)

called the resulting model GUFM1.

Finally, ground observatories and satellites have mapped the modern field

since 1980 C.E. to increasing spatial and temporal accuracy. The Lowes spec-

trum in Figure 1.3 corresponds to the average Gauss coefficients that were fit

to SWARM satellite data during 2015 C.E. [Finlay et al., 2016]. A spherical

11



harmonic description of all available modern field data is maintained currently

and is called the International Geomagnetic Reference Field (IGRF). We detail

how to construct time-varying global field models later.

1.3.2 Coordinate Systems

Figure 1.5: ~B (solid yellow) can be decomposed into (Bx, By, Bz), in local
Cartesian coordinates, or can be represented by (I,D,F) - both in dark blue.
The global spherical coordinate system with origin at Earth’s center is shown
in light blue, and when Earth is assumed to be perfectly spherical the local
Cartesian coordinate system maps onto the global system by x̂→ −θ̂, ŷ → φ̂,
ẑ → −r̂.

The field is measured as either

I = inclination

D = declination
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F = intensity

or

Bx = northward field component

By = eastward field component

Bz = downward field component

at various geographic locations [Tauxe, 2010]. This is illustrated in Figure

1.5. Intensity (F) is the magnitude (i.e. strength) of the local geomagnetic field

~B. Inclination (I) is the angle between the local horizontal and the local field.

H in the diagram is the horizontal intensity of the local field, or the component

of the field vector parallel with the local horizontal. Declination (D) is the angle

between ~H, which points toward geomagnetic north, and geographic north.

Earth is a little ellipsoidal so (I, D, F) or (Bx, By, Bz) are assumed to be

measured relative to an oblate Earth. If we assume instead that the Earth is

approximately spherical, we replace the term “geographic” with “geocentric” and

automatically have that

Br = −Bz

Bθ = −Bx

Bφ = By

or

Br = F sin(I)

Bθ = F cos(I) cos(D)

Bφ = F cos(I) sin(D).
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where (r, θ, φ) are still the spherical coordinates with respect to an origin at

the spherical Earth’s center.

1.3.3 Spatial Structure

Knowing that the geomagnetic field is dominantly dipolar allows us to an-

alyze the consequences of assuming that our field measurements come from a

purely dipolar source. Suppose that we measure a (I,D, F ) at a site. Our mea-

surement is easily converted into (Br, Bθ, Bφ) = ~B assuming Earth is spherical.

Next, suppose that our measurements are a part of a purely-dipolar field. Note

that we do not mean a GAD field; we suppose all three l = 1 terms are present

and their net effect is a field with its central axis oriented differently from the

geographic poles. This concept is illustrated in Figure 1.6.

Figure 1.6: A dipolar field with {g0
1, g
−1
1 , g1

1} spherical harmonic components
is drawn with central axis offset from the geographic pole (modern-day field
offset is 11◦). The virtual geographic pole (VGP), at which the extension of
the geocentric dipole pokes through Earth’s surface, is given by λ0 and γ0.
The lilac rings are hypothetical current sources that would give rise to each
dipole orientation.
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Using the definition of a dipole magnetic field and spherical coordinate

trigonometry, we compute the direction and magnitude of a geocentric dipole

whose field would give rise to our local measurement at Earth’s surface. The

geocentric dipole, illustrated in Figure 1.6 as a purple vector at Earth’s cen-

ter, dictates the strength and orientation of the dipolar field. If we extend the

dipole until it pierces through Earth’s surface, the point where it pokes through

is called the virtual geomagnetic pole (VGP). We refer to the latitude and lon-

gitude of the VGP by λ0 and γ0, respectively and label them in Figure 1.6. The

magnitude of the geocentric dipole is called the virtual dipole moment (VDM).

If we instead suppose that our measurements are a part of a GAD field, then

the VGP will poke through at the North or South pole depending on the field’s

polarity and the magnitude of the GAD vector is called the VADM, for virtual

axial dipole moment. Certain studies prefer to assume a purely dipolar, rather

than GAD, field because it is one less assumption.

With a single field measurement (I,D, F ) we can estimate a corresponding

(λ0, γ0,VDM). So with a sequence of (I,D, F ) measurements from various ge-

ographic locations we can estimate a corresponding sequence of (λ0, γ0,VDM).

This helps to determine what Gauss coefficients will produce spherical harmonic

models that exhibit spatial structures similar to those observed in the geomag-

netic field. As usual, a spherical harmonic expansion according to Equation 1.3

is written for the geomagnetic field up to a chosen lmax. Theoretical expressions

for (I,D,F) at any point on Earth’s surface, (a, θ, φ), are derived. Since actual

field measurements are not made at every location on Earth’s surface, the (I, D,

F) predicted by the model are computed at each (θ, φ) pair pertaining to each

observation site.

Comparisons between the model and data (I,D,F) can be made or we can ad-

15



vance one step further. Theoretical expressions for (λ0, γ0,VDM) corresponding

to (I,D,F) at any surface location (a, θ, φ) can be derived. The (λ0, γ0,VDM)

corresponding to each actual observation is also computed. Then theoretical

and observed curves of λ0, γ0 or VDM as functions of colatitude θ or longitude

φ are compared. In the next few sections we discuss several instances where

this approach facilitated the development of spatially complex, statistical field

models.

1.4 Time Variations in the Geomagnetic Field -

Statistical Descriptions

1.4.1 Sources of Uncertainty in Measurements and Simu-

lations

Variations in the total and dipole field occur on a variety of timescales.

Changes in the length of day have been tied to decadal field variations and tor-

sional oscillations in the outer core [Buffett et al., 2009]. The rock record shows

long polarity intervals, with some cases lasting over millions of years. Asymmet-

ric rates of axial dipole growth and decay have been identified in paleomagnetic

and marine data and are speculated to reflect coupled diffusion and advection

in the outer core [Avery et al., 2017].

A deterministic process can be described by observing the physical system

and applying the mandatory conservation laws for mass, momentum, and en-

ergy. It would be ideal to develop a deterministic description of the fluid be-

havior in Earth’s outer core and then compute the resulting geomagnetic field.

Unfortunately, we have no way of directly observing the outer core. We can
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simulate the outer core by time-stepping through the three conservation laws

for fluid motion, Ohm’s law, and Maxwell’s equations. Together these are called

the magnetohydrodynamic equations and they are non-dimensionalized before

we time-step through them. This means that the parameters of the equations we

ultimately use are non-dimensional ratios that weigh relative influences between

different physical properties on the total core flow. Table 1.1 lists parameters

that contribute to the non-dimensional magnetohydrodynamic equations.

Table 1.1: Dimensionless magnetohydrodynamic parameters.

Name Symbol Definition Physical Ratio

Rayleigh Number Ra
gα∆TL3

κν
buoyant force

(viscous force)·(heat diffusion rate)

Reynolds Number Re UL
ν

inertial force
viscous force (laminar flow)

Magnetic Reynolds Number Rm UL
η

fluid advection
magnetic (Ohmic) diffusion

Prandtl Number Pr ν
κ

kinematic viscosity
thermal diffusivity

Magnetic Prandtl Number Pm ν
η

kinematic viscosity
magnetic diffusivity

Rossby Number Ro U
2ΩL

inertial force
Coriolis force

Ekman Number Ek ν
2ΩL2

viscous force
Coriolis force

Taylor Number Ta

(
2ΩL2

ν

)2
inertial force
viscous force (rotational flow)

Hartmann Number Ha BL√
νρη

Lorentz force
viscous force

Elsasser Number Γ
B2

ηρΩ
Lorentz force
Coriolis force
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Unfortunately, numerical dynamo simulations do not reach the region of

parameter space that would accurately describe Earth’s outer core, assuming

that we know the parameter values for Earth in the first place. For example, the

actual geodynamo is predicted to operate at a tiny Ekman number and a huge

Hartmann number that correspond to extremely low fluid viscosity and thus

lots of turbulence. Computers have difficulty time stepping at a high enough

rate to capture all of this turbulence at a small enough spatial scale while

also successfully capturing long-term trends in field behavior, so geodynamo

simulations are built at higher Ekman numbers and lower Hartmann numbers

that computers can handle.

Because we simulate the geodynamo with parameters that do not necessarily

represent the Earth, we often find that our assumed values warp the simulated

magnetic field so it becomes difficult to translate the simulation back to real-

world units. For instance, using a larger-than-reality Ekman number implies

either a change in the viscosity of the fluid or a change in Earth’s rotation rate

- it is ambiguous which has occurred. So when we try to assign a real-world

timescale to each timestep in the simulation, we have a choice between timescales

- one that assumes the large Ekman number is due to a change in outer-core

viscosity and one that assumes it is due to a change in Earth’s rotation rate.

Whether the simulation is trying capture flow dynamics at the core-mantle

boundary (CMB) or flow dynamics in the whole core can drastically change the

timescale used. The slip of fluid against solid mantle at the CMB plays a role

in Ohmic diffusion (diffusion of magnetic energy out of the outer core), which

operates on 104 year timescales while the turbulence that occurs in main body of

the outer core regulates advection, which occurs on 101 year timescales [Jackson

and Finlay, 2015].
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Meanwhile, the actual geodynamo is predicted to operate at a huge Hart-

mann number that corresponds to extremely low fluid viscosity. Again to ac-

commodate limited computational power, geodynamo simulations are built at

lower Hartmann numbers that computers can handle and eventually it becomes

unclear what units should be used to scale the simulated field strength. The

morphology of the global simulated field and frequencies that appear to be

present in a simulation depend on which time and field strength scalings are

used. So when we compare a simulated geomagnetic field with the measured

field, it becomes difficult to tell whether the simulation is truly “Earthlike” and

mimics the real geodynamo or if it just seems Earthlike because of the arbitrary

scaling units that were applied.

In an ideal world, the GUFM1 model would be extended to longer timescales

reflecting the underlying geodynamo process; however there are limitations in

the available paleomagnetic data. It is also impossible to collect time series

of paleomagnetic observations with roughly equal spacing in time and with

consistent resolution on the geological timscales of interest. Igneous rocks act

as magnetometers by acquiring a thermal remanent magnetization as they cool,

while ocean and lake sediments acquire a detrital remanent magnetization as

magnetic grains in the sediments preferentially align with the local field [Tauxe,

2010]. Sedimentary cores drilled out of ocean and lake floors may provide time

series of the local field, but different sites with varying sedimentation rates

exhibit secular variation with varying amounts of temporal smoothing. The

geological processes producing sedimentary magnetization cannot be replicated

in the lab, so each intensity measurement made at a section along the core

is understood only relative to the measurement made at the previous section,

while the detrital remanence of the entire core could be warped by physical and
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chemical changes in the local environment.

In fact, the relative measurements from sedimentary data are calibrated with

respect to absolute measurements taken from lava flows or archeomagnetic data.

The latter are absolute measurements because the acquisition of thermal rema-

nent magnetization is not nearly as susceptible to environmental perturbations

and thus can be approximately replicated in the lab. Unfortunately, the exact

timing of lava flows (i.e. when they cooled) is generally unknown (with histor-

ical exceptions); at each observation site we sample many flows in an attempt

to capture as much secular variation as we can across a sufficiently long time

interval between the oldest and youngest flows at the site [Constable and John-

son, 1999]. Lava flow and archaeological sites are unevenly geographically and

temporally distributed, which contributes to another source of uncertainty in

our conclusions about the global field at any time.

1.4.2 JC95 - A Time-Averaged Field

All of the above hinder the development of a deterministic model for the

geomagnetic field based on clear and reliable data. However, the variety of data

across both space and time do facilitate a statistical approach, in which we

observe spatial structures in the time-averaged geomagnetic field. Capitalizing

on this approach, Johnson and Constable (1995) developed inverse models using

lava flow data spanning 0-5 Ma to better understand the robustness of spatial

features we see in the geomagnetic field [Johnson and Constable, 1995]. Johnson

and Constable (1995) began by averaging their {I,D} measurements within small

spatial bins confined within adjacent latitudes and longitudes. This revealed

that the difference between the means and the {I,D} that would result at the

center of each spatial bin from a GAD model, is a function of longitude. Johnson

20



and Constable (1995) also obtained that the aforementioned difference is not

identical when the data averaged together are selected from normal polarity

versus reverse polarity epochs. We call the latter an instance of “normal versus

reverse polarity asymmetry”.

Johnson and Constable (1995) employ the Kolmogorov Smirnov (KS) test

to determine whether the properties of the normal and reverse polarity epochs

visible in the data are statistically similar. The KS test essentially yields a pa-

rameter that tells whether two different datasets come from the same, underlying

probability density distribution. Johnson and Constable (1995) computed that

the VGP distributions of the normal and reverse polarity data were different,

giving another piece of evidence for normal versus reverse polarity asymmetry.

Johnson and Constable (1995) then applied regularized inversion to generate

new models for the time-averaged paleofield across all of the normal polarity

data and across all of the reverse polarity data, separately. From their models,

the authors showed that the power in the Lowes spectrum at degree-l ≤ 2 Gauss

coefficients looks totally different between the normal and reverse polarity data,

yet another sign of normal versus reverse polarity asymmetry. Furthermore, the

RMS misfit between the normal polarity model and the reverse polarity model

was high, indicating that normal and reverse polarity morphologies are probably

different.

Johnson and Constable (1995) mention that this asymmetry is a conundrum

because the magnetic induction equation the governs the behavior of the geo-

dynamo does not allow for this asymmetry; letting ~B → − ~B in the equation

changes nothing. Finally, the authors note that the appearance of certain field

structures in the models depended heavily on certain subsets of the data and

disappeared when those data were not included in the inversion.
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We take this to mean that field structures that appear in data must be

assessed as robust before developing field models that reflect those structures

because some structures disappear suddenly when we eliminate a single dataset.

As suggested by Johnson and Constable (1995), perhaps it would be wise to

determine which datasets have significant impact on the overall model and then

eliminate these to yield a model that is the lower bound on field complexity.

1.4.3 Time Variations as a Probability Density Function

If we assume that the field evolves through time in a totally random fashion,

then we are assuming that the probability of the field exhibiting a certain be-

havior in the present does not depend on what it did in its past. Such a process

is referred to as “uncorrelated” or “white” noise. It is often assumed that white

noise is described by a Gaussian probability density function,

P (y) =
1√
σ22π

e−
(y−µ)2

2σ2 (1.9)

where µ is the mean and σ2 is the variance of the white noise y(t). In

1.9 the white noise is a scalar-valued process, but the geomagnetic field is a

vector-valued process. So we treat the field ~B as a random vector variable

whose probability density distribution can be characterized by the time-averaged

paleofield and its variance from that mean [Constable and Johnson, 1999]. 1

A white noise representation for the geomagnetic field provides a useful

logical seed, yet no natural process can be totally random. Also, the dependence

of the current state of a system on previous states tends to decrease as we

compare further into the past. Each second that a tossed ball falls, for instance,
1Essentially this means that the strength and each directional component of the field will

have its own probability density distribution.
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the instantaneous velocity of the ball is highly dependent on the velocity a

second earlier (in this case by the negative acceleration) but far less dependent

on the velocity three minutes ago. This leads to the concept of autocovariance,

which is a curve that tells us the similarity between the current state of a system

to its past states, with respect to increasing “lag time” τ by which we make the

comparison into the past. A process that depends on its past is said to be

“correlated” or “red” noise. The autocovariance of time-varying process y(t) is

defined as

Ry(τ) ≡< y(t− τ)y(t) > (1.10)

where the brackets indicate that we are taking the expectation value (i.e.

average). When using this formula we are assuming that y(t) is a zero-mean

process. A procedure for calculating Ry(τ) is illustrated in Figure 1.7.

Figure 1.7: Take y(t) (solid black) and shift it to the right by a chosen lag
time, τ , to get y(t − τ) (solid color). Multiply the original and the shifted
curves to get a product curve (dashed color) and take the average value of
the product (dotted color). The latter is the autocovariance of y(t) at τ . We
compute the autocovariance for a continuous domain of lag times and thus
obtain Ry(τ) for a continuous domain of τ values.

Our scenario with the ball-toss is an example of a deterministic process,

but the concept of autocovariance is applicable to all natural processes. It is
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often helpful to first treat geomagnetic field variations as white noise and then

observe what happens when we propose an analytic form for its autocovariance

function. The most common form proposed is exponential decay, like

Ry(τ) = βe
− τ
τ0 (1.11)

where τ0 is the “memory timescale” of the process that dictates how slowly

a system forgets its past.

1.4.4 Giant Gaussian Processes

Regardless of whether the geomagnetic field evolves as a correlated or un-

correlated process, it experiences variations in its strength and direction with

respect to time. This indicates that the Gauss coefficients, which dictate the

spherical harmonic makeup of the field, are functions of time. Perhaps the most

apparent evidence of this is that field morphology changes dramatically as re-

versals occur 2, indicating that the spherical harmonic composition of the field is

dynamic during the reversal. Hence we should treat not only ~B as a whole, but

also the individual Gauss coefficients {gml (t), hml (t)}, as random variables with

each their own probability density distribution. This idea provided incentive for

the development of the original Giant Gaussian Process [Constable and Parker,

1988].
2Precisely how the morphology changes is debated; most scientists say that the dipole

moment shrinks to zero and then emerges with the opposite polarity because paleointensity
records through excursions and reversals all show decreases in intensity.
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An uncorrelated stochastic process - CP88

Constable and Parker (1988) developed the first Giant Gaussian Process

(GGP) model. Taking into account both the anomalously high power of the

l = 1 term in the Lowes spectrum of MAGSAT satellite data and the large value

for the strength of the axial dipole field, g0
1, in the data relative to its non-axial

counterparts, {g1
1, h

1
1}, Constable and Parker (1988) concluded that the total

field is dominated by an axial dipole contribution. To model the temporal evo-

lution of the field in a way that did not require too much detail, Constable and

Parker (1988) then decided to let each Gauss coefficient be Gaussian-distributed

random noise, with mean and variance selected from the MAGSAT data. Each

Gauss coefficient of degree-l except the axial dipole, g0
1(t), was defined to have

0 mean and variance

σ2
l =

R̄l

(2l + 1)(l + 1)
(1.12)

where the numerator

R̄l =
( c
a

)2l

α2 (1.13)

is the average value of the Lowes spectrum for the MAGSAT data. To

indicate its uniqueness, the axial dipole was given a mean value of

ḡ0
1 = 30µT (1.14)

to match the average value of the MAGSAT data.

Constable and Parker (1988) simulated a statistical distribution for the field

by generating a sequence of random deviates for each Gauss coefficient, drawing
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repeatedly from each respective Gaussian distribution. There was no temporal

autocovariance in this simulation, i.e. each Gauss coefficient was treated like

a process with no memory of the previous field. The authors compared the

simulated field to paleomagnetic data from a global compilation by Lee (1983).

This data set spans 0-5 Ma and contains 20 polarity reversals. If they neglected

the short intervals during which the paleofield was reversing, Constable and

Parker (1988) essentially had a large collection of empirical realizations for both

the normal and reverse polarity field to which they could compare their model.

Constable and Parker (1988) showed that the paleomagnetic observations

contained latitudinally-dependent features. The Lee (1983) data had 19 stable

polarity intervals. All of the normal-polarity data were grouped together and

the same was done for all of the reverse-polarity data. Because of a lack of

data to indicate otherwise, Constable and Parker (1988) assumed that the field

intrinsically has the same statistical behavior regardless of polarity. Hence they

flipped the sign of all of the reverse polarity data and then assimilated it into the

normal polarity data, producing one dataset presumed to reflect either stable

polarity behavior.

Constable and Parker (1988) next partitioned the observations sites for each

value in the giant dataset into latitude bands. Then they computed the mean

and standard deviation across all of the data within each latitude band. This

produced a sequence of mean values and a sequence of standard deviation values

for both inclination and declination, corresponding to the sequence of latitude

bands. Allowing each band to be represented by the latitude at its center,

the authors thus obtained a sequence for each variable in {Ī , D̄, σI , σD} as a

function of latitude. A smooth curve was produced to see the general trend of

each variable with respect to latitude.
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To compare their model with paleomagnetic data, Constable and Parker

(1988) derived the theoretical distributions of inclinations and declinations that

would result at any point on Earth’s surface, from their simulated field. The

average and standard deviation in inclination across all longitudes and time was

computed. This same process was repeated for declination, ultimately yielding

{Ī , D̄, σI , σD} at each latitude. Fitting a best fit curve to the sequence values

taken on by each variable with respect to latitude, the authors compared this

curve to the one determined from the data of Lee (1983). They discovered

that the two curves did not match. After some experimentation, Constable

and Parker (1988) deduced that the best way to model these features was by

lowering σ1 by half and raising the mean axial quadrupole to

ḡ0
2 = 0.06ḡ0

1, (1.15)

respectively. Once implemented, these modifications were used to generate a

new field simulation and curves for {Ī , D̄, σI , σD} with respect to latitude. The

curves roughly matched those exhibited by the paleomagnetic data. We note

that this model, which we call CP88 from now on, was based on MAGSAT data

of the modern field and was subsequently modified to accommodate latitude-

dependent features of the 0-5 Ma paleomagnetic data. CP88 was not built with

any memory of its past; we now explore a model that successfully predicted ob-

served behaviors of the geomagnetic field during a reversal because it described

each Gauss coefficient as correlated red noise.

Adding in temporal correlations for reversals - C90

While CP88 was designed explicitly to model the field during stable polarity

intervals, Constable (1990) decided to construct a model for the field during a
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reversal. Geomagnetic reversals are usually thought to be driven by the axial

dipole switching direction. Constable (1990) let the mean axial dipole drive the

reversal process as

ḡ0
1(t) = e−λ1(t−ts) − e−λ2(tf−t) (1.16)

where {λ1, λ2} dictate the rate of axial dipole decay and regrowth while

{τs, τf} are the start and end of the reversal.

The author initially defined the variance of the axial dipole field to be Gaus-

sian white noise about this time dependent mean. Meanwhile, the rest of the

Gauss coefficients were defined to be Gaussian-distributed random variables

with 0 mean like in CP88. Realizations of the first few Gauss coefficients with

time as well as the mean axial dipole are plotted in Figure 1.8.
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Figure 1.8: Time series for the axial quadrupole (top), non-axial dipole (sec-
ond), axial dipole (third), and mean axial dipole (bottom) produced by the
C90 model [Constable, 1990].

CP88 was built by comparing an initial model based on satellite data to

paleomagnetic data and then making appropriate modifications to the model.

Taking the same approach, Constable (1990) noticed that the virtual geomag-

netic pole (VGP) paths appeared to have a variety of interesting patterns during

reversal records. Studies of reversal records have shown the VGP to wander from

one pole to another during the reversal, sometimes loitering and looping at the

poles and sometimes being longitudinally confined.

In order to generate a GGP model that would exhibit such a variety of

VGP paths during a simulated reversal, Constable (1990) modified their initial

model to include autocovariance in time, now letting each Gauss coefficient be
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an order-1 autoregressive (AR1) process described by

gml (t)− ḡml (t) = a
(
gml (t− 1)− ḡml (t− 1)

)
+ ζt (1.17)

where ḡml (t) is the average value of the Gauss coefficient at time t [Con-

stable, 1990]. Constable (1990) still defined ḡ0
1(t) according to the exponential

formula while setting ḡml (t) = 0 for all of the other Gauss coefficients. a is the

autoregressive parameter dictating how dependent the behavior of the Gauss

coefficient at time t is, on its behavior at time t− 1. ζt is Gaussian distributed

white noise. So in this model, each Gauss coefficient is not a purely random

process with respect to time; it is driven by such a process, but has some tem-

poral memory correlating its behavior to its past. We will refer to this model

from now on as C90.

The autocorrelation function of the AR1 process is derived to be

ρ(r) = a|r| (1.18)

where r is a discrete lag time. From this, Constable (1990) showed that

if a reversal simulation is chosen to have timestep ∆t and τc is quantitatively

defined to be the time taken for the autocorrelation of g0
1(t) to drop to 0.1, then

a = (0.1)
∆t
τc (1.19)

should be the parameter used in the model to simulate reversals. Consta-

ble (1990) simulated three different reversals with autocorrelation times {2000,

4400, 9000} years and the same timestep ∆t as shown in Figure 1.9.
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Figure 1.9: Time series of inclination, declination, and intensity during three
simulated reversals produced by C90 with corresponding VGP paths (top
row) for three different autocorrelation times τc. The triangle indicates the
site at which these time series would be observed if C90 accurately described
the Earth [Constable, 1990].

Constable (1990) computed the VGP path during each model reversal; it

was shown that a longer τc simulated smooth VGP paths similar to paleomag-

netic data that show longitudinal confinement. It was also shown that whether

the VGP loops or loiters around the poles is dependent on observer location.

Ultimately, Constable (1990) demonstrated that allowing the mean axial dipole

to be a deterministic function whose behavior we can predict and treating secu-

lar variation as an AR1 process produces a way to model the full range of VGP

paths observed in paleomagnetic reversal records.
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Improving the spatial representation in CP88 - CJ98 and TK03

The models of Johnson and Constable (1995) demonstrate various time-

averaged features that could be used in future GGP modeling. Another feature

was addressed by Constable and Johnson (1999), who noticed that CP88 cannot

model the variation in VGP dispersion 3 about the geographic axis as a function

of latitude correctly [Constable and Johnson, 1999]. This is a sequence of values

for standard deviation in VGP, each value corresponding to a subset of data

found within a discrete latitude band.

A modification to CP88 made by Quidelleur and Courtillot (1996) fixed

this by allowing {g1
2, h

1
2} to have three times the variance as the other l = 2

coefficients [Quidelleur and Courtillot, 1996]. We refer to their model as QC96.

To test the capacity of QC96 to accurately model another physical parameter,

Constable and Johnson (1999) plotted the probability density distribution of

all of the paleomagnetic intensity data compiled by Tanaka et al. (1995). Over

this, Constable and Johnson (1999) plotted the probability density distribution

of paleointensities that would result, at the same observation sites as Tanaka

et al. (1995), from a simulation of QC96. Remember the latter series is built

by generating a sequence of random deviates for each Gauss coefficient, drawn

from its Gaussian distribution afforded by the QC96 model. The variance of

paleointensity data is clearly underpredicted by the model.

Similarly, Constable and Johnson (1999) obtained VDM values that corre-

spond to all of the Tanaka et al. (1995) data by calculating the magnitude of

the dipole moment at Earth’s center that could hypothetically yield each obser-

vation, as discussed earlier. Plotting the probability density distribution of all

these VDM values, Constable and Johnson (1999) saw that QC96 underpredicts
3“dispersion” = standard deviation
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the spatio-temporal variability in both local field intensity and VDM. To fix the

model, Constable and Johnson (1999) raised the variance of the axial dipole in

QC96 until the distributions looked right. The new model, which we call CJ98,

exhibits the desired variance in VDM and field intensity without impacting di-

rectional variability. CJ98 was thus designed to fit the VGP dispersion of the

lava flow data compiled by Johnson and Constable (1995) (this was the aim

of QC96) and to fit the VDM distribution exhibited by the lava flow data of

Tanaka et al. (1995).

We now have a somewhat complex model of the geomagnetic field that can

predict its statistical behavior over time while matching spatial properties that

are frequently observed in the paleofield. Tauxe and Kent (2004)) give a table

of the GGP models discussed so far; this table also includes the model TK03,

which we now discuss.

When they were building CP88, Constable and Parker (1988) argued that

due to measurement error the variance of the observed {I,D} values at each

latitude should be larger than the variance of the {I,D} that would result from

CP88 at that latitude. This was the main reason for lowering σ1 by half. Yet in

Constable and Johnson (1999) the variance of the axial dipole is raised specifi-

cally in order to get a desired variance in local field intensity and VDM. So the

variance of g0
1(t) in CJ98 is much higher than that of g1

1(t) and h1
1(t). Similarly,

notice that Quidelleur and Courtillot (1996) raised the variance of {g1
2(t), h1

2(t)}

above that of the other l = 2 Gauss coefficients in order to model the VGP

dispersion in the paleofield.

Tauxe and Kent (2004) pointed out that in CJ98, several Gauss coefficients

with odd l−m seemed to have higher variance than those with even l−m [Tauxe

and Kent, 2004]. In spherical harmonic literature the former and latter are
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called antisymmetric and symmetric Gauss coefficients, respectively. McFad-

den, Merrill and McElhinny (1988) explained how antisymmetric Gauss coef-

ficients with larger variance cause increased VGP dispersion at high latitudes,

which Tauxe and Kent (2004) argued was the reason why CJ98 was success-

ful [McFadden et al., 1988]. Tauxe and Kent (2004) decided that instead of

raising σ1
2 and σ0

1 relative to {σ0
2, σ

2
2} and σ1

1, perhaps it would be wiser to just

raise all σml | l − m = odd relative to σml | l − m = even to accomplish

the same goals as CJ98.

Tauxe and Kent (2004) let

β =
σml | l −m = odd

σml | l −m = even
(1.20)

and change the mean value of g0
1(t) to 15 µT because they believe that the

mean value of the 0-5 Ma field is half that of the modern field. Tauxe and Kent

(2004) acknowledged that CJ98 was built to describe the field during stable

polarity intervals because all of the data whose associated VGP was “too close”

to the equator was labeled as indicative of a reversal or excursion, and removed

before modeling. Recall that paleomagnetists expect geomagnetic reversals to

be marked in their data by a VGP near the equator or a VDM near 0. “Too

close” was defined to be at latitudes less than 55◦. Hence, the authors pointed

out that CJ98 underpredicts VGP dispersion at low latitudes. Meanwhile, the

CP88 parameter α obtained from the Lowes spectrum significantly impacts

VGP dispersion at equatorial latitudes and β impacts VGP dispersion at high

latitudes.

Starting with CP88, Tauxe and Kent (2004) fit α and β to the spherical

harmonic decomposition of sedimentary data compiled by Merill and McElhinny

(1997) spanning 0-5 Ma. The sedimentary data was averaged across time and
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the Gauss coefficients that best described the average field were used to compute

the new α and β using the same method as in CP88 and as derived above,

respectively. These new parameters were then used to define the variances of

each Gauss coefficient in the new GGP model, TK03.

A sequence of TK03 realizations was then built by drawing a sequence of

random deviates for each Gauss coefficient from its probability density distribu-

tion according to TK03. The Lowes spectrum of each realization was plotted;

Tauxe and Kent (2004) demonstrated that the modern field poorly represents

the 0-5 Ma field by showing the modern field’s Lowes spectrum to be an upper

bound on the cloud of spectra generated from realizations of TK03. This model

also proposed that low-latitude, transitional VGP’s are way more likely to be

observed at sites near the poles than near the equator. So even if a geomagnetic

reversal did occur at some time in the past, whether or not we see it in our data

may depend on where our samples were collected.

With the datasets they had at the time, Tauxe and Kent (2004) successfully

modeled

1.) VGP dispersion as a function of latitude

2.) VDM spatio-temporal variability

3.) difference in mean inclination as a function of latitude

4.) paleointensity spatio-temporal variability

5.) {I,D} dispersion as a function of latitude

Tauxe and Kent (2004) decided to plot the {I,D} values predicted by TK03

on a stereonet projection because this is a common practice with paleomagnetic
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data. When they did so, Tauxe and Kent (2004) noticed that the stereonet

distribution did not match that of the observed values in some time intervals

from Merill and McElhinny (1997), even while the above five characteristics did

match between TK03 and the data. As a checkpoint, Tauxe and Kent (2004)

incorporated sedimentary inclination error into a simple, GAD approximation

for the average field and concluded that this reproduces the five traits listed as

well as the stereonet distribution of sedimentary data, so perhaps TK03 needs to

be re-evaluated. Our understanding of GGP models will evolve as new datasets

and paleofield statistics emerge; evidently we must verify that various types of

uncertainty in data acquisition do not suffice to describe observations before

starting to include spatial complexity beyond a GAD model.

1.4.5 Time-varying Global Field Models

We use the word “model” throughout this paper yet it means something

different depending on context. So far, the word “model” has primarily been used

when referring to the Giant Gaussian Processes. In that case the word refers

to a statistical description of the field, in which each Gauss coefficient is given

its own probability density distribution and the parameters of each distribution

are extrapolated from actual data. We also mentioned the inversion models of

Johnson and Constable (1995) that were built by averaging paleomagnetic data

to get a time-averaged paleofield and then computing the Gauss coefficients that

describe mean paleofield. These Gauss coefficients are single values estimated

directly from the data, not random variables that can take on a range of possible

values with probability density distribution defined by parameters estimated

from data.

The JC95 models cannot predict the temporal variability of the field and
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are like a time average of the field. So while the JC95 inversion models were

extremely useful when analyzing spatial features of the field they do not provide

any predictive insight into future geomagnetic field behavior. In contrast, the

GGP models at least offered a statistical description of the future field based

on its past behavior. We now mention a third type of “model” that offers

deterministic insight into the past field but not the future field. These are

called “time-varying global field models”. We illustrate the process of building

one and then discuss their utility.

Suppose that we want to model just a snapshot of the field at time t0. The

spherical harmonic expansion of the geomagnetic field at t0 is given by

Bi(r, θ, φ) = −∇i

(
a
∞∑
l=1

l∑
m=0

(a
r

)l+1

cml (t0)eimφPm
l

(
cos(θ)

))
(1.21)

where Bi is the ith directional field component, ∇i is the ith directional

derivative in spherical coordinates and cml (t0) is a complex Gauss coefficient.

Suppose also that measurements of the field at that time are made at various

(r, θ, φ) on Earth’s surface. We solve for the Gauss coefficients that best fit the

data. Rewriting Equation 1.21 into matrix form, we get

~Bi = S · ~c (1.22)

where everything except the Gauss coefficients have been absorbed into S, ~c

is a sequence of all the desired Gauss coefficients, and ~Bi is a sequence of field

measurements. This matrix system is solved using inversion techniques [Con-
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stable et al., 1987] and outputs the Gauss coefficients. If we have measurements

that recorded the field at different times as well as locations, then feeding the

data into Equation 1.22 and applying regularized inversion gives us the Gauss

coefficients that best describe the structure of time-averaged field captured by

our measurements.

Now suppose we want to model the time-varying behavior of the field ac-

cording to our measurements. We first replace t0 with t in Equation 1.21. It is

usually assumed at this point that each Gauss coefficient is a time-varying pro-

cess whose variations can be modeled with a polynomial spline. So each Gauss

coefficient is a chain of polynomials linked together at successive “knot points”,

where each polynomial best describes the variations in the Gauss coefficient

within a local time interval. This looks like

cml (t) =
L∑
j=1

(
al,mj t3 + bl,mj t2 + cl,mj t+ dl,mj

)
(1.23)

where the superscript (l,m) indicates that {a, b, c, d} describe the time varia-

tions of the degree l and order m Gauss coefficient while the subscript j denotes

the jth polynomial in the spline for that Gauss coefficient. The jth and the

j + 1th polynomial are forced to have equivalent first and second derivatives

at the knot point between them - this ensures that our spline is smooth and

does not have abrupt concavity changes. Inserting our spline equation into the

spherical harmonic series and rewriting as a matrix system yields

~Bi = T · ~α (1.24)

where T contains everything except {al,mj , bl,mj , cl,mj , dl,mj }, which are listed

in ~α. Regularized inversion is again applied to determine the values in ~α that
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best fit the data, { ~Bi}. Thus, we obtain a polynomial spline description for the

temporal variations of each Gauss coefficient. Putting all of the time-varying

Gauss coefficients together produces a time-varying global field model. GUFM1

is an example of such a model, built from historical data. Another such model,

called PADM2M, which was built by applying a penalized maximum-likelihood

approach to absolute and relative paleointensity data, producing a cubic B-

spline representation for g0
1(t) [Ziegler et al., 2011].

Time-varying global field models do not provide us with a way of telling how

the curves of {gml (t), hml (t)} will extend into the future. The polynomial splines

are not simple, analytic functions with predictable shape and {al,mj , bl,mj , cl,mj , dl,mj }

do not have specific, physical meaning. If we wanted to estimate what the field

will look like in the future based on our time-varying global field model we

could compute the average value and variance of each Gauss coefficient across

its interpolation curve and claim that the Gauss coefficient will have that mean

and variance in the future - this is essentially how the GGP models were built.

Hence, time-varying global field models serve as a reference from which we build

and to which we compare statistical descriptions of the field.

1.4.6 Continuous Stochastic Processes

The GGP-based models are good at depicting spatial field variations, yet

give obviously limited insight into temporal field behavior where correlations are

important 4. From C90 it is clear that “stochastic” does not mean the deviations

of each Gauss coefficient from its mean must be purely random noise; it could

mean that the time-varying process has some memory of its own past while
4Recall that CP88, CJ98 and TK03 assume that the Gauss coefficients are uncorrelated,

random processes.
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being driven by random noise. C90 gave an especially useful example of how

treating the Gauss coefficients as an autoregressive, rather than purely random,

process can facilitate modeling of field variations that are clearly visible in the

paleofield.

It is prudent to note that the geomagnetic field evolves continuously with

time, so it might be better to model the Gauss coefficients as continuously-

varying functions of time. We are particularly interested in the axial dipole

field contribution, g0
1(t), as a giant chunk of the observed secular variation is

predicted to be driven by g0
1(t) (reversals, excursions, asymmetric growth and

decay). So we want an autoregressive model for the axial dipole field, or possibly

the axial dipole moment, that is continuous with time. A theoretical framework

for describing continuous autoregressive processes was first developed to study

Brownian motion (e.g. [Brockwell, 2001]). Within this framework, an autore-

gressive process is described by a differential equation of the desired order that

is driven by white noise just as in the discrete treatment. We can rewrite the

order-m discrete autoregressive series employed by C90 as

ϕ′t = a1ϕ
′
t−1 + a2ϕ

′
t−2 + . . .+ amϕ

′
t−m + ζt (1.25)

→ a0ϕ
′
t + a1ϕ

′
t−1 + a2ϕ

′
t−2 + . . .+ amϕ

′
t−m = ζt (1.26)

where we suppose that ϕ′t is the deviation of axial dipole moment about

its mean, ζt is a Gaussian-distributed white noise process, and a0 = 1 and

{a1, . . . , am} are unknown constants so their sign just got absorbed in the second

line. 5 Whereas in the discrete timestep regime our autoregressive model has
5From now on, we use g01(t) to signify the strength of the axial dipole field and ϕt to signify

the axial dipole moment.
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the finite-difference operator Diϕ′t = ϕ′t−i,

→ a0D
0ϕ′t + a1D

1ϕ′t + a2D
2ϕ′t + . . .+ amD

mϕ′t = ζt (1.27)

→
m∑
i=0

aiD
iϕ′t

∣∣∣ Diϕ′t = ϕ′t−i (1.28)

in a continuous time regime our autoregressive model has the differential

operator diϕ′(t) = diϕ′

dti
,

am
dmϕ′

dtm
+ am−1

dm−1ϕ′

dtm−1
+ . . .+ a1

dϕ′

dt
+ a0ϕ

′(t) = ζ(t) (1.29)

→ amd
mϕ′(t) + am−1d

m−1ϕ′(t) + . . .+ a1d
1ϕ′(t) + a0d

0ϕ′(t) = ζ(t) (1.30)

→
m∑
i=0

aid
iϕ′(t) = ζ(t)

∣∣∣ diϕ′(t) =
diϕ′

dti
(1.31)

in which ζ(t) is again a Gaussian-distributed, now continuous, white noise

process.

An Autoregressive Model

Several authors have used the continuous autoregressive model to simulate

data. For instance, Hellio et al. (2014) described each Gauss coefficient pertain-

ing to archeomagnetic data from Syria and France, depicting the geomagnetic

field from 4000 B.C. to present-day and present-day to 1900 A.D. respectively,

by the stochastic differential equation
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d2ϕ′

dt2
+

2
√

3

τc

dϕ′

dt
+

3

τ 2
c

ϕ′(t) = ζ(t) (1.32)

in which τc is a different autocorrelation timescale for each Gauss coefficient

[Hellio et al., 2014]. The autocorrelation function of such a process is shown to

be

ρ(τ) =
(

1 +

√
3

τc
τ
)
e
−
√

3
τc (1.33)

at each spherical harmonic degree, l. (We will go through similar steps to

compute an autocovariance function for our new stochastic model, later.) Hellio

et al. (2014) further demonstrated that

τc =
√

3
σgl
σġl

(1.34)

when σgl and σġl are the variance of the degree-l Gauss coefficients and their

time derivative, respectively. Both were determined from satellite observations

of the modern field. The main parameter of the Hellio et al. (2014) model is

τc and its value is extrapolated from modern field data for each Gauss coeffi-

cient similarly to how the variance and the mean of the Gauss coefficients were

obtained from modern field data in CP88. The method of Hellio et al. (2014)

contrasts with that of C90, in that C90 arbitrarily chose various autocorrelation

timescales and observed their differing impacts on VGP paths during a reversal,

while Hellio et al. (2014) obtained a fixed autocorrelation timescale from data

and observe the resulting impacts on time-varying behavior in the axial dipole

moment.
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An Equivalent Langevin Model

Meanwhile, Buffett et al. (2013) proposed an alternative stochastic descrip-

tion for the axial dipole moment, the Langevin equation

dϕ

dt
= v(ϕ) +

√
D(ϕ)Γ(t). (1.35)

Here, ϕ(t) = ϕ̄ + ϕ′(t) where ϕ̄ is the time-averaged axial dipole moment

and ϕ′(t) is as usual, the deviation from this mean. The v(ϕ) term is called the

drift and describes the tendency of the axial dipole moment to trend toward its

time-average, which we assume to be its steady state. The
√
D(ϕ)Γ(t) term is

called the diffusion and describes fluctuations away from steady state [Buffett

et al., 2013]. Note that the term “diffusion” here is an artifact from studies of

gas dynamics, for which the Langevin equation was originally built, and does

not refer to Ohmic diffusion in Earth’s outer core.

Γ(t) tells us when the fluctuations away from steady state occur and in

the traditional Langevin equation, Γ(t) is assumed to be Gaussian-distributed

white noise. The diffusion coefficient Deq tells the relative influence between

underlying geodynamo processes governing the fluctuations and those governing

the drift, on axial dipole moment behavior. WhenD(ϕ) is large, Γ(t) is weighted

more heavily than v(ϕ) in the Langevin equation. So the fluctuations play a

larger role than the drift does in axial dipole moment behavior. After the axial

dipole moment is perturbed from its equilibrium behavior, it does not have a

lot of time to return to equilibrium before being pulled away again. Thus, an

axial dipole moment that evolves according to the Langevin equation with high

values for D(ϕ) exhibits a high variance across time.

Buffett et al. (2013) demonstrate how the drift v(ϕ) and diffusion coefficient
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D(ϕ) can be estimated from actual data or from a time-varying global field

model by binning values from a time series for the axial dipole moment and

then computing

v(ϕ) ≈ < ϕ(t+ δt)− ϕ(t) >

δt
(1.36)

D(ϕ) ≈
<
(
ϕ(t+ δt)− ϕ(t)

)2

>

2δt
(1.37)

in each bin. Equations 1.36 and 1.37 are called the Kramers-Moyal equations

[Siefert and Peinke, 2004].

Buffett et al. (2013) posit that the geomagnetic axial dipole moment drifts

toward its steady state in the same way regardless of whether the geomagnetic

field is in normal or in reverse polarity. This implies that the drift v(ϕ) is

odd with respect to axial dipole moment ϕ(t), as illustrated in Figure 1.10a.

The authors similarly suggest that the relative influences of drift and diffusion

on dipole behavior have no reason to be distinct between normal and reverse

polarity, so D(ϕ) is even with respect to axial dipole moment, as illustrated in

Figure 1.10b.

Using PADM2M [Ziegler et al., 2011] as a time series representing variations

in only the magnitude of ϕ(t), applying Equations 1.36 and 1.37, and extending

the results to negative ϕ(t) values to represent reverse dipole polarities, Buffett

et al. (2013) obtain the curves shown in Figure 1.10 for the effective drift and

diffusion coefficient.
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(a)

(b)

Figure 1.10: Kramers-Moyal estimates for the effective drift and diffusion
coefficient are obtained by binning PADM2M and drawn as the pink dots
to the right of 0 Am2 [Buffett et al., 2013]. The pink dot at 0 Am2 is
extrapolated assuming that v(ϕ) is odd and D(ϕ) is even. Then the Kramers-
Moyal estimates are extended to include the drift and diffusion coefficient
during reverse polarity states; these are the pink dots to the left of 0 Am2.
Finally, a blue spline is drawn through the extrapolated points.
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From Figure 1.10, the authors infer that when the axial dipole moment

is near its time-average value, 5.34 · 1022Am2 (i.e. ϕ′(t) is small), the drift

and diffusion coefficient are linear with negative slope and roughly constant,

respectively. The authors represent the drift and diffusion coefficient according

to

v(ϕ) = −ϕ(t)− ϕ̄
τl

and D(ϕ) ≈ D(ϕ̄) = Deq (1.38)

as long as ϕ(t) − ϕ̄ is small. The approximations above might need to be

reconsidered when we model axial dipole behavior that tends to be way larger or

way smaller than its time-averaged value, like during reversals. Bouligand et al.

(2016) suggested that the diffusion term could be assumed to be autoregressive

rather than purely random motion. This yields

dε

dt
+
ε(t)

τm
= ζ(t) (1.39)

where ε(t) =
√
DeqΓ(t) and τm is the autocorrelation timescale of the diffu-

sion. Bouligand et al. (2016) then show that the initial Langevin equation can

be rewritten as

d2ϕ′

dt2
+
( 1

τl
+

1

τm

)dϕ′
dt

+
ϕ′(t)

τlτm
= ζ(t) (1.40)

where ζ(t) is again Brownian motion and ϕ′(t) = ϕ(t)− ϕ̄ is the deviation of

the axial dipole moment away from its mean [Bouligand et al., 2016]. We will

show the steps taken to derive this when we develop our new stochastic model.

Bouligand et al. (2016) effectively show that Hellio et al. (2014) and Buffett et

al. (2013) were using similar stochastic models.

To summarize, stochastic models are useful to understanding the geomag-
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netic field because the model parameters, like the timescales in Equation 1.40,

dictate how the axial dipole’s past influences its future without requiring knowl-

edge of the fluid motions in Earth’s outer core. In Equation 1.40, the timescales

{τl, τm} must be chosen to reflect the secular variation of the axial dipole mo-

ment in time-varying global field models constructed from paleomagnetic, his-

torical, observatory, and satellite data. We use time-varying global field models

as a way of looking at the field in the past, but because the time series derived

for each Gauss coefficient is not parametrized by anything that has physical

meaning, we cannot use these models to predict future behavior of the field.

In contrast, the discrete GGP models and new continuous stochastic models

offer a way to use past statistics of the field across large periods of time to

simulate the statistical distribution of the future field, under the assumption

that the field is stationary. We will see that numerical simulations are useful

because they allow us to connect our model parameters with physical behaviors

of the geodynamo. For example, Buffett and Matsui (2015) use the Langevin

model to infer that the estimate of the drift timescale τl obtained by looking

at the slope of v(ϕ) computed using the axial dipole moment of a numerical

dynamo and equations 1.36 and 1.37 depends on the vigor of fluid convection

in the outer core. They then attribute the drift timescale to dipole decay and

the diffusion timescale to helical flow in the outer core.

1.5 Power Spectral Density for Stochastic Mod-

els

An efficient way to infer characteristic timescales for temporal variations of

the axial dipole moment is by plotting its frequency spectrum. The frequency
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spectrum, often defined as the Fourier transform of the autocovariance func-

tion, tells us the frequencies at which different signals within a process repeat

themselves. For example, imagine an infinite sinusoidal process

y(t) = sin(f0t). (1.41)

If we perform the calculation illustrated in Figure 1.7, then Ry(τ) is also a

sinusoid with frequency f0. Taking the Fourier transform

Sy(f) = F
(
Ry(τ)

)
(1.42)

then yields a frequency spectrum with a spike at f0 and 0 everywhere else.

By the same calculation, the frequency spectrum Sy(f) of a process that is a

linear combination of three sinusoids, each with a different frequency from the

next, has three spikes and is 0 everywhere else.

Most natural processes can be Fourier expanded into a linear combination

of infinitely-many sinusoids. Thus most natural processes ultimately have fre-

quency spectra with infinitely many spikes, which ends up just looking like a

nonzero net curve. It may be asked why we take the Fourier transform of the

autocovariance of the process rather than simply taking the Fourier transform

of the original process, to find the frequencies in the process. It can be derived

that the frequency spectrum can alternatively be defined as

Sy(f) =< |ỹ(f)|2 > (1.43)

where the brackets denote an expectation value and ỹ(f) is the Fourier

transform of the original process. So essentially the frequency spectrum is the

Fourier transform of the original process - specifically its magnitude, which
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is then squared to amplify the visualization of what frequencies are present,

and finally averaged to indicate that we want a picture of the frequencies that

appear to be consistent across all time. The brackets here come directly from the

brackets in Equation 1.7. In the following sections we explore several attempts

to model the frequency spectrum of the axial dipole moment.

1.5.1 The Poisson Reversal Model

Constable et al. (1998) proposed that the sequence of geomagnetic reversals

in an 11 Myr Oligocene record from oceanic sediments in the South Atlantic

could be modeled as a Poisson process in which the probability of a reversal

is always constant [Constable et al., 1998]. The field was modeled to be at

constant amplitude A until dropping to 0 at a reversal. The average reversal

rate λ and average reversal duration δ of an event in this Poisson process were

obtained from the Oligocene record. Constable et al. (1998) showed that the

frequency spectrum of this process is

S(f) =
4λe−λδ

λ2 + 4π2f 2

(
1− e−λδ

(
cos(2πfδ) +

λ sin(2πfδ)

2πf

))
(1.44)

This is a lot like the original GGP model in its lack of memory but this

Poisson process operates on million-year time scales while the GGP model was

built to model thousand-year statistical variability in the geomagnetic field. The

11 Myr Oligocene record was obtained from a long core drilled out of the ocean

floor. The record exhibits a data gap so Constable et al. (1998) split the record
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into five segments in time before the gap and five segments after the gap.

Empirical frequency spectra from each of the five segments in the more

recent part, 22.74 to 28.77 Ma, roughly fit S(f) at low frequencies when λ = 4

Myr−1 and δ = 30 kyr, estimated from this part of the record, are used. This

is shown in Figure 1.11. Above f = 50 Myr−1, the empirical spectra have

higher power than S(f) so the fit is poor. This is likely because the only form

of secular variation in the model is a sequence of reversals, while the actual

field has lots of other secular variation. Constable et al. (1998) conclude that

the low-frequency regime of the more recent part of the record is controlled by

geomagnetic reversals.

Figure 1.11: Empirical frequency spectra for the five segments of the 22.74 to
28.77 Ma part of the record are plotted. The heavy dashed curve is S(f) with
mean reversal rate 4 Myr−1. The fit between the model and the empirical
spectra is good at low frequencies. [Constable et al., 1998]
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In Figure 1.12 the earlier part of the record from 29.40 to 34.74 Mya shows

empirical spectra with higher power than S(f) across all frequencies. While the

cause of this is unknown, it is inferred that the frequency distribution of the

earlier part of the record is not solely controlled by geomagnetic reversals [Smith-

Boughner et al., 2011]. Evidently, the Poisson reversal model of Constable et

al. (1998) does not describe the full range of secular variation behavior. After

this spearheading attempt to model the frequency spectrum of the axial dipole

moment, the newer stochastic models have offered alternative solutions that can

describe a wider range of both frequency behavior and datasets.

Figure 1.12: Empirical frequency spectra for the five segments of the 29.40
to 34.74 Mya part of the record are plotted. The light dashed curve is S(f)
with mean reversal rate 1.6 Myr−1. At all frequencies, the model does not fit
the empirical spectra. [Constable et al., 1998]
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1.5.2 A Langevin Model

The Langevin model of Buffett and Matsui (2015) was developed in the same

way as that of Buffett et al. (2013) but a linear drift and constant diffusion

coefficient were obtained from a time series for the axial dipole moment in a

numerical geodynamo rather than from PADM2M [Buffett and Matsui, 2015].

Buffett and Matsui (2015) rewrite the Langevin model in terms of the deviation

of the axial dipole moment away from its mean and then define the frequency

spectrum of their model to be the expected value of the squared magnitude of

the Fourier transform of ϕ′(t). Assuming that the diffusion is Brownian motion

and uncorrelated, this yields

S(f) =
2Deq

1
τ2
l

+ 4π2f 2
(1.45)

as the frequency spectrum of the Langevin process. Taking the limits at low

and high f, this model spectrum is flat at low frequencies and goes like f−2 at

high frequencies, as does the spectrum of the Poisson model if the oscillations

induced by reversals are ignored.

The sinusoidal terms in the large parenthesis of Equation 1.44 are negligible

when λδ is large. Suppose that δ is huge while λ is a “normal” size. By the

Poisson model’s design, this equates to supposing that the duration of each

stable polarity interval is huge so fewer reversals can occur overall. Then the

oscillations in the spectrum of the Poisson model vanish and Equation 1.44 is

left with only the front term. Comparing the latter with Equation 1.45, we see

that when reversals are rare,
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2Deq = 4λe−λδ

λ2 =
1

τ 2
l

,
(1.46)

which implies that τl directly controls the reversal rate.

Meanwhile according to Buffett et al. (2013) the slow drift timescale τl

dictates the transition from one spectral index (i.e. s in f−s) to the other.

Buffett and Matsui (2015) show that the variance of the process is

σ2 = Deqτl (1.47)

by integrating S(f) across all frequencies. Using the values of Deq and τl

obtained from binning the time series, the authors verify that this expression

gives a value close to the variance of the original time series itself. It is noted

that letting the diffusion be a singly-correlated, AR-1 process as proposed by

Bouligand et al. (2016) makes the model spectrum

Sc(f) =
2Deqτ

−2
m(

1
τ2
l

+ 4π2f 2
)(

1
τ2
m

+ 4π2f 2
) . (1.48)
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Figure 1.13: The frequency spectrum of the axial dipole moment in a geody-
namo simulation called CALYPSO is plotted against Langevin model spectra
assuming uncorrelated and singly-correlated noise. [Buffett and Matsui, 2015]

Figure 1.13 compares S(f) and Sc(f) against the empirical frequency spec-

trum from the axial dipole moment of the numerical geodynamo simulation

Calypso [Buffett et al., 2014]. From this, Buffett and Matsui (2015) conclude

that the better fit of Sc(f) to the Calypso spectra indicates that the axial dipole

moment should be modeled with a correlated diffusion process, Γ(t). Using two

different Calypso simulations with differing magnetic Reynolds number, the au-

thors interpret that each diffusion correlation time τm is approximately one third

of the corresponding simulation’s convective overturn time.
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Figure 1.14: CALS10k.1b is a time-varying global field model that spans 0-10
kyr ago. CALS3k.4 is a time-varying global field model that spans 0-3 kyr ago.
The empirical frequency spectra of the g0

1(t) from both models are plotted
against the spectrum of PADM2M, which spans 0-2 Myr ago. The Langevin
model spectra are both insufficient to describe the geomagnetic axial dipole
moment at high frequencies past 103 cycles per Myr. [Buffett and Matsui,
2015]

As shown in Figure 1.14, when Buffett and Matsui (2015) superimpose S(f)

and Sc(f) on the spectrum of PADM2M and with the frequency spectra for the

axial dipole moment from two other time-varying global field models, the fit is

poor. Not only do all of the empirical spectra exhibit much steeper curves

at high frequency, but some of them do not even overlap with each other

within the same frequency band. This is because the temporal resolution of

the CALS10k.1b model has lower temporal resolution than CALS3k.4. Not

only are frequencies higher than 104 cycles per Myr absent from CALS10k.1b,

but the high frequencies between 2 ·103 and 104 cycles per Myr occur with much

55



lower energy than they do in CALS3k.4. The Langevin model clearly does not

capture the high-frequency behavior of the Earth’s axial dipole moment, rather

than that of a simulation, and further modifications are necessary.

1.5.3 Power Spectra for Numerical Dynamo Simulations

To better model the high-frequency behavior of the geomagnetic field, sev-

eral authors considered geodynamo simulations with rapid timestep and shorter

duration. This is a more practical approach because paleomagnetic data are

sparsely distributed in both space and time, and the paleofield does not cap-

ture high-frequency variations in the ancient field. Meanwhile, satellite data do

capture even hourly variations but it has been shown that some morphological

characteristics of the present-day field are not fully representative of the ancient

one.

Anyway, Davies and Constable (2014) devise a method of determining “earth-

like” numerical dynamos based on four different morphological criteria and suc-

cessfully obtain earthlike simulations whose axial dipole spectra exhibit f−6

dependence at high frequencies [Davies and Constable, 2014]. These are shown

along with the frequency spectrum of PADM2M in Figure 1.15. It is interesting

that these simulations did not seem to exhibit an f−4 dependence as proposed

by Buffett and Matsui (2015). While Buffett and Matsui (2015) briefly mention

that adding a second correlation timescale to the diffusion and making it an

AR-2 process should enable f−6 dependence at high frequencies as hinted at by

PADM2M, the authors do not propose a way to eliminate the f−4 dependence

altogether.
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Figure 1.15: Empirical spectra of the earthlike dynamo simulations with vari-
ous Rm plotted against the frequency spectrum of PADM2M. Rm is the mag-
netic Reynolds number, which determines the vigor of convection. Black lines
show sequential power law curves that best fit the empirical spectra. Spec-
tra are built assuming an advection timescale to give the non-dimensional
simulation real-world units. [Davies and Constable, 2014]

1.5.4 Designing Stochastic Models with Appropriate Spec-

tral Indices

Davies and Constable (2014) conclude that their simulated axial dipole spec-

tra match reasonably well with the frequency spectra of PADM2M and two

other g0
1(t) series taken from time-varying global field models. This shows im-

provement from the results of the Langevin model. The fundamental issue now

becomes deciding whether or not the axial dipole exhibits f−4 dependence. It

was shown that the steep falloff in PADM2M at the highest frequencies could

also be modeled by accounting for sedimentary smoothing and observation er-
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ror [Buffett and Puranam, 2017]. So it might be questioned whether the axial

dipole even exhibits f−6 dependence; we would benefit greatly from a method

to develop and compare varying stochastic models for the axial dipole field or

moment in which different, individual spectral indices could be isolated and

removed.

Fortunately such a methodology was presented recently by Bouligand et al.

(2016). We rewrite Equation 1.40 as

d2ϕ′

dt2
+ 2χ

dϕ′

dt
+ ω2ϕ′(t) = ζ(t) (1.49)

where ζ(t) is again Brownian motion and

2χ =
1

τl
+

1

τm
and ω2 =

1

τlτm
. (1.50)

Like Hellio et al. (2014), Bouligand et al. (2016) propose that each Gauss

coefficient can be described by this model, with its own {χ, ω} pair. In a

method slightly different from that of Buffett et al. (2015), Bouligand et al.

(2016) derive an equation for the model spectrum as

S(f) =
4χω2σ2

ϕ

(ω2 − 4π2f 2)2 + (4πχf)2
(1.51)

where σ2
ϕ is the variance of the degree-l Gauss coefficient [Bouligand et al.,

2016]. Notice how this equation accommodates f 0, f−2, and f−4 regimes at low,

intermediate, and high frequencies respectively. We will go through method

that leads to this equation for S(f) when we develop our new model.

Bouligand et al. (2016) then argue that all of the Gauss coefficients except

g0
1(t) can be modeled as an AR-2 process where χ = ω (i.e. τl = τm) just as

done by Hellio et al. (2014). The model spectrum them becomes
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S(f) =
4ω3σ2

ϕ

(ω2 + 4π2f 2)2
(1.52)

which exhibits only f 0 and f−4 dependence at low and high frequencies,

respectively. The latter model spectrum is constrained by only 2 parameters,

{σ, ωϕ}, while the first version has the additional parameter, χ. Following Hellio

et al. (2014), Bouligand et al. (2016) note that

(ω−1)2 = τ 2
l =

σ2
ϕ

σϕ̇2

→ τ 2
l =

Rl

Ṙl

(1.53)

gives the autocorrelation timescale of the stochastic process (except the axial

dipole) where {σ2
ϕ, Rl} and {σ2

ϕ̇, Ṙl} are the variance and spatial Lowes spectrum

of the degree-l Gauss coefficient and its secular variation, respectively. The

authors notice that the Lowes spectrum for the geomagnetic field at the core-

mantle boundary computed from actual data looks like white noise and that

the calculation in Equation 1.53 with data yields an inverse dependence on the

spherical harmonic degree. Assuming therefore that the Lowes spectrum and

timescale of the process can be described by

Rl ≈ α and τl ≈
δ

l
, (1.54)

Bouligand et al. (2016) devise a way of estimating the purely-empirical

parameters {α, δ}, and hence {σϕ, ω}, from a time-varying global field model

or numerical geodynamo that can be decomposed into its spherical harmonic

components. Applying these parameters, their model spectrum is compared

with empirical frequency spectra from two, long geodynamo simulations with

slow timestep and one, short simulation with rapid timestep. In the former

two, all of the Gauss coefficients except the axial dipole exhibit f 0 and then f−4
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spectral behavior. In the latter simulation, the high frequency falloff is steeper

than f−4, suggesting an f−6 dependence. Meanwhile the axial dipole in all three

simulations clearly exhibits an f−2 dependence, leading Bouligand et al. (2016)

to conclude that the axial dipole should be described by the original stochastic

model with χ 6= ω.

1.6 The Composite Geomagnetic Spectrum

Ultimately, the aim of this thesis is to develop a stochastic model whose

frequency spectrum plausibly matches the empirical frequency spectrum of the

axial dipole moment derived from actual geomagnetic field data. Before we

develop our new model, we offer a final piece of evidence to convince the reader

that the spectrum of the axial dipole moment can be represented by sequential

segments each with a separate power law like

S(f) =
N∑
i=1

αif
−si (1.55)

where the summation index indicates the ith segment. Panovska et al.

(2018) pieced together a composite spectrum for the geomagnetic axial dipole

field by linking empirical spectra from various sources spanning different time

intervals and with differing temporal resolution. Reversal records CK95 and

CK95cc form the spectrum above million year timescales [Cande and Kent,

1995]. The g0
1(t) terms from five different time-varying global field models, de-

rived from globally-distributed collections of igneous, archeomagnetic and lake-

sediment observations (except GUFM1 based on historical data), resolve secular

variation from million year to sub-decadal timescales. This is shown in Figure

1.17 and the time series for the various sources except CK95 and CK95cc are
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displayed in Figure 1.16.

Figure 1.16: Time series representing the geomagnetic axial dipole field.
PADM2M ( [Ziegler et al., 2011]), GGF100k ( [Panovska et al., 2018]),
GUFM1 ( [Jackson et al., 2000]), HFM.OL1.A1 and CALK10k.2 ( [Constable
et al., 2016]).
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Figure 1.17: A composite spectrum for the geomagnetic axial dipole field
[Panovska et al., 2018]. Black = 0-160 Ma reversal record CK95, gray = 0-83
Ma reversal record CK95cc, orange = PADM2M, blue = GGF100k, red =
CALS10k.2, green = HFM.OL1.A1, black = GUFM1.

The composite spectrum clearly reflects a power law dependence with se-

quentially increasing spectral index, except from about 102− 103 Myr−1 where

shallowing is seen in the GGF100k (Global Geomagnetic Field over 100 ka)

model [Panovska et al., 2018]. GGF100k is the newest time-varying global field

model built from sedimentary, archeomagnetic and igneous measurements. The

authors used lmax = 10 and cubic splines to model time-varying Gauss coeffi-

cients. Panovska et al. (2018) multiplied the time-varying (I,D,F) predictions
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by a smoothing kernel that filtered out high frequencies to simulate sedimentary

smoothing. Since the level of smoothing varies among records, the kernel was

designed differently to match each record before evaluating the model against

data using regularized inversion. Variations in the axial dipole field for GGF100k

are plotted against the variations from other time-varying global field models,

including PADM2M, in Figure 1.18.

Figure 1.18: Time variations in the axial dipole field corresponding to time-
varying global field models over the past 100,000 years [Panovska et al., 2018].
The color-model correspondence is listed at the top.

The jump in Figure 1.17 at frequencies below 10−1 Myr−1 probably reflects

a time-varying geomagnetic reversal rate. The composite spectrum is a more

comprehensive reference for stochastic models of the axial dipole field than

are individual frequency spectra from time series like PADM2M, GGF100k,

CALS10k.2, or GUFM1. The latter were used as references for the numerical

geodynamo simulations of Davies and Constable (2014), the Langevin model

of Buffett. et al. (2013), and the AR2 model of Bouligand et al. (2016).

In addition to the breadth of data types in the composite spectrum, there are
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several reasons for our reference choice. Davies and Constable (2014) mentioned

that their numerical dynamo spectra in Figure 1.15, which match the spectrum

of PADM2M pretty well, do not exhibit any f−4 dependence and that this

may be due to poor frequency resolution. Perhaps there was a short regime of

f−4 dependence in the geodynamo simulations, but only the smooth transition,

f 0 → f−2 → f−6, is visible.

Then, Buffett and Puranam (2017) suggested that the rapid falloff imme-

diately after f−2 is actually a consequence of sedimentary smoothing in the

paleomagnetic data used to construct PADM2M [Buffett and Puranam, 2017].

They modeled the effect as a low pass filter applied to the Langevin model spec-

trum (the one with AR1 diffusion) that initially exhibited an f 0 → f−2 → f−4

power law sequence. The cutoff frequency of the filter is inversely proportional

to the timescale over which enough sedimentation and compaction occurs. A

slow sedimentation rate means that it takes a while for the sediments to settle

and “lock in” a single, detrital remanence. Since the locked-in value is essen-

tially an average of the local field over that settling time, the paleofield record

is smoothed as high-frequency variations in the local field get averaged out. In

this scenario the timescale for compaction is longer, i.e. the cutoff frequency is

lower so that the bandpass filter keeps only the lowest frequencies of the original

secular variation. Applying the filter yielded Figure 1.19.
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Figure 1.19: A Gaussian filter with averaging time 2.4 kyr was applied to
the Langevin model spectrum S(f) derived by assuming that the diffusion is
uncorrelated Brownian motion [Buffett and Puranam, 2017].

Buffett and Puranam (2017) therefore argued that the rapid falloff in PADM2M

is from the filter and is not a feature of Earth’s axial dipole, while any f−6

dependence in Earth’s axial dipole should occur at higher frequencies with a

significant f−4 section before it. We hence infer that the frequency spectrum

of the geomagnetic axial dipole field likely has {f 0, f−2, f−4, f−6} dependence,

in that order from lowest to highest frequencies. We just need better resolution

to see it, in both geodynamo simulations and in compilations of time-varying

global field models.
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Chapter 2

Building a New Stochastic Model

to Satisfy Geomagnetic

Observations

Chapter 1 outlined the current status of stochastic modelling for the geomag-

netic field. The GGP models discussed in Section 1.4.4 lack the long-term mem-

ory associated with low-frequency changes in the dipolar part of the field. Newer

models based on the Langevin and continuous-autoregressive equations are re-

lated but their frequency spectra do not fit the composite geomagnetic spec-

trum for axial dipole field variations shown in Figure 1.17. In this Chapter we

extend previously-developed Langevin models and recast them as continuous-

autoregressive models for the geomagnetic axial dipole moment. Simulations of

a new third-order model are produced and their frequency spectra are compared

with the composite geomagnetic spectrum. We first lay out several reference

equations that become useful when we extend the previously-published models.
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2.1 Derivations of Continuous-Autoregressive (AR)

Stochastic Models

2.1.1 Simplified Langevin Equation

The Langevin equation is

dϕ

dt
= v(ϕ(t)) +

√
D(ϕ(t))Γ(t), (2.1)

where ϕ(t) is the axial dipole moment. The drift v(ϕ(t)) describes the ten-

dency of the axial dipole moment to return to its time-averaged steady state

when perturbed away. The diffusion
√
D(ϕ(t))Γ(t) describes shorter-term fluc-

tuations of the axial dipole moment away from steady state. Γ(t) is assumed

to be a zero-mean process as presented by Buffett et al. (2013). The diffusion

coefficient
√
D(ϕ(t)) is the time-dependent amplitude of such fluctuations.

Following the derivation of Buffett et. al. (2013), we assume that the drift

may be represented by

v(ϕ(t)) ≈ −(ϕ(t)− ϕ̄(t))

τl
=
−ϕ′(t)
τl

(2.2)

where ϕ′(t) is the deviation of the dipole moment from its time-average,

ϕ̄(t) 1. Meanwhile
√
D(ϕ(t)) is the amplitude of fluctuations about ϕ̄(t) so we

1We will use brackets < y(t) > to indicate taking the expectation value, i.e. an operation,
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assume that that on average, it is equal to the value it takes on at ϕ̄(t), like

D(ϕ(t)) ≈ D(ϕ̄(t)) ≡ Deq. (2.3)

The simplified Langevin equation is finally

dϕ′

dt
+
ϕ′(t)

τl
=
√
DeqΓ(t). (2.4)

We briefly consider the units of each term in the simplified Langevin equa-

tion. We use bracket notation to indicate units. The left side clearly has units of

Am2

Myr
and the diffusion coefficient has units [Deq] = A2m4

Myr
; putting these together

yields that

[Γ(t)] =
1√
Myr

. (2.5)

Consequently the autocovariance of the diffusion process has units

[RΓ(τ)] ≡ [< Γ(t+ τ)Γ(t) >] =
1

Myr
. (2.6)

and a bar ȳ(t) to indicate the mean of a process, i.e. a defined quantity.
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This proves useful later.

2.1.2 Model Spectrum

A general formula for the frequency spectrum of ϕ(t) also proves useful later.

To start, we define the frequency spectrum of any arbitrary, zero-mean process

y(t) to be

Sy(f) ≡< |ỹ(f)|2 > (2.7)

where the brackets mean an expectation value. The spectrum is also com-

monly defined as

Sy(f) ≡ F
(
Ry(τ)

)
. (2.8)

We will use both definitions while developing our three models. Based on

the first definition, we take the Fourier transform of Equation 2.4 and obtain

our model variance,

Sϕ′(f) ≡ |ϕ̃′(f)|2 =
Deq|Γ̃(f)|2

4π2f 2 + 1
τ2
l

(2.9)
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where < Γ(t) >≡ 0. We define the model variance to be

σ2
ϕ′ ≡

∫ ∞
−∞

Sϕ′(f)df (2.10)

The diffusion spectrum, |Γ̃(f)|2, depends on the correlation of Γ(t). Now

we can develop first, second, and third-order continuous autoregressive models

for the geomagnetic axial dipole moment by modeling the diffusion Γ(t) in the

Langevin equation as a zeroth, first, and second-order autoregressive process

- interchangeably referred to as uncorrelated, singly-correlated, and doubly-

correlated diffusion, respectively. 2

2Langevin models with uncorrelated and singly-correlated diffusion were developed and
proposed, respectively, by Buffett et. al. (2013). We present both here in more detail
and extrapolate upon them to derive the corresponding autoregressive equation. Doing so
facilitates a smooth transition to the derivation of a new, doubly-correlated model.
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2.1.3 An AR1 Stochastic Model for the Axial Dipole Mo-

ment

Figure 2.1: The value of Γ(t) at any time t is random, but the probability
that the value lies within a specific range is prescribed by this distribution.
About 68 % of the time the value of Γ(t) lies between ±

√
2 and on average

Γ(t) is 0.

Suppose that the diffusion, Γ(t), is uncorrelated, Gaussian-distributed, ran-

dom noise with variance 2 3 (so the standard deviation is
√

2). The Gaussian

distribution is illustrated in Figure 2.1. Γ(t) is described by

Γ(t) = ζ(t) and RΓ(τ) = 2δ(τ). (2.11)

Equation 2.11 implies that |Γ̃(f)|2 = |ζ̃(f)|2 = 2 , so Equation 2.9 gives that

3The reason for this variance is discussed in Appendix B.
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Sϕ′(f) =
2Deq

4π2f 2 + 1
τ2
l

and σ2
ϕ′ = Deqτl (2.12)

are the model spectrum and model variance, respectively. Figures 2.2 and

2.3 show the spectrum and the distribution for ϕ′(t), respectively.

Figure 2.2: We infer the shape of the AR1 model spectrum using Equation
2.12. At low frequencies, f → 0 implies that Sϕ′(f) ≈ 2Deqτ

2
l and at high

frequencies, f →∞ gives that Sϕ′(f) ∝ 1
f2 .
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Figure 2.3: We use a Gaussian distribution to represent the probability that
ϕ′(t) lies within a specific range of values at any time t. The AR1 model
predicts that about 96 % of the time, ϕ′(t) lies between ±

√
Deqτl and that

on average, ϕ′(t) is 0.

The AR1 model spectrum in Figure 2.2 is flat at low frequencies and then

transitions to f−2 behavior at higher frequencies. The frequency at which the

transition occurs is directly provided by the timescale parameter of the AR1

model, τl, via

f0,2 =
1

2πτl
. (2.13)

We combine Equation 2.11 and Equation 2.4 to derive a single, continuous-

autoregressive equation that describes the deviation of the axial dipole moment

from its time-average,

dϕ′

dt
+

1

τl
ϕ′(t) =

√
Deqζ(t). (2.14)
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Hence we produce a stochastic differential equation that describes the de-

viations of the axial dipole moment away from its equilibrium behavior with

respect to time. Our differential representation is driven by white noise, ζ(t)

and contains two parameters: the drift timescale τl and the diffusion coefficient

Deq, the latter of which dictates the relative influence between fluctuations away

from and drift towards steady state, on the axial dipole behavior. To obtain

the model autocovariance, we compute the solution to the differential equation 4

dRϕ′

dτ
+

1

τl
Rϕ′(τ) = 0, (2.15)

which is just Rϕ′(τ) = R0e
−τ
τl . By computing the Fourier transform of Rϕ′(τ)

(the second definition for the frequency spectrum of a process) and comparing

the result with the model spectrum in Equation 2.12, we infer that R0 = Deqτl

so the model autocovariance is

Rϕ′(τ) = Deqτle
−τ
τl . (2.16)

Rϕ′(τ) is plotted against the autocovariance of PADM2M [Ziegler et al.,

2011], which clearly contains periodic behavior yet to be understood, in Figure
4See Appendix A for a proof of how this differential equation describes the model autoco-

variance.
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2.4.

Figure 2.4: The autocovariance of a continuous process often decays ex-
ponentially like the pink curve. A process comprised of periodic signals
will exhibit similar periodicity in its autocovariance. The autocovariance of
PADM2M [Ziegler et al., 2011] decays exponentially on large timescales but
is periodic on short timescales.

2.1.4 An AR2 Stochastic Model for the Axial Dipole Mo-

ment

Suppose that the diffusion, Γ(t), is an order-1 autoregressive process with

one autocorrelation timescale, τm. So Γ(t) is described by

a
dΓ

dt
+ bΓ(t) = ζ(t) (2.17)
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where a and b are yet-unknown parameters and ζ(t) is again Gaussian-

distributed random noise with variance 2. Equation 2.17 implies that

a
dRΓ

dτ
+ bRΓ(τ) = 0 (2.18)

where RΓ(τ) = R0e
ατ is the autocovariance function of Γ(t). We assume

that the autocovariance is of exponential form so the characteristic equation

simplifies to

α =
−b
a
. (2.19)

We want the exponent of RΓ(τ) to be unitless and the only parameter that

describes Γ(t) is τm so we assume that

α =
−b
a

=
−1

τm
. (2.20)

Meanwhile we know that [RΓ(τ)] = 1
Myr

and our only parameter is τm so we

76



assume that R0 = 1
τm

and thus

RΓ(τ) =
1

τm
e
−τ
τm (2.21)

is the autocovariance of the diffusion process that satisfies

=⇒ τm
dΓ

dt
+ Γ(t) = ζ(t). (2.22)

We find |Γ̃(f)|2 in two ways. We either compute the Fourier transform of

Equation 2.22 and obtain

=⇒ |Γ̃(f)|2 =
2

τ 2
m

1

4π2f 2 + 1
τ2
m

(2.23)

or we compute the Fourier transform of Equation 2.21, which yields the same

result. Again combining with Equation 2.9,

Sϕ′(f) =
2Deq

τ 2
m

1

(4π2f 2 + 1
τ2
l
)(4π2f 2 + 1

τ2
m

)
(2.24)
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and σ2
ϕ′ =

Deqτ
2
l

τl + τm
, (2.25)

are the model spectrum and model variance, respectively. The model spec-

trum and a Gaussian distribution for ϕ′(t) are plotted in Figures 2.5 and 2.6,

respectively. 5

Figure 2.5: We infer the shape of the AR2 model spectrum using Equation
2.24. At lowest frequencies, f → 0 implies that Sϕ′(f) ≈ 2Deqτ

2
l . At inter-

mediate frequencies, we have that Sϕ′(f) ∝ 1
f2 . At high frequencies, f →∞

gives that Sϕ′(f) ∝ 1
f4 .

5In computing the variance of the process ϕ′(t), we are not explicitly assuming ϕ′(t) is
described by a Gaussian probability density distribution. However, it is a useful way of
visualizing what is going on.
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Figure 2.6: We use a Gaussian distribution to represent the probability that
ϕ′(t) lies within a specific range of values at any time t. The AR2 model

predicts that about 68 % of the time, ϕ′(t) lies between ±
√

Deqτ2
l

τl+τm
and that

on average, ϕ′(t) is 0.

The AR2 model spectrum is flat at lowest frequencies, switches to f−2 be-

havior, and then transitions again to f−4 behavior. The frequency at which the

latter transition occurs is given directly to us by the new timescale parameter

τm via

f2,4 =
1

2πτm
. (2.26)

We next combine Equation 2.22 with Equation 2.4 to derive a single, continuous-

autoregressive equation,

τm
d2ϕ′

dt2
+ (

τm
τl

+ 1)
dϕ′

dt
+

1

τl
ϕ′(t) =

√
Deqζ(t), (2.27)
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that describes the deviation of the axial dipole moment away from its time

average. The AR2 model autocovariance satisfies

τm
d2Rϕ′

dτ 2
+ (

τm
τl

+ 1)
dRϕ′

dτ
+

1

τl
Rϕ′(τ) = 0 (2.28)

so we assume a general solution of the form

Rϕ′(τ) = α1e
− τ
τl + α2e

− τ
τm , (2.29)

compute its Fourier transform, and compare the result with Equation 2.24

to determine α1 and α2. The model autocovariance is

Rϕ′(τ) =
−Deqτ

3
l

τ 2
m − τ 2

l

e
− τ
τl +

Deqτmτ
2
l

τ 2
m − τ 2

l

e−
τ
τm . (2.30)

When τl = τm, the AR2 model autocovariance is 0. When τm << τl, e−
τ
τm

is negligibly small and Equation 2.30 reduces to Equation 2.16.
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2.1.5 An AR3 Stochastic Model for the Axial Dipole Mo-

ment

Suppose that the diffusion, Γ(t), is an order-2 autoregressive process with

two autocorrelation timescales τm and τs. So Γ(t) is described by

a
d2Γ

dt2
+ b

dΓ

dt
+ cΓ(t) = ζ(t) (2.31)

where a, b and c are yet-unknown parameters. In Equation 2.22, a and b

ultimately counteract the units of time in the denominator of each derivative

term. We assume that a and b will do the same so Equation 2.31 implies that

[a] = Myr2 [b] = Myr and [c] = 1. (2.32)

All of our model parameters inevitably have some physical units so we con-

clude that c must be 1. Equation 2.31 then implies that

a
d2RΓ

dτ 2
+ b

dRΓ

dτ
+RΓ(τ) = 0 (2.33)
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where RΓ(τ) = R0e
ατ is the general form autocovariance of Γ(t). The char-

acteristic equation simplifies to

α =
−b±

√
b2 − 4a

2a
. (2.34)

To determine a and b, we compute the Fourier transform of Equation 2.31

and compare the denominator in |Γ̃(f)|2 to 6

∝ 1

(4π2f 2 + 1
τ2
m

)(4π2f 2 + 1
τ2
s
)
. (2.35)

We thus obtain a and b as functions of τm and τs, which result in the diffu-

sion spectrum

|Γ̃(f)|2 =
2

τ 2
mτ

2
s

1

(4π2f 2 + 1
τ2
m

)(4π2f 2 + 1
τ2
s
)
. (2.36)

Meanwhile RΓ(τ) is

6Equations 2.24 and 2.27 suggest this form for the denominator of the spectrum of a
process described by an order-2 autoregressive equation.
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RΓ(τ) = R1e
−τ
τm +R2e

−τ
τs (2.37)

and satisfies

τmτs
d2Γ

dt2
+ τmτs(

1

τm
+

1

τs
)
dΓ

dt
+ Γ(t) = ζ(t). (2.38)

We infer R1 and R2 by computing the Fourier transform of RΓ(τ) and com-

paring it with Equation 2.36. So the autocovariance of Γ(t) is

RΓ(τ) =
τm

τ 2
m − τ 2

s

e
−τ
τm +

τs
τ 2
s − τ 2

m

e
−τ
τs . (2.39)

By Equation 2.36, the model spectrum and model variance are

Sϕ′(f) =
2Deq

τ 2
mτ

2
s

1

((4π2f 2 + 1
τ2
l
)(4π2f 2 + 1

τ2
m

)(4π2f 2 + 1
τ2
s
)

(2.40)

83



σ2
ϕ′ =

Deq

τ 2
mτ

2
s

(
γsτl + γ1τm + γ2τs

)
such that (2.41)

γs =
1

( 1
τ2
l
− 1

τ2
m

)( 1
τ2
l
− 1

τ2
s
)

γ1 =
1

( 1
τ2
m
− 1

τ2
l
)( 1
τ2
m
− 1

τ2
s
)

(2.42)

γ2 =
1

( 1
τ2
s
− 1

τ2
m

)( 1
τ2
s
− 1

τ2
l
)
.

These are plotted in Figures 2.7 and 2.8, respectively.
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Figure 2.7: We infer the shape of the AR3 model spectrum using Equation
2.40. At lowest frequencies, f → 0 implies that Sϕ′(f) ≈ 2Deqτ

2
l . At mid-low

frequencies, we have that Sϕ′(f) ∝ 1
f2 . At mid-high frequencies, we have that

Sϕ′(f) ∝ 1
f4 . At highest frequencies, f →∞ gives that Sϕ′(f) ∝ 1

f6 .

85



Figure 2.8: We use a Gaussian distribution to represent the probabil-
ity that ϕ′(t) lies within a specific range of values at any time t. The
AR3 model predicts that about 68 % of the time, ϕ′(t) lies between

±
√

Deq
τ2
mτ

2
s

(
γsτl + γ1τm + γ2τs

)
and that on average, ϕ′(t) is 0.

The AR3 model spectrum is flat at lowest frequencies and reaches an f−6

dependence at highest frequencies. The frequency at which the transition from

f−4 to f−6 behavior occurs is given by the newest timescale parameter τs via

f4,6 =
1

2πτs
. (2.43)

We combine Equation 2.38 with the simplified Langevin equation to derive

a single, continuous-autoregressive equation that describes the deviation of the

axial dipole moment away from its time average,

86



d3ϕ′

dt3
+

(
1

τl
+

1

τm
+

1

τs

)
d2ϕ′

dt2

+

(
1

τlτm
+

1

τlτs
+

1

τmτs

)
dϕ′

dt

+

(
1

τlτmτs

)
ϕ′(t) =

√
Deq

τmτs
ζ(t).

(2.44)

2.2 Discrete Stochastic Simulations

We have two fundamentally different stochastic differential equations - the

nonlinear Langevin equation and the linear autoregressive equation. The as-

sumptions

v(ϕ(t)) ≡ −ϕ
′(t)

τl
and D(ϕ(t)) ≡ Deq (2.45)

made in Section 2.1.1 linearize the Langevin system, transforming it into an

autoregressive equation. Technically, these assumptions hold true only when

the axial dipole moment is near its time average, ϕ̄(t) [Buffett et al., 2013].

7 To assess whether these assumptions are fair, we compare realizations of
7They also come directly from applying the Kramers-Moyal equations to PADM2M (with

results shown in Figure 1.10) and have not been verified with other datasets or time-varying
global field models.
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the nonlinear Langevin equation with realizations of the corresponding linear

autoregressive equation. To generate these simulations we must discretize the

temporal evolution in the Langevin equation.

2.2.1 Discretizing the Langevin Equation

The Langevin equation is

dϕ

dt
= v(ϕ(t)) +

√
D(ϕ(t))Γ(t). (2.46)

Applying Euler’s discretization method like

ϕ(t+ ∆t)− ϕ(t)

∆t
≈ v(ϕ(t)) +

√
D(ϕ(t))Γ(t) (2.47)

=⇒ ϕ(t+ ∆t) ≈ v(ϕ(t))∆t+
√
D(ϕ(t))Γ(t)∆t+ ϕ(t) (2.48)

=⇒ ϕt+1 = v(ϕt)∆t+
√
D(ϕt)Γt∆t+ ϕt (2.49)
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yields a discrete Langevin equation. This process requires an arbitrary seed,

ϕ1. At each time t we draw values of {v(ϕt) and D(ϕt)} from curves gener-

ated by Buffett et. al. (2013), who estimate the drift and diffusion coefficient

from PADM2M [Buffett et al., 2013]. ∆t must be smaller than the smallest

timescale of our model. For example, if we choose an AR2 model for the axial

dipole moment, ∆t < τm. {Γt} is a numerical realization of the diffusion process.

Γ(t) and ϕ′(t) are both described by linear, autoregressive equations 8. The

former is fed into Equation 2.49 while realizations of the latter are compared

with those of Equation 2.49. We could use Euler’s method to discretize these

linear, autoregressive equations for Γ(t) and ϕ′(t). However, Euler’s method, in

which the derivative is approximated by the slope of the line between one point

ahead and the current point, is less accurate than a trapezoidal sum approxima-

tion in which the derivative is approximated by the slope of the line between one

point ahead and one point behind the current point. The difference is plotted

in Figure 2.9.

8From now on, when we say “autoregressive”, we will always mean “continuous autoregres-
sive”.
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Figure 2.9: Tustin’s and Euler’s approximations to the derivative of a con-
tinuous process, y(t), at time t. The slope of the line from Tustin’s method
(orange) is much closer to the actual derivative (i.e. the slope of the green
line) than the slope of the line due to Euler’s method (red).

Since we plan to evaluate our model’s accuracy within frequency domain

anyway, we can alternatively build a recursive digital filter whose frequency

distribution matches that of our continuous process. 9 This is called Tustin’s

method and is technically equivalent to a trapezoidal approximation to the

derivative rather than the forward difference in Euler’s method. The basic idea

is to find the ratio between the frequency response of the output to the response

of the input (white noise) in our continuous model, and construct a discrete fil-

ter with the same frequency response ratio between output and input signals.

Appendix C contains a full derivation for Tustin’s method. We discretize the

autoregressive equations for Γ(t) and for ϕ′(t) using both methods and compare

the results.

9A digital filter is a discrete equation that mimics our continuous process; Euler’s method
is indeed a digital filter, but mimics the continuous process perhaps a little less accurately
than other digital filters. To build a better filter, we consider frequency domain analysis.
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2.2.2 Implementing the discretization for AR1

Γ(t)

Suppose that the diffusion is uncorrelated, Gaussian-distributed noise with

variance 2 that satisfies the equation

Γ(t) = ζ(t). (2.50)

To simulate this in the discrete time domain, we generate a sequence of

Gaussian-distributed random deviates, Γt = ζt, with variance 2.

ϕ′(t)

When the diffusion is a random process, the deviation of the axial dipole

moment ϕ′ is an order-1 autoregressive process that satisfies Equation 2.14,

dϕ′

dt
+

1

τl
ϕ′(t) =

√
Deqζ(t) (2.51)

where τl is the drift timescale and the diffusion has no autocorrelation

timescale.

Euler’s Method The derivative in Equation 2.51 can be approximated by

ϕ′(t+ ∆t)− ϕ′(t)
∆t

≈
√
Deqζ(t)− 1

τl
ϕ′(t) (2.52)
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ϕ′t+1 =
√
Deq∆tζt + (1− ∆t

τl
)ϕ′t. (2.53)

This process requires an arbitrary seed, ϕ′1.

Tustin’s Method The Laplace transform of Equation 2.51 is

(
sϕ̃′(s)− ϕ′(0)

)
+

1

τl
ϕ̃′(s) =

√
Deq ζ̃(s). (2.54)

If we assume that ϕ′(0) = 0, then the ratio between output and input is

g̃(s) ≡ ϕ̃′(s)
˜ζ(s)

=

√
Deq

s+ 1
τl

. (2.55)

g̃(s) is called the “transfer function” and describes the frequency response of

the output to that of the input process. g̃(s) describes the frequency responses

of continuous signals. To transform this into a description of the frequency re-

sponses of discrete signals, we apply the bilinear transformation
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s =
( 2

∆t

)(z − 1

z + 1

)
(2.56)

and obtain

g̃(z) =

√
Deq∆t(z + 1)

(∆t
τl

+ 2)z + (∆t
τl
− 2)

. (2.57)

A digital filter looks like

K−1∑
k=0

αkϕ
′
n−k =

L−1∑
l=0

βlζn−l (2.58)

and has the associated transfer function

g̃(z) =

∑L−1
l=0 βlz

−l∑K−1
k=0 αkz

−k
. (2.59)

Expanding Equation 2.59 and comparing with Equation 2.57, we infer that
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β0 =
√
Deq∆t β1 =

√
Deq∆t

α0 =
∆t

τl
+ 2 α1 =

∆t

τl
− 2

(2.60)

and {βj, αj} = 0 ∀ j ≥ 2. Placing these coefficients into the digital filter

and letting n = t + 1 to keep a forward-difference form consistent with Euler’s

method, we obtain

=⇒ ϕ′t+1 =
β0ζt+1 + β1ζt − α1ϕ

′
t

α0

. (2.61)

We assumed that ϕ′(0) = 0, so this process requires the mandatory seed

ϕ′1 = 0.

2.2.3 Implementing the discretization for AR2

Γ(t)

Suppose that the diffusion Γ(t) is a singly-correlated, order-1 autoregressive

process that satisfies Equation 2.22,

τm
dΓ

dt
+ Γ(t) = ζ(t) (2.62)
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where τm is its autocorrelation timescale.

Euler’s Method The derivative in Equation 2.62 can be approximated by

=⇒ Γ(t+ ∆t)− Γ(t)

∆t
≈ ζ(t)− Γ(t)

τm
(2.63)

=⇒ Γt+1 ≡ ζt
∆t

τm
+ Γt(1−

∆t

τm
). (2.64)

This process requires an arbitrary seed, Γ1.

Tustin’s Method The Laplace transform of Equation 2.62 is

τm

(
sΓ̃(s)− Γ(0)

)
+ Γ̃(s) = ζ̃(s). (2.65)

If we assume that Γ(0) = 0, then the transfer function is

g̃(s) =
1

τms+ 1
. (2.66)
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Applying the bilinear transformation, we derive the discrete transfer function

g̃(z) =
(∆t)z + (∆t)

(∆t+ 2τm)z + (∆t− 2τm)
. (2.67)

Comparing this with the transfer function of a digital filter, we obtain that

β0 = ∆t β1 = ∆t

α0 = ∆t+ 2τm α1 = ∆t− 2τm

(2.68)

and {βj, αj} = 0 ∀ j ≥ 2. The digital filter is then

=⇒ Γt+1 =
∆t

∆t+ 2τm
(ζt+1 + ζt) +

2τm −∆t

2τm + ∆t
Γt, (2.69)

where we have let n = t + 1 to keep a forward-difference form consistent

with Euler’s method. We assumed that Γ(0) = 0 so this process requires the

mandatory seed Γ1 = 0.
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ϕ′(t)

When the diffusion is an order-1 autoregressive process, the deviation of the

axial dipole moment ϕ′ is an order-2 autoregressive process that satisfies Equa-

tion 2.27,

τm
d2ϕ′

dt2
+ (

τm
τl

+ 1)
dϕ′

dt
+

1

τl
ϕ′(t) =

√
Deqζ(t) (2.70)

where τm is the diffusion autocorrelation timescale and τl is the drift timescale.

Euler’s Method Let

dϕ′

dt
= z(t) (2.71)

=⇒ ϕ′t+1 ≈ zt∆t+ ϕ′t. (2.72)

Then Equation 2.70 becomes

τm
dz

dt
+ (

τm
τl

+ 1)z(t) +
1

τl
ϕ′(t) =

√
Deqζ(t) (2.73)
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=⇒ zt+1 =

√
Deq∆t

τm
ζt + (1− ∆t

τl
− ∆t

τm
)zt −

∆t

τlτm
ϕ′t. (2.74)

Equations 2.72 and 2.74 are coupled and this process requires arbitrary seeds

{ϕ′1, z1}.

Tustin’s Method The Laplace transform of Equation 2.70 is

τm

(
s2ϕ̃′(s)− sϕ′(0)− dϕ′

dt

∣∣∣
t=0

)
+(
τm
τl

+ 1)
(
sϕ̃′(s)− ϕ′(0)

)
+

1

τl

(
ϕ̃′(s)

)
=
√
Deq

˜ζ(s).

(2.75)

If we assume that ϕ′(0) = 0 = dϕ′

dt

∣∣∣
t=0

and apply the bilinear transformation,

the discrete transfer function is

g̃(z) =

√
Deq∆t

2(z2 + 2z + 1)(
4τm + 2∆t( τm

τl
+ 1) + ∆t2

τl

)
z2 +

(
− 8τm + 2∆t2

τl

)
z +

(
4τm − 2∆t( τm

τl
+ 1) + ∆t2

τl

) .
(2.76)
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Comparing this with the transfer function of a digital filter, we obtain that

β0 = ∆t2
√
Deq β1 = 2∆t2

√
Deq β2 = ∆t2

√
Deq

α0 = 4τm + 2∆t(
τm
τl

+ 1) +
∆t2

τl
α2 = 4τm − 2∆t(

τm
τl

+ 1) +
∆t2

τl

α1 = −8τm +
2∆t2

τl

(2.77)

and {βj, αj} = 0 ∀ j ≥ 3. The digital filter is

=⇒ ϕ′t+2 =
β0ζt+2 + β1ζt+1 + β2ζt − α1ϕ

′
t+1 − α2ϕ

′
t

α0

. (2.78)

and we assumed that ϕ′(0) = 0 = dϕ′

dt

∣∣∣
t=0

, indicating that this process re-

quires the mandatory seeds {ϕ′1, ϕ′2} = 0.

2.2.4 Implementing the discretization for AR3

Γ(t)

Suppose that the diffusion Γ(t) is a doubly-correlated, order-2 autoregressive

process that satisfies Equation 2.38,
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τmτs
d2Γ

dt2
+ τmτs(

1

τm
+

1

τs
)
dΓ

dt
+ Γ(t) = ζ(t) (2.79)

where {τm, τs} are its autocorrelation timescales.

Euler’s Method Let

dΓ

dt
= u(t) (2.80)

=⇒ Γt+1 = ut∆t+ Γt. (2.81)

Then Equation 2.79 yields

ut+1 ≈
∆t

τmτs
ζt +

(
1− (

∆t

τm
+

∆t

τs
)
)
ut −

Γt∆t

τmτs
(2.82)

Equations 2.81 and 2.82 are coupled and this process requires arbitrary seeds,

{Γ1, u1}.
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Tustin’s Method The Laplace transform of Equation 2.79 is

τmτs

(
s2Γ̃(s)− sΓ(0)− dΓ

dt

∣∣∣
t=0

)
+ τmτs(

1

τm
+

1

τs
)
(
sΓ̃(s)− Γ(0)

)
+ Γ̃(s) = ζ̃(s).

(2.83)

If we assume that Γ(0) = 0 = dΓ
dt

∣∣∣
t=0

, apply the bilinear transformation, and

compare the discrete transfer function with the transfer function of a digital

filter, we obtain that

β0 = ∆t2 β1 = 2∆t2 β2 = ∆t2

α0 = 4τmτs + 2∆tτmτs(
1

τm
+

1

τs
) + ∆t2

α1 = −8τmτs + 2∆t2

α2 = 4τmτs − 2∆tτmτs(
1

τm
+

1

τs
) + ∆t2

(2.84)

and {βj, αj} = 0 ∀ j ≥ 3. The digital filter is

Γt+2 =
β0ζt+2 + β1ζt+1 + β2ζt − α1Γt+1 − α2Γt

α0

. (2.85)
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We assumed that Γ(0) = 0 and dΓ
dt

∣∣∣
t=0

= 0 so this process requires the

mandatory seeds {Γ1,Γ2} = 0.

ϕ′(t)

When the diffusion is an order-2 autoregressive process, the deviation of the

axial dipole moment ϕ′ is an order-3 autoregressive process that satisfies Equa-

tion 2.44,

d3ϕ′

dt3
+

(
1

τl
+

1

τm
+

1

τs

)
d2ϕ′

dt2

+

(
1

τlτm
+

1

τlτs
+

1

τmτs

)
dϕ′

dt

+

(
1

τlτmτs

)
ϕ′(t) =

√
Deq

τmτs
ζ(t)

(2.86)

where {τm, τs} are the diffusion autocorrelation timescales and τl is the drift

timescale.

Euler’s Method Let

dϕ′

dt
= w(t) and

d2ϕ′

dt2
=
dw

dt
= v(t). (2.87)
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Then Equation 2.86 gives

ϕ′t+1 = wt∆t+ ϕ′t and wt+1 ≈ vt∆t+ wt (2.88)

while

=⇒ vt+1 ≈
√
Deq∆t

τmτs
ζt + vt

(
1− (

∆t

τl
+

∆t

τm
+

∆t

τs
)

)

−

(
∆t

τlτm
+

∆t

τlτs
+

∆t

τmτs

)
wt −

(
∆t

τlτmτs

)
ϕ′t

(2.89)

All three parts of Equations 2.88 and 2.89 are all coupled and this process

requires the arbitrary seeds, {ϕ′1, w1, v1}.

Tustin’s Method We take the Laplace transform of Equation 2.86, suppose

that the initial conditions are zero, apply the bilinear transformation, and com-

pare the discrete transfer function to that of a digital filter and obtain that
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b1 = τmτs

b2 = ∆tτmτs(
1

τl
+

1

τm
+

1

τs
)

b3 = ∆t2τmτs(
1

τlτm
+

1

τlτs
+

1

τmτs
)

b4 =
∆t3

τl

(2.90)

where

β0 = ∆t3
√
Deq β1 = 3∆t3

√
Deq

β2 = 3∆t3
√
Deq β3 = ∆t3

√
Deq

α0 = 8b1 + 4b2 + 2b3 + b4

α1 = −24b1 − 4b2 + 2b3 + 3b4

α2 = 24b1 − 4b2 − 2b3 + 3b4

α3 = −8b1 + 4b2 − 2b3 + b4

(2.91)

and {βj, αj} = 0 ∀ j ≥ 4. The digital filter is

ϕ′t+3 =
β0ζt+3 + β1ζt+2 + β2ζt+1 + β3ζt − α1ϕ

′
t+2 − α2ϕ

′
t+1 − α3ϕ

′
t

α0

. (2.92)
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We assumed that {ϕ′(0), dϕ
′

dt

∣∣∣
t=0
, d

2ϕ′

dt2

∣∣∣
t=0
} = 0 so this process requires the

mandatory seeds {ϕ′1, ϕ′2, ϕ′3} = 0.

2.3 Estimating AR Model Parameters

The composite geomagnetic spectrum in Figure 1.17 was built to describe

the axial dipole field, g0
1(t), rather than the axial dipole moment, ϕ(t) [Panovska

et al., 2018]. The two quantities are related by Equation 1.8,

g0
1(t) =

µ0ϕ(t)

4πa3
, (2.93)

where µ0 = 4π · 10−7 Tm
A

is the magnetic permeability in a vacuum and

a = 6.3781 ·106m is Earth’s radius. If we want a composite spectrum describing

ϕ(t) rather than g0
1(t), we can scale the spectrum of Panovska et al. (2018) by

the proportionality presented in Equation 2.93. Assuming that g0
1(t) and ϕ(t)

have been measured in µT and 1022Am2, respectively 10, we obtain the propor-

tionality constant

2.5946µT = 1 · 1022Am2. (2.94)

Using Equation 2.94 to scale Figure 1.17 from µT 2Myr to 1044A2m4Myr

produces Figure 2.10. We illustrate the sequence of spectral regimes in Figure
10The former units have been chosen so we may easily compare our model results for the

axial dipole moment ϕ(t) to models from previous studies [Buffett et al., 2013].
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2.11 by placing straight, colored lines on top of the composite curve. A dark

blue arrow in Figure 2.11 points out a flattening in the frequency spectrum of

GGF100k [Panovska et al., 2018] that is not predicted by our models. The

dashed, black line in Figure 2.11 marks the f−2 regime that is predicted by

our models. Note that the dashed, black lines in Figure 1.17 indicate frequency

regimes associated with various types of secular variation and do not mark the

transition frequencies between adjacent spectral regimes. In contrast, dashed,

turquoise lines do mark the transition frequencies in Figure 2.11.

Figure 2.10: A composite spectrum for the geomagnetic axial dipole moment,
modified from the composite geomagnetic spectrum of Panovska et al. (2018).
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Finally, note that the composite spectrum for ϕ(t) in Figure 2.10 is plotted

on a logarithmic scale and has a jump at frequencies below 2 ·10−1 Myr−1. This

jump is predicted to be caused by changes in reversal rate and is not predicted

by any of our AR models. We therefore make a simplifying assumption that the

f 0 regime at frequencies between [2 · 10−1, 2 · 101] Myr−1 in Figure 2.10 extends

all the way to the left until f = 0. 11 We illustrate this assumption as a grey

line in Figure 2.11.

Figure 2.11: Thick grey, black (dashed), green, and red lines indicate f0, f−2,
f−4 and f−6 regimes, respectively.

11We discover later that the non-linearity in the Langevin equation is responsible for the
jump.
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We are ready to estimate our AR model parameters. We want the transi-

tions between successive spectral regimes in our AR model spectra to occur at

the same locations as the transitions in Figure 2.11. As explained in Sections

2.1.3, 2.1.4 and 2.1.5, the timescale parameters of our AR models are directly

related to the transition frequencies between successive spectral regimes via

f0,2 =
1

2πτl

f2,4 =
1

2πτm
(2.95)

f4,6 =
1

2πτs
.

We inspect Figure 2.11, infer values for {f0,2, f2,4, f4,6} from the dashed,

turquoise lines, and compute {τl, τm, τl} via Equation 2.95. To compute Deq,

we notice that the model spectra for all three AR orders reduces to

Sϕ′(0) = 2Deqτ
2
l (2.96)

at f = 0. We use Equation 2.96 to compute Deq assuming that Sϕ′(0) can

be taken directly as the height of the grey line in Figure 2.11.
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2.4 Results

Table 2.1 lists the transition frequencies in Figure 2.11 estimated by visual

inspection and Table 2.2 lists the corresponding model parameters. The value

obtained for the zero-frequency power (i.e. height of the grey line) in Figure

2.11 was

Sϕ′(0) = 0.1346 1044A2m4 Myr. (2.97)

Table 2.1: Transition frequencies between spectral regimes in the composite
geomagnetic spectrum.

Transition Frequency Estimated Value

f0,2 5.5 · 100Myr−1

f2,4 2 · 103Myr−1

f4,6 1 · 105Myr−1
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Table 2.2: Our AR model parameters.

Parameter Estimated Value

τl 28900 yr

τm 79.5775 yr

τs 1.5915 yr

Deq 80.5785 1044A2m4

Myr

Table 2.4 lists the various types of numerical simulations produced for each

model order. From now on we call each type of simulation produced a “discrete

process” to make our discussion easier. We produced a suite of realizations for

each discrete process listed in Table 2.4 using the parameters in Table 2.2. For

each discrete process, the variance of every realization was computed and then

all of the variances were averaged together, producing a mean variance value

across all realizations of the discrete process. For each discrete process, we

generated a prolate-tapered spectrum for every realization and then averaged

all of the realization spectra together. This produced a mean empirical spectrum

across all realizations of the process. A flowchart for the code built to do all of

this is provided in Appendix E.
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For each AR order, Figure 2.12 juxtaposes the theoretical model variance,

computed using the parameters from Table 2.2 and the formulas presented in

column 3 of Table 2.3, with the mean variance of each discrete process.

Figures 2.13 through 2.15 show the mean empirical spectrum of each discrete

process against the model spectrum, for each AR order. Figure 2.16 shows all

three AR model spectra against the composite geomagnetic spectrum of Figure

1.17. The composite geomagnetic spectrum is shown in blue and our AR model

spectra are shown in pink, green, and red for orders 1, 2, and 3 respectively.

(a) AR1 model variance compared with mean variance of each discrete process for
AR1 model.

(b) AR2 model variance compared with mean variance of each discrete process for
AR2 model.

(c) AR3 model variance compared with mean variance of each discrete process for
AR3 model.

Figure 2.12: AR model variances versus discrete process variances.
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(a)

(b)

Figure 2.13: Prolate-tapered spectral estimates corresponding to realizations
of the Langevin process with uncorrelated Γ(t) and to realizations of the AR1
process.
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(a)

(b)

Figure 2.14: Prolate-tapered spectral estimates pertaining to realizations of
the Langevin process, now with singly-correlated, AR1 Γ(t), and to realiza-
tions of the AR2 process.
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(a)

(b)

Figure 2.15: Prolate-tapered spectral estimates pertaining to realizations of
the Langevin process, now with singly-correlated, AR1 Γ(t), and to realiza-
tions of the AR2 process.

Figure 2.13 shows prolate-tapered spectral estimates corresponding to real-

izations of the Langevin process with uncorrelated Γ(t) show a low-frequency

bump similar to that of the composite spectrum. The bump is neither predicted
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by the AR1 model nor exhibited in the spectral estimates corresponding to re-

alizations of the AR1 process. We do however see the desired transition from

f 0 behavior to f−2 behavior in all of the curves.

Again, in Figure 2.14 prolate-tapered spectral estimates pertaining to real-

izations of the Langevin process, now with singly-correlated, AR1 Γ(t), exhibit

a low-frequency bump like the one in the composite spectrum whereas spectral

estimates pertaining to the AR2 process do not. We clearly see the desired

transition from f 0 to f−2 to f−4 regimes with transition frequencies that are

consistent across the empirical spectral estimates for all four types of discrete

processes and the AR2 model spectrum.

Figure 2.15 displays prolate-tapered spectral estimates for realizations of the

Langevin process with doubly-correlated, AR2 Γ(t) and for realizations of the

AR3 process. The former show a low-frequency bump reminiscent of the one

in the composite spectrum. The latter and the AR3 model spectrum both do

not show a low-frequency bump. There is a slight discrepancy between the AR3

model spectrum and the empirical spectrum near the first transition frequency,

f0,2. We expect that this discrepancy is due to loss of frequency resolution due to

tapering and averaging procedures built into the Thomson multitaper approach.

A full explanation of how this may have occurred is given in Appendix D.
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Figure 2.16: Our AR1, AR2, and AR3 model spectra are plotted against
the composite spectrum for ϕ(t). The composite spectrum seems to be shal-
lower than the predicted f−2 behavior and then seems to be steeper than the
predicted f−4 and f−6 behaviors in the AR model spectra.

2.5 Discussion

2.5.1 A Physical Interpretation of the Model Parameters

The new AR3 model poses some physical implications regarding the dynam-

ics in Earth’s outer core. We will investigate each model parameter in Table 2.2

and deduce what its value, obtained by comparing our model with the composite

spectrum in Figure 1.17, suggests for the physics of the geodynamo.
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Ohmic Diffusion in the Earth’s Outer Core

To begin, we analyze our drift timescale, τl = 28900 years. This is strikingly

close to the theoretical timescale that Ohmic diffusion is expected to operate

on in Earth’s outer core. The theoretical calculation is derived by considering

the magnetic induction equation,

d ~B

dt
= ∇× (~v × ~B) + η∇2 ~B, (2.98)

that describes the temporal variations in the geomagnetic field as a combina-

tion of two fundamental processes in Earth’s outer core: advection and Ohmic

diffusion. In the induction equation, ~v is the velocity and η is the magnetic

diffusivity of the outer core fluid.

η =
1

µ0σ
(2.99)

where σ is the electrical conductivity of the outer core fluid and is still not

well-constrained for Earth’s outer core [Pozzo et al., 2012].

Advection refers to the transportation of magnetic field lines by the outer

core fluid as it moves. In fact, Alfven’s theorem states that if the outer core

fluid had infinite electrical conductivity, which implies η = 0, the magnetic field

lines are frozen to the fluid and move along with it [Backus et al., 1996].

But Earth’s outer core is finitely conductive and thus has some electrical

resistance. This means that the magnetic field lines passing through the outer

core can break away from the fluid flow lines. When they do, the magnetic field

lines pass through a finitely resistive fluid and therefore relinquish some of their

energy to the environment. The dissipation of energy away from the magnetic

field is called Ohmic diffusion.
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So advection governs the transportation of magnetic energy, carried in the

field lines passing through Earth’s outer core, due to the tethering between the

flow and field lines described by Alfven’s theorem. Meanwhile Ohmic diffusion

governs the energy dissipation that occurs because the field lines are not per-

manently tethered to the flow lines and can break away, releasing energy from

the magnetic field.

If η is near 0, the outer core fluid has a strong clutch on magnetic field

lines, which take a long time to escape. We expect that Ohmic diffusion occurs

over longer timescales than advection in Earth’s outer core because the mag-

netic diffusivity for the outer core is usually estimated to be on the order of

η ≈ 1 to 10m
2

s
. To infer the timescale for Ohmic diffusion we first simplify the

induction equation by replacing every variable by a scaling parameter like

dt→ T

v → U

∇ → 1
L
.

We then estimate the timescale for Ohmic diffusion by considering what

would happen if the outer core fluid stopped moving. Then the magnetic in-

duction equation becomes the diffusion equation

d ~B

dt
= η∇2 ~B (2.100)

which reduces to an eigenvalue problem with an infinite set of solutions. The

nth solution has the form
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~Bn(t) ≈ ~Bn(~r)e
− t
td

∣∣∣ td ∝
c2

η
(2.101)

where ~r = (r, θ, φ), c is the outer core radius, a typical length scale across

which Ohmic diffusion occurs, and td is the e-folding time of magnetic energy

in the geodynamo [Backus et al., 1996]. With η ≈ 1m
2

s
and c ≈ 1000 km,

we approximate td ≈ 30, 000 years for Earth’s outer core. This is right in the

ballpark of our estimated value for τl, which suggests that Ohmic diffusion drives

the drift of the axial dipole moment towards its steady state. 12

MAC Waves in Earth’s Outer Core

The second timescale parameter obtained by comparison of our AR3 model

with the composite spectrum is τm = 80 years. This value hints at a reference

to MAC waves, where MAC stand for “magnetic” (i.e. Lorentz), “Archimedes”

(i.e. buoyant), and “Coriolis” forces. In 1993 Braginsky theoretically predicted

the possibility of MAC waves in Earth’s outer core due to the interplay between

these three forces in the momentum-balance equation for fluid parcels in Earth’s

outer [Braginsky, 1993]. 13 MAC waves are commonly expected to operate on

timescales between 60 and 80 years in Earth’s outer [Buffett, 2014], which act

as an approximate bound for our estimated τm = 80 years. Our new model

suggests that MAC waves are partially responsible for the fluctuations of the
12Of course, because thermal conductivity values are not well constrained for Earth’s outer

core, a variety of estimates for σ and hence η are possible and will change the timescale we
expect Ohmic diffusion to occur on. In addition, the length scale L used is subjective; L could
be the outer core radius, the total core radius, the total core diameter, or even the outer core
circumference at the core-mantle boundary. What really matters is that we have constrained
a timescale for Ohmic diffusion τd that lies within a small order-of-magnitude range and is
roughly reflected by the first transition frequency in the composite spectrum.

13MAC waves are similar to Rossby waves, which occur in Earth’s atmosphere as a result
of the interplay between Coriolis and inertial forces in the momentum balance equation for
fluid parcels in Earth’s atmosphere.
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axial dipole moment away from its equilibrium behavior.

Torsional Oscillations in Earth’s Outer Core

The third timescale parameter describing fast fluctuations of the axial dipole

moment away from its steady state is τs = 1.6 years. Subdecadal variations in

the geomagnetic field are often called geomagnetic jerks, and are associated

with changes in the length of day [Holme and de Viron, 2005] and with tor-

sional oscillations in Earth’s outer core [Cox et al., 2016], [Mound and Buffett,

2003], [Buffett et al., 2009]. To understand torsional oscillations, we must first

understand how there might be cylindrical regimes of fluid motion in Earth’s

outer core.

As we have found immensely useful in our modeling approach, the spherical

harmonic with the strongest contribution and the most temporal variability in

the total geomagnetic field is the dipole. The 11◦ tilt between the dipole axis

and Earth’s rotation axis averages out to 0◦ over time so we can approximate

the geomagnetic field as an axial dipole field, which could be reproduced by a

hypothetical ring current sitting at Earth’s center. The latter suggests that the

dominant axial dipole field reflects a ring or cylindrical current structure in the

outer core. Ring-like outer-core currents also make sense because the Earth’s

rotation influences the fluid motion. We thus expect cylindrical fluid formations

that are coaxial with Earth’s axis of rotation. Figure 2.17 shows three, discrete

coaxial cylinders of fluid but the actual outer core should consist of a continuous

distribution of coaxial cylinders.
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Figure 2.17: Illustrated are three, discrete coaxial fluid cylinders of flow in the
outer core. The inner core is in red, the mantle is in violet, and the outer core
is everything in between (yellow to show cylindrical flow and brown to show
general outer core). ~T is the Lorentz torque on one cylinder - the net Lorentz
torque across all three cylinders must be ~0 to satisfy the Taylor constraint.

It turns out that if the Earth’s outer core does exhibit such cylindrical flow,

the geomagnetic field in the outer core must be structured so that the net

Lorentz torque integrated across all of the coaxial cylinders must be zero at

all times. This is called the Taylor constraint [Dumberry, 2008]. Since both

the field structure and the outer core flow vary with time, the Lorentz torque

on each, individual cylinder varies with time. If the angular velocity of one

fluid cylinder changes even a little bit, the Lorentz torque on that cylinder will

change. In order to maintain the Taylor constraint, all of the other cylinders

must adjust their angular velocity as quickly as possible. And then because the

fluid motion has changed, the field produced is different so its structure and
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resulting Lorentz torque acting on coaxial cylinders in the outer core must be

different. The latter forces fluid cylinders to adjust their flow again to maintain

the Taylor constraint.

The coaxial fluid cylinders thus oscillate back and forth with respect to

each other as they respond to continuous changes in the geomagnetic field and

outer-core fluid motions. These oscillations are called torsional oscillations.

Gillet et al. (2010) showed that surface measurements of the geomagnetic field

could be inverted for core flow models and that the latter showed torsional

oscillations operating in Earth’s outer core [Gillet et al., 2010]. On the other

hand, numerical geodynamo simulations that are considered to be “Earthlike”

cannot timestep rapidly enough to produce torsional oscillations, so it remains

ambiguous whether torsional oscillations are really occurring in Earth’s outer

core.

Because torsional oscillations are related to the angular velocity of the fluid

in Earth’s outer core, which is related to the gravitationally-coupled angular

velocity of Earth’s mantle and inner core via the core-mantle boundary and the

inner-core boundary respectively, several studies have related torsional oscilla-

tions to changes in the length of day [Holme and de Viron, 2005]. The latter

was shown to operate on a 6-year timescale, which does not quite match our

τs = 1.6 years. However, τs was obtained by inspection of the composite spec-

trum and as is evident from Figure 2.16, our visual estimate for f4,6 could be off

due to a variety of reasons (smoothing in the inversion procedures used to build

CALK10k.2, HFM.OL1.A1 and GUFM1 causes their spectra to drop rapidly,

or possibly we need a higher-order model that reaches f−8 behavior and skips

f−6 behavior entirely).

Our new model tentatively suggests that fluctuations of the axial dipole
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moment away from its equilibrium behavior are partially due to torsional oscil-

lations in Earth’s outer core, if they exist.

The Rate of Energy Re-stabilization in the Dipole Field

The last parameter obtained for our new model is the diffusion coefficient,

Deq = 80.6 1044A2m4

Myr
. Below we give two equations that describe the diffusion

coefficient. We used Equation 2.102 to estimate Deq from the composite spec-

trum. Equation 2.103 was obtained by solving for the diffusion coefficient as

a function of each AR model variance in Table 2.3. The equivalence is exact

for the AR1 case. Since τm and τs are so small relative to τl, the influence of

the former two quantities on the predicted variance is relatively negligible in

the AR2 and AR3 cases and thus we have an approximate equivalence that

produces Equation 2.103.

Deq =
Sϕ′(0)

2τ 2
l

(2.102)

Deq =
σ2
ϕ′

τl
(2.103)

Equation 2.103 looks like a rate of some kind. If we consider the scenario

in Figure 2.18 where the axial dipole moment fluctuates away (blue box) from

equilibrium (orange line) and then drifts back (pink box), we can label the time

taken for the axial dipole moment to return to equilibrium as τl and label the

deviation away from equilibrium as the standard deviation predicted by our

AR models, σϕ′ . At first glance, it seems like the ratio between the standard
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deviation and the drift timescale tells us a rate at which the axial dipole moment

returns to steady state.

Figure 2.18: τl is the timescale taken by the axial dipole moment to return
to its equilibrium behavior after it has been perturbed away and the model
standard deviation σϕ′ can be taken as the approximate deviation of the axial
dipole moment from equilibrium each time it is perturbed away.

Recall that the energy in a magnetic field is always proportional to the

squared field strength [Griffiths, 2017], so the energy contained within the axial

dipole field will be proportional to the axial dipole moment squared. Conse-

quently, the energy carried within variations of the axial dipole field away from

its equilibrium state should be proportional to the variance of the axial dipole

moment, σ2
ϕ′ . We hence propose that Equation 2.103 tells us the rate at which

the energy in the axial dipole field is depleted by Ohmic diffusion operating on

timescale τl.

This starts to paint a clearer picture of what may be going on in Earth’s

outer core. MAC waves and torsional oscillations pump the axial dipole field

with magnetic energy on decadal and subdecadal timescales, which makes the

axial dipole field less energetically stable. Meanwhile, Ohmic diffusion occurs

on ten-thousand year timescales, lowering the axial dipole field back to a stable
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energy state at a rate near Deq = 80.6 1044A2m4

Myr
.

2.5.2 Comparing the Nonlinear Langevin and Linear Au-

toregressive Models

Understanding the variance of the axial dipole moment gives us insight into

the energy states of the dipole field and thus can help us understand how energy

moves throughout the geodynamo. Figure 2.12 shows that simulations of the

Langevin models consistently have a higher variance than simulations of the au-

toregressive models. There are several reasons for this. First of all, simulations

of the Langevin model for each correlation of Γ(t) are generated by drawing a

value for the drift v(ϕ) and for the diffusion coefficient D(ϕ) from the curves

in Figure 1.10, at each timestep. Figure 1.10 shows that v(ϕ) and D(ϕ) are

nonlinear functions of axial dipole moment, ϕ(t), and thus also nonlinearly de-

pend on time. The drift and diffusion thus inherently have a variance of their

own, before even playing a role in the Langevin equation. Meanwhile, in the

AR models D(ϕ) is assumed to be constant so it has 0 variance and v(ϕ) is lin-

early dependent on ϕ(t), which implies that the variance of the drift is just the

variance of the axial dipole moment. Ultimately, realizations of the Langevin

models will always have higher variance than realizations of the autoregressive

models as a direct consequence of the assumptions used to recast the Langevin

equation as an autoregressive equation.

Since the model variance is technically derived to match the autoregressive

representation it should match the variance of our AR model simulations. In

the AR1 case, both Euler’s method and Tustin’s method yield simulations with

variances that are lower than the model variance. In the AR2 and AR3 cases, the

model variance sits above the variance produced by Euler’s method and below
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the variance produced by Tustin’s method. However, the differences between all

three variance values are much less than their magnitudes and thus we conclude

that the simplified Langevin model and its simulations both have statistically

similar variance values.

Second of all, because v(ϕ) and D(ϕ) are drawn from Figure 1.10, which

displays axial dipole moment values that range from negative to positive, at

each timestep, the code built to discretize the Langevin models for ϕ(t) can

simulate reversals whereas the code that discretizes the autoregressive models

for ϕ′(t) describes the variations of the moment about a stable polarity state

and thus do not simulate reversals. Each time we simulated a discrete process

for the Langevin model, we took the absolute value of the realization before

computing its variance and producing its frequency spectrum 14. Doing so treats

the dipole low associated with a reversal as normal secular variation, rather than

a separate behavior that must be extracted out, and taking the absolute value

of a Langevin model simulation effectively turns the reversal into an excursion,

as illustrated in Figure 2.19. Hence an added amount of variance arises from

the excursional dips that remain after taking the absolute value of a simulation

for the Langevin model while corresponding autoregressive simulations totally

lack excursional dips and thus have lower overall variance.
14- only after this did we compute the average variance and average spectrum across all

realizations of the discrete process
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Figure 2.19: The top panel shows a simulation of the Langevin model with
uncorrelated Γ(t). The reversals are circled. The bottom panel shows the
absolute value of the simulation, in which the reversal events have all been
replaced with excursions that are circled.

Figures 2.13 through 2.15 show that the Langevin model predicts the lowest-

frequency jump that we see in the geomagnetic composite spectrum. For the

geomagnetic field, this jump is expected to reflect changes in reversal rate.

Since simulations of the Langevin model exhibit reversals and simulations of

the autoregressive models don’t, it makes sense that the former have the jump

and the latter do not. Our Langevin models do not explicitly predict reversals

other than by the nonlinear odd and even curves for drift and diffusion coefficient

in Figure 1.10.

Fortunately, the Poisson reversal model of Constable et al. (1998) is specif-

ically built to simulate reversals. It may prove useful to modify their Poisson

reversal model so that the average reversal rate λ and the average reversal

duration δ both vary with time. The new Poisson model spectrum will be a

time-varying spectrum, often referred to as a Wigner spectrum, that replaces
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Equation 1.44 and has the form

S(f) =
4λ(t)e−λ(t)δ(t)

λ2(t) + 4π2f 2

(
1− e−λ(t)δ(t)

(
cos(2πfδ(t)) +

λ(t) sin(2πfδ(t))

2πf

))
.

(2.104)

This new spectral curve should help us investigate exactly how a time-

varying λ(t) impacts the spectrum of the axial dipole moment at lowest fre-

quencies, and whether the lowest-frequency jump in the composite geomagnetic

spectrum actually reflects changes in reversal rate.

Figure 2.20: The effects of changing average reversal duration δ or average
reversal rate λ on the Poisson model spectrum are plotted. [Constable and
Johnson, 2005]

Constable and Johnson (2005) tested the effects of changing the average

reversal rate λ and the average reversal duration δ in Equation 2.104, as shown

in Figure 2.20. The authors also took the reversal records CK95 and CK95cc,
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treated each reversal as an axial dipole moment drop to 0, supposed that each

reversal could be given a specific duration δ, and plotted the resulting empirical

spectra against the Poisson model spectrum in Figure 2.21.

Figure 2.21: Blue, pink and black curves correspond to δ = 10, 20 or 30
kyr respectively for CK95 while the grey curve is for CK95cc. CK95 spans
0-160 Ma while CK95cc spans 0 - 83 Ma with δ = 30 kyr. The dashed
lines provide one standard error estimates for the spectral curves. The green
curve is the Poisson model spectrum with λδ = 0.02. The lower panel shows
the frequency resolution corresponding to the spectral curves. [Constable and
Johnson, 2005]

As we mentioned previously, the spectrum of the AR1 model is similar to

Equation 2.104 and the only significant difference is the term in large parenthe-

ses. Meanwhile, we do not yet know the spectrum that pertains to the nonlinear

Langevin model - we only computed the spectrum for the simplified (i.e. linear

autoregressive) version because we do not have explicit forms for v(ϕ(t)) and
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D(ϕ(t)). It is possible that the presence of time-varying v(ϕ(t)) and D(ϕ(t))

will modify the spectrum of the simplified Langevin model by introducing a

multiplicative term just like the parentheses-enclosed term in Equation 2.104.

We anticipate this solely because the time-dependent drift and diffusion

coefficient seem to be responsible for changes in reversal rate - if and only

if the lowest-frequency jump in our Langevin simulations corresponds to the

jump in the composite spectrum and the latter does, in fact, reflect changes in

reversal rate - and the multiplicative factor in Equation 2.104 directly describes

dipole reversals. In turn, the influence of the time-varying v(ϕ(t)) and D(ϕ(t))

on the autoregressive model spectrum might be inferred from the changes to

parentheses-enclosed term in the Poisson model spectrum when λ(t) and δ(t)

are functions of time. This process potentially offers insight into the explicit

forms of v(ϕ(t)) and D(ϕ(t)).

2.5.3 Comparing the Stochastic Models with the Compos-

ite Geomagnetic Spectrum

Figure 2.16 shows that our model does not perfectly match the composite

geomagnetic spectrum. The f−2 regime looks like it is too steep and the f−4 and

f−6 regimes looks like they are not steep enough. The latter might just be an

issue with smoothing in the high-frequency data or inversion methods that were

used to build CALS10k.2, HFM.OL1.A1 and GUFM1 that acts like a lowpass

filter. Also, there is a large gap in the composite spectrum between CALS10k.2

and GUFM1 which leaves us to guess visually at whether the actual spectrum

of the geomagnetic axial dipole moment should be more or less steep than what

the adjacent segments suggest. To address the former issue, note that the cause

for the shallowing in GGF100k is yet unclear and we do not know whether this
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is a distinct feature or if it indicates that the s = −2 spectral index is indeed

too steep. We could bandpass filter GGF100k to keep only the domain where

its spectrum shallows and investigate whether a pattern emerges.

2.6 Conclusions

In this study we developed an order-3 autoregressive model for the continu-

ous variations in the axial dipole moment of the geomagnetic field with respect

to time. The new model takes the form of a linear differential equation driven

by Gaussian-distributed white noise. The model is characterized by a slow drift

timescale τl by which the axial dipole moment returns to its equilibrium state

after being pulled away. Such perturbations from equilibrium are characterized

by shorter timescales τm and τs and a diffusion coefficient, Deq, that dictates

the relative influences between the fluctuations away from, and drift towards,

equilibrium on axial dipole behavior.

The new AR3 model is expedient because it predicts a theoretical frequency

spectrum with the same shape as a known, composite spectrum for the geomag-

netic axial dipole moment. Values for {τl, τm, τs, Deq} estimated by comparing

our model spectrum with the composite spectrum suggest that MAC waves and

torsional oscillations in Earth’s outer core cause the axial dipole moment to

fluctuate away from equilibrium while Ohmic diffusion drives the drift of the

axial dipole moment toward equilibrium. Deq may reflect a rate at which Ohmic

diffusion re-stabilizes the axial dipole field on 104-year timescales while MAC

waves and torsional oscillations pump the axial dipole field with energy and

render it unstable on 100 to 101-year timescales.

Evidently, we can deduce possible physics of the geodynamo from such a
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stochastic model without needing to directly observe the Earth’s outer core.

Stochastic modeling of geomagnetic field variations thus presents a powerful

tool to understanding the Earth’s deep interior.
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Appendix A

Developing a Differential Equation

for the Autocovariance of a Process

We first show how to derive a differential equation for the autocovariance of

a process that is described by a continuous, autoregressive equation. The order

of the equation does not matter - the result is essentially the same. Suppose

that a process, y(t), is described by the stochastic differential equation

a
d2y

dt2
+ b

dy

dt
+ cy(t) = ζ(t) (A.1)

where ζ(t) is Gaussian-distributed white noise. We use ζ(t) to indicate

Gaussian-distributed random noise throughout this study. We multiply both

sides by y(t+ τ), and then take the expectation value. Distributing the expec-

tation value throughout yields
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< a
d2y

dt2
y(t+τ) > + < b

dy

dt
y(t+τ) > + < cy(t)y(t+τ) > = < ζ(t)y(t+τ) >

(A.2)

where the last term is 0 because ζ(t) is a white noise process so it is totally

uncorrelated and thus on average the rightmost product will turn to 0. We

address each of the three terms on the left side individually. The first term can

be simplified as

< a
d2y

dt2
y(t+ τ) > = < a

d2y

dt2
y(t) > (A.3)

because we assume that the stochastic process is infinite and stationary, so

the expectation value should not change after any lag time τ . Then we notice

that d2y
dt2

and d2y
dτ2 because τ is just a time increment of shift, and thus a small

change in it is equivalent to a small change in time. So we have

< a
d2y

dt2
y(t+ τ) > = < a

d2y

dτ 2
y(t) > (A.4)

= < a
d

dτ

(dy
dτ
y(t)

)
> (A.5)

= < a
d

dτ

( d
dτ
y(t+ τ)y(t)

)
> (A.6)
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= < a
d2

dτ 2

(
y(t+ τ)y(t)

)
> (A.7)

= a
d2

dτ 2

(
< y(t+ τ)y(t) >

)
(A.8)

=⇒ < a
d2y

dt2
y(t+ τ) > = a

d2(Ry(τ))

dτ 2
(A.9)

is the first term. Similarly,

< b
dy

dt
y(t+ τ) > (A.10)

= < b
dy

dt
y(t) > = < b

dy

dτ
y(t) > (A.11)

= b
d

dτ

(
< y(t+ τ)y(t) >

)
(A.12)

=⇒ < b
dy

dt
y(t+ τ) > = b

d(Ry(τ))

dτ
(A.13)

and

< cy(t)y(t+ τ) > = cRy(τ). (A.14)

The original stochastic differential equation becomes
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a
d2Ry

dτ 2
+ b

dRy

dτ
+ cRy(τ) = 0. (A.15)
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Appendix B

Why ζ(t) Has Variance 2

The Fourier transform of Rϕ′(τ) for the AR1 model is

F
(
Rϕ′(τ)

)
=

∫ ∞
−∞

Deq.τle
−τ
τl e−2πifτdτ (B.1)

= (Deq.τl)
( 2 1

τl

4π2f 2 + 1
τ2
l

)
(B.2)

=
2Deq.

4π2f 2 + 1
τ2
l

. (B.3)

Equation B.2 reveals that the Fourier transform of double-sided exponential

decay function automatically has a 2 in its numerator. The same applies to the

AR2 and AR3 models, where Rϕ′(τ) contains multiple double-sided exponential

functions and thus a factor of 2 emerges when we compute the model spectrum

according to Equation2.8.
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This is why we mandate that the white noise process, ζ(t), must have a

variance of 2. From the AR1 example it is clear that inserting |ζ̃(f)|2 = 2 into

Equation 2.9 produces Equation B.3. In fact for any model order, |ζ̃(f)|2 = 2

ensures that we obtain matching model spectra according to both Equation 2.8

and Equation 2.7.

140



Appendix C

Tustin’s Method

Tustin’s method is used to design a digital filter that yields a discrete se-

quence whose frequency distribution matches that of a continuous process. The

first step to designing a digital filter is to recall the Laplace transform. That is,

ỹ(s) ≡ L
(
y(t)

)
≡
∫ ∞
−∞

y(t)e−stdt, (C.1)

in which s is complex. If and only if s = 2πif , this integral turns into

the (continuous-time) Fourier transform. The Fourier transform is just the

Laplace transform evaluated on the imaginary axis of the complex s plane.

When s = 2πif and f are real-valued, changing f equates to picking points

along the imaginary axis. While the Fourier transform exhibits the behavior of

our system in a one-dimensional “real frequency” domain, the Laplace transform

shows us the behavior of our system in a two-dimensional “complex frequency”

domain. The difference can be visualized as shown in Figure C.1.
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Figure C.1: On the left is a plot of the magnitude of the transfer function
g̃(s) ≡ 3s2+6is−2

−is2+2s+4i
atop the complex s plane. The two poles and two zeros are

visibly at i +
√

3, i −
√

3, −i3 (
√

3 + 3), and i
3(
√

3 − 3), respectively. On the
right is the magnitude of the transfer function exactly at the imaginary axis;
this is the ratio between the real frequency distributions of the output and
the input for the differential system described by g̃(s).

We must also derive a discrete analog to the Laplace transform. Suppose

we sample from the continuous process y(t) at the regular time interval ∆t. As

illustrated in Figure C.2, our sequence of samples is

yn =
∞∑
n=0

δ(t− n∆t)y(t); (C.2)

we are assuming that the sequence is infinite because the continuous process

is infinite. Then, taking the Laplace transform of the sequence yields

L
(
yn

)
(C.3)

=

∫ ∞
−∞

e−st
∞∑
n=0

δ(t− n∆t)y(t)dt (C.4)

=
∞∑
n=0

∫ ∞
−∞

e−stδ(t− n∆t)y(t)dt (C.5)
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=
∞∑
n=0

e−sn∆ty(n∆t). (C.6)

Figure C.2: Sampling a continuous process. The smaller the value of ∆t, the
better the sequence yn will resemble the original process y(t).

Notice how y(n∆t) = yn from Figure C.2. If we simplify our sum by letting

z ≡ es∆t, then (C.7)

=⇒ ỹ(z) ≡
∞∑
n=0

z−nyn, (C.8)

is formally called the “z-transform”, in which z is complex. If and only if

z = e2πif∆t, this sum turns into the discrete Fourier transform of an infinite
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sequence.

So the discrete Fourier transform is just the z-transform evaluated on the

unit circle in the complex z plane. This can be visualized as shown in the

diagram. While the Laplace transform describes the complex frequency distri-

bution of a continuous signal, the z-transform describes the complex frequency

distribution of a discrete process - in our case a recursive digital filter.

We look at things in the complex frequency domain because it provides

general theory for recursive digital filters that mimic complex-coefficient differ-

ential equations; we return to real coefficients and frequencies at the very end.

First, we take the Laplace transform of the entire autoregressive equation. For

example, if we have a second-order stochastic differential equation,

a
dy

dt2
+ b

dy

dt
+ cy(t) = ζ(t) (C.9)

=⇒ L
(
a
dy

dt2
+ b

dy

dt
+ cy(t) = ζ(t)

)
(C.10)

=⇒ a
(
s2ỹ(s)− sy(0)− dy

dt

∣∣∣
t=0

)
+ b
(
sỹ(s)− y(0)

)
+ cỹ(s) = ζ̃(s). (C.11)

Next we assume that all of the initial conditions are zero and then solve for

the ratio between the output and the input. So y(0) = 0 and dy
dt

∣∣∣
t=0

= 0 and
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(as2 + bs+ c)ỹ(s) = ζ̃(s) (C.12)

=⇒ ỹ(s)

ζ̃(s)
≡ g̃(s) =

1

as2 + bs+ c
. (C.13)

This ratio is called the transfer function. Notice that the bottom is a poly-

nomial, indicating that there are “poles”, si, in the complex plane where the

transfer function blows up because the si are the roots of the polynomial. The

reason we look at this ratio rather than just ỹ(s) is because both y(t) and ζ(t)

are continuous processes we want to discretize, so it is efficient to analyze both

as a ratio in one, clean sweep.

Meanwhile, a recursive digital filter has the standard form

K−1∑
k=0

αkyn−k =
L−1∑
l=0

βlζn−l (C.14)

when {ζt} is the input sequence and {yt} is the output sequence. We as-

sume that the input is white noise and want to find the {αk, βl} that make the

complex frequency distribution of this filter process have the same poles, si, as

that of our continuous process. So taking the z-transform and isolating the ratio

between the output and input yields
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ỹ(z)

ζ̃(z)
≡ g̃(z) =

∑L−1
l=0 βlz

−l∑K−1
k=0 αkz

−k
(C.15)

as the transfer function of a digital filter. Now recall from Equation C.7 that

z = es∆t. (C.16)

We can rewrite this as

z =
e
s∆t

2

e−
s∆t

2

(C.17)

≈
1 + s∆t

2
+ . . .

1− s∆t
2

+ . . .
(C.18)

=⇒ s =
( 2

∆t

)(z − 1

z + 1

)
(C.19)

where the expansion

ex =
∞∑
n=0

xn

n!
(C.20)

is used. Equation C.19 is called the “bilinear transformation” and approxi-
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mates the exact exponential transformation from s to z domain. We substitute

equation C.19 into equation C.13 and algebraically simplify the result into a

large fraction whose numerator and denominator are each polynomials of z.

Comparing the coefficients of these polynomials with equation C.15, we obtain

{αk, βl} and thus our digital filter as presented in Equation C.14.
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Appendix D

Loss of Resolution In Spectral

Estimates

When we want to model a physical quantity statistically, we usually treat

the quantity represented in our model as a random variable with a mean and

variance. This was the approach of CP88 [Constable and Parker, 1988] used to

model various Gauss coefficients and describes our models of the axial dipole

moment, which produce a theoretical variance for ϕ′(t) and assume that it has

mean 0. 1

Suppose now that S(f) is the true frequency spectrum of the continuously

time-varying axial dipole moment of the geomagnetic field. Given a time series

that samples the continuous process at N points, formalisms have been devel-

oped to compute a spectral estimate, Ŝ(f), which is a random variable that has

a mean and standard deviation along a continuous range of frequencies.

So Ŝ(f) is the curve we compute using a time series that samples the con-

tinuous process in an effort to elucidate the shape of the true spectrum, S(f).
1We do not discuss the theoretical probability function for ϕ(t) predicted by the Langevin

and AR models; for a discussion, see [Buffett et al., 2013].
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There are two things that are difficult about producing a spectral estimate.

First, if we compute a direct spectral estimate using the formula

Ŝ(f) =
1

N

∣∣∣∣∣
N−1∑
n=0

yne
−2πinf

∣∣∣∣∣
2

(D.1)

then the standard deviation of Ŝ(f) is equal to its value at each frequency.

When the standard deviation of our estimate is as big as the estimate itself, we

know that our estimation procedure is not great.

Second, the expectation value of Ŝ(f) obtained via Equation D.1 is likely

distorted from S(f). A bit of algebra shows that the expectation value is

< Ŝ(f) >=

∫ 1
2

− 1
2

S(f ′)FN(f ′ − f)df ′ (D.2)

where

FN(f ′ − f) =
1

N

sin2(πNf)

sin2(πf)
(D.3)

is called the Fejer kernel. So the direct spectral estimate obtained from

Equation D.1 is produced by convolving the true spectrum of the continuous

process with the Fejer kernel.
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Figure D.1: Fejer kernel for N = 10 in a linear and log scale. The red curves
are a sinc-squared approximation to the Fejer kernel. [Agnew et al., 2018]

The Fejer kernel is shown in Figure D.1 and has a significant amplitude

away from its central peak. Notice that as N →∞, the Fejer kernel becomes a

Dirac delta function and we ideally get S(f) = Ŝ(f). The Dirac delta function

perfectly samples the true spectrum at every frequency with no interfering in-

fluence from the values of the spectrum at other frequencies. 2 Meanwhile, the

large sidelobes of the Fejer kernel cause each spectrum value estimated at each

frequency to be influenced by the values of the spectrum at adjacent frequencies

and this effect is called spectral leakage.

Spectral leakage is a large problem when S(f) has a large dynamic range.

Since we cannot see S(f) and only obtain Ŝ(f), we do not know precisely how

much leakage occurred or where, during the estimation procedure.

We can solve the first issue by adopting some sort of averaging method. If

we split the original time series into K segments and assume that the series

is stationary and ergodic, then each segment gives us an independent time

series for the axial dipole moment and we can compute K, independent direct

spectral estimates (DSE) using Equation D.1 and finally average the K estimates

2So the value of Ŝ(f0) only depends on the value of S(f0), and not on any other S(fi) |
i 6= 0.
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together. The final, mean DSE has a variance that is 1
K

times the variance

of each DSE in the average. We have effectively lowered the variance of our

estimate by a factor of K.

We can solve the second issue by considering Equation D.1 a little differently.

Suppose that we multiply the time series by a sequence of weights, {wn}, and

recompute the weighted spectral estimate as

Ŝ(f) =
1

N

∣∣∣∣∣
N−1∑
n=0

wnyne
−2πinf

∣∣∣∣∣
2

(D.4)

with expectation value

< Ŝ(f) >=

∫ 1
2

− 1
2

S(f ′)w̃k(f
′ − f)df ′ (D.5)

where

w̃k(f) =
1

N

∣∣∣w̃(f)
∣∣∣2 (D.6)

is the squared Fourier transform of the wight sequence divided by its length.

When wn = 1∀n ∈ [1, N ], i.e. the weight sequence is a boxcar function whose

squared Fourier transform over length is actually the Fejer kernel, we retrieve

the formulas for the direct spectral estimate and its expectation value.

To ameliorate the spectral leakage caused by large sidelobes in the Fejer

kernel, we design a sequence of weights {wn}, called a taper, whose squared

Fourier transform instead has small sidelobes relative to a prominent central

lobe. To reduce the variance of our spectral estimate, it is sometimes useful to

apply K different tapers to the entire time series rather than applying one taper

to K individual segments of the time series. Furthermore, if we have K tapers

that are mutually orthogonal, then each spectral estimate that results from the
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taper-and-transform procedure in Equation D.4 will be uncorrelated with the

estimate produced using the next taper. This, in turn, reduces the variance of

the final mean estimate as much as possible.

When we average K spectral estimates together, the mean curve is smoother

and has lower frequency resolution than did each, independent estimate. Large

and small values for K produce spectral estimates with less and more frequency

resolution, respectively. So the averaging process lowers the variance of our

final estimate, which is good, but also lowers the frequency resolution of our

final estimate, which is unfortunate.

Often times tapers have broad central lobes and small sidelobes. The latter

characteristic suppresses spectral leakage but the broad central lobe introduces

a loss of frequency resolution. Like the tradeoff between variance and resolu-

tion that arises from averaging K spectral estimates together, a useful weight

function introduces a tradeoff between spectral leakage and resolution.

The process of obtaining a spectral estimate with small variance and min-

imized spectral leakage is multifold: we multiply the time series - i.e. a real-

ization of the axial dipole moment - by K orthogonal prolate tapers, compute

K mutually-uncorrelated spectral estimates, and finally average all K spectral

estimates together to form a mean estimate.

To generate empirical spectral estimates for realizations of the Langevin and

AR processes, we used mutually-orthogonal prolate spheroidal tapers, shown by

David Slepian in 1978 to have a Fourier transform that concentrates energy into

the central lobe as much as possible [Slepian, 1978].

When computing empirical spectra for our order 3 model, we used a larger

“time-bandwidth product”, p, than the one used for our lower-order cases. The

time-bandwidth product p is a parameter that controls the width of the central
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lobe in each prolate taper. So the central lobe of all K prolate tapers got a little

broader, lowering the frequency resolution of each spectral estimate produced

per prolate taper.

The time-bandwidth product is also directly proportional to the number

of tapers used. A higher value for p implies a higher value for K, lowering

the frequency resolution in the mean spectral estimate produced for a single

realization. Furthermore, the frequency resolution diminishes further when we

average together 20 mean estimates pertaining to 20 realizations of a discrete

process, and plot the final result in Figure 2.15.

When we generated DSE for the order-3 discrete processes, there was no

discrepancy near f0,2 but the DSE also flattened out before f4,6 and failed to

exhibit any f−6 behavior - a clear sign of spectral leakage. After prolate taper-

ing, the spectral estimate continued to steepen at f4,6 into f−6 behavior, but

the discrepancy near f0,2 appeared. We expect that in our aim to view the f−6

regime we lost spectral resolution, giving rise to the discrepancies between the

empirical spectra and the composite curve near f0,2 in Figure 2.15.
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Appendix E

A Flowchart for our Code

In Figure E.1, “Equ. . . .” refers to stochastic differential equations that are

labeled in the text.

A sequence of Γt values is produced, according to the linear AR equation for

Γ(t) that corresponds to each model order being considered, using either Euler or

Tustin discretization. For each model order and for each discretization method,

a value from the corresponding Γt sequence is fed into the nonlinear Langevin

equation at each timestep. Values for the drift and diffusion coefficient are

pulled from the curves in Figure 1.10 and also fed into the nonlinear Langevin

equation at each timestep. The Euler-discretized nonlinear Langevin equation

then generates a value for ϕt, at each timestep, according to the particular model

order being considered (superscript) and discretization method used (subscript)

- i.e. according to a particular discrete process from Table 2.3. Each discrete

process in the row indicated by (a) in Figure E.1 is simulated 20 times. A

prolate-tapered spectral estimate {Sf} for every simulation of every discrete

process is generated using the pmtm function in MATLAB and a half-bandwidth

of 15, which yields the row marked by (b). The 20 spectral estimates produced
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for each realization of a discrete process are averaged to produce one, mean

spectral estimate for that discrete process. The superscript indicates the AR

order of Γ(t) that was fed into the nonlinear Langevin equation. The subscript

indicates which method was used to discretize the AR equation for Γ(t).

Meanwhile, for each model order, the corresponding linear AR equation is

discretized using either Euler or Tustin discretization. This generates a simula-

tion for ϕ′t pertaining to a particular discrete process from Table 2.3, depending

on the model order and the discretization procedure used. Each discrete process

in the row indicated by (c) in Figure E.1 is simulated 20 times. A prolate-tapered

spectral estimate {Sf} for every simulation of every discrete process is generated

using the pmtm function in MATLAB and a half-bandwidth of 15, which yields

the row marked by (d). The 20 spectral estimates produced for each realization

of a discrete process are averaged to produce one, mean spectral estimate for

that discrete process. The superscript indicates the AR order of ϕ′(t). The

subscript indicates the method used to discretize the AR equation for ϕ′(t).

Prolate-tapered spectral estimates for discrete processes as well as the model

spectrum pertaining to the order-1, 2, and 3 axial dipole are boxed in lilac, green

and red, respectively. Mean spectral estimates are finally plotted against the

corresponding AR model spectrum in Figures 2.13 through 2.15.
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Figure E.1: A flowchart of the logic used to build our MATLAB code. The
lilac, green, and red dashed lines link empirical spectra and the model spec-
trum pertaining to orders 1, 2, and 3, respectively. Spectra boxed in lilac,
green, and red are superimposed to show our results for simulations of model
orders 1, 2, and 3, respectively, in Section 2.4.
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