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Abstract of the Dissertation

Instantons and odd Khovanov homology

by

Christopher William Scaduto

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2015

Professor Ciprian Manolescu, Chair

We construct a spectral sequence from the reduced odd Khovanov homology of a

link converging to the framed instanton homology of the double cover branched

over the link, with orientation reversed. Framed instanton homology counts certain

instantons on the cylinder of a 3-manifold connect-summed with a 3-torus. En route,

we provide a new proof of Floer’s surgery exact triangle for instanton homology

using metric stretching maps, and generalize the exact triangle to a link surgeries

spectral sequence. Finally, we relate framed instanton homology to Floer’s instanton

homology for admissible bundles.
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CHAPTER 1

Introduction

1.1 Floer’s instanton homology

Instanton homology is a gauge-theoretic invariant for 3-manifolds defined by An-

dreas Floer in the late 1980’s [13, 14]. Its construction is motivated by applying the

ideas of finite-dimensional Morse homology to the Chern-Simons functional, whose

domain is an infinite-dimensional space of connections on a fixed SO(3)-bundle over

the base 3-manifold Y . The result (up to small perturbations) is a chain complex

whose generators are flat connections on Y , and whose differential counts isolated

gradient flow lines of the Chern-Simons functional. These flow lines can be inter-

preted as connections on the cylinder R×Y that are anti-self-dual (ASD), otherwise

known as instantons – that is, connections with anti-self-dual curvature. The study

of instantons on closed 4-manifolds had been exploited prior to Floer’s work with

magnificent success by Donaldson [8].

Due to technical obstacles caused by the presence of reducible connections, Floer’s

construction was first only carried out for homology 3-spheres Y . A homology 3-

sphere is a 3-manifold with the same integral homology as the 3-sphere S3. The

resulting invariant I(Y ), called the instanton homology of Y , is a Z/8-graded abelian

group. Floer then extended his construction to include some 3-manifolds with

b1(Y ) > 0. In this latter case, however, the extra data of an SO(3)-bundle Y over Y

is required, and, to avoid reducible connections, the bundle Y must be admissible in

the following sense.
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Definition 1.1.1. An SO(3)-bundle Y over a closed, connected and oriented 3-

manifold Y is said to be admissible if either (i) Y is a homology 3-sphere (in which

case Y is trivial) or (ii) there exists an orientable surface Σ ⊂ Y with Y|Σ non-trivial.

In case (ii), we say Y is non-trivial admissible.

The case (ii) is equivalent to the conditions that w2(Y) is non-zero and lifts to a

non-torsion class in H2(Y ;Z). Floer defined an abelian group I(Y) for any admis-

sible bundle over a 3-manifold. In the non-trivial admissible case, the group is only

relatively Z/8-graded.

The groups I(Y) are difficult to compute in general. Fintushel and Stern [12]

computed I(Y ) when Y is a homology 3-sphere Brieskorn sphere Σ(p, q, r), and

closed formulae are now known for any homology 3-sphere Seifert-fibered space [37,

Thm 6.28]. Some other computations of I(Y) are made possible by Floer’s exact

triangle, which will be discussed in Chapter 3.

1.2 Framed instanton homology

From Floer’s instanton homology I(Y) for admissible bundles one can construct an

invariant I#(Y ) defined for any closed, connected, oriented 3-manifold Y . The trick,

due to Kronheimer and Mrowka, is the following: making some inessential choices,

we construct a bundle Y# over Y#T 3 by gluing together a trivial bundle over Y and

a non-trivial bundle over T 3, the 3-torus. The bundle Y# is always admissible, and

the group I(Y#), it turns out, is always 4-periodic. The framed instanton homology

of Y , written I#(Y ), is the Z/4-graded abelian group isomorphic to four consecutive

gradings of I(Y#). The terminology framed is from [21], and comes from interpreting

I#(Y ) as a Morse-Bott homology theory of the Chern-Simons functional on the space

of framed connections.

The framed instanton homology I#(Y ) is isomorphic to the sutured instanton

group SHI(M,γ) introduced by Kronheimer and Mrowka in [22], where M is the

2



complement of an open 3-ball in Y and γ is a suture on the 2-sphere boundary.

We restate a conjecture of Kronheimer and Mrowka, transferred from the sutured

setting, cf. [22, Conj. 7.24]:

Conjecture 1.2.1. The framed instanton homology I#(Y ) is isomorphic to the

Heegaard-Floer hat homology ĤF(Y ).

Heegaard-Floer homology was introduced by Ozsváth and Szabó [34] in the early

2000’s, and has enjoyed much more computational success over I#(Y ). A related

gauge-theoretic Floer theory is H̃M(Y ), a version of monopole-Floer homology, as

defined by Bloom [3] using the machinary of Kronheimer and Mrowka [23]. It has

been shown, after much work, that the monopole-Floer group H̃M(Y ) is isomorphic

to ĤF(Y ), cf. [25, 6, 40].

1.3 A spectral sequence from odd Khovanov homology

Khovanov homology, defined originally by Khovanov [19] in 2000, is a combinatorially

defined link invariant that comes in the form of a bigraded abelian group Kh(L).

From it, one can recover the Jones polynomial. The first instance of a structural

relation between a Floer homology and a combinatorial link homology was given by

Ozsváth and Szabó:

Theorem 1.3.1 (Ozsváth-Szabó [35]). Given a link L, there is a spectral sequence

with E2-page Kh(L;F2), the reduced Khovanov homology of L, that converges to

ĤF(Σ(L);F2), where Σ(L) is the double cover of S3 branched over L.

We have written F2 for the field Z/2. An overline Y over a manifold indicates

orientation reversal. In the sequel, it will be convenient to write this result as

E2 = Kh(L;F2)  ĤF(Σ(L);F2).

The notation A B is an abbreviation for the existence of a spectral sequence with

some starting page A converging to B.

3



Ozsváth and Szabó speculated in [35] that their spectral sequence, if lifted to Z-

coefficients, would not have reduced Khovanov homology as the E2-page, but would

have some other link homology with altered signs in the differentials. With this is

mind, Ozsváth, Rasmussen and Szabó [33] defined an abelian group Kh′(L) called

the odd Khovanov homology of L. With F2-coefficients, it coincides with Khovanov

homology – but they are very different with Z-coefficients.

Odd Khovanov homology is bigraded by a homological grading, called t, and a

quantum grading, called q. There is a splitting

Kh′(L)t,q ' Kh′(L)t,q−1 ⊕Kh′(L)t,q+1,

where Kh′(L) is called the reduced odd Khovanov homology. The bigraded group

Kh′(L)t,q categorifies the Jones polynomial JL in the sense that

JL(x) =
∑
t,q

(−1)trkZ(Kh′(L)t,q)x
q.

Here, Junknot(x) = 1. The authors of odd Khovanov homology put forth

Conjecture 1.3.2 (Ozsváth-Rasmussen-Szabó [33]). Given a link L, there is a spec-

tral sequence with E2-page Kh′(L), the reduced odd Khovanov homology of L, con-

verging to ĤF(Σ(L)).

One of the main results of this thesis, as motivated by Conjecture 1.2.1, is the

construction of an instanton analogue of Conjecture 1.3.2:

Main Theorem (see Ch. 6). Given a link L, there is a spectral sequence with E2-

page Kh′(L), the reduced odd Khovanov homology of L, that converges to the framed

instanton homology I#(Σ(L)).

A novelty of our spectral sequence is its compatibility with Z/4-gradings. Indeed,

the Z/4-grading of framed instanton homology has as of yet no Heegaard-Floer or

monopole-Floer counterpart, which only come equipped with absolute Z/2-gradings.
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We define a mod 4 grading δ# on Kh′(L) by the formula

δ# :=
3

2
q − t+

1

2
(σ + ν) mod 4,

where σ and ν are the signature and nullity of L, respectively. The grading δ# is

carried via our spectral sequence to the mod 4 grading on I#(Σ(L)).

1.4 The signs: composing homology orientations

The main difficultly in the proof of our spectral sequence is the computation of

signs in the relevant differential in framed instanton homology at the E1-page –

that is, the ability to work with Z-coefficients. In fact, the F2-coefficient version

of our spectral sequence is rather straightforward, given the material of Chapter

3: the proof is nearly complete after the short discussion in §6.3. To work with

Z-coefficients, however, we require a firm understanding of how signs work in the

morphisms of framed instanton homology.

Given a 4-dimensional cobordism X : Y1 → Y2 between two 3-manifolds, we

obtain an induced group homomorphism I#(X) : I#(Y1) → I#(Y2) on framed in-

stanton homology. This morphism, however, is only well-defined up to an overall

sign. To fix a sign, we need the extra data of a homology orientation of X – an

orientation of the real vector space

H1(Y1;R)⊕H1(X;R)⊕H+
2 (X;R).

Thus homology orientations are part of the morphism data in an appropriate category

on which framed instanton homology is a functor. So to understand the signs in our

differentials, we require an understanding of how to compose homology orientations.

This is the undertaking of Chapter 5, in which we introduce an algebro-topological

way of composing homology orientations. The composition rule for homology orien-

tations we define is perhaps the main technical novelty in this thesis, and is what

allows us to verify the construction of our spectral sequence with Z-coefficients.

5



1.5 Double branched covers of quasi-alternating links

Our spectral sequence allows us to compute I#(Y ) when Y is the double branched

cover of a non-split alternating link, and, more generally, that of a quasi-alternating

link L. For these cases, the spectral sequence actually collapses at the E2-page

because the gradings are supported in the even degrees 0, 2 mod 4. We obtain

I#(Σ(L)) ' Z
1
2

(det(L)+2#L−1)

(0) ⊕ Z
1
2

(det(L)−2#L−1)

(2) (1.1)

where Z(i) stands for a copy of Z supported in grading i mod 4, and #L is the

number of components of the link L. Note here that the total rank of I#(Σ(L)) is

given by the determinant of L. This result verifies Conjecture 1.2.1 for the class of

3-manifolds that are double branched covers over quasi-alternating links.

To better understand the meaning of (1.1), let L be the 2-bridge link of type

(p, q), which is a non-split alternating link. Then Σ(L) is the lens space L(p, q). We

have det(L) = |H1(L(p, q))| = p and #L = 1 if p is odd and #L = 2 if p is even.

The formula (1.1) yields

I#(L(p, q)) ' Zd
p+1

2
e

(0) ⊕ Zb
p−1

2
c

(2) .

We then observe that this is none other than the Z/4-graded abelian group

H∗(Hom(π1, SU(2)))

where π1 = π1(L(p, q)) ' Z/p. Indeed, Hom(Z/p, SU(2)) is a collection of 1 point

and
(
p−1

2

)
2-spheres if p is odd and 2 points and

(
p
2
− 1
)

2-spheres if p is even.

This observation aligns with the interpretation of framed instanton homology as a

Morse-Bott theory for framed connections, as Hom(π1, SU(2)) is, via the holonomy

correspondence, the space of flat framed connections on Y up to equivalence (the

usual, unframed correspondence involves modding out by conjugation).
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1.6 The relationship between I#(Y ) and I(Y )

For examples of when our spectral sequence does not collapse, we look to relate

I#(Y ) to Floer’s instanton homology I(Y ) when Y is a homology 3-sphere, and then

use the calculations of I(Y ) available in the literature. As I#(Y ) is determined by

the instanton homology of an admissible bundle over Y#T 3, we can apply a modified

version of Fukaya’s instanton connected sum theorem of [17].

The resulting relationship between I#(Y ) and I(Y ) is best understood using

Frøyshov’s reduced instanton groups Î(Y ) from [16], which are obtained from I(Y )

by considering interactions with the trivial connection. They come equipped with

an absolute Z/8-grading and a degree 4 endomorphism u. Frøyshov’s Theorem 10

says (u2 − 64)n = 0 for some n > 0, when the coefficient ring contains an inverse for

2. We find, for example, that

I#(Y ;Q) ' ker(u2 − 64)⊗
(
Q(0) ⊕Q(3)

)
⊕Q(0) (1.2)

as Z/4-graded vector spaces, where u2−64 is acting on
⊕3

j=0 Î(Y ;Q)j. The coefficient

ring Q can be replaced by any field of characteristic not equal to 2. There are cases in

which the relationship between I#(Y ) and I(Y ) is more exact: for instance, when Y

is ±1-surgery on a knot of genus at most 2, and Y happens to be homology cobordant

to S3, we obtain

I#(Y ;Q)⊕2 ' I(Y ;Q)⊗
(
Q(0) ⊕Q(3)

)
⊕Q(0).

This result, combined with the computations of Fintushel and Stern [12], allows us

to compute the framed instanton homology of the Brieskorn spheres Σ(2, 3, 6k ± 1):

I#(Σ(2, 3, 6k + 1);Q) ' Qbk/2c+1
(0) ⊕Qbk/2c(1) ⊕Qdk/2e(2) ⊕Qdk/2e(3) ,

I#(Σ(2, 3, 6k − 1);Q) ' Qdk/2e(0) ⊕Qdk/2e−1
(1) ⊕Qbk/2c(2) ⊕Qbk/2c(3) .

The 3-manifolds Σ(2, 3, 6k± 1) are branched double covers over the (3, 6k± 1) torus

knots, and as such these computations provide many examples in which our spectral

sequence does not collapse.
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The result (1.2), along with a simple argument involving Floer’s exact triangle,

also allows us to compute the Euler characteristic of I#(Y ). We find that

χ(I#(Y )) = |H1(Y ;Z)|,

where |S| stands for the cardinality of S when S is finite, and is 0 otherwise. This

confirms that the Euler characteristics of Conjecture 1.2.1 match up, i.e., χ(I#(Y )) =

χ(ĤF(Y )).

1.7 Another proof of Floer’s exact triangle

The proof of the main theorem, our spectral sequence, requires an understanding of

how instanton homology behaves with respect to Dehn-surgery on 3-manifolds. The

first result in this direction is Floer’s, in the form of an exact sequence

· · · I(Y)→ I(Y0)→ I(Y1)→ I(Y)→ · · ·

Here Y, Y0 and Y1 are certain admissible bundles over 3-manifolds Y , Y0 and Y1,

where Y0 and Y1 are the results of 0- and 1-surgery, respectively, on some fixed framed

knot in Y . Because of the 3-periodicity of this sequence, we call his result the exact

triangle in instanton homology.

An essential ingredient in the construction of Ozsváth and Szabó’s spectral se-

quence of Theorem 1.3.1 is a link surgeries spectral sequence. This is a generalization

of the exact triangle in which one does surgery on a link L ⊂ Y instead of just a

knot. We provide the instanton analogue of this result, which takes the form of a

spectral sequence

E1 =
⊕

v∈{0,1}#L

I(Yv)  I(Y) (1.3)

in which Yv is a bundle over the result of doing 0- and 1-surgery on each component

of L according to the vector v. There are conditions as to which bundles are allowed

here. We mention that Bloom [3] constructed a link surgeries spectral sequence in
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the setting of monopole Floer homology, and from this obtained a spectral sequence

from Kh(L;F2) to H̃M(Σ(L);F2).

Floer’s exact triangle was studied by Braam and Donaldson in [5], where a de-

tailed proof following Floer’s ideas can be found. In Chapter 3 we provide an alter-

native proof. The proof relies on the triangle detection lemma, first used by Ozsváth

and Szabó [35], which requires the input of maps between three chain complexes

satisfying certain properties. The maps we choose count instantons on families of

metrics that are parameterized by convex polytopes. This approach was used by

Kronheimer, Mrowka, Ozsváth and Szabó to prove a surgery exact sequence in the

monopole case [24]. Our proof is largely an adaptation of Kronheimer and Mrowka’s

proof in [20] of an exact triangle in singular instanton homology, although the anal-

ysis of instanton counting is different. As in their case, our proof easily generalizes

to prove (1.3). Especially relevant here is the work of Bloom [3], who studied the

combinatorics of link surgeries spectral sequences.

1.8 Relation to singular instanton homology

Kronheimer and Mrowka [20] introduced the singular instanton homology groups

I#(Y, L) and I\(Y, L), where L is a link in Y . The framed group I#(Y ) is ob-

tained from I#(Y, L) by taking L to be empty. The construction of these more

general groups involves counting instantons on R × Y singular along R × L. Writ-

ing I#(L) = I#(S3, L) and I\(L) = I\(S3, L), Kronheimer and Mrowka produced

spectral sequences

E2 = Kh(L)  I#(L), E2 = Kh(L)  I\(L).

Here Kh(L) and Kh(L) are unreduced and reduced Khovanov homology, respectively.

Their spectral sequences respect Z/4-gradings. Using the latter spectral sequence,

they proved in [20] that Khovanov homology detects the unknot.
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1.9 Outline

The outline of this thesis is as follows. We begin in Chapter 2 by reviewing Floer’s

instanton homology for admissible bundles. Then, in Chapter 3, we state and prove

Floer’s instanton exact triangle and its generalization, the link surgeries spectral

sequence. Next, we focus our attention on framed instanton homology, studying

its basic properties and constructions in Chapter 4. In Chapter 5, we define a rule

for composing homology orientations, which is needed to understand the signs of

morphisms in framed instanton homology. We then use the machinary developed

so far to prove the main theorem, our spectral sequence, in Chapter 6. In this

chapter the definition of reduced odd Khovanov homology is also given. In Chapter

7, we study the relationship between I(Y ) and I#(Y ) for homology 3-spheres via

the connected sum theorem of Fukaya. Finally, in Chapter 8, we perform some

computations in framed instanton homology, including the determination of I#(Y )

for double branched covers of quasi-alternating links and for the Brieskorn spheres

Σ(2, 3, 6k ± 1) – as well as the computation of the Euler characteristic χ(I#(Y )).
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CHAPTER 2

Background on Floer’s instanton homology

In this chapter we review the relevant aspects of instanton homology for admissible

bundles, introduced by Floer [13, 14]. Our main technical references are [7, 20].

Other useful references include [13, 14, 5, 16, 37]. The purpose of this chapter is

mainly to fix conventions and notation.

2.1 Instanton groups

Let Y be an SO(3)-bundle over a closed, connected, oriented Riemannian 3-manifold

Y . The group I(Y) is heuristically a Morse homology group computed using a

suitably perturbed Chern-Simons functional csπ : C (Y) → R modulo a group of

gauge transformations:

csπ(a) = − 1

8π2

∫
[0,1]×Y

tr(F 2
A) + fπ(a).

Here A is a connection on [0, 1]×Y which restricts to a base connection a0 on {0}×Y

and the connection a on {1} × Y, and fπ is a small perturbation, see [20, §3.4]. We

have written C (Y) for the space of smooth connections on Y, an affine space modelled

on Ω1(Yad), where Yad = Y×ad so(3) is the adjoint bundle of Y.

Let X be an SO(3)-bundle over an n-dimensional manifold X. In our construc-

tions we do not use the full automorphism group G (X) of X, but rather, following

the terminology of [16], we use the subgroup Gev = Gev(X) of even gauge transfor-

mations. Elements of Gev are called determinant-1 gauge transformations in [20] and

restricted gauge transformations in [5]. Viewing gauge transformations as sections of
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the bundle X×Ad SO(3), the even transformations are the ones that lift to sections

of X×Ad SU(2). There is an exact sequence

1 −→ Gev(X) −→ G (X)
η−→ H1(X;F2) −→ 1, (2.1)

where η measures the obstruction to deforming a gauge transformation over the 1-

skeleton of X. For a connection A on X we write h0(A) for the dimension of its

Gev-stabilizer. The possible values of h0(A) are 0, 1, 3. For us, the only stabilizers

that will appear will be 1, S1, SO(3). We call A irreducible if h0(A) = 0, and reducible

otherwise.

We will write a, b, c, . . . for typical connections on bundles over 3-manifolds and

a, b, c, . . . for their respective Gev-classes. A typical connection on a bundle over a

4-manifold X is written as A, and simply [A] for its Gev-class.

Let B(Y) denote the quotient C (Y)/Gev. The functional csπ induces a map

cs′π : B(Y) → R/Z. The set of critical points of cs′π is denoted C or C(Y); when

the perturbation π is zero this is the set of flat connection classes on Y. We write

h1(a) for the dimension of the Zariski tangent space of a in C. Following [7], when

h0(a) = h1(a) = 0, the connection a is called acyclic. Let Cirr denote the subset

of irreducibles in C. When Y is admissible and a suitable perturbation is chosen,

Cirr is a finite set of acyclic classes, and it is in fact all of C or is missing only the

trivial class, according to whether b1(Y ) 6= 0 or not, respectively. We assume such a

perturbation is chosen.

Fix a base connection a0 on Y. We define the chain group

C(Y) =
⊕
a∈Cirr

ZΛ(a)

where Λ(a) is the 2-element set of orientations of the real line det(DA), where A is

a connection on R × Y with A|Y×{t} equivalent to a0 for t � 0 and in the class a

for t � 0, and DA is the Fredholm operator −dA ⊕ d+
A defined on suitable Sobolev

spaces in §2.3; see also [20, §3.6]. Here ZΛ(a) means the infinite cyclic group with

generators the elements of Λ(a). We often think of C(Y) as generated by Cirr; when
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doing this it is understood that we have chosen distinguished elements from each set

Λ(a).

A connection A on an SO(3)-bundle over a Riemannian 4-manifold is an instanton

or is anti-self-dual (ASD) if its curvature FA satisfies

?FA = −FA

where ? is the Hodge star. The energy of a connection A is given by ‖FA‖2
L2 =

−
∫

tr(FA∧?FA). Instantons on X = R×Y may be interpreted as gradient flow-lines

for the Chern-Simons functional. In actuality we consider a perturbed instanton

equation involving π, and call the solutions instantons as well. Given acyclic a, b ∈

C (Y) we let M(a, b) be the space of Gev-classes of finite-energy instantons on X

asymptotic at −∞ to a and at +∞ to b. When the perturbation is zero, elements

[A] ∈M(a, b) are distinguished by the property 1
8π2‖FA‖2

L2 = cs(b)− cs(a).

For a small, generic perturbation M(a, b) is a smooth manifold, and we write

µ(a, b) = dimM(a, b).

Passing to Gev-classes, the number µ(a, b) is well-defined modulo 8, and equips C(Y)

with a relative Z/8-grading given by gr(a)− gr(b) ≡ µ(a, b). The space M(a, b) has

an R-action by translation along the R-factor of R× Y, and we write

M̌(a, b) = M(a, b)/R.

The data of a, b and the lift of µ(a, b) ∈ Z/8 to d ∈ Z are sufficient to describe

M(a, b); viewing [A] ∈M(a, b) as a path in B(Y), the index d faithfully records the

homotopy class of [A] relative to the endpoints a, b. That said, if d = µ(a, b), we

also write M(a, b)d for the space M(a, b), and similarly M̌(a, b)d−1 for M̌(a, b). Thus

M(a, b)d is a d-dimensional component of instanton classes whose limits are in the

classes a and b.

Suppose a, b ∈ Cirr with µ(a, b) ≡ 1. With suitable perturbation, M̌(a, b)0 is a fi-

nite set, and as explained in [20, §3.6], each of its elements determines an isomorphism
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Λ(a)→ Λ(b). Denoting the induced isomorphism ZΛ(a)→ ZΛ(b) corresponding to

[A] ∈ M̌(a, b)0 by the symbol ε[A], the differential ∂ for C(Y) is defined in pieces by

∂|ZΛ(a)→ZΛ(b) =
∑

[A]∈M̌(a,b)0

ε[A].

If we choose an element from each Λ(a), then we may view ∂ as a map on Cirr and

write 〈∂a, b〉 = #M̌(a, b)0, where # indicates a signed count. The differential lowers

the relative Z/8-grading by 1. The identity ∂2 = 0 is obtained by interpreting the

boundary of a 1-dimensional moduli space M̌(a, b)1 as a disjoint union of broken

trajectories M̌(a, c)0 × M̌(c, b)0. The relatively Z/8-graded abelian group I(Y) is

defined to be H∗(C(Y), ∂).

In defining the complex C(Y) we have chosen a Riemannian 3-manifold Y , an

admissible SO(3)-bundle Y over Y , a perturbation π, and a base connection a0 on

Y. When working with the chain group we always assume such data is chosen.

The isomorphism class of the relatively Z/8-graded group I(Y) depends only on the

oriented homeomorphism type of Y and w2(Y).

2.2 Maps from cobordisms

Let X : Y1 → Y2 be a cobordism from Y1 to Y2. That is, X is a compact, connected,

oriented 4-manifold with an orientation preserving diffeomorphism ∂X ' Y2tY 1. As

before, each Yi is connected. Assume X is equipped with a metric that is product-like

near its boundary. Suppose further that X is an SO(3)-bundle over X with X|Yi = Yi

where each Yi is admissible. We abbreviate this setup as X : Y1 → Y2. To obtain a

chain map

m(X) : C(Y1)→ C(Y2),

first form the bundle (R≤0 × Y1) ∪ X ∪ (R≥0 × Y2) over the Riemannian 4-manifold

obtained from X by attaching cylindrical ends to the boundary. We define M(a,X, b)

to be the space of Gev-classes of finite-energy instantons on this bundle. With suit-

able perturbations chosen, M(a,X, b) is a smooth manifold, and we write µ(a,X, b) =
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dimM(a,X, b). As before, µ(a,X, b) is well-defined modulo 8, and we writeM(a,X, b)d

for M(a,X, b) where d = µ(a,X, b).

Now suppose a ∈ Cirr(Y1) and b ∈ Cirr(Y2) with µ(a,X, b) ≡ 0. With suitable

perturbations, M(a,X, b)0 is a finite set of points. In defining C(Yi), basepoint

connections ai,0 are chosen. Let A be a connection on X (with cylindrical ends

attached) with limits at the ends equivalent to the ai,0. An orientation of the line

det(DA) will be called an I-orientation of X, following [20, Def. 3.9]. With an I-

orientation of X, an element [A] ∈ M(a,X, b)0 determines an isomorphism ε[A] :

ZΛ(a)→ ZΛ(b), and m(X) is defined in pieces by

m(X)|ZΛ(a)→ZΛ(b) =
∑

[A]∈M(a,X,b)0

ε[A].

In shorthand, 〈m(X)a, b〉 = #M(a,X, b)0. When µ(a,X, b) 6≡ 0 this part of the

differential is zero. Different choices of I-orientations only affect the overall sign of

the map m(X). The notation we use for composing bundle cobordisms is

X2 ◦ X1 = X1 ∪Y2 X2 : Y1 → Y3

where Xi : Yi → Yi+1 for i = 1, 2. We write I(X1) : I(Y1) → I(Y2) for the map on

homology induced by m(X1). Having assumed Yi is connected for i = 1, 2, we have

the composition law

I(X2 ◦ X1) = I(X2) ◦ I(X1).

There is a well-defined notion of composing I-orientations using (2.2) below, and

this is needed to make sense of this expression. For a general discussion of the

composition law involving disconnected 3-manifolds see [20, §5.2]. We mention that

the composition law follows from the homotopy formula (2.5) below, using a 1-

dimensional family of metrics that stretches along Y2.
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2.3 Index formulae

The numbers µ(a, b) and µ(a,X, b) above are more properly described as the indices

of certain Fredholm operators. Let X : Y1 → Y2 as above. The Yi are not assumed

to be admissible. Let a and b be connections on Y1 and Y2, respectively. Attach

cylindrical ends to X as above and call the result X as well. Choose a connection

A on X with A|Y1×{t} equal to a for t � 0 and A|Y2×{t} equal to b for t � 0, and

consider the operator

DA = −d∗A ⊕ d+
A : Lps,φ(Λ1 ⊗ Xad)→ Lps−1,φ((Λ0 ⊕ Λ+)⊗ Xad)

where Lps,φ = φLps are Sobolev spaces weighted by the real function φ, equal to e−εt

for some sufficiently small ε > 0 on the ends R≤0 × Y1 and R≥0 × Y2, and equal to 1

otherwise. This operator arises from linearizing the instanton equation and using a

Coulomb gauge condition. If X′ : Y2 → Y3 and A′ is a connection on X′ with limit b

over Y2, there is a natural isomorphism

det(DA)⊗ det(DA′) ' det(DA∪A′) (2.2)

and the index relation ind(DA) + ind(DA′) = ind(DA∪A′) holds, see for example [7,

Prop. 5.11]. In the definition of C(Y) in §2.1 we take X = [0, 1] × Y to define the

operator DA.

Note that the two ends Y1 and Y2 of the cobordism X have opposite Sobolev

weights in the description of DA. If we instead view X : ∅ → Y2 t Y1 then the

construction yields a different operator D′A. That is, D′A differs from DA by using

the weight function φ′ in place of φ, where φ′ is obtained by altering φ over R≤0×Y1

from e−εt to e+εt. We have the relation

ind(D′A)− ind(DA) = h0(a) + h1(a),

cf. [7, Prop. 3.10]. When there is one cylindrical end, the number ind(D′A) is the

same as ind−(A) in the notation of [5] and ind+(A) in the notation of [7].
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The index ind(D′A) is the expected dimension of the moduli space M(a,X, b)irr of

irreducible instanton classes. It is this number that we refer to in computations, so

we define

µ(a,X, b) = µ(A) = ind(D′A),

and this agrees with our earlier usage of µ(a,X, b). Note that the order of the symbols

a,X, b does not matter, and is only suggestive of the situation in mind. If X1 and X2

are bundles over cobordisms and are composable, we have the gluing formula

µ(a,X2 ◦ X1, c) = µ(a,X1, b) + µ(b,X2, c) + h0(b) + h1(b). (2.3)

If X is over a closed 4-manifold X then we also have

µ(X) = −2p1(X)− 3(1− b1(X) + b+(X)). (2.4)

Here b+(X) is the dimension of a maximal positive definite subspace for the inter-

section form on H2(X;R). The term 1 − b1(X) + b+(X) may also be written as

(χ(X) + σ(X))/2, where χ is the Euler characteristic and σ the signature.

2.4 Maps from families of metrics on cobordisms

This section extracts formulae due to Kronheimer and Mrowka from [20, §3.9]. We

first consider families of metrics in a general context. Let X be any smooth manifold

and S a hypersurface in the interior of X. We assume S has a neighborhood N ⊂ X

diffeomorphic to (−1, 1)× S. A metric on X cut along S is a Riemannian metric g

on X \ S that on the neighborhood N is of the form

dr2/r2 + g0,

where g0 is a metric on S and r is the parameter of (−1, 1). We also call g simply a

cut metric. We may regard a Riemannian manifold with a cut metric as one with two

opposing cylindrical ends that along the cut hypersurface S meet only at infinity.

Given a collection of hypersurfaces H = {Si} in the interior of X with similar

neighborhoods we construct a set of metrics G = G(H) on X that are cut along
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various subsets of H. The construction is intuitively simple: stretch an initial metric

in all possible ways along each hypersurface.

First, suppose that H has no intersecting hypersurfaces. We will parameterize

the family G by [0, 1]d where d = |H|. Let bt be a family of positive smooth functions

on [−1, 1] parameterized smoothly by t ∈ [0, 1) such that bt(r) approaches 1/r2 as t

goes to 1. For some fixed ε, 0 < ε < 1, we require that bt(r) = 1 for |r| > ε. We also

require bt 6= bs when t 6= s. We choose the initial metric G(0) on X so that it is of

the form dr2 + gi in the neighborhood of Si ⊂ X diffeomorphic to (−1, 1)×Si. Here

Si ∈ H and gi is a metric on Si. For t ∈ [0, 1]d we define G(t) on X by changing

G(0) in the neighborhood of Si to bti(r)dr
2 + gi.

Now consider an arbitrary set of hypersurfaces H. Let H0 be a subset of H with

no intersecting hypersurfaces. We have constructed a family G(H0) for each such

H0. We glue the hypercubes [0, 1]d0 where d0 = |H0| together to form a space in the

obvious way: when two points correspond to the same metric, identify them. This

defines the family G(H).

Now suppose X : Y1 → Y2 as in §2.2. Let G = G(H) be a family of metrics on

X constructed as above. We extend G to a family of metrics on X with cylindrical

ends attached, product-like on the ends, which we also call G. Let MG(a,X, b) be the

moduli space of pairs ([A], g) where g ∈ G and A is a finite-energy instanton with

respect to g. The meaning of this is staightforward if g is an uncut, smooth metric.

An instanton with a metric cut along S ⊂ X is an instanton on the complement of

S, with its limits on the two cylindrical ends [0,∞) × S agreeing. More details can

be found in [20, §3.9].

Let G = G(H) be a family of metrics on X as constructed above. In the cases in

which we are interested, G will have the structure of a convex polytope. The metrics

parameterized by a face of G consist of cut metrics, cut along a hypersurface in H.

The expected dimension of MG(a,X, b) is µ(a,X, b) + dimG. We then obtain a map

mG(X) : C(Y1)→ C(Y2),
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defined just as for cobordisms. To fix the sign of mG(X), in addition to an I-

orientation of X, we must orient the metric family G. The following three formulae

are due to Kronheimer and Mrowka, [20, §3.9], and arise from understanding the

compactification and gluing of certain moduli spaces. First,

(−1)dimGmG(X)∂ − ∂mG(X) = m∂G(X). (2.5)

In writing this we have inherited the orientation conventions of [20], with the ex-

ception that the quotients M̌(a, b) are oriented oppositely, changing the signs of the

maps ∂. For the polytopes G that we will consider, ∂G decomposes into a union of

faces G(S), one for each hypersurface S ∈ H. In this case

m∂G(X) =
∑
S∈H

mG(S)(X). (2.6)

Finally, suppose X is the composite of two bundle cobordisms: X = X2 ◦ X1. Also

suppose that G = G1 × G2 where G1 is a family of metrics that only varies on X1

and G2 on X2, and all metrics are cut along X1 ∩X2. Then

mG(X) = (−1)dimG1 dimG2mG2(X2)mG1(X1) (2.7)

where we interpret G1 as a family of metrics on X1 and G2 as a family on X2.

Here the metric families are oriented, and G = G1 ×G2 is an orientation preserving

identification.

2.5 Index bounds

The following discussion is based on [5, §3.4] and [7, §4], with the material of [20,

§3.9] in mind. So far we have only mentioned moduli spaces for which the limit-

ing connections are acyclic. This guarantees, in particular, that all instantons are

irreducible.

For simplicity, suppose X has one cylindrical end. We consider moduli spaces

M(X, a) where a is any almost flat connection (i.e., an element of C), where the
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finite-energy instantons exponentially approach a over the cylindrical end. Then,

with suitable perturbation, the subset of irreducibles M(X, a)irr is a smooth manifold

of dimension µ(X, a). In this case, the existence of [A] ∈M(X, a)irr implies µ(X, a) =

µ(A) ≥ 0. On the other hand, if all the instantons are reducible with common

isotropy group Γ, the space M(X, a) has dimension µ(X, a) + dim Γ. Recall h0(A) =

dim Γ. In this case, after perturbation, the existence of an instanton [A] in the moduli

space implies the bound

µ(A) + h0(A) ≥ 0. (2.8)

More generally, suppose ([A], g) ∈MG(X, a) for a family of metrics G. Then

µ(A) + h0(A) + dimG ≥ 0. (2.9)

We also consider the case in which some of the limiting connections are allowed

to vary. Suppose [0,∞) × Y is the cylindrical end of X, and consider a smooth

manifold F ⊂ C(Y) of critical points to which the Chern-Simons functional is non-

degenerate transverse. We consider M(X,F), the instanton classes that exponentially

approach the set F. The irreducibles within typically form a smooth manifold whose

components have dimensions mod 8 congruent to µ(X, a) + dimF, where a ∈ F. We

write M(X,F)irr
d for the d-dimensional component.

We can introduce metrics into all of these situations. The most general situation

we consider is the following. Suppose F is as above, and consider the moduli space

MG(X,F). If ([A], g) is a member, in the generic case we obtain a bound

µ(A) + h0(A) + dimG+ dimF ≥ 0. (2.10)

We write MG(X,F)◦d for the d-dimensional moduli space of instantons ([A], g) with

d equal to the left side of (2.10) and where ◦ = irr, red, flat describes the respective

stabilizer-types h0(A) = 0, 1, 3. One can drop the assumption that F is smooth and

obtain moduli spaces that are stratified according to the structure of F. Such spaces

have been studied in [39, 30].
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2.6 Gradings

In addition to the relative Z/8-grading on I(Y), we can define an absolute Z/2-

grading following [16, §2.1] and [7, §5.6]. It is more generally defined on the critical

sets C. If a ∈ C, its grading is given by

gr(a) = b1(E) + b+(E) + µ(E, a) mod 2,

where E : ∅ → Y is an SO(3)-bundle over a connected 4-manifold E with ∂E = Y

that restricts to Y over Y . The differential of C(Y) shifts this grading by 1. A map

m(X) : C(Y1)→ C(Y2) shifts the grading by the parity of

deg(X) = −3

2
(χ(X) + σ(X)) +

1

2
(b1(Y2)− b1(Y1)), (2.11)

cf. [20, §4.5]. More generally, a map mG(X) shifts the grading by deg(X) + dimG.

As an example, suppose T3 is the bundle over T 3 with w2(T3) Poincaré dual to an

S1-factor. Then I(T3) is two copies of Z supported in the even grading. Note that

the trivial connection θ on S3 has gr(θ) ≡ 1. We note that I(Y)i is the same as the

cohomology group I(Y)b1(Y )+1+i, where Y means the orientation of the base space Y

is reversed. For our conventions regarding the absolute Z/8-grading in the case that

Y is a homology 3-sphere, see §7.1.
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CHAPTER 3

Surgery in instanton homology

The instanton surgery exact triangle was introduced by Floer [14] soon after his

inception of instanton homology. Let K be a framed knot in a closed, connected,

oriented 3-manifold Y . That is, K has a preferred meridian and longitude. Let ω be

a geometric representative for Y – that is, an unoriented, embedded 1-manifold in

Y with [ω] ∈ H1(Y ;F2) Poincaré-dual to w2(Y). Choose ω disjoint from K. Denote

by Y0 and Y1 the results of performing 0- and 1-surgery on K, respectively. We

can view ω inside Y0 and Y1 by keeping it away from the surgery neighborhood.

Let ω0 = ω ∪ µ ⊂ Y0 where µ is a core for the induced framed knot in Y0, and

let ω1 = ω ⊂ Y1. Finally, for i = 0, 1, choose a bundle Yi over Yi geometrically

represented by ωi. If the ordered triple of bundles Y,Y0,Y1 can be geometrically

represented this way, we say they form a surgery triad. The exact triangle is

Theorem 3.0.1 (Floer). There is an exact sequence

· · · I(Y)→ I(Y0)→ I(Y1)→ I(Y) · · ·

provided all three bundles are admissible and form a surgery triad.

The loop µ in Y0, pushed out of the surgery solid torus, becomes a small meridional

loop around the surgered neighborhood of K in Y0. This is depicted in the top row of

Figure 3.1 in a local surgery diagram for Y0. One can view Y1 (resp. Y ) as obtained

from 0-surgery on the induced framed knot in Y0 (resp. Y1), see §3.1. Thus we obtain

two more local surgery diagram depictions of where µ may be placed, listed in the

bottom two rows of Figure 3.1. See also §3.1.7.
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Figure 3.1: Local surgery diagrams. The slanted line in each case is the knot K. Each

row represents a possible construction for a surgery triad.

Floer’s exact triangle was studied by Braam and Donaldson in [5], where a de-

tailed proof following Floer’s ideas can be found. In this chapter we provide an

alternative proof. The proof relies on an algebraic lemma which was first used by

Ozsváth and Szabó [35]. The lemma requires the input of maps between the three

relevant chain complexes satisfying certain properties. The maps we choose count

instantons on families of metrics that are parameterized by convex polytopes. This

approach was used by Kronheimer, Mrowka, Ozsváth and Szabó to prove a surgery

exact sequence in the monopole case [24]. Our proof is largely an adaptation of

Kronheimer and Mrowka’s proof in [20] of an analogous exact triangle in singular

instanton knot homology.

This method of proof leads to a generalization of Floer’s theorem to a so-called

link surgeries spectral sequence, as was first done by Ozsváth and Szabó in Heegaard

Floer homology [35]. Let L be a framed link in Y with components L1, . . . , Lm. For

each v ∈ {0, 1,∞}m let Yv be the result of vi surgery on Li for 1 ≤ i ≤ m. Briefly,

we say Yv is the result of v-surgery on L. Choose a geometric representative ω for Y

disjoint from L. Let ωv ⊂ Yv be ω together with a core for the knot in Yv induced
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by Li for each i with vi = 0. Let Yv be bundles over Yv geometrically represented by

the ωv. If the bundles Yv can be geometrically represented according to these rules

we say that they form a surgery cube.

Theorem 3.0.2. Suppose the bundles Yv for v ∈ {0, 1,∞}m are admissible and that

they form a surgery cube. Then there is a spectral sequence

E1 =
⊕

v∈{0,1}m
I(Yv)  I(Y).

That is, the left side is the E1-page and the sequence converges to the right side.

A more detailed statement is provided in Theorem 3.3.1. An analogous result in

monopole Floer homology was proved by Bloom [3] with F2-coefficients, and in sin-

gular instanton knot homology by Kronheimer and Mrowka [20].

The goal of this chapter is to prove Theorems 3.0.1 and 3.0.2. In §3.1 we discuss

how Dehn surgery extends to SO(3)-bundles over 3-manifolds, from which we con-

struct the bundles and cobordisms that appear in Theorem 3.0.1. In §3.2 we prove

Theorem 3.0.1 and in §3.3 we prove Theorem 3.0.2.

3.1 Bundles in the exact triangle

In this section we introduce the manifolds and bundles that feature in the proof

of Floer’s exact triangle. We take a systematic approach to the bundles Yi that

appear in Floer’s exact triangle by extending Dehn surgery to SO(3)-bundles. This

viewpoint was Floer’s [14], and is expanded upon in [5]. The construction of surgery

cobordism bundles Xij in §3.1.3 is straightforward in this setting. These bundles

induce the maps in the exact triangle. We then introduce some hypersurfaces in Xij

that yield useful metric families; these were used in [24, 3, 20]. In §3.1.7 we relate

our new setup to that of geometric representatives.

In this section, we write A∪fB for the space obtained from the disjoint union of A

and B, with points identified using the map f . Our convention is that the gluing map
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f is always from a subset of B to a subset of A. We freely use isomorphisms of the

form A∪f B ' A∪fg C, where g is an isomorphism from a subset of C to a subset of

B. All constructions that are not smooth have a canonical smoothing, as mentioned

in [18, Rmk. 1.3.3]. All (principal) SO(3)-bundles have right actions. Thus our

bundle gluing maps, in order to be equivariant, always involve left multiplication on

trivialized fibers.

3.1.1 Dehn surgery with bundles

Let Y be an SO(3)-bundle over a closed, oriented 3-manifold Y . Let K : S1×D2 → Y

be an embedding. We refer to K as a framed knot in Y . We consider equivariant

embeddings K : S1 × D2 × SO(3) → Y that lie above K, i.e. K/SO(3) = K. We

refer to K as a framed knot in Y. The space of bundle automorphisms of S1×D2×

SO(3) fixing the base space has two connected components. An automorphism τ not

isotopic to the identity is

τ(w, z, a) = (w, z, c(w)a)

where (w, z) ∈ S1 ×D2, a ∈ SO(3), and c is a standard inclusion S1 → SO(3) of a

maximal torus. In particular, c is a homomorphism and generates π1(SO(3)) ' Z/2.

If K is one embedding, another embedding lying above K is given by Kτ .

We generalize Dehn surgery to surgery on the framed knots K. For Ω = (A, b) ∈

SL(2,Z) n (Z/2)2 we define an automorphism ψΩ of S1 × ∂D2 × SO(3) by

ψΩ(w, z, a) = (wA11zA12 , wA21zA22 , c(w)b1c(z)b2a).

Let K′ be the interior of the image of K. The result of Ω-surgery on K is then defined

to be the identification space

YΩ(K) = (Y \K′) ∪KψΩ
(S1 ×D2 × SO(3)).

There is an induced framed knot Ω(K) in YΩ(K) given by the inclusion of S1 ×

D2 × SO(3) into the above expression for YΩ(K). The product of elements in G =
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SL(2,Z) n (Z/2)2 is given by (A′, b′)(A, b) = (A′A, b′A + b). The assignment Ω 7→

ψΩ induces an isomorphism from G to the group of isotopy classes of orientation

preserving equivariant automorphisms of S1 × ∂D2 × SO(3). Note that we have an

associativity rule

YΩ′Ω(K) ' (YΩ′(K))Ω(Ω′(K)).

The space YΩ(K) is naturally a bundle over Yp/q(K), the result of p/q Dehn surgery

on the framed knot K in Y , where Ω = (A, b), p = A22, q = A12 and of course

K = K/SO(3). Note that the automorphism τ above restricts to ψΘ where Θ =

(12×2, (1, 0)) ∈ G. We have the transformation rule YΩ(Kτ) ' YΘΩ(K).

3.1.2 The surgery bundle Yi

There is a particular choice of surgery parameter Ω that Floer used in the setting of

his exact triangle:

Λ =

 −1 1

−1 0

 , (1, 0)

 . (3.1)

To understand this, write Λ = ΨΛ′, where

Ψ = (12×2, (0, 1)), Λ′ =

 −1 1

−1 0

 , (0, 0)

 . (3.2)

First, Ψ twists the trivialization around ∂D2. Then, Λ′ performs 0-surgery on K,

leaving bundles alone. Note that Λ3 = 1. With Y and K fixed, we define for i ∈ Z

the surgery bundles Yi = YΛi+1(K), the surgery base manifolds Yi = Yi/SO(3), and

the induced embeddings Ki = Λi+1(K). The index offset is here so that Y0 and Y1

are simply 0- and 1-surgery on K ⊂ Y , respectively. Because Λ3 = 1, there are

isomorphisms Yi ' Yi+3.

3.1.3 The surgery cobordism Xij

Our goal is to construct cobordism bundles Xij : Yi → Yj for i < j. Each Xij will be

an SO(3)-bundle over a standard surgery cobordism Xij : Yi → Yj. We first construct
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Figure 3.2: The two hypersurfaces Y1 and S1 in the interior of X02. The 3-sphere S1

separates off a copy of −CP2 minus a 4-ball.

Xij when j − i = 1 and use these as building blocks for the general construction.

Write H = D2 ×D2 × SO(3). We view H as a 2-handle thickened by SO(3). Write

∂H = H1 ∪H2,

H1 = ∂D2 ×D2 × SO(3),

H2 = D2 × ∂D2 × SO(3).

Viewing K0 as a map H1 → {1} × Y0, we define X01 by setting

X01 = ([0, 1]× Y0) ∪K0 H.

The definition of Xij for general j − i = 1 is similar. We want to define X02 as

X01 ∪Y1 X12. To make sense of this expression we give an explicit identification of

∂X01 \ Y0 with Y1. Let the interior of the image of K0 in Y0 be denoted K′0. Note

∂H1 = H1 ∩H2 = ∂H2

is a trivial bundle over a 2-torus. Now we write

∂X01 \ Y0 = (Y0 \K′0) ∪K0|H1∩H2 H2.

Let ψ : H1 → H2 be an isomorphism. Then

∂X01 \ Y0 ' (Y0 \K′0) ∪K0ψ|H1∩H2 H1 = (Y0)ψ|H1∩H2(K0).

27



To identify this bundle with Y1 = (Y0)Λ(K0) we need ψ such that ψ|H1∩H2 = ψΛ. For

this we choose

ψ : H1 → H2, ψ(w, z, a) := (wz,w, c(w)a).

Making this choice, we have identified ∂X01 \ Y0 with Y1. Finally, to construct Xij

for j− i > 1, we inductively define Xij = Xi,j−1∪Yj−1
Xj−1,j, where the gluing is done

according to the same identification process.

3.1.4 The bundle Si

We construct a subset S1 ⊂ X02 which is a bundle over a 3-sphere S1 ⊂ X02. One

gets Si inside Xi−1,i+1 for each i in a similar fashion. Write

X02 = ([0, 1]× Y0 ∪K0 H) ∪Y1 ([0, 1]× Y1 ∪K1 H) ' ([0, 1]× Y0) ∪K0 H ∪ψ H (3.3)

with notation as in the construction of X01. Introduce the subset

H(r, s) = D2(r)×D2(s)× SO(3) ⊂ H

where D2(r) is the disk of radius r, 0 < r ≤ 1, and consider the following restriction

bundles of X02:

U = H(1/2, 1) ∪H(1, 1/2) ⊂ H ∪ψ H, S1 = ∂U.

It is well-known that the base space U of U is diffeomorphic to −CP2 minus an

embedded 4-ball, cf. [18, Ex. 4.2.4]. It follows that S1 is a trivial bundle over a

3-sphere S1. We see that we can decompose X02 along S1 into a connected sum of

−CP2 with a manifold whose boundary is Y2tY 0. The intersection S1∩Y1 is 2-torus.

This decomposition is depicted in Figure 3.2.

We claim that U is a non-trivial bundle. We check that the restriction of U

to an essential sphere is non-trivial. Define D1 = D2 × {0} × SO(3) and D2 =

{0} ×D2 × SO(3) as subsets of H. Consider

D2 ∪ψ|∂D1 D1 ⊂ U.
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Figure 3.3: The intersections of the five hypersurfaces in the interior of X03. The S1×S2

hypersurface T divides X03 into two pieces, V and E. This picture first appeared in [24].

This is isomorphic to D2 × SO(3) ∪f D2 × SO(3) where f is the automorphism of

∂D2×SO(3) given by f(z, a) = (z, c(z)a). This is a nontrivial bundle over a 2-sphere.

3.1.5 The bundle T

We construct a subset T ⊂ X03 which is a trivial bundle over T ⊂ X03 where T is

diffeomorphic to S1 × S2. By iterating (3.3) and stretching the ends we write

X03 ' ([0, 1]× Y0) ∪K0 H ∪ψ H ∪ψ H ∪Y0 ([0, 1]× Y0).

Identifying X03 with the expression on the right, we define the restriction bundles

E = H ∪ψ H ∪ψ H, T = ∂E,

and their respective base spaces E and T . We have an isomorphism

f : T = H1 ∪(ψ|H1∩H2
)2 H2 → S1 × S2 × SO(3) (3.4)

where, viewing S2 ⊂ S1 × S2 as C ∪∞, we set

f |H1 = id, f |H2(z, w, a) = (w,w/z, c(w)a).

The triviality of the bundle T is also seen from the observation that it is the restric-

tion of a bundle on a space in which T is contractible. We note that we could have

also trivialized T by using a similar isomorphism in which f |H2 = id. These two iso-

morphisms determine trivializations that differ by a non-even gauge transformation.
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We remark that the intersections T ∩ Y1 and T ∩ Y2 are 2-tori. We illustrate the

arrangement of intersections in Figure 3.3. We note that T may be described as the

boundary of a regular neighborhood of the union of the two essential spheres inside

the copies of −CP2 divided off by S1 and S2. The hypersurface T separates X03 into

two 4-manifolds, E and V , where E is diffeomorphic to −CP2 minus a neighborhood

of an unknotted circle, and V is diffeomorphic to [0, 1] × Y0 minus a neighborhood

of {1/2} ×K.

3.1.6 An involution of E

We construct an involution σ : E→ E. We write

E = H−1 ∪ψ H0 ∪ψ H+1

where the superscripts have been added to distinguish the copies of H. We write

[w, z, a, i] ∈ E for the point represented by (w, z, a) ∈ Hi. Define σ by

σ[w, z, a, i] = [z, w, c(w)i(i+1)c(z)i(i−1)a,−i].

Here we have extended c2 : S1 → SO(3) to a map c2 : D2 → SO(3) such that

c2(w) = (c2(w))−1. Note that σ interchanges the outer copies of H and fixes the

middle copy of H. It is straightforward that σ is well-defined: writing σ as three

maps σi : H+i → H−i, one uses the relations

σ2
0 = id, σ±1 = ψ±1σ0ψ

±1, ψ3 = id,

whenever these compositions are defined. The involution σ is a bundle automorphism

that restricts to an orientation-preserving diffeomorphism of E. It fixes T and swaps

S1 with S2.

Let us look at how the involution σ affects T. Recall the isomorphism (3.4). We

have the relation

fσf−1(w, z, a) = (w,w/z, c(w)d(z)a) (3.5)
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Figure 3.4: The involution σ.

where w ∈ S1, z ∈ C ∪∞, a ∈ SO(3) and d : S2 → SO(3) is the double of c2 : D2 →

SO(3). It is easily seen that fσf−1 is isotopic to θ ◦ υ, where

θ(w, z, a) = (w,w/z, a), υ(w, z, a) = (w, z, c(w)a).

The map θ is a diffeomorphism of S1 × S2 that, with respect to our trivialization,

is extended in trivial way to the overlying bundle. Note υ is a non-even gauge

transformation of the trivial bundle over S1 × S2. The involution σ will be useful in

the proof of the exact triangle.

3.1.7 Geometric representatives

Let ω be an embedded loop in Y . Extend this to an embedding Kω : S1 × D2 ×

SO(3)→ Y × SO(3). Let Ψ = (12×2, (0, 1)) as in (3.2). Then the result of Ψ-surgery

on Kω as a framed knot in Y × SO(3) is a bundle geometrically represented by ω.

More generally, ω can be a collection of embedded loops, and Ψ-surgery for each

component gives a bundle geometrically represented by ω.

This relates our current framework to the statement of the theorems in the in-

troduction to this chapter. Let ω be a closed, unoriented 1-manifold in Y , and K a

framed knot in Y disjoint from ω. We set

Y = (Y × SO(3))Ψ(Kω), (3.6)

where it is understood that if ω has multiple components, we do Ψ-surgery for

each component. This description of Y gives a preferred trivialization away from

a neighborhood of ω. We let K be the SO(3)-thickening of K using this preferred
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data, precomposed with τ . That is,

K = (K × idSO(3))τ.

Recall that τ restricts to ψΘ where Θ = (12×2, (1, 0)), and that Y0 is defined as

YΛ(K). Using ΘΛ = Λ′Ψ with notation as in (3.2), we have

Y0 ' YΛ′Ψ(K × idSO(3)).

Because Λ′ is 0-surgery without bundle-twisting, we see Y0 is of the form (3.6), where

Y is replaced by Y0 and ω replaced by ω ∪K0, where K0 is the induced knot in Y0.

Thus Y0 is geometrically represented by ω∪K0. Pushing K0 away from the surgered

neighborhood makes it a small meridional loop µ as in Figure 3.1, by the nature of

0-surgery.

We may deduce that Y1 is geometrically represented by ω ⊂ Y1 by either of two

ways. First, we may interpret Y1 as 0-surgery on the induced knot K0 ⊂ Y0 and iter-

ate the rule already established, forgetting about bundles altogether. Alternatively,

we can repeat the above argument for Λ2 in place of Λ. The difference in this case

is that ΘΛ2 = (Λ′)2. This is 1-surgery on K without bundle-twisting.

3.2 Proving the exact triangle

In this section we prove Theorem 3.0.1, Floer’s exact triangle.

3.2.1 The triangle detection lemma

The following statement is adapted from [20, §7.1] and first appeared in [35].

Lemma 3.2.1. Let (Ci, ∂i) be a sequence of complexes, i ∈ Z. Suppose that there

are chain maps fi : Ci → Ci+1 and maps hi : Ci → Ci+2 satisfying

fi+1fi + ∂i+2hi + hi∂i = 0.
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Suppose further that each sum

fi+2hi + hi+1fi

induces an isomorphism H(Ci)→ H(Ci+3). Then

· · · → H(Ci)
H(fi)−−−→ H(Ci+1)

H(fi+1)−−−−→ H(Ci+2)→ · · ·

is an exact sequence. Furthermore, the anti-chain map fi ⊕ hi : Ci → Cone(fi+1) is

a quasi-isomorphism for each i ∈ Z.

To apply this lemma, we use the notation of §3.1, so that we have a 3-periodic

sequence of surgery bundles Yi, i ∈ Z, and surgery cobordism bundles Xij : Yi → Yj

whenever j > i. We let (Ci, ∂i) be the instanton chain complex C(Yi) with its

differential. We take fi to be m(Xi,i+1) : C(Yi) → C(Yi+1). The map hi is defined

in §3.2.2, and in §3.2.3 we define a chain homotopy ki from fi+2hi + hi+1fi to an

intermediate map, and then show that this intermediate map is chain homotopic to

the identity map of Ci up to sign. All maps are of the form mG(X).

3.2.2 The hi maps

We define h0 : C0 → C2 in this section. Recall from §3.1.4 that we can write

X02 = W ∪S1 U

where U is diffeomorphic to −CP2 minus a 4-ball, and W has boundary Y2tY 0tS1.

The map h0 is taken to be mG(X02) where G is a family of metrics on X02 induced by

the set of two intersecting hypersurfaces H = {S1, Y1}. Thus G is parameterized by

an interval, with endpoint metrics G(S1) and G(Y1), cut along S1 and Y1, respectively,

as depicted in Figure 3.5. Equations (2.5) and (2.6) yield

−h0∂0 − ∂2h0 = mG(S1)(X02) +mG(Y1)(X02).

By equation (2.7), we also have mG(Y1)(X02) = m(X12)m(X01) = f1f0. It remains to

show that mG(S1)(X02) = 0.
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Figure 3.5: The family of metrics on X02 used to define the h0 map.

Figure 3.6: The family of metrics GT on E ⊂ X03.

Let a and b be given with µ(a,X02, b) = 0. To show that mG(S1)(X02) = 0, it

suffices to show that MG(S1)(a,X02, b) is empty for any such a, b. We prove this by

contradiction. Suppose [A] ∈MG(S1)(a,X02, b). Write U and W for the restriction of

X02 to U and W , respectively. Because G(S1) is cut along S1, [A] is a pair [AW ], [AU ]

in M(a,W, b, c) ×M(c,U) for some flat connection c on S1. We arrange that the

perturbation data near S1 is 0. The gluing formula (2.3) says

µ(A) = µ(AW ) + µ(AU) + h0(c) + h1(c).

The flat connection c is on a 3-sphere, so h1(c) = 0 and h0(c) = 3. Since a and

b are irreducible, so is AW . It follows that µ(AW ) ≥ 0, see inequality (2.9). The

connection AU may be reducible to S1, but no further, because U is non-trivial, so

h0(AU) ≤ 1. It follows from (2.8) that µ(AU) ≥ −1, implying µ(A) = µ(a,X02, b) ≥

2, a contradiction.

3.2.3 The ki maps

We define k0 : C0 → C0 in this section. Recall from §3.1.5 that we have five hy-

persurfaces Y1, Y2, S1, S2, T in X03 that intersect one another as in Figure 3.3. We

define k0 to be mG(X03) where G is the family of metrics on X03 induced by the set

of hypersurfaces H = {Y1, Y2, S1, S2, T}. The family G is parameterized by a pen-

tagon and has faces G(Y1), G(Y2), G(S1), G(S2), G(T ), each of which is an interval
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Figure 3.7: The family of metrics on X03 used to define the k0 map. This picture is

modelled on Bloom’s from [3].

of metrics broken along the indicated hypersurface. See Figure 3.7. Equations (2.5)

and (2.6) yield

k0∂0 − ∂0k0 =
∑
S∈H

mG(S)(X03)

and the argument from §3.2.2 shows that mG(S1)(X03) = mG(S2)(X03) = 0. We also

have mG(Y1)(X03) = h1f0 and mG(Y2)(X03) = f2h0 by (2.7). Thus

k0∂0 − ∂0k0 = mG(T )(X03) + f2h0 + h1f0,

or in other words, k0 is a chain homotopy from −mG(T )(X03) to f2h0 + h1f0. The

proof is thus complete if we establish

Lemma 3.2.2. mG(T )(X03) is chain homotopic to ±id : C0 → C0.

The remainder of this section goes towards proving this lemma. From §3.1.5, we

know the hypersurface T induces a decomposition

X03 = V ∪T E

where E is diffeomorphic to −CP2 minus a regular neighborhood of an unknotted

S1. Let V,E be the restrictions of X03 to V,E, respectively. The restriction of G(T )
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to V is a single metric. On the other hand, the restriction of G(T ) to E is an interval

of metrics, and we denote this family by GT , see Figure 3.6. We arrange that the

perturbations used near T are zero, so that the relevant limiting connections are flat.

The map mG(T )(X03) is defined by counting [A] ∈MG(T )(a,X03, b)0. That is,

〈mG(T )(X03)a, b〉 = #MGT
(a,X03, b)0

where # means a signed count determined by orienting moduli spaces. Note that

µ(A) = −1 since dimG(T ) = 1. Let a and b be the limiting connections of A on Y0

and Y3, so [a] = a and [b] = b. Each such A can be written as a pair

AV , (AE, g) (3.7)

where AV is an instanton on V with limit a over Y0, b over Y3, and some flat limit c

over T; and AE is a g-instanton on E where g ∈ GT , and AE has the same flat limit

c over T.

First, let us understand T = C(T), the space of Gev-classes of flat connections on

T. Recall that T is a trivial SO(3)-bundle over an S1 × S2. Choose a spin structure

for T, i.e. a lift to an SU(2)-bundle. Lifting connections sets up a bijection between

flat SO(3)-connections modulo Gev on T with flat SU(2)-connections modulo SU(2)

gauge transformations. It is well-known that this latter set is in correspondence with

Hom(π1(T ), SU(2)) modulo conjugation, which is essentially the set of conjugacy

classes of SU(2). The space of conjugacy classes of SU(2) is [−1, 1], given by the

trace map divided by 2.

The isomorphism T ' [−1, 1] depends on the spin structure of T chosen. There

are two such choices, and they are related by any non-even gauge transformation of

T; using such a transformation the isomorphisms T ' [−1, 1] are related by reflecting

[−1, 1] about 0. The choice of isomorphism can also be determined by choosing a

trivial holonomy flat connection on T; this choice corresponds to 1 ∈ [−1, 1]. We

record the following.
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Lemma 3.2.3. A choice of spin structure for T determines an isomorphism T '

[−1, 1]. The action on the space of flat connection classes T by G /Gev ' Z/2 under

this isomorphism is reflection about 0.

We can now understand the structure of the relevant moduli space following basic

index computations. Write T0 for the interior of T, and G0
T for the interior of GT .

Lemma 3.2.4. After a suitable perturbation, the moduli space M(a,X03, b)0 can be

identified with the fiber product

M(a,V, b,T0)0 ×T0 MG0
T
(T0,E)red1 .

The moduli space on the right is the space of pairs ([AE], g) where g ∈ G0
T and AE

is a g-instanton on E (exponentially decaying over the ends), such that the flat limit

class of AE over T lies in the interior of T; h0(AE) = 1, i.e. AE has gauge-stabilizer

S1; and µ(AE) = 1 − h0(AE) − dimG0
T − dimT0 = −2. In other words, the lemma

says that in the pair (3.7) representing [A] ∈M(a,X03, b)0, we have the constraints

c = [c] ∈ T0, g ∈ G0
T , µ(AV ) = −1, µ(AE) = −2. (3.8)

The fiber product is taken with respect to limit maps λ : M → T0 that send an

instanton class to its flat limit class over T, where M is one of the two moduli spaces

appearing in the lemma. This fiber product description is an application of the

Morse-Bott gluing theory as discussed in [7, §4.5.2] and [31, 30, 39]. Our situation,

that of instantons broken along S1 × S2 with flat limits in T ' [−1, 1], is similar to

that of Fintushel and Stern’s in [11], where results of Mrowka’s thesis [31] are used,

and we will refer the reader to these sources for more details. We mention that for

the above fiber product it is important that the stabilizers of c and AE, each a circle,

can be identified. In general, one must record a gluing parameter in Γc/ΓAV
× ΓAE

where ΓA is the stabilizer of A. For instance, if both [AV ] and [AE] were irreducible,

there would be more than one choice of such a parameter. We proceed to prove that

the constraints (3.8) characterize the possible gluing data.
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Proof of Lemma 3.2.4. We first show c ∈ T0. For convenience we set

h(c) = (h0(c) + h1(c))/2.

We note that h(c) = 1 or 3, depending on whether c is in the interior or boundary

of T, respectively, cf. [11, §3]. By assumption µ(A) = −1, so (2.3) yields

−1 = µ(A) = µ(AV ) + µ(AE) + 2h(c).

Let AS1×D3 be a connection on the trivial bundle over S1 ×D3 with one cylindrical

end attached. We identify the bundle over cross-sections of the end with T, with the

base having the opposite orientation of T . Suppose AS1×D3 has flat limit c. We glue

AS1×D3 to AE to obtain a connection A−CP2 on a non-trivial bundle E′ over −CP2.

The isomorphism class of E′ depends on c, but we know p1(E′) = 4k − 1 for some

k ∈ Z, cf. [8, §4.1.4]. We have

µ(AE) + µ(AS1×D3) + 2h(c) = µ(A−CP2).

We compute µ(AS1×D3). Two copies of S1×D3×SO(3), each with a cylindrical end,

glue, overlapping the ends, to give S1 × S3 × SO(3). Index additivity yields

2µ(AS1×D3) + 2h(c) = µ(S1 × S3 × SO(3)).

On the other hand, (2.4) says the right hand side is

−3(1− b1 + b+
2 )(S1 × S3) = 0.

Thus µ(AS1×D3) = −h(c). This can also be deduced from the Atiyah-Patodi-Singer

index theorem, cf. [1, Thm. 3.10]. From (2.4) we obtain µ(A−CP2) = −8k − 1, and

µ(AV ) = 8k − h(c), µ(AE) = −8k − 1− h(c).

Suppose for contradiction that c is on the boundary of T, so that h(c) = 3. Since

AV is irreducible and the boundary of T has dimension 0, we have

8k − 3 = µ(AV ) ≥ 0
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in the generic case, so k > 0. Since E′ is nontrivial, h0(AE) ∈ {0, 1}. Using (2.9),

−8k − 4 = µ(AE) ≥ − dimGT − dim ∂T− h0(AE) ≥ −2.

Then k < 0, a contradiction. Thus h(c) = 1 and c ∈ T0. It follows that µ(AV ) =

8k − 1 and µ(AE) = −8k − 2. Applying (2.9) in this case,

µ(AE) ≥ − dimT0 − dimGT − h0(AE) ≥ −3,

so k ≤ 0. Similarly, µ(AV ) ≥ − dimT0 = −1 gives k ≥ 0. Thus k = 0, yielding

µ(AV ) = −1 and µ(AE) = −2, as claimed.

Next, we rule out the possibility that h0(AE) = 0, or in other words, that

[A] ∈ MG(T )(a,X03, b)0 can be written as a gluing of [AV ] and ([AE], g) where AE is

irreducible, i.e.

([AE], g) ∈MGT
(T0,E)irr

0 .

Note that if there were such a gluing, we would have to keep track of a gluing

parameter, as mentioned earlier. However, this moduli space of irreducibles and

M(a,V, b,T0)0 are both finite sets after perturbation, by standard compactness re-

sults, cf. [11, §5]. Further, the intersection of their flat limits in T0 can be made

transverse, in which case they have empty intersection. Thus, after a suitable per-

turbation, h0(AE) = 1.

Finally, we show g ∈ G0
T . Suppose for contradiction that g ∈ ∂GT . Then g is one

of two metrics on E, GT (S1) or GT (S2), cut along S1 or S2, respectively. See Figure

3.6. Suppose g = GT (S1); the other case is similar. Write

E = X ∪S1 U

where U ' −CP2 \ int(D4) and X ' D2 × S2 \ int(D4). Note that the restriction of

E over X is trivial, while the restriction over U , as in §3.2.2, is non-trivial; write AX

and AU for the restriction of AE over these respective bundles. They have a common

flat limit d on S1. In particular, h0(d) = 3 and h1(d) = 0. The connection AX has

the limit c over T from before.
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We compute µ(AX) and µ(AU). There is only one instanton class onX: the trivial

class, cf. [7, §7.4.1]. Thus AX is trivial, so h(c) = 3. Let AS1×D3 be a connection on

the trivial bundle over S1 ×D3 with one cylindrical end attached whose flat limit is

c. Then AX and AS1×D3 glue, overlapping ends, to give a connection AD4 over D4

with one cylindrical end attached. Then (2.3), (2.4) yield

µ(AX) + µ(AS1×D3) + 2h(c) = µ(AD4) = −3.

From above, µ(AS1×D3) = −h(c) = −3. Thus µ(AX) = −6. With µ(AU) = 8k − 1

for some k ∈ Z, we apply (2.3) once more to get

µ(AE) = µ(AX) + µ(AU) + 2h(d) = 8k − 4.

It follows that µ(AE) 6= −2, a contradiction.

Lemma 3.2.5. The projection MG0
T
(T0,E)red1 → G0

T is a smooth homeomorphism.

Proof. The moduli space here is topologized as a subset of B×G0
T , so the projection

map is a continuous, open map. It is also smooth, in the transverse case, by general

theory. It suffices to show bijectivity. The argument is a standard account of counting

reducible instantons.

Let ([AE], g) be such that µ(AE) = −2, h0(AE) = 1 and g ∈ G0
T . Because

H1(E;R) = 0, E admits no non-trivial real line bundles. Thus h0(AE) = 1 implies

AE is compatible with a splitting L⊕R of the associated vector bundle of E, where L

is a complex line bundle and R is a trivial real line bundle. Gluing AE to a connection

AS1×D3 on a trivial bundle over S1 ×D3 with one cylindrical end attached gives an

instanton A−CP2 on a bundle R′ ⊕ L′ over −CP2 where R′ and L′ are extensions of

R and L. The gluing formula says

µ(AE) + µ(AS1×D3) + h0(c) + h1(c) = µ(A−CP2) = −2p1(R′ ⊕ L′)− 3. (3.9)

Using that p1(R′ ⊕ L′) = c1(L′)2 we have µ(AE) = −2c1(L′)2 − 4. Since µ(AE) =

−2, we conclude that c1(L′)2 = −1. Let P (E) denote the image of the map
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H2(E, ∂E;Z) → H2(E;Z). Note that inclusion E → −CP2 induces an isomor-

phism of intersection forms from H2(−CP2;Z) to P (E), both negative definite of

rank 1, under which c1(L′) is sent to c1(L). Thus c1(L) is a generator of H2(E;Z).

There are thus two choices of L corresponding to the choices of generator for

H2(E;Z). To get one from the other take the conjugate L∗. The choice we make

does not matter in the end, as we can relate the two by an even gauge transformation,

by combining the conjugation map L → L∗ with the involution of R that reflects

each fiber. Note that G = Gev for E.

We are left with the problem of finding g-instantons on L. According to [1,

Prop. 4.9], the space of L2 harmonic 2-forms on E is isomorphic to the image of

H2(E, ∂E;R) → H2(E;R), and under this isomorphism a harmonic form x corre-

sponds to its de Rham class [x]. In our case this map is an isomorphism R → R.

Further, any such harmonic x satisfies ?x = −x, as follows: ?x is L2 harmonic, so

?x = cx for some c ∈ R; then ?2 = 1,
∫
x∧x < 0, and 0 ≤ ‖x‖2

L2 =
∫
x∧?x = c

∫
x∧x

imply that c = −1. Conversely, a closed L2 2-form x satisfying ?x = −x is easily

seen to be L2 harmonic.

The arguments from [8, §2.2.1] easily adapt here, since H1(E;R) = 0, to show

that given a closed L2 2-form x on E, there is a connection A on L with curvature

ix which is unique up to gauge equivalence. In this way, the unique L2 harmonic

2-form representing −2πc1(L) specifies a unique g-instanton class on L.

Lemma 3.2.6. The moduli space M∂GT
(∂T,E)red0 consists of two points, and is the

natural boundary of the open interval MG0
T
(T0,E)red1 .

Proof. The previous lemma tells us that the ends of the latter moduli space are

essentially the ends ofGT . There are two endpoint metrics ofGT , labelledGT (S1) and

GT (S2), each broken along the indicated 3-sphere. Any instanton A on E compatible

with GT (S1) is a gluing of the trivial instanton on the trivial bundle over X '

D2 × S2 \ int(D4) with two cylindrical ends attached and an instanton AU on U '

−CP2 \ int(D4) with one cylindrical end attached. By the removable singularities
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theorem of Uhlenbeck, cf. [8, Thm. 4.4.12], the instanton AU uniquely extends to

an instanton A on a bundle W over −CP2. If A is to be a limit of elements in ME,

then p1(W) = −1. There is only one such instanton class on W, cf. [20, §2.7]. Thus

[A] is uniquely determined. Similarly, there is one instanton class to add for GT (S2).

That A is trivial over X implies the flat limits over T of these two instanton classes

lie in ∂T.

Note that the map in Lemma 3.2.5 extends to a homeomorphism of closed inter-

vals. We write MGT
(T,E)red

1 for the completed closed interval moduli space. We call

a map between closed intervals proper if it sends boundary to boundary. A proper

map between oriented, closed intervals has a well-defined degree, which is 0 or ±1.

Indeed, one can define the degree by looking at the induced map S1 → S1 obtained

by identifying boundary points.

Lemma 3.2.7. The map λ : MGT
(T,E)red1 → T defined by sending an instanton

class to its flat limit class over T has degree ±1.

Proof. We use the involution σ : E→ E of §3.1.6. Write M for the moduli space in

the lemma. We see that σ induces an action on M , and because σ(T) = T, an action

on T. We can arrange the family of metrics GT so that σ restricts to an isometry of

the base space and reflects GT , in turn swapping the endpoints of the interval M . If

we establish that σ also swaps the endpoints of the interval T, we are done, because

the limit map λ respects the action of σ. From §3.1.6 we know that with respect

to a fixed trivialization T ' S1 × S2 × SO(3), σ is isotopic to a composition θ ◦ υ,

where θ is a diffeomorphism of S1 × S2 lifted in a trivial way to S1 × S2 × SO(3).

The diffeomorphism under consideration acts trivially on π1(T ), and hence θ acts

trivially on T. The map υ is a non-even gauge transformation, so by Lemma 3.2.3,

it reflects the interval T. It follows that σ reflects T.

Proof of Lemma 3.2.2. By Lemma 3.2.4 we can write

#MGT
(a,X03, b)0 = ±

∑
ε(x)ε(y)
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where the sum is over pairs

(x, y) ∈M(a,V, b,T0)0 ×MG0
T
(T0,E)red

1

having equal flat limit class λ(x) = λ(y) ∈ T0. Each x and y has a sign, ε(x) and

ε(y) respectively, prescribed by orienting moduli spaces. In the generic case, the sum

of the ε(y) for a fixed value λ(y) equals ±deg(λ) = ±1. In this way we obtain

#MGT
(a,X03, b)0 = ±#M(a,V, b,T0)0

where the sign does not depend on the pair (a, b). Thinking of cobordisms as mor-

phisms, we abbreviate [0, 1] × Y0 to 1Y0 . Write 1Y0 = V ∪T W where W is a trivial

bundle over W = S1 × D3. We choose the perturbation data for W to be 0. Let

Q be the family of metrics on [0, 1] × Y0 induced by H = {T}. The boundary of Q

consists of an initial product metric on [0, 1] × Y0 and a metric Q(T ) cut along T .

Thus (2.5) and (2.6) yield

−mQ(1Y0)∂0 − ∂0mQ(1Y0) = mQ(T )(1Y0) +m(1Y0).

Of course, m(1Y0) is the identity. It remains to show that mQ(T )(1Y0) is equal to

mG(T )(X03) up to an overall sign, or equivalently

#MQ(T )(a, b)0 = ±#M(a,V, b,T0)0 (3.10)

where the sign does not depend on the pair (a, b). In the spirit of our previous

arguments, we establish this by arguing that M(a,V, b,T0)0 can be written as a

fiber product

M(a,V, b,T0)0 ×T0 M(T0,W)flat
1 .

Here M(T0,W)flat
1 is the 1-dimensional family of flat connection classes on W with

arbitrary flat limit class in T0. Indeed, any flat connection class on T uniquely extends

to a flat connection class on W over S1×D3. We conclude that all instantons on W

are flat, cf. [7, §7.4]. In particular, the limit map λ : M(T0,W)flat
1 → T0 is a smooth
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homeomorphism. Now suppose [A] ∈ MQ(T )(a, b)0 restricts to a pair [AV ], [AW] of

instantons on V and W, respectively, with equal limit c over T. Then

0 = µ(A) = µ(AV ) + µ(AW) + 2h(c).

We saw in Lemma 3.2.4 that µ(AW ) = −h(c), so µ(AV ) = −h(c). The space of [AV ]

with µ(AV ) = −2 is generically empty, so we conclude that µ(AV ) = −1. It follows

that c ∈ T0. Because the stabilizer of each AW is SU(2), the gluing parameter space

is trivial, and our fiber product description is verified, cf. [11, §4]. Because the limit

map λ : M(T0,W)flat
1 → T0 is a homeomorphism, our fiber product yields (3.10).

This completes the proof of Lemma 3.2.2, and consequently the proof of Theorem

3.0.1.

3.3 A link surgeries spectral sequence

In this section we prove Theorem 3.0.2. We follow [20] and [3]. In [20], Kronheimer

and Mrowka work over Z, taking care with signs, and we adapt many of the details

from their setup. Bloom’s paper [3] is especially descriptive of the combinatorics

involved here, and provides many illustrations. The idea for this spectral sequence

originates from Ozsváth and Szabó’s paper [35].

3.3.1 The cobordisms & metric families

Let Y be an admissible bundle over Y and L ⊂ Y a framed link with m components

L1, . . . , Lm. Suppose we have admissible bundles Yv for v ∈ {∞, 0, 1}m that form

a surgery cube as in the introduction to this chapter. We conflate the subscript ∞

with −1 and write Yv for v ∈ {−1, 0, 1}m. Further, we write Yv for v ∈ Zm by taking

the modulo 3 reduction of v. Define the norms

|v|1 =
m∑
i=1

|vi|, |v|∞ = max
1≤i≤m

{|vi|}.

We use the partial order on Zm that says v ≤ w whenever vi ≤ wi for i = 1, . . . ,m.
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Since the Yv form a surgery cube, they can be generated by the data of Y and

a framed link L = L1 ∪ · · · ∪ Lm in Y as in §3.1.1, where each Li is an equivariant

embedding of S1×D2×SO(3) into Y. For v < w we have surgery bundle cobordisms

Xvw : Yv → Yw constructed by iterating the construction for Xij from §3.1.3 for

each Li. To give a definition, first set k = |w − v|1. We choose a maximal chain

v = v(0) < v(1) < · · · < v(k) = w. Each Xv(i)v(i+1) may be viewed as a surgery

bundle as defined in §3.1.3, and we may set

Xvw = Xv(k−1)v(k) ◦ · · · ◦ Xv(0)v(1).

The choice of maximal chain does not affect the isomorphism type of Xvw. In fact,

the identification of (3.3) lends a more invariant interpretation: we may view Xvw as

Yv × [0, 1] with, for each i = 1, . . . ,m, a copy of H ∪ψ · · · ∪ψ H (wi − vi copies of H)

attached to Yv × {1} via the framed knot Λvi+1(Li). We have the isomorphism

Xvw ' Xuw ◦ Xvu

whenever v < u < w. We write 0 for the element of Zm with all zeros, and similarly

n for the element with all elements equal to n ∈ Z. Note that X03 is not X00 =

Y0 × [0, 1], but for instance X01 ' X34. The base space of Xvw is written Xvw. In

the sequel we will only consider Xvw with |w − v|∞ ≤ 3.

As in the case when L had one component, we have distinguished hypersurfaces

in the interior of Xvw. Of course, the 3-manifolds Yu ⊂ Xvw for v < u < w are the

first examples. Note that Yu and Yu′ are disjoint if and only if u < u′ or u′ < u. For

each i ∈ {1, . . . ,m} and k with vi < k < wi we have a 3-sphere Sik in Xvw which

generalizes S1 ⊂ X02 from §3.1.4. The spheres Sik and Sjl intersect if and only if i = j

and |k− j| ≤ 1, and Sik intersects Yu if and only if ui = k. For v, w ∈ Zm with v < w

and |w − v|∞ ≤ 2 we define a set of hypersurfaces in Xvw:

Hvw = {Yu : v < u < w} ∪ {Sik : 1 ≤ i ≤ m, vi < k < wi}.

Note that the second set is empty if |w − v|∞ < 2.
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Figure 3.8: The permutahedron P4.

We obtain a family of metrics Gvw = G(Hvw) on Xvw as constructed in §2.4. The

space of metrics Gvw is a convex polytope called a graph-associahedron, and

dimGvw = |w − v|1 − 1,

as Bloom explains in [3, Thm. 5.3]. In fact, when |w− v|∞ < 2, Gvw is the permuta-

hedron PN , the convex polytope defined as the convex hull in RN of all permutations

of (1, 2, . . . , N) ∈ RN where N = |w − v|1. For example, P3 is a hexagon, and the

polytope P4 is shown (hollowed out) in Figure 3.8. Write mvw = mGvw(Xvw) and ∂v

for the differential of C(Yv). From the formulae in §2.4 we obtain

(−1)|w−v|1−1mvw∂v − ∂wmvw =
∑

v<u<w

mG(Yu)(Xvw) +
∑

1≤i≤m
wi<k<vi

mG(Si
k)(Xvw). (3.11)

As in §3.2.2, each mG(Si
k)(Xvw) = 0. Also, the family G(Yu) can be identified with

the product Gvu×Guw. Before we apply equation (2.7), we discuss the arrangement

of signs.

It is possible to choose I-orientations µvw for Xvw such that µvw = µuw ◦ µvu

whenever v < u < w, and we do so. For a proof, see [20, Lemma 6.1]. We can

orient each Gvw such that the identification of Gvu × Guw with G(Yu) ⊂ ∂Gvw has

orientation deficiency (−1)dimGvu . That is, the product orientation for Gvu × Guw

using our chosen orientations differs from the boundary orientation as induced from

Gvw by the sign (−1)dimGvu . This essentially follows from the discussion in [20]

following Prop. 6.4. With this understood, equation (2.7) yields

mG(Yu)(Xvw) = (−1)(dimGuw+1) dimGvumuwmvu.
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Writing mvv = ∂v, equation (3.11) becomes∑
v≤u≤w

(−1)|w−u|1(|u−v|1−1)muwmvu = 0.

We remind the reader that this holds under the assumptions that v < w and |w −

v|∞ ≤ 2. The case v = w also holds, encoding the relation ∂2
v = 0.

3.3.2 Constructing the spectral sequence

We now construct the spectral sequence of Theorem 3.0.2. We define a chain complex

(C,∂) with a filtration F iC. The filtration will induce the spectral sequence we

desire. To begin, set

C =
⊕

v∈{0,1}m
C(Yv), ∂ =

∑
v≤w

∂vw (3.12)

where ∂vw = (−1)s(v,w)mvw. The sign here is given by

s(v, w) = (|w − v|21 − |w − v|1)/2 + |v|1,

as lifted from [20, eq. 38]. We compute the C(Yv)→ C(Yw) part of ∂2 to be

(−1)s(v,w)+|w|1
∑

v≤u≤w

(−1)|w−u|1(|u−v|1−1)muwmvu = 0.

We call (C,∂) the link surgeries complex associated to (Y,L), with the understanding

that the necessary auxiliary choices we’ve made have been fixed.

We define the filtration on (C,∂) by setting

F iC =
⊕
|v|≥i

C(Yv) ⊆ C. (3.13)

Since ∂ involves only terms with v ≤ w, it is immediate that ∂F iC ⊆ F iC. This

filtered complex induces a spectral sequence whose E1-page and E1-differential d1

are given by

E1 =
⊕

v∈{0,1}m
I(Yv), d1 =

∑
v<w

|w−v|1=1

(−1)δ(v,w)m(Xvw),

47



where δ(v, w) ≡
∑

1≤i≤j vi, in which j is the unique index where v and w differ. This

carries over from the discussion following [20, Cor. 6.9]. To prove Theorem 3.0.2 it

remains to identify the E∞-page: we must show that the homology of (C,∂) is the

instanton homology I(Y).

3.3.3 Convergence

Let (C,∂) be the link surgeries complex associated to (Y,L). For i ∈ Z define the

chain complex (Ci,∂i) to be the link surgeries complex associated to (YΛi+1(L1),L \

L1). Recall that the notation YΛi+1(L1) is from §3.2, and stands for Λi+1-surgery

on L1 in Y. We conflate ∞ and −1 in the following. Note that for i = ∞, 0, 1 and

a, b ∈ Zm−1 we have (∂i)ab = ∂vw where v = (i, a) and w = (i, b). Thus we can work

exclusively with the maps ∂vw with v, w ∈ Zm. Consider f0 : C0 → C1 given by

f0 =
∑

v,w∈{0,1}m
v1=0,w1=1

∂vw.

It should be understood that ∂vw = 0 if v 6≤ w. In words, f0 is the sum of the

components in the differential ∂ that correspond to surgery-cobordisms that include

surgery on L1. This is an anti-chain map, and the larger complex (C,∂) is the

cone-complex of f0. That is,

C = C0 ⊕C1, ∂ =

 ∂0 0

f0 ∂1

 .

Define a map F : C∞ → C by

F =
∑
v1=−1
w1∈{0,1}

∂vw.

This is an anti-chain map: the relation F∂∞ + ∂F = 0 is an encoding of (3.11):

∑
v1=u1=−1
w1∈{0,1}

∂uw∂vu +
∑
v1=−1

u1,w1∈{0,1}

∂uw∂vu = 0.
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Equip C and C∞ with filtrations as in (3.13) but using the sum
∑m

i=2 vi instead of

|v|1. Then F respects these filtrations, and on the E0
p-components of the induced

spectral sequences, the map induced by F takes the form

F0
p :

⊕
v1=−1∑
i≥2 vi=p

C(Yv)→
⊕

v1∈{0,1}∑
i≥2 vi=p

C(Yv)

and for v with v1 = −1 is given by

F0
p|C(Yv) = ∂vv′ ⊕ ∂vv′′

where v′, v′′ have v′1 = 0 and v′′1 = 1, and otherwise agree with v. But ∂vv′ is the

map f−1 in §3.2.2 for the surgery triangle involving Yv and L1; and likewise ∂vv′′

is the map h−1. It follows from Lemma 3.2.1 that F0 is a quasi-isomorphism, and

hence so is F. By removing each link component as we have just done for L1, and

composing the m maps F associated to each removal, we get a quasi-isomorphism Q

from (C(Y), ∂) to (C,∂), completing the proof of Theorem 3.0.2.

3.3.4 Gradings

We follow Bloom’s [3] treatment of gradings for the spectral sequence. We refer to

the mod 2 grading on the complex C(Y) defined in §2.6 as gr[Y]. We define a grading

gr[C] on the complex C in (3.12). For x ∈ C(Yv) ⊂ C with homogeneous gr[Yv]

grading, we define

gr[C](x) ≡ gr[Yv](x) + deg(X∞v) + |v|1 mod 2. (3.14)

We conflate ∞ with −1 ∈ Zm. Let πw : C→ C(Yw) be the projection. Note that

gr[C](πw(∂(x))) ≡ gr[Yw](mvw(x)) + deg(X∞w) + |w|1 mod 2. (3.15)

We have the additivity relation deg(X∞w) ≡ deg(X∞v) + deg(Xvw), and also

gr[Yw](mvw(x)) = gr[Yv](x) + dim(Gvw) + deg(Xvw).
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Knowing dim(Gvw) = |w− v|1− 1 shows that the expressions (3.14) and (3.15) differ

by 1 mod 2, and thus the differential ∂ alters gr[C] by 1.

The quasi-isomorphism Q : C(Y) → C is a composition of m maps F as in the

previous section. Thus it is a sum of maps of the form mG(X∞v), where v ∈ {0, 1}m

and G = G1 × · · · ×Gm. Here Gi = Gv(i)v(i+1) only varies on Xv(i)v(i+1) ⊂ X∞v and

∞ = −1 = v(1) < v(2) < · · · < v(m + 1) = v. Using dim(Gvw) = |w − v|1 − 1

for v < w, we find dim(G) = |v|1. Since the gr[Y] to gr[Yv] degree of mG(X∞v) is

dim(G) + deg(X∞v), it follows that Q preserves the Z/2-gradings.

There is also a Z-grading on C given by the vertex weight |v|1 for a homogeneous

element in C(Yv) ⊂ C, and by construction ∂ increases this by 1. We summarize

a more detailed statement of Theorem 3.0.2; compare [20, Cors. 6.9, 6.10] and [3,

Thm. 1.1].

Theorem 3.3.1. Let L be an oriented, framed link with m components in Y . For

each v ∈ {∞, 0, 1}m denote by Yv the result of v-surgery on L and let Yv be an

admissible bundle over Yv such that the total collection of Yv forms a surgery cube.

For v < w there are surgery cobordism bundles Xvw from Yv to Yw with I-orientations

µvw satisfying µuw ◦ µvu = µvw whenever v < u < w, such that there is a spectral

sequence (Er, dr) with

E1 =
⊕

v∈{0,1}m
I(Yv), d1 =

∑
v<w

|w−v|1=1

(−1)δ(v,w)I(Xvw)

where δ(v, w) =
∑

1≤i≤j vj, in which j is the unique index where v and w differ. The

spectral sequence is graded by Z/2×Z, where dr has bi-degree (1, r). The Z/2-grading

is given by (3.14) while the Z-grading is by vertex weight. The spectral sequence

converges by the Em+1-page to I(Y), and it induces the usual Z/2-grading on I(Y).
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CHAPTER 4

Framed instanton homology: I#(Y )

In this chapter we discuss the basic constructions and properties of the framed in-

stanton groups I#(Y ). These are a special case of the groups I#(Y,K) introduced

by Kronheimer and Mrowka in [20]. Here Y is a 3-manifold and K is a knot or link

in Y , and we have I#(Y ) = I#(Y, ∅). The name framed instanton homology comes

from [21]. The group I#(Y ) is isomorphic to the sutured instanton group SHI(M,γ)

from [22], where M is the complement of an open 3-ball in Y and γ is a suture on

the 2-sphere boundary.

4.1 Framed instanton groups

Let Y be a connected, oriented, closed 3-manifold. Consider an SO(3)-bundle Y#

over Y#T 3 with Y# trivial over Y and non-trivial over T 3. To make the construction

of Y# from Y more precise, we can once and for all pick a point x ∈ T 3, a bundle T3

over T 3 geometrically represented by an S1-factor, and an isomorphism T3
x ' SO(3).

Then, up to inessential choices, Y# can be constructed from Y and a basepoint

y ∈ Y . Indeed, we can perform the connected sum Y#T 3 between 3-balls around

y and x, and glue the bundles Y × SO(3) and T3 by expanding the isomorphism

SO(3) ' T3
x near x.

We describe a useful operation for cobordisms in this context. Let X : Y1 → Y2

be a cobordism and let γ : [0, 1] → X be a properly embedded path with γ(0) and

γ(1) being the chosen basepoints in Y1 and Y2, respectively. Given another such pair
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X ′, γ′ where X ′ : Y ′1 → Y ′2 , we form a cobordism

X on X ′ : Y1#Y ′1 → Y2#Y ′2

as follows. Let Γ be a neighborhood of γ diffeomorphic to int(D3)× [0, 1]. Write

∂(X \ Γ) \ (Y1 ∪ Y2 \ ∂Γ) = S2 × [0, 1];

do the same for X ′. Then identify the copies of S2× [0, 1] by an orientation reversing

homeomorphism. See Figure 4.1. We omit the paths from the notation X on X ′

because for all of our cobordisms there will be a natural choice of path up isotopy

relative to the boundaries. The operation on extends to glue together cobordisms of

bundles X and X′ if a path of isomorphisms Xγ(t) ' X′γ′(t) is chosen.

Let g be a gauge transformation of Y# with η(g) ∈ H1(Y#T 3;F2) Poincaré dual

to a 2-torus Σ ⊂ T 3 over which Y# is non-trivial. Here η : G (X)→ H1(X;F2) is from

the exact sequence (2.1). Such a transformation may be constructed explicitly as in

[9, Lemma A.2]. Define the framed gauge transformations G # to be the subgroup of

G (Y#) generated by Gev(Y#) and g. We let C# denote the critical set of a perturbed

Chern-Simons functional csπ on C /G #. Note that C# is obtained from C(Y#) by

modding out by the Z/2-action of degree 4 induced by the gauge transformation g.

We define the chain complex C#(Y ) for I#(Y ) following ideas from [20, §4.4].

This definition transparently replaces the notion of an I-orientation with that of a

homology orientation. Fix once and for all a bundle W : S3 × SO(3) → T3 over

T 2 × D2 \ int(D4) : S3 → T 3 extending T3. Fix a path γ in W beginning in S3,

ending at x ∈ T 3, and a path of isomorphisms Wγ(t) ' SO(3), the isomorphisms at

the ends being the natural choices. We define

C#(Y ) =
⊕
a∈C#

ZΛ#(a)

where Λ#(a) is the 2-element set of orientations of the line det(DA); here A is a

connection on [0, 1] × Y on W (with cylindrical ends attached) where the limit of A
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Figure 4.1: A schematic depiction of the on operation. The thicker lines represent actual

boundary components.

over the R × Y cylindrical end is equivalent to the trivial connection, and the limit

of A over the R× Y# end is in the class a. The operator DA is as in §2.3.

The differential for C#(Y ) is straight-forward to define, following the construction

of the differential for I(Y) in §2.1, which followed [20, §3.6]. Note that a base

connection as in the definition for C(Y) is no longer needed. In summary, given Y

with a basepoint, with suitable metric and perturbation, the complex C#(Y ) and

hence the group I#(Y ) are determined. The isomorphism class of I#(Y ) depends

only on Y .

4.2 Maps from cobordisms

We describe how a cobordism X : Y1 → Y2 with a path γ as above gives rise to a map

I#(X) : I#(Y1) → I#(Y2). Again, we omit γ from the notation because there will

always be a natural choice for us. We always assume X and Y1, Y2 are connected.

Take the path in T 3 × [0, 1] given by t 7→ (x, t). Using this we form

X# = X on (T 3 × [0, 1]) : Y1#T 3 → Y2#T 3.

Further, there is a natural choice for bundle X# over X# by performing the on

operation between X×SO(3) and T3× [0, 1] using the constant path of isomorphisms

SO(3) ' T3
x. We enlarge the even gauge transformation group used for X# to include

gauge transformations whose restriction to each T 3 is of the form g from §4.1 above.

See [20, §5.1] for a general discussion. Then, in the usual way, we obtain a chain
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map m#(X) : C#(Y1)→ C#(Y2) and an induced map I#(X) on homology.

The data of an I-orientation may be replaced by an orientation of the line det(DA)

where A is the trivial connection on X × SO(3). Following [21, §3.8], but using

homology instead of cohomology, this amounts to an orientation of the vector space

H1(Y1;R)⊕H1(X;R)⊕H+
2 (X;R),

where H+
2 (X;R) is a maximal positive definite subspace for the intersection form on

H2(X;R). A choice of such an orientation is called a homology orientation for the

cobordism X, and is typically denoted µX . In summary, given X : Y1 → Y2, a path γ

from the basepoint of Y1 to the basepoint of Y2, a suitable perturbation and metric,

and a homology orientation µX , the chain map m#(X) is determined. The induced

map I#(X) depends on X, µX , and presumably γ.

We define I#(∅) = I#(S3), and when X : ∅ → ∂X, we define the map I#(X)

by deleting a 4-ball in X. In particular, when X is a compact, connected, oriented

4-manifold with connected boundary, and an orientation of H1(X;R)⊕H+
2 (X;R) is

chosen, we obtain an element

[X]# ∈ I#(∂X).

We also obtain a map [X]# : I#(∂X) → Z by viewing X : ∂X → ∅ and orienting

H1(∂X;R)⊕H1(X;R)⊕H+
2 (X;R). If X is a closed, connected, oriented 4-manifold

and H1(X;R)⊕H+
2 (X;R) is oriented, then we have a number [X]# ∈ Z.

Finally, we mention another topological operation that arises naturally in this

setting. This is the boundary sum W\W ′ of two 4-manifolds with boundary, as used

in [18]; one deletes a model half-4-ball along the boundaries of W and W ′ and glues

them together with an orientation-reversing homeomorphism, so that ∂(W\W ′) =

∂W#∂W ′. We have

(X on X ′) ◦ (W\W ′) ' (X ◦W ) \ (X ′ ◦W ′)

where compositions involved are of course assumed to make sense, and the same

relation holds with the compositions reversed. See Figure 4.2.

54



Figure 4.2: On the left, a schematic depiction of the boundary sum \ operation. On the

right, we compose the on operation against \, and the result may be interpreted as involving

only \. The thick lines represent actual boundary components.

4.3 Gradings

We now define the absolute Z/4-grading on I#(Y ). Let W′ be a completion of W

from §4.1 with the 4-ball filled in, so that it is a non-trivial bundle over T 2 × D2,

and we may write W′ : ∅ → T3. Fix an integer k. For a ∈ C#(Y ) we define

gr(a) := −µ(E \W′, a)− b1(E) + b+(E)− b1(Y ) + k mod 4

where E : ∅ → Y is a 4-manifold with boundary Y and E = E × SO(3). We choose

k such that I#(S3) is supported in grading 0. The proof that this grading is well-

defined is the same as the case of the absolute mod 2 grading for I(Y) as for example

in [7]; we get Z/4 instead of Z/2 because the characteristic classes of the bundles

are uniformly controlled in this case. We give the argument for completeness, and

compute the degrees of cobordism maps. We have chosen our conventions so that

the degree formula aligns with that of [20, Prop. 4.4].

Proposition 4.3.1. The assignment a 7→ gr(a) gives a well-defined Z/4-grading on

C#(Y ) for which the differential has degree −1 and thus descends to a Z/4-grading

on I#(Y ). Given a cobordism X : Y1 → Y2 equipped with the data to form X# as

in §4.2, the degree of the induced map I#(X) : I#(Y1) → I#(Y2) is given by the

expression for deg(X) in (2.11) taken modulo 4. More generally, if Yi = Yi × SO(3)

and X : Y1 → Y2 is possibly non-trivial and comes equipped with the data to form

X#, then the degree of the induced map I#(X) : I#(Y1)→ I#(Y2) is given by

− 3

2
(χ(X) + σ(X)) +

1

2
(b1(Y2)− b1(Y1)) + 2P(X) mod 4 (4.1)
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where the invariant P(X) ∈ Z/2 is defined by

P(X) ≡ [S] · [S] mod 2.

Here S ⊂ X is a surface in the interior of X, [S] ∈ H2(X;F2), and the image of [S]

in H2(X, ∂X;F2) is Poincaré dual to w2(X).

Proof. Let E ′ : Y → ∅ and E′ = E ′ × SO(3), and let W′′ be the reverse of W′. In

particular, we may write W′′ : T3 → ∅. Then by (2.3) we have

µ(E \W′, a) + µ(a,E′ \W′′) = µ((E′ ◦ E)#(W′′ ◦W′)). (4.2)

By (2.3) we may write the right hand side as

µ(E′ ◦ E) + 3 + µ(W′′ ◦W′).

Note W′′ ◦W′ is a bundle over T 2 × S2, which necessarily has p1 congruent to 0

mod 4. Also, (1− b1 + b+)(T 2 × S2) = 0. By (2.4) we conclude that µ(W′′ ◦W′) is

congruent to 0 mod 4. Since E′ ◦ E is a trivial bundle, (4.2) is mod 4 congruent to

µ(E′ ◦ E) + 3 = 3(b1 − b+)(E ′ ◦ E)

which by a Mayer-Vietoris argument (see §5.1) is mod 4 congruent to

−b1(E)− b1(E ′) + b+(E) + b+(E ′) + b1(Y ).

It follows that the expression

gr(a)− µ(a,E′ \W′′) = b1(E ′)− b+(E ′)− 2b1(Y ) + k mod 4

is independent of E, and thus so is gr(a). In other words, gr(a) is a well-defined

Z/4-grading on C#(Y ). Suppose a, b ∈ C#(Y ) with µ(a,R× Y#, b) = 1. Then

µ(E \W′, a) + µ(a,R× Y#, b) = µ(E \W′, b)

yields gr(b)−gr(a) = −1. It follows that the differential lowers the grading by 1. Now

we compute the degree of a map I#(X) induced by a cobordism X : Y1 → Y2. Let
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X = X×SO(3) and form V = X on (T3× [0, 1]). Let a ∈ C#(Y1) and b ∈ C#(Y2) with

µ(a,V, b) = 0. Let E : ∅ → Y1 and E = E × SO(3). Then (2.3) and µ(a,V, b) = 0

yield µ(V ◦ (E \W′), b) = µ(E \W′, a). Thus deg(X) ≡ gr(b)− gr(a) is given by

−b1(X ◦ E) + b+(X ◦ E)− b1(Y2) + b1(E)− b+(E) + b1(Y1).

From the discussion in §5.1, −b1(X ◦ E) + b+(X ◦ E) is equal to

−b1(E)− b1(X) + b+(E) + b+(X) + b1(Y1).

We obtain the simplified expression

deg(X) ≡ −b1(X) + b+(X) + 2b1(Y1)− b1(Y2) mod 4. (4.3)

Using the assumption that X, Y1 and Y2 are connected and non-empty, we have

χ(X) = 1 − b1(X) + b2(X) − b3(X). Poincaré-Lefschetz duality tells us b3(X) =

b1(X, ∂X), and by the long exact sequence for the pair (X, ∂X) with real coefficients

we obtain

d− b2(X) + b1(∂X)− b1(X) + b1(X, ∂X)− b0(∂X) + b0(X) = 0,

where d is the dimension of the image of the map H2(X) → H2(X, ∂X). Note

b0(∂X) = 2 and b0(X) = 1. On the other hand, d = b+(X) + b−(X) and σ(X) =

b+(X)− b−(X). We obtain

χ(X) = −2b1(X) + b1(Y1) + b1(Y2) + d, σ(X) = 2b+(X)− d.

Plugging this data into expression (2.11), rewritten here as

−3

2
(χ(X) + σ(X)) +

1

2
(b1(Y2)− b1(Y1)),

yields, modulo 4, the expression for deg(X) in (4.3). Now we approach the more

general statement, supposing that X : Y1 → Y2 is possibly non-trivial. We write

deg(X) ≡ deg(X) + 2P(X) mod 4,
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where P(X) is to be determined. Let E1 : ∅ → Y1 and E1 = E1 × SO(3). Let

a ∈ C#(Y1), b ∈ C#(Y2) with µ(a,X#, b) ≡ 0. Write Xtr = X × SO(3). Then

deg(X)− deg(X) ≡ µ(X ◦ E1 \W′, b)− µ(Xtr ◦ E1 \W′, b).

After closing up bundles using some E2 : Y2 → ∅ with E2 = E2×SO(3) and cancelling

out the contribution from the bundle over T 2 × S2 as above, this difference is seen

from (2.4) to be

−2p1(E2 ◦ X ◦ E1) =
1

4π2

∫
E2◦X◦E1

tr(F 2
A),

where A is any connection. We can choose A to be trivial away from the interior of

X, thus

P(X) ≡ 1

8π2

∫
X

tr(F 2
A) mod 2

where A is any connection on X that restricts to trivial connections on each Yi. In

other words, P(X) ≡ p1(X′) mod 2, where X′ is any trivial extension of X over a

closed 4-manifold. Thus

P(X) ≡ w̃2(X)2 mod 2,

where w̃2(X) is a lift of w2(X) to H2(X, ∂X;F2). The result follows.

4.4 Duality

The chain group C#(Y ) is the same as C#(Y ) but with the differential maps trans-

posed. It follows that I#(Y ) and I#(Y ) are isomorphic over Q. More precisely, given

a homology orientation of Y , i.e. an orientation of H1(Y ;R), we get an isomorphism

I#(Y ;Q)i ' I#(Y ;Q)∗b1(Y )−i. (4.4)

The homology orientation is required to identify the chain groups. The grading shift

in (4.4) is explained as follows. Let E1 : ∅ → Y and E2 : Y → ∅, and a ∈ C#(Y ).

Write a for the corresponding class in C#(Y ). From (2.3) and (2.4) we obtain

µ(E1 \W′, a) + µ(a,E2 \W′′) = 3(b1(E)− b+(E))
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where Ei = Ei × SO(3), E = E2 ◦ E1, and W′′ is the reverse of W′. The bundle

W′′ ◦W′ over T 2 × S2 has been removed from the expression just as in §4.3. Using

that b1(E)− b+(E) is equal to

b1(E1) + b1(E2)− b+(E1)− b+(E2)− b1(Y ),

see §5.1, we obtain gr(a) + gr(a) ≡ b1(Y ) + 2k. We claim k is even. Let a be the

generator of I#(S3), represented by a flat connection on T 3 ' S3#T 3. Recall that

k is chosen so that I#(S3) is supported in grading 0, so we have gr(a) = 0 (also see

§4.7). In the definition of gr(a), choose E : ∅ → S3 to be a trivial bundle over a

4-ball. Then

0 ≡ gr(a) ≡ −µ(W′, a) + k mod 4.

Recall from the proof of Prop. 4.3.1 that µ(W′′ ◦W′) ≡ 0 mod 4, where W′′ : T3 → ∅

is the reverse bundle-cobordism of W′. By the index gluing formula (2.3) we then

have −µ(W′, a) ≡ µ(a,W′′) mod 4. Since W ′ is diffeomorphic to its orientation

reversal, which is W ′′, we also have µ(W′, a) ≡ µ(a,W′′) mod 4, as follows from the

Atiyah-Patodi-Singer index formula [1, Thm. 3.10]. Thus k ≡ µ(W′, a) ≡ 0 mod 2.

It follows that

gr(a) + gr(a) ≡ b1(Y ) mod 4,

establishing the grading shift in (4.4).

4.5 Twisted framed groups I#(Y ;λ)

To state a framed instanton exact triangle, it is necessary to allow non-trivial bundles

in our constructions. In the above sections of this chapter, take Y# to be geomet-

rically represented by λ ∪ ω where λ ⊂ Y is a closed, unoriented 1-manifold and ω

is an S1-factor of T 3. We obtain a group I#(Y ;λ) that is now only relatively Z/4-

graded. We refer to I#(Y ;λ) as the framed instanton homology of Y twisted by λ. It

is isomorphic to four consecutive gradings of the relatively Z/8-graded group I(Y#).
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The isomorphism class of I#(Y ;λ) depends only on the oriented homeomorphism

type of Y and the class [λ] ∈ H1(Y ;F2).

4.6 Exact triangles

In this section we state a few exact triangles for framed instanton homology. Let

Y be a closed, connected, oriented 3-manifold and λ ⊂ Y a closed, unoriented 1-

manifold. Let K be a framed knot in Y disjoint from λ. Denote by Yi the result of

i-surgery on K. Let µ be the core of the knot K as viewed in Y0. Then we have an

exact triangle

· · · I#(Y ;λ)→ I#(Y0;λ ∪ µ)→ I#(Y1;λ)→ I#(Y ;λ) · · ·

There are two other exact triangles corresponding to the two other rows in Figure

3.1. For example, if we view µ as the core of the knot inside Yi where i =∞ or i = 1,

the exact sequence has µ appearing in the twisting for the group of Yi, and not the

other two. Each of these is an application of Floer’s original exact triangle, Theorem

3.0.1, obtained by connected summing each 3-manifold with T 3 and performing the

surgeries away from T 3, with the appropriate overlying bundles.

By changing the framing of K, we obtain variants of the above triangles that are

computationally handy. Let l andm be the longitude and meridian ofK, respectively.

Suppose the meridian is unchanged but the longitude is changed to −pm+ l. Then

we have

· · · I#(Y ;λ)→ I#(Yp;λ ∪ µ)→ I#(Yp+1;λ)→ I#(Y ;λ) · · ·

where again the core µ can be arranged in two other ways. Alternatively, keep the

longitude the same but change the meridian to m− ql. Then we have

· · · I#(Y0;λ)→ I#(Y1/(q+1);λ ∪ µ)→ I#(Y1/q;λ)→ I#(Y0;λ) · · ·

where the same freedom with the placement of µ is understood. For other variants,

we refer the reader to [23, §42.1].
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For an alternative perspective, one can begin with a 3-manifold Z with torus

boundary and consider the possible ordered triplets of Dehn fillings of Z that are

compatible with a surgery triangle description. This is the viewpoint taken in [23,

§42.1] and [35].

We mention that the mod 2 degrees of the the cobordism maps in these exact

triangles is the same as the monopole case, and is explained in [23, §42.3]. There

are always non-trivial bundles amongst the 3 cobordism maps, even if the three

framed groups are untwisted. For in this case the composite of three consecutive

cobordism bundles, call it X03 as in §3.1.3, has P(X03) ≡ 1 mod 2. This is because

X03 is trivial away from a copy of −CP2 minus a thickened S1; over this area it

restricts to a non-trivial bundle E which is easily seen to have P(E) ≡ 1. Then, by

the additivity of P(X), at least one of Xi,i+1 has P(Xi,i+1) ≡ 1. Note that, after

computing deg(X03) = 1, we see deg(X03) ≡ −1 mod 4.

4.7 Examples

In this section we consider the framed instanton homology of S3 and S1 × S2. To

compute I#(S3) it suffices to compute I(T3). This is well-known and elementary,

see [5]. Let N be a regular neighborhood of the geometric representative for T3. The

flat connections modulo even gauge on T3 are in correspondence with the set

{ρ ∈ Hom(π1(T 3 \N), SU(2)) | ρ(ν) = −1}/SU(2),

where ν is a small meridian around N , and the SU(2)-action is by conjugation. A

computation shows that this set consists of two elements; these two elements are

non-degenerate and irreducible. The two classes as generators for C(T3) differ by

degee 4. It follows that C#(S3) has one generator, and we obtain

I#(S3) ' Z0,

where, as usual, the subscript indicates the grading. We usually assume a distin-

guished generator for I#(S3) has been fixed.
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Next, we compute I#(S1 × S2). For this we adapt [20, Lemma 8.3]. By placing

the twisting µ at an S3, we have an exact sequence

· · · I#(S3)
α−→ I#(S1 × S2)

β−→ I#(S3)
γ−→ I#(S3) · · ·

We apply the grading formula (2.11). The map α comes from the cobordism D2×S2\

int(D4) from S3 to S1×S2. The overlying bundle is necessarily trivial. We compute

deg(α) ≡ −1. The map β is the same cobordism, but reversed, and deg(β) ≡ −2.

By the previous section, we know the sum of the degrees of the three maps is −1 mod

4, so deg(γ) ≡ 2. This can be computed directly by observing that γ comes from

the cobordism −CP2 minus two 4-balls, from S3 to S3, with a non-trivial bundle.

Because γ : Z0 → Z0 has degree 2, it must be 0. By exactness, we conclude

I#(S1 × S2) ' Z2 ⊕ Z3,

where, as usual, the subscripts indicate gradings. As is evident by the above com-

putation, a canonical generator in grading 3 for I#(S1 × S2) is given by [D2 × S2]#.

Recall from §4.2 that [D2 × S2]# is the notation for the relative invariant induced

by the cobordism D2 × S2 : ∅ → S1 × S2. A canonical homology orientation is used

here. The element [S1 × D3]# generates the summand in grading 2. This is seen

by identifying S1 × S2 with its orientation-opposite in a standard way, and viewing

[D2 × S2]# as a map I#(S1 × S2)→ Z. For then

[D2 × S2]#[S1 ×D3]# = ±1,

since S1 × D3 and D2 × S3 glue along S1 × S2 to give S4. However, the element

[S1×D3]# is not canonically homology oriented; it requires an orientation of H1(S1×

S2;R). Thus a generator for Z2 ⊂ I#(S1×S2) is distinguished by orienting the vector

space H1(S1 × S2;R).
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4.8 The Künneth formula

Let Y and Y ′ be closed, oriented and connected 3-manifolds. If either one of I#(Y )

or I#(Y ′) is torsion-free, there is a graded isomorphism

I#(Y#Y ′) ' I#(Y )⊗ I#(Y ′).

This is a special case of [20, Cor. 5.9], and follows from Floer’s original excision

theorem. Further, this isomorphism is natural for split cobordisms, in the following

sense. Let X : Y1 → Y2 and X ′ : Y ′1 → Y ′2 be cobordisms with paths chosen so that

the composite X on X ′ is defined. Suppose the above product isomorphism holds for

Y1#Y ′1 and Y2#Y ′2 ; then we have a commutative diagram

I#(Y1#Y ′1) −−−→
'

I#(Y1)⊗ I#(Y ′1)

I#(XonX′)
y yI#(X)⊗I#(X′)

I#(Y2#Y ′2)
'−−−→ I#(Y2)⊗ I#(Y ′2)

We do not address the arrangement of homology orientations, as we will not require

it in the sequel.

4.9 A connected sum of S1 × S2’s

Let Y be a 3-manifold with Y ' #kS1 × S2. From the Künneth formula it is clear

that I#(Y ) ' ⊗k(Z2 ⊕ Z3). The subscripts here indicate gradings. Let µY be an

orientation of H1(Y ;R). In this section we establish the following.

Proposition 4.9.1. There is an isomorphism of abelian groups

φ :
∧∗(H1(Y ;Z))→ I#(Y )

which only depends on Y and µY , not the decomposition Y ' #kS1×S2. The choice

of µY only affects the overall sign of φ. For x ∈
∧i(H1(Y ;Z)) with b1(Y ) = k, the

grading of φ(x) in I#(Y ) is given by 2k + i mod 4.
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Proof. Choose oriented, closed, embedded curves c1, . . . , ck in Y such that there

exists a diffeomorphism Y ' #k
i=1S

1 × S2 sending ci to S1 × pt in the ith copy of

S1 × S2. Given J = {i1, . . . , il} ⊂ {1, . . . , k} we define a cobordism XJ : ∅ → Y by

starting with Y × [0, 1] and attaching a 2-handle to each ci × {0} if i ∈ J , and on

top of this, attaching 3-handles and a 4-handle such that ∂XJ = Y × {1} and

XJ ' X1\ · · · \Xk, Xi =


S1 ×D3 if i 6∈ J

D2 × S2 if i ∈ J
(4.5)

with ∂Xi the ith copy of S1 × S2 in the decomposition Y ' #k
i=1S

1 × S2. Let

{1, . . . k} \ J = {il+1, . . . , ik} be such that µY = [ci1 ∧ · · · ∧ cik ]. To homology orient

XJ we orient L(XJ) = H1(XJ ;R) by [cil+1
∧ · · · ∧ cik ]. Now we define the map

ψ :
∧∗(c1, . . . , ck)→ I#(Y ) by

ψ(ci1 ∧ · · · ∧ cil) = [XJ ]#.

This map is an isomorphism by the case k = 1 and the Künneth formula.

With the help of the orientation µY of H1(Y ;R), we can define a bilinear form

〈·, ·〉 : I#(Y )⊗ I#(Y )→ Z,

see also (4.4). The elements [XJ ]# as J runs over subsets of {1, . . . , k} form a basis

for I#(Y ), so it suffices to define the form on these. Given J,K ⊂ {1, . . . , k}, let XJ

and XK be as above with homology orientations µJ and µK , respectively. Then we

have elements [XJ ]#, [XK ]# ∈ I#(Y ). Consider XK : Y → ∅ and homology orient it

by µY ∧ µK . This yields [XK ]# : I#(Y )→ Z. Then 〈·, ·〉 is given by

〈[XK ]#, [XJ ]#〉 = [XK ]#[XJ ]# = [XK ◦XJ ]# = AJK ∈ Z.

Now observe that

XK ◦XJ ' X1# · · ·#Xk, Xi '


S1 × S3 if i 6∈ J ∪K

S2 × S2 if i ∈ J ∩K

S4 otherwise

(4.6)
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Note [S2×S2]# = 0, because the degree of the cobordism S3 → S3 given by S2×S2

minus two 4-balls is odd, and similarly for [S1 × S3]#. Using the naturality with

respect to split cobordisms of the Künneth formula, we conclude that AJK 6= 0 if

and only if J and K are complementary, and in this case AJK = ±1. This sign may

be determined by using Definition 5.1.1, but we will not need it. It is clear that

this bilinear form is non-degenerate. Note that 〈·, ·〉 depends on c1, . . . , ck (which

determine an identification of Y with Y ).

We argue that ψ is independent of the 2-handle framings chosen to construct the

XJ . First construct cobordisms XJ for each subset J ⊂ {1, . . . , k} as above. Choose

some J , and construct a cobordism X ′J by attaching the 2-handles using possibly

different framings as was done for XJ , subject to the constraint that X ′J is of the

form (4.5). Then

XK ◦X ′J ' X1# · · ·#Xk

just as in (4.6), except now if i ∈ J ∩K then Xi is a possibly non-trivial S2-bundle

over S2, in which case [Xi]
# = 0. We homology orient X ′J in the same way as XJ .

It is easily seen that [X ′J ]# has all the same values AJK as [XJ ]# under the bilinear

pairing, and thus [X ′J ]# = [XJ ]#.

Now we see how ψ changes when we change the loops ci. Consider replacing

the oriented loop c1 by an oriented connected sum c1#c2. There are many ways

of forming this connected sum. Let Xc1#c2 be the cobordism ∅ → Y obtained by

attaching to Y × [0, 1] a 2-handle along c1#c2×{0} and 3-handles and a 4-handle as

above. Supposing µY = [c1 ∧ · · · ∧ ck], we homology orient Xc1#c2 by [c2 ∧ · · · ∧ ck],

just as we homology orient X{1} and X{2}. Then

[Xc1#c2 ]# = [X{1}]
# + [X{2}]

#.

Viewing Xc1#c2 : ∅ → Y and XJ : Y → ∅, this follows from computing

XJ ◦Xc1#c2 ' X#X3# · · ·#Xk,


X ' S4 if |{1, 2} ∩ J | = 1

deg(X) is odd otherwise
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where each Xi ' S4 if i ∈ J and deg(Xi) is odd otherwise, and then appealing to

the non-degeneracy of our bilinear form. A similar argument shows [Xc1#c2∪J ]# =

[X{1}∪J ]# + [X{2}∪J ]# where J is any subset of {3, . . . , k}.

As a consequence, ψ induces a well-defined isomorphism

φ :
∧∗(H1(Y ;Z))→ I#(Y ).

This is because any two sets of loops c1, . . . , ck in Y as above (having the property that

there exists a diffeomorphism Y ' #kS1 × S2 sending each ci to a factor S1 × pt)

are related by sequences of connected sums (and the reverse operation) as in the

previous paragraph. Indeed, these are just handle-slides, and a result of Laudenbach

and Poénaru [26], as cited in [18, Rmk. 4.4.1], says that any self-diffeomorphism

of #kS1 × S2 extends to a diffeomorphism of \kS1 ×D3, a bounding 1-handlebody,

which can be written as a composite of 1-handle slides. In fact, this result also says

that the way in which the 3-handles and 4-handle are attached to construct XJ above

is essentially unique.

In summary, φ is defined by choosing an orientation µY of H1(Y ;R), a diffeomor-

phism Y ' #kS1×S2, oriented loops c1, . . . , ck corresponding to the S1×pt factors,

and setting

φ([ci1 ] ∧ · · · ∧ [cil ]) = [XJ ]#

where the element [XJ ]# is defined as above. The content of the above discussion is

that this map is well-defined and is an isomorphism. The statement about gradings

is easily verified.

4.10 A link surgeries spectral sequence

The spectral sequence of Theorem 3.3.1 leads to one for the groups I#(Y ). The

setup is as follows. Again we have an m-component framed link L in Y . We view L

as a link in Y#T 3, and we choose a family of bundles over the surgered manifolds

Yv#T
3 which for v ∈ {0, 1}m are of the form (Yv × SO(3))#T3, at the expense
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of having possibly non-trivial bundles (so twisted framed groups) for the indices

v ∈ {0, 1,∞}m \ {0, 1}m. We are using the third row of Figure 3.1 to achieve this

setup. This forces the bundle over Y#T 3 to be geometrically represented by the

link L together with an S1-factor of T 3. More general spectral sequences may be

obtained by allowing twisting in the E1-page.

Before stating the resulting theorem, we discuss how to lift the previous Z/2-

grading gr[C] for the E1-page of the link surgeries spectral sequence to a Z/4-grading,

in the special case where [L] = 0 ∈ H1(Y ;F2). Write gr[Y ] for the Z/4-grading on

I#(Y ) and Y#
v = Yv#T3, where for v ∈ {0, 1}m ∪ {∞} we have Yv = Yv × SO(3).

Recall that we conflate ∞ and −1. Also write X#
vw = Xvw on (T3 × [0, 1]) for the

surgery cobordism bundles. For v ∈ {0, 1}m ∪{∞} we may view each C(Y#) as two

copies of C#(Yv), Z/4-graded by gr[Yv]. For v ∈ {0, 1}m and x ∈ C(Y#
v ) ⊂ C of

homogeneous gr[Yv] grading, we define

gr[C](x) = gr[Yv](x)− deg(X∞v)− |v|1 mod 4. (4.7)

The verification that ∂ lowers this grading by 1, and that the quasi-isomorphism

Q : C(Y#)→ C preserves the relevant Z/4-gradings, is the same as in §3.3.4.

Theorem 4.10.1. Let L be an oriented framed link with m components in Y and

for each v ∈ {∞, 0, 1}m denote by Yv the result of v-surgery on L in Y . There are

surgery cobordisms Xvw for v < w from Yv to Yw with homology orientations µvw

satisfying µuw ◦µvu = µvw whenever v < u < w, and an appropriate bundle Xvw over

each Xvw, such that there is a spectral sequence (Er, dr) with

E1 =
⊕

v∈{0,1}m
I#(Yv), d1 =

∑
v<w

|w−v|1=1

(−1)δ(v,w)I#(Xvw)

where δ(v, w) is as in Theorem 3.3.1. The spectral sequence is graded by Z/2 × Z,

where dr has bi-degree (1, r), and it converges by the Em+1-page to the possibly twisted

framed instanton group

I#(Y ;L).
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The Z/2-grading induced by the spectral sequence agrees with the Z/2-grading of

I#(Y ;L). If [L] = 0 ∈ H1(Y ;F2), then we can lift the Z/2-grading of the E1-page

to a Z/4-grading by (4.7), such that the induced Z/4-grading agrees with the one on

I#(Y ). The differential for the Z/4× Z-grading has bi-degree (−1, r).
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CHAPTER 5

Composing homology orientations

Given a cobordism X : Y1 → Y2 between two 3-manifolds, the induced morphism

I#(X) : I#(Y1) → I#(Y2) on framed instanton homology is only well-defined up to

an overall sign. To fix this sign, the extra data of a homology orientation of X is

required. When all manifolds under consideration are closed, oriented and connected,

a homology orientation is an orientation of the real vector space

L(X) := H1(Y1;R)⊕H1(X;R)⊕H+
2 (X;R),

where H+
2 (X;R) is a maximal positive definite subspace for the intersection form

on H2(X;R). In this chapter, we describe an algebro-topological way of composing

homology orientations. In the next chapter, we will construct a spectral sequence

from reduced odd Khovanov homology to the framed instanton homology of the

double branched cover. The composition rule described here allows us to understand

and control the signs of that construction. As the signs in the differentials are

what makes odd Khovanov homology distinct from ordinary Khovanov homology,

this chapter develops the most important technical tool for the construction of that

spectral sequence.

We define our composition rule of homology orientations in §5.1. In §5.2 we relate

our composition rule to the one described by Kronheimer and Mrowka in the more

abstract setting of Fredholm determinant line bundles.
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5.1 The composition rule

Suppose we are given X1 : Y1 → Y2 and X2 : Y2 → Y3. Let X12 = X2 ◦X1. In this

section we describe the rule we use to orient L(X12) given orientations of L(X1) and

L(X2). Typically, an orientation of L(Xi) will be denoted µi. Although the composi-

tion of homology orientations originates from the determinants of the relevant Fred-

holm operators, in our applications we prefer to have a concrete, algebro-topological

description of such a rule. Perhaps the two most important formal properties of a

composition rule compatible with a construction of framed instanton homology are

associativity and the existence of units. In other words,

(µ3 ◦ µ2) ◦ µ1 = µ3 ◦ (µ2 ◦ µ1)

whenever µi is a homology orientation of Xi : Yi → Yi+1 for i = 1, 2, 3, and for

Y × [0, 1] there exists a distinguished homology orientation µid
Y such that

µid
Y ◦ µ = µ, µ ◦ µid

Y = µ

whenever µ is a homology orientation and these compositions make sense. We will

first define a composition rule in an algebro-topological fashion and then show it has

these two properties. At the end of this section, we will describe how the rule we have

defined can be described using Fredholm determinant line bundles, using the setup

of Kronheimer and Mrowka [23, §20.2], ensuring that our rule is compatible with a

construction of framed instanton homology. In this section all homology groups are

assumed to have real coefficients.

We proceed to define the composition rule. We assume that the Xi and Yi are

closed, oriented and connected. For background on the following setup, see [10,

Thm. 27.5] and [2, §7]. Let f12 : H1(Y2) → H1(X1) ⊕ H1(X2) be the map in the

Mayer-Vietoris sequence. Consider the following exact sequences:
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0→ im(f12)→ H1(X1)⊕H1(X2)→ H1(X12)→ 0 (5.1)

0→ ker(f12)→ H1(Y2)→ im(f12)→ 0 (5.2)

0→ H+
2 (X1)⊕H+

2 (X2)→ H+
2 (X12)→ ker(f12)→ 0 (5.3)

The first exact sequence is extracted from the Mayer-Vietoris sequence, and the

second is naturally associated to the map f12. Our convention is that f12(x) =

(x,−x) on the chain level. For the third sequence, we choose the positive definite

subspace H+
2 (X12) so that it contains the image of H+

2 (X1)⊕H+
2 (X2) under the map

H2(X1) ⊕H2(X2) → H2(X12). The map H+
2 (X12) → ker(f12) is a restriction of the

Mayer-Vietoris boundary map H2(X12)→ H1(Y2).

There is a concrete interpretation of (5.3). Upon splitting the sequence it says

we can write

H+
2 (X12) = H+

2 (X1)⊕H+
2 (X2)⊕ ker(f12).

To interpret the summand ker(f12), we write down a section s for the mapH+
2 (X12)→

ker(f12). We define s : ker(f12) → H+
2 (X12) on a basis of 1-cycle classes [γ] in

ker(f12) ⊂ H1(Y2) as follows. For each such 1-cycle γ in Y2, choose a 2-cycle Σ in Y2

such that #(γ ∩ Σ) = 1, and extend γ to a 2-cycle Γ in X12. Then s[γ] = [Γ] + [Σ].

Choosing splittings of the above three exact sequences, summing, cancelling a

copy of ker(f12) on both sides, and then moving summands around yields an identi-

fication

L(X12)⊕ im(f12)⊕2 = L(X1)⊕ L(X2). (5.4)

Thus we can orient L(X12) by using given orientations of L(X1) and L(X2) and

equipping the two copies of im(f12) with the same orientation. We will give an

explicit rule for doing this, designed so as to be associative. We choose splittings of

the above exact sequences, in their respective order:
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F12 : im(f12)⊕H1(X12)
∼−→ H1(X1)⊕H1(X2), (5.5)

G12 : ker(f12)⊕ im(f12)
∼−→ H1(Y2), (5.6)

H12 : H+
2 (X1)⊕H+

2 (X2)⊕ ker(f12)
∼−→ H+

2 (X12). (5.7)

The space of such splittings is contractible, so these particular choices do not matter

for the following definition.

Definition 5.1.1. For i = 1, 2 let Xi : Yi → Yi+1 be two connected, oriented cobor-

disms between connected, oriented, closed, non-empty 3-manifolds. Write X12 =

X2 ◦X1. Suppose µi is a homology orientation of Xi, i.e. an orientation of L(Xi),

for i = 1, 2. Write µi = βi ∧ αi ∧ γi where αi is an orientation for H1(Yi), βi for

H1(Xi), and γi for H+
2 (Xi). Choose any orientation δ12 of im(f12). Choose splittings

of the exact sequences (5.1)-(5.3) written as in (5.5)-(5.7). Equip H1(X12) with an

orientation β12 given by the condition

F12(δ12 ∧ β12) = β1 ∧ β2.

Similarly, equip ker(f12) with an orientation ζ12 which satisfies

G12(ζ12 ∧ δ12) = α2.

Then define the composition of µ1 with µ2, which is an orientation of L(X12), by

µ2 ◦ µ1 = (−1)sβ12 ∧ α1 ∧H12(γ1 ∧ γ2 ∧ ζ12),

s =
1

2

(
d2

12 − d12

)
+ b1(X1)b1(Y2) + b1(X1)b+

2 (X2) + b1(Y2)b+
2 (X2).

Here d12 = dim [im(f12)].
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Proposition 5.1.1. The composition rule of Definition 5.1.1 is associative.

Proof. We first rephrase the problem in terms of linear algebra. For i = 1, 2 con-

sider quadruples Ai = (Ai, Bi, Ci, µi) where Ai, Bi, Ci are vector spaces and µi is an

orientation of Ai ⊕ Bi ⊕ Ci. In our application we have Ai = H1(Yi), Bi = H1(Xi),

and Ci = H+
2 (Xi). Given a linear map

f12 : A2 → B1 ⊕B2,

we can compose A1 and A2 along f12 to form

A2 ◦f12 A1 = (A1, coker(f12), C1 ⊕ C2 ⊕ ker(f12), µ2 ◦ µ1).

The orientation µ12 = µ2 ◦ µ1 is adapted from Definition 5.1.1 as follows. Write

µi = βi ∧ αi ∧ γi where αi, βi, γi are respective orientations of Ai, Bi, Ci. Choose an

orientation δ12 of im(f12). Choose isomorphisms

F12 : im(f12)⊕ coker(f12)
∼−→ B1 ⊕B2, (5.8)

G12 : ker(f12)⊕ im(f12)
∼−→ A2 (5.9)

that are splittings of the naturally associated exact sequences. Orient coker(f12) by

β12 and ker(f12) by ζ12 using the conditions

F12(δ12 ∧ β12) = β1 ∧ β2, G12(ζ12 ∧ δ12) = α2.

Then the composition µ12 is given by

µ12 = (−1)s12β12 ∧ α1 ∧ γ1 ∧ γ2 ∧ ζ12,

s12 = b1a2 + b1c2 + a2c2 + (d2
12 − d12)/2,

where ai = dimAi, bi = dimBi, ci = dimCi, and d12 = dim [im(f12)]. Now suppose

we have a third quadruple A3 = (A3, B3, C3, µ3) and a linear map f23 : A3 → B2⊕B3.

Consider

f = f12 + f23 : A2 ⊕ A3 → B1 ⊕B2 ⊕B3.
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The map f induces further maps

f1,23 : A2 → B1 ⊕ coker(f23), f12,3 : A3 → coker(f12)⊕B3.

We write F23, G23 for the isomorphisms associated to f23 as in (5.8), (5.9); F12,3, G12,3

associated to f12,3; and F12,3, G12,3 to f1,23. We have identifications

coker(f1,23) = coker(f) = coker(f12,3), (5.10)

ker(f23)⊕ ker(f1,23) = ker(f) = ker(f12)⊕ ker(f12,3). (5.11)

The cokernel identifications are natural. The kernel identifications depend on some

choices. For instance, ker(f12)⊕ ker(f12,3) = ker(f) is established as follows. Clearly

ker(f12) ⊂ ker(f). Now suppose a ∈ ker(f12,3) ⊂ A3. Then π12(f(a)) ∈ im(f12)

where π12 projects onto B1⊕B2. Thus π12(f(a)) = f12(b) for some b ∈ A2. Let σ12 :

im(f12)→ A2 be such that f12σ12 = idim(f12). Then we may take b = σ12(π12(f(a))),

and the assignment a 7→ (−b, a) injects ker(f12,3) into ker(f). In this way we obtain

a map from ker(f12)⊕ ker(f12,3) to ker(f) which is easily seen to be an isomorphism.

With these identifications, the associativity of our rule in Definition 5.1.1 is nearly

equivalent to

A3 ◦f12,3 (A2 ◦f12 A1) = (A3 ◦f23 A2) ◦f1,23 A1. (5.12)

We have only left out the roles of the H12 maps; these are not essential and we

remark on their absence at the end of the proof. We proceed to establish (5.12). Let

us write out µ12,3 = µ3 ◦µ12, the orientation associated to the left side of (5.12). Let

µ3 = β3 ∧ α3 ∧ γ3 where α3, β3, γ3 are orientations of A3, B3, C3, respectively. Let

δ12,3 orient im(f12,3). Orient coker(f12,3) by β12,3 and ker(f12,3) by ζ12,3, where

F12,3(δ12,3 ∧ β12,3) = β12 ∧ β3, G12,3(ζ12,3 ∧ δ12,3) = α3.

Then we use our composition rule to obtain

µ12,3 = (−1)s12,3β12,3 ∧ α1 ∧ (γ1 ∧ γ2 ∧ ζ12) ∧ γ3 ∧ ζ12,3,

s12,3 = s12 + b12a3 + b12c3 + a3c3 + (d2
12,3 − d12,3)/2.
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Here d12,3 = dim [dim(f12,3)] and b12 = dim [coker(f12)], so in particular

b12 = b1 + b2 − d12.

Now write out the orientation associated to the right side of (5.12). First,

µ23 = µ3 ◦ µ2 = (−1)s23β23 ∧ α2 ∧ γ2 ∧ γ3 ∧ ζ23,

s23 = b2a3 + b2c3 + a3c3 + (d2
23 − d23)/2,

where, given an orientation δ23 of im(f23), we have imposed

F23(δ23 ∧ β23) = β2 ∧ β3, G23(ζ23 ∧ δ23) = α3.

Now we can also write

µ1,23 = (−1)s1,23β1,23 ∧ α1 ∧ γ1 ∧ (γ2 ∧ γ3 ∧ ζ23) ∧ ζ1,23,

s1,23 = s23 + b1a2 + b1c23 + a2c23 + (d2
1,23 − d1,23)/2,

where c23 = dim [C2 ⊕ C3 ⊕ ker(f23)], so that

c23 = c2 + c3 + a3 − d23,

and, given an orientation δ1,23 of im(f1,23), we have the conditions

F1,23(δ1,23 ∧ β1,23) = β1 ∧ β23, G1,23(ζ1,23 ∧ δ1,23) = α2.

We will now show that µ12,3 = µ1,23. We choose identifications

im(f12)⊕ im(f12,3) = im(f) = im(f23)⊕ im(f1,23).

These depend on F12 and F23. For instance, let τ12 : coker(f12) → B1 ⊕ B2 be

the map extracted from F12 (and conversely it may define F12). Then im(f12,3)

maps into im(f) by a 7→ (τ12(π(a)), π3(a)) where π projects onto coker(f12) and π3

onto B3. Since im(f12) is naturally a subset of im(f), we then obtain a map from
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im(f12) ⊕ im(f12,3) into im(f) which yields the above identification. We can thus

orient im(f) by δ12 ∧ δ12,3 or by δ23 ∧ δ1,23. It suffices to show

δ12 ∧ δ12,3 ∧ µ12,3 ∧ δ12 ∧ δ12,3 = δ23 ∧ δ1,23 ∧ µ1,23 ∧ δ23 ∧ δ1,23 (5.13)

as orientations of im(f) ⊕ V ⊕ im(f), where V is the total space of either side of

(5.12) for which µ1,23 and µ12,3 are orientations. Compute the left side of (5.13):

(−1)s12,3+d12d12,3δ12 ∧ δ12,3 ∧ β12,3 ∧ α1 ∧ γ1 ∧ γ2 ∧ ζ12 ∧ γ3 ∧ ζ12,3 ∧ δ12,3 ∧ δ12

= (−1)s12,3+d12d12,3+d12(a3+c3)+a2c3
[
(idim(f12) ⊕ F−1

12,3)(F−1
12 ⊕ idB3)

]
(β1 ∧ β2 ∧ β3)

∧ α1 ∧ γ1 ∧ γ2 ∧ γ3 ∧
[
G−1

12 ⊕G−1
12,3

]
(α2 ∧ α3).

Now, choose splitting isomorphisms

F : im(f)⊕ coker(f)
∼−→ B1 ⊕B2 ⊕B3,

G : ker(f)⊕ im(f)
∼−→ A2 ⊕ A3

for the naturally associated short exact sequences. We claim we have[
(idim(f12) ⊕ F−1

12,3)(F−1
12 ⊕ idB3)

]
(β1 ∧ β2 ∧ β3) = F−1(β1 ∧ β2 ∧ β3), (5.14)[

G−1
12 ⊕G−1

12,3

]
(α2 ∧ α3) = G−1(α2 ∧ α3). (5.15)

We consider (5.14). To abstract the underlying problem, consider a linear map

φ : V → W and distinguished subspaces V ′ ⊂ V and W ′ ⊂ W such that φ(V ′) ⊂ W ′.

In other words, we have a relative linear map φ : (V, V ′) → (W,W ′). Choose an

isomorphism

Φ : im(φ)⊕ coker(φ)
∼−→ W

associated to the natural short exact sequence. Similarly, choose

Φ′ : im(φ′)⊕ coker(φ′)
∼−→ W ′

where φ′ : V ′ → W ′ is a restriction of φ. Also, with φ′′ : V/V ′ → coker(φ′)⊕W/W ′

choose

Φ′′ : im(φ′′)⊕ coker(φ′′)
∼−→ coker(φ′)⊕W/W ′.
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We can identify coker(φ′′) = coker(φ) and im(φ) = im(φ′) ⊕ im(φ′′) just as we have

done in our setting above. We also choose an identification W/W ′⊕W ′ = W . Then

(5.14) is equivalent to

det
[
Φ−1(Φ′ ⊕ idW/W ′)(Φ

′′ ⊕ idim(φ′))
]
> 0,

by setting φ = f , V = A2 ⊕ A3, V ′ = A2, W = B1 ⊕ B2 ⊕ B3, and W ′ = B1 ⊕ B2.

In fact, we can choose the data so that, under these identifications,

Φ = (Φ′ ⊕ idW/W ′)(Φ
′′ ⊕ idim(φ′)). (5.16)

This can be seen as follows. We may equip V and W with inner products so that we

may freely take complements. In the following, we use the notation V ⊥1 ⊂ V2 to mean

that the complement V ⊥1 (with V2 possibly inside a larger space) was taken inside

V2. We may then identify coker(φ) = im(φ)⊥ ⊂ W , coker(φ′) = im(φ′)⊥ ⊂ W ′ and

im(φ′′) = im(φ′)⊥ ⊂ im(φ). We also identify W/W ′ with W ′⊥ ⊂ W . We use these

identifications to define Φ,Φ′,Φ′′ in the natural way. Then Φ is just the identification

im(φ)⊕ im(φ)⊥ = W . On the other hand, we view Φ′′ ⊕ idim(φ′) as a map

im(φ)⊕ im(φ)⊥ → im(φ′)⊕ im(φ′)⊥ ⊕W ′⊥

where im(φ′)⊥ ⊂ W ′. This last expression uses the identification im(φ) = im(φ′) ⊕

im(φ′)⊥ where im(φ′)⊥ ⊂ im(φ), followed by the identification im(φ′)⊥ ⊕ im(φ)⊥ =

im(φ′)⊥ ⊕ W ′⊥, where on the left im(φ′)⊥ ⊂ im(φ) but on the right we have the

larger complement im(φ′)⊥ ⊂ W ′. These are just two different decompositions of

im(φ′)⊥ ⊂ W . Then, Φ′ ⊕ idW/W ′ , viewed as a map

im(φ′)⊕ im(φ′)⊥ ⊕W ′⊥ → W,

where again im(φ′)⊥ ⊂ W ′, first uses the identification im(φ′) ⊕ im(φ′)⊥ = W ′, and

then the identification W ′⊕W ′⊥ = W . From this perspective, from which everything

happens inside W and uses its various orthogonal decompositions, (5.16) is clear, and

thus (5.14) is established; (5.15) is similar. We return to establishing (5.13). We now
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know the left hand side is

(−1)s12,3+d12d12,3+d12(a3+c3)+a2c3F−1(β1 ∧ β2 ∧ β3)

∧ α1 ∧ γ1 ∧ γ2 ∧ γ3 ∧G−1(α2 ∧ α3).

We can also compute the right side of (5.13):

(−1)s1,23+d23d1,23δ23 ∧ δ1,23 ∧ β1,23 ∧ α1 ∧ γ1 ∧ γ2 ∧ γ3 ∧ ζ23 ∧ ζ1,23 ∧ δ1,23 ∧ δ23

= (−1)s1,23+d23d1,23+d23(b1+a2)+a2a3F−1(β1 ∧ β2 ∧ β3)

∧ α1 ∧ γ1 ∧ γ2 ∧ γ3 ∧G−1(α2 ∧ α3).

We have used the necessary analogues of (5.14) and (5.15). Thus (5.13) holds if

s1,23 + d23(d1,23 + b1 + a2) + a2(a3 + c3) + s12,3 + d12(d12,3 + a3 + c3)

is even. Using d23 + d1,23 = d12 + d12,3, this is easily verified. This establishes (5.12).

Finally, we remark on the absence of the H12 maps in our setup. In our application,

we can choose the relevant maps H12 and H12,3 so that

(H12,3)(H12 ⊕ idH+
2 (X3)⊕ker(f12,3)) = H

where we are using some chosen map

H : H+
2 (X2)⊕H+

2 (X2)⊕H+
2 (X3)⊕ ker(f)

∼−→ H+
2 (X123)

associated to the natural short exact sequence, and the identifications (5.11). This

is established just as was (5.14). H23 and H1,23 can be chosen similarly, and this

compatibility allows the above argument to carry through.

Now we define distinguished identity homology orientations. If X = Y × [0, 1],

then L(X) = H1(Y ) ⊕ H1(X). Let α be any orientation of H1(Y ), and choose an

orientation β of H1(X) such that α = β under the natural identification of H1(X)

with H1(Y ). Then define

µid
Y := (−1)

1
2

(b1(Y )2+b1(Y ))β ∧ α

to be the distinguished identity homology orientation of Y × [0, 1].
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Proposition 5.1.2. Whenever µ is a homology orientation of a cobordism X with

incoming boundary Y , we have µ ◦ µid
Y = µ. Similarly, if X has outgoing boundary

Y , then µid
Y ◦ µ = µ.

Proof. Suppose X has incoming boundary Y , i.e. X : Y → Y ′. We let X1 = Y ×[0, 1]

and X2 = X and use the notation of Definition 5.1.1. We have im(f12) = H1(Y ) and

thus d12 = b1(Y ). We identify X12 with X2 = X. Choose the section of the exact

sequence (5.1), which is a map H1(X)→ H1(Y × [0, 1])⊕H1(X), to be of the form

y 7→ (0, y). The induced isomorphism F12 : H1(Y )⊕H1(X)→ H1(Y ×[0, 1])⊕H1(X)

is of the form (x, y) 7→ (x, y − π(x)) where π : H1(Y ) → H1(X) is induced by

inclusion. Let µ = µ2 = β2 ∧ α2 ∧ γ2 where β2, α2, γ2 are respective orientations of

H1(X), H1(Y ), H+
2 (X). Write µ1 = µid

Y = (−1)
1
2

(b1(Y )2+b1(Y ))β1 ∧ α1 as above, where

α1 = α and β1 = β. Choose δ12 = α1. Then

F−1
12 (β1 ∧ β2) = δ12 ∧ β12

where β12 = β2. We can choose α2 = α1 so that the condition ζ12 ∧ δ12 = α2 (G12

implicit) forces ζ12 to be the canonical +1 orientation of the 0-vector space. Similarly,

γ1 is taken to be +1, and the expression H12(γ1 ∧ γ2 ∧ ζ12) may be regarded as equal

to γ2. The sign s in Definition 5.1.1 is equal to 1
2
(b1(Y )2 + b1(Y )), and so cancels

with the sign in µid
Y . All together, Definition 5.1.1 yields

µ ◦ µid
Y = β2 ∧ α2 ∧ γ2 = µ.

Next, suppose X has outgoing boundary Y , i.e. X : Y ′ → Y . Now we write

X = X1 = X12 and Y × [0, 1] = X2 and, correspondingly, we swap the indices for the

above orientations and write µ = µ1 = β1 ∧ α1 ∧ γ1 and µid
Y = (−1)

1
2

(b1(Y )2+b1(Y ))β2 ∧

α2 = µ2. Choose the section of the exact sequence (5.1), which is a map H1(X) →

H1(X) ⊕ H1(Y × [0, 1]), to be of the form y 7→ (y, 0). Now the induced map F12 :

H1(Y ) ⊕ H1(X) → H1(X) ⊕ H1(Y × [0, 1]) is of the form (x, y) 7→ (y + π(x),−x).

Choose δ12 = α2 = β2 and so on, just as above. Then

F−1
12 (β1 ∧ β2) = δ12 ∧ β12
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where β12 = (−1)b1(Y )b1(X)+b1(Y )β1 = (−1)tβ1. The exponent s in Definition 5.1.1 is

given by
1

2

(
b1(Y )2 − b1(Y )

)
+ b1(Y )b1(X) mod 2.

We see that s + t ≡ 1
2
(b1(Y )2 + b1(Y )) mod 2. This cancels with the sign put in

front of µid
Y , and we obtain from Definition 5.1.1 the identity µid

Y ◦ µ = µ, just as

before.

5.2 Relation to the Fredholm description

In this section, we describe how our composition rule can be described in the setting

of Fredholm determinant line bundles, as in [23, §20.2], the purpose of which is to

show that our rule is compatible with a construction of instanton homology. As such,

the following details are not needed to understand the rest of the paper.

In the Fredholm setting, a homology orientation of X is an orientation of det(D),

where D is the operator −d∗ ⊕ d+ acting on suitably weighted Sobolev spaces over

X with cylindrical ends attached. Recall that

det(D) =
∧max(ker(D))⊗

∧max(coker(D)∗).

The Sobolev weights are chosen such that we have natural identifications

ker(D) = H1(X), coker(D) = H1(Y )⊕H2
+(X),

where Y is the incoming end of X, cf. [7, Prop. 3.15]. Note that an orientation of

a vector space induces, in a natural way, an orientation of its dual space. Since we

are working with real coefficients, homology and cohomology groups are dual to one

another, so an orientation of det(D) is the same as an orientation of L(X).

Let us now suppose we are in the situation of Definition 5.1.1, so that µi is

an orientation of L(Xi), or equivalently det(Di), for i = 1, 2. We again write µi =

βi∧αi∧γi where now we view βi as orienting ker(D) and αi∧γi as orienting coker(D)
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(or its dual). We will denote the composition of µ1 and µ2 as given in this setting by

µ2 ◦ µ1

to distinguish it from our previous rule. The composition µ2 ◦ µ1 goes in two steps.

First, we use the µi to orient det(D1 ⊕D2), which is identified with

∧max(ker(D1)⊕ ker(D2))⊗
∧max(coker(D1)⊕ coker(D2))∗.

We use the following general rule for doing this: if Ki ∧ Ci is an orientation for

det(Di) where Ki orients ker(Di) and Ci orients coker(Di) (or its dual), then we

orient det(D1 ⊕D2) by

(−1)dim coker(D2)index(D1)(K2 ∧K1) ∧ (C1 ∧ C2).

This is a slight modification of the rule in [23, Lemma 20.2.1] but is easily seen to

be associative; the difference between the two rules is the sign (−1)s where

s = dim coker(D1) dim ker(D2) + index(D2) dim ker(D1).

Applying this procedure to µ1 and µ2, we obtain the orientation

µ′ := (−1)(a2+c2)(a1+b1+c1)(β2 ∧ β1) ∧ (α1 ∧ γ1 ∧ α2 ∧ γ2)

of det(D1 ⊕D2), where ai = dimH1(Yi), bi = dimH1(Xi) and ci = dimH2
+(Xi).

The second step in describing the composition rule in this setting involves relating

det(D1 ⊕ D2) to det(D12) by means of a (Fredholm) homotopy from the operator

D1⊕D2 to D12, where D12 is the operator associated to X12. We will use the notation

of [23, §20.2]. Let Ps for s ∈ [0, 1] be such a homotopy, so that P0 = D1 ⊕ D2 and

P1 = D12. To be precise, we should understand these two aforementioned operators

as having the same domain and codomain; this may be achieved using the finite

cylinder setup as in [23]. Denoting our codomain by B, choose J ⊂ B so that

P−1
s J + J = B for all s. We have for each s an exact sequence

0→ ker(Ps)
j−→ P−1

s J
k−→ J

l−→ coker(Ps)→ 0. (5.17)
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We use the following general rule for orienting det(Ps) given an orientation µ′′ of the

line
∧maxP−1

s J ⊗
∧maxJ∗ using the exact sequence (5.17): write

µ′′ = (K ∧D) ∧ (k(D) ∧ C) (5.18)

where K is an orientation of im(j), D of im(j)⊥, and C of k(im(j)⊥)⊥; then orient

det(Ps) by

(−1)φ(d)j−1(K) ∧ l(C) (5.19)

where φ(x) := (x2− x)/2 and d := dim(im(j)⊥). In our situation, we choose J to be

a complement of im(P0) = im(D1 ⊕D2), and we make the identification

J = H1(Y1)⊕H2
+(X1)⊕H1(Y2)⊕H2

+(X2).

We choose the homotopy so that P−1
s J = ker(P0) = ker(D1 ⊕D2) for all s, so that

P−1
s J = H1(X1)⊕H1(X2).

In particular, we have an identification of
∧maxP−1

1 J ⊗
∧maxJ∗ with det(D1 ⊕D2),

which is oriented by µ′. Noting that the maps in (5.17) for s = 1 come from the

Mayer-Vietoris maps as in Definition 5.1.1, we can write µ′′ from µ′ as in (5.18):

µ′′ = (−1)t(β12 ∧ δ12) ∧ (δ12 ∧ γ12).

In this expression, and in all to follow, the maps F12, G12 and H12 from Definition

5.1.1 as well as the maps in (5.17) will be implicitly understood, e.g. F12(δ12 ∧ β12)

is the same as δ12 ∧ β12. The orientation β12 plays the role of K above, γ12 that of

C, and δ12 that of D. The sign (−1)t is given by

t = (a2 + c2)(a1 + b1 + c1) + d12(b1 + b2 + d12) + b1b2,

where d12 is as in Definition 5.1.1. The first term in t is from µ′ and the rest are added

to ensure that β12 is defined by the condition δ12∧β12 = β1∧β2, to match Definition

5.1.1. The orientation γ12 is defined by the condition δ12∧γ12 = α1∧γ1∧α2∧γ2. The
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general rule that takes µ′′ to (5.19), applied to our µ′′, tells us the final orientation

of det(D12):

µ2 ◦ µ1 = (−1)φ(d12)+tβ12 ∧ γ12.

Now write α2 = ζ12 ∧ δ12 as in Definition 5.1.1. We compute

µ2 ◦ µ1 = (−1)rβ12 ∧ α1 ∧ γ1 ∧ γ2 ∧ ζ12,

r = φ(d12) + t+ d12(a2 + d12 + c1 + a1) + c2(d12 + a2).

The sign given by r does not match the sign given by s in Definition 5.1.1, and so

this composition rule is not the same as the one previously defined. However, there

is an automorphism µ 7→ µ on the class of all homology orientations that intertwines

the two rules. Given a homology orientation µ of a cobordism X, set

µ = (−1)φ(b1(X))+φ(b1(Y )+b+2 (X))µ

where Y is the incoming end of X. Then we have

(µ1 ◦ µ2) = µ1 ◦ µ2.

The verification is a straightforward computation that we omit. It follows that the

composition rule µ1 ◦µ2 of Definition 5.1.1 is compatible with a construction of Floer

homology.
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CHAPTER 6

From odd Khovanov homology to I#(Y )

In this chapter we prove the main result of this thesis:

Theorem 6.0.1. Given an oriented link L in S3, there is a spectral sequence whose

second page is Kh′(L) that converges to I#(Σ(L)). Each page of the spectral sequence

comes equipped with a Z/4-grading, which on Kh′(L) is given by

δ# :=
3

2
q − t+

1

2
(σ + ν) mod 4, (6.1)

where σ and ν are the signature and nullity of L, respectively, and the induced Z/4-

grading on I#(Σ(L)) is the usual one.

Our convention is that the signature of the right-handed trefoil is +2. The theorem

immediately implies the four rank inequalities

rkZKh′(L)j ≥ rkZI
#(Σ(L))j (6.2)

where j ∈ Z/4 and the gradings are as in the Theorem.

In §6.1, following Ozsváth and Szabó [35], we apply the framed instanton link

surgeries spectral sequence, Theorem 4.10.1, to the situation of branched double

covers. In §6.2 we review the definition of reduced odd Khovanov homology given

by Bloom [4]. In §6.3 we complete the proof of Theorem 6.0.1 up to gradings, our

main tool being the composition of homology orientations from Chapter 5. Finally,

in §6.4, we discuss the mod 4 gradings of Theorem 6.0.1.
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Figure 6.1: From the diagram D to a resolution diagram Dv.

Figure 6.2: On the left, we want to color the regions of the diagram so that at each

crossing exactly one of the four regions is colored. On the right, we go from an oriented

diagram to a disjoint union of oriented circles.

6.1 Branched double covers

Let L be a link in S3 and Σ(L) the double cover of S3 branched over L. Let D be

a planar diagram for L with m crossings. For each v ∈ {0, 1}m there is a resolution

diagram Dv which is a disjoint union of circles, obtained by performing 0- and 1-

resolutions according to Figure 6.1. Each branched cover Σ(Dv) is diffeomorphic to

#kS1 × S2 where Dv has k + 1 circles. Further, there is a link L′ ⊂ Σ(L) and a

framing on L′ such that Σ(Dv) is the result of v-surgery on L′. If we draw a small

arc between each crossing in D, the preimages in the branched cover Σ(L) are loops,

and the link L′ is the union of these preimages.

With this setup, from Theorem 4.10.1 we have a spectral sequence

E1 =
⊕

v∈{0,1}m
I#(Σ(Dv))  I#(Σ(L);L′). (6.3)

We claim that [L′] ∈ H1(Σ(L);F2) is zero, so that the target of this spectral sequence

is in fact I#(Σ(L)). The diagram D divides the plane into regions. To show [L′] = 0,

it suffices to color the regions black and white in a way such that each crossing

touches exactly one black region. See Figure 6.2. For then the black regions can be

lifted to a surface in Σ(L) whose boundary is L′, implying [L′] = 0.
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Figure 6.3: Resolution conventions for the arc-decorated diagrams in reduced odd Kho-

vanov homology. There two choices for the placement of an arc at a given crossing; in the

left-most picture, the arc can be pointing up (as depicted) or down. In the latter case, the

arcs in the resolution pictures are correspondingly reversed.

To color the regions, we follow an argument communicated to the author by

Jianfeng Lin. We proceed as if performing the algorithm to construct a Seifert

surface, as in [36, §5.4]. First, we orient L. Then we resolve each crossing as in

Figure 6.2. We assign to each circle z in the resolved diagram two signs, az and

bz. The first sign az is +1 if z is oriented counter-clockwise in the plane, and −1

otherwise. The second sign bz is given by (−1)N where N is the number of circles

that surround z. Now color, with black, the regions that are directly interior to each

circle z with azbz = +1. Transferring the coloring back to the unresolved diagram,

each crossing touches exactly one such region.

This reduces the proof of Theorem 6.0.1 to identifying the E1-page of (6.3) and

then understanding the gradings. We can compute the groups I#(Σ(Dv)) using

Lemma 4.9.1, and we can compute the E1-differential, with the help of Chapter 5,

because the cobordism maps involved are topologically simple. This is carried out in

§6.3, where we identify the E1-page as the chain complex used to compute Kh′(L)

from the diagram D. We then check in §6.4 that the relevant gradings are preserved,

completing the proof of Theorem 6.0.1. But first, we review the definition of reduced

odd Khovanov homology.
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6.2 Reduced odd Khovanov homology

Let L be an oriented link and D a planar diagram for L. Suppose D has m crossings.

We assume that each crossing has an arrow drawn over it, as in Figure 6.3. Then

for each v ∈ {0, 1}m we can define a resolution diagram Dv according to the rules

of Figure 6.3. Each Dv is a disjoint union of planar-embedded unoriented circles

together with a disjoint union of planar-embedded oriented arcs, each arc beginning

and ending at a circle. Suppose Dv has k+ 1 circles. Then we have a rank k abelian

group Vv defined by

Vv = Z{arcs}/ker (Z{arcs} → Z{circles})

where the map involved sends an arc to the circle at which it begins minus the circle

at which it ends. A basis for Vv is given by any k arcs that touch all k+ 1 circles in

Dv. Otherwise said, a basis is given by the edges of any spanning tree of the graph

whose vertices are the circles of Dv and edges are the arcs. We define

Cv =
∧∗(Vv), C =

⊕
v∈{0,1}m

Cv.

For each v, w ∈ {0, 1}m with v < w and |w− v|1 = 1 we introduce a map ∂′vw : Cv →

Cw. There is a single arc xvw in each of Dv and Dw that changes from a 0-resolution

position to a 1-resolution position. There are two cases to consider, corresponding

to two circles merging or splitting:

∂′vw(x) :=


xvw ∧ x if 0 = xvw ∈ Cv (split)

x if 0 6= xvw ∈ Cv (merge)

In these expressions we use the symbol xvw to stand both for an arc and its equiva-

lence class in Vv. We call the collection of ∂′vw the pre-differential. The differential

for C is defined by

∂ =
∑

∂vw =
∑

εvw∂
′
vw

where each εvw is +1 or −1, and the sums are over v, w with v < w and |w−v|1 = 1.

The signs εvw are chosen to satisfy two conditions. The first condition is that ∂2 = 0.
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Figure 6.4: The configurations of the two relevant arcs in the initial vertex of a type X

and type Y face.

The second condition is as follows. Let v < t, u with |t− v|1 = |u− v|1 = 1 be three

vertices where the arcs xvu and xvt are arranged in Dv as in the left of Figure 6.4.

Let w be the vertex with w > t, u and |w− t|1 = |w−u|1 = 1. Any four such vertices

v, u, t, w will be called a type X face. A type Y face is obtained by reversing one of

either xvu or xvt. The second condition is that for a type X face, the sign

εvuεvtεtwεuw

is always +1 or always −1; and the same product for a type Y face is also always +1

or always −1, and is minus the type X sign. We call the collection of εvw a valid edge

assignment if it satisfies these two conditions. The reduced odd Khovanov homology

of L is then defined to be Kh′(L) = H∗(C, ∂). The well-defined-ness and invariance

is proved in [33].

The group Kh′(L) is bigraded by a homological grading t and and quantum

grading q. For an element x ∈
∧|x|(Vv) where k = dim(Vv), these are defined by

t(x) = |v|1 − n−,

q(x) = k − 2|x|+ n+ − 2n− + |v|1.

Here n± is the number of ± crossings in D. We are interested in the Z/4-grading

δ# :=
3

2
q − t+

1

2
(σ + ν) mod 4 (6.4)

where σ is the signature of L and ν the nullity.
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6.3 Computing the E1-page

In this section we identify the E1-page of (6.3) with the chain complex that computes

reduced odd Khovanov homology. We fix as before a diagram D for the m-component

link L with crossings decorated by arcs as in §6.2. We let Yv = Σ(Dv) for each

v ∈ {0, 1}m so that Yv is homeomorphic to #kS1 × S2 when Dv has k + 1 circles.

The E1-page and differential of our spectral sequence are given by

E1 =
⊕

v∈{0,1}m
I#(Yv), d1 =

∑
(−1)δ(v,w)I#(Xvw),

where the sum runs over v < w with |w − v|1 = 1 and v, w ∈ {0, 1}m. In writing d1,

we have chosen homology orientations µvw of the Xvw so that µuw ◦ µvu = µtw ◦ µvt

always holds. We are also using that the relevant bundles Xvw are trivial. This is

because each such bundle lies over a cobordism which is D2 × S2 \ int(D4) running

along a product cobordism, see (6.5); since we have arranged that the restriction

of each such bundle over the boundary is trivial, for topological reasons the bundle

must be trivial.

Let C =
⊕

Cv be the reduced odd Khovanov chain group for the diagram D and

∂′ =
∑
∂′vw its pre-differential. For each v ∈ {0, 1}m we define an isomorphism

Φv : Cv → I#(Yv)

defined as a composition Φv = φv ◦ ρv where φv :
∧∗(H1(Yv;Z)) → I#(Yv) is from

§4.9 and ρv : Cv →
∧∗(H1(Yv;Z)) is defined by lifting arcs in Dv to loops in Yv, and

is explained in the following paragraph. For the φv maps, we fix orientations µv for

each H1(Yv;R). We write Φ : C→ E1 for the sum of the Φv maps.

Recall Cv =
∧∗(Vv), and that Yv is branched over Dv ⊂ S3. Let S be the union

of disks in the plane enclosed by the circles in Dv. They can be pushed out so that

they are disjoint and form a Seifert surface for the union of circles. Let N be a

neighborhood of the circles, a union of solid tori. Then Yv can be written as

Yv = Y− ∪N ∪ Y+
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where Y± = S3 \ (S ∪ N). Distinguishing one of the copies of S3 \ (S ∪ N), say

Y+, allows us to lift an arc x in Dv to an oriented loop x̃ in Yv: the orientation is

obtained by locally lifting the orientation of x to the part of x̃ in Y+. Then x 7→ [x̃]

is an isomorphism from Vv to H1(Yv;Z), and ρv is taken to be the extension of this

map to exterior algebras. We can construct the ρv in this way so that it is uniform

among all v, in the sense that there are natural ways of identifying Yv with Yw away

from surgery (or resolution) areas, and in these areas we can lift arcs the same way.

In summary, the map Φv is described as follows. Let x = x1 ∧ · · · ∧xi be a wedge

of arcs in Cv. Lift the arcs to embedded loops x̃j in the branched double cover Yv

as above. Choose xi+1, . . . , xk and their lifts such that µv = [x̃1 ∧ · · · ∧ x̃k]. Attach

2-handles to x̃1, . . . , x̃i and 3-handles and a 4-handle as in §4.9 to obtain a cobordism

X : ∅ → Yv homology oriented by [x̃i+1∧· · ·∧x̃k]. Then Φv(x) = [X]#. The following

completes the proof of Theorem 6.0.1 up to gradings, which are dealt with in the

next section.

Lemma 6.3.1. Φ−1d1Φ =
∑
εvw∂

′
vw where εvw is a valid edge assignment.

Proof. Let v, w ∈ {0, 1}m with v < w and |w − v|1 = 1. There are two cases to

consider, depending on whether Dvw is a split or a merge diagram. We retain the

convention from §5.1 that singular homology H∗(X) is taken with real coefficients.

For most of the proof, we conflate the symbols x and x̃, where x is an arc (usually

viewed as a class in Vv) and x̃ is its lift to Yv (usually viewed as a class in H1(Yv)).

That is, the maps ρv from above are implicit. Suppose first we are in the split case.

Let k = b1(Xvw). Note that b+
2 (Xvw) = 0, and that the cobordism Xvw : Yv → Yw is

homeomorphic to

(Yv × [0, 1]) on
(
D2 × S2 \ int(D4)

)
. (6.5)

We note that we may also view Xvw as the branched double cover of a pair of

pants properly embedded in S3 × [0, 1]. We have L(Xvw) = H1(Yv) ⊕ H1(Xvw).

We will follow the notation of Definition 5.1.1, setting X1 = X and X2 = Xvw.

Choose orientations α2 and β2 of H1(Yv) and H1(Xvw), respectively. We can identify
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H1(Yv) = H1(Xvw) using the map induced by inclusion, and we choose to impose the

condition α2 = β2. Define ε′vw = ±1 by

µvw = ε′vwβ2 ∧ α2.

Let x = x1 ∧ · · · ∧ xi ∈ Cv. Recall that Φv(x) = [X]# where X is obtained by

attaching 2-handles to x1, . . . , xi along with some 3-handles and a 4-handle. Choose

xi+1, . . . , xk so that µv = [x1 ∧ · · · ∧ xk]. Then L(X) = H1(X) is generated by

xi+1, . . . , xk and X is homology oriented by β1 := [xi+1 ∧ · · · ∧ xk]. We can identify

L(Xvw ◦ X) = H1(Xvw ◦ X). Note that im(f12) = H1(Yv), so d12 = k. Choose the

section in the exact sequence (5.1), which in this case is a map H1(Xvw ◦ X) →

H1(X) ⊕ H1(Xvw), to be of the form y 7→ (y, 0). The induced isomorphism F12 :

H1(Yv)⊕H1(Xvw ◦X)→ H1(X)⊕H1(Xvw), written as in (5.5), can be written

F12 : R{x1, . . . , xk} ⊕ R{xi+1, . . . , xk} → R{xi+1, . . . , xk} ⊕ R{x1 . . . , xk},

F12(xp, xq) = (xq + π(xp),−xp),

where π : H1(Yv)→ H1(X) is induced by inclusion. Writing β2 = δ12, we have

F−1
12 (β1 ∧ β2) = (−1)kβ1 ∧ β2 = δ12 ∧ β12

where β12 = (−1)(k−i)k+kβ1 = (−1)kiβ1. Using Definition 5.1.1, we obtain

I#(Xvw)Φv(x) = (−1)(k2+k)/2ε′vw[Xvw ◦X]#

where Xvw ◦ X is homology oriented by β1. The sign (−1)(k2+k)/2 is obtained by

computing

ki+
(
(k2 − k)/2 + (k − i)k

)
,

where the term ki is from β12, and the the expression inside the parentheses is

from Definition 5.1.1. We mention that the condition G12(ζ12 ∧ δ12) = α2 holds by

α2 = δ12 = β2 and setting ζ12 to be the canonical +1 orientation of the 0 vector space.

Note that [Xvw◦X]# = Φw(xvw∧x) if and only if µw = [xvw∧x1∧· · ·∧xk] = xvw∧µv;
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otherwise they differ in sign. We record a sign ε′′vw = ±1 measuring this possible

discrepancy between µv and µw:

µw = ε′′vwxvw ∧ µv.

Recalling that d1
vw = (−1)δ(v,w)I#(Xvw) and ∂′vw(x) = xvw ∧ x, we conclude

Φw(∂′vw(x)) = εvwd
1
vw(Φv(x))

where εvw = ±1 is given by

εvw = (−1)(k2+k)/2+δ(v,w)ε′vwε
′′
vw.

Now suppose we are in the merge case. Again, let k = b1(Xvw). As before, b+
2 (Xvw) =

0 and the cobordism Xvw : Yv → Yw is now homeomorphic to

(Yw × [0, 1]) on
(
D2 × S2 \ int(D4)

)
.

We identify H1(Xvw) = H1(Yw), and write L(Xvw) = H1(Yv) ⊕ H1(Yw). Note the

natural codimension 1 inclusion H1(Yw) ⊂ H1(Yv). A complement for H1(Yw) is

generated by xvw. Let α2 be an orientation for H1(Yv). Define ε′vw = ±1 by

µvw = ε′vwβ2 ∧ α2, β2 = α2 x xvw.

The condition β2 = α2 x xvw is equivalently expressed (or is defined) by β2∧xvw = α2.

Let x = x1 ∧ · · · ∧ xi ∈
∧i(Vv). If xvw is among x1, . . . , xi (or linearly dependent on

them), the 4-manifold X constructed by attaching 2-handles to x1, . . . , xi and some

3-handles and a 4-handle, once paired with Xvw to form Xvw ◦ X, contains a non-

trivial S2-bundle over S2 as in §4.9, so [Xvw ◦X]# = 0. Choose xi+1, . . . , xk+1 so that

µv = [x1 ∧ · · · ∧ xk+1]; we may assume that xvw = xk+1. We may also set α2 = µv,

so that β2 = [x1 ∧ · · · ∧ xk]. Recall Φv(x) = [X]# where X is homology oriented by

β1 = [xi+1 ∧ · · · ∧ xk+1]. There is a codimension 1 inclusion H1(Xvw ◦X) ⊂ H1(X).

The vector space H1(Xvw ◦ X) is generated by xi+1, . . . , xk and a complement for

H1(Xvw ◦X) in H1(X) is generated by xvw = xk+1. Choose the section in the exact
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Figure 6.5: Local pictures for four diagrams appearing in a type X face, starting at the

diagram Dv and ending at Dw. The circles in each diagram are colored so as to distinguish

their roles in Figure 6.6.

sequence (5.1), which is a map H1(Xvw ◦ X) → H1(X) ⊕ H1(Xvw), to be of the

form y 7→ (y, 0). As in the split case, im(f12) = H1(Yv). We obtain an isomorphism

F12 : H1(Yv)⊕H1(Xvw ◦X)→ H1(X)⊕H1(Xvw) that takes the form

F12 : R{x1, . . . , xk+1} ⊕ R{xi+1, . . . , xk} → R{xi+1, . . . , xk+1} ⊕ R{x1, . . . , xk},

F12(xp, xq) = (xq + π1(xp),−π2(xp)),

where π1 : H1(Yv) → H1(X) and π2 : H1(Yv) → H1(Xvw) are projections induced

by inclusion maps. In particular, π1(xp) = xp if p ≥ i + 1 and is otherwise 0, and

π2(xp) = xp if p 6= k+1 and π2(xk+1) = 0. Recalling that β2 = α2 x xvw and choosing

δ12 = α2, we have

F−1
12 (β1 ∧ β2) = (β1 x xvw) ∧ α2 = δ12 ∧ β12

where β12 = (−1)ki+i(β1 x xvw). Note β1 x xvw = [xi+1 ∧ · · · ∧ xk]. From Definition

5.1.1 we obtain

I#(Xvw)[X]# = (−1)(k2−k)/2+1ε′vw[Xvw ◦X]#

where Xvw ◦ X is homology oriented by β1 x xvw. We have computed the sign
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(−1)(k2−k)/2+1 from

ki+ i+
(
((k + 1)2 − (k + 1))/2 + (k + 1− i)(k + 1)

)
,

where ki + i is from β12, and the expression inside the parentheses is from the

sign in Definition 5.1.1. On the other hand, [Xvw ◦ X]# = Φw(x) exactly when

µw = [x1 ∧ · · · ∧ xk] = µv x xvw. Accounting for this, we define ε′′vw = ±1 by

µv = ε′′vwµw ∧ xvw.

Recalling that ∂′vw(x) = x, we conclude

Φw(∂′vw(x)) = εvwd
1
vw(Φv(x))

where εvw = ±1 is given by

εvw = (−1)(k2−k)/2+1+δ(v,w)ε′vwε
′′
vw.

In summary, we have shown that

Φ−1d1Φ =
∑
v<w

|w−v|1=1

εvw∂
′
vw

where we have determined εvw in the split and merge cases separately. It remains

to show that εvw is a valid edge assignment. The first condition, that the total

differential squares to zero, already falls out from the spectral sequence. We now

show that the εvw satisfy the second condition, that is, if v, u, t, w form a type X

face, then the product

εvuεvtεuwεtw (6.6)

is always +1 or -1, independently of the particular face chosen; and if they form a

type Y face, the same is true, and the sign is opposite the type X case. We fix such

a type X face. Note

δ(v, u) + δ(v, t) + δ(u,w) + δ(t, w) ≡ 0 mod 2.
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Next we consider the ε′′vw terms. We compute

xvu ∧ µv = ε′′vuµu = ε′′vuε
′′
uwµw ∧ xuw.

Since xvu = −xuw in Du, the above can be abbreviated to µv = (−1)k+1ε′′vuε
′′
uwµw.

Similarly, we obtain µv = (−1)k+1ε′′vtε
′′
twµw, implying ε′′vuε

′′
vtε
′′
uwε

′′
tw = 1. A similar

argument in the type Y case yields ε′′vuε
′′
vtε
′′
uwε

′′
tw = 1 as well. To summarize, we may

reconsider the problem with (6.6) replaced by the expression ε′vuε
′
vtε
′
uwε

′
tw.

Note L(Xvu) = H1(Yv) ⊕ H1(Xvu), and, as this is a split cobordism, we have a

natural identification H1(Yv) = H1(Xvu). Choose respective orientations α1 and β1

of H1(Yv) and H1(Xvu) that agree under this identification. Recall that ε′vu has been

defined by the relation

µvu = ε′vuβ1 ∧ α1.

On the other hand, L(Xuw) = H1(Yu)⊕H1(Xuw), and, as this is a merge cobordism,

there is a codimension 1 inclusion H1(Xuw) ⊂ H1(Yu) with a complement generated

by xuw. Let α2 be an orientation of H1(Yu) and set β2 = α2 x xuw. Then ε′uw has

been defined by

µuw = ε′uwβ2 ∧ α2.

In this situation, the map f12 of (5.1) has a 1-dimensional kernel spanned by xuw.

In this way im(f12) can be identified with H1(Yv) and H1(Xvu). Let a section for

the exact sequence (5.1), here a map H1(Xvw) → H1(Xvu) ⊕H1(Xuw), be given by

y 7→ (y, 0). The map F12 : im(f12)⊕H1(Xvw)→ H1(Xvu)⊕H1(Xuw) of (5.5) can be

written

F12 : R{x1, . . . , xk} ⊕ R{x1, . . . , xk} → R{x1, . . . , xk} ⊕ R{x1, . . . , xk},

F12(xp, xq) = (xq + xp,−xp).

Proceeding with the conditions of Definition 5.1.1, we find

F−1
12 (β1 ∧ β2) = δ12 ∧ β12

95



Figure 6.6: This is an illustration (missing a dimension) of S4 minus two 4-balls, with

a properly embedded surface F , a torus with two disks removed, with the local portions

of the diagrams of the type X face from Figure 6.5 embedded; the circles of the diagrams

lie on F , while only the endpoints of the arcs lie on F . The cobordism Xvw is the double

cover over S4 minus two 4-balls branched over F . The disk S′u lifts to a 2-sphere Su ⊂ Xvw

intersecting x̃uw (the lift of xuw) in one point. The disk T ′u lifts to a 2-sphere Tu ⊂ Xvw

intersecting Yu in x̃uw.

where δ12 = α1 = β2 and β12 = β1. We can arrange that β2 = β1 under the

appropriate identification. The condition G12(ζ12 ∧ δ12) = α2, having that α2 =

β2 ∧ xuw, yields ζ12 = (−1)kxuw. Using Definition 5.1.1 we obtain

µuw ◦ µvu = (−1)(k2−k)/2+k(k+1)+kε′vuε
′
uwβ1 ∧ α1 ∧Hu

12(xuw)

where we’ve used k = b1(Xvu) = d12. The superscript u in Hu
12 distinguishes this

map from the map H t
12 which appears when u is replaced by t. We obtain a similar

equation for µtw◦µvt with xuw replaced by xtv and ε′vuε
′
uw replaced by ε′vtε

′
tw. Because

our setup includes the conditions µtw ◦ µvt = µuw ◦ µvu, we conclude

ε′vuε
′
vtε
′
twε
′
uw = Hu

12(xuw)/H t
12(xuw) =: ε.

In summary, we see that ε is the sign determined by comparing the result of orienting

H+
2 (Xvw) by xuw versus the result by using xtw. Using the interpretation of the

splitting map (5.3) from §5.1, we obtain the following interpretation of ε. Here is

a suitable moment to reintroduce the distinction between each arc x and its lift x̃.

Choose an oriented surface Su ⊂ Yu transverse to x̃uw with intersection product
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[Su] · [x̃uw] = 1. Choose an oriented surface Tu with Tu ∩ Yu = x̃uw. Then

[Su] + [Tu] = Hu
12(x̃uw).

To illustrate this, we supply Figure 6.6, where we use that Xvw is a double cover of S4

minus two 4-balls branched over a properly embedded torus with two disks removed.

Similarly, we can write [St] + [Tt] = H t
12(x̃tw). The sign ε is then the intersection

product of these classes:

ε = ([Su] + [Tu]) · ([St] + [Tt]).

In fact, [Tt] = ε[Su]. From this it is clear that ε only depends on the topology of the

type X configuration. A type Y face is obtained from a type X face by reversing the

direction of either x̃uw or x̃tw, and ε correspondingly changes sign.

6.4 Gradings

In this section we prove that the spectral sequence preserves the relevant Z/4-

gradings, completing the proof of Theorem 6.0.1. As usual, let k = dim(Vv). For

x ∈
∧i(Vv) ⊂ C, the grading of Φ(x) in E1 is given in (4.7) by

gr[E1](Φ(x)) ≡ gr[Yv](Φ(x))− deg(X∞v)− |v|1 mod 4. (6.7)

We know, by the remark at the end of §4.9, that gr[Yv](Φ(x)) ≡ 2k + i. We have

deg(X∞v) = deg(X∞1)− deg(Xv1), since Xv1 is trivial. From (2.11) we compute

deg(Xv1) = −3

2
(m− |v|1) +

1

2
(b1(Y1)− k)

using χ(Xvw) = |w − v|1, σ(Xv1) = 0 and b1(Yv) = k. We also compute

deg(X∞1) = −3

2
(2m+ σ(X∞1)) +

1

2
(b1(Y1)− b1(Σ(L)))

knowing Σ(L) = Y∞. Recall from (4.1) that deg(X∞1) ≡ deg(X∞1) + 2P(X∞1).
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Lemma 6.4.1. P(X∞1) ≡ σ(X∞1) mod 2.

Before proving this lemma, we make our conclusion. In [3], Bloom computes σ(X0∞) =

σ − n+ and b1(Σ(L)) = ν, where σ and ν are the signature and nullity of L, respec-

tively, and n± is the number of ± crossings of the diagram D. Note that X∞1 and

X1∞ compose along Y1 to give a cobordism which, away from a manifold of signature

0, has m copies of −CP2 connected summed to it (cf. E from §3.1.4). In addition,

since σ(X01) = 0, we have σ(X∞1) = σ(X∞0). Additivity of the signature again

implies that σ(X∞1) = −m − σ + n+. Note m = n+ + n−. All together, (6.7)

computes to

i+ 2n− +
3

2
(n+ + k) +

1

2
(|v|1 + ν + σ) mod 4,

which is congruent to (6.4). This completes the proof of Theorem 6.0.1.

Proof of Lemma 6.4.1. By additivity and the fact that P(X01) ≡ σ(X01) ≡ 0 mod

2, it suffices to show that P(X∞0) ≡ σ(X∞0). Write X = X∞0 and X for its base

space. We have

X = ([0, 1]× Y) ∪L (∪mi=1H)

where L = L1 ∪ · · · ∪ Lm is an SO(3)-thickening of L = L1 ∪ · · · ∪ Lm, and each

Li : H1 → Y× {1} is as in §3.1.3. Here we are viewing

Y = (Y × SO(3))Ψ(L)

as a bundle over Y = Y∞ = Σ(L) built from the geometric representative L as in

§3.1.7. In §6.1 we saw that L is the boundary of a surface S ⊂ Y , so in fact Y

is a trivial bundle. Note X is reducible to an S1-bundle by its very construction.

Let L be the associated complex line bundle. The Poincaré dual of a pre-image of

c1(L ) ∈ H2(X;Z) in H2(X, ∂X;Z) is represented by the closed surface S ′ ⊂ int(X)

which is the union of the cores of the 2-handles together with S ⊂ Y × {1}. Indeed,

it is straightforward to define a section of L with zero set S ′. By the definition of

P(X), it suffices to show that

[S ′] · [S ′] ≡ σ(X) mod 2
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Figure 6.7: To obtain a relative Kirby diagram for (X∞0, Y∞) where Y∞ = Σ(L), we

borrow some constructions from Bloom [3]. With a diagram of the figure eight knot in

(i) as an example, we first choose a resolution that yields one connected circle as in (ii),

drawing small arcs where crossings used to be. We then cut the connected circle at the

dot, and straighten it out, as in (iii). Reflecting this picture across the line, we obtain a

surgery diagram (iv) for Y∞ by choosing a +1 framing for each circle corresponding to a

0-resolution, and a −1 framing for 1-resolution circles. Finally, the relative Kirby diagram

(v) is obtained by placing a small meridional circle on each circle in (iv) framed by 0 or

−1, depending on whether the circle corresponds to a 0- or 1-resolution, respectively.

where [S ′] · [S ′] is the intersection product. To do this we write down a relative Kirby

diagram for (X, Y ). We start by writing a surgery diagram for Y = Σ(L) using

the chosen diagram D. For this we follow Bloom [3]. First, choose v ∈ {0, 1}m for

which the resolution Dv has 1 circle. We can always choose D so that there is such a

resolution. Then, in Dv, having placed arcs where crossings once were, cut the lone

circle at an isolated point p and unravel it, with the arcs attached, into a horizontal

segment; then double it as in Figure 6.7 (iv). Place a +1 framing on a circle in the

resulting picture if that circle came from a 0-resolution, and a −1 framing otherwise.

This gives a surgery diagram for Y = Σ(L).

To turn this into a relative Kirby diagram for (X, Y ), we simply add small merid-

ians around each circle, framed with a 0 if the circle is +1 framed and a −1 if the
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circle is −1 framed. The intersection number [S ′] · [S ′] is concentrated at the attach-

ing locations of the 2-handles, represented by the meridional circles in the relative

Kirby diagram. Thus there is a −1 contribution to [S ′] · [S ′] from each 1-resolution in

Dv. We conclude [S ′] · [S ′] = −|v|1. According to [3] Prop. 1.7 and Lemma 9.4, the

signature σ(X) is mod 2 congruent to the vertex weight of a 1-circle resolution.
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CHAPTER 7

The relationship between I#(Y ) and I(Y )

A closed, connected, oriented 3-manifold Y is called an integral homology 3-sphere if

H1(Y ;Z) = 0, or equivalently, if Y has the same integral homology as the 3-sphere.

In this section we study I#(Y ) when Y is an integral homology 3-sphere. As I#(Y )

is determined by the instanton homology of an admissible bundle over Y#T 3, we can

apply a modified version of Fukaya’s instanton connected sum theorem of [17]. As a

result, we relate the Z/4-graded group I#(Y ) to Floer’s original Z/8-graded instanton

homology I(Y ) through the trivial connection and u-maps studied by Donaldson [7]

and Frøyshov [16]. Twisted framed groups I#(Y ;λ) are also considered.

To state the result, it is convenient to employ Frøyshov’s reduced instanton groups

Î(Y ) from [16]. They come equipped with an absolute Z/8-grading and a degree 4

endomorphism u. The main result is

Theorem 7.0.2. Let F be a field with char(F ) 6= 2, and suppose all homology groups

are taken with F -coefficients, unless indicated otherwise. If H1(Y ;Z) = 0,

I#(Y ) ' ker(u2 − 64)⊗H∗(S3)⊕H∗(pt.)

as Z/4-graded F -modules, where u2−64 is acting on
⊕3

j=0 Î(Y )j. If Y is non-trivial

admissible with geometric representative λ, then

I#(Y ;λ) ' ker(u2 − 64)⊗H∗(S3)

as relatively Z/4-graded F -modules, where u2 − 64 is acting on four consecutive

gradings of the relatively Z/4-graded F -module I(Y).
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In this chapter we prove this theorem. In §7.1, we fix our convention for the

absolute Z/8-grading on I(Y ). In §7.2, we describe maps on the instanton chain

complex that are used to define Frøyshov’s reduced groups Î(Y ) in §7.3. In §7.4

we state and prove Fukaya’s connected sum theorem for I(Y ) following Donaldson.

Then, in §7.5, we give modified statements and proofs of Fukaya’s theorem to handle

the presence of non-trivial admissible bundles. In §7.6 we prove Theorem 7.0.2.

Finally, in §7.7 we discuss rank inequalities that result from Theorem 7.0.2.

7.1 Gradings

Let Y be an integral homology 3-sphere. Let θ be the distinguished trivial connection

on Y × SO(3). We can use θ to fix an absolute Z/8-grading on I(Y ) as was done in

Floer’s original construction [13]. For a connection a on Y × SO(3) we set

gr(a) = −3− µ(θ, a)

and on G -classes a this descends to a function with gr(a) ∈ Z/8. Note that Gev = G

in this setting. When a is irreducible, gr(a) = µ(a, θ). The trivial connection has

gr(θ) = 0. The differential shifts this grading by −1 and the grading descends to

the Z/2-grading defined in §2.6. We write t for the G -class of θ. Our I(Y )i agrees

with Donaldson’s HF(Y )i in [7]. Note that I(Y )i is the same as the cohomology

group I(Y )5−i. In particular, by the universal coefficients theorem, the vector spaces

I(Y )i ⊗ Q and I(Y )5−i ⊗ Q are isomorphic. Our I(Y )i is the same as Frøyshov’s

HF(Y )5−i = HF(Y )i from [16].

7.2 Other boundary maps

From here on we fix a field F which has char(F ) 6= 2 and take all homology with

F -coefficients. With an integral homology 3-sphere Y fixed, we write Ci = C(Y )i
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and Ii = I(Y )i. Following [7, 16] we have maps

δ : C1 → F, δ′ : F → C4

defined using the trivial connection. For a ∈ Cirr(Y ) with gr(a) ≡ 1 we define

δ(a) = #M̌(a, t)0, and for b with gr(b) ≡ −4, we define 〈δ′(1), b〉 = #M̌(t, b)0. More

precisely, one writes F = FΛ(t) and ε[A] : Λ(t) → Λ(a), and δ =
∑
ε[A] for each

[A] ∈ M̌(a, t)0, and so on, as in §2.1. We will often conflate δ′ with δ′(1) ∈ C4. These

are chain maps, in the sense that δ∂ = ∂δ′ = 0, and we write

δ : I1 → F, δ′ : F → I4

for the induced maps on homology.

We also have maps that record data from 3-dimensional moduli spaces M̌(a, b)3,

v : Ci → Ci+4.

Our v is 1/2 times the v of Frøyshov, and 4 times the U of Donaldson. That is, it

is defined, roughly, by evaluating the 4-dimensional class 2µ(pt) over 4-dimensional

moduli spaces M(a, b)4. We refer to [16, §3.1] and [7, §7.3.1] for precise definitions

of v. We have in mind the following interpretation. First suppose M̌(a, b)3 is con-

nected. We obtain a map h : M̌(a, b)3 → SO(3) by evaluating the holonomy of a

connection along the path from (−∞, y) to (∞, y) on the cylinder R × Y . With

some modifications, see [7, §7.3.2], 〈v(a), b〉 = deg(h). If M̌(a, b)3 has more than one

component, the evaluation is done on each component, and then added together.

The map v is not quite a chain map. As explained in [7, §7.3.3], when gr(a) ≡

1 and gr(b) ≡ −4, there are ends of M̌(a, b)4 modelled on SO(3), i.e. cylinders

R × SO(3), one for each pair of instantons in M̌(a, t)0 × M̌(t, b)0. Each copy of

SO(3) records the choices for gluing parameters. The holonomy at a cross-section is

captured by the gluing parameter and has degree 1. Accounting for the other usual

ends, modelled on R× M̌(a, c)i× M̌(c, b)j, where i = 0 and j = 3, or vice versa, one

is led to the relation

∂v − v∂ + δ′δ = 0, (7.1)

103



see [16, Thm. 4] and [7, Prop. 7.8]. Here δ = 0 in gradings different from 1 ∈ Z/8.

In particular we obtain the maps

v : Ii → Ii+4, i 6= 0, 1 mod 8

v : I0 → coker(δ′), v : ker(δ)→ I5.

7.3 Reduced instanton groups

Frøyshov defined a Z/8-graded group Î = Î(Y ) by cutting down I(Y ) using the maps

introduced above. Precisely,

Îi = Ii, i 6≡ 0, 1, 4, 5 mod 8

Î0 = I0/
(∑

im(v2k+1δ′)
)
, Î4 = I4/

(∑
im(v2kδ′)

)
,

Î1 =
⋂

ker(δv2k) ⊂ I1, Î5 =
⋂

ker(δv2k+1) ⊂ I5.

Using these groups Frøyshov defined his h-invariant by

h(Y ) = −1

2

(
χ(I(Y ))− χ(Î(Y ))

)
.

This has several nice properties, among them

h(Y ) = −h(Y ), h(Y#Y ′) = h(Y ) + h(Y ′).

It also descends to a homomorphism h : Θ3
H → Z, where Θ3

H is the integral homology

cobordism group. Frøyshov showed that both I and Î are 4-periodic (recall that we

are working with F -coefficients). By the chain level relation (7.1) either δ or δ′

is zero. It follows that, over Q, we can go between I and Î using only h. For

example, if h(Y ) = 0, then Î = I, whereas if h(Y ) > 0 then Îi = Ii for i 6= 0, 4 and

rk(Îi) = rk(Ii)− h(Y ) for i = 0, 4.

The maps v above induce maps v̂ : Î(Y )i → Î(Y )4+i for each grading i ∈ Z/8.

As mentioned, this is half of Frøyshov’s u mentioned in the introduction:

v̂ = u/2.
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We’ve chosen this normalization to avoid writing in certain factors of 2. Frøyshov

showed that each v̂ is an isomorphism, and that v̂2 − 16 is nilpotent, i.e.

(v̂2 − 16)n = 0

for some n > 0. If Y is admissible and b1(Y ) > 0, there is no trivial connection

to work with, and the maps v : Ci → Ci+4 are indeed chain maps, inducing maps

v̂ : I(Y)i → I(Y)i+4 for each grading i (here we arbitrarily fix an absolute grading).

Again, each v̂ is half of Frøyshov’s u, is an isomorphism, and v̂2 − 16 is nilpotent.

The hat notation in this case is used only for uniformity.

7.4 Fukaya’s connected sum theorem

In this section we recall the connected sum theorem of Fukaya [17], reviewing the

proof exposited by Donaldson in [7, §7.4]. This problem was also considered in [27].

In the following sections we will adapt the proof to the settings of interest to us. Let

Y1 and Y2 be integral homology 3-spheres. For i = 1, 2 write C(i) = C(Yi) and ∂(i) for

the corresponding differentials, and δ(i), δ
′
(i), v(i) for the relevant boundary maps. For

a graded F -module A define the shifted module A[n] by A[n]i = Ai−n. We define a

chain complex

C =
(
C(1) ⊗ C(2)

)
⊕
(
C(1)[3]⊗ C(2)

)
⊕
(
C(1) ⊗ F

)
⊕
(
F ⊗ C(2)

)

∂ =


∂(12) 0 0 0

v(12) −∂(12) 1⊗ δ′(2) δ′(1) ⊗ 1

−1⊗ δ(2) 0 ∂(1) ⊗ 1 0

δ(1) ⊗ 1 0 0 ε⊗ ∂(2)


where ∂(12) = ∂(1) ⊗ 1 + ε⊗ ∂(2), v(12) = v(1) ⊗ 1 + 1⊗ v(2), and ε is equal, in grading

k, to (−1)k times the identity map on C(1).

Theorem 7.4.1 (Fukaya). As Z/8-graded F -modules, I(Y1#Y2) ' H∗(C, ∂).
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Figure 7.1: The cobordism W : Y1#Y2 → Y1 t Y2 and its reverse, X.

For example, let Y be the Poincaré homology 3-sphere Σ(2, 3, 5). The reader can

verify that

I(Y#Y ) ' F 2
1 ⊕ F 2

5 , I(Y#Y ) = 0

using that C(Y ) = F1⊕F5 and δ, v are isomorphisms. Recall that subscripts indicate

gradings. These examples appear in [17]. Note that, generally, the δ, δ′, v maps for

Y are the duals of the maps δ′, δ, v for Y , respectively.

We now review the proof that appears in [7, §7.4]. We mention at the outset

that to avoid certain factors of 2 that appear in the composition law (since we will

glue along a disconnected 3-manifold), we enlarge the gauge transformation group

when necessary, as in [20, §5.1]. Let C′ = C(Y1#Y2) and ∂′ be its differential. Let

X : Y1 t Y2 → Y1#Y2 be the cobordism which is ([0, 1]× Y1)\([0, 1]× Y2), where the

boundary sum is taken near 1, and let W : Y1#Y2 → Y1 t Y2 be the corresponding

cobordism when the boundary sum is taken near 0. See Figure 7.1. We define maps

mX : C→ C′, mW : C′ → C

as follows. The map mX is given by four components:

vX : C(1) ⊗ C(2) → C′,

iX : C(1)[3]⊗ C(2) → C′,

δ′X (2) : C(1) ⊗ F → C′,

δ′X (1) : F ⊗ C(2) → C′.

In the following, a ∈ Cirr(Y1), b ∈ Cirr(Y2), and c ∈ Cirr(Y1#Y2). The map iX counts

0-dimensional moduli spaces M(a, b, X, c)0. The map vX evaluates the holonomy
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of 3-dimensional moduli spaces M(a, b, X, c)3 along a curve γX running from Y1 to

Y2 on the incoming end of X. The map δ′X (2) counts 0-dimensional moduli spaces

M(a, t, X, c)0 where t is a trivial connection class on Y2, and δ′X (1) is defined similarly,

with t on Y1. Now, mX is a chain map because of the following relations. First,

iX∂(12) = ∂′iX

is the usual relation for the map involving only irreducibles. Second,

iXv(12) + vX∂(12) + δ′X (1)(δ(1) ⊗ 1)− δ′X (2)(1⊗ δ(2)) = ∂′vX (7.2)

records how the holonomy interacts with the ends of a 4-dimensional moduli space

M(a, b, X, c)4. This is essentially [16, Thm. 6]. See Figure 7.2. Third, the relation

iX(δ′(1) ⊗ 1) + δ′X (1)(ε⊗ ∂(2)) = ∂′δ′X (1)

and its analogue with indices swapped, records the ends of a 1-dimensional moduli

space M(t, b, X, c)1 where t is the trivial connection class on Y1. This is a variation

of [16, Lemma 1].

The map mW is defined similarly, this time with components

iW : C′ → C(1) ⊗ C(2),

vW : C′ → C(1)[3]⊗ C(2),

δW(2) : C′ → C(1) ⊗ F,

δW(1) : C′ → F ⊗ C(2).

Now, we argue that mX and mW are chain homotopy inverse to one another. First

consider mXmW . We have

mXmW = vXiW + iXmW + δ′X (2)δW (2) + δ′X (1)δW (1).

We claim that mXmW is chain homotopic to the map m(Z, γ) : C′ → C′ obtained

by evaluating 2µ(γ) on the composite Z = X ◦ W where γ = γX ∪ γW . This is

the the same as the map defined by taking the degrees of modified holonomy maps
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Figure 7.2: A representation of the terms appearing in (7.2). The pieces represent

counts of isolated instantons, unless there is a curve present in the interior, indicating a

contribution from a v-map. All limiting connections are irreducible, except in the last two

diagrams, where trivial limits θ are present. The first two diagrams make up iXv(12) and

the second two make up vX∂(12).

M(a, Z, d)3 → SO(3) along γ, see [8, §5.1.2]. The chain homotopy is obtained by

stretching the middle copies of Y1 and Y2. The 3-dimensional space M(a, Z, d)3 where

a, d are irreducible has four components after stretching:

M(a, X, b, c)0 ×M(b, c,W, d)3

M(a, X, b, c)3 ×M(b, c,W, d)0

M(a, X, b, t)0 × SO(3)×M(b, t,W, d)0

M(a, X, t, c)0 × SO(3)×M(t, c,W, d)0

As in (7.1), in the last two cases the holonomy is captured by the gluing space SO(3).

The four components correspond, in order, to the four components of mXmW above.

In this way, the chain homotopy from mXmW to m(Z, γ) may be defined as a map

using the 1-dimensional metric family that simultaneously stretches along Y1, Y2.

The next step is to use a surgery property, interesting in its own right, due to

Donaldson. We state it in a form convenient for our purposes. Let X : Y1 → Y2

be an SO(3)-bundle over a cobordism which restricts to admissible bundles over its

boundary components. Let γ be a loop in the interior of the base of X. Let Xγ be
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the bundle obtained by cutting out a neighborhood S1 × D3 × SO(3) lying over γ

and gluing back in a copy of D2× S2× SO(3). Denote by m(X, γ) : C(Y1)→ C(Y2)

the map obtained by evaluating µ(γ) on 3-dimensional moduli spaces M(a,X, b)3.

Theorem 7.4.2 (see [7] Thm. 7.16). m(X, γ) is chain homotopic to m(Xγ).

In our situation, observe that the surgered manifold Zγ is the product [0, 1]×(Y1#Y2).

It follows that mXmW is chain homotopic to the identity.

Now consider mWmX . This has 16 components

iWvX , vW iX , δW (1)δ
′
X (1), . . .

It is chain homotopic to a map f that counts similar data on the cobordism W ◦X

with metric stretched very long along the internal connected sum portion between

[0, 1] × Y1 and [0, 1] × Y2. The map f has components corresponding to the com-

ponents of mWmX , but most of them vanish. For instance, the 7 components of f

corresponding to

iW iX , δW (i)iX , iW δ
′
X (i), δW (i)δ

′
X (j) (i 6= j)

all vanish by index arguments. Each counts instantons A with µ(A) = 0 obtained

by gluing an instanton A1 on R × Y1 to an instanton A2 over R × Y2 along a S3.

For i = 1, 2 at least one of the limits on R× Yi is irreducible. Thus both A1, A2 are

irreducible. It follows from 0 = µ(A) = µ(A1) + µ(A2) + 3 and µ(Ai) ≥ 0 that no

such A exist. Similarly, the 4 components of f corresponding to

δW (i)vX , vW δ
′
X (i)

are zero. These components require 3-dimensional moduli spaces. However, with

the neck stretched, the relevant 3-dimensional moduli spaces are M(a, b)0×SO(3)×

M(c, d)0 where one of a, b, c, d is the trivial class t and a, b are connection classes

on Y1 and c, d on Y2. But M(a, t)0 is empty for any irreducible a. Next, the 4

components of f corresponding to

iWvX , vWiX , δW(i)δ
′
X (i)
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are identity maps. For instance, the first one uses 3-dimensional spaces modelled

on M(a, b)0 × SO(3) × M(c, d)0 from gluing; the holonomy map vX captures the

gluing parameter just as in (7.1), leaving us to count M(a, b)0×M(c, d)0. Of course

M(a, b)0 forces a = b and has one translation invariant irreducible flat connection.

Finally, we are left with 1 component of f corresponding to

vWvX

which may be nonzero. However, we know that f is the identity plus this off-diagonal

term, and thus induces an isomorphism on homology. So mWmX also induces an

isomorphism on homology. Because mXmW induces the identity on I(Y1#Y2), so

does mWmX . This completes the proof.

7.5 Connected sum theorems for non-trivial bundles

In this section we state two variants of the connected sum theorem, when one or

both of Y1 and Y2 is replaced by a non-trivial admissible bundle. We then explain

how the proof above adapts to these cases. These are simpler than the above, having

fewer trivial connections to deal with.

We first consider the case where Y1 is trivial and Y1 is an integral homol-

ogy 3-sphere, but Y2 is non-trivial and admissible. Let C(1) = C(Y1) with maps

∂(1), δ, δ
′, v(1). Let C(2) = C(Y2) with maps ∂(2), v(2). Define

C =
(
C(1) ⊗ C(2)

)
⊕
(
C(1)[3]⊗ C(2)

)
⊕
(
F ⊗ C(2)

)

∂ =


∂(12) 0 0

v(12) −∂(12) δ′ ⊗ 1

δ ⊗ 1 0 ε⊗ ∂(2)


with notation as before.

Theorem 7.5.1. Let Y1 and Y2 be admissible bundles, with Y1 trivial and Y2 non-

trivial. As Z/8-graded F -modules, I(Y1#Y2) ' H∗(C, ∂).
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Proof. As before, we let C′ = C(Y1#Y2) and let ∂′ be its differential. Let

X : Y1 t Y2 → Y1#Y2

be the cobordism bundle obtained from a boundary sum between [0, 1] × Y1 and

[0, 1]× Y2 near 1, making some inessential choices in gluing the bundles. Let W be

the cobordism in the reverse direction obtained from the boundary sum near 0. We

define chain maps

mX : C→ C′, mW : C′ → C.

The map mX is given by three components:

vX : C(1) ⊗ C(2) → C′,

iX : C(1)[3]⊗ C(2) → C′,

δ′X : F ⊗ C(2) → C′.

The map iX counts instantons in 0-dimensional moduli spaces on X with all lim-

its irreducible; the map vX evaluates holonomy along a path γX from Y1 to Y2 on

3-dimensional moduli spaces with irreducible limits on X; the map δ′X counts 0-

dimensional moduli spaces over X where the limit over Y1 is trivial. The map mX is

a chain map because of the following. First, we have the usual relation for the map

involving only irreducibles, iX∂(12) = ∂′iX. Second,

iXv(12) + vX∂(12) + δ′X(δ ⊗ 1) = ∂′vX.

These relations are the same as before, except that all terms involving a trivial

connection on Y2 do not arise. In particular, all diagrams in Figure 7.2 are relevant

except the last. Third, we have the relation

iX(δ′ ⊗ 1) = ∂′δ′X

which again is the same as before but with the term involving a trivial connection on

Y2 absent. The map mW is defined similarly to mW, with the component involving

the trivial connection on Y2 thrown out.
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We proceed as before. The first composite is mXmW = iXvW + vXiW, and this is

chain homotopic to m(Z, γ) where Z = X ◦W and γ = γW ∪ γX by stretching along

Y1, Y2. The surgery theorem 7.4.2 applies, so mXmW is chain homotopic to m(Zγ),

which is the identity. The other composite mWmX now has only 9 components. We

stretch the neck as before, so that mWmX is chain homotopic to a map f ; the terms

of f corresponding to the 9 components all vanish except the diagonal ones, which

are the identity, and possibly vWvX. As before, mW and mX are chain homotopy

inverses, and the proof follows through.

Next, we consider the case where both Y1 and Y2 are non-trivial. For i = 1, 2 let

C(i) = C(Yi) with maps ∂(i), v(i). Define

C =
(
C(1) ⊗ C(2)

)
⊕
(
C(1)[3]⊗ C(2)

)
∂ =

 ∂(12) 0

v(12) −∂(12)


with notation as before.

Theorem 7.5.2. Let Y1 and Y2 be non-trivial admissible bundles. As Z/8-graded

F -modules, I(Y1#Y2) ' H∗(C, ∂).

Proof. This is the simplest case. Let C′ = C(Y1#Y2) with differential ∂′. Let

X : Y1 t Y2 → Y1#Y2

be the cobordism bundle obtained from a boundary sum between [0, 1] × Y1 and

[0, 1]× Y2 near 1, making some inessential gluing choices. Let W be the cobordism

in the reverse direction obtained from the boundary sum near 0. As before, we

can define chain maps mX and mW. Here mX is given by two components, vX :

C(1)⊗C(2) → C′ and iX : C(1)[3]⊗C(2) → C′. As usual, iX counts 0-dimensional moduli

spaces on X with all limits irreducible, and vX takes holonomy along a path γX from

Y1 to Y2 on 3-dimensional moduli spaces with irreducible limits on X. The relations

that make mX a chain map are just iX∂(12) = ∂′iX and iXv(12) + vX∂(12) = ∂′vX, and
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follow from the previous cases, with the terms involving trivial connections thrown

out. This latter relation is represented by Figure 7.2 with the last two diagrams

omitted. The rest of the argument is the same as before.

7.6 Establishing the relationship

Proof of Theorem 7.0.2. Now we apply the above results to compute I#(Y ) with F -

coefficients for an integral homology 3-sphere Y , proving the first part of Theorem

7.0.2. Recall that F is a field with char(F ) 6= 2. Let T3 be a non-trivial bundle over

T 3 geometrically represented by an S1-factor of T 3. Let V = F0 ⊕ F4 be the chain

complex that computes I(T3). Write τ : V → V for the v-map on T3, with which

our normalization may be written as the degree 4 involution that multiplies by 4.

Write C = C(Y ) and ∂, v, δ, δ′ for its relevant maps. Now let

C = (C⊗ V )⊕ (C[3]⊗ V )⊕ (F ⊗ V )

∂ =


∂ ⊗ 1 0 0

v ⊗ 1 + 1⊗ τ −∂ ⊗ 1 δ′ ⊗ 1

δ ⊗ 1 0 0


Theorem 7.5.1 tells us that

H∗(C,∂) ' I(Y#T3) = I#(Y )[4]⊕ I#(Y )

where Y is the trivial bundle over Y . Consider the filtration on (C,∂) given by

0 ⊂ C[3]⊗ V ⊂ (C[3]⊗ V )⊕ (F ⊗ V ) ⊂ C.

This induces a spectral sequence with E2-page

(ker(δ)⊗ V )⊕ (ker(δ′)/im(δ)⊗ V )⊕ (coker(δ′)[3]⊗ V )

with the only non-zero component of the differential coming from

φ := v ⊗ 1 + 1⊗ τ : ker(δ)⊗ V → coker(δ′)[3]⊗ V.

113



We are writing all modules as Z/8-graded modules; for example, ker(δ)i = I(Y )i

when i 6= 1, and similarly coker(δ′)i = I(Y )i when i 6= 4. Also note that the

component ker(δ′)/im(δ) is supported in grading 0 and is either F or 0. Write

φi = (v ⊕ v + σ)i : ker(δ)i ⊕ ker(δ)i+4 → coker(δ′)i+4 ⊕ coker(δ′)i

where σ(x, y) = (4y, 4x) is the degree 4 involution induced by τ . Then

I#(Y )0 ' ker(φ0)⊕ coker(φ1)⊕ ker(δ′)/im(δ),

I#(Y )i ' ker(φi)⊕ coker(φi+1), i = 1, 2, 3.

Recall that v̂ is a degree 4 automorphism of Î(Y ). We claim that

ker(φ0) ' ker(v̂2 − 16)0 ⊕ im(δ′)4,

ker(φi) ' ker(v̂2 − 16)i, i = 1, 2, 3.

To prove Theorem 7.0.2 it suffices to consider the case in which h(Y ) ≤ 0, so that

δ′ = 0 and Îi = Ii for i 6= 1, 5. For if h(Y ) > 0, then the theorem applies for Y , which

has h(Y ) = −h(Y ) < 0, and the F [v̂]-module Î dualizes upon orientation reversal.

Thus for i = 0, 2, 3 we have

φi : Ii ⊕ Ii+4 → Ii+4 ⊕ Ii

and each Îi = Ii with v = v̂ an isomorphism. The isomorphisms ker(φi) ' ker(v̂2 −

16)i for i = 0, 2, 3 are given by (x, y) 7→ x with inverse x 7→ (x,−v̂x/4). Next,

consider

φ1 : ker(δ)1 ⊕ I5 → I1 ⊕ I5.

We have an isomorphism ker(φ1) ' ker(v2− 16)1 ⊂ ker(δ)1 given by (x, y) 7→ x with

inverse x 7→ (x,−v−1x/4), using the isomorphism v : I5 → I1. The natural inclusion

Î1 → I1 induces an injection ker(v̂2 − 16)1 → ker(v2 − 16)1. Note here that v̂ is just

the restriction of v to Î. We show that this is surjective and hence an isomorphism.

Given x ∈ I1 with δx = 0 and v2x = 16x we must show x ∈ ker(δv2k) for all k > 0.
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But v2x = 16x implies δv2kx = 4kδx = 0. Having computed ker(φi), dimension

counting then yields

coker(φ1) ' ker(v̂2 − 16)1 ⊕ im(δ),

coker(φi) ' ker(v̂2 − 16)i, i = 0, 2, 3.

Using in our case that dim(im(δ)) + dim(ker(δ′)/im(δ)) = 1, we deduce that

I#(Y ) ' ker(v̂2 − 16)⊗H∗(S3)⊕H∗(pt.)

where it is understood that v̂2 − 16 is acting on
⊕3

i=0 Îi. This proves the first part

of Theorem 7.0.2.

Now we consider the latter part of the theorem. Let Y be a non-trivial admissible

bundle over Y geometricially represented by λ ⊂ Y . We now write I#(Y ;λ) in terms

of I(Y). Let V = F0 ⊕ F4 and τ : V → V be as before. Write C = C(Y) and ∂, v for

its maps, and set

C = (C⊗ V )⊕ (C[3]⊗ V )

∂ =

 ∂ ⊗ 1 0

v ⊗ 1 + 1⊗ τ −∂ ⊗ 1


Theorem 7.5.2 tells us that

H∗(C,∂) ' I(Y#T3) = I#(Y ;λ)[4]⊕ I#(Y ;λ).

This is a degeneration of the previous case. We want the kernel and cokernel of

v̂ ⊕ v̂ + σ : I[4]⊕ I → I ⊕ I[4].

The kernel is isomorphic to ker(v̂2 − 16) by the assignment (x, y) 7→ x, inverse to

x 7→ (x,−v̂x/4). The cokernel is of course the same, and we obtain

I#(Y ;λ) ' ker(v̂2 − 16)⊗H∗(S3) (7.3)

as relatively Z/4-graded F -modules, where it is understood that v̂2− 16 is acting on

four consecutively graded summands of I(Y). This completes the proof of Theorem

7.0.2.
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7.7 Some rank inequalities

We can use Theorem 7.0.2 to deduce relationships between the ranks of I(Y ) and

I#(Y ). If f : V → V is a linear map on a vector space V with fn = 0, basic linear

algebra tells us that

dim kerf ≥ 1

n
dimV. (7.4)

Further, if n is the smallest positive integer such that fn = 0, then

dim kerf ≤ dimV − n+ 1. (7.5)

Let Y be an integral homology 3-sphere. Define n(Y ) to be the smallest positive

integer n such that (u2− 64)n = 0, where u2− 64 is acting on Î(Y ). Write n = n(Y )

and h = h(Y ) where h is Frøyshov’s invariant from §7.3, and also set

i = dim
3⊕

k=0

I(Y )k =
1

2
dim I(Y ),

î = dim
3⊕

k=0

Î(Y )k =
1

2
dim Î(Y ),

i# = dim
3⊕

k=0

I#(Y )k = dim I#(Y ).

Note that we have the relation

|h| = i− î.

From Theorem 7.0.2, combined with (7.4) and (7.5), we easily obtain

1 +
2 (i− |h|)

n
≤ i# ≤ 2 (i− |h| − n) + 3.

If (Y, λ) is an admissible pair with b1(Y ) > 0 – that is, λ geometrically represents

an non-trivial admissible bundle Y over Y – then we define n(Y, λ) similary, but

with u2 − 64 acting on I(Y). We also define, as above, i = 1
2

dim I(Y) and i# =

dim I#(Y ;λ). Then, in this case, we obtain the simpler inequality
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2

n
(i) ≤ i# ≤ 2(i− n+ 1).

Further, if Y restricts non-trivially to a surface of genus g, then n(Y, λ) ≤ ng, where

ng is given by

ng := n(S1 × Σ2
g, S

1 × pt),

cf. [16, §6]. Using the exact triangle, one can then deduce that if a homology 3-

sphere Y is ±1-surgery on a genus g knot, then n(Y ) ≤ ng, cf. §8.2. In forthcoming

work with Bill Chen, we will show that ng = 2dg
2
e − 1.

We remark that more refined inequalities may be obtained by keeping track of

gradings. These, along with the inequalities (6.2) from our spectral sequence of

Chapter 6, may facilitate more computations of the groups I(Y ) and I#(Y ).

In light of this discussion, we list the following corollary of Theorem 7.0.2:

Corollary 7.7.1. The rank of I(Y ) is zero if and only if the rank of I#(Y ) is

1 and h(Y ) = 0. As a consequence, I(Y ;Q) detects S3 if and only if the pair

(I#(Y ;Q), h(Y )) detects S3.
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CHAPTER 8

Some computations for I#(Y )

In this chapter we use our previous work to make some computations in framed

instanton homology. In §8.1, we compute I#(Y ) for double branched covers of quasi-

alternating links: this computation comes from a collapsing of the spectral sequence

in Chapter 6. In §8.2 we apply the results of Chapter 7 to compute I#(Y ) for some

Brieskorn spheres. Finally, in §8.3, we compute the Euler characteristic of framed

instanton homology.

8.1 Double branched covers of quasi-alternating links

If rational coefficients are assumed, of the 250 prime knots that have at most 10

crossings, only 7 of them have potentially non-trivial differentials after the E2-page

of Theorem 6.0.1. This follows from the computations of odd Khovanov homology

in [33]. In fact, when the link L is quasi-alternating, the spectral sequence collapses,

resulting in

Theorem 8.1.1. If L is a quasi-alternating link, then I#(Σ(L)) is free abelian of

rank det(L) and is supported in even gradings. The rank in grading j ∈ {0, 2} is

1

2

[
det(L) + (−1)j/22#L−1

]
where #L is the number of components of L.

Proof. By [29, Thm. 1], [33, §5] and the remarks in [28, §9.3], we know that for a

quasi-alternating link L, the gradings q and t of Kh′(L) satisfy q/2−t−σ/2 = 0. Let
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us write δ = q/2− t− σ/2. Then we may say that Kh′(L) is supported in δ-grading

0. Note that ν = 0 when L is quasi-alternating. Further, as is described in [29], the

rank of Kh′(L)q,t is given by |aq|, where

JL(x) =
∑

aqx
q

is the Jones polynomial, with conventions as given in [33]. The grading δ# of Theorem

6.0.1 is given by δ# = δ + q + σ for quasi-alternating links. Note that δ and δ#

agree modulo 2, implying that the spectral sequence collapses at the E2-page. Write

Kh′(L)j with j ∈ {0, 2} ⊂ Z/4Z for the δ#-grading. Then

rkZKh′(L)j =
∑
q+σ≡j

|aq|

where the congruence is modulo 4. We remark that
∑
|aq| = det(L), and the sign of

aq is (−1)q/2+σ/2, cf. [3, §9.1]. It follows that

rkZKh′(L)j =
1

2

[∑
|aq|+ (−1)j/2

∑
aq

]
.

Now we obtain the result of Corollary 8.1.1 using the fact that JL(1) =
∑
aq = 2m−1,

where m is the number of components of L.

8.2 The Brieskorn homology 3-spheres Σ(2, 3, 6± 1)

In this section we compute I#(Σ(2, 3, 6±1)) for coefficient fields not of characteristic

2. In doing this, we first consider a more general situation. Theorem 7.0.2 suggests

that knowledge of the smallest positive integer n such that (u2 − 64)n = 0 is useful

in understanding the relationships between the various instanton groups, cf. §7.7. It

is known, cf. [16, §6], that if Y is non-trivial admissible and restricts non-trivially

to a surface of genus ≤ 2, then one can take n = 1 (in the notation of §7.7, this says

n1 = n2 = 1).

Using this observation, we first prove a corollary of Theorem 7.0.2. To state it,

let h : Θ3
Z → Z be Frøyshov’s homomorphism from [16], also defined in §7.3, where

Θ3
Z is the integral homology cobordism group.
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Corollary 8.2.1. Let Y be the result of ±1-surgery on a knot K ⊂ S3 with genus

≤ 2. Let F be a field with char(F ) 6= 2. Then, with all homology taken with F -

coefficients, we have an isomorphism

I#(Y ) ' H∗(pt.)⊕H∗(S3)⊗
3⊕
j=0

Î(Y )j

as Z/4-graded F -modules. In particular, if in addition h(Y ) = 0, then the groups

Î(Y )j on the right can be replaced by I(Y )j.

From this we will deduce the following:

Corollary 8.2.2. With coefficients in a field F with char(F ) 6= 2, we have

I#(Σ(2, 3, 6k + 1)) ' F
bk/2c+1
0 ⊕ F bk/2c1 ⊕ F dk/2e2 ⊕ F dk/2e3 ,

I#(Σ(2, 3, 6k − 1)) ' F
dk/2e
0 ⊕ F dk/2e−1

1 ⊕ F bk/2c2 ⊕ F bk/2c3

where k is a positive integer and the subscripts indicate the gradings.

Proof of Corollary 8.2.1. First, suppose Y is a non-trivial admissible bundle over Y

geometrically represented by λ. As mentioned in [16, §6], when there exists a surface

Σ ⊂ Y of genus ≤ 2 with Y|Σ non-trivial, then u2 = 64 on I(Y). In this case (7.3)

yields an isomorphism

I#(Y ;λ)⊗H∗(S4) ' I(Y)⊗H∗(S3)

as relatively Z/4-graded F -modules. The term H∗(S
4) appears because we take the

full Z/8-graded group I(Y) on the right, instead of four consecutive summands as

before. Now suppose K is a knot in S3 of genus ≤ 2. Denote the result of r-surgery

on K by Yr. For r = 1, the exact triangle, combined with passing to the reduced

groups Î, yields a map

I(Y0)→ Î(Y1) (8.1)

where Y0 is a non-trivial bundle over Y0. This map is an surjection. This follows from

Frøyshov’s observation after Thm. 10 in [16] that, in this situation, when passing
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to the reduced groups Î, the surgery triangle retains exactness at the homology 3-

spheres (but not I(Y0)). If r = −1, we similarly obtain a injection Î(Y−1)→ I(Y0).

In either case, we can form a surface Σ in Y0 by capping off a Seifert surface for K of

genus ≤ 2 by a meridional disk for the new framed knot in Y0. The bundle Y0|Σ is

non-trivial, and so u2 = 64 on I(Y0). Thus u2 = 64 on Î(Y±1). With Theorem 7.0.2,

this implies Corollary 8.2.1.

Proof of Corollary 8.2.2. By the remarks in the introduction of [16], we have

h(Σ(2, 3, 6k + 1)) = 0, h(Σ(2, 3, 6k − 1)) > 0.

Fintushel and Stern [12] compute

I(Σ(2, 3, 6k + 1)) = F
bk/2c
1 ⊕ F dk/2c3 ⊕ F bk/2c5 ⊕ F dk/2c7 ,

from which the first part of Corollary 8.2.2 follows, as Σ(2, 3, 6k+1) is +1-surgery on

a twist knot with k full twists, a knot of genus 1. On the other hand, Σ(2, 3, 6k− 1)

is −1-surgery on a twist knot K with 2k − 1 half twists. Since K is also genus 1,

the inequality of Corollary 1 of [15] yields h(Σ(2, 3, 6k − 1)) = 1. Combined with

Fintushel and Stern’s computation from [12], we obtain

Î(Σ(2, 3, 6k − 1)) = F
dk/2e−1
1 ⊕ F bk/2c3 ⊕ F dk/2e−1

5 ⊕ F bk/2c7 .

Now the second part of Corollary 8.2.2 follows from Corollary 8.2.1.

8.3 The Euler characteristic

In this section we compute the Euler characteristic of I#(Y ;λ):

Proposition 8.3.1. For any closed, oriented 3-manifold and any unoriented closed

1-manifold λ ⊂ Y , we have χ(I#(Y ;λ)) = |H1(Y ;Z)|.

The expression on the right side means the cardinality of H1(Y ;Z) if it is finite, and

is zero otherwise. Setting λ = ∅ yields χ(I#(Y )) = |H1(Y ;Z)|.
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Proof. We make the abbreviations

i(Y ;λ) = χ(I#(Y ;λ)), |Y | = |H1(Y ;Z)|.

Note that §4.8 implies the multiplicativity

i(Y ;λ)i(Y ′;λ′) = i(Y#Y ′;λ ∪ λ′). (8.2)

We also note that i(Y ) = 1 when |Y | = 1 by Theorem 7.0.2.

Next, we claim the result is true for rational homology 3-spheres Y that are

obtained by integral surgery on an algebraically split link. That is, Y is the result

of (p1, . . . , pk)-surgery on a framed link L = L1 ∪ · · · ∪ Lk in S3 whose pairwise

linking numbers vanish. Thus |Y | = |p1 · · · pk|. Assume the result true for |Y | < n.

Since the case |Y | = 1 has already been established, we may assume that Y is

not an integral homology 3-sphere, and (by reordering) that |p1| > 1. Let Zp be

(p, p2, . . . , pk)-surgery on L. We have an exact sequence

· · · I#(Z∞;λ)→ I#(Zp1−1;λ ∪ µ)→ I#(Zp1 ;λ)→ I#(Z∞;λ) · · ·

The degree of the first map is odd, while the other two are even, cf. [23, §42.3].

Observing that Zp1 = Y , we obtain

i(Y ;λ) = i(Zp1−1;λ ∪ µ) + i(Z∞;λ).

By the induction hypothesis, the right side is

|(p1 − 1)p2 · · · pk|+ |p2 · · · pk| = n,

establishing the result for all rational homology 3-spheres which are obtained by

integral surgeries on algebraically split links.

We now prove the result for all rational homology 3-spheres Y . We use the fact

that for any such 3-manifold, there is a framed algebraically split link L ⊂ S3 such

that some integral surgery on L yields Z = Y#Y ′, where Y ′ is a connected sum of
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lens spaces of type L(p, 1), cf. [32, Cor. 2.5]. Since Y ′ is integral surgery on an

algebraically split link, i(Y ′) = |Y ′|. Then (8.2) yields

i(Y ;λ) = i(Z;λ)/i(Y ′) = |Z|/|Y ′| = |Y |,

establishing the result for all rational homology 3-spheres.

Finally, we consider the case in which b1(Y ) > 0. We can always find Z and a

framed knot K ⊂ Z such that Y is 0-surgery on K and b1(Z) + 1 = b1(Y ). We have

an exact sequence

· · · I#(Y ;λ)→ I#(Z1;λ ∪ µ)→ I#(Z;λ)→ I#(Y ;λ) · · ·

where Z1 is the result of 1-surgery on K. The degree of the first two maps are even,

while the third is odd, again cf. [23, §42.3]. Thus

i(Y ;λ) = i(Z1;λ ∪ µ)− i(Z;λ).

The proof is again by induction. If b1(Y ) = 1, then the right side is known, because

Z1 and Z are rational homology spheres; we have |Z1| = |Z|, so the right side

vanishes. Now suppose the result has been proven for 0 < b1 < n. If b1(Y ) = n,

both terms on the right side vanish by the induction hypothesis, and the proof is

complete.
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[29] Manolescu, C.; Ozsváth, P. On the Khovanov and knot Floer homologies of
quasi-alternating links. Proceedings of Gökova Geometry-Topology Conference
2007, 60-81, Gökova, 2008.

[30] Morgan, J.; Mrowka, T.; Ruberman, D. The L2-moduli space and a vanishing
theorem for Donaldson polynomial invariants. Monographs in Geometry and
Topology, II. International Press, Cambridge, MA, 1994.

125



[31] Mrowka, T. S. A local Mayer-Vietoris principle for Yang-Mills moduli spaces.
Thesis (Ph.D.)-University of California, Berkeley. 1988.

[32] Ohtsuki, T. A polynomial invariant of rational homology 3-spheres. Invent.
Math. 123 (1996), no. 2, 241-257.
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