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Graph Neural Network for Integrated Circuits and Cyber-Physical Systems Security
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This Ph.D. dissertation presents a comprehensive investigation into addressing security and

reliability challenges in embedded and Cyber-Physical Systems (CPS). Our research leverages

advanced machine learning techniques such as Graph Neural Networks (GNN) to develop

novel methodologies for cross-layer security analysis.

This dissertation addresses the growing risk posed by the globalization of the Integrated Cir-

cuit (IC) supply chain, whereby the majority of the design, fabrication, and testing processes

have been outsourced to untrusted third-party entities across the globe. This development

has significantly increased the threat of malicious modifications, known as Hardware Trojans

(HTs), being inserted into Third-Party Intellectual Property (3PIP). HTs pose a substantial

risk to IC integrity, functionality, and performance. Despite numerous HT detection meth-

ods proposed in existing literature, most limitations include reliance on a golden reference

circuit, lack of generalizability, limited detection scope, low localization resolution, and man-

ual feature extraction and property definition. Furthermore, the equally important task of

HT localization has been neglected. This research proposes an innovative, golden reference-

free method for HT detection and localization at the pre-silicon stage of IC development,

employing models based on GNN. The circuit design is converted into a graph that is an

intrinsic data structure for hardware design and captures the computational structure and
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data dependencies. We develop a graph classification model to distinguish between HT-free

and circuits infected with known or even unknown HTs. To push the boundaries further,

we extract node attributes from the HDL code and devise a Graph Convolutional Network

(GCN) that facilitates automatic feature extraction, enabling the classification of nodes as

either Trojan or benign. This methodology offers an automated approach to HT detection

and localization, relieving designers of the need for time-consuming manual code review. The

developed method achieves exceptional performance in detecting HT-infected circuits and

locating the HT. The approach outlined in this dissertation sets a new benchmark for HT

detection and localization, offering a scalable, efficient, and highly accurate tool for securing

the pre-silicon IC supply chain.

This dissertation expands to encompass the challenges facing IP piracy. The productivity

gap, coupled with time-to-market pressure, has led to increased interest in hardware Intel-

lectual Property (IP) core design within the semiconductor industry, dramatically reducing

design and verification costs. Recognizing these challenges, this dissertation proposes a novel

IP piracy detection methodology, modeling circuits and assessing similarity between IP de-

signs. Contrary to traditional methods that embed a signature within the circuit design, our

method does not introduce additional hardware overhead, nor is it vulnerable to removal,

masking, or forging attacks. This approach effectively exposes IP infringements, even when

the original IP is complicated by the adversary to deceive the IP owner. To represent the

circuit accurately for modeling, we translate the hardware design into a data-flow graph due

to similar data types and properties and subsequently model it using state-of-the-art graph

learning methods. This approach effectively complements the GNN-based techniques pro-

posed earlier in this dissertation, presenting a robust and comprehensive suite of solutions

for security and reliability challenges in the semiconductor industry.

Moving to the CPS domain, the dissertation addresses security challenges in IoT systems

through the development of adaptive anomaly detection methods. The first proposed ap-
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proach utilizes IoT sensor data and fog computing to ensure data integrity and detect anoma-

lous incidents. The proposed methodology incorporates our sensor association algorithm,

LSTM neural networks, and Gaussian estimation for real-time anomaly detection. The dis-

sertation further extends the research to multi-modal data fusion, where the integration of

sensor and communication data using GNN enables improved anomaly detection, source

identification, and recovery in IoT systems.

Overall, this dissertation showcases the application of advanced techniques such as GNN and

machine learning in enhancing security and reliability in hardware design and IoT systems.

The proposed methodologies for anomaly detection, hardware Trojan detection, IP piracy

detection, and cross-layer security analysis contribute to advancing the state-of-the-art in

ensuring the integrity and security of critical systems in the digital era.
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Chapter 1

Introduction

The 21st century is an era of elegantly engineered components, devices, and systems that

can communicate across different platforms to provide information on demand and make

necessary decisions. The ability to connect real-world applications with modeling techniques

is crucial to successful research and a critical need in today’s world. This includes abstracting

a problem or system to its essence, pinpointing pieces of collectible data that capture the

system’s essence, and devising effective data-driven models to learn and interpret the data.

Reliability and security are currently being explored from a single-layer perspective in the

literature. However, a holistic model of a system to analyze cross-layer security is still a

challenging necessity, which this dissertation intends to address.

Cyber-physical systems are conventionally studied to be mathematically defined in the con-

trol systems domain. Such approaches construct definitive or state-based models that over-

look the information hidden in various data generated by the system. For example, human

interaction with the system is an essential factor that is hard to define mathematically.

Therefore, we intend to leverage the abundance of data in the modern world to convert the-

oretical models to statistical models that embed our prior knowledge of the system as well
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as the information derived from data analysis.

Constructing a digital model of a real-world system is challenging because modern systems

are quite complex; They comprise hardware, software, and communication layers that of-

ten interact with the physical world and generate multi-modal data such as design and

architecture, sensor recording, communication network data, side-channel emissions, human-

computer interaction, etc. In addition to generated data, the mutual information and corre-

lation patterns shared among various components of the system, known as context, are shown

to be very valuable in advanced security and reliability analysis [174, 109, 110, 182, 118].

Integrating multi-modal data and extracting the context are keys to a holistic model, leading

to new knowledge discovery levels, and can be leveraged to analyze and enhance security,

reliability, and even performance. We pursue this vision in this dissertation and develop

a strategy to apply machine learning to hardware and system for cross-layer security and

reliability.

To follow this strategy, various challenges emerge, but advances in data fusion and learn-

ing models support the vision of developing such multi-modal models. We utilize Graph

Neural Networks (GNN) to learn and interpret knowledge graphs, a data structure that can

embody multi-modal Euclidean and non-Euclidean data. For example, GNN is shown supe-

rior performance when the interconnection between system components is dense. When the

data generated in each component is complex, Convolutional Neural Networks (CNN) is a

suitable choice for automated feature extraction and learning. Understanding textual data,

especially human-computer interaction, would require different techniques known as natu-

ral language processing. Adopting mathematical knowledge of the system in the statistical

model is another challenge that requires fundamental adjustment in the machine learning

model.

Moreover, many apparently different problems, in fact, share some common characteristics.

Understanding these inherent characteristics enables us to tackle deeper problems and de-
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velop better solutions. Building upon this idea, machine learning introduces transfer learning

that studies the ability to apply a model trained for a system to a different but related target

system. Transfer learning can be another influential strategy in modeling complex systems.

Figure1.1 illustrates the integration of various data sources to create a model of a system

such as hardware, automotive vehicle, Internet of Things (IoT), etc.

Figure 1.1: The research vision overview; integrating various sources of information about
the system and extracting practical knowledge from them to understand and secure the
system.

A salient attribute of digital systems is their hierarchical architecture, wherein high-level sys-

tems are constructed upon foundational layers. In the context of computing systems security,

this hierarchical structure is vital as the security and reliability of the high-level design are

contingent upon the trustworthiness of the underlying layers. Figure 1.2 exemplifies the fact

that cybersecurity cannot be effectively achieved without ensuring security at the hardware

platform upon which it operates.
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Figure 1.2: The hierarchical structure of a system from the hardware design, fabricated IC,
firmware/operating system, up to the software.

1.1 Related Works and Research Challenges

Numerous approaches have been proposed to mitigate the HT and IP piracy threats in the

literature. However, they suffer from several shortcomings, as explained further. Currently,

there is no universal method and design automation tool for detecting all types of HTs. Thus,

a new scalable method and the associated tool are required for unknown HT detection that is

expandable as new HTs are introduced. The existing pre-silicon HT detection solutions fall

into five main categories [172, 173]; (i) test pattern generation, (ii) formal verification, (iii)

code analysis, (iv) machine learning, and (v) graph similarity techniques. These methods

propose new ideas but have several shortcomings; reliance on golden-reference, unable to

identify unknown HTs, burdening the designer with a manual review of code, unable to

guarantee HT detection, limited detection scope to some specific type of HTs, not being

scalable, or too complex.

Conventionally, the IP protection techniques fall into preventive (i.e., logic encryption, cam-

ouflaging, metering, and split manufacturing) and detective (i.e., digital signature) methods.

All these methods add excessive implementation overhead to the hardware design that lim-

its their applications in practice. Moreover, they mostly focus on security at the IC level,

while many commercial IPs comprise the soft IPs due to flexibility, independence of plat-
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form technology, portability, and easy integration with other components. The high level

of abstraction makes IP protection more challenging since it is easier for an adversary to

slightly change the source code and redistribute it illegally at the lower levels of abstraction.

Although the existing preventive countermeasures deter IP theft, they cannot guarantee

IP security as the adversaries keep developing more sophisticated attacks to bypass them.

Therefore, an effective IP piracy detection tool is crucial for IP providers to disclose the

theft. To this end, the state-of-the-art piracy detection method embeds signatures of IP

owners known as watermark and legal IP user known as a fingerprint, in the circuit design to

assure authorship and trace legal/illegal IP usage. IP watermarking and fingerprinting are

prone to removal, masking, or forging attacks that attempt to omit the watermark, distort

its extraction process, or embed another watermark in IP.

Hardware metering

Logic locking

Camouflaging

Split manufacturing

Watermarking

FingerprintingD
et

ec
tio

n
Pr

ev
en

tio
n

IP piracy

Overbuilding

Counterfeiting

Reverse engineering 

Masking attack

SAT attack

Proximity attack

CountermeasuresSecurity Issues

Removal attack

Forging attack

SPS, AGR, SGS

Attacks to
Bypass defense 

Figure 1.3: IC security issues and countermeasure besides Hardware Trojan.
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1.2 Dissertation Contributions

1.2.1 Hardware Security

The time-to-market pressure and continuous growing complexity of hardware designs have

promoted the globalization of the integrated circuit supply chain and pushed most of the

design, fabrication, and testing process from a single trusted entity to various untrusted

third-party entities worldwide. Outsourcing has made the semiconductor industry vulner-

able to security threats such as hardware Intellectual Property (IP) piracy or hardware

Trojans (HT). Hardware Trojan Detection. HT is a minimal malicious circuit inserted by an

adversary in an IC to leak sensitive information, change functionality, degrade performance,

or deny the service of the chip. It remains hidden and inactive to avoid detection during

testing and only gets triggered under rare circumstances in run-time. HT is known to be the

underlying reason for several severe system failures. Thus, HT is one of the major hardware

security concerns, and we have worked on approaches to tackle this security threat in the

design stage (pre-silicon) and after chip fabrication (post-silicon). To ensure the trustwor-

thiness of IC design, it is essential to ascertain the authenticity of in-house and third-party

IPs. Detection of HT in the early stages of the design flow is beneficial because removing it

would be very expensive later. The existing HT detection solutions suffer from limitations;

reliance on trusted golden reference (unavailable in practice), unable to identify unknown

HTs, burdening the designer with a manual review of hardware, unable to guarantee HT

detection, and limited detection scope to some specific types of HTs, not scalable, or too

complex. To overcome these challenges, we proposed the first methodology that encodes IC

design as a graph and models it with GNN [176] (Chapter 2). A circuit is non-Euclidean

data that shares similar characteristics with the graph data structure. Thus, based on data

flow, we generate a heterogenous graph representation of hardware design register transfer

level code or netlist [172] (Chapter 2). We utilized graph data to develop a GNN model that
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learns circuits and Trojans’ behavior and key features and distinguishes them through graph

classification. This research resulted in a golden reference-free end-to-end fully automated

security defense that demonstrated high performance in detecting known and unknown HTs

in the pre-silicon stage. In the subsequent research [173] (Chapter 3), we pushed the limits

even further to locate the Trojan in the victim circuit, which is currently a challenge, and the

limited number of proposed methods have low accuracy and require an exhaustive manual

search. We developed a node classification GNN model that focuses on the graph nodes

and connection to perform node classification and determine the Trojan nodes. Later, an

automated algorithm maps the malicious nodes to their counterpart in the circuit. The eval-

uation demonstrated it could locate all the Trojans with very high accuracy, fully automated.

We further investigated the HT detection in a manufactured IC as a second layer of defense

against overseas untrusted rouge foundries. In the post-silicon stage, the internal design of

the IC is hardly accessible without the destruction of the chip. Therefore, we studied hard-

ware side-channel power and Electromagnetic emissions as a non-invasive method to detect

the presence of HTs. Common machine learning classification methods require a trusted

golden chip which is not available in practice. Therefore, we collected electromagnetic and

power side-channel signals for a library of known HTs and developed a convolutional neural

network model on a library of Trojans to learn the best discriminative features for HT detec-

tion. Then, we devised a neural network architecture to perform transfer learning and apply

the learned knowledge from the library to the circuit under test. Eventually, the learning

outcome is passed to an anomaly detection mechanism that monitors the chip and reports

malicious activities upon HT activation in run-time [50] (Appendix A). Later, we proposed

a brain-inspired HT detection architecture using Hierarchical Temporal Memory. Similar to

the human brain, this solution is resilient against natural changes that might happen in the

side-channel measurements while accurately detecting the chip’s abnormal behavior when

the HT gets activated. We used a self-referencing method for HT detection, eliminating

the golden chip’s need [51] (Appendix A). IP Piracy Detection. The superiority of GNN
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led to leveraging the GNN-based approach for IP piracy, a serious security issue, especially

in IP-intensive economies such as the US. To increase productivity under time-to-market

pressure, IP core design has grabbed substantial attention from the semiconductor industry

and has dramatically reduced the design and verification cost. However, the globalization

of the IC supply chain poses a high risk of theft for design companies that share their most

valuable assets, IPs, with other entities. We proposed a novel methodology for IP piracy

detection that models the circuits and assesses the similarity between IP designs instead of

the conventional techniques of inserting and extracting a signature to prove the ownership.

This method does not add any hardware overhead as a signature and is not vulnerable to

removal, masking, or forging attacks. It also effectively exposes the infringement between

two IPs even if the adversary complicates the original IP through obfuscation techniques to

deceive the IP owner. We convert each circuit to a data-flow graph with attribute vectors

assigned to each node. Then, a GNN-based model is constructed on labeled pair of similar

and dissimilar circuit graphs to learn the critical properties that define circuits, evaluate

similarity on a scale of -1 to 1, and determines IP piracy. The results indicated that this

method could detect even partial similarity with high performance [175] (Chapter 4). An-

other expensive IP of tech companies is the machine learning models, often developed with

expensive computation and private datasets. Many companies use public server services such

as AWS, which makes them vulnerable to IP piracy. We explored machine learning security

on FPGA-based servers, and due to our cross-later security perspective, we leveraged soft-

ware/hardware co-design to construct an attack model. It resulted in a remote side-channel

attack that can steal the machine model configuration running on multi-tenant FPGA servers

and revealed the vulnerability of these systems [190] (Appendix B). The experiences with

the GNN model have shown its high potential for modeling hardware and system, and the

methodology to leverage it led to a patent. To facilitate this multi-disciplinary research, we

created an open-source library of GNN models called HW2VEC [183] and a few datasets for

the public. We later employed GNN for hardware design automation as well. Figure 1.4 rep-
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resents the big picture of the methodologies we developed based on GNN for understanding

and securing complex hardware designs.
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Figure 1.4: The overview of hardware security methodologies developed in this dissertation.

1.2.2 Embedded and Cyber-Physical Systems Security

In today’s world, we are surrounded by interconnected networks of intelligent devices called

the Internet of Things (IoT) that monitor and control our home, health [133, 135, 134],

vital infrastructure [34, 157, 158, 17], factory planes [108, 181, 32, 31, 180, 47], etc. The

widespread presence of IoT systems and their critical applications emphasize the importance

of their security and integrity. IoT devices are vulnerable to attacks and failures due to

low computational resources, cost constraints, and tight time-to-market. It is challenging

to mitigate these attacks and failures because of the multi-disciplinary nature of IoT, which

brings together the physical domain through sensor interaction and the cyber domain through
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the communication network and the cloud.

We started investigating IoT systems security from a bottom-up perspective. Our approach is

motivated by the observation that strongly correlated patterns might be found in sensor data,

and the discovery of such coherent clusters of sensors is essential in revealing abnormality and

attack toward the system from different points of view. We proposed an adaptive context-

aware anomaly detection method [174] that captures the system’s physical properties to

ensure the integrity of IoT sensor data and identify anomalous incidents. In this approach,

we devised a novel sensor association algorithm that generates fingerprints of sensors, clusters

them, and extracts the context of the system. Based on the contextual information, a

predictor model, which comprises a long short-term memory neural network and Gaussian

estimator, detects anomalies. Then, a consensus algorithm identifies if the anomaly is an

environmental incident or a security and reliability issue. This model wholly or partially

updates itself to adapt to the variation in the environment and changes in IoT system

architecture. The experiments showed that context awareness and adaptability are crucial

features in modeling cyber-physical systems, which enhance the performance and robustness

of the anomaly detection model (Chapter 5).

Although stand-alone approaches are proposed in the literature for network intrusion de-

tection or sensor anomaly detection, a holistic model needs to be included to integrate the

information from both domains and extract the valuable context shared among different

system components. We proposed a multi-modal data fusion methodology that fuses sensor

and communication data. We integrate IoT physical and cyber elements into a knowledge

graph representation that signifies the correlation between elements as a connection and

provides embedding for data generated by each component. We constructed a GNN model

to learn the context and normal state of the system and detect abnormal activities. We

further studied the signatures of networks and sensor attacks to determine the source of

the anomaly to facilitate fast and informed recovery after an incident. Experiments on the
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greenhouse monitoring IoT systems demonstrated that this holistic multi-modal anomaly

detection model, on average, achieves a 22% F1-score improvement over the single-modal

approaches (Chapter 6).

1.3 Dissertation Organization

This dissertation embarks on a comprehensive exploration of cross-layer security, starting

from hardware security and methodically progressing toward an understanding of higher-

level embedded and cyber-physical system security. In Chapters 2 and 3, we delve into

one of the primary security threats plaguing the semiconductor industry: hardware Trojans

(HTs).

Chapter 2 unveils a hardware Trojan detection model that leverages a Graph Neural Network

(GNN) classifier, detailing the process of translating hardware design into a graph format

that accurately encapsulates its intrinsic structure. This chapter culminates in the evaluation

of the proposed model, demonstrating its superior performance in both precision and speed

compared to existing methods.

Building on the HT detection discourse, Chapter 3 tackles the subsequent phase of HT

localization and elimination from the compromised circuit. We discuss a node classifier

model rooted in GNN and delineate algorithms designed to convert the circuit into a graph

with attached node attributes, identify Trojan nodes within the graph, and map the nodes

back to their HDL code representation.

Having demonstrated the potential of graph learning in the hardware domain, Chapter 4

confronts another IC security threat: IP piracy. Borrowing the graph generation process

from Chapter 2, we propose a new approach toward IP piracy detection. Instead of relying on

traditional signature-based defense mechanisms, an automated GNN-based tool is introduced
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to assess the similarity between different hardware designs.

The lessons learned in Chapters 2, 3, and 4, such as the importance of context and un-

derstanding the relationships between various components for security assurance, serve as

cornerstones for the following chapters. Shifting from the low-level circuit to the system

level, Chapter 5 presents a context-aware model for Cyber-Physical System (CPS) security,

demonstrated within an Internet of Things (IoT) system. We discuss the pressing need for

IoT security and introduce a novel methodology. This methodology extracts sensor finger-

prints to identify clusters of related sensors, leveraging this sensor association information

for enhanced fault and attack detection.

Finally, Chapter 6 integrates the GNN development insights from Chapters 2, 3, and 4

and the context-aware anomaly detection perspective from Chapter 5. It presents a novel

approach for cross-layer anomaly detection in the physical and communication layers of IoT

systems. Here, we elaborate on a GNN model that performs data fusion between multi-

modality communication network data and sensor measurements.

The appendices A and B provide a summary of three collaborative research projects that

explore post-silicon IC security and software adversary attacks, effectively bridging the gaps

in the cross-layer security exploration proposed in the main body of the dissertation.
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Chapter 2

Hardware Trojan Detection

2.1 Introduction

The scale and complexity of modern System-on-Chip (SoC) designs have made it increas-

ingly challenging and expensive for chip manufacturers to design, fabricate, and test every

component in-house. The time-to-market pressure and resource constraints have pushed SoC

designers to outsource hardware designs and use Third-Party Electronic Design Automation

(3P-EDA) tools and Intellectual Property (IP) cores from various vendors worldwide. Using

Third-Party IPs (3PIP) can be cost-effective due to the re-usability of IP cores so that chip

manufacturers can reallocate their resources to meet market demands. However, the security

and trustworthiness of 3PIPs are not always guaranteed, and reliance on untrusted IPs and

EDA tools greatly raises the risks of HT insertion by rogue entities in the Integrated Circuit

(IC) supply chain.

HT refers to an intentional and malicious modification of an IC that is usually designed to

leak information, change functionality, degrade performance, or deny the service of the chip.

Due to the wide applications of ICs in military systems, critical infrastructures, medical
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devices, etc., the consequences of an undetected HT in a chip can be life-threatening. For

example, an actual demonstration of the HT threat occurred in 2007, when a suspected

nuclear installation in Syria was bombed by Israeli jets because Syrian radar was disabled

by a remote kill switch backdoor in its commercial off-the-shelf microprocessor [6]. In 2012,

an undocumented hardware backdoor was found in the Actel/Microsemi ProASIC3 chips

used in military-grade FPGAs [147] that allowed the extraction of secret keys, enabling an

adversary to modify the chip’s configurations and gain full control of the chip. Furthermore,

it is projected that the global semiconductor IP market will reach 7.3 Billion by 2025, with

a compounded annual growth rate of 5.5% from 2020-2025 [1], and the security concerns

about untrusted IPs can significantly damage the market.

Figure 2.1 shows the typical life cycle of an SoC design, starting from system-level specifi-

cation to fabrication, in which several stages of the IC supply chain are marked as poten-

tial points of HT injection. A rogue in-house designer/team can manually modify or add

malicious functions in the hardware design at any design abstraction level (system level,

behavioral level, and logic level). Moreover, the 3P-EDA tools used for behavioral, logic,

and physical synthesis may insert HT into the synthesized RTL and gate-level netlist code.

Using untrusted 3PIP in various design stages introduces a means for adversaries to tamper

and infect a design with HTs. To ensure the trustworthiness of an SoC design, it is crucial to

ascertain the authenticity of 3PIPs. The 3PIPs are typically classified into three categories

based on their format; Soft IP (i.e., synthesizable Verilog or VHDL in the RTL format),

Firm IP (i.e., gate-level netlist), and Hard IP (i.e., GDSII files and custom physical layout

format).

The flexibility of IP cores in higher levels of abstraction makes it easier for the attacker to

design and implement various malicious functions. It is crucial to identify HTs early on in

the design stages because it becomes increasingly expensive to remove them later. Detecting

a few lines of HTs in an industrial-strength IP with thousands and hundreds of thousands of
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Figure 2.1: Semiconductor supply chain, pre-silicon HT injection points.

code lines is extremely challenging. Any work requiring manual code review is error-prone,

time-consuming, and not scalable. The need for a scalable pre-silicon security verification

method is highlighted in many technical documents, such as a recent white paper from

Cadence and Tortuga Logic [53] because existing solutions fail to safeguard the hardware

design from the constantly evolving HTs designed by adversaries. We further elaborate on

this necessity through a motivational example.

2.1.1 Motivational Example

The HT detection problem has always been a back-and-forth tug-of-war. HTs are stealthy

by design and are composed of a payload and trigger. They are usually very small and

inactive, with minimal effects on the chip until the trigger circuit is activated under very

rare circumstances and triggers the payload to perform its malicious activities. The HT de-

tection problem has always been a back-and-forth tug of war. Whenever new HT detection

methods are proposed in the literature capable of detecting currently known HTs, new HTs

are designed to bypass state-of-the-art detection methods. This behavior can be observed by

looking at the trend in HT detection over the past decade. One of the earliest defense mech-

anisms, [69] proposed a novel Unused Circuit Identification (UCI) technique that identifies

suspicious circuitry not being used or activated during design verification. However, the

authors in [148] later designed a new type of HT called Stealthy Malicious Circuits (SMC),

which could bypass UCI by hiding HT in nearly-unused logic. Further, FANCI [160] was
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successful in detecting SMC by identifying the low control value exhibited by the nearly-

unused logic, but it was later defeated by DeTrust [186], which designed a new class of HTs

with stealthy implicit triggers. Mero[23] generates test vectors that are capable of activating

HTs with low trigger probabilities for detection. Still, it fails to generate test vectors that

can activate ”hard-to-trigger” HTs with trigger probabilities less than 10-6 [138].

Among the more recent works that use Trusthub benchmarks, [130] is supposed to detect

HTs that leak sensitive data, such as secret keys in cryptographic cores, as in the AES-T600

benchmark. However, it fails to detect another similar HT benchmark, AES-T700. Later,

[131] identifies different data leaking HTs (e.g., AES-T600 and AES-T700) by adding data

leaking as an additional security property for model checking. However, it fails for HTs that

execute other malicious functions, such as chip degradation (e.g., the AES-500 benchmark),

rather than data leakage. A recent paper [56] showed that modeling the hardware design

as a graph can be beneficial in the hardware security domain. However, the HT detection

scope of [123, 56] based on graph similarity algorithms is limited to known HTs in the

method’s library. There have also been methods that convert the hardware design into a

graph representation of the circuit and extract HT features to build a database of HT features

for detection [27], but the detection scope is also limited to the HTs in its database.

Despite the various HT detection methods proposed in the literature, the HT problem re-

mains significant as there exists no single method that can detect all different types of HTs.

While most detection algorithms can only detect known HTs, new HTs are designed to cir-

cumvent existing detection methods. Thus, a new flexible technique for detecting unknown

HTs is needed, one that can be expanded as new HTs emerge.

2.1.2 Research Challenges

The existing pre-silicon HT detection methods have several shortcomings:
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1) Reliance on golden-reference: Most HT detection methods rely on a golden HT-free

reference circuit to compare the design under test with the golden reference and flag it as

HT-infected in the case of deviation. Nevertheless, a golden reference is hard to obtain in

practice, especially infeasible at the IP level.

2) Limited detection scope: Some HT detection algorithms are constructed based on a

library of known HTs. Consequently, they fall short in detecting unknown HTs. Another

set of methods assumes particular properties in the Trojan design of the trigger or payload,

limiting the detection scope to specific HTs.

3) Manual code review: Many HT countermeasures mark the parts of the design under

test which are prone to HT insertion. However, this does not guarantee that an HT is

present/detected, and it would burden the circuit designer with a manual review of the

suspicious parts, which is tedious and error-prone for large designs.

4) Scalability and complexity issue: Due to the growing complexity of modern ICs,

scalability is an essential feature for any hardware design tool but many current techniques

and algorithms are so complicated that they face time or memory issues for large designs.

2.1.3 Chapter Contributions

To address these challenges, we propose a golden reference-free pre-silicon HT de-

tection approach that takes advantage of state-of-the-art machine learning tech-

niques to learn the circuit behavior and detect the anomalous and malicious

presence of Trojan inside the design. Since hardware is a non-euclidean, structural

type of data in nature, we use the graph data structure to represent the hardware design

and generate the Data Flow Graph (DFG) for both RTL codes and gate-level netlists. We

leverage GNN to model the behavior of the circuit. The scalability of our method stems from
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the fully automated process of graph generation, feature extraction, and detection without

any manual workload. Automatic feature extraction is crucial when new HTs are discovered,

as our model will be readily updated without the need to define new properties or introduce

additional feature engineering as in previous works. Our contributions are outlined below:

• We propose a novel approach for modeling the hardware design to ensure its security.

Our methodology models the circuit as its intrinsic representation, a graph, and we

leverage GNN to extract the critical features of hardware design and learn its behavior.

• We construct two fully automated models for HT detection in the pre-silicon stage.

Each model includes a DFG generation pipeline followed by a GNN-based graph learn-

ing flow, and it is developed and customized for its target hardware design, either RTL

code or gate-level netlist. The models discover even unknown HTs without relying

on golden HT-free references or manual code reviews from the circuit designer. Our

models are faster than existing methods and scalable for large designs.

• We create a Trojan DFG dataset consisting of RTL codes and gate-level netlists. We

expand the HT-infested RTL benchmarks from Trusthub and perform logic synthesis

and optimization to acquire the corresponding gate-level netlist.

• We survey the pre-silicon HT detection techniques in the literature, analyze state-of-

the-art and make a comprehensive comparison with our approach.

2.1.4 Threat Model

This work aims to determine whether an RTL code or gate-level netlist is infected with a

malicious Trojan circuit or not. There is no assumption on the type of HT and the design of

the trigger or payload. Therefore, our method can detect trigger-based or always active Tro-

jans with a payload circuit to modify functionality, degrade performance, leak confidential
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data, or deny the service. The only premise is that the HT is inserted in the design stage

through the following attack scenarios: 1) A rogue in-house designer intentionally manipu-

lates the RTL/netlist design manually. 2) The 3P-EDA tool used for design/logic synthesis

and analysis inserts an HT into the synthesized RTL/netlist code automatically. 3) 3PIP

vendor is not trustworthy, and a malicious circuit is hidden in the IP.

2.2 Related Works and Background

The majority of the pre-silicon HT detection techniques in the literature fall into four main

categories, described below:

2.2.1 Hardware Trojan

An HT consists of two fundamental parts: payload and trigger. The payload is the implemen-

tation of the malicious behavior of the HT. This malicious behavior could lead to information

leaks, such as the secret key of a cryptographic core which would enable unrestricted access

to sensitive data. It could change the functionality of the circuit to sabotage or cause harm.

It can deny the service of certain functionalities of the chip or degrade the performance

by increasing power consumption. The trigger is an optional circuit that monitors various

signals or events in the base circuit and activates the payload when a specific signal or event

is observed. HTs without triggers are usually always-on Trojans. HTs with triggers in the

context of digital circuits can either be combinational or sequential. Combinational triggers

activate upon a specific set of signal inputs. Sequential triggers rely on a specific sequence

of signals or events. A sequential trigger could be based on a counter reaching a specific

value or when a signal pattern repeats over a certain duration. A sequential trigger is more

difficult to activate compared to a combinational trigger due to the vast number of states
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that are required to be checked. We classify the triggers of HTs into three main categories;

i) time bomb, ii) cheat code and iv) always on. The time bomb trigger is activated after

numerous clock cycles, and the cheat code trigger depends on one or a sequence of specific

inputs in the base circuit.

HTs are designed with malicious intent and to stay undetected. HT designers can reduce

the likelihood of their HTs from being detected by using a common technique that involves

placing them in rare internal nodes with exceedingly low activation probabilities. Rare

internal nodes are difficult to detect because they are often outside the functional context of

the intended design, and they often go undetected by traditional test methods. Therefore,

many HT detection methods take into account the rare internal node characteristic of HTs

as part of their detection schemes.

2.2.2 Hardware Trojan Detection Methods

Test Pattern Generation: Traditional test pattern generation has been widely used in

both pre-silicon and post-silicon manufacturing stages. The idea is to create an extensive set

of test vectors with varying input logic combinations to validate a circuit’s output against

the intended design output. The intended design output must come from a trusted golden

reference chip of the original circuit design. These test patterns are typically generated

based on the system specifications of the design, which describes the functionalities and

behaviors of the circuit. However, due to their stealthy nature, HTs remain inactive and

well-hidden during simulation and testing. Many HTs can bypass detection from these test

vectors by simply not modifying the functionalities of the original circuit. More importantly,

most HTs only activate under particular rare events. This makes it difficult for traditional

test generation methods to trigger HTs that use internal node triggers with extremely low

activation probability.
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To tackle these issues, the authors in [23, 138] use automatic test pattern generation (ATPG)

to create effective test vectors by identifying rare input logic at internal nodes to increase

the probability of triggering the HT. However, even with this strategy, the scale of modern

designs makes it possible for HT designers to create extremely low activation triggers that

could evade detection by combining multiple rare signals and having the trigger conditions

occur over multiple steps. [103] proposed a new test generation method by mapping the trig-

ger activation problem to a clique cover problem which can detect extremely rare triggers

but is shown to have unstable coverage performance. A recent study employs reinforcement

learning techniques in conjunction with rare node excitation, as well as controllability and

observability analysis to generate test vectors with improved trigger coverage and test gen-

eration time. Most methods above assume a full-scan chain design which simplifies ATPG

by converting sequential elements into combinational elements with scan flip flops. However,

not all designs have full-scan chains due to design constraints such as power, area, and ad-

ditional hardware components required [18]. Therefore, a partial-scan chain design has been

adopted. [39] tackles the challenges of partial-scan designs by combining ATPG with model

checking for more efficient test vector generation and improved HT coverage. Still, there is

no guarantee of success in the test pattern generation approach, and most test generation

techniques are time-consuming due to their iterative nature. More importantly, in order to

achieve full coverage, test pattern generation would need to generate and test all the possible

cases, but given the scale of modern ICs, it is simply infeasible since the state space for test

vectors grows exponentially to the number of rare input signals.

Formal Verification (FV): Formal verification is a mathematical proof-checking technique

that relies on the security and trust policies defined in the system-level specification. It

verifies the integrity of the design using common verification methods such as property

checking, equivalence checking, and model checking. In order to apply formal verification,

the 3PIP design must first be converted from an HDL language like Verilog to an equivalent
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model in the proof-checking format using a formal language like Gallina, a tactic language

developed as part of the well-known theorem prover called Coq. The 3PIP is delivered with

a separate code representing the 3PIP but written in formal language and used for proof-

checking; this code is known as proof-carrying code (PCC). PCC can either be provided

by the 3PIP vendor directly or they can provide a Soft IP that can be converted into a

proof-checking format.

Applying FV methods, [150] formulate taint-propagation properties that verify the data flow

between signals in a design to identify unintentional design bugs. HTs, however, are inten-

tional by nature, so the criteria for bug detection do not directly apply to HT detection.

A similar approach is able to detect information leakage [131] and malicious modification

to registers [130] by applying information leakage and register modification as criteria for

the security properties. While using formal verification on 3PIP proves the predefined se-

curity properties, its detection scope is limited to the properties stated in the system-level

specification. Only specific types of HTs can be detected because the properties are insuf-

ficient to cover all the various types of malicious behaviors that HTs can exhibit. [130], for

example, defines “no-critical-data-corruption” which can only detect data-corrupting HTs.

[131] modifies the security criteria from data corruption to data leakage. Both approaches

employ model checking, which does not scale to large designs because model checking is

NP complex and suffers from state explosion. [59] combines theorem proving with model

checking to overcome the state explosion issues of model checking; however still suffers from

the limited scope issue. Information flow tracking has been used to model security properties

that can provide wider coverage of HTs [119]. FV does not depend on HT trigger conditions

for detection, so it does not suffer from the issue of not being able to detect HTs due to low

trigger probability. However, it is still possible for 3PIP vendors to intelligently manipulate

the proofs and security properties to evade FV.
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Code Analysis (CA): Code analysis or code coverage is a technique that analyzes the

execution of the RTL or gate-level netlist code. To verify the 3PIP for trust, code analysis

uses metrics such as line, statement, toggle, and finite state machine (FSM) coverage and

compares against the design specification to ascertain the suspicious signals that imitate

the HT. These coverage metrics respectively check which lines and statements are executed,

what signals are being switched in the gate-level netlist, and which states are reached during

execution. If anything less than 100% coverage is reported, then the 3PIP design is considered

to be HT infested.

Using CA, [120] extracts state transition graphs from gate-level netlist and reports state

transitions that are vulnerable to HT injection. This approach burdens the designer with

manual analysis of the suspicious regions to identify the possible HT. It is also limited to the

design’s combinational logic. FANCI [160] proposed a control value metric that measures

the degree of influence a given input has on the operation and output of a circuit. It looks

for nets in the HDL code with very low control values and marks them as suspicious nets.

VeriTrust [185] returns the nets that are not driven by functional inputs as potential triggers

for an HT. DeTrust [186], on the other hand, proposes an attack that exploits the vulnerabil-

ities of FANCI and VeriTrust by modifying the HTs with stealthy implicit triggers. Trigger

logic for these HTs is distributed over multiple stages with a combination of sequential and

combinational logic alongside logic that is part of the intended design, making them much

more challenging to detect. In order to execute/cover all the lines of the code, code analysis

requires an effective test bench to cover all the execution scenarios of the design. This causes

the same problems as test pattern generation in that the number of test patterns needed

for higher coverage scales poorly with larger designs, and verification time increases to an

infeasible amount. It has also been shown that even 100% coverage does not guarantee that

a 3PIP is HT-free [76].
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Machine Learning (ML): Machine learning is a powerful technique that has received a lot

of attention lately and has revolutionized different fields of study [174, 14]. The majority of

ML-based works for HT detection depend on side-channel signal analysis [50, 51, 15], which

delays the detection until the post-silicon stages. More recent approaches have focused on

extracting various features during the design phase of the circuit to classify the HT-free and

HT-infested 3PIPs. For example, the gradient boosting algorithm uses the Abstract Syntax

Tree (AST) of RTL code [64], the multilayer neural network uses Trojan-net features of gate-

level netlist [65], the artificial immune system uses DFG and Control Flow Graph (CFG)

of RTL code [184], and the probabilistic neural network uses CFG of RTL code [40]. Most

of these models rely on an HT-free golden reference. However, a trusted reference is not

guaranteed because the untrusted 3PIP vendors are the ones that provide the source code

and specifications that may include hidden HTs as part of the golden reference. Moreover,

reference-based methods may be inconclusive or too complex for exhaustive verification,

especially for large designs. With classical ML models, the models’ performance heavily

depends on the quality of the selected features. This typically requires a lot of upfront

resource investment in feature engineering and can be quite time-consuming. Additional

feature engineering would also be required to account for newly developed and unknown HTs.

We propose a scalable, golden reference-free model that leverages a potent ML technique,

GNN, which performs automatic feature extraction and learns the circuit’s behavior, both

intended and malicious behaviors, to detect known and unknown HTs.

2.2.3 Hardware as a Graph

A graph is an intuitive representation of a hardware design. The vast network of gates in

a circuit can be naturally represented by the interconnections of nodes as gates and edges

as wires in a graph. Graph-related problems have been around for decades, with firm roots

in discrete mathematics and computer science. There is a rich pool of knowledge in graph
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theory and many well-established algorithms were developed to solve these graph problems.

By transforming a hardware design into its graphical representation, we can apply the same

concepts and algorithms in solving graph problems to solve hardware design problems.

Various graph representations of traditional EDA problems are shown in [105]. For example,

logical verification can be modeled using a rooted directed graph to represent the boolean

function [21]. Many EDA problems can be converted into graph problems. However, many

graph problems suffer from NP complexity and need to overcome scalability issues due to

large modern IC designs. In more recent works, [123] propose analyzing the data/control

flow graph of the circuit to locate the HTs. The authors create a library of HTs and use sub-

graph matching algorithms to find the graphs of such known HTs in the graph of the 3PIP

designs. Graph matching is an NP-complex problem that does not scale to large designs. To

improve the accuracy and computation time, [56] introduces a new graph similarity heuristic

tailored for hardware security. These methods can detect only the HTs that have the same

graph representation as known HTs in their library, while attackers will design a diverse set

of HTs. Recently, GNN has been deployed for reverse engineering to assist with malicious

logic detection. In this direction, ReIGNN [36] has combined GNN with structural analysis

to classify registers in a netlist. GNN-RE [10] leverages GNN to identify the boundaries of

modules in a flattened netlist and classify the functionality of sub-circuits.

Recently GNN models have grabbed attention in EDA and hardware security [183, 175, 176].

GNN is deep learning that operates on the graph and has the advantages of machine learning

methods but can be applied to non-Euclidean data. Our intuition behind using GNN is that

graphs are an intrinsic representation of a hardware design. Representing the hardware

design in the form of DFGs allows us to capture the behavior between signals, sequential

elements, and combinational elements in the circuit. Through the DFGs, the GNN will learn

to distinguish normal circuits from circuits that contain malicious functions.
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2.3 Methodology

Our methodology is built on the premise of the existence of a feed-forward function f that

determines whether the hardware design p is infected with a malicious Trojan circuit or not.

To approximate the function f , our methodology comprises three main steps:

i) Firstly, we extract the DFG G from hardware design p through an automated DFG

generation pipeline.

ii) Secondly, the DFGs are passed to a GNN framework that includes graph convolution

layers and an attention-based graph pooling layer for graph learning and feature extraction.

Further, the graph readout operation generates a vectorized graph embedding, denoted as

hG based on the discerning features learned by the GNN model.

iii) Lastly, Multi-Layer Perceptron (MLP) is used to perform classification on the graph

embedding and output the HT label y.The HT label y is the output of function f , as given

in Equation 2.1.

y = f(p) =

 (1, 0), if the design is HT-infected

(0, 1), if the design is HT-free,
(2.1)

We describe some background information about GNN and provide more details regarding

our GNN model and MLP classifier in section 2.3.1. In our approach, we target the hardware

design in the pre-silicon stage, including the RTL and gate-level netlist. Although RTL codes

and netlists are both represented using a Hardware Description Language (HDL) such as

Verilog, they are very different in terms of structure, level of abstraction, and code size

(number of signals and operations). Thus, we construct two distinct HT detection models

with different graph generation pipelines, as elaborated in the following sections.
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2.3.1 Graph Convolutional Networks

Many data structures such as social network data or hardware designs can be naturally

formulated as graphs. Graph learning encompasses fundamental challenges since the graph

size and topology vary among data samples. To address this issue, GNN is introduced. It is a

graph-based deep learning model that extracts features from non-Euclidean data structured

as a graph. The architecture we use is inspired by the Spatial Graph Convolution Neural

Networks (SGCN). As depicted in Figures 2.3 and 2.4, the architecture of our GNN models

for both RTL and netlist HT detection mainly includes convolutional layers, an attention-

based pooling layer, a readout unit, and an MLP classifier.

The input to GNN is a graph G = (V,E) where E is the set of directed edges and V is

the set of vertices. The edges are represented as the adjacency matrix A and each node

embodies a feature vector av that specifies the node attributes. In general, the convolution

operation in an SGCN is defined by a node’s spatial relations. The spatial convolution has

a message propagation phase and a read-out phase. The intuition behind message passing is

that nodes pass feature vectors to their immediate graph neighbors and through an iterative

process, the information is accumulated as node embeddings. Each iteration is basically one

layer of graph convolution and by increasing SGCN layers, nodes can reach further nodes

and gather information deeper in the graph. The message propagation phase involves two

sub-functions: AGGREGATE and COMBINE functions, given by:

a(l)v = AGGREGATE(l)({h(l−1)
u : u ∈ N(v)}), (2.2)

h(l)
v = COMBINE(l)(h(l−1)

v , a(l)v ), (2.3)
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where N(v) is the set of nodes connected to node v, AGGREGATE collects the feature

vectors of neighboring nodes to produce an aggregated feature vector a
(l)
v for layer l. COM-

BINE will combine the previous node feature h
(l−1)
v with a

(l)
v to produce the next feature

vector h
(l)
v . The message propagation is carried out for a pre-determined number of l itera-

tions. In our model, the AGGREGATE and COMBINE functions of massage passing

are performed by the Graph Convolution Network (GCN) [80]. Concatenation of aggregated

message vectors a
(l)
v for all v ∈ V forms the matrix X(l), which we call the node embed-

ding matrix. The GCN layers update the node embeddings for each iteration l of message

propagation as follows:

X(l+1) = σ(D̂− 1
2 ÂD̂− 1

2X(l)W (l)) (2.4)

whereW l is a trainable weight used in the GCN layer. Â = A+I is the adjacency matrix of G

used for aggregating the feature vectors of the neighboring nodes and I is an identity matrix

that adds the self-loop connection to make sure the previously calculated features will also be

considered in the current iteration. This self-loop acts similarly to the COMBINE function

where the accumulated messages are combined with the previous node feature vector. D̂ is

the diagonal degree matrix used for normalizing Â. σ(.) is the activation function such as

the Rectified Linear Unit (ReLU). We initialize the embedding X
(0)
i for each node i ∈ V

based on our initial intuition about the graph data in a specific application. We denote the

final propagation node embedding X(l) as Xprop. Regarding the complexity of our model,

GCN complexity grows almost linearly with the number of nodes for sparse graphs, and the

circuit connections are sparse, producing a sparse DFG [94]. The other factor that affects

the computation and memory usage is the length of node feature vectors which is a relatively

small number (e.i. compared to raw image) in our case.
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2.3.2 Attention-based Pooling

An attention-based graph pooling layer is then applied to the node embedding Xprop. Ac-

cording to [81], such an attention-based pooling layer allows the model to concentrate on a

local part of the graph and is regarded as part of a unified computational block of a GNN

pipeline. We perform top-k filtering on nodes based on the scores predicted from a separate

trainable GNN layer [85], as follows:

α = SCORE(Xprop,A), P = topk(α) (2.5)

where α denotes the coefficients predicted for nodes by the graph pooling layer. P represents

the indices of the pooled nodes, which are chosen from the top k nodes ranked by α. The

number k used in top-k filtering is computed as k = pr × |V |, where pr is a pre-defined

constant called pooling ratio. We consider only a constant fraction pr of the embeddings of

the nodes in the DFG to be relevant (i.e., 0.6). The pooling ratio like other hyper-parameters

of the GNN model is tuned based on the application through design exploration by the model

developer. The node embeddings and edge adjacency information after pooling are denoted

by Xpool and Apool which are calculated as follows:

Xpool = (Xprop ⊙ tanh(α))P, Apool = Aprop
(P,P) (2.6)

where ⊙ represents an element-wise multiplication, ()P refers to the operation that extracts

a subset of nodes based on P and ()(P,P) refers to the adjacency matrix between the nodes

in this subset.
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2.3.3 Graph Embedding Generation

In the read-out phase, our model aggregates the node embeddings acquired from the graph

pooling layer, Xpool and extracts the graph-level features which is a vector called graph

embedding hG for DFG G.

hG = READOUT(Xpool) (2.7)

Where the READOUT operation may be summation, average, or the maximum of each

feature dimension, overall node embeddings, denoted as sum-pooling, mean-pooling, or max-

pooling respectively.

2.3.4 Multi-Layer Perceptron Classifier

Our GNN model generates a graph embedding for each DFG that represents the essential

features of the hardware design. We further process the embedding vector hG with an MLP

layer and a Softmax activation function to produce the final prediction as follows,

Ŷ = Softmax(MLP(hG)) (2.8)

This layer reduces the number of hidden units used in hG and produces a two-dimensional

output representing the probabilities of both classes (HT-infested or HT-free). Finally, the

predicted values in Ŷ are normalized using the Softmax function, and the class with the

higher predicted value is chosen as the detection result.

To train the model, we compute the cross-entropy loss function, denoted as H, between the
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ground-truth label Y and the predicted label Ŷ , described as follows:

argminH(Y, Ŷ ) = argmin
∑

yi∈Y,ŷi∈Ŷ

yiloge(ŷi) (2.9)

The model is trained through an iterative process using the gradient descent method to

minimize our cross-entropy loss function.

2.3.5 GNN for HT Detection in RTL

In this section, we explain our first model that processes the hardware design in RTL and

determines the presence of HT in the code. The overview of the model is illustrated in

Figure 2.3. The first part of the figure indicates the pipeline to extract data flows of RTL

code and structure them as a directional graph, DFG. The next part presents the architecture

of the machine learning model that we developed to classify the RTL graphs.

Trojan Trigger RTL Code Data Flow Graph

module top(
input rst,
input [127:0] state,
output TjTrig
);
reg TjTrig;
always @(state) begin
if (rst == 1)
TjTrig <= 0; 
else if (state == 128'hFF)
TjTrig <= 1; 

end
endmodule

Figure 2.2: The RTL code of a Trojan trigger and its DFG.
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2.3.6 RTL Graph Generation

A graph is a non-euclidean data structure that retains the topological information as well as

signals. Similarly, the hardware design describes the circuits in terms of circuit elements and

their connections. Given that these are naturally aligned, we convey the hardware design

by employing DFG. DFG captures the data dependencies between signals and operations

in the circuit and provides a fundamental expression of the computational structure. We

develop an automated conversion process of the circuit to DFG through our DFG generation

pipeline, as illustrated in Figure 2.3(a). The automated pipeline comprises several phases:

preprocess, parser, data flow analyzer, and merge.

Due to the complexity and size of circuits, a digital circuit is often designed in a hierarchy,

with multiple modules in different files. Consequently, the graph generation procedure starts

with combining the files and flattening the design to a single RTL code. The preprocessing

phase also resolves any syntax incompatibilities (i.e., invalid signal names). Next, we use a

hardware design toolkit called Pyverilog [153] to parse and analyze the Verilog code. The

Pyverilog parser extracts the abstract syntax tree from the code and passes it to the data

flow analyzer to generate a DFG for each signal in the circuit such that the signal is the root

node. To have a single graph representation for the whole circuit, we fuse all the signal DFGs

and trim the disconnected sub-graphs and redundant nodes in the merge phase. Figure 2.2

exemplifies an RTL code and its corresponding DFG.

In addition to graph topology, node types also contain valuable information for graph learning

and are used to create the node feature vectors. We initialize the node feature vector to be the

one-hot encoding of the node type. The merged DFG generally contains three categories of

node types; operation, constant, and signal. Twenty-eight different types of operation nodes

are recognized in RTL graphs, and nodes are tagged by their operation name accordingly

(e.i. AND, XOR, etc.). The constant tag indicates that the node represents a number and
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is tagged as constant regardless of its value. Notably, more variation is observed in signal

nodes because their tags are extracted from signal names in the RTL code designated by

the designer. We assign signal nodes distinctive tags based on their name in the RTL code

because semantic data is concealed in the signal names. After scanning various RTL codes,

we create a list of signal names that provide semantic information and are prevalent in

different designs. For example, a node name that spells ”clk” or ”clock” generally refers to

the circuit clock. We tag the signals node based on the list, and the nodes with a new signal

name not in the list are tagged the same as the ”general” signal node. Therefore, the feature

vector length is independent of the circuit, and eventually, the length of node feature vectors

for RTL graphs is 300 nodes. In contrast, such high-level information does not exist in a

netlist, and signal names are arbitrary, only to show wires. Thus, we ignore the signal names

in the netlist and tag the signals either as input, output, or intermediate in the netlist.
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Figure 2.3: The RTL DFG generation pipeline and GNN model for Trojan detection in RTL
code.

2.3.7 HT Detection Model for RTL

Figure 2.3(b) demonstrates the architecture of our RTL Trojan detection model based on

graph convolutional networks. The mathematical background of GNN and details of each
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layer are elaborated in section 2.3.1, and this section presents the architecture of our cus-

tomized GNN model for HT detection in RTL. When the DFG of RTL design is generated

by the graph generation pipeline, it is passed to the GNN model for graph learning. To

be precise, the model inputs are the adjacency matrix of DFG, which indicates the connec-

tions among nodes and a feature vector for each node. Our model architecture includes two

convolutional layers with 200 hidden units that perform message passing and modify the

node feature vectors. Then, we use a graph pooling layer as our attention mechanism, which

pushes the model to focus on the critical nodes. Our pooling method is k-filtering with a

ratio of 0.8, which scores the nodes and keeps the nodes with the top 80% scores. Further,

the readout unit extracts the graph embedding vector from the node feature vectors and

passes it to the MLP with 200 nodes to classify the RTL code as HT-free or HT-infected.

This architecture is achieved after some design space exploration which is discussed in sec-

tion 2.4.4.
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Figure 2.4: The netlist DFG generation pipeline and GNN model for Trojan detection in the
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2.3.8 GNN for HT Detection in Netlist

Gate-level netlist is different from the RTL design as it is closer to the actual hardware

implementation and very detailed. The high-level behavior of RTL code vanishes in the

netlist, and it is substituted by numerous gates and signals defined to imitate the circuits

components and their connection. As a result, the graph representation of the netlist is

different from RTL with a considerably larger size. Consequently, our RTL HT detection

model fails to perform with the expected accuracy for netlist, and we develop a customized

graph generation pipeline and GNN model for finding HT in a netlist, as shown in Figure 2.4.

2.3.9 HT Benchmarks Synthesis to Netlist

Following the netlist graph generation procedure in Figure 2.4(a), we employ the open-source

RTL synthesis tool, called Yosys [164] to synthesize the RTL HT benchmarks and generate

the gate-level netlists. A custom script is used to automate the RTL to gate-level netlist

synthesis and perform some additional processing steps to fix the syntax incompatibilities

for Pyverilog. The Yosys logic synthesis steps are as follows: 1) The Yosys RTL front end

converts the RTL code into the RTL intermediate Language (RTLIL) internal cell repre-

sentation. 2) The built-in optimizer is called to remove unused signals and cells, optimize

finite state machines, and translate memories to primary memory cells. 3) The built-in tech-

nology mapper and ABC tool are used to map the internal cell representation to a custom

standard cell library made up of generic gates (AND, OR, XOR, NOT, etc.) and output

as a generic gate-level netlist code in Verilog. One issue during logic synthesis is that the

optimization step removes unused signals and cells. According to Yosys, unused signals and

cells are defined as those that do not modify an output signal. This becomes a problem as

there are HTs that do not alter any output of the circuit. For example, a Trojan is designed
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to degrade the performance of the chip by causing additional power consumption through

excessive shifting. To resolve this issue, we specify in Yosys to not remove any user-defined

signals and cells so that it will retain the HT code.

2.3.10 Netlist Graph Generation

After RTL synthesis, the netlist in Verilog format is generated. The synthesized netlist code

also introduces syntax incompatibilities with Pyverilog, so we perform some processing to re-

move these issues. Finally, the cleaned-up gate-level netlist is passed to the Pyverilog parser.

The remaining steps for parsing the AST, generating a DFG for each signal, and merging and

trimming are similar to the RTL code analysis to produce a single DFG that represents the

whole circuit. The final DFG for gate-level netlist is a rooted directed graph that shows data

dependency from the output signals (the root nodes) to the input signals (the leaf nodes).

It is defined as graph G = (V,E) where E is the set of directed edges and V is the set

of vertices. We define V = {v1, v2, ..., vn} where vi represents signals, constant values, and

operations such as xor, and, branch, or branch condition. We define E = eij for all i, j such

that eij ∈ E if the value of vi depends on the value of vj, or if the operation vj is applied on vi.

2.3.11 Netlist Graph Optimization

Behavioral characterization of RTL is lost in the netlist due to a lower level of abstraction,

and the circuit is described as a detailed, complex sea of gates. Consequently, the netlist

graph is significantly larger than its RTL counterpart, thwarting HT detection. For instance,

the RTL DFG of AES benchmark, the most complicated benchmark in our dataset, holds on

average 13K nodes per graph. Conversely, the AES benchmark for gate-level netlist graph
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contains 300K nodes per graph on average. The increased graph size drastically expands

the memory footprint for both the dataset and the model, leading to memory shortage.

Therefore, we reconstruct our dataset and model to reduce the memory footprint.

After reviewing various netlists and their DFGs, we identified unnecessary details in the

signals and operations that are ineffective in HT detection. To reduce the graph size, we

conduct an automated graph optimization process to eliminate the excessive details of the

netlist. Our graph optimizer trims the graph generated by Pyverilog and removes redundant

nodes, whose removal does not affect the overall hardware design data-flow representation.

For example, the nodes tagged as concatenation and part selection by Pyverilog provide

detailed information that in HT detection applications are not required. The concatena-

tion node appears for certain node types, such as the logic gates used in the netlist. For

example, an output node Y depends on the result of an OR gate operation node between

two input signal nodes, A and B. The concatenation node exists between the OR gate and

the two input signal nodes to signify that the OR gate depends on two signals. When the

redundant concatenation node is removed, the signal nodes are directly connected to the OR

gate without the intermediate concatenation node, indicating data dependency without any

information loss.

The part selection node appears when there is a bit-wise assignment. For instance, assigning

bits five to ten for a wire node A to bits three to eight for a wire node B. Node A will

be connected to node B with a part selection node making up of 3 components; the least

significant bit of A, the most significant bit of A, and the data signal A itself. We are

only concerned about the data dependency in the HT detection application and not the

bit-wise detail of the data. Therefore, we exclude the part selection nodes and only keep

the data signal in the dependency relation. With these changes, we reduced the netlist

graph of the AES benchmarks from approximately 300K nodes to 100K nodes. Overall, the

average number of nodes for the entire dataset was reduced by 50%. Figure 2.5 demonstrates
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examples of netlist DFG optimization through the elimination of concatenation and part

selection nodes.

Y

OR

Concat

A B

Y
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A B 10`b A[5:10]

B[3:8]

Partsel

5`b

B[3:8]
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optimization Netlist graph 
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Figure 2.5: Netlist graph optimization by removing concatenation and part selection nodes.

2.3.12 Netlist Graph Normalization

Although we have significantly reduced the overall size of our netlist dataset, it is still

comparably larger than its RTL counterpart. To reduce the memory overhead further, we

modify an integral part of the GNN model itself, the node feature vector dimension. The

feature vector is used as part of the graph convolution process for node embedding. It is

initialized based on intuition about the application and data concealed in the graph nodes.

The node feature matrix is an N by D matrix where N is the number of nodes and D is the

dimension of the feature vector. We have reduced N in the graph optimization step through

node reduction. Therefore, we apply a node normalization step to reduce the feature vector

dimension to resolve this issue.

In our application, nodes in a netlist DFG have different types such as signals, constant

values, and logic operations. Each signal node in the DFG has a unique name, and tagging

the nodes based on their name leads to large feature vectors while the signal names hardly

convey any semantic data or behavioral description (i.e. Wire1, Wire2). We normalize the

DFGs by generalizing the node tags. Instead of having each unique signal name, constant
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value, and type of operation as a one-hot encoding, we categorize them into 17 classes.

For example, all nodes with no in-degrees will be assigned as input signals, and all nodes

with no out-degree will be designated as output signals. This also applies to the generic

gate nodes where each gate is assigned a specific value. Normalization drastically decreases

the number of node tags from 300 to only 17, reducing the feature vector dimension and

subsequently, the required memory for graph learning. Moreover, the accurate initialization

of the feature vector can improve the performance of GNN to converge fast to high accuracy.

Our intuition is that the feature vectors correlate to their node type, and by normalization,

we extract this information that is carried over to GNN.

2.3.13 HT Detection Model for Netlist

After the netlist DFG is generated and optimized, it is passed to the GNN model along with

its normalized node feature vectors. The architecture of our netlist-customized HT detection

model is demonstrated in Figure 2.4(b). We reach this model based on our intuition about

the distinct characteristics of netlist after conducting various experiments, some of which are

presented in section 2.4.4. The most challenging characteristic of the netlist is the graph size

which is relatively larger than the RTL graph for the same circuit, even after optimization.

Additionally, it is too detailed and missing the high-level behavioral information of circuits,

making the feature extraction challenging. Due to these traits, our netlist model has one

more graph convolutional layer than the RTL model (3 layers in total) to perform more

in-depth massage passing and feature extraction. Moreover, the number of hidden units

is decreased to 55 to minimize the resource utilization of the model. Next, we utilize self-

attention graph pooling to revise the nodes and focus on those with strong influence. We

got the best performance for the pooling ratio of 0.6, which is lower than the RTL ratio.

It matches the initial intuition that there are many unnecessary nodes in the netlist graphs

39



that can be omitted through pooling. The rest of the model is very similar to the RTL-

customized model, and it creates graph embedding with a readout unit followed by an MLP

for classification.

2.4 Evaluation

In this section, we explain our dataset and evaluation, report the results, and compare our

proposed method with state of the art.

2.4.1 Dataset

We create a dataset of RTL codes and gate-level netlists based on the benchmarks in Trusthub

[143] which contain 34 varied types of HTs inserted in 3 base circuits: AES, PIC, and RS232.

To expand our dataset, we extract the HTs design and use them as additional HT data

instances. Moreover, we integrate some of the extracted HTs into new HT-free circuits, DES

and RC5, which increases the number of HT-infested samples. To balance the dataset and

increase the number of HT-free samples, we add different variations of open-source HT-free

circuits in addition to new ones, including DET, RC6, SPI, SYN-SRAM, VGA, and XTEA

to the dataset resulting in a dataset of 132 combined instances of 47 HT-Free and 85 HT-

infested RTL codes. We also synthesized a corresponding generic gate-level netlist for each

RTL code, which doubles the number of data instances. In our dataset, the number of nodes

in netlist DFG of the base circuits on average is as follows: 109130 nodes in AES, 41649

nodes in DES, 107675 nodes in RC5, 10628 nodes in PIC, and 1307 nodes in RS232.
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AES RS232 PIC DES RC5 Average

P 100.0% 97.1% 100.0% 88.1% 70.6% 91.2%

R 87.0% 90.0% 77.5% 76.0% 90.0% 84.1%

F1 93.0% 93.3% 87.3% 80.9% 75.5% 86.0%
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Figure 2.6: The performance of our method in gate-level netlist HT detection.
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P 97.8% 86.4% 80.0% 98.2% 98.9% 92.3%

R 96.3% 95.0% 100.0% 98.1% 93.5% 96.6%

F1 96.8% 90.5% 88.9% 98.1% 95.9% 94.0%
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Figure 2.7: The performance of our method in RTL HT detection.

2.4.2 HT Detection Results

We evaluate our method performance through an unknown HT detection scenario. To create

this scenario, we apply the leave-one-out method, where we leave out one of the base circuits’

HT-free and HT-infected benchmarks for testing and train the model on the rest of the

benchmarks. This setup satisfies the claims of golden chip-free and unknown HT detection,

as both golden HT-free versions of the circuit under test and the injected HT circuit are

unknown to the model. We repeat this process 20 times for each base circuit and count the

True Positive (TP), False Negative (FN), and False Positive (FP) to measure the evaluation
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metrics, Precision (P), Recall (R), or True Positive Rate, and Fβ score as follows:

P = TP
TP+FP

, R = TP
TP+FN

, Fβscore =
(1+β2)∗P∗R
β2∗P+R

Recall measures how well our model can detect HT-infested samples. This metric is intuitive,

but it is not sufficient for evaluation, especially in an unbalanced dataset. It is also essential to

have a low false-positive value which is the number of HT-free samples incorrectly classified as

HT. Thus, precision is necessary as it measures the number of correctly classified HT samples

over all samples classified as HT-infested, including the false positives. The Fβ score is the

weighted average of precision and recall that better presents the overall performance.

Figures 2.7 and 2.6 demonstrate the performance of our models for HT detection in RTL and

netlist. Higher performance in RTL HT detection is justified by the intuition that RTL code

is the behavioral description of the circuit, and the high level of abstraction assists with the

learning process and facilitates the detection process. Moreover, the DFG generated from

RTL is considerably smaller, and it is easier for the model to capture the key feature of

the design. DFGs of netlists are more complicated and detailed, which impedes the learning

process and requires a more complicated model. The complexity of the model can be adjusted

by changing the number of hidden units and layers.

On the other hand, our models perform better for AES, RC5, and DES compared to RS232

and PIC because the former circuits are all encryption cores and the model has more data

instances to learn their behavior while the latter circuits are a communication protocol and a

processor. The performance for RS232 and PIC can be enhanced by including more circuits

similar to PIC and RS232 in the dataset.

There exist circuits in RTL and netlist that do not follow the same pattern. For example,

HT detection in RC5 has higher accuracy in RTL compared to RS232, whereas the reverse

relation is recorded in the netlist. To analyze this case, multiple influential factors should be
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considered, such as the complexity of the circuit, the size of circuit DFG after optimization,

the number of similar data samples in the dataset, etc. The combination of these factors has

created such performance patterns, and by concentrating on a single aspect, the results may

seem sporadic. In the case of RS232 and RC5 circuits, RS232 is a relatively simple circuit,

and its netlist DFG is small and intuitive, which can be why high HT detection performance

in RS232 is maintained, even in the netlist.

2.4.3 Effect of Attention Mechanism

In this section, we investigate the effects of our attention mechanism, the pooling layer,

on the performance of the model. In this case study, we keep the hyperparameters and

architecture of the GNN model for HT detection in netlist the same and only change the

pooling ratio to 1, which means the operation does not occur. The results of this experiment

are depicted in Figure 2.8. As the results indicate, in the absence of the pooling layer,

learning does not happen correctly for most circuits. For example, for DES circuit recall

equals 1 and precision is 0.5, which means the model has not learned the distinction between

HT-free and HT-infected circuits and has labeled all the test samples as HT-infected. This

experiment highlights that the attention mechanism plays a vital role in the learning process

since it pushes the model to concentrate on the critical parts of the graph.

2.4.4 GNN Hyperparameters

We develop two GNN models for HT detection in RTL and netlist. We determine hyper-

parameters of each model based on our intuition about the unique characteristics of our

application, previous knowledge developed by common potent GNN architectures in the lit-

erature, and GNN design space exploration. The intuition toward the application usually

helps with better configuration initialization and faster convergence toward the optimal ar-
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AES RS232 PIC DES RC5 Average

P 16.7% 90.0% 100.0% 50.0% 93.8% 70.1%

R 20.0% 90.0% 50.0% 100.0% 100.0% 72.0%

F1 18.2% 90.0% 66.7% 66.7% 96.8% 67.7%
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Figure 2.8: The performance of our model without pooling layer.

chitecture. After testing a setting, we analyze the performance and decide what parameters

to modify. For example, if we notice under-fitting, we increase the model complexity and

computational power.

In the experiments on RTL, we use 2 GCN layers with 200 hidden units for each layer.

For the graph pooling layer, we use the pooling ratio of 0.8 to perform top-k filtering. For

READOUT, we use max-pooling for aggregating node embeddings of each graph. Our

model uses 1 MLP layer to reduce the number of hidden units from 200 to 2 used in hG for

predicting the result of HT detection. In training, we append a dropout layer with a rate

of 0.5 after each GCN layer. We train the model for 200 epochs using the batch gradient

descent algorithm with batch size 4 and a learning rate of 0.001.

The gate-level netlists tend to produce considerably larger DFGs compared to RTL codes,

even after optimization and node reduction steps. Thus, the netlist HT detection model

requires a different configuration than the RTL model with an optimized structure to be

easily trained using GPUs. In our constrained computation platform of a GPU with 14GB

RAM, we limit the hidden units to 75 hidden units for 2-Layer networks, 58 for 3-layer,

and 40 for 4-layer. We performed random search and grid search over a range of hidden

layers, hidden units, pool ratio, and batch size. We found the average F1-score across all

44



70

80

90

100

10 15 20 25 30 35 40 45 50 55

F
1

-s
co

re
 (

%
)

Hidden units

40

60

80

100

10 15 20 25 30 35 40 45 50 55

F
1

-s
co

re
 (

%
)

Hidden units

40

60

80

100

10 15 20 25 30 35 40 45 50 55

F
1

-s
co

re
 (

%
)

Hidden units

40

60

80

100

10 15 20 25 30 35 40 45 50 55

F
1

-s
co

re
 (

%
)

Hidden units

R
S

2
3

2
A

E
S

P
IC

D
E

S

60

70

80

90

10 15 20 25 30 35 40 45 50 55

F
1
-s

co
re

 (
%

)

Hidden units

Layer 4 Layer 3 Layer 2

A
ll

 H
T

s

Figure 2.9: The model performance under different settings for the number of convolutional
layers and hidden units in each layer.

configurations for each layer is shown in Figure 2.9. According to the figure, the 3-layer

network has the best average F1 score compared to the 2-layer and 4-layer networks. Fixing

our model to a 3-layer network, we then find the best-hidden unit, pool ratio, and batch

size by comparing the F1-score for all pairs of combinations across all 5 golden reference-free

benchmarks. We found the best configuration for the gate-level netlist model to be a 3-layer

network with 55 hidden units and a pool ratio of 0.6 for performing sagpool, or self-attention

graph pooling. The READOUT phase and the MLP are the same as the RTL model, and

we train this model for 200 epochs using the batch gradient descent algorithm with batch

size 2 and a learning rate of 0.001.
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Table 2.1: Timing of HT detection per sample and training models.

HT detection in RTL
Benchmark AES RS232 PIC DES RC5 Ave.
Detection
time(s)

0.0268 0.0169 0.0182 0.0222 0.0215 0.0211

Training
time (s)

220.37 251.18 274.18 261.71 284.53 258.39

Table 2.2: Timing of HT detection per sample and training models.

HT detection in netlist
Benchmark AES RS232 PIC DES RC5 Ave.

Detection time(s) 14.07 13.70 13.40 14.07 13.37 13.72
Training time (s) 1796 5449 5346 5164 4215 4394

2.4.5 Timing

We train and test the RTL model on an NVIDIA GeForce GTX 1080 graphic card with

8GB memory and the gate-level netlist model on a V100 GPU with 16GB memory. The

timing results for the base circuits are summarized in Table 2.1 and Table 2.2. Although

training can be time-consuming, it occurs once, and the trained model finds the HT very

fast in 21.1ms on average for RTL and 13.72 seconds for gate-level netlist which are both

comparable to other works.

2.4.6 Comparison with State of the Art

In this section, we compare leading pre-silicon HT detection techniques, in terms of quanti-

tative and qualitative metrics as well as in a case study.

Qualitative comparison:

We compare our models against other works using 3 essential qualitative metrics for HT

detection; i) golden reference-free, ii) unknown HT detection, and iii) automated process.

Designing an effective HT detection method without white-box knowledge or access to a
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trusted reference design is very challenging as both are not readily available. Traditional

algorithmic approaches that utilize heuristics can satisfy the golden reference-free condition,

whereas ML techniques naturally rely on datasets containing both HT-free and HT-infested

designs to train and classify test circuits. The next important metric is the ability to detect

unknown HTs. In this regard, ML-based approaches have more success as the features of

existing circuits are learned and used to classify similar circuits or unseen circuits. Tech-

niques such as [123, 56] and [131, 119] limit their detection scope to HTs that exist in the

method’s library or only to security properties that are explicitly defined. To the best of

our knowledge, all the existing approaches require feature engineering or manual property

definition. However, our approach is capable of HT detection with an automated feature ex-

traction process, which removes the need for a manual feature or property extraction. Thus,

our models can easily expand to various types of circuits and can scale to industrial-level IP

designs through retraining if a new type of HT is discovered.

Quantitative comparison:

For quantitative comparison, we analyze the precision, recall, and timing metrics. For timing,

we compare the average detection time for the AES benchmarks due to being the largest

benchmarks in our dataset in terms of graph size.

It should be noted that the exact comparison between the reported timings is not possible

as the computing platforms differ on a paper-to-paper basis. However, the relative difference

between the timings shows that our models are faster than if not comparable to others. The

timing of algorithmic methods (FV, CA, and GM) highly depends on the hardware design

complexity. Their memory usage and detection time drastically grow for large designs which

can cause timeout or memory shortage problems. On the other hand, the circuit’s complexity

does not have a notable effect on the detection time of the proposed RTL method according

to Table 2.4, which makes it scalable for large designs. Our gate-level netlist detection time

is consistent across benchmarks of varying complexity which shows that it is also not greatly
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affected by the circuit complexity.

For recall and precision, both our RTL and gate-level netlist have comparable results. Al-

though it is challenging to compare against algorithm methods since most papers only report

a list of known HT benchmarks that their models can successfully detect while we test our

model with the unknown HTs scenario, which is mostly not detectable by those algorithms.

Furthermore, FP and TP for computing precision and the performance of the methods on

HT-free samples are not available in some papers to compare.

Table 2.3: Comparing HT detection methods in a case study.

Bench-
mark

Victim
Circuit

Trigger Payload
Ours
(ML)

[56]
(GM)

[123]
(GM)

[131]
(FV)

[119]
(FV)

AES-
T900

AES encryption
core

Time
bomb

Leak
data

✓✓ ✓ ✓✓ ✓✓ ✓✓

RS232-
T500

UART serial
communication

Time
bomb

Deny
service

✓✓ ✓ ✓✓ ✗ ✓✓

AES-
T1900

AES encryption
core

Time
bomb

Degrade
chip

✓✓ ✓ ✓✓ ✗ ✗

AES-
T2000

AES encryption
core

Cheat
code

Leak
data

✓✓ ✗ ✗ ✓✓ ✓✓

RS232-
T700

UART serial
communication

Cheat
Code

Deny
service

✓✓ ✗ ✗ ✗ ✓

AES-
T1800

AES encryption
core

Cheat
code

Degrade
chip

✓✓ ✗ ✗ ✗ ✗

2.4.7 Case Study

We analyze the ML, GM, and FV techniques in a case study and investigate if the models

can detect 6 different types of HTs. In Table 2.3, the first top 3 HT benchmarks are known

to the Method Under Test (MUT) and exist in its library of HTs whereas the other 3 HTs

are unknown. ✓✓indicates that the MUT can detect the HT and it is explicitly reported in

its paper. ✓\✗shows that this case is not tested in the paper but it is supposed to detect\not

to detect the HT according to authors’ claims and assumptions. The results indicate that
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GM methods rely on the HT library and memorize them and consequently, cannot recognize

the HTs out of the library. FV methods depend on the predefined properties for HTs and

cannot identify new types of HTs. On the other hand, our method is an ML-based method

that learns the HT behaviors and can pinpoint different types of HT, even the unknown

ones.

2.5 Discussion

The size of the graph dataset plays an important role in determining how well our models

can learn to generalize with unknown circuit designs. The more nodes in the graph, the more

difficult it is for the learning process. The difference in nodes between the gate-level netlist

representation versus the RTL representation is several orders of magnitudes larger. Due to

the memory limitations, the complexity of our model was also limited to a specific range of

layers and hidden units. Future works should look at how to further reduce the graph sizes

for the gate-level netlist or to use a different type of graph representation for the hardware

circuit.

2.6 Chapter Concluding Remarks

We propose a novel golden reference-free approach to finding unknown HT in both RTL

codes and gate-level netlists. We generate DFGs for both RTL and netlist codes and employ

the GNN to construct two models that infer the presence of HT from the generated graphs

in RTL and gate-level netlist. Our method automatically extracts the features of graphs

and learns the behavior of the hardware design. Our model is trained and tested on a DFG

dataset created by expanding the Trustub benchmarks. The RTL results indicate that the

proposed method discovers HT with 97% recall and 94% F1-score very fast in 21.1ms. The
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gate-level netlist results indicate an 84% recall and 86% F1 score with an average detection

time of 13.72 seconds.
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Table 2.4: Comparing the performance of our method with the state-of-art methods for HT
detection in 3PIP.

Paper
(year)

Technique
category -
Method

Prec 1 Rec2
Time
(s)

Auto-
mated
feature
extrac-
tion

Golden
refer-
ence
free

Un-
known
Trojan
detec-
tion

Ours
(2021)

ML - Graph
neural network
on RTL graph

92% 97% 0.026 ✓ ✓ ✓

Ours
(2021)

ML - Graph
neural network
on netlist graph

91% 84% 13.72 ✓ ✓ ✓

[184]
(2018)

ML - Artificial
immune system

87% 85% NA ✗ ✓ ✓

[64]
(2019)

ML - Gradient
boosting
algorithm

NA 100% 1.36 ✗ ✗ ✓

[65]
(2017)

ML -
Multi-layer
neural networks

NA 90% NA ✗ ✗ ✓

[40]
(2017)

ML,GM -
Subgraph
isomorphism

NA 100% 1.15 ✗ ✓ ✗

[56]
(2020)

GM - Graph
similarity

NA NA NA ✗ ✓ ✗

[123]
(2017)

GM - Subgraph
matching

NA 100% 5.02 ✗ ✓ ✗

[74]
(2019)

CA -
Socio-network
analysis

98% 98% NA ✗ ✓ ✗

[119]
(2017)

FV -
Information
flow analysis

NA 100% 292.85 ✗ ✓ ✗

[131]
(2016)

FV - Model
checking

NA 100% 96.13 ✗ ✓ ✗

1Precision 2Recall
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Chapter 3

Hardware Trojan Localization

3.1 Introduction

The growing complexity of Integrated Circuits (IC), time-to-market pressure, and expensive

design and manufacturing processes have promoted the globalization of the semiconductor

industry. Outsourcing the fabrication and depending on third-party hardware IP blocks and

EDA tools raise the risk of intentional and malicious manipulation of the circuit, known as

a Hardware Trojan (HT). Figure 3.1 demonstrates the IC supply chain and the involved

parties which are vulnerable points of HT insertion. Currently, HT is a significant hardware

security concern with devastating consequences such as denial of service, malfunctioning,

data leakage, and performance degradation in the chip. The attackers usually design HT to

be a tiny circuit hidden inside the main design, normally inactive with minimal effect on the

chip’s functionality and specification. The HT often gets triggered under rare circumstances,

and consequently, it can escape detection by routine simulation and functional testing.

Trojan detection is crucial to ascertain the authenticity of 3PIPs and prevent the negative

consequences of HTs, as elaborated in Chapter2. However, HT detection does not suffice to
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ensure the fabrication of a trustworthy chip, and HT localization is the next essential step.

The hardware IPs fall into three classes based on their format and level of abstraction; Soft

IP (i.e., synthesizable Verilog or VHDL source code), Firm IP (i.e., placed RTL block and

netlist), and Hard IP (i.e., physical layout and GDSII). Soft IP is the most popular IP core,

and IP trust revolves around it. However, it has the most vulnerability against HT insertion

because the flexibility and high level of abstraction in Register Transfer Level (RTL) codes

facilitate the HT design and implementation for the attacker [156].

Manual review of hardware design to pinpoint HT is very time-consuming and error-prone,

especially for an industrial-level large design. Due to the paramount importance of the

HT threat, numerous defense mechanisms are proposed in the literature to determine if the

design is infested with HT. Still, they fail to locate it in the IC design. Some works analyze

parameters and side-channel data of circuits such as polynomials of gate-level implementation

[52], thermal map [155], or path delays [137] to pinpoint the disturbance introduced by HT.

They have the premise that a trusted Trojan-free reference design called golden reference

exists to compare against the parameters of the circuit under test, which is an unrealistic

assumption. In order to obtain the golden reference, the whole process of IC design, test, and

fabrication should be performed by in-house trusted teams, EDA tools, and manufacturing

facilities that would be very expensive and infeasible in practice.

HT defense methods based on formal verification and code analysis define some properties for

HT, analyze the hardware design, and mark the areas satisfying the predefined properties.

Specification Architectural 
Design

C/C++/
SystemC

RTL 
Design

Verilog/
VHDL

RTL 
Simulation

Logic Synthesis,
Verification

Gate-level
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Physical
Design
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Designer

Foundry

Bare Die

3rd Party EDA Tools

Testing

Testing and Packaging 
Service Provider

PackagingChipSystem 
Integration

Product
Distribution

Consumer

LVS, DRC,
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3rd Party EDA Tools
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Figure 3.1: IC supply chain, vulnerable to HT insertion in different stages.
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For example, [75] examines RTL codes using word-level statistics of the inputs and tags

the arithmetic blocks with rare nets as vulnerable to HT. [149] flags the unused portion of

the circuit as malicious. [160] measures the degree of control that an input signal has on

the operation and outputs of the circuit and marks weakly-affecting inputs as possible HT

triggers. These works narrow down the search space for HT. However, they still burden the

designer to manually review the suspicious areas, which can be a large circuit due to low

localization resolution. Moreover, most of the existing solutions require manual property

definition or feature extraction, and they fail to outline a comprehensive set of properties or

features representing all kinds of HTs. Consequently, they are effective only for particular

HTs.

There is an increasing trend to explore the graph representation of hardware for security

purposes [55] because hardware design is a non-Eulicidian structural data that shares sim-

ilar properties with a graph. The graph is a mathematical structure that represents the

relation between pairs of objects. It preserves the topological information that makes it

the best match for modeling the fundamental objects in the hardware design process [106].

For instance, the graph is leveraged to represent the hardware design in [123, 55] for HT

mitigation. Still, Graph matching algorithms fail to recognize unknown HTs and are not

scalable to large designs due to high complexity.

Deep learning has introduced potent techniques that revolutionized many fields of study

[174], but it operates on Euclidean data and cannot be directly used for hardware design.

The current deep learning models for HT mitigation examine the side-channel emissions

of the fabricated chip, which are time-series data [50]. To fill the gap and apply machine

learning to hardware design, we convert the design from the textual format of HDL code to

a graph and leverage GCN, which is like deep learning operating on graphs. A recent work

[176] proposes a graph classification model based on a graph neural network to find whether

the circuit is infested with HT or not, but it fails to locate the Trojan.
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In order to overcome the shortcomings of current approaches, we propose a novel, golden

reference-free HT localization method in the pre-silicon stage. We generate a graph repre-

sentation for the hardware design, assign attributes to nodes in the graph, classify nodes,

and locate the Trojan in HDL code based on the graph node’s class. Our node classification

model is based on GCN that automatically aggregates the features in graph nodes through

the graph convolution operation. We create a dataset of hardware designs by inserting HT

benchmarks from TrustHub [2] to different circuits. Our methodology is trained on this

dataset to learn the behavior and features of Trojan nodes. Then, the trained model can lo-

cate the Trojan nodes based on their malicious abnormal behavior in even new and unknown

Trojans in a fully automated process without any need for manual review.

3.2 Research Challenges

HT detection and localization is a difficult problem, and the current solutions suffer from

the following shortcomings:

• Reliance on golden reference: A Trojan-free circuit called golden reference for

comparison with the circuit under test is not available in the real world, and the

golden reference-dependent methods are not practical.

• Unable to generalize: Various types of HTs have been discovered so far, and new

HT designs are continuously introduced. Due to the variety in HT design and speci-

fication, defining a template or some properties that describe all HTs is challenging.

Consequently, many countermeasures fail to generalize and are limited to known HTs

or only HTs with a specific trigger or payload.

• Low localization resolution: Some works output the areas of the circuit that are

vulnerable to HT insertion and due to low localization resolution, they burden the
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designer with an exhaustive review of suspicious regions.

• Manual feature extraction: Algorithmic and classic machine learning approaches

rely on an expert to define properties and extract features from the circuit, which is

error-prone and exhausting.

• Scalability: With the increased complexity of ICs, scalability has become an essential

characteristic of any circuit analysis tool, but complex algorithms fail to scale for large

designs.

3.3 Chapter Contributions

We surmount the aforementioned research challenges and propose a novel, golden reference-

free approach for HT localization that is fully automated with no need for manual revision

by experts. To the best of our knowledge, this is the first work to apply GCN for HT

localization. Our contributions can be summarized as:

• The hardware design HDL code is converted to a data-flow graph using the hardware

design toolkit [154]. We develop an algorithm to extract the attributes of nodes and

assign an attribute vector to each one.

• We construct a node classification model based on GCN that automatically aggregates

the features for each node in the graph representation of hardware design, learns their

behavior and marks the malicious nodes.

• We develop a Trojan labeling algorithm that provides a mapping from HDL code to its

graph and labels the nodes in the graph as Trojan or benign. This algorithm determines

the HT label vector of the training dataset, which is deployed by the GCN model for

training and calculating classification loss.
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• We survey the existing pre-silicon HT detection and localization methods and their

shortcomings to picture the current state and challenges of this research area as well

as the potential of graph learning for advancement in hardware security.

3.4 Related Works and Background

3.4.1 Hardware Trojan Localization

The majority of defense mechanisms against HT focus on its detection, and there are inade-

quate works with the capability to locate the Trojan circuit. For example, [137, 155] perform

HT localization with the assumption that the design pipeline is trusted and the attacker re-

sides in the foundry. Both works have the unrealistic premise that a golden reference is

available. [137] proposes a satisfiability-based test pattern generation scheme that detects

and locates the Trojan inserted by the foundry by comparing the timing and path delays of

the suspicious IC with a golden IC. [155] extracts the Trojan activity factor from the redun-

dant thermal map and performs HT localization by comparing the thermal side-channel of

the target chip with the golden reference.

Code analysis is one of the conventional pre-silicon HT defense mechanisms that inspects

the HDL code to ascertain suspicious signals in the circuit, and it is mainly restricted to

combinational logic. In this technique, the code is scanned based on coverage metrics (toggle,

line, state, etc.) to find the potential areas of HT presence. Different methods propose various

definitions for a suspicious area, such as unused circuit identification [68], weakly affecting

inputs [160], and low dependence on functional inputs [185]. Due to the exclusive definition

of HT, later [149] defeats [68] and [185] and [160] get bypassed by the new HT attack [186].

[75] proposes a framework to analyze RTL codes using word-level statistics of the inputs. It

locates the arithmetic blocks with rare nets to be reviewed as candidates vulnerable to HT
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and can only identify HTs that are always on or triggered by current inputs. Code analysis

suggests the circuit areas are susceptible to HT insertion and cannot actually locate the HT

or even guarantee its detection.

[52] introduces a formal method based on symbolic algebra by extracting polynomials from

the gate-level implementation of the untrustworthy IP and comparing them with the golden

reference polynomials. [74] leverages principal features of social network analysis to out-

line the relation between design properties and locate HT. This approach applies only to

combinational Trojans.

3.4.2 Graph in Hardware Applications

Hardware design is non-Eulicidian structural data that shares similar properties with a graph.

The graph is a mathematical structure that represents the relation between pairs of objects.

It preserves the topological information that makes it the best match for modeling the fun-

damental objects in the hardware design process. Thus, the graph is leveraged to represent

the hardware in numerous Electronic Design Automation (EDA) problems which shift the

problem to choosing the appropriate algorithm from the many well-known graph algorithms

and applying it directly or with a slight change to solve the problem. However, developing

an effective approach for each problem is still challenging. Furthermore, many problems are

NP-hard with large sizes, which makes efficiency a major concern and leads to scalability

issues. To tackle the complexity issue, data-driven learning techniques have grabbed much

attention. The classical machine learning models include an initial step of manual feature

extraction, which is followed by model training based on a large set of data instances [106].

The next generation of machine learning models leverages convolutional layers in deep learn-

ing models, making the feature extraction process automated through learning. Recently,

deep learning models have been developed with high resiliency against adversarial attacks
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Figure 3.2: Overview of our HT localization methodology in training and inference phases.

[14]. Although that deep learning has improved the performance in various applications, it

cannot be directly applied to graphs because it was originally developed for Euclidean data,

and notable extra endeavors are needed to extract features from graphs and encode the struc-

tural information. In response, the graph learning method is introduced, which defines the

convolutional operation on graphs and automates the feature extraction from graphs. There

have been a few works investigating the advantages of graph learning for hardware security

[176, 175, 183] and hardware design automation such as test point insertion [107], and power

estimation in simulation [189]. In this work, we leverage a state-of-the-art machine learning

model, GCN, to model the hardware for security purposes.

3.5 Methodology

In this work, we propose an automated pipeline to locate Trojan circuit at RTL that includes

several steps, as depicted in Figure 3.2; i) converting hardware design to graph, ii) extracting

the node attributes, iii) labeling Trojan nodes, iv) node classification, and v) HT localization

in HDL. In the following sections, we define our problem formulation and threat model, and
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then we elaborate on the aforementioned steps for localization.

3.5.1 Problem Formulation and Threat Model

The main target of our methodology is to locate the Trojan circuit inside the hardware

design at RTL. The model’s input is an HDL code which is later converted to a graph. The

graph representation is further processed, and the graph learning model classifies the graph

nodes as Trojan or benign. Eventually, the model outputs a list of malicious signals and

operations in the HDL code corresponding to Trojan nodes in the graph.

The graph learning model, GCN, is trained on a dataset of graphs derived from HT bench-

marks in which the labels of the nodes are known. Our dataset only includes the HT-infested

designs, not any Trojan-free designs. Our approach is golden reference-free and able to per-

form HT localization on unknown HTs. To demonstrate these characteristics, we train our

model on a set of circuits and test it on the circuits not observed by the model before in

the training stage. Therefore, the model locates Trojan nodes in the circuit under test while

it has not seen its golden reference or HT benchmark. Moreover, we make no assumption

about the HT payload or trigger type, and the fundamental features of Trojan nodes are

automatically aggregated and learned by convolutional layers in our GCN.

An attacker may manipulate the hardware design at any pre-silicon stage of the IC supply

chain in our threat model (refer to Figure 3.1), but eventually, the HDL code should be

available for our methodology to perform HT localization. Therefore, multiple attack sce-

narios are feasible. The attacker can be a rogue in-house designer, an untrusted 3PIP design

company, or a 3P-EDA tool provider who tampers with the HDL code. The adversary may

alter the design in the low level of abstraction, such as netlist and physical layout. In this

case, we assume that the RTL code is obtained by reverse engineering.
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Figure 3.3: The data-flow graph and node attributes of AES-T1800 Trojan benchmark,
shown in Figure 3.4.

3.5.2 Hardware Design Conversion to Graph

A circuit is described using Hardware Description Languages (HDL) at the design stage,

such as Verilog and VHDL. The HDL code has a textual format with predetermined syntax

and cannot be directly used as data for machine learning. Thus, we convert the HDL code

to a graph that embeds the design features and preserves the topological information.

HDL code comprises modules, signals, and operations. Modules are used to cluster parts
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of circuits and better express the hierarchy in the hardware design, but they do not affect

the design specification. On the other hand, signals and operations fundamentally describe

the hardware design. A signal can be a register or wire in HDL code, and it carries a value

that is changed through an operation or assignment. For instance, the Verilog code for the

AES-T1800 HT benchmark is shown in Figure 3.4 with its corresponding data-flow graph in

Figure 3.3.

To convert HDL to graph, we combine the modules to have a single HDL code for the whole

design. Afterward, we parse it and extract the data dependency subgraphs for all signals in

HDL code using a hardware design tool called PyVerilog [154]. Each signal subgraph is a

tree that expresses how the value of root signals depends on the operations and other signals

in the design. We connect the common nodes in the subgraphs to construct one data-flow

graph per hardware. The extracted graph G = (V,E) is a directed homogeneous graph in

which each node is named after its corresponding signal/operation in the HDL code, and an

edge eij indicates that node vi depends on node vj. Lastly, the graph is processed to remove

standalone nodes such as clk node in the data-flow graph of AES-T1800 HT benchmark,

depicted in Figure 3.3.

3.5.3 Node Attribute Extraction

The initial data-flow graph G = (V,E) expresses the flow of information and connections

between components in the circuit, but it does not differentiate between the nodes. Therefore,

we develop a node analyzer to extract the type of nodes from their name, which Pyverilog

generates during graph generation. Then, the analyzer assigns an attribute vector to each

node which is further used as an input feature to GCN. Nodes can be categorized as constant,

signal, or operation. The constant nodes represent numbers and are tagged as numeric

regardless of their value. The signal nodes are derived from a wire or register in the HDL code

62



module TJ (
input clk,
input rst,
input trigger,
input [127:0]  state      );
reg [127:0]  power; 
always @(clk)  begin

if (rst == 1)  power <= 128'd1024;
else if  (trigger == 1) power<={power[0],power[127:1]};

end
always @(*)  begin

if (rst == 1)  trigger <= 0; 
else if  (state == 128'd1234)  trigger <= 1; 

end
endmodule

1
2

3
4
5

Figure 3.4: The Verilog code of AES-T1800 Trojan benchmark.

and tagged as input, output, or signal based on their position in the circuit. The operation

nodes are related to the operands and conditional statements in the HDL code. They have a

wide variety, including gates (not, and, or, xor, etc.), branches, conditional operands (equal,

less than, greater than, etc.), Part select, and concatenation. We have detected 28 different

types of operation nodes, which sums up the total number of the node types to 32. The

tags are independent of the circuit design, and they represent all the possible types of nodes

that can be generated by our graph generation pipeline for any HDL code. Some examples

of node tags are demonstrated in Figure 3.3. After tagging nodes, we generate an attribute

vector for each node by performing one-hot encoding on tags. Therefore, the new directed

graph with N nodes and F different tags is defined by A ∈ RN×N and X ∈ RN×F where A

is an asymmetric adjacency matrix, and X is the matrix of node attributes.
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Figure 3.5: The flowchart of Trojan labeling algorithm.
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3.5.4 Trojan Labeling Algorithm

Although the HT circuit is known in HDL codes used for training the GCN, the graph

representation of the circuit does not have any notion of Trojan. Therefore, we develop

an algorithm to determine the HT nodes in the graph representation of HT benchmarks.

The algorithm has an HDL processing step in which a keyword is added to the signals and

modules of the HT circuit. This keyword will be visible in the name of signal nodes of the HT

circuit, but the constant and operation nodes will not be affected. So, after graph generation,

the labeling algorithm iterates among the nodes and flags the operation and constant nodes

as 2 (can be Trojan), the signal node with the keyword as 1 (definitely Trojan), and the rest

of the signal nodes as 0 (not Trojan). Thus, the flag of signal nodes is known to be Trojan

or benign. The flag of constant and operation nodes are modified based on the rules that

the operation nodes applied to Trojan nodes are part of the HT circuit and the constant

nodes inherit the flag of their parent operation node. Algorithm 1 and Figure 3.5 show how

the algorithm traverses the graph starting from root nodes and modifies the number 2 flags

based on these rules until there is no flag of 2 left and all nodes are marked either as Trojan

or benign. The algorithm results in a Trojan label vector Y ∈ [0, 1]N for each graph with N

nodes in which the malicious nodes are marked as 1. This label vector is further used as the

classification label of the training dataset to train the GCN model. Note that this step is

only once performed for the training dataset in the training stage, and it is not required in

the inference stage when the model is already trained and ready to locate HT in a circuit.

3.5.5 Graph Convolutional Networks

Traditionally, deep learning models often use an array/stack of trainable filters, such as

convolutional neural networks to extract meaningful features for grid-like structured data.

Inspired by those works, we adopt the GCN layer as our trainable filter from [80]. GCN
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Input: Nodes name list name, Nodes type list type.
Input: Signal nodes tag SIG, Operation nodes tag OP , Numeric node tag NUM .
Output: Trojan label vector lbl.
Initialize queue = a list of root node.
Initialize left = a set of all nodes.
Initialize visited = an empty set.
foreach node ni in left do

if (type[ni] is OP or NUM) then
lbl[ni] = 2

else if (type[ni] is SIG) and (TJ in name[ni]) then
lbl[ni] = 1

else
lbl[ni] = 0

while left is not empty do
if queue is empty then

node = left.pop()
add node to queue

else
parent = queue.pop()
if lbl[parent] != 2 then

remove parent from left
add parent to visited
foreach child ci of parent do

if ci not in visited then
if lbl[ci] == 2 then

lbl[ci] = lbl[parent]

add ci to visited
add ci to queue

else
add parent to left

return Trojan label vector lbl
Algorithm 1: Trojan Nodes Labeling Algorithm
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is devised to embed nodes with different features while taking the topological information

in non-euclidean data into account. The input of the GCN model is a graph G = (V,E)

represented by adjacency matrix A ∈ N ×N and node attribute matrix X ∈ N × F where

N is the number of nodes. F is the length of each node attribute vector in our model. Each

graph convolution layer aggregates information from immediate node neighbors and updates

nodes through a process called message passing based on the following formula:

H(l+1) = σ(ÃH(l)W (l)) (3.1)

Here, l denotes the layer number, and H(0) is the initial node features that equal to X, the

node attributes matrix. W (l) is a layer-specific trainable weight matrix. σ(.) denotes the

activation function that is Rectified Linear Unit (ReLU) in our model. To perform graph

convolution, the normalized adjacency matrix Ã is computed by:

Ã = D̂− 1
2 ÂD̂− 1

2 (3.2)

Where D̂ is the diagonal degree matrix to solve the problem of scale change of the feature

vectors after multiplication by the matrix A. It is calculated by D̂ =
∑

j Âij and Â is derived

from Â = A+ IN where IN is the identity matrix that adds a self-loop connection to A, the

adjacency matrix of graph G, to make sure each node embeds its previous value from last

iteration as well as new data from its neighbors.

Stacking the graph convolution layers, we create a GCN that is able to integrate information

from a larger set of neighbors. Our model architecture is illustrated in Figure 3.6. It

comprises three convolution layers with a ReLU activation function and one last convolution

layer connected to a layer of Softmax units to classify each node as Trojan or benign and

generate the predicted node label Y . It concludes the computations of our GCN model as
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below:

Z = Softmax(Ãσ(Ãσ(Ãσ(ÃXW (0))W (1))W (2))W (3)) (3.3)

where Z ∈ [0, 1]2 indicates the predicted node labels in which [1, 0] denotes Trojan and [0, 1]

denotes benign node.

Training: Figure 3.2 summarize the training process and units. The first step in training

is preparing a training dataset based on the GCN model requirement. Thus, the HDL codes

are converted to data-flow graphs in which the nodes have been assigned an attribute vector

and a label (Trojan/benign). The attribute vectors feed information about each node’s

characteristics to the model, and the labels are used to calculate the error due to node

misclassification. Training is an iterative optimization process that modifies the weights in

GCN to minimize its classification error, anointed as the loss. We use Adam optimizer [79],

a conventional optimization technique for efficient gradient descent to minimize the loss L.

We utilize the cross-entropy loss function to calculate the error over all nodes in a graph

using this formula:

L = −
∑
i∈V

C∑
j=0

Yijln(Zij) (3.4)

where C is the number of classes which is two (Trojan and benign), and the j indicates the

dimension of the output vector. V is the set of nodes in a graph and i iterates over them.

Y is the actual label of nodes obtained from the Trojan node labeling algorithm, and Z is

the predicted label. Note that L is node classification loss for one graph, and total loss is

the summation of all graphs’ loss.

Inference: At the inference stage when the model is trained, we use it to test new hardware

design, as shown in Figure 3.2. After label prediction, the node labels are passed to HT
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localization in the HDL unit. It employs the mapping between graph nodes and HDL

signals to mark malicious signals in HDL code based on Trojan nodes in the graph. We also

perform HT detection by counting the number of nodes predicted to be Trojan and label the

circuit as Trojan-free if the number of Trojan nodes is lower than a threshold and, basically,

negligible compared to the size of the design. The user can set the threshold depending on

their target sensitivity.
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Figure 3.6: The architecture of our GCN model for node classification.

3.6 Evaluation

3.6.1 Experimental Setup

We construct and assess our GCN model on the graph representation of a dataset, consisting

of 49 Trojan-infested RTL codes that are listed in Tables 3.2 and 3.3. The limited number

of graphs in our dataset is not problematic since our machine learning model is for node

classification, and each graph contains thousands of nodes, refer to Table 3.1. An extensive

dataset enhances the model’s performance and capability to learn a generic knowledge of

HT and the learning-based model is easily adaptable by adding new circuits and Trojans to

training for further generalization. Our dataset comprises three base circuits that contain
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various HTs. Advanced Encryption Standard (AES), Data Encryption Standard (DES),

and Rivest Cipher 5 (RC5) are encryption cores with different algorithms that get an input

number as plaintext along with a secret key and output the encrypted number known as

ciphertext. The AES samples are derived from the TrustHub benchmark [2] which is the

most popular open hardware Trojan dataset used in the literature. The RC5 and DES

are open-source designs in which we insert the Trojan circuits extracted from AES-Txx

benchmarks. However, some of TrustHub HT benchmarks are specific to AES and cannot

be inserted in RC5 or DES circuits due to dependency on the internal signals of AES.

Table 3.1: The performance of HT detection.

Circuit AES DES RC5
Classified as Trojan node 1 2 0
Classified as benign node 13437 10210 2106
Total nodes 13438 10212 2106
Classified as Trojan/total 7.44e-5 1.95e-4 0
HT detection accuracy 100%

In Tables 3.2 and 3.3, the first part of the benchmark name represents the base circuit, and

the second part, shows the type of Trojan inserted in the base circuit. For example, DES-

T100 shows a DES circuit infected with T100 Trojan from the TrustHub dataset. All the

algorithms and models are implemented in the Python language. We use PyTorch and the

Geometric extension library to build the graph learning model. The GCN model training

and testing are performed by NVIDIA GeForce GTX 1080 graphics card. We use the leave-

one-out approach for evaluation. We report test results on a circuit infected with an HT

benchmark while the model is trained on other circuits and HTs. We change the test circuit

and repeat training on the rest again. The process is repeated until all samples are tested. In

this scenario, the circuit under test and its HT are not seen by the model in training which

indicates the capability of the model to locate HT in unknown circuits and HTs. In all

evaluations, we define the positive sample as the Trojan node class and the negative sample

as the benign node class. For example, true positive represents the Trojan nodes that are

correctly classified as Trojan.
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3.6.2 HT Detection and Localization Performance

After finding the best model and architecture which is elaborated in Sections 3.6.3 and

3.6.4, we construct our final model. The evaluation results per benchmark are reported in

Tables 3.2 and 3.3. We also include the number of Trojan nodes and the ratio of Trojan

nodes to total nodes in the graph to reflect the effect of HT size. We consider several

evaluation metrics to assess the performance from different perspectives. The most common

metric for classification is accuracy which expresses the correctly classified nodes over all

nodes. Accuracy is intuitive but does not suffice since class distribution between nodes is

not uniform. Thus, we look into the F1-score, the weighted average of recall and precision.

Recall expresses the ability to find all Trojan nodes in a design. On the other hand, precision

is an indicator of False Positive (FP) and expresses the proportion of the nodes our model

labels as Trojan, actually are Trojans. The combination of precision and recall metrics

examines the model’s performance in detecting Trojan nodes while avoiding mislabeling

benign nodes as Trojan. We count True Positive (TP), False Negative (FN), and FP and

calculate these metrics as follows:

P =
TP

TP + FP
, R =

TP

TP + FN
(3.5)

Fβscore =
(1 + β2) ∗ P ∗R

β2 ∗ P +R
(3.6)

Accuracy =
TP + TN

TP + TN + FN + FP
(3.7)
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HT nodes = TP + FN (3.8)

HT/total ratio =
TP + FN

TP + TN + FN + FP
(3.9)

We provide a summary of results in Table 3.4 in which the average of metrics are calculated

for each circuit as well as the average node classification time. It can be observed that high

accuracy and F1-score in HT localization are maintained for all circuits regardless of size.

The computation and timing of HT localization depend on the size of the circuit. Studying

the timing in diverse designs, it is observed that HT localization time scales linearly with

the number of nodes in the graph representation of the circuit, which makes it scalable for

large designs. In conclusion, our GCN model exhibits high performance in locating the HT

nodes with low false positives (below 0.009%) in less than 1 second. Further, we study the

performance of our model in HT detection by testing it for the HT-free circuits of AES,

DES, and RC5. The number of nodes classified as Trojan/benign is mentioned in Table 3.1.

These results show that our model can determine if the design is healthy as it finds only a

few false Trojan nodes in a design graph with thousands of nodes that are negligible.

3.6.3 The Best Graph Neural Network Architecture

There are plenty of graph neural network candidates with various hyper-parameters to choose

from as our node classification model. Thus, we devise an experiment in which we construct

and test different models to find the best model and architecture for our application. In

this experiment, we implement 3 different graph learning models, including GCN [80], graph
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Table 3.2: HT localization performance, number of Trojan nodes, and their ratio to total
nodes for all AES and DES benchmarks.

Benchmark Acc 1 F1
score

Prec 2 Recall HT nodes HT/total
ratio

AES-T100 100% 99.4% 100% 98.8% 481 3.46%
AES-T200 100% 99.4% 100% 98.8% 486 3.40%
AES-T300 99.5% 94.7% 98.6% 91.0% 635 5.33%
AES-T400 99.9% 94.2% 100% 89.1% 110 0.71%
AES-T500 99.8% 85.4% 100% 74.5% 94 0.69%
AES-T600 99.9% 89.9% 100% 81.6% 87 0.64%
AES-T700 99.8% 97.8% 100% 95.7% 562 3.98%
AES-T800 99.8% 97.6% 100% 95.2% 628 4.42%
AES-T900 99.8% 97.8% 99.8% 96.0% 569 4.03%
AES-T1000 99.9% 98.4% 100% 96.8% 503 3.73%
AES-T1100 99.9% 97.7% 100% 95.6% 568 3.21%
AES-T1200 99.9% 98.3% 100% 96.7% 509 3.51%
AES-T1300 99.1% 87.5% 100% 77.8% 688 3.87%
AES-T1400 99.5% 94.1% 98.8% 89.9% 723 4.05%
AES-T1500 99.5% 92.1% 98.6% 86.4% 664 3.15%
AES-T1600 99.9% 92.2% 100% 85.5% 179 0.82%
AES-T1700 99.9% 89.0% 100% 80.2% 86 0.45%
AES-T1800 99.9% 83.3% 100% 71.4% 27 0.17%
AES-T1900 100% 82.8% 100% 70.6% 34 0.17%
DES-T100 99.9% 99.2% 99.8% 98.5% 481 4.50%
DES-T200 99.9% 99.2% 99.8% 98.6% 486 4.54%
DES-T400 99.9% 94.3% 98.0% 90.9% 110 1.07%
DES-T500 99.8% 84.8% 98.6% 74.5% 94 0.91%
DES-T600 99.8% 90.0% 98.6% 82.8% 87 0.84%
DES-T700 99.8% 97.6% 99.8% 95.6% 562 5.22%
DES-T800 99.6% 96.7% 98.2% 95.2% 628 5.79%
DES-T900 99.7% 97.4% 99.6% 95.3% 569 5.28%
DES-T1000 99.8% 98.1% 99.6% 96.6% 503 4.69%
DES-T1100 99.7% 96.9% 98.2% 95.6% 568 5.27%
DES-T1200 99.8% 98.2% 99.6% 96.9% 509 4.75%
DES-T1600 99.7% 91.6% 98.7% 85.5% 179 1.72%
DES-T1700 99.7% 83.6% 87.3% 80.2% 86 0.84%
DES-T1800 99.9% 80.2% 90.0% 72.3% 27 0.26%
DES-T1900 99.9% 81.4% 96.0% 70.6% 34 0.33%

1Accuracy 2Precision
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Table 3.3: HT localization performance, number of Trojan nodes, and their ratio to total
nodes for all RC5 benchmarks.

Benchmark Acc 1 F1
score

Prec 2 Recall HT
nodes

HT/total
ratio

RC5-T100 99.8% 99.4% 100% 98.8% 481 18.59%
RC5-T200 99.8% 99.4% 100% 98.8% 486 18.76%
RC5-T400 99.5% 94.2% 100% 89.1% 110 4.96%
RC5-T500 98.9% 85.4% 100% 74.5% 94 4.27%
RC5-T600 99.3% 90.0% 98.6% 82.8% 87 3.97%
RC5-T700 99.1% 97.9% 100% 95.9% 562 21.06%
RC5-T800 98.9% 97.5% 99.7% 95.4% 628 22.96%
RC5-T900 99.0% 97.5% 99.6% 95.4% 569 21.27%
RC5-T1000 99.3% 98.2% 100% 96.4% 503 19.28%
RC5-T1100 99.1% 97.7% 100% 95.6% 568 21.24%
RC5-T1200 99.3% 98.1% 99.8% 96.5% 509 19.46%
RC5-T1600 98.8% 91.9% 99.4% 85.5% 179 7.83%
RC5-T1700 99.2% 88.5% 98.6% 80.2% 86 3.93%
RC5-T1800 99.6% 83.3% 95.2% 74.1% 27 1.27%
RC5-T1900 99.5% 82.8% 100% 70.6% 34 1.59%

1Accuracy 2Precision

Table 3.4: The summary of dataset and HT localization performance.

Benchmark All AES-Txx DES-Txx RC5-Txx
Accuracy 99.6% 99.8% 99.8% 99.2%
F1-score 93.1% 93.2% 92.2% 93.1%
Precision 99.0% 99.8% 97.5% 99.4%
Recall 88.0% 88.0% 87.9% 88.0%

# of nodes 2000-14000 13438 10212 2106
Time < 500ms 222ms 162ms 37ms

attention network (GAT) [159], and local extrema convolution (LEC) [132] with different

architectures (2-layer to 4-layer). The evaluation results are illustrated in Figure 3.7. F1-

score is the main evaluation metric for comparison because it is the average of precision

and recall and represents the two key expected qualities; detecting all Trojan nodes and

having low false positives. The LEC model shows the worst performance, and by increasing

the number of layers, its performance drops. On the contrary, the GCN and GAT models

are improved by stacking more layers, while GCN exhibits relatively better performance.

Therefore, The GCN model with four layers is chosen for node classification.
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Figure 3.7: Performance of various graph neural network models and architectures.

3.6.4 Compensation for Unbalanced Dataset

A standard step of developing machine learning models is to find the best settings for the

model based on the problem. One of the challenges of Trojan localization is the small size of

the HT circuit, which results in an unbalanced dataset for machine learning. In our dataset,

the ratio of HT nodes to total nodes is between 0.001-0.020 (refer to Tables 3.2 and 3.3),

which means the distribution of node classes is not uniform, and one class of nodes is more

common. The unbalanced dataset can affect the model’s performance and push it to label

all nodes as the dominant class, the benign node class. To tackle this problem, we assign

a higher weight to the Trojan class in loss calculation that compensates for the minority of

Trojan nodes and forces the model to label more nodes as Trojan. We devise an experiment

to find the optimum value for class weight by altering the relative weight of the Trojan

class to benign class among these values: 1:1 (none), 3:1 (low), 6:1 (high), and 21:1 (super).

In the evaluation results in Figure 3.8, we notice that increasing the weight of the Trojan

continuously increases the recall as more Trojan nodes are found. Still, after some point, it

deteriorates the overall performance (F1-score) as the false positive sample increases, and

consequently, the precision drops. Therefore, The best class weight with the highest F1-score
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is 6:1 and we use this value for further evaluations.

Figure 3.8: Performance of GCN model with different class weights.

3.6.5 Comparing HT Localization Methods

In this section, we compare our model with other HT localization methods in the literature

that are elaborated in Section 3.4. u A quantitative comparison is challenging due to a

couple of reasons. Firstly, the dataset and experiment conditions are very varied among

different works. For example, [68, 160, 185, 52] papers propose various ideas to locate

the HT nodes in the circuit, and they demonstrate promising results on their limited sets

of benchmarks. However, each one reveals the shortcomings of the former method against

distinct Trojans. Secondly, diverse techniques are used for localization with varied evaluation

metrics that are not comparable. For example, [75] reports the error in activity estimation,

which is further used for marking low-activity regions as vulnerable to HT. On the other

hand, [74], our approach demonstrates accuracy in finding the Trojan nodes. Although the

direct quantitative comparison is not feasible, we provide a numeric evaluation of different

methods’ performance in terms of how successful they were in locating HT (using accuracy,

recall, and error metrics), how many benign nodes were mislabeled as HT (using false positive
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rate and precision metrics) in Table 3.5. The comparison shows the superior performance

of our model in successfully detecting HT nodes with very low false positives. The metrics

definition is elaborated in Section 3.6.2.

We study them from qualitative aspects such as pre-silicon or post-silicon HT localization,

golden reference-free, automated feature extraction/property definition, localization reso-

lution, and the ability to detect various types of Trojans. According to Table 3.5, our

compelling model surmounts the shortcomings of the state-of-the-art. The post-silicon tech-

niques postpone the HT localization until after fabrication when the HT removal is very

time-consuming and expensive. Therefore, it is crucial to locate and remove Trojans in-

serted in the design stage early before manufacturing. On the other hand, pre-silicon HT

localization approaches mostly suffer from low resolutions because they cannot detect the

Trojan nodes specifically. Instead, they mark the suspicious areas that are prone to HT in-

sertion. Thus, they require further manual revision of circuit partitions to check for Trojan

nodes, and their localization process is not automated.

3.7 Chapter Concluding Remarks

In this work, we create a novel, golden reference-free HT localization methodology that con-

verts the hardware design to a graph, performs node classification on it using GCN, and

outputs the malicious circuit corresponding to Trojan nodes. Our methodology is fully au-

tomated without any need for manual feature extraction or code inspection. Our evaluation

demonstrates that it locates Trojan with 99.6% accuracy, 93.1% F1-score, and a false positive

rate below 0.009%.
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Table 3.5: Comparing the HT localization methods in the literature.

Method Stage
Golden
chip-
Free

Auto-
mated

Local-
ization
Resolu-
tion

HT
diversity

Performance

GCN
(ours)

Pre-S2 Yes Yes High High
HT localization with
99.6% accuracy and
98.9% precision

Social
network
[74]

Pre-S Yes No High Low

HT localization with
97.3% accuracy and
less than 2% false

positive

Code
analysis
[75]

Pre-S Yes No Low Low

Activity estimation
with less than 2%

error to flag
low-activity as HT

VeriTrust
[185]

Pre-S Yes No Low Low
HT localization with

100% recall and
11.5% precision

FANCI
[160]

Pre-S Yes No Low Low
HT localization with
100% recall and less
than 8% false positive

UCI [68] Pre-S Yes No Low Low
HT localization with
100% recall and 7.5%

precision

Symbolic
algebra[52]

Pre-S No No High High
HT localization with
100% recall and 74%

precision

Thermal
map [155]

Post-
S3 No No Low High

Successfully locates
the HTs with less
than 20 gates

Path delay
[137]

Post-S No No High High

HT localization with
100% recall and

0.56% false positive
rate
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Chapter 4

Hardware IP Piracy Detection

4.1 Introduction

The integrated circuits (IC) manufacturing industry has developed significantly and scaled

down to 7nm technology that has made the integration of numerous transistors possible.

However, the hardware engineers could not keep up with rapid advancement in fabrication

technology and failed to use all of the available transistors in the die. To close this produc-

tivity gap under time-to-market pressure, hardware Intellectual Property (IP) core design

has grabbed substantial attention from the semiconductor industry and has dramatically

reduced the design and verification cost [30]. The globalization of the IC supply chain poses

a high risk of theft for design companies that share their most valuable assets, IPs, with

other entities. IP piracy is a serious issue in the current economy, with a drastic need for an

effective detection method. According to the U.S. Department of Commerce study, 38% of

the American economy is composed of IP-intensive industries [5] that lose between $225 bil-

lion to $600 billion annually because of Chinese companies stealing American IPs mainly in

the semiconductor industry, based on the U.S. Trade Representative report [4]. Hardware IP
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is considered as any stand-alone component of a system-on-chip design that is classified into

three categories based on the level of abstraction: Soft IP (i.e., synthesizable HDL source

code), Firm IP (i.e., netlists and placed RTL block), and Hard IP (i.e., GDSII and physical

layout) [24].

Conventionally, the IP protection techniques fall into preventive (i.e., logic encryption, cam-

ouflaging, metering, and split manufacturing) and detective (i.e., digital signature) methods.

All these methods add excessive implementation overhead to the hardware design that lim-

its their applications in practice. Moreover, they mainly focus on security at the IC level,

while many commercial IPs comprise the soft IPs due to flexibility, independence of plat-

form technology, portability, and easy integration with other components. The high level

of abstraction makes IP protection more challenging since it is easier for an adversary to

slightly change the source code and redistribute it illegally at the lower levels of abstraction.

Although the existing preventive countermeasures deter IP theft, they cannot guarantee

IP security as the adversaries keep developing more sophisticated attacks to bypass them.

Therefore, an effective IP piracy detection method is crucial for IP providers

to disclose the theft. To this end, the state-of-the-art piracy detection method embeds

the signature of the IP owner, known as a watermark, and the legal IP user, known as a

fingerprint, in the circuit design to assure authorship and trace legal/illegal IP usage. IP

watermarking and fingerprinting are prone to removal, masking, or forging attacks that at-

tempt to omit the watermark, distort its extraction process, or embed another watermark

in IP [24].

In this chapter, we apply the idea of modeling hardware design to a graph representation

from Chapters 2 and 3 and propose a novel methodology for IP piracy detection that, in-

stead of insertion and extraction of a signature to prove the ownership, models the circuits

and assesses the similarity between IP designs. Therefore, our method does not require

additional hardware overhead as the signature and is not vulnerable to removal, masking,
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or forging attacks. It also effectively exposes the infringement between two IPs when the

adversary complicates the original IP to deceive the IP owner. Modeling the hardware de-

sign is challenging since it is a structural non-Euclidean data type, despite most modeling

techniques. Thus, similar to Chapter 2, we represent the circuit as a data-flow graph (DFG)

due to similar data types and properties. Afterward, we model it using a state-of-the-art

graph learning method.

Module ADDER(
input Num1,
input Num2,
input Cin,
output reg Sum,
output reg Cout );

always @(Num1, Num2,Cin) begin
Sum<=((Num1 ^ Num2)^Cin);
Cout<=(((Num1 ^ Num2)&&Cin)||(Num1 && Num2)); 

end
endmodule

Adder1 

Verilog 

code

Num1

Num2

Cin

Cout

Sum

D
F

2

Adder2

DFG

Adder1

DFG

Adder2 

Verilog 

code

Module ADDER(Num1, Num2,Cin,Sum,Cout);
input Num1, Num2, Cin;
output Sum, Cout;
wire t1, t2, t3;

xor (t1, Num1, Num2);
and (t2, Num1, Num2);
and (t3, t1, Cin);
xor (Sum, t1, Cin);
or (Cout, t3, t2);
endmodule

Full adder circuit schematic

Figure 4.1: The circuit schematic, Verilog codes, and DFGs of full adder circuits.
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4.1.1 Motivational Example

We study the concept of piracy and similarity among hardware designs in a test case of two

different variations of the full adder circuit. As shown in Figure 4.1, although the Verilog

codes for adder 1 and 2 are different, they both have fundamentally the same design, as

depicted in the schematic figure. We unveil the similarity between two adders using DFG,

which expresses the signals dependency and computational structure. At first glance, the

generated DFGs for adders seem varied, but a deep look into data flows (DF) indicates the

same signal relations. For instance, the output signal Sum depends on Num1, Num2, and

Cin input signals through the DF1, DF2, and DF3, respectively. Suppose we focus on critical

nodes in the flow (XOR nodes) and ignore the excessive nodes related to concatenation and

internal signals. In that case, the DFs in both DFGs represent the same operations.

4.1.2 Research Challenges

The development of an effective IP piracy detection method poses paramount research chal-

lenges as follows:

• Hardware overhead: All existing piracy detection methods add hardware overhead

to IP design.

• Attacks: Signatures-based countermeasures are vulnerable to removal, forging, and

masking attacks.

• Same behaviors, different topologies: As the case study exemplified, varied HDL

codes generate different DFGs even if they represent the same hardware design. The

different typologies in DFGs can easily fool the standard graph similarity algorithms,

and behavioral analysis of graphs is required to learn circuit design.
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• Scalability: The manual review of hardware design is not feasible in practice. Graph

similarity is an NP-complete problem, and existing algorithms [55] suffer from high

complexity and are not scalable to large designs and industrial-level IPs with thousands

of code lines.

4.1.3 Chapter Contributions

We propose a novel methodology based on graph learning to surmount research challenges

and propose these contributions:

• To overcome the shortcomings of current IP piracy detection methods, we propose a

novel countermeasure based on hardware design analysis that does not require adding

any signature and overhead to IP design.

• We develop a scalable, automated framework called hw2vec that generates the DFG

for hardware designs and assigns an embedding to them such that the proximity in the

embeddings indicates similarity between circuits.

• We construct a Graph Neural Network (GNN) model to learn the circuit’s behavior

and assess the similarity between a pair of IPs according to graph embeddings.

• We gather a dataset of hardware designs in RTL and gate-level netlist to develop and

assess our methodology.
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4.2 Backgrounds and Related Works

4.2.1 Hardware IP Security

The hardware is susceptible to security threats such as IP piracy (unlicensed usage of IP),

overbuilding, counterfeiting (producing a faithful copy of circuit), reverse engineering, hard-

ware Trojan (malicious modification of circuit) [51, 49, 176], and side-channel attacks [15].

The IP protection methods proposed in the literature can be classified as follows:

Watermarking and fingerprinting [127]: The IP owner and legal IP user’s signatures,

known as watermark and fingerprint, are added to the circuit to prove infringement.

Hardware metering [82]: The designer assigns a unique tag to each chip, which can be

used for chip identification (passive tag) or enabling/disabling the chip (active tag).

Obfuscation [30]: There are two obfuscation methodologies; logic locking (encryption)

[168] and IC camouflaging [129]. In logic locking, additional gates such as XOR are in-

serted in non-critical wires. The circuit would be functional only if the correct key is provided

which is stored in a secure memory out of reach of the attacker. Camouflaging modifies the

design such that cells with different functionalities look similar to the attacker and confuses

the reverse engineering process.

Split manufacturing [122]: IP house split the design to separate ICs and have them

fabricated in different foundries. Thus, none of the foundries have access to the whole design

to overbuild, reverse engineer, or perform malicious activities. The existing defenses suffer

from a large overhead on area, power, and timing that restrict their application. As the new
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countermeasures are developed, the attacks are advanced to bypass them. SAT attack is a

powerful method used to formulate and solve a sequence of SAT formulas iteratively to unlock

the encrypted circuit, reverse engineer the Boolean functionalities of camouflaged gates [42] or

reconstruct the missing wire in 2.5D split manufactured ICs [162]. Anti-SAT [167], and AND-

tree insertion [90] obfuscation techniques are proposed to mitigate SAT attacks. However,

signal probability skew attack, AppSAT guided removal attack, and sensitization guided

SAT attack [177] break them. Proximity attack [128] is another attack against 2.5D split

manufacturing that iteratively connects the inputs to outputs in two IC partitions until a

loop is formed. Removal, masking, and forging attacks bypass watermarking by eliminating,

distorting, or embedding a ghost watermark [24]. There is a rising trend in machine learning-

based defenses [176, 174] and the recent advances made the models even resistant against

adversarial attacks [14].

4.2.2 Graph Neural Networks

In GNN4IP, we leverage GNN, a deep learning methodology that tackles graph data [166].

Several works in the literature have shown the effectiveness of GNN in identifying software

clones and detecting binary code similarity [45, 169]. Our architecture is inspired by the

Spatial-based Graph Convolution Neural Network, which defines the convolution operation

based on a node’s spatial relations with the following phases: (i) message propagation phase

and (ii) the read-out phase. The message propagation phase involves two sub-functions:

AGGREGATE and COMBINE, given by,

a(k)v = AGGREGATE(k)({h(k−1)
u : u ∈ N(v)}), (4.1)
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h(k)
v = COMBINE(k)(h(k−1)

v , a(k)v ), (4.2)

where h
(k)
v ∈ RCk

denotes the node embedding after k iterations for the vth node. Essentially,

the AGGREGATE function collects the features of the neighboring nodes to extract an

aggregated embedding a
(k)
v for the layer k, and the COMBINE function combines the previ-

ous node features h
(k−1)
v with a

(k)
v to output next embedding h

(k)
v . This message propagation

is carried out for a pre-determined number of iterations k. Next, in the read-out phase, the

overall graph-level embedding extraction is carried out by either summing up or averaging

up the node embeddings in each iteration. The graph-level embedding is denoted as h
(k)
G and

is defined as,

h
(k)
G = READOUT({h(k−1)

v : v ∈ G}) (4.3)

In our work, we use h
(k)
G as the hardware design embedding to assess the similarity between

circuits and discover piracy.

4.3 Methodology

In this work, we formulate the problem of IP piracy detection as finding the similarity

between two hardware designs. We assume the existence of a feed-forward function f that

outputs whether two circuits pA and pB are subject to piracy or not through a binary label

y as given in Equation 4.4.
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y = f(pA, pB) =

 (1, 0) if piracy in pA, pB

(0, 1) if no-piracy in pA, pB

(4.4)

To approximate f , we extract the DFGsGA andGB from circuits pair (pA, pB) using the DFG

generation pipeline and pass it to a graph embedding layer, hw2vec, to acquire embeddings

(hGA
, hGB

). Lastly, our model infer the piracy label, Ŷ , by computing the cosine similarity

between (hGA
, hGB

).

4.3.1 Threat Model

In our threat model, we examine the IP designs in RTL or gate-level netlist to discover

piracy. We assume that the design is a soft IP, firm IP, or derived by reverse engineering

a hard IP or IC. The adversary can be a hardware designer, competitor company, or the

fabrication foundry that presents the stolen IP as their genuine design and sell it as an IC or

an IP at the same or lower level of abstraction. The attack scenario may involve modification

of IP design to tamper with piracy detection. The attacker can get access to the original IP

through one of these means: I) purchase the IP for limited usage, II) leak through a rogue

employee in the design house or III) reverse engineer the physical layout or IC.

4.3.2 Hardware Data Flow Graph Extraction

Hardware design is non-Eulicidian structural data that shares similar properties with a graph.

We generate DFGs from either RTL code or gate-level netlist as the first step to model it.

The DFG is a rooted directed graph illustrating the computation structure and the data

flow from the circuit’s output signals (the root nodes) to the input signals (the leaf nodes).
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It is defined as graph G = (V,E) where V = {v1, v2, ..., vn} is the vertices set and each node

vi represents a signal, constant value, or operations such as concatenation, branch, Boolean

operators, etc. We define a set of directed edges E = eij for all i, j such that eij ∈ E if the

operation vj is applied on vi or the value of vi depends on the value of vj.

To extract DFG, we develop an automated framework using a hardware design toolkit called

Pyverilog [153]. Figure 4.2 demonstrates our DFG generation pipeline that is consisted of

five phases: preprocess, parser, data flow analysis, merge, and trim. The procedure begins

with preprocessing the RTL code or gate-level netlist in Verilog format to flatten the modular

codes and resolve incompatibilities and syntax errors. Afterward, the parser scans the code

and produces the corresponding abstract syntax tree used by the data flow analyzer to

generate a data flow tree per signal. Next, the signal trees are merged to construct one main

DFG for the whole design. Eventually, the redundant nodes and disconnected subgraphs are

trimmed, and the final DFG is generated.

4.3.3 Hardware IP Piracy Detection Algorithm

Our IP piracy detection algorithm is shown in Algorithm 2. In the algorithm, GNN4IP refers

to approximating function f , which can yield the inference of whether two circuits p1 and

p2 are subject to IP piracy. Applying typical machine learning methodologies to hardware

designs, which are non-euclidean in nature, usually requires feature engineering and immense

expert knowledge in hardware design. Thus, we propose our scalable, automated IP piracy

detection framework, hw2vec with an architecture depicted in Figure 4.3.

The hw2vec uses the DFG generation pipeline and acquires the corresponding graph G

for circuit p in the form of (X,A) where X represents the initial list of node embeddings

and A stands for the adjacency information of G. Next, the hw2vec begins the message

propagation phase, denoted as Graph Conv in the algorithm, which is Graph Convolution
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Module top(B, A,X,S,Y);
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output S, Cout;
wire t1, t2, t3;
xor (t1, A, B);
and (t3, t1, X);
or (Y, t3, t2);

endmodule

Figure 4.2: Data flow graph generation pipeline for RTL code and netlist.

Network (GCN) [80]. In each iteration l of message propagation, the node embeddings Xl+1

will be updated as follows,

X(l+1) = σ(D̂− 1
2 ÂD̂− 1

2X(l)W (l)) (4.5)

where W l is a trainable weight used in the GCN layer. Â = A + I is the adjacency matrix

of G used in the layer for aggregating the feature vectors of the neighboring nodes where I

is an identity matrix that adds the self-loop connection to make sure the features calculated

in the previous iteration will also be considered in the current iteration. D̂ is the diagonal

degree matrix used for normalizing Â. σ(.) is the activation function such as Rectified Linear

Unit (ReLU). Here, we denote the initial node embedding as X(0) and initialize each node

embedding X
(0)
i , ∀i ∈ V , by directly converting the node’s name to its corresponding one-

hot vector. We denote the final propagation node embedding X(l) as Xprop, and denote
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Figure 4.3: The overall architecture of GNN4IP for hardware IP piracy detection.

the corresponding adjacency matrix as Aprop. Once propagated the information on G, the

resultant node embedding Xprop is further processed with an attention-based graph pooling

layer Graph Pool. Denote the collection of all node embeddings of G after passing through

L layers of GCN as Xprop. The Xprop is passed to a self-attention graph pooling layer

that learns to filter out irrelevant nodes from the graph, creating the pooled set of node

embeddings Xpool and their edges Apool. In this layer, we use a graph convolution layer to

predict the scoring α = SCORE(Xprop,Aprop) and use α to perform top-k filtering over

the nodes in the DFG [85]. Then, the Graph Readout in our algorithm aggregates the

node embeddings Xpool to acquire the graph-level embedding hG for the DFG G using this

formula hG = READOUT(Xpool). The READOUT operation can be either summation,

averaging, or selecting the maximum of each feature dimension over all the node embeddings,

denoted as sum-pooling, mean-pooling, or max-pooling respectively. Lastly, hw2vec returns

the embedding hG of each hardware.

The gnn4ip utilizes hw2vec to transform p1 and p2 into the corresponding DFG embeddings,

denoted as hp1 and hp2 . Then, it calculates the cosine similarity of hp1 and hp2 to produce

the final IP piracy prediction, denoted as Ŷ ∈ [−1, 1]. The formula can be written as follows,

Ŷ = Cosine sim(hp1 , hp2) =
hp1 · hp2

|hp1||hp2|
(4.6)

Finally, our gnn4ip utilizes predefined decision boundary δ and Ŷ to judge whether two
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programs p1 and p2 are piracy to one another as described in Algorithm 2 and to return the

results of IP piracy detection using a binary label (0 or 1).

Input: Hardware design programs p1, p2.
Output: A label indicating whether p1, p2 is piracy.
def hw2vec (p):

X,A← GraphExtraction(p)
Xprop, Aprop ← Graph Conv(X,A)
Xpool, Apool ← Graph Pool(Xprop, Aprop)
hG ← Graph Readout(Xpool)
return hG

def gnn4ip (p1, p2):
hp1 , hp2 ← hw2vec(p1), hw2vec(p2)

Ŷ ← Cosine Sim(hG1 , hG2)

if Ŷ > δ then
return 1

else
return 0

gnn4ip(p1, p2) // run the GNN4IP check.
Algorithm 2: Hardware IP Piracy Detection Algorithm

As both gnn4ip and hw2vec include several trainable parameters, we need to train these

parameters for IP piracy detection via computing the cosine embedding loss function, denoted

asH, between true label Y and the predicted label Ŷ . The calculation of loss can be described

as follows,

H(Ŷ , Y ) =

 1− Ŷ , if Y = 1

max(0, Ŷ −margin) if Y = −1
(4.7)

where the margin is constant to prevent the learned embedding to be distorted (always set

to 0.5 in our work). Once the model is trained, our algorithm uses the Ŷ and a decision

boundary δ to make the final judgment of IP piracy.

91



4.4 Evaluation

In hw2vec, we use 2 GCN layers with 16 hidden units for each layer. For the graph pool,

we use the pooling ratio of 0.5 to perform top-k filtering. For the graph readout, we use

max-pooling for aggregating node embeddings of each graph. In training, we apply dropout

with a rate of 0.1 after each GCN layer. We train the model using the batch gradient descent

algorithm with batch size 64 and a learning rate to be 0.001.

4.4.1 Dataset

One of the significant challenges of machine learning model development is data collection.

To construct GNN4IP, we gather RTL codes and gate-level netlists of hardware designs in

Verilog format and extract their DFGs using our automated graph generation pipeline. Our

collection comprises 50 distinct circuit designs and several hardware instances for each circuit

design sums up 143 netlists and 390 RTL codes. As our model works on pairs of hardware

instances, we form a dataset of 19094 similar pairs and 66631 different pairs, dedicating 20%

of these 85725 pairs for testing and the rest for training.

4.4.2 IP Piracy Detection Accuracy and Timing

The GNN4IP examines a pair of hardware designs, label it as piracy (positive) or no-piracy

(negative), and outputs a similarity score in the range [-1, +1] where the higher score in-

dicates more similarity. We evaluate the model on RTL and netlist datasets, which results

in the confusion matrices depicted in Figure 4.4(a). We compute the IP piracy detection

accuracy as the evaluation metrics, which express the correctly labeled sample ratio, true

positive (TP) plus true negative (TN), to all data. The accuracy and timing results in Table

4.1 show that our model pinpoints IP piracy with high accuracy rapidly, making it scalable
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to large designs. The training and testing time depend on the graph size. The longer timing

for netlists lies in the fact that in our dataset, the netlist DFGs with 3500 nodes on average

are larger than RTL DFGs with 1000 nodes on average. We run the model on a computer

with Intel Core i7-7820X CPU @3.60GHz with 16GB RAM and two NVIDIA GeForce GTX

1050 Ti and 1080 Ti GPUs and measure the timing for this computing platform.

Table 4.1: The GNN4IP performance for IP piracy detection.

Dataset
Dataset

size
# of

graphs
Accuracy

Train time
per sample

Test time
per sample

RTL 75855 390 97.21% 0.577 ms 0.566 ms
Netlist 9870 143 94.61% 5.999 ms 5.918 ms

4.4.3 Embedding Visualization

The hw2vec generates vectorized embedding for hardware designs and maps them to the

points in the multi-dimensional space such that similar circuits are in close proximity. We

visualize the hw2vec embeddings using dimensionality-reduction algorithms such as Principal

Component Analysis (PCA) and t-distributed Stochastic Neighbor Embedding (t-SNE). Fig-

ure 4.4 (b,c) illustrate the embedding projection of 250 hardware instances for two distinct

processor designs, pipeline MIPS and single-cycle MIPS, using PCA and t-SNE.

In the PCA plot, the first two principal components are depicted that express the two or-

thogonal directions, which maximize the variance of the projected data. t-SNE is a nonlinear

machine learning algorithm that performs transformations on the data and approximate spec-

tral clustering. We have deliberately chosen two MIPS processors with similar functionality

for this experiment to harden the differentiation between them. The processors’ contrast lies

only in their design and specifications. According to the plots, two well-separated clusters of

hardware instances are formed such that data points for the same processor design are close.

It demonstrates that hw2vec is a compelling tool to distinguish between various hardware
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designs. It not only considers the functionality and DFG structure but also recognizes the

design.
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Figure 4.4: (a) Confusion matrices for IP piracy detection, (b) hw2vec embedding visualiza-
tion using PCA, and (c) hw2vec embedding visualization using t-SNE.

4.4.4 Similarity Score Results

Our model identifies piracy based on its generated similarity score for two designs, and the

decision boundary is controlled by a hyper-parameter δ. We have tuned the δ to achieve

maximum accuracy, but the user can adjust it to decide how much similarity is considered

piracy. We calculate the similarity score in 3 cases: 1) different designs, 2) different codes

with the same design, and 3) a design and its subset. For each case, 4 examples and the

mean score for 50 examples are mentioned in Table 4.2. As the results present, our model

successfully discriminates hardware designs since the score is very low for different designs

(case 1) and close to 1 for similar designs (case 2). In case 3, MIPS is a processor which

comprises an ALU block. This relation is captured by the model and resulted in a score of

approximately 0.5.
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Table 4.2: The similarity score for a variety of hardware design pairs.

Case1 Case2 Case3
Circuits
pair

Score
Circuits
Pair

Score
Circuits
pair

Score

AES -0.2020 AES1 1 P.MIPS1 +0.5106
FPA AES1 ALU1

AES -0.5240 P.MIPS1 +0.9939 P.MIPS2 +0.4965
RS232 P.MIPS2 ALU2

AES -0.0250 M.MIPS1 +0.8362 P.MIPS3 +0.4949
MIPS M.MIPS2 ALU3

FPA -0.0887 S.MIPS1 +0.9982 P.MIPS4 +0.5460
MIPS S.MIPS2 ALU4

Mean -0.0831 Mean +0.9571 Mean +0.5342
∗FPA: Floating Point Adder, P.MIPS: Pipeline MIPS, M.MIPS: Multi-cycle
MIPS, S.MIPS: Single-cycle MIPS, Xi: ith instance of hardware X.

4.4.5 Piracy Detection in Obfuscated Netlists

To further evaluate our model, we test it on a dataset of ISCAS’85 benchmarks, and their

obfuscated instances in the gate-level netlist format, derived from TrustHub [3]. Obfuscation

complicates the circuit and confuses reverse engineering but does not change the behavior of

the circuit. Our model recognizes the similarity between the circuits despite the obfuscation

because it learns the circuit’s behavior. We test this capability in this experiment by compar-

ing each benchmark with its obfuscated instances and computing each benchmark’s average

similarity score, presented in Table 4.3. In the experimental results, all the similarity scores

are very close to 1. It means GNN4IP can identify the original IP in the obfuscated design

100% of the time and is resilient against attacks when the adversary manipulates the design

to conceal the stolen IP. Furthermore, we assess our model on the pairs of different netlist

instances, and the resultant average similarity is very low and closer to -1. It demonstrates

that GNN4IP is potent in differentiating the varied designs at the netlist level.
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Table 4.3: The similarity scores for obfuscated ISCAS’85 benchmarks.

Circuit Circuit Function # of circuits Score
c432 27-channel interrupt controller 24 +0.9998
c499 32-bit single error correcting 23 +0.9928
c880 8-bit ALU 30 +0.9996
c1355 32-bit single error correcting 19 +0.9993
c1908 16-bit single/double error detecting 22 +0.9999
c6288 16 × 16 multiplier 25 +0.9945

Between benchmarks and their obfuscated instances +0.9976

Between different benchmarks -0.1606

4.4.6 Comparison with Rival Methods

The current state-of-the-art IP piracy detection method is watermarking. The concept of

accuracy is not defined for it, and another metric called the probability of coincidence (Pc)

is used. It declares the probability that a different designer inserts the same watermark

and depends on the watermark signature size. Although the quantitative comparison with

watermarking is not plausible, the false-negative rate provides similar intuition in machine

learning. The state-of-the-art [127] outperforms its previous rival algorithms by reporting

Pc= 1.11×10−87 with the cost of adding 0.13% to 26.12% overhead to design. Our model

false-negative rate is zero for netlist and 6.65×10−4 for the RTL dataset which is very low and

acceptable. Compared to [127], our model has the paramount advantages of zero overhead

and resiliency over attacks against watermarking. Moreover, our model is powerful enough

to recognize the similarity between designs despite obfuscation.

To the best of our knowledge, we are the first to model hardware as a graph for IP piracy

detection. [55] utilizes a graph similarity algorithm to assess obfuscation, similar to Section

4.4.5. Due to different datasets, the exact comparison is not feasible. However, our similarity

scores on the obfuscation assessment notably better identify the original IP in the obfuscated

one and distinguish the different designs. Their computation time is in order of minutes and

significantly slower due to the graph similarity algorithm’s high complexity and lack of
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scalability.

4.5 Chapter Concluding Remarks

In this chapter, we propose a novel IP piracy detection methodology, called GNN4IP, which

does not have existing countermeasures shortcomings such as overhead and vulnerability

to attacks. Our automated framework extracts the DFGs from RTL codes and gate-level

netlist. Then, hw2vec, our graph neural network generates embeddings for graphs according

to the similarity between designs. Based on embeddings, we infer IP piracy between circuits

with 96% accuracy.
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Chapter 5

Context-Aware Adaptive Anomaly

Detection in IoT through Sensor

Association

5.1 Introduction

Shifting from the low-level circuit in Chapters 2, 3, and 4 to the system-level, in this chapter

we look into CPS security and apply the insights learned from previous chapters to IoT

systems for security and reliability assurance. Over the last decade, IoT has grabbed sub-

stantial attention due to advancements in computation and communication, and it is utilized

in many applications such as smart home, automotive, and medical aid. The rapid growth

of IoT has raised concerns about the security and reliability of these systems. There is a

tremendous amount of work in the literature that focuses on various aspects of IoT systems

such as communication network [136, 93], hardware security [87, 19, 61, 86] or software secu-

rity [11, 114, 142, 141]. However, the physical layer of IoT as a cyber-physical system (CPS)
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is overlooked. To ensure the security of CPS systems, in addition to a bottom-up security

attitude, a holistic approach is required [48, 33, 26, 35].

The ultimate goal of an IoT system is to control the environment and maintain it in the

desired state. In order to explain the important role of sensors in fulfilling this goal, we

categorize IoT systems under two categories, as depicted in Figure 5.1: (i) a closed-loop

control system, and (ii) a monitoring system. On the one hand, a closed-loop control system

consists of three major components: (i) sensors; (ii) controller; and (iii) actuators (see Figure

5.1(a)). The sensors monitor the system and send the status to the controller, which processes

the sensor readings, decides how to react, and sends the control signals to the actuators to

maintain the state of the system and environment.

On the other hand, monitoring systems mainly contain sensors that measure numerous

parameters in the system and provide the user with information to take proper action (see

Figure 5.1(b)). Although a monitoring system cannot directly manipulate the environment,

it informs a supervising user of events that happen in the system, and the user controls the

system manually. Thus, a monitoring system is eventually a part of a control loop.

Environment

Closed-loop Control System

: Attack : Fault

Breaking 

control loop

Environment

Monitoring System

UserSensor

Breaking 

control loop

ActuatorSensor Controller

Figure 5.1: Two categories of IoT systems; (a) Closed-loop control system, and (b) Moni-
toring system.

In both categories, sensors are an essential component of the control loop since sensor mea-
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surements determine the action that is needed to maintain the system in the desired state.

Malfunction or manipulation of a sensor can break the control loop [16], and consequently,

disrupt the services offered by the IoT system. Fault in a sensor device leads to the appear-

ance of anomalous values in its readings, whereas not all anomalies in sensor measurements

indicate sensor breakage because an unexpected event in the environment may cause an

anomaly as well. Observing the possible anomalies in an IoT system, we present a classifi-

cation of anomalies that facilitates the identification of the anomaly’s source:

• Environmental Anomaly (EA): The environment is the area that surrounds the

sensor, and the sensor measures its physical properties. Any anomaly in the environ-

ment affects the measurements of the sensor and disrupts it. An EA may occur as a

result of malicious activities or unexpected incidents in the environment.

• Sensing Device Anomaly (SDA): When the operation of a sensor is corrupted, its

measurements do not follow the same pattern, and an SDA is observed. This corruption

occurs because of either security or reliability issues. For instance, [192, 8] discuss some

attacks on the physical layer.

Current anomaly detection methods model the normal behavior of a device [113, 111, 54,

25] and label any deviation from expected behavior as an anomaly. Most of the works

concentrate on anomaly detection in the network layer of IoT systems [71]. In spite of

reasonable performance in network intrusion detection, these methods have a high rate of

false alarms when used with sensor signals. They misinterpret the environmental variation

in the sensors measurements as an SDA and disregard the potential information encoded in

the relation between the system and the physical world, known as the context of the system

(refer to Sec. 5.3.1 for the definition of context). Conventionally, context-aware methods are

applied to a variety of applications [9], and recently, these methods are used to secure the

authentication of co-located devices [116, 115, 161, 62].
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We propose an adaptive data-driven model for unsupervised anomaly detection

in IoT systems based on sensor measurements. The model monitors the system

to detect anomalies, identifies the type of anomaly (SDA or EA), and locates

them. To this end, we develop an algorithm to extract the patterns in sensor signals and

generate the context of a system. Then, we associate the sensors from different modalities

based on the context and cluster the sensors with similar behavior. We develop our cus-

tomized Recurrent Neural Network (RNN), followed by a consensus algorithm to detect and

localize anomalies. The consensus algorithm checks the consistency between sensors in each

cluster and determines the type of anomaly. An IoT system has a dynamic structure that

is open to changes, such as adding new nodes, removing the existing ones, or updating the

framework and protocols. In order to address the variation in IoT systems over time, our

model is designed to be adaptive and update itself.

5.1.1 Motivational Example

As a real-world IoT system, we study the environmental training center wastewater plant in

Riccione [58]. The primary purpose of wastewater treatment is the elimination of nitrate.

Nitrate contamination is a severe environmental problem because it can exhibit toxicity

toward aquatic life, present a public health hazard, and affect the suitability of wastewater.

In the treatment process, the wastewater is pumped into the tanks, which are equipped with

sensors to monitor the concentration of oxygen, ammonia, and nitrate in the water. The

actuators, such as blowers and valves, are controlled by a Programmable Logic Controller

to adjust the level of chemicals (Figure 5.2(a)). Given the importance of the nitrate level,

anomaly detection is applied to detect abnormal changes. Consider two scenarios with

an anomalous rise in nitrate level; In the first scenario, environmental changes alter the

water temperature, which affects the chemical reactions in the water tank (Figure 5.2(b), an

example of EA). In the second scenario, the nitrate sensor is broken or manipulated by an
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attacker. (Figure 5.2(c), an example of SDA). The current anomaly detection methods rely

solely on nitrate sensor data, whereas the validity of its data is questionable. Thus, they can

not find the source of the anomaly and discriminate between EA and SDA.

A recent study [58] analyzes the sensors of this wastewater plant and reveals the correlation

between ammonia, oxygen, and nitrate sensor data. More specifically, when the rise in

oxygen density reaches a certain threshold, the ammonia concentration decreases, and the

nitrate concentration increases. Further investigation reveals the scientific rationale for this

correlation; oxygen triggers the chemical reaction, which affects the ammonia and nitrate

concentration. By considering this relationship, it is possible to validate sensor signals. In

the first scenario, the incident affects all sensors. Despite irregularities in the sensor signals,

they are consistent with each other. Thus, we can conclude that the integrity of the sensors’

data is not compromised. In the second scenario, the anomaly in the nitrate sensor data

is inconsistent with the patterns of other sensor signals. It indicates that the cause of the

abnormality is fault or attack. This type of relationship between sensors is not limited to

this wastewater plant and it is observed in many IoT systems due to the availability of many

heterogeneous sensors.
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Figure 5.2: (a) Schema of wastewater plant, and synthetic sensors’ signals in the (b) first
scenario (EA), (c) second scenario (SDA).
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5.1.2 Threat Model

The proposed methodology aims to detect SDA and EA, which occur due to an unexpected

incident in the environment, reliability issue, or security breakage. Accidental damage,

degradation, and defects are examples of plausible reliability problems that cause unintended

device malfunctions. In contrast, the security breakage scenario involves an attacker who

intentionally exploits the vulnerabilities in the system. In this threat model, the adversary

has access to the sensor device and fiddles with it to inject fault, alter functionality, or

deny its service. As another possible scenario, the attacker can control the communication

channel and send faulty signals to the controller as sensor measurements. The model can

detect anomalies in a standalone sensor, but to distinguish between SDA and EA in a sensor,

it should be associated with at least two other sensors. To deceive this method, the attacker

should be able to discover how sensors are clustered, learn the correlations and patterns in

the sensors’ signals, and manipulate them in a way that imitates the same correlation as

before. It means that in addition to sensors, the attacker should have full access to the

clustering layout of sensors and the trained anomaly detection model. It is assumed that the

attacker does not have these privileges.

5.1.3 Research Challenges

Anomaly detection in the IoT sensors is challenging due to the following reasons [37]:

• The IoT data are multi-variant time-series data that are collected from a heteroge-

neous network of sensors with different modalities, data dimensions, sampling rates,

specifications, and locations.

• Low-cost and resource-constrained sensors are usually sensitive to noise, and deploy-

ment of them in IoT systems affects the quality of data.
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• Due to a lack of prior knowledge about possible anomalies and scarcity of anomalous

observations, there is not enough labeled anomalous data available, and conventional

supervised machine learning techniques are not applicable.

• IoT systems have dynamic characteristics that may be altered over time because of

environmental changes, human interaction, mobility of devices, and updating firmware

or software. Consequently, a static model fails to imitate the system in the long term.

5.1.4 Chapter Contributions

To the best of our knowledge, this is the first context-aware anomaly detection method for IoT

systems. Our novel contributions to address the aforementioned challenges are summarized

below:

• Context-aware sensor association algorithm: We develop a multi-modality clus-

tering method to associate sensors that experience similar contextual variation.

• Consensus-based strategy for unsupervised anomaly detection: We design

a methodology to pinpoint the anomalies without reliance on prior knowledge about

possible anomalies.

• Adaptive data-driven model: Our proposed anomaly detection model is period-

ically updated at run-time to adapt itself to new states caused by variations in the

system.

5.2 Related Works

Anomaly detection algorithms can be classified into the following main categories [58]:
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Statistical or Probabilistic Methods: These methods create a statistical or probabilistic

model based on historical data, which represents normal behavior [63, 140]. Upcoming

observation is then compared with this model, and it is marked as an anomaly if it is

statistically unlikely, or the probability of such observation is low.

Proximity Methods: These methods compute distances between data points to differ-

entiate between anomalous and normal data. Two well-known techniques that fall in this

category are the Local Outlier Factor [20] and clustering [66] methods.

Predictive Methods: In these methods, the anomaly detection problem is converted to

obtaining an accurate sequence prediction algorithm that captures the recent and long-term

trends in data sequences and reproduces them to predict future measurements. Afterward,

the predictions are compared with the new observations to spot deviations from expected

normal behavior. Recurrent Neural Networks (RNN) are capable of capturing the relation-

ship between measurements over time because the feedback loops in the hidden layer of RNN

can imitate memory.

Long-Short Term Memory (LSTM) layer was introduced in 1997 by [70] to overcome the

shortcomings of RNN. It has gained a lot of attention lately because of its high accuracy in

sequence prediction [113, 111, 25]. Conv-LSTM encoder-decoder is one of the neural network

architectures that is used in the literature to enhance sequence prediction performance [92,

96, 179, 165, 99]. It contains convolutional layers to extract the essential features of input

sequences and LSTM layers to perform the sequence prediction based on the features. Then,

the anomaly is identified based on the reconstruction error of the model. LSTM-LSTM

encoder-decoder [112, 125, 193] is another popular architecture that follows a similar strategy

but it utilizes LSTM layers instead of convolutional layers for feature extraction.

Our methodology inherits the advantages of both probabilistic and predictive methods. We

implement and compare the Conv-LSTM and LSTM-LSTM encoder-decoder as our predic-
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tive models. Then, the reconstruction error, derived from the difference between real and

predicted values, is modeled by a Multivariate Gaussian Estimator to detect the anomaly.

5.3 Anomaly Detection Methodology

Our proposed methodology (see Figure 5.3) detects SDA and EA in an IoT system to ensure

sensing devices operate as they are expected.
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Figure 5.3: The architecture of our methodology in the training and inference stage.
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5.3.1 Context Generation

The context of a system is defined as an abstraction formed by extracting features from system

circumstances and individual element constructs [98]. It describes the condition in which the

system is operating and affects the outcome of the system. The first step for obtaining our

context-aware data-driven model is to generate the context of the system by encoding its

physical properties. Understanding and transforming this information such that it can be

mathematically described is called context generation. Following the strategy presented

by Sadeghi et al. in [115], we convert all sensor signals to binary fingerprints regardless of

their modality. The procedure of fingerprint generation has the following steps:

Step1: Each sensor continuously monitors the environment by taking a measurement each z

seconds. The value z depends on the sampling rate of the sensor and may vary for different

sensors. In a time window of q seconds from timestamp t, the sensor records v = [q/z]

measurements and forms a snapshot vector St = (st, st+z, . . . , st+z(v−1)).

Step2: The ϵrel is a pre-defined threshold that controls the amount of variation that is said

to conform to a change. The values obtained in a snapshot are averaged and the variation

bit b(t) is calculated as follows:

St =
1

v

∑
s∈St

s, b(t) =


1, if

∣∣∣∣St+z−St

St

∣∣∣∣ > ϵrel

0, o.w.

Step3: Finally, a sequence of k+1 consecutive snapshots seq(t, t+kz) = (St, St+z, . . . , St+kz),

has an associated fingerprint F (seq(t, t+ kz)) = (b(t), b(t+ z), . . . , b(t+ (k− 1)z)). The fin-

gerprints of all the sensors with different sampling rates have the same length because each

snapshot is the average of sensor measurements in a particular time interval. Figure 5.4

illustrates the process of generating the fingerprint of a temperature sensor.
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Figure 5.4: Extracting the fingerprint of a temperature sensor.

5.3.2 Sensor Association

Although each sensor’s measurements differ based on its modality and physical location,

the sensors that are affected by the same event follow similar patterns in their fingerprints.

Based on this observation, we develop a sensor association algorithm that comprises two

primary steps: I) pattern extraction and II) sensor clustering.

In the first step, we split each fingerprint into smaller sub-sequences, and cluster the sub-

sequences of different sensors that have a similar binary pattern. For simplicity, assume that

Fi = F (seq(t, t+ zk)i) represents the fingerprint of the sensor i, which is split into d smaller

sub-sequences fi
j as follows:

Fi −→ (fi
1, fi

2, . . . , fi
d), d =

k − o

l − o

where l and o are the hyperparameters that determine the sub-sequences’ length and their

overlap accordingly. Afterward, our clustering algorithm is performed on the sub-sequences

of index j (j ∈ [1, d]) of all sensors (F1
j, F2

j, . . . , Fn
j) to group the ones with similar binary
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patterns. Hence, it assign a pattern number pji ∈ {0, 1, ..., pjmax} to fi
j. Next, the clustering

is repeated for index j + 1, and after d iterations, all sub-sequences are clustered. Notice

that pjmax which represents the number of clusters for index j may vary for different index

values. Eventually, for each sensor the pattern numbers form a pattern history vector Pi =

(pi
1, pi

2, . . . , pi
d).

In the second step, one final clustering is performed on the given set of sensors pattern history

Pi to determine the sensors cluster layout C = c1, c2, ...cg where ci represents a cluster and

g is the number of sensor clusters. The sensors with similar contextual variations exhibit

the same patterns in many sub-sequences and we cluster them together. An example of

the sensor association procedure is demonstrated in Figure 5.5. In this example, the final

clustering group the first and third sensors are grouped together.

Binary fingerprint of sensors Extracted patternStep

1

2

3

4

5

F1:  0  0  1  1  0  0  1  1  1  0  1  1  0    𝑃1=(p1
1 ∗, … )

F2:  0  0  1  1  1  1  1  0  0  1  0  1  1    𝑃2=(p2
1 ∗, … )

F3:  0  0  1  1  0  0  1  0  1  0  1  1  0    𝑃3=(p3
1∗, … )

F1:  0  0  1  1  0  0  1  1  1  0  1  1  0   𝑃1=(p1
1, p1

2, p1
3, p1

4)
F2:  0  0  1  1  1  1  1  0  0  1  0  1  1    𝑃2=(p2

1 , p2
2, p2

3, p2
4)

F3:  0  0  1  1  0  0  1  0  1  0  1  1  0    𝑃3=(p3
1 , p3

2, p3
3, p3

4)

F1:  0  0  1  1  0  0  1  1  1  0  1  1  0 𝑃1=(p1
1, p1

2, … )
F2:  0  0  1  1  1  1  1  0  0  1  0  1  1 𝑃2=(p2

1 , p2
2, … )

F3:  0  0  1  1  0  0  1  0  1  0  1  1  0 𝑃3=(p3
1 , p3

2, … )

F1:  0  0  1  1  0  0  1  1  1  0  1  1  0    𝑃1=(p1
1, p1

2, p1
3, … )

F2:  0  0  1  1  1  1  1  0  0  1  0  1  1    𝑃2=(p2
1 , p2

2, p2
3, … )

F3:  0  0  1  1  0  0  1  0  1  0  1  1  0    𝑃3=(p3
1 , p3

2, p3
3, … )

Given ൞

𝑃1=(p1
1, p1

2, p1
3, p1

4)

𝑃2=(p1
1, p2

2, p2
3, p2

4)

𝑃3=(p1
1, p1

2, p3
3, p1

4)

:
clustering is performed 

on the sensors pattern 

histories

Results Sensor 1 is 

associated with 

sensor 3

* If and pi
t have the same color, pi

t = pj
t and both represent the same pattern in the fingerprint.

** In this example, o=1, l=4, and d=4.

Figure 5.5: The procedure of extracting the patterns in sensor signals and clustering them.
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All the mentioned clustering processes are done using our customized clustering algorithm

which minimizes the distance between data points in the same cluster, the intra-cluster

distance (IC), and maximizes the distance among data points of one cluster from other

cluster data points, the inter-cluster distance (OC). The distance metrics are defined as

follows:

IC = ICi, ICi =
1

|ci|
∑

m,k∈ci

Hamming(Pm, Pk)

OC = OCi,j, OCi,j = min
m∈ci,k∈cj

{Hamming(Pm, Pk)}

Where ci and Pm represent a cluster and the pattern history of sensor m respectively. Al-

gorithm 3 is a Pseudo-code that elaborates on our clustering algorithm. Our clustering has

the following properties:

• It can be applied to data with string type because the distance metrics are based on

the Hamming distance function, which calculates the number of non-matching bits.

• The number of clusters is automatically tuned. Initially, clustering is performed with

an upper bound of the number of clusters. Afterward, the algorithm automatically

removes the nodes which are not close to any cluster and eliminates clusters with two

nodes to reach the optimum value for the number of clusters.

After sensor association, we evaluate the system to ensure that there is no standalone sensor

that is not clustered. A standalone sensor is vulnerable because it is not related to any group

of sensors that can verify its proper operation. In this case, anomaly detection can still be

applied to the independent sensor individually, but the SDA and EA are indistinguishable.
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The user is warned about this vulnerability in sensors and can resolve the issue by adding

more sensors to the system.

Input: Fingerprints: F ∈ IRn×k, number of sensors: n, sub-sequence length: l,
overlap: o

Output: Cluster layout C = {c1, c2, . . . , cg}
Initialize d = k−o

l−o

Initialize pmax = max # of patterns in sub-sequence
Initialize itermax = max # of iterations
Initialize the center of clusters randomly
foreach j ∈ {1, 2, . . . , d} do

foreach i ∈ {1, 2, . . . , n} do
Split fingerprint Fi to obtain sub-sequences fi

j;

Clustering:
foreach iter ∈ {1, 2, . . . , itermax} do

foreach i ∈ {1, 2, . . . , n} do
pji = Argminx∈CHamming(f j

i , center(x));

foreach x ∈ {1, 2, . . . , pmax} do
center(x) = mean({f j

i |p
j
i = x});

if no changes in center(x) then
break;

foreach x ∈ {1, 2, . . . , pmax} do
Calculate inter-cluster (OC) metrics;
if Hamming(F j

i , center(p
j
i ) > OC then

Remove F j
i from cluster pji ;

Add F j
i in unclustered nodes;

Update pjmax;

if |ci| < 3 then
Remove cluster x;
Update pjmax;

Add clusters to pattern histories Pi;

Perform the clustering again on pattern histories Pi, i ∈ [1, n] to associate sensors;
return Sensors Cluster layout C = {c1, . . . , cg}

Algorithm 3: Customized clustering algorithm for extracting patterns in sensor finger-
prints and sensor association.
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5.3.3 Predictive Model

The next module of our methodology is the predictive model that predicts the future mea-

surements of sensors according to the clustering layout and history of measurements. We

construct a Recurrent Neural Network (RNN) for each cluster of sensors as the predictive

model. As it is depicted in 5.6, our RNN comprises LSTM encoder-decoder and dense layers,

which encode the features of input sequences of length li and predict the future sequences

of length lo based on the encoded features. Sequences of data are derived from the input

time-series signals using the sliding window technique. Afterward, the sequences are scaled

through a Min-Max Scaler before being treated by the encoder because input signals come

from multi-modality sensors with different signal ranges. Eventually, we have a set of pre-

dictive models DT = {M1,M2, . . . ,Mg} where g is the number of clusters in the system and

Mi represents the model for cluster ci. Given cluster ci that contains ni nodes, the model Mi

takes as input a matrix Xi ∈ Rli×ni to predict another matrix Yi ∈ Rni×lo . On top of pre-

dictive models, Multivariate Gaussian Estimators are trained to learn the probability

of finding a particular error vector. This probability is used to ascertain whether the errors

between predictions and real measurements correspond to the system’s normal behavior or

an anomaly has occurred. A multivariate Gaussian distributor Gi = N (µi, σi) is fitted on the

reconstruction error matrix Ei, which is the difference between the real values and predicted

values. The parameters µi and σi are computed using Maximum Likelihood Estimation.

µi =
1

m

m∑
k=1

ekij = eij , σi =
1

m

m∑
k=1

(ekj − µj)(e
k
j − µj)

T
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Figure 5.6: The architecture of RNN used as a predictive model.

5.3.4 Anomaly Detection

In the training stage, the predictive models and estimator modules are periodically used at

run-time to infer anomalies. The frequency in which anomaly detection is performed can

vary depending on the system specifications. At the run-time, an input measurement xt is

compared with model prediction yt, and the reconstruction error et is calculated. Then, xt

classified as anomalous if pt < α, where pt is the probability of obtaining the error vector

given by the Gaussian estimator G. α is a predefined threshold value, and it is tuned to

maximize the F-score of the model.

When anomalous data is discovered, we utilize our consensus algorithm to differentiate be-

tween EA and SDA. EA occurs as a result of an incident in the environment. If the EA

causes an anomaly in a sensor signal, the correlated sensors are affected by the event and

show abnormal changes in their signals. In contrast, SDA influences the sensors individu-

ally and results in an anomaly in one or some of the sensors in a cluster. For each cluster,

the consensus algorithm inspects the consistency of the sensor behaviors. It uses a voting

mechanism to check if all sensors in a cluster agree on the occurrence of an environmental

incident. To account for inertia in the physics of the system, we check the consensus in the

time intervals instead of data points.
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5.3.5 Model Adaptation

Due to the high variation in the IoT system and environment, we add the property of

aliveness to our method, which means the model automatically gets updated to adapt to

the system alteration and make more accurate predictions. As Figure 5.3 demonstrates, the

sensor association, predictive model, and estimator modules are trainable. There are two

levels of updating the model; i)complete update, which retrains all trainable modules in order,

and ii) partial update, which only retrains the predictor model. These update processes are

triggered under three circumstances:

• Change in the number of sensors in the system (either added or removed) triggers

complete update.

• Each time the sensors send data, the anomaly detection model first validates the new

data. Afterward, partial update is triggered using the new anomaly-free data.

• If complete update is not provoked during a fixed interval of time tretrain, it is triggered

automatically. This way, the model accounts for changes in the environment, location,

and placement. This parameter tretrain can be tuned by the user, depending on how

frequently the system layout is changed.

5.4 Results and Evaluation

5.4.1 Fog Computing Architecture

Cloud servers are the common and potent available computation resource in IoT systems.

However, the bandwidth of network and data transmission become a bottleneck due to the

rapid expansion of IoT nodes and the quantity of data. As a result, fog computing has
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emerged, which provides storage, computation, and application services closer to end-user

with dense geographical distribution [102]. In the fog architecture (Figure 5.7), the bottom

layer comprises a heterogeneous network of edge nodes with limited resources. The fog nodes

in the middle layer collect and process the data from edge devices and communicate to the

cloud via the internet.

Our methodology is fog-empowered, and the developed model for our target IoT system is

implemented on a fog node. For IoT systems with a high density of devices and a massive

volume of data, our method is scalable, and it still supports fog computing. Basically, the

LSTM encoder-decoder networks are responsible for most of the computation in our method.

Thus, instead of training an extensive network for the whole system, we construct a small

network for each cluster of associated sensors that can be distributed between fog nodes.

Furthermore, we perform several optimizations to meet resource constraints. In the sensor

association, we use the binary fingerprint instead of time-series signals, which lowers storage

usage and complicity. The sliding window technique in the LSTM network contributes to

reducing storage usage as well.

5.4.2 Experimental Setup

To build and evaluate our methodology, we implement an IoT testbed in our laboratory. Our

experimental setup consists of an Ad-Hoc network of multi-modality IoT sensors, a Software-

Defined Radio (SDR) connected to an edge computing device, a gateway, and a laptop as

a fog node. For this particular research, we have used 62 sensors that measure 13 different

physical parameters (see Table 5.1). The acoustic sensor is a wide-range microphone with

two right and left channels that captures the sound of the space and its output is amplified

and recorded by the handy recorder ZOOM-H6. The raspberry pi board, which is directly

connected to ZOOM-H6, collects its data and transmits it over the Internet and this part
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Figure 5.7: Fog computing hierarchy in IoT systems.

of the system simulates devices such as Google Home or Alexa. The other sensors are on

the low-power embedded boards operated by TinyOS which are equipped with a wireless

communication module based on IEEE 802.15.4 standard. We have implemented the IEEE

802.15.4 standard in the SDR device (USRP-B210) and created a wireless network of sensors

in which SDR collects the sensor’s data and send commands to them. SDR is connected to

an edge computing device, a raspberry pi board, which works as a base station and gathers

all data. The base station contains a Wi-Fi module and links the local network of IoT devices

to the Internet through a router. It provides the system with the capability to be monitored

on any device which is connected to the internet by looking up the base station and logging

in using the password. The algorithms and anomaly detection model are implemented on

a Laptop with 8Gb DDR4 RAM and the Intel(R)Core(TM) i5-6300HQ 2.3GHz processor,

which receives the data from the base station and do the computations as a fog node in the

IoT system. A powerful router such as Qotom Mini PC Q500G6 has similar capabilities

and is capable of running the model at the gateway level. Figure 5.8 demonstrates the

components of our experimental setup and their connections.
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Figure 5.8: The scaled-down version of the experimental setup.

5.4.3 Sensor Association Evaluation

One of the contributions of our clustering algorithm is the capability to automatically tune

the number of clusters and remove the ones which lack a sufficient number of sensors or

have sensors that are far apart regarding the hamming distance between their fingerprints.

Initially, we set the number of clusters to 20 in our system under test, and the algorithm

reduces the number to 6. In order to assess the performance of the sensor association method,

Inter-cluster and Intra-cluster distances are calculated for all clusters and plotted in Figure

5.9. The notable difference between the inter-cluster distance and the intra-cluster distance

indicates that related sensors are clustered together, and the clusters are well separated from

each other.
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Table 5.1: List of sensors in our experimental setup.

Sensor Sensor board # of sensors

Temperature MTS-CM5000 12
Humidity MTS-CM5000 12
Visible light MTS-CM5000 12
Infrared light MTS-CM5000 12
Force and load MTS-CO1000 2
Tilt MTS-CO1000 2
Accelerometer MTS-CO1000 2
Presence detector MTS-SE1000 2
Magnetic MTS-SE1000 1
CO 2 MTS-AR1000 1
CO MTS-AR1000 1
Dust MTS-SH3000 1
Acoustic ZOOM-H6 2

Another validation method used is physical intuition, which explains the relationships among

the associated sensors. For example, co-located sensors experience a similar context. There-

fore, they are expected to be associated with each other. This intuition supports the result

of our algorithm in which co-located humidity, temperature, and light sensors are clustered

together, as it is shown in Figure 5.11. Another intuition behind the fact is that any physi-

cal process may have multi-modality emissions, and the sensors which capture the emission

of one incident should be clustered together. It explains the clustering of PIR, vibration

sensor (accelerometer and force), magnetic door switch, and acoustic sensor since they all

capture the event of entrance through the door. These observations indicate that this strat-

egy is capable of finding relations between sensors with similar contextual variations, further

confirmed by the anomaly detection results in the next section.
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Figure 5.9: The inter-cluster and intra-cluster distances of sensor clusters.

5.4.4 Anomaly Detection Evaluation

The anomaly detection model is unsupervised, and it is trained only on normal data and

evaluated using a validation dataset with synthetic anomalies. To analyze the results, True

Positives (TP), False Positives (FP), and False Negatives (FN ) are counted in the results

to compute the validation scores. Although the most intuitive performance measure is ac-

curacy, which is the ratio of correctly predicted observations to the observations, it is not

appropriate for unbalanced datasets such as anomaly detection, where one category repre-

sents the overwhelming majority of the data points. Therefore, we use the Precision(P),

Recall(R) and Fβ score as performance metrics.

P =
TP

TP + FP
,R =

TP

TP + FN
,Fβscore =

P ×R× (1 + β2)

β2 × P +R

Recall expresses the ability to find all anomalous observations in a dataset, while preci-

sion expresses the proportion of the observations our model labels as an anomaly, actually

anomalous. Fβ score is the weighted average of precision and recall which provides a better

intuition toward both key important capabilities of the model. We implement the current

state-of-art methods for anomaly detection in time-series data. Due to the importance of
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precision, F0.5 score, which favors precision over recall, is calculated for evaluation in ad-

dition to F1 score. According to the results in Table 5.2, our methodology has the best

performance with the highest F scores and precision.

Table 5.2: Comparison with the state-of-art methods

Method
Base
Model

Context
Aware

Precision Recall
F0.5

score
F1

score
IoT-CAD LSTM Yes %92 %56 %81 %70

[111] LSTM No %64 %44 %58 %52
[100] Conv LSTM No %51 %95 %56 %66
[104] One Class SVM No %89 %25 %60 %39

5.4.5 Robustness

We evaluate the robustness of our methodology by adding three different types -pink, Gaus-

sian, and uniform- of noise signals to the sensor measurements and observing the performance

of the model. As Figure 5.10 indicates, although the precision of anomaly detection is de-

creased as the noise power increases in all models, our model is more resilient to noise and

maintains high precision.

5.4.6 Case Study

As a case study, we analyze a cluster of associated sensors, which includes three humidity,

temperature, and light sensors located in close proximity. As shown in Figure 5.11, the

predicted values are very close to the real measurements which indicates the competency of

our method to learn the normal behavior of sensors and predict the future measurements

precisely. Furthermore, we observe that the pattern of changes in the sensor signals is similar.

As the marked areas of Figure 5.11 highlight, any drop in the trend of humidity sensors comes

with an increase in the trend of other sensors. It confirms the correlation among the sensors
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Figure 5.10: Evaluating the resilience of different models to pink, Gaussian, and uniform
noise signals.

as the sensor association algorithm suggests. We simulate a fire incident in the environment

as an EA, and the measurements from all sensors show an anomaly.

5.4.7 Timing Analysis

The timing of the method depends on the number of sensors, length of time-series signals, and

computing platform which is used to implement the model. We implement our methodology

on a fog computing platform and train it on data collected from 62 heterogeneous sensors

for 8 days (roughly, 2.3 million data measurements). The training stage starts with the

fingerprint generation process, which is repeated for all sensors (62 times). The sensor

association process involves 604 times performing clustering to cluster the patterns and then

sensors. Eventually, the clustering layout and sensor measurements are used for training the

predictive model in an iterative process until the convergence of the model. Although the

initial training is time-consuming, it occurs once, and the process of anomaly detection on
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Figure 5.11: The real and predicted values of three correlated sensors; light, humidity, and
temperature sensors.

the new measurements using the trained model only takes 0.532 seconds, which means it is

real-time in our system under test. As mentioned in section5.3.5, the retraining process is

triggered under some conditions, but it is faster than initial training since it is limited to

new data and does not interrupt the anomaly detection (Refer to Table 5.3).

Table 5.3: Timing results.

Process Recurrence Time (seconds)
Fingerprint generation 62 2.98
Training sensor association 604 10.54
Training predictive model 1 2472.20
Anomaly detection periodic 0.532
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5.4.8 Aliveness Assessment

To assess whether updating the model is beneficial for maintaining the model’s performance

over time, we test it in three scenarios. The first and second scenarios simulate the effect of

system degradation or environmental variation over time. In this regard, the measurements

of temperature sensors are increased 5oC in case 1, and 15oC in case 2 for a day. The third

scenario simulates changes in the layout of the IoT system by eliminating a sensor.

The model is initially trained on the original data before the occurrence of scenarios and

tested with synthesized data from the cases. In the tests, we examine the effect of the

partial update, complete update, and no update on the precision of the model, refer to

Figure 5.12. According to the results, the variation in cases 1 and 2 led to a significant

drop in the precision of the model without updating while updating the model, effectively

preserving the high performance because of retraining the predictive model. The third

case highlights the advantage of the complete update. Any alteration (add or remove) in

the number of sensors in the IoT system changes the input layer dimension of the neural

network. Thus, the model cannot perform anomaly detection in case 3 unless the sensor

association is retrained to update the layout of sensors, and the model is reconstructed on

the new layout. Results confirm that the complete update is successful in maintaining the

performance despite removing a sensor. Based on this experiment, it can be concluded that

being adaptive is crucial for the models used for IoT.

5.5 Chapter Concluding Remarks

This section presents a novel context-aware adaptive data-driven model for anomaly detec-

tion in IoT systems. It generates context information by encoding the relations among the

IoT sensors and clusters the correlated sensors based on similar patterns, and contextual
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Figure 5.12: Analysis of the effect of the partial and complete update on preserving the
performance of the model.

variation. According to the extracted context, a predictive model detects the anomalies,

and a consensus-based algorithm determines the type of detected anomalies and pinpoints

their source. Our proposed methodology can identify the anomalies with a 92% precision

in real-time on a fog computing platform. Compared with other methods, it has higher

performance and the capability to update itself to account for variations in the system and

environment.
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Chapter 6

Multi-Modal Data Fusion for

Anomaly Detection in IoT Physical

and Network Layers

6.1 Introduction

The Internet of Things (IoT) presents an interconnected network of sensors and devices

that can communicate, observe their internal and external environments and interact with

the environment independently of humans. We are surrounded by numerous IoT devices as

they are extensively deployed in various applications such as industrial systems, health care,

energy management, smart home, and traffic control. Due to the technological advancement

in manufacturing cost-effective smart devices, the IoT is undergoing rapid expansion with

estimates of a global economic impact of up to $11.1 trillion per year by 2025 [44]. Since IoT

systems often embody inexpensive devices with low power and computational capability, the

system becomes vulnerable to attack and fault. Consequently, the widespread usage of IoT
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and its critical application accentuates the importance of ensuring its security and integrity.

IoT architecture (Figure 6.1) comprises the physical, network, and application layers that

handle the interaction with the physical environment, internal communication between de-

vices, and cloud servers.

Chapter 5 introduces a context-aware anomaly detection model tailored to IoT sensors, un-

derscoring the critical role of context and the relationships between components in discerning

system behavior. Yet, the multidisciplinary nature of IoT extends beyond the sensor layer,

complicating system state monitoring. As such, a comprehensive solution that traverses mul-

tiple domains is necessitated. In the literature, considerable approaches have been proposed

to detect anomalies in time-series sensor data and many others to perform intrusion detection

by network analysis, but the shared context among the sensors and network is overlooked,

and a holistic approach is missing to detect and differentiate attacks toward communication

network as well as anomalies in data. To close the gap, we propose a multi-modal sensor

and communication data fusion methodology, which observes the sensor data and communi-

cation data to detect anomalies and attacks in real-time. The methodology proposed in this

chapter integrates the understanding gleaned from graph learning as explored in Chapters 2,

3, and 4, along with insights from the context-aware anomaly detection approach discussed

in Chapter 5.

6.1.1 Motivational Example

It is plausible for people who use wireless devices in outdoor environments to have different

connectivity experiences in the same location on different days of the year. As a matter

of fact, multiple pieces of research in the literature study the effect of environmental con-

ditions, such as temperature, humidity, etc., on wireless communication. Notably, in [101],

the authors show that temperature has a significant negative impact on the received signal
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Figure 6.1: The IoT system architecture comprises physical, network, and application layers.

strength indicator (RSSI) while relative humidity is more impactful for below 0◦C temper-

atures. Furthermore, their results show that ”between the individual channels, there can

be large variations in RSSI behavior, both within and between individual links” which they

faintly relate to possible multipass propagation in the network. The findings of this paper

prove that although building an exact model of the relationship between the environmen-

tal factors and RSSI might not be practical for a given environment, a statistical model

(e.g., linear regression) can create an explanatory correlation between these two seemingly

unrelated measurements, particularly for low power wireless communication networks.

While the correlation between RSSI and temperature/humidity has never been directly used

for anomaly detection, the general concept of multi-modal data fusion and anomaly detection

has been investigated, which we cover in section 6.2.2. Inspired by this example, in this

paper, we introduce a methodology that creates the opportunity to connect/relate different
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collectible modality values in an automated fashion without the field expert investigation

requirement. Then, we address the challenges of data fusion and use state-of-art machine

learning to pinpoint the occurrence of anomalous in an IoT network.

6.1.2 Research Challenges and Opportunities

Several studies have proposed solutions to anomaly detection in IoT, specifically for time-

series sensors. Since IoT devices like sensors generate large volumes of time-series data,

dimensionality reduction is an essential part of data processing. Therefore, one challenge

researchers face is implementing a model that reduces the size of data without a great deal

of loss with respect to feature information. Potential problems that are encountered include

dimensional explosion and concept drift [29]. As time progresses, more data is collected,

which includes noise (e.g., due to system failures). Noisy data can impact the prediction of

anomalies, leading to inaccurate results. Moreover, as time goes on, the baseline for what

is considered normal or an anomaly may change (concept drift), and this can also affect the

accuracy of predicting abnormalities. Anomaly detection becomes even more difficult with

multivariate time-series data since the number of features increases the complexity of the

system.

As a Cyber-Physical System (CPS), IoT has unique characteristics that arise from intelli-

gent devices’ interaction with each other and the physical environment. As a result of these

interactions, a mutual knowledge among system nodes exists, known as context. In addi-

tion to internal communication, the environment affects the components of the system, and

some context stems from shared physical properties. For example, the sensors located close

to or monitoring similar physical phenomena tend to be correlated. The context provides

invaluable information for comprehending the system’s behavior and identifying abnormal

incidents. However, infusing the topology and context knowledge into the model is compli-
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cated. To tackle its challenges, we employ a graph representation to model the IoT system

and perform graph learning using the Graph Neural Network (GNN) for automatic feature

extraction and predicting the normal state of the system. Further, we flag the observations

that deviate from the normal state as anomalous incidents and trace the anomaly back to

its source to identify the underlying attack or fault that has threatened the system’s security

and integrity.

6.1.3 Chapter Contributions

In summary, our contributions are listed as follows:

• We propose a novel holistic approach to the security and integrity of IoT systems. It

performs selective sensor and network data fusion to detect anomalies and attacks on

the communication network and physical layout of the system.

• We extract the shared context among multi-modal components of the system through

time-series data analysis, and we selectively fuse only related data in the data fusion

and machine learning processes.

• We propose a heterogeneous graph representation for IoT systems that embodies sens-

ing devices and communication network parameters as nodes and correlation between

component pairs as a connection.

• We leverage the state-of-the-art machine learning model, graph neural network, to

automatically extract key features of the system from its graph representation and

detect anomalous activities.
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6.2 Related Works and Background

Our proposed methodology in this paper closely correlates with three well-established re-

search areas: Network Intrusion Detection, Sensor Data Fusion, and GNN for anomaly

detection. In the following subsections, we discuss the related works pertaining to these

research areas.

6.2.1 Network Intrusion Detection

Network Intrusion Detection (NID) is an abnormality detection method that analyzes net-

work data to identify deviations from normal traffic patterns. Deep learning approaches in

NID have been on the rise due to their ability to take advantage of the most relevant features

of the input data. Over the years, various implementations of deep learning models have

been employed to overcome a diverse set of challenges for NID. D-PACK [73] proposes using

a Convolutional Neural Network (CNN) and an Auto Encoder (AE) for categorizing traffic

patterns and identifying anomalies with only the first few packets per flow. While D-PACK

achieves nearly 100% accuracy and precision in detecting malicious anomalies, the approach

fails to consider memory consumption, particularly with an extensive network. Kim et al.

[77] forms a CNN-based model for denial-of-service (DoS) detection. Compared to a previ-

ously used Recurrent Neural Networks (RNN) model, their model is able to achieve higher

accuracy. [78] uses a local outlier factor and AE to detect anomalies caused by malware

intrusion. In [78], the system behavior versus network behavior is modeled separately in

order to increase the model accuracy.

Most recently, E-GraphSage [97] proposes a GNN model to capture the flow of network data

in addition to the topological information showing the flow’s interrelationships endpoints in

the graph. IP addresses were the graph nodes, and the network flows were the edges. It
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uses the GraphSage algorithm to create node embeddings and also creates edge embeddings.

Considering both the node and edge features is what makes E-GraphSage outperform other

state-of-the-art classifiers. However, an area of concern is its space and time complexity.

Regarding cyberattacks at the physical layer, such as spoofing and wormhole attacks, [126]

proposes an Adaptive Neural Network (ANN) that detects attacks based on changes in

the channel characteristics. The model consists of a data-adaptive matrix that records

temporal features that are later fed to a CNN to detect spoofing attacks. The authors exploit

Received-Signal-Strength (RSS) vectors to train and test the model. They also perform

anomaly detection by observing changes in the Signal-to-Noise Ratio (SNR) values. Liao et

al. [91] leverage a mixture of machine-learning techniques for physical layer authentication in

wireless sensor networks that can resist spoofing attacks. Their approach includes deep neural

networks, CNN, and convolution preprocessing neural networks that act per each sensor

data node separately and therefore do not leave a significant effect on the communication

resources.

6.2.2 Data Fusion

Machine learning has grabbed substantial attention in numerous applications in the last

decades, and due to its high potential, it is currently the most approach for data fusion and

time-series data analysis. In the literature, CNN and Recurrent Neural Networks (RNN)

have been utilized for anomaly detection since both spatial and temporal information are

needed to create the model and generate predictions. Yin et al. [178] create a model that

integrates a CNN and a recurrent autoencoder to detect anomalies in time-series data. A

two-stage sliding window is used as a preprocessing step to extract temporal features so

that the later stages could have more temporal relevance. While their results outperformed

many other deep learning approaches, their model only works for univariate time-series
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data. Forecasting multivariate time-series data is more intricate and complicated with a

larger size. This challenging problem calls for a different approach that assesses data from

various modalities and considers inter-relation information.

To unravel anomalies arising in periodic multivariate time-series data, Zhang et al. [187]

propose Dual-Window RNN-CNN. The purpose of the Dual-Window is to capture the peri-

odicity of the time-series data. An outer window detects anomalies between inner windows

according to their time dependencies. Due to the high data acquisition frequency, the multi-

head Gate Recurrent Unit (GRU) is used to compress the data and learn the temporal

features of the data. The CNN-based Autoencoder then discovers the temporal and spa-

tial dependencies of the features extracted by the GRU. Despite the high accuracy of their

model and suitability for high acquisition frequencies in IoT, their datasets, namely Yahoo

Benchmark and Numenta Anomaly Benchmark, have a small number of anomalies in the

sample sets, and further studies are required [29].

[22] handles multivariate time-series anomaly detection in sensors with a deep convolutional

clustering-based model. It uses a deep one-dimensional CNN autoencoder. The authors

split the AE latent space into discriminative and reconstructive latent variables. A K-means

clustering loss was used for the discriminative latent variables to increase the model anomaly

detection performance.

6.2.3 GNN for Anomaly Detection

The typical deep learning approaches for anomaly detection are reconstruction models (i.e.,

autoencoders- AE or variational autoencoders- VAE) or forecast models (e.g., LSTMs).

When they are used for multivariate time-series anomaly detection, they either treat each

time-series variable independently or use stacks of CNN and GNN layers to correlate multi-

variate time-series signals to enrich the data used by the anomaly detection models. While
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CNN is mostly used for handling Euclidian data, Graph Neural Networks have been get-

ting attention as a promising method for anomaly detection due to their ability to model

interdependencies among data and work with non-structured data.

MTAD-GAT [191] combines a forecasting-based model with a reconstruction-based model.

It models the correlations between each univariate time-series feature and keeps track of the

temporal dependencies within each signal. The method uses two graph attention layers - a

feature-oriented attention layer and a time-oriented graph attention layer. A GRU network

is later used to capture long-term dependencies.

GDN [41], an attention-based GNN approach, also focuses on anomaly detection in multi-

variate time series, specifically sensor data. One of its main goals is to learn the complex

non-linear relationships between sensors. The graph structure is constructed by finding the

cosine similarity between nodes and creating the edges in the graph by choosing the Top-K

highest values. Graph attention-based feature extraction is used to train the model. While

the approach is one of the better-performing GNN approaches (high precision, recall, and

F1-score), it does not consider temporal dependencies, which can provide crucial information

about the behavior of the system.

Combining a transformer with a GNN, GTA [28] uses a transformer-based architecture to

learn a graph structure, performs graph convolution, and models temporal dependency for

multivariate time-series anomaly detection. GTA places emphasis on learning the topological

structure of the graph. There is an anomaly score for each time stamp. In the end, the final

anomaly result is determined by multiple different thresholds. Instead of using the sensor

correlation, this approach uses the Gumbel-Softmax Sampling strategy to determine if there

is a connection between two nodes in the graph. Then, dilated convolutions are applied to

extract information from each node to get the long-term temporal context. The outputs are

then fed to the transformer. While the results for recall and F1-score outperform many of

the state-of-the-art approaches, the model seems to have a tendency for false positives as
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the precision tends to be low.

In general, data on a network can be massive and multi-dimensional, which slows down the

training of the neural network. This becomes even more challenging with time-series data

since the data volume grows over time. Dimensionality reduction is the key to combating

this issue. However, this must be done in a way that extracts necessary features from the

data so as to avoid compromising the accuracy of the model. Recently, there have been works

that use knowledge graphs in order to facilitate feature extraction and anomaly detection. A

knowledge graph stores data in RDF format (a standard data format for metadata), meaning

its nodes are entities, and the edges represent the relationships between them. They are

useful in machine learning because of their ability to capture information between entities

in a system. Comparing unforeseen data to the pre-existing data in the graph unravels the

anomalies.

Garrido et al. [57] use machine learning with knowledge graphs in order to detect anoma-

lies in industrial automation systems. Their approach constructs a knowledge graph from

the database that continuously stores the data collected from their industrial automation

prototype. The knowledge graph combines information about the automation system, ob-

servations at the network level, and observations at the application level. Data is collected

to form a baseline and is then used to perform unsupervised training on the link-prediction

algorithm. The anomaly detection is evaluated by introducing events that would not occur

during normal operation. While the model does seem to make predictions that are in align-

ment with what is expected, there was not much statistical information provided that could

give a better evaluation of the model in such a way that it could be compared to similar

approaches.

Yang et al. [171] also use knowledge graphs to address the problem of relevant feature ex-

traction regarding the semantic relationships between network features of network requests.

These network requests include both normal and anomalous requests, the attack types in-
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cluding DoS, Probe, R2L, etc. In addition to a knowledge graph, the model uses statistical

analysis feature-based extraction. An attention-based CNN-BiLSTM then learns the traffic

features. While their approach beats other state-of-the-art methods in the precision, recall,

and F1-score, it does perform the slowest.

Although the current methods in the literature have demonstrated promising results in

anomaly detection in multivariate time-series sensor data, a holistic model is missing to

fuse multi-modal data from communication networks and sensors. This deep data integra-

tion in our approach equips the model with the system context shared between the physical

layer and network layer, which is further leveraged for anomaly and attack detection.

6.3 IoT Security and Data Analysis

We aim to integrate physical and network layers of IoT systems and detect security threats

and malfunctions in the system, which appear as anomalies in the data. To achieve this

goal, we first analyze the multi-modal IoT data and examine the potential security and

integrity breaches. Next, we simulate these incidents and imitate their impact on the data

as anomalies. In the following, we describe the details of our study and the anomaly injection

process.

6.3.1 IoT Network Security Analysis

In this section, we discuss the most common attacks against Long Range Wide Area Network

(LoRaWAN), which is deployed in IoT systems, such as the greenhouse monitoring system

[146]. Moreover, we study the impact and signature of different attacks and further leverage

these signatures on communication metadata, such as RSS and SNR, to unravel the attack.
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LoRa is a wireless modulation technique upon which LoRaWAN is built. LoRaWAN is a low-

power, wide-area networking protocol that allows IoT applications to use LoRa to transmit

and receive messages. IoT networks lack robust security due to low power and low cost, so

they cannot afford to protect against cyberattacks [60] such as spoofing, jamming attacks,

replay attacks, and wormhole attacks.

Spoofing: Spoofing in the context of IoT attacks is when an attacker disguises themself

as a trusted node to gain access to the system and modify or corrupt data. LoRaWAN is

especially vulnerable to acknowledgment (ACK) spoofing, as demonstrated by [170]. Sheng

et al. [144] analyze the Received Signal Strength (RSS) to distinguish between the attacker

and the victim when the devices are substantially distanced. There is a correlation between

RSS and transmission power and the distance between transmitter and receiver. Therefore,

an extreme change in RSS values indicates a spoofing attack because devices do not frequently

alter the transmission power.

Jamming attacks: Jamming attacks are a type of DoS attack that involves a malicious

node that causes intentional interference. The most generic form of jamming involves the

attacker continuously transmitting a powerful signal, which blocks communication along the

channel [124]. While continuous jamming affects all devices in the network with the same

frequency, selective jamming does not. In selective jamming, the attacker targets a specific

device in the network and blocks all communication to and from it without impacting the

other devices in the network. Selective jamming can be more difficult to detect because it is

less evident whether or not there has been a malicious attack or technical issue.

[13] proposes a selective jamming architecture that uses an RFM95 radio module and a

microcontroller to detect and receive LoRaWAN packets. Then, it performs the jamming

attack if the software determines that the particular message must be jammed. It is im-

portant to note that the smaller the packet size and Spreading Factor (SF) and the lower

the Received Signal Strength Indicator (RSSI) of the jammer, the more difficult it is for a
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jammer to jam a device. The smaller packet size is easier to transmit; therefore, it spends

less time on-air, so the packet is not vulnerable for a long time. The SF gauges the range of

data transmission. A lower SF increases the data rate and decreases the time-on-air, making

it harder for the jammer to capture the packets. Furthermore, a jammer must have a large

enough RSSI to fulfill its goal by introducing enough noise into the channel to cause inter-

ference. Despite these potential issues, more than 98% of the jamming attacks produced by

[13] were successful. Regardless of the type of jamming attack, the main goal of a jammer is

to increase the SNR, which reflects whether or not a jamming attack has occurred. SNR is

defined as Psignal/Pnoise, where Psignal is the average power of the input signal and Pnoise is

the average power of noise. When the jammer broadcasts a signal, it introduces noise into

the network, decreasing the SNR and complicating decoding packets. Hence, jamming often

leads to packet loss [117].

Replay attack: A replay attack is when an attacker gains access to the data transmission,

intercepts it, and then repeats or resends the message. This allows the attacker to manipulate

the data and metadata. Sung et al. [152] present a method that protects the end device in

LoRaWAN against replay attacks using RSSI and hand-shaking techniques. Looking at the

RSSI value by itself was only useful when the end device and attacker have similar directions

and distances. If the RSSI is continually changing, then that is an indication of a replay

attack.

Wormhole attacks: In wormhole attacks, a malicious device captures a data packet and

sends it to another malicious device through a low-latency tunnel. The device that receives

the data packet can replay it multiple times. A specific kind of wormhole attack necessitates

a sniffer and a jammer. A sniffer reads the data within the packet, after which a signal is

sent to the jammer. The jammer prevents the packet from reaching the desired gateway.

Wormhole attacks give attackers the opportunity to tamper with sensor metadata, such as

RSSI, SNR, travel time of the packet, etc. In [67], the authors describe an adaptive data rate
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spoofing attack that can be realized by an attacker sending messages through a wormhole,

thereby changing their metadata. As a result, the end device’s RSSI and SNR will increase.

6.3.2 Anomaly Implementation

In order to evaluate our approach and learn the signatures of various security threats, we

simulate multiple incidents in the IoT system and their influence on the data gathered

from sensors and networks. To imitate the incidents, we study the typical attacks on the

IoT system and learn their marks on the system, presented in section 6.3.1. Based on our

findings, we simulate spoofing, jamming, replay, wormhole, and physical sensor attacks and

inject different synthetic anomalies into 10% of the data. In the following paragraphs, we

elaborate on different anomaly injection procedures.

Network Anomalies: For each node, we randomly choose indices (timestamps) in the data

where the anomalies would be added. Then, for each index, we randomly select a type of

anomaly to inject. For example, to simulate spoofing, we increase the RSSI and add a data

anomaly (the injection of data anomalies is discussed in greater detail later). We randomly

assign a value for the RSSI between -40dBm and -30dBm inclusive. If the selected attack

is a replay attack, we inject a data anomaly and simulate packet dropping by randomly

choosing a time difference between and including the period and twice the period; this

represents the gap in time caused by packet drops. We alter the RSSI, SNR, and humidity

and temperature value for wormhole attacks and simulate packet dropping. First, we change

the RSSI by randomly picking a high RSSI (i.e., randomly select a value between -40dBm

and -30dBm inclusive) or a low RSSI (i.e., randomly select a value between -100 dBm and

-90 dBm inclusive). Next, we lower SNR to show an upsurge in noise by randomly selecting

a value between -30dB and -20dB inclusive. Eventually, the jamming attack is executed by

dropping the SNR and simulating packet drops.
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Sensor Anomalies: The anomalies in sensor measurement fall into two categories [83]:

global outliers and contextualized outliers. Global outliers are any values that are signifi-

cantly smaller or bigger than the rest of the values. It is important to note that the global

outliers are still in the sensor output range and feasible to be recorded by the sensor. These

become values for the smallest anomalous value, smallest global value, and largest anomalous

value, largest global value. The upper bound for small global outliers is the lower outlier, and

the lower bound for large global outliers is the upper outlier. The lower outlier is computed

by first multiplying 1.5 by the interquartile range and then subtracting that value from the

first quartile. The upper outlier is calculated similarly, but instead, we add the product to

the third quartile. Ultimately, we pick a global outlier by randomly choosing a value from

(smallest global value, lower outlier) and another from (upper outlier, largest global value)

and inject it as an anomaly.

The other type of sensor anomaly is a contextualized outlier, a marked deviation relative to

the average of a particular range of values. At a particular instance in time, Xt, the context

is considered to be all values within the range (Xt−l, Xt+l), where l is the length of the

context. The anomalous value, A, is computed as follows:

A = X t−l,t+l + (λ ∗ σ) (6.1)

where λ is the contextual threshold and σ is the standard deviation of the values in the

sub-sequence.

6.4 Multi-modal data fusion

We present our methodology in this section and elaborate on the pipeline depicted in Fig-

ure 6.2. The data fusion process starts with context extraction from the sensor and commu-
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nication data and unraveling the relation between different elements. Next, we integrate all

the elements and the context of the system into a graph representation enriched with sensor

and communication data, appearing as node embeddings. Eventually, our GNN model ex-

tracts the system’s key features and learns its normal state for forecasting. It is later used

to measure system deviation from the normal state and anomaly detection.

data 1

data 2

data N

…

data 3

Context Extraction Constructing IoT system graph

embedding 1

embedding 2

embedding N
…

embedding 3

Generating node 
embedding vectors

…

…

…

…

…

…

…

Graph learning through 
message passing

graph neural network

Forecasting and 
anomaly detection

Anomaly

calculating the 
observation deviation 

from prediction

Figure 6.2: Multi-modal data fusion pipeline for anomaly detection in IoT systems.

6.4.1 Data Preprocessing

As part of the preprocessing of the multivariate time-series dataset, we ensure that data is

periodic and continuous, and lastly, we synchronize the data. After analyzing the data, we

found that the period of each sensor was the same. Some sensors had gaps in the data (i.e.,

there were missing data for two hours). We chose a threshold for the maximum allowable

time difference in minutes. Any time differences less than or equal to the threshold but

greater than the period would be made periodic by filling the missing data with the value

at the previous timestamp.

In order to determine which sensors are synchronized, we needed to make the data continuous

to ensure the number of timestamps for each sensor would be the same. This was done by

removing the seconds from the timestamps and filling the gaps in minutes with the value

at the previous timestamp so each timestamp would be a minute apart. We also replaced

any outliers with a previous value. Then, we found the maximum start time between all the
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sensors whose start times began on the same date and ensured all of them began at that

time. The final step toward synchronizing the sensors with the same start time was to find

the minimum end time between the sensors and cut all the other sensors at that time. As a

result, all the sensors with the same start time were the same length.

6.4.2 Context Extraction and Graph Generation

GNN is a type of neural network model that learns information from data that is represented

as a graph. The motivation behind GNNs is to be able to apply deep learning methods to

non-Euclidean data. Graphs are defined as G = (V, E), where V is the set of nodes, and

E is the set of edges between nodes. We represent the relationship between sensors with a

directed graph, where the nodes are sensors and the edges show which nodes are related.

We propose a graph structure representing the IoT system in which the components and their

generated data (sensor or communication) are incorporated as nodes. The graph presentation

of our greenhouse IoT system under study is depicted in Figure 6.3. As context is paramount

in modeling an IoT system, we enclose the context as graph edges between nodes indicating

the components’ correlation. These edges influence the feature extraction in the graph

learning process and steer data fusion selectively between related data instead of the whole

network.

In our graph presentation, we use an adjacency matrix, Aij, to store the relationships. The

relations either come from the system expert, who inputs the potential correlation due to

intuition and understanding of the system, or are extracted automatically through data

analysis. We test two methods for data analysis: the cosine similarity and the correlation

matrix.

By default, all sensors are assumed to be related, in which case Aij is filled with 1’s. However,
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Figure 6.3: The graph representation greenhouse IoT system.

the user can also specify which sensors are related and which are not. In this case, if sensor

i is not related to sensor j, then the adjacency matrix at row i and column j will be filled in

with a 0.

To assess the similarity among component data, we calculate the cosine similarity of node

embeddings. Inspired by [41], we find the cosine similarity between each node embedding,

xi and every other node, xj, to produce the consequent embedding, eji. We construct an

adjacency matrix, Aji, from the cosine similarities and use it to construct the layers of the

model:

eji =
xT
i xj

|xi| · |xj|
(6.2)

Aji =


1, ifj ∈ Top−K({eki : k ∈ Si})

0, otherwise

(6.3)
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where Si is the set of embeddings that does not include xi. The Top-K indices of the

normalized dot products are chosen, and they compose the learned graph and adjacency

matrix. These Top-K indices are used during the forward propagation stage of the model.

As another alternative, we discover the similarity between the sensor embeddings by finding

the correlation coefficient matrix, R::

Rji =
Sji√
SjjSii

(6.4)

where S is the covariance matrix. Then we assemble the adjacency matrix similar to the

process done for cosine similarity.

6.4.3 Forecasting Graph Neural Network

Before we carry out anomaly detection, we must have a baseline with which to compare

data that could be anomalous. We train our GNN model using a forecast-based approach

to predict the values at a future time based on a window of values from the past. The input

to the model, x(t), NXw, where N is the number of nodes in the dataset, and w is the size

of the sliding window:

xt := s(t−W ), s(t−W+1), · · ·, s(t−1) (6.5)

The output predicts the node values at time s(t). The aforementioned learned graph is then

used to perform graph attention-based feature extraction. It aggregates a node’s features
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with the information of its neighboring node through a process called message passing. We

aggregate sensor i ’s input feature vector, xi(t) with all of the features of its neighboring nodes

to produce zi:

z
(t)
i = ReLU

(
αi,iWx

(t)
i +

∑
j∈N(i)

αi,jWx
(t)
j

)
, (6.6)

where N(i) = {j |Aji > 0} is the neighborhood of sensor i. W ∈Rd×w. αij are attention

coefficients and can be found with the following calculations:

g
(t)
i = vi ⊕Wx

(t)
i (6.7)

π (i, j) = LeakyReLU

(
aT

(
g
(i)
i ⊕ g

(j)
i

))
(6.8)

αi,i =
exp (π (i, j))∑

k∈N(i)∪{i} exp (π (i, k))
(6.9)

W is a trainable weight matrix that performs a linear transformation on a node’s input

feature vector, x
(t)
i . g

(t)
i concatenates the sensor embedding and the transformed result.

LeakyReLU is used to calculate the attention coefficient, which is normalized with a softmax

function. Each aggregated sensor, zi, is multiplied element-wise with its embedding, vi. The
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final results for each sensor are concatenated and represent the vector of predicted values,

ŝ(t) for each sensor at time t:

ŝ(t) = fθ
([
vi ◦ z(t)

i , . . . ,vN ◦ z(t)
N

])
(6.10)

6.4.4 Anomaly Detection

To train and test the performance of our model, we split the data into training, testing, and

validation datasets. The training dataset contains no anomalies and is used to develop a

baseline for normal behavior. The trained model then makes predictions for each node in the

testing dataset. Unlike many models in the literature, our model does anomaly detection in

real-time on the validation dataset. In other words, we monitor observations made by sensors

and other devices and continuously examine for anomalies to detect, whereas deep learning

models often perform prediction and anomaly detection in batches for more effortless and

rapid testing, but their approach is not practical for run-time monitoring in real-time.

After predicting the normal state, the next challenge is determining the level of deviation

from normal, which should be considered an anomaly. Detection of all the anomalies often

raises considerable false warnings, meaning mislabeling normal data as an anomaly. There

is a trade-off between high anomaly detection precision and low false positives. Thus, we

deploy different strategies and pick the most promising to compute thresholds that we use to

determine whether or not sensor readings at time t are anomalous. We execute the following

techniques:

The first method uses the error scores between the actual sensor values and the predicted

sensor values and then uses a Gaussian Estimator to determine the optimal threshold that
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can be used to detect an anomaly on the validation dataset. Taking into consideration

the seasonality of time-series data assists in making better predictions. Hence, we make

sure to assign a different threshold for each time of day. Quantities such as temperature

and humidity tend to vary depending on the time of day, so we divide the hours into four

categories: morning, afternoon, evening, and night.

We then create a Gaussian distribution from the mean and standard deviation of the losses

in the test dataset for each time of day in order to calculate the probability of each data

point occurring in each distribution by using the probability density function. For each time

of day, we compute the threshold by iterating over an array of threshold candidates and

choosing the one that results in the highest F1 score. The array of potential candidates

ranges from the smallest probability, pmin, to the largest probability of the datapoints, pmax,

with a step size of pmax-pmin/1000. As we iterate over each probability, ϵ, we compare each

value in the threshold of candidates to ϵ to create an array of predictions. If the value is

smaller than ϵ, then it is labeled as an anomaly with a value of 1; otherwise, it is considered

normal with a value of 0. We compare each prediction with the actual label and compute

the F1-score. The ϵ that yields the highest F1-score is considered the threshold for that time

of day.

Using the thresholds computed for each time of day, we make anomaly predictions on the

validation dataset. In order to satisfy the real-time criterion, we make predictions for each

successive timestamp by using a batch size of 1. We then compute the loss of the prediction

and calculate its probability of occurring in the distribution of values for the timestamps

corresponding time of day. If the probability is less than the threshold, then it is labeled as

an anomaly with a value of 1. Normal values are labeled with a 0.

The second method calculates the mean µ and standard deviation σ for the test results and

uses the following rule to define anomaly.
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state(vt) =


1, if vt < µ− 2.5 ∗ σ

1, else if vt > µ+ 2.5 ∗ σ

0, otherwise

(6.11)

where vt is a node value at the time t and state(vt) indicates the data state which can be

anomalous (1) or normal (0). Even if one of the data exceeds the normal range of values

that node at t, then that data point is labeled as an anomaly.

The third method calculates the error scores at time t for each test data:

Erri(t) = |s(t)i − ŝ(t)i| (6.12)

The error scores are then normalized so that if one node has drastic deviations, its value will

not dominate.

ai(t) =
Erri(t− µ̃i)

σ̃i

(6.13)

where µ̃i and σ̃i are the median and inter-quartile range of each sensor’s array of errors, across

t. The anomaly score at time t is the maximum ai(t) over all the nodes. The score that results

in the highest F1 score is considered the threshold. During each iteration of experimenting

with the validation dataset, the model computes the prediction at a timestamp, and then

we calculate the error score. Unlike the errors for the test dataset, we do not smooth them

for the validation dataset. If any of the sensors at a particular time, t, has an error score

higher than the threshold, then we label that timestamp as an anomaly.

The last strategy is to perform the same calculation as the previous technique except that
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we take the maximum of all the node prediction scores at t, and if it is greater than the

threshold, then that timestamp is labeled as anomalous.

6.5 Evaluation

6.5.1 Experiment Setup

To evaluate our multi-modal data fusion methodology, we analyze the data generated by a

LoRaWAN-based greenhouse monitoring IoT system that supervises tomato crops in Bel-

gium. We target this dataset because it is one of the few public datasets that contain both

communication and sensor data. As summarized in Table 6.1, there are 22 devices in the

system, each recording the temperature, humidity, RSSI, and SNR over the course of five

months. We extracted the communication delay from the time stamps as well, which resulted

in 110 components. Further, the graph representation of the system is generated, with 110

nodes, each retaining a sequence of 12661 data instances. The dataset is split to 80% for

training on normal data and 20% for the testing and validation, which are infected with 10%

anomalies. Our primary methodology is the multi-modal model, developed on a complete

greenhouse dataset with 110 nodes. We also construct single-modal models for each data

type to investigate the impact of fusing data from different modalities and integrating com-

munication and sensor data. The single-modal method results in 5 models, each developed

on one sensor type with 22 nodes. Another public dataset used for further analysis is the

Secure Water Treatment data (SWaT) dataset which comprises days of continuous normal

operation data and attack scenarios. The details of SWaT are reported in Table 6.1. It is

the base dataset to compare the performance GNN model for anomaly detection with other

methods in the literature. We implement our method and its variants in PyTorch version

1.5.1 with CUDA 10.2 and the PyTorch Geometric library.
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Table 6.1: Statistics of the Greenhouse and SWaT dataset

Dataset #devices/ features Train Test Anomalies
Greenhouse 110 10128 2533 10%

SWaT 51 47515 44986 12%

6.5.2 Forecasting Model Performance

The initial stages in our pipeline are data preprocessing, context extraction, and graph

generation, which prepare the data and transform it into a graph representation. Our GNN

model follows afterward, which is supposed to learn the normal state of the system and

predict its expected behavior. We train this forecasting model on an anomaly-free training

dataset to develop a baseline for what is considered normal. Training is an iterative learning

process to minimize prediction errors. We calculate the error with the Mean Squared Error

(MSE) loss function, calculated as follows:

LMSE =
1

Ttrain − w

Ttrain∑
t=w+1

(
ŝ(t) − s(t)

)2
(6.14)

where Ttrain is the training dataset, w is the sliding window size, ŝ(t) is the predicted output,

and s(t) is the actual output. Figure 6.4 represents that loss decreases as the epochs of training

pass and the model converge to the target until the changes in loss become negligible and

the learning process is stopped.

The loss indicates the model’s capability to learn the patterns of time-series data in a nor-

mal state and model performance to predict the future value of each node. For instance,

Figure 6.5 illustrates the actual recordings and predictions for a humidity sensor and exem-

plifies how the forecast follows a similar pattern as the actual measurement and captures

the essence of the system. Another visualization of prediction performance is presented in
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Figure 6.6. It shows various data instances of a temperature sensor that are depicted in a

plot with actual value as the y-axis and predicted value as the x-axis. The closer the data

points to the y=x line, the lower the prediction error. Examination of this figure indicates

a low error and high performance in modeling the system and predicting its behavior.
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Figure 6.5: The predicted values, actual recordings, and actual data trendline for a humidity
sensor follow a similar pattern.

Table 6.2 displays the MSE loss for different models. The multi-modal data fusion demon-

strates better performance in prediction as it has a lower average loss per node compared to

other single-modality methods. It indicates the potential of our GNN-based methodology

to integrate data from distinct layers of the system with a different modality for enhanced

learning and a superior context-aware model.

150



16 18 20 22 24 26 28
Predicted

16

18

20

22

24

26

28
Ac

tu
al

Temperature Sensor 4
Normal

Figure 6.6: The prediction vs. actual data for a temperature sensor.

6.5.3 Anomaly Detection Performance

The forecasting model predicts the upcoming data instance based on historical data, which

is the expected normal value. The deviation from expectation is analyzed upon observation

of actual data to determine whether an anomaly has occurred and label the data instance.

We use F1-score, precision, and recall as evaluation metrics to assess the performance of

anomaly detection, which are calculated as follows:

Prec =
TP

TP + FP
, Recall =

TP

TP + FN
(6.15)
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Table 6.2: Data forecasting error and graph characteristics for different models

Methodology Total loss (MSE) #nodes #edges
Multi-modal 0.29 110 5500

Only Temperature 0.16 22 132
Only Humidity 12.12 22 132

Only SNR 0.25 22 220
Only RSS 0.78 22 51
Only Delay 0.84 22 51

F1− score =
2× Prec×Recall

Prec+Recall
(6.16)

Where a positive value denotes an anomaly, and TP, FP, and FN are the total numbers

of true positives, false positives, and false negatives. We construct and fine-tune models to

maximize the F1 score.

Single-modal vs. Multi-modal Anomaly Detection: Testing the single-modal and

multi-modal models on anomaly-infested testing datasets resulted in the performance re-

ported in Figure 6.7. The results indicate that the multi-modal approach outperforms the

single-modal approach on average by 22%. Although for some data types, such as tempera-

ture, the single-modal model has comparable results to multi-modal, standalone models fail

to detect all the various types of anomalies because different attacks have varied impacts and

signatures, as discussed in section 6.3.1. All the parameters are required to capture diverse

types of anomalies and on average anomaly detection on a single data modality performs

inferior.

Our model can detect anomalies reasonably well, but it misses a few data points that should

have been labeled as anomalous. The underlying reason the multi-modal dataset performs

much better than the single-modal datasets is that its graph is more comprehensive. Hence,

it provides more context during attention-based forecasting. The graph density in Table 6.2

152



is the total number of edges for each dataset, which ends up being the total number of nodes

used for training multiplied by the top k values of the normalized dot products that were

computed during graph generation. The multi-modal method graph has about five times

as many edges as the single-modal datasets, which could challenge the training process but

embeds more detailed information about nodes and their relation.

F1 score Precision Recall
Multi-modal 91 93 90
Ave. single-modal 69 83 65
Temperature 90 91 89
Humidity 76 93 65
SNR 73 63 87
RSS 36 87 23
Delay 72 82 64
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Figure 6.7: The anomaly detection performance of multi-modal and single-modal models.

Context Extraction Evaluation:

We investigate the impact of the initial similarity extraction algorithm on the model perfor-

mance and compare the performance of the multi-modal method using the cosine similarity

versus the correlation coefficient matrix to generate the adjacency matrix. In Table 6.3, the

results show that cosine similarity supersedes the correlation coefficient matrix with higher

F1-score, precision, and recall.

Comparing Anomaly Detection Methods in the Literature:
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Table 6.3: Comparing context extraction methods: cosine similarity vs. correlation coeffi-
cient matrix

Algorithm F1-score Precision Recall
Cosine Similarity 91% 93% 90%
Correlation Coefficient Matrix 83% 87% 79%

We compare the GNN-based approach for anomaly detection in time-series data with other

popular techniques in the literature. We base the comparison on the SWaT dataset and

gather the results presented by different methods. Table 6.4 elaborates on the various models’

performance as well as the characteristics of each model. The comparison reveals that GNN

outperforms the other models.

Table 6.4: Comparing anomaly detection performance of state-of-the-art methods for SWaT
dataset.

Method F1-score Precision Recall
GNN 81% 99% 68%

MAD-GAN [88] 77% 99% 63%
LSTM-VAE [121] 74% 96% 60%

AE [7] 61% 52% 72%
DAGMM [194] 39% 27% 70%
PCA [145] 23% 25% 22%
FB [84] 10% 10% 10%
KNN [12] 8% 8% 8%

6.5.4 Timing Analysis

IoT systems supervision requires continuous monitoring and fast anomaly detection in real-

time, whereas computation resources are restrained in IoT systems. On the other hand,

model execution on cloud servers significantly adds an enormous amount of data transmission

overhead to the network, sending raw measurements all the way from edge devices to the fog

layer and then to the cloud. Therefore, we optimize our model to perform anomaly detection

in real-time while running on a fog platform. In addition to higher performance, one of
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the advantages of our multi-modal data fusion approach is that all the individual machine

learning models running for each data type are fused into a single model. Although the

multi-modality model is larger than each single-modality model, it is smaller than all single-

modality models combined, decreasing total computational overhead and memory footprint.

Table 6.5 indicates training, testing, and validation time per data, all executed on an X86-

64 CPU. It is noteworthy that training and testing time refers to the model development

process, which will be performed once for an IoT system. Afterward, the validation timing

refers to run-time anomaly detection delay. Testing on the validation dataset is not done in

batches but per data instance to satisfy continuous real-time monitoring requirements; The

average time it takes for a single data point should be less than the system’s frequency of

change and data collection. In conclusion, the anomaly detection time for our multi-modal

data fusion approach is 3.7ms which is very fast and satisfies the real-time requirement for

our greenhouse system.

Table 6.5: Timing of train, test, and validation for each data point.

Methodology Training time Testing time Validation time
Multi-modal 150ms 5.9ms 3.7ms

Only Temperature 67ms 3.8ms 2.4ms
Only Humidity 66ms 6.0ms 2.7ms

Only SNR 67ms 4.0ms 2.5ms
Only RSS 65ms 3.7ms 2.7ms
Only Delay 67ms 3.7ms 2.6ms

6.5.5 Attack Analysis

Deep integration of system communication nodes and sensing nodes through multi-modal

fusion opens the opportunity to analyze anomalous incident further and trace it back to

the source for system recovery. We study the impact of typical cyber or physical attacks

in section 6.3.1 and apply our findings in a case study. After an anomaly is flagged in the

system, we identify the type of attack associated with the anomaly. A physical attack against
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sensors aims to inject fault data, causing abnormal sensor measurements. Denial of service

can be a consequence of a physical attack or system failure and leads to missing data or

acquiring a constant one.

On the other hand, attacks through communication channels influence readings from the

cyber domain, such as SNR or RSSI, as well as the physical layer. For example, Figure 6.8

displays the actual and predicted recording of a pair of temperature and humidity sensors

and their communication channel SNR. In this case, abnormal activity is detected concerning

the drastic changes in these data while the rest of the system is working as expected. Further

data analysis can determine our subsequent reaction. Based on the signature of the attack

discussed before, further study implies a spoofing attack. Similarly, it can be applied to

other adversaries, such as jamming, reply, and wormhole attacks.

Figure 6.8: The impact of a spoofing attack on temperature, humidity, and RSSI readings
(left to right).

6.6 Chapter Concluding Remarks

In this work, we propose a methodology to selectively fuse sensor and communication data

and model an IoT system to detect reliability and security issues through anomaly detection

in real-time. Our approach integrates multi-modal data into a graph representation for

an IoT system and learns the system behavior using GNN. Analyzing diverse network and

sensor attacks, we identify the attack signatures and trace the anomaly back to its origin and
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the attack type. Attack understanding facilitates the system recovery, knowing the specific

security measures to implement. To the best of our knowledge, this is the first work to

fuse sensor and communication data using GNN, which inspires deeper integration of system

components and data fusion to construct a precise digital model of real-world applications.
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Appendix A

Post-Silicon Hardware Trojan

Detection

A.1 Introduction

Design and fabrication outsourcing has made integrated circuits (IC) vulnerable to malicious

modifications by third parties known as Hardware Trojans (HT). This dissertation focuses

mainly on mitigating HT threats in the design stage before fabrication. However, we have

pursued hardware security research in the post-silicon stage as well (elaborated by the lead

author dissertation [46]). In this research, we have the premise that the culprit can be in

any entity in the IC supply chain, including the design vendors and foundries. We propose

two novel golden chip-free methodologies based on circuit side-channel signals to detect HT

in the run-time as the last line of defense.
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A.2 Background and Research Challenges

Due to their stealthy nature, most HTs are designed to be minuscule and remain inactive

with a negligible impact on the circuit specification until a rare specific event triggers them.

Ideally, any drift from the original circuit design should be detectable by post-fabrication

testing and verification. However, these methods fall short of detecting HT because the

probability of triggering the HT is usually low. Therefore, some other methods are required

to ensure circuit security. To this end, two major paths are pursued in literature: i) imaging

techniques and ii) side-channel and covert-channel analysis. Destructive approaches mainly

involve the following steps: de-layering the chip, imaging the die, reverse-engineering the

image of the circuit, and conducting the element-by-element comparison. Although these

methods are relatively capable of guaranteeing trust on the fabricated IC [151, 38, 43], they

are destructive, impractical, time-consuming, expensive, and inapplicable to detect the con-

taminated third-party IPs. In contrast, the second approaches are non-destructive and assess

the behavior of the chip through side-channel (e.g., power, temperature, electromagnetic, and

timing) or embedded sensor measurements. In these methods, the parameters are measured

and compared to the expected values to identify the presence of additional structure.

The fundamental shortcoming of the majority of side-channel based HT detection method-

ologies is the reliance on a trusted chip (a.k.a golden chip) to create a reference model of

the expected side-channel values. Reliance on a golden chip is a problem since, in practice,

a trusted supply chain to manufacture the golden chip is unavailable, or it would be too

expensive and not affordable for most SoC designers [89]. A few works in the literature have

tried to resolve this issue by using self-referencing techniques [72] or using accurate trusted

simulations combined with embedded sensors in the chip to analyze the side-channel emis-

sions [95]. However, similar to other side-channel based HT detection methodologies, they

often perform poorly when HT is not triggered.
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A.3 Methodologies

A.3.1 Transfer Learning for HT Detection

We develop a novel neural network design (i.e., HTNet) and a training methodology for HT

detection in run time without the golden-chip requirement. We create a library of known

HTs and collect electromagnetic (EM) and power side-channel signals for each case, and

train HTnet to learn the best discriminative features based on this library. Then, during

the testing phase, we fine-tune the HTnet to learn the behavior of the particular chip under

test. We use HTnet followed by an anomaly detection algorithm in run-time to monitor

the side-channel signals emitted from the chip and report malicious behaviors related to

a triggered HT. We devise a custom neural network architecture that performs the same

or better than any available approach in the literature for HT detection. Furthermore, we

propose a methodology to transfer the knowledge learned based on known HT benchmarks to

a new circuit that may or may not contain an HT. With this work, we publish our collected

electromagnetic and power side-channel data for hardware implementation of AES infected

by various forms of HTs.

This approach is evaluated using TrustHub [139] benchmarks, and the results provide evi-

dence that it is possible to extract robust features that can be used for HT detection using

our previous knowledge about HTs. However, running a neural network along with the main

circuit will consume a considerable amount of energy which will make our approach most

suitable for applications that do not rely on limited power resources. Here, we provided a

proof of concept for golden chip-free HT detection using recent developments in artificial

intelligence.
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A.3.2 Brain-Inspired HT Detection using Hierarchical Temporal

Memory

We construct a model based on the power consumption of the chip, which monitors the side-

channel emissions during the testing and at the run-time. Our proposed model is hierarchical

temporal memory (HTM), which mimics human brain behavior to interpolate the side-

channel data and pinpoint anomalies that indicate the existence of an HT in the IC. We devise

an HTM architecture that performs the same or better than state-of-the-art approaches for

HT detection. Our proposed method is trained on side-channel data from the Device Under

Test (DUT) rather than a golden chip. The process variation does not affect our proposed

detection mechanism since it relies on DUT for training. HTM training has virtually no cost

in terms of power consumption. Hence, sporadic retraining of the model is feasible to cope

with aging/temperature effects on the side-channel data.

The high dimensional form of encoded input in SDRs followed by spatial and temporal

pooling gives HTM the capacity to capture complex patterns in the signal with minimum

required computations. The complexity of all the operations in the HTM is at most n log n,

where n is the size of the encoder. Moreover, the high dimensionality of the data flow in

HTM makes it highly resilient against noise in the input signal compared to neural networks

and other ML techniques. Furthermore, the majority of unsupervised ML techniques cannot

adapt to changes in the signal since retraining the model in real-time is not feasible. However,

HTM uses Hebbian Learning rules that are a light training methodology and can be applied

in real-time. Last but not least, in our experiments, we notice that training HTM requires

a much less number of samples than other unsupervised ML techniques. Our evaluation

based on TrustHub benchmarks [2] shows that our proposed detection mechanism can detect

92.20% of triggered HT in five benchmarks while consuming less power compared to state-

of-the-art machine learning techniques.
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Appendix B

Stealing Neural Network Structure

through Remote FPGA Side-channel

Analysis

In this dissertation, we study the security across different layers of a system from low-

level circuits up to high-level CPS. Software security and embedded board are two of the

internment layers in a computing system and the security embedded boards and cybersecurity

are studied separately in the literature. In this appendix, we assess the security across these

layers by demonstrating a remote attack toward FPGA to steal the software IP executed on

it [190] (elaborated in lead author master thesis [188]).

Deep Neural Networks (DNN) are gaining prominence in solving complex problems like im-

age recognition, natural language processing, and hardware applications. With companies

investing heavily in the development of customized machine learning models, these models

become valuable intellectual properties. The uniqueness of DNN models lies in their lay-

ers and hyper-parameters, making them potential targets for side-channel attacks that seek
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to compromise their confidentiality. Such attacks are feasible on traditional shared com-

puting platforms [163], but their viability on emerging cloud platforms powered by Field

Programmable Gate Arrays (FPGA) has not been studied.

Investigating attack vulnerability on FPGA-based systems is a significant concern as major

cloud providers have begun offering FPGA-based instances to enhance DNN training and

testing. FPGA virtualization is used for flexible resource allocation, enabling multiple users

to concurrently deploy their logic on the same FPGA board. Despite the logical and physical

separation of users’ logic execution, potential security implications arise under multi-tenant

FPGA environments.

Our research is focused on exploring remote power side-channel analysis on shared FPGA

instances, gauging the feasibility of model-stealing attacks. We developed an attack method

that allows remote theft of model secrets through power consumption analysis, requiring no

physical access to the FPGA instance. Utilizing machine-learning-based inference models,

the attack can identify individual layers and their hyper-parameters when a power sensor is

deployed on the same FPGA board running the victim’s DNN model.

We validated this attack on multiple DNN models, achieving over 90% inference accuracy for

secret elements across all models. Importantly, our attack demonstrated generality, being

effective even when training and testing models belong to different families. The results

underscore the practical threat posed by FPGA-based model-stealing attacks, necessitating

the development of new defense mechanisms. This pioneering work presents the first attack

exploiting remote power side-channel for DNN model theft and contributes a method for the

DNN model’s architecture reconstruction without physical access to the FPGA platform.

The intellectual property of machine-learning companies, or DNN model secret, should be

cautiously protected when utilizing cloud computing resources. We urge the security com-

munity to devise cost-effective defense solutions against this threat.

178


	LIST OF FIGURES
	LIST OF TABLES
	ACKNOWLEDGMENTS
	VITA
	ABSTRACT OF THE Dissertation
	Introduction
	Related Works and Research Challenges
	Dissertation Contributions
	Hardware Security
	Embedded and Cyber-Physical Systems Security

	Dissertation Organization

	Hardware Trojan Detection
	Introduction
	Motivational Example
	Research Challenges
	Chapter Contributions
	Threat Model

	Related Works and Background
	Hardware Trojan
	Hardware Trojan Detection Methods
	Hardware as a Graph

	Methodology
	Graph Convolutional Networks
	Attention-based Pooling
	Graph Embedding Generation
	Multi-Layer Perceptron Classifier
	GNN for HT Detection in RTL
	RTL Graph Generation
	HT Detection Model for RTL
	GNN for HT Detection in Netlist
	HT Benchmarks Synthesis to Netlist
	Netlist Graph Generation
	Netlist Graph Optimization
	Netlist Graph Normalization
	HT Detection Model for Netlist

	Evaluation
	Dataset
	HT Detection Results
	Effect of Attention Mechanism
	GNN Hyperparameters
	Timing
	Comparison with State of the Art
	Case Study

	Discussion
	Chapter Concluding Remarks

	Hardware Trojan Localization
	Introduction
	Research Challenges
	Chapter Contributions
	Related Works and Background
	Hardware Trojan Localization
	Graph in Hardware Applications

	Methodology
	Problem Formulation and Threat Model
	Hardware Design Conversion to Graph
	Node Attribute Extraction
	Trojan Labeling Algorithm
	Graph Convolutional Networks

	Evaluation
	Experimental Setup
	HT Detection and Localization Performance
	The Best Graph Neural Network Architecture
	Compensation for Unbalanced Dataset
	Comparing HT Localization Methods

	Chapter Concluding Remarks

	Hardware IP Piracy Detection
	Introduction
	Motivational Example
	Research Challenges
	Chapter Contributions

	Backgrounds and Related Works
	Hardware IP Security
	Graph Neural Networks 

	 Methodology
	Threat Model
	Hardware Data Flow Graph Extraction
	Hardware IP Piracy Detection Algorithm

	Evaluation
	Dataset
	IP Piracy Detection Accuracy and Timing
	Embedding Visualization
	Similarity Score Results
	Piracy Detection in Obfuscated Netlists
	Comparison with Rival Methods

	Chapter Concluding Remarks

	Context-Aware Adaptive Anomaly Detection in IoT through Sensor Association
	Introduction
	Motivational Example
	Threat Model
	Research Challenges
	Chapter Contributions

	Related Works
	Anomaly Detection Methodology
	Context Generation
	Sensor Association
	Predictive Model
	Anomaly Detection
	Model Adaptation

	Results and Evaluation
	Fog Computing Architecture
	Experimental Setup
	Sensor Association Evaluation
	Anomaly Detection Evaluation
	Robustness
	Case Study
	Timing Analysis
	Aliveness Assessment

	Chapter Concluding Remarks

	Multi-Modal Data Fusion for Anomaly Detection in IoT Physical and Network Layers
	Introduction
	Motivational Example
	Research Challenges and Opportunities
	Chapter Contributions

	Related Works and Background
	Network Intrusion Detection
	Data Fusion
	GNN for Anomaly Detection

	IoT Security and Data Analysis
	IoT Network Security Analysis
	Anomaly Implementation

	Multi-modal data fusion
	Data Preprocessing
	Context Extraction and Graph Generation
	Forecasting Graph Neural Network
	Anomaly Detection

	Evaluation
	Experiment Setup
	Forecasting Model Performance
	Anomaly Detection Performance
	Timing Analysis
	Attack Analysis

	Chapter Concluding Remarks

	Bibliography
	Appendix Post-Silicon Hardware Trojan Detection
	Introduction
	Background and Research Challenges
	Methodologies
	Transfer Learning for HT Detection 
	Brain-Inspired HT Detection using Hierarchical Temporal Memory


	Appendix Stealing Neural Network Structure through Remote FPGA Side-channel Analysis



