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Abstract

Development and benchmarking of methods for computational design, and experimental
characterization, of proteins that bind small-molecule ligands.

Author: Amanda Loshbaugh

I present computational and experimental methods relating to the design of binding
interactions involving proteins, including interactions of protein/small molecule, dimeric
protein/protein, and tertiary protein/small molecule/protein systems. The precise geometric
design of atomic contacts necessary for binding interactions is an unsolved problem in the field
of protein engineering, yet the design of binding interactions is essential for the furtherance of
medicine, manufacturing, and basic science research. In chapter 2, compare computational
algorithms for flexible backbone protein design in the Rosetta software suite. Design protocols
were benchmarked for their ability to recapitulate observed protein sequence profiles assumed to
represent the fitness landscapes of protein/protein and protein/small molecule binding
interactions. We found that the CoupledMoves protocol, which combines backbone flexibility
and sequence exploration into a single acceptance step during the sampling trajectory, better
recapitulates sequence profiles than the BackrubEnsemble and FastDesign protocols, which
separate backbone flexibility and sequence design into separate acceptance steps during the
sampling trajectory. In chapter 3, I describe a method for efficiently screening and characterizing
chemically induced dimers (CID) that detects and responds to the presence of small molecules. I
screen a library of engineered biosensors, each of which is composed of a CID sensor module
and a reporter module, which can be interchanged. The sensor module is a heterodimer whose

interface contains a ligand binding site transplanted by computational design from a monomeric

vi



protein, such that ligand binding induces heterodimerization. The reporter module is a protein
complementation system whose complementation is induced by dimerization of the sensor
domain. I present two methods to individually screen hundreds of designed CIDs targeting
various proteins, (1) using a growth-based reporter module in £ coli, and (2) using a luminescent
reporter in a cell-free protein expression system. Finally, the screen successfully identified a CID
that responds to ibuprofen, and this system could be adapted for therapeutic application. This
dissertation presents methodological advances for both the computational and experimental

design of protein binding interactions.
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Chapter 1: Introduction

Proteins are the foundational machinery on which life runs. Enzymes catalyze chemical
reactions that convert nutrients and light to usable energy. This energy is then used by countless
proteins to perform the work of life, from motor and structural proteins that define the motility
and shape of cells, to proteins that duplicate and epigenetically modify DNA for transmission of
genetic information down the lineage of cell division. The structure-function relationship, which
relates the three dimensional structure of a protein to its biological function, is a powerful
paradigm that enables researchers to use structural representations to design function. Protein
design occupies an essential role within the interdisciplinary field of synthetic biology, which
aims to fabricate or design new biological components and systems. I address two levels of
protein engineering: (1) atomic-level design of binding interactions, and (2) experimental
screening and validation of binding between protein dimers and small molecules.

Protein function typically involves binding other proteins or molecules, yet designing
such binding interactions remains challenging. While adding binding functionality to an existing
protein could enable new synthetic biology tools, there is only one known example using
computational design to add a ligand binding site into an existing protein in a de novo fashion,
meaning at a location that did not previously bind a small molecule.[1] Instead, success
designing ligand-binding proteins more frequently relies on adapting pre-existing ligand binding
sites to bind a target ligand,[2-5] experimentally generating selective antibodies that recognize
pre-existing ligand binding sites,[6] or making chimeras of modular proteins to take advantage of
allosteric mechanisms in response to target ligand binding.[7, 8] Precise contacts remain difficult
to predict.[9] Computational protein modeling software involves representation, sampling, and

scoring of macromolecular conformations. The work presented here addresses the sampling



component, specifically sampling that includes both sequence design and backbone flexibility in
the Rosetta software suite.[10] I present a methodology to benchmark flexible-backbone design
protocols against each other, by quantifying performance on multiple experimental and
evolutionary sequence datasets. Additionally, I discuss aspects of design algorithms that may
contribute to differences in performance.

Designed proteins, once generated by computation, must be screened experimentally, yet
screening individual designed proteins is typically labor intensive. In some cases, high-
throughput screening techniques such as directed evolution may be appropriate. In other cases,
individual screening of many designs may call for lower throughput techniques. I present a
methodology to rapidly and efficiently screen tens to hundreds of computationally designed
ligand-inducible protein heterodimers. The cell-free protein expression protocol presented here
screens for enzyme activity that occurs when split enzymes are reconstituted by designed
heterodimeric proteins. The protocol could be adapted to screen for protein function that does not
require dimerization, such as monomeric enzyme activity, or transcriptional activation.

The work presented here represents methodological advances in both computational and
experimental design of ligand binding sites. These methods could be applied to make synthetic

biology tools for studying biology, designing therapeutics, or biological manufacturing.



Chapter 2: Comparison of Rosetta flexible-backbone
computational protein design methods on binding

interactions

2.1 Introduction

Computational protein design searches for sequences that adopt desired structures and
functions. Most generally, computational design methods require (i) algorithms to efficiently
search the vast sequence and conformational space accessible to proteins, and (ii) effective
energy functions to rank the solutions. Both of these requirements necessitate approximations.
Design energy functions are often simplified while considering atomic detail,[11, 12] and the
search space of sequences and conformations is typically limited by reducing degrees of freedom
in a design simulation. One early approximation was to leave the backbone fixed while sampling
rotameric side chain conformations during sequence design.[13, 14] While the fixed backbone
approximation is useful for computational efficiency, it is rarely sufficiently accurate as
flexibility is a hallmark of naturally occurring functional proteins and backbones shift to
accommodate side chain mutations arising during evolution or design.[15-17] Highly stable,
idealized folds can be designed de novo,[18-21] but design of proteins with new functions
remains challenging. In most cases where new functions have been designed computationally,
the designed protein is modeled on natural “scaffold” proteins with minimal changes in
backbone conformation,[3, 5, 22, 23] and typically requires optimization of the desired function

by directed evolution.[3-5, 9, 24, 25] Function often depends on hydrogen bonds, which require



precise backbone and side chain geometry, which remains difficult to design[9] especially when
a novel function requires “reshaping” of an existing protein conformation.[26]

Various strategies have been proposed to model backbone flexibility, such as small
random perturbations in torsional or Cartesian space,[27-30] normal mode analysis,[31]
backbone ensembles from crystal structures[28] or from computational simulations,[32-34] or
backbone parameterization, in particular for helical bundles.[19] Within the structure modeling
and design program Rosetta,[10] backbone flexibility has been treated in a number of ways.
These include (i) generation of new protein backbones by assembly from peptide fragments
which demonstrated success in ab initio structure prediction,[35, 36] (ii) cycling between
sequence design via Monte Carlo search and structure optimization via minimization,[37-39]
which led to the first de novo protein fold not observed in nature,[39] (iii) a robotics-inspired
kinematic closure (KIC) algorithm[40] shown to model loop conformations with sub-Angstrom
accuracy,[41] and (iv) the Backrub algorithm, developed to describe structural changes
underlying protein structural heterogeneity commonly observed in high resolution crystal
structures[17] and benchmarked on recapitulation of known sequences.[33, 34, 42, 43] Most
flexible backbone design methods iterate between sequence design on a fixed backbone and
structural optimization on a fixed sequence, which effectively uncouples sequence changes from
direct influence on backbone structure. In contrast, the “CoupledMoves” method in Rosetta,[42]
combines side chain and backbone moves using Rosetta backrub sampling[43, 44] in a single
design step.

While Rosetta flexible backbone design has been successfully applied to forward
engineering,[25, 45-48] different methods have not been directly compared for accuracy using

common benchmark datasets. Here, we describe such a benchmark comparison of three different



flexible-backbone design methods in Rosetta: CoupledMoves,[42] BackrubEnsemble,[43, 44]
and FastDesign, which combines sequence design with the Rosetta FastRelax method [49, 50] to
move the backbone. We focus on methods within the openly available Rosetta framework
because they use the same energy function, which allows us to direct compare different methods
of sampling backbone flexibility. We evaluate each of the methods on its ability to recapitulate
“tolerated sequence space” for binding interactions. We define tolerated sequence space as
experimentally selected or naturally occurring sequences consistent with a functional binding
interaction with a small molecule or protein binding partner.

We find that CoupledMoves recapitulates tolerated sequence space and individual
stabilizing mutations more accurately than FastDesign or BackrubEnsemble. We introduce an
updated version of the CoupledMoves algorithm (CM-KIC) that uses kinematic closure (KIC) in
place of the original backrub backbone mover, which leads to further marginal improvements in
performance. The coupled algorithm allows subtle conformational shifts in backbone torsions
which accommodate favorable side chain rotamers, in turn leading to more accurate prediction of
side chain interactions. We also analyze shortcomings of the design methods that highlight areas

for improvement.

2.2 Results

2.2.1 Design methods

We set out to compare four flexible-backbone design methods (Figure 2.1) using a
common set of benchmarks (described below): (i) FastDesign utilizing the Rosetta FastRelax
method[49, 50] for backbone flexibility (see Methods), (ii) BackrubEnsemble Design,[43, 44]

(iii)) CoupledMoves with Backrub (CM-BR),[42] and (iv) the new CoupledMoves with



Kinematic Closure (CM-KIC) method introduced here. We also compare to fixed-backbone
design (FixBB) and a null model where all amino acid frequencies are set to 5%.

The main algorithmic differences between the methods are illustrated in Figure 2.1A.
FastDesign (Fig. 2.1A, left) iterates between two steps. In the first step, amino acid side chain
identities and rotameric conformations are optimized using Monte-Carlo simulated annealing but
the backbone is kept fixed. In the second step, the entire structure is minimized using backbone
and side chain torsion degrees of freedom while keeping the sequence fixed. These steps are
iterated through cycles of simulated annealing, during which the weight of the repulsive
component of the Lennard-Jones potential is increased stepwise. Simulated annealing first
enables amino acid changes that introduce unfavorable clashes, which can be subsequently
relaxed in the minimization step. FastDesign has been used in a variety of design applications
[18, 46, 47, 51-53].

The BackrubEnsemble method[54] (Figure 2.1A, middle) also proceeds in two steps.
The first step generates an ensemble of backbones through application of Backrub moves. Each
Backrub move[17] selects two pivot backbone Ca atoms and rotates the entire segment between
them (2-11 residues) as a rigid body. Backrub moves are made throughput the protein structure
(or a predefined region) by randomly selecting pivot points. The second step performs fixed-
backbone sequence design on each member of the ensemble using Monte-Carlo simulated
annealing. Incorporating backrub moves into Rosetta simulations led to considerable
improvements in modeling structural changes upon point mutation,[43, 55] conformational
fluctuations,[34, 44, 56] and molecular recognition specificity,[54, 57] and successful application

to the redesign of recognition specificity.[45]



In contrast to FastDesign and BackrubEnsemble that separate fixed-backbone sequence
design from fixed-sequence backbone sampling, CoupledMoves combines backbone and side
chain moves, which can include sequence changes, into a single “coupled” Monte-Carlo step
(2.1A, right). In this fashion, the backbone can respond to a designed sequence change more
directly than in the non-coupled FastDesign and BackrubEnsemble methods. However, coupling
backbone and side chain moves could artificially collapse designed structures. Because replacing
a larger with a smaller amino acid side chain is less likely to lead to clashes, the change is more
likely to be accepted. In subsequent steps it is harder to recover from such a collapse as the
backbone will have moved to accommodate the smaller side chain. To alleviate this problem,
each side chain move in CoupledMoves considers all rotamers for allowed amino acids and
chooses a likely side-chain rotamer and identity based on its Boltzmann-weighted Rosetta score.
This change led to a considerable decrease in the number designed alanine or glycine side
chains.[42] Finally, coupled moves can also be performed for the ligand, where rotation and
translation of the ligand can be combined with ligand conformer changes. Coupled moves has
been shown to better recapitulate amino acid preferences in small molecule binding sites and
mutations that switch enzyme specificity,[42] but has not yet been tested in a forward-
engineering application.

The original version of the Coupled moves method uses Backrub moves to sample
backbone degrees of freedom. Here we introduce an updated version of the CoupledMoves
algorithm that performs backbone moves with the kinematic closure (KIC) algorithm[41]
(Figure 2.1B). KIC selects two pivot Co atoms that define a segment, and a third pivot Ca atom
within the segment. The algorithm next perturbs the backbone torsion angles around all non-

pivot Ca atoms in the segment, breaking the loop. Finally, the torsion angles of the three pivot



atoms are solved analytically to close the loop. The original implementation of KIC samples
backbone phi/psi torsion angles at the non-pivot Ca atoms probabilistically from Ramachandran
space.[41] Our implementation here allows phi/psi sampling by substitution of peptide fragments
derived from the protein structure databank (FKIC) or random “walk” perturbation of backbone
torsion angles by values from a Gaussian distribution centered around zero with a standard

deviation of 3° (WKIC) (see Methods).

2.2.2 Benchmark datasets

We evaluate the performance of the different methods on six benchmark datasets (Table
2.1, 2.2). Each benchmark contains information on functional sequence variants. We chose
binding as a proxy for function because the engineering of binding interactions is a common task
with many important applications, such as engineering of therapeutic proteins or small molecule
sensors. Moreover, the stability of a binding interaction is a functional constraint that can be
more easily explicitly modeled and scored by Rosetta than for example requirements for efficient
enzyme catalysis that are often incompletely understood. The datasets comprise both small
molecule binding sites and protein-protein interaction interfaces.

Four of the datasets contain small molecule binding sites (Table 2.1, Figure 2.2, Tables
S2.1-10). The first two datasets were taken from [42]. Dataset 1 comprises evolutionary
sequence alignments for eight naturally occurring protein families that each bind a specific
cofactor (“cofactor” set, Figure 2.2A). Dataset 2 was curated from experimentally-characterized
substrate specificity-altering point mutations for ten different enzymes (“enzyme specificity” set,
Figure 2.2D). Datasets 3 and 4 were compiled from site saturation mutagenesis (SSM)

experiments performed on two different proteins designed by Rosetta to bind small molecules



(sets “DIG10” (digoxigenin)[3], Figure 2.2C, and “Fen49” (fentanyl)[2], Figure 2.2B). The
SSM libraries were screened for binding to the target small molecule (digoxigenin or fentanyl,
respectively) using yeast display followed by deep sequencing of naive and selected populations.

The two protein-protein interface datasets contain sequences selected from combinatorial
libraries (allowing all 20 naturally occurring amino acids at 5 to 7 sequence positions) by phage
display and subsequent sequencing of individual clones (Table 2.1). Dataset 5 comprises
sequences from 5 phage display libraries of Herceptin (17 positions total) selected for binding to
HER2 (“Herceptin/HER2” set [58], Figure 2.2E). Dataset 6 comprises sequences from 6
libraries of human growth hormone (hGH) (35 positions total) selected for binding to human

growth hormone reception (h\GHR) (“hGH/hGHR” set [59], Figure 2.2F).

2.2.3 Performance metrics

Five of the datasets contain sequences from either experimental selection (DIG10, Fen49,
Herceptin-HER2, hGH/hGHR) or natural sequence alignments of evolutionary families
(cofactor), reflecting the diversity of amino acids at each position compatible with the protein’s
function (tolerated sequence space).[33] We refer to this diversity as the “known sequence
profile” for each position. We evaluate the ability of our design methods to recapitulate these
known sequence profiles by quantifying two metrics used previously,[42, 57] profile similarity
and rank top, both calculated per position. Position profile similarity (PPS) measures the
similarity of the probability distribution of amino acid frequencies between the known profile
and the profile generated by Rosetta design at each position (see Methods). Rank top measures
the rank, in the design profile, of the amino acid most frequently observed at a given position in

the known profile.



The enzyme specificity benchmark[42] contains individual point mutations (rather than
sequence profiles) experimentally characterized to switch enzyme substrate specificity. In this
case, in contrast to the analysis for the sequence profile datasets, we do not assume knowledge of
positions mutated in the experiment. Instead, we evaluate how the experimentally characterized
specificity switching mutation ranks across designed mutations at all positions in the vicinity of
the changed substrate, to approximate an actual design project where it is not clear a priori which
position should be mutated. In addition to the absolute rank we also evaluate the percentile,[42]
of the experimentally characterized mutation among all design predictions (see Methods).

Each metric has a different experimental interpretation. The tolerated sequence space
captured by the PPS metric is useful for the design of libraries, which can be screened for criteria
in addition to binding affinity and specificity, such as protein stability and solubility. RankTop is
useful for cases where a few mutations or design sequences are selected for individual
experimental tests. Percentile gives information on how many predictions would need to be

tested in order to find a successful mutation when making predictions for a range of positions.

2.2.4 CoupledMoves improves prediction of tolerated sequence space

We first evaluated the overall performance of each flexible backbone design method on
the five sequence profile datasets. Figure 2.3A shows the distributions of position profile
similarities across all designed positions in each benchmark, with the median indicated by a
white dot. CoupledMoves and BackrubEnsemble attain higher median PPS values than the null
model for the Herceptin, Cofactor, and Fen49 datasets, although BackrubEnsemble does so by a
lower margin. Somewhat surprisingly, using this global metric FastDesign and FixBB do not

attain a higher median PPS values than the null model for most of the datasets (except cofactor),
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and are considerably worse than the null model for the hGH/hGHR and DIG10 datasets. As
discussed below, the comparatively poor overall PPS of all methods for the hGH/hGHR, DIG10,
and Fen49 datasets is due to low similarity between the input sequence and the known profile. In
these cases, the null model scores as well or better than the design methods; of the flexible-
backbone design methods, CoupledMoves performs best.

We next evaluated the RankTop values for all five datasets (Figure 2.3B). Here, all
flexible backbone methods (except FastDesign for the hGH/hGHR dataset) perform better than
fixed backbone design, which in the majority of the cases misses the most frequent amino acid
side chain from the known profiles (the null model by definition ranks all amino acids the same
so is not relevant here). The rank top values are lowest (best) for the Herceptin/HER2 and
cofactor sets. CoupledMoves performs better than BackrubEnsemble and FastDesign for the
Herceptin/HER2, hGH/hGHR and cofactor datasets, similar to FastDesign for the Digl0 set and
similar to BackrubEnsemble for the Fen49 set. Moreover, for several benchmarks (hGH/hGHR,
Herceptin/HER2, Fen49), CM-WKIC leads to small but noticeable improvement in RankTop
values over CM-BR. Taken together, when considering both PPS and RankTop over all datasets,
CoupledMoves and in particular CM-WKIC perform best overall.

We also considered PPS and RankTop for each protein family comprising the Cofactor
dataset (Figure 2.S1), and found that CoupledMoves outperforms FastDesign for all families,
and outperforms BackrubEnsemble for six of the seven families, with the exceptions of the flavin
binding site of Flavodoxins. Performance for individual libraries of the Herceptin/HER2 (Figure
2.S2) and hGH/hGHR (Figure 2.S3) leads to similar conclusions.

To determine if methods were more predictive for different groups of positions, we

plotted the PPS values for the different methods against each other (Figure 2.4A,B).
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CoupledMoves achieves similar or better PPS for nearly all positions when compared to the non-
coupled methods (Figure 2.4A, CM-KIC shown as example). BackrubEnsemble achieves PPS
values better or similar than FastDesign (Figure 2.4B, left), and better than FixBB (Figure 2.4B,
middle), for almost all positions. FastDesign, compared to FixBB, achieves better PPS for some
positions, but worse PPS for others (Figure 2.4B, right). Figure 2.4C quantifies the number of
positions for which CoupledMoves is better, worse, or similar to the non-coupled methods. A
prediction for a position is classified as “better” or “worse” by a given method relative to a
comparison method when the difference in performance is above or below, respectively, a
threshold of + 0.1 for PPS or + 5 for RankTop. When the difference is within the threshold, the
predictions are classed as “similar.” CoupledMoves achieves better PPS wvalues than
BackrubEnsemble for 65 + 1 positions, better than FastDesign for 119 + 2 positions, and better
than FixBB for 143 + 2 positions. Standard deviation represents the average across CM-BR, CM-
FKIC, and CM-WKIC. CoupledMoves also achieves better RankTop for more positions than
BackrubEnsemble, FastDesign, and FixBB (39 + 3, 67 + 3 and 126 + 4 positions, respectively),
(Figure 2.4C). Moreover, CoupledMoves performs worse than non-coupled methods for very

few positions (Figure 2.4C, red bars).

2.2.5 CoupledMoves is the accurately predicts key affinity-determining side chains

We next sought to evaluate the ability of the different methods to predict amino acid
preferences for the positions that are most functionally important in the 5 profile datasets.
Sequence logo representations of the tolerated sequence space for each of our datasets (Figures
S2.4-8) indicated considerable differences in sequence entropies between individual positions,

and we reasoned that conserved side chain residues at low sequence-entropy positions are more
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likely to be important for protein function than residues at position with higher entropy. We
hence split the positions in each dataset into three sequence entropy groups (see Methods) and
evaluated median PPS and RankTop for the cofactor and Herceptin/HER2 datasets, which have
the most consensus positions (Figure 2.5, Figure S2.9). Positions with low (entropy < 0.33) or
medium (0.33 < entropy < 0.67) entropy were defined as consensus positions. The top known
side chain for these positions was defined as the consensus side chain. We find that
CoupledMoves achieves better PPS than the null model for consensus positions in the
Herceptin/HER2 and cofactor datasets. FastDesign is better than the null model for only low-
entropy positions for both datasets. BackrubEnsemble is better than the null model for low
entropy positions in the cofactor dataset, but not Herceptin/HER2. In contrast, the null model has
the highest PPS for the high entropy bin, which might be expected for positions with high
mutational tolerance.

Similar to PPS, CoupledMoves achieves the best (lowest) RankTop values for consensus
positions, predicting the correct amino acid residue with at least some frequency at most
positions, as opposed to non-coupled methods which frequently do not identify the consensus
side amino acid identity at all (rank of 20) (Figure 2.5). CoupledMoves predictions typically
have the highest entropy (Figure S2.10), which leads on average to higher similarity at variable
positions. Nevertheless, PPS and RankTop at low-entropy positions (Figure 2.5, Figure S2.9),
and energetic rankings of consensus positions (see Discussion, Figure 2.8) indicates that
CoupledMoves is the most accurate method for functionally relevant interactions.

In addition to low-entropy positions determined from known sequence profiles, we also
considered experimentally-characterized affinity-improving mutations, which were available for

the Herceptin/HER2, Fen49, and enzyme specificity datasets (the latter set is discussed below).
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For Herceptin, the most important affinity-improving mutation, D V598 W, resulted in 3-fold
improvement of binding affinity and was found in 23% of sequences resulting from phage
display.[58] Contrary to previous findings[60] where BackrubEnsemble recapitulated D V598 W
as the top mutation, the non-coupled methods tested in this study did not identify tryptophan
(Figure S9), but CoupledMoves methods selected the tryptophan mutation at low frequency
(CM-BR 1.1%, CM-FKIC 1.3%, CM-WKIC 1.5%). We note that this position is surface exposed
in the original structure, leading to high entropy in the design profiles where many side chains
are tolerated. It is possible that a structural rearrangement in the D V98 W mutant adds
additional interactions across the interface but that these structural changes are not correctly
modeled in our simulations.

For the Fen49 dataset, the authors identified two key mutations, A77V and A171I, that
led to ~100-fold improvement in binding affinity to fentanyl, but none of the design methods
tested here found both mutations (Figure S2.8). These two positions are located in the binding
pocket and enriched in larger hydrophobic residues in the selection, presumably to provide
additional surface complementarity with fentanyl.[2] While all design methods did substitute
larger hydrophobic side chains, only FastDesign ranked 1711 highly, and only BackrubEnsemble
ranked 77V highly. CoupledMoves selected 77V at a lower frequency. No method identified the
combination of A77V and A1711. While there is no crystal structure with these mutations, we
hypothesize that packing 1171 against the phenyl ring of fentanyl may be inaccessible to the
fentanyl conformer of Fen49, and modeling ligand flexibility might enable design to converge on
I171. Unlike position 171, which is an ideal distance for van der Waals interaction with fentanyl,
there is an almost 6 A distance between the closest heavy atoms of position 77 and the ligand and

has a large solvent-accessible surface area. It is therefore unsurprising that Rosetta is unable to
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arrive at a consensus for this position. The inability of all methods to find the key mutations in
Fen49 may represent shortcomings in modeling ligand flexibility. In addition, the Fen49 deep
sequencing results are incomplete due to experimental limitations. For example, the original

Fen49 side chains were present in the selection but did not have frequency counts.[2]

2.2.6 CoupledMoves improves prediction of substrate specificity-altering mutations

The Enzyme Specificity dataset provides an opportunity to analyze functionally
important mutations, as the dataset is made up of pairs of structures where individual point
mutations have been experimentally characterized that switch ligand-binding specificity between
two ligands.[42] To determine to what extent the different flexible backbone methods can
recapitulate these experimentally characterized specificity-switching mutations, we carried out
design simulations on structures with either the original or the new ligand in the binding pocket
and designing positions in the vicinity of the ligand substructure change, as described
previously[42] (Table S2.3, Table S2.4). To design for mutations switching specificity to the
new ligand, we prepared the input structure by computationally substituting the new ligand into
the binding pocket of the wild-type protein crystal structure. For the inverse, we swapped the
wild-type ligand into the binding pocket of the mutant crystal structure (see Methods).

Some enzymes in this dataset have multiple experimentally-characterized mutations,
either a single position to multiple identities (Protein Data Bank (PDB) codes: 1K70, 3KZO), or
multiple positions (PDB: 1A80, 3HGS), for a total of 29 cases (12 wild-type and 17 mutant side
chains). The CoupledMoves methods (CM-BR, CM-FKIC, CM-WKIC) correctly identify
(positive percent enrichment, see Methods) 14, 11, and 12 mutations specificity-determining

mutations, respectively, while the non-coupled methods (FastDesign, BackrubEnsemble, FixBB)
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identify only 7, 7, and 5 mutations, respectively (Table 2.2). All CoupledMoves methods
identify specificity-altering mutations with a better percentile and rank than the non-coupled
methods (Tables 2.2, 2.3), with the original CM-BR attaining the best median and quartile

performance, and FastDesign and BackrubEnsemble performing similarly poorly.

2.2.7 Gain and loss

We next considered how the sequence of the input structure influences method
performance. Only positions with low and medium entropy (< 0.67) in the known profile are
considered. Three broad scenarios can be distinguished (Figure 2.6, top panels). In the first
scenario (“loss”), the input side chain (the residue in the starting structure used for design) is
present or even preferred in the known sequence profile but is depleted in the design simulations.
In the second scenario (“gain”), the input side chain and the known position profile are
dissimilar, but preferred side chains are enriched by design. The third scenario occurs when
design results in little change of similarity to the known profile (“neutral”). When plotting the
PPS values for each method as a function of profile similarity to the input, loss occurs more
frequently for positions designed by BackrubEnsemble, FastDesign and FixBB, whereas gain
occurs more frequently for positions designed by CoupledMoves and BackrubEnsemble (Figure
2.6a, middle and bottom panels, Table S2.11).

We also performed a similar analysis for the RankTop values. We defined “loss” as the
case where a correct starting amino acid side chain is ranked below 5 in the final profile and gain
as the case when the known top amino acid side chain is not present in the starting sequence and
design models it with a rank of 15 or higher (Figure 2.6a, top panel). We only observed loss for

positions designed by BackrubEnsemble, FastDesign, and FixBB (Figure 2.6b, middle and
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bottom panels). CoupledMoves achieves gain with the best median and quartile RankTop values
(Figure 2.6b, middle panel), and for the greatest number of positions (Figure 2.6b, bottom
panel). Positions are more likely to remain neutral than to experience gain or loss (Figure 2.6,
bottom panels, Table S2.11), thus positions with near-correct input sequence tend to maintain
higher PPS values. This observation offers an explanation for the comparatively poor PPS and
RankTop values of all methods for the DIG10, Fen49 and hGH/hGHR datasets (Figure 2.3),
which are characterized by low similarity between each dataset’s input sequence and known
profile (Figure S2.11).

We then asked which methods best predict positions deemed both functionally relevant
(consensus) and difficult (requiring gain). We find that CoupledMoves is more likely than non-
coupled methods to enrich for correct side chains not present in the input, with 1.2- and 1.5-fold
increase in number of positions experiencing gain, compared to BackrubEnsemble and
FastDesign, respectively (Table S2.11). In addition, CoupledMoves most consistently avoids
loss (0.22- and 0.30-fold decrease in number of positions experiencing loss, compared to
BackrubEnsemble and FastDesign, respectively), and retention of correct input side chains
(neutral scenario) contributes to overall performance. Taken together, the overall best
performance of CoupledMoves arises both from increasing the number of positions with gain
and decreasing the number of positions experiencing loss.

We also classified positions as polar/charged or hydrophobic based on the most preferred
side chain in the known sequence profile, and use this classification to evaluate performance in
recapitulating polar contacts versus hydrophobic packing. CoupledMoves outperforms
BackrubEnsemble and FastDesign in discovering and retaining both polar/charged and

hydrophobic positions (Table S2.11).
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2.2.8 Selected structural examples

At the Herceptin/HER?2 interface, arginine at position Vi50 (RVy50) is one of four
positions (the other three are YVy56, WVR95, and YVy100a) where CoupledMoves maintains a
consensus side chain that is completely lost by one or more non-coupled methods (Figure S2.9).
In the crystal structure, RVy50 forms a hydrogen bond network across the Herceptin/HER2
interface by interacting with Herceptin TV.94 and HER2 E273 and D275. CoupledMoves retains
RVu50, while FastDesign and BackrubEnsemble replace this residue with hydrophobic residues,
predominantly methionine and glycine, respectively (Figure 2.7A).

Hydrogen bonds between digoxigenin and the designed protein are most frequently
retained by CoupledMoves. In the crystal structure of DIG10.2 (the digoxigenin binder designed
with knowledge from the results of the experimental library screen[3]), tyrosines 34, 101, and
115 hydrogen bond with digoxigenin, as designed.[3] CoupledMoves frequently chooses
Tyrosine at all three positions (Figure 2.7B, top), whereas FastDesign models only one
interaction correctly (Figure 2.7B, middle), and BackrubEnsemble models two (Figure 2.7B,
bottom). At position 115, BackrubEnsemble most frequently models asparagine, which is too
short to hydrogen bond with digoxigenin. FastDesign most frequently models leucine, not
tyrosine, at position 115, and instead models Tyrosine at nearby position 11 (alanine consensus
in experiment), forming an alternative hydrogen bond with the ester oxygen rather than carbonyl
oxygen of the nearby digoxigenin ring.

A third structural example for loss is found in the binding site for cofactor flavin-adenine
dinucleotide (FAD) binding site in glutathione reductase (Figure 2.7C). The majority of natural
glutathione reductases coordinate FAD with glutamate at position 50 (E50) and aspartate at

position 331 (D331). These side chains are frequently maintained by CoupledMoves, but not by
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FastDesign or BackrubEnsemble (Table 2.6). Models generated by CoupledMoves agree with
the input crystal structure (3DK9), in which E50 forms a hydrogen bond network with two
hydroxyl groups of the 3-4-dihydroxy-furan moiety of FAD. CoupledMoves also predicts a
hydrogen bond between evolutionarily conserved residue D331 and a hydroxyl group of FAD.
The non-coupled design methods frequently replace both polar side chains with apolar side
chains, valine at position E50, and alanine or methionine at D331, eliminating the hydrogen

bonds between the protein and the ligand.

2.3 Discussion

We demonstrate that CoupledMoves recapitulates known sequence profiles at designed
positions more accurately than the FastDesign and BackrubEnsemble methods. We consider two
conceptual categories of positions: (i) important for function and (ii) difficult to design. For the
first category, we classify positions as important for function (in this case binding) either by
proxy of low sequence entropy in the known sequence profile, or if specific mutations have been
experimentally determined to be important, as in the Enzyme Specificity dataset. CoupledMoves
most accurately predicts low entropy consensus positions for all profile benchmarks (Figure 2.5)
and outperforms the other methods in correctly identifying specificity-switching mutations in the
enzyme specificity set (Table 2.2, Table 2.3). For the second category, we designate positions as
difficult to design if the most frequent amino acid side chain in the known profile is not present
in the structure used as input for design. Considering both low and medium entropy positions,
CoupledMoves is more likely than the iterative BackrubEnsemble and FastDesign methods to
correctly identify both charged/polar and hydrophobic side chain residues at higher frequency

than in the input sequence (gain), while FastDesign is least likely model a preferred side chain
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residue present in the input sequence (loss) (Table S2.11, Figure 2.6, Figure S2.11). We
conclude that CoupledMoves is best able to predict both residues that are important for function
and difficult to design in our datasets.

To provide insights into why the different methods model consensus side chains with
different frequencies, despite using the same energy function, we analyzed how the correct
amino acid at these positions was ranked by energy for each of the different methods. Figure
2.8a shows distributions of percentiles for predicted total Rosetta energy of instances where a
method models the known top ranked amino acid side chain. These distributions are shifted
towards higher percentiles for CoupledMoves compared to the other methods. CM-FKIC
predicts the consensus side chain for 51 positions with total energy above the 75™ percentile,
while BackrubEnsemble and FastDesign predict 37 and 27 positions in the same category.
CoupledMoves models the consensus side chain for a total of 132 designable positions in the
datasets, compared to 111 and 95 positions for BackrubEnsemble and FastDesign, respectively.
The high sequence entropy of CoupledMoves design compared to other methods (Figure S2.10)
makes it even more remarkable that CoupledMoves ranks the energetics of consensus side chains
so favorably among many options. We conclude that, for side chains modeled with > 0.33
frequency and > 75" energy percentile, CoupledMoves predictions are likely correct.

In cases where the BackrubEnsemble method does model the consensus side chain during
design, the energetics rank favorably (Figure 2.8a). One possible reason for the overall worse
performance of BackrubEnsembles over CoupledMoves is that cases correctly predicted by
BackrubEnsemble might be derived from only a subset of ensemble members whose backbone
conformations are compatible with energetically favorable placement of the consensus side

chain. In these cases, the input/consensus side chain is compatible with the ensemble, but during
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sequence design another amino acid side chain has more favorable Rosetta energy. Indeed,
forcing the consensus side chains onto all ensemble members results in a greater proportion of
models with unfavorable (positive) Rosetta energy, and a smaller proportion of models with
highly favorable energy (Figure 2.9, shown are glutathione reductase and digoxigenin binder,
which are examples of loss by the BackrubEnsemble method). This behavior suggests that
ensemble members are not uniformly compatible with consensus sidechains, and highlights a
limitation of the BackrubEnsemble method. Backbone moves are sampled only once, at the
beginning of the trajectory during ensemble creation (Figure 2.1a). Sidechains are subsequently
modeled onto each ensemble member by finding an energetically favorable rotamer for the pre-
determined backbone conformation. In contrast, the CoupledMoves design trajectory cycles
small backbone adjustments in response to sequence change moves, which allows switching
from non-consensus to consensus side chains. Without cycles of backbone and sidechain
sampling, the BackrubEnsemble method is limited to snapshots of the allowed backbone
conformational diversity defined by the initial ensemble members.

For CoupledMoves, the design frequency increases with energy percentile for consensus
side chains (Figure 2.8b), which is expected - side chains with a higher (more favorable) energy
percentile should be chosen more frequently. However, this trend is less pronounced for both
BackrubEnsemble and FastDesign. For BackrubEnsemble, this behavior is possibly due to the
limitations enforced by the backbones conformations of the ensemble. In the case of FastDesign,
it is possible that the minimization step in FastDesign is prone to trapping the design simulations
in local minima and hence that the frequency of chosen amino acids poorly reflect their actual
fitness rank. This hypothesis is supported by the low entropy of FastDesign design sequence

profiles (Figure S2.10). FastDesign may be less likely to escape local minima with its simulated
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annealing and minimization algorithm that the other methods, despite the use of a reduced
Lennard-Jones repulsive term in the early cycles of the simulation (Figure 2.1a).

In addition to limitations in sampling methods (as well as the energy function used to
rank designs), there are also potential limitations inherent in our benchmark datasets. For
example, in the case of the enzyme specificity dataset, we can only compare to the point
mutations that were experimentally tested, but we do not have sequence profiles. The enzymes
have not been subject to saturation mutagenesis, so it is unknown whether there are additional
specificity-altering mutations.

Sequence profiles in the cofactor dataset result from natural evolution, rather than
experimental screening. Natural evolution includes selection pressures beyond affinity (function,
stability, kinetics), so that the sequence profiles for natural binding site positions may be
influenced by factors beyond those modeled by Rosetta. In addition, our analysis does not
evaluate covariation between residue positions. However, evolutionary sequence profiles have
the advantage of clearly identifying consensus binding positions, and we observe considerable
agreement between Rosetta predicted and known sequence profiles for this set.

Finally, all methods tested perform most poorly at consensus positions in the deep
sequencing datasets, DIG10 and Fen49, and the design methods perform worse than the null
model on DIG10. Initiating design from the crystal structure corresponding to the result of the
library selection (PDB: 4J8T) did not improve performance. It is possible that the selection
experiments report on additional considerations such as expression and display on the yeast
surface that are not considered in the design simulations, or that the sensitivity range of the
selection is tuned to primarily differentiate between functional versus deleterious mutations but

is less capable of quantitatively ranking binding affinity. Alternatively, critical adjustments of
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both backbones and the ligand, in addition to ligand strain and ligand flexibility, are not correctly
captured in the Rosetta simulations.

Apart from suggesting individual point mutations such as in the enzyme specificity set,
our results on recapitulating position-specific sequence profiles highlight the utility of
CoupledMoves for generating libraries. CoupledMoves will be most useful in design cases where
protein backbones are supplied with existing side chains, such as natural or previously-
characterized designed proteins (rather than the de novo design of new structures). Computation
has long been used to reduce the sequence space queried by library screens,[61-63] and it is well
established that flexible-backbone protein design can generate sequences similar to observed
natural and experimental sequences.[32-34, 38, 54, 64-66] As the design results obtained with
CoupledMoves most accurately reflect tolerated sequence space in comparison to other methods
using the same energy function, CoupledMoves represents a powerful flexible backbone strategy
for generating combinatorial libraries for screening and selection, and optimizing proteins for

new and useful functions.

2.4 Methods

2.4.1 Benchmark Datasets
2.4.1.1 Cofactor binding sites

This dataset is described in detail in [42]. Briefly, the dataset is comprised of seven
protein families, each containing a conserved small molecule cofactor binding site (Table S2.1).
The highest resolution available crystal structure was chosen as the starting point for design. As
in [42], positions with a side-chain heavy atom within 6 A of any heavy atom in the co-factor

ligand were allowed to design to any amino acid identity, and positions that could clash with
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designable positions were allowed to repack (change conformation but not identity) (Table S2).

Known profiles were obtained from natural sequences of these binding sites as described in [42].

2.4.1.2 Enzyme specificity

This dataset is described in detail in [42]. Briefly, the dataset is comprised of 10 enzymes
for which there are experimentally validated specificity-altering mutations in the ligand binding
sites (Table S2.3). As in [42], design was carried out with either the native or the non-native
substrate/substrate analog. Positions with heavy atoms within 4.5 A of any ligand atoms differing
between the native and non-native substrate were allowed to design to any amino acid identity,
and positions that could clash with designable positions (as described in [42]) were allowed to
repack (Table S2.4). Structures were prepared as described in [42]. Briefly, for each enzyme
four types of structures were prepared: 1) the native enzyme with the native ligand, 2) the mutant
enzyme(s) with the non-native ligand, 3) the native enzyme with the non-native ligand, and 4)

the mutant enzyme with the native ligand.

2.4.1.3 DIG10

The DIG10 dataset was taken from [3]. Briefly, DIG10 is a computationally designed
protein that has been engineered to bind the small molecule digoxigenin (DIG) [3]. A
computational design, DIG10, was subjected to selection by yeast surface display, first of a
single-site saturation mutagenesis library, then of a combinatorial library of beneficial mutations
identified in the first selection, yielding variant DIG10.1. The binding fitness landscape of
DIG10.1 was then probed by SSM and selections using yeast surface display, which converged
after four rounds of selection to variant DIG10.2. Our computational protocol seeks to replicate

the deep sequencing library selection that led from DIG10.1 to DIG10.2. For input, we used the
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crystal structure of wild-type protein (PDB: 1Z1S) on which DIG10 was designed, the sequence
of DIG10.1 (which we placed onto the 1Z1S scaffold using the Rosetta FixBB protocol), and the
digoxigenin conformation from the DIG10.2/digoxigenin complex (PDB: 4J8T). Digoxigenin
was placed into the 1Z1S scaffold by using PyMOL to align 4J8T and 1Z1S, then combining the
digoxigenin molecule from 4J8T and the protein structure from 1Z1S into a new PDB file. The
known profile represents the frequency equivalent (F,qyp, described below) of the selection
experiment on the DIG10.1 SSM library. The 39 positions selected for experimental site
saturation in [3] were allowed to design to only those amino acid identities with high enough
sequencing counts to be included in the enrichment and depletion calculations in [3] (Table S5,
Table S6). We note that the experimental screen mutated 1-2 position at a time, whereas we
design multiple positions simultaneously. In CoupledMoves design, 30 positions were allowed to
repack based on the possibility of clashes with designed positions; in design by non-coupled

methods, all positions were allowed to repack (Table S5).

2.4.1.4Fen49

The Fen49 dataset was taken from [2]. Fen49 is a computationally designed protein that
has been engineered to bind the small molecule fentanyl (Fen). The original computational
design, Fen49, has an affinity of 6.9 uM for Fen-BSA. After four rounds of selection, a
combination of two substitutions, A78V and A172I, was identified to produce a variant with a
100-fold improved affinity of 64 nM. We used the wild-type protein (PDB: 2QZ3), on which the
sequence of Fen49 was modeled, as a input to our design simulations. The fentanyl conformation
from designed fentanyl binder Fen49*/fentanyl complex (PDB: 5TZO, where Fen49* is a Fen49

Y88A point mutant that was more suitable for complex structure determination [2]) was placed
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into the 2QZ3 scaffold using PyMOL. Fentanyl was placed into the 2QZ3 scaffold by using
PyMOL to align 2QZ3 and 5TZO, then combining the fentanyl molecule from 5TZO and the
protein structure from 2QZ3 into a new PDB file. While all positions of Fen49 were subjected to
SSM, for our study we designed only the 18 residues defined as binding site in [2] (Table S7).
Design was allowed only to those amino acids with high enough sequencing counts to be
included in the enrichment and depletion calculations in [2] (Table S8). Finally, four positions
(37, 64, 69, 71) in the input structure were set to alanine (using Rosetta’s FixBB protocol),
because the wild-type residue was disallowed due to low counts (Table S8). In CoupledMoves
design, 22 positions were allowed to repack based on the possibility of clashes with designed
positions; in design by non-coupled methods, all positions were allowed to repack (Table S7).
The known profile represents the frequency equivalent (F,qyp,, described below) of the final
round of selection (obtained from the authors). Note that the experimental screen mutated one

position at a time, whereas we design multiple positions simultaneously.

2.4.1.5 Frequency equivalent
Experimental data from the DIG10 and Fen49 datasets are deep sequencing counts before
and after selection, which are not directly comparable to amino acid identity frequencies from

computational design. We therefore derived a frequency equivalent (Fgqy;,) from the fitness

score described in [67], to allow direct comparison between the experimental data and sequence

profiles from Rosetta design for mutation x at position i:

sel orig,sel

fix se /‘;

fx,unsel forig,unsel
i i

Fequiv = x,sel orig,sel

fx,unsel orig,unsel
i fi
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orig,sel orig,unsel
95¢" and f; g are the

where £°¢" and f*"“"**'are the frequency of that mutation, and f,
frequency of the original amino acid identity, in the selected and unselected populations,

respectively, and Fqy;, is normalized by dividing over the sum across all amino acid identities

found in the sequencing results. F, 4y, is then used in comparison to Rosetta design results.

2.4.1.6 hGH/hGHR

The hGH/hGHR dataset was taken from [33]. The protein-protein interface between
human growth hormone (hGH) and human growth hormone receptor (hGHR) is high affinity,
with a Kp reported as 0.9 nM[68] and 1.56 nM.[59] As input for design, we used a crystal
structure (PDB: 1A22). The known sequence profiles were taken from a phage display selection
experiment, wherein 35 key residues from the ~1300 A*> hGH/hGHR interface were divided into
six combinatorial libraries of five or six positions.[59] To minimize potential cooperative
interactions, positions were grouped into libraries that maximized the three-dimensional distance
between residues. Our computational workflow mimicked this strategy, using the same
designable residues and running independent design trajectories for each of the six libraries. As

in [33], residues within 4 A of designed residues were allowed to repack (Table S9).

2.4.1.7 Herceptin-HER2

The Herceptin-HER?2 dataset was taken from [60]. The protein-protein interface between
therapeutic antibody Herceptin and its target, human epidermal growth factor 2 (HER2), is high
affinity (Kp = 0.35nM[58]). We used a crystal structure (PDB: 1N8Z) as input structure for
design, truncated as in [60] to include only chain A positions 1-106, chain B positions 1-119, and

chain C positions 511-607. The known sequence profiles were taken from phage display
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selection experiments that used five combinatorial libraries containing five to seven positions
each after four rounds of selection.[58] We mimicked the experimental strategy in our
computation, with five separate design runs, one for each experimental library, and allowing
repacking of residues within 4 A of designed residues, as in [60] (Table S2.10). Herceptin/HER2

sidechains were repacked from the crystal structure before design.

2.4.2 Rosetta Design protocols

Design protocols used Rosetta revision number 60351 and score function ref2015.[11,
69] For each method, we used standard parameters and settings previously reported in
benchmarks or design applications, except for the new CM-FKIC and CM-WKIC methods

reported here. Command lines for each method can be found in the supplement.

2.4.2.1 CoupledMoves

The CoupledMoves method was used as described in [42]. Briefly, each coupled move
had a 90% probability of being a backbone and side-chain move, and a 10% probability of being
a ligand move. Each simulation was run for 1,000 moves and 400 simulations were run for each
protein-ligand or protein-protein complex. All unique amino acid sequences accepted during
each simulation were output into a FASTA file, and the resulting 400 FASTA files were pooled,

including redundancy, for analysis. Command line arguments are provided in the Supplement.

2.4.2.2 CoupledMoves with Kinematic Closure
Two different methods of modeling backbone flexibility are implemented in
CoupledMoves. The first method uses the Backrub algorithm [43, 70] and was originally

described in [42]. The second method uses kinematic closure [40, 41, 71] and is implemented in
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CoupledMoves here (Figure 2.1b). Kinematic closure in Rosetta [41] generates conformations
of backbone segments by sampling non-pivot torsions in the segment and then analytically
determining values for 6 pivot torsions to close the loop. For CM-FKIC, non-pivot torsions are
sampled from peptide fragments taken from the PDB.[35] For CM-WKIC, non-pivot torsions are
adjusted by a random value from a Gaussian distribution centered around zero and with a
standard deviation of 3°. In each case, the remaining six pivot torsions are then solved

analytically to close the loop. Command line arguments are provided in the Supplement.

2.4.2.3 FastDesign

FastDesign is based on the FastRelax protocol in Rosetta described in [49, 50]. Briefly,
FastRelax consists of inner cycles of rotamer repacking and backbone and side chain torsion
minimization with progressively higher weight on the repulsive part of the van der Waals energy
function component, from 2% to 100% of its total value. FastDesign uses an analogous protocol
but allows side chain design in addition to repacking. During FastDesign, we used harmonic
coordinate constraints to keep backbone heavy atoms close to their starting position, and the
weight of the constraints is ramped down from 1.0 to 0.0 during the course of each inner
simulated annealing cycle. Constraint and repulsive weights are ramped five times, during five
outer cycles. For each input protein structure, 400 designs were generated in independent design

trajectories. Command line arguments are provided in the Supplement.

2.4.2.4 BackrubEnsemble
The BackrubEnsemble method is described in [57]. Briefly, the method generates a
structural ensemble with backbone conformational variation using the backrub algorithm,[43]

and then carries out fixed-backbone side chain design on each member of the ensemble. 400
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ensemble members were generated using 10,000 backrub trials, a temperature of 1.2, and a

backbone segment length of 3-12 atoms. Command line arguments are shown in the Supplement.

2.4.2.5 Forced BackrubEnsemble design

“Forced” BackrubEnsemble design forces sequence design to choose the known
consensus side chain at certain positions. Forced design was applied to Glutathione Reductase
positions E5S0 and D331, and DIG10 positions Y34, Y101, and Y115. For each protein, 100
forced trajectories were run, using as input the first 100 members of the same BackrubEnsemble

on which typical design was performed.

2.4.2.6 Ligand handling

Rosetta requires ligands to be described by a params file, which contains information
defining the ligand’s atom types, bond geometry, and chemical connectivity. We generated
params files from PDB structures using Rosetta’s molfile_to_params.py utility script. We
did not model multiple ligand conformers except for DIG, for which the DIG ligand conformer
library used during DIG10 design [3] was obtained from the authors.

CoupledMoves samples ligand rigid-body translation and rotation in all cases. FastDesign
minimizes ligand torsional degrees of freedom in addition to backbone torsion angles during its

minimization step. BackrubEnsemble and FixBB do not sample ligand movement.

2.4.2.7 Computational performance

We also evaluated the relative compute time for each of the different methods. We first
analyzed how performance depended on the number of trajectories run (Figure S2.12). This

analysis suggested that performance is optimal for Coupled Moves, BackrubEnsemble and
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FastDesign at 400, 200 and 100 trajectories, respectively, with slight variation between datasets
(Figure S2.12). Since each BackrubEnsemble and FastDesign trajectory takes approximately 2-
fold and 20-fold more time than CoupledMoves, respectively (Figure S2.13), CoupledMoves
requires substantially less compute time than FastDesign and about equal compute time to

BackrubEnsemble (Table 2.4).

2.4.3 Performance Metrics

2.4.3.1 Position profile similarity

Position profile similarity (PPS) was computed as described in [42]. Briefly, PPS
represents the similarity in the side chain amino acid identity distributions between the predicted
and known sequences at a given position:

position profile similarity = 1 — D’* (Dxnown,i» Ddesign,i)
Where Pynown,i and Pgesign,; are the probability distributions over the 20 amino acids for the
known (natural or experimental) and designed sequences, respectively, at position i and

D/S(x,y) is the Jensen-Shannon divergence between two distributions x and y, as in [44].

2.4.3.2 RankTop

For the profile datasets, mutations were ranked according to their frequency in the
predicted and known (experimental/natural) sequence profile. RankTop is the rank, in the
predicted profile, of the top ranked amino acid from the known profile. If the amino acid is not

found, its rank is set to 20.
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2.4.3.3 Percent Enrichment
As in [42] the percent enrichment (PE) for each specificity-altering mutation in the

enzyme specificity dataset was calculated as follows:

PE(WT — MUT) = Y%uon-native — Yonative

PE(MUT - WT) = Y%uative = Yonon—native
where %,,4¢ive 1S the percent occurrence of the mutation in sequences designed for the native
ligand and %y, 0n—native 18 the percent occurrence of the mutation in sequence designed for the
non-native ligand. PE(WT — MUT) was used for predictions that start with the wild-type
structure and PE(MUT — WT) was used for predictions that start with the mutant structure. As

in [42], a prediction was considered correct if it obtained a positive percent enrichment value.

2.4.3.4 Rank

For the enzyme specificity dataset, mutations were ranked by descending order of their

percent enrichment values, as described in [42].

2.4.3.5 Entropy
Sequence entropy was computed as in [42]. Briefly, the sequence entropy H; for each

position was calculated as follows:
Hy==) Plog,P,
X

where P, is the percent of sequences with amino acid x at position i.
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2.4.3.6 Distance from input sequence
Distance from input sequence is a variation of profile similarity metric, where distance is
calculated as:
distance = 1 = D'*(Dinput.i» Paesign,i)
Where Pinput,i and Pgesign,i are the probability distributions of the single input side chain and the

designed sequence profiles, respectively, at position i.
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2.5 Figures
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(A) Design method comparison. The FastDesign (left, blue) and BackrubEnsemble (middle,
purple) methods separate sequence design steps (using a fixed backbone) from backbone
optimization steps (using a fixed sequence). CoupledMoves (right, orange) evaluates combined

Continued on next page.
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Figure 2.1, continued: Design methods.

moves that sample both backbone conformation and amino acid sequence (or, alternatively,
combine ligand translations/rotations with changes of ligand conformers). CoupledMoves
performs 1000 trials (xcy) per trajectory. FastDesign performs five outer (Xs4ouer) simulated
annealing cycles, during which the weight of the Lennard-Jones repulsive energy term is ramped
from 2% to 100%. For each ramped weight, an inner cycle (xs4,uner) consists of a complete round
of sequence design with xsc steps on a fixed backbone, followed by a step that minimizes
backbone, sidechain, and ligand torsion angles. BackrubEnsemble performs 10,000 (xzg)
Backrub moves to generate each ensemble member. For both FastDesign and BackrubEnsemble,
xsc scales with the number of possible moves, and is equal to 10 times the number of possible
rotamers at all designable or repackable positions. (B) Original and updated backbone mover in
CoupledMoves. The original CoupledMoves method[42] uses the Backrub algorithm to make
backbone moves. A backrub move [17, 43] rotates a segment as a rigid body by displacement
angle 14isp around an axis between two pivot Co atoms 2-11 residues apart (shown is a 2-residue
move). In the updated versions of CoupledMoves introduced here, backbone moves are made
using a Kinematic Closure algorithm.[41] Backbone torsion angles for non-pivot Ca atoms are
perturbed either using fragment insertion (FKIC) or by small perturbations away from the
existing angles (WKIC), then the loop is closed by analytical determination of @ and ¥ angles
(red) at three pivot Co atoms (grey).
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A cofactor B fentanyl C digoxigenin

Figure 2.2: Benchmark dataset structures.

Side chains at designed positions are highlighted in orange and shown as sticks. Ligands are
colored light blue and shown in sphere representation. The structures shown are those used as
input for design, as described in Methods. Nitrogen atoms are shown in dark blue, and oxygen
atoms are shown in red. (A) Representative structure from the cofactor dataset, Alcohol
Dehydrogenase with cofactor NAP. Structures for other six protein families are not shown. (B)
The wild-type protein used for design of fentanyl binding protein, with fentanyl placed in the
binding pocket. (C) DIG10.1, the designed digoxigenin binder on which the SSM library was
generated and selected, with digoxigenin. (D) Representative structure from the enzyme dataset,
N-acetylornithine carbamoyltransferase. The full structure of the mutant enzyme, with ligand
Continued on next page.

36



Figure 2.2, continued: Benchmark dataset structures.

N-(3-carboxypropanoyl-L-norvaline (SNO), is shown in the left panel. The middle panel shows
the binding site. The right panel shows the binding site of the wild-type protein, with ligand N-
acetyl-L-norvaline (ANO). The other nine enzymes are not shown. (E) Herceptin/HER2.
Designable positions on the Herceptin antibody light chain (light gray) and heavy chain (dark
gray) interact with target HER2 (black). The combination of designable positions from all
libraries are shown. (F) hGH/hGHr. Designable positions on hGH (light gray) interact with target
hGHr. The combination of designable positions from all libraries is shown.
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Figure 2.3: Comparison of design method performance on sequence profile datasets.

PPS (A) and RankTop (B) distributions. A rank of 1 means that the design method correctly
identified the most frequent amino acid side chain observed in the experimental/natural profile,
whereas a RankTop of 20 means that side chain was observed with zero frequency, or that all
side chains were modeled with some frequency and the top known was the least frequent. The
median of the distributions is marked with a white dot. Second and third quartiles are marked by
the thick black bar, and the thin bar marks 1.5 times the inter-quartile range. The width of the
violins is determined by the number of observations in each bin, and bins are defined using
Scott’s normal reference rule. The number of sequence positions in each set is described by n.
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Figure 2.4:

Reference method

Method performance comparison for profile datasets by sequence position.

Shown are the same data as in Figure 3, but plotting individual sequence positions instead of
distributions. Colors indicate different datasets. (A) Comparison between CM-FKIC and non-
coupled methods. Points above the diagonal represent positions where CM-FKIC outperforms
Continued on next page.
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Figure 2.4, continued: Method performance comparison for profile datasets by sequence
position.

the non-coupled method. (B) Comparison between iterative methods, where points above the
diagonal represent positions where BackrubEnsemble outperforms FastDesign (left) or FixBB
(middle), or where FastDesign outperforms FixBB (right). (¢) Summary of position counts
classified by whether CoupledMoves (“Reference method”) performs better (green), worse (red)
or similar (gray) compared to non-iterative methods ( “Comparison method”). The
CoupledMoves reference method is “better” or “worse” than the comparison method when the
difference in performance is above or below, respectively, a threshold of + 0.1 for PPS or &+ 5 for
RankTop. When the difference is within the threshold, the methods are classed as “similar.”
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Figure 2.5: PPS and RankTop as a function of known sequence entropy.

Each point represents one sequence position. Shown here are the Herceptin/HER2 (top) and
Cofactor (bottom) datasets, which have the highest number of low entropy positions. The
remaining datasets are shown in Figure S2.9. For each dataset, PPS and RankTop are binned by
entropy of the known sequence profile at each position (low: entropy < 0.33, medium: 0.33 <
entropy < 0.67, and high: entropy > 0.67). The boxplot covers the second and third quartiles, and
the vertical whiskers mark 1.5 times the inter-quartile range. Median is marked with a horizontal
black line, and notches represent a 95% confidence interval (CI) around the median; when CI
extends past the quartiles, notches extend beyond the box, leading to a "flipped" appearance.
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Figure 2.6: PPS and RankTop as a function of similarity to input.

Gain (green) and loss (red) as defined in the main text. Only positions with low and medium
entropy (< 0.67) are considered. This figure combines all datasets; individual datasets are shown
in Figure S2.11. (A) PPS as a function of similarity to the input sequence for all profile datasets.
Top: Gain and loss zones are defined by a threshold of 0.1 difference between input-known PPS
and design-known PPS. Middle: Each point represents one position in the protein sequence,
colored by design method. CoupledMoves results (yellow, orange, red) are enriched in the gain
zone and FastDesign (blue) and FixBB (grey) results enriched in the loss zone. Bottom:
Quantifications of number of designed sequence positions in gain, loss, and neutral zones for
each method. (B) RankTop as a function of similarity to the input sequence for all profile
datasets, except Fen49, which is omitted because the fentanyl deep sequencing data do not
include the input sequence. The top amino acid from the known profile is assigned a rank of 1 if
it is present in the input sequence, or a rank of 20 if it is not. Top: A threshold of 5 in the
difference in RankTop between input and designed sequences defines the gain and loss zones.
Middle: Box plots represent all positions in all datasets, except fentanyl. The median of the
distributions is marked with a horizontal line. Second and third quartiles are marked by the box,
and the whiskers extend to 1.5 times the inter-quartile range. Bottom: Quantification of sequence
positions in gain, loss, and neutral zones for RankTop values.
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D. Design frequencies

Herceptin Digoxigenin binder Glutathione Reductase

RVH50 Y34 Y101 Y115 E50 D331
CoupledMoves 0.06 +0.02]0.39+0.03|0.68 £ 0.05[0.32+0.14]0.90 + 0.09 |0.27 £0.11
FastDesign 0.00 0.44 0.12 0.00 0.06 0.00
BackrubEnsemble r0.00 0.44 0.42 0.02 0.07 0.01

Figure 2.7: Examples of structural models generated by different design methods.
Comparison of crystal structures used as input for design (gray) to models generated by
CoupledMoves (top, orange), FastDesign (middle, blue), and BackrubEnsemble (bottom,
purple). (A) The crystal structure of Herceptin/HER2 (PDB: 1N8Z) shows a hydrogen bond
network (black dashed lines) spanning the interface between Herceptin residues RVy50 (dark
color) and TV 94 (medium color), and HER2 residues E273 and D275 (light color). Key
designable residue RVy50 is retained by CoupledMoves, which models a native-like hydrogen
bond network (orange dashed lines). In contrast, FastDesign and BackrubEnsemble model
reduced networks (blue and purple dashed lines, respectively). Hydrogen atoms for IN8Z were
added using Rosetta. (B) Three tyrosines (Y34, Y101, Y115) form a hydrogen bond network
Continued on next page.
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Figure 2.7, continued: Examples of structural models generated by different design
methods.

(black dashed lines) with digoxigenin (DIG) in the crystal structure of digoxigenin binder
DIG10.2 (PDB: 4J8T). CoupledMoves most frequently retains all three tyrosines and form a
similar network (orange dashed lines). FastDesign frequently models leucines at positions 101
and 115, and instead frequently models tyrosine at position 11, forming a hydrogen bond with
the ester oxygen rather than carbonyl oxygen of the nearby digoxigenin ring (blue dashed line).
BackrubEnsemble most frequently models asparagine at position 115, while retaining the other
two contacts (purple dashed lines). (C) In crystal structures, glutamate ES0 (left column, PDB:
3DK9) and aspartate D331 (right column, PDB: 6FTC) form a hydrogen bond network with
flavin-adenine dinucleotide (FAD) (black dashed lines). CoupledMoves retains E50 and D331 in
geometries that maintain the network (orange dashed lines). FastDesign and BackrubEnsemble
frequently model hydrophobic residues at these positions, abolishing the network. Hydrogen
atoms for 3DK9 were added using Rosetta. (D) The frequencies of top known side chain for each
position as designed by the different methods. Values for CoupledMoves represent averages and
standard deviations across CM-BR, CM-FKIC, and CM-WKIC.
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Figure 2.8:  Distribution of energy percentiles for correctly modeled positions.

“Energy percentile” refers to the percentile of the average total Rosetta energy of the correctly
modeled side chain compared to that of all other side chains modeled by the design method at
that position. Energy percentile was calculated for consensus (entropy < 0.67) positions for
which a method modeled the consensus at least once. (A) Distribution of energy percentiles.
Count 7 indicates the number of positions for which each method modeled the consensus side
chain at least once. (B) Energy percentile as a function of design frequency are shown as
boxplots. Values from (A) are binned by design frequency (low: frequency < 0.33, medium: 0.33
< frequency < 0.67, and high: frequency > 0.67). The number of values in each bin is shown on
each boxplot. The median of the distributions is marked with a horizontal line. Second and third
quartiles are marked by the box, and the whiskers extend to 1.5 times the inter-quartile range.
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Figure 2.9: Comparison between typical and forced design of consensus side chains onto
Backrub ensemble.

Distribution of Rosetta energies (REU) for consensus amino acid side chains at five positions:
Glutathione Reductase positions ES0 and D331, and DIG10 positions Y34, Y101, and Y115. For
each position, we show 100 models forced to adopt the consensus side chain during sequence
design (black), and typical models (green) that arrived at the consensus side chain though they
were allowed to design to multiple side chain identities. For typical models, n corresponds to the
number of models with the known consensus side chain, out of a total of 2000 (400 models for
each of the five positions; design frequencies are shown in Figure 2.7d). Density represents a
Gaussian kernel density estimate using a bin width of 0.1 REU.
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2.6 Tables

Table 2.1:

Benchmark datasets.

Type of binding interaction (protein/small molecule or protein/protein) and source of known
functional sequences are shown. Design position and starting amino acid residues are shown.

Binding Benchmark .
. . Known functional sequences
interaction name
Cofactor Natural sequence alignments from Pfam database [72]
Enzymg Experimentally-characterized point mutations
specificity
Protlelm lecul / DIG10 Amino acid frequencies derived from deep sequencing of a
small molecule site saturation mutagenesis library after 3 rounds of selection
Amino acid frequencies derived from deep sequencing of a
Fen49 single site saturation mutagenesis library after 4 rounds of
selection
Sequences of clones selected from 5 combinatorial libraries
hGH / hGHR | (average of 180 sequenced clones per library) after 2 rounds

Protein / protein

of selection

Herceptin =/
HER2

Sequences of clones selected from 4 combinatorial libraries
(average of 70 sequenced clones per library) after 4 rounds
of selection
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Table 2.2:

Performance summary for enzyme specificity benchmark.

Shown are median values across the benchmark. Percent enrichment describes the difference in
frequency of a specificity-altering mutation designed in the presence of its specific ligand,
compared to its frequency when designed around the alternate ligand. A mutation is considered
correctly identified if a method identifies it with a positive percent enrichment. Rank and
percentile were computed from sorted percent enrichment values. If the correct amino acid is not
sampled, rank is the maximum possible number of amino acids for designed positions (number
of designable positions*20).

Find mutant amino acid starting from
wild-type structure & mutant ligand

Find wild-type amino acid starting from
mutant structure & wild-type ligand

Median Median Numb.er of Median Median Numbfer of
) mutations . mutations

Percentile |Rank identified Percentile [Rank identified
CM-BR 79 15 14 76 22 13
CM-FKIC 70 25 10 76 22 13
CM-WKIC 78 19 12 80 22 12
BackrubEnsemble (0 60 7 74 32 9
FastDesign 0 60 7 0 100 4
FixBB 0 80 5 0 80 5
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Table 2.3: Detailed performance for enzyme specificity benchmark.
Percentile and rank are defined as in Table 2.2.
Find mutant amino acid starting from
wild-type protein structure & mutant ligand
CcM CcM CcM Backrub Fast FixBB
BR FKIC WKIC [Ensemble| Design | control
2 2 2 2 2 2
Wild-type Mutant Wild-type Mutand Desired #Design [§ < |8 ¥ |8 ¥ |8 = |8 ¥ |8 =
PDBID PDBID Ligand Ligand Mutation Positions|& & [& 2 |& & |& & [& & |& &
1A80 1M9H NDP NAD K232G 5 79 22 |- 100 (64 37 |- 100 |- 100 |- 100
1A80 1M9H NDP NAD R238H 5 66 35 |- 100 |- 100 |- 100 100 |- 100
1FCB 1SZE PYR 173 L230A 5 98 3 99 2 100 1 97 4 89 12 |100 1
1K70 1RAO0 HPY FPY D314A 4 100 1 98 3 99 2 100 1 98 3 99 2
1K70 1RAS5 HPY FPY D314G 4 98 3 99 2 98 3 - 80 |- 80 |98 3
1K70 1RAK HPY FPY D314S 4 - 80 |- 80 |- 80 |- 80 |94 6 - 80
1PK7 10UM ADN TAL M64V 3 77 15 |- 60 |- 60 |- 60 |- 60 |- 60
1ZK4 1ZK1 NAP NAD G37D 7 99 2 98 4 100 1 99 2 100 1 100 1
2FZN 3E2Q PRO HYP Y540S 2 95 3 100 1 98 2 - 40 |- 40 |- 40
2H6F 2H6G FAR GER W602T 9 63 68 (50 91 |66 63 |97 6 93 14 |- 180
2078 2078 HC4 TCA H89F 4 79 18 (70 25 |78 19 |- 80 |- 80 |- 80
3HG5 3LX9 GLA A2G E203S 7 - 140 |- 140 |- 140192 12 |- 140 |- 140
3HG5 3LX9 GLA A2G L206A 7 72 40 (93 11 |- 14099 2 98 4 100 1
3KzO 3L02 ANO SNO E92A 5 99 2 99 2 99 2 - 100 (100 1 - 100
3KzZO 3L04 ANO SNO E92P 5 - 100 |- 100 (54 47 |- 100 |- 100 |- 100
3Kz0 3L05 ANO SNO E92S 5 94 7 90 11 |89 12 |- 100 |- 100 |- 100
3KzZO 3L06 ANO SNO E92V 5 8 15 |61 40 |82 19 (92 9 - 100 |- 100
Find wild-type amino acid starting from
mutant protein structure & wild-type ligand
cM CcM CcM Backrub Fast FixBB
BR FKIC WKIC [Ensemble| Design | control
2 9 9 9 9
b= ) = b= H b=
Wild-type Mutant Wild-type Mutand Desired #Design | 8 £ 2|8 ¥ |8 = g |8 =«
PDBID PDBID Ligand Ligand Mutation Positions | & & 5 csl& 21& & |& & |& &
1A80 1M9H NDP NAD G232K 5 - 100 |- 100 |- 100 |- 100 |- 100 |- 100
1A80 1M9H NDP NAD H238R 5 - 100 |- 100 |- 100 |- 100 100 |- 100
1FCB 1SZE PYR 173 A230L 5 97 5 9% 7 9% 6 88 18 |- 100 |- 100
1K70 1RAO0 HPY FPY A314D 4 99 2 95 6 98 3 93 8 83 18 |- 80
1K70 1RAS5 HPY FPY G314D 4 73 23 (74 22 |74 22 |- 80 |- 80 |- 80
1K70 1RAK HPY FPY S314D 4 - 80 |- 80 |- 80 |- 80 |- 80 |- 80
1PK7 10UM ADN TAL V64M 3 80 13 |8 10 |82 12 |- 60 |- 60 |- 60
1ZK4 1ZK1 NAP NAD D37G 7 100 1 100 1 100 1 99 2 - 140(99 2
2FZN 3E2Q PRO HYP S540Y 2 - 40 |- 40 |- 40 |- 40 |88 22 |- 40
2H6F 2H6G FAR GER T602W 9 59 75 (69 57 |57 79 |85 28 |- 180 |- 180
2078 2078 HC4 TCA F89H 4 85 13 |74 22 |- 80 |- 80 |- 80 |- 80
3HG5 3LX9 GLA A2G S203E 7 80 29 |76 35 |80 29 (92 12 (91 8 97 5
3HG5 3LX9 GLA A2G A206L 7 59 59 (58 60 |59 58 |- 140 (88 13 |- 140
3KzO 3L02 ANO SNO A92E 5 90 9 94 6 95 5 98 3 - 100 (100 1
3KzZO 3L04 ANO SNO P92E 5 89 12 |88 13 |92 9 91 10 |- 100(95 6
3KzO 3L05 ANO SNO S92E 5 84 17 |8 16 |8 15 [95 6 - 100 |- 100
3KZO 3L06 ANO SNO V92E 5 8 18 |93 10 |89 14 (74 32 |- 10095 7
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Table 2.4: Compute time.
Total compute time for each method. Values represent the mean plus or minus the standard
deviation across 400 trajectories.

Method Time (hours)
CM-BR 52 + 27
CM-FKIC 75 + 43
CM-WKIC 73 + 27
FastDesign | 1,502 + 1,377
Backrub 117 + 115
+ FixBB 5 ¢+ 3

= Backrub |0 4 115
Ensemble
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2.7 Supplemental Figures
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Figure S2.1: Position profile similarity and
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Figure S2.1, continued. Position profile similarity and RankTop for all designed positions
(n) for each protein family in the cofactor dataset.

Distributions are shown as boxplots, while values for individual positions are overlaid as swarms
of black points. For PPS (left), a value of 1 means the design method perfectly recapitulated the
known sequence profile, whereas a value of zero means that the design method did not model
any of the amino acid side chain identities from the known profile. For RankTop (right), a value
of 1 means that the design method correctly identified the most frequent amino acid side chain
observed in the known profile, whereas a RankTop of 20 means that side chain was observed
with zero frequency, or that all side chains were modeled with some frequency and the top
known was the least frequent. Median is marked with a horizontal black line, and notches
represent a 95% confidence interval (CI) around the median; when CI extends past the quartiles,
notches extend beyond the box, leading to a "flipped" appearance. The boxplot covers the second
and third quartiles, and the vertical whiskers mark 1.5 times the inter-quartile range.
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Figure S2.2: Profile similarity and rank top for all designed positions (#) for individual
libraries of the Herceptin/HER?2 dataset.

Distributions are shown as boxplots, while values for individual positions are overlaid as swarms
of black points. For PPS (left), a value of 1 means the design method perfectly recapitulated the
known sequence profile, whereas a value of zero means that the design method did not model
any of the amino acid side chain identities from the known profile. For RankTop (right), a value
of 1 means that the design method correctly identified the most frequent amino acid side chain
observed in the known profile, whereas a RankTop of 20 means that side chain was observed
with zero frequency, or that all side chains were modeled with some frequency and the top
known was the least frequent. Median is marked with a horizontal black line, and notches
represent a 95% confidence interval (CI) around the median; when CI extends past the quartiles,
notches extend beyond the box, leading to a "flipped" appearance. The boxplot covers the second
and third quartiles, and the vertical whiskers mark 1.5 times the inter-quartile range.
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Figure S2.3: Profile similarity and rank top for all designed positions (#) for individual
libraries of the hGH/hGHR dataset.

Distributions are shown as boxplots, while values for individual positions are overlaid as swarms
of black points. For PPS (left), a value of 1 means the design method perfectly recapitulated the
known sequence profile, whereas a value of zero means that the design method did not model
Continued on next page.
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Figure S2.3, continued: Profile similarity and rank top for all designed positions (n) for
individual libraries of the hGH/hGHR dataset.

any of the amino acid side chain identities from the known profile. For RankTop (right), a value
of 1 means that the design method correctly identified the most frequent amino acid side chain
observed in the known profile, whereas a RankTop of 20 means that side chain was observed
with zero frequency, or that all side chains were modeled with some frequency and the top
known was the least frequent. Median is marked with a horizontal black line, and notches
represent a 95% confidence interval (CI) around the median; when CI extends past the quartiles,
notches extend beyond the box, leading to a "flipped" appearance. The boxplot covers the second
and third quartiles, and the vertical whiskers mark 1.5 times the inter-quartile range.
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Cofactor positions
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Figure S2.4: Sequence logos for predicted and known binding site sequences of the
cofactor dataset.

The height of each letter is proportional to its contribution to the column’s information content.
The height of each column is inversely proportional to the sequence variation at that position.
Continued on next page.
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Cofactor positions
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Figure S2.4, continued: Sequence logos for predicted and known binding site sequences of
the cofactor dataset.

The height of each letter is proportional to its contribution to the column’s information content.
The height of each column is inversely proportional to the sequence variation at that position.
Continued on next page.
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Figure S2.4, continued: Sequence logos for predicted and known binding site sequences of
the cofactor dataset.

The height of each letter is proportional to its contribution to the column’s information content.
The height of each column is inversely proportional to the sequence variation at that position.
Continued on next page.
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Figure S2.4, continued: Sequence logos for predicted and known binding site sequences of
the cofactor dataset.

The height of each letter is proportional to its contribution to the column’s information content.
The height of each column is inversely proportional to the sequence variation at that position.
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Figure S2.5: Sequence logos for predicted and known binding site sequences of the DIG10
dataset.

The height of each letter is proportional to its contribution to the information content of the
column. The height of each column is inversely proportional to the sequence variation at that
position. The experimental profile shows amino acid residues that were enriched in the
experimental selection.

60



Fen49 motif positions

Experimental «... E
S I
o) psblEL|IEs|LBIYE.

= T T
1 115W128Y165A169A171

o)

8
=4
3
z1,
g

S
s
S
g7
z]
Rl
3
34
3

e

4
-
8
34
3
=]
3
mJ
o

3
=<4
3

3
3]
3

8

="

T T T T T —T T T —T T T T T T
Q6 W8 N34 V36 N62 Y64 T66 Y68 W70 E77 Y79 P89 R111P115W128Y165A169A171

4.0

CM

2.0

FKIC »

bits

o
=
3
@ 1
2
3]
3
z )
g7
x
z

bits
o
>

Fast
Design

bits
N
>

T
—
i
R
<
=<T

0
8
=
3
z
g
7
S
3
8
z
&
]
<
3
2
2
3
8
<
3
8
=
3
3
m
g
3
<
3
3
0
3
8
2
2
a
=8
8
=
3
&
=
Z
8
=
24

Backrub ,”
Ensemble

bits
n
S

1

CM *
WKIC AE Al

—_— ==

T T T T T T T T T T T T
Q6 W8 N34 V36 N62 Y64 T66 Y68 W70 E77 Y79 P89 R111P115W128Y165A169A171

FixBB ..
R

T T T T T T T T T T T T T T T T
Q6 W8 N34 V36 N62 Y64 T66 Y68 W70 E77 Y79 P89 R111P115W128Y165A169A171

Figure S2.6: Sequence logos for predicted and known binding site sequences of the Fen49
dataset.

The height of each letter is proportional to its contribution to the information content of the
column. The height of each column is inversely proportional to the sequence variation at that
position. Experimental data are taken from sort 4 of the library.[2]
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Figure S2.7: Sequence logos for predicted and
Herceptin/HER?2 dataset.

The height of each letter is proportional to its contribution to the information content of the
column. The height of each column is inversely proportional to the sequence variation at that
position. Different experimental libraries (Lib A, B, C, E) are indicated. Library D was omitted
because the experimental data were dominated by the wild-type sequence. Residues are labeled

with Kabat numbering.
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Figure S2.9: Profile similarity and RankTop as a function of known sequence entropy for
the hGH/hGHR, DIG10 and Fen49 datasets. Continued on next page.
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Figure S2.9, continued: Profile similarity and RankTop as a function of known sequence
entropy for the hGH/hGHR, DIG10 and Fen49 datasets.

Each point represents one sequence position. The Herceptin/HER2 and Cofactor datasets are
shown in Figure 2.5 in the main text. For each dataset (indicated in the header), profile similarity
and RankTop are binned by entropy of the known sequence profile at each position (low: entropy
< 0.33, medium: 0.33 < entropy < 0.67, and high: entropy > 0.67). The number of low entropy
positions in these three datasets is small. The boxplot covers the second and third quartiles, and
the vertical whiskers mark 1.5 times the inter-quartile range. Median is marked with a horizontal
black line, and notches represent a 95% confidence interval (CI) around the median; when CI
extends past the quartiles, notches extend beyond the box, leading to a "flipped" appearance.
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Figure S2.10: Design entropy.

Shown are the distributions of entropy of the design sequence profiles for each designed position
in each benchmark. The median of the distributions is marked with a white dot. Second and third
quartiles are marked by the thick black bar, and the thin bar marks 1.5 times the inter-quartile
range. The width of the violins is determined by the number of observations in each bin, and bins

are defined using Scott’s normal reference rule.
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Figure S2.11: Position profile similarity and RankTop as a function of similarity between
the input sequence and the known profile at each position. Continued on next page.
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Figure S2.11, continued: Position profile similarity and RankTop as a function of similarity
between the input sequence and the known profile at each position.

When a preferred side chain from the known sequence profiles is not present in the input
sequence, methods can achieve “gain” (green) by identifying correct amino acids with high
frequency or rank. Alternatively, when a preferred side chains is present in the input, inaccurate
design can cause “loss” (red). Only positions with low and medium entropy (< 0.67) are
considered. (A) Left: PPS as a function of similarity to the input sequence for all profile datasets.
Each point represents one position in the protein sequence, colored by design method. Right:
Quantifications of number of designed sequence positions in gain, loss, and neutral zones. Gain
and loss zones are defined by a threshold of 0.1 difference between input-known PPS and
design-known PPS. (B) Left: Boxplots of each method’s RankTop as a function of similarity to
the input sequence. The median of the distributions is marked with a horizontal line. Second and
third quartiles are marked by the box, and the whiskers extend to 1.5 times the inter-quartile
range. The top amino acid from the known profile is assigned a rank of 1 if it is present in the
input sequence, or a rank of 20 if it is not. All profile datasets are shown except Fen49, which is
omitted because the fentanyl deep sequencing data do not include the input sequence. For the
digoxigenin dataset, there are no consensus positions for which the top experimentally selected
side chain was present in the starting sequence. Right: Quantification of sequence positions in
gain, loss, and neutral zones for RankTop values.
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Figure S2.12: Number of trajectories.
Comparison of median PPS, design entropy and RankTop as a function of number of design
trajectories (n) for the Cofactor, Herceptin, and hGH/hGHR datasets for each method.
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method mean job time (seconds) trajectories, n total time (job time * n)
CM-BR 469 + 243 * 400 = 187,651 = 97,227
CM-FKIC 673 + 385 * 400 = 269,266 + 153,884
CM-WKIC 658 + 244 * 400 = 263,232 + 97,452
FastDesign 13516 + 12394 * 400 = 5,406,286 = 4,957,416
Backrub 1056 + 1036 * 400 = 422,374 + 414,488
+ FixBB 44 + 23 * 400 = 17,519 + 9,202
= Backrub 439,893 + 414,590
Ensemble

Figure S2.13: Compute time.

(A) Distribution of individual trajectory compute times for each method. The median of the
distributions is marked by the horizontal red bar. Second and third quartiles are marked by the
thick black bar, and the thin bar marks 1.5 times the inter-quartile range. (B) Total time is
calculated by multiplying mean job time + standard deviation by the number of trajectories (7)
required for consistent performance. BackrubEnsemble is the sum of two methods, Backrub (to
generate conformational ensemble) and FixBB (to design sidechains). For the summed
BackrubEnsemble time, standard deviation is the square root of the sum of the individual

deviations squared.
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2.8 Supplemental Tables

Table S2.1:  Cofactor dataset ligands.

Ligand name and 3-letter PDB ligand identifier are shown for each protein family of the
Cofactor dataset.

Protein Ligand

Acetyl Transferase Coenzyme A (COA)

Alcohol Dehydrogenase nicotinamide-adenine-dinucleotide phosphate (NADP) (NAP)
Amino-transferase 4'-deoxy-4'-aminopyridoxal-5'-phosphate (PMP)

Flavodoxin flavin mono-nucleotide (FMN)

Glutathione S-Transferase glutathione (GSH)

Methyl-transferase S-adenosyl-methionine (SAM)

Glutathione Reductase flavin-adenine dinucleotide (FAD)
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Table S2.2:

Cofactor benchmark structures and positions.
Protein names and PDB codes are shown, along with designable and packable positions. Position
numbering corresponds to PDB numbering.

Protein PDB | Designable positions Packable positions
78.79. 80, 85, 86, 87, 88. 90, 4,6,26,27,28, 52,60, 62, 63,75,77,
Acetyl 3S6F |91 114. 115. 118. 119. 121 81, 84, 89,93,94,95,109, 111, 112,
Transferase PN ’ ’ ’ 116,117,122, 124, 126, ligand (n =
(n=14) 26)
11, 12,22, 23, 34, 35, 39, 42, 45, 46,
13, 14,15, 16, 17, 18, 19, 36, | 58, 59, 61, 64, 69, 72, 87, 93, 94, 108,
Alcohol 37,38, 62, 63, 89,90,91,92, | 109, 113, 117, 138, 143, 144, 149,
Dehydrog- 1ZK4 | 112, 140, 142, 155, 159, 187, | 152, 156, 158, 162, 185, 186, 191,
enase 189, 190, 192, 194, 195, 205 | 197, 198, 201, 202, 206, 210, 211,
(n=128) 216,219,221, 222, 244, 248, ligand (n
= 48)

. 73, 133, 134, 135, 138, 159, 75, 136, 137, 139, 141, 142, 155, 158,
Amino- IXBN | 161. 202, 231. 233. 234. 262 162, 164, 200, 204, 205, 206, 236,
transferase P T e T T T 260, 270, 273, 347, 349, 390, 392,

264,265 (n=14) lioand (n =
igand (n = 23)
10, 11, 12, 13, 14, 15, 58, 59, | 8, 16, 17, 18, 19, 57, 65, 66, 69, 70,
Flavodoxin 1F4P | 60, 61, 62, 68, 93,94, 95,98, | 71, 91, 96, 97, 105, 106, 125, 126,
100, 101, 102 (n = 19) 127, 130, ligand (n = 21)
Glutathione 3,4,6,12,13, 14, 15, 31, 38, 40, 43,
3. 3R2Q 9,10, 11, 33, 34, 48, 49, 50, | 44, 46,51, 52,61, 66, 67, 68,91, 94,
Transferase 62, 63, 64,98, 105 (n=13) |95, 101, IQ2, 108, 109, 112, 157, 160,
164, 168, ligand (n = 32)
8. 16, 20, 28, 48, 49, 50, 51, 7,13,17,19,21, 24,27, 31, 32, 46,
47, 56, 57, 58, 59, 68, 70, 71, 76, 78,
Methyl- 52,53,55,72,73,74, 77,
transferase | >PCC | 100, 101, 102, 117, 118, 119, | 50 81, 84, 103, 104, 114, 115, 116,
122’ 123’(n=23) 120, 121, 125, 126, 1.28, 129, 130,
’ 132, 133, 144, 207, ligand (n = 40)
24,25, 33, 35,47, 48, 54, 61, 64, 65,
26,27, 28,29, 30, 31, 49, 50, | 67,70, 103, 114, 125, 126, 127, 131,
51, 52,56, 57,58, 62,63, 66, | 132, 140, 142, 147, 153, 154, 159,
Glutathione 3DK9 129, 130, 155, 156, 157, 177, | 160, 180, 192, 200, 205, 206, 223,
Reductase 181, 197, 198, 201, 202, 291, | 226, 286, 288, 295, 297, 300, 329,
294, 298, 330, 331, 337, 338, | 332, 336, 341, 343, 344, 369, 370,
339, 340, 342,372 (n=38) | 371, 373,376,377, 441, ligand (n =
52)

72




Table S2.3:

Enzyme dataset.

Ligand names are shown for wild-type and mutant proteins of the Enzyme specificity dataset.

Protein

Wild-type ligand

Mutant ligand

2-5-diketo-D-gluconic

dihydro-nicotinamide-adenine-
dinucleotide phosphate (NADPH)

nicotinamide-adenine-

acid reductase A (NDP) dinucleotide (NAD)
. ) . ) ) NADP nicotinamide-
nicotinamide-adenine-dinucleotide g . .
Alcohol dehydrogenase (NAD) adenine-dinucleotide
phosphate (NAP)

Alpha-galactosidase A

N-actyl-2-deoxy-2-amino-galactose
(A2G)

alpha D-galactose
(GLA)

Cytosine deaminase

(4S)-5-fluoro-4-hydroxy-3,4-
dihydropyrimidin-2(1H)-one (FPY)

4-hydroxy-3,4-dihydro-
IH-pyrimidin-2-one
(HPY)

Farnesyltransferase

geran-8-yl geran (GER)

farnesyl (FAR)

Flavocytochrome b(2)

benzoyl-formic ACID (173)

pyruvic acid (PYR)

Histidine ammonialyase

phenylethylene-carboxylic acid
(TCA)

para-coumaric acid
(HC4)

N-acetylornithine

N-(3-carboxypropanoyl-L-norvaline

N-acetyl-L-norvaline

carbamoyltransferase (SNO) (ANO)
Proline dehydrogenase 4-hydroxyproline (HYP) proline (PRO)
Purine nucleoside 9-(6-deoxy-alpha-L-talofuranosyl)-6- adenosine (ADN)

phosphorylase

methylpurine (TAL)
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Table S2.4: Enzyme specificity benchmark structures and positions.

Proteins (wild-type and mutant) and ligand names and PDB codes are shown, along with
designable and packable positions. Position numbering corresponds to PDB numbering.
Continued on next page.

. Designable ..
Protein PDB g Packable positions
positions
IM9H | 232,233,234, 235, | 19,22, 23,24, 25, 28, 32, 41, 190, 215, 231,
2-5-diketo-D- | (mutant) | 238 (n=5) 237, 239, 241, 242, ligand (n = 16)
gluconic acid 1A80
d A : 232,233,234, 235, | 19,22, 23,24, 25, 28, 32, 41, 190, 215, 231,
reductase (wild-
238 (n=5) 237,239, 241, 242, ligand (n = 16)
type)
Alcohol (mutant) 37, 38, 42 (1’1 = 8) 194, hgand (n=25)
dehydrogenase 1ZK4 13.14. 15. 16. 36 10, 11, 12, 23, 33, 34, 35, 39, 42, 46, 56, 58,
(wild- P T 7 159,61, 62,63, 69, 72, 89, 90, 192, 193, 194,
type) 37,38 (n=7) ligand (n = 24)
170, 203, 206, 207, 47,92,93, 134, 136, 137, 141, 142, 168,
3LX9 227 229 231 (n= | 172 174,177,180, 184,201, 204, 208, 209,
(mutant) » 247, (n 228,241, 242, 245, 246, 249, 253, 264, 266,
Alpha- 7) 267, ligand (n = 29)
alactosidase A
:
(wild- | 227,229,231 (0= | 17 208 241, 242, 245, 246, 249, 264, 265,
type) 7) 266, 267, ligand (n = 31)
1K70 61, 65, 66, 81, 85, 88, 122, 124, 154, 214,
(wild- 63’_3413’ 314,319 217,246,273, 275, 278, 279, 282, 317, 318,
type) (n=4) 320, ligand (n = 21)
61, 65, 66, 81, 85, 88, 122, 124, 154, 156,
IRAS 63’_3413’ 314,319 214,217, 246,273, 275, 278, 279, 282, 317,
Cytosine (mutant) | (n=4) 318,320, ligand (n = 22)
deaminase 61, 65, 66, 81, 85, 88, 122, 124, 154, 156
IRAK 63’_3413’ 314,319 214,217, 246,273, 275, 278, 279, 282, 317,
(mutant) | (n = 4) 318, 320, ligand (n = 22)
61, 65, 66, 69, 81, 85, 88, 122, 124, 154,
IRAD 63, 3131314’ 317, 214,217, 246,273, 275, 278, 279, 282, 318,
(mutant) 319 (1’1 = 5) 320, hgand (n=21)
602, 605, 606, 651, 596, 599, 603, 609, 649, 650, 652, 658, 662,
2H6G 654, 655 706, 803 | 693-702. 703,705,709, 710, 748, 753, 799,
(mutant) » 929, TUD, OU2, 1 800, 802, 860, 861, 862, 864, 868, 902, 903,
865 (n=9) ligand (n = 28)
Farnesyltransferase
(wild- 655,705, 706, 803, 800, 802, 860, 861, 862, 864, 868, 902, 903,
type) 865 (n=9) ligand (n = 28)
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Table S2.4, continued: Enzyme specificity benchmark structures and positions.

Proteins (wild-type and mutant) and ligand names and PDB codes are shown, along with

designable and packable positions. Position numbering corresponds to PDB numbering.

Protein PDB Des.1 gnable Packable positions
positions
lszE | 143,198,230, 139, 144, 199, 202, 228, 229, 252,
(mutant) | 25% 286,325,326 | 256,280,283, 289, 292,296, 323,
Flavocytochrome (n=17) 324,373,377, ligand (n = 18)
b(2) 1FCB 139, 144, 199, 202, 228, 229, 252,
(wild- ;‘i’ ;gg (?2’5) 280, 283, 289, 292, 296, 323. 325.
type) ’ 373, 376, ligand (n = 17)
66, 68, 69, 86, 87, 153, 154, 157,
?rggim) 594)90’ 405,406 (0 | 505,432, 381, 391, 392, 402, 408,
Histidine ammonia- 409, 503, ligand (n = 18)
lyase 207B 66, 68, 69, 86, 87, 153, 154, 157,
(wild- 594)90’ 405,406 (0| 202, 432, 391, 392, 402, 408, 409,
type) 503, ligand (n = 17)
48,50, 51, 181, 182, 184, 252, 253,
g’rigfam) égo(n 22965’)298’ 7.1 270, 203, 301, 302, 78, 93, 98,
ligand (n = 16)
48,50, 51,112, 178, 181, 182, 251,
3L06 | 180, 184, 298, 252,253,270, 291, 293, 296, 297,
(mutant) | 302, 77,92 (n==6) | 301, 303, 308, 78, 93, ligand (n =
21)
N-acetylornithine 31,04 180, 184, 298, 77, 48, 50, 51, 181, 182, 25.2, 253, 2_70,
carbamoyltransferase _ 296, 301, 302, 78, 93, ligand (n =
(mutant) | 92 (n=15) 14)
48,50, 51, 181, 182, 184, 252, 253,
g’riotzam) igf)’ 298, 77,92 (0| 970,293, 296, 301, 302, 78, 93, 98,
Y ligand (n = 17)
3KZO 48,50, 51, 181, 182, 252, 253, 270,
(wild- | 180 184, 298.77. 1 593 296,302, 78, 93, 98, ligand (n
92 (n=5) “
type) =15)
2FZN 259, 283, 285, 327, 370, 431, 485,
(wild- | 513,540 (n=2) | 487,511, 516, 538, 542, 552, 556,
Proline type) 559, 560, ligand (n = 17)
dehydrogenase 1259, 283,287,327, 329, 370, 431,
g’iigﬂt) g;@s S13,580 (=1 4e5 487, 511. 516, 542, 552. 556,
559, 560, ligand (n = 17)
10UM | 64,180,181 (n= | 62, 69, 73, 87, 159, 179, 185, 198,
Purine nucleoside (mutant) | 3) ligand (n =9)
phosphorylase 1PK7 _
(wild- g;‘ 159, 180 (n 62, 156, 160, 181, ligand (n = 5)
type)
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Table S2.5:

Digoxigenin benchmark structures and positions.

PDB codes are shown for the source of the protein and ligand structure. Position and starting side
chain identity are shown for designable and packable positions. Table lists positions packed by
CoupledMoves methods; other methods pack all positions. Positions are numbered as in [3].

Packable positions

Protein PDB Designable positions (coupled methods)
Al10,L11, L14, W22,C23, |16,L7, V8, H9, R12, L13, E15, A19,
F26, L32, Y34, A37, P38, R20, L25, P39, K42, T43, R48, E49,
Designed 1715 G40, H41, F45, H54, M55, | T50, 151, W52, L57, P59, E60, V69,
digoxigenin | (protein) F58, Y61, M62, 164, F66, F71, A80, T91, T107, P121, R123,
binder AIRT | F84, G86, G88, H90, V92, | L125,16,L7, V8, H9, R12, L13, E15,
DIG10.1 (ligand) S93, G95, L97, A99, Y101, | A19,R20, L25, P39, K42, T43, R4S,
' S103, L105,1112, Y115, E49, T50, I51, W52, L57, P59, E60,
L117,F119, V124, P127, V69, F71, A80, T91, T107, P121,
L128 (n=39) R123, L125, DIG (n = 30)
Table S2.6:  Allowed design for digoxigenin dataset.

Shown are amino acids (one letter codes) to which positions were allowed to design. Amino
acids were included only if they had high enough sequencing counts to be included in the
enrichment and depletion calculations in [3].

Position Allowed amino acids Position Allowed amino acids

10 ACDEFGILMNPRSTVY 84 ACDFGHILMNPRSTVWY
11 ACDFGHILMNPQRSTVY 86 ACDEFGHILNPRSTVWY
14 AFHIKLMPQRSTVW 88 ACDEFGHILNPRSTVWY
22 ACFGLMPQRSTVWY 90 ACDEFGHIKLNPQRSTVY
23 ACDFGHILNPRSTVWY 92 ADEFGIKLMPQRSTVW
26 CFILMSTVWY 93 ACDFGHIKLMNPRSTVWY
32 FHILMPQRSTV 95 ACDEFGHILNPRSTVWY
34 ACDEFHIKLNPQRSTVY 97 AEFGHIKLMPQRSTVWY
37 AEGIKLPQRSTV 99 ACDEFGHILNPRSTVY

38 AEGHKLMPQRSTVW 101 ACDEFGHIKLNPQRSTVWY
40 ACDEFGHILNPRSTVWY 103 ACDFHILNPRSTVWY

41 ACDEFGHKLNPQRSTVY 105 AFGHIKLMPQRSTVW

45 ACDFGHILRSTVWY 112 ACFHIKLMNPRSTV

54 ACDEFGHIKLNPQRSTVY 115 ACDEFHIKLNQRSTVWY
55 AEFGIKLMNRSTVW 117 ACDFGHILMNPQRSTVY
58 ACDFGHILMNPRSTVWY 119 ACDFGHILMNPRSTVWY
61 ACDEFGHIKLNPQRSVWY 124 ACDEFGHILMNPRSTVWY
62 AFGIKLMNPRSTVW 127 AGHIKLPQRSTV

64 ADFGIKLMNPRSTVY 128 AEFGHIKLMPQRSTVW
66 ACFILMNPRSTVY
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Table S2.7:

Fentanyl specificity benchmark structures and positions.

PDB codes are shown for the source of the protein and ligand structure. Position and starting side
chain identity are shown for designable positions, and position is shown for packable positions.
Position numbering corresponds to PDB numbering as in [2].

. . cos Packable positions
Protein PDB Designable positions (coupled methods)
Designed | 2Q73 Q7, W9, N33, V37, N63, | y's b1, T43, R73, L76, V82, W8S,
. Y65, T67,Y69, W71, E78,
fentanyl (protein), Y30 P90. R112. P116 Y88, Y108, T110, A115, S117, 1118,
binder 5TZO W12,9 Yi66 A170 A’172 D121, F125,Q127, V131, A165,
Fen49 (ligand) (n= 1’8) ’ ’ V168, Y174, Q175, FEN (n=22)
Table S2.8:  Allowed design for fentanyl dataset.

Amino acids were allowed in design only if they had high enough sequencing counts to be
included in the enrichment and depletion calculations in [2]. Shown are the amino acid side
chains (one letter codes) to which positions were allowed to design. Because Fen49 wild-type
identities are disallowed during design (see Methods), positions marked with (*) were mutated to
alanine with the FixBB application during preparation of the input structure for design.

Position Allowed side chains Position Allowed side chains

9 ACDEFGHIKLMNPRSTVWY 78 ACDEFGHKLMPQRSTVWY
35 ACDEFGIKLMNPQRTVWY 90 ACDEFGHILMNPQRSTVWY
37* ACDEFGHILMNQRSTWY 112 ACDFGHILMPRSTVWY

65* ACEGLMRSTV 116 AEGKLMPQRSTVWY

67 ACDEFGIKLMNPQRSTVWY 129 ACEFGIKLMPQRSTVW

69* ACDFGHIKLNRSTVW 170 ACEGLPQRSTV

71* ACDEFGHIKLMNPRSTV
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Table S2.9:

hGH/hGHr specificity benchmark structures and positions.

For each library, position and starting side chain identity are shown for designable positions, and
position is shown for packable positions. Position numbering corresponds to PDB numbering.

Library | Designable positions | Packable positions
17,21, 32, 41, 48, 49, 50, 60, 66, 67, 68, 70, 75, 78, 160,
A %fﬁ?i%f§§??Z;§f1’ 163, 164, 167, 174, 175, 176, 177, 178, 181, 183, 202, 254,
’ © | 276.315.365. (n=30)
22,28, 38, 41, 44, 45, 46, 51, 53, 63, 66, 69, 160, 165, 167,
B gggaY?fagfigfgf’ 168, 171, 174, 176, 179, 202, 248, 252, 254, 255. 270, 271,
’ - | 272.277. 315, 363, 364, (n=32)
14,24, 25,33, 41, 42, 44, 51, 58, 61, 66, 68, 75, 78, 82,
C ?ﬁ;’ﬁffgiff;;fo’ 164, 167, 170, 171, 172, 174, 176, 179, 181. 182, 189, 226,
> 256,272,315, 317, 364, 365, (n =33)
18, 19, 21, 23, 24, 25, 26, 28, 40, 60, 61, 62, 63, 67, 72, 75,
p | Q22543, BO6, R167, | 20" 29" 05 164, 172, 175, 179, 184, 254, 276, 277, 364. (n
FI76,RI83 (m=06). | 15
14,17, 18, 21, 22, 25, 45, 47, 49, 50, 51, 52, 53, 56, 68,
E E§2§F313Zti;fgf’ 157, 160, 164, 169, 172, 203, 221, 225, 226. 254, 256, 310,
’ - 313,315, 363, 364, (n=31)
21,26, 28, 29, 32, 36, 38, 42, 45, 56, 60, 62, 65, 66, 82,
poo|F25,KALQA6,N63, 160164 167, 168, 169, 176, 226, 252, 254, 258, 270, 272,

K172 (n=>5).

277, 364, (n=29)

Table S2.10: Herceptin/HER?2 specificity benchmark structures and positions.

Design and packable positions are shown for each library. Design positions are listed in Kabat
numbering [73]. For packable positions, numbering corresponds to consecutive renumbering of
the 312 positions in combined chain A positions 1-106, chain B positions 1-119, and chain C
positions 511-607. Herceptin Library D is omitted because the experimental data were
dominated by the wild-type sequence.

Library | Designable positions Packable positions
V194, Vi33, V50, 93,95, 138, 140, 141, 153, 155, 157, 158, 161, 164, 166,
A Vu56, Vi58, V95 (n= | 176,204, 211, 213, 272, 273, 275, 276, 287, 288 (n =
0). 22).
28,29, 31, 32, 66, 71, 90, 93, 94, 138, 139, 141, 153,
B :zigg’z}%gVZ}%%AZTio’ 155, 157, 164, 165, 176, 204, 208, 210, 212, 213, 273,
:zg)’ H7=> VH 275,284, 285, 286, 287, 288, 296, 298, 301, 303, 305,
! 307 (n = 36).
c :ngz’:}i%BVQ?%éggii’ 32,46, 48, 50, 52, 54,90, 92, 205, 212, 214, 285, 286,
==$) » VHETE, TH 287, 288, 296, 298, 308 (n = 18).
E V149, V153, V155, 46, 48, 50, 52, 54, 56, 58, 108, 110, 203, 204, 205, 211,

Vu100, V102 (n = 5).

212,214, 216,308 (n=17).
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Table S2.11: Number of designed sequence positions in PPS gain/loss/neutral zones.
Values for CoupledMoves represent averages + standard deviation for CM-BR, CM-FKIC, and
CM-WKIC. The charged or polar category includes arginine, histidine, lysine, aspartate,
glutamate, serine, threonine, asparagine, glutamine, tyrosine, and cysteine. The hydrophobic
category includes alanine, phenylalanine, glycine, isoleucine, leucine, methionine, valine,
tryptophan, and proline.

Amino acid category
charged hydro-
all or polar phobic
c led gain 43+3 | 161 28+2
OUPIEA 1 0ss 3244 | 2543 Gl
Moves
neutral 81+6 | 26%3 5543
gain 37 13 24
Back
ackrub | s 41 |28 13
Ensemble
neutral 78 26 52
Fast gain 28 10 18
. loss 46 33 13
Design
neutral 82 24 58
ain 13 4 9
Fixed ;gl 50 |34 16
Backbone 05
neutral 93 29 64
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2.9 Supplemental Rosetta command lines and XML scripts

2.9.1 CM-BR (with ligand)

Rosetta/main/source/bin/coupled _moves.default.linuxgccrelease -s pdb -
mute protocols.backrub.BackrubMover -exl -ex2 -extrachi_cutoff o -
nstruct 1 -ignore_unrecognized res -score::weights ref2015 -
extra_res_fa ligand name.params -resfile resfile -coupled_moves::mc_kt
2.4 -coupled moves::boltzmann_kt 2.4 -coupled moves::ntrials 1000 -

coupled _moves:
coupled _moves:
coupled _moves:
coupled _moves:
coupled _moves:

:initial repack false -coupled moves::ligand mode true -
:ligand weight 2 -coupled moves::fix_backbone false -
:bias_sampling true -coupled_moves::bump_check true -
:backbone_mover backrub -

:exclude_nonclashing positions true -nstruct 400

2.9.2 CM-BR (without ligand)

Rosetta/main/source/bin/coupled _moves.default.linuxgccrelease -s pdb -
mute protocols.backrub.BackrubMover -exl -ex2 -extrachi_cutoff o -
nstruct 1 -ignore_unrecognized res -score::weights ref2015 -resfile
resfile -coupled moves::mc_kt 2.4 -coupled moves::boltzmann_kt 2.4 -

coupled _moves:
coupled _moves:
coupled _moves:

:ntrials 1000 -coupled moves::initial repack false -
:fix_backbone false -coupled moves::bias_sampling true -
:bump_check true -coupled moves::backbone_mover backrub

-coupled _moves::exclude nonclashing positions true -nstruct 400

2.9.3 CM-FKIC (with ligand)

Rosetta/main/source/bin/coupled_moves.default.linuxgccrelease -s
name.pdb -mute protocols.backrub.BackrubMover -exl -ex2 -
extrachi_cutoff @ -nstruct 1 -ignore_unrecognized res -score::weights
ref2015 -extra_res_fa name.params -resfile name.resfile -

coupled _moves:
coupled _moves:
coupled _moves:
coupled _moves:
coupled _moves:
coupled _moves:
coupled _moves:

:mc_kt 2.4 -coupled_moves::boltzmann_kt 2.4 -

:ntrials 1000 -coupled moves::initial repack false -
:ligand _mode true -coupled moves::ligand weight 2 -
:fix_backbone false -coupled _moves::bias_sampling true -
:bump_check true -

:exclude_nonclashing positions true -

:backbone_mover kic -coupled _moves::kic_perturber

fragment -loops:frag sizes 9 3 -loops:frag files name.200.9mers.gz
name.200.3mers.gz -nstruct 400

294 CM-FKIC (without ligand)

Rosetta/main/source/bin/coupled_moves.default.linuxgccrelease -s
name.pdb -mute protocols.backrub.BackrubMover -exl -ex2 -

80



extrachi_cutoff @ -nstruct 1 -ignore_unrecognized res -score::weights
ref2015 -resfile name.resfile -coupled moves::mc_kt 2.4 -

coupled _moves:
coupled _moves:

:boltzmann_kt 2.4 -coupled moves::ntrials 1000 -
:initial repack false -coupled moves::ligand _mode false

-coupled moves::fix_backbone false -coupled moves::bias_sampling true
-coupled moves: :bump_check true -

coupled _moves:
coupled _moves:

:exclude_nonclashing positions true -
:backbone_mover kic -coupled _moves::kic_perturber

fragment -loops:frag sizes 9 3 -loops:frag files name.200.9mers.gz
name.200.3mers.gz -nstruct 400

2.9.5 CM-WKIC (with ligand)

Rosetta/main/source/bin/coupled_moves.default.linuxgccrelease -s
name.pdb -mute protocols.backrub.BackrubMover -exl -ex2 -
extrachi_cutoff @ -nstruct 1 -ignore_unrecognized res -score::weights
ref2015 -extra_res_fa name.params -resfile name.resfile -

coupled _moves:
coupled _moves:
coupled _moves:
coupled _moves:
coupled _moves:
coupled _moves:
coupled _moves:

:mc_kt 2.4 -coupled_moves::boltzmann_kt 2.4 -

:ntrials 1000 -coupled moves::initial repack false -
:ligand mode true -coupled moves::ligand weight 2 -
:fix_backbone false -coupled _moves::bias_sampling true -
:bump_check true -

:exclude_nonclashing positions true -

:backbone_mover kic -coupled _moves::kic_perturber

walking -nstruct 400

2.9.6 CM-WKIC (without ligand)

Rosetta/main/source/bin/coupled_moves.default.linuxgccrelease -s
name.pdb -mute protocols.backrub.BackrubMover -exl -ex2 -
extrachi_cutoff @ -nstruct 1 -ignore_unrecognized res -score::weights
ref2015 -extra_res_fa name.params -resfile name.resfile -

coupled _moves:
coupled moves::
coupled _moves:
coupled _moves::
coupled _moves:
coupled _moves::

:mc_kt 2.4 -coupled_moves::boltzmann_kt 2.4 -

ntrials 1000 -coupled moves::initial repack false -

:fix_backbone false -coupled _moves::bias_sampling true -

bump_check true -

:exclude_nonclashing positions true -

backbone_mover kic -coupled moves::kic_perturber

walking -nstruct 400

2.9.7 FastDesign (with ligand)

Rosetta/main/source/bin/relax.default.linuxgccrelease -s name.pdb -
resfile name.resfile -extra_res_fa ligand_name.params -exl -ex2 -
extrachi_cutoff @ -nstruct 400 -in:file:fullatom -relax:fast -
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relax:respect_resfile -relax:constrain_relax_to_start_coords -
relax:coord _cst_stdev .5

2.9.8 FastDesign (without ligand)

Rosetta/main/source/bin/relax.default.linuxgccrelease -s name.pdb -
resfile name.resfile -exl -ex2 -extrachi_cutoff @ -nstruct 400 -
in:file:fullatom -relax:fast -relax:respect _resfile -
relax:constrain_relax_to_start_coords -relax:coord _cst _stdev .5

2.9.9 BackrubEnsemble step 1: Backrub ensemble generation (with ligand)

Rosetta/main/source/bin/backrub.default.linuxgccrelease -
score::weights ref2015 -s name.pdb -nstruct 400 -
ignore_unrecognized res -extra_res_fa ligand_name.params -
backrub:ntrials 10000 -mc_kt 1.2 -max_atoms 12

2.9.10 BackrubEnsemble step 1: Backrub ensemble generation (without ligand)

Rosetta/main/source/bin/backrub.default.linuxgccrelease -

score: :weights ref2015 -s name.pdb -nstruct 400 -
ignore_unrecognized res -backrub:ntrials 10000 -mc_kt 1.2 -max_atoms
12

2.9.11 BackrubEnsemble step 2: Design on backrub ensemble (with ligand)
Rosetta/main/source/bin/rosetta_scripts.default.linuxgccrelease -
parser:protocol FBBRS.xml -parser:script_vars res_file=name.resfile -s
name_ensemble_member.pdb -nstruct 400 -ignore_unrecognized res -
extra_res_fa ligand name.params

2.9.12 BackrubEnsemble step 2: Design on backrub ensemble (without ligand)
Rosetta/main/source/bin/rosetta_scripts.default.linuxgccrelease -

parser:protocol FBBRS.xml -parser:script_vars res_file=name.resfile -s
name_ensemble_member.pdb -nstruct 400 -ignore_unrecognized_res
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2.9.13 BackrubEnsemble step 2: Design on backrub ensemble, file name FBBRS.xml

<ROSETTASCRIPTS>
<SCOREFXNS>
</SCOREFXNS>
<RESIDUE_SELECTORS>
</RESIDUE_SELECTORS>
<TASKOPERATIONS>
<ReadResfile name="resfile" filename="%%res_file%%" />
<ExtraRotamers name="ex1" chi="1" />
<ExtraRotamers name="ex2" chi="2" />
<ExtraChiCutoff name="exchi@" extrachi_cutoff="0" />
</TASKOPERATIONS>
<FILTERS>
</FILTERS>
<MOVERS>
<PackRotamersMover name="pack rot"
task_operations="resfile,exl,ex2,exchi@" />
</MOVERS>
<APPLY_TO_POSE>
</APPLY_TO POSE>
<PROTOCOLS>
<Add mover="pack_rot" />
</PROTOCOLS>
<OUTPUT/>
</ROSETTASCRIPTS>

2.9.14 FixBB control (with ligand)

Rosetta/main/source/bin/rosetta_scripts.default.linuxgccrelease -
parser:protocol FBBRS.xml -parser:script_vars res_file=name.resfile -s
name.pdb -nstruct 400 -ignore_unrecognized res -extra_res_fa

ligand _name.params

2.9.15 FixBB control (without ligand)
Rosetta/main/source/bin/rosetta_scripts.default.linuxgccrelease -
parser:protocol FBBRS.xml -parser:script_vars res_file=name.resfile -s

name.pdb -nstruct 400 -ignore_unrecognized res -extra_res_fa
ligand _name.params
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Chapter 3: Experimental methods for screening designed
ibuprofen sensors

3.1 Introduction

Detection and response to signals is fundamental to living systems, and requires systems
capable of both sensing a signal and actuating a response. Engineered sensor/actuator tools could
play crucial roles if design can reliably generate sensors for molecules that cannot be detected by
existing proteins. Applications for sensor/actuators include therapeutics, biological
manufacturing, probing biology, and engineering communication. For example, we could use
small molecule signals to control multiple interactions within a single cell for the purposes of
studying biology, engineer new channels of cooperation and communication between cells, or
regulate gene expression in response to the presence of metabolic intermediates, such as the
farnesyl pyrophosphate (FPP) intermediate in the bisabolene production pathway.[l, 74] I
present an experimental method for testing modular systems with sensor and actuator domains,
wherein the identities of the input (target small molecule) and the output (protein
complementation) can be tailored to various synthetic biology applications.[1] I also describe a
system that senses the small molecule ibuprofen, and reports its presence via dimerization of a
split reporter.

The ibuprofen sensor reported here was designed using a computational protocol which
grafts a known binding from a naturally occurring, monomeric protein, to the interface of a
heterodimer that did not previously contain a binding site, such that the ligand binding induces
dimerization which is reported by complementation of a split reporter (Figure 3.1a), as in [1]. In
natural biology, signals often take the form of small molecules, which are sensed by binding to a

pocket in a protein, and signal transduction often proceeds via allostery or homodimerization.
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Few known examples of ligand-induced heterodimerization have been characterized, and the
rapamycin[75] and abscisic acid[76] systems are most well known. By combining ligand-
induced heterodimerization with fusion to a split reporter, we arrive at a combination of modular
input and modular output that is powerfully adaptable to various applications. In some cases, we
may desire to detect a target small molecule of interest, and any convenient actuator may be used
to report the presence of the small molecule (Figure 3.1b). Alternatively, if the desired
application is activation of a particular actuator, any convenient small molecule can be used to
activate dimerization of the sensor and actuator (Figure 3.1c). These simple conceptual examples

can be built upon for more complex synthetic biology applications.

3.2 Results

Sensor domains were engineered using the macromolecular modeling and design
software Rosetta[10] by a process (Figure 3.2, see Methods) which can be generalized to design
sensors for various small molecules.[1] Briefly, the geometry of amino acid side chains
coordinating the ligand (motif residues) were defined from an existing binding site in monomeric
protein COX-1 (PDB: 1EQG). In step 2, motif residues that make key contacts with ibuprofen
were matched using a protocol (adapted from [77]) to heterodimer Ultraspiracle/Ecdysone
Receptor (PDB: 2NXX), referred to as a scaffold protein, which has a backbone conformation
capable of placing the motif residues in the correct orientations to bind ibuprofen. In step 3,
motif residues and ibuprofen were placed into the scaffold, and the surrounding region was
designed to accommodate and stabilize the transplanted binding site. In step 4, designs proteins

were linked to protein complementation systems for testing in E. coli and in vitro.
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Small molecules of interest were selected for their possible utility and include
intermediates in metabolic pathways, therapeutic agents, and toxins (Figure 3.3). Experimental
Safety and ease of use were also considered, and ligands were chosen to be soluble in aqueous
solution, and do not include chemicals classed as particularly hazardous or carcinogenic. The set
also included a number of generally nontoxic molecules, which could be used in many
applications with low risk of cytotoxic effects. Of particular interest in this category is p-
coumaric acid, which switches between isomers in response to light. Additionally, ibuprofen
(IBP) falls into this category and is of interested for therapeutic applications because it is cheap,
FDA approved, and humans are regularly and safely prescribed doses as high as 2,400
mg/day.[78] In the realm of metabolic engineering, FPP is of great interest because it is the
precursor to several commercially important compounds. A sensor/actuator for the toxic
insecticide thiacloprid could be used for bioremediation. Cells use homoserine lactone and
serotonin to communicate with each other, and sensor/actuators for these could be used to add
additional channels of communication between engineered cells. The full complement of designs
described in Figure 3.3 and Appendix 3.3 were previously generated by computational design
and chosen for the experimental screens described here. Each design contains 8 to 22 mutated
positions, and motifs for some target ligands were matched to more than one scaffold
heterodimer (Figure 3.3).

We focus on experimental characterization of ibuprofen sensors. We individually
screened 16 designs targeting ibuprofen, each containing 14-20 mutations from the wild-type
heterodimer, Ultraspiracle and Ecdysone Receptor (PDB: 2NXX) (Figure 3.4). For two designs,
#490 and 492, we observed increased signal from the split reporter proteins in the presence of

ibuprofen compared to a control with no ibuprofen, as described below. Sequence changes
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between the wild type protein, a top-ranking Rosetta design, and the two designs 490 and 492
containing additional mutations from visual inspection, are shown in Figure 3.5.

In the first experimental screen, we used split murine dihydrofolate reductase[79]
(DHFR) linked to biosensors, and expressed the fusion proteins in E. coli in the presence of
bacterial DHFR inhibitor trimethoprim. If the biosensor functions according to the design
concept, ligand-dependent dimerization of the sensor module will cause complementation of the
murine DHFR actuator module, rescuing E coli cells from the toxicity caused by trimethoprim
inhibition of bacterial DHFR. Thus, signal in the form of bacterial culture density is dependent
on reconstituted murine DHFR enzymes. The second system uses reporter NanoLuc, a highly
engineering split luciferase,[80] expressed in the “TXTL” cell-free transcription-translation
(TXTL) protein expression system.[81] NanoLuc is an engineered heterodimer derived from a
monomeric deep sea shrimp luciferase, and composed of one 18kDa domain (LgBIT) and one
1.3kDa peptide (SmBIT) that fits into a groove in the larger domain. Peptides with a variety of
affinities for the larger domain are available; our constructs used SmBIT peptide 114, which has
an affinity of 190uM for LgBIT.[80]

Designs were screened using systems that allowed quantification of reporter signal
without purification, which can be challenging for potentially unstable computationally designed
proteins. With in vivo experiments, ligands are added to growth media, while the sensor/actuator
is expressed in the bacterial cytoplasm. This does not allow direct control over the intracellular
concentration of ibuprofen, which cannot be easily quantified. In TXTL, protein is expressed in
E. coli extract, so that ligand can be titrated directly into the extract expressing the
sensor/actuator. /n vivo experiments require relatively large volumes of media, which in turn

requires large amounts of ligand. Due to the need for oxygenation via shaking, reducing ligand
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requirement by reducing culture size slows bacterial growth and reduces the throughput of the
experiments. DHFR experiments can also be carried out by printing colonies on agar plates
instead of growing culture in liquid media, which is also low-throughput. Plate printing, even
using robotic automation, is laborious, and growth on agar media takes several days. Protein
expression in TXTL is efficient, taking only a few hours, and occurring in volumes as small as
10uL which uses much less ligand.

Ibuprofen sensors were first screened in E. coli with the split DHFR reporter. Initial
screens were carried out by printing colonies of each sensor on agar growth media containing
either ligand, added from an ethanol stock, or an equivalent volume of ethanol without ligand.
For ibuprofen sensor designs #490 and 492, colonies grew larger on media with ImM IBP (3.
6a), which is consistent with ligand-induced dimerization. Colonies for additional designs are
shown in Figures 6b-c. Design #490 and the wild type scaffold as a control were grown in liquid
media with varying concentrations of ligand (Figure 3.7). After 21 hours, cells expressing design
#490 and grown in media containing ImM IBP exhibited an increase in growth measured by
ODggp over cells grown in the same condition except without IBP (0.29 + 0.05 compared to 0.08
+ 0.01 ODggp). Cells expressing a control, the wild type scaffold protein fused to DHFR, grew to
0.36 £ 0.04 ODgg after 19 hours, regardless of ligand concentration (Figure 3.7a), consistent
with ligand-mediated dimerization at the designed binding site.

Each design described in Figure 3.3 was screened using the DHFR plate-printing
experiment, and designs for ligands except ergosterol were screened using the DHFR liquid
experiment. For these designs we did not observe reproducible signal. In many cases, cells did
not grow once we induced expression of the design-DHFR fusion constructs. No colonies were

observed in plate printing experiments for serotonin designs #131, 145, 475, 496, 497, and 498,
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and ibuprofen sensor designs #468, 490, 494, and 501. Cells grew robustly when expressing
designs targeting farnesyl pyrophosphate and p-coumaric acid, but did not exhibit ligand-
dependent growth differential. Cells expressing constructs for the remaining target ligands grew
slowly and also did not exhibit ligand-dependent growth differential.

To demonstrate the modularity of the sensor/actuator system, we tested ibuprofen
sensors #490 and #492 with a different actuator; we also sought to test whether sensor signal was
dependent on the presence of motif residues by testing constructs with each motif residue
mutated to alanine. We employed NanoLuc split luciferase to report on sensor/actuator
dimerization, and expressed the fusion constructs using TXTL cell-free protein expression
according to the schema shown in Figure 3.8 and described in Methods. Briefly, the two halves
of the heterodimer construct were expressed separately, then were combined with the target
ligand ibuprofen and furimazine, the luciferase substrate, for measurement. Results are shown in
Figure 3.9. Constructs with the complete motif (red) luminesce in a ligand-dependent manner,
while constructs with alanine in place of one of the two motif residues on the Ultraspiracle chain
(orange and yellow) have a reduced response, and constructs with alanine in place of the single
motif residue on the Ecdysone Receptor chain do not respond to ibuprofen (green). These data
are consistent with ligand-mediated dimerization at the designed binding site, and with ibuprofen
coordination by the transplanted motif residues, though structural characterization would be
required to confirm.

Of the remaining designs described in Figure 3.3, the following were also tested using the
NanoLuc TXTL protocol: all designs targeting ibuprofen, p-coumaric acid (except #505),
serotonin (based on scaffold PDBs 3IA3 and 3NWO0) (except #s 482, 518, 519, and 522),

theophylline (except #166), and thiacloprid (except #652). For these designs, we were unable to
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confirm signal, except for the ibuprofen biosensors for which some designs demonstrated
activity but with a smaller dynamic range than designs #490 and #492. Designs targeting
caffeine, naproxen, and serotonin (based on scaffold PDB 3EAB), were not tested because
constructs did not assemble during the cloning step. Designs targeting ergosterol were not tested
due to the insolubility of the ligand, and designs targeting homoserine lactone were not tested
because we did not previously observe growth for E coli expressing the designs in plate-printing
DHFR screens. Designs targeting farnesyl pyrophosphate were screened in TXTL by Dr. Anum

Azam-Glasgow, and those results are reported in [1].

3.3 Discussion

Experiments in £ coli and in TXTL cell extract supported the possibility of ligand-
induced dimerization for two computationally designed ibuprofen sensors, #490 and 492.
Furthermore, we demonstrated the modularity of our sensor/actuator design concept with ligand-
dependent actuation of two different protein complementation reporters, DHFR and NanoLuc.

De novo binding site design remains a challenge, and indeed, as discussed in the Results
section of this chapter, we did not observe ligand-dependent signal when we tested designed
sensors for several additional ligands. In addition to challenges surrounding structural design,
ligand-related experimental factors may have contributed to lack of observed signal. Ligands can
have a positive or negative effect on the chosen actuator systems, for example by influencing £
coli cell growth. Target ligand caffeine exhibits cytotoxic effects, decreasing culture density,
with effect increasing with caffeine concentration (Figure 3.10).

Low signal to noise ratio (S/N) was a confounding factor in our experiments. Signal

depends on difference in affinity between the ternary protein/ligand/protein complex and the
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protein/protein heterodimer. When that difference is small relative to background noise, signal
detection is difficult. It remains difficult to accurately predict mutations that increase ligand-
mediated affinity without increasing heterodimer protein/protein affinity, or conversely to predict
mutations that decrease protein/protein affinity without decreasing affinity of the tertiary
protein/ligand/protein complex. An experimental technique such as directed evolution with
positive and negative selection might allow discovery of mutations that improve dynamic range,
and this information could be incorporated into the design pipeline to improve computational

design methods.

3.4 Methods

3.4.1 Computational design of ibuprofen sensors

Sensor domains were engineered using the macromolecular modeling and design
software Rosetta[10] by a process (Figure 3.2) which can be generalized to design sensors for
various small molecules.[1] In step 1, the geometry of amino acid side chains coordinating the
ligand (motif residues) were defined from an existing binding site for the target small molecule,
typically found in a monomeric protein such as an enzyme. Three or four motif residues that
make key contacts with the ligand were selected from a high-resolution crystal structure of the
existing binding site by manual inspection. In step 2, a Rosetta matching protocol (adapted from
[77]) was used to search heterodimer proteins for backbone conformations compatible with
placing motif residues in the correct orientations to bind the ligand. Proteins on which side
chains are designed are referred to as scaffolds. Motif residues were matched to both chains of
the heterodimer scaffold, such that the binding site spanned the interface. If a match was found,
design proceeded to step 3, wherein the motif residues and ligand were placed in the scaffold

heterodimer. Then, flexible backbone and sequence design of the surrounding shell
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accommodated and stabilized the transplanted binding site. Designs were filtered by metrics such
as pre-organization of the ligand binding site, ligand solvent-exposed surface area, and
hydrogen-bond satisfaction. In step 4, designs proteins were linked to protein complementation
systems for testing in E. coli and in vitro.

This method was used to generate 16 designs targeting ibuprofen, each containing 14-20
mutations from the wild-type heterodimer, Ultraspiracle and Ecdysone Receptor (PDB: 2NXX)
(Figure 3.4). Sequence changes between the wild type protein, a top-ranking Rosetta design, and
two designs (#490 and #492) containing additional mutations or reversions from visual
inspection, are shown in Figure 3.5. The binding site motif was extracted from a crystal structure
of COX-1 complexed with ibuprofen (PDB: 1EQG). In COX-1, the motif is composed of two
hydrophobic residues, V317 and L327, which pack against the nonpolar portion of ibuprofen,
and a third polar motif residue, R88, which coordinates the ibuprofen’s carboxylic acid
functional group. During design, the two hydrophobic motif residues were substituted for
methionine. Two motif residues (E336R and Y343M) were grafted onto Ultraspiracle, and the

third motif residue (Y322M) was grafted onto Ecdysone Receptor.

3.4.2 DHFR screen on agar plates

The plates shown in Figures 3.6 and 3.11 were prepared as follows. M9 medium was
prepared with 1.5% w/v agar, 50 pg/mL spectinomycin, 2ug/mL trimethoprim and 100uM
IPTG. For experiments involving ibuprofen (IBP) sensors, plates contained either 1mM IBP or
an equivalent volume of ethanol for the blank; when prepared, media contained 3.3% v/v
ethanol. For experiments involving ergosterol (ERG) sensors, plates contained either ImM ERG

or an equivalent volume of ethanol for the blank; when prepared media contained 1% v/v
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ethanol. Ethanol evaporates readily at standard temperature and pressure and plates were
prepared at least one day before colony printing. 45mL growth medium was poured into
rectangular plates (Rotor PlusPlates, catalog number PLU-003). Individual colonies from
plasmid transformation were picked and suspended into 500uL liquid M9 medium with 50
pg/mL spectinomycin in 96-well deep well blocks, covered with a gas-permeable membrane,
and grown overnight at 37°C with shaking at 220RPM in a New Brunswick Innova 44 shaker.
These cultures were then printed onto the previously-prepared agar plates using a Singer
Instruments Rotor HDA plate-printing robot, and the plates were stored at room temperature in a
dark cabinet during growth. Plates were removed from the cabinet and photographed at 24-hour

time points for three days.

3.4.3 DHFR screen in liquid culture

For ibuprofen sensor design #490 and wild-type scaffold protein data shown in Figure
3.7a, samples were prepared as follows. Three separate colonies, corresponding to biological
replicates 1-3 in Figure 3.7b, were picked and grown overnight at 37°C in 200pL M9 medium
with 50 pg/mL spectinomycin. In the morning, SmL M9 with 50 ug/mL spectinomycin was
taken from 4°C storage and added to the overnight cultures. Cultures were grown at 37°C for 2
additional hours to approximate log phase (measured values were 0.62, 0.73, and 0.39 ODg for
the three cultures of design #490, and 0.48, 0.46, and 0.49 ODgg for the wild-type protein,
respectively) then diluted to an ODggp of 0.10. During the 2 hours while cultures were growing to
approximate log phase, M9 medium was prepared with 50 pg/mL spectinomycin, 60mM IPTG,
and 0.5pg/mL trimethoprim. The medium was then divided into three volumes, to which a stock

of 30mM ibuprofen in ethanol was added to concentrations of 2000, 400, and OuM ibuprofen,
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respectively. For the latter two solutions, equivalent volumes of ethanol were added such that
solutions contained the same concentration of ethanol. After the medium and cultures were
prepared, 500puL of ibuprofen medium and 500uL of culture medium were mixed together in 96-
well deep-well blocks according to the checkerboard schema shown in Figure 3.7b. Each well
received 500uL of ibuprofen medium and 500uL of culture medium. After mixture, the final
concentrations of ibuprofen were 1000, 200, and OuM, depending on the well, while the cell
culture concentration was 0.05 ODggo for all wells. All growth media contained a 3.3% v/v
ethanol. The plates were then covered with a gas-permeable membrane and placed in a shaking
incubator at 30°C for 21 hours. At 21 hours, 200uL volumes of culture were transferred to a

transparent-bottom 96-well plate, and ODgo was measured in a plate reader.

3.4.4 Preparation of E. coli S30 extract for cell-free protein expression

Energy buffer and E. coli S30 extract from Rosetta2 cells were prepared using the
“TXTL” protocol, originally described in [81] and with adaptations described in [1], and stored
at -80°C. For protein expression reactions, TXTL extract and energy buffer were thawed on ice
and prepared by adding to final concentrations ImM IPTG, 0.2nM T7 RNA Polymerase plasmid
(pID 108 in Appendix 3.2, acquired from Zachary Sun in Richard Murray’s lab). TXTL extract
prepared in our lab (Figure 3.11a) produced similar amounts of control protein GFP compared to

extract acquired from the authors of [81] (Figure 3.11b).

3.4.5 NanoLuc screen in TXTL

For ibuprofen sensor design #490 and wild-type scaffold protein data shown in Figure

3.9, samples were prepared as follows (see Figure 3.8). TXTL extract was prepared in November
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2017, as described above. Data were collected in an experiment carried out on 1/16/2018. TXTL
reaction was prepared as described above, with additional 50uM Ponasterone A in DMSO (See
Appendix 3.1 for preparation), a cofactor for Ecdysone receptor which forms one half of the
scaffold used to design the ibuprofen sensor. This mixture was divided into separate reactions for
the expression of each protein. To initiate protein expression, DNA was added to the TXTL
solution. The amount of DNA used is described in Table 3.1. Reactions were placed in closed
Eppendorf tubes and placed at 30°C for 7.5 hours, during which protein expression occurs.
During this time, ethanol and/or 121.194 mM ibuprofen dissolved in ethanol (see Appendix 3.1
for preparation) were transferred to a 384-well plate using an Echo acoustic liquid handler, and
the ethanol was evaporated off using a GeneVac evaporator on setting “High BP” for 10 minutes.
Each well received the same amount of ethanol, and the amount of ibuprofen transferred was
such that, when later combined with the TXTL-expressed protein, the final concentrations would
be 0.0, 15, 50, 100.0, or 200.0uM. After the 7.5 hour TXTL incubation, reactions were removed
to room temperature and prepared to final concentrations of 15% volume TXTL, 1X sterile
phosphate buffered saline (PBS, final composition in reaction of 137 mM NaCl, 27 mM KCI, 10
mM Na,HPO4, 18 mM KH,POy, and a pH of 7.4), and 1mg/mL bovine serum albumin (BSA).
Next, the two halves of the heterodimer biosensor, which had been individually expressed in
TXTL, were combined into the previously-prepared 384-well plate with ibuprofen. 10uL of
extract expressing each heterodimer half, in the 15% TXTL solution, were transferred using the
Echo acoustic liquid handler into the wells with the layout described in Table 3.2. Blank samples
were prepared with 1X PBS and 1mg/mL BSA. Finally, NanoLuc substrate buffer was prepared
according to manufacturer instructions (Nano-Glo Luciferase Assay System, Promega catalog

#N1110). NanoLuc substrate buffer was added and luminescence measured using a SpectraMax
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L luminometer. Each well was measured as follows. 20 uL buffer was injected into the well with
M-injection setting, the plate was shaken at a speed of 30mm/s for 1 s, then luminescence was

measured with integration time of 1s and PMT sensitivity set to “photon counting.”

3.5.1 Appendix 3.1: Recipes

3.5.1.1 Ibuprofen

Ibuprofen (IBP) was dissolved in ethanol. For experiments in E. coli, IBP was prepared to a
concentration of 30 mM. For experiments in TXTL, IBP was prepared to a concentration of 121

mM in ethanol.

3.5.1.2 Ponasterone A

Ponasterone A (PonA) was dissolved in DMSO to a concentration of 10 mM in ethanol.

3.5.1.3 Caffeine

Caffeine (CFF) was dissolved in water to a concentration of 75 mM.

3.5.2 Appendix 3.2: Sequences
3.5.2.1 pID108: T7 RNA Polymerase

aataattttgtttaactttaagaaggaggatccaaatgaacacgattaacatcgctaagaacgacttctctgacatcgaactggcetgetatceeg
ttcaacactctggctgaccattacggtgagegtttagctcgegaacagttggeccttgageatgagtettacgagatgggtgaageacgcette

cgcaagatgtttgagcgtcaacttaaagetggtgaggttgeggataacgetgecgecaagectctcatcactaccctactccctaagatgatt

gecacgcatcaacgactggtttgaggaagtgaaagctaagecgeggcaagegeccgacagecttccagticctgcaagaaatcaagecgga

agccgtagcgtacatcaccattaagaccactctggettgectaaccagtgetgacaatacaaccgttcaggetgtagcaagegceaatcggte
gggccattgaggacgaggctcgetticggtegtatcegtgaccttgaagetaageacttcaagaaaaacgttgaggaacaactcaacaageg
cgtagggcacgtctacaagaaagcatttatgcaagttgtcgaggetgacatgetctctaagggtctactcggtggegaggegtggtettegtg
gcataaggaagactctattcatgtaggagtacgctgcatcgagatgctcattgagtcaaccggaatggttagettacaccgecaaaatgetgg
cgtagtaggtcaagactctgagactatcgaactcgcacctgaatacgctgaggctatcgecaaccegtgeaggtgegetggetggeatcetete
cgatgttccaaccttgegtagttcctcctaagecgtggactggceattactggtggtoggoctattgggctaacggtegtegtectetggegetggt

gegtactcacagtaagaaageactgatgcgetacgaagacgtttacatgectgaggtgtacaaagegattaacattgegecaaaacaccgea
Continued on next page.
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3.5.2.1 pID108, continued: T7 RNA Polymerase
tggaaaatcaacaagaaagtcctagecggtcgecaacgtaatcaccaagtggaagceattgtccggtcgaggacatecetgegattgagegte
aagaactcccgatgaaaccggaagacatcgacatgaatcctgaggetctcaccgegtggaaacgtgetgecgetgetgtgtaccgecaagg
acaaggctcgcaagtctcgecgtatcagecttgagttcatgettgagcaagecaataagtttgctaaccataaggecatctggttcecttacaa
catggactggcgeggtegtgtttacgetgtgtcaatgttcaacccgecaaggtaacgatatgaccaaaggactgettacgetggegaaaggta
aaccaatcggtaaggaaggttactactggctgaaaatccacggtgcaaactgtgegggtgtcgataaggttccgticectgagegeatcaag
ttcattgaggaaaaccacgagaacatcatggcttgcgcetaagtctccactggagaacacttggtgggctgageaagattcteegttetgette
cttgegttetgcetttgagtacgetggggtacagecaccacggectgagcetataactgeteecttcecgetggegtttgacgggtettgetctggea
tccagcacttctccgegatgetccgagatgaggtaggtggtegegeggttaacttgeticctagtgaaaccgticaggacatctacgggattg
ttgctaagaaagtcaacgagattctacaagcagacgcaatcaatgggaccgataacgaagtagttaccgtgaccgatgagaacactggtga
aatctctgagaaagtcaagctgggcactaaggcactggctggtcaatggetggcttacggtgttactcgcagtgtgactaagegttcagtcat
gacgctggcttacgggtccaaagagticggettccgtcaacaagtgetggaagataccattcagecagcetattgattccggeaagggtctga
tgttcactcagccgaatcaggcetgetggatacatggctaagetgatttgggaatetgtgagegtgacggtggtagetgeggttgaageaatg
aactggcttaagtctgctgctaagetgetggetgctgaggtcaaagataagaagactggagagattcttcgcaagegttgegetgtgcattgg
gtaactcctgatggtttccetgtgtggcaggaatacaagaagcectattcagacgegettgaacctgatgttcctecggtcagttccgettacage
ctaccattaacaccaacaaagatagcgagattgatgcacacaaacaggagtctggtatcgctcctaactttgtacacageccaagacggtage
caccttcgtaagactgtagtgtgggcacacgagaagtacggaatcgaatcttttgcactgattcacgactccttcggtaccattccggetgac
getgegaacctgttcaaagecagtgegegaaactatggttgacacatatgagtettgtgatgtactggetgatttctacgaccagttcgetgacce
agttgcacgagtctcaattggacaaaatgccagcacttccggctaaaggtaacttgaacctcegtgacatcttagagtcggacttcgegttcg
cgtaactcgaggaattcgactcaattagttcagtcagtttcaggatattagtcatctctacattgattatgagtattcagaaattccttaaatattctg
acaaatgctctttccctaaactccccccataaaaaaacccgecgaagegggtttttacgttatttgcggattaacgattactcgttatcagaacc
gcccagacctgegttcageagttctgeccaggetggeagatgegtettccgaattgatccgtcgaccaaageeccgecgaaaggegggctttt
ctgtgccggceatgataagetgtcaaacatgagaattacaacttatatcgtatggggctgacttcaggtgctacatttgaagagataaattgeact
gaaatctagaaatattttatctgattaataagatgatcttcttgagatcgttttggtctgcgegtaatctcttgctctgaaaacgaaaaaaccgectt
gecagggcggtttttcgaaggttctctgagetaccaactctttgaaccgaggtaactggcttggaggagegeagtcaccaaaacttgtectttca
gtttagccttaaccggegeatgacttcaagactaactcctctaaatcaattaccagtggetgetgecagtggtgcttttgeatgtetttccgggtt
ggactcaagacgatagttaccggataaggcgcageggtcggactgaacggggggttcgtgcatacagtccagettggagegaactgect
acccggaactgagtgtcaggegtggaatgagacaaacgeggcecataacageggaatgacaccggtaaaccgaaaggcaggaacagga
gagcgcacgagggagecgecaggggaaacgectggtatctttatagtecctgtegggtttcgecaccactgatttgagegtcagatttcgtga
tgcttgtcaggggggcggagectatggaaaaacggcetttgeccgeggecctetcacttcectgttaagtatettcctggeatcttccaggaaate
tccgecccgttegtaagecatttccgetcgecgeagtcgaacgaccgagegtagegagtcagtgagegaggaageggaatatateetgtat
cacatattctgctgacgcaccggtgceagccttttttctcctgecacatgaagceacttcactgacaccctcatcagtgccaacatagtaagecag
tatacactccgctagggtcatgagattatcaaaaaggatcttcacctagatccttttaaattaaaaatgaagttttaaatcaatctaaagtatatatg
agtaaacttggtctgacagttaccaatgcttaatcagtgaggcacctatctcagcgatctgtctatttcgttcatccatagttgectgactccecgt
cgtgtagataactacgatacgggagggcttaccatctggccccagtgctgecaatgataccgegagacccacgetcaccggetccagatttat
cagcaataaaccagccagccggaagggcecgagegeagaagtggtectgeaactttatccgectccatccagtctattaattgttgecggga
agctagagtaagtagttcgccagttaatagtttgcgcaacgttgttgecattgctacaggceategtggtgtcacgetegtegtttggtatggettce
attcagctccggttcccaacgatcaaggcegagttacatgatcceccatgttgtgcaaaaaageggttagetecttcggtectecegategttgte
agaagtaagttggccgceagtgttatcactcatggttatggcageactgcataattctcttactgtcatgecatcecgtaagatgcettttctgtgactg
gtgagtactcaaccaagtcattctgagaatagtgtatgcggcgaccgagttgetcettgeccggegtcaatacgggataataccgegecacat
agcagaactttaaaagtgctcatcattggaaaacgttcttcggggcgaaaactctcaaggatcttaccgetgttgagatccagttcgatgtaac
ccactcgtgcacccaactgatcttcagceatcttttactttcaccagegttictgggtgagcaaaaacaggaaggcaaaatgecgcaaaaaag
ggaataagggcgacacggaaatgttgaatactcatactcttectttttcaatattattgaagceatttatcagggttattgtctcatgageggataca
tatttgaatgtatttagaaaaataaacaaataggggttccgegceacatttccccgaaaagtgecacctgacgtctaagaaaccattattatcatg
acattaacctataaaaataggcgtatcacgaggccctttcgtcttcaagaattctggcgaatcctctgaccagecagaaaacgacctttetgtg
Continued on next page.
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3.5.2.1 pID108, continued: T7 RNA Polymerase

gtgaaaccggatgctgeaatticagageggeageaagtgggggacagecagaagacctgaccgecgeagagtggatgtttgacatggtgaa
gactatcgcaccatcagccagaaaaccgaattttgctgggtggoctaacgatatccgectgatgegtgaacgtgacggacgtaaccaccge
gacatgtgtgtgctgttccgetgggceatgeccaggacaacttetggteccggtaacgtgctgagetaacaccgtgegtgttgacaattttacctet

ggeggtgataatggttgcagctage
3.5.2.2 pID 345: SmBIT fused to IBP sensor #492 Ultraspiracle chain

gaattcgcatctagatggtagagccacaaacagecggtacaagcaacgatctccaggaccatctgaatcatgegeggatgacacgaactc
acgacggcgatcacagacattaacccacagtacagacactgcgacaacgtggcaattcgtcgcaataccgtctcactgaactggecgataa
ttgcagacgaacgcgttgagcaccgecgecgeaaggaatggtgcatgecaaggagatggegeccaacagtececccggecacggggect
gccaccatacccacgcecgaaacaagegcetcatgageccgaagtggegageccgatettcceccatcggtgatgteggegatataggegece
agcaaccgceacctgtggegecggtgatgeccggecacgatgegteccggegtagaggatcgagatctcgatcccgegaaattaatacgactc
actataggggaattgtgagcggataacaattccectctagaaataattttgtttaactttaagaaggagatatatatggtgaccggcetaccgget
gttcgaggagattctgggtagecggecageggeageggtageggeageggeagggtageggcettctggeacatcgaatttacaagecagaca
tgcetctggagaggataatcgaageggagaaacgagtcgaatgcaacgateccttggtggcattggtggtaaacgagaataataccactgt
gaacaatatctgtcaagcaacacacaagcaactgtttcaattggtccaatgggcgaagctcgtacctcatttcacatcattgecgttgacagat
caggtgcaattgttaagggcgggatggaatgaattgetcatagecgecttctcgeaccggtcgatgcaagecacaggatgctatagttctage
gacgggattgacagtcaacaaatcgactgcacacgetgtcggegtecggcaacatctacgaccgegteetcteccgagetggtgaacaaaat
gaaagaaatgaaaatggacaaaacggaattgggttgtitgcgggocgataattctctacctgectgeggttcgagggataaagtcggtgcaag
aagtgcgtatgttgctgcgtaaaatcatgggegtcctcgaggagtacaccaggacgactcatccaaacgagectggaaggtttgecaaatta
ttagcgcgtttgccggctttaaggtccattgggttgaaatgtctcgaacatctettctttttcaaactgatcggtgatgtccecgatagatactttect
aatggagatgttggagggcacaacggattcgtaaatccccaggceatcaaataaaacgaaaggctcagtcgaaagactgggcctttegtttta
tetgttgtttgtcggtgaacgcetctctactagagtcacactggetcaccttecgggtgggcctttctgegtttatagetgecaatgagacgacggg
gtcatcacggctcatcatgcgeccaacaaatgtgtgecatacacgetcggatgactgectgatgaccgeactgactggggacagecgatce
acctaagcctgtgagagaagcagacacccgacagatcaaggcagttaactagtgcactgcagtacageggecgegattatcaaaaaggat
cttcacctagatccttttaaattaaaaatgaagttttaaatcaatctaaagtatatatgagtaaacttggtctgacagttaccaatgcttaatcagtg
aggcacctatctcagcgatctgtctatttcgttcatccatagttgectgactcceegtegtgtagataactacgatacgggagggcttaccatct
ggecccagtgetgcaatgataccgegggacccacgetcaccggetccagatttatcagcaataaaccagecagecggaagggecgage
gcagaagtggtcctgcaactttatccgectccatccagtctattaattgttgeccgggaagetagagtaagtagticgecagttaatagtttgege
aacgttgttgccattgctacaggceatcgtggtgtcacgetegtegtttggtatggcttcatticagetccggttcccaacgatcaaggegagttac
atgatcccccatgttgtgcaaaaaageggttagetcecttcggtectececgategttgtcagaagtaagttggecgeagtgttatcactcatggtta
tggcagcactgcataattctcttactgtcatgecatccgtaagatgcettttctgtgactggtgagtactcaaccaagtcatictgagaatagtgtat
geggegaccgagttgctettgeccggegtcaatacgggataataccgegecacatagecagaactttaaaagtgetcatcattggaaaacgtt
cttcggggcegaaaactctcaaggatcttaccgetgttgagatccagticgatgtaacccactcgtgecacccaactgatcttcagceatcttttactt
tcaccagcgtttctgggtgagcaaaaacaggaaggcaaaatgccgcaaaaaagggaataagggcgacacggaaatgttgaatactcatac
tcttcctttttcaatattattgaagcatttatcagggttattgtctcatgagcggatacatatttgaatgtatttagaaaaataaacaaataggggttc
cgcgcacatttccccgaaaagtgecacctgtcatgaccaaaatcecttaacgtgagttttcgttccactgagegtcagacccegtagaaaaga
tcaaaggatcttcttgagatcctttttttctgcgegtaatctgctgettgcaaacaaaaaaaccaccgetaccageggtggtttgtttgccggate
aagagctaccaactctttttccgaaggtaactggctticagcagagecgcagataccaaatactgttcttctagtgtagecgtagttaggecacca
cttcaagaactctgtagcaccgcectacatacctcgetctgetaatectgttaccagtggetgetgecagtggegataagtegtgtcttaceggg
ttggactcaagacgatagttaccggataaggcgcageggtcgggctgaacgggggaticgtgcacacageccagettggagegaacgac
ctacaccgaactgagatacctacagcgtgagctatgagaaagecgecacgettcccgaagggagaaaggeggacaggtatccggtaage
ggcagggtcggaacaggagagegecacgagggagettccagggggaaacgectggtatetttatagtectgtegggtttcgecacctetga
cttgagcegtcgatttttgtgatgetcgtcaggggggcggagectatggaaaaacgecageaacgeggcectttttacggttcectggecttttget
ggccttttgetcacatgttctttcctgegttatcccctgattctgtggataaccgtgeggecgececct
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3.5.2.3 pID379: LgBIT fused to IBP sensor #492 Ecdysone Receptor chain

gaattcgcatctagatggtagagccacaaacagecggtacaagcaacgatctccaggaccatctgaatcatgegeggatgacacgaactc
acgacggcgatcacagacattaacccacagtacagacactgcgacaacgtggcaattcgtcgcaataccgtectcactgaactggecgataa
ttgcagacgaacgcgttgagcaccgecgecgeaaggaatggtgcatgecaaggagatggegeccaacagtecececggecacggggect
gccaccatacccacgcecgaaacaagegcetcatgageccgaagtggegageccgatettcceccatecggtgatgtecggegatataggegece
agcaaccgceacctgtggegecggtgatgeccggecacgatgegteccggegtagaggatcgagatctcgatcccgegaaattaatacgactc
actataggggaattgtgagcggataacaattccectctagaaataattttgtitaactttaagaaggagatatatatggtcttcacactcgaagatt
tcgttggggactgggaacagacagecgectacaacctggaccaagtccttgaacagggaggtgtgtccagtttgctgeagaatctcgeegt
gtccgtaactccgatccaaaggattgtccggageggtgaaaatgecctgaagatcgacatccatgtcatcatcccgtatgaaggtetgageg
ccgaccaaatggcccagatcgaagaggtgtttaaggtggtgtaccctgtggatgatcatcactttaaggtgatcctgecctatggeacactgg
taatcgacggggttacgccgaacatgcetgaactatttcggacggecgtatgaaggcatcgecgtgticgacggcaaaaagatcactgtaac
agggaccctgtggaacggcaacaaaattatcgacgagegectgatcaccececcgacggetccatgetgticcgagtaaccatcaacagegg
tagcggcageggceagttctggtaatggaagtaaaggaatttcgeccggagecaagaggagcetcatacatcgactggtttatttccagaatgagt
acgaacatccgtctgaggaagacgttaaacggatcattaaccageccgatggatggcgaagatcagtgtgatgttcggtttaggcatatcacg
gaaattaccatcttgacggtgcaacttatcgttgagtttgccaageggttaccaggctttgacaaactcttaagggaagaccagatcgetctett
gaaagcatgttccagcgaagtgatgatgticaggatggecgegecgttacgacgtacaaacggattccatectettcgtaaacaaccaaccgt
attcaagagacagctacaatttggctggcatgggggaaaccatcgaagatctcttgegttictgcagatggatgtattggatgegtgtggaca
acgccgaatacgcecttactcacagccatcgtaatattctcagagegtceggegcetgatcgagggctggaaggtggagaagatccaggaga
tctacttggaggegetgcgegegtacgtggacaaccggaggaageccaagecgggceacgatattcgeggegcetceetcatgtggetageg
gegttggegacgttaggcaaccaaaattccgagatgtgcttctcgetaaaactgaaaaacaagaaactgecgecgttcttagecggagatctg
ggacgtcgacctgaagacataaatccccaggceatcaaataaaacgaaaggctcagtcgaaagactgggcectttegttttatctgttgtitgtcg
gtgaacgctctctactagagtcacactggetcacctticgggtgggcctttctgegtttatagetgccaatgagacgacggggtcatcacgget
catcatgcgcccaacaaatgtgtgecatacacgetcggatgactgectgatgaccgeactgactggggacagecgatccacctaagectgt
gagagaagcagacacccgacagatcaaggcagttaactagtgcactgcagtacageggecgegattatcaaaaaggatcttcacctagat
ccttttaaattaaaaatgaagttttaaatcaatctaaagtatatatgagtaaacttggtctgacagttaccaatgcttaatcagtgaggcacctatct
cagcgatctgtctatttcgttcatccatagttgectgactcecegtegtgtagataactacgatacgggagggcttaccatctggecccagtget
gcaatgataccgcegggacccacgctcaccggetccagatttatcagcaataaaccagecagecggaagggecgagegeagaagtggtc
ctgcaactttatccgectccatccagtctattaattgttgccgggaagetagagtaagtagttcgecagttaatagtttgecgeaacgttgttgeca
ttgctacaggcatcgtggtgtcacgetegtegtttggtatggcttcaticagetccggttcccaacgatcaaggegagttacatgatcceccat
gttgtgcaaaaaageggttagctecttcggtecteccgategttgtcagaagtaagttggecgeagtgttatcactcatggttatggecageactg
cataattctcttactgtcatgccatccgtaagatgcttttctgtgactggtgagtactcaaccaagtcattctgagaatagtgtatgcggegacceg
agttgctcttgcececggegtcaatacgggataataccgegecacatagecagaactttaaaagtgctcatcattggaaaacgttcttcggggcega
aaactctcaaggatcttaccgctgttgagatccagticgatgtaacccactcgtgecacccaactgatcttcagceatcttttactttcaccagegttt
ctgggtgagcaaaaacaggaaggcaaaatgccgcaaaaaagggaataagggcgacacggaaatgttgaatactcatactcttectttttca
atattattgaagcatttatcagggttattgtctcatgagcggatacatatttgaatgtatttagaaaaataaacaaataggggttccgegcacattt
ccccgaaaagtgecacctgtcatgaccaaaatcecttaacgtgagttttcgttccactgagegtcagacccegtagaaaagatcaaaggatct
tcttgagatcctttttttctgegegtaatctgetgettgcaaacaaaaaaaccaccgetaccageggtggtttgtttgccggatcaagagetace
aactctttttccgaaggtaactggcttcagcagagcgcagataccaaatactgttcttctagtgtagccgtagttaggecaccacttcaagaact
ctgtagcaccgcctacatacctcgcetetgctaatectgttaccagtggetgetgecagtggegataagtegtgtettaccgggttggactcaag
acgatagttaccggataaggcgcageggtecgggctgaacgggggaticgtgcacacageccagcettggagegaacgacctacaccgaa
ctgagatacctacagcgtgagctatgagaaagcgecacgettcccgaagggagaaaggeggacaggtatccggtaageggeagggteg
gaacaggagagcgcacgagggagcticcagggggaaacgectggtatctttatagtcctgtecgggtttcgecacctctgacttgagegteg
atttttgtgatgctcgtcaggggegecggagectatggaaaaacgecageaacgeggcectttttacggttcctggecttttgetggecttttgete
acatgttctttcctgegttatcccctgattetgtggataacecgtgeggecgeccct
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3.5.2.4 pID604: SmBIT fused to IBP sensor #492 Ultraspiracle chain [R336A]

gaattcgcatctagatggtagagccacaaacagecggtacaagcaacgatctccaggaccatctgaatcatgegeggatgacacgaactc
acgacggcgatcacagacattaacccacagtacagacactgcgacaacgtggcaattcgtcgcaataccgtctcactgaactggecgataa
ttgcagacgaacgcgttgagcaccgecgecgeaaggaatggtgcatgecaaggagatggegeccaacagtecececggecacggggect
gccaccatacccacgcecgaaacaagegcetcatgageccgaagtggegageccgatettcceccatecggtgatgteggegatataggegece
agcaaccgceacctgtggegecggtgatgecggecacgatgegteccggegtagaggatcgagatctcgatcccgegaaattaatacgactc
actataggggaattgtgagcggataacaattccectctagaaataattttgtttaactttaagaaggagatatatatggtgaccggcetaccgget
gttcgaggagattctgggtagcggcageggeageggtageggcageggcagggtageggcttct GGCACATCGAATTTA
CAAGCAGACATGCCTCTGGAGAGGATAATCGAAGCGGAGAAACGAGTCGAATGCA
ACGATCCCTTGGTGGCATTGGTGGTAAACGAGAATAATACCACTGTGAACAATATCT
GTCAAGCAACACACAAGCAACTGTTTCAATTGGTCCAATGGGCGAAGCTCGTACCTC
ATTTCACATCATTGCCGTTGACAGATCAGGTGCAATTGTTAAGGGCGGGATGGAATG
AATTGCTCATAGCCGCCTTCTCGCACCGGTCGATGCAAGCACAGGATGCTATAGTTC
TAGCGACGGGATTGACAGTCAACAAATCGACTGCACACGCTGTCGGCGTCGGCAAC
ATCTACGACCGCGTCCTCTCCGAGCTGGTGAACAAAATGAAAGAAATGAAAATGGA
CAAAACGGAATTGGGTTGTTTGCGGGCGATAATTCTCTACCTGCCTGCGGTTCGAGG
GATAAAGTCGGTGCAAGAAGTGCGTATGTTGCTGEgcgAAAATCATGGGCGTCCTCGA
GGAGTACACCAGGACGACTCATCCAAACGAGCCTGGAAGGTTTGCCAAATTATTAG
CGCGTTTGCCGGCTTTAAGGTCCATTGGGTTGAAATGTCTCGAACATCTCTTCTTTTT
CAAACTGATCGGTGATGTCCCGATAGATACTTTCCTAATGGAGATGTTGGAGGGCAC
AACGGATTCGtaaatccccaggceatcaaataaaacgaaaggcetcagtcgaaagactgggcctttcgttttatetgttgtttgtcggte
aacgctctctactagagtcacactggctcaccttcgggtggaccttictgegtttatagctgecaatgagacgacggggtcatcacggcetcat
catgcgceccaacaaatgtgtgecatacacgetcggatgactgectgatgaccgeactgactggggacagecgatccacctaagectgtga
gagaagcagacacccgacagatcaaggcagttaactagtgcactgcagtacageggecgegattatcaaaaaggatcttcacctagatcect
tttaaattaaaaatgaagttttaaatcaatctaaagtatatatgagtaaacttggtctgacagttaccaatgcttaatcagtgaggcacctatctca
gegatctgtctatttcgttcatccatagttgectgactcceegtegtgtagataactacgatacgggagggcttaccatctggecccagtgetge
aatgataccgcgggacccacgctcaccggctccagatttatcagcaataaaccagecagecggaagggecgagegeagaagtggtectg
caactttatccgcctccatccagtctattaattgttgccgggaagetagagtaagtagticgecagttaatagtitgegcaacgttgttgecattg
ctacaggcatcgtggtgtcacgctcgtegtttggtatggcttcattcagetccggttcccaacgatcaaggegagttacatgatcceccatgtt
gtgcaaaaaagcggttagetcettcggtecteccgategtigtcagaagtaagttggecgeagtgttatcactcatggttatggcageactgeat
aattctcttactgtcatgccatccgtaagatgcttttctgtgactggtgagtactcaaccaagtcattctgagaatagtgtatgcggegaccgagt
tgctettgeccggegtcaatacgggataataccgegecacatagecagaactttaaaagtgetcatcattggaaaacgttcttcgggecgaaa
actctcaaggatcttaccgctgttgagatccagttcgatgtaacccactcgtgcacccaactgatcttcageatcttttactttcaccagegtttet
gggtgagcaaaaacaggaaggcaaaatgeccgcaaaaaagggaataagggcgacacggaaatgttgaatactcatactcttectttttcaat
attattgaagcatttatcagggttattgtctcatgagcggatacatatttgaatgtatttagaaaaataaacaaataggggttccgegceacatttcc
ccgaaaagtgcecacctgtcatgaccaaaatcccttaacgtgagttttcgticcactgagegtcagacceccgtagaaaagatcaaaggatcttce
ttgagatcctttttttctgcgegtaatctgetgcttgcaaacaaaaaaaccaccgetaccageggtggtttgtttgccggatcaagagcetaccaa
ctctttttccgaaggtaactggcttcagcagagegcagataccaaatactgttctictagtgtagecgtagttaggecaccacttcaagaactct
gtagcaccgcctacatacctcgetctgetaatectgttaccagtggetgetgecagtggegataagtegtgtcttaccgggttggactcaaga
cgatagttaccggataaggcgcageggtecgggetgaacggggggttcgtgcacacageccagettggagegaacgacctacaccgaac
tgagatacctacagcgtgagctatgagaaagecgecacgettcccgaagggagaaaggeggacaggtatccggtaageggeagggtegg
aacaggagagcgcacgagggagcticcagggggaaacgectggtatctttatagtecctgtecgggtttcgecacctctgacttgagegtegat
ttttgtgatgctcgtcaggggggcggagectatggaaaaacgecageaacgeggcectttttacggttcctggecttttgectggecttttgeteca
catgttctttcctgegttatccectgattetgtggataaccgtgeggecgeccct
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3.5.2.5 pID606: SmBIT fused to IBP sensor #492 Ultraspiracle chain [M343]

gaattcgcatctagatggtagagccacaaacagecggtacaagcaacgatctccaggaccatctgaatcatgegeggatgacacgaactc
acgacggcgatcacagacattaacccacagtacagacactgcgacaacgtggcaattcgtcgcaataccgtctcactgaactggecgataa
ttgcagacgaacgcgttgagcaccgecgecgeaaggaatggtgcatgecaaggagatggegeccaacagtecececggecacggggect
gccaccatacccacgcecgaaacaagegcetcatgageccgaagtggegageccgatettcceccatecggtgatgteggegatataggegece
agcaaccgceacctgtggegecggtgatgeccggecacgatgegteccggegtagaggatcgagatctcgatcccgegaaattaatacgactc
actataggggaattgtgagcggataacaattccectctagaaataattttgtttaactttaagaaggagatatatatggtgaccggcetaccgget
gttcgaggagattctgggtagcggcageggeageggtageggcageggcagggtageggcttct GGCACATCGAATTTA
CAAGCAGACATGCCTCTGGAGAGGATAATCGAAGCGGAGAAACGAGTCGAATGCA
ACGATCCCTTGGTGGCATTGGTGGTAAACGAGAATAATACCACTGTGAACAATATCT
GTCAAGCAACACACAAGCAACTGTTTCAATTGGTCCAATGGGCGAAGCTCGTACCTC
ATTTCACATCATTGCCGTTGACAGATCAGGTGCAATTGTTAAGGGCGGGATGGAATG
AATTGCTCATAGCCGCCTTCTCGCACCGGTCGATGCAAGCACAGGATGCTATAGTTC
TAGCGACGGGATTGACAGTCAACAAATCGACTGCACACGCTGTCGGCGTCGGCAAC
ATCTACGACCGCGTCCTCTCCGAGCTGGTGAACAAAATGAAAGAAATGAAAATGGA
CAAAACGGAATTGGGTTGTTTGCGGGCGATAATTCTCTACCTGCCTGCGGTTCGAGG
GATAAAGTCGGTGCAAGAAGTGCGTATGTTGCTGCGTAAAATCgecgGGCGTCCTCGA
GGAGTACACCAGGACGACTCATCCAAACGAGCCTGGAAGGTTTGCCAAATTATTAG
CGCGTTTGCCGGCTTTAAGGTCCATTGGGTTGAAATGTCTCGAACATCTCTTCTTTTT
CAAACTGATCGGTGATGTCCCGATAGATACTTTCCTAATGGAGATGTTGGAGGGCAC
AACGGATTCGtaaatccccaggceatcaaataaaacgaaaggcetcagtcgaaagactgggcctttegttttatetgttgtttgtcggte
aacgctctctactagagtcacactggctcaccttcgggtgggccttictgegtttatagctgecaatgagacgacggggtcatcacggcetcat
catgcgceccaacaaatgtgtgecatacacgetcggatgactgectgatgaccgeactgactggggacagecgatccacctaagectgtga
gagaagcagacacccgacagatcaaggcagttaactagtgcactgcagtacageggecgegattatcaaaaaggatcttcacctagatcect
tttaaattaaaaatgaagttttaaatcaatctaaagtatatatgagtaaacttggtctgacagttaccaatgcttaatcagtgaggcacctatctca
gegatctgtctatttcgttcatccatagttgectgactcceegtegtgtagataactacgatacgggagggcttaccatctggecccagtgetge
aatgataccgcgggacccacgctcaccggetccagatttatcagcaataaaccagecagecggaagggcecgagegeagaagtggtectg
caactttatccgcctccatccagtctattaattgttgccgggaagetagagtaagtagticgecagttaatagtitgegcaacgttgttgecattg
ctacaggcatcgtggtgtcacgctcgtegtttggtatggcttcattcagetccggttcccaacgatcaaggegagttacatgatcceccatgtt
gtgcaaaaaagcggttagetcctticggtecteccgategtigtcagaagtaagttggecgeagtgttatcactcatggttatggcageactgeat
aattctcttactgtcatgccatccgtaagatgcttttctgtgactggtgagtactcaaccaagtcattctgagaatagtgtatgcggegaccgagt
tgctettgeccggegtcaatacgggataataccgegecacatagecagaactttaaaagtgetcatcattggaaaacgttcttcggggcgaaa
actctcaaggatcttaccgctgttgagatccagttcgatgtaacccactcgtgcacccaactgatcttcageatcttttactttcaccagegtttet
gggtgagcaaaaacaggaaggcaaaatgeccgcaaaaaagggaataagggcgacacggaaatgttgaatactcatactcttectttttcaat
attattgaagcatttatcagggttattgtctcatgagcggatacatatttgaatgtatttagaaaaataaacaaataggggttccgegceacatttcc
ccgaaaagtgcecacctgtcatgaccaaaatcccttaacgtgagttttcgticcactgagegtcagacceccgtagaaaagatcaaaggatcttce
ttgagatcctttttttctgcgegtaatctgetgcttgcaaacaaaaaaaccaccgetaccageggtggtttgtttgccggatcaagagcetaccaa
ctctttttccgaaggtaactggcttcagcagagegecagataccaaatactgttctictagtgtagecgtagttaggecaccacttcaagaactct
gtagcaccgcctacatacctcgetctgetaatectgttaccagtggetgetgecagtggegataagtegtgtcttaccgggttggactcaaga
cgatagttaccggataaggcgcageggtecgggetgaacggggggttcgtgcacacageccagettggagegaacgacctacaccgaac
tgagatacctacagcgtgagctatgagaaagcgecacgettcccgaagggagaaaggeggacaggtatccggtaageggeagggtegg
aacaggagagcgcacgagggagcticcagggggaaacgectggtatctttatagtecctgtecgggtttcgecacctctgacttgagegtegat
ttttgtgatgctcgtcaggggggcggagectatggaaaaacgecageaacgeggcectttttacggttcctggecttttgetggecttttgeteca
catgttctttcctgegttatccectgattetgtggataaccgtgeggecgeccct
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3.5.2.6 pID608: LgBIT fused to IBP sensor #492 Ecdysone Receptor chain [M322A]

gaattcgcatctagatggtagagccacaaacagecggtacaagcaacgatctccaggaccatctgaatcatgegeggatgacacgaactcacga
cggcgatcacagacattaacccacagtacagacactgcgacaacgtggcaattcgtcgecaataccgtctcactgaactggecgataattgcagac
gaacgcgttgagcaccgecgecgecaaggaatggtgcatgcaaggagatggcgeccaacagtececeggecacggggcectgecaccatacee
acgccgaaacaagcgctcatgageccgaagtggegageccgatcttcecccateggtgatgtcggegatataggegecageaaccgeacctgtg
gegeceggtgatgecggcecacgatgegteccggegtagaggatcgagatctcgatcccgegaaattaatacgactcactataggggaattgtgage
ggataacaattcccctctagaaataattttgtttaactttaagaaggagatatatatggtcttcacactcgaagatttcgttggggactgggaacagaca
gccgectacaacctggaccaagtecttgaacagggaggtgtgteccagtttgetgecagaatctecgecgtgtecegtaactccgatccaaaggattgte
cggagcggtgaaaatgccctgaagatcgacatccatgtcatcatccegtatgaaggtetgagegecgaccaaatggeccagatcgaagaggtgtt
taaggtggtgtaccctgtggatgatcatcactttaaggtgatcctgecctatggeacactggtaatcgacggggttacgccgaacatgetgaactatt
tcggacggcecgtatgaaggeatcgecgtgticgacggcaaaaagatcactgtaacagggaccctgtggaacggcaacaaaattatcgacgage
gectgatcacceccgacggetceatgetgtticecgagtaaccatcaacageggtageggeageggeagttct GGTAATGGAAGTAA
AGGAATTTCGCCGGAGCAAGAGGAGCTCATACATCGACTGGTTTATTTCCAGAATGAGT
ACGAACATCCGTCTGAGGAAGACGTTAAACGGATCATTAACCAGCCGATGGATGGCGA
AGATCAGTGTGATGTTCGGTTTAGGCATATCACGGAAATTACCATCTTGACGGTGCAAC
TTATCGTTGAGTTTGCCAAGCGGTTACCAGGCTTTGACAAACTCTTAAGGGAAGACCAG
ATCGCTCTCTTGAAAGCATGTTCCAGCGAAGTGATGATGTTCAGGATGGCGCGCCGTTA
CGACGTACAAACGGATTCCATCCTCTTCGTAAACAACCAACCGTATTCAAGAGACAGCT
ACAATTTGGCTGGCATGGGGGAAACCATCGAAGATCTCTTGCGTTTCTGCAGATGGATG
TATTGGATGCGTGTGGACAACGCCGAATACGCCTTACTCACAGCCATCGTAATATTCTCA
GAGCGTCCGGCGCTGATCGAGGGCTGGAAGGTGGAGAAGATCCAGGAGATCTACTTGG
AGGCGCTGCGCGCGTACGTGGACAACCGGAGGAAGCCCAAGCCGGGCACGATATTCGC
GGCGCTCCTCgegTGGCTAGCGGCGTTGGCGACGTTAGGCAACCAAAATTCCGAGATGTG
CTTCTCGCTAAAACTGAAAAACAAGAAACTGCCGCCGTTCTTAGCGGAGATCTGGGACG
TCGACCTGAAGACAtaaatccccaggcatcaaataaaacgaaaggctcagtcgaaagactgggcectttegttttatctgttgtttgtcg
gtgaacgctctctactagagtcacactggcetcaccttcgggtgggcctttetgegtttatagetgecaatgagacgacggggtcatcacggcetcate
atgcgcccaacaaatgtgtgccatacacgcetcggatgactgectgatgaccgeactgactggggacagecgatccacctaagectgtgagagaa
gcagacacccgacagatcaaggcagttaactagtgcactgcagtacageggecgegattatcaaaaaggatcttcacctagatccttttaaattaaa
aatgaagttttaaatcaatctaaagtatatatgagtaaacttggtctgacagttaccaatgcttaatcagtgaggcacctatctcagegatctgtctatttc
gttcatccatagttgectgactccecgtegtgtagataactacgatacgggagggcttaccatctggecccagtgetgcaatgataccgegggacce
cacgctcaccggctccagatttatcagcaataaaccagecagecggaagggecgagegeagaagtggtectgeaactttatccgectccatceca
gtctattaattgttgccgggaagctagagtaagtagticgecagttaatagtttgcgeaacgttgttgecattgetacaggceatcgtggtgtcacgcete
gtegtttggtatggcttcattcagetccggticccaacgatcaaggegagttacatgatcceccatgttgtgcaaaaaageggttagetecttcggtee
tccgatcgttgtcagaagtaagttggccgeagtgttatcactcatggttatggcageactgceataattctcttactgtcatgccatccgtaagatgetttt
ctgtgactggtgagtactcaaccaagtcattctgagaatagtgtatgcggcgaccgagttgctettgecceggegtcaatacgggataataccgege
cacatagcagaactttaaaagtgctcatcattggaaaacgttcttcggggcgaaaactctcaaggatcttaccgetgttgagatccagticgatgtaa
cccactcgtgcacccaactgatcttcagcatcttttactttcaccagegttictgggtgagcaaaaacaggaaggcaaaatgeccgcaaaaaaggga
ataagggcgacacggaaatgttgaatactcatactcttcctttttcaatattattgaagcatttatcagggttattgtctcatgagecggatacatatttgaat
gtatttagaaaaataaacaaataggggttccgcgcacatttccccgaaaagtgecacctgtcatgaccaaaatcccttaacgtgagttttcgttccact
gagcgtcagaccccgtagaaaagatcaaaggatcttcttgagatcctttttttctgegegtaatctgetgettgcaaacaaaaaaaccaccgcetacca
geggtggtttgtttgeccggatcaagagetaccaactcetttttccgaaggtaactggettcagcagagegeagataccaaatactgttcttctagtgtag
ccgtagttaggccaccacttcaagaactctgtagcaccgectacatacctcgetetgetaatectgttaccagtggetgetgecagtggegataagte
gtgtcttaccgggttggactcaagacgatagttaccggataaggegeageggtegggetgaacggggggticgtgcacacageccagettgga
gcgaacgacctacaccgaactgagatacctacagegtgagetatgagaaagegecacgettcccgaagggagaaaggeggacaggtatcegg
taagcggcagggtcggaacaggagagegeacgagggagcettccagggggaaacgectggtatetttatagtectgtcgggtttcgecacctetg
acttgagcgtcgatttttgtgatgctcgtcaggggggcggagectatggaaaaacgecagcaacgeggcectttttacggttcctggecttttgetgg
ccttttgctcacatgttctttcctgegttatccectgattetgtggataacegtgeggecgecect
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3.5.3 Appendix 3.3: IDs of design constructs
3.5.3.1 Designs targeting caffeine
Scaffold PDB 4DS7: 84, 92, 93, 187, 525, 526, 527, 528, 543, 544, 547, 548, 549, 550, 551, 553,

554, 555, 556, 545

3.5.3.2 Designs targeting p-coumaric acid
Scaffold PDB 2A1J: 100, 104, 127, 160, 170, 462, 463, 464, 465, 470, 472, 504, 505, 506, 510,

511, 512,513,514, 515

3.5.3.3 Designs targeting ibuprofen

Scaffold PDB 2NXX: 13, 14, 68, 101, 468, 490, 491, 492, 493, 494, 501, 541

3.5.3.4 Designs targeting serotonin
Scaffold PDB 3EAB: 130, 475, 476, 477
Scaffold PDB 3IA3: 183, 518, 519, 520, 521, 522

Scaffold PDB 3NWO0: 131, 145, 480, 481, 482, 483, 496, 497, 498, 499

3.5.3.5 Designs targeting theophylline

84, 92,93, 187, 525, 526, 528, 543, 544, 547, 548, 549, 550, 551, 553, 554, 555, 556, 545
3.5.3.6 Designs targeting ergosterol
Scaffold PDB 3SFV: 566, 570, 754, 755, 760, 764, 765, 788, 856, 1058, 1061, 1063, 1064, 1065,

1067
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3.5.3.7 Designs targeting homoserine lactone

Scaffold PDB 3LWN: 601, 620, 756, 757, 759, 761, 762, 766, 772, 782, 785, 790

3.5.3.8 Designs targeting naproxen

Scaffold PDB 2Z0D: 626, 633, 636, 637, 753, 778, 783, 786, 794, 797, 804, 805, 806, 808

3.5.3.9 Designs targeting thiacloprid
Scaffold PDB 1FQV (232): 652, 684, 770, 767, 774, 775, 789, 795,
Scaffold PDB 3MTN (1147): 667, 802

Scaffold PDB 3N3K (1216): 659, 784, 809
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3.6 Figures
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Figure 3.1:  Biosensor design schema.

(a) General strategy, wherein ligand binding to a site at the interface of a heterodimer stabilizes
dimerization, which is reported by a protein complementation system. (b) Schema in which the
desired application is detection of a target small molecule of interest. Any appropriate reporter
may be used to respond to presence of the small molecule. (¢c) Schema in which the desired
application is activation of a response, which can be activated by any small molecule for which
an inducible heterodimer exists.
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Step 1. Define motif geometry Step 2. Match to >1000 heterodimeric scaffolds

Step 4. Test in vivo

(L%

Figure 3.2: Computational biosensor design method.

In Step 1, selected motif residues of an extant ibuprofen (IBP) binding site in a crystal structure
(PDB: 1EQG) of COX-1 are shown in green sticks, while the ligand IBP is shown in yellow
sticks. In Step 2, six examples are shown of natural heterodimers from the larger heterodimer
library to which the binding site was matched. In Step 3, the selected natural motif residues
(green) were transplanted onto a heterodimer Ultraspiracle/Ecdysone Receptor (PDB: 2NXX)
(blue and purple cartoon, respectively; PDB: 2NXX), and additional mutations to surrounding
side chains (blue and purple sticks) are designed with the goal of accommodating and stabilizing
the motif and ligand. In Step 4, designs are tested experimentally.
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metabolic intermediate

Target # Scaffold PDBs # Inter-f ace
Designs mutations

Ergosterol (ERG) W 15 1FAP, 3KBT, 12-21
Fungal steroid 3SFV
Homoserine lactone (LAE) E R 12 JLWN. 3LW8 8-15
Quorum sensing '
Naproxen (NPS) ﬁ 14 2F4M,2Z0D | 11-14
Analgesic
Thiacloprid (TH4) 13 1FQV, 2QK?7, 10-22
Insecticide M 3MTN, 3N3K
Coumaric acid (HC4)
generally nontoxic M 12 2AU e
Ibuprofen (IBP) 12 INXX 14-20
generally nontoxic w ¥V
Serotonin (SRO) m-’ 15 | 31A3,3NW0 | 816
cellular communication '
Caffeine (CFF) & 19 ws7 | 1119
generally nontoxic
Theophylline (TEP)
generally nontoxic w ° 22 i
Farnesyl pyrophosphate (FPP) IO 5 3FAP 10-19

Figure 3.3:

Target ligands for which sensors were designed.

Target column shows chemical name, three letter abbreviation, and general description, along
with a structural representation. Also shown are number of computational designs selected for
experimental screening, the PDB codes of the scaffold proteins, and number of mutations.
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Y322M

Y343M R _ IBP

-

E336R

Figure 3.4: Ibuprofen design model.

Cartoon representation of the design model, and closer view of the grafted binding site in
Ultraspiracle (blue) and Ecdysone Receptor (purple). The grafted binding site motif residues
(green sticks) contains ligand ibuprofen (yellow sticks).
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Chain A
Motif residues
Mutations

Wildtype
Wildtype

Wildtype
Rosetta design
Design #490
Design #492

Wildtype
Rosetta design
Design #490
Design #492

Wildtype

Chain E
Motif residues
Mutations

Wildtype
Wildtype

Wildtype
Rosetta design
Design #490
Design #492

Wildtype
Rosetta design
Design #490
Design #492

Wildtype
Rosetta design
Design #490
Design #492

ULTRASPIRACLE (USP, NR2B4) (Tribolium Castaneum)
R157, M164
N144L, D146A, E157R, R160L, E161R, Y164M

DMPLERITEAEKRVECNDPLVALVVNENNTTVNNICQATHKQLFQLVQWA
KLVPHFTSLPLTDQVQLLRAGWNELLTIAAFSHRSMQAQDATIVLATGLTVN

KSTAHAVGVGNIYDRVLSELVNKMKEMKMDKTELGCLRAIILYNPDVRGI
P L-A----
P L-A----
e L-A----

KSVQEVEMLREKIYGVLEEYTRTTHPNEPGRFAKLLLRLPALRSIGLKCL
------ g
------ £ O
------ S

EHLFFFKLIGDVPIDTFLMEMLEG
ECDYSONE RECEPTOR (ECR, NRH1) (Tribolium Castaneum)
M420

H352R, T356W, S359W, M360N, T413M, K417A, S420M, V421W, T423A, E424A

ISPEQEELIHRLVYFQNEYEHPSEEDVKRIINDGEDQCDVRFRHITEITI
LTVQLIVEFAKRLPGFDKLLREDQIALLKACSSEVMMFRMARRYDVQTDS

TILFVNNQPYSRDSYNLAGMGETIEDLLHFCRTMYSMRVDNAEYALLTATIV

--------------------------- Ro=—W--WN-=—= - -
--------------------------- S
--------------------------- R W oWem oo

IFSERPALIEGWKVEKIQEIYLEALRAYVDNRRKPKPGTIFAKLLSVLTE
—————————————————————————————————————— M- - -A--MW-AA
------------------------------------------ A--MW-AA
------------------------------------------ A--MW-AA

LRTLGNQNSEMCFSLKLKNKKLPPFLAEIWDVDL

Figure 3.5: Sequence alignments.

Sequence alignment showing mutations between the original scaffold protein, a top-ranking
design produced by Rosetta, and two designs #490 and 492 containing additional mutations from
visual inspection. Motif residues are colored blue.
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alimM IBP| blank |[1mM IBP[ blank
( #490 92 | #492

Figure 3.6: Ibuprofen sensor signal in E. coli with DHFR reporter on agar plates.
Comparison of colony growth with 1mM ibuprofen (IBP) in ethanol, or blank, as described in
section 3.4.2. (a) Side-by-side comparison of colony growth with 1mM ibuprofen (IBP) in
ethanol, or solvent ethanol blank, after 72 hours for designs #490 (left panel) and #492 (right
panel). (b, ¢) Colony prints for biological triplicates of additional ibuprofen sensor designs.
Photographs are shown for 24, 48, and 72 hours (top, middle, and bottom panels, respectively) of
growth and labeled by the date the photograph was taken. Plates with ibuprofen are shown in (b),
and plates without ibuprofen are shown in (c).

Continued on next page.
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Figure 3.6, continued: Ibuprofen sensor signal in E. coli with DHFR reporter on agar
plates.

Comparison of colony growth with 1mM ibuprofen (IBP) in ethanol, or blank, as described in
section 3.4.2. (a) Side-by-side comparison of colony growth with 1mM ibuprofen (IBP) in
ethanol, or solvent ethanol blank, after 72 hours for designs #490 (left panel) and #492 (right
panel). (b, ¢) Colony prints for biological triplicates of additional ibuprofen sensor designs.
Photographs are shown for 24, 48, and 72 hours (top, middle, and bottom panels, respectively) of
growth and labeled by the date the photograph was taken. Plates with ibuprofen are shown in (b),
and plates without ibuprofen are shown in (c).

Continued on next page.
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Figure 3.6, continued: Ibuprofen sensor signal in E. coli with DHFR reporter on agar
plates.

Comparison of colony growth with 1mM ibuprofen (IBP) in ethanol, or blank, as described in
section 3.4.2. (a) Side-by-side comparison of colony growth with 1mM ibuprofen (IBP) in
ethanol, or solvent ethanol blank, after 72 hours for designs #490 (left panel) and #492 (right
panel). (b, ¢) Colony prints for biological triplicates of additional ibuprofen sensor designs.
Photographs are shown for 24, 48, and 72 hours (top, middle, and bottom panels, respectively) of
growth and labeled by the date the photograph was taken. Plates with ibuprofen are shown in (b),
and plates without ibuprofen are shown in (c).
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Figure 3.7:  Ibuprofen sensor signal with in E. coli DHFR reporter in liquid culture.

(a) Comparison growth for cells expressing either ibuprofen sensor design #490 or wild-type
scaffold. Constructs are linked to the essential metabolic enzyme DHFR, such that cell growth
(ODgpo) is dependent on complementation of the DHFR portion of the sensor/DHFR construct.
Growth is shown for a titration of ibuprofen concentrations. Values represent the average and
standard deviation across 32 wells of the plate for each ibuprofen concentration. A caveat for the
data shown is different experiment dates; data for ibuprofen sensor design #490 were collected
on 5/6/2015, while data for ibuprofen wild-type scaffold protein were collected on 6/13/2015. (b)
Plate layout for design #490 data shown in (a). The number in each well of the 96-well plate
indicates the ibuprofen concentration, while the headers indicate which columns correspond to
each biological replicate.
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Step 1. combine TXTL reaction components to express biosensor chains A and B

S

Step 2. Protein expression for 8 hours

Step 3. Combine biosensor protein, buffer, target ligand ibuprofen, and
luciferase substrate in 384-well plate for measurement

PBS
+ BSA |buprofen

Figure 3.8: TXTL method for biosensor characterization.

Components of TXTL reaction, as described in Methods. Energy buffer, cell extract, DNA, and
cofactors are combined for the protein expression reaction, which takes 8 hours. The expressed
protein is then diluted in PBS+BSA and mixed with the target ligand ibuprofen and the luciferase
substrate in a 384-well plate, wherein signal is immediately measured.
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LgBIT fused to design #492 Ecdysone receptor chain (plasmid #379)

SmBIT fused to design #492 Ultraspiracle chain with mutation R336A (plasmid #604) and
LgBIT fused to design #492 Ecdysone receptor chain (plasmid #379)

SmBIT fused to design #492 Ultraspiracle chain with mutation M343A (plasmid #606) and
LgBIT fused to design #492 Ecdysone receptor chain (plasmid #379)

SmBIT fused to design #492 Ultraspiracle chain (plasmid #345) and
LgBIT fused to design #492 Ecdysone receptor chain with mutation M322A (plasmid #608)

—F— blank

Figure 3.9: Ibuprofen sensor signal with NanoLuc reporter in TXTL.

Signal for ibuprofen sensor #492 compared to alanine mutations for each of the motif residues.
Design #492 (red) is compared to alanine mutations of the two motif residues on the
Ultraspiracle chain (orange and gold), and of the one motif residue on the Ecdysone receptor
chain (green), and a blank sample containing no protein (blue). As described in Methods, SmBIT
and LgBIT are the two halves of the NanoLuc protein complementation system. Values represent
the average and standard deviation of four wells measured for each construct (or eight wells for
each blank) and ligand concentration, the layout of which is defined in Table 3.2.
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Figure 3.10: Effect of ligand caffeine on cell growth.

Caffeine decreases culture density, with effect increasing with caffeine concentration. The cells
expressed control constructs composed of the wild-type scaffold used to design sensors for target
ligand fused to the DHFR reporter. Averages and standard deviations are across data collected in
biological duplicate on experiments on two different days, for a total of 4 data points per
condition and construct. Biological duplicate here refers to separate colonies picked from an agar
plate to create separate cell cultures, which were then subjected to identical growth conditions.
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(a) Photograph of TXTL cell extract prepared in our lab. The supernatant is the extract at the
final stage of preparation; the pellet was discarded. (b) Magnesium glutamate calibration for
TXTL extract prepared in our lab (top) and TXTL extract prepared by Sun et al [81] (bottom).
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Figure 3.11: TXTL extract preparation.




3.7 Tables

Table 3.1:

DNA concentrations used for TXTL expression.
Shown are the concentrations of DNA used for sensor design protein expression in TXTL.

pID

DNA concentration

(nM)

345

379

604

606

608

RIN|R (N

Table 3.2:

NanoLuc experimental plate layout
Shown are columns of a 384-well plate. Each cell is labeled with a description of the design
construct or blank it contained. The ligand concentrations, which are identical for all columns,
are shown at the left.

Ligand
(LM) 1 2 3 4 5 6 7 8
492 492 492 492 492 492
0 A 492 492 [R336A] [R336A] [M343A] [M343A] [M322A] [M322A]
492 492 492 492 492 492
15 B 492 492 [R336A] [R336A] [M343A] [M343A] [M322A] [M322A]
492 492 492 492 492 492
s50 C 492 492 [R336A] [R336A] [M343A] [M343A] [M322A] [M322A]
492 492 492 492 492 492
97 D 492 492 [R336A] [R336A] [M343A] [M343A] [M322A] [M322A]
492 492 492 492 492 492
194 E 492 492 [R336A] [R336A] [M343A] [M343A] [M322A] [M322A]
0 F blank | blank blank blank blank blank blank blank
15 G blank | blank blank blank blank blank blank blank
50 H blank | blank blank blank blank blank blank blank
492 492 492 492 492 492
0 | 492 492 [R336A] [R336A] [M343A] [M343A] [M322A] [M322A]
492 492 492 492 492 492
15 J 492 492 [R336A] [R336A] [M343A] [M343A] [M322A] [M322A]
492 492 492 492 492 492
50 K 492 492 [R336A] [R336A] [M343A] [M343A] [M322A] [M322A]
492 492 492 492 492 492
97 L 492 492 [R336A] [R336A] [M343A] [M343A] [M322A] [M322A]
492 492 492 492 492 492
194 M 492 492 [R336A] [R336A] [M343A] [M343A] [M322A] [M322A]
0 N blank | blank blank blank blank blank blank blank
15 O | blank | blank blank blank blank blank blank blank
50 P | blank | blank blank blank blank blank blank blank
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Chapter 4: Conclusions

Design of protein sensor/actuators for molecules for which no sensors exist presents a
number of unique challenges. Computational design of ligand binding sites remains difficult, in
part due to limitations in current ability to realistically sample backbone conformations that
enable side chains to make realistic contacts during sequence design. We developed a benchmark
framework for comparing Rosetta design methods against each other by quantifying the ability
of each design method to recapitulate known sequence profiles from experimental data from
library screens, including deep sequencing enrichment/depletion data, and from sequence
alignments of naturally evolved proteins.

In addition to the challenges surrounding in silico protein design, it remains laborious to
screen individual proteins for dimerization in E. coli and in vitro. We present an experimental
method for efficient screening of ligand-inducible heterodimers without protein purification.
Cell-free protein expression requires only microliter volumes and a few hours, contributing
efficiency in both material cost and time to generate results. The use of cell extract for protein
expression eliminates the need to deliver components, such as ligand or reporter substrate, to cell
interiors during screening. Direct addition of reporter substrate enables screens to take advantage
of the modularity of the designed system (Figure 3.1) to use enzymatic reporters, which amplify
signal. Direct ligand addition enables screening of proteins designed to target ligands, which may
not be found in the interior of the cell strains typically used to express designed proteins, but
which are of utility for synthetic biology applications.

However, difficulties remain even with the methods presented here. Experimental screens
are often characterized by low signal to noise ratio, especially when testing initial computational

designs that may exhibit low affinity or stability which contribute to low signal. Both protein
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stability and ligand-mediated affinity could be increased, and background signal decreased, by
directed evolution with positive and negative selection.

The benchmarking framework presented here can be adapted to different types of design
applications, such as sequence design on parametrically-generated rather than natural protein
backbones, or transplanted rather than pre-existing binding sites. We used Rosetta design to
create sensor proteins targeting ligands such as ibuprofen. Our experimental results demonstrate
that these designs were far from optimal, highlighting the need for continued improvements in

methods for sampling protein sequence and conformational space.
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