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Abstract 

Development and benchmarking of methods for computational design, and experimental 

characterization, of proteins that bind small-molecule ligands. 

Author: Amanda Loshbaugh 

 
I present computational and experimental methods relating to the design of binding 

interactions involving proteins, including interactions of protein/small molecule, dimeric 

protein/protein, and tertiary protein/small molecule/protein systems. The precise geometric 

design of atomic contacts necessary for binding interactions is an unsolved problem in the field 

of protein engineering, yet the design of binding interactions is essential for the furtherance of 

medicine, manufacturing, and basic science research. In chapter 2, compare computational 

algorithms for flexible backbone protein design in the Rosetta software suite. Design protocols 

were benchmarked for their ability to recapitulate observed protein sequence profiles assumed to 

represent the fitness landscapes of protein/protein and protein/small molecule binding 

interactions. We found that the CoupledMoves protocol, which combines backbone flexibility 

and sequence exploration into a single acceptance step during the sampling trajectory, better 

recapitulates sequence profiles than the BackrubEnsemble and FastDesign protocols, which 

separate backbone flexibility and sequence design into separate acceptance steps during the 

sampling trajectory. In chapter 3, I describe a method for efficiently screening and characterizing 

chemically induced dimers (CID) that detects and responds to the presence of small molecules. I 

screen a library of engineered biosensors, each of which is composed of a CID sensor module 

and a reporter module, which can be interchanged. The sensor module is a heterodimer whose 

interface contains a ligand binding site transplanted by computational design from a monomeric 
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protein, such that ligand binding induces heterodimerization. The reporter module is a protein 

complementation system whose complementation is induced by dimerization of the sensor 

domain. I present two methods to individually screen hundreds of designed CIDs targeting 

various proteins, (1) using a growth-based reporter module in E coli, and (2) using a luminescent 

reporter in a cell-free protein expression system. Finally, the screen successfully identified a CID 

that responds to ibuprofen, and this system could be adapted for therapeutic application. This 

dissertation presents methodological advances for both the computational and experimental 

design of protein binding interactions.  
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Chapter 1: Introduction 

 Proteins are the foundational machinery on which life runs. Enzymes catalyze chemical 

reactions that convert nutrients and light to usable energy. This energy is then used by countless 

proteins to perform the work of life, from motor and structural proteins that define the motility 

and shape of cells, to proteins that duplicate and epigenetically modify DNA for transmission of 

genetic information down the lineage of cell division. The structure-function relationship, which 

relates the three dimensional structure of a protein to its biological function, is a powerful 

paradigm that enables researchers to use structural representations to design function. Protein 

design occupies an essential role within the interdisciplinary field of synthetic biology, which 

aims to fabricate or design new biological components and systems. I address two levels of 

protein engineering: (1) atomic-level design of binding interactions, and (2) experimental 

screening and validation of binding between protein dimers and small molecules.  

Protein function typically involves binding other proteins or molecules, yet designing 

such binding interactions remains challenging. While adding binding functionality to an existing 

protein could enable new synthetic biology tools, there is only one known example using 

computational design to add a ligand binding site into an existing protein in a de novo fashion, 

meaning at a location that did not previously bind a small molecule.[1] Instead, success 

designing ligand-binding proteins more frequently relies on adapting pre-existing ligand binding 

sites to bind a target ligand,[2-5] experimentally generating selective antibodies that recognize 

pre-existing ligand binding sites,[6] or making chimeras of modular proteins to take advantage of 

allosteric mechanisms in response to target ligand binding.[7, 8] Precise contacts remain difficult 

to predict.[9] Computational protein modeling software involves representation, sampling, and 

scoring of macromolecular conformations. The work presented here addresses the sampling 
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component, specifically sampling that includes both sequence design and backbone flexibility in 

the Rosetta software suite.[10] I present a methodology to benchmark flexible-backbone design 

protocols against each other, by quantifying performance on multiple experimental and 

evolutionary sequence datasets. Additionally, I discuss aspects of design algorithms that may 

contribute to differences in performance. 

 Designed proteins, once generated by computation, must be screened experimentally, yet 

screening individual designed proteins is typically labor intensive. In some cases, high-

throughput screening techniques such as directed evolution may be appropriate. In other cases, 

individual screening of many designs may call for lower throughput techniques. I present a 

methodology to rapidly and efficiently screen tens to hundreds of computationally designed 

ligand-inducible protein heterodimers. The cell-free protein expression protocol presented here 

screens for enzyme activity that occurs when split enzymes are reconstituted by designed 

heterodimeric proteins. The protocol could be adapted to screen for protein function that does not 

require dimerization, such as monomeric enzyme activity, or transcriptional activation.  

The work presented here represents methodological advances in both computational and 

experimental design of ligand binding sites. These methods could be applied to make synthetic 

biology tools for studying biology, designing therapeutics, or biological manufacturing. 
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Chapter 2: Comparison of Rosetta flexible-backbone 

computational protein design methods on binding 

interactions 

 

2.1 Introduction 

Computational protein design searches for sequences that adopt desired structures and 

functions. Most generally, computational design methods require (i) algorithms to efficiently 

search the vast sequence and conformational space accessible to proteins, and (ii) effective 

energy functions to rank the solutions. Both of these requirements necessitate approximations. 

Design energy functions are often simplified while considering atomic detail,[11, 12] and the 

search space of sequences and conformations is typically limited by reducing degrees of freedom 

in a design simulation. One early approximation was to leave the backbone fixed while sampling 

rotameric side chain conformations during sequence design.[13, 14] While the fixed backbone 

approximation is useful for computational efficiency, it is rarely sufficiently accurate as 

flexibility is a hallmark of naturally occurring functional proteins and backbones shift to 

accommodate side chain mutations arising during evolution or design.[15-17] Highly stable, 

idealized folds can be designed de novo,[18-21] but design of proteins with new functions 

remains challenging. In most  cases where new functions have been designed computationally, 

the designed protein is modeled on natural “scaffold” proteins with minimal changes in 

backbone  conformation,[3, 5, 22, 23] and typically requires optimization of the desired function 

by directed evolution.[3-5, 9, 24, 25] Function often depends on hydrogen bonds, which require 
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precise backbone and side chain geometry, which remains difficult to design[9] especially when 

a novel function requires “reshaping” of an existing protein conformation.[26] 

Various strategies have been proposed to model backbone flexibility, such as small 

random perturbations in torsional or Cartesian space,[27-30] normal mode analysis,[31] 

backbone ensembles from crystal structures[28] or from computational simulations,[32-34] or 

backbone parameterization, in particular for helical bundles.[19] Within the structure modeling 

and design program Rosetta,[10] backbone flexibility has been treated in a number of ways. 

These include (i) generation of new protein backbones by assembly from peptide fragments 

which demonstrated success in ab initio structure prediction,[35, 36] (ii) cycling between 

sequence design via Monte Carlo search and structure optimization via minimization,[37-39] 

which led to the first de novo protein fold not observed in nature,[39] (iii) a robotics-inspired 

kinematic closure (KIC) algorithm[40] shown to model loop conformations with sub-Angstrom 

accuracy,[41] and (iv) the Backrub algorithm, developed to describe structural changes 

underlying protein structural heterogeneity commonly observed in high resolution crystal 

structures[17] and benchmarked on recapitulation of known sequences.[33, 34, 42, 43] Most 

flexible backbone design methods iterate between sequence design on a fixed backbone and 

structural optimization on a fixed sequence, which effectively uncouples sequence changes from 

direct influence on backbone structure. In contrast, the “CoupledMoves” method in Rosetta,[42] 

combines side chain and backbone moves using Rosetta backrub sampling[43, 44] in a single 

design step. 

While Rosetta flexible backbone design has been successfully applied to forward 

engineering,[25, 45-48] different methods have not been directly compared for accuracy using 

common benchmark datasets. Here, we describe such a benchmark comparison of three different 
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flexible-backbone design methods in Rosetta: CoupledMoves,[42] BackrubEnsemble,[43, 44] 

and FastDesign, which combines sequence design with the Rosetta FastRelax method [49, 50] to  

move the backbone. We focus on methods within the openly available Rosetta framework 

because they use the same energy function, which allows us to direct compare different methods 

of sampling backbone flexibility. We evaluate each of the methods on its ability to recapitulate 

“tolerated sequence space” for binding interactions. We define tolerated sequence space as 

experimentally selected or naturally occurring sequences consistent with a functional binding 

interaction with a small molecule or protein binding partner.  

We find that CoupledMoves recapitulates tolerated sequence space and individual 

stabilizing mutations more accurately than  FastDesign or BackrubEnsemble. We introduce an 

updated version of the CoupledMoves algorithm (CM-KIC) that uses kinematic closure (KIC) in 

place of the original backrub backbone mover, which leads to further marginal improvements in 

performance. The coupled algorithm allows subtle conformational shifts in backbone torsions 

which accommodate favorable side chain rotamers, in turn leading to more accurate prediction of 

side chain interactions. We also analyze shortcomings of the design methods that highlight areas 

for improvement. 

 

2.2 Results 

2.2.1 Design methods 

We set out to compare four flexible-backbone design methods (Figure 2.1) using a 

common set of benchmarks (described below): (i) FastDesign utilizing the Rosetta FastRelax 

method[49, 50] for backbone flexibility (see Methods), (ii) BackrubEnsemble Design,[43, 44] 

(iii) CoupledMoves with Backrub (CM-BR),[42] and (iv) the new CoupledMoves with 
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Kinematic Closure (CM-KIC) method introduced here. We also compare to fixed-backbone 

design (FixBB) and a null model where all amino acid frequencies are set to 5%. 

The main algorithmic differences between the methods are illustrated in Figure 2.1A. 

FastDesign (Fig. 2.1A, left) iterates between two steps. In the first step, amino acid side chain 

identities and rotameric conformations are optimized using Monte-Carlo simulated annealing but 

the backbone is kept fixed. In the second step, the entire structure is minimized using backbone 

and side chain torsion degrees of freedom while keeping the sequence fixed. These steps are 

iterated through cycles of simulated annealing, during which the weight of the repulsive 

component of the Lennard-Jones potential is increased stepwise. Simulated annealing first 

enables amino acid changes that introduce unfavorable clashes, which can be subsequently 

relaxed in the minimization step. FastDesign has been used in a variety of design applications 

[18, 46, 47, 51-53]. 

The BackrubEnsemble method[54] (Figure 2.1A, middle) also proceeds in two steps. 

The first step generates an ensemble of backbones through application of Backrub moves. Each 

Backrub move[17] selects two pivot backbone Cα atoms and rotates the entire segment between 

them (2-11 residues) as a rigid body. Backrub moves are made throughput the protein structure 

(or a predefined region) by randomly selecting pivot points. The second step performs fixed-

backbone sequence design on each member of the ensemble using Monte-Carlo simulated 

annealing. Incorporating backrub moves into Rosetta simulations led to considerable 

improvements in modeling structural changes upon point mutation,[43, 55] conformational 

fluctuations,[34, 44, 56] and molecular recognition specificity,[54, 57] and successful application 

to the redesign of recognition specificity.[45] 
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 In contrast to FastDesign and BackrubEnsemble that separate fixed-backbone sequence 

design from fixed-sequence backbone sampling, CoupledMoves combines backbone and side 

chain moves, which can include sequence changes, into a single “coupled” Monte-Carlo step 

(2.1A, right). In this fashion, the backbone can respond to a designed sequence change more 

directly than in the non-coupled FastDesign and BackrubEnsemble methods. However, coupling 

backbone and side chain moves could artificially collapse designed structures. Because replacing 

a larger with a smaller amino acid side chain is less likely to lead to clashes, the change is more 

likely to be accepted. In subsequent steps it is harder to recover from such a collapse as the 

backbone will have moved to accommodate the smaller side chain. To alleviate this problem, 

each side chain move in CoupledMoves considers all rotamers for allowed amino acids and 

chooses a likely side-chain rotamer and identity based on its Boltzmann-weighted Rosetta score. 

This change led to a considerable decrease in the number designed alanine or glycine side 

chains.[42] Finally, coupled moves can also be performed for the ligand, where rotation and 

translation of the ligand can be combined with ligand conformer changes. Coupled moves has 

been shown to better recapitulate amino acid preferences in small molecule binding sites and 

mutations that switch enzyme specificity,[42] but has not yet been tested in a forward-

engineering application.  

The original version of the Coupled moves method uses Backrub moves to sample 

backbone degrees of freedom. Here we introduce an updated version of the CoupledMoves 

algorithm that performs backbone moves with the kinematic closure (KIC) algorithm[41] 

(Figure 2.1B). KIC selects two pivot Cα atoms that define a segment, and a third pivot Cα atom 

within the segment. The algorithm next perturbs the backbone torsion angles around all non-

pivot Cα atoms in the segment, breaking the loop. Finally, the torsion angles of the three pivot 
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atoms are solved analytically to close the loop. The original implementation of KIC samples 

backbone phi/psi torsion angles at the non-pivot Cα atoms probabilistically from Ramachandran 

space.[41] Our implementation here allows phi/psi sampling by substitution of peptide fragments 

derived from the protein structure databank (FKIC) or random “walk” perturbation of backbone 

torsion angles by values from a Gaussian distribution centered around zero with a standard 

deviation of 3° (WKIC) (see Methods). 

 

2.2.2 Benchmark datasets 

We evaluate the performance of the different methods on six benchmark datasets (Table 

2.1, 2.2). Each benchmark contains information on functional sequence variants. We chose 

binding as a proxy for function because the engineering of binding interactions is a common task 

with many important applications, such as engineering of therapeutic proteins or small molecule 

sensors. Moreover, the stability of a binding interaction is a functional constraint that can be 

more easily explicitly modeled and scored by Rosetta than for example requirements for efficient 

enzyme catalysis that are often incompletely understood. The datasets comprise both small 

molecule binding sites and protein-protein interaction interfaces.  

Four of the datasets contain small molecule binding sites (Table 2.1, Figure 2.2, Tables 

S2.1-10). The first two datasets were taken from [42]. Dataset 1 comprises evolutionary 

sequence alignments for eight naturally occurring protein families that each bind a specific 

cofactor (“cofactor” set, Figure 2.2A). Dataset 2 was curated from experimentally-characterized 

substrate specificity-altering point mutations for ten different enzymes (“enzyme specificity” set, 

Figure 2.2D).  Datasets 3 and 4 were compiled from site saturation mutagenesis (SSM) 

experiments performed on two different proteins designed by Rosetta to bind small molecules 
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(sets “DIG10” (digoxigenin)[3], Figure 2.2C, and “Fen49” (fentanyl)[2], Figure 2.2B). The 

SSM libraries were screened for binding to the target small molecule (digoxigenin or fentanyl, 

respectively) using yeast display followed by deep sequencing of naive and selected populations.      

The two protein-protein interface datasets contain sequences selected from combinatorial 

libraries (allowing all 20 naturally occurring amino acids at 5 to 7 sequence positions) by phage 

display and subsequent sequencing of individual clones (Table 2.1). Dataset 5 comprises 

sequences from 5 phage display libraries of Herceptin (17 positions total) selected for binding to 

HER2 (“Herceptin/HER2” set [58], Figure 2.2E). Dataset 6 comprises sequences from 6 

libraries of human growth hormone (hGH) (35 positions total) selected for binding to human 

growth hormone reception (hGHR) (“hGH/hGHR” set [59], Figure 2.2F). 

 

2.2.3 Performance metrics 

Five of the datasets contain sequences from either experimental selection (DIG10, Fen49, 

Herceptin-HER2, hGH/hGHR) or natural sequence alignments of evolutionary families 

(cofactor), reflecting the diversity of amino acids at each position compatible with the protein’s 

function (tolerated sequence space).[33] We refer to this diversity as the “known sequence 

profile” for each position. We evaluate the ability of our design methods to recapitulate these 

known sequence profiles by quantifying two metrics used previously,[42, 57] profile similarity 

and rank top, both calculated per position. Position profile similarity (PPS) measures the 

similarity of the probability distribution of amino acid frequencies between the known profile 

and the profile generated by Rosetta design at each position (see Methods). Rank top measures 

the rank, in the design profile, of the amino acid most frequently observed at a given position in 

the known profile.  
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The enzyme specificity benchmark[42] contains individual point mutations (rather than 

sequence profiles) experimentally characterized to switch enzyme substrate specificity. In this 

case, in contrast to the analysis for the sequence profile datasets, we do not assume knowledge of 

positions mutated in the experiment. Instead, we evaluate how the experimentally characterized 

specificity switching mutation ranks across designed mutations at all positions in the vicinity of 

the changed substrate, to approximate an actual design project where it is not clear a priori which 

position should be mutated. In addition to the absolute rank we also evaluate the percentile,[42] 

of the experimentally characterized mutation among all design predictions (see Methods).  

Each metric has a different experimental interpretation. The tolerated sequence space 

captured by the PPS metric is useful for the design of libraries, which can be screened for criteria 

in addition to binding affinity and specificity, such as protein stability and solubility. RankTop is 

useful for cases where a few mutations or design sequences are selected for individual 

experimental tests. Percentile gives information on how many predictions would need to be 

tested in order to find a successful mutation when making predictions for a range of positions.  

 

2.2.4 CoupledMoves improves prediction of tolerated sequence space 

We first evaluated the overall performance of each flexible backbone design method on 

the five sequence profile datasets. Figure 2.3A shows the distributions of position profile 

similarities across all designed positions in each benchmark, with the median indicated by a 

white dot. CoupledMoves and BackrubEnsemble attain higher median PPS values than the null 

model for the Herceptin, Cofactor, and Fen49 datasets, although BackrubEnsemble does so by a 

lower margin. Somewhat surprisingly, using this global metric FastDesign and FixBB do not 

attain a higher median PPS values than the null model for most of the datasets (except cofactor), 
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and are considerably worse than the null model for the hGH/hGHR and DIG10 datasets. As 

discussed below, the comparatively poor overall PPS of all methods for the hGH/hGHR, DIG10, 

and Fen49 datasets is due to low similarity between the input sequence and the known profile. In 

these cases, the null model scores as well or better than the design methods; of the flexible-

backbone design methods, CoupledMoves performs best.  

We next evaluated the RankTop values for all five datasets (Figure 2.3B). Here, all 

flexible backbone methods (except FastDesign for the hGH/hGHR dataset) perform better than 

fixed backbone design, which in the majority of the cases misses the most frequent amino acid 

side chain from the known profiles (the null model by definition ranks all amino acids the same 

so is not relevant here). The rank top values are lowest (best) for the Herceptin/HER2 and 

cofactor sets. CoupledMoves performs better than BackrubEnsemble and FastDesign for the 

Herceptin/HER2, hGH/hGHR and cofactor datasets, similar to FastDesign for the Dig10 set and 

similar to BackrubEnsemble for the Fen49 set. Moreover, for several benchmarks (hGH/hGHR, 

Herceptin/HER2, Fen49), CM-WKIC leads to small but noticeable improvement in RankTop 

values over CM-BR. Taken together, when considering both PPS and RankTop over all datasets, 

CoupledMoves and in particular CM-WKIC perform best overall. 

We also considered PPS and RankTop for each protein family comprising the Cofactor 

dataset (Figure 2.S1), and found that CoupledMoves outperforms FastDesign for all families, 

and outperforms BackrubEnsemble for six of the seven families, with the exceptions of the flavin 

binding site of Flavodoxins. Performance for individual libraries of the Herceptin/HER2 (Figure 

2.S2) and hGH/hGHR (Figure 2.S3) leads to similar conclusions.  

To determine if methods were more predictive for different groups of positions, we 

plotted the PPS values for the different methods against each other (Figure 2.4A,B). 
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CoupledMoves achieves similar or better PPS for nearly all positions when compared to the non-

coupled methods (Figure 2.4A, CM-KIC shown as example). BackrubEnsemble achieves PPS 

values better or similar than FastDesign (Figure 2.4B, left), and better than FixBB (Figure 2.4B, 

middle), for almost all positions. FastDesign, compared to FixBB, achieves better PPS for some 

positions, but worse PPS for others (Figure 2.4B, right). Figure 2.4C quantifies the number of 

positions for which CoupledMoves is better, worse, or similar to the non-coupled methods. A 

prediction for a position is classified as “better” or “worse” by a given method relative to a 

comparison method when the difference in performance is above or below, respectively, a 

threshold of ± 0.1 for PPS or ± 5 for RankTop. When the difference is within the threshold, the 

predictions are classed as “similar.” CoupledMoves achieves better PPS values than 

BackrubEnsemble for 65 ± 1 positions, better than FastDesign for 119 ± 2 positions, and better 

than FixBB for 143 ± 2 positions. Standard deviation represents the average across CM-BR, CM-

FKIC, and CM-WKIC. CoupledMoves also achieves better RankTop for more positions than 

BackrubEnsemble, FastDesign, and FixBB (39 ± 3, 67 ± 3 and 126 ± 4  positions, respectively), 

(Figure 2.4C). Moreover, CoupledMoves performs worse than non-coupled methods for very 

few positions (Figure 2.4C, red bars).  

 

2.2.5 CoupledMoves is the accurately predicts key affinity-determining side chains 

We next sought to evaluate the ability of the different methods to predict amino acid 

preferences for the positions that are most functionally important in the 5 profile datasets. 

Sequence logo representations of the tolerated sequence space for each of our datasets (Figures 

S2.4-8) indicated considerable differences in sequence entropies between individual positions, 

and we reasoned that conserved side chain residues at low sequence-entropy positions are more 
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likely to be important for protein function than residues at position with higher entropy. We 

hence split the positions in each dataset into three sequence entropy groups (see Methods) and 

evaluated median PPS and RankTop for the cofactor and Herceptin/HER2 datasets, which have 

the most consensus positions (Figure 2.5, Figure S2.9). Positions with low (entropy ≤ 0.33) or 

medium (0.33 < entropy ≤ 0.67) entropy were defined as consensus positions. The top known 

side chain for these positions was defined as the consensus side chain. We find that 

CoupledMoves achieves better PPS than the null model for consensus positions in the 

Herceptin/HER2 and cofactor datasets. FastDesign is better than the null model for only low-

entropy positions for both datasets. BackrubEnsemble is better than the null model for low 

entropy positions in the cofactor dataset, but not Herceptin/HER2. In contrast, the null model has 

the highest PPS for the high entropy bin, which might be expected for positions with high 

mutational tolerance.  

Similar to PPS, CoupledMoves achieves the best (lowest) RankTop values for consensus 

positions, predicting the correct amino acid residue with at least some frequency at most 

positions, as opposed to non-coupled methods which frequently do not identify the consensus 

side amino acid identity at all (rank of 20) (Figure 2.5). CoupledMoves predictions typically 

have the highest entropy (Figure S2.10), which leads on average to higher similarity at variable 

positions. Nevertheless, PPS and RankTop at low-entropy positions (Figure 2.5, Figure S2.9), 

and energetic rankings of consensus positions (see Discussion, Figure 2.8) indicates that 

CoupledMoves is the most accurate method for functionally relevant interactions. 

In addition to low-entropy positions determined from known sequence profiles, we also 

considered experimentally-characterized affinity-improving mutations, which were available for 

the Herceptin/HER2, Fen49, and enzyme specificity datasets (the latter set is discussed below). 
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For Herceptin, the most important affinity-improving mutation, D VH98 W, resulted in 3-fold 

improvement of binding affinity and was found in 23% of sequences resulting from phage 

display.[58] Contrary to previous findings[60] where BackrubEnsemble recapitulated D VH98 W 

as the top mutation, the non-coupled methods tested in this study did not identify tryptophan 

(Figure S9), but CoupledMoves methods selected the tryptophan mutation at low frequency 

(CM-BR 1.1%, CM-FKIC 1.3%, CM-WKIC 1.5%). We note that this position is surface exposed 

in the original structure, leading to high entropy in the design profiles where many side chains 

are tolerated. It is possible that a structural rearrangement in the D VH98 W mutant adds 

additional interactions across the interface but that these structural changes are not correctly 

modeled in our simulations. 

For the Fen49 dataset, the authors identified two key mutations, A77V and A171I, that 

led to ~100-fold improvement in binding affinity to fentanyl, but none of the design methods 

tested here found both mutations (Figure S2.8). These two positions are located in the binding 

pocket and enriched in larger hydrophobic residues in the selection, presumably to provide 

additional surface complementarity with fentanyl.[2] While all design methods did substitute 

larger hydrophobic side chains, only FastDesign ranked 171I highly, and only BackrubEnsemble 

ranked 77V highly. CoupledMoves selected 77V at a lower frequency. No method identified the 

combination of A77V and A171I. While there is no crystal structure with these mutations, we 

hypothesize that packing I171 against the phenyl ring of fentanyl may be inaccessible to the 

fentanyl conformer of Fen49, and modeling ligand flexibility might enable design to converge on 

I171. Unlike position 171, which is an ideal distance for van der Waals interaction with fentanyl, 

there is an almost 6 Å distance between the closest heavy atoms of position 77 and the ligand and 

has a large solvent-accessible surface area. It is therefore unsurprising that Rosetta is unable to 
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arrive at a consensus for this position. The inability of all methods to find the key mutations in 

Fen49 may represent shortcomings in modeling ligand flexibility. In addition, the Fen49 deep 

sequencing results are incomplete due to experimental limitations. For example, the original 

Fen49 side chains were present in the selection but did not have frequency counts.[2] 

 

2.2.6 CoupledMoves improves prediction of substrate specificity-altering mutations 

 The Enzyme Specificity dataset provides an opportunity to analyze functionally 

important mutations, as the dataset is made up of pairs of structures where individual point 

mutations have been experimentally characterized that switch ligand-binding specificity between 

two ligands.[42] To determine to what extent the different flexible backbone methods can 

recapitulate these experimentally characterized specificity-switching mutations, we carried out 

design simulations on structures with either the original or the new ligand in the binding pocket 

and designing positions in the vicinity of the ligand substructure change, as described 

previously[42] (Table S2.3, Table S2.4). To design for mutations switching specificity to the 

new ligand, we prepared the input structure by computationally substituting the new ligand into 

the binding pocket of the wild-type protein crystal structure. For the inverse, we swapped the 

wild-type ligand into the binding pocket of the mutant crystal structure (see Methods).  

Some enzymes in this dataset have multiple experimentally-characterized mutations, 

either a single position to multiple identities (Protein Data Bank (PDB) codes: 1K70, 3KZO), or 

multiple positions (PDB: 1A80, 3HG5), for a total of 29 cases (12 wild-type and 17 mutant side 

chains). The CoupledMoves methods (CM-BR, CM-FKIC, CM-WKIC) correctly identify 

(positive percent enrichment, see Methods) 14, 11, and 12 mutations specificity-determining 

mutations, respectively, while the non-coupled methods (FastDesign, BackrubEnsemble, FixBB) 
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identify only 7, 7, and 5 mutations, respectively (Table 2.2). All CoupledMoves methods 

identify specificity-altering mutations with a better percentile and rank than the non-coupled 

methods (Tables 2.2, 2.3), with the original CM-BR attaining the best median and quartile 

performance, and FastDesign and BackrubEnsemble performing similarly poorly. 

 

2.2.7 Gain and loss 

We next considered how the sequence of the input structure influences method 

performance. Only positions with low and medium entropy (≤ 0.67) in the known profile are 

considered. Three broad scenarios can be distinguished (Figure 2.6, top panels). In the first 

scenario (“loss”), the input side chain (the residue in the starting structure used for design) is 

present or even preferred in the known sequence profile but is depleted in the design simulations. 

In the second scenario (“gain”), the input side chain and the known position profile are 

dissimilar, but preferred side chains are enriched by design. The third scenario occurs when 

design results in little change of similarity to the known profile (“neutral”). When plotting the 

PPS values for each method as a function of profile similarity to the input, loss occurs more 

frequently for positions designed by BackrubEnsemble, FastDesign and FixBB, whereas gain 

occurs more frequently for positions designed by CoupledMoves and BackrubEnsemble (Figure 

2.6a, middle and bottom panels, Table S2.11).  

We also performed a similar analysis for the RankTop values. We defined “loss” as the 

case where a correct starting amino acid side chain is ranked below 5 in the final profile and gain 

as the case when the known top amino acid side chain is not present in the starting sequence and 

design models it with a rank of 15 or higher (Figure 2.6a, top panel). We only observed loss for 

positions designed by BackrubEnsemble, FastDesign, and FixBB (Figure 2.6b, middle and 



 17 

bottom panels). CoupledMoves achieves gain with the best median and quartile RankTop values 

(Figure 2.6b, middle panel), and for the greatest number of positions (Figure 2.6b, bottom 

panel). Positions are more likely to remain neutral than to experience gain or loss (Figure 2.6, 

bottom panels, Table S2.11), thus positions with near-correct input sequence tend to maintain 

higher PPS values. This observation offers an explanation for the comparatively poor PPS and 

RankTop values of all methods for the DIG10, Fen49 and hGH/hGHR datasets (Figure 2.3), 

which are characterized by low similarity between each dataset’s input sequence and known 

profile (Figure S2.11). 

We then asked which methods best predict positions deemed both functionally relevant 

(consensus) and difficult (requiring gain). We find that CoupledMoves is more likely than non-

coupled methods to enrich for correct side chains not present in the input, with 1.2- and 1.5-fold 

increase in number of positions experiencing gain, compared to BackrubEnsemble and 

FastDesign, respectively (Table S2.11). In addition, CoupledMoves most consistently avoids 

loss (0.22- and 0.30-fold decrease in number of positions experiencing loss, compared to 

BackrubEnsemble and FastDesign, respectively), and retention of correct input side chains 

(neutral scenario) contributes to overall performance. Taken together, the overall best 

performance of CoupledMoves arises both from increasing the number of positions with gain 

and decreasing the number of positions experiencing loss. 

We also classified positions as polar/charged or hydrophobic based on the most preferred 

side chain in the known sequence profile, and use this classification to evaluate performance in 

recapitulating polar contacts versus hydrophobic packing. CoupledMoves outperforms 

BackrubEnsemble and FastDesign in discovering and retaining both polar/charged and 

hydrophobic positions (Table S2.11).  
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2.2.8 Selected structural examples 

At the Herceptin/HER2 interface, arginine at position VH50 (RVH50) is one of four 

positions (the other three are YVH56, WVH95, and YVH100a) where CoupledMoves maintains a 

consensus side chain that is completely lost by one or more non-coupled methods (Figure S2.9). 

In the crystal structure, RVH50 forms a hydrogen bond network across the Herceptin/HER2 

interface by interacting with Herceptin TVL94 and HER2 E273 and D275. CoupledMoves retains 

RVH50, while FastDesign and BackrubEnsemble replace this residue with hydrophobic residues, 

predominantly methionine and glycine, respectively (Figure 2.7A). 

Hydrogen bonds between digoxigenin and the designed protein are most frequently 

retained by CoupledMoves. In the crystal structure of DIG10.2 (the digoxigenin binder designed 

with knowledge from the results of the experimental library screen[3]), tyrosines 34, 101, and 

115 hydrogen bond with digoxigenin, as designed.[3] CoupledMoves frequently chooses 

Tyrosine at all three positions (Figure 2.7B, top), whereas FastDesign models only one 

interaction correctly (Figure 2.7B, middle), and BackrubEnsemble models two (Figure 2.7B, 

bottom). At position 115, BackrubEnsemble most frequently models asparagine, which is too 

short to hydrogen bond with digoxigenin. FastDesign most frequently models leucine, not 

tyrosine, at position 115, and instead models Tyrosine at nearby position 11 (alanine consensus 

in experiment), forming an alternative hydrogen bond with the ester oxygen rather than carbonyl 

oxygen of the nearby digoxigenin ring. 

A third structural example for loss is found in the binding site for cofactor flavin-adenine 

dinucleotide (FAD) binding site in glutathione reductase (Figure 2.7C). The majority of natural 

glutathione reductases coordinate FAD with glutamate at position 50 (E50) and aspartate at 

position 331 (D331). These side chains are frequently maintained by CoupledMoves, but not by 
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FastDesign or BackrubEnsemble (Table 2.6). Models generated by CoupledMoves agree with 

the input crystal structure (3DK9), in which E50 forms a hydrogen bond network with two 

hydroxyl groups of the 3-4-dihydroxy-furan moiety of FAD. CoupledMoves also predicts a 

hydrogen bond between evolutionarily conserved residue D331 and a hydroxyl group of FAD. 

The non-coupled design methods frequently replace both polar side chains with apolar side 

chains, valine at position E50, and alanine or methionine at D331, eliminating the hydrogen 

bonds between the protein and the ligand.  

 

2.3 Discussion 

We demonstrate that CoupledMoves recapitulates known sequence profiles at designed 

positions more accurately than the FastDesign and BackrubEnsemble methods. We consider two 

conceptual categories of positions: (i) important for function and (ii) difficult to design. For the 

first category, we classify positions as important for function (in this case binding) either by 

proxy of low sequence entropy in the known sequence profile, or if specific mutations have been 

experimentally determined to be important, as in the Enzyme Specificity dataset. CoupledMoves 

most accurately predicts low entropy consensus positions for all profile benchmarks (Figure 2.5) 

and outperforms the other methods in correctly identifying specificity-switching mutations in the 

enzyme specificity set (Table 2.2, Table 2.3). For the second category, we designate positions as 

difficult to design if the most frequent amino acid side chain in the known profile is not present 

in the structure used as input for design. Considering both low and medium entropy positions, 

CoupledMoves is more likely than the iterative BackrubEnsemble and FastDesign methods to 

correctly identify both charged/polar and hydrophobic side chain residues at higher frequency 

than in the input sequence (gain), while FastDesign is least likely model a preferred side chain 
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residue present in the input sequence (loss) (Table S2.11, Figure 2.6, Figure S2.11). We 

conclude that CoupledMoves is best able to predict both residues that are important for function 

and difficult to design in our datasets. 

To provide insights into why the different methods model consensus side chains with 

different frequencies, despite using the same energy function, we analyzed how the correct 

amino acid at these positions was ranked by energy for each of the different methods. Figure 

2.8a shows distributions of percentiles for predicted total Rosetta energy of instances where a 

method models the known top ranked amino acid side chain. These distributions are shifted 

towards higher percentiles for CoupledMoves compared to the other methods. CM-FKIC 

predicts the consensus side chain for 51 positions with total energy above the 75th percentile, 

while BackrubEnsemble and FastDesign predict 37 and 27 positions in the same category. 

CoupledMoves models the consensus side chain for a total of 132 designable positions in the 

datasets, compared to 111 and 95 positions for BackrubEnsemble and FastDesign, respectively. 

The high sequence entropy of CoupledMoves design compared to other methods (Figure S2.10) 

makes it even more remarkable that CoupledMoves ranks the energetics of consensus side chains 

so favorably among many options. We conclude that, for side chains modeled with > 0.33 

frequency and > 75th energy percentile, CoupledMoves predictions are likely correct.  

In cases where the BackrubEnsemble method does model the consensus side chain during 

design, the energetics rank favorably (Figure 2.8a). One possible reason for the overall worse 

performance of BackrubEnsembles over CoupledMoves is that cases correctly predicted by 

BackrubEnsemble might be derived from only a subset of ensemble members whose backbone 

conformations are compatible with energetically favorable placement of the consensus side 

chain. In these cases, the input/consensus side chain is compatible with the ensemble, but during 
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sequence design another amino acid side chain has more favorable Rosetta energy. Indeed, 

forcing the consensus side chains onto all ensemble members results in a greater proportion of 

models with unfavorable (positive) Rosetta energy, and a smaller proportion of models with 

highly favorable energy (Figure 2.9, shown are glutathione reductase and digoxigenin binder, 

which are examples of loss by the BackrubEnsemble method). This behavior suggests that 

ensemble members are not uniformly compatible with consensus sidechains, and highlights a 

limitation of the BackrubEnsemble method. Backbone moves are sampled only once, at the 

beginning of the trajectory during ensemble creation (Figure 2.1a). Sidechains are subsequently 

modeled onto each ensemble member by finding an energetically favorable rotamer for the pre-

determined backbone conformation. In contrast, the CoupledMoves design trajectory cycles 

small backbone adjustments in response to sequence change moves, which allows switching 

from non-consensus to consensus side chains. Without cycles of backbone and sidechain 

sampling, the BackrubEnsemble method is limited to snapshots of the allowed backbone 

conformational diversity defined by the initial ensemble members. 

For CoupledMoves, the design frequency increases with energy percentile for consensus 

side chains (Figure 2.8b), which is expected - side chains with a higher (more favorable) energy 

percentile should be chosen more frequently. However, this trend is less pronounced for both 

BackrubEnsemble and FastDesign. For BackrubEnsemble, this behavior is possibly due to the 

limitations enforced by the backbones conformations of the ensemble. In the case of FastDesign, 

it is possible that the minimization step in FastDesign is prone to trapping the design simulations 

in local minima and hence that the frequency of chosen amino acids poorly reflect their actual 

fitness rank. This hypothesis is supported by the low entropy of FastDesign design sequence 

profiles (Figure S2.10). FastDesign may be less likely to escape local minima with its simulated 
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annealing and minimization algorithm that the other methods, despite the use of a reduced 

Lennard-Jones repulsive term in the early cycles of the simulation (Figure 2.1a).  

In addition to limitations in sampling methods (as well as the energy function used to 

rank designs), there are also potential limitations inherent in our benchmark datasets. For 

example, in the case of the enzyme specificity dataset, we can only compare to the point 

mutations that were experimentally tested, but we do not have sequence profiles. The enzymes 

have not been subject to saturation mutagenesis, so it is unknown whether there are additional 

specificity-altering mutations.  

Sequence profiles in the cofactor dataset result from natural evolution, rather than 

experimental screening. Natural evolution includes selection pressures beyond affinity (function, 

stability, kinetics), so that the sequence profiles for natural binding site positions may be 

influenced by factors beyond those modeled by Rosetta. In addition, our analysis does not 

evaluate covariation between residue positions. However, evolutionary sequence profiles have 

the advantage of clearly identifying consensus binding positions, and we observe considerable 

agreement between Rosetta predicted and known sequence profiles for this set. 

Finally, all methods tested perform most poorly at consensus positions in the deep 

sequencing datasets, DIG10 and Fen49, and the design methods perform worse than the null 

model on DIG10. Initiating design from the crystal structure corresponding to the result of the 

library selection (PDB: 4J8T) did not improve performance. It is possible that the selection 

experiments report on additional considerations such as expression and display on the yeast 

surface that are not considered in the design simulations, or that the sensitivity range of the 

selection is tuned to primarily differentiate between functional versus deleterious mutations but 

is less capable of quantitatively ranking binding affinity. Alternatively, critical adjustments of 
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both backbones and the ligand, in addition to ligand strain and ligand flexibility, are not correctly 

captured in the Rosetta simulations. 

Apart from suggesting individual point mutations such as in the enzyme specificity set, 

our results on recapitulating position-specific sequence profiles highlight the utility of 

CoupledMoves for generating libraries. CoupledMoves will be most useful in design cases where 

protein backbones are supplied with existing side chains, such as natural or previously-

characterized designed proteins (rather than the de novo design of new structures). Computation 

has long been used to reduce the sequence space queried by library screens,[61-63] and it is well 

established that flexible-backbone protein design can generate sequences similar to observed 

natural and experimental sequences.[32-34, 38, 54, 64-66] As the design results obtained with 

CoupledMoves most accurately reflect tolerated sequence space in comparison to other methods 

using the same energy function, CoupledMoves represents a powerful flexible backbone strategy 

for generating combinatorial libraries for screening and selection, and optimizing proteins for 

new and useful functions.  

 
2.4 Methods 
 
2.4.1 Benchmark Datasets 
 
2.4.1.1 Cofactor binding sites 

This dataset is described in detail in [42]. Briefly, the dataset is comprised of seven 

protein families, each containing a conserved small molecule cofactor binding site (Table S2.1). 

The highest resolution available crystal structure was chosen as the starting point for design. As 

in [42], positions with a side-chain heavy atom within 6 Å of any heavy atom in the co-factor 

ligand were allowed to design to any amino acid identity, and positions that could clash with 
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designable positions were allowed to repack (change conformation but not identity) (Table S2). 

Known profiles were obtained from natural sequences of these binding sites as described in [42]. 

 

2.4.1.2 Enzyme specificity 

This dataset is described in detail in [42]. Briefly, the dataset is comprised of 10 enzymes 

for which there are experimentally validated specificity-altering mutations in the ligand binding 

sites (Table S2.3). As in [42], design was carried out with either the native or the non-native 

substrate/substrate analog. Positions with heavy atoms within 4.5 Å of any ligand atoms differing 

between the native and non-native substrate were allowed to design to any amino acid identity, 

and positions that could clash with designable positions (as described in [42]) were allowed to 

repack (Table S2.4). Structures were prepared as described in [42]. Briefly, for each enzyme 

four types of structures were prepared: 1) the native enzyme with the native ligand, 2) the mutant 

enzyme(s) with the non-native ligand, 3) the native enzyme with the non-native ligand, and 4) 

the mutant enzyme with the native ligand. 

 

2.4.1.3 DIG10 

The DIG10 dataset was taken from [3]. Briefly, DIG10 is a computationally designed 

protein that has been engineered to bind the small molecule digoxigenin (DIG) [3]. A 

computational design, DIG10, was subjected to selection by yeast surface display, first of a 

single-site saturation mutagenesis library, then of a combinatorial library of beneficial mutations 

identified in the first selection, yielding variant DIG10.1. The binding fitness landscape of 

DIG10.1 was then probed by SSM and selections using yeast surface display, which converged 

after four rounds of selection to variant DIG10.2. Our computational protocol seeks to replicate 

the deep sequencing library selection that led from DIG10.1 to DIG10.2. For input, we used the 
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crystal structure of wild-type protein (PDB: 1Z1S) on which DIG10 was designed, the sequence 

of DIG10.1 (which we placed onto the 1Z1S scaffold using the Rosetta FixBB protocol), and the 

digoxigenin conformation from the DIG10.2/digoxigenin complex (PDB: 4J8T). Digoxigenin  

was placed into the 1Z1S scaffold by using PyMOL to align 4J8T and 1Z1S, then combining the 

digoxigenin molecule from 4J8T and the protein structure from 1Z1S into a new PDB file. The 

known profile represents the frequency equivalent (!!"#$%, described below) of the selection 

experiment on the DIG10.1 SSM library. The 39 positions selected for experimental site 

saturation in [3] were allowed to design to only those amino acid identities with high enough 

sequencing counts to be included in the enrichment and depletion calculations in [3] (Table S5, 

Table S6). We note that the experimental screen mutated 1-2 position at a time, whereas we 

design multiple positions simultaneously. In CoupledMoves design, 30 positions were allowed to 

repack based on the possibility of clashes with designed positions; in design by non-coupled 

methods, all positions were allowed to repack (Table S5).  

 

2.4.1.4 Fen49 

The Fen49 dataset was taken from [2]. Fen49 is a computationally designed protein that 

has been engineered to bind the small molecule fentanyl (Fen). The original computational 

design, Fen49, has an affinity of 6.9 µM for Fen-BSA. After four rounds of selection, a 

combination of two substitutions, A78V and A172I, was identified to produce a variant with a 

100-fold improved affinity of 64 nM. We used the wild-type protein (PDB: 2QZ3), on which the 

sequence of Fen49 was modeled, as a input to our design simulations. The fentanyl conformation 

from designed fentanyl binder Fen49*/fentanyl complex (PDB: 5TZO, where Fen49* is a Fen49 

Y88A point mutant that was more suitable for complex structure determination [2]) was placed 
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into the 2QZ3 scaffold using PyMOL. Fentanyl was placed into the 2QZ3 scaffold by using 

PyMOL to align 2QZ3 and 5TZO, then combining the fentanyl molecule from 5TZO and the 

protein structure from 2QZ3 into a new PDB file.  While all positions of Fen49 were subjected to 

SSM, for our study we designed only the 18 residues defined as binding site in [2] (Table S7). 

Design was allowed only to those amino acids with high enough sequencing counts to be 

included in the enrichment and depletion calculations in [2] (Table S8). Finally, four positions 

(37, 64, 69, 71) in the input structure were set to alanine (using Rosetta’s FixBB protocol), 

because the wild-type residue was disallowed due to low counts (Table S8). In CoupledMoves 

design, 22 positions were allowed to repack based on the possibility of clashes with designed 

positions; in design by non-coupled methods, all positions were allowed to repack (Table S7). 

The known profile represents the frequency equivalent (!!"#$%, described below) of the final 

round of selection (obtained from the authors). Note that the experimental screen mutated one 

position at a time, whereas we design multiple positions simultaneously.  

 

2.4.1.5 Frequency equivalent 

 Experimental data from the DIG10 and Fen49 datasets are deep sequencing counts before 

and after selection, which are not directly comparable to amino acid identity frequencies from 

computational design. We therefore derived a frequency equivalent (!!"#$%) from the fitness 

score described in [67], to allow direct comparison between the experimental data and sequence 

profiles from Rosetta design for mutation x at position i: 

!!"#$% = !

!!!,!"#
!!!,!"#$%

!!!"#$,!"#
!!!"#$,!"#$%

!!!,!"#
!!!,!"#$%

!!
!"#$,!"#

!!
!"#$,!"#$%
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where!!!!,!"# and  !!!,!"#$%are the frequency of that mutation, and !!!"#$,!"# and !!!"#$,!"#$% are the 

frequency of the original amino acid identity, in the selected and unselected populations, 

respectively, and !!"#$%!is normalized by dividing over the sum across all amino acid identities 

found in the sequencing results. !!"#$% is then used in comparison to Rosetta design results. 

 

2.4.1.6 hGH/hGHR 

The hGH/hGHR dataset was taken from [33]. The protein-protein interface between 

human growth hormone (hGH) and human growth hormone receptor (hGHR) is high affinity, 

with a KD reported as 0.9 nM[68] and 1.56 nM.[59] As input for design, we used a crystal 

structure (PDB: 1A22). The known sequence profiles were taken from a phage display selection 

experiment, wherein 35 key residues from the ~1300 Å2 hGH/hGHR interface were divided into 

six combinatorial libraries of five or six positions.[59] To minimize potential cooperative 

interactions, positions were grouped into libraries that maximized the three-dimensional distance 

between residues. Our computational workflow mimicked this strategy, using the same 

designable residues and running independent design trajectories for each of the six libraries. As 

in [33], residues within 4 Å of designed residues were allowed to repack (Table S9). 

 

2.4.1.7 Herceptin-HER2 

The Herceptin-HER2 dataset was taken from [60]. The protein-protein interface between 

therapeutic antibody Herceptin and its target, human epidermal growth factor 2 (HER2), is high 

affinity (KD = 0.35nM[58]). We used a crystal structure (PDB: 1N8Z) as input structure for 

design, truncated as in [60] to include only chain A positions 1-106, chain B positions 1-119, and 

chain C positions 511-607. The known sequence profiles were taken from phage display 
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selection experiments that used five combinatorial libraries containing five to seven positions 

each after four rounds of selection.[58] We mimicked the experimental strategy in our 

computation, with five separate design runs, one for each experimental library, and allowing 

repacking of residues within 4 Å of designed residues, as in [60] (Table S2.10). Herceptin/HER2 

sidechains were repacked from the crystal structure before design. 

   

2.4.2 Rosetta Design protocols 

Design protocols used Rosetta revision number 60351 and score function ref2015.[11, 

69] For each method, we used standard parameters and settings previously reported in 

benchmarks or design applications, except for the new CM-FKIC and CM-WKIC methods 

reported here. Command lines for each method can be found in the supplement. 

 

2.4.2.1 CoupledMoves 

The CoupledMoves method was used as described in [42]. Briefly, each coupled move 

had a 90% probability of being a backbone and side-chain move, and a 10% probability of being 

a ligand move. Each simulation was run for 1,000 moves and 400 simulations were run for each 

protein-ligand or protein-protein complex. All unique amino acid sequences accepted during 

each simulation were output into a FASTA file, and the resulting 400 FASTA files were pooled, 

including redundancy, for analysis. Command line arguments are provided in the Supplement. 

  

2.4.2.2 CoupledMoves with Kinematic Closure 

Two different methods of modeling backbone flexibility are implemented in 

CoupledMoves. The first method uses the Backrub algorithm [43, 70] and was originally 

described in [42]. The second method uses kinematic closure [40, 41, 71] and is implemented in 
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CoupledMoves here (Figure 2.1b). Kinematic closure in Rosetta [41] generates conformations 

of backbone segments by sampling non-pivot torsions in the segment and then analytically 

determining values for 6 pivot torsions to close the loop. For CM-FKIC, non-pivot torsions are 

sampled from peptide fragments taken from the PDB.[35] For CM-WKIC, non-pivot torsions are 

adjusted by a random value from a Gaussian distribution centered around zero and with a 

standard deviation of 3°. In each case, the remaining six pivot torsions are then solved 

analytically to close the loop. Command line arguments are provided in the Supplement. 

 

2.4.2.3 FastDesign  

FastDesign is based on the FastRelax protocol in Rosetta described in [49, 50]. Briefly, 

FastRelax consists of inner cycles of rotamer repacking and backbone and side chain torsion 

minimization with progressively higher weight on the repulsive part of the van der Waals energy 

function component, from 2% to 100% of its total value. FastDesign uses an analogous protocol 

but allows side chain design in addition to repacking. During FastDesign, we used harmonic 

coordinate constraints to keep backbone heavy atoms close to their starting position, and the 

weight of the constraints is ramped down from 1.0 to 0.0 during the course of each inner 

simulated annealing cycle. Constraint and repulsive weights are ramped five times, during five 

outer cycles. For each input protein structure, 400 designs were generated in independent design 

trajectories. Command line arguments are provided in the Supplement. 

 

2.4.2.4 BackrubEnsemble 

The BackrubEnsemble method is described in [57]. Briefly, the method generates a 

structural ensemble with backbone conformational variation using the backrub algorithm,[43] 

and then carries out fixed-backbone side chain design on each member of the ensemble. 400 
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ensemble members were generated using 10,000 backrub trials, a temperature of 1.2, and a 

backbone segment length of 3-12 atoms. Command line arguments are shown in the Supplement. 

 

2.4.2.5 Forced BackrubEnsemble design 

 “Forced” BackrubEnsemble design forces sequence design to choose the known 

consensus side chain at certain positions. Forced design was applied to Glutathione Reductase 

positions E50 and D331, and DIG10 positions Y34, Y101, and Y115. For each protein, 100 

forced trajectories were run, using as input the first 100 members of the same BackrubEnsemble 

on which typical design was performed. 

 

2.4.2.6 Ligand handling 

Rosetta requires ligands to be described by a params file, which contains information 

defining the ligand’s atom types, bond geometry, and chemical connectivity. We generated 

params files from PDB structures using Rosetta’s molfile_to_params.py utility script. We 

did not model multiple ligand conformers except for DIG, for which the DIG ligand conformer 

library used during DIG10 design [3] was obtained from the authors. 

CoupledMoves samples ligand rigid-body translation and rotation in all cases. FastDesign 

minimizes ligand torsional degrees of freedom in addition to backbone torsion angles during its 

minimization step. BackrubEnsemble and FixBB do not sample ligand movement.  

 

2.4.2.7 Computational performance 

We also evaluated the relative compute time for each of the different methods. We first 

analyzed how performance depended on the number of trajectories run (Figure S2.12). This 

analysis suggested that performance is optimal for Coupled Moves, BackrubEnsemble and 
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FastDesign at 400, 200 and 100 trajectories, respectively, with slight variation between datasets 

(Figure S2.12). Since each BackrubEnsemble and FastDesign trajectory takes approximately 2-

fold and 20-fold more time than CoupledMoves, respectively (Figure S2.13), CoupledMoves 

requires substantially less compute time than FastDesign and about equal compute time to 

BackrubEnsemble (Table 2.4).  

 

2.4.3 Performance Metrics  

 

2.4.3.1 Position profile similarity 

Position profile similarity (PPS) was computed as described in [42]. Briefly, PPS 

represents the similarity in the side chain amino acid identity distributions between the predicted 

and known sequences at a given position: 

!"#$%$"&!!"#$%&'!!"#"$%&"'( = !1− !!"(!!"#$",! ,!!"#$%&,!) 

where !!"#$",! and !!"#$%&,! are the probability distributions over the 20 amino acids for the 

known (natural or experimental) and designed sequences, respectively, at position !  and 

!!"(!,!) is the Jensen-Shannon divergence between two distributions ! and !, as in [44]. 

 

2.4.3.2 RankTop 

For the profile datasets, mutations were ranked according to their frequency in the 

predicted and known (experimental/natural) sequence profile. RankTop is the rank, in the 

predicted profile, of the top ranked amino acid from the known profile. If the amino acid is not 

found, its rank is set to 20. 
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2.4.3.3 Percent Enrichment 

As in [42] the percent enrichment (PE) for each specificity-altering mutation in the 

enzyme specificity dataset was calculated as follows: 

!" !" → !"# = %!"!!!"#$%& −%!"#$%& 

!" !"# →!" = %!"#$%& −%!"!!!"#$%& 

where %!"#$%& is the percent occurrence of the mutation in sequences designed for the native 

ligand and %!"!!!"#$%& is the percent occurrence of the mutation in sequence designed for the 

non-native ligand. !" !" → !"#  was used for predictions that start with the wild-type 

structure and !" !"# →!"  was used for predictions that start with the mutant structure. As 

in [42], a prediction was considered correct if it obtained a positive percent enrichment value. 

 

2.4.3.4 Rank 

For the enzyme specificity dataset, mutations were ranked by descending order of their 

percent enrichment values, as described in [42]. 

 

2.4.3.5 Entropy 

Sequence entropy was computed as in [42]. Briefly, the sequence entropy !! for each 

position was calculated as follows: 

!! = − !! log!" !!
!

 

where !! is the percent of sequences with amino acid ! at position !. 
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2.4.3.6 Distance from input sequence 

Distance from input sequence is a variation of profile similarity metric, where distance is 

calculated as: 

!"#$%&'( = !1− !!"(!!"#$%,! ,!!"#$%&,!) 

where !!"#$%,! and !!"#$%&,! are the probability distributions of the single input side chain and the 

designed sequence profiles, respectively, at position i. 
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2.5 Figures 
 

 
Figure 2.1: Design methods.  
(A) Design method comparison. The FastDesign (left, blue) and BackrubEnsemble (middle, 
purple) methods separate sequence design steps (using a fixed backbone) from backbone 
optimization steps (using a fixed sequence). CoupledMoves (right, orange) evaluates combined 
Continued on next page. 
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Figure 2.1, continued: Design methods. 
moves that sample both backbone conformation and amino acid sequence (or, alternatively, 
combine ligand translations/rotations with changes of ligand conformers). CoupledMoves 
performs 1000 trials (xCM) per trajectory. FastDesign performs five outer (xSA,outer) simulated 
annealing cycles, during which the weight of the Lennard-Jones repulsive energy term is ramped 
from 2% to 100%. For each ramped weight, an inner cycle (xSA,inner) consists of a complete round 
of sequence design with xSC steps on a fixed backbone, followed by a step that minimizes 
backbone, sidechain, and ligand torsion angles. BackrubEnsemble performs 10,000 (xBR) 
Backrub moves to generate each ensemble member. For both FastDesign and BackrubEnsemble, 
xSC scales with the number of possible moves, and is equal to 10 times the number of possible 
rotamers at all designable or repackable positions. (B) Original and updated backbone mover in 
CoupledMoves. The original CoupledMoves method[42] uses the Backrub algorithm to make 
backbone moves. A backrub move [17, 43] rotates a segment as a rigid body by displacement 
angle τdisp around an axis between two pivot Cα atoms 2-11 residues apart (shown is a 2-residue 
move). In the updated versions of CoupledMoves introduced here, backbone moves are made 
using a Kinematic Closure algorithm.[41] Backbone torsion angles for non-pivot Cα atoms are 
perturbed either using fragment insertion (FKIC) or by small perturbations away from the 
existing angles (WKIC), then the loop is closed by analytical determination of Φ and Ψ angles 
(red) at three pivot Cα atoms (grey).  
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Figure 2.2: Benchmark dataset structures.  
Side chains at designed positions are highlighted in orange and shown as sticks. Ligands are 
colored light blue and shown in sphere representation. The structures shown are those used as 
input for design, as described in Methods. Nitrogen atoms are shown in dark blue, and oxygen 
atoms are shown in red. (A) Representative structure from the cofactor dataset, Alcohol 
Dehydrogenase with cofactor NAP. Structures for other six protein families are not shown. (B) 
The wild-type protein used for design of fentanyl binding protein, with fentanyl placed in the 
binding pocket. (C) DIG10.1, the designed digoxigenin binder on which the SSM library was 
generated and selected, with digoxigenin. (D) Representative structure from the enzyme dataset, 
N-acetylornithine carbamoyltransferase. The full structure of the mutant enzyme, with ligand  
Continued on next page. 
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Figure 2.2, continued: Benchmark dataset structures. 
N-(3-carboxypropanoyl-L-norvaline (SN0), is shown in the left panel. The middle panel shows 
the binding site. The right panel shows the binding site of the wild-type protein, with ligand N-
acetyl-L-norvaline (AN0). The other nine enzymes are not shown. (E) Herceptin/HER2. 
Designable positions on the Herceptin antibody light chain (light gray) and heavy chain (dark 
gray) interact with target HER2 (black). The combination of designable positions from all 
libraries are shown. (F) hGH/hGHr. Designable positions on hGH (light gray) interact with target 
hGHr. The combination of designable positions from all libraries is shown. 
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Figure 2.3: Comparison of design method performance on sequence profile datasets.  
PPS (A) and RankTop (B) distributions. A rank of 1 means that the design method correctly 
identified the most frequent amino acid side chain observed in the experimental/natural profile, 
whereas a RankTop of 20 means that side chain was observed with zero frequency, or that all 
side chains were modeled with some frequency and the top known was the least frequent. The 
median of the distributions is marked with a white dot. Second and third quartiles are marked by 
the thick black bar, and the thin bar marks 1.5 times the inter-quartile range. The width of the 
violins is determined by the number of observations in each bin, and bins are defined using 
Scott’s normal reference rule. The number of sequence positions in each set is described by n. 
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Figure 2.4: Method performance comparison for profile datasets by sequence position. 
Shown are the same data as in Figure 3, but plotting individual sequence positions instead of 
distributions. Colors indicate different datasets. (A) Comparison between CM-FKIC and non-
coupled methods. Points above the diagonal represent positions where CM-FKIC outperforms 
Continued on next page. 
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Figure 2.4, continued: Method performance comparison for profile datasets by sequence 
position. 
the non-coupled method. (B) Comparison between iterative methods, where points above the 
diagonal represent positions where BackrubEnsemble outperforms FastDesign (left) or FixBB 
(middle), or where FastDesign outperforms FixBB (right). (c) Summary of position counts 
classified by whether CoupledMoves (“Reference method”) performs better (green), worse (red) 
or similar (gray) compared to non-iterative methods ( “Comparison method”). The 
CoupledMoves reference method is “better” or “worse” than the comparison method when the 
difference in performance is above or below, respectively, a threshold of ± 0.1 for PPS or ± 5 for 
RankTop. When the difference is within the threshold, the methods are classed as “similar.”  
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Figure 2.5: PPS and RankTop as a function of known sequence entropy. 
Each point represents one sequence position. Shown here are the Herceptin/HER2 (top) and 
Cofactor (bottom) datasets, which have the highest number of low entropy positions. The 
remaining datasets are shown in Figure S2.9. For each dataset, PPS and RankTop are binned by 
entropy of the known sequence profile at each position (low: entropy ≤ 0.33, medium: 0.33 < 
entropy ≤ 0.67, and high: entropy > 0.67). The boxplot covers the second and third quartiles, and 
the vertical whiskers mark 1.5 times the inter-quartile range. Median is marked with a horizontal 
black line, and notches represent a 95% confidence interval (CI) around the median; when CI 
extends past the quartiles, notches extend beyond the box, leading to a "flipped" appearance.  
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Figure 2.6: PPS and RankTop as a function of similarity to input. 
Gain (green) and loss (red) as defined in the main text. Only positions with low and medium 
entropy (≤ 0.67) are considered. This figure combines all datasets; individual datasets are shown 
in Figure S2.11. (A) PPS as a function of similarity to the input sequence for all profile datasets. 
Top: Gain and loss zones are defined by a threshold of 0.1 difference between input-known PPS 
and design-known PPS. Middle: Each point represents one position in the protein sequence, 
colored by design method. CoupledMoves results (yellow, orange, red) are enriched in the gain 
zone and FastDesign (blue) and FixBB (grey) results enriched in the loss zone. Bottom: 
Quantifications of number of designed sequence positions in gain, loss, and neutral zones for 
each method. (B) RankTop as a function of similarity to the input sequence for all profile 
datasets, except Fen49, which is omitted because the fentanyl deep sequencing data do not 
include the input sequence. The top amino acid from the known profile is assigned a rank of 1 if 
it is present in the input sequence, or a rank of 20 if it is not. Top: A threshold of 5 in the 
difference in RankTop between input and designed sequences defines the gain and loss zones. 
Middle: Box plots represent all positions in all datasets, except fentanyl. The median of the 
distributions is marked with a horizontal line. Second and third quartiles are marked by the box, 
and the whiskers extend to 1.5 times the inter-quartile range. Bottom: Quantification of sequence 
positions in gain, loss, and neutral zones for RankTop values.  
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Figure 2.7: Examples of structural models generated by different design methods. 
Comparison of crystal structures used as input for design (gray) to models generated by 
CoupledMoves (top, orange), FastDesign (middle, blue), and BackrubEnsemble (bottom, 
purple). (A) The crystal structure of Herceptin/HER2 (PDB: 1N8Z) shows a hydrogen bond 
network (black dashed lines) spanning the interface between Herceptin residues RVH50 (dark 
color) and TVL94 (medium color), and HER2 residues E273 and D275 (light color). Key 
designable residue RVH50 is retained by CoupledMoves, which models a native-like hydrogen 
bond network (orange dashed lines). In contrast, FastDesign and BackrubEnsemble model 
reduced networks (blue and purple dashed lines, respectively). Hydrogen atoms for 1N8Z were 
added using Rosetta. (B) Three tyrosines (Y34, Y101, Y115) form a hydrogen bond network 
Continued on next page. 
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Figure 2.7, continued: Examples of structural models generated by different design 
methods.  
(black dashed lines) with digoxigenin (DIG) in the crystal structure of digoxigenin binder 
DIG10.2 (PDB: 4J8T). CoupledMoves most frequently retains all three tyrosines and form a 
similar network (orange dashed lines). FastDesign frequently models leucines at positions 101 
and 115, and instead frequently models tyrosine at position 11, forming a hydrogen bond with 
the ester oxygen rather than carbonyl oxygen of the nearby digoxigenin ring (blue dashed line). 
BackrubEnsemble most frequently models asparagine at position 115, while retaining the other 
two contacts (purple dashed lines). (C) In crystal structures, glutamate E50 (left column, PDB: 
3DK9) and aspartate D331 (right column, PDB: 6FTC) form a hydrogen bond network with 
flavin-adenine dinucleotide (FAD) (black dashed lines). CoupledMoves retains E50 and D331 in 
geometries that maintain the network (orange dashed lines). FastDesign and BackrubEnsemble 
frequently model hydrophobic residues at these positions, abolishing the network. Hydrogen 
atoms for 3DK9 were added using Rosetta. (D) The frequencies of top known side chain for each 
position as designed by the different methods. Values for CoupledMoves represent averages and 
standard deviations across CM-BR, CM-FKIC, and CM-WKIC. 
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Figure 2.8: Distribution of energy percentiles for correctly modeled positions.  
“Energy percentile” refers to the percentile of the average total Rosetta energy of the correctly 
modeled side chain compared to that of all other side chains modeled by the design method at 
that position. Energy percentile was calculated for consensus (entropy ≤ 0.67) positions for 
which a method modeled the consensus at least once. (A) Distribution of energy percentiles. 
Count n indicates the number of positions for which each method modeled the consensus side 
chain at least once. (B) Energy percentile as a function of design frequency are shown as 
boxplots. Values from (A) are binned by design frequency (low: frequency ≤ 0.33, medium: 0.33 
< frequency ≤ 0.67, and high: frequency > 0.67). The number of values in each bin is shown on 
each boxplot. The median of the distributions is marked with a horizontal line. Second and third 
quartiles are marked by the box, and the whiskers extend to 1.5 times the inter-quartile range. 
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Figure 2.9: Comparison between typical and forced design of consensus side chains onto 
Backrub ensemble.  
Distribution of Rosetta energies (REU) for consensus amino acid side chains at five positions: 
Glutathione Reductase positions E50 and D331, and DIG10 positions Y34, Y101, and Y115. For 
each position, we show 100 models forced to adopt the consensus side chain during sequence 
design (black), and typical models (green) that arrived at the consensus side chain though they 
were allowed to design to multiple side chain identities. For typical models, n corresponds to the 
number of models with the known consensus side chain, out of a total of 2000 (400 models for 
each of the five positions; design frequencies are shown in Figure 2.7d). Density represents a 
Gaussian kernel density estimate using a bin width of 0.1 REU.  
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2.6 Tables 
 
Table 2.1: Benchmark datasets. 
Type of binding interaction (protein/small molecule or protein/protein) and source of known 
functional sequences are shown. Design position and starting amino acid residues are shown.  
Binding 
interaction 

Benchmark 
name Known functional sequences  

Protein / 
small molecule 

Cofactor Natural sequence alignments from Pfam database [72] 

Enzyme 
specificity Experimentally-characterized point mutations 

DIG10 Amino acid frequencies derived from deep sequencing of a 
site saturation mutagenesis library after 3 rounds of selection 

Fen49 
Amino acid frequencies derived from deep sequencing of a 
single site saturation mutagenesis library after 4 rounds of 
selection 

Protein / protein 

hGH / hGHR 
Sequences of clones selected from 5 combinatorial libraries 
(average of 180 sequenced clones per library) after 2 rounds 
of selection 

Herceptin / 
HER2 

Sequences of clones selected from 4 combinatorial libraries 
(average of 70 sequenced clones per library) after 4 rounds 
of selection 
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Table 2.2: Performance summary for enzyme specificity benchmark.  
Shown are median values across the benchmark. Percent enrichment describes the difference in 
frequency of a specificity-altering mutation designed in the presence of its specific ligand, 
compared to its frequency when designed around the alternate ligand. A mutation is considered 
correctly identified if a method identifies it with a positive percent enrichment. Rank and 
percentile were computed from sorted percent enrichment values. If the correct amino acid is not 
sampled, rank is the maximum possible number of amino acids for designed positions (number 
of designable positions*20). 

 
 
  
 
  

Median'
Percentile

Median'
Rank

Number'of'
mutations'
identified

Median'
Percentile

Median
Rank

Number'of'
mutations'
identified

CM#BR 79 15 14 76 22 13
CM#FKIC 70 25 10 76 22 13
CM#WKIC 78 19 12 80 22 12
BackrubEnsemble 0 60 7 74 32 9
FastDesign 0 60 7 0 100 4
FixBB 0 80 5 0 80 5

FindFmutantFaminoFacidFstartingFfromF
wild#typeFstructureF&FmutantFligand

FindFwild#typeFaminoFacidFstartingFfromF
mutantFstructureF&Fwild#typeFligandFFFFFFFFFFFFF
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Table 2.3: Detailed performance for enzyme specificity benchmark. 
Percentile and rank are defined as in Table 2.2. 
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1A80 1M9H NDP NAD K232G 5 79 22 1 100 64 37 1 100 1 100 1 100
1A80 1M9H NDP NAD R238H 5 66 35 1 100 1 100 1 100 1 100 1 100
1FCB 1SZE PYR 173 L230A 5 98 3 99 2 100 1 97 4 89 12 100 1
1K70 1RA0 HPY FPY D314A 4 100 1 98 3 99 2 100 1 98 3 99 2
1K70 1RA5 HPY FPY D314G 4 98 3 99 2 98 3 1 80 1 80 98 3
1K70 1RAK HPY FPY D314S 4 1 80 1 80 1 80 1 80 94 6 1 80
1PK7 1OUM ADN TAL M64V 3 77 15 1 60 1 60 1 60 1 60 1 60
1ZK4 1ZK1 NAP NAD G37D 7 99 2 98 4 100 1 99 2 100 1 100 1
2FZN 3E2Q PRO HYP Y540S 2 95 3 100 1 98 2 1 40 1 40 1 40
2H6F 2H6G FAR GER W602T 9 63 68 50 91 66 63 97 6 93 14 1 180
2O7B 2O78 HC4 TCA H89F 4 79 18 70 25 78 19 1 80 1 80 1 80
3HG5 3LX9 GLA A2G E203S 7 1 140 1 140 1 140 92 12 1 140 1 140
3HG5 3LX9 GLA A2G L206A 7 72 40 93 11 1 140 99 2 98 4 100 1
3KZO 3L02 AN0 SN0 E92A 5 99 2 99 2 99 2 1 100 100 1 1 100
3KZO 3L04 AN0 SN0 E92P 5 1 100 1 100 54 47 1 100 1 100 1 100
3KZO 3L05 AN0 SN0 E92S 5 94 7 90 11 89 12 1 100 1 100 1 100
3KZO 3L06 AN0 SN0 E92V 5 86 15 61 40 82 19 92 9 1 100 1 100

Wild%type
PDB-ID

Mutant
PDB-ID

Wild%type
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Mutand
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Mutation

#-Design-
Positions Pe

rc
en

til
e

Ra
nk

CM
FK
IC

Ra
nk

Pe
rc
en

til
e

Ra
nk

Pe
rc
en

til
e

Ra
nk

Pe
rc
en

til
e

Ra
nk

Pe
rc
en

til
e

Ra
nk

1A80 1M9H NDP NAD G232K 5 1 100 1 100 1 100 1 100 1 100 1 100
1A80 1M9H NDP NAD H238R 5 1 100 1 100 1 100 1 100 1 100 1 100
1FCB 1SZE PYR 173 A230L 5 97 5 96 7 96 6 88 18 1 100 1 100
1K70 1RA0 HPY FPY A314D 4 99 2 95 6 98 3 93 8 83 18 1 80
1K70 1RA5 HPY FPY G314D 4 73 23 74 22 74 22 1 80 1 80 1 80
1K70 1RAK HPY FPY S314D 4 1 80 1 80 1 80 1 80 1 80 1 80
1PK7 1OUM ADN TAL V64M 3 80 13 85 10 82 12 1 60 1 60 1 60
1ZK4 1ZK1 NAP NAD D37G 7 100 1 100 1 100 1 99 2 1 140 99 2
2FZN 3E2Q PRO HYP S540Y 2 1 40 1 40 1 40 1 40 88 22 1 40
2H6F 2H6G FAR GER T602W 9 59 75 69 57 57 79 85 28 1 180 1 180
2O7B 2O78 HC4 TCA F89H 4 85 13 74 22 1 80 1 80 1 80 1 80
3HG5 3LX9 GLA A2G S203E 7 80 29 76 35 80 29 92 12 91 8 97 5
3HG5 3LX9 GLA A2G A206L 7 59 59 58 60 59 58 1 140 88 13 1 140
3KZO 3L02 AN0 SN0 A92E 5 90 9 94 6 95 5 98 3 1 100 100 1
3KZO 3L04 AN0 SN0 P92E 5 89 12 88 13 92 9 91 10 1 100 95 6
3KZO 3L05 AN0 SN0 S92E 5 84 17 85 16 86 15 95 6 1 100 1 100
3KZO 3L06 AN0 SN0 V92E 5 86 18 93 10 89 14 74 32 1 100 95 7
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Table 2.4: Compute time. 
Total compute time for each method. Values represent the mean plus or minus the standard 
deviation across 400 trajectories. 

 
 
 
  

Method' Time'(hours)'
CM1BR' 52' ±' 27'
CM1FKIC' 75' ±' 43'
CM1WKIC' 73' ±' 27'
FastDesign' 1,502' ±' 1,377'
Backrub' 117' ±' 115'
+'FixBB' 5' ±' 3'
=' Backrub'
Ensemble'

122' ±' 115'
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2.7 Supplemental Figures 

 
Figure S2.1: Position profile similarity and RankTop for all designed positions (n) for 
each protein family in the cofactor dataset. Continued on next page. 
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Figure S2.1, continued. Position profile similarity and RankTop for all designed positions 
(n) for each protein family in the cofactor dataset. 
Distributions are shown as boxplots, while values for individual positions are overlaid as swarms 
of black points. For PPS (left), a value of 1 means the design method perfectly recapitulated the 
known sequence profile, whereas a value of zero means that the design method did not model 
any of the amino acid side chain identities from the known profile. For RankTop (right), a value 
of 1 means that the design method correctly identified the most frequent amino acid side chain 
observed in the known profile, whereas a RankTop of 20 means that side chain was observed 
with zero frequency, or that all side chains were modeled with some frequency and the top 
known was the least frequent. Median is marked with a horizontal black line, and notches 
represent a 95% confidence interval (CI) around the median; when CI extends past the quartiles, 
notches extend beyond the box, leading to a "flipped" appearance. The boxplot covers the second 
and third quartiles, and the vertical whiskers mark 1.5 times the inter-quartile range.  
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Figure S2.2: Profile similarity and rank top for all designed positions (n) for individual 
libraries of the Herceptin/HER2 dataset.  
Distributions are shown as boxplots, while values for individual positions are overlaid as swarms 
of black points. For PPS (left), a value of 1 means the design method perfectly recapitulated the 
known sequence profile, whereas a value of zero means that the design method did not model 
any of the amino acid side chain identities from the known profile. For RankTop (right), a value 
of 1 means that the design method correctly identified the most frequent amino acid side chain 
observed in the known profile, whereas a RankTop of 20 means that side chain was observed 
with zero frequency, or that all side chains were modeled with some frequency and the top 
known was the least frequent. Median is marked with a horizontal black line, and notches 
represent a 95% confidence interval (CI) around the median; when CI extends past the quartiles, 
notches extend beyond the box, leading to a "flipped" appearance. The boxplot covers the second 
and third quartiles, and the vertical whiskers mark 1.5 times the inter-quartile range. 
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Figure S2.3: Profile similarity and rank top for all designed positions (n) for individual 
libraries of the hGH/hGHR dataset.  
Distributions are shown as boxplots, while values for individual positions are overlaid as swarms 
of black points. For PPS (left), a value of 1 means the design method perfectly recapitulated the 
known sequence profile, whereas a value of zero means that the design method did not model 
Continued on next page. 
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Figure S2.3, continued: Profile similarity and rank top for all designed positions (n) for 
individual libraries of the hGH/hGHR dataset.  
any of the amino acid side chain identities from the known profile. For RankTop (right), a value 
of 1 means that the design method correctly identified the most frequent amino acid side chain 
observed in the known profile, whereas a RankTop of 20 means that side chain was observed 
with zero frequency, or that all side chains were modeled with some frequency and the top 
known was the least frequent. Median is marked with a horizontal black line, and notches 
represent a 95% confidence interval (CI) around the median; when CI extends past the quartiles, 
notches extend beyond the box, leading to a "flipped" appearance. The boxplot covers the second 
and third quartiles, and the vertical whiskers mark 1.5 times the inter-quartile range. 
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Figure S2.4: Sequence logos for predicted and known binding site sequences of the 
cofactor dataset. 
The height of each letter is proportional to its contribution to the column’s information content. 
The height of each column is inversely proportional to the sequence variation at that position. 
Continued on next page. 
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Figure S2.4, continued: Sequence logos for predicted and known binding site sequences of 
the cofactor dataset. 
The height of each letter is proportional to its contribution to the column’s information content. 
The height of each column is inversely proportional to the sequence variation at that position. 
Continued on next page. 
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Figure S2.4, continued: Sequence logos for predicted and known binding site sequences of 
the cofactor dataset. 
The height of each letter is proportional to its contribution to the column’s information content. 
The height of each column is inversely proportional to the sequence variation at that position. 
Continued on next page. 
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Figure S2.4, continued: Sequence logos for predicted and known binding site sequences of 
the cofactor dataset. 
The height of each letter is proportional to its contribution to the column’s information content. 
The height of each column is inversely proportional to the sequence variation at that position. 
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Figure S2.5: Sequence logos for predicted and known binding site sequences of the DIG10 
dataset. 
The height of each letter is proportional to its contribution to the information content of the 
column. The height of each column is inversely proportional to the sequence variation at that 
position. The experimental profile shows amino acid residues that were enriched in the 
experimental selection. 
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Figure S2.6: Sequence logos for predicted and known binding site sequences of the Fen49 
dataset. 
The height of each letter is proportional to its contribution to the information content of the 
column. The height of each column is inversely proportional to the sequence variation at that 
position. Experimental data are taken from sort 4 of the library.[2]  
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Figure S2.7: Sequence logos for predicted and known binding site sequences for the 
Herceptin/HER2 dataset. 
The height of each letter is proportional to its contribution to the information content of the 
column. The height of each column is inversely proportional to the sequence variation at that 
position. Different experimental libraries (Lib A, B, C, E) are indicated. Library D was omitted 
because the experimental data were dominated by the wild-type sequence. Residues are labeled 
with Kabat numbering. 
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Figure S2.8: Sequence logos for predicted and known binding site sequences of the 
hGH/hGHR dataset. 
The height of each letter is proportional to its contribution to the information content of the 
column. The height of each column is inversely proportional to the sequence variation at that 
position. Different experimental libraries (Lib A, B, C, D, E, F) are indicated.  
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Figure S2.9: Profile similarity and RankTop as a function of known sequence entropy for 
the hGH/hGHR, DIG10 and Fen49 datasets. Continued on next page. 
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Figure S2.9, continued: Profile similarity and RankTop as a function of known sequence 
entropy for the hGH/hGHR, DIG10 and Fen49 datasets.  
Each point represents one sequence position. The Herceptin/HER2 and Cofactor datasets are 
shown in Figure 2.5 in the main text. For each dataset (indicated in the header), profile similarity 
and RankTop are binned by entropy of the known sequence profile at each position (low: entropy 
≤ 0.33, medium: 0.33 < entropy ≤ 0.67, and high: entropy > 0.67). The number of low entropy 
positions in these three datasets is small. The boxplot covers the second and third quartiles, and 
the vertical whiskers mark 1.5 times the inter-quartile range. Median is marked with a horizontal 
black line, and notches represent a 95% confidence interval (CI) around the median; when CI 
extends past the quartiles, notches extend beyond the box, leading to a "flipped" appearance.  
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Figure S2.10: Design entropy. 
Shown are the distributions of entropy of the design sequence profiles for each designed position 
in each benchmark. The median of the distributions is marked with a white dot. Second and third 
quartiles are marked by the thick black bar, and the thin bar marks 1.5 times the inter-quartile 
range. The width of the violins is determined by the number of observations in each bin, and bins 
are defined using Scott’s normal reference rule. 
 



 67 

 
Figure S2.11: Position profile similarity and RankTop as a function of similarity between 
the input sequence and the known profile at each position. Continued on next page. 
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Figure S2.11, continued: Position profile similarity and RankTop as a function of similarity 
between the input sequence and the known profile at each position. 
When a preferred side chain from the known sequence profiles is not present in the input 
sequence, methods can achieve “gain” (green) by identifying correct amino acids with high 
frequency or rank. Alternatively, when a preferred side chains is present in the input, inaccurate 
design can cause “loss” (red). Only positions with low and medium entropy (≤ 0.67) are 
considered. (A) Left: PPS as a function of similarity to the input sequence for all profile datasets. 
Each point represents one position in the protein sequence, colored by design method. Right: 
Quantifications of number of designed sequence positions in gain, loss, and neutral zones. Gain 
and loss zones are defined by a threshold of 0.1 difference between input-known PPS and 
design-known PPS. (B) Left: Boxplots of each method’s RankTop as a function of similarity to 
the input sequence. The median of the distributions is marked with a horizontal line. Second and 
third quartiles are marked by the box, and the whiskers extend to 1.5 times the inter-quartile 
range. The top amino acid from the known profile is assigned a rank of 1 if it is present in the 
input sequence, or a rank of 20 if it is not. All profile datasets are shown except Fen49, which is 
omitted because the fentanyl deep sequencing data do not include the input sequence. For the 
digoxigenin dataset, there are no consensus positions for which the top experimentally selected 
side chain was present in the starting sequence. Right: Quantification of sequence positions in 
gain, loss, and neutral zones for RankTop values. 
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Figure S2.12: Number of trajectories. 
Comparison of median PPS, design entropy and RankTop as a function of number of design 
trajectories (n) for the Cofactor, Herceptin, and hGH/hGHR datasets for each method.  
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Figure S2.13: Compute time. 
(A) Distribution of individual trajectory compute times for each method. The median of the 
distributions is marked by the horizontal red bar. Second and third quartiles are marked by the 
thick black bar, and the thin bar marks 1.5 times the inter-quartile range. (B) Total time is 
calculated by multiplying mean job time ± standard deviation by the number of trajectories (n) 
required for consistent performance. BackrubEnsemble is the sum of two methods, Backrub (to 
generate conformational ensemble) and FixBB (to design sidechains). For the summed 
BackrubEnsemble time, standard deviation is the square root of the sum of the individual 
deviations squared. 
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2.8  Supplemental Tables 
 
Table S2.1: Cofactor dataset ligands. 
Ligand name and 3-letter PDB ligand identifier are shown for each protein family of the 
Cofactor dataset. 
Protein Ligand 
Acetyl Transferase Coenzyme A (COA) 
Alcohol Dehydrogenase nicotinamide-adenine-dinucleotide phosphate (NADP) (NAP) 
Amino-transferase 4'-deoxy-4'-aminopyridoxal-5'-phosphate (PMP) 
Flavodoxin flavin mono-nucleotide (FMN) 
Glutathione S-Transferase glutathione (GSH) 
Methyl-transferase S-adenosyl-methionine (SAM) 
Glutathione Reductase flavin-adenine dinucleotide (FAD) 
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Table S2.2: Cofactor benchmark structures and positions. 
Protein names and PDB codes are shown, along with designable and packable positions. Position 
numbering corresponds to PDB numbering. 
Protein PDB Designable positions Packable positions 

Acetyl 
Transferase 3S6F 

78, 79, 80, 85, 86, 87, 88, 90, 
91, 114, 115, 118, 119, 121 
(n = 14) 

4, 6, 26, 27, 28, 52, 60, 62, 63, 75, 77, 
81, 84, 89, 93, 94, 95, 109, 111, 112, 
116, 117, 122, 124, 126, ligand (n = 
26) 

Alcohol 
Dehydrog-
enase 

1ZK4 

13, 14, 15, 16, 17, 18, 19, 36, 
37, 38, 62, 63, 89, 90, 91, 92, 
112, 140, 142, 155, 159, 187, 
189, 190, 192, 194, 195, 205 
(n = 28) 

11, 12, 22, 23, 34, 35, 39, 42, 45, 46, 
58, 59, 61, 64, 69, 72, 87, 93, 94, 108, 
109, 113, 117, 138, 143, 144, 149, 
152, 156, 158, 162, 185, 186, 191, 
197, 198, 201, 202, 206, 210, 211, 
216, 219, 221, 222, 244, 248, ligand (n 
= 48) 

Amino-
transferase 2XBN 

73, 133, 134, 135, 138, 159, 
161, 202, 231, 233, 234, 262, 
264, 265 (n = 14) 

75, 136, 137, 139, 141, 142, 155, 158, 
162, 164, 200, 204, 205, 206, 236, 
260, 270, 273, 347, 349, 390, 392, 
ligand (n = 23) 

Flavodoxin 1F4P 
10, 11, 12, 13, 14, 15, 58, 59, 
60, 61, 62, 68, 93, 94, 95, 98, 
100, 101, 102 (n = 19) 

8, 16, 17, 18, 19, 57, 65, 66, 69, 70, 
71, 91, 96, 97, 105, 106, 125, 126, 
127, 130, ligand (n = 21) 

Glutathione 
S-
Transferase 

3R2Q 9, 10, 11, 33, 34, 48, 49, 50, 
62, 63, 64, 98, 105 (n = 13) 

3, 4, 6, 12, 13, 14, 15, 31, 38, 40, 43, 
44, 46, 51, 52, 61, 66, 67, 68, 91, 94, 
95, 101, 102, 108, 109, 112, 157, 160, 
164, 168, ligand (n = 32) 

Methyl-
transferase 3DLC 

8, 16, 20, 28, 48, 49, 50, 51, 
52, 53, 55, 72, 73, 74, 77, 
100, 101, 102, 117, 118, 119, 
122, 123 (n = 23) 

7, 13, 17, 19, 21, 24, 27, 31, 32, 46, 
47, 56, 57, 58, 59, 68, 70, 71, 76, 78, 
80, 81, 84, 103, 104, 114, 115, 116, 
120, 121, 125, 126, 128, 129, 130, 
132, 133, 144, 207, ligand (n = 40) 

Glutathione 
Reductase 3DK9 

26, 27, 28, 29, 30, 31, 49, 50, 
51, 52, 56, 57, 58, 62, 63, 66, 
129, 130, 155, 156, 157, 177, 
181, 197, 198, 201, 202, 291, 
294, 298, 330, 331, 337, 338, 
339, 340, 342, 372 (n = 38) 

24, 25, 33, 35, 47, 48, 54, 61, 64, 65, 
67, 70, 103, 114, 125, 126, 127, 131, 
132, 140, 142, 147, 153, 154, 159, 
160, 180, 192, 200, 205, 206, 223, 
226, 286, 288, 295, 297, 300, 329, 
332, 336, 341, 343, 344, 369, 370, 
371, 373, 376, 377, 441, ligand (n = 
52) 
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Table S2.3: Enzyme dataset. 
Ligand names are shown for wild-type and mutant proteins of the Enzyme specificity dataset. 
Protein Wild-type ligand Mutant ligand 

2-5-diketo-D-gluconic 
acid reductase A 

dihydro-nicotinamide-adenine-
dinucleotide phosphate (NADPH) 
(NDP) 

nicotinamide-adenine-
dinucleotide (NAD) 

Alcohol dehydrogenase nicotinamide-adenine-dinucleotide 
(NAD) 

NADP nicotinamide-
adenine-dinucleotide 
phosphate (NAP) 

Alpha-galactosidase A N-actyl-2-deoxy-2-amino-galactose 
(A2G) 

alpha D-galactose 
(GLA) 

Cytosine deaminase  (4S)-5-fluoro-4-hydroxy-3,4-
dihydropyrimidin-2(1H)-one (FPY) 

4-hydroxy-3,4-dihydro-
1H-pyrimidin-2-one 
(HPY) 

Farnesyltransferase geran-8-yl geran (GER) farnesyl (FAR) 
Flavocytochrome b(2)  benzoyl-formic ACID (173) pyruvic acid (PYR) 

Histidine ammonialyase  phenylethylene-carboxylic acid 
(TCA) 

para-coumaric acid 
(HC4) 

N-acetylornithine 
carbamoyltransferase 

N-(3-carboxypropanoyl-L-norvaline 
(SN0) 

N-acetyl-L-norvaline 
(AN0) 

Proline dehydrogenase  4-hydroxyproline (HYP) proline (PRO) 
Purine nucleoside 
phosphorylase 

 9-(6-deoxy-alpha-L-talofuranosyl)-6-
methylpurine (TAL) adenosine (ADN) 
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Table S2.4: Enzyme specificity benchmark structures and positions. 
Proteins (wild-type and mutant) and ligand names and PDB codes are shown, along with 
designable and packable positions.  Position numbering corresponds to PDB numbering. 
Continued on next page. 

Protein PDB Designable 
positions Packable positions 

2-5-diketo-D-
gluconic acid 
reductase A 

1M9H 
(mutant) 

232, 233, 234, 235, 
238  (n = 5) 

19, 22, 23, 24, 25, 28, 32, 41, 190, 215, 231, 
237, 239, 241, 242, ligand (n = 16) 

1A80 
(wild-
type) 

232, 233, 234, 235, 
238 (n = 5) 

19, 22, 23, 24, 25, 28, 32, 41, 190, 215, 231, 
237, 239, 241, 242, ligand (n = 16) 

Alcohol 
dehydrogenase 

1ZK1 
(mutant) 

13, 14, 15, 16, 36, 
37, 38, 42 (n = 8) 

10, 11, 12, 23, 33, 34, 35, 39, 41, 46, 58, 59, 
61, 62, 63, 64, 69, 72, 89, 90, 112, 192, 193, 
194, ligand (n = 25) 

1ZK4 
(wild-
type) 

13, 14, 15, 16, 36, 
37, 38 (n = 7) 

10, 11, 12, 23, 33, 34, 35, 39, 42, 46, 56, 58, 
59, 61, 62, 63, 69, 72, 89, 90, 192, 193, 194, 
ligand (n = 24) 

Alpha-
galactosidase A 

3LX9 
(mutant) 

170, 203, 206, 207, 
227, 229, 231 (n = 
7) 

47, 92, 93, 134, 136, 137, 141, 142, 168, 
172, 174, 177, 180, 184, 201, 204, 208, 209, 
228, 241, 242, 245, 246, 249, 253, 264, 266, 
267, ligand (n = 29) 

3HG5 
(wild-
type) 

170, 203, 206, 207, 
227, 229, 231 (n = 
7) 

47, 51, 92, 93, 134, 136, 137, 141, 142, 168, 
172, 174, 177, 180, 184, 201, 204, 208, 209, 
211, 228, 241, 242, 245, 246, 249, 264, 265, 
266, 267, ligand (n = 31) 

Cytosine 
deaminase  

1K70 
(wild-
type) 

63, 313, 314, 319 
(n = 4) 

61, 65, 66, 81, 85, 88, 122, 124, 154, 214, 
217, 246, 273, 275, 278, 279, 282, 317, 318, 
320, ligand (n = 21) 

1RA5 
(mutant) 

63, 313, 314, 319 
(n = 4) 

61, 65, 66, 81, 85, 88, 122, 124, 154, 156, 
214, 217, 246, 273, 275, 278, 279, 282, 317, 
318, 320, ligand (n = 22) 

1RAK 
(mutant) 

63, 313, 314, 319 
(n = 4) 

61, 65, 66, 81, 85, 88, 122, 124, 154, 156, 
214, 217, 246, 273, 275, 278, 279, 282, 317, 
318, 320, ligand (n = 22) 

1RA0 
(mutant) 

63, 313, 314, 317, 
319 (n = 5) 

61, 65, 66, 69, 81, 85, 88, 122, 124, 154, 
214, 217, 246, 273, 275, 278, 279, 282, 318, 
320, ligand (n = 21) 

Farnesyltransferase 

2H6G 
(mutant) 

602, 605, 606, 651, 
654, 655, 706, 803, 
865 (n = 9) 

596, 599, 603, 609, 649, 650, 652, 658, 662, 
693, 702, 703, 705, 709, 710, 748, 753, 799, 
800, 802, 860, 861, 862, 864, 868, 902, 903, 
ligand (n = 28) 

2H6F 
(wild-
type) 

602, 605, 606, 654, 
655, 705, 706, 803, 
865 (n = 9) 

596, 599, 603, 609, 650, 651, 658, 662, 693, 
702, 703, 709, 748, 753, 754, 757, 761, 799, 
800, 802, 860, 861, 862, 864, 868, 902, 903, 
ligand (n = 28) 
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Table S2.4, continued: Enzyme specificity benchmark structures and positions. 
Proteins (wild-type and mutant) and ligand names and PDB codes are shown, along with 
designable and packable positions.  Position numbering corresponds to PDB numbering. 

Protein PDB Designable 
positions Packable positions 

Flavocytochrome 
b(2)  

1SZE 
(mutant) 

143, 198, 230, 
254, 286, 325, 326 
(n = 7) 

139, 144, 199, 202, 228, 229, 252, 
256, 280, 283, 289, 292, 296, 323, 
324, 373, 377, ligand (n = 18) 

1FCB 
(wild-
type) 

143, 198, 230, 
254, 326 (n = 5) 

139, 144, 199, 202, 228, 229, 252, 
280, 283, 289, 292, 296, 323, 325, 
373, 376, ligand (n = 17) 

Histidine ammonia-
lyase  

2O78 
(mutant) 

89, 90, 405, 406 (n 
= 4) 

66, 68, 69, 86, 87, 153, 154, 157, 
202, 432, 381, 391, 392, 402, 408, 
409, 503, ligand (n = 18) 

2O7B 
(wild-
type) 

89, 90, 405, 406 (n 
= 4) 

66, 68, 69, 86, 87, 153, 154, 157, 
202, 432, 391, 392, 402, 408, 409, 
503, ligand (n = 17) 

N-acetylornithine 
carbamoyltransferase 

3L05 
(mutant) 

180, 296, 298, 77, 
92 (n = 5) 

48, 50, 51, 181, 182, 184, 252, 253, 
270, 293, 301, 302, 78, 93, 98, 
ligand (n = 16) 

3L06 
(mutant) 

180, 184, 298, 
302, 77, 92 (n = 6) 

48, 50, 51, 112, 178, 181, 182, 251, 
252, 253, 270, 291, 293, 296, 297, 
301, 303, 308, 78, 93, ligand (n = 
21) 

3L04 
(mutant) 

180, 184, 298, 77, 
92 (n = 5) 

48, 50, 51, 181, 182, 252, 253, 270, 
296, 301, 302, 78, 93, ligand (n = 
14) 

3L02 
(mutant) 

180, 298, 77, 92 (n 
= 4) 

48, 50, 51, 181, 182, 184, 252, 253, 
270, 293, 296, 301, 302, 78, 93, 98, 
ligand (n = 17) 

3KZO 
(wild-
type) 

180, 184, 298, 77, 
92 (n = 5) 

48, 50, 51, 181, 182, 252, 253, 270, 
293, 296, 302, 78, 93, 98, ligand (n 
= 15) 

Proline 
dehydrogenase  

2FZN 
(wild-
type) 

513, 540 (n = 2) 
259, 283, 285, 327, 370, 431, 485, 
487, 511, 516, 538, 542, 552, 556, 
559, 560, ligand (n = 17) 

3E2Q 
(mutant) 

285, 513, 540 (n = 
3) 

259, 283, 287, 327, 329, 370, 431, 
485, 487, 511, 516, 542, 552, 556, 
559, 560, ligand (n = 17) 

Purine nucleoside 
phosphorylase 

1OUM 
(mutant) 

64, 180, 181 (n = 
3) 

62, 69, 73, 87, 159, 179, 185, 198, 
ligand (n = 9) 

1PK7 
(wild-
type) 

64, 159, 180 (n = 
3) 62, 156, 160, 181, ligand (n = 5) 
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Table S2.5: Digoxigenin benchmark structures and positions. 
PDB codes are shown for the source of the protein and ligand structure. Position and starting side 
chain identity are shown for designable and packable positions. Table lists positions packed by 
CoupledMoves methods; other methods pack all positions. Positions are numbered as in [3]. 

Protein PDB Designable positions Packable positions  
(coupled methods) 

Designed 
digoxigenin 
binder 
DIG10.1 

1Z1S 
(protein), 
4J8T 
(ligand) 

A10, L11, L14, W22, C23, 
F26, L32, Y34, A37, P38, 
G40, H41, F45, H54, M55, 
F58, Y61, M62, I64, F66, 
F84, G86, G88, H90, V92, 
S93, G95, L97, A99, Y101, 
S103, L105, I112, Y115, 
L117, F119, V124, P127, 
L128 (n = 39) 

I6, L7, V8, H9, R12, L13, E15, A19, 
R20, L25, P39, K42, T43, R48, E49, 
T50, I51, W52, L57, P59, E60, V69, 
F71, A80, T91, T107, P121, R123, 
L125, I6, L7, V8, H9, R12, L13, E15, 
A19, R20, L25, P39, K42, T43, R48, 
E49, T50, I51, W52, L57, P59, E60, 
V69, F71, A80, T91, T107, P121, 
R123, L125, DIG (n = 30) 

 
Table S2.6: Allowed design for digoxigenin dataset. 
Shown are amino acids (one letter codes) to which positions were allowed to design. Amino 
acids were included only if they had high enough sequencing counts to be included in the 
enrichment and depletion calculations in [3].  
Position Allowed amino acids  Position Allowed amino acids 
10 ACDEFGILMNPRSTVY  84 ACDFGHILMNPRSTVWY 
11 ACDFGHILMNPQRSTVY  86 ACDEFGHILNPRSTVWY 
14 AFHIKLMPQRSTVW  88 ACDEFGHILNPRSTVWY 
22 ACFGLMPQRSTVWY  90 ACDEFGHIKLNPQRSTVY 
23 ACDFGHILNPRSTVWY  92 ADEFGIKLMPQRSTVW 
26 CFILMSTVWY  93 ACDFGHIKLMNPRSTVWY 
32 FHILMPQRSTV  95 ACDEFGHILNPRSTVWY 
34 ACDEFHIKLNPQRSTVY  97 AEFGHIKLMPQRSTVWY 
37 AEGIKLPQRSTV  99 ACDEFGHILNPRSTVY 
38 AEGHKLMPQRSTVW  101 ACDEFGHIKLNPQRSTVWY 
40 ACDEFGHILNPRSTVWY  103 ACDFHILNPRSTVWY 
41 ACDEFGHKLNPQRSTVY  105 AFGHIKLMPQRSTVW 
45 ACDFGHILRSTVWY  112 ACFHIKLMNPRSTV 
54 ACDEFGHIKLNPQRSTVY  115 ACDEFHIKLNQRSTVWY 
55 AEFGIKLMNRSTVW  117 ACDFGHILMNPQRSTVY 
58 ACDFGHILMNPRSTVWY  119 ACDFGHILMNPRSTVWY 
61 ACDEFGHIKLNPQRSVWY  124 ACDEFGHILMNPRSTVWY 
62 AFGIKLMNPRSTVW  127 AGHIKLPQRSTV 
64 ADFGIKLMNPRSTVY  128 AEFGHIKLMPQRSTVW 
66 ACFILMNPRSTVY    
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Table S2.7: Fentanyl specificity benchmark structures and positions. 
PDB codes are shown for the source of the protein and ligand structure. Position and starting side 
chain identity are shown for designable positions, and position is shown for packable positions. 
Position numbering corresponds to PDB numbering as in [2]. 

Protein PDB Designable positions Packable positions  
(coupled methods) 

Designed 
fentanyl 
binder 
Fen49 

2QZ3 
(protein), 
5TZO 
(ligand) 

Q7, W9, N35, V37, N63, 
Y65, T67, Y69, W71, E78, 
Y80, P90, R112, P116, 
W129, Y166, A170, A172 
(n = 18) 

Y5, D11, T43, R73, L76, V82, W85, 
Y88, Y108, T110, A115, S117, I118, 
D121, F125, Q127, V131, A165, 
V168, Y174, Q175, FEN  (n = 22) 

 
Table S2.8: Allowed design for fentanyl dataset. 
Amino acids were allowed in design only if they had high enough sequencing counts to be 
included in the enrichment and depletion calculations in [2]. Shown are the amino acid side 
chains (one letter codes) to which positions were allowed to design. Because Fen49 wild-type 
identities are disallowed during design (see Methods), positions marked with (*) were mutated to 
alanine with the FixBB application during preparation of the input structure for design. 
Position Allowed side chains 

 
Position Allowed side chains 

9 ACDEFGHIKLMNPRSTVWY 
 

78 ACDEFGHKLMPQRSTVWY 
35 ACDEFGIKLMNPQRTVWY 

 
90 ACDEFGHILMNPQRSTVWY 

37* ACDEFGHILMNQRSTWY 
 

112 ACDFGHILMPRSTVWY 
65* ACEGLMRSTV 

 
116 AEGKLMPQRSTVWY 

67 ACDEFGIKLMNPQRSTVWY 
 

129 ACEFGIKLMPQRSTVW 
69* ACDFGHIKLNRSTVW 

 
170 ACEGLPQRSTV 

71* ACDEFGHIKLMNPRSTV 
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Table S2.9: hGH/hGHr specificity benchmark structures and positions. 
For each library, position and starting side chain identity are shown for designable positions, and 
position is shown for packable positions. Position numbering corresponds to PDB numbering. 

Library Designable positions Packable positions 

A M14, Y28, N47, P61, 
D171, I179 (n = 6). 

17, 21, 32, 41, 48, 49, 50, 60, 66, 67, 68, 70, 75, 78, 160, 
163, 164, 167, 174, 175, 176, 177, 178, 181, 183, 202, 254, 
276, 315, 365,  (n = 30) 

B H18, Y42, S62, E65, 
Y164, T175 (n = 6). 

22, 28, 38, 41, 44, 45, 46, 51, 53, 63, 66, 69, 160, 165, 167, 
168, 171, 174, 176, 179, 202, 248, 252, 254, 255, 270, 271, 
272, 277, 315, 363, 364,  (n = 32) 

C H21, N29, L45, T60, 
T67, R178 (n = 6). 

14, 24, 25, 33, 41, 42, 44, 51, 58, 61, 66, 68, 75, 78, 82, 
164, 167, 170, 171, 172, 174, 176, 179, 181, 182, 189, 226, 
256, 272, 315, 317, 364, 365,  (n = 33) 

D Q22, S43, E66, R167, 
F176, R183 (n = 6). 

18, 19, 21, 23, 24, 25, 26, 28, 40, 60, 61, 62, 63, 67, 72, 75, 
78, 79, 82, 164, 172, 175, 179, 184, 254, 276, 277, 364,  (n 
= 28) 

E D26, F44, P48, R64, 
K168, E174 (n = 6). 

14, 17, 18, 21, 22, 25, 45, 47, 49, 50, 51, 52, 53, 56, 68, 
157, 160, 164, 169, 172, 203, 221, 225, 226, 254, 256, 310, 
313, 315, 363, 364,  (n = 31) 

F F25, K41, Q46, N63, 
K172 (n = 5). 

21, 26, 28, 29, 32, 36, 38, 42, 45, 56, 60, 62, 65, 66, 82, 
160, 164, 167, 168, 169, 176, 226, 252, 254, 258, 270, 272, 
277, 364,  (n = 29) 

. 
Table S2.10: Herceptin/HER2 specificity benchmark structures and positions. 
Design and packable positions are shown for each library. Design positions are listed in Kabat 
numbering [73]. For packable positions, numbering corresponds to consecutive renumbering of 
the 312 positions in combined chain A positions 1-106, chain B positions 1-119, and chain C 
positions 511-607. Herceptin Library D is omitted because the experimental data were 
dominated by the wild-type sequence. 
Library Designable positions Packable positions 

A 
VL94, VH33, VH50, 
VH56, VH58, VH95 (n = 
6). 

93, 95, 138, 140, 141, 153, 155, 157, 158, 161, 164, 166, 
176, 204, 211, 213, 272, 273, 275, 276, 287, 288 (n = 
22). 

B 
VL30, VL91, VL92, VH50, 
VH95, VH99, VH100a (n 
= 7). 

28, 29, 31, 32, 66, 71, 90, 93, 94, 138, 139, 141, 153, 
155, 157, 164, 165, 176, 204, 208, 210, 212, 213, 273, 
275, 284, 285, 286, 287, 288, 296, 298, 301, 303, 305, 
307 (n = 36). 

C 
VL49, VL53, VL91, VH98, 
VH99, VH100, VH100a (n 
= 7). 

32, 46, 48, 50, 52, 54, 90, 92, 205, 212, 214, 285, 286, 
287, 288, 296, 298, 308 (n = 18). 

E VL49, VL53, VL55, 
VH100, VH102 (n = 5). 

46, 48, 50, 52, 54, 56, 58, 108, 110, 203, 204, 205, 211, 
212, 214, 216, 308 (n = 17). 
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Table S2.11: Number of designed sequence positions in PPS gain/loss/neutral zones. 
Values for CoupledMoves represent averages ± standard deviation for CM-BR, CM-FKIC, and 
CM-WKIC. The charged or polar category includes arginine, histidine, lysine, aspartate, 
glutamate, serine, threonine, asparagine, glutamine, tyrosine, and cysteine. The hydrophobic 
category includes alanine, phenylalanine, glycine, isoleucine, leucine, methionine, valine, 
tryptophan, and proline. 

' '
Amino'acid'category'

' '
all'

charged'
or'polar'

hydro1'
phobic'

Coupled'
Moves''

gain' 43±3' 16±1' 28±2'
loss' 32±4' 25±3' 6±1'
neutral' 81±6' 26±3' 55±3'

Backrub'
Ensemble'

gain' 37' 13' 24'
loss' 41' 28' 13'
neutral' 78' 26' 52'

Fast'
Design'

gain' 28' 10' 18'
loss' 46' 33' 13'
neutral' 82' 24' 58'

Fixed'
Backbone'

gain' 13' 4' 9'
loss' 50' 34' 16'
neutral' 93' 29' 64'
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2.9 Supplemental Rosetta command lines and XML scripts 
 
2.9.1 CM-BR (with ligand) 
 
Rosetta/main/source/bin/coupled_moves.default.linuxgccrelease9:s9pdb9:
mute9protocols.backrub.BackrubMover9:ex19:ex29:extrachi_cutoff909:
nstruct919:ignore_unrecognized_res9:score::weights9ref20159:
extra_res_fa9ligand_name.params9:resfile9resfile9:coupled_moves::mc_kt9
2.49:coupled_moves::boltzmann_kt92.49:coupled_moves::ntrials910009:
coupled_moves::initial_repack9false9:coupled_moves::ligand_mode9true9:
coupled_moves::ligand_weight929:coupled_moves::fix_backbone9false9:
coupled_moves::bias_sampling9true9:coupled_moves::bump_check9true9:
coupled_moves::backbone_mover9backrub9:
coupled_moves::exclude_nonclashing_positions9true9:nstruct9400!
 
2.9.2 CM-BR (without ligand) 
 
Rosetta/main/source/bin/coupled_moves.default.linuxgccrelease9:s9pdb9:
mute9protocols.backrub.BackrubMover9:ex19:ex29:extrachi_cutoff909:
nstruct919:ignore_unrecognized_res9:score::weights9ref20159:resfile9
resfile9:coupled_moves::mc_kt92.49:coupled_moves::boltzmann_kt92.49:
coupled_moves::ntrials910009:coupled_moves::initial_repack9false9:
coupled_moves::fix_backbone9false9:coupled_moves::bias_sampling9true9:
coupled_moves::bump_check9true9:coupled_moves::backbone_mover9backrub9
:coupled_moves::exclude_nonclashing_positions9true9:nstruct9400!
 
2.9.3 CM-FKIC (with ligand) 
 
Rosetta/main/source/bin/coupled_moves.default.linuxgccrelease9:s9
name.pdb9:mute9protocols.backrub.BackrubMover9:ex19:ex29:
extrachi_cutoff909:nstruct919:ignore_unrecognized_res9:score::weights9
ref20159:extra_res_fa9name.params9:resfile9name.resfile9:
coupled_moves::mc_kt92.49:coupled_moves::boltzmann_kt92.49:
coupled_moves::ntrials910009:coupled_moves::initial_repack9false9:
coupled_moves::ligand_mode9true9:coupled_moves::ligand_weight929:
coupled_moves::fix_backbone9false9:coupled_moves::bias_sampling9true9:
coupled_moves::bump_check9true9:
coupled_moves::exclude_nonclashing_positions9true9:
coupled_moves::backbone_mover9kic9:coupled_moves::kic_perturber9
fragment9:loops:frag_sizes99939:loops:frag_files9name.200.9mers.gz9
name.200.3mers.gz9:nstruct94009
 
2.9.4 CM-FKIC (without ligand) 
 
Rosetta/main/source/bin/coupled_moves.default.linuxgccrelease9:s9
name.pdb9:mute9protocols.backrub.BackrubMover9:ex19:ex29:
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extrachi_cutoff909:nstruct919:ignore_unrecognized_res9:score::weights9
ref20159:resfile9name.resfile9:coupled_moves::mc_kt92.49:
coupled_moves::boltzmann_kt92.49:coupled_moves::ntrials910009:
coupled_moves::initial_repack9false9:coupled_moves::ligand_mode9false9
:coupled_moves::fix_backbone9false9:coupled_moves::bias_sampling9true9
:coupled_moves::bump_check9true9:
coupled_moves::exclude_nonclashing_positions9true9:
coupled_moves::backbone_mover9kic9:coupled_moves::kic_perturber9
fragment9:loops:frag_sizes99939:loops:frag_files9name.200.9mers.gz9
name.200.3mers.gz9:nstruct94009
 
2.9.5 CM-WKIC (with ligand) 
 
Rosetta/main/source/bin/coupled_moves.default.linuxgccrelease9:s9
name.pdb9:mute9protocols.backrub.BackrubMover9:ex19:ex29:
extrachi_cutoff909:nstruct919:ignore_unrecognized_res9:score::weights9
ref20159:extra_res_fa9name.params9:resfile9name.resfile9:
coupled_moves::mc_kt92.49:coupled_moves::boltzmann_kt92.49:
coupled_moves::ntrials910009:coupled_moves::initial_repack9false9:
coupled_moves::ligand_mode9true9:coupled_moves::ligand_weight929:
coupled_moves::fix_backbone9false9:coupled_moves::bias_sampling9true9:
coupled_moves::bump_check9true9:
coupled_moves::exclude_nonclashing_positions9true9:
coupled_moves::backbone_mover9kic9:coupled_moves::kic_perturber9
walking9:nstruct94009
 
2.9.6 CM-WKIC (without ligand) 
 
Rosetta/main/source/bin/coupled_moves.default.linuxgccrelease9:s9
name.pdb9:mute9protocols.backrub.BackrubMover9:ex19:ex29:
extrachi_cutoff909:nstruct919:ignore_unrecognized_res9:score::weights9
ref20159:extra_res_fa9name.params9:resfile9name.resfile9:
coupled_moves::mc_kt92.49:coupled_moves::boltzmann_kt92.49:
coupled_moves::ntrials910009:coupled_moves::initial_repack9false9:
coupled_moves::fix_backbone9false9:coupled_moves::bias_sampling9true9:
coupled_moves::bump_check9true9:
coupled_moves::exclude_nonclashing_positions9true9:
coupled_moves::backbone_mover9kic9:coupled_moves::kic_perturber9
walking9:nstruct94009
 
2.9.7 FastDesign (with ligand) 
 
Rosetta/main/source/bin/relax.default.linuxgccrelease9:s9name.pdb9:
resfile9name.resfile9:extra_res_fa9ligand_name.params9:ex19:ex29:
extrachi_cutoff909:nstruct94009:in:file:fullatom9:relax:fast9:



 82 

relax:respect_resfile9:relax:constrain_relax_to_start_coords9:
relax:coord_cst_stdev9.59
 
2.9.8 FastDesign (without ligand) 
 
Rosetta/main/source/bin/relax.default.linuxgccrelease9:s9name.pdb9:
resfile9name.resfile9:ex19:ex29:extrachi_cutoff909:nstruct94009:
in:file:fullatom9:relax:fast9:relax:respect_resfile9:
relax:constrain_relax_to_start_coords9:relax:coord_cst_stdev9.59
 
2.9.9 BackrubEnsemble step 1: Backrub ensemble generation (with ligand) 
 
Rosetta/main/source/bin/backrub.default.linuxgccrelease9:
score::weights9ref20159:s9name.pdb9:nstruct94009:
ignore_unrecognized_res9:extra_res_fa9ligand_name.params9:
backrub:ntrials9100009:mc_kt91.29:max_atoms91299
 
2.9.10 BackrubEnsemble step 1: Backrub ensemble generation (without ligand) 
 
Rosetta/main/source/bin/backrub.default.linuxgccrelease9:
score::weights9ref20159:s9name.pdb9:nstruct94009:
ignore_unrecognized_res9:backrub:ntrials9100009:mc_kt91.29:max_atoms9
1299
 
2.9.11 BackrubEnsemble step 2: Design on backrub ensemble (with ligand) 
 
Rosetta/main/source/bin/rosetta_scripts.default.linuxgccrelease9:
parser:protocol9FBBRS.xml9:parser:script_vars9res_file=name.resfile9:s9
name_ensemble_member.pdb9:nstruct94009:ignore_unrecognized_res9:
extra_res_fa9ligand_name.params9
 
2.9.12 BackrubEnsemble step 2: Design on backrub ensemble (without ligand) 
 
Rosetta/main/source/bin/rosetta_scripts.default.linuxgccrelease9:
parser:protocol9FBBRS.xml9:parser:script_vars9res_file=name.resfile9:s9
name_ensemble_member.pdb9:nstruct94009:ignore_unrecognized_res!
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2.9.13 BackrubEnsemble step 2: Design on backrub ensemble, file name FBBRS.xml 
 
<ROSETTASCRIPTS>9
9999<SCOREFXNS>9
9999</SCOREFXNS>9
9999<RESIDUE_SELECTORS>9
9999</RESIDUE_SELECTORS>9
9999<TASKOPERATIONS>9

<ReadResfile9name="resfile"9filename="%%res_file%%"9/>9
999999<ExtraRotamers9name="ex1"9chi="1"9/>9
999999<ExtraRotamers9name="ex2"9chi="2"9/>9
999999<ExtraChiCutoff9name="exchi0"9extrachi_cutoff="0"9/>9
9999</TASKOPERATIONS>9
9999<FILTERS>9
9999</FILTERS>9
9999<MOVERS>9
999999<PackRotamersMover9name="pack_rot"9
task_operations="resfile,ex1,ex2,exchi0"9/>99
9999</MOVERS>9
9999<APPLY_TO_POSE>9
9999</APPLY_TO_POSE>9
9999<PROTOCOLS>9
999999<Add9mover="pack_rot"9/>9
9999</PROTOCOLS>9
9999<OUTPUT/>9
</ROSETTASCRIPTS>9
 
2.9.14 FixBB control (with ligand) 
 
Rosetta/main/source/bin/rosetta_scripts.default.linuxgccrelease9:
parser:protocol9FBBRS.xml9:parser:script_vars9res_file=name.resfile9:s9
name.pdb9:nstruct94009:ignore_unrecognized_res9:extra_res_fa9
ligand_name.params9
 
2.9.15 FixBB control (without ligand) 
 
Rosetta/main/source/bin/rosetta_scripts.default.linuxgccrelease9:
parser:protocol9FBBRS.xml9:parser:script_vars9res_file=name.resfile9:s9
name.pdb9:nstruct94009:ignore_unrecognized_res9:extra_res_fa9
ligand_name.params9
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Chapter 3: Experimental methods for screening designed 
ibuprofen sensors 
 
3.1 Introduction 

Detection and response to signals is fundamental to living systems, and requires systems 

capable of both sensing a signal and actuating a response. Engineered sensor/actuator tools could 

play crucial roles if design can reliably generate sensors for molecules that cannot be detected by 

existing proteins. Applications for sensor/actuators include therapeutics, biological 

manufacturing, probing biology, and engineering communication. For example, we could use 

small molecule signals to control multiple interactions within a single cell for the purposes of 

studying biology, engineer new channels of cooperation and communication between cells, or 

regulate gene expression in response to the presence of metabolic intermediates, such as the 

farnesyl pyrophosphate (FPP) intermediate in the bisabolene production pathway.[1, 74] I 

present an experimental method for testing modular systems with sensor and actuator domains, 

wherein the identities of the input (target small molecule) and the output (protein 

complementation) can be tailored to various synthetic biology applications.[1] I also describe a 

system that senses the small molecule ibuprofen, and reports its presence via dimerization of a 

split reporter. 

The ibuprofen sensor reported here was designed using a computational protocol which 

grafts a known binding from a naturally occurring, monomeric protein, to the interface of a 

heterodimer that did not previously contain a binding site, such that the ligand binding induces 

dimerization which is reported by complementation of a split reporter (Figure 3.1a), as in [1]. In 

natural biology, signals often take the form of small molecules, which are sensed by binding to a 

pocket in a protein, and signal transduction often proceeds via allostery or homodimerization. 
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Few known examples of ligand-induced heterodimerization have been characterized, and the 

rapamycin[75] and abscisic acid[76] systems are most well known. By combining ligand-

induced heterodimerization with fusion to a split reporter, we arrive at a combination of modular 

input and modular output that is powerfully adaptable to various applications. In some cases, we 

may desire to detect a target small molecule of interest, and any convenient actuator may be used 

to report the presence of the small molecule (Figure 3.1b). Alternatively, if the desired 

application is activation of a particular actuator, any convenient small molecule can be used to 

activate dimerization of the sensor and actuator (Figure 3.1c). These simple conceptual examples 

can be built upon for more complex synthetic biology applications.  

 

3.2 Results 

Sensor domains were engineered using the macromolecular modeling and design 

software Rosetta[10] by a process (Figure 3.2, see Methods) which can be generalized to design 

sensors for various small molecules.[1] Briefly, the geometry of amino acid side chains 

coordinating the ligand (motif residues) were defined from an existing binding site in monomeric 

protein COX-1 (PDB: 1EQG). In step 2, motif residues that make key contacts with ibuprofen 

were matched using a protocol (adapted from [77]) to heterodimer Ultraspiracle/Ecdysone 

Receptor (PDB: 2NXX), referred to as a scaffold protein, which has a backbone conformation 

capable of placing the motif residues in the correct orientations to bind ibuprofen. In step 3, 

motif residues and ibuprofen were placed into the scaffold, and the surrounding region was 

designed to accommodate and stabilize the transplanted binding site. In step 4, designs proteins 

were linked to protein complementation systems for testing in E. coli and in vitro.  
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 Small molecules of interest were selected for their possible utility and include 

intermediates in metabolic pathways, therapeutic agents, and toxins (Figure 3.3). Experimental 

Safety and ease of use were also considered, and ligands were chosen to be soluble in aqueous 

solution, and do not include chemicals classed as particularly hazardous or carcinogenic. The set 

also included a number of generally nontoxic molecules, which could be used in many 

applications with low risk of cytotoxic effects. Of particular interest in this category is p-

coumaric acid, which switches between isomers in response to light. Additionally, ibuprofen 

(IBP) falls into this category and is of interested for therapeutic applications because it is cheap, 

FDA approved, and humans are regularly and safely prescribed doses as high as 2,400 

mg/day.[78] In the realm of metabolic engineering, FPP is of great interest because it is the 

precursor to several commercially important compounds. A sensor/actuator for the toxic 

insecticide thiacloprid could be used for bioremediation. Cells use homoserine lactone and 

serotonin to communicate with each other, and sensor/actuators for these could be used to add 

additional channels of communication between engineered cells. The full complement of designs 

described in Figure 3.3 and Appendix 3.3 were previously generated by computational design 

and chosen for the experimental screens described here. Each design contains 8 to 22 mutated 

positions, and motifs for some target ligands were matched to more than one scaffold 

heterodimer (Figure 3.3).  

We focus on experimental characterization of ibuprofen sensors. We individually 

screened 16 designs targeting ibuprofen, each containing 14-20 mutations from the wild-type 

heterodimer, Ultraspiracle and Ecdysone Receptor (PDB: 2NXX) (Figure 3.4). For two designs, 

#490 and 492, we observed increased signal from the split reporter proteins in the presence of 

ibuprofen compared to a control with no ibuprofen, as described below. Sequence changes 



 87 

between the wild type protein, a top-ranking Rosetta design, and the two designs 490 and 492 

containing additional mutations from visual inspection, are shown in Figure 3.5. 

In the first experimental screen, we used split murine dihydrofolate reductase[79] 

(DHFR) linked to biosensors, and expressed the fusion proteins in E. coli in the presence of 

bacterial DHFR inhibitor trimethoprim. If the biosensor functions according to the design 

concept, ligand-dependent dimerization of the sensor module will cause complementation of the 

murine DHFR actuator module, rescuing E coli cells from the toxicity caused by trimethoprim 

inhibition of bacterial DHFR. Thus, signal in the form of bacterial culture density is dependent 

on reconstituted murine DHFR enzymes. The second system uses reporter NanoLuc, a highly 

engineering split luciferase,[80] expressed in the “TXTL” cell-free transcription-translation 

(TXTL) protein expression system.[81] NanoLuc is an engineered heterodimer derived from a 

monomeric deep sea shrimp luciferase, and composed of one 18kDa domain (LgBIT) and one 

1.3kDa peptide (SmBIT) that fits into a groove in the larger domain. Peptides with a variety of 

affinities for the larger domain are available; our constructs used SmBIT peptide 114, which has 

an affinity of 190µM for LgBIT.[80]  

Designs were screened using systems that allowed quantification of reporter signal 

without purification, which can be challenging for potentially unstable computationally designed 

proteins. With in vivo experiments, ligands are added to growth media, while the sensor/actuator 

is expressed in the bacterial cytoplasm. This does not allow direct control over the intracellular 

concentration of ibuprofen, which cannot be easily quantified. In TXTL, protein is expressed in 

E. coli extract, so that ligand can be titrated directly into the extract expressing the 

sensor/actuator. In vivo experiments require relatively large volumes of media, which in turn 

requires large amounts of ligand. Due to the need for oxygenation via shaking, reducing ligand 
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requirement by reducing culture size slows bacterial growth and reduces the throughput of the 

experiments. DHFR experiments can also be carried out by printing colonies on agar plates 

instead of growing culture in liquid media, which is also low-throughput. Plate printing, even 

using robotic automation, is laborious, and growth on agar media takes several days. Protein 

expression in TXTL is efficient, taking only a few hours, and occurring in volumes as small as 

10µL which uses much less ligand. 

Ibuprofen sensors were first screened in E. coli with the split DHFR reporter. Initial 

screens were carried out by printing colonies of each sensor on agar growth media containing 

either ligand, added from an ethanol stock, or an equivalent volume of ethanol without ligand. 

For ibuprofen sensor designs #490 and 492, colonies grew larger on media with 1mM IBP (3. 

6a), which is consistent with ligand-induced dimerization. Colonies for additional designs are 

shown in Figures 6b-c. Design #490 and the wild type scaffold as a control were grown in liquid 

media with varying concentrations of ligand (Figure 3.7). After 21 hours, cells expressing design 

#490 and grown in media containing 1mM IBP exhibited an increase in growth measured by 

OD600 over cells grown in the same condition except without IBP (0.29 ± 0.05 compared to 0.08 

± 0.01 OD600). Cells expressing a control, the wild type scaffold protein fused to DHFR, grew to 

0.36 ± 0.04 OD600 after 19 hours, regardless of ligand concentration (Figure 3.7a), consistent 

with ligand-mediated dimerization at the designed binding site. 

Each design described in Figure 3.3 was screened using the DHFR plate-printing 

experiment, and designs for ligands except ergosterol were screened using the DHFR liquid 

experiment. For these designs we did not observe reproducible signal. In many cases, cells did 

not grow once we induced expression of the design-DHFR fusion constructs. No colonies were 

observed in plate printing experiments for serotonin designs #131, 145, 475, 496, 497, and 498, 
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and ibuprofen sensor designs #468, 490, 494, and 501. Cells grew robustly when expressing 

designs targeting farnesyl pyrophosphate and p-coumaric acid, but did not exhibit ligand-

dependent growth differential. Cells expressing constructs for the remaining target ligands grew 

slowly and also did not exhibit ligand-dependent growth differential. 

  To demonstrate the modularity of the sensor/actuator system, we tested ibuprofen 

sensors #490 and #492 with a different actuator; we also sought to test whether sensor signal was 

dependent on the presence of motif residues by testing constructs with each motif residue 

mutated to alanine. We employed NanoLuc split luciferase to report on sensor/actuator 

dimerization, and expressed the fusion constructs using TXTL cell-free protein expression 

according to the schema shown in Figure 3.8 and described in Methods. Briefly, the two halves 

of the heterodimer construct were expressed separately, then were combined with the target 

ligand ibuprofen and furimazine, the luciferase substrate, for measurement. Results are shown in 

Figure 3.9. Constructs with the complete motif (red) luminesce in a ligand-dependent manner, 

while constructs with alanine in place of one of the two motif residues on the Ultraspiracle chain 

(orange and yellow) have a reduced response, and constructs with alanine in place of the single 

motif residue on the Ecdysone Receptor chain do not respond to ibuprofen (green). These data 

are consistent with ligand-mediated dimerization at the designed binding site, and with ibuprofen 

coordination by the transplanted motif residues, though structural characterization would be 

required to confirm. 

 Of the remaining designs described in Figure 3.3, the following were also tested using the 

NanoLuc TXTL protocol: all designs targeting ibuprofen, p-coumaric acid (except #505), 

serotonin (based on scaffold PDBs 3IA3 and 3NW0) (except #s 482, 518, 519, and 522), 

theophylline (except #166), and thiacloprid (except #652). For these designs, we were unable to 
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confirm signal, except for the ibuprofen biosensors for which some designs demonstrated 

activity but with a smaller dynamic range than designs #490 and #492. Designs targeting 

caffeine, naproxen, and serotonin (based on scaffold PDB 3EAB), were not tested because 

constructs did not assemble during the cloning step. Designs targeting ergosterol were not tested 

due to the insolubility of the ligand, and designs targeting homoserine lactone were not tested 

because we did not previously observe growth for E coli expressing the designs in plate-printing 

DHFR screens. Designs targeting farnesyl pyrophosphate were screened in TXTL by Dr. Anum 

Azam-Glasgow, and those results are reported in [1]. 

 

3.3 Discussion 

Experiments in E coli and in TXTL cell extract supported the possibility of  ligand-

induced dimerization for two computationally designed ibuprofen sensors, #490 and 492. 

Furthermore, we demonstrated the modularity of our sensor/actuator design concept with ligand-

dependent actuation of two different protein complementation reporters, DHFR and NanoLuc.  

De novo binding site design remains a challenge, and indeed, as discussed in the Results 

section of this chapter, we did not observe ligand-dependent signal when we tested designed 

sensors for several additional ligands. In addition to challenges surrounding structural design, 

ligand-related experimental factors may have contributed to lack of observed signal. Ligands can 

have a positive or negative effect on the chosen actuator systems, for example by influencing E 

coli cell growth. Target ligand caffeine exhibits cytotoxic effects, decreasing culture density, 

with effect increasing with caffeine concentration (Figure 3.10). 

Low signal to noise ratio (S/N) was a confounding factor in our experiments. Signal 

depends on difference in affinity between the ternary protein/ligand/protein complex and the 
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protein/protein heterodimer. When that difference is small relative to background noise, signal 

detection is difficult. It remains difficult to accurately predict mutations that increase ligand-

mediated affinity without increasing heterodimer protein/protein affinity, or conversely to predict 

mutations that decrease protein/protein affinity without decreasing affinity of the tertiary 

protein/ligand/protein complex. An experimental technique such as directed evolution with 

positive and negative selection might allow discovery of mutations that improve dynamic range, 

and this information could be incorporated into the design pipeline to improve computational 

design methods. 

 
3.4 Methods 
 
3.4.1 Computational design of ibuprofen sensors 

Sensor domains were engineered using the macromolecular modeling and design 

software Rosetta[10] by a process (Figure 3.2) which can be generalized to design sensors for 

various small molecules.[1] In step 1, the geometry of amino acid side chains coordinating the 

ligand (motif residues) were defined from an existing binding site for the target small molecule, 

typically found in a monomeric protein such as an enzyme. Three or four motif residues that 

make key contacts with the ligand were selected from a high-resolution crystal structure of the 

existing binding site by manual inspection. In step 2, a Rosetta matching protocol (adapted from 

[77]) was used to search heterodimer proteins for backbone conformations compatible with 

placing motif residues in the correct orientations to bind the ligand.  Proteins on which side 

chains are designed are referred to as scaffolds. Motif residues were matched to both chains of 

the heterodimer scaffold, such that the binding site spanned the interface. If a match was found, 

design proceeded to step 3, wherein the motif residues and ligand were placed in the scaffold 

heterodimer. Then, flexible backbone and sequence design of the surrounding shell 
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accommodated and stabilized the transplanted binding site. Designs were filtered by metrics such 

as pre-organization of the ligand binding site, ligand solvent-exposed surface area, and 

hydrogen-bond satisfaction. In step 4, designs proteins were linked to protein complementation 

systems for testing in E. coli and in vitro.  

This method was used to generate 16 designs targeting ibuprofen, each containing 14-20 

mutations from the wild-type heterodimer, Ultraspiracle and Ecdysone Receptor (PDB: 2NXX) 

(Figure 3.4). Sequence changes between the wild type protein, a top-ranking Rosetta design, and 

two designs (#490 and #492) containing additional mutations or reversions from visual 

inspection, are shown in Figure 3.5. The binding site motif was extracted from a crystal structure 

of COX-1 complexed with ibuprofen (PDB: 1EQG). In COX-1, the motif is composed of two 

hydrophobic residues, V317 and L327, which pack against the nonpolar portion of ibuprofen, 

and a third polar motif residue, R88, which coordinates the ibuprofen’s carboxylic acid 

functional group. During design, the two hydrophobic motif residues were substituted for 

methionine. Two motif residues (E336R and Y343M) were grafted onto Ultraspiracle, and the 

third motif residue (Y322M) was grafted onto Ecdysone Receptor. 

 

3.4.2 DHFR screen on agar plates 

The plates shown in Figures 3.6 and 3.11 were prepared as follows. M9 medium was 

prepared with 1.5% w/v agar, 50 µg/mL spectinomycin, 2µg/mL trimethoprim and 100µM 

IPTG. For experiments involving ibuprofen (IBP) sensors, plates contained either 1mM IBP or 

an equivalent volume of ethanol for the blank; when prepared, media contained 3.3% v/v 

ethanol. For experiments involving ergosterol (ERG) sensors, plates contained either 1mM ERG 

or an equivalent volume of ethanol for the blank; when prepared media contained 1% v/v 
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ethanol. Ethanol evaporates readily at standard temperature and pressure and plates were 

prepared at least one day before colony printing. 45mL growth medium was poured into 

rectangular plates (Rotor PlusPlates, catalog number PLU-003). Individual colonies from 

plasmid transformation were picked and suspended into 500µL liquid M9 medium with 50 

µg/mL spectinomycin in 96-well deep well blocks, covered with a gas-permeable membrane, 

and grown overnight at 37°C with shaking at 220RPM in a New Brunswick Innova 44 shaker. 

These cultures were then printed onto the previously-prepared agar plates using a Singer 

Instruments Rotor HDA plate-printing robot, and the plates were stored at room temperature in a 

dark cabinet during growth. Plates were removed from the cabinet and photographed at 24-hour 

time points for three days.  

 

3.4.3 DHFR screen in liquid culture 

For ibuprofen sensor design #490 and wild-type scaffold protein data shown in Figure 

3.7a, samples were prepared as follows. Three separate colonies, corresponding to biological 

replicates 1-3 in Figure 3.7b, were picked and grown overnight at 37°C in 200µL M9 medium 

with 50 µg/mL spectinomycin. In the morning, 5mL M9 with 50 µg/mL spectinomycin was 

taken from 4°C storage and added to the overnight cultures. Cultures were grown at 37°C for 2 

additional hours to approximate log phase (measured values were 0.62, 0.73, and 0.39 OD600 for 

the three cultures of design #490, and 0.48, 0.46, and 0.49 OD600 for the wild-type protein, 

respectively) then diluted to an OD600 of 0.10. During the 2 hours while cultures were growing to 

approximate log phase, M9 medium was prepared with 50 µg/mL spectinomycin, 60mM IPTG, 

and 0.5µg/mL trimethoprim. The medium was then divided into three volumes, to which a stock 

of 30mM ibuprofen in ethanol was added to concentrations of 2000, 400, and 0µM ibuprofen, 
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respectively. For the latter two solutions, equivalent volumes of ethanol were added such that 

solutions contained the same concentration of ethanol. After the medium and cultures were 

prepared, 500µL of ibuprofen medium and 500µL of culture medium were mixed together in 96-

well deep-well blocks according to the checkerboard schema shown in Figure 3.7b. Each well 

received 500µL of ibuprofen medium and 500µL of culture medium. After mixture, the final 

concentrations of ibuprofen were 1000, 200, and 0µM, depending on the well, while the cell 

culture concentration was 0.05 OD600 for all wells. All growth media contained a 3.3% v/v 

ethanol. The plates were then covered with a gas-permeable membrane and placed in a shaking 

incubator at 30°C for 21 hours. At 21 hours, 200µL volumes of culture were transferred to a 

transparent-bottom 96-well plate, and OD600 was measured in a plate reader.  

 

3.4.4 Preparation of E. coli S30 extract for cell-free protein expression 

Energy buffer and E. coli S30 extract from Rosetta2 cells were prepared using the 

“TXTL” protocol, originally described in [81] and with adaptations described in [1], and stored 

at -80°C. For protein expression reactions, TXTL extract and energy buffer were thawed on ice 

and prepared by adding to final concentrations 1mM IPTG, 0.2nM T7 RNA Polymerase plasmid 

(pID 108 in Appendix 3.2, acquired from Zachary Sun in Richard Murray’s lab). TXTL extract 

prepared in our lab (Figure 3.11a) produced similar amounts of control protein GFP compared to 

extract acquired from the authors of [81] (Figure 3.11b). 

 

3.4.5 NanoLuc screen in TXTL 

For ibuprofen sensor design #490 and wild-type scaffold protein data shown in Figure 

3.9, samples were prepared as follows (see Figure 3.8). TXTL extract was prepared in November 
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2017, as described above. Data were collected in an experiment carried out on 1/16/2018. TXTL 

reaction was prepared as described above, with additional 50µM Ponasterone A in DMSO (See 

Appendix 3.1 for preparation), a cofactor for Ecdysone receptor which forms one half of the 

scaffold used to design the ibuprofen sensor. This mixture was divided into separate reactions for 

the expression of each protein. To initiate protein expression, DNA was added to the TXTL 

solution. The amount of DNA used is described in Table 3.1. Reactions were placed in closed 

Eppendorf tubes and placed at 30°C for 7.5 hours, during which protein expression occurs. 

During this time, ethanol and/or 121.194 mM ibuprofen dissolved in ethanol (see Appendix 3.1 

for preparation) were transferred to a 384-well plate using an Echo acoustic liquid handler, and 

the ethanol was evaporated off using a GeneVac evaporator on setting “High BP” for 10 minutes. 

Each well received the same amount of ethanol, and the amount of ibuprofen transferred was 

such that, when later combined with the TXTL-expressed protein, the final concentrations would 

be 0.0, 15, 50, 100.0, or 200.0µM. After the 7.5 hour TXTL incubation, reactions were removed 

to room temperature and prepared to final concentrations of 15% volume TXTL, 1X sterile 

phosphate buffered saline (PBS, final composition in reaction of 137 mM NaCl, 27 mM KCl, 10 

mM Na2HPO4, 18 mM KH2PO4, and a pH of 7.4), and 1mg/mL bovine serum albumin (BSA). 

Next, the two halves of the heterodimer biosensor, which had been individually expressed in 

TXTL, were combined into the previously-prepared 384-well plate with ibuprofen. 10µL of 

extract expressing each heterodimer half, in the 15% TXTL solution, were transferred using the 

Echo acoustic liquid handler into the wells with the layout described in Table 3.2. Blank samples 

were prepared with 1X PBS and 1mg/mL BSA. Finally, NanoLuc substrate buffer was prepared 

according to manufacturer instructions (Nano-Glo Luciferase Assay System, Promega catalog 

#N1110). NanoLuc substrate buffer was added and luminescence measured using a SpectraMax 
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L luminometer. Each well was measured as follows. 20 µL buffer was injected into the well with 

M-injection setting, the plate was shaken at a speed of 30mm/s for 1 s, then luminescence was 

measured with integration time of 1s and PMT sensitivity set to “photon counting.” 

 
3.5.1 Appendix 3.1: Recipes 
 
3.5.1.1 Ibuprofen 

Ibuprofen (IBP) was dissolved in ethanol. For experiments in E. coli, IBP was prepared to a 

concentration of 30 mM. For experiments in TXTL, IBP was prepared to a concentration of 121 

mM in ethanol. 

 

3.5.1.2 Ponasterone A 

Ponasterone A (PonA) was dissolved in DMSO to a concentration of 10 mM in ethanol. 

 

3.5.1.3 Caffeine 

Caffeine (CFF) was dissolved in water to a concentration of 75 mM. 

 
3.5.2 Appendix 3.2: Sequences 
 
3.5.2.1 pID108: T7 RNA Polymerase 
 
aataattttgtttaactttaagaaggaggatccaaatgaacacgattaacatcgctaagaacgacttctctgacatcgaactggctgctatcccg
ttcaacactctggctgaccattacggtgagcgtttagctcgcgaacagttggcccttgagcatgagtcttacgagatgggtgaagcacgcttc
cgcaagatgtttgagcgtcaacttaaagctggtgaggttgcggataacgctgccgccaagcctctcatcactaccctactccctaagatgatt
gcacgcatcaacgactggtttgaggaagtgaaagctaagcgcggcaagcgcccgacagccttccagttcctgcaagaaatcaagccgga
agccgtagcgtacatcaccattaagaccactctggcttgcctaaccagtgctgacaatacaaccgttcaggctgtagcaagcgcaatcggtc
gggccattgaggacgaggctcgcttcggtcgtatccgtgaccttgaagctaagcacttcaagaaaaacgttgaggaacaactcaacaagcg
cgtagggcacgtctacaagaaagcatttatgcaagttgtcgaggctgacatgctctctaagggtctactcggtggcgaggcgtggtcttcgtg
gcataaggaagactctattcatgtaggagtacgctgcatcgagatgctcattgagtcaaccggaatggttagcttacaccgccaaaatgctgg
cgtagtaggtcaagactctgagactatcgaactcgcacctgaatacgctgaggctatcgcaacccgtgcaggtgcgctggctggcatctctc
cgatgttccaaccttgcgtagttcctcctaagccgtggactggcattactggtggtggctattgggctaacggtcgtcgtcctctggcgctggt
gcgtactcacagtaagaaagcactgatgcgctacgaagacgtttacatgcctgaggtgtacaaagcgattaacattgcgcaaaacaccgca 
Continued on next page. 
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3.5.2.1 pID108, continued: T7 RNA Polymerase 
tggaaaatcaacaagaaagtcctagcggtcgccaacgtaatcaccaagtggaagcattgtccggtcgaggacatccctgcgattgagcgtg
aagaactcccgatgaaaccggaagacatcgacatgaatcctgaggctctcaccgcgtggaaacgtgctgccgctgctgtgtaccgcaagg
acaaggctcgcaagtctcgccgtatcagccttgagttcatgcttgagcaagccaataagtttgctaaccataaggccatctggttcccttacaa
catggactggcgcggtcgtgtttacgctgtgtcaatgttcaacccgcaaggtaacgatatgaccaaaggactgcttacgctggcgaaaggta
aaccaatcggtaaggaaggttactactggctgaaaatccacggtgcaaactgtgcgggtgtcgataaggttccgttccctgagcgcatcaag
ttcattgaggaaaaccacgagaacatcatggcttgcgctaagtctccactggagaacacttggtgggctgagcaagattctccgttctgcttc
cttgcgttctgctttgagtacgctggggtacagcaccacggcctgagctataactgctcccttccgctggcgtttgacgggtcttgctctggca
tccagcacttctccgcgatgctccgagatgaggtaggtggtcgcgcggttaacttgcttcctagtgaaaccgttcaggacatctacgggattg
ttgctaagaaagtcaacgagattctacaagcagacgcaatcaatgggaccgataacgaagtagttaccgtgaccgatgagaacactggtga
aatctctgagaaagtcaagctgggcactaaggcactggctggtcaatggctggcttacggtgttactcgcagtgtgactaagcgttcagtcat
gacgctggcttacgggtccaaagagttcggcttccgtcaacaagtgctggaagataccattcagccagctattgattccggcaagggtctga
tgttcactcagccgaatcaggctgctggatacatggctaagctgatttgggaatctgtgagcgtgacggtggtagctgcggttgaagcaatg
aactggcttaagtctgctgctaagctgctggctgctgaggtcaaagataagaagactggagagattcttcgcaagcgttgcgctgtgcattgg
gtaactcctgatggtttccctgtgtggcaggaatacaagaagcctattcagacgcgcttgaacctgatgttcctcggtcagttccgcttacagc
ctaccattaacaccaacaaagatagcgagattgatgcacacaaacaggagtctggtatcgctcctaactttgtacacagccaagacggtagc
caccttcgtaagactgtagtgtgggcacacgagaagtacggaatcgaatcttttgcactgattcacgactccttcggtaccattccggctgac
gctgcgaacctgttcaaagcagtgcgcgaaactatggttgacacatatgagtcttgtgatgtactggctgatttctacgaccagttcgctgacc
agttgcacgagtctcaattggacaaaatgccagcacttccggctaaaggtaacttgaacctccgtgacatcttagagtcggacttcgcgttcg
cgtaactcgaggaattcgactcaattagttcagtcagtttcaggatattagtcatctctacattgattatgagtattcagaaattccttaaatattctg
acaaatgctctttccctaaactccccccataaaaaaacccgccgaagcgggtttttacgttatttgcggattaacgattactcgttatcagaacc
gcccagacctgcgttcagcagttctgccaggctggcagatgcgtcttccgaattgatccgtcgaccaaagcccgccgaaaggcgggctttt
ctgtgccggcatgataagctgtcaaacatgagaattacaacttatatcgtatggggctgacttcaggtgctacatttgaagagataaattgcact
gaaatctagaaatattttatctgattaataagatgatcttcttgagatcgttttggtctgcgcgtaatctcttgctctgaaaacgaaaaaaccgcctt
gcagggcggtttttcgaaggttctctgagctaccaactctttgaaccgaggtaactggcttggaggagcgcagtcaccaaaacttgtcctttca
gtttagccttaaccggcgcatgacttcaagactaactcctctaaatcaattaccagtggctgctgccagtggtgcttttgcatgtctttccgggtt
ggactcaagacgatagttaccggataaggcgcagcggtcggactgaacggggggttcgtgcatacagtccagcttggagcgaactgcct
acccggaactgagtgtcaggcgtggaatgagacaaacgcggccataacagcggaatgacaccggtaaaccgaaaggcaggaacagga
gagcgcacgagggagccgccaggggaaacgcctggtatctttatagtcctgtcgggtttcgccaccactgatttgagcgtcagatttcgtga
tgcttgtcaggggggcggagcctatggaaaaacggctttgccgcggccctctcacttccctgttaagtatcttcctggcatcttccaggaaatc
tccgccccgttcgtaagccatttccgctcgccgcagtcgaacgaccgagcgtagcgagtcagtgagcgaggaagcggaatatatcctgtat
cacatattctgctgacgcaccggtgcagccttttttctcctgccacatgaagcacttcactgacaccctcatcagtgccaacatagtaagccag
tatacactccgctagggtcatgagattatcaaaaaggatcttcacctagatccttttaaattaaaaatgaagttttaaatcaatctaaagtatatatg
agtaaacttggtctgacagttaccaatgcttaatcagtgaggcacctatctcagcgatctgtctatttcgttcatccatagttgcctgactccccgt
cgtgtagataactacgatacgggagggcttaccatctggccccagtgctgcaatgataccgcgagacccacgctcaccggctccagatttat
cagcaataaaccagccagccggaagggccgagcgcagaagtggtcctgcaactttatccgcctccatccagtctattaattgttgccggga
agctagagtaagtagttcgccagttaatagtttgcgcaacgttgttgccattgctacaggcatcgtggtgtcacgctcgtcgtttggtatggcttc
attcagctccggttcccaacgatcaaggcgagttacatgatcccccatgttgtgcaaaaaagcggttagctccttcggtcctccgatcgttgtc
agaagtaagttggccgcagtgttatcactcatggttatggcagcactgcataattctcttactgtcatgccatccgtaagatgcttttctgtgactg
gtgagtactcaaccaagtcattctgagaatagtgtatgcggcgaccgagttgctcttgcccggcgtcaatacgggataataccgcgccacat
agcagaactttaaaagtgctcatcattggaaaacgttcttcggggcgaaaactctcaaggatcttaccgctgttgagatccagttcgatgtaac
ccactcgtgcacccaactgatcttcagcatcttttactttcaccagcgtttctgggtgagcaaaaacaggaaggcaaaatgccgcaaaaaag
ggaataagggcgacacggaaatgttgaatactcatactcttcctttttcaatattattgaagcatttatcagggttattgtctcatgagcggataca
tatttgaatgtatttagaaaaataaacaaataggggttccgcgcacatttccccgaaaagtgccacctgacgtctaagaaaccattattatcatg
acattaacctataaaaataggcgtatcacgaggccctttcgtcttcaagaattctggcgaatcctctgaccagccagaaaacgacctttctgtg 
Continued on next page. 
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3.5.2.1 pID108, continued: T7 RNA Polymerase 
gtgaaaccggatgctgcaattcagagcggcagcaagtgggggacagcagaagacctgaccgccgcagagtggatgtttgacatggtgaa
gactatcgcaccatcagccagaaaaccgaattttgctgggtgggctaacgatatccgcctgatgcgtgaacgtgacggacgtaaccaccgc
gacatgtgtgtgctgttccgctgggcatgccaggacaacttctggtccggtaacgtgctgagctaacaccgtgcgtgttgacaattttacctct
ggcggtgataatggttgcagctagc 
 
3.5.2.2 pID 345: SmBIT fused to IBP sensor #492 Ultraspiracle chain 
 
gaattcgcatctagatggtagagccacaaacagccggtacaagcaacgatctccaggaccatctgaatcatgcgcggatgacacgaactc
acgacggcgatcacagacattaacccacagtacagacactgcgacaacgtggcaattcgtcgcaataccgtctcactgaactggccgataa
ttgcagacgaacgcgttgagcaccgccgccgcaaggaatggtgcatgcaaggagatggcgcccaacagtcccccggccacggggcct
gccaccatacccacgccgaaacaagcgctcatgagcccgaagtggcgagcccgatcttccccatcggtgatgtcggcgatataggcgcc
agcaaccgcacctgtggcgccggtgatgccggccacgatgcgtccggcgtagaggatcgagatctcgatcccgcgaaattaatacgactc
actataggggaattgtgagcggataacaattcccctctagaaataattttgtttaactttaagaaggagatatatatggtgaccggctaccggct
gttcgaggagattctgggtagcggcagcggcagcggtagcggcagcggcagggtagcggcttctggcacatcgaatttacaagcagaca
tgcctctggagaggataatcgaagcggagaaacgagtcgaatgcaacgatcccttggtggcattggtggtaaacgagaataataccactgt
gaacaatatctgtcaagcaacacacaagcaactgtttcaattggtccaatgggcgaagctcgtacctcatttcacatcattgccgttgacagat
caggtgcaattgttaagggcgggatggaatgaattgctcatagccgccttctcgcaccggtcgatgcaagcacaggatgctatagttctagc
gacgggattgacagtcaacaaatcgactgcacacgctgtcggcgtcggcaacatctacgaccgcgtcctctccgagctggtgaacaaaat
gaaagaaatgaaaatggacaaaacggaattgggttgtttgcgggcgataattctctacctgcctgcggttcgagggataaagtcggtgcaag
aagtgcgtatgttgctgcgtaaaatcatgggcgtcctcgaggagtacaccaggacgactcatccaaacgagcctggaaggtttgccaaatta
ttagcgcgtttgccggctttaaggtccattgggttgaaatgtctcgaacatctcttctttttcaaactgatcggtgatgtcccgatagatactttcct
aatggagatgttggagggcacaacggattcgtaaatccccaggcatcaaataaaacgaaaggctcagtcgaaagactgggcctttcgtttta
tctgttgtttgtcggtgaacgctctctactagagtcacactggctcaccttcgggtgggcctttctgcgtttatagctgccaatgagacgacggg
gtcatcacggctcatcatgcgcccaacaaatgtgtgccatacacgctcggatgactgcctgatgaccgcactgactggggacagccgatcc
acctaagcctgtgagagaagcagacacccgacagatcaaggcagttaactagtgcactgcagtacagcggccgcgattatcaaaaaggat
cttcacctagatccttttaaattaaaaatgaagttttaaatcaatctaaagtatatatgagtaaacttggtctgacagttaccaatgcttaatcagtg
aggcacctatctcagcgatctgtctatttcgttcatccatagttgcctgactccccgtcgtgtagataactacgatacgggagggcttaccatct
ggccccagtgctgcaatgataccgcgggacccacgctcaccggctccagatttatcagcaataaaccagccagccggaagggccgagc
gcagaagtggtcctgcaactttatccgcctccatccagtctattaattgttgccgggaagctagagtaagtagttcgccagttaatagtttgcgc
aacgttgttgccattgctacaggcatcgtggtgtcacgctcgtcgtttggtatggcttcattcagctccggttcccaacgatcaaggcgagttac
atgatcccccatgttgtgcaaaaaagcggttagctccttcggtcctccgatcgttgtcagaagtaagttggccgcagtgttatcactcatggtta
tggcagcactgcataattctcttactgtcatgccatccgtaagatgcttttctgtgactggtgagtactcaaccaagtcattctgagaatagtgtat
gcggcgaccgagttgctcttgcccggcgtcaatacgggataataccgcgccacatagcagaactttaaaagtgctcatcattggaaaacgtt
cttcggggcgaaaactctcaaggatcttaccgctgttgagatccagttcgatgtaacccactcgtgcacccaactgatcttcagcatcttttactt
tcaccagcgtttctgggtgagcaaaaacaggaaggcaaaatgccgcaaaaaagggaataagggcgacacggaaatgttgaatactcatac
tcttcctttttcaatattattgaagcatttatcagggttattgtctcatgagcggatacatatttgaatgtatttagaaaaataaacaaataggggttc
cgcgcacatttccccgaaaagtgccacctgtcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagaccccgtagaaaaga
tcaaaggatcttcttgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccgctaccagcggtggtttgtttgccggatc
aagagctaccaactctttttccgaaggtaactggcttcagcagagcgcagataccaaatactgttcttctagtgtagccgtagttaggccacca
cttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggctgctgccagtggcgataagtcgtgtcttaccggg
ttggactcaagacgatagttaccggataaggcgcagcggtcgggctgaacggggggttcgtgcacacagcccagcttggagcgaacgac
ctacaccgaactgagatacctacagcgtgagctatgagaaagcgccacgcttcccgaagggagaaaggcggacaggtatccggtaagc
ggcagggtcggaacaggagagcgcacgagggagcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctga
cttgagcgtcgatttttgtgatgctcgtcaggggggcggagcctatggaaaaacgccagcaacgcggcctttttacggttcctggccttttgct
ggccttttgctcacatgttctttcctgcgttatcccctgattctgtggataaccgtgcggccgcccct 
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3.5.2.3 pID379: LgBIT fused to IBP sensor #492 Ecdysone Receptor chain 
 
gaattcgcatctagatggtagagccacaaacagccggtacaagcaacgatctccaggaccatctgaatcatgcgcggatgacacgaactc
acgacggcgatcacagacattaacccacagtacagacactgcgacaacgtggcaattcgtcgcaataccgtctcactgaactggccgataa
ttgcagacgaacgcgttgagcaccgccgccgcaaggaatggtgcatgcaaggagatggcgcccaacagtcccccggccacggggcct
gccaccatacccacgccgaaacaagcgctcatgagcccgaagtggcgagcccgatcttccccatcggtgatgtcggcgatataggcgcc
agcaaccgcacctgtggcgccggtgatgccggccacgatgcgtccggcgtagaggatcgagatctcgatcccgcgaaattaatacgactc
actataggggaattgtgagcggataacaattcccctctagaaataattttgtttaactttaagaaggagatatatatggtcttcacactcgaagatt
tcgttggggactgggaacagacagccgcctacaacctggaccaagtccttgaacagggaggtgtgtccagtttgctgcagaatctcgccgt
gtccgtaactccgatccaaaggattgtccggagcggtgaaaatgccctgaagatcgacatccatgtcatcatcccgtatgaaggtctgagcg
ccgaccaaatggcccagatcgaagaggtgtttaaggtggtgtaccctgtggatgatcatcactttaaggtgatcctgccctatggcacactgg
taatcgacggggttacgccgaacatgctgaactatttcggacggccgtatgaaggcatcgccgtgttcgacggcaaaaagatcactgtaac
agggaccctgtggaacggcaacaaaattatcgacgagcgcctgatcacccccgacggctccatgctgttccgagtaaccatcaacagcgg
tagcggcagcggcagttctggtaatggaagtaaaggaatttcgccggagcaagaggagctcatacatcgactggtttatttccagaatgagt
acgaacatccgtctgaggaagacgttaaacggatcattaaccagccgatggatggcgaagatcagtgtgatgttcggtttaggcatatcacg
gaaattaccatcttgacggtgcaacttatcgttgagtttgccaagcggttaccaggctttgacaaactcttaagggaagaccagatcgctctctt
gaaagcatgttccagcgaagtgatgatgttcaggatggcgcgccgttacgacgtacaaacggattccatcctcttcgtaaacaaccaaccgt
attcaagagacagctacaatttggctggcatgggggaaaccatcgaagatctcttgcgtttctgcagatggatgtattggatgcgtgtggaca
acgccgaatacgccttactcacagccatcgtaatattctcagagcgtccggcgctgatcgagggctggaaggtggagaagatccaggaga
tctacttggaggcgctgcgcgcgtacgtggacaaccggaggaagcccaagccgggcacgatattcgcggcgctcctcatgtggctagcg
gcgttggcgacgttaggcaaccaaaattccgagatgtgcttctcgctaaaactgaaaaacaagaaactgccgccgttcttagcggagatctg
ggacgtcgacctgaagacataaatccccaggcatcaaataaaacgaaaggctcagtcgaaagactgggcctttcgttttatctgttgtttgtcg
gtgaacgctctctactagagtcacactggctcaccttcgggtgggcctttctgcgtttatagctgccaatgagacgacggggtcatcacggct
catcatgcgcccaacaaatgtgtgccatacacgctcggatgactgcctgatgaccgcactgactggggacagccgatccacctaagcctgt
gagagaagcagacacccgacagatcaaggcagttaactagtgcactgcagtacagcggccgcgattatcaaaaaggatcttcacctagat
ccttttaaattaaaaatgaagttttaaatcaatctaaagtatatatgagtaaacttggtctgacagttaccaatgcttaatcagtgaggcacctatct
cagcgatctgtctatttcgttcatccatagttgcctgactccccgtcgtgtagataactacgatacgggagggcttaccatctggccccagtgct
gcaatgataccgcgggacccacgctcaccggctccagatttatcagcaataaaccagccagccggaagggccgagcgcagaagtggtc
ctgcaactttatccgcctccatccagtctattaattgttgccgggaagctagagtaagtagttcgccagttaatagtttgcgcaacgttgttgcca
ttgctacaggcatcgtggtgtcacgctcgtcgtttggtatggcttcattcagctccggttcccaacgatcaaggcgagttacatgatcccccat
gttgtgcaaaaaagcggttagctccttcggtcctccgatcgttgtcagaagtaagttggccgcagtgttatcactcatggttatggcagcactg
cataattctcttactgtcatgccatccgtaagatgcttttctgtgactggtgagtactcaaccaagtcattctgagaatagtgtatgcggcgaccg
agttgctcttgcccggcgtcaatacgggataataccgcgccacatagcagaactttaaaagtgctcatcattggaaaacgttcttcggggcga
aaactctcaaggatcttaccgctgttgagatccagttcgatgtaacccactcgtgcacccaactgatcttcagcatcttttactttcaccagcgttt
ctgggtgagcaaaaacaggaaggcaaaatgccgcaaaaaagggaataagggcgacacggaaatgttgaatactcatactcttcctttttca
atattattgaagcatttatcagggttattgtctcatgagcggatacatatttgaatgtatttagaaaaataaacaaataggggttccgcgcacattt
ccccgaaaagtgccacctgtcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaaaggatct
tcttgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccgctaccagcggtggtttgtttgccggatcaagagctacc
aactctttttccgaaggtaactggcttcagcagagcgcagataccaaatactgttcttctagtgtagccgtagttaggccaccacttcaagaact
ctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggctgctgccagtggcgataagtcgtgtcttaccgggttggactcaag
acgatagttaccggataaggcgcagcggtcgggctgaacggggggttcgtgcacacagcccagcttggagcgaacgacctacaccgaa
ctgagatacctacagcgtgagctatgagaaagcgccacgcttcccgaagggagaaaggcggacaggtatccggtaagcggcagggtcg
gaacaggagagcgcacgagggagcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctgacttgagcgtcg
atttttgtgatgctcgtcaggggggcggagcctatggaaaaacgccagcaacgcggcctttttacggttcctggccttttgctggccttttgctc
acatgttctttcctgcgttatcccctgattctgtggataaccgtgcggccgcccct 
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3.5.2.4 pID604: SmBIT fused to IBP sensor #492 Ultraspiracle chain [R336A] 
 
gaattcgcatctagatggtagagccacaaacagccggtacaagcaacgatctccaggaccatctgaatcatgcgcggatgacacgaactc
acgacggcgatcacagacattaacccacagtacagacactgcgacaacgtggcaattcgtcgcaataccgtctcactgaactggccgataa
ttgcagacgaacgcgttgagcaccgccgccgcaaggaatggtgcatgcaaggagatggcgcccaacagtcccccggccacggggcct
gccaccatacccacgccgaaacaagcgctcatgagcccgaagtggcgagcccgatcttccccatcggtgatgtcggcgatataggcgcc
agcaaccgcacctgtggcgccggtgatgccggccacgatgcgtccggcgtagaggatcgagatctcgatcccgcgaaattaatacgactc
actataggggaattgtgagcggataacaattcccctctagaaataattttgtttaactttaagaaggagatatatatggtgaccggctaccggct
gttcgaggagattctgggtagcggcagcggcagcggtagcggcagcggcagggtagcggcttctGGCACATCGAATTTA
CAAGCAGACATGCCTCTGGAGAGGATAATCGAAGCGGAGAAACGAGTCGAATGCA
ACGATCCCTTGGTGGCATTGGTGGTAAACGAGAATAATACCACTGTGAACAATATCT
GTCAAGCAACACACAAGCAACTGTTTCAATTGGTCCAATGGGCGAAGCTCGTACCTC
ATTTCACATCATTGCCGTTGACAGATCAGGTGCAATTGTTAAGGGCGGGATGGAATG
AATTGCTCATAGCCGCCTTCTCGCACCGGTCGATGCAAGCACAGGATGCTATAGTTC
TAGCGACGGGATTGACAGTCAACAAATCGACTGCACACGCTGTCGGCGTCGGCAAC
ATCTACGACCGCGTCCTCTCCGAGCTGGTGAACAAAATGAAAGAAATGAAAATGGA
CAAAACGGAATTGGGTTGTTTGCGGGCGATAATTCTCTACCTGCCTGCGGTTCGAGG
GATAAAGTCGGTGCAAGAAGTGCGTATGTTGCTGgcgAAAATCATGGGCGTCCTCGA
GGAGTACACCAGGACGACTCATCCAAACGAGCCTGGAAGGTTTGCCAAATTATTAG
CGCGTTTGCCGGCTTTAAGGTCCATTGGGTTGAAATGTCTCGAACATCTCTTCTTTTT
CAAACTGATCGGTGATGTCCCGATAGATACTTTCCTAATGGAGATGTTGGAGGGCAC
AACGGATTCGtaaatccccaggcatcaaataaaacgaaaggctcagtcgaaagactgggcctttcgttttatctgttgtttgtcggtg
aacgctctctactagagtcacactggctcaccttcgggtgggcctttctgcgtttatagctgccaatgagacgacggggtcatcacggctcat
catgcgcccaacaaatgtgtgccatacacgctcggatgactgcctgatgaccgcactgactggggacagccgatccacctaagcctgtga
gagaagcagacacccgacagatcaaggcagttaactagtgcactgcagtacagcggccgcgattatcaaaaaggatcttcacctagatcct
tttaaattaaaaatgaagttttaaatcaatctaaagtatatatgagtaaacttggtctgacagttaccaatgcttaatcagtgaggcacctatctca
gcgatctgtctatttcgttcatccatagttgcctgactccccgtcgtgtagataactacgatacgggagggcttaccatctggccccagtgctgc
aatgataccgcgggacccacgctcaccggctccagatttatcagcaataaaccagccagccggaagggccgagcgcagaagtggtcctg
caactttatccgcctccatccagtctattaattgttgccgggaagctagagtaagtagttcgccagttaatagtttgcgcaacgttgttgccattg
ctacaggcatcgtggtgtcacgctcgtcgtttggtatggcttcattcagctccggttcccaacgatcaaggcgagttacatgatcccccatgtt
gtgcaaaaaagcggttagctccttcggtcctccgatcgttgtcagaagtaagttggccgcagtgttatcactcatggttatggcagcactgcat
aattctcttactgtcatgccatccgtaagatgcttttctgtgactggtgagtactcaaccaagtcattctgagaatagtgtatgcggcgaccgagt
tgctcttgcccggcgtcaatacgggataataccgcgccacatagcagaactttaaaagtgctcatcattggaaaacgttcttcggggcgaaa
actctcaaggatcttaccgctgttgagatccagttcgatgtaacccactcgtgcacccaactgatcttcagcatcttttactttcaccagcgtttct
gggtgagcaaaaacaggaaggcaaaatgccgcaaaaaagggaataagggcgacacggaaatgttgaatactcatactcttcctttttcaat
attattgaagcatttatcagggttattgtctcatgagcggatacatatttgaatgtatttagaaaaataaacaaataggggttccgcgcacatttcc
ccgaaaagtgccacctgtcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaaaggatcttc
ttgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccgctaccagcggtggtttgtttgccggatcaagagctaccaa
ctctttttccgaaggtaactggcttcagcagagcgcagataccaaatactgttcttctagtgtagccgtagttaggccaccacttcaagaactct
gtagcaccgcctacatacctcgctctgctaatcctgttaccagtggctgctgccagtggcgataagtcgtgtcttaccgggttggactcaaga
cgatagttaccggataaggcgcagcggtcgggctgaacggggggttcgtgcacacagcccagcttggagcgaacgacctacaccgaac
tgagatacctacagcgtgagctatgagaaagcgccacgcttcccgaagggagaaaggcggacaggtatccggtaagcggcagggtcgg
aacaggagagcgcacgagggagcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctgacttgagcgtcgat
ttttgtgatgctcgtcaggggggcggagcctatggaaaaacgccagcaacgcggcctttttacggttcctggccttttgctggccttttgctca
catgttctttcctgcgttatcccctgattctgtggataaccgtgcggccgcccct 
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3.5.2.5 pID606: SmBIT fused to IBP sensor #492 Ultraspiracle chain [M343] 
 
gaattcgcatctagatggtagagccacaaacagccggtacaagcaacgatctccaggaccatctgaatcatgcgcggatgacacgaactc
acgacggcgatcacagacattaacccacagtacagacactgcgacaacgtggcaattcgtcgcaataccgtctcactgaactggccgataa
ttgcagacgaacgcgttgagcaccgccgccgcaaggaatggtgcatgcaaggagatggcgcccaacagtcccccggccacggggcct
gccaccatacccacgccgaaacaagcgctcatgagcccgaagtggcgagcccgatcttccccatcggtgatgtcggcgatataggcgcc
agcaaccgcacctgtggcgccggtgatgccggccacgatgcgtccggcgtagaggatcgagatctcgatcccgcgaaattaatacgactc
actataggggaattgtgagcggataacaattcccctctagaaataattttgtttaactttaagaaggagatatatatggtgaccggctaccggct
gttcgaggagattctgggtagcggcagcggcagcggtagcggcagcggcagggtagcggcttctGGCACATCGAATTTA
CAAGCAGACATGCCTCTGGAGAGGATAATCGAAGCGGAGAAACGAGTCGAATGCA
ACGATCCCTTGGTGGCATTGGTGGTAAACGAGAATAATACCACTGTGAACAATATCT
GTCAAGCAACACACAAGCAACTGTTTCAATTGGTCCAATGGGCGAAGCTCGTACCTC
ATTTCACATCATTGCCGTTGACAGATCAGGTGCAATTGTTAAGGGCGGGATGGAATG
AATTGCTCATAGCCGCCTTCTCGCACCGGTCGATGCAAGCACAGGATGCTATAGTTC
TAGCGACGGGATTGACAGTCAACAAATCGACTGCACACGCTGTCGGCGTCGGCAAC
ATCTACGACCGCGTCCTCTCCGAGCTGGTGAACAAAATGAAAGAAATGAAAATGGA
CAAAACGGAATTGGGTTGTTTGCGGGCGATAATTCTCTACCTGCCTGCGGTTCGAGG
GATAAAGTCGGTGCAAGAAGTGCGTATGTTGCTGCGTAAAATCgcgGGCGTCCTCGA
GGAGTACACCAGGACGACTCATCCAAACGAGCCTGGAAGGTTTGCCAAATTATTAG
CGCGTTTGCCGGCTTTAAGGTCCATTGGGTTGAAATGTCTCGAACATCTCTTCTTTTT
CAAACTGATCGGTGATGTCCCGATAGATACTTTCCTAATGGAGATGTTGGAGGGCAC
AACGGATTCGtaaatccccaggcatcaaataaaacgaaaggctcagtcgaaagactgggcctttcgttttatctgttgtttgtcggtg
aacgctctctactagagtcacactggctcaccttcgggtgggcctttctgcgtttatagctgccaatgagacgacggggtcatcacggctcat
catgcgcccaacaaatgtgtgccatacacgctcggatgactgcctgatgaccgcactgactggggacagccgatccacctaagcctgtga
gagaagcagacacccgacagatcaaggcagttaactagtgcactgcagtacagcggccgcgattatcaaaaaggatcttcacctagatcct
tttaaattaaaaatgaagttttaaatcaatctaaagtatatatgagtaaacttggtctgacagttaccaatgcttaatcagtgaggcacctatctca
gcgatctgtctatttcgttcatccatagttgcctgactccccgtcgtgtagataactacgatacgggagggcttaccatctggccccagtgctgc
aatgataccgcgggacccacgctcaccggctccagatttatcagcaataaaccagccagccggaagggccgagcgcagaagtggtcctg
caactttatccgcctccatccagtctattaattgttgccgggaagctagagtaagtagttcgccagttaatagtttgcgcaacgttgttgccattg
ctacaggcatcgtggtgtcacgctcgtcgtttggtatggcttcattcagctccggttcccaacgatcaaggcgagttacatgatcccccatgtt
gtgcaaaaaagcggttagctccttcggtcctccgatcgttgtcagaagtaagttggccgcagtgttatcactcatggttatggcagcactgcat
aattctcttactgtcatgccatccgtaagatgcttttctgtgactggtgagtactcaaccaagtcattctgagaatagtgtatgcggcgaccgagt
tgctcttgcccggcgtcaatacgggataataccgcgccacatagcagaactttaaaagtgctcatcattggaaaacgttcttcggggcgaaa
actctcaaggatcttaccgctgttgagatccagttcgatgtaacccactcgtgcacccaactgatcttcagcatcttttactttcaccagcgtttct
gggtgagcaaaaacaggaaggcaaaatgccgcaaaaaagggaataagggcgacacggaaatgttgaatactcatactcttcctttttcaat
attattgaagcatttatcagggttattgtctcatgagcggatacatatttgaatgtatttagaaaaataaacaaataggggttccgcgcacatttcc
ccgaaaagtgccacctgtcatgaccaaaatcccttaacgtgagttttcgttccactgagcgtcagaccccgtagaaaagatcaaaggatcttc
ttgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccgctaccagcggtggtttgtttgccggatcaagagctaccaa
ctctttttccgaaggtaactggcttcagcagagcgcagataccaaatactgttcttctagtgtagccgtagttaggccaccacttcaagaactct
gtagcaccgcctacatacctcgctctgctaatcctgttaccagtggctgctgccagtggcgataagtcgtgtcttaccgggttggactcaaga
cgatagttaccggataaggcgcagcggtcgggctgaacggggggttcgtgcacacagcccagcttggagcgaacgacctacaccgaac
tgagatacctacagcgtgagctatgagaaagcgccacgcttcccgaagggagaaaggcggacaggtatccggtaagcggcagggtcgg
aacaggagagcgcacgagggagcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctgacttgagcgtcgat
ttttgtgatgctcgtcaggggggcggagcctatggaaaaacgccagcaacgcggcctttttacggttcctggccttttgctggccttttgctca
catgttctttcctgcgttatcccctgattctgtggataaccgtgcggccgcccct 
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3.5.2.6 pID608: LgBIT fused to IBP sensor #492 Ecdysone Receptor chain [M322A] 
 
gaattcgcatctagatggtagagccacaaacagccggtacaagcaacgatctccaggaccatctgaatcatgcgcggatgacacgaactcacga
cggcgatcacagacattaacccacagtacagacactgcgacaacgtggcaattcgtcgcaataccgtctcactgaactggccgataattgcagac
gaacgcgttgagcaccgccgccgcaaggaatggtgcatgcaaggagatggcgcccaacagtcccccggccacggggcctgccaccataccc
acgccgaaacaagcgctcatgagcccgaagtggcgagcccgatcttccccatcggtgatgtcggcgatataggcgccagcaaccgcacctgtg
gcgccggtgatgccggccacgatgcgtccggcgtagaggatcgagatctcgatcccgcgaaattaatacgactcactataggggaattgtgagc
ggataacaattcccctctagaaataattttgtttaactttaagaaggagatatatatggtcttcacactcgaagatttcgttggggactgggaacagaca
gccgcctacaacctggaccaagtccttgaacagggaggtgtgtccagtttgctgcagaatctcgccgtgtccgtaactccgatccaaaggattgtc
cggagcggtgaaaatgccctgaagatcgacatccatgtcatcatcccgtatgaaggtctgagcgccgaccaaatggcccagatcgaagaggtgtt
taaggtggtgtaccctgtggatgatcatcactttaaggtgatcctgccctatggcacactggtaatcgacggggttacgccgaacatgctgaactatt
tcggacggccgtatgaaggcatcgccgtgttcgacggcaaaaagatcactgtaacagggaccctgtggaacggcaacaaaattatcgacgagc
gcctgatcacccccgacggctccatgctgttccgagtaaccatcaacagcggtagcggcagcggcagttctGGTAATGGAAGTAA
AGGAATTTCGCCGGAGCAAGAGGAGCTCATACATCGACTGGTTTATTTCCAGAATGAGT
ACGAACATCCGTCTGAGGAAGACGTTAAACGGATCATTAACCAGCCGATGGATGGCGA
AGATCAGTGTGATGTTCGGTTTAGGCATATCACGGAAATTACCATCTTGACGGTGCAAC
TTATCGTTGAGTTTGCCAAGCGGTTACCAGGCTTTGACAAACTCTTAAGGGAAGACCAG
ATCGCTCTCTTGAAAGCATGTTCCAGCGAAGTGATGATGTTCAGGATGGCGCGCCGTTA
CGACGTACAAACGGATTCCATCCTCTTCGTAAACAACCAACCGTATTCAAGAGACAGCT
ACAATTTGGCTGGCATGGGGGAAACCATCGAAGATCTCTTGCGTTTCTGCAGATGGATG
TATTGGATGCGTGTGGACAACGCCGAATACGCCTTACTCACAGCCATCGTAATATTCTCA
GAGCGTCCGGCGCTGATCGAGGGCTGGAAGGTGGAGAAGATCCAGGAGATCTACTTGG
AGGCGCTGCGCGCGTACGTGGACAACCGGAGGAAGCCCAAGCCGGGCACGATATTCGC
GGCGCTCCTCgcgTGGCTAGCGGCGTTGGCGACGTTAGGCAACCAAAATTCCGAGATGTG
CTTCTCGCTAAAACTGAAAAACAAGAAACTGCCGCCGTTCTTAGCGGAGATCTGGGACG
TCGACCTGAAGACAtaaatccccaggcatcaaataaaacgaaaggctcagtcgaaagactgggcctttcgttttatctgttgtttgtcg
gtgaacgctctctactagagtcacactggctcaccttcgggtgggcctttctgcgtttatagctgccaatgagacgacggggtcatcacggctcatc
atgcgcccaacaaatgtgtgccatacacgctcggatgactgcctgatgaccgcactgactggggacagccgatccacctaagcctgtgagagaa
gcagacacccgacagatcaaggcagttaactagtgcactgcagtacagcggccgcgattatcaaaaaggatcttcacctagatccttttaaattaaa
aatgaagttttaaatcaatctaaagtatatatgagtaaacttggtctgacagttaccaatgcttaatcagtgaggcacctatctcagcgatctgtctatttc
gttcatccatagttgcctgactccccgtcgtgtagataactacgatacgggagggcttaccatctggccccagtgctgcaatgataccgcgggacc
cacgctcaccggctccagatttatcagcaataaaccagccagccggaagggccgagcgcagaagtggtcctgcaactttatccgcctccatcca
gtctattaattgttgccgggaagctagagtaagtagttcgccagttaatagtttgcgcaacgttgttgccattgctacaggcatcgtggtgtcacgctc
gtcgtttggtatggcttcattcagctccggttcccaacgatcaaggcgagttacatgatcccccatgttgtgcaaaaaagcggttagctccttcggtcc
tccgatcgttgtcagaagtaagttggccgcagtgttatcactcatggttatggcagcactgcataattctcttactgtcatgccatccgtaagatgctttt
ctgtgactggtgagtactcaaccaagtcattctgagaatagtgtatgcggcgaccgagttgctcttgcccggcgtcaatacgggataataccgcgc
cacatagcagaactttaaaagtgctcatcattggaaaacgttcttcggggcgaaaactctcaaggatcttaccgctgttgagatccagttcgatgtaa
cccactcgtgcacccaactgatcttcagcatcttttactttcaccagcgtttctgggtgagcaaaaacaggaaggcaaaatgccgcaaaaaaggga
ataagggcgacacggaaatgttgaatactcatactcttcctttttcaatattattgaagcatttatcagggttattgtctcatgagcggatacatatttgaat
gtatttagaaaaataaacaaataggggttccgcgcacatttccccgaaaagtgccacctgtcatgaccaaaatcccttaacgtgagttttcgttccact
gagcgtcagaccccgtagaaaagatcaaaggatcttcttgagatcctttttttctgcgcgtaatctgctgcttgcaaacaaaaaaaccaccgctacca
gcggtggtttgtttgccggatcaagagctaccaactctttttccgaaggtaactggcttcagcagagcgcagataccaaatactgttcttctagtgtag
ccgtagttaggccaccacttcaagaactctgtagcaccgcctacatacctcgctctgctaatcctgttaccagtggctgctgccagtggcgataagtc
gtgtcttaccgggttggactcaagacgatagttaccggataaggcgcagcggtcgggctgaacggggggttcgtgcacacagcccagcttgga
gcgaacgacctacaccgaactgagatacctacagcgtgagctatgagaaagcgccacgcttcccgaagggagaaaggcggacaggtatccgg
taagcggcagggtcggaacaggagagcgcacgagggagcttccagggggaaacgcctggtatctttatagtcctgtcgggtttcgccacctctg
acttgagcgtcgatttttgtgatgctcgtcaggggggcggagcctatggaaaaacgccagcaacgcggcctttttacggttcctggccttttgctgg
ccttttgctcacatgttctttcctgcgttatcccctgattctgtggataaccgtgcggccgcccct 
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3.5.3 Appendix 3.3: IDs of design constructs 
 
3.5.3.1 Designs targeting caffeine 

Scaffold PDB 4DS7: 84, 92, 93, 187, 525, 526, 527, 528, 543, 544, 547, 548, 549, 550, 551, 553, 

554, 555, 556, 545 

 

3.5.3.2 Designs targeting p-coumaric acid 

Scaffold PDB 2AIJ: 100, 104, 127, 160, 170, 462, 463, 464, 465, 470, 472, 504, 505, 506, 510, 

511, 512, 513, 514, 515 

 

3.5.3.3 Designs targeting ibuprofen 

Scaffold PDB 2NXX: 13, 14, 68, 101, 468, 490, 491, 492, 493, 494, 501, 541  

 

3.5.3.4 Designs targeting serotonin 

Scaffold PDB 3EAB: 130, 475, 476, 477 

Scaffold PDB 3IA3: 183, 518, 519, 520, 521, 522 

Scaffold PDB 3NW0: 131, 145, 480, 481, 482, 483, 496, 497, 498, 499  

 

3.5.3.5 Designs targeting theophylline 

84, 92, 93, 187, 525, 526, 528, 543, 544, 547, 548, 549, 550, 551, 553, 554, 555, 556, 545 

 

3.5.3.6 Designs targeting ergosterol 

Scaffold PDB 3SFV: 566, 570, 754, 755, 760, 764, 765, 788, 856, 1058, 1061, 1063, 1064, 1065, 

1067 
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3.5.3.7 Designs targeting homoserine lactone 

Scaffold PDB 3LWN: 601, 620, 756, 757, 759, 761, 762, 766, 772, 782, 785, 790 

 

3.5.3.8 Designs targeting naproxen 

Scaffold PDB 2Z0D: 626, 633, 636, 637, 753, 778, 783, 786, 794, 797, 804, 805, 806, 808 

 

3.5.3.9 Designs targeting thiacloprid 

Scaffold PDB 1FQV (232): 652, 684, 770, 767, 774, 775, 789, 795, 

Scaffold PDB 3MTN (1147): 667, 802 

Scaffold PDB 3N3K (1216): 659, 784, 809  
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3.6 Figures 
 

 
Figure 3.1: Biosensor design schema.  
(a) General strategy, wherein ligand binding to a site at the interface of a heterodimer stabilizes 
dimerization, which is reported by a protein complementation system. (b) Schema in which the 
desired application is detection of a target small molecule of interest. Any appropriate reporter 
may be used to respond to presence of the small molecule. (c) Schema in which the desired 
application is activation of a response, which can be activated by any small molecule for which 
an inducible heterodimer exists.  
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Figure 3.2: Computational biosensor design method. 
In Step 1, selected motif residues of an extant ibuprofen (IBP) binding site in a crystal structure 
(PDB: 1EQG) of COX-1 are shown in green sticks, while the ligand IBP is shown in yellow 
sticks. In Step 2, six examples are shown of natural heterodimers from the larger heterodimer 
library to which the binding site was matched. In Step 3, the selected natural motif residues 
(green) were transplanted onto a heterodimer Ultraspiracle/Ecdysone Receptor (PDB: 2NXX) 
(blue and purple cartoon, respectively; PDB: 2NXX), and additional mutations to surrounding 
side chains (blue and purple sticks) are designed with the goal of accommodating and stabilizing 
the motif and ligand. In Step 4, designs are tested experimentally. 
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Figure 3.3: Target ligands for which sensors were designed. 
Target column shows chemical name, three letter abbreviation, and general description, along 
with a structural representation. Also shown are number of computational designs selected for 
experimental screening, the PDB codes of the scaffold proteins, and number of mutations. 
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Figure 3.4: Ibuprofen design model. 
Cartoon representation of the design model, and closer view of the grafted binding site in 
Ultraspiracle (blue) and Ecdysone Receptor (purple). The grafted binding site motif residues 
(green sticks) contains ligand ibuprofen (yellow sticks).  
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Figure 3.5: Sequence alignments. 
Sequence alignment showing mutations between the original scaffold protein, a top-ranking 
design produced by Rosetta, and two designs #490 and 492 containing additional mutations from 
visual inspection. Motif residues are colored blue. 
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Figure 3.6: Ibuprofen sensor signal in E. coli with DHFR reporter on agar plates. 
Comparison of colony growth with 1mM ibuprofen (IBP) in ethanol, or blank, as described in 
section 3.4.2. (a) Side-by-side comparison of colony growth with 1mM ibuprofen (IBP) in 
ethanol, or solvent ethanol blank, after 72 hours for designs #490 (left panel) and #492 (right 
panel). (b, c) Colony prints for biological triplicates of additional ibuprofen sensor designs. 
Photographs are shown for 24, 48, and 72 hours (top, middle, and bottom panels, respectively) of 
growth and labeled by the date the photograph was taken. Plates with ibuprofen are shown in (b), 
and plates without ibuprofen are shown in (c). 
Continued on next page. 
 

1mM IBP
#490 

blank
#490 

1mM IBP
#492 

blank
#492 

a
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Figure 3.6, continued: Ibuprofen sensor signal in E. coli with DHFR reporter on agar 
plates. 
Comparison of colony growth with 1mM ibuprofen (IBP) in ethanol, or blank, as described in 
section 3.4.2. (a) Side-by-side comparison of colony growth with 1mM ibuprofen (IBP) in 
ethanol, or solvent ethanol blank, after 72 hours for designs #490 (left panel) and #492 (right 
panel). (b, c) Colony prints for biological triplicates of additional ibuprofen sensor designs. 
Photographs are shown for 24, 48, and 72 hours (top, middle, and bottom panels, respectively) of 
growth and labeled by the date the photograph was taken. Plates with ibuprofen are shown in (b), 
and plates without ibuprofen are shown in (c). 
Continued on next page. 

b

#13 #14 #68 #101 #491 #468 #490 #492 #493 #494 #501 #541

#13 #14 #68 #101 #491 #468 #490 #492 #493 #494 #501 #541

#13 #14 #68 #101 #491 #468 #490 #492 #493 #494 #501 #541
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Figure 3.6, continued: Ibuprofen sensor signal in E. coli with DHFR reporter on agar 
plates. 
Comparison of colony growth with 1mM ibuprofen (IBP) in ethanol, or blank, as described in 
section 3.4.2. (a) Side-by-side comparison of colony growth with 1mM ibuprofen (IBP) in 
ethanol, or solvent ethanol blank, after 72 hours for designs #490 (left panel) and #492 (right 
panel). (b, c) Colony prints for biological triplicates of additional ibuprofen sensor designs. 
Photographs are shown for 24, 48, and 72 hours (top, middle, and bottom panels, respectively) of 
growth and labeled by the date the photograph was taken. Plates with ibuprofen are shown in (b), 
and plates without ibuprofen are shown in (c). 
 
 

c

#13 #14 #68 #101 #491 #468 #490 #492 #493 #494 #501 #541

#13 #14 #68 #101 #491 #468 #490 #492 #493 #494 #501 #541

#13 #14 #68 #101 #491 #468 #490 #492 #493 #494 #501 #541
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Figure 3.7: Ibuprofen sensor signal with in E. coli DHFR reporter in liquid culture. 
(a) Comparison growth for cells expressing either ibuprofen sensor design #490 or wild-type 
scaffold. Constructs are linked to the essential metabolic enzyme DHFR, such that cell growth 
(OD600) is dependent on complementation of the DHFR portion of the sensor/DHFR construct. 
Growth is shown for a titration of ibuprofen concentrations. Values represent the average and 
standard deviation across 32 wells of the plate for each ibuprofen concentration. A caveat for the 
data shown is different experiment dates; data for ibuprofen sensor design #490 were collected 
on 5/6/2015, while data for ibuprofen wild-type scaffold protein were collected on 6/13/2015. (b) 
Plate layout for design #490 data shown in (a). The number in each well of the 96-well plate 
indicates the ibuprofen concentration, while the headers indicate which columns correspond to 
each biological replicate.  
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Figure 3.8: TXTL method for biosensor characterization. 
Components of TXTL reaction, as described in Methods. Energy buffer, cell extract, DNA, and 
cofactors are combined for the protein expression reaction, which takes 8 hours. The expressed 
protein is then diluted in PBS+BSA and mixed with the target ligand ibuprofen and the luciferase 
substrate in a 384-well plate, wherein signal is immediately measured. 
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Figure 3.9: Ibuprofen sensor signal with NanoLuc reporter in TXTL. 
Signal for ibuprofen sensor #492 compared to alanine mutations for each of the motif residues. 
Design #492 (red) is compared to alanine mutations of the two motif residues on the 
Ultraspiracle chain (orange and gold), and of the one motif residue on the Ecdysone receptor 
chain (green), and a blank sample containing no protein (blue). As described in Methods, SmBIT 
and LgBIT are the two halves of the NanoLuc protein complementation system. Values represent 
the average and standard deviation of four wells measured for each construct (or eight wells for 
each blank) and ligand concentration, the layout of which is defined in Table 3.2. 
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Figure 3.10: Effect of ligand caffeine on cell growth. 
Caffeine decreases culture density, with effect increasing with caffeine concentration. The cells 
expressed control constructs composed of the wild-type scaffold used to design sensors for target 
ligand fused to the DHFR reporter. Averages and standard deviations are across data collected in 
biological duplicate on experiments on two different days, for a total of 4 data points per 
condition and construct. Biological duplicate here refers to separate colonies picked from an agar 
plate to create separate cell cultures, which were then subjected to identical growth conditions. 
 

a
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Figure 3.11: TXTL extract preparation. 
(a) Photograph of TXTL cell extract prepared in our lab. The supernatant is the extract at the 
final stage of preparation; the pellet was discarded. (b) Magnesium glutamate calibration for 
TXTL extract prepared in our lab (top) and TXTL extract prepared by Sun et al [81] (bottom). 
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3.7 Tables 
 
Table 3.1: DNA concentrations used for TXTL expression. 
Shown are the concentrations of DNA used for sensor design protein expression in TXTL. 

pID$
DNA$concentration$

(nM)$
345' 1'
379' 2'
604' 1'
606' 2'
608' 1'

 
Table 3.2: NanoLuc experimental plate layout 
Shown are columns of a 384-well plate. Each cell is labeled with a description of the design 
construct or blank it contained. The ligand concentrations, which are identical for all columns, 
are shown at the left. 
Ligand'
(µM)'

'
1' 2' 3' 4' 5' 6' 7' 8'

0' A' 492' 492'
492'

[R336A]'
492'

[R336A]'
492'

[M343A]'
492'

[M343A]'
492'

[M322A]'
492'

[M322A]'

15' B' 492' 492'
492'

[R336A]'
492'

[R336A]'
492'

[M343A]'
492'

[M343A]'
492'

[M322A]'
492'

[M322A]'

s50' C' 492' 492'
492'

[R336A]'
492'

[R336A]'
492'

[M343A]'
492'

[M343A]'
492'

[M322A]'
492'

[M322A]'

97' D' 492' 492'
492'

[R336A]'
492'

[R336A]'
492'

[M343A]'
492'

[M343A]'
492'

[M322A]'
492'

[M322A]'

194' E' 492' 492'
492'

[R336A]'
492'

[R336A]'
492'

[M343A]'
492'

[M343A]'
492'

[M322A]'
492'

[M322A]'

0' F' blank' blank' blank' blank' blank' blank' blank' blank'

15' G' blank' blank' blank' blank' blank' blank' blank' blank'

50' H' blank' blank' blank' blank' blank' blank' blank' blank'

0' I' 492' 492'
492'

[R336A]'
492'

[R336A]'
492'

[M343A]'
492'

[M343A]'
492'

[M322A]'
492'

[M322A]'

15' J' 492' 492'
492'

[R336A]'
492'

[R336A]'
492'

[M343A]'
492'

[M343A]'
492'

[M322A]'
492'

[M322A]'

50' K' 492' 492'
492'

[R336A]'
492'

[R336A]'
492'

[M343A]'
492'

[M343A]'
492'

[M322A]'
492'

[M322A]'

97' L' 492' 492'
492'

[R336A]'
492'

[R336A]'
492'

[M343A]'
492'

[M343A]'
492'

[M322A]'
492'

[M322A]'

194' M' 492' 492'
492'

[R336A]'
492'

[R336A]'
492'

[M343A]'
492'

[M343A]'
492'

[M322A]'
492'

[M322A]'

0' N' blank' blank' blank' blank' blank' blank' blank' blank'

15' O' blank' blank' blank' blank' blank' blank' blank' blank'

50' P' blank' blank' blank' blank' blank' blank' blank' blank'
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Chapter 4: Conclusions 
 
 Design of protein sensor/actuators for molecules for which no sensors exist presents a 

number of unique challenges. Computational design of ligand binding sites remains difficult, in 

part due to limitations in current ability to realistically sample backbone conformations that 

enable side chains to make realistic contacts during sequence design. We developed a benchmark 

framework for comparing Rosetta design methods against each other by quantifying the ability 

of each design method to recapitulate known sequence profiles from experimental data from 

library screens, including deep sequencing enrichment/depletion data, and from sequence 

alignments of naturally evolved proteins. 

In addition to the challenges surrounding in silico protein design, it remains laborious to 

screen individual proteins for dimerization in E. coli and in vitro. We present an experimental 

method for efficient screening of ligand-inducible heterodimers without protein purification. 

Cell-free protein expression requires only microliter volumes and a few hours, contributing 

efficiency in both material cost and time to generate results. The use of cell extract for protein 

expression eliminates the need to deliver components, such as ligand or reporter substrate, to cell 

interiors during screening. Direct addition of reporter substrate enables screens to take advantage 

of the modularity of the designed system (Figure 3.1) to use enzymatic reporters, which amplify 

signal. Direct ligand addition enables screening of proteins designed to target ligands, which may 

not be found in the interior of the cell strains typically used to express designed proteins, but 

which are of utility for synthetic biology applications. 

However, difficulties remain even with the methods presented here. Experimental screens 

are often characterized by low signal to noise ratio, especially when testing initial computational 

designs that may exhibit low affinity or stability which contribute to low signal. Both protein 
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stability and ligand-mediated affinity could be increased, and background signal decreased, by 

directed evolution with positive and negative selection. 

The benchmarking framework presented here can be adapted to different types of design 

applications, such as sequence design on parametrically-generated rather than natural protein 

backbones, or transplanted rather than pre-existing binding sites. We used Rosetta design to 

create sensor proteins targeting ligands such as ibuprofen. Our experimental results demonstrate 

that these designs were far from optimal, highlighting the need for continued improvements in 

methods for sampling protein sequence and conformational space.  
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