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ABSTRACT OF THE DISSERTATION 

Quantitative high-throughput genomics in RNA viruses 

by 

Yuchen Du 

Doctor of Philosophy in Molecular and Medical Pharmacology 

University of California, Los Angeles, 2017 

Professor Ren Sun, Chair 

 

The high mutation rate and rapid genome replication of RNA viruses drive their adaptation 

to diverse selection pressures. The emergence of drug resistant or immune escape viral strains 

is always a major concern to public health. A comprehensive understanding of the mutation 

tolerability of viral genome is thus crucial to understand the evolution potential of viruses and guild 

the accurate risk assessments. 

Traditional genetics has proven to be a powerful tool for virology studies. Including forward 

genetics – determine the genetic basis responsible for a phenotype, and reverse genetics – 

determine the phenotype of a genetic change, it reveals the functional role of many important 

mutations. However, traditional genetics is usually restricted by limited and biased sampling, and 

is time and money consuming. To overcome these limitations, we have developed a qantatative 

high-throughput genomic system that enables us to quantify the phenotype of thousands to 

millions of mutations as a massive parallel process. Using random mutagenesis or satuated 

mutagenesis, we can generate a diverse pool of viral library containing desired mutations. The 

library can be used to assess the function of every amino acid/nucleotide in a variety of protein 

functional assays as well as viral growth assay, with the frequency of each mutant changed 

according to their competitive strength. We were able to quantify the relative frequency change 
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of each variant pre and post selection by high-throughput sequencing, which represented their 

“relative fitness” under the particular selection condition.  

Since the first inception of the system, we have optimized and successfully applied it 

to human immunodeficiency virus (HIV), Hepatitis C Virus (HCV) and influenza A virus. We also 

explored the applications of the system to a variety of biological questions, with a specicial focus 

in the following 4 areas: 

Firstly, a direct application of the system is to better understand the distribution of fitness 

effect (DFE), which is fundamental to a variety of evolution theories. We systematically quantified 

the DFE of single amino acid substitutions (86 amino acids total) in the drug-targeted region of 

NS5A protein of Hepatitis C Virus (HCV). We found that the majority of non-synonymous 

substitutions incur large fitness costs, suggesting that NS5A protein is highly optimized in natural 

conditions. Furthermore, we characterized the evolutionary potential of HCV by subjecting the 

mutant viruses to varying concentrations of an NS5A inhibitor Daclatasvir. As the selection 

pressure increases, the DFE of beneficial mutations shifts from an exponential distribution to a 

heavy-tailed distribution with a disproportionate number of exceptionally fit mutants. The number 

of available beneficial mutations and the selection coefficient both increase at higher levels of 

antiviral drug concentration, as predicted by a pharmacodynamics model describing viral fitness 

as a function of drug concentration. Our large-scale fitness data of mutant viruses also provide 

insights into the biophysical basis of evolutionary constraints and the role of the genetic code in 

protein evolution. 

Secondly, we explored the usage of fitness profiling to identify and annotate protein 

functional residues. Using influenza A virus PB1 protein as an example, we developed an 

approach to achieve this task: Firstly, the effect of PB1 point mutations on viral replication was 

examined by saturation mutagenesis and high-throughput sequencing. Secondly, functional PB1 

residues that are essential for viral growth but do not affect protein stability were identified by 
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protein stability prediction. Lastly, homologous structural alignment was utilized to further 

annotate specific biological functions (canonical versus non-canonical functions) for each 

functional residue. We achieved high sensitivity in identifying and annotating the canonical 

polymerase functional residues. Moreover, we identified non-canonical functional residues, which 

are exemplified by a cluster of residues located in the loop region of PB1 β ribbon. These 

previously uncharacterized residues were shown to be important for PB1 protein nuclear import 

by interacting with Ran-binding protein 5 (RanBP5). 

Thirdly, the system was shown to be valuable for the identification of drug resistant 

mutations and the design of personalized therapy. Using influenza NA protein as an example, we 

characterized the fitness effects of single nucleotide mutations of neuraminidase (NA) and 

systematically identified resistant mutations for three neuraminidase inhibitors (NAIs): zanamivir, 

oseltamivir and AV5080. We observed that both the numbers and the effects of resistant 

mutations of AV5080 are smaller than those of zanamivir and oseltamivir, but so are their fitness 

costs. We used population genetic models to estimate the rate of increase in fitness under drug 

selection as a function of drug dosage. AV5080 showed a higher rate of increase in fitness at low 

drug concentrations due to the low fitness cost of resistant mutations, but also exhibited a steep 

drop with high drug concentrations because of lower strength of resistance. Our approach also 

enabled the systematic analyses of cross-resistance against different drugs, which showed to be 

uncommon between AV5080 and zanamivir.  

Lastly and importantly, the system can be utilized to explore new functions of viral proteins. 

To this end, we systematically identified type I interferon sensitive mutations across the entire 

influenza A viral genome. We have identified novel IFN-sensitive mutations on PB2, PA, PB1 and 

M1, in addition to NS1, which provides a foundation to determine multiple anti-IFN mechanisms 

encoded in different viral segments. Moreover, this quantitative functional information of every 

amino acid in the genome enabled us to rationally design vaccine to increase the safety and 
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immunogenicity. By selecting and combining 8 mutations into one viral genome, we successfully 

generated a deficient in anti-interferon (DAI) influenza strain as a live attenuated vaccine 

candidate. DAI is replication-competent in IFN-deficient host, but able to induce transient IFN 

response and highly attenuated in IFN competent host. Impressively, DAI is capable of inducing 

a robust humoral response and a strong T cell response, which collectively leads to broad 

protection. The superior property of DAI strain demonstrated the capacity of our approach to 

construct a safe, effective and broadly protecting live attenuated influenza vaccine. Thus we 

proposed a novel and generally applicable approach for vaccine design: systematically identifying 

and eliminating immune evasion functions on the virus genome, while maintaining the replication 

fitness in vitro for vaccine production.  

In summary, we have developed the quantitative high-throughput genomic system, and 

applied it to a variety of biological questions. It is proven to be a powerful system to investigate 

fundamental evolution problems, identify functional residues and new functions of target proteins, 

and facilitate drug development. With the maturation of DNA systhesis technology and ever 

increasing sequencing power, we foresee the further improvement and more broad applications 

of this system to address foundamental mechanistic questions and practical applications.    
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CHAPTER 1  

INTRODUCTION 
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1.1 Quantitative high-throughput genetic platform  

Viruses, especially RNA viruses, are characterized by highly variable genomes and high 

mutation rates (1–4). This property enables rapid antigenic drift and genetic shift, and drives 

emergence of drug resistant and immune escape strains with pandemic risks. Thus, it is essential 

to understand the property of possible viral mutations, or to understand the evolution potential of 

viruses for accurate risk assessment (5, 6).  

Traditional genetics, including forward genetics – determine the genetic basis responsible 

for a phenotype, and reverse genetics – determine the phenotype of a genetic change, is a 

powerful tool for virology study. However, focusing on the relationship between one genotype and 

one phenotype, traditional genetics is time and money consuming. Combining the concept of both 

forward and reverse genetics, we developed and optimized a quantitative high throughput system 

that can quantify the phenotype of mutations at single nucleotide resolution (7–15). Using random 

mutagenesis or saturated mutagenesis, we can generate up to millions of mutations in the target 

protein or genome. This pool of diverse mutants can be used to assess the functions of each 

amino acid of a protein or viral genome in a variety of functional assays as well as viral growth 

assays. Through these functional assays, the diverse pool of mutants can go through a defined 

selection condition with the frequency of each mutant changes according to their competitive 

strength. We are able to quantify the relative frequency change of each variant pre and post 

selection by high throughput sequencing, which represents their “relative fitness” under the 

particular selection condition.  

The quantitative high throughput system provide a systematic way to evaluate all possible 

mutations in the target protein or viral genome, thus solving the problem of our limited ability to 

choose and analyze mutations. Currently, the most common way to analyze mutation properties 

are through natural occurring sequences. Conserved residues are considered to carry critical 

function, thus were kept unchanged throughput evolution (16–18). Although this method is 
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powerful and provides critical insight into protein function, it suffers from limited and biased 

sampling of functional protein space. The high throughput system can provide a complete 

sequence – function map, which enables us to comprehensively examine the residues with known 

function, understand the mechanism of sequence conservation, and reveal unknown functions.  

The key element in this system is the selection step. Depending on the aspect of protein 

property to be assessed, different functional assays can be designed and applied (9, 19–24). 

Here we listed three examples to demonstrate the breadth of possible design. 

Firstly, we can examine the protein binding ability to its target. A delicate system has been 

developed in our lab by incorporating mRNA display and high-throughput screening. The target 

protein can be conjugated onto beads and interact with the protein library of a large number of 

variants linked with corresponding mRNA through puromycin. By reading the enrichment, we can 

quantify the relative binding efficiency for all the varients in the library (10). Another system that 

facilitates binding affinity measurement is named as “Tite-Seq”. It is capable of quantifying binding 

titration curves and thus calculating affinity (kd) value for mutants. Stabilizing or destabilizing 

mutations can also be identified through the ability to rescue or sensitize other mutations (25).  

Secondly, the catalytic functions of protein mutations can be directly assayed. A 

florescence reporter can be linked to the catalytic function, thus the mutant with stronger or 

weaker function can be sorted out and analyzed (23, 25, 26).  

Thirdly and importantly, the function of a protein can be investigated at the organismal 

growth level. With the establishment of viral reverse genetic system, we can incorporate these 

mutations into viral genome. The viral population can be selected in biological relevant cell lines 

or many different desired conditions (7–15), revealing the overall mutational effects on viral growth.  

Furthermore, by combining different screening methods, we could establish the linkage 

between sequence genotype to protein functional phenotype, and then to the organismal fitness. 
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The establishment of such linkage represents a central step to a variety of evolution theories and 

a critical focus of systems biology.  

In the following chapters, I will describe some of the applications of this quantitative high 

throughput genetic platform that I have explored during my graduate research. Three major model 

systems were utilized: influenza A virus, Hepatitis C virus and Human immunodeficiency virus. I 

will introduce each of them briefly.  

1.1.1 INFLUENZA A VIRUS 

Influenza A virus belongs to the family of orthomyxoviridae. Among the four classes 

(influenza A, B, C and D), influenza A virus is the most common human pathogen and can causes 

mild to severe respiratory diseases. Common symptoms of influenza A infection include high fever, 

cough, headache, muscle and joint pain, et al (27). For high risk populations who are younger 

than age 2 years, older than age 65 years, pregnant or under specific medical conditions, 

influenza infection can cause hospitalization or death. ~36,000 deaths per year in the U.S. and 

300,000-500,000 globally are attributed to influenza viral infection (27, 28). Seasonal influenza 

causes epidemic in the winter season almost every year. Moreover, the threat of future pandemics 

is a major concern. Four large scale pandemics occur in the past 100 years, including 1918 

“Spanish Flu”, 1957 and 1968 pandemic and 2009 “Swine Flu”, each caused 10,000 to 50 million 

death. Currently, two classes of anti-viral drug are available: M2 inhibitors and neuraminidase 

(NA) inhibitors. However, due to widespread drug resistance, M2 inhibitors are no longer used 

clinically (29). Resistant barrier for NA inhibitors is also low, which permits the rapid development 

of drug resistance (30–33). Vaccination is another widely used strategy to prevent influenza 

infection and decrease death rate post infection. The seasonal vaccine is updated every year and 

globally used, but the safety and efficacy still needs to be improved (34–38). Thus there is an 

urgent need for the development of new drug and new vaccine strategy against influenza infection. 
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1.1.2 HEPATITIS C VIRUS 

Hepatitis C virus (HCV) is a positive single strand RNA virus that belongs to the family of 

flavirvirus. An estimate of 130-170 million people are infected with HCV virus worldwide, which is 

one of the leading causes for liver diseases, including fibrosis, cirrhosis and hepatocellular 

carcinoma.  

Recent developed direct acting antivirals (DAAs) were proven to be potent HCV inhibitors 

that cure chronic HCV infection with drug combinations(39).  

1.1.3 HUMAN IMMUNODEFICIENCY VIRUS  

Human immunodeficiency virus (HIV) is a member of the genus Lentivirus, which can 

infect human immune cells and integrate into human genome. Two types of HIV have been 

characterized, HIV-1 and HIV2. HIV-1 is the major cause of global HIV infection, while HIV-2 is 

mostly confined to West Africa.  

Once an individual is infected with HIV there is currently no way to completely eradicate 

the virus. Infected individuals can successfully maintain undetectable viral loads by routinely 

taking combination ART. However, viral replication can quickly resurge upon the stop of ART. The 

virus emerges from long-lived latent CD4+ T cell populations that harbor stably integrated copies 

of the HIV provirus. This reservoir of cells with latently integrated provirus is one of the major 

barriers to complete eradication of the virus, and hence a complete cure of HIV (40, 41).  

1.2 Applications of quantitative high-throughput genetic platform  

1.2.1 UNDERSTANDING THE FUNDAMENTAL PROPERTIES AND EVOLUTION POTENTIALS OF VIRAL 

GENOMES 

Even since Wright brought up the concept of “fitness landscape”, it has been widely 

accepted by different fields. Natural evolution can then be viewed as climbing uphill to find a fitter 

point in the landscape. However, we still know little about its properties in real biological systems. 
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Previous empirical studies of fitness landscapes have very limited sampling of sequence space. 

Mutants are generated by site-directed mutagenesis and assayed for growth rate individually. 

As the high-throughput system provides a comprehensive genotype-fitness relationship, 

thus it is useful in elucidating the shape and property of “fitness landscape”. Depending on the 

size of protein and the strategy of introducing mutations, we can look at the landscape in a “entire”, 

a “splotlight”, or a “scattered” view (42). Each “view” provide a different aspect and can collectively 

deepen our understanding of the landscape and possible evolutionary trajectory in different 

biological systems.  

Here I listed three applications of defining the fitness landscape:  

Firstly, it can be utilized to better understand the distribution of fitness effect (DFE). DFE 

of mutations is a fundamental entity in genetics and reveals the local structure of a fitness 

landscape (2, 43–49). The deleterious mutations are usually abundant and impose severe 

constraints on the accessibility of fitness landscapes. In contrast, beneficial mutations are rare 

and provide the raw materials of adaptation. Quantifying the DFE of RNA viruses is crucial for 

understanding how the pathogens evolve to acquire drug resistance, evade the host immune 

system, cross species barrier, etc.  A complete genotype-fitness map can provide a unique 

opportunity to investigate the distribution of fitness effect with huge datasets and test different 

evolutionary theories. 

Secondly, it can be used to build better evolutionary models and phylogenetic trees of 

given protein (50). The estimation of evolutionary distance is currently based on a pre-defined 

amino acid distance matrix among existing species. However, if we gain detailed understanding 

of the essentialness and mutational tolerance of each residue, then a better evolutionary model 

can be generated. 

Moreover, it can be used to understand the genome arrangements of viruses. With the 

compact genome, viruses commonly use overlapping sequences to encode different proteins or 
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multiple functions on one protein. How the DNA sequence evolves under diverse selection 

pressure coming from different functional requirement of proteins is not fully understood. Fitness 

landscape for each individual gene pin point the functions of each codon corresponding to 

different proteins, thus provide an essential tool for understanding the gene arrangement model 

and the evolution advantage of specific models for viruses (24).  

1.2.2 IDENTIFICATION OF FUNCTIONAL RESIDUES 

Amino acid residues in a protein have two roles: providing structural framework (structural 

residues) and mediating interactions with other biomolecules (functional residues). Identification 

and annotation of functional residues are fundamental questions in protein characterization (51–

55). A number of methods have been developed to tackle these questions. Most methods utilize 

sequence conservation information, with the assumption that functional residues are often 

conserved in homolog proteins (16–18). Other methods predict functional residues based on the 

shapes and properties of protein 3D structures (56–62). Starting from well-known functional 

domains (ligand binding, catalytic, et al.), these analyses determine the similar local structures 

and key residues that may be related to the functions. Conservation-based methods provide 

valuable information on protein functional residues, but are limited by the insufficient sampling of 

protein sequence space in natural evolution (63).  

The high-throughput platform, together with protein stability prediction and protein 

homologous analyses provide a systematic way to identify and annotate functional residues. We 

have proposed a workflow for this task (13). Firstly, the effect of mutations on protein function or 

viral replication can be comprehensively examined. Secondly, functional residues that are 

essential for protein function but do not affect protein stability are identified by protein stability 

prediction. And lastly, homologous structural alignment is utilized to further annotate specific 

biological functions (canonical versus non-canonical functions) for each functional residue. We 

have demonstrate the feasibility and effectiveness of this workflow with two influenza proteins: 
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PA and PB1(13, 63). The method showed superior sensitivity and accuracy comparing with the 

conservation-based method. 

1.2.3 IDENTIFICATION OF OPTIMAL DRUG TARGET, DRUG RESISTANT MUTATIONS AND SECOND 

GENERATION DRUG DESIGN 

The ideal drug should target a highly conserved domain on viral genome to limit the 

emergence of drug resistant mutations. High-throughput genetic approach enables us to 

systematically perturb viral genome and identify viral regions with high fitness cost upon mutations. 

The system can be more powerful by combining with structural analysis, where the high fitness 

cost region can be mapped onto protein structure to identify possible drug binding pocket. This 

information is valuable for drug design, docking and improvement (14).  

Moreover, drug resistant mutations can be systematically identified as a direct application 

of this genetic platform. Two strategies have been commonly used to identify resistant mutations: 

isolation of resistant strains in clinic (30–32, 64), and long-term evolution in vitro under drug 

selection (65, 66). Through sequencing, viral mutations with resistant phenotypes can be 

identified. However, both strategies suffer from limited sampling of de novo mutations and 

stochasticity in evolution. Some important resistant mutations might not be captured due to 

genetic drift or clonal interference. Moreover, both strategies are highly time consuming, which 

makes it difficult to provide a comprehensive assessment of resistant barriers of multiple drugs. 

The high-throughput genetic approach provided a systematic way to evaluate the resistant profiles 

against drugs. Starting with a diverse library, we were able to bypass the stochastic genetic drift 

and measure the fitness of thousands of mutations. Then the library can be screened with and 

without drug selection, and drug resistant mutations can be identified by comparing the 

phenotypes under these two conditions. 

Additionally, the information of high-throughput genetic profiling can be possibly used to 

enable the “next-generation drug development”. Combining the identification of drug targets and 
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the evaluation of drug resistant mutations, genetic profiling can foresee the possibly emerging 

resistant mutations during the development of new drug, rather than waiting for the emergency of 

resistance in clinic. Then modifications can be made based on the resistant profile to further 

increase the resistant profile of the new drug. The process can be iterative and greatly shorten 

the optimization phase of current drug development, into what we called “next generation drug 

development”. 

1.2.4 EXPLORING NEW FUNCTIONS OF VIRAL PROTEINS 

Genetic profiling is also a powerful tool to reveal new functions or new mechanisms of a 

selected protein. Screening mutant libraries under diverse selection conditions can pin point the 

residues with new functions, which is usually intertwined with the fitness cost of mutations. 

For example, possible antigenic sites can be identified by screening the library under 

antibody selection (67). Antigenic site mutations are likely to escape under antibody selection and 

specifically enriched in the library. Thus, the genetic profiling can be a possible method to map 

antibody epitopes. 

Another example comes from the species specificity of influenza polymerase. Influenza 

virus can replicate in different hosts (avian, swine, human, et al). To achieve optimal replication 

in a specific host, influenza viral genome usually requires multiple mutations to facilitate the viral 

entry and replication (68, 69). Understanding host adaptive mutations is critical for the 

assessment of viral transmission and pandemic risk. By screening polymerase library in different 

host cells, we will be able to identify mutations that are deleterious and beneficial in each cell type. 

These findings can lead to better understanding of species specificity (26). 

In the last chapter of my thesis, I will present a story about systematic identification and 

characterization of anti-interferon functions across the influenza genome. Type I interferon, 

including interferon and interferon, are dedicated to detect and signal the presence of 

intracellular pathogens and communicate with neighbor cells (70, 71). Signaling cascade induced 
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by type I interferon provides the first line of defense against viral infection by inducing interferon 

stimulated genes (ISGs). More than 400 ISGs have now been identified, with different functions 

including anti-viral, immune modulatory and cell regulatory functions (72). Type I interferon 

system is also the linker between innate immune and adaptive immune response, which is critical 

for dendritic cell maturation, T cell development and antibody production(73, 74). This linker 

function is critical for vaccine design, since a high interferon response might lead to higher vaccine 

efficacy. Anti-interferon function is essential for virus to replicate efficiently in vivo. During natural 

evolution, viruses have developed multiple strategies to counteract the function of IFN system. 

For influenza virus, NS1 is the key viral protein that counter-acts IFN function. It is shown that 

NS1 protein can bind to RIG-I and MAVS, thus affect interferon induction. NS1 can also down-

regulate interferon receptor (IFNAR) to affect signaling. Moreover, NS1 protein can interfere with 

the function of ISGs, such as Ser/Thr kinase PKR and the RNase L-pathway activator OAS. The 

anti-interferon functions from other genes are not being appreciated until recently. With the 

accumulation of databases and the improvement of reverse genetic technologies, researchers 

started to reveal the importance of other influenza proteins for their anti-interferon functions (69, 

75–78). However, it is still a challenging task to separate the viral replication function of essential 

proteins from their anti-interferon function. Our genetic profiling system provides a unique 

opportunity to discover mutations in most segments across the viral genome that increase 

sensitivity to IFN. Furthermore, this information can be utilized to generate a safer and more 

effective live attenuated vaccine. By identifying and combining 8 mutations together, we 

generated a DAI strain that is severely attenuated in IFN competent host but able to induce strong 

IFN production and response. Moreover, DAI strain can induce robust antibody and T cell 

responses, and provide broad protection against homologous and heterologous viral challenge.  

Overall, quantitative high-throughput genetic platform represent a powerful system to 

investigate fundamental evolution problems, identify functional residues and new functions of 
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target protein, and facilitate drug development. With the ever increasing sequencing power, we 

foresee the further improvement and more broad applications of this system.  
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CHAPTER 2  

QUANTIFYING THE EVOLUTIONARY POTENTIAL AND CONSTRAINTS 

OF A DRUG-TARGETED VIRAL PROTEIN 
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2.1 Abstract 

RNA viruses are notorious for their ability to evolve rapidly under novel environments. It is 

known that the high mutation rate of RNA viruses can generate huge genetic diversity to facilitate 

viral adaptation. However, less attention has been paid to the underlying fitness landscape that 

represents the selection forces on viral genomes. Here we systematically quantified the 

distribution of fitness effects (DFE) of single amino acid substitutions (86 amino acids total) in the 

drug-targeted region of NS5A protein of Hepatitis C Virus (HCV). We found that the majority of 

non-synonymous substitutions incur large fitness costs, suggesting that NS5A protein is highly 

optimized in natural conditions. Furthermore, we characterized the evolutionary potential of HCV 

by subjecting the mutant viruses to varying concentrations of an NS5A inhibitor Daclatasvir. As 

the selection pressure increases, the DFE of beneficial mutations shifts from an exponential 

distribution to a heavy-tailed distribution with a disproportionate number of exceptionally fit 

mutants. The number of available beneficial mutations and the selection coefficient are both found 

to increase at higher levels of antiviral drug concentration, as predicted by a pharmacodynamics 

model describing viral fitness as a function of drug concentration. Our large-scale fitness data of 

mutant viruses also provide insights into the biophysical basis of evolutionary constraints and the 

role of the genetic code in protein evolution. 

2.2 Introduction 

In our evolutionary battles with microbial pathogens, RNA viruses are among the most 

formidable foes. HIV-1 and Hepatitis C Virus acquire drug resistance in patients under antiviral 

therapy. Influenza and Ebola virus cross the species barrier to infect human hosts. Understanding 

the evolution of RNA viruses is therefore of paramount importance for developing antivirals and 

vaccines and assessing the risk of future emergence events [1–3]. Comprehensive 

characterization of viral fitness landscapes, and the principles underpinning them, will provide us 
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with a map of evolutionary pathways accessible to RNA viruses and guide our design of effective 

strategies to limit antiviral resistance, immune escape and cross-species transmission [4–6]. 

Although the concept of fitness landscapes has been around for a long time [7], we still 

know little about their properties in real biological systems. Previous empirical studies of fitness 

landscapes have been constrained by very limited sampling of sequence space. In a typical study, 

mutants are generated by site-directed mutagenesis and assayed for growth rate individually. We 

and others have recently developed a high-throughput technique, often referred to as “deep 

mutational scanning”, to profile the fitness effect of mutations by integrating deep sequencing with 

selection experiments [8–10]. This novel application of next generation sequencing has raised an 

exciting prospect of large-scale fitness measurements [11–14] and a revolution in our 

understanding of molecular evolution [15].  

The distribution of fitness effects (DFE) of mutations is a fundamental entity in genetics 

and reveals the local structure of a fitness landscape [16–23]. Deleterious mutations are usually 

abundant and impose severe constraints on the accessibility of fitness landscapes. In contrast, 

beneficial mutations are rare and provide the raw materials of adaptation. Quantifying the DFE of 

RNA viruses is crucial for understanding how these pathogens evolve to acquire drug resistance 

and surmount other evolutionary challenges.  

The model system used in our study is Hepatitis C Virus (HCV), a positive sense single-

stranded RNA virus with a genome of ~9.6 kb. The biology of HCV has been studied extensively 

in the past two decades and provides an excellent model system of human RNA viruses. We 

applied high-throughput fitness assays to map the fitness effects of all single amino acid 

substitutions in domain IA (amino acid 18-103) of HCV NS5A protein (Methods). This domain is 

the target of several directly-acting antiviral drugs, including Daclatasvir (DCV) [24]. We profiled 

the DFE of HCV NS5A protein under varying levels of positive selection by tuning the 

concentration of the antiviral drug DCV. In addition, we studied how viral evolution is constrained 
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by deleterious mutations that impact protein stability. Finally, we analyzed the shape of the DFE 

in nucleotide sequence space and analyzed how the structure of the genetic code influences 

protein evolution.  

2.3  Results 

2.3.1 PROFILING THE FITNESS LANDSCAPE OF HCV NS5A PROTEIN 

To study the DFE of mutations of HCV NS5A protein, we used a previously constructed 

library of mutant viruses using saturation mutagenesis [11]. Briefly, each codon in the mutated 

region was randomized to cover all possible single amino acid substitutions. We observed 2520 

non-synonymous mutations in the plasmid library, which covered 99.6% (1628 out of 1634) of all 

possible single amino acid substitutions, as well as 105 synonymous mutations. After transfection, 

we performed selection on the mutant viruses in an HCV cell culture system [25]. Mutants with 

frequency below a certain cutoff after transfection were assigned as lethal mutations (Methods). 

The relative fitness of a mutant virus to the wild-type virus was calculated based on the changes 

in frequency of the mutant virus and the wild-type virus after one round of selection in cell culture 

(Figure S2-1).  

Our experiment provides a comprehensive profiling of the local fitness landscape of all 

single amino acid mutations. As expected, the fitness effects of synonymous mutations were 

nearly neutral, while most non-synonymous mutations were deleterious (Figure 2-1). After 

grouping together non-synonymous mutations leading to the same amino acid substitution, we 

found that around 90% of single amino acid mutations had fitness costs and almost half of them 

were found to be lethal (Figure S2-2). The high sensitivity to mutations in HCV NS5A, an essential 

protein for viral replication, is generally consistent with previous mutagenesis studies of RNA 

viruses [26]. Our data support the view that RNA viruses are very sensitive to the effect of 

deleterious mutations, possibly due to the compactness of their genomes [27,28].  
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Using the distribution of fitness effects of synonymous mutations as a benchmark for 

neutrality, we identified that only 3.4% of single amino acid mutations are beneficial (Methods). 

The estimated fraction of beneficial mutations is consistent with previous small-scale mutagenesis 

studies in viruses including bacteriophages, vesicular stomatitis virus, etc. [16,26,29,30]. Our 

results indicate that HCV NS5A protein is under strong purifying selection, suggesting that viral 

proteins are highly optimized in their natural conditions. 

2.3.2 EVOLUTIONARY POTENTIAL AS A FUNCTION OF POSITIVE SELECTION 

Beneficial mutations are the raw materials of protein adaptation [16]. Previous studies 

have found that the evolvability of proteins is a function of purifying selection [31]. In this study, 

we aimed to study the role of positive selection in modulating the evolutionary potential of drug-

targeted viral proteins. In addition to growing viruses in the natural condition without drugs, we 

selected the mutant library in 10, 40 and 100 pM of a potent HCV NS5A inhibitor Daclatasvir 

(DCV). The drug concentrations were chosen based on in vitro IC50 of wild type HCV virus (~20 

pM) to represent different levels of positive selection (mild, intermediate and strong).  

By tuning the concentration of DCV, we observed a shift in the DFE of beneficial mutations 

(Figure 2-2, Figure S2-3). At higher drug concentrations, we observed an increase in the average 

selection coefficient as well as the total number of beneficial mutations (Table 2-1). We further 

tested whether the shape of this distribution changed under drug selection. Previous empirical 

studies supported the hypothesis that the DFE of beneficial mutations is exponential [26,29,32–

39]. Following a maximum likelihood approach, we fit the DFE of beneficial mutations to the 

Generalized Pareto Distribution (Figure S2-5). The fitted distribution (Table 2-1) is described by 

two parameters: a scale parameter (τ), and a shape parameter (κ) that determines the behavior 

of the distribution’s tail. Using a likelihood-ratio test [40], we found that the distribution was 

exponential (κ = 0) in the natural condition without drug selection, but shifted to a heavy-tailed 

distribution (κ > 0) in the presence of DCV, a condition that the wild type virus was poorly adapted 
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to. Our observation confirms the prediction that the shape of the DFE of beneficial mutations is 

dependent on how well adapted the wild type is in a certain environment [16]. When individuals 

encounter novel environments (i.e. novel forms of selection pressure) [41,42], the fitness of the 

wild type is no longer top-ranking and the DFE is expected to deviate from the exponential 

distribution [43].  

A simple pharmacodynamics model describing viral fitness as a function of drug 

concentration (i.e. phenotype-fitness mapping) can explain the changing spectra of beneficial 

mutations upon drug treatment (Figure 2-2). For example, mutations that reduce a protein’s 

binding affinity to drug molecules (i.e. with a higher inhibitory concentration than wild-type) may 

come with a fitness cost [10]. Thus, a drug-resistant mutant that is deleterious in the absence of 

drug may become beneficial under drug selection, leading to an increase in the number of 

beneficial mutations. Moreover, the relative fitness of the drug-resistant mutant is expected to 

increase with stronger selection pressure (Figure 2-2, dashed line). 

The dose response curves were previously measured for a set of mutants constructed by 

site-directed mutagenesis (Figure S2-6) [11]. Indeed, we found that the relative fitness of drug-

resistant mutants increased at higher drug concentration (Figure 2-2); in contrast, drug-sensitive 

mutants became less fit under drug selection. Furthermore, based on this set of mutants with 

validated dose response curves, we were able to use the fitness measurements to estimate the 

IC50 of all mutants in our library (Figure S2-7). In particular, we found that a small group of 

mutations were highly resistant to DCV and this could explain the heavy-tailed DFE of beneficial 

mutations under drug selection. Overall, our results suggest that the evolutionary potential of 

proteins is modulated by the strength of positive selection, in addition to the previous findings on 

the role of purifying selection [31].  
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2.3.3 DELETERIOUS MUTATIONS AS EVOLUTIONARY CONSTRAINTS  

While beneficial mutations open up adaptive pathways to genotypes with higher fitness, 

mutations that reduce fitness impose constraints on the evolution of viruses. To understand the 

biophysical basis of mutational effects [44], we took advantage of the available structural 

information. The crystal structure of NS5A domain I is available excluding the amphipathic helix 

at N-terminus [45,46].  

We found that the fitness effects of deleterious mutations at buried sites (i.e. with lower 

solvent accessibility) were more pronounced than those at surface exposed sites (Figure 2-3, 

Figure S2-8) [47]. Moreover, we performed simulations of protein stability for individual mutants 

using the PyRosetta program (Methods) [48,49]. A mutation with ΔΔG>0, i.e. shifting the free 

energy difference to favor the unfolded state, is expected to destabilize the protein. We found that 

mutations that decreased protein stability led to reduced viral fitness (Figure 2-3). For example, 

mutations at a stretch of highly conserved residues (F88-N91) that run through the core of NS5A 

protein tended to destabilize the protein and significantly reduced the viral fitness (Figure S2-9). 

Mutations that increase ΔΔG beyond a threshold were mostly lethal. This is consistent with the 

threshold robustness model, which predicts that proteins become unfolded after using up the 

stability margin [50–52]. In contrast, mutations at some sites were highly deleterious despite 

having little impact on protein stability, suggesting that evolution at these sites may be under 

additional constraints to preserve protein function [53–55], such as RNA binding [56,57].  

We further tested whether the viral replication fitness in cell culture was predictive of 

evolutionary landscapes of viruses in patients [58]. This is critical for the extrapolation of viral 

replication fitness from in vitro to in vivo [59]. We analyzed sequence diversity of HCV sequences 

in the database of Los Alamos National Lab (Methods). Indeed, we found that the within-patient 

sequence diversity at each site was highly correlated to the replication fitness measured in cell 
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culture (Spearman’s ρ=0.82, Figure 2-3), suggesting that fitness landscapes profiled in laboratory 

settings can provide insights into evolutionary pathways of viruses in nature [60]. 

2.3.4 THE ROLE OF THE GENETIC CODE IN PROTEIN EVOLUTION 

So far we have considered the spectrum of beneficial and deleterious mutations in the 

amino acid sequence space [61]. In fact, the evolution of viral proteins in the nucleotide sequence 

space faces additional constraints posed by the genetic code, because most mutations in RNA 

viruses occur as point mutations during genome replication. Our fitness data of single codon 

mutants (replaced by NNK) provides a unique opportunity to examine impacts of the genetic code 

on the evolution of proteins [62]. 

Due to codon degeneracy, many point mutations are synonymous and thus less likely to 

be deleterious than 2 or 3-nt substitutions. For non-synonymous mutations, we found that the 

deleterious impacts on fitness increased with the number of nucleotide substitutions (Figure 2-4), 

supporting the hypothesis that the structure of the standard genetic code can buffer the mutational 

load [62]. This observation is consistent with the facts that amino acids with similar biochemical 

properties tend to be adjacent in the genetic code [63], and that mutating to biochemically similar 

amino acids is less likely to decrease fitness (Figure S2-2). 

For HCV and other RNA viruses, there is an observed transition:transversion bias in 

evolution [64,65]. This phenomenon has been attributed to two different, but not mutually 

exclusive, causes: 1) the “mutation hypothesis” argues for a transition:transversion bias in the 

mutation rate, which is bolstered by experimental measurement of de novo mutation rates in 

viruses [66]; 2) the “selection hypothesis” argues that natural selection favors amino acid 

replacements via transition [67]. We tested the “selection hypothesis” using the non-synonymous 

point mutations in our library (Figure 2-4). We found that the fraction of lethal mutations caused 

by transversions was slightly larger than transitions, but the difference was not statistically 

significant. Together with previous studies in other systems [67], our results suggest that the 
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“selection hypothesis” is unlikely to be the major cause underlying the transition:transversion bias 

in evolution of viral proteins. 

In addition, we observed a slight (though not statistically significant) enrichment of 

beneficial mutations in point mutations under the natural condition (Figure 2-4). Under drug 

selection, our conclusions on the shifting DFE of beneficial single amino acid mutations still held 

true for point mutations (Figure S2-10, Table S2-1). Furthermore, we observed that beneficial 

mutations were significantly depleted in 3-nt substitutions (Figure S2-11). However, this 

difference in the fraction of beneficial mutations can be confounded by the fact that 3-nt 

substitutions are more likely to be lethal. As pointed out in a previous study on the potential 

benefits of the genetic code in protein evolution [62], mutational robustness and the enrichment 

of beneficial mutations may actually be two sides of the same coin. 

2.4 Discussion 

Mutation accumulation [68] and site-directed mutagenesis [69] are traditional approaches 

to examine the DFE. Both methods provide pivotal insights into the shape of the DFE, yet with 

limitations. The site-directed mutagenesis approach requires fitness assays for each mutant and 

can only provide a sparse sampling of mutations. The sampling of sequence space in a mutation 

accumulation experiment is biased towards large-effect beneficial mutations, as they are more 

likely to fix in the population. In contrast, the “deep mutational scanning” approach [9,10], which 

utilizes high-throughput sequencing to simultaneously assay the fitness or phenotype of a library 

of mutants, allows for unbiased and large-scale sampling of fitness landscapes and thus is ideal 

for studying the characteristics of empirical DFE. 

The shape of the DFE determines mutational robustness [69–71]. Our study quantified the 

fitness effects of single amino acid substitutions in the drug-targeted region of an essential viral 

protein (86 amino acids, 1628 out of 1634 possible substitutions). In general, the empirical DFE 
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of HCV NS5A was consistent with previous findings that viral proteins were highly optimized in 

the natural condition and very sensitive to the effects of deleterious mutations. Moreover, given 

the advantages of our saturation mutagenesis, we were able to use the fitness data to test multiple 

hypotheses of protein evolution, including the role of the genetic code in buffering mutational load, 

and the cause of transition:transversion bias. In the future, profiling the DFE in a range of different 

systems will allow us to test the generality of our conclusions. 

In our study, we have used the fitness effects of synonymous mutations to determine the 

threshold of neutrality. Synonymous mutations are usually expected to have no or minimal 

influence on phenotype or fitness, but this view is being increasingly challenged as the effect of 

synonymous mutations on protein expression and folding becomes elucidated, such as via mRNA 

secondary structures or codon usage [72,73]. One interesting observation in our selection 

experiments is that some synonymous mutations seemed to have phenotypic effects on drug 

sensitivity. Although this is not the focus of our study, understanding the mechanism of natural 

selection at the RNA level and its implications for molecular evolution, particularly in the context 

of RNA viruses, may be a fruitful area for future studies. 

One often overlooked point is that DFE will vary as a function of selection pressure 

[31,74,75]. For example, mutations that impair function would become more deleterious with 

increasing pressure of purifying selection, thus leading to reduced protein evolvability [31]. In this 

study, we have focused on gain-of-function mutations in a novel environment. The pleiotropic 

effect of mutations causes the spectrum of beneficial mutations to shift between the natural 

condition and the condition with drug selection. Moreover, mutations enabling the new function 

(e.g. drug resistance) become more beneficial with increasing pressure of positive selection.  

Although different systems have distinct protein-drug interactions that lead to different 

resistance profiles [76], the results in our study provide a general framework to study DFE of drug-

targeted proteins. Future studies along this line will further our understanding of how proteins 



 

 28 

evolve new functions under the constraint of maintaining their original function [77], as exemplified 

in the evolution of resistance to directly-acting antiviral drugs [78]. We have also demonstrated 

that the fitness data could be utilized to infer drug sensitivity of mutants and inform predictive 

modeling of within-patient viral dynamics [4]. Quantifying the characteristics of DFE of drug-

targeted proteins under different environments (e.g. varying levels of selection pressure, or 

conflicting selection pressures), would allow us to assess repeatability in the outcomes of viral 

evolution [79] and guide the design of therapies to minimize drug resistance [80]. 

2.5 Conclusions 

Many RNA viruses adapt rapidly to novel selection pressures, such as antiviral drugs. 

Understanding how pathogens evolve under drug selection is critical for the success of antiviral 

therapy against human pathogens. By combining deep sequencing with selection experiments in 

cell culture, we have quantified the distribution of fitness effects of mutations in the drug-targeted 

domain of Hepatitis C Virus NS5A protein. Our results indicate that the majority of single amino 

acid substitutions in NS5A protein incur large fitness costs. Combined with stability predictions 

based on protein structure, our fitness data reveal the biophysical constraints underlying the 

evolution of viral proteins. Furthermore, by subjecting the mutant viruses to positive selection 

under an antiviral drug, we find that the evolutionary potential of viral proteins in a novel 

environment is modulated by the strength of selection pressure. 

 

2.6 Materials and Methods 

Mutagenesis 

The mutant library of HCV NS5A protein domain IA (86 amino acids) was constructed 

using saturation mutagenesis as previously described [11]. In brief, the entire region was divided 

into five sub-libraries each containing 17-18 amino acids. NNK (N: A/T/C/G, K: T/G) was used to 
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replace each amino acid. The oligos, each of which contains one random codon, were 

synthesized by IDT. The mutated region was ligated to the flanking constant regions, subcloned 

into the pFNX-HCV plasmid and then transformed into bacteria. The pFNX-HCV plasmid carrying 

the viral genome was synthesized in Dr. Ren Sun’s lab based on the chimeric sequence of 

genotype 2a HCV strains J6/JFH1.  

Cell culture 

The human hepatoma cell line (Huh-7.5.1) was provided by Dr. Francis Chisari from the 

Scripps Research Institute, La Jolla. The cells were cultured in T-75 tissue culture flasks 

(Genesee Scientific) at 37 oC with 5% CO2. The complete growth medium contained Dulbecco's 

Modified Eagle's Medium (Corning Cellgro), 10% heat inactivated Fetal Bovine Serum (Omega 

Scientific), 10 mM HEPES (Life Technologies), 1x MEM Non-Essential Amino Acids Solution (Life 

Technologies) and 1x Penicillin-Streptomycin-Glutamine (Life Technologies).  

Selection  

Plasmid mutant library was transcribed in vitro using T7 RiboMAX Express Large Scale 

RNA Production System (Promega) and purified by PureLink RNA Mini Kit (Life Technologies). 

10 µg of in vitro transcribed RNA was used to transfect 4 million Huh-7.5.1 cells via electroporation 

by Bio-Rad Gene Pulser (246 V, 950 µF). The supernatant was collected 144 hours post 

transfection and virus titer was determined by immunofluorescence assay. The viruses collected 

after transfection were used to infect ~2 million Huh-7.5.1 cells with an MOI at around 0.1-0.2. 

The five mutant libraries were passaged for selection separately as previously described [81]. For 

the three different levels of selection pressure, the growth media was supplemented with 10 pM, 

40 pM and 100 pM HCV NS5A inhibitor Daclatasvir (BMS-790052), respectively. The supernatant 

was collected at 144 hours post infection. 

Preparation of Illumina sequencing samples 
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For each sample, viral RNA was extracted from 700 µl supernatant collected after 

transfection and after selection using QIAamp Viral RNA Mini Kit (Qiagen). Extracted RNA was 

reverse transcribed into cDNA by SuperScript III Reverse Transcriptase Kit (Life Technologies). 

The targeted region in NS5A (51-54 nt) was PCR amplified using KOD Hot Start DNA polymerase 

(Novagen). The Eppendorf thermocycler was set as following: 2 min at 95 °C; 25 to 35 three-step 

cycles of 20 s at 95 °C,15 s at 52-56 °C (sub-library #1, 52 °C; #2, 52 °C; #3, 52 °C; #4, 56 °C; 

#5, 54 °C) and 25s at 68 °C; 1 min at 68 °C. The number of PCR cycles are chosen based on the 

copy number of cDNA templates as determined by qPCR (Bio-Rad). The PCR primers are listed 

in Table S2-1. The PCR products were purified using PureLink PCR Purification Kit (Life 

Technologies) and prepared for Illumina Hiseq 2000 sequencing (paired-end 100 bp) following 5'-

phosphorylation using T4 Polynucleotide Kinase (New England BioLabs), 3’ dA-tailing using dA-

tailing module (New England BioLabs), and TA ligation of the adapter using T4 DNA ligase (Life 

Technologies). Each sample was tagged with a unique 3-bp customized barcodes, which were 

part of the adapter sequence and were sequenced as the first three nucleotides in both the 

forward and reverse reads [55] (Table S2-2).  

Analysis of sequencing data  

The sequencing data were parsed by SeqIO function of BioPython. The reads from 

different samples were de-multiplexed by the barcodes and mapped to the entire mutated region 

in NS5A by allowing at maximum 5 mismatches with the reference genome (Table S2-3) [11]. 

Since both forward and reverse reads cover the whole amplicon, we used paired reads to correct 

for sequencing errors. A mutation was called only if it was observed in both reads and the quality 

score at the corresponding position was at least 30. Sequencing reads containing mutations not 

supposed to appear in the mutant library were excluded from downstream analysis. The 

sequencing depth for each sub-library is at least ~105 and two orders of magnitude higher than 

the library complexity. 
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Calculation of relative fitness  

For each condition of selection experiments (i.e. different concentration of Daclatasvir 

[DCV]), the relative fitness (RF) of a mutant virus to the wild-type virus is calculated by the relative 

changes in frequency after selection, 

1 1

0 0
([ ])

T T

mut WT
mut T T

mut WT

f f
RF DCV

f f

 

 

   
    
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where 

T round

mutf 

and 

T round

WTf 

is the frequency of the mutant virus and the wild-type virus at 

round 0 (after transfection) or round 1 (after selection). The fitness of wild-type virus is normalized 

to 1. The fitness values estimated from one round have been shown to be highly consistent to 

estimates from multiple rounds of selection [11].  

Mutants with less than 10 read counts in the plasmid library were filtered. A mutation was 

considered lethal if at least one of the two criteria was met: 1) after transfection, the mutant had 

less than 10 read counts; 2) after transfection, the ratio between the mutant’s frequency and the 

wild-type’s frequency was smaller than 10-4. The thresholds for beneficial and deleterious 

mutations were defined as 
1 2 silent

and 
1 2 silent

, respectively. silent
 is the standard 

deviation of the fitness effects of synonymous mutations under the natural condition (Figure 2-1). 

The fitness effects of non-synonymous mutations leading to the same amino acid substitution 

were averaged to estimate the fitness effect of the given single amino acid substitution. 

Fitting the distribution of fitness effects of beneficial mutations 

The distribution of selection coefficients of beneficial mutations were fitted to a 

Generalized Pareto Distribution following a maximum likelihood approach [40],  
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Only mutations with relative fitness higher than the beneficial threshold 
1 2 silent

were 

included in the distribution of beneficial mutations. The selection coefficients were normalized to 

the beneficial threshold. The shape parameter κ determines the tail behavior of the distribution, 

which can be divided into three domains of attraction: Gumbel domain (exponential tail, κ = 0), 

Weibull domain (truncated tail, κ < 0) and Fréchet domain (heavy tail, κ > 0). For each selection 

condition, a likelihood ratio test is performed to evaluate whether the null hypothesis κ = 0 

(exponential distribution) can be rejected.  

Estimation of IC50 from fitness data 

We can quantify the drug resistance of each mutant in the library by computing its fold 

change in relative fitness, 

([ ])
([ ]) mut

mut

RF DCV
W DCV

RF


 

Here mutRF
 is the relative fitness of a mutant under the natural condition (i.e. no drug). 

W is the fold change in relative fitness and represents the level of drug resistance relative to the 

wild type. W > 1 indicates drug resistance, and W < 1 indicates drug sensitivity.  

This empirical measure of drug resistance can be directly linked to a simple 

pharmacodynamics model [78], where the viral replicative fitness is modeled as a function of drug 

dose, 
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Here IC denotes the half-inhibitory concentration. The Hill coefficient describing the 

sigmoidal shape of the dose response curve is fixed to 1, as used in fitting the dose response 

curves of wild-type virus and validated mutant viruses (Figure S2-6). We can use the drug 

resistance score W to infer the dose response of each mutant. Because the dose response curve 

depends on the duration of drug treatment, we transformed Wobserved (144 hr drug treatment in 

selection experiments) to Wpredicted (48 hr drug treatment, Figure S2-7) and then calculated 

IC50 using the equation above. 

Calculation of relative solvent accessibility 

DSSP (http://www.cmbi.ru.nl/dssp.html) was used to compute the Solvent Accessible 

Surface Area (SASA) [82] from the HCV NS5A protein structure (PDB: 3FQM) [46]. SASA was 

then normalized to Relative Solvent Accessibility (RSA) using the empirical scale reported in [83].  

Predictions of protein stability 

ΔΔG (in Rosetta Energy Units) of HCV NS5A mutants was predicted by PyRosetta 

(version: “monolith.ubuntu.release-104”) as the difference in scores between the monomer 

structure of mutants (single amino acid mutations from site 32 to 103) and the reference (PDB: 

3FQM). The score is designed to capture the change in thermodynamic stability caused by the 

mutation (ΔΔG) (Das and Baker 2008). The sequence of the reference protein was different from 

the sequence of the wild-type virus used in this study. Thus instead of directly comparing ΔΔG to 

fitness effects, we used the median ΔΔG caused by amino acid substitutions at each site.  

The PDB file of NS5A dimer was cleaned and trimmed to a monomer (chain A). Next, all 

side chains were repacked (sampling from the 2010 Dunbrack rotamer library [84]) and minimized 

for the reference structure using the talaris2014 scoring function. After an amino acid mutation 
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was introduced, the mutated residue was repacked, followed by quasi-Newton minimization of the 

backbone and all side chains (algorithm: “lbfgs_armijo_nonmonotone”). This procedure was 

performed 50 times, and the predicted ΔG of a mutant structure is the average of the three lowest 

scoring structures. 

We note that predictions based on NS5A monomer structure were only meant to provide 

a crude profile of how mutations at each site may impact protein stability. Potential structural 

constraints at the dimer interface have been ignored, which is further complicated by the 

observations of two different NS5A dimer structures [45,46]. The reference sequence of NS5A in 

the PDB file (PDB: 3FQM) is different from the WT sequence used in our experiment by 20 amino 

acid substitutions. 

Within-patient sequence diversity  

Aligned nucleotide sequences of HCV NS5A protein were downloaded from Los Alamos 

National Lab database [85] (all HCV genotypes, ~2600 sequences total) and clipped to the region 

of interest (amino acid 18-103 of NS5A). Sequences that caused gaps in the alignment of H77 

reference genome were manually removed. After translation to amino acid sequences, sequences 

with ambiguous amino acids were removed (~2300 amino acid sequences after filtering). The 

sequence diversity at each amino acid site was quantified by Shannon entropy.  

Ethics Statement  

The use of human cell lines and infectious agents in this paper is approved by Institutional 

Biosafety Committee at University of California, Los Angeles (IBC #40.10.2-f). 
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Figure 2-1. Distribution of fitness effects (DFE) of single codon substitutions of HCV NS5A 

protein. DFE of (A) non-synonymous substitutions and (B) synonymous substitutions. The 
thresholds (black lines) used for classifying beneficial, nearly neutral and deleterious mutations 
are determined by the variation of fitness values of synonymous substitutions (Methods). 88.7% 
of non-synonymous substitutions in NS5A protein are deleterious (among which 48.0% are 
lethal and not displayed in the histogram), 7.9% are nearly neutral and 3.4% are beneficial 
mutation.  

 

 

Figure 2-2. The spectrum of beneficial mutations shifts under the selection of an antiviral 

drug. (A) The cumulative distribution function of relative fitness of beneficial single amino acid 
substitutions under different selection conditions. (B) Hypothetical dose response curves of the 
wild-type virus and a drug-resistant mutant virus. Relative fitness of the drug-resistant mutant is 
expected to increase with drug concentration. (C) Relative fitness of validated drug resistant and 
sensitive mutations as a function of Daclatasvir concentration.  
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Figure 2-3. Deleterious mutations reveal constraints of protein evolution. (A) Amino acid 
sites that were less tolerant of mutations (average fitness of mutants <0.2) have lower relative 
solvent accessibility.. (B) Mutations that destabilized protein stability reduced the viral replicative 
fitness. Changes in folding free energy ΔΔG (Rosetta Energy Unit) of NS5A monomer were 
predicted by PyRosetta (Methods). The median of ΔΔG at each amino acid site is shown. (C) 
The within-patient sequence diversity of HCV NS5A protein at each site is highly correlated to 
the replicative fitness measured in cell line, suggesting that evolutionary pathways of viral 
proteins are indeed constrained by mutations that reduce viral replicative fitness. In (B) and (C), 
the average fitness of observed mutants at each amino acid site is shown. Red lines represent 
the fits by linear regression and are only used to guide the eye. 

 

 

Figure 2-4. The role of the standard genetic code in viral evolution. (A) DFE of non-
synonymous substitutions with 1, 2, and 3 nucleotide changes (lethal mutations are not 
displayed). Black lines indicates the mean. (B) The fraction of lethal mutations increases with 
the number of nucleotide changes, suggesting that the genetic code is optimized to buffer the 
mutational load (Chi-squared test, p=1.4×10-21). (C) The fraction of beneficial mutations is 
slightly enriched for point mutations (Chi-squared test, p=0.41). Only non-synonymous 
substitutions are included in the analysis. (D) For non-synonymous point mutations, the fitness 
effect of transitions (n=69) is slightly less deleterious than that of transversions (n=190), but the 
difference is not significant (two-sample Kolmogorov-Smirnov test, p=0.53).    
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[DCV] Fraction of beneficial 
codon substitutions 

Scale parameter  

τ 

Shape parameter  

κ 

p-value 

0 pM 3.4% (56/1634) 0.26 0.27n.s. 0.09 

10 pM 5.4% (88/1634) 0.63 0.62 0.0001 

40 pM 9.7% (158/1634) 0.88 1.11 <0.0001 

100 pM 9.3% (152/1634) 1.57 1.18 <0.0001 

Table 2-1. Statistics of the distribution of fitness effects of beneficial single amino acid 

substitutions under varying selection pressure. n.s.: cannot reject the null hypothesis that the 
distribution is exponential (p>0.05). 
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2.7 Supplementary Materials 

 

Figure S2-1. Experimental workflow of high-throughput fitness assays. We performed the 
selection of the mutant virus library using HCV cell culture system. Viral RNA was extracted 
after transfection or after selection, and reverse transcribed into cDNA. The mutated region in 
NS5A protein was amplified by PCR and sequenced by Illumina HiSeq. The relative fitness of a 
mutant virus to the wild-type virus was calculated based on the frequency of the mutant virus 
and the wild-type virus at round 0 (after transfection) and round 1 (after selection). See Methods 
for more details. 

 

 

Figure S2-2. Fitness effects of single amino acid substitutions in HCV NS5A protein under 

native condition. Different amino acid substitutions at the same site can have different fitness 
effects. The missing variants are colored black; lethal variants are colored dark blue. 
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Figure S2-3. DFE of non-synonymous substitutions under drug selection. 
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Figure S2-4. Fitted distribution of fitness effects of beneficial single amino acid mutations. 
(A) Comparison of the fitted distribution to data. (B)The exponential distribution fails to fit the 
spectrum of beneficial mutations under conditions with drug selection.  

 

Figure S2-5. Dose response curve of validated mutants (10 drug-resistant mutant, 1 drug-

sensitive mutant) and WT virus. The Hill coefficient is fixed at 1 in fitting the dose response 
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curves (Methods). The unit of IC50 is pM. The virus titer was measured after 48 hr of growth 
under drug treatment.  

 

 

Figure S2-6. Infer IC50 from fitness data under drug selection. (A) W is the fold change in 
relative fitness and represents the level of drug resistance relative to the wild type (Methods). 
Because the dose response curve depends on the duration of drug treatment, we normalized 
Wobserved (144 hr drug treatment in selection experiments) to Wpredicted (48 hr drug 
treatment, as used in the measurement of dose response curves of validated mutants). If viral 

growth is always exponential, the exponent is expected to be

48 1

144 3


. The fitted exponent is 

larger than 

1

3 ,  suggesting that virus titer starts to saturate in 144 hr. (B) The fold change in 
IC50 caused by a single amino acid substitution is inferred from the measured fitness profiles 
under native condition and under drug selection (100 pM [DCV]). The existence of a group of 
highly resistant mutants (>10 fold change in IC50) can explain why DFE of beneficial mutations 
shifts to a heavy-tailed distribution under drug selection. The resistance score of 9 single amino 
acid substitutions exceeds the maximum (Methods) and is manually set to 104 pM, which can 
be seen by the small peak in the right tail of histogram. (C) The measurement of drug resistance 
is consistent across different conditions of drug selection. 
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Figure S2-7. Mutations at buried sites are highly deleterious. The structure of HCV NS5A 
monomer is visualized by PyMOL (PDB: 3FQM, chain A). Amino acid sites with an average 
fitness less than 0.2 are in blue and the corresponding side chains are shown. 

 

Figure S2-8. Effects of mutations on protein stability, viral fitness and sequence diversity at 

each amino acid site. The fitness is averaged over all observed mutants at each amino acid 
site. The medium of ddG at each amino acid site is shown.  
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Figure S2-9. Distribution of fitness effects of beneficial point mutations. Only non-
synonymous mutations are included. 

 

 

 

 

Figure S2-10. The potential role of genetic code in adaptive mutations. For non-synonymous 
codon substitutions, the fraction of beneficial mutations with 3-nt changes is significantly lower 
than that of 1-nt or 2-nt mutations under drug selection (Pearson’s chi-squared test: [DCV]=10 
pM, p=1.2×10-2, 40 pM: p=3.7×10-4, 100 pM: p=1.1×10-2). 
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Figure S2-11. Fitness effects of synonymous mutations under drug selection. Relative fitness 
of some synonymous mutations increased or decreased with drug concentration, suggesting 
that these mutations may have phenotypic effects on drug sensitivity.  

 

 

[DCV] Fraction of 
beneficial mutations 

Scale 
parameter  

Shape 
parameter  

p-value 

0 pM 4.6% (12/259) 0.13 0.35n.s. 0.42 

10 pM 6.2% (16/259) 0.41 0.08n.s. 0.85 

40 pM 11.2% (29/259) 0.32 1.06 0.0003 

100 pM 10.8% (28/259) 0.32 1.50 <0.0001 

Table S2-1. Fitted parameters of the distribution of beneficial point mutations. Only non-
synonymous mutations are included in the analysis. n.s.: p>0.05. 

 

Library  

(amino acid site) 

Forward primer 

 

Reverse primer 

 

1 (18-34) 5’-GTT TGC ACC ATC TTG 
ACA-3’ 

5’-TTG ACA AGA GAT GAA 
GGG-3’ 

2 (35-51) 

 

5’-CAA GCT GCC CGG CCT C-
3’ 

5’-GCA GCG CGT GGT CAT 
GAT-3’ 
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3 (52-68) 

 

5’-TGG GCC GGC ACT GGC-3’ 5’-GAT CCT CAT AGA GCC 
CAG-3’ 

4 (69-85) 

 

5’-CAT CTC TGG CA A TGT 
CCG C-3’ 

5’-AGC AAT TGA TAG GAA  
AGG CCC-3’ 

5 (86-103) 

 

5’-TGC ATG AAC ACC TGG 
CAG-3’ 

5’-ATG GCG GTC TTG TAG 
TTC GT-3’ 

Table S2-2. PCR primers used in preparation of sequencing samples. 

 

 

 

Sample Barcode 

Plasmid ATG 

Transfection (round 0) CCC 

No drug (round 1) CGG 

[DCV]=10 pM (round 1) CTT 

[DCV]=40 pM (round 1) ACT 

[DCV]=100 pM (round 1) AAC 

Table S2-3. Barcodes used in multiplexing Illumina sequencing samples. 
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3.1 Abstract 

Identification and annotation of functional residues are fundamental questions in protein 

sequence analysis. Sequence and structure conservation provide valuable information to tackle 

these questions. They are, however, limited by the incomplete sampling of sequence space in 

natural evolution. Moreover, proteins often encode multiple functions with overlapping sequences, 

which present challenges to accurately annotate the exact functions of individual residues with 

conservation-based methods. Using influenza A virus PB1 protein as an example, we presented 

a method to systematically identify and annotate functional residues. We used saturation 

mutagenesis and high-throughput sequencing to measure the replication capacity of single 

nucleotide mutations across the entire PB1 protein. After predicting the protein stability upon 

mutations, we identified functional PB1 residues that are essential for viral replication. To further 

annotate the functional residues important to the canonical or non-canonical functions of viral 

RNA dependent RNA polymerase (vRdRp), we performed homologous structure analysis with 16 

different vRdRp structures. We achieved high sensitivity in annotating the known canonical 

polymerase functional residues. Moreover, we identified a cluster of non-canonical functional 

residues located in the loop region of PB1 β ribbon. We further demonstrated that these residues 

were important for PB1 protein nuclear import through the interaction with Ran-binding protein 5. 

In summary, we developed a systematic and sensitive method to identify and annotate functional 

residues that are not restrained by sequence conservation. Importantly, this method is generally 

applicable to other proteins with available homologous structure information. 

3.2 Introduction 

Amino acid residues in a protein have two roles: providing structural framework (structural 

residues) and mediating interactions with other biomolecules (functional residues).  Identification 

and annotation of functional residues are fundamental questions in protein characterization (1–
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5). A number of methods have been developed to tackle these questions. Most methods utilize 

sequence conservation information, with the assumption that functional residues are often 

conserved in across homolog proteins (6–8). The identified residues are then expected to perform 

functions similar to other homologs. Other methods predict functional residues based on the 

shapes and properties of protein 3D structures (9–15). Starting from well-known functional 

domains (ligand binding, catalytic, et al.), these analyses determine the similar local structures 

and key residues that may be related to the function. Conservation-based methods provide 

valuable information on protein functional residues, but are limited by the insufficient sampling of 

protein sequence space in natural evolution. It is also challenging for conservation-based 

methods to assess structural and functional constraints, and to assign functionality at single-

residue level (Figure 3-1)(16). Therefore, a more direct and systematic method needs to be 

applied for the accurate identification and annotation of functional residues.  

Due to their compact genome, viruses usually encode multifunctional proteins, including 

viral polymerase proteins. Viral RNA-dependent RNA polymerase (vRdRp) is utilized by many 

RNA viruses for transcription and replication. Functions of vRdRp can be grouped into two classes: 

canonical vRdRp functions and non-canonical functions. The canonical vRdRp functions include 

template and nucleotide binding, initiation, and elongation (17–19). Among different classes of 

RNA viruses, these canonical functions and corresponding protein structural features are 

conserved (17–22). The non-canonical functions of vRdRp, however, are specific to each virus. 

For example, multimerisation of HCV vRdRp is essential for viral replication. Thus, the interacting 

residues among HCV vRdRp are non-canonical functional residues specific to HCV virus (23, 24). 

Moreover, vRdRp often recruits cellular machinery for replication and plays a role in inhibiting 

cellular immune response (25–31).  Non-canonical functional residues are usually involved in 

performing those functions and thus, are essential for viral replication. Non-canonical functional 

residues in vRdRp are difficult to be determined by commonly used methods and are not as well 
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studied as the key residues for polymerase catalytic functions. However, the non-canonical 

functional residues are indispensable for a thorough protein characterization, and may act as a 

drug-target. As a result, it is essential to develop methods that enable identification of non-

canonical functional residues. 

Previously we have developed a method to systematically identify functional residues by 

coupling experimental fitness measurement with protein stability prediction (16). Here, we are 

extending this method to annotate functional residues in combination with structural comparison 

of homologous proteins. The method consists of three steps. Firstly, the effect of PB1 mutations 

on viral replication at single-nucleotide resolution is examined by saturation mutagenesis and 

high-throughput sequencing. Secondly, functional PB1 residues that are essential for viral growth 

but do not affect protein stability were identified by protein stability prediction. Lastly, homologous 

structural alignment was utilized to further annotate specific biological functions (canonical versus 

non-canonical functions) for each functional residue (Figure 3-1). We achieved high sensitivity in 

identifying and annotating the canonical polymerase functional residues. Moreover, we also 

identified non-canonical functional residues, which are exemplified by a cluster of residues located 

in the loop region of PB1 β ribbon. These previously uncharacterized residues were shown to be 

important for PB1 protein nuclear import by interacting with Ran-binding protein 5 (RanBP5) (32). 

3.3 Results 

3.3.1 FITNESS PROFILE OF INFLUENZA A/WSN/33 VIRUS SEGMENT 2 AT SINGLE NUCLEOTIDE 

RESOLUTION 

High-throughput genetics have been applied to a number of viral, bacterial and cellular 

proteins (16, 33–38). Here, point mutations were randomly introduced into the segment 2 of 

influenza A/WSN/33 virus through error-prone PCR. To provide a more accurate quantification of 

the fitness effect of single mutations, we employed the “small library” method that we recently 
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developed (16). Nine small libraries were generated to cover the entire segment 2 (Figure S3-1). 

Each small library was transfected into 293T cells together with seven plasmids that encoded the 

other wild-type viral segments (39). Reconstituted mutant virus libraries were used to infect A549 

cells at an MOI 0.05, and supernatants were collected 24 hours post-infection. The input DNA 

libraries, post-transfection libraries, and post-infection libraries were subjected to Illumina 

sequencing. To control for technical error and to assess library quality, biological duplicates were 

included both in transfection and subsequent infection steps (Figure 3-2). 

Distribution of the number of mutations in the input DNA library was examined. 30-35% of 

input DNA library plasmids contained the desired single nucleotide mutations (Figure S3-1). We 

achieved at least 20,000x sequencing coverage for each nucleotide position (Figure S3-1). The 

library covered 94.9% of all nucleotides in segment 2, and included 98.2% of all single nucleotide 

mutations of observed positions (Figure S3-2). To further improve the accuracy of fitness 

quantification, we focused on the mutations that occur >0.1% in the plasmid mutant library. After 

this quality control, we were still able to observe 94.2% of all nucleotide positions with 63.9% of 

all single nucleotide mutations. More than 82% nucleotide positions were covered with two or 

three nucleotide mutations (Figure S3-2). To assess the quality and reproducibility of our mutant 

library, we compared the relative frequency of single mutations between biological replicates. We 

obtained a strong spearman correlation of 0.93 for two independent transfections, and 0.75 for 

infections (Figure 3-2). Relative fitness index (RF index) was calculated for individual mutations 

as the ratio of relative frequency in infection library to that in the input DNA library. The profiling 

data of the entire segment 2 is shown in Figure 3-2, where majority of mutations had a fitness 

cost (log10 RF index < 0). 
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3.3.2 SYSTEMATIC IDENTIFICATION OF DELETERIOUS MUTATIONS OF PB1 PROTEIN 

Segment 2 of influenza A virus encoded three proteins: PB1, PB1-F2 and N40. N40 was 

a truncated form of PB1 protein, which lacked the first 39 amino acids. PB1-F2 is not essential for 

viral replication in vitro, as completely abolishing PB1-F2 expression had no effect on viral growth 

(40, 41) (Figure S3-3). So we focused on PB1 protein for downstream analysis. The RF indexes 

of silent mutations were considered as internal quality control since most, if not all, of them were 

expected to have comparable growth capacity with the wild type. In the fitness profile of PB1 

protein, RF index of silent mutations followed a normal distribution with a mean equal to 0.9 and 

were significantly higher than that of nonsense mutations (two-tailed t-test, p = 4.6E-21) (Figure 

S3-4). This result confirms the presence of fitness selection and validates the data quality.  

To systematically identify deleterious mutations, we chose a stringent cutoff of RF index 

≤ 0.1. 2.4% silent mutations fell below the cutoff, which represented type I error. 43.1% of 

missense mutations that satisfied this cutoff were identified as deleterious mutations (Figure 3-

3). We randomly selected 14 deleterious mutations and reconstructed them individually. Rescue 

experiments were performed and the resultant viral titers were quantified by TCID50 assay. 13 

out of 14 mutant viruses had at least a 10-fold drop in viral titer as compared to WT. The other 

mutant also showed more than 6-fold decrease in titer (Figure 3-3). These results validated our 

approach to systematically quantify the relative fitness and identify deleterious mutations of PB1 

protein. 

3.3.3 IDENTIFYING FUNCTIONAL RESIDUES BY DISSECTING STRUCTURAL CONSTRAINT AND 

FUNCTIONAL CONSTRAINT 

A mutation might be deleterious due to structural constraints or functional constraints (16, 

42). We have recently demonstrated that coupling high-throughput genetics with mutant stability 

predictions can identify residues that are dominated by functional constraints (16). Briefly, 
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deleterious mutations that do not destabilize the protein are identified as functional residues. Here, 

we modeled protein stability using two computational tools: I-Mutant and Rosetta ddg monomer. 

I-Mutant was a supporter vector machine (SVM) based software to predict the effect of 

single-site mutations on protein stability (ΔΔG) (43–45). Based on the predicted ΔΔG, mutations 

can be classified as destabilizing (ΔΔG ≤ -0.5), neutral (-0.5 < ΔΔG < 0.5), or stabilizing (ΔΔG ≥ 

0.5). We applied I-Mutant predictions for all missense mutations in PB1 with the structure resolved 

from bat influenza A polymerase complex (PDB: 4WSB) (46, 47). Among mutations with structure 

information available, 64.5% were shown to be destabilizing, 33.5% were neutral and 2% were 

stabilizing (Figure S3-5). As expected, destabilizing mutations had a significantly lower value 

of solvent accessible surface area (SASA) (48–50) (Figure S3-5). To further reduce the false 

negative rate of identifying functional residues, we performed protein stability prediction with 

Rosetta for all deleterious mutations (16, 42, 44). Different from machine learning algorithm used 

by I-mutant, Rosetta generated structural models for single amino acid mutations based on pre-

optimized wild-type structure. Using high-resolution protocol, 50 models of wild type and mutant 

protein structures were generated and three lowest ΔΔG were averaged based on optimized 

rotamers. The absolute correlation coefficient of prediction that resulted from these two methods 

was 0.3 (Figure S3-5). Aiming at getting a conserved classification of functional residues, we 

classified a residue as functional if it had one or more missense mutations satisfying both the 

deleterious cutoff of RF index, and non-destabilizing criteria of ΔΔG predictions from either 

software. A total of 297 residues were identified as functional residues. 

To examine the sensitivity of our method in identifying functional residues in PB1, we 

performed a thorough literature search, compiled 31 residues that were reported to be functional 

in PB1 (32, 51–54), and compared the performance of our method with four other methods: 

FireStar, Frpreq, Consurf and Concavity  (6, 10, 55–58) (Table 3-1). Our method was able to 

identify 21 of the 31 residues and thus had a sensitivity of ~68%. FireStar failed to identify any of 
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them. Frprep, Concavity and Consurf identified 4 (Frprep score ≥8), 7 (Concavity score > 0.1), 

and 17 (Consurf score = 9) residues, respectively. Notably, our method was the only one that 

identified functional residues related to non-canonical polymerase functions (4 of the 8 residues), 

which were not conserved in sequence or structure. Overall, these results validated our method 

of combining high-throughput genetics with mutant stability prediction to identify functional 

residues in PB1 in a sensitive and unbiased manner (16, 42, 44). 

3.3.4 ANNOTATING FUNCTIONAL RESIDUES WITH HOMOLOGOUS STRUCTURAL ALIGNMENT 

vRdRp family has a conserved “right-handed” structure. It consists of three major 

conserved domains (finger, palm and thumb) and six motifs (pre-A/F, A-E) (20). Since canonical 

vRdRp functional residues of PB1 protein are expected to be structurally conserved, they aligned 

well with other protein structures from vRdRp family. Therefore, homologous structural alignment 

might enable us to further annotate PB1 residues by distinguishing canonical and non-canonical 

vRdRp functional residues. The recent improvement of algorithms provides opportunities for more 

accurate structure comparison. Here we used TM-align and 3DCOMB for pairwise and multiple 

structure alignment (59–61). Both softwares utilize TM-score to quantify protein structural 

similarity, which is robust to local structural variation and is protein length-independent (59, 60). 

Moreover, 3DCOMB takes into account both local and global features, which is suitable for 

alignment of distantly related protein structures (61). 

Twenty representative vRdRp structures were selected from +ssRNA viruses, -ssRNA 

viruses, and dsRNA viruses families with criteria as previously stated (20). Briefly, representative 

structures were selected from each of the Baltimore classes that encoded vRdRp, including 

+ssRNA viruses (Caliciviriade, Flaviviridae, Picornaviridae, Cystoviridae), dsRNA viruses 

(Birnaviridae, Cystoviridae and Reoviridae) and –ss RNA virus (Bunyaviridae) (62–81). Structures 

with no mutations and with bound substrate were preferred. PDB files with the highest resolution 

were picked for each protein. 
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To ensure sufficient structural similarity, pairwise structural comparison was performed 

between selected protein with PB1 using TM-align. The structures with TM-score > 0.5 were kept 

for multiple-structural alignment, which generally indicated similar protein folding (43). Figure S3-

6 provides an example superimposition of PB1 protein with the HCV NS5B (PDB: 2XI3) with 

decent alignment in major protein domains (67). A total of 16 proteins were included for multiple 

structure alignment (MSA) with PB1 using 3DCOMB. 

Root-mean-square deviation (RMSD), the measurement of average distance between the 

atoms and superimposed proteins, was reported by 3DCOMB for each residue as the 

representative of structure conservation. As the reported aligned residues had RMSD scores 

ceiled at 9, we assigned the residues that did not align among structures with a RMSD value of 

10 (Figure 3-4). Low RMSD scores represented that the residues were conserved in vRdRp 

family, thus more likely to carry canonical vRdRp functions. As expected, the structurally 

conserved residues were less tolerant of mutations. The average RF index of structurally 

conserved residues was significantly lower than non-conserved residues (two-tailed t-test, 

p=0.0006, Figure 3-4). The RMSD of all identified functional residues of PB1 protein were plotted. 

The smooth curve of RMSD was fitted with loess regression. We could clearly identify the 6 

conserved domains (pre-A/F, A-E) of vRdRp as valleys on the smooth curve (Figure 3-4). These 

results demonstrated the feasibility of using homologous structural alignment to identify canonical 

vRdRp residues. 

3.3.5 IDENTIFICATION OF NON-CANONICAL FUNCTIONAL RESIDUES, ONES INVOLVED IN NUCLEAR 

IMPORT OF PB1 PROTEIN 

43% of identified functional residues could not be aligned to other protein structures from 

vRdRp family. Although it could be due to poor alignment quality, it is also possible that these 

residues carry non-canonical functions that are essential for viral growth. Interestingly, 62% of 
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these residues belong to the protein interface between PB1 and PB2, PA as identified by change 

of solvent accessible surface area (SASA) upon complex formation using Sppider (residues with 

at least 4% decrease in SASA and more than 5Å2 surface expose area upon complex formation) 

(82) (Figure S3-6). These interface residues also accounted for some of the peaks (residue 50-

80, residues 350-400 and residues at C terminus of PB1) in the RMSD smooth curve of functional 

residues in Figure 3-3. 

We then performed a detailed analysis on the non-canonical functional residues that did 

not locate in the heterotrimer-forming interface. When mapped onto the protein structure, some 

of these residues (residues 180-220) formed a noticeable cluster (Figure 3-5). This clustered 

region is unique to PB1 protein, which consists of a long twisted β-ribbon connected by a non-

structured loop (47). It protrudes from the polymerase complex structure and is fully solvent-

exposed. Two NLS signals were reported in the β-ribbon region (Amino Acid 187-190, 207-210) 

to mediate PB1 nuclear import through interaction with Ran-binding protein 5 (RanBP5) (32, 83). 

Nonetheless, the function of this loop region is not completely clear. It is suspected to interact 

with viral genome in the resolved structures of influenza B and influenza C (46, 47, 84), and K198 

of influenza A was suggested to be related to host adaptation (85). As the density of the loop 

region (residues 195-198) is missing in the influenza A polymerase crystal structure, we used 

kinematic loop modeling in Rosetta software to computationally re-construct the loop region (86). 

From the above analysis, D193 in the loop region was identified as a non-canonical functional 

residue. Interestingly, it was the only negatively charged residue located within a highly positive 

charged environment. It was 100% conserved among all the human influenza A virus PB1 

sequences from the influenza research database (IRD) under purifying selection (dN/dS = 0.015) 

(87–89). Two positively charged residues (K197, K198) located on the opposite side of D193 in 

the loop region were also highly conserved in human influenza A viruses (>99%) and possibly 

interact with D193. Although they were not classified as essential residues according to our high-
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throughput fitness profile, their mutations in charges (K197E, K198E) resulted in more than 6 fold 

drop of RF index. To examine if the loop region carried possible non-canonical functions, we 

introduced single substitutions (D193G, K197E, K198E) and double substitutions (D193G-K197E, 

G193G-K198E, K197E-K198E) into PB1 protein. We also constructed mutants that carried 

substitutions in the NLS region (K188A-R189A, R208A-K209A) and mutants that decreased the 

polymerase activity (W55R, H184R, H47L and Q268L) as controls. Of note, all controls were 

identified as deleterious in our high-throughput fitness profile. Viral production of all mutants was 

measured by TCID50 assay with viral rescue experiments. D193G, D193G-K197E, G193G-

K198E, K197E-K198E and the reported substitutions on NLS region (K188A-R189A) showed 

severe impact on viral production with no detectable viral titer post transfection (Figure 3-5) (32). 

Consistently, these mutations also showed significantly slower viral growth rate in A549 cells 

(Figure 3-5). To examine the vRdRp function of these mutations, we utilized a mini-genome 

replicon assay by co-transfecting a virus-inducible luciferase reporter and polymerase segments 

(PB2, PB1, PA, NP) in 293T cells. The reported NLS mutant (K188A-R189A), which were highly 

deleterious for viral replication, still had ~50% polymerase activity in the mini-genome replicon 

assay. Similarly, D193G and all the double substitutions (D193G-K197E, D193G-K198E, K197E-

K198E) showed discordance between vRdRp function and viral growth capacity. Compared with 

W55R, H184R, H47L and Q268L, which remained ~0.1%- 65% polymerase activities, the fitness 

drop of these newly identified loop mutations was much more severe, indicating that they might 

carry non-canonical polymerase function of PB1 (Figure 3-5).  

Unlike other RNA viruses, the genome replication and transcription of influenza virus are 

performed inside the nucleus. Nuclear localization function is thus specific to influenza virus and 

belongs to non-canonical functions of PB1 protein. We tested if the identified mutations in the 

loop region (D193G, D193G-K197E, K197E-K198E) had effects on protein nuclear import. A549 

cells were infected with wild type and mutant virus at an MOI 0.1. Cells were fixed and subjected 
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to immunofluorescence analysis (IFA) at 18h post-infection. As expected, PB1 proteins of wild 

type virus were mostly localized in the nucleus. However, PB1 proteins from mutant viruses were 

found significantly enriched in the cytoplasm, suggesting that these mutations were defective in 

PB1 protein nuclear import (Figure 3-6). More severe defects were observed for double mutations 

(D193G-K197E, K197E-K198E). Similar results were observed at earlier time points (8h post-

infection) with an MOI 0.5 (Figure S3-7). Interestingly, for those PB1 mutants, the nuclear import 

for PA protein was also delayed, which is consistent with the notion that PA and PB1 are imported 

to the nucleus as a complex (32, 83, 90, 91) (Figure S3-7).  

RanBP5 belongs to the importin-β family, which has non-classical nuclear import function 

(92, 93). RanBP5 has been shown to be important for influenza A PB1 nuclear import. The NLS 

mutations affected protein nuclear import by decreasing the binding to RanBP5 (32, 83, 92). Thus, 

we further tested if mutations in the loop region (D193G, D193G-K197E and K197E-K198E) would 

also affect the interaction between PB1 and RanBP5. Immunoprecipitation (IP) was performed by 

co-transfecting FLAG-tagged PB1 protein and HA-tagged RanBP5 protein in 293T cells. Two 

days later, total cell lysate was collected and subjected to IP with anti-HA antibody conjugated 

beads or IgG conjugated beads. As shown in Figure 3-6, all three mutant proteins showed 

decreased binding with RanBP5. Consistent with our IFA results, double mutations (D193G-

K197E, K197E-K198E) showed higher reduction in protein binding. The above results indicate 

that the residues in the loop region are important for the nuclear import of influenza A PB1 protein 

through the interaction with RanBP5, which is a non-canonical function for the vRdRp family. 

3.4 Discussion 

For a comprehensive characterization of protein function, identification and annotation of 

functional residues are the fundamental tasks. Here we presented a systematic approach to 

achieve these tasks using influenza A PB1 as the target protein. Our approach combines high-
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throughput fitness profiling with mutant stability prediction and homologous structural alignment 

to identify and annotate canonical and non-canonical vRdRp functional residues (Figure 3-1). 

Interestingly, we identified a cluster of mutations that were highly deleterious for viral replication 

but with relatively intact vRdRp function. These mutations were located in the loop region of PB1 

β-ribbon and were shown to be important for PB1 nuclear import. The combination of high-

throughput fitness profiling and structural analysis provided a general approach for identifying and 

annotating functional residues, which can be applied to a wide range of proteins with homologous 

structural information available.  

In the context of evolutionary biology, proteins from the same homolog family share a 

common ancestor and possess significant sequence and structural similarities (94–97). Structural 

similarities are postulated to be maintained by functional constraints (98, 99). Viral RNA 

dependent RNA polymerase (vRdRp) were likely evolved from a common ancestor (100). 

Although the sequence identity is ~20%, they have adopted similar structural domains and utilize 

similar catalytic mechanisms (20). Throughout the period of evolution, different proteins also 

evolved diverse functions to satisfy the need of specific organisms. Thus, the specific structural 

motifs that differentiate one protein from their homologous proteins may carry organism specific 

functions. Here we used homologous protein structure information to further annotate the diverse 

protein functions. Therefore, a multi-functional protein might harbor both canonical (evolutionary 

conserved) functions and non-canonical (organism specific) functions. The combination of high 

throughput genetic screening with homologous structure analysis enabled us to systematically 

understand functional residues and important single nucleotide polymorphisms. 

Here we showed that the residues in the loop region of PB1 β ribbon were important for 

PB1 nuclear import. Unlike other RNA viruses, influenza A virus performs its genome replication 

inside the nucleus. Thus, the polymerase complex needs to be translocated into the nucleus to 

perform its function. It is known that PB1 and PA translocate together as a complex, while PB2 
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can be translocated by itself (101). RanBP5 is important for the nuclear import for PB1 and PA 

through the direct interaction with PB1. Besides the two reported NLSs, we showed that the 

mutations in the loop region also impact the interaction between PB1 and RanBP5, thus causing 

the defect of PB1 nuclear import. We do not have direct evidence to show whether the loop region 

works as a direct NLS or by affecting the nearby NLS regions. But based on the sequence of loop 

region, it did not fall into any of the six classes of nuclear localization signals (32, 102). Thus, we 

suspected that this region affected PB1 nuclear import by affecting the nearby NLS regions. In 

agreement with previous observations, there seems to be no clear consensus sequence that is 

responsible nor important for RanBP5 binding (32, 103). The detailed mechanism is to be further 

defined.  

Genetic studies are greatly facilitated by the improvement of sequencing capacity and the 

growing number of protein structures being resolved.  Large amounts of information generated 

with current technologies demand more effective approaches to determine structure-function 

relationships. Coupling mutagenesis with high throughput sequencing, high-throughput fitness 

profiling provides a sensitive and unbiased way to identify the essential residues of targeted 

proteins (16, 33–37, 104–107). The same principle applies to other proteins/organisms as long 

as the proper functional measurement can be made (37). For example, we can study the proteins 

related to cell proliferation using cell growth rate as a read out. Applying saturated mutagenesis, 

we can learn which mutation is related to abnormal cell growth rate and can further use flow 

cytometry to differentiate cells in different phases.  We can also investigate the role of mutant 

proteins on cancer metastasis through transwell migration assay in vitro or using mouse xenograft 

models in vivo. The structures of target protein or homologous protein structures can be linked to 

a genetic profile and further facilitate the understanding of biomolecular functions related to each 

functional residue. We foresee that this approach will become more powerful as more protein 
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structures are determined at an accelerated rate by crystallography and cryo electron microscopy 

and the escalating sequencing technology.   

In summary, we have developed a systematic and sensitive method to identify and 

annotate functional residues. More importantly, the method presented here is generally applicable 

to other proteins with structural information of homologous proteins. 

3.5 Materials and Methods 

Construction of influenza A segment 2 mutant library 

Influenza A/WSN/33 segment 2 mutant libraries were generated using the eight-plasmid 

transfection system(39). In brief, the whole length influenza gene was separated into 9 small 240 

bp segments. Random mutagenesis was performed with error-prone polymerase Mutazyme II 

(Stratagene). For each small library, mutagenesis was performed separately and the amplified 

segment was gel purified, BsaI digested, ligated to the vector and transformed using MegaX 

DH10B T1R cells (Life Technologies). As each small library was expected to have ~1000 single 

mutations, ~50,000 bacterial colonies were collected to cover the entirety. Plasmids from 

collected bacteria were midi-prepped as the input DNA library. 

Transfection, infection and viral titer 

To generate the mutant viral library, ~30 million 293T cells were transfected with 32ug 

DNA. Transfections were performed using Lipofectamine 2000 (Life Technologies). Virus was 

collected 72h post transfection. TCID50 were measured with A549 cells. To passage viral libraries, 

~10 million A549 cells were infected with an MOI 0.05. Cells were washed with PBS three times 

at 2 h post-infection. Virus was collected 24 h post-infection from supernatant. 

Individual mutant viral plasmids were generated by quick-change system. To generate 

mutant virus, ~2 million 293T cells were transfected with 10 μg DNA. To measure the growth 
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curve, ~1 million A549 cells were infected with MOI 0.1 and supernatant were collected at the 

indicated time. 

Sequencing library construction and data analysis 

Viral RNA was extracted using QIAamp Viral RNA Mini Kit (Qiagen Sciences). DNaseI 

(Life Technologies) treatment was performed, followed by reverse transcription using superscript 

III system (Life Technologies). At least 106 viral copy numbers were used to amplify the mutated 

segment. The amplified segment was then digested with BpuEI and ligated with the sequencing 

adaptor, which had three nucleotides multiplexing ID to distinguish between different samples. 

Deep sequencing was performed with Illumina sequencing Miseq PE250. Raw 

sequencing reads were de-multiplexed using the three-nucleotide ID. Sequencing error was 

corrected by filtering un-matched forward and reverse reads. Mutations were called by comparing 

sequencing reads with the wild-type sequence. Clones containing two or more mutations were 

discarded. Relative fitness index (RF index) was calculated for individual point mutations and only 

mutations that have frequency more than 0.1% in the DNA library were reported. 

𝑅𝐹 𝑖𝑛𝑑𝑒𝑥𝑚𝑢𝑡𝑎𝑛𝑡 𝑖

= 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑀𝑢𝑡𝑎𝑛𝑡 𝑖 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛

/𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑀𝑢𝑡𝑎𝑛𝑡 𝑖 𝑝𝑙𝑎𝑠𝑚𝑖𝑑 

Where 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑀𝑢𝑡𝑎𝑛𝑡 𝑖 = 𝑅𝑒𝑎𝑑𝑠 𝑜𝑓 𝑀𝑢𝑡𝑎𝑛𝑡 𝑖 / 𝑅𝑒𝑎𝑑𝑠 𝑜𝑓 𝑤𝑖𝑙𝑑 𝑡𝑦𝑝𝑒 

All the data processing and analysis was performed with customized python scripts, which 

are available upon request. 

Protein structural analysis 

Chain B (PB1 protein) of PDB: 4WSB was used for protein ΔΔG prediction with single 

amino acid mutations(46, 47). ΔΔG prediction were performed with both I-Mutant 2.0 package 

and ddg_monomer in Rosetta software (43, 108). Default parameters (temperature= 25 ℃, pH = 



 

 68 

7.0) were used in I-Mutant package. Parameters used for Rosetta were same as previous 

described (16, 109). ΔΔG < 0 in I-Mutant and ΔΔG > 0 in Rosetta mean destabilization. 

DSSP was used to calculated SASA, which was then normalized to the empirical scale as 

described (48–50). Sppider was used to identify protein-protein interface. Residues with at least 

4% reduction and more than 5 Å2 reduction in SASA upon complex formation are identified as 

protein-protein interface (82) . 

TM-align and 3DCOMB were used for pair-wise structural alignment and multiple 

structural alignment (59, 61). TM-score normalized to PB1 protein were utilized. 

Protein loop modeling 

In the loop region of PB1 β-ribbon, electron density for residues 195-198 is missing from 

the x-ray crystal structure (PDB: 4WSB). Rosetta software was used to computationally re-

construct the loop region, which was based on Monte Carlo sampling with exact kinematic loop 

closure (KIC) (86). After energy optimization, each model was ranked by Rosetta full atom energy 

function [80]. The lowest energy model with a hairpin-like loop was selected. 

Polymerase activity assay 

100 ng of each of PB2, PB1 (wild-type and indicated mutations), PA, NP, 50 ng of virus-

inducible luciferase reporter and 5ng PGK-renilla luciferase were transfected in 293T cells in 24 

well plates (110). Cells were lysed 24 h post-transfection and luciferase assay was performed 

with Dual-Luciferase Assay Kit (Promega). 

Immunofluorescence 

Localization of wild type PB1 and PB1 mutations were determined by immunofluorescence. 

Infected A549 cells were fixed in 2% paraformaldehyde, permeabilized with 0.1% Triton-X100, 

and then blocked with 3% BSA and 10% FBS. Viral PB1 protein was detected with anti-PB1 

antibody (GeneTex GTX125923). Hoechst 33342 dye was used for nucleic acid stain.  
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Immunoprecipitation 

Immunoprecipitation experiments were performed with HA- and FLAG- tagged proteins 

expressed in 293T cells. Briefly, cells were transfected with corresponding expression plasmids 

with Lipofectamine 2000 reagents (Invitrogen), and lysed at two days post-transfection with RIPA 

buffer (50 mM Tris-HCl pH 7.4, 0.5% NP-40, 150 mM KCl, 1 mM EDTA and protease inhibitor). 

Cell lysates were incubated with 1 µg anti-HA for 4 hours at 4 ̊C with constant agitation, washed 

with RIPA buffer for 5 times and eluted with 60 µl of SDS-PAGE sample buffer. All samples were 

subjected to SDS-PAGE and western blotting analysis. 

Western blotting 

Proteins in SDS-PAGE sample buffer were heated at 95℃, resolved by SDS-PAGE gel 

electrophoresis, and then transferred onto PVDF membrane. Proteins were detected with 

antibodies against FLAG-epitope, HA-epitope or actin. 

Phylogenetic Analysis 

PB1 coding sequences were downloaded from the Influenza Research Database (87).  

Multiple sequence alignment was performed using MUSCLE (88). 3000 sequences were 

randomly sampled for dN/dS calculation by Fubar using HyPhy (89). 

Nucleotide sequence accession numbers  

Raw sequencing data have been submitted to the NIH Short Read Archive (SRA) under 

accession number: PRJNA318707.  

 

https://www.google.com/search?espv=2&biw=1455&bih=665&q=agitation&spell=1&sa=X&ved=0CBoQvwUoAGoVChMI6bCzndiIxgIVwzuICh1M_wCg
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Figure 3-1. Comparison of conservation-based method and our method. The conservation-
based method is commonly used to identify and annotate functional protein residues, but it has 
three major limitations. Firstly, the method is limited by the insufficient sampling of protein 
functional space in natural evolution. Secondly, it is challenging for this method to dissect 
residues with structural or functional constraints. Lastly, it is limited to distinguishing the diverse 
functions within the same protein. Our method presented here may overcome these limitations 
and provide a systematic way for annotating functional residues. Using high-throughput fitness 
profiling, we can identify essential residues for viral replication. Through mutant stability 
prediction, we are able to dissect the structural and functional constraints. Homologous 
structural analysis is utilized to further annotate canonical and non-canonical functional 
residues.  
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Figure 3-2. Fitness profile of influenza A virus segment 2 at single nucleotide resolution. (A) 
A schematic presentation of the experimental flow of high-throughput fitness profiling. Random 
single nucleotide mutations were introduced into influenza A/WSN/33 segment 2. Mutant viral 
libraries were generated by co-transfecting mutant DNA library with seven plasmids encoding 
the other wild-type viral fragments. Viral libraries were then passaged in A549 cells. High-
throughput sequencing was performed for the plasmid mutant libraries, post transfection and 
post-infection viral libraries. (B) Correlation of the relative frequency of each single-nucleotide 
mutations between biological duplicates are shown. (C) Relative fitness scores are shown for 
individual mutations of influenza A/WSN/33 segment 2 in log10. Two representative regions are 
zoomed in to show the single nucleotide change.  
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Figure 3-3. Systematic identification of deleterious mutations of PB1 protein. (A) Histogram 
illustrations are shown for the relative fitness distribution (RF index in log10) of silent mutations 
and missense mutations. Mutations of RF index ≤ 0.1 were identified as deleterious mutations. 
The percentage of silent mutations and missense mutations that fall below this cutoff are boxed 
in blue. (B) Fourteen deleterious mutations were selected and reconstructed into viral genome. 
TCID50 of selected single nucleotide mutations are shown. Dashed line represents the 
detection limit of TCID50 assay. Data is presented as means±SD from a biological duplicate.  
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Figure 3-4. Annotation of PB1 functional residues with homologous structural alignment. 
(A) Multiple structure alignment was performed among PB1 and 16 other homologous structures 
in vRdRp family. PB1 structure is rainbow colored according to the root-mean-square deviation 
(RMSD) of each residue (B) Histograms of the RF indexes are shown for residues that cannot 
align (red) and the residues that can align to other structures in vRdRp family. RF index were 
significantly higher for residues that cannot be aligned (two-tailed T test, p=0.0006). (C) RMSD 
scores are shown for functional residues. Smooth curve was fitted by loess regression. 
Conserved domains (pre-A/F, A-E) of vRdRp are labeled and shown as valleys on the smooth 
curve of RMSD. 
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Figure 3-5. Identification of non-canonical functional residues of PB1 protein. (A,B) Non-
canonical non-interface functional residues of PB1 protein are highlighted in red. A cluster of 
residues is located at the long twisted β-ribbon region. The non-structured loop region (amino 
acid 195-198) was reconstructed by Rosetta. (C) TCID50 (Upper panel) and relative polymerase 
activity (Lower panel) for indicated mutations are shown. The data are presented as the 
mean±SD from four independent biological replicates. (D) Growth curve of indicated mutations 
are shown. A549 cells were infected with indicated mutant virus at an MOI 0.1. Viruses were 
collected at indicated time points and TCID50 were measured. 
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Figure 3-6. Identified non-canonical functional residues may involve in nuclear import of 

PB1 protein by interacting with RanBP5. (A) Cellular localizations of wild type and mutant 
PB1 proteins were examined by immunofluorescence. (B) Percentage of cells with different PB1 
localizations. Data is presented as mean±SD from three independent biological replicates. At 
least 50 cells were analyzed for each replicate with ImageJ. * p<0.05; ** p< 0.01; *** p< 0.001 
by two-tailed T test. (C) Interactions between PB1 proteins and RanBP5 were examined by 
immunoprecipitation (IP). Number below each band is the intensity quantification measured by 
Image Lab. 

Table 3-1. Comparison of methods in identification of known functional PB1 residues. 

Mutation 
Functional 
Annotation 

Our 
Method 

FireStar Frpred Consurf ConCavity 

L8 Interact with PA 0 0 1 3 0 

F9 Interact with PA 0 0 1 3 1.40E-6 

L10 Interact with PA 0 0 1 6 0 

K11 interact with PA 1 0 1 5 0 

M179 Polymerase activity 0 0 2 4 4.40E-8 
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K188 Nuclear Localization 1 0 2 6 0 

R189 Nuclear Localization 1 0 1 3 0 

R208 Nuclear Localization 1 0 1 1 0 

K209 Nuclear Localization 0 0 2 3 0 

K229 Polymerase activity 1 0 7 9 0.288 

R233 Polymerase activity 0 0 7 9 0.044 

K235 Polymerase activity 1 0 7 9 0.682 

R238 Polymerase activity 1 0 7 9 0.201 

R239 Polymerase activity 0 0 7 9 0.187 

K278 Polymerase activity 1 0 6 9 0.022 

K279 Polymerase activity 1 0 6 9 1.08E-5 

N306 Polymerase activity 1 0 6 8 0.437 

K308 Polymerase activity 1 0 6 9 0.027 

M409 Polymerase activity 1 0 9 9 0.829 

Q442 Polymerase activity 1 0 4 9 0.653 

S444 Polymerase activity 1 0 7 9 0.009 

D445 Polymerase activity 1 0 6 9 0.001 

D446 Polymerase activity 1 0 8 9 5.25E-6 

N476 Polymerase activity 1 0 7 9 0.008 

S478 Polymerase activity 0 0 7 9 0.011 

K481 Polymerase activity 1 0 8 9 0 

Y483 Polymerase activity 1 0 4 8 0 

E491 Polymerase activity 1 0 8 9 0.028 

F492 Polymerase activity 1 0 6 8 0.001 
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F496 Polymerase activity 0 0 5 8 0.001 

 

 

 

3.6 Supplementary Materials 

 

Figure S3-1. Construction of small libraries and sequencing coverage  

(A) A schematic presentation of the mutagenesis library of influenza segment 2, covered by 9 
small libraries of 240 bp each. The starting nucleotide position for each segment is labeled. (B) 
Distribution of mutations in the input DNA plasmid library is shown as a bar chart. ~30-35% of 
clones in the plasmid mutant library contained one mutation (single). ~25%-30% were wild type, 
and the rest of them contained two or multiple mutations. (C) Sequencing depth is shown for 
each small library. 
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Figure S3-2. Position and mutation coverage of libraries  

(A) Percentage of nucleotide positions that were observed in the fitness profile and the 
percentage of total single nucleotide mutations that were observed in the fitness profile prior to 
library quality control. (B) Percentage of nucleotide positions that were observed in the fitness 
profile and the percentage of total single nucleotide mutations that were observed in the fitness 
profile post library quality control (mutation frequency > 0.1% in the DNA library). (C) 
Percentage of one, two, or all three nucleotide mutations observed for all positions prior to 
library quality control. (D) ) Percentage of one, two, or all three nucleotide mutations observed 
for all positions post library quality control.  

 

Figure S3-3. Growth Capacity of wild type and ΔPB1-F2 virus  

TCID50 are shown for wild type virus and PB1-F2 knock out (ΔPB1-F2) virus in log10. No 
significant difference in viral growth was detected. The ΔPB1-F2 virus was generated by 
mutating the start codon of the gene (T120C) and introducing two stop codons at position 12 
(C153G) and position 58 (G291A). 
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Figure S3-4. RF indexes of silent mutations and nonsense mutations 

The relative fitness indexes (RF index) of silent mutations and nonsense mutations are shown 
with box plot. The average RF index of silent mutations is significantly larger than nonsense 
mutations (two-tailed T test, P=4.6E-021)  

 

Figure S3-5. Protein stability prediction by I-Mutant and Rosetta 

(A) Proportion of mutations that are destabilizing, neutral or stabilizing in PB1 protein as 
predicted by I-mutant 2.0 are shown as a pie chart (B) Distribution of the solvent 
accessible surface area (SASA) is shown for destabilizing mutations and other mutations. The 
destabilizing mutations showed significant lower values of SASA (two tailed T test, P=5.4E-
117). (C) Correlation of ΔΔG prediction result of I-Mutant and Rosetta. Absolute Correlation 
coefficient of prediction that result between these two methods is 0.3. Note that the sign of ΔΔG 
is opposite in these two computational tools.  
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Figure S3-6. Pair-wise structural alignment of PB1 protein and interface prediction.  

(A) Pair-wise alignment of PB1 protein and HCV NS5B (PDB: 2XI3) are shown. PB1 is colored 
in gray and NS5B is colored in crimson. (B) Possible interfaces between PA, PB1 and PB2 are 
shown. PA structure is shaded in purple and the possible interacting residues of PB1 are 
colored in red. PB2 structure is shaded in green and the possible interacting residues of PB1 
are colored in blue. The interface residues were predicted by SASA changing upon complex 
formation using Sppider. 

 

 

Figure S3-7. Nuclear localization of PB1 and PA protein upon PB1 mutations.  
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(A and C) Quantification of cellular localization (A)  PB1, and (C) PA proteins of wild-type and 
mutant viruses. A549 cells were infected with wild type and mutated virus at MOI 0.5. Cells were 
fixed and subjected to immunofluorescence analysis (IFA) at 8h post-infection. At least 50 cells 
were analyzed for each mutant. Images were processed by ImageJ. (B) Example images are 
shown for the cellular localization of PA proteins of PB1 mutant viruses.  
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4.1 Abstract  

Neuraminidase inhibitors (NAIs) are widely used to as anti-viral drug for influenza virus 

infection. However, the low genetic barrier of NAIs facilitates the rapid development of single 

nucleotide drug resistant mutations. By combining saturated nucleotide mutagenesis and high-

throughput sequencing, we characterized the fitness effects of single nucleotide mutations of 

neuraminidase (NA) and systematically identified resistant mutations for three NAIs: zanamivir, 

oseltamivir and AV5080. We observed that both the number and the effects of resistant mutations 

of AV5080 are smaller than those of zanamivir and oseltamivir, but so are their fitness costs. We 

used population genetic models to estimate the rate of increase in fitness under drug selection as 

a function of drug dosage. AV5080 showed a higher rate of increase in fitness at low drug 

concentrations due to the low fitness cost of resistant mutations, but also exhibited a steep drop 

with high drug concentrations because of lower strength of resistance. Our approach also enabled 

the systematic analyses of cross-resistance among different drugs, which showed to be 

uncommon between AV5080 and zanamivir. In summary, we performed systematic profiling of 

resistance mutations of three NAIs, which showed distinct resistant barriers. The generally 

applicable high-throughput approach may assist in evaluation of drug resistance and guild the 

design of personalized therapy.  

4.2 Introduction  

Neuraminidase inhibitors (NAIs) are the most commonly used drugs to treat influenza viral 

infection. As sialic acid analogs, NAIs inhibit the cleavage and spread of influenza virus by directly 

inhibiting neuraminidase (NA) function. Zanamivir was the first NAI introduced into clinic as a 

nasal spray, and was followed by the development of oseltamivir, which can be taken orally (1). 

Peramivir and laninamivir were also developed and approved for clinic usage in Japan (2–5). 
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NAIs are known to be effective for multiple isolated strains from both influenza A and influenza B. 

However, the high mutation rate of influenza virus and low resistant barrier of NAIs permit the 

rapid development of drug resistance (1, 6–8). A number of resistant mutations were reported 

and validated for both zanamivir and oseltamivir (7, 9–17). These drug resistant mutations, most 

of which contain only single nucleotide changes, can dramatically decrease the binding of NA to 

NAIs (18, 19). The emergence and world-wide spread of NAI resistant mutations create a major 

public health burden and emphasize the importance of controlling drug resistancy. New 

generations of NA inhibitors are actively being developed (20–22). With different binding mode or 

different mechanism to inhibit NA function, these new drugs might result in different mechanisms 

of resistance. It is important to understand the distinct resistant profiles of different NAIs in order 

to guide the rational use of drugs.  

Two strategies have been commonly used to identify resistant mutations: isolation of 

resistant strains in clinic(1, 6, 7, 31), and long-term evolution in-vitro under drug selection (32, 33). 

Through sequencing, NA mutations with resistant phenotypes can be identified. However, both 

strategies suffer from limited sampling of de novo mutations and stochasticity in evolution. Some 

important resistant mutations might not be captured due to genetic drift or clonal interference. 

Importantly, neither of these methods is able to simultaneously quantify the fitness effect of 

resistant mutations, which is a critical component in determining the emergence of drug resistance 

(14, 23–30). Thus, a more systematic method needs to be established to evaluate the resistant 

barriers of different NAIs in a timely manner. 

Cross resistance is also a major issue for the clinic usage of NAIs (31). It is reported that 

some mutations in functional active sites of NA (R152K, R292K) and framework residues 

(D198E/N/G) confer cross-resistance to both zanamivir and oseltamivir (15, 33). The traditional 

approach of examining cross resistance also relies on generating or isolating single mutations 
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and test their drug resistant phenotype individually (34). A high-throughput approach to examine 

cross-resistance will greatly facilitate the evaluation of effective drug combination.  

Here we present a systematic examination of the resistant profiles of three NA inhibitors, 

namely ostamivir, zanamivir and AV5080. By combining random mutagenesis and high-

throughput sequencing, we identified resistance mutations for each drug. Both the resistant 

strength and fitness cost of resistant mutations were quantified simultaneously. We further 

assessed the distinct resistance barriers of three NAIs by applying a simple population genetic 

model. Cross resistance among the three drugs were identified and validated. The approach can 

systematically and rapidly evaluate the resistant barrier of NAIs. Importantly, this approach can 

be generally applied to other drugs with known target protein. 

4.3 Results  

4.3.1 SYSTEMATIC CHARACTERIZATION OF RESISTANT PROFILES OF THREE NAIS 

We applied a high-throughput genetic approach to systematically profile resistant 

mutations of NA inhibitors. Conceptually, we sought to generate a high-dense mutant viral library, 

monitor the growth effect of each mutation with and without drug selection, and then quantify the 

fitness and drug resistance of each mutation. The mutant viral library ensured the pre-existence 

of mutations at relatively high frequency, minimizing the effect of genetic drift. By quantifying the 

enrichment of each mutation under drug selection, we bypassed the requirement of dominance 

or fixation of beneficial mutations to detect resistance.  

Random mutagenesis was performed on the entire NA segment of influenza A/WSN/33 

virus by error-prone PCR (Methods). Mutant viral libraries were reconstituted by co-transfecting 

the mutant NA segment together with seven other wild-type plasmids. To assess viral growth 

capacity under no drug condition, the mutant viral library was passaged in A549 cells for three 

rounds (24h per round) with MOI equal 0.05. In parallel, the mutant viral library was selected for 
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three 24h passages under NAI drug selection. Three NAIs were included in our study including 

two standard NAIs: zanamivir and oseltamivir, and a newly developed NAI: AV5080 (20). 

Transfection and subsequent selection were performed in biological duplicates.  

The mutant DNA library, reconstituted viral library and passaged virus library were 

subjected to next-generation sequencing with Illumina Hiseq 2000. 2746 mutations were analyzed, 

which covered 94.7% of total residues (429/453) and 71.2% (2746/3859) of all possible single 

nucleotide mutations. Selection under drug naïve condition enabled us to examine the fitness 

effect of each single nucleotide substitution for viral replication. The relative fitness score (RF 

score) for each mutant was calculated as the frequency in the selected pool (drug naïve condition) 

divided by the frequency in DNA library. Strong rank correlation of RF scores from biological 

duplicates was obtained (R=0.8) (Figure 4-1), indicating the reproducibility of our method. We 

also observed a clear separation between the distribution of RF scores of silent mutations and 

missense mutations, suggesting efficient selection in our passages (Figure 4-1). We further 

evaluated the essentialness of every residue by quantifying the percentage of deleterious 

mutations (RF score <0.2) among all profiled single nucleotide mutations in this particular residue 

(essentialness score). The known catalytic sites, including R118, R151, R152, D176, R224, R292, 

R371 and Y406 (N2 numbering) were all shown to be essential with more than 50% of mutations 

had deleterious effect for viral replication (Figure 4-1). These results validated our high-

throughput approach to quantify the mutational effect on viral replication. 

4.3.2 IDENTIFICATION OF RESISTANCE MUTATIONS AND DISTRIBUTION OF DRUG RESISTANCE SCORE  

For a particular drug, the drug resistance score (W) of each mutation was calculated as 

the ratio of RF score under drug selection to that in drug naïve condition. We used synonymous 

mutations as internal controls, with the assumption that a synonymous mutation would have 

minimum, if not no effects on drug sensitivity. Log (W) of synonymous mutations followed a normal 

distribution centered around 0, and were comparable among three NAIs (Figure S4-1). We 
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defined a mutation as drug resistant (R) if W was 

and as highly drug resistant (HR) if W was  

In the profile, 191 mutations were shown to be resistant for zamanivir, 70 of which we 

classified as highly resistant mutations (Figure 4-2). We detected R292K, H274Y, D199G, I117V, 

and E119D to be resistant, which all have been reported previously (7, 9–17). 88 mutations were 

resistant for osetamivir (28 highly resistant), and also included the well-known mutations: H274Y, 

R292K, D199G, D199N, I117V, N294S, D199E (1, 7). For the new drug AV5080, 23 mutations 

were shown to be drug resistant mutations. Although there is possible false positive and false 

negative related with the high-throughput screen, we noted that the number and resistance effects 

of drug resistant mutations were fewer for AV5080 compare with zamanivir and oseltamivir 

(Figure S4-2). This pattern held true across varying criteria for identifying drug resistant mutations 

(method). We also constructed and validated the IC50 of 7 Resistant Mutations against different 

drugs, which showed consistency with the profile data (Figure 4-2). 

The distribution of W is a key parameter in determining the resistant potential of single 

nucleotide mutations. We compared the different distributions of W of drug resistant mutations of 

the three drugs using violin plots (Figure S4-3). There is a heavy tail in the distribution of W (i.e. 

highly resistant mutations) for zanamivir and oseltamivir, but not for AV5080. This difference is 

also evident in the cumulative distribution function of resistant mutations (Figure S4-3). We further 

fit the Generalized pareto distribution (GPD) to quantitatively examine the shape of the 

distributions of W (Figure 4-2, Figure S4-3) (35–45). For zanamivir and oseltamivir, the 

distribution of W falls in Fréchet domain, characterized by the heavier tail of a few exceptionally 

resistant mutants, while W of AV5080 falls in Gumbel domain with an exponential tail (46, 47). 
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4.3.3 EVALUATING THE DISTINCT RESISTANT BARRIERS OF DRUGS BY COMBINING DRUG RESISTANCE 

SCORE AND FITNESS COST 

The emergence of resistant mutations is determined by their effects on both drug 

resistance and replicative fitness (48). Our fitness profiling in drug naïve condition and under drug 

selection provided a unique opportunity to simultaneously evaluate the resistance and fitness cost 

of individual mutations. We plotted the RF score and drug resistant score (W) for each of the three 

NA inhibitors (Figure 4-3). 88% of resistant mutations of zanamivir and 80% of resistant mutations 

of oseltamivir had fitness costs comparable to wild type. All of the top resistant mutations (W>50) 

of zanamivir and oseltamivir were deleterious for viral replication. However, only 50% resistant 

mutations of AV5080 showed a decrease in viral growth capacity. Histogram of relative fitness 

score of resistant mutations also clearly showed that resistant mutations of AV5080 had smaller 

fitness cost (Figure S4-4). In fact, 7 out of 8 highly resistant mutations of AV5080 are at least 

neutral in viral growth from our dataset. Genetic barrier is also a critical component in determining 

the emergence of drug resistance. As we focused on single nucleotide mutations in our profile, 

we analyzed the ratio of transition (Ts) and transversion (Tv) of the drug resistant mutations 

among the three drugs. Resistant mutations of AV5080 had a slightly higher proportion of 

transitions than that of zanamivir and oseltamivir (Figure S4-5). The frequency of Ts versus Tv is 

estimated to be ~10:1 for influenza virus, suggesting a lower genetic barrier for transitions than 

transversions (49).  

To compare the distinct resistant barriers of NA inhibitors, we evaluated the rate of fitness 

increase at different drug concentration, which depended on both the resistant effect and fitness 

cost (50–52). We developed a simplified population genetic model in the regime of strong-

selection-weak-mutation considering only single nucleotide mutations (methods). We noted that 

the shape of the curve are different for different drugs, which is mostly determined by the spectrum 

of beneficial mutations at a particular drug concentration (Figure 4-3). At low drug concentration, 
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AV5080 showed higher rate of fitness increase attributed to the low fitness cost of resistant 

mutations. However, due to less number of resistant mutations and smaller resistant effect, the 

rate of fitness increase also drops fast at higher drug concentrations. At concentrations ~5-6 fold 

of wild type IC50, the rate drop to almost zero for AV5080.  

4.3.4 CROSS RESISTANCE IS RARE BETWEEN AV5080 AND ZANAMIVIR, OSELTAMIVIR 

Importantly, our system provides a rapid and comprehensive evaluation of cross 

resistance among different drugs, which is informative for clinical drug usage. We observed that 

40% highly resistant mutations of ostamivir are also resistant for zanamivir (Figure 4-4). All the 

top-ranked resistant mutations are shared between ostamivir and zanamivir (Figure S4-6). 

Interestingly, there seems to be limited cross-resistance between AV5080 and the other two drugs, 

especially with Zanamivir (Figure S4-4). We further validated the AV5080 drug sensitivity of 4 

mutations (I222L, N294S, I222R, R292K) that were shown to be resistant to either zanamivir or 

oseltamivir (Figure 4-2). Using NA activity assay, we observed that the resistance of these 

mutations to AV5080 is greatly reduced (Figure 4-4). All the mutations have IC50<1nM for 

AV5080. Out of the four mutations, I222R has the highest IC50 against AV5080, which is 4.1 fold 

higher than wild type. However, the IC50 of I222R is almost 18 fold higher compared with wild 

type for osletamivir. The low cross-resistance is consistent with previous reports when examining 

AV5080 among a diverse panel of influenza strains.  

Mapping the resistant mutations of all three drugs onto the NA protein structure (pdb:3b7e), 

we noticed that a cluster of resistant residues centered around the catalytic region for ostamivir 

and zanamivir, differed from AV5080 (Figure S4-7). As the catalytic region is essential for NA 

function, the resistant mutations on this region would have more impact on viral replication. This 

may explain why the fitness cost of ostamivir and zanamivir resistant mutations are higher than 
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AV5080. Future studies on the crystal structure of NA with AV5080 may provide better explanation 

regarding the different resistant profiles.  

4.4 Discussion 

The emerging mutations that are resistant to current NA inhibitors makes it imperative to 

develop new anti-virals  (20–22). It is essential to understand the resistant profiles of different 

drugs for their rational usage. Here we presented a systematic approach to examine the resistant 

profiles of three NA inhibitors, namely ostamivir, zanamivir and AV5080. Focusing on single 

nucleotide mutations, we identified mutations that are resistant to each of the drug. Both the 

resistant strength and fitness cost of resistant mutations were quantified simultaneously. By 

calculating the rate of fitness increase as a function of drug dose, we assessed the distinct 

resistance barriers of three NAIs. Furthermore, we evaluated the cross-resistance among different 

drugs.   

This high-throughput genetic approach provided a systematic way to evaluate the resistant 

profiles of drugs (53–56). Here we quantified viral growth by tracking the changing of viral copy 

number through high-throughput sequencing. This allowed us to not have to rely on the 

dominance of beneficial mutations, which is a non-sensitive and time-consuming requirement of 

long-term evolution experiments. In this experiment, we quantified viral fitness using an in-vitro 

system. A similar assay can be established in vivo by infecting mutant libraries in mice with and 

without drug treatment. Moreover, this approach can be extended to study other drugs and allow 

us to quickly identify resistant mutants on the target gene.  

We developed a simplified model to evaluate the distinct resistant barriers of each drug. 

Under the regime of strong-selection-weak-mutation, we quantified the rate of fitness increase 

under different drug concentrations. The shape of the curve are mostly determined by the 

spectrum of beneficial mutations at a particular drug concentration, which reflect the resistant 

effect as well as the fitness cost and genetic barrier of these beneficial mutations. Although this 
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regime not always hold true for viral populations (large population size, large mutation rate), the 

‘rate of fitness increase” would be a useful measurement to compare the emergence of drug 

resistant mutations among different drugs.  

We also want to mention some limitations and future directions of current study. Firstly, 

we used random mutagenesis to introduced mutation for the entire NA segment and used 11 

Illumia Hiseq reads to cover the entire library. Although we tried to limit the mutation rate, but 

there is still chance that multiple mutations occur at the same viral clone. The short read of Hiseq 

cannot enable us to tell if there is multiple-mutations occur at long distance. This may create noise 

in assessing the relative fitness score of particular mutation. Secondly, we generated the NA 

library using H1N1/WSN/33 virus as background, and only focusing on single nucleotide 

mutations. However, different genetic backgrounds might have different profiles of resistant 

mutations, especially with the existence of compensatory mutations. The resistant profile will also 

differ considering multiple mutations and epistasis. Nevertheless, our system can be quickly 

applied to other genetic backgrounds, and enable us to find the compensatory mutations of drug 

resistant mutations (58).  

The understanding of distinct resistant barriers and cross-resistance can improve the clinic 

usage of drugs. Based on their profiles, we can rationally choose the combination of drugs that 

minimize the emergence of possible resistance. Moreover, it can also facilitate the improvement 

of drug development. An ideal drug would have both high genetic barrier and high fitness barrier. 

In other words, there needs to be several nucleotide mutations in order to be resistant and inflict 

a high fitness cost to viral replication. However, it is very rare that first generation drugs can have 

both high genetic and high fitness barriers. Thus, current drug development is usually iterative. 

After resistant mutations are observed through clinical usage of first generation drug, 

modifications or derivatives are made to overcome the resistance and improve the efficacy. This 

clinical accumulation of drug resistant mutations can be time consuming. High throughput 
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resistant profiling provides an efficient way to evaluate the resistant barriers and thus facilitates 

the “next generation” of drug design. Furthermore, it can help in the modification of drugs to avoid 

the highly replicable single resistant mutations (57).  

 

4.5 Materials and Methods: 

Construction of influenza NA mutant library 

Influenza A/WSN/33 NA mutant libraries were generated using the eight-plasmid 

transfection system (59). In brief, random mutagenesis was performed for the entire NA segment 

with error-prone polymerase Mutazyme II (Stratagene). We used NA segment with R194G 

mutation as our template for error-prone mutagenesis, as R194G mutation was reported to 

stabilize NA structure and increase viral replication capacity (58, 60). The amplified segment was 

gel purified, BsaI digested, ligated to the vector and transformed using MegaX DH10B T1R cells 

(Life Technologies). As the library was expected to have ~3000 single mutations, ~100,000 

bacterial colonies were collected to cover the entirety. Plasmids from collected bacteria were midi-

prepped as the input DNA library. On average, there are ~3 mutations per plasmid.  

Transfection, infection and viral titer 

To generate the mutant viral library, ~75 million 293T cells were transfected with 80ug 

DNA. Transfections were performed using Lipofectamine 2000 (Life Technologies). Virus was 

collected 72h post transfection. TCID50 were measured with A549 cells. For one round of viral 

passage, ~10 million A549 cells were infected with an MOI 0.05. Cells were washed with PBS 

three times at 2 h post-infection. Virus was collected 24 h post-infection from supernatant. Three 

rounds of passaging were performed with and without NA inhibitor selection. Biological duplicates 

were performed for transfection and following passage steps. 
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Individual mutant viral plasmids were generated by quick-change system. To generate 

single mutant virus, ~2 million 293T cells were transfected with 10 μg DNA. Viral titer were 

measured by TCID50 assay using A549 cells.  

Sequencing library construction and data analysis 

Viral RNA was extracted using QIAamp Viral RNA Mini Kit (Qiagen Sciences). DNaseI 

(Life Technologies) treatment was performed, followed by reverse transcription using Superscript 

III system (Life Technologies). At least 106 viral copy numbers were used to amplify the mutated 

segment. 

The entire NA segment was separated into 11 small amplicons for sequencing, each 

around 94bp. Three nucleotides population IDs were introduced into both the 5’ and 3’ end of 

amplicons to separate between different samples, and six nucleotides molecular index tags were 

used for sequencing error correction.   

Deep sequencing was performed with Illumina sequencing Hiseq PE100. Raw sequencing 

reads were de-multiplexed using the six-nucleotide ID. Sequencing error was corrected by filtering 

un-matched forward and reverse reads. Mutations were called by comparing sequencing reads 

with the wild-type sequence. Relative fitness score (RF scores) was calculated for individual point 

mutations and only mutations that have frequency more than 0.01% in the DNA library were 

reported. 

𝑅𝐹 𝑆𝑐𝑜𝑟𝑒𝑚𝑢𝑡𝑎𝑛𝑡 𝑖

= 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑀𝑢𝑡𝑎𝑛𝑡 𝑖 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛

/𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑀𝑢𝑡𝑎𝑛𝑡 𝑖 𝑝𝑙𝑎𝑠𝑚𝑖𝑑 

Where 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑀𝑢𝑡𝑎𝑛𝑡 𝑖 = 𝑅𝑒𝑎𝑑𝑠 𝑜𝑓 𝑀𝑢𝑡𝑎𝑛𝑡 𝑖 /  𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑎𝑑𝑠  

We noted that we did not normalized to the relative frequency of wild type, but using total 

reads instead. As we used random mutagenesis for library construction and more than one 

mutation might occur in one plasmid. The short reads of Hiseq did not allow us to read through 
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the entire NA segment, thus for a particular mutation occur in the sequenced region, there are 

potentially other mutations in the genetic background. Similarly, reads without mutations are not 

necessarily WT, so we cannot accurately calculate the relative frequency of WT. We are using 

“RF scores” here as a proxy for fitness. 

All the data processing and analysis was performed with customized python scripts, which 

are available upon request. 

Identification of drug resistant mutations 

Synonymous mutations were used as benchmark for the identification of resistant 

mutations. For a fair comparison, we used the same cutoff for all three drugs in the main text. The 

cutoff is based on the mean and standard deviation of synonymous mutations across all drugs 

distribution of synonymous mutation according to each drug, or based on 95% and 99% 

confidential interval curve. The result is consistant across varying criterias, that the number and 

resistance effects of drug resistant mutations were fewer for AV5080 compare with zamanivir and 

oseltamivir. 

Calculation of resistant barrier 

To compare the likelihood of emergence of drug resistance mutations under different 

drugs, we estimated the rate of increase in fitness of a virus population (
𝑑𝐹

𝑑𝑡
) under the simplified 

assumption of strong-selection-weak-mutation: 

~ ( )
dF

P s s
dt

 
 

mut wts f f 
 

P(s): probability that one mutant with selection coefficient s get fixed in a population of N. 

P(s)= 0 for s<=0.  
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 beneficial mutation rate, which is proportionally to the number of mutations 

s: selection coefficient  

fmut([drug=x]): fitness of one mutant at drug concentration x 

fwt([drug=x]): fitness of wild type virus at drug concentration x 

Where 

𝑃(𝑠) 𝑚𝑢𝑡𝑖 =
1 − 𝑒−𝑠

1 − 𝑒−𝑁𝑠  
 ≈  1 − 𝑒−𝑠 𝑤ℎ𝑒𝑛 𝑁 𝑖𝑠 𝑏𝑖𝑔 𝑒𝑛𝑜𝑢𝑔ℎ 𝑎𝑛𝑑 𝑠 > 0 

𝑠 𝑖𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡, 𝑁 𝑖𝑠 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑠𝑖𝑧𝑒 

 (transition):(transversion) = 10:1 

For each drug, the inhibition of viral fitness is modeled by a Hill function 

𝑓𝑊𝑇,[𝑑𝑟𝑢𝑔] = 𝑓𝑊𝑇,[𝑑𝑟𝑢𝑔=0] ×
1

1 − (
[𝑑𝑟𝑢𝑔]
𝐼𝐶50𝑊𝑇

)ℎ

 

𝑓𝑚𝑢𝑡𝑖,[𝑑𝑟𝑢𝑔] = 𝑓𝑚𝑢𝑡𝑖,[𝑑𝑟𝑢𝑔=0] ×
1

1 − (
[𝑑𝑟𝑢𝑔]

𝐼𝐶50𝑚𝑢𝑡𝑖
)ℎ

 

𝐼𝐶50 𝑖𝑠 𝑡ℎ𝑒 ℎ𝑎𝑙𝑓 𝑚𝑎𝑥𝑖𝑚𝑎𝑙 𝑖𝑛ℎ𝑖𝑏𝑖𝑡𝑜𝑟𝑦 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛, ℎ 𝑖𝑠 ℎ𝑖𝑙𝑙 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑑𝑟𝑢𝑔 

𝑓𝑊𝑇,[𝑑𝑟𝑢𝑔=0]/𝑓𝑚𝑢𝑡𝑖,[𝑑𝑟𝑢𝑔=0] is the RF scores for mutations under drug naïve condition. 

The Hill coefficient (h), was fitted for each drug with data collected from wild type virus. 

For each mutation, IC50 were converted from drug resistant score using hill function, under the 

assumption that h is consistent between wild type and mutations. Selection coefficient (relative 

fitness) was normalized to each round of replication of influenza virus, using 6h as average time 

for one round of replication (61).  

f_normalized=f^1/4 

Neuraminidase activity assay. 

106 TCID50 virus were used to measure the NA activity. NA activity was assayed using 

the fluorogenic substrate methylumbelliferyl-α-d-N-acetylneuraminic acid (MUNANA) (purchased 
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from Sigma) following a previously described protocol 

(http://www.nisn.org/documents/A.Hurt_Protocol_for_NA_fluorescence.pdf). Cell culture media 

were used as background control.  

 

 

Figure 4-1. Systematic characterization of resistant profiles of three NAIs 

 

(A) Correlation of relative fitness scores (RF scores) of NA mutations obtained from biological 
duplicates is shown. (B) Distribution of the RF scores for silent and missense mutations is 
shown. The clear separation between silent and missense mutations suggested sufficient 
selection pressure during passages. (C) Essentialness scores were calculated for each residue 
and mapped onto protein structure (PDB:3b7e). The catalytic core residues are all shown to be 
essential for viral replication.  

 

http://www.nisn.org/documents/A.Hurt_Protocol_for_NA_fluorescence.pdf
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Figure 4-2. Identification of resistance mutations and distribution of drug resistance score  

(A) Scatter plots are shown for the drug resistant score (W) of each NA mutations by the amino 
acid positions. Resistant mutations were colored in orange, highly resistant mutations were 
colored in red. The top resistant mutations were labeled. (B) Validation of drug resistant 
mutations by NA activity assay. (C) The distribution of drug resistant scores (W) is fitted into 
Generalized pareto distribution (GPD). Selection coefficient of each resistant mutant is rescale 
from the minimum W within one drug (S resistnat mut = W resistant mut- W min resistant mut). 
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Figure 4-3. Evaluating the unique resistant barriers of drugs by combining drug resistance 

score, fitness cost and genetic barrier 

(A)Scatter plots are shown the drug resistance scores (W) and relative fitness scores (RF score) 
for each NA mutations for zanamivir, oseltamivir and AV5080. (B) Rate of fitness increase is 
calculated as the function of drug concentration as fold of IC50 for each drug.  

 

 

Figure 4-4. Cross resistance is rare between AV5080 and other NAIs 

(A) Venn plot is shown the number of highly resistant mutations for each NAI that cross-
resistance to other drugs. (B) Drug sensitivity of 4 zanamivir or oseltamivir resistant mutations 
against AV5080 were examined by NA activity assay. The IC50 of AV5080 for each mutations 
were calculated.  
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4.6 Supplementary Materials 

 

Figure S4-1. Distribution of drug resistance scores of silent mutations 

Histograms are shown the distribution of drug resistant score of silent mutations for zanamivir 
(left), oseltamivir (middle) and AV5080 (right). Silent mutations were expected to have little, if 
not no effects on drug resistance, thus were used here as bench mark. Three drugs showed 
similar distribution centered around 0.  

 

Figure S4-2. Distribution of drug resistant score (W) of NA mutations 

Distribution of drug resistant score (W) of each NA mutations were shown for zanamivir, 
oseltamivir and AV5080. The fractions of resistant mutations were shaded in orange, and the 
fraction of highly resistant mutations were shaded in red. The maximum drug resistant score for 
each NA inhibitors were labeled. 
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Figure S4-3. Identification of drug resistant mutations 

(A) Distribution of drug resistant scores are shown as violin plot for resistant (R) and highly 
resistant mutations (HR) of three NAIs. (B) Cumulative distribution function (CDF) of resistant 
mutations were plotted for each drug. Selection coefficient of each resistant mutant is rescale 
from the minimum W within one drug (S resistnat mut = W resistant mut- W min resistant mut). 
(C) The distribution of W is fitted into Generalized pareto distribution (GPD), and the fitted curve 
for each drug is shown. 

 

 

Figure S4-4. Distribution of relative fitness scores of drug resistant mutations.  
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Histograms are shown the distribution of relative fitness score of drug resistant mutations for 
zanamivir (left), oseltamivir (middle) and AV5080 (right). Drug resistant mutations for zanamivir 
and oseltamivir showed higher fitness cost with AV5080. 88% of resistant mutations of 
zanamivir and 81% of resistant mutations of oseltamivir had fitness costs comparable to wild 
type. However, only 50% resistant mutations of AV5080 showed a decrease in viral growth 
capacity. 

 

Figure S4-5. Frequency of resistant mutations caused by transition and transversion of 

each drug. 

 

Figure S4-6. Scatter plots were shown the drug resistance score of each NA mutations, 

between each pair of NAIs. 
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Figure S4-7. Structural mapping of drug resistant mutations. 

(A) Locations of zanamivir resistant mutations were shown with NA structures (pdb: 7b3e). 
Residues with resistant mutations were labeled as orange and the ones located around catalytic 
sites were marked as red. Zanamivir molecule were co-crystal with NA and shown in green. (B): 
Resistant mutations of AV5080 were shown in red. They were located outside of the catalytic 
sites.  
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CHAPTER 5  

CTL ESCAPE OF HIV-1 GAG EPITOPES IS DETERMINED BY 

MUTATIONAL EFFECTS ON REPLICATIVE FITNESS AND MHC-I 

BINDING 
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5.1 Abstract 

Certain “protective” HLA alleles, such as B*57, B*27, are associated with superior control 

of HIV replication mediated by the CD8+ Cytotoxic T-Lymphocyte (CTL) response. However, the 

mechanisms of this superior protection is still not fully understood. Here we used a combination 

of quantitative high-throughput fitness profiling, in silico binding prediction, and analysis of patient 

samples to systematically compare the differences between protective and non-protective HLA 

alleles in HIV Gag region. We observed that CTL escape of HIV-1 Gag epitopes is determined by 

both mutational effects on viral replication and MHC-I binding affinity. Mutations in epitopes 

presented by protective HLA alleles come with significantly higher fitness cost and less reduction 

in binding to MHC-I. A linear model combining both properties strongly correlated with HLA allele’s 

protectiveness ranking. Finally, mutations observed in vivo in HIV-1 controllers and progressors 

followed a similar pattern, with a higher fitness cost and smaller effect on HLA-binding observed 

among epitope mutants in controllers. Overall, our results suggest that protective effect of certain 

HLA alleles derives from their ability to target conserved epitopes where escape mutations come 

at higher fitness costs and less abrogation of HLA binding.  

 

5.2 Introduction  

CD8+ Cytotoxic T-lymphocytes (CTLs) is one of the most important immune pressures 

that limit HIV replication in vivo (1–3). The importance of CTL in HIV control has been 

demonstrated in laboratory experiments and clinical observations (1, 4–6). Isolation of CTLs from 

patients shows robust killing of HIV in vitro (7). In macaque models, depletion of CTLs resulting 

in consistent relapse of viraemia (8). Moreover, HIV escape mutations in CTL epitopes were 

observed through individual and population level analysis (9–11). CTLs eradicate HIV infected 

cells through the recognition of short, viral-derived peptides that are presented on the surface of 
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infected cells via major histocompatibility complex (MHC) class I molecules (encoded by Human 

Leukocyte Antigen (HLA) genes in human). The genotype of HLA alleles determines the 

presentation of HIV epitopes on MHC-I and the activation of CD8 T cells (12, 13), thus are the 

major contributor to CTL protection. Although CTL plays essential role in mediating HIV control, 

it failed in most of patients with disease progression and viral rebound. HIV can escape from CTL 

killing in multiple ways, including interference with intracellular epitope processing, reduced 

binding with MHC-I and undermining the recognition of CTL (12, 14–16). It was shown that 

reduced binding between viral derived peptides and MHC-I complex via mutations at binding sites 

is the major reason of CTL escape (14), which take account of more than 30% of escape 

mutations.  

Protective HLA alleles, enriched in long term non-progressors (LTNPs), provides superior 

viral control (13, 17–21). Understanding the mechanisms related to LTNPs and protective HLA 

alleles may shed lights on potential functional cures of HIV (17, 22, 23). One of the appealing 

hypothesis is that the fitness cost of CTL escape mutations determines long-term control of HIV. 

For LTNPs with protective HLA alleles, the escape mutations either occur very late during viral 

infection together with compensatory mutations, or occur early without viral rebound (13, 22, 23). 

These observations suggest that there may be significant fitness cost associated with CTL escape 

mutations in long-term non-progessors (12, 24–26). The fitness cost of some CTL escape 

mutations has also been investigated (24, 25, 27–29). However, previous empirical studies 

usually require the identification and characterization of CTL escape mutation from patient 

samples, which are greatly limited by sample size. A systematic examination of fitness cost of 

epitope mutations is necessary to obtain a detailed comparison of the effect of mutations in 

epitopes restricted by protective and nonprotective HLA alleles (30–34). Moreover, as abrogation 

of HLA binding is the major reason of CTL escape (14), protective HLA alleles may correlate with 
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less loss-of-binding epitope mutations. A comprehensive MHC binding analysis with all epitope 

mutations will greatly facilitate the understanding of this issue.  

 

In this study, we used a combination of quantitative high-throughput fitness profiling, in 

silico binding prediction and analysis of patient samples to study CTL escape mutations in HIV-1 

Gag. In particular, we examined how mutations in epitopes influence viral replicative fitness and 

MHC-I binding, and compared the differences between epitopes targeted by protective and non-

protective HLA alleles. In comparison to mutations in epitopes targeted by non-protective HLA 

alleles, we observed that mutations in epitopes corresponding to protective HLA alleles have 

higher fitness cost and less reduction in binding with MHC-I. The same difference was observed 

for mutations in HIV-1 Gag sequences from clinical samples of long-term non-progressors and 

progressors. 

5.3 Result 

5.3.1 QUANTITATIVE FITNESS PROFILING OF MUTATIONS IN HIV-1 GAG 

We have previously demonstrated the feasibility of high-throughput genetics to 

systematically evaluate the fitness effect of single mutations in HIV, HCV and Influenza Virus (30, 

32, 35, 36). In this study, we generated a single nucleotide mutant library by dividing the entire 

HIV-1 (NL4-3) Gag region into 3 fragments (Methods). Diverse viral libraries were reconstituted 

from 293T cells followed by two successive passages in CEM cells. Relative Fitness scores (RF 

scores) were calculated for individual mutations as the ratio of relative frequency in round 2 

passage library to that in the input viral library (Figure 5-1), as quantified by high-throughput 

sequencing. The mutant library covered 74% (3340/4509) all possible single nucleotide mutation 

and 27% single amino acid mutations (2788/10200) in Gag. The clear separation of the RF scores 

between silent mutations and missense mutations suggested significant selection in the passage 
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process (Figure S5-1). We further quantified the average fitness effect of missense mutations as 

well as the fraction of lethal mutations for the 4 Gag proteins. Different Gag proteins showed 

diverse levels of mutation tolerability (Figure 5-1, Figure S5-1). Missense mutations of capsid 

protein showed the strongest deleterious effect on viral fitness, with around 20% lethal to viral 

replication. The fitness effects of missense mutations in individual Gag proteins also correlated 

well with natural sequence conservation, validating the accuracy of our fitness profiling (37) 

(Figure 5-1, Figure S5-1).  

As Gag-specific CTLs are important for viral control (1, 24, 38), we examined if mutations 

in previously characterized CTL epitopes carry a higher fitness cost than other regions in general. 

CTL epitopes were defined according to the 2013 update of best-characterized epitopes from the 

Los Alamos Database (37). We obtained 1314 missense mutations within epitopes and 968 

mutations in other regions from our fitness profile. The mutations in epitope region showed 

significantly lower relative fitness (two-tailed T test, p<0.001), suggesting that CTLs target 

mutation intolerant regions of the protein. Moreover, 70% epitopes (50/72) were located on capsid 

protein, which was the most conserved one on Gag.  

5.3.2 COMPUTATIONAL PREDICTIONS OF CTL ESCAPE MUTATIONS IN HIV-1 GAG 

Several algorithms have been developed to predict peptide binding to MHC-I (39–41), 

which greatly facilitate the identification and investigation of MHC escape mutations. NetMHC is 

the state-of-art predictor based on artificial neural network (40, 41), with accuracy of prediction 

achieving up to an 80% correlation with experimental data (42). Using NL4-3 as wild type 

sequence, we systematically calculated the binding affinity (Kd) of all single amino acid mutations 

for Gag epitopes with netMHC-4.0. A total of 58 epitopes were included in the analysis after 

filtering out the ones with Kd > 10,000 nM. 

Peptides bind to MHC primarily through anchor residues, which are usually located at 

position 2 and C terminus (9th and 11th residue according to the length of peptide) of the peptide, 
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and the MHC pocket. Since mutations of anchor residues are more likely to abrogate MHC-

peptide binding, we first examined the effect of mutations at different positions within an epitope. 

As expected, the greatest binding drop was observed at anchor residues (2nd, 9th and 11th 

residue) (Figure 5-2), validating the accuracy of using netMHC4.0 to predict binding affinity.  

The binding properties of different Gag epitopes were then examined. We plotted the 

distribution of Kd increase for each epitope and the histogram of average Kd increase across all 

the epitopes (Figure 5-2). Notably, different epitopes showed different property of binding drop 

upon mutations. HLA binding by some of the epitopes (for example those presented by: B5101, 

A2402) is robust, with few mutations leading to an increase in Kd, while others (for example those 

presented by: B0801, A2601) are more sensitive to mutations. By comparing the in silico binding 

affinity prediction with fitness profile of each epitope, we further evaluated the relationship 

between MHC binding with viral fitness. A weak but significant negative correlation were observed 

between the fitness epitope variants and its relative Kd increase (Figure 5-2, rho=-0.093, 

p=0.003). Consistent with previous work, this negative correlation may reflect intrinsic properties 

of escape and non-escape mutations (25). 

5.3.3 GAG EPITOPES TARGETED BY PROTECTIVE HLA ALLELES ARE DIFFICULT TO ESCAPE CTL 

RECOGNITION 

Systematic fitness profiling and binding prediction of mutations throughout all of gag 

enabled us to quantitatively examine the differences between protective or non-protective HLA 

alleles. Previous work has suggested that protective HLA types present highly conserved epitopes, 

which may contribute to overall control of viremia. We first examined several well characterized 

epitopes presented by HLA B*57 and B*27 (KK10, KF11, TW10) and observed that mutations in 

these epitopes lead to a greater loss in fitness than well characterized epitopes presented by 

A*02 (SL9) (Figure 5-3). To systematically determine whether pattern of presenting conserved 

epitopes holds true across protective HLA types, we ranked HLA alleles by the ratio of their 
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prevalence in HIV controllers to their prevalence in progressors based on TIHIVC study (2). The 

top 5 HLAs were grouped and defined as protective HLA alleles, while bottom 5 were defined as 

non-protective HLA alleles. We observed that mutations on protective HLA alleles related Gag 

epitopes showed a significantly lower relative fitness score than the non-protective ones (One tail 

t-test, p= 0.005, Figure 5-3). These results suggested that protective HLA alleles may target more 

conserved regions that are less tolerant of mutations. 

Next, we examined if protective and non-protective HLA presented epitopes harbor 

different mutational effect on binding affinity to corresponding MHC-I. Interestingly, we observed 

that epitopes presented by protective HLA types showed significantly less HLA binding affinity 

drop upon single amino acid mutations (One tail t-test, p= 0.05, Figure 5-3). These analysis 

suggested that the epitopes targeted by protective HLA alleles have at least two important 

properties. Firstly, it is more conserved with mutations leading to more fitness cost. Secondly, it 

is harder to escape from MHC binding, as single mutations resulted in less binding loss. 

We further examined the ability of these two properties (fitness cost of and HLA-binding 

loss with mutations) to explain the “protectiveness” of certain HLAs. Each individual property did 

not correlate significantly with the ranking of HLAs (Figure S5-2), however, a linear combination 

of both properties significantly correlated with the ranking of 35 HLAs (p=0.01) (Figure 5-3). The 

coefficients of these two variants were 0.612 (fitness cost upon mutations) and 0.388 (binding 

loss with mutations), respectively. This linear model was trained 1000 times with 20 randomly 

picked HLAs and was then applied to 10 other HLAs for prediction. Average spearman correlation 

coefficient of predicted and actual HLA ranking was 0.342, and was significantly higher than zero 

(p=0.01). 

5.3.4 CTL ESCAPE MUTATIONS IN HIV-1 GAG DURING INTRAPATIENT EVOLUTION  

We extend our observation from systematic profiling to patient sample analysis. PBMC 

samples were collected from 4 paired rapid progressors and long term non-pregressors (LTNP) 
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from Multicenter AIDS cohort study (MACS). Rapid progressors proceeded to AIDS related death 

at year four, while LTNPs maintained a stable CD4 cell count (less than 10% drop, Figure S5-3). 

All subjects were ART naïve, so that the major selective pressure for viral evolution was restricted 

to the host immune system. For each patient, we obtained PBMC samples at two time points; a 

first sample collected at time of enrollment in the MACS cohort (time point 1), and a second 

sample collected four years later (time point 2). DNA was extracted from 10,000,000 PBMC and 

the entire gag region (1500bp) was amplified and deep sequenced (Figure S5-3). Mutations were 

determined for each nucleotide according to the consensus sequence of corresponding patient. 

A phylogenetic tree analysis indicated clear distinction of consensus sequences from different 

patients (Figure S5-3). We also reconstructed full-length viral haplotypes by PredictHaplo. As an 

indicator of reconstruction accuracy, mutation frequency calculated from reconstructed 

haplotypes were highly correlated with raw data (Figure S5-3). For both groups of patients, we 

observed an accumulation of mutations in specific HLA related epitopes (example shown in 

Figure 5-4), and an increase of Shannon entropy of epitope regions at second time point (Figure 

S5-3).  

We further examined the effect that observed CTL epitope mutations had on the viral 

fitness and HLA binding efficiency. Mutations were defined as variants that arose at time point 2 

relative to the consensus sequence at time point 1. Relative fitness values of corresponding 

mutations were extracted from our profile data, and compared between LTNPs and progressors. 

Consistent with previous studies, mutations in CTL epitope regions observed in the controllers 

reduced HIV fitness significantly more than those in progressors (17, 22, 23). Mutation that 

occurred outside of epitope region were also compared as control, which showed no difference 

in fitness cost between groups (Figure 5-4). Additionally, mutations observed in the rapid 

progressors resulted in a substantial drop in MHC-I binding, while those observed in LTNPs had 

a much smaller effect on HLA-binding (Figure 5-4). Although the differences for fitness cost and 
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MHC binding are not significant between two groups of patients due to small sample size, we 

observed the same trend as our previous analysis.  

 

5.4 Discussion 

As the MHC-I restricted CTL response is the major immune pressure that restricts HIV 

replication in vivo, escape mutations also occurred frequently in epitope region based on host 

HLA (9, 13–15, 18, 43–45). The occurrence of escape mutations is also highly predictable. It is 

observed that protective HLA alleles often provoke mutations that have high fitness cost, or 

require the pre-existence of compensatory mutations (12, 25, 43, 46). Our results presented here 

also showed that protective HLA alleles target conserved regions where single nucleotide 

mutations would result in more severe fitness cost. Even minor fitness cost would be beneficial 

for patients than fitness-neutral mutations (12, 17, 22). Lower HIV replication capacity is 

significantly associated with reduced rate of CD4 decline, which is the marker of long term non-

progressor. 

Viral growth under CTL pressure depended on two properties: the viral replication capacity 

(fitness) and the ability to escape CTL selection. Although escape of CTL pressure can occur 

upstream, during or downstream of MHC-epitope binding (13, 14, 47), mutations that compromise 

MHC-peptide is shown to be the most common kind, which is estimated to take account of over 

20-30% of observed CTL escape mutations (14). Here using netMHC4.0, we predicted the binding 

affinity of all epitope mutations with corresponding MHC. We observed a weak but significant 

negative correlation between the fitness cost and binding affinity of mutations, representing the 

possible tradeoff between these two properties for HIV escape. The similar tradeoff was observed 

previously with drug resistant mutations for their fitness and drug resistance (48).  

Long term non-progressors provide a model for HIV functional cure (17, 22, 23). T cell 

mediated vaccine was under active development, in the hope of achieving robust T cell mediated 
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response to control viral replication (49–53). Current strategy focused on using naturally 

conserved region in HIV genome as immunogens, on the assumption that escape mutations will 

have higher fitness cost. However, natural conservation have limited and biased sampling. Thus, 

a residue that is conserved in nature does not mean it cannot tolerant mutation. Furthermore, 

optimal MHC binding affinity is also an important aspect of immunogen design. With the 

systematic profile of fitness cost and binding affinity of all single nucleotide mutations, we may 

have a better idea which region is suitable as immunogen for vaccine development.  

Here by combining high throughput fitness profile and in silicon MHC binding prediction, 

we observed that protective HLA alleless preferentially targeted conserved sites. Moreover, 

protective HLA alleless also recognize the regions that is harder to escape. The combination of 

fitness cost and MHC binding affinity can together explain the protectiveness of HLAs. Finally, we 

want to point out some limitations and future directions of this current study. Firstly, we used 

random mutagenesis to introduced mutation for the Gag region. Although we tried to limit the 

mutation rate, but there is still chance that multiple mutations occur at the same viral clone. This 

may create noise in assessing the fitness score of particular mutation. Secondly, we only focused 

on single nucleotide mutations and did not consider secondary mutations in the current study. A 

library with mutations covering multiple sites will be ideal to assess the effects of compensatory 

mutations on viral fitness and CTL escape.  

5.5 Materials and methods 

Construction of mutant libraries for HIV Pol polyprotein  

HIV genomic DNA covering the whole gag genes in the replication competent proviral 

plasmid NL43 were divided into 3 fragments (Figure 5-1). Mutations were randomly introduced 

into each fragment by performing error-prone PCR using the Mutazyme II DNA polymerase 

(Stratagene, La Jolla, CA) and the fragment-specific primers. Mutated segment were then ligated 
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back into proviral backbone. The ligation products with desired mutation rate were further 

electroporated into high-efficiency MegaX DH10B T1R electrocompetent cells (Invitrogen). About 

50000 bacteria colonies were collected for each small libraries.   

Transfection, viral titering and passage of HIV mutant libraries  

Human embryonic kidney 293T cell line was used for transfection to rescue each viral 

mutant library Transfections were performed using Lipofectamine 2000 (Invitrogen, Life 

Technologies). For rescue of mutant libraries, 16 µg of library plasmid were applied to transfect 

15 million of 293T cells with 50~70% confluence, then cells were rinsed with PBS at 12-14 hours 

post transfection, and maintained in fresh DMEM growth media supplemented with 10% FBS and 

1X penicillin and streptomycin. Transfection was performed in duplicate in T75 flasks. The 

supernatant was harvested at 72 hours post transfection, filtered through a 0.45 µm disposable 

syringe filter (Olympus), and stored at -80oC in multiple small aliquots. The TCID50 of viral 

supernatants were measured using the Ghost 3-X4/R5 indicator cells (gift of Dr. Matthew Marsden) 

which derived from human osteosarcoma cells and stably transfected with the HIV LTR driving 

hGFP construct (24). To passage each viral mutant library, ∼30 million of CEM T lymphocyte cell 

line was used for infection at low multiplicity of infection (MOI=0.05) supplemented with 2 µg/ml 

polybrene (Sigma). At 14~16 hours post infection, cells were centrifuged at 1000 rpm for 5min 

and washed with PBS followed by the addition of fresh RPMI 1640 growth medium. Extracellular 

viruses were harvested at ~5 days post-infection when syncytia formation can be observed in 

60~80% of cells. Two passages were performed for each library.  

Library preparation for deep sequencing 

Viral RNAs were isolated from the viral supernatant using QIAamp Viral RNA Mini Kit 

(Qiagen Sciences). Virion RNAs were treated with DNaseI-amp (Life Technologies). Viral RNAs 

were reverse transcribed to cDNA using Superscript III reverse transcriptase (Life Technologies). 
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The plasmid mutant libraries or cDNA from the viral mutant libraries (transfection or infection) 

were amplified using KOD hot start DNA polymerase generating ~120bp amplicons. Illumina 

Hiseq 2000 PE100 were used for sequencing.  

Sequencing data analysis 

Burrows-Wheeler Aligner (BWA) (19) were used to map sequencing reads to reference 

sequences. Pair end reads were used for error correction. Relative frequency of each mutant 

were calculated for each condition, and the relative fitness score were calculated as the changing 

of relative frequency in the passaged library compare with in transfected library. To further 

improve data quality, mutations with frequency < 0.01% of transfection library were filtered, and 

G-A hyper mutation were filtered (3).  

Natural sequence conservation analysis 

6097 HIV-1 subtype B complete Gag sequences were downloaded from Los Alamos 

database, no filters were applied for sampling time, country, or patient information. All patient 

samples were aligned. Diversity of every position is defined as Shannon Entropy.  

netMHC4.0 for binding prediction 

The change of binding affinity (i.e. Kd increase) was calculated by netMHC4.0. Epitope 

sequences and MHC subtype were paired according to the best-characterized HIV-1 CTL 

epitopes from Los Alamos Database (54).For general analysis, the binding of all possible single 

mutations on epitope regions was simulated. The binding affinity drop is the ratio of Kd between 

mutated epitope and the epitope sequence in Los Alamos Database. For patient sequence 

analysis, the epitopes were also extracted from the same database. And the binding affinity 

change was calculated by the ratio of Kd of observed epitope sequences. 
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Protective and non-protective HLA alleles subtypes were defined according to TIHIVC 

study. The ratio of prevalence of HLA in HIV-1 non-progressors and progressors were ranked. 

And top 5 non-progressor-prevalent HLAs were defined as protective HLA alleless, and vice versa.  

Linear regression 

The fitness of an HLA was defined as the mean log10 fitness of all screened missense 

mutations on its targeting epitopes. Then all HLA was ordered by this value and assigned as HLA 

fitness ranking. The binding affinity drop (I.e. Kd increase) of all possible amino acid substitution 

on the HLA’s targeting epitopes was logged and averaged. Then al HLA was ordered by this value 

and assigned as HLA binding loss rank. These two HLA parameters were used as input for a 

linear model to predict the protectiveness rank of HLA. The protectiveness was defined as the 

ratio of HLA subtype prevalence in non-progressor versus progressors. For cross validation, 20 

HLAs are random picked as training dataset to calculate the coefficients for HLA fitness rank and 

HLA binding loss rank in linear model, the other 10 HLAs are used as testing datasets. The 

correlation coefficient of predicted HLA protectiveness rank and the reported HLA protectiveness 

rank was calculated by spearman correlation test. 1000 cross validation tests were carried out. 

The null hypothesis that correlation coefficients are zero was rejected by student ‘s t-test. 

Rank= 0.612*fitness rank + 0.388* binding loss rank. 

Patient sample sequencing and analysis 

PBMC samples from 4 paired rapid progressors and non-pregressors were kindly provided 

by Multicenter AIDs cohort study (MACS). All of these patients are treatment naïve. For each 

patient, we obtained two PBMC samples from 4 years apart, where the first sample was collected 

at the earliest time point in MACS cohort for corresponding patient. Rapid progressor proceed to 

AIDS phase and died at year four, while non-progressor remain stable CD4 cells count. DNA were 

extracted from 10,000,000 PBMC from each patient. Entire gag region (1500bp) were amplified 
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by nested PCR. The gel purified PCR product were then random fragmented by sonication to 

200-700bp. The fragmented library were prepared for high throughput sequencing with Illumina 

Hiseq 2000.  

Patient sequences were mapped onto NL4-3 strain of HIV-1 genome. The haplotypes of 

Gag gene were constructed by PredictHaplo1.0 (55). Consensus sequences were called 

according to the frequencies of haplotypes. Mutations were identified if a haplotype is different 

from the consensus sequence of the population. The tree of haplotypes is contructed using Phylip. 

Escape mutations were called from haplotypes that are different from time point 1 consensus 

sequence. If a mutation caused more than 2 fold of Kd increase, then it was defined as escape 

mutation. All the custom codes are deposited at https://github.com/Tian-hao/HIV-clinical/. 

 

Figure 5-1. Quantitative high-throughput fitness profiling of HIV-I Gag region 

a) Workflow of fitness profiling. We introduced single nucleotide substitutions to NL4-3 plasmid 
Gag region by error prone PCR. Mutated plasmids were transfected into 15 million HEK-293T 
cells to recover virus library. We infected 30 million CEM cells with virus library at an MOI of 
0.05.  We then harvested virus in supernatant at 7 days post infection. The fitness of a certain 

https://github.com/Tian-hao/HIV-clinical/
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mutation was defined as relative frequency in the output virus pool versus input virus pool. b) 
Fitness profile of Gag. The relative fitness of each mutation was calculated as the ratio of fitness 
to wild type. Different color represented different subunit of Gag as labeled. Orange and blue 
represents spacer peptide 1 and spacer peptide 2 respectively. c) Average relative fitness of 
missense mutations. Error bar represents standard error. d) Average entropy of each protein 
were calculated based on naturally occurred variants in HIV database e) Relative fitness of 
mutations within best characterized CTL epitope regions. CTL epitopes were defined according 
to the 2013 update of best-characterized epitopes from the Los Alamos Database. 1314 
mutations within CTL epitopes and 968 mutations outside of CTL epitopes are calculated. 
Student t-test has a p value smaller than 0.001. MA, matrix; CA, capsid; SP1, spacer peptide 1; 
NC, nucleocapsid; SP2, spacer peptide 2. 

 

Figure 5-2. Systematic evaluate mutant binding efficiency through netMHC-4.0 

a) Affinity drop of single mutations in different epitope positions. The binding affinity of mutated 
epitopes was predicted by netMHC-4.0. All best-characterized epitopes from Los Alamos 
database were calculated by netMHC-4.0. The epitopes with binding Kd more than 10,000 nM 
were filtered out. In the violin plot, every violin stands for an epitope, which contains 171~209 
mutations, depending on the length of the epitope.  b) Affinity drop of single mutations in 
epitope regions. c) Distribution of average affinity drop of single mutations in epitope regions. 
The geometric mean of affinity drop was calculated for every epitope. d) The correlation 
between relative fitness and binding affinity drop for all missense mutations. The relative fitness 
of amino acid is defined as the ratio of the mutant to NL4-3 wild type in figure 1 settings. 
Different codons were averaged for a mean fitness. The binding affinity drop caused by a 
mutation was defined as the binding affinity of mutated epitopes to NL4-3 epitopes. All possible 
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epitopes containing this position and corresponding best-characterized MHCs were averaged 
for a mean binding affinity drop. 989 mutations were calculated for their relative fitness and 
binding affinity drop. Spearman correlation test returned a p value of 0.003 and a rho value of -
0.093. 

 

Figure 5-3. Systematic comparison of differences between protective or non-protective 

HLA alleles 

a) Bar plots showing the relative fitness of selected CTL epitope mutations. Red bars 
represented protective HLA alleles, yellow bars represent non-protective HLA alleless , and 
green bar is the average of all epitopes on Gag. b) The relative fitness of mutations at protective 
HLA alleles target epitopes and non-protective HLA alleles target epitopes. HLA protectiveness 
was defined as the ratio of their prevalence in HIV controllers to the prevalence in progressors. 
Top 5 HLAs were grouped and defined as protective HLA alleless. Bottom 5 HLAs were called 
non-protective HLA alleless. Mutations on their best characterized CTL epitopes were analyzed. 
1042 mutations on protective HLA alleles’s epitopes and 792 mutations on non-protective HLA 
alleles’s epitopes were analyzed. One tail t-test returned a p value of 0.005. c) The binding 
affinity drop of mutations at protective HLA alleles target epitopes and non-protective HLA 
alleles target epitopes. The binding affinity drop is an average drop of all possible mutations in 
the best characterized epitope regions. Protective and non-protective HLA alleless were defined 
as panel b. 2299 possible mutations of 121 residues on protective HLA alleles’s epitopes were 
analyzed. Correspondingly, non-protective HLA alleless had 2850 possible mutations on 150 
residues. One tail t-test returned a p value of 0.05. d) The correlation between fitted HLA 
protectiveness and reported HLA protectiveness. HLAs were ranked according to their 
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protectiveness defined in panel b. The fitted protectiveness was ranked by linearly adding up 
average relative fitness and average binding affinity drop. The coefficients of these two 
parameters were 0.612 and 0.388. The spearman correlation test has a p value of 0.010. This 
linear model was trained 1000 times with 20 randomly picked HLAs and was then applied to 10 
other HLAs for prediction. Average spearman correlation coefficient of 1000 tests was 0.342, 
and was significantly higher than zero. 

 

Figure 5-4. HIV intrapatient evolution of 4 paired progressors and non-progressors  

a) Phylogenetic tree of virus haplotypes in patients. HIV populations in progressors and non-
progressors were sampled at the beginning and the end of a four years’ study. HIV Gag region 
in patients’ PBMCs was deep sequenced. Haplotypes were assembled by PredictHaplo. MCC 
trees were constructed by BEAST. A representative tree in either elite controller or progressor 
was shown. The escape mutations on a representative HLA epitope were detailed. The width of 
branch was proportional to the abundance of the haplotype in the population. The color 
represented sampling time of the haplotype. Green was first batch of the samples. Orange was 
second batch of the samples. Incomplete haplotypes were provirus that had stop codon in 
coding region. The amino acids directly before and after the epitope were also shown. CTL 
epitopes were defined according to the 2013 update of best-characterized epitopes from the Los 
Alamos Database. c&d) Relative fitness (c) and MHC binding drop (d) of mutations in different 
group of patients. Mutations are defined as mutations occur in time point 2 compare with 
concensus sequence from time point 1 of individual patient. Binding affinity is predicted by 
netMHC-4.0. For every patient, binding affinity is calculated for corresponding HLA and virus 
haplotypes. The fitness of observed escape mutations are calculated. 
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5.6 Supplementary Materials 

 

Figure S5-1. Fitness profiling and diversity. 

a) Distribution of silent, nonsense and missense mutation for capsid protein. Similar distributions 
were obtained for other protein samples.  b) Fraction of lethal mutations in missense mutations. 
Lethal mutations were defined as mutations with relative fitness lower than -0.95, which was 
relative fitness of bottom 2.5% of silent mutations. Each subunit had 807, 1499, 98, 462, 104, 
366 missense mutations respectively. c) Correlation of relative fitness and natural variance. All 
HIV-1 subtype B sequences in Los Alamos database were extracted to calculate natural 
variance. For each position on Gag, Shannon diversity was calculated as an indicator of natural 
variance. The relative fitness of a position was the average relative fitness of all its missense 
mutations, which gave us a robust estimation of nucleotide fitness. The dashed line is local 
regression using LOESS. Spearman’s correlation coefficient is 0.3379, p-value of correlation 
test is lower than 10-10. d) Average relative fitness of nucleotides in different natural variance 
groups. Nucleotides were grouped evenly by their Shannon diversity. Group1 had diversity 
0.001~0.006. Group 2 had diversity 0.006~0.033. Group 3 had diversity 0.033~0.184. Group 4 
had diversity 0.184 and more. Each groups had 293, 287, 311 and 287 nucleotides positions 
respectively. Error bar represents standard error. 
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Figure S5-2. Fitness profiling and diversity. 

a) Schemetic plot shown the repliacation of HIV in patient depend both on the replication 
capacity and the ability to escape from human immune selection pressure, especially the CTL 
pressure.  b) HLA ranking of 58 epitopes of Gag region is shown. The ranking is calculated 
based on the relative frequency of specific HLA in non-progressors versus in progressors. Data 
were obtained from the TIHIVC study. c) The correlation between HLA protectiveness and 
fitness constraints on CTL epitopes. HLA protectiveness was ranked as in panel b. The fitness 
constraint of an HLA was defined as the average fitness of all mutations on its best-
characterized CTL epitopes. The spearman correlation test of HLA protectiveness and fitness 
constraints return a p value of 0.102. d) The correlation between HLA protectiveness and virus 
escape potential. Virus escape potential was defined as the average binding affinity drop of 
mutations on CTL epitopes. Binding affinity of mutated epitopes and wild type epitopes were 
predicted by netMHC-4.0. The spearman correlation test has a p value of 0.153. 
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Figure S5-3. Patient sample sequencing 

a) The absolute number of CD4 cells for each patient at time point 1 and time point 2. b) The 
sequencing depth of each patient sample. c) Phylogenetic tree constructed by the consensus 
sequence of each patient at each time point. d) Correlation of mutation frequency in the raw 
data and the reconstructed viral haplotypes.  

e) Shannon entropy of epitope region were calculated for progressors and non-progressors for 
two time points. f) Relative fitness of mutations in different group of patients. Mutations are 
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defined as mutations occur in time point 2 compare with concensus sequence from time point 1 
of individual patient.  
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CHAPTER 6  

GENOME-WIDE IDENTIFICATION OF ANTI-INTERFERON FUNCTIONS 

IN INFLUENZA A VIRUS ENABLING RATIONAL VACCINE DESIGN  
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6.1 Abstract 

Generation of a safe yet highly immunogenic live attenuated vaccine represents a 

challenge in vaccinology. Using influenza A virus as an example, we present a novel approach 

for vaccine development: systematically identifying and eliminating immune evasion functions on 

the virus genome, while maintaining the replication fitness in vitro. Applying single-nucleotide 

resolution high-throughput genomics approach, we simultaneously measured the fitness and IFN 

sensitivity of mutations across the entire viral gnome. We have identified novel IFN-sensitive 

mutations on PB2, PA, PB1 and M1, in addition to NS1, suggesting influenza virus possesses 

multiple anti-IFN mechanism in different viral segments to evade host defense. By combining 8 

mutations into one viral genome, we successfully generated a deficient in anti-interferon (DAI) 

strain that are highly attenuated in IFN competent host. DAI was able to induce transient IFN 

response and persistent adaptive immune responses in vivo. This live attenuated influenza 

vaccine showed superior property as a safe, effective and broad protectingng live attenuated 

influenza vaccine. This approach is applicable to vaccine development against other pathogens. 

 

6.2 Introduction 

Type I interferon (IFN) system, which is one of the most critical components of innate 

immune response, plays essential roles in limiting viral replication (1–4). The signaling cascade 

induced by type I IFN provides the first line of defense against viral infection by inducing the 

expression of hundreds of interferon-simulated genes (ISGs), many of which carry antiviral 

activities5. IFN system is also the bridge between the innate and adaptive immune responses , 

which is critical for dendritic cell maturation, T cell development and antibody production (6–11). 

During natural evolution, many viruses have evolved to encode multiple anti-IFN functions. 

Influenza A virus, for example, is able to inhibit IFN production and abrogate the functions of 
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multiple ISGs12. NS1 is the key influenza viral protein that has been studied extensively for its 

anti-IFN mechanism, partly due to the un-essentialness of NS1 for viral replication (13). With the 

accumulation of databases and the improvement of reverse genetic technologies, researches 

started to appreciate the importance of other influenza proteins for their anti-interferon functions 

(14–18). However, as viral replication function and immune evasion function are often intertwined, 

it is difficult to dissect the anti-IFN functions encoded by viral proteins that are essential for viral 

replication.  

Influenza viruses constantly evolve and adapt to diverse selection pressures, which pose 

a challenge for safe and efficient vaccine design. Current annual vaccine for influenza virus 

contain two types: trivalent inactivated vaccine (TIV) and live attenuated influenza vaccine 

(FluMist)19,20. Protection elicited by TIV is mostly through antibody response, which lacks cross 

recognition nor broad protection for strains from different HA classes. Attenuation of FluMist 

comes from5 mutations on polymerase complex, which renders the cold adapted 

(ca),temperature sensitive (ts) and live attenuated (att) phenotype. However, as no immune 

boosting mechanism is encoded in FluMist, the attenuation causes reduced immunogenicity, 

therefore lower efficacy (21–23). A safe vaccines with higher efficiency and broader protection 

are thus the pursued goal (24–27). As IFN plays a key role in immune response, systematic 

elimination of anti-IFN functions on the viral genome is a potential approach for vaccine 

development (28–30). With the abruption of anti-IFN functions, the vaccine will be highly 

attenuated in IFN competent host. Moreover, it will likely to generate superior immunogenicity due 

to the induction of intensive IFN response. Thus, safety and efficacy requirement can be achieved 

simultaneously. However, the key challenge in this approach is the comprehensive identification 

of anti-IFN functions of the whole viral genome in order to generate a highly interferon 

sensitive/inducing strain while maintaining the viral replication fitness in vitro for vaccine 

production.  



 

 144 

We tackled this challenge by applying single-nucleotide resolution high-throughput 

genomics (Figure 6-1) (31–34). A diverse mutant library was generated with mutations distributed 

across the entire genome. The system enable us to quantitatively examine the growth capacity 

and IFN sensitivity of all single mutations in a massively parallel process. We identified novel anti-

IFN sites on multiple vial segments, which can serve as specific starting points for further 

mechanism studies. By combining 8 IFN sensitive mutations across the viral genome, we 

successfully generated a DAI strain that are highly attenuated in IFN competent host. DAI strain 

showed superior properties as a safe and effective live attenuated influenza vaccine, which can 

induce strong antibody and T cell response, and provide broad protection against homologous 

and heterologous viral challenge. Importantly, this approach is broadly applicable to vaccine 

development against other pathogens. 

6.3 Result 

6.3.1 FITNESS PROFILE OF INFLUENZA A VIRUS GENOME AT SINGLE NUCLEOTIDE RESOLUTION 

The mutant plasmid library was constructed on influenza A/WSN/1933 (H1N1) virus 

through error-prone PCR. We have improved the method by dividing the entire genome into 52 

small sub-libraries for optimal mutant frequency and sequencing accuracy, as shown previously 

with PB1, PA and M1 (Figure S6-1) (35–37). Viral libraries were reconstituted in 293T cells by 

co-transfecting the library of mutant plasmids with the other 7 plasmids encoding wild type viral 

proteins. For identifying anti-IFN function across the entire viral genome, selection of all viral 

libraries were performed in A549 cells with or without exogenous IFN treatment (IFNa2, IC80, 

methods) (Figure 6-1). In each condition, the relative fitness score (RF score) of a mutant virus 

was calculated as the ratio of relative frequency of the corresponding mutation in the infection 

library to that in the plasmid library. 90% nucleotide positions across the genome were covered, 

and 95% of all possible single mutations at those positions were detected in the plasmid library. 
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Biological duplicates in transfection as well as infection showed strong correlations (Figure S6-

2). Relative growth capacity of 26 randomly chosen missense mutations was measured 

individually and correlated well with the RF scores measured in the screen (Figure S6-3). Using 

synonymous mutations as control, 49% missense mutations across the whole genome were 

deleterious, suggesting the general essentialness of the RNA viral genome38,39. Additionally, 

there were explicit differences in relative essentialness among different influenza viral proteins. 

All polymerase components (PB2, PB1, PA and NP) were less tolerant of mutation, in contrast to 

the relative flexibility of M2 and NS1 (Figure S6-4).  

6.3.2 SYSTEMATICALLY IDENTIFICATION OF IFN-SENSITIVE MUTATIONS  

Although the RF scores of mutations are generally well correlated with and without IFN 

selection, we observed IFN-sensitive mutations widely spread on the other segments, in addition 

to NS1 (40,41). These mutations were nearly neutral in A549 cells, but highly deleterious under 

IFN selection (Figure 6-1, Figure S6-5). These mutations are potential candidates for vaccine 

design because they have strong interferon sensitive phenotype while maintaining replication 

capacity. As a confirmation, mutants harboring substitutions in the RNA binding domain of NS1 

protein, especially in the positions of R37, R38, K41 and R46, were observed to be highly sensitive 

to IFN treatment in our system (42,43,12). New mutations (such as G45S) in this domain were 

also observed and validated to be IFN sensitive (Figure S6-5). We focused on the surface 

exposed and structurally clustered residues on internal proteins for further validation (Figure 6-1, 

Figure S6-5). 24 single mutations were constructed individually. All the mutations were neutral or 

nearly neutral for viral replication. The polymerase activities were also nearly intact for the 

mutations on polymerase proteins (Figure S6-7). Compared with wild type WSN (WT) virus, all 

mutants increased in IFN sensitivity, while 8 mutations on internal proteins reached statistical 

significance (Two-tailed T test, p<0.05, Figure 6-1). We further examined if these mutations could 
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induce higher IFN production. Among the constructed mutants, the three mutations on PB2 (N9D, 

Q75H, T76A) and three mutations on M1 (N36Y, R72Q, S225T) induced significantly higher IFN-

β (Figure 6-1, Figure S6-8) and ISG54 (Figure S6-8) expression, both of which are IRF-3 target 

genes44. Consistent results were obtained in the nuclear translocation of IRF3 post-infection 

(Figure S6-9). Moreover, these 6 IFN-β inducible mutants were no longer sensitive to IFN 

treatment in IFN-deficient Vero cells (Figure S6-8). We also observed that the higher induction of 

IFN is MAVS dependent and STING independent: knocking out MAVS abolished the induction 

but no effect was observed in STING knockout THP1 cells (Figure S6-10). These results 

suggested that the three mutations on PB2 (N9D, Q75H, T76A) and three mutations on M1 (N36Y, 

R72Q, S225T) might lose their functions of inhibiting IFN production at an early stage post-

infection, as the basis for their IFN sensitive phenotype. The other two mutations (PB1 L155H 

and PA E181D), however, did not induce higher IFN production. They were still IFN-sensitive in 

Vero cells, suggesting that they might lose the inhibition of downstream IFN pathway (Figure S6-

8). The identification of novel IFN-sensitive mutations will facilitate the understanding of the 

mechanisms for pathogenesis associated with influenza-induced inflammation. They also set up 

the stage for differential screenings using overexpression or knock-out with members of IFN-

production or response pathways to further identify the cellular factors interacting with these 

mutants45.  

6.3.3 DAI VIRUS HARBORING 8 IFN SENSITIVE MUTATIONS DISPLAYS STRONG IFN SENSITIVE AND 

IFN INDUCTION PHENOTYPE IN VITRO 

To maximize the sensitivity to IFN and maintain viral growth capacity, we examined 122 

different combinations of mutations and came up with a strain containing 8 mutations (PB2: N9D, 

Q75H, and T76A; M1: N36Y, R72Q and S225T; NS1: R38A and K41A on NS1), which we named 

as DAI (Deficient of Anti-Interferon) virus. The IFN-sensitivity of DAI is significantly higher than 
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any individual mutation, indicating the accumulative effect of mutations on PB2 and M1, in addition 

to NS1 (Figure 6-2). Gene expression data at early and late time points post-infection showed 

that DAI virus induced higher IFN production and responses in A549 cells (Figure 6-2, Figure 

S6-11). These results have been validated in human primary alveolar macrophages, the important 

target for influenza infection (Ref), in which DAI induced almost 50 fold of IFN-β expression than 

WT virus (Figure 6-2). The phenotype of DAI virus is not limited to WSN background, as 

introducing the same 8 mutations into PR8 background also led to high IFN sensitivity and IFN 

production (Figure S6-11). As expected, the growth of DAI virus showed ~2 log attenuation in 

A549 cells, but restored in IFN-deficient Vero cells (Figure 6-2). To further understand the global 

gene expression change, we performed mRNA sequencing with WT, NS1 R38A/K41A, DAI and 

mock virus-infected A549 cells at 6 hours post-infection. Compared with mock, the expression of 

120 genes was significantly upregulated (fold change > 2 and p<0.001) in DAI infected-cells, 

among which 24% belong to IFN response genes (Figure 6-2, Figure S6-12). Despite the similar 

replication ability, DAI virus exhibited stronger ability in induction of IFN response than NS1 

R38A/K41A virus. Further analysis of the upregulated genes by Gene Ontology (GO) enrichment 

revealed that the type I IFN production and response related pathways were the dominant 

pathways activated by DAI virus comparing with both mock infected or WT infected cells (Figure 

6-2, Figure S6-12). More importantly, there was no difference in expression of genes related to 

inflammation pathways between DAI and NS1 mutant-infected cells, suggesting the specificity of 

DAI virus in perturbing IFN pathway (Figure S6-12) (46).  

6.3.4 DAI VIRUS IS HIGHLY ATTENUATED IN IFN COMPETENT HOST   

As DAI virus showed strong IFN sensitive phenotype in vitro, we next investigated the 

replication and pathogenesis of DAI virus in a mouse model. Balb/c mice were intranasally 

inoculated with WT virus or DAI virus at dosages of 105 or 106 TCID50. While WT virus (106 
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TCID50) induced significant weight loss in all tested animals, the same amount of DAI did not 

cause weight loss nor clinical symptoms (Figure 6-3). We then compared viral replication in mice 

lung tissues infected with indicated strains (Figure 6-3, Figure S6-13). The five amino acid 

changes on the cold adapted live attenuated virus (FluMist) were constructed into WSN 

background (WSN-CA) and used as a comparison47,48. WSN-CA is known to be replication 

capable in lower temperature (33℃ ,nasal cavity) but highly attenuated in high temperature 

(39℃,lung). Replication of DAI virus was significantly lower than WT and NS1 R38A-K41A mutant, 

and comparable with WSN-CA virus. Further comparison of viral replication kinetics (Figure 6-3) 

indicates a robust viral replication with WT infection which peaks at 48 hours. In contrast, no 

increase in viral copy number was detected with DAI infected mice. Although highly attenuated in 

replication, DAI virus showed transient yet significant upregulation of certain IFN-related genes at 

6 and 24h, and the response was rapidly reduced (Figure 6-3). However, WT virus induced a 

robust proinflammatory response through the course of investigation, exampled with the high 

induction of CXCl10 at 48 and 120h post infection (Figure 6-3). These data correlate well with 

the results from histology analysis of infected lungs and BAL cytospins (Figure 6-3, Figure S6-

13). Sustained inflammatory response resulted in the massive infiltration of neutrophils and 

lymphocytes in WT-infected lungs, but not with DAI infection (Figure 6-3). We also examined the 

cytokine response with bronchoalvelar lavage (BAL) samples at 48h post-infection by luminex 

multiplex assay (BioRad) and ELISA (Figure 6-3, Figure S6-13). WT virus showed significantly 

higher induction of IL-6 and CXCL1, representing a more severe inflammation response and 

pathological state. However, DAI virus induce higher amount IL-12 and G-CSF, which is important 

for lymphocyte stimulation and T cell development. Furthermore, the replication of DAI virus was 

fully restored to WT level in IFNAR-/- mice (Figure 6-3), indicating that DAI virus maintain its 

intrinsic replication competence and IFN response is the key determinant to attenuate DAI virus 
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in WT mice (Figure 6-3). The above results documented that DAI virus is highly attenuated in IFN 

competent mice, while able to stimulate prompt and specific IFN response.  

6.3.5 DAI VIRUS INDUCES STRONG AND BOARD ADAPTIVE IMMUNE RESPONSES 

We then examined whether DAI virus could induce robust adaptive immune response for 

protection since IFN plays critical roles in stimulating T and B cells. Mice sera and BAL samples 

were collected at 28 days post single dose vaccination with WT, DAI and WSN-CA viruses. DAI 

virus induced robust HA antibody responses, as measured by ELISA, hemagglutination inhibition 

and neutralization antibody assay (Figure 6-4, Figure S6-14). The level of HA antibody response 

is lower than WT due to the attenuation in viral replication, but significantly higher than WSN-CA 

virus. Surprisingly, we detected HA specific antibody against other strains (such as PR8: H1 and 

Viet04: H5) within HA group (Figure S6-14), which was unable to induce by inactivated influenza 

vaccines as reported previously 49. In addition, specific antibodies (IgG) against NP, NA and M1 

proteins were also detected for DAI vaccinated sera with concentration comparable with WT, 

which were demonstrated to play important role in limiting viral replication50,51 (Figure 6-4, 

Figure S6-14). Importantly, secretory IgA response was also elicited by DAI vaccination against 

both HA and NP proteins, suggesting the induction of mucosal immune response (Figure 6-4, 

Figure S6-15). We then took one step further to examine the epitope coverage of the neutralizing 

antibody generated by DAI virus. Further utilizing the high-throughput genetic approach, we 

screened the single nucleotide mutant library on HA protein in the presence or absence of serum 

antibody generated from WT or DAI vaccinated mice (52). Possible mutations that were not 

neutralized by sera were observed in both head (Ca2 and Sa sites) and stem regions, while no 

significant difference was detected between the two groups (WT and DAI) in terms of the number 

and distribution of mutations (Figure 6-4, Figure S6-15). This suggested that although DAI virus 

induces slightly lower amount of HA antibody than WT, the breath and complexity, however, are 
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comparable. In addition, we determined the ability of DAI virus to induce T cell response. 

Impressively, compared with WT, DAI virus elicited similar levels of NP-specific and PB1-specific 

CTL response examined by tetramer staining of CD8 T cells (Figure 6-4, Figure S6-16). Similar 

levels of influenza specific CD4 cell and memory T cell responses were also observed (Figure 6-

4, Figure S6-16). T cell repertoire complexity were further explored by deep sequencing of TCR 

CD8 T clones were all comparable between WT and DAI vaccinated mice, suggesting the strength 

and breadth of DAI induced T cell response (Figure S6-17) (53). Collectively, these data indicate 

that despite the highly attenuated ability in replication, DAI virus is comparable in inducing 

adaptive immune response, comparing to WT virus. 

6.3.6 DAI VIRUS PROTECTS VACCINATED MICE AGAINST HOMOLOGOUS AND HETEROLOGOUS VIRAL 

CHALLENGE 

As DAI virus was able to induce robust humoral and cellular immune response, we next 

sought to determine whether it offers real protection against homologous and heterologous viral 

challenges. Firstly, we infected mice with 105 TCID50 of WT virus 28 days post vaccination with 

WT, DAI and WSN-CA strains and quantified viral titers in infected lung tissues by RT-qPCR and 

TCID50 assay. A titer drop of ~3 log in DAI vaccinated mice was observed in comparison with 

mock vaccination, more significant than the WSN-CA vaccinated group (Figure 6-4, Figure S6-

18, Figure S6-20). Stronger inhibition of WT challenge can be achieved through higher dose 

vaccination or two doses of vaccination (S18C,D). More importantly, DAI vaccination provided a 

full protection against a lethal dose of WSN challenge (Figure 6-4), with no sign of weight loss, 

indicating a superior protection from DAI compare with recently reported PTC-4A virus (Figure 6-

4) (54). To decide whether DAI vaccination can provide protection against heterologous strains, 

we then challenged mice with PR8, ACal/04/09 and A/X-31) at lethal dose. Strong protection was 
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observed across the board in terms of survival rate, percentage of body weight loss, and clinic 

scores (Figure 6-4, Figure S6-18). Also, strong secondary T cell response was observed for all 

challenge groups, suggesting an essential role of T cell response for the broad protection (Figure 

S6-19). These data demonstrate that DAI virus is an ideal candidate for influenza vaccine 

development. 

6.4 Discussion 

Here we demonstrate the feasibility of a novel approach for rational vaccine design: 

systematically identifying and eliminating immune evasion functions on the virus genome by high 

throughput genetic screening and using the attenuated immune evasion deficient virus as master 

donor virus in vaccine development. We chose the IFN system as the target for its function as 

first line of innate immunity and the critical linkage to adaptive immune response. By studying the 

whole genome anti-IFN function of influenza virus, we have identified several novel anti-IFN sites 

in addition to the NS1 gene, suggesting influenza virus possesses multiple anti-IFN function 

mechanisms to evade host anti-viral defense. The underlying mechanisms can be a future study 

of interest, and the responsible interacting host factors can be identified through cellular effector 

screening using the mutant viruses or mutant proteins in comparison with the wild types. By 

incorporating 8 mutations, we have generated a novel candidate vaccine virus, DAI, which 

displays superior IFN sensitivity and induction, while significantly attenuated viral growth in vivo. 

We have also demonstrated that the DAI virus has superior immunogenicity, is able to elicit strong 

humoral and cellular immunity in mice, and provides efficient and broad protection against 

different strains of influenza virus. These results suggest identifying and eliminating whole 

genome anti-IFN function of influenza leads to a safer and more effective vaccine design.  

Usually, the intensity and breath of immune responses are parallel to the level of viral 

replication. Many attenuated vaccines exhibit a reduced immunogenicity when the replication 
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capacity of the vaccines is reduced to obtain the safety. Through defining the impact of every 

amino acid in the viral genome in different conditions, the single-nucleotide resolution high-

throughput genetic system will enable the screenings, rationally selection and re-engineering the 

virus towards the desired properties. In this study, by quantitatively measuring the replication 

fitness of each mutant, with mutations distributed across the entire genome, we obtained the 

opportunities to uncouple the anti-IFN functions from the intrinsic replication capacity of many 

essential genes of the virus. This novel information has enabled us to successfully increase the 

immunogenicity (at least per viral genome) of the DAI virus and significantly attenuate its 

replication in vivo, while maintaining intrinsic replication capacity in IFN-deficient hosts. Similar 

screenings can be applied to other immune responses, such as, other cytokines, NK cells or CD8 

T cells. Moreover, screens can be set up in mice, which will enable the determination of viral 

immune evasion functions in vivo and further increase immunogenicity at multiple steps of 

immune responses. This method has the potential to be broadly applicable to designing vaccines 

against other pathogens, and be used to improve the properties of viral agents to modulate 

immune responses against cancers, by selecting mutants that preferentially replicate in tumor 

cells and stimulate local immune responses to neoantigens. 

 

6.5 Materials and Methods 

Viruses and Cells 

Influenza A/WSN/33 virus (WSN) and Influenza A/Puerto Rico/8/1934 (PR8) were used 

as the model systems. Eight-plasmid transfection system was utilized to reconstitute WT virus 

55,56. A live attenuated cold adapted WSN strain (WSN-CA) was generated by introducing 5 

mutations in 3 polymerase genes: PB1 (391E, 581G, and 661T), PB2 (265S), and NP (34G). 

These 5 mutations were derived from A/Ann Arbor/6/60, which was used as the current vaccine 
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strain for FluMist 47,57,58. Influenza A/X-31(H3N2) and A/California/04/2009 were used for 

challenge experiments.  

293T cells were cultured in DMEM with 10% FBS. MDCK cells were cultured in DMEM 

with 10% FBS, but changed to Optimum with 0.8mg/ml TPCK trypsin for viral infection with PR8 

backgrounds. Human epithelial A549 cells and THP1 cells were cultured in RPMI1640 with 10% 

FBS. Knock out THP1 cells were generated by CRISPR-Cas9 using a lentivirus expressing a 

gRNA (targets STING or MAVS) and Cas9-T2A cassette59. THP1 cells were transduced with 

lentivirus and selected with 5µg/ml puromycin (Life Technologies). Human macrophages were 

isolated from de-identified donor lungs and cultured as previously described 60. The Committee 

for Oversight of Research and Clinical Training Involving Decedents and University of Pittsburgh 

Institutional Review Board approved use of the human tissues.  

Construction of influenza mutant library 

Influenza A/WSN/33 mutant libraries were generated using the eight-plasmid transfection 

system as previously described 35–37. In brief, the whole length influenza genome was separated 

into 52 small 240bp segments. Random mutagenesis was performed with error-prone polymerase 

Mutazyme II (Stratagene). For each small library, mutagenesis was performed separately and the 

amplified segment was gel purified, BsaI or BsmbI digested, ligated to the vector and transformed 

using MegaX DH10B T1R cells (Life Technologies). As each small library was expected to have 

~1000 single mutations, ~50,000 bacterial colonies were collected to cover the complexity. 

Plasmids from collected bacteria were midi-prepped as the input DNA library. 

Transfection, infection and viral titer of reconstituted viral libraries 

To generate the mutant viral library, ~30 million 293T cells were transfected with 32ug 

DNA. Transfections were performed using Lipofectamine 2000 (Life Technologies). Virus was 

collected 72h post transfection. TCID50 were measured with A549 cells by observing CPE. To 
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passage viral libraries under natural condition, ~10 million A549 cells were infected with an MOI 

0.05. Cells were washed with PBS three times at 2 h post-infection. Virus was collected 24 h post-

infection from supernatant. To passage viral libraries under type I interferon treatment, ~10 million 

A549 cells were pre-treated with 1000U/ml IFNa2 (PBL Assay Science) for 20h and then infected 

with viral libraries at an MOI 0.05. Cells were washed with PBS three times at 2 h post-infection, 

and 1000U/ml IFNa2 were added back into culture media. Virus was collected 24 h post-infection 

from supernatant, clarified of debris and stored at -80 oC in aliquot. 

Sequencing library construction and data analysis 

Viral RNA was extracted using QIAamp Viral RNA Mini Kit (Qiagen Sciences). DNaseI 

(Life Technologies) treatment was performed, followed by reverse transcription using superscript 

III system (Life Technologies). At least 106 viral copy numbers were used to amplify the mutated 

segment. The amplified segment was then digested with BpuEI or BpmI and ligated with the 

sequencing adaptor, which had three nucleotides multiplexing ID to distinguish between different 

samples. 

Deep sequencing was performed with Illumina sequencing Miseq PE250. Raw 

sequencing reads were de-multiplexed using the three-nucleotide ID. Sequencing error was 

corrected by filtering un-matched forward and reverse reads. Mutations were called by comparing 

sequencing reads with the wild-type sequence. Clones containing two or more mutations were 

discarded. Relative fitness index (RF index) in each condition was calculated for individual point 

mutations and only mutations that have frequency more than 0.05% in the DNA library were 

reported. 

𝑅𝐹 𝑖𝑛𝑑𝑒𝑥𝑚𝑢𝑡𝑎𝑛𝑡 𝑖

= 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑀𝑢𝑡𝑎𝑛𝑡 𝑖 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛

/𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑀𝑢𝑡𝑎𝑛𝑡 𝑖 𝑝𝑙𝑎𝑠𝑚𝑖𝑑 

Where 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑜𝑓 𝑀𝑢𝑡𝑎𝑛𝑡 𝑖 = 𝑅𝑒𝑎𝑑𝑠 𝑜𝑓 𝑀𝑢𝑡𝑎𝑛𝑡 𝑖 / 𝑅𝑒𝑎𝑑𝑠 𝑜𝑓 𝑤𝑖𝑙𝑑 𝑡𝑦𝑝𝑒 
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All the data processing and analysis was performed with customized python scripts, which 

are available upon request. 

Construction of single mutant viruses 

Single mutations were generated using PCR-based site-directed mutagenesis strategy. 

For mutant on WSN background, 1.5 million 293T cells were transfected with 4ug DNA. 

Transfections were performed using Lipofectamine 2000 (Life Technologies). Virus was collected 

72h post transfection. TCID50 were measured with A549 cells. Mutant viruses were further 

amplified in A549 cells, then supernatants were collected, clarified of debris and stored at -80 oC 

in aliquot. Virion RNA was also extracted, and reverse transcribed to cDNA. Coding sequences 

of all mutants were PCR amplified, and subjected to Sanger DNA sequencing to confirm correct 

sequence. To measure the growth curve, ~1 million A549 cells were infected with MOI 0.1 and 

supernatant were collected at the indicated time. 

To generate mutant on PR8 background, 1.5 million 293T/MDCK cocultured cells were 

transfected with 4ug DNA in DMEM + 10% FBS. Media were changed to Optimum + 0.8mg/ml 

TPCK Trypsin 24h post transfection. Virus was collected 72h post transfection. TCID50 were 

measured with MDCK cells. Mutant viruses were further amplified in MDCK cells with Optimum + 

0.8mg/ml TPCK Trypsin, then supernatants were collected, clarified of debris and stored at -80 

oC in aliquot. 

Selection of possible IFN sensitive mutations 

As previous studies focused on the anti-IFN function of NS1 protein, structural proteins 

were focused (PB2, PB1, PA, NP, M1) for further validation of novel anti-IFN functional 

residues .The basic criteria includes: 1) RF scores of fitness > 0.7 2) RF scores of fitness under 

interferon selection <0.2. 3) Residues that when mutated into different amino acids gives similar 

interferon sensitive phenotypes are preferred. Moreover, we mapped the list of potential interferon 
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sensitive residues onto protein structures (PDB: 4WSB, 1RUZ, 2IQH, 1EA3) 61–66 and preferably 

picked the residues that clustered on the protein surface for validation. Up to 7 mutations per 

segment were selected.  

Validation of IFN sensitivity of single mutations 

1 million A549 cells were pre-treated with 1000U/ml IFNa2 (PBL Assay Science) for 20h 

or leave untreated. Then cells were infected with indicated virus at an MOI 0.1. Cells were washed 

with PBS three times at 2 h post-infection, and 1000U/ml IFNa2 were added back into culture 

media. Supernatant was collected 24 h post-infection and viral copy number were quantified by 

RT-qPCR. Relative IFN sensitivity for each mutant were calculated as the fold of copy number 

drop with IFN selection, as compare with wild type.  

Polymerase activity assay 

100 ng of each of PB2, PB1, PA, NP, 50 ng of virus-inducible luciferase reporter and 5ng 

PGK-renilla luciferase were transfected in 293T cells in 24 well plates 67. Cells were lysed 24 h 

post-transfection and luciferase assay was performed with Dual-Luciferase Assay Kit (Promega). 

Immunofluorescence 

Localization of IRF3 protein was determined by immunofluorescence. Infected A549 cells 

were fixed in 2% paraformaldehyde, permeabilized with 0.1% Triton-X100, and then blocked with 

3% BSA and 10% FBS. Viral NP protein was detected with anti-NP monoclonal antibody 

(GeneTex). IRF3 were detected with anti-IRF3 rabbit polyclonal antibody (Cell signaling). Hoechst 

33342 dye was used for nucleic acid stain.  

RNA extraction, reverse transcription and real-time PCR 

Viral RNA was extracted using QIAamp Viral RNA Mini Kit (Qiagen Sciences). Total 

cellular RNA was extracted from infected cells with Purelink RNA Mini Kit (Ambion) or Trizol 
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(Thermo Fisher Scientific) following product manuals, reverse transcribed by Superscript III 

Reverse Transcriptase (Thermo Fisher) or qscript (Quanta Biosciences). Quantitative real time 

PCR was performed using Taq polymerase and SYBG. For viral copy number, standard curve 

ranging from 103 to 108 was used for calculation and normalized to mock or WT infected cells. 

For cellular RNA, results were calculated using the 2-∆∆CT method (citation). Sequences of 

primers used to quantify RNA are as follows:  

  Gene Forward Reverse 

Human 

ISG15 CAT GGG CTG GGA CCT GAC G 
CGC CAA TCT TCT GGG TGA TCT 
G 

ISG54 CAG CTG AGA ATT GCA CTG CAA GTA GGC TGC TCT CCA AGG AA 

RIGI TGC GAA TCA GAT CCC AGT GTA 
TGC CTG TAA CTC TAT ACC CAT 
GT 

OAS CAA GCT CAA GAG CCT CAT CC TGG GCT GTG TTG AAA TGT GT 

IFNb AGG ACA GGA TGA ACT TTG AC TGA TAG ACA TTA GCC AGG AG 

Mice 

Ifnb CCC TAT GGA GAT GAC GGA GA  CCC AGT GCT GGA GAA ATT GT  

Ifng ACA GCA AGG CGA AAA AGG AT  TGA GCT CAT TGA ATG CTT GG  

Mx1 TCT GAG GAG AGC CAG ACG AT  CTC AGG GTG TCG ATG AGG TC  

Rnaseh GAT TCC AAG AAA GCT GTC CG  TAG AGA ACC AGC CGT CCA AG  

Influenza NP GAC GAT GCA ACG GCT GGT CTG ACC ATT GTT CCA ACT CCT TT 

Examination of mutation combinations 

To maximize the sensitivity to IFN and maintain viral growth capacity, we examined 122 

different combinations of mutations for their viral growth. Combinations were generated by 

randomly choosing one genotype from the following 5 categories: 

PB2 M1 PB1 PA NS1 

WT WT WT WT WT 

https://www.thermofisher.com/us/en/home/life-science/pcr/reverse-transcription/reverse-transcriptase-enzymes/superscript-iii-reverse-transcriptase.html
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N9D R72Q L155H E181E R38A+K41A 

N9D+T76A R72Q+S225T 
   

N9D+Q75H+T76A N36Y+R72Q+S225T 
   

1.5 million 293T cells were transfected with 4ug DNA containing corresponding mutations. 

Virus was collected 72h post transfection and used to infect 293T cells overexpressing virus-

inducible mCherry reporter in 48 well format. WT virus were used as control. mCherry intensity 

were examined under microscope at 24h and 48h post infection, which proportional to the growth 

capacity of corresponding virus. Viable mutant combination that contain the largest amount of 

mutations were considered as possible vaccine candidate.  

RNA-Seq library preparation and sequencing 

RNA-seq libraries were prepared using a modified method based on ScriptSeq mRNA-

Seq library preparation kit (Epicentre)68. Multiplex sequencing was performed by 50bp single-

end read with Illumina HiSeq 2000 machine at UCLA Clinical Microarray Core. Raw reads were 

aligned to human genome assembly (hg19) or mouse genome assembly (mm10) using TopHat 

under default parameter69,70. Results were quantified by reads per million total reads (RPM). 

Differential expression analysis were performed with edgeR 71. Gene ontology enrichment 

analysis was done through metascape 72. Genes related to certain cellular pathways were 

extracted from MsigDB46. 

Mouse studies 

6-8 weeks old female BALB/c mice were used for safety and antibody studies. 6-8 weeks 

old female C57BL/6J mice were used for T cell studies. IFNAR-/- mice were used for viral growth 

studies.  

Firstly, 6-8 weeks Balb/c mice were anesthetized with isoflurane (IsoFlo, Henry Schein) 

and intranasal inoculated with WT virus or DAI virus at a dose of 105 or 106 TCID50 in a volume 

http://seqanswers.com/forums/showthread.php?t=39216
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of 30ul. Body weight loss were monitored daily for 14 days. To quantify viral growth in mice lung 

tissues, mice were intranasal inoculated with indicated virus at a does of 105 TCID50 and 

sacrificed at 2 days post infection. DMEM media were used as control for infection. To quantify 

viral titer by TCID50, lung tissues were harvested, homogenized, and freeze-thaw three times to 

release the virus. To quantify viral copy number, RNA was extracted from mice lung tissue using 

Trizon (Thermo Fisher Science). Similarly, to quantify the viral growth curve and gene expression 

in mice lung tissue, mice lung samples were collected at 2, 6, 24, 48 and 120 hours post infection. 

Viral copy number and gene expression were quantified by qRT-PCR. All animal experiments 

were performed in accordance with the guidelines of the animal protocol approved by UCLA.  

For pathology and cytokine studies, 6-8 weeks old female BALB/c mice were intranasal 

inoculated with indicated virus at a does of 105 TCID50. Bronchoalveolar lavage (BAL) samples 

were collected at Day 2 and Day 9 post infection. Albumin concentration was determined using 

mouse albumin ELISA Quantitation kit (Bethyl Alboratories Inc) and cytokine response was 

analyzed by Lincoplex according to manufacturer’s guide (BioRad). BAL cell cytospin slides were 

stained with a HEMA-3 stain kit (Fisher Scientific) for inflammatory cell differential counts. In 

addition, lung tissues were fixed with 10% neutral buffered formalin (EMD Millipore, Billerica, MA) 

and paraffin embedded for histology. Hematoxylin and Eosin (H&E) stained lung tissue slides 

were scored for their pathology (Score 1-5) : 

1 = no observable pathology. 

2 = perivascular/peribronchus or lung parenchyma inflammatory infiltration < 25% of the lobe 
section. 

3 = perivascular/peribronchus or lung parenchyma inflammatory infiltration 25%-50% of the lobe 
section. 

4 = perivascular/peribronchus or lung parenchyma inflammatory infiltration 50%-75% of the lobe 
section. 

5 = perivascular/peribronchus or lung parenchyma inflammatory infiltration >75% of the lobe 
section. 
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For antibody studies, 6-8 weeks old female BALB/c mice were intranasal inoculated with 

indicated virus at a does of 105 TCID50. DMEM media was used as control. Sera samples were 

collected at 14, 21 and 28 days post infection (N=3). Sera and BAL samples were collected at 28 

days post infection (N=4). Sera samples were used for immunoglobulin G (IgG) antibody detection, 

hemagglutination inhibition assays and neutralization assay. They are also used for a screen of 

antibody escape mutations on HA protein. BAL samples were used for immunoglobulin A (IgA) 

antibody detection. 

For T cell studies, 6-8 weeks old female C57BL/6J mice were intranasal inoculated with 

indicated virus at a does of 105 TCID50. To examine primary T cell response, lung and spleen 

were harvested at 10 days post infection. Fresh cells were used for tetramer staining with flow 

cytometry. For peptide stimulation, spleens were harvested at 28 days post infection. To examine 

secondary T cell response, lung and spleen were harvested at 14 days post challenge of indicated 

virus after 28 days vaccination of DAI virus.  

For protection studies, 6-8 weeks old female BALB/c mice were intranasal inoculated with 

indicated virus at a does of 105 TCID50. DMEM media were used as control. Mice were then 

challenged with 105 TCID50 WT. Viruses were quantified by both TCID50 and RT-qPCR assay 

at day 2 post challenge.  

To examine homologous and heterologous protection, 6-8 weeks old female C57BL/6J 

mice were intranassally vaccinated with virus at a does of 105 TCID50 or PBS as control. At day 

28 post vaccination, PR8 (H1N1), Cal/04 (H1N1) and WSN (H1N1) were used for intranasal 

challenge at a dose of LD90 which was 6000 EID50, 8000 EID50 and 14,000 EID50 respectively. 

X-31(H3N2) was given at 45,000 EID50 (LD50). Mice body weight loss was monitored twice daily 

for 14 days. Clinical score were used to quantify the clinic symptoms with: 

0 = no visible signs of disease 

1 = slight ruffling of fur 

2 = ruffled fur, reduced mobility 



 

 161 

3 = ruffled fur, reduced mobility, rapid breathing 

4 = ruffled fur, minimal mobility, huddled appearance, rapid and/or labored breathing 

5 = found dead 

Enzyme-linked immunosorbent assay (ELISA) 

Viral protein specific IgG and IgA were detected using Enzyme-linked immunosorbent 

assay (ELISA). 96 well ELISA plate (Costar, Corning Inc, USA) were coated with 1ug/ml 

recombinant viral proteins (HA-WSN, HA-PR8, HA-HK68, HA-Viet04, NP, NA and M1) in 

bicarbonate/carbonate buffer at pH 9.5 at concentration of 1ug/ml at 4°C over night. Wells were 

washed with PBST between each steps for 3-5 times. Wells were then blocked with 10% FBS in 

PBS for 1h at room temp. Serum samples for viral protein-specific IgG detection, or BAL samples 

for virus-specific IgA detection, were diluted in blocking buffer and added to wells for 4°C over 

night. HRP-conjugated anti-mouse IgG antibody (Cell Signaling) or HRP-conjugated anti-mouse 

IgA antibody (Thermo Fisher) were diluted in blocking buffer and added into wells for 1h at room 

temp. Then SIGMA FAST OPD (Sigma) was used to detect the plate at OD 450nm.  

Hemagglutination Inhibition (HAI) assay 

Mice sera were pre-treated at 56°C for 30 min. 4 HA units of WT virus were incubated with 

2 fold serially diluted sera in room temp for 1h in V shaped 96 well plate. The starting concentration 

of sera is 1:4. Washed turkey red blood cells (Lampire) at a concentration of 0.5% were added 

into each well and incubated at room temp for 30 min. The HA titer is then read as the highest 

dilution of serum that prevents hemagglutination. 

Antibody Neutralization assay 

Sera were pre-treated at 56°C for 30 min. WT virus were incubated with serial diluted sera 

in 37°C for 1h. Control virus was incubated with PBS. Then TCID50 were measured using A549 

cells. 

Detection of viral-specific CD8 T cells 
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Tetramer staining and flow cytometry were used to detect viral specific CD8 T cells. Lung 

tissues were minced and digested with 5mg/ml collagenase A for 30min at 37°C. Then cells were 

transferred through a single cell strainer and digestion was stopped with HBSS/2mM EDTA for 

10min at room temp. Spleen samples were directly transferred through the single cell strainer to 

make single cell suspension. Red blood cells were lysed using ACK lysis buffer and reaction was 

stopped with 10% FBS in DMEM media. Cells were washed with FACS buffer (2% FBS in PBS) 

and stained with tetramer against NP epitope (H-2Db + influenza A virus NP366–374 , 

ASNENMETM) and PB1 epitope (H-2Kb influenza A virus PB1703-711, SSYRRPVGI), 

conjugated with Phycoerythrin (PE). Then cells were washed with FACS buffer and stained with 

anti-mouse CD3-eflurofore450 and anti-mouse CD8a-FITC antibody (eBioscience). Samples 

were analyzed with Forsetta flow cytometer.  

Screen of antibody escape mutations 

Inhibition of mice serum for WT replication was measured by antibody neutralizing assay. 

Reconstituted viral HA single nucleotide library (estimated MOI=0.1) were incubated with serum 

at concentration of IC80 at 37°C for 2h. Unvaccinated mice serum was used as mock control. 30 

million A549 cells were infected by each library after serum incubation. PBS wash was performed 

twice at 2h post infection. Then serum was added into culture media that matched IC80. 

Supernatants were collected 48h post infection, viral RNA was extracted and reverse transcribed. 

Relative frequencies of each mutant were determined as described above.  

Relative enrichment score (RE score) of each mutant were calculated by comparing the 

relative frequency of mutant under serum selection (WT or DAI) compare with mock serum 

selection. Mutant with RE score >5 were selected for each selection condition as possible serum 

escape mutations. Mutations occur in at least two mice serum in the WT or DAI group were 

selected and compared.  

Peptide stimulation of spleenocytes  
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Single cell suspension is prepared from spleen tissues and stimulated with indicated 

peptide for 6h at the concentration of 1uM, with the presence of 1ug/ml brefeldin A. Cells were 

stained with CD3-eflurofore 450 and CD8-FITC for 15min at 4°C. Then cells were washed with 

FACS wash buffer twice and fixed with IC fixation buffer (eBioscience) for 20min at room 

temperature. Without washing, 2ml of 1X permeabilization buffer (eBioscience) were added into 

each sample and centrifuge at 1600rpm at room temperature for 5min. Samples were washed 

with FACS wash buffer twice. Then IFNg-PE antibody was used to stain for 1h at room 

temperature. Samples were analyzed with Forsetta flow cytometer.  

Three peptides (synthesized by Thermo Fisher Scientific) were used for stimulation: 

NP 366-374: ASNENMETM. 

PB1703-711: SSYRRPVGI.  

PA224-235: SSLEKFRAYV. 

Detection of viral-specific CD4 T cells 

Spleenocytes were stimulated with WT WSN virus for 16h at 37°C with the presence of 

1ug/ml brefeldinA. Cells were stained with CD3-eflurofore 450, CD4-FITC and intracellularly 

stained with IFNg-PE. Percentage of IFNg positive CD4 cells was quantified by flow cytometry.  

T cell repertoire sequencing 

TCRB gene of influenza NP366–374 specific CD8 cells and lung infiltrating CD8 T cells 

were sequenced. 

To isolate NP-specific CD8 cells, mice lung and spleen tissue were harvested and single 

cell suspension were generated. T cell population were enriched using EasySep Mice T cell 

isolation kit (Stemcell) and stained with CD3-eflurofore450, CD8a-FITC and NP366–374 tetramer 

conjugated with PE. NP positive CD8 T cells were sorted out. For lung CD8 cells, lung tissues 

were harvested at 10 days post infection from WT, DAI and mock infected mice. CD8 T cells were 

enriched using EasySep Mice CD8 T cell isolation kit (Stemcell). DNA from isolated T cells was 
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extracted using QLAamp DNA blood mini kit (Qiagen). TCRB genes were amplified and deep 

sequenced with immunoSEQ assies from Adaptive Biotechology.  

VDJ recombination was analyzed for each sample. Clonality was calculated for NP-

specific T cells as the inverse of the normalized version of Shannon’s entropy. Expanding T cells 

were defined as the ones with TCRB rearrangement detected in NP specific T cells and occure > 

0.1% in the total population, but did not detected in the mock control.  

Statistical analysis  

All numerical data were calculated and plotted with mean+/- SD. Results were analyzed 

by unpaired Student’s t test. Differences were considered statistically significant when p<0.05 (*) 

or p<0.01 (**).  
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Figure 6-1. Systematically identification of IFN-sensitive mutations using high-throughput 

genetic system 

(A) A schematic presentation of the experimental flow of high-throughput genetic system and its 
utilization to systematically identify IFN sensitive mutations. (B) Relative fitness scores (RF 
scores) were shown for individual mutations in A549 cells without (left panel) and withIFN 
selection (right panel). (C&D) Selection of possible IFN-sensitive mutations across A/WSN/33 
genome. RF scores with and without IFN for each mutation were plotted as scatter plots. 
Mutations with RF scores > 0.7 without IFN and < 0.3 (orange) or <0.2 (red)  with IFN treatment 
were highlighted (C) and mapped onto protein structures (D). PB2 protein was shown as 
example (PDB: 4WSB). (E) Validation of IFN sensitivity with twenty-four single mutations (N=3). 
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8 mutations shown in black bars were significantly more sensitive to IFN compared with WT 
(Two tail T test, p<0.05). (F) Induction of IFN-β gene expression was shown for these 8 
mutations as indicated (N=3). 

 

 

Figure 6-2. Combination of mutations (DAI) generates stronger IFN sensitive and IFN 

induction phenotype  

(A) IFN sensitivity of DAI virus compared with WT and NS1 R38A-K41A mutation (N=4). (B&C) 
Induction of IFN-β gene expression by DAI virus in (B) A549 cells and (C) primary human 
alveolar macrophages (N=3).Cells were infected with indicated virus for 6h with MOI 1. (D) 
Induction of indicated ISGs in THP-1 cells infected with indicated virus for 24h (with MOI 0.1 
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(N=2). (E&F) Replication of WT, NS1 R38A-K41A, and DAI virus in (E) A549 and (F) Vero (F) 
cells by TCID50 assay. (G) Global gene expression change in A549 cells infected with indicated 
virus at MOI 1 for 6h by mRNA sequencing (N=2). Heat map of genes that were significantly 
upregulated or downregulated in DAI infected A549 cells (fold change >2 and p<0.001). IFN 
pathway related genes are marked at the left side. (H) GO analysis were shown for the 
upregulated genes of DAI infected A549 cells compare with mock infected cells (up panel) and 
WT infected cells (bottom panel).  

 

Figure 6-3. DAI virus is replication deficient in vivo  

(A&B) Pathogenesis of intranasal infection of indicated virus was shown with (A) percentage of 
body weight loss and (B) survival rate (N=5). 20% or more body weight loss was considered 
lethal. (C) Viral titers in mice lung tissue at 2 days post infection (N=3). (D) Replication kinetics 
of of WT and DAI virus in mouse lung tissues (N=3). Viral copies were quantified by RT-qPCR 
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and normalized to the WT infected lung tissue at 2 h post infection. Dashed line represents 
mock infected mice. (E) Transcripts of indicated ISGs were examined for mouse lung samples 
infected with WT or DAI virus at 6h or 24h (N=2). (F) Induction of IFN inducible genes for WT 
and DAI infected mouse lung samples were examined by mRNA sequencing. Data is shown 
with fold of induction compared with mock-infected lung samples as heatmap (N=2). (G&H) HE 
staining of lung tissues (G) and BAL cytospin (H) of WT and DAI infected mice at day 9 post 
infection. (I) Levels of indicated cytokines in BAL samples collected at day 2 post infection by 
luminex multiplex assay (N=3). (J) Replication of indicated virus in lung tissues of IFNAR-/- mice 
at day 2 post infection (N=3).  

 

Figure 6-4. DAI virus induces strong and board adaptive immune response and protects 

mice from challenge 

(A&B) Specific HA binding IgG and neutralizing antibodies from infected mice sera were 
examined by (A) ELISA and (B) hemagglutinin inhibition (HAI) assay (N=4). (C&D) Specific (C) 
NP (D) NA binding IgG from infected mouse sera were examined by ELISA (N=4). (E) HA 
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binding IgA from BAL were examined by ELISA (N=4). (F) Possible neutralizing antibody 
escape mutations selected under mouse sera were mapped onto HA structure (N=5). (G) Flow 
analysis of Primary T cell response by influenza A virus NP366–374 (NPP, ASNENMETM) and 
PB1703-711 (SSYRRPVGI) tetramer staining (N=4). (H) CD4 T cell response were examined by 
IFNg intracellular staining (N=3). (I) Protection of WT infection were quantified by the viral load 
lung samples of vaccinated mice at day 2 post challenge (N=4). (J&K) Protection of DAI 
vaccinated mice from challenge of homologous and heterologous strains is shown with 
percentage of body weight loss and (J) survival rate (K) daily for 14 days (N=10).  

 

6.6 Supplementary Materials 

 

Figure S6-1. Construction of single nucleotide mutant libraries across the entire influenza 

genome. (A) The arrangement of small mutant libraries is shown. Mutant plasmid libraries were 
constructed on the backbone of influenza A/WSN/1933 (H1N1) strain. In order to control mutant 
library size, we divided the entire viral genome into 240bp small fragments. For each small 
segment, error-prone polymerase were used to introduce random single nucleotide mutations to 
generate a mixed mutant population. Each resulting plasmid population is considered a mutant 
plasmid library, with ~1000 different mutations. A total of 52 small plasmid libraries are 
established to cover the whole genome.  
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(B) Schematic plot was shown for the experimental procedures. 30 million 293T cells are 
transfected with the each plasmid library together with seven other wild type plasmids to 
reconstitute the mutant virus library. 15 million A549 cells were then used to passage the viral 
library with MOI 0.05 for 24h. Biological duplications were conducted for both transfection and 
infection steps. Mutant plasmid library, mutant viral library after transfection and infection were 
prepared for Illumina Miseq with 250bp paired-end reads. At least 20000 reads depth were 
obtained for each nucleotide position. Relative fitness score (RF score) of each single 
nucleotide mutation were calculated as the ratio of relative frequency in the infection library 
compared with DNA library. To further increase the measurement of viral fitness, we filtered the 
mutations that only occur < 0.05% in the input library. After all the quality control, we obtained 
the high quality fitness data for over 75% across the genome under natural condition or under 
IFN selection. 
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Figure S6-2. Correlation of RF scores from independent biological replicates. Scatter plots 
shown the correlation between RF scores in biological replicates. Reconstitution and selection 
of mutant libraries were performed for each segment separately. Independent biological 
replicate were introduced for both transfection and infection steps. Strong correlation were 
obtained for the RF scores between replicates across all segments. Mutant RF scores without 
IFN selection were reported before for segment 2, 3 and 7, thus were not shown here. The final 
RF scores for each mutants were calculated as the average score between two replicates. 

 

Figure S6-3. Validations of high throughput fitness profile. (A) Histograms of the RF scores 
of silent and nonsense mutations were shown. RF score of silent mutations were centered 
around 1 (log10 RF scores centered around 0, mean=0.08, s=0.28), suggesting the majority of 
silent mutations are neutral for viral replication. A clear separation of distributions were 
observed between silent and nonsense mutations, suggesting sufficient selection pressure in 
our system. (B) 26 single mutations were randomly selected across the genome and 
reconstructed individually in the content of the whole virus. Relative growth capacity of these 
single mutations were examined by TCID50 assay and compared with RF scores in the screen. 
As 7 of the single mutants have a TCID50 below detection limit, scatter plot were shown both in 
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linear (left) and log (right) scale. The relative growth validated as single mutant correlated well 
with screen data. 

 

Figure S6-4. Distribution of missense mutations and relative conservation of different viral 

proteins. (A) Distribution of fitness effect for all single nucleotide missense mutations were 
shown. Using silent mutations as control, we define a mutation to be deleterious if the RF score 
< mean-2s, to be beneficial if the RF > mean+2s, and to be nearly neutral if within. Across the 
entire genome, around 48.7% single nucleotide missense mutations are lethal and only 1.4% 
are beneficial. (B&C) Different influenza viral proteins showed diverse level of mutation 
toleration, shown here with two indexes: average RF scores and essentialness score. Average 
RF score for each protein were calculated across all the missense mutation. The essentialness 
score is the percentage of missense mutations that are highly deleterious or lethal (RF scores 
<0.1). The results correlates well between these two indexes, with the polymerase complex 
related proteins (PB2, PB1, PA, NP) shows high conservation while NS1 and M2 are relative 
tolerable of single nucleotide mutations. 
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Figure S6-5. Interferon selection of mutant library. (A) Does response curve of Type I IFN 
(IFNa2) on wild type WSN (WT) viral replication were measured. A549 cells were pre-treated 
with different doses of IFNa2 for 20h, and infected with WT virus at MOI equal 0.1. Cells were 
washed twice with PBS at 2 hours post infection and equal concentration of IFNa2 were added 
back into the cells. Supernatant were collected 24h post infection and viral copy number were 
measured by RT-qPCR. 1000U/ml were selected as the concentration for screening, which is at 
IC80. (B &C) IFN sensitive mutations on NS1 RNA binding domain were mapped onto protein 
structure. Consistent with previous reports, were identified R37, R38, K41, R46 in the RNA 
binding domain as key residues interfering with IFN function (B). These amino acids cannot 
tolerant mutations under interferon selection, but did not impede viral replication without 
interferon treatment. Other unreported mutations on NS1 RNA binding domain were also 
identified to be highly interferon sensitive, such as G45S (C). G45S were reconstructed 
individually in the content of the whole virus. Relative IFN sensitivity were validated and 
compared to wild type WSN virus. Data is presented as means ± s from a biological duplicate. 
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Figure S6-6. Selection of possible IFN sensitive mutations for validation. Selection of 
possible IFN sensitive mutations for validation were shown. Structural proteins were focused 
(PB2, PB1, PA, NP, M1).The basic criteria includes:1) RF scores of fitness > 0.7 2) RF scores of 
fitness under interferon selection <0.2. 3) Residues that when mutated into different amino acids 
gives similar interferon sensitive phenotypes are preferred. The scatter plots (left side) shows 
mutations with RF scores > 0.7 and RF scores with IFN < 0.3 (orange) and <0.2 (red). 
Moreover, we mapped the list of potential interferon sensitive residues onto protein structures 
(right side). We reasoned that if a residue is interacting with interferon pathway, then it is more 
likely to be located on the exposable surface. Moreover, it is likely that multiple mutations 
around the same domain or same pocket showed a similar phenotype. Thus, we preferably 
picked the residues that clustered on the protein surface for validation. Up to 7 mutations per 
segment were selected. 
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Figure S6-7. Validation of interferon sensitive single mutations. (A)Viral growth capacity of 
IFN sensitive mutants were shown. 28 possible IFN sensitive mutant were selected across the 
genome and reconstructed individually in the content of the whole virus. Virus were 
reconstituted by cotransfecting plasmid containing the single mutation together with 7 plasmids 
encoding other wild type proteins. A549 cells were infected with each mutant at an MOI = 0.1. 
Supernatant were collected 24h post infection and viral titer were measured by TCID50. 

(B) Relative polymerase activity for single mutations in the polymerase complex are shown. The 
data are presented as the mean±sfrom three independent biological replicates. 
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Figure S6-8. Induction of IFN production of IFN sensitive mutations 

(A) Induction of ISG54 gene expression were shown for 8 mutations as indicated. A549 cells 
were infected with each mutation at MOI 1 and cellular RNA were extracted 6h post infection. 
ISG54 gene induction were quantified by RT-qPCR and calculated as fold of induction compare 
with mock infected cells. The data are presented as the mean±s from three independent 
biological replicates. 

(B) The induction of IFNb is more significant for cells pre-treated with IFN. Induction of IFNb 
gene expression were shown for 8 mutations as indicated. A549 cells were pretreated with 
1000U/ml IFNa2 for 20h or mock-treated. Cells were then infected with each mutation at MOI 1 
and cellular RNA were extracted 6h post infection. ISG54 gene induction were quantified by RT-
qPCR and calculated as fold of induction compare with WT infected cells.  

(C) IFN sensitivity of selected mutant were examined in vero cells. Vero cells were infected with 
each mutation at MOI 0.1 with and without 1000U/ml IFN selection. Relative IFN sensitivity were 
shown for each mutation normalized to wild type WSN virus. In contrast to A549 cells, only 2 
mutations showed in black bars were significantly more sensitive to IFN compare with WT (Two-
tailed T test, p<0.05). These two mutations did not show to induce higher IFNb gene production. 
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Figure S6-9. Nuclear translocation of IRF3 

Nuclear translocation of IRF3 upon infection with different mutations were examined by 
immunofluorescence. A549 cells were infected with wild type and mutated virus at MOI 1. Cells 
were fixed and subjected to immunofluorescence analysis (IFA) at 8h post infection. 

 

Figure S6-10. MAVS are required for the high induction of IFNb of PB2 and M1 mutants 

Induction of ISG54 gene expression were examined in STING or MAVS knock out THP1 cells. 
THP1 cells stable overexpressing Cas9 protein were used as control. Cells were infected with 
each mutation at MOI 1 and cellular RNA were extracted 6h post infection. ISG54 gene 
induction were quantified by RT-qPCR and calculated as fold of induction compare with WT 
infected cells. The data are presented as the mean±s from three independent biological 
replicates. 
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Figure S6-11. Induction of IFN production of DAI virus 

(A) Induction of ISG54 gene expression were shown for mutations as indicated. A549 cells were 
infected with indicated mutant at MOI 1 and cellular RNA were extracted 6h post infection. 
ISG54 gene induction were quantified by RT-qPCR and calculated as fold of induction compare 
with mock infected cells. The data are presented as the mean±s from three independent 
biological replicates. 

(B) Induction of IFNb gene expression were examined at 1h, 2h and 4h post infection with 
indicated virus. The data are presented as the mean±s from biological duplicates. 

(C&D) Relative IFN sensitivity and IFNb induction were examined for DAI virus in PR8 
background. Same 8 mutations (PB2: N9D, Q75H, T76A, M1: N36Y, R72Q, S225T, NS1: R38A, 
K41A) were introduced in PR8 reverse genetic system. The data are presented as the mean±s 
from biological duplicates. 

 



 

 179 

 

Figure S6-12. DAI has highly induction of IFN but not inflammation response 

Heatmap were shown for genes expression pattern of interferon a (left panel) and inflammation 
(right panel) response in WT, NS1 R39AK41A and DAI infected A549 cells. The gene 
expression level is quantified by mRNA sequencing. A549 cells was infected with indicated virus 
at MOI 1 for 6h. Cellular mRNA were extracted and subjected to mRNA sequencing. Gene 
expression change were compared between each infected cells with mock infected A549 cells 
and showed as fold change in log10. Biological duplicate were included for each condition. 
Genes belong to certain pathway were collected from MsigDB. DAI infection significantly 
upregulated genes in interferon a pathway, but not inflammation.  
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Figure S6-13. Replication and induction of cytokine of DAI virus in IFN competent mice 

(A)Viral titer in lung tissue are shown for indicated virus as relative copy number. Female Balb/c 
mice age 6-8 weeks were intranasally infected with 105 TCID50 of indicated virus, mice lung 
tissue were harvested at 2 days post infection (N=3). Viral copy number were examined by RT-
qPCR and normalized to WT infected mice. Dashed line represent mock infected mice.  

(B) Epithelial integrity is examined by albumin concentration in BAL sample collected at day 2 
post-infection (N=3). WT infected mice showed significantly higher albumin concentration, 
suggesting the more severe loss of lung integrity.  

(C) Pathology score were shown for mice lung HE staining slides at day 9 post infection. 4-5 
areas were averaged for each mice. The data are presented as the mean±s from three mice per 
group. 

(D) Induction of indicated cytokines were examined with luminex multiplex assay with BAL 
samples collected at day 2 post infection (N=3). Fold of induction for each cytokine were 
calculated for WT and DAI infected mice compare to control mice with PBS infection.  
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Figure S6-14. Antibody response induced by DAI vaccination. 

(A) Neutralizing antibody in vaccinated mice sera were examined. Female Balb/c mice age 6-8 
weeks were intranasally infected with 105 TCID 50 of indicated virus (N=3). Serum were 
obtained at day 28 post infection and heat inactivated for viral neutralization assay.  

(B&C) Diverse HA binding IgG and HA neutralizing antibodies were examined in vaccinated 
mice sera at different time points by ELISA (B) and hemagglutinin inhibition (HAI) assay (C). 
Female Balb/c mice were intranasal infected with 105 TCID50 WT and DAI-1 virus (N=3). At 14, 
21 and 28 days post infection, serum samples were collected and HA-specific antibody were 
assessed through ELISA. 4 types of HA protein were purified from different strains of virus and 
used as target for IgG binding: WSN (H1), PR8 (H1), HK68 (H3) and Viet04 (H5). WT and DAI 
infected mice elicit antibody response against other strains (PR8: H1, Viet04: H5) within HA 

group (Figure S6-14C), but not across different HA group (HK68: H3). Similar to the WT 
infected group, the antibody titer in DAI immunized mice showed steady increase from Day 14, 
21 to 28 days post vaccination 

(D) NP binding IgA were examined in BAL samples by ELISA. Female Balb/c mice age 6-8 
weeks were intranasally infected with 105 TCID50 of indicated virus (N=3), BAL samples were 
obtained at day 28 post infection.   

(E) M1 binding IgG antibody were examined in mice sera by ELSA. The data are presented as 
the mean±s from three mice. 
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Figure S6-15. Antibody escape mutations screen with HA single mutant library 

(A) Relative enrichment of each mutations on HA protein were shown. HA single nucleotide 
mutant libraries were selected under WT or DAI infected mice sera (N=5) at the concentration of 
IC80. Mock infected mice sera were used as control. Relative enrichment of each mutant were 
calculated as the relative fitness under sera selection compared with control. 

(B) Correlation were shown for the relative enrichment scores of each single nucleotide 
mutations on HA protein under different mice sera selection conditions. Modest correlation were 
obtained among all the conditions.  

(C) Numbers of escape mutations were shown. Escape mutations for mice sera were defined as 
the ones with relative enrichment > 5 for each condition. Similar numbers of escape mutations 
were detected from WT or DAI vaccinated mice sera. 

(D) Percentage of escape mutations located in the head and stem region of HA proteins are 
shown. 51 and 61 possible escape mutations were identified to occur in more than one mice in 
WT and DAI infected group (N=5). ~60% of these mutations were located in the head domain of 
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HA protein, while ~40% of them are in the stem region. The percentage is similar between two 
groups.  

 

Figure S6-16. Robust T cell response induced by DAI virus 

(A) CD8 T cell response were examined by tetramer staining and low cytometry. Representative 
flow cytometry dot plots were shown for lung and spleen samples. Female C57/B6 mice were 
intranasally infected with 105 TCID 50 of indicated virus (N=5). Single cell suspension were 
made from lung and spleen tissues harvested at 10 days post infection. 1 million cells were 
subjected to flow cytometry analysis with CD3, CD8 and tetramer complexes with H-
2Db + influenza A virus NP366–374 (NPP). Black circles indicated portion of NP epitope 
specific CD8 cells, which is double positive for NP tetramer and CD8 staining.  

(B) Long term CD8 T cell response were examined by peptide stimulation in spleen tissues. 
Female C57/B6 mice were intranasally infected with 105 TCID50 of WT and DAI virus (N=4). 
Spleen tissue were collected 28 days post infection and directly transferred through the single 
cell strainer to make single cell suspension. Spleenocytes were then stimulated with indicated 
peptide for 6h at the concentration of 1uM, with the presence of 1ug/ml brefeldinA. Cells were 
stained with CD3, CD8 and intracellularly stained with IFNg. Percentage of IFNg positive CD8 
cells were quantified for each peptide. 

(C-E) Percentage of effector/effector memory T cells and central memory T cells were examined 
for (C) NP specific CD8 T cells, (D) CD4 and (E) CD8 T cells. Female C57/B6 mice were 
intranasally infected with 105 TCID50 of WT and DAI virus (N=4). Spleen tissue were harvested 
10 days post infection. Spleenocytes were stained with CD3-eflurofore450, CD8-FITC, CD4-
APC, CD44-APC eflurofore 710, CD62L- Percp cy5.5 and NP tetramer conjugated with PE. 
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Percentage of effector/effector memory T cells (CD44+CD62L-) and central memory T cells 
(CD44+CD62L+) were quantified. DAI virus vaccination elicit strong CD8, CD4 T response with 
robust central memory T cells which is essential for long-term and cross-class protection.  

 

Figure S6-17. T cell repertoire analysis 

(A) Deep sequencing were performed for TCRB gene of influenza NP366–374 specific CD8 
cells. Lung and spleen tissue were harvested at day 10 post infection. NP specific T cells were 
sorted out and genomic DNA were extracted and prepared for sequencing. Clonality of NP 
specific T cells is shown with two DAI infected mice and one WT infected mice. 

(B) Numbers of expanding CD8 T cells clones were shown for WT and DAI virus infected mice 
as compare with mock (N=2). Lung CD8 cells were isolated at day 10 post infection and TCRB 
gene were deep sequenced. Expanding T cells were defined as the ones with TCRB 
rearrangement detected in NP specific T cells or occure > 0.1% in the total population, but did 
not detected in the mock control.  

(C) TCR Vb gene usage were analyzed for both NP specific CD8 T cells for DAI and WT 
infected mice.  



 

 185 

 

Figure S6-18. Protection of DAI vaccinated mice from challenge  

(A) Protection of WT infection were quantified by the viral load and relative viral copy number in 
lung samples of vaccinated mice. Female Balb/c mice age 6-8 weeks were intranasally 
vaccinated with 105 TCID 50 of indicated virus (N=4). Mice were challenged with 105 TCID 50 
of WT virus at 28 days post vaccination. Lung tissue were extracted at 2 days post challenge. 
Viral copy number were quantified by RT-qPCR and normalized to WT vaccinated mice. 
Dashed line represented mock infected mice, which is the detection limit of RT-qPCR assay.  

(B) Clinic scores of mice challenged with homologous and heterologous viral strains. DAI 
vaccinated or mock (PBS) vaccinated C57/B6 mice were challenged with WSN, PR8, and 
ACal/04/09 at a dose of LD90 and X-31 at LD50 (N=10). Clinic score were obtained twice daily 
for 10 days. 

(C&D) Protection of WT infection were examined with high does or two vaccinations with DAI 
strain. 106 TCID 50 DAI virus were used as high does vaccination for 28 days. Two vaccination 
were performed with 105 TCID 50 at 28 days apart. Mice were challenged with 105 TCID 50 of 
WT virus and viral growth were quantified by both RT-qPCR and TCID50 in lung samples at day 
2 post infection.  
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Figure S6-19. Secondary T cell response post challenge 

Secondary T cell response were examined by tetramer staining and flow cytometry. DAI 
vaccinated mice were challenged with WSN, PR8, ACal/04/09 and X-31 after 28 days of 
vaccination. 14 days after challenge, lung and spleen samples were collected from vaccinated 
mice from each challenge group (N-5). Specific CD8 T cells agains5 H-2Db + influenza A virus 
NP366–374 (NPP, ASNENMETM) and H-2Kb influenza A virus PB1703-711 (SSYRRPVGI) 
were examined. Robust CD8 T cell rebound response toward NP epitope were observed for all 
the challenge groups.  

 

Figure S6-20. Replication and protection of DAI virus in PR8 background. 

(A) Viral titer in lung tissue are shown for indicated virus as relative copy number. Female Balb/c 
mice age 6-8 weeks were intranasally infected with 104 TCID50 of indicated virus, mice lung 
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tissue were extracted at 2 days post infection (N=3). Viral copy number were examined by RT-
qPCR and normalized to WT infected mice. Dashed line represent mock infected mice.  

(B) Protection of WT infection were quantified by the viral load in lung samples of vaccinated 
mice at day 2 post challenge (N=4). DAI virus in PR8 background also showed attenuation in 
vivo and protection against viral challenge.  
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CONCLUSIONS AND PERSPECTIVES 
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The studies in multiple biological systems in my thesis have provide evidence to support 

the conclusion that the quantitative high-throughput genomic platform is a powerful system with 

broad applications. It enabled us to investigate fundamental evolution problems, identify functional 

residues and new functions of target protein, and facilitate drug development. With the 

development of other technologies, including DNA syhthesis, sequencing and nanotechnologies, 

we foresee the further improvement of this system. Based on my own understanding, I want to 

list the following three trends of utilizing the system as the prespective remarks of my thesis.  

Functional profiling of cellular genes 

Although the system is developed through manipulating microbe genes, including yeast, 

bacteria and virus, it is currently quickly applied to mammalian cells. The information provided by 

this system enables us to understand the key residues of a specific cellular protein and further 

understand their functions. Moreover, it might help us to pin-point disease related mutations and 

guide the design of possible inhibitors. Just to provide a concrete example: we can study the 

proteins related to cell proliferation using cell growth rate as a read out or selection condition. 

Applying saturated mutagenesis, we can learn which mutation is related to abnormal cellular 

growth rate and can further use flow cytometry to differentiate cells in different phases. We can 

also investigate the role of mutant proteins on cancer metastasis through transwell migration 

assay in vitro or using mouse xenograft models in vivo. The structures of the target protein or 

homologous proteins can be linked to a genetic profile and further facilitate the understanding of 

sequence-function relationship at the single amino acid resolution.  

Investigation of genetic interactions and epistasis 

In the previous chapters, all the results are based on profiling of mutations of single 

nucleotide or single amino acid changes. The scale of library complexity quickly goes up with 

combinations of mutations or genes. However, interactions and epistasis among amino acids and 
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genes are critical issues that need further investigation to understand the functions of an 

orgamism or evelotion of orgamisms. Often times, the combinational impact of two (or multiple) 

mutations/gene functions/environmental conditions is non-linear, which leads to synergistic or 

antagonistic effects. For example, some low fitness drug resistant mutations can be rescued by 

complementary secondary mutations, or the defect of one gene function can be buffered by 

upregulation of other pathways. Efforts have started to investigate this issue, but due to the vast 

amount of sequence space, most of the studies still focused on double mutations or a handful of 

multiple mutations. Even with limited information, researchers were still able to extrapolate 

interesting information and build interaction networks. With the rapid increasing of sequencing 

power and the maturation of DNA synthesis technology, we will be able to look at the genetic 

interactions with a deeper and broader view. Co-evolution experiments can also be set up with 

the saturated mutagenesis on two moving targets (ligand and receptor, protein interaction 

complex, inhibitor and target protein, et al). This will be a growing research area. 

Combination with single cell sequencing and drop-let sequencing 

The rapid improvement of single cell and drop-let sequencing technologies will be powerful 

to be combined with the genetic profile system. The combination will provide detailed information 

of single-cell behavior upon mutations, and facilitate the investigation of mutational effect on 

diverse cellular background. The utilization of nanodroplets will enable us to scale up our system 

several logs to accelerate biological research to another level.   

 

 




