
UCLA
UCLA Electronic Theses and Dissertations

Title
Real-Time Cost-Aware Machine Learning at the Edge

Permalink
https://escholarship.org/uc/item/2t56494q

Author
Goldstein, Orpaz

Publication Date
2021

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2t56494q
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Real-Time Cost-Aware Machine Learning at the Edge

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Orpaz Goldstein

2021

© Copyright by

Orpaz Goldstein

2021

ABSTRACT OF THE DISSERTATION

Real-Time Cost-Aware Machine Learning at the Edge

by

Orpaz Goldstein

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2021

Professor Majid Sarrafzadeh, Chair

Exponential growth in the need for low latency offloading of computation was answered by

the introduction of edge networks. Since these networks are essentially isolated islands of

computing, current prevalent centralized approaches to training learning agents should be

adapted to account for the decentralized nature of this new network structure. Since these

networks are designed for low latency, cost-awareness must be built into machine learning

models when dealing with data streams. Additionally, in order to debias or expand on

the locally available data while maintaining edge benefits, multi-agent systems should be

constructed to allow for limited coordination outside of a local node.

To address these issues, we suggest a novel end-to-end solution that supports the lifetime

of a learning agent on the network. We reevaluate how learning agents receive information

on an edge network and explore ways for them to communicate and coordinate with other

agents efficiently while maintaining context. This thesis will dive into cost-awareness as it

pertains to data acquired sequentially and messages exchanged on a network. Additionally,

we will showcase our solution for knowledge transfer between remote agents that preserves

all the benefits of running in a decentralized network environment.

ii

The dissertation of Orpaz Goldstein is approved.

Ramin Ramezan

Baharan Mirzasoleiman

Ravi Netravali

Guy Van den Broeck

Majid Sarrafzadeh, Committee Chair

University of California, Los Angeles

2021

iii

TABLE OF CONTENTS

1 Introduction . 1

2 Related Work . 3

2.1 Dynamic Data Stream Edge Architecture . 3

2.1.1 Computation Delegation . 3

2.1.2 Computation Orchestration . 3

2.2 Cost Aware Feature Selection . 4

2.2.1 Uncertainty Measurements . 4

2.2.2 Feature Selection . 5

2.2.3 Data Imbalance . 5

2.3 Decentralized Information Absorption . 6

2.3.1 Knowledge transfer . 6

2.3.2 Federated Learning . 7

2.3.3 Peer-to-Peer . 7

3 Decentralized Architecture for Dynamic Data Stream Analysis and Ma-

nipulation . 9

3.1 Problem Definition . 10

3.2 Proposed Edge Architecture . 11

3.2.1 Background . 11

3.2.2 CDN as a platform for EdgeCompute 12

3.2.3 Extending a CDN . 13

3.2.4 Resulting set up and real-world example 16

3.3 Experiments and Measurements . 20

iv

3.3.1 Emotion detection from voice samples 21

3.3.2 Text to speech . 22

3.3.3 Video stream manipulation . 24

3.4 Comparison with different architectures . 26

4 Cost-Aware Target-Focused Feature Selection 29

4.1 Preliminaries . 29

4.1.1 Notation . 29

4.1.2 Background . 29

4.2 Target-Focused Feature Selection . 30

4.2.1 Problem Set-Up . 30

4.2.2 Feature Value Measurement and Acquisitions 31

4.3 Time Complexity Analysis . 33

4.4 Evaluation . 33

4.4.1 Datasets . 35

4.4.2 Evaluation Methodology . 36

4.4.3 Run Time Comparison . 37

4.5 Results . 38

4.5.1 Comparing with statistical methods 38

4.5.2 Comparing with deep learning methods 45

4.5.3 Final note . 47

4.6 Impact on Healthcare Discussion . 48

5 Real-Time Decentralized knowledge Transfer at the Edge 49

5.0.1 Problem Setup . 49

5.1 Decentralized Learning at the Edge . 50

v

5.1.1 Horizontal Models for Knowledge Transfer 51

5.2 Collaborating in a Multi-Agent Network . 54

5.2.1 Algorithm . 55

5.2.2 Runtime . 56

5.3 Experiments . 57

5.3.1 Comparing with related models . 57

5.3.2 Different mesh configurations . 62

5.4 Discussion . 67

6 Conclusion . 70

A Decentralized Knowledge Transfer for Cancer Detection from Images . 71

A.1 Experiments . 73

A.1.1 Datasets . 74

A.1.2 Results . 75

References . 77

vi

LIST OF FIGURES

3.1 Red arrows represent the original video input available to edge nodes. Yellow

arrows are intermediate context being fed along with data. Blue arrows are

outputs from edge functions/models, and green arrows represent data consumed

by an end consumer. This figure shows a video feed uploaded to an edge network,

where different nodes ingest it; each potentially outputs a result that in turn could

be again consumed. 12

3.2 Edge CDN Architecture. Red connections are strongly consistent database con-

nections. Green connections are edge node to edge node connectivity. Blue

connections are edge node to database connections. 14

3.3 Edge Architecture layers. The plot shows extending current CDN architecture us-

ing a persistent global database. MEC outer layer allows low latency edge node

computation and access to the larger CDN edge network. PoPs and EKV in-

stances are interconnected. A value computed across the network is still available

for local consumption. 16

3.4 Computational pathways incoming demo. (i)Smartphone uploads text data (blue

arrow) and publishes availability via MQTT broker (green arrow). (ii)MQTT

broker forwards the publication (green arrows), and EKV store makes data avail-

able to all edge nodes. (iii)Once the subscribed edge function receives MQTT

publications, it pulls the text data (red arrow) and runs compute. 17

3.5 Computational pathways outgoing demo. (i)An edge function finishes computa-

tion, it pushes outputs data to EKV (local so no arrows), followed by an MQTT

publish call (green arrows). (ii)Finally, a subscribed user receives the publication

and requests the data from EKV, which retrieves it from source (blue arrow), and

then allows the user to pull (red arrow). 17

vii

3.6 Text2speech incoming. (i)Smartphone uploads text data (blue arrow) and pub-

lishes availability via MQTT broker (green arrow). (ii)MQTT broker forwards

the publication (green arrow), and EKV store makes data available to all edge

nodes. (iii)Once the subscribed edge function receives MQTT publications, it

pulls the text data (red arrow) and runs compute. 19

3.7 Text2speech outgoing. (i)Text-to-speech model finishes running. It pushes out-

puts data to EKV (local so no arrows), followed by an MQTT publish call (green

arrows). (ii)Finally, a subscribed user receives the publication and requests the

data from EKV, which retrieves it from source (blue arrow), and then allows the

user to pull (red arrow). 19

3.8 MQTT speed per number of requests compared at log scale of ms. 27

3.9 HTTP speed per number of requests compared at log scale of ms. 27

3.10 Speed of calling our function via HTTP POST requests, and sending back the

result for all cases where the function was called more than once. Compared at

log scale of ms. 28

3.11 Speed of calling our function via an MQTT computation channel, send the result

to an ephemeral storage and compute results based on the previous function run

for all cases where we call the function more than once. Compared at log scale

of ms. 28

4.1 Comparing model confidence in predicting malignant breast cancer. Line thick-

ness indicates variance. 39

4.2 Comparing model confidence in predicting one class out of the Satlog dataset.

Line thickness indicates variance. 39

4.3 Analysis of UCI Satlog dataset comparing FP/FN rates as features are acquired.

4.3a shows evaluation using our approach, 4.3b shows evaluation using mRMR

”MIQ” method, 4.3c shows evaluation using Lasso method, 4.3d shows evaluation

using Extra trees . 40

viii

4.4 Comparing model confidence in predicting congestive heart failure. Line thickness

indicates variance. 41

4.5 Comparing model confidence in predicting diabetes. Line thickness indicates

variance. 41

4.6 Analysis of NHANES Diabetes constructed dataset comparing FP/FN rates as

features are acquired. 4.6a shows evaluation using our approach, 4.6b shows eval-

uation using mRMR ”MIQ” method, 4.6c shows evaluation using Lasso method,

4.6d shows evaluation using Extra trees. 42

4.7 Comparing model confidence in predicting malignant breast cancer. Line thick-

ness indicates variance. 44

4.8 Comparing model confidence in predicting one class out of the Satlog dataset.

Line thickness indicates variance. 44

4.9 Comparing model F1 curve in predicting malignant breast cancer. Line thickness

indicates variance. 44

4.10 Comparing model F1 curve in predicting one class out of the Satlog dataset. Line

thickness indicates variance. 44

4.11 Comparing model confidence in predicting congestive heart failure. Line thickness

indicates variance. 46

4.12 Comparing model confidence in predicting diabetes. Line thickness indicates

variance. 46

4.13 Comparing model F1 curve in predicting congestive heart failure. Line thickness

indicates variance. 46

4.14 Comparing model F1 curve in predicting diabetes. Line thickness indicates variance. 46

ix

5.1 High-level intuitive illustration of our proposed knowledge transfer method. The

transfer layer uses both the source and target model layers parameters and pro-

duces a new layer for the target model. The horizontal model then evaluates

knowledge transfer by producing a combined loss term, which in turn is used to

optimize the transfer process. 50

5.2 example of a convolution knowledge transfer model, producing a single new target

layer. 52

5.3 Horizontal pipeline structure, producing our replacement target layers. 52

5.4 Comparing the two knowledge transfer configurations used in our comparison. . 58

5.5 Comparing knowledge distillation, Gossip algorithms based method, decentral-

ized federated learning, and our method. 60

5.6 CIFAR-10 . 66

5.7 Comparing three knowledge transfer configuration over a network of learning

agents not willing to share their local data. 68

A.1 High-level intuitive illustration of our proposed knowledge transfer method for

cancer data. The transfer layer uses both the source and target model layers

parameters and produces a new layer for the target model. The horizontal model

then evaluates knowledge transfer by producing a combined loss term, which in

turn is used to optimize the transfer process. 73

x

LIST OF TABLES

3.1 Experiment Comparison . 21

4.1 Datasets statistics . 38

4.2 Comparing F1 scores for feature selection on low feature count sets. f indicates

the number of features acquired. 39

4.3 Comparing F1 scores for feature selection on high feature count sets. f indicates

the number of features acquired. 41

4.4 Comparing F1 scores for feature selection on low feature count sets. f indicates

the number of features acquired. 43

4.5 Comparing F1 scores for feature selection on low feature count sets. f indicates

the number of features acquired. 47

5.1 Comparison of average accuracy after 25 epochs across our 3 compared models.

Accuracy was averaged over 25 runs. 58

5.2 No knowledge transfer . 61

5.3 Our Pairwise knowledge transfer . 61

5.4 Federated learning . 61

5.5 ADMM Gossip . 61

5.6 No knowledge transfer . 63

5.7 Our Pairwise knowledge transfer . 63

5.8 Federated learning . 64

5.9 ADMM Gossip . 64

5.10 Comparison of average accuracy after 25 epochs across our 3 compared mesh

configurations. Accuracy was averaged over 25 runs. 65

xi

5.11 Comparing true labels vs. predicted labels for our local model, with a full mesh

knowledge transfer network. T denotes true labels, P denotes predicted label. . 67

5.12 Comparing true labels vs. predicted labels for our local model, in a transitive

knowledge transfer network. T denotes true labels, P denotes predicted label. . 67

A.1 Comparison of average accuracy across our 3 compared models. Accuracy was

averaged over 25 runs. 74

A.2 Comparing true labels vs. predicted labels for our local model predicting skin

cancer, with no knowledge transfer. T denotes true labels, P denotes predicted

label, pink denotes the local classes . 74

A.3 Comparing true labels vs. predicted labels for our local model predicting skin

cancer, in a pairwise knowledge transfer environment. T denotes true labels, P

denotes predicted label, pink denotes the local classes 75

xii

ACKNOWLEDGMENTS

First, I would like to thank Professor Majid Sarrafzadeh for his guidance and insights

throughout the last few years. His support and encouragement not only made this time

spent navigating my research pleasant but also taught me qualities I believe will guide

my life beyond my Ph.D. Secondly, I would like to thank Professor Guy Van den Broeck,

who patiently explained how to report research results properly and helped me write my

first research paper. Thirdly, I would like to express my deep appreciation to the doctoral

committee, Professor Ravi Netravali, Professor Ramin Ramezani, and Professor Baharan

Mirzasoleiman, for their constructive feedback and invaluable advice. Finally, I want to

thank my dear friends and members of the UCLA eHealth and Data Analytics Research Lab

who helped me during this time. I greatly value these friendships and collaborations, and I

believe that our connection will extend beyond this period.

xiii

VITA

2012–2016 B.Sc. of Software Engineering, Shenkar College of Engineering and Design

2016–2017 M.Sc. of Computer Science, University of California, Los Angeles

PUBLICATIONS

Goldstein, O., Kachuee, M., Shiell, D. and Sarrafzadeh, M., 2020. Real-Time Decentralized

knowledge Transfer at the Edge. arXiv preprint arXiv:2011.05961.

Ovalle, A., Goldstein, O., Kachuee, M., Wu, E., Hong, C., Holloway, I. W., & Sarrafzadeh,

M. (2021). Leveraging Social Media Activity and Machine Learning for HIV and Substance

Abuse Risk Assessment: Development and Validation Study. Journal of medical Internet

research, 23(4)

Goldstein, O., Shah, A., Shiell, D., Rad, M.A., Pressly, W. and Sarrafzadeh, M., 2020,

September. Edge Architecture for Dynamic Data Stream Analysis and Manipulation. In

International Conference on Edge Computing (pp. 33-49). Springer, Cham.

Kachuee, M., Karkkainen, K., Goldstein, O., Darabi, S. and Sarrafzadeh, M., 2020. Gen-

erative Imputation and Stochastic Prediction. IEEE Transactions on Pattern Analysis and

Machine Intelligence.

Goldstein, O., Kachuee, M., Karkkainen, K. and Sarrafzadeh, M., 2020. Target-Focused

Feature Selection Using Uncertainty Measurements in Healthcare Data. ACM Transactions

on Computing for Healthcare, 1(3), pp.1-17.

xiv

Kärkkäinen, K., Kachuee, M., Goldstein, O. and Sarrafzadeh, M., 2019. Cost-Sensitive

Feature-Value Acquisition Using Feature Relevance. arXiv preprint arXiv:1912.08281.

Goldstein, O., Kachuee, M., Karkkainen, K. and Sarrafzadeh, M., 2019. Target-Focused

Feature Selection Using a Bayesian Approach. arXiv preprint arXiv:1909.06772.

Kachuee, M., Karkkainen, K., Goldstein, O., Zamanzadeh, D. and Sarrafzadeh, M., 2019.

Cost-sensitive diagnosis and learning leveraging public health data. arXiv preprint arXiv:1902.07102.

Kachuee, M., Goldstein, O., Kärkkäinen, K., Darabi, S. and Sarrafzadeh, M., 2018,

September. Opportunistic Learning: Budgeted Cost-Sensitive Learning from Data Streams.

In International Conference on Learning Representations.

Kachuee, M., Karkkainen, K., Goldstein, O., Zamanzadeh, D. and Sarrafzadeh, M., 2019.

Nutrition and health data for cost-sensitive learning. arXiv preprint arXiv:1902.07102.

Lipsitt, J., Batteate, C., Goldstein, O. and Jerrett, M., 2018, November. Physical Activity

through Sustainable Transport Activities (PASTA) in Los Angeles. In APHA’s 2018 Annual

Meeting & Expo (Nov. 10-Nov. 14). American Public Health Association.

Goldstein, O., 2018. Zero-Shot relation extraction from word embeddings (Masters disser-

tation, UCLA).

Hojaiji, H., Goldstein, O., King, C.E., Sarrafzadeh, M. and Jerrett, M., 2017, October.

Design and calibration of a wearable and wireless research grade air quality monitoring sys-

tem for real-time data collection. In 2017 IEEE Global Humanitarian Technology Conference

(GHTC) (pp. 1-10). IEEE.

xv

CHAPTER 1

Introduction

As machine learning ubiquitously enhances what can be done with computers and devices,

the influx of network adjacent models will continue to increase. Many of these models will

essentially be a reincarnation of robustly pre-trained public models or models trained on

very similar data, solving highly comparable tasks. Optimally, collaborative learning could

take place, enhancing and debiasing all equivalent models, to better benefit all such machine

learning tasks [SWL02, SZC20]. In reality, however, many models will require private data

in order to become highly localized finely tuned solutions, and disinclination towards sharing

private data will prevent this idealistic approach. Transferring knowledge in a decentralized

setting should allow models to retain their local insights, in turn allowing for local flavors

of a machine learning model. This approach suits the decentralized architecture of edge

networks, as a local edge node will serve a community of learning agents that will likely

encounter similar data.

Moving information between models has been addressed in transfer-based methods [TS10,

RMK05, YZH18]. While these methods predominantly deal with training a target model

once a source model has finished its training process, we are interested in the case where

actively learning models can still benefit each other in real-time. Moreover, knowledge

transfer methods are largely evaluated on their applicability to learning a comparable but

distinct task. In our problem setup, we wish to accurately inherit the source model’s ability

to classify or predict the data.

Addressing the decentralized component of collaborative learning, federating the process

of training learning agents has been suggested [KMY16, HAA20, MMR17, HTT19, WYS20].

While federation captures the real-time model construction we are interested in, it is applied

1

towards building a centralized model aggregated from distributed data sources, thus losing

the local variant that we are after.

Methods for efficient message passing between learning agents over a decentralized net-

work have been proposed in Peer-to-Peer (P2P) models [Sha09, BGP06]. P2P message

passing allows for efficient communication over a network and simplifies the decentralized

learning model by defining a single knowledge transfer function that applies to all learning

agents. Developing an adaptive knowledge transfer term for potentially nonlinear and deep

learning models, we want to learn a different granularity of the data in each model layer,

making a global knowledge transfer term is too vague for our case.

We propose a dynamic information acquisition and exchange network allowing learners to

take advantage of information actively being generated or learned elsewhere. Our network

is optimized for cost-aware knowledge transfer between agents, defined as models moving

data horizontally between layers of source and target models. Our method allows for source

agents that are still learning or are continuously updating their model. Our knowledge

transfer prioritizes local data, preserves local insights, and adds on remote information.

Accommodating for running agents on a real-world edge network, local agents can define

their source contributors dynamically. Consideration could be based on their costs, the need

for debiasing their local data, or improving accuracy on a sparsely or never-before-seen type

of data. Knowledge transfer is done pairwise between a source and a target model layers,

thus allowing us surgical precision to transfer information between shallow models as well as

deep learning models.

The rest of this manuscript is organized as follows. Chapter 2 reviews the current relevant

literature. Chapter 3 introduces an architecture for the support of learning agents on de-

centralized networks. In this chapter, we explore efficient communication methods for agent

collaboration and coordination. Chapter 4 suggests a cost-aware, highly frugal approach to

feature selection for data incrementally available. Chapter 5 presents an approach based on

knowledge distillation for real-time knowledge transfer on edge networks. Finally, Chapter 6

concludes the thesis.

2

CHAPTER 2

Related Work

2.1 Dynamic Data Stream Edge Architecture

2.1.1 Computation Delegation

A lot of recent work that suggests improvement to current edge architecture is centered

around reducing latency and increasing efficiency. This reduction could be made by com-

bining the availability and low latency quality of the edge while inheriting the advantages

of the data-center-based service delivery [CHM14], or by moving away from a centralized

cloud approach to a more decentralized one [GME15]. On top of that, the Quality of Ser-

vice (QoS) issue and understanding the benefits of offloading computation within an edge

network become essential when scaling up service to more learning agents. An approach

to periodically distribute incoming tasks is described in [SYY17], showing that internally

distributing tasks can result in a more significant number of jobs processed. [YIJ17] extends

the notion of offloading computation and computes a delay metric to find the best neighbor

node in a network to offload. Multi-access edge computing (MEC) is surveyed in [MB17] as

a promising target for improving the performance of delegated compute to an edge network.

It compares different MEC concepts in terms of computation and control placement.

2.1.2 Computation Orchestration

Running models that require state retention on an edge network could be challenging to

orchestrate. In the centralized case, federated models were proposed to compute an aggregate

of all model updates and broadcast them back to the sub-models [KMY16]. However, this

3

centralized approach will not work well on streaming data or generalize to all possible state

retaining applications. Some work addresses the need for internal communication and passing

of information between models in the decentralized system. [WTS19] explores the benefits

of message passing to compute the same federated aggregation and efficiently compute a

decentralized, federated model. [MAS18] discusses the treatment of data streams on an edge

network for the consumption of learning models. The locality of computation offloading and

the minimization of raw data routed to a centralized location are highlighted as necessary for

the overall performance of IoT supporting edge networks. Our work in this thesis presents

a design that adheres to the same decentralized approach, focused on maximizing efficiency

in handling data streams from a multitude of clients.

2.2 Cost Aware Feature Selection

2.2.1 Uncertainty Measurements

Uncertainty measurement in a machine learning model flows from applying a probabilistic

approach to learning, also known as Bayesian learning. Sampling a trained probabilistic

model for latent variables allows us to capture the inherent uncertainty in the model. Iden-

tifying the uncertainty within a model is important for giving accurate guarantees for what

a model can efficiently predict [KA13]. For example: when trying to predict between two

types of heart disease, one type could be more common and make the vast majority of sam-

ples available. Drilling into the results could show that the less common but more fatal

disease shows the high variance in the classification predicted by the model for that class,

indicating uncertainty in the more serious fatal type of heart disease. Developing mod-

els that are minimally uncertain of their predictions is the key to incorporating machine

learning in accuracy-oriented domains such as healthcare. The usage of Gaussian weight

distributions to estimate the uncertainty was first discussed in [DL91]. Later work includes

[Bis06, Mur12, Gha15] and many more. The benefits of uncertainty measurement in the

healthcare domain flow from the statistical rigor of the outputs provided by a model. In

[KA13], the importance of minimizing uncertainty in biology is discussed, and [HO13] call

4

biologists to shift to Bayesian statistics and provides reasoning for the need for uncertainty

measurements in this field.

Application of uncertainty to feature selection robustness appears in Same Decision Prob-

ability (SDP) [CXD12a], which measures the effect of feature acquisition on the shift in the

decision-making process of a model. SDP measures the uncertainty in the model while ac-

quiring features and reasons on stopping criteria based on a threshold of confidence and

budget. More recently, an expected SDP query and an optimal feature selection algorithm

based on SDP were proposed [CDB17]. SDP queries are generally PP PP -complete, which

makes it costly for many high-dimensional real-world applications.

2.2.2 Feature Selection

Classic approaches to feature selection focus on maximizing information gain and inferring

feature relevance [BHP97, GE03]. Cost awareness for feature selection is prevalent where

machine learning is applied to concrete problems such as in Health informatics. There,

feature selection methods take into account real-world costs associated with the acquisition of

features and the need to maintain a budget. Costs of tests, physician time, patient discomfort

should all be taken into account when reasoning on which feature is to be acquired using

cost-sensitive decision methods or active sensing [FCB07, YKR09]. In addition to costs,

changes in data availability might call for iterative feature aggregation in training time,

requiring an online cost-sensitive budgeted approach [KGK19b]. When managing a budget

for features acquired iteratively, a deep reinforcement learning approach for optimizing a

trade-off between the expected classification error and the feature cost was recently suggested

[JPL19]. While it performs well for feature acquisition tasks, reinforcement learning usually

runs for long periods before outputting a decision, making it unsuitable for our tasks.

2.2.3 Data Imbalance

Real-world data tends to be imbalanced, especially in fields such as healthcare; some con-

ditions or variants of a disease are more common. Some targets carry more significance or

5

are more relevant to a specific diagnosis. The acquisition of relevant data is made possible

using an active learning approach [NDR18], or by reducing redundancy in acquired features

while maintaining relevance, [JLO19]. Contributing to the imbalance is also the sparseness

of data. Due to the high dimensionality of the data, not all data points will have all features.

For medical domain feature selection and prediction, ensemble methods have been used to

reduce the effects of imbalanced data, and inherent missingness [HYJ16, LLY06], and more

recently with a robust feature selection framework [ZZZ18]. While addressing the imbalance

in data is closely related to our work, the acquisition of pertinent features to a specific target

of focus is not addressed. The selective budgeted acquisition of a subset of features out of a

massive amount of available data in the medical domain was also explored as a way to sift

through vast amounts of information [LY17].

2.3 Decentralized Information Absorption

2.3.1 Knowledge transfer

Knowledge transfer in machine learning is commonly used to leverage a model trained on

a source task in order to improve training a model for a corresponding target task. One

prevalent method is Transfer Learning [TS10, RMK05, YZH18], which allows for reusing

knowledge learned on a source model to a target model by recycling learned parameters

and limiting further training to the lower layers of the source model. Transfer Learning

can improve the time it takes to learn the new task in the same domain as the source task

and the final performance of the model. Distilling knowledge from an ensemble of source

models [HVD15, LKS20] is another approach for knowledge transfer where the original set or

a subset of the data used to train the source models is leveraged. Distilling knowledge from

source to target is done by defining a cross-entropy loss between outputs of source and target

softmax layers. Recently, a method for zero-shot knowledge distillation [NMS19, MS19] was

proposed, where a transfer set is extracted directly from the source model by sampling the

Dirichlet distribution learned for each class for softmax probabilities. Sampled probabilities

are then used to construct Data Impressions that correspond to model output per class,

6

replacing conventional input data. Transferring knowledge can also be achieved by using

neuron activation [HLY19, RZK19]. Here, instead of extracting knowledge by considering

the magnitude of neuron responses to data, minimizing the difference in neuron activation

between source and target is used to train our target model. When transferring knowledge

between models, some information learned on the source model might be insignificant or

even harmful to the target model. Additionally, exploring where data should be injected

into the target model can benefit our knowledge transfer. Therefore, defining meta models

to decide what data should be transferred and to what location in the target model could

positively impact knowledge transfer [JLH19].

2.3.2 Federated Learning

Federated Learning [KMY16, HAA20, MMR17, HTT19, WYS20], is a method for updating

a centralized model using a training set that is distributed among multiple users. Feder-

ation allows local data to remain private by collecting local updates to a base model and

aggregating them in a centralized location. After a centralized model has been updated, it

is shared back with agents. Building on Federated Learning, Federated Multi-Task Learn-

ing [SCS17, CB19, YLS20] considers the known shared structure between pairs of models,

improving the effectiveness of samples extracted from each of the local models. In order

to mitigate the overhead required for decentralized updates to a centralized model over a

network, a federated averaging method [MMR16] is suggested. Here, in each iteration, a

random set of local models is selected to run a single step of gradient descent using local

data and transmit back the results, which are then averaged. Federation works well when

all we care about is the global accuracy term. However, when we wish to prioritize local

information, adopted knowledge should be more carefully integrated.

2.3.3 Peer-to-Peer

Peer-to-Peer (P2P) agent communication over a defined network structure is described by

Gossip Algorithms [Sha09, BGP06]. Considering a network with a known structure that

7

might change over time, pairwise communication of agents is proposed to replace a central-

ized network structure. Decentralized Collaborative learning based on Gossip Algorithms

[VBT17] leverages a known network structure where neighbors are agents learning similar

models. This collaborative approach uses an asynchronous update phase, where parameters

are collected from neighbors and used to update a local model. This approach allows for some

individuality in models but is restricted to networks where a structure is known. Smoothing

terms in optimization and knowledge propagation that is agnostic of model structure prevent

this model from applying to our problem.

8

CHAPTER 3

Edge Architecture for Dynamic Data Stream Analysis

and Manipulation 1

In this chapter, we will start developing our architecture for supporting learning agents in

the decentralized world. We focus on the following points.

i Maintaining edge-level low latency and availability to physically close users while ex-

tending the availability of produced data streams globally with low latency, without

going through a centralized location.

ii Extending the definition of computation on an edge network to be more dynamic in

nature. Delegated computation or usage of a function or a model that is not on a

user’s local node should be handed off in-network to potentially multiple locations for

added efficiency instead of reaching a centralized data center. Delegated computation

should communicate meta-data back and forth to coordinate.

iii Providing an architecture where produced data streams, or the output of a model that

takes that stream as input, is available to be consumed by multiple consumers globally.

Similarly, input to an edge function that depends on multiple data streams produced

in various geographical locations is available instantly. Consequently, to support this

kind of global availability, a modular approach to computation delegation is considered.

Supporting modularity of the edge, manifested in the chaining of edge functions and

1This chapter is based on ”Goldstein, O., Shah, A., Shiell, D., Rad, M.A., Pressly, W.
and Sarrafzadeh, M., 2020, September. Edge Architecture for Dynamic Data Stream Analysis
and Manipulation. In International Conference on Edge Computing (pp. 33-49). Springer,
Cham.

9

decentralized learning models on an edge network, requires adding context retention

to the edge.

3.1 Problem Definition

In the serverless world, the idea of functions as a service (FaaS) is rapidly becoming the

preferred solution for IoT use-cases. Typically, serverless functions are of limited expres-

siveness and are designed to scale, preventing state information from being stored between

executions [BCC17]. Datastream-related computation delegation is, in turn, thought of as a

rigidly defined task delegation. Unlike standard FaaS usage, we are interested in determin-

ing computation paths for pipe-lining execution of edge models and functions and provide a

mechanism to orchestrate this execution and exchange of meta-data between functions and

models. Data streams related tasks, such as video augmentation and analysis, might benefit

from function chaining while retaining context, with multiple forking tasks based on slightly

different final product requirements of different consumers. Similarly, a consumer who re-

lies on data produced by multiple producers will benefit from function chaining. Another

example is context-dependent models on the edge. In order to train and test machine learn-

ing models delegated to an edge network, context must be retained and potentially shared

between locations.

For example: Consider a network camera that uploads a live video feed. One consumer

with access to the raw data wants to run a facial recognition model on the feed, and another

wants to augment the video and add bounding boxes to elements in the feed. Each of these

consumers can define a function/model that directly subscribes to the availability of that

video feed frames on the network. Once they are available, each function picks them up and

computes a result that is in turn published as available on the network for the original and

additional consumers to pick up.

We then wish to retain some contextual information while data is handed off from func-

tion to function and eventually returned to a consumer. Recent work suggests the addition of

ephemeral storage for short-lived edge compute tasks to achieve near real-time performance

10

[KWS18]. This fine-grained scalability appears to be vital in developing future serverless

applications that could process multiple data streams in parallel and achieve real-time per-

formance. Whether that refers to facial recognition on mobile devices, flying drones, or

driving intelligent cars, support for this computation with low latency is crucial [SCZ16].

Additionally, since users of an edge network will be geographically distributed, the low la-

tency availability of an edge function should be unbound to a specific location or edge node.

Similarly, data produced in one location should be simultaneously available as input to

functions and models across all edge nodes.

For example: Suppose a user is training a facial recognition model on the edge using a

video feed from a mobile camera that he carries with him. In that case, that model should

be available with low latency regardless of a user’s physical location. If multiple users are

training the same type of facial recognition model, it might make sense to share the data

stream with all users globally. Conversely, if the data stream is private, we should make

each of the mini models available globally and utilize what they learned to minimize training

time across the board.

Figure 3.1 Plots our data stream use-cases over a desired edge network architecture,

where data produced are globally available. Any edge function/model can utilize output

from other functions and continue computation while retaining context.

3.2 Proposed Edge Architecture

3.2.1 Background

A natural candidate to provide the foundation of an edge network is a content delivery

network (CDN). A CDN can be seen as a specialized use case of an edge network, as it

is a low latency distributed network in close physical proximity to consumers. A CDN is

concerned with caching content as close as possible to end-users so multiple consumers could

consume it with the least possible latency. Unlike the multi-purpose edge network, a CDN

does not provide clients with an access point into its network. A CDN does not outsource

11

Node	2

Node	1

Node	3 Node	4

Consumer	1
Augmented
Video	feed

Detected	faces
in	frames

Video	feed	with
labeled	actors

Consumer	2

Video	feed

Figure 3.1: Red arrows represent the original video input available to edge nodes. Yellow

arrows are intermediate context being fed along with data. Blue arrows are outputs from

edge functions/models, and green arrows represent data consumed by an end consumer. This

figure shows a video feed uploaded to an edge network, where different nodes ingest it; each

potentially outputs a result that in turn could be again consumed.

computation to users as a service or allow them to upload any code to the CDN network.

To utilize a CDN as an edge network, low latency edge nodes that enable users to access the

larger network are needed, combined with support for requesting compute resources.

3.2.2 CDN as a platform for EdgeCompute

We propose an edge network implemented over an existing sizeable commercial content

delivery network (CDN). By leveraging an existing global network of points of presence

(PoPs) that are deployed in large metro areas around the world, we get physically close to

a large portion of the population on the planet. We can then construct a globally available

edge presence with exceptionally low latency from outside of the network to edge nodes and

internally between our PoPs, from edge node to edge node.

We leverage existing CDN features when extending the network. The CDN is made to

handle the load balancing of traffic while considering latency. A CDN has built-in support for

routing incoming traffic to the nearest PoP with the capacity to process the request efficiently.

Traffic routing and management and fail-overs from PoP to PoP is then taken care of by CDN

logic. Since the CDN has a global presence, that translates to low latency hops globally.

For an edge network user, that means that while he only maintains a connection with a

12

local edge node, he can still benefit from a low latency global computation delegation. A

CDN network has valuable security features in place, such as web application firewall (WAF)

and authentication to our network. Further benefits include rate-limiting of traffic and the

ability to use the CDN cache when necessary. Inherently, edge compute traffic enjoys the

same benefits. Lastly, we make use of a load-aware auto-scaling mechanism. On a CDN,

when a piece of data becomes popular and frequently requested, it makes sense to replicate

that piece of data to more cache servers so it could be served more efficiently from more

servers without hurting the performance of the network. The auto-scaling mechanism is

used when scaling up our edge compute tasks, and as we describe later, auto-scaling will be

utilized when we augment the network with a new kind of data store.

3.2.3 Extending a CDN

3.2.3.1 Virtualization

To support edge computing on our network and generalize CDN services, we allow users to

upload code to be run on our network in a virtualized environment. Allowing each machine

to support multiple users operating in isolation on the same hardware resources, we bound

models/functions to a user-space container on a device. The container approach for OS-

level virtualization of resources is highly scalable and can be further improved by container

orchestration software, automating global management and scaling of containers. Containers

are fast and easy to deploy using provided packaging and deployment tools while allowing for

individualized system configuration at deployment time. Containers require a small amount

of resources to maintain, and their footprint on a system is minimal. We use Docker as our

container platform and support uploading Docker images containing functions or models to

be run on our edge network.

3.2.3.2 Data store and context retention

Unlike the typical edge network implementation, the edge functions uploaded by our users

do not need to integrate with an HTTP request logic library in order to obtain data as input.

13

Figure 3.2: Edge CDN Architecture. Red connections are strongly consistent database

connections. Green connections are edge node to edge node connectivity. Blue connections

are edge node to database connections.

Instead, we implement a distributed globally available edge key-value store (EKV). Using a

persistent, globally distributed data store provides an edge network with the ability to retain

context between function executions or an online learning model updated from multiple nodes

around the network. An EKV provides a producer with a low latency access point to upload

data streams, after which the data propagates through the edge network quickly to become

available globally. Equivalently, consumers can access data streams produced remotely on

their local edge node instantly.

Figure 3.2 shows our CDN-based architecture; Global decentralization and low latency

availability are critical in a network designed for massive-scale data stream input. Figure

3.3 shows our layering scheme and the path of a user request interacting with our network.

Requests from the outer layer close to a user propagate internally using CDN mechanics

augmented with a globally available storage system.

14

3.2.3.3 Computation channels

Once data is generated on the producer side, it is pushed to a local edge instance of our EKV.

Once uploaded, we wish to notify functions and models who are dependant on this data that

a new piece of data is available to be consumed. For edge functions or models to become

aware of the new data availability, we implement computation channels that are essentially

named communication channels that functions or models can subscribe to and receive data

from. In practice, to let subscribers know when to pull data from the EKV store, a user

implements a publish call when a producer has finished uploading data to EKV. This call

allows functions and models that are subscribed to the computation channel dedicated to the

data produced by a specific producer to get data from EKV and start working. Similarly, an

implemented consumer function, model, or end-user subscribes to the channel that matches

the data they wish to consume.

To create computation channels, we are using the pub/sub paradigm. This approach pro-

vides us the scalability and modularity required by our implementation. Although pub/sub

has some inherent rigidity related to modifying published data, our system allows for flexi-

bility in defining EKV keys published via our channels. A user might publish multiple data

chunks via a single key if he is not concerned about consistency or publish a new key on

every new upload if he cares about consistency. Data that is augmented by a function is

considered new data and is (re)published separately. Using these channels is not limited

to passing EKV keys. Computation delegation across different nodes that do not require

EKV store might still use pub/sub channels. Channels will be used to exchange meta-data

between executions, pass function return values that do not require storage, and coordinate

runs across different locations.

To implement computation channels, we selected the MQTT messaging protocol as our

message broker. MQTT shares the IoT approach where any device is a potential client and

is flexible in using quality of service (QOS) assurances that tie nicely with a data stream

approach. As our MQTT server, we use a Mosquitto broker on our edge nodes. Mosquitto

is robust enough to run on our heavy-duty servers supporting high volumes of messages, as

15

MEC
CDN	Edge

POP POP

POP

SET	Val	1

GET	Val	1

User	1 User	2

SET	Val	2

GET	Val	2

Figure 3.3: Edge Architecture layers. The plot shows extending current CDN architecture us-

ing a persistent global database. MEC outer layer allows low latency edge node computation

and access to the larger CDN edge network. PoPs and EKV instances are interconnected.

A value computed across the network is still available for local consumption.

well as lightweight sufficient for potentially running on dedicated low power edge hardware.

Figure 3.4 shows a demo of computational channels for data produced outside the net-

work, and Figure 3.5 offers a demo of computational channels for data produced inside the

network architecture. The different propagation paths of the data uploaded to the EKV

store and the MQTT pub/sub calls are denoted using color arrows. This representation is

meant to capture the concurrency of our network and the emphasis on global availability.

3.2.4 Resulting set up and real-world example

The described setup allows a highly dynamic computation pipeline on the edge. The sub-

scription to computational channels could be as hierarchically complicated as needed, using

multiple layers deep of edge computation subscriptions. This layered approach allows for

fine-grained customization of computation that could be individualized up to a per-user case.

Additionally, this allows for the invocation of highly localized edge functions or models that

are physically far away but are on the same network and have access to the same EKV. A

motivating example would be sharing a trained model without having access to the private

16

MEC
CDN
Edge

(II)

(II)

(II)

(III)

(I)

Figure 3.4: Computational pathways incom-

ing demo. (i)Smartphone uploads text data

(blue arrow) and publishes availability via

MQTT broker (green arrow). (ii)MQTT

broker forwards the publication (green ar-

rows), and EKV store makes data available

to all edge nodes. (iii)Once the subscribed

edge function receives MQTT publications,

it pulls the text data (red arrow) and runs

compute.

CDN
Edge

MEC

(I)

(II)

(II)

(III)
(II)

Figure 3.5: Computational pathways outgo-

ing demo. (i)An edge function finishes com-

putation, it pushes outputs data to EKV (lo-

cal so no arrows), followed by an MQTT

publish call (green arrows). (ii)Finally, a

subscribed user receives the publication and

requests the data from EKV, which retrieves

it from source (blue arrow), and then allows

the user to pull (red arrow).

17

data it was trained on. For instance: if we want to train a model on the edge, we might

benefit from utilizing models on EKV that did something similar in different geo-locations.

Collaborating across nodes can be seen as a debiasing stage that is both private, and edge

contained. Federating models prevent bias from locally collected training data, and sharing

models on the edge network instead of data keeps that data private. Another advantage of

our network is the ability to retain context and make it available globally. Since we allow

subscribing to computation results of another edge function or model, we sometimes need to

maintain the proper context in addition to the output on EKV.

For example: Say we are feeding a video to the edge, and a function is subscribed to

detect faces in frames of the video feed. The output of that function is the coordinates of a

bounding box for a face in the frames. Now, suppose a function is subscribed to the results of

that face detection function and is planning to use the face detection results and continue to

augment the faces on these frames. In that case, it will need both the coordinates produced

by the face detection function in addition to the original frames on EKV. To support such

a use case, we need to understand what a subscription to a computational channel depends

on. In this case, that subscription to the output of face detection is dependant on the

original frames being available in EKV. We solve this by having the augmenting function

subscribe to two computational channels and starting work when both a frame and its

corresponding coordinates are known. Lastly, all computation is done on the edge, whether

local or remote. There is no delegation to a centralized cloud. Instead, any non-local edge

node might potentially participate in the computation if such delegation is needed.

Figure 3.6 and 3.7 show a demo of text-to-speech task execution on our architecture. The

different propagation paths of the data uploaded to the EKV store and the MQTT pub/sub

calls are denoted using color arrows. The latency observed on MQTT publication, and data

transfers from outside the network to a PoP with an EKV instance and EKV to another

PoP with our Text-to-Speech function is denoted in the plot. This representation captures

our real-world experimentation with our architecture and the latency observed.

18

MEC
CDN
Edge

Cloud
Text-to-Speech

0.01mb
0.01mb

(I)

(II)

(II)

(III)

1ms

200ms

1ms

100ms

Figure 3.6: Text2speech incoming.

(i)Smartphone uploads text data (blue

arrow) and publishes availability via

MQTT broker (green arrow). (ii)MQTT

broker forwards the publication (green ar-

row), and EKV store makes data available

to all edge nodes. (iii)Once the subscribed

edge function receives MQTT publications,

it pulls the text data (red arrow) and runs

compute.

CDN
Edge

MEC

1ms

1ms

500ms

500ms
Cloud

Text-to-Speech

5.5mb

5.5mb

(I)

(II)

(II) (III)

Figure 3.7: Text2speech outgoing. (i)Text-

to-speech model finishes running. It pushes

outputs data to EKV (local so no arrows),

followed by an MQTT publish call (green

arrows). (ii)Finally, a subscribed user re-

ceives the publication and requests the data

from EKV, which retrieves it from source

(blue arrow), and then allows the user to

pull (red arrow).

19

3.3 Experiments and Measurements

Our architecture is built to support large amounts of data stream traffic and computation

paths within the network. We show in our experiments the advantages of our network in a

few fundamental edge-related tasks. We show how close we can get to real-time delivery of

results from edge functions and models working on analyzing data streams. We evaluate the

efficiency of chaining different functions while retaining meta-data between executions. And

we evaluate how close we can get to real-time generation of data from a machine learning

model, based on ques from a user outside our network. The tasks are as follows:

1. Run an emotion detection (ED) model as an edge function on recorded voice samples

from an IoT device and show detected emotion in real-time.

2. Run a text to speech (T2S) function on the edge that accepts text from a user and

outputs generated human voices that a second IoT device will then consume.

3. Pipeline 3 image-related machine learning model that will accept as input a video

stream and output an augmented version of it (DF).

For each of these, we report all metrics relating to latency and connectivity throughout

the path of execution. All experiments were run on our 32 core Intel(R) Xeon(R) Gold 6140

CPU @ 2.30GHz, with the last two tasks utilizing a single 8GB NVIDIA Tesla M60 GPU.

The edge node we are using in these experiments is located in close physical proximity (Los

Angeles) and within 5ms to the client. The EKV instance is located remotely (Chicago) and

within 7ms to the client. We show a few machine learning use-cases that take advantage

of our proposed edge architecture. Models or functions running on our edge can seamlessly

integrate into a user’s edge function chain.

Table 3.1 shows a comparison between the different experiments and their key points we

are interested in evaluating on our edge architecture.

20

Table 3.1: Experiment Comparison

ED T2S DF

Pub/Sub X X X

EKV Data Store × X X

Function chaining × × X

Small files incoming X X ×

Small files outgoing X X ×

Large files incoming × × X

Large files outgoing × X X

Model is target specific × × X

3.3.1 Emotion detection from voice samples

With the expanding array of intelligent speakers consumers interact with, voice analysis

becomes a common task for extracting commands and features from voice unrelated to the

spoken text. We evaluate the usage of a machine learning model trained to classify positive

and negative emotions on the edge and return a response in real-time. This task shows low

latency availability of our emotion detection model and utilization of computation channels

to exchange small amounts of data and coordinate execution.

Using a database of labeled actor voices emulating emotions, we pre-train our model and

package it into a Docker container deployed on the edge. The dataset we used is described

in [LR18]. We create two MQTT channels—one for incoming data and one for outgoing

classification. We then create and subscribe an edge function that listens to incoming pub-

lications and branch an instance of the emotion detection model for each incoming request.

On the client-side, we create a web page for recording voice samples using JavaScript and use

paho-mqtt in the browser to subscribe to the channels for this process. The voice samples

are recorded through the browser, serialized, and sent through MQTT as the payload of the

MQTT publish call. The edge function receives the serialized file, passes it to the emotion

21

detection model, and publishes the classification results via MQTT. The browser then re-

ceives the publication and displays an emoticon on-screen 2. The voice sample size depends

on the recording length, but we have found that a file of about 100kb could be published

via MQTT and received by the listener function in less than 3ms. After the function loads

the pre-trained model and passes the data, the model takes about 4.5 seconds to run using

only the CPUs on the edge node. The model output is then published back received by the

client after another 2ms, and finally, the client displays an emoticon after about 4.5 seconds

from the end of the recording process.

As a comparison, we consider a standard cloud architecture with serverless functions that

accept data via HTTP requests. The ping to an average cloud instance takes an average of

224ms 3, and response time per message using HTTP is 200ms higher than that of MQTT

when connection is reused 4. Including the time it will take to move the data makes our task

potentially 1-3 seconds longer on public cloud. A significant user impact.

3.3.2 Text to speech

Offloading the resource intense process of data generation using a relatively small amount

of data is another area where edge networks shine. Asking an edge node to generate images

for us using a description or Using a model to generate human voice from the raw text are

only two examples. We will examine the latter example here. This task shows a producer

and consumer operating independently in different locations using different edge nodes for

EKV and edge function. The edge nodes used are in Chicago and California and are 1ms

apart when using ping.

Using a model based on Deep Voice 3 [PPG17], we create an edge function that can

receive a blob of raw text and parameters indicating what kind of speaker the model should

generate and outputs a recording of a human voice that speaks the text that was received.

2A video showing the emotion detection task can be seen here

3Measured using ’curl’ to 30 public cloud instances from different companies and averaged

4Detailed comparison can be seen here

22

https://drive.google.com/file/d/1LEYU34-Zd9eCLmQw77w0IP-tX6WgALFU/view?usp=sharing
https://cloud.google.com/blog/products/iot-devices/http-vs-mqtt-a-tale-of-two-iot-protocols

We create two MQTT channels, one for publishing blobs of text and the other for publishing

human voices. Our edge function subscribes to the text channel and waits for a publication

that a new blob of text is available on EKV along with the parameters of what voice should

be generated. An instance of our function starts for each blob/speaker pair. We create a

producer of text that pushes the text to EKV and publishes on the text channel, and a

separate consumer that subscribes to both channels and consumes both the text and the

corresponding human voice that our edge function outputs. This setup simulates a situation

where the producer is not the final destination for processing the produced data. We run

the producer and consumer in separate locations and time the task of a producer pushing a

blob of text and asks for ten different human voices generated for each blob. The producer

pushes approximately 200 bytes of text to EKV and receives confirmation within 200ms;

once the data is on EKV, the producer publishes via MQTT that a new blob is ready for

consumption. The edge function pulls the text from EKV and starts ten instances of text-

to-speech translation after about 500ms. The consumer receives the publication and prints

out the text after 250ms of process start. The edge text to speech function outputs 10. WAV

files weighing a total of 5.8Mb after working for 4 seconds. It then uploads them to EKV

simultaneously and receives a final confirmation from EKV after a total of 5.5 seconds from

process start. The function then publishes to MQTT the availability of results. Once the

consumer receives the publication of newly available data, it pulls the data from EKV and

saves them locally after about 6.3 seconds from process start 5.

To compare, we look at the average latency between nodes of popular cloud services 6.

In addition to the 224ms average ping time from client to cloud service and 200ms longer

response time per message, the average latency between public cloud nodes is approximately

160ms. Depending on the implementation of storage and upload/download of data, our task

will take at best seconds longer on the average public cloud.

5A video showing the text to speech task can be seen here

6latency average was computed based on information in: https://www.cloudping.co/

23

https://drive.google.com/file/d/1Ea0WyWDfqanjAA0VHtU1AkUdVzjZbZTn/view?usp=sharing

3.3.3 Video stream manipulation

Leveraging the edge as a live video manipulation tool opens the doors for many exciting use-

cases such as dynamically augmented video streams. Combining that with machine learning

models such as Deepfake lets us imagine a future where we consume personally tailored

video streams, replacing actors in a movie we are watching on the fly. We will examine

how we can use our architecture and create a pipeline of functions to create an augmented

version of a video stream as close to real-time as possible. This task evaluates the chaining

of functions and models to augment a video feed live. Producer and consumer are operating

independently in different locations using different edge nodes for EKV and edge function.

The edge nodes used are in Chicago and California and are 1ms apart when using ping.

We define four computation channels. We have an edge function and two edge models

chained, each subscribed to the output of the previous functions, and an extra channel

publishing the availability of the original frames on EKV that all are subscribed to, thus

creating a pipeline of computation for the video frames to go through. We also define a helper

edge function that extracts individual frames from a video clip using FFMPEG library 7.

3.3.3.1 (i) Face detection

First, we have a function based on OpenCV face detection that accepts video frames as input

and outputs location of faces in frames. Once a frame is passed to the function, it is passed

to OpenCV, where frames are rotated and scaled multiple times as the OpenCV detector

function scans for faces. Coordinates for detected faces are saved on EKV.

3.3.3.2 (ii) Face classification

Coordinates for faces that are identified by the previous function as well as the original

frames are ingested by a model based on VGG face classification [PVZ15] pre-trained for

face classification using 2.6M images from 2622 identities. Our model is used to identify

7A video showing the augmentation task can be seen here

24

https://drive.google.com/file/d/1gw0XpSfHcprbXFwnloAZfk0g60jfLK6i/view?usp=sharing

a specific face of interest that we wish to augment. It accepts a frame with a face and a

reference image and outputs whether the face in the frame matches our person of interest

back to EKV.

3.3.3.3 (iii) Face augmentation

Frames that the classification model marked are then picked up by our Deepfake model based

on the work of [PGH16]. The model uses the stored coordinates for each frame to extract

a cropped face to convert. The model then performs conversion of the frame, reconstructed

to fake the source face in the original frame into the desired target face, and output the

augmented frames back to EKV.

Data used for training our model has been scraped from YouTube videos of the source

face and the target face and created around 5000 images of each. We train the model for

one week using a single NVIDIA Tesla M60 GPU before compiled as an edge function.

3.3.3.4 (iv) Consumer

A consumer who is subscribed to the original stream and the output of the DeepFake function

can pick up the video feed with augmented frames from EKV and view the feed locally.

3.3.3.5 Timing

The producer streams 20-second chunks of video to EKV weighing an average of 1.9Mb. A

single chunk takes about 300ms to upload to EKV and receive confirmation. The producer

then publishes via MQTT that the chunk is ready for consumption. Face detection then picks

up the chunk and starts the process of detecting faces. Coordinates of each face detected are

immediately pushed to EKV and published as available. The first video chunk takes about

36 seconds to process due to model loading, and each following chunk will be processed

within 300ms of producer pushing to EKV. Face classification receives publication and within

less than 20ms classifies the face, which pushes EKV and publishes availability. The face

augmentation phase then has received publications from all channels it is subscribed to and

25

starts working on changing the faces on a chunk of video. Converting the entire 20-second

chunk of video takes 18 seconds. The Deepfake model then pushes the changed frame back

to EKV and publishes availability within a few milliseconds. Lastly, the consumer receives

the publication of the availability of frames. Once there is a 20-second chunk of frames

available, it uses the helper function to convert them back into a video file, downloads and

plays them. From the time faked frames are published, it takes the consumer approximately

500ms to convert and download the 20-second chunk of video. Overall, the first chunk takes

about 55 seconds to be augmented and viewed on the consumer end. After the first chunk,

it will take under 20 seconds to finish working on a 20-second chunk for the entire pipeline.

We then can keep our augmented video feed about 1 minute behind the live video.

We compare to the latency on a public cloud service. In addition to the 224ms average

ping time from client to cloud service and 200ms longer response time per message, and an

average of 160ms latency between distant nodes, we add the accumulating latency of making

the intermediate results of each function globally available for consumption. Assuming data

passes via HTTP/HTTPS, our task could not be augmented fast enough to be viewed in

pseudo-live time.

3.4 Comparison with different architectures

In addition to the benefits accrued by our overarching edge architecture, there is room

to break down individual components and compare them to other possible design choices.

MQTT is one protocol chosen from the few emerging protocols of choice for the IoT world.

While we evaluated both MQTT and CoAP and found both comparable, we chose MQTT for

our pub/sub protocol as it had better library availability and broker selection. We compare

our choice of MQTT with an HTTP-based signaling mechanism to support our architecture.

In our architecture, we use MQTT as a signaling channel between subscribed clients waiting

on streams of data and between edge nodes coordinating the execution of models on data.

The key observation here is that our MQTT connection is seldom closed, and in most cases,

it is reused often between the time they are established and close. The comparison made in

26

1 10 100
0

2

4

6

8

10
Lo

g(
m

s)
MQTT trials compared

Figure 3.8: MQTT speed per number of re-

quests compared at log scale of ms.

1 10 100
0

2

4

6

8

10

Lo
g(

m
s)

HTTP trials compared

Figure 3.9: HTTP speed per number of re-

quests compared at log scale of ms.

[Wan18] clearly shows the benefits of utilizing an open MQTT connection with exponential

benefits over the same use case implemented using HTTP. Similarly to [Wan18], we inves-

tigate the difference between 1, 10, and 100 messages, each weighing 10 bytes, transmitted

over MQTT and HTTP, over ten trials. This small message simulates transferring simple

instructions and EKV data locations in our computation channels. For MQTT, we connect

once and reuse the same connection to communicate all subsequent messages. For HTTP,

we use POST requests. All communication was evaluated between an edge node and a local

client, emulating a real-world scenario. Figure 3.8 and 3.9 show the log scale results for

speed in ms, as observed in our test. Since HTTP grows as a factor of messages passed, we

see the benefit of opening a single MQTT connection to be used over multiple messages.

Another aspect worthy of comparison is the speed gain of using our architecture compared

to the same job implemented as a FAAS workflow. Results must be returned to a user

before the next function in a pipeline is started. We compare a simple NumPy matrix

multiplication task, called via our MQTT computation channels 1,10 and 100 times, where

results are pushed to a MinIO storage instance. This computation is compared to the case

where a function runs and returns a result directly to a client. If we run our function more

than once, we compute the next result based on the result of the previous function. In the

FAAS-like use case, the client sends back the result to the function, and in our architecture,

27

1 10 100
0

2

4

6

8

10
Lo

g(
m

s)
FAAS style computation pipeline

Figure 3.10: Speed of calling our func-

tion via HTTP POST requests, and sending

back the result for all cases where the func-

tion was called more than once. Compared

at log scale of ms.

1 10 100
0

2

4

6

8

10

Lo
g(

m
s)

Computation channels and ephemeral storage

Figure 3.11: Speed of calling our function

via an MQTT computation channel, send

the result to an ephemeral storage and com-

pute results based on the previous function

run for all cases where we call the function

more than once. Compared at log scale of

ms.

the previous result is picked up from our MinIO instance. Figures 3.10 and 3.11 show the

comparison between the two approaches. It can be seen that the impact on sending the

little amount of data we use back and forth using HTTP POST requests essentially does

not change the POST requests time for execution. In comparison, the time increases using

MQTT computation channels and ephemeral storage, where an extra call to the MinIO

server is needed. However, even with this increase, it can be seen that as the number of

concurrent requests grows, the penalty incurred by POST requests is far more inhibiting

than the extra hop to MinIO. As we have previously shown in our experiments, MQTT can

be used for small-scale data and speed up computation even more in cases where not much

data is moved in the network.

28

CHAPTER 4

Cost-Aware Target-Focused Feature Selection1

In this chapter, we will suggest a cost-aware method for frugal feature selection to support

real-time iterative feature selection.

4.1 Preliminaries

4.1.1 Notation

The following notation is used throughout the chapter: X represents all data available to

us at a given moment, X represents an instantiated subset of all available observations

data; made up of data points of size r and feature set F = {F1...Fc} of size c such that

X ∈ Rr,c. λ represents the free parameters; W and b (weight and bias) that are learned

by the model trying to estimate the latent variables. The true posterior distribution for our

latent variables is represented by z, i.e., the distribution of true targets that is unknown to

us. The estimated posterior is represented by y. θ represents a specific target class out of

all potential targets. tθ denotes the true target vector for a target class θ and yθ a subset of

our predictions corresponding to the true targets in tθ.

4.1.2 Background

In order to capture uncertainty in a model, we need to learn a representation of a latent

distribution over a set of parameters defining that distribution and sample the learned pa-

1This chapter is based on ”Goldstein, O., Kachuee, M., Karkkainen, K. and Sarrafzadeh,
M., 2020. Target-Focused Feature Selection Using Uncertainty Measurements in Healthcare
Data. ACM Transactions on Computing for Healthcare, 1(3), pp.1-17.”

29

rameters to associate the captured uncertainty with test time examples of the data and

targets. Our optimization function, therefore, will be taking a probabilistic approach.

Using Variational Inference, we will estimate λ? using Kullback-Leibler (KL) divergence

such that:

λ? = arg minλKL(q(z;λ) || p(z|X)), (4.1)

where q(z;λ) is the estimation of posterior distribution p(z|X) optimized over parameters λ.

Since the posterior p(z|X) is unknown to us, we will resort to maximizing the Evidence

Lower Bound (ELBO) as an optimization function:

ELBO(λ) = Eq(z;λ)[log p(X, z)− log q(z;λ)], (4.2)

which is equivalent to minimizing KL divergence [JGJ99, Bis06, KW13a].

Gradient optimization of ELBO is done via the reparameterization trick [KW13a].

∇λELBO(λ) ≈ 1

s

s∑
s=1

[∇λ(log p(X, z(ε;λ))− log q(z(ε;λ);λ))], (4.3)

where s is the number of samples drawn.

4.2 Target-Focused Feature Selection

4.2.1 Problem Set-Up

Our goal is to achieve reasonable confidence for a specific class using minimal features, as

described in our objective function.

argmaxFS (confidenceθ −
∑
fi∈FS

1

vi
), (4.4)

Subject to: |FS| < β.

Such that FS is the set of acquired features we wish to minimize, |FS| is the cardinality

of the set, vi is the value associated with each feature. The objective is to frugally acquire

the most valuable features while achieving maximum confidence in a specific class θ, without

exhausting our budget for features β.

30

4.2.2 Feature Value Measurement and Acquisitions

Evaluation of features per target considers the contribution of each feature towards min-

imizing uncertainty for our target of interest, jointly evaluated with the features already

acquired. In addition to confidence scores, feature vectors are scored for their cosine similar-

ity and their Hamming weight scores to gauge potential information gain from a candidate

feature.

In order to use ELBO as our optimization function, we model the linear regression case

in which our λ contains the input X, a single layer of weights W and a bias b such that

λ = (W,b,X). Here X ∈ Rc,r, w ∈ Rc,d, b ∈ R1,d. X has r data points and c features,

and the model will learn the distribution over d targets. Assuming independence given our

parameters:

p(z|W,b,X) =
r∏

n=1

p(zn|X>nW + b, σ2
z), (4.5)

where z is the ELBO optimized posterior estimation. We define the priors on both parameters

to be the standard normal distribution.

4.2.2.1 Measuring Per-Target Uncertainty

Our available data is split into a training set Xtrain and a testing set Xtest. To obtain our

input X we sample the training data Xtrain in a balanced way. For example, if we are trying

to predict three targets, then X will have 33% of the data points correspond to each of

our targets, regardless of the original distribution. In order to generate a validation input

dataset X′, we sample Xtrain according to its original distribution (no balancing).

At each iteration, a subset of all available feature fi∪FS is trained to learn λ = (W,b,X).

Once trained, we score the feature subset on the validation set X′ by measuring the effect

acquired features had on a per-target uncertainty. Using our learned distribution, we sample

each of our parameters such that W′ ∼W,b′ ∼ b and calculate the probability vector:

prob = softmax(X′>W′ + b′), (4.6)

where prob ∈ Rr,d has the probability of each data point belonging to each possible target.

31

We then get the prediction vector by calculating softmax for each probi:

yi = argmax (probi) = argmax (
exp(probi)∑
d exp(probi,d)

). (4.7)

Next we evaluate precision, represented by the fraction of times that yθ corresponding to

target θ, was equal the correct target for position i. Note that yθ ∈ y, and is of subset size

|yθ|:

precisionθ =
1

|yθ|

|yθ|∑
i=1

1(yθ,i = θ), (4.8)

where 1(yθ,i = θ) equals 1 if data point yθ,i has the target value θ, and 0 otherwise.

Repeating 4.6 - 4.8 for l iterations, sampling the distribution of our parameters each time,

our confidence score becomes the averaged precision over multiple iterations. Therefore the

confidence for a specific target:

confidenceθ =
1

l

l∑
j=1

(precisionθ,j). (4.9)

Here l is the number of times we sample our learned distributions. The trade-off using l

is between a more accurate representation of the model confidence and a faster model. We

have found that 300 iterations were accurate enough in reporting confidence in our case.

4.2.2.2 Adding Vector Similarity Scores

In addition to the confidence scores, we wish to capture the potential information gain of

the current candidate feature fi given the existing features in FS. We use the computed

similarity scores: co-variance distance score and cosine similarity score. We sum the inverse

scores for all such pairwise comparisons and then normalize them to the range [0,1].

CovScore = N0,1
∑
gi∈FS

1− cov(gi, fi), (4.10)

CosScore = N0,1
∑
gi∈FS

1− cos(gi, fi). (4.11)

CovScore and CosScore are the summed inverse co-variance distances and cosine similarities,

transferred to the [0,1] range applying the normalization N0,1.

32

Our final feature value for the current feature fi is then

vi = ω1 ∗ confidenceθ + ω2 ∗ CovScore + ω3 ∗ CosScore (4.12)

, where ω1, ω2, ω3 are hyperparameters.

Once all features Fi /∈ FS have been scored and evaluated for their contribution towards

class θ as part of set FS, we append the single feature that maximized vi to the set FS

4.3 Time Complexity Analysis

Let FS be the set collecting all selected features, N be the number of available features,

D the number of data points in our traning set, and assuming some constant budget β for

features. For a single feature fi /∈ FS we train a new model estimating the linear function

p(zn|X>nW + b, σ2
z) (equation 4.5 in the chapter). The model is trained using a constant

number of iterations and confidence is computed using a constant number of samples from the

estimated distribution. CovScore and CosScore are both computed on the features already

in FS in time 2 ∗ β2. Since β is constant, so is the time to compute CovScore and CosScore.

The final vi value is the product of another constant time multiplication.

Once all features are scored, we append a single feature to the set FS, and the process

starts again for N − 1 features. Therefore, for N features, the process will run N +N − 1 +

N − 2...+ 1 = N2 times. Training a model using D data points each time will result in DN2

time complexity. We give a step-by-step description of our evaluation process in Algorithm

1.

4.4 Evaluation

Here we provide an empirical evaluation of our target-focused method (TF) compared with

prevalent linear feature selection techniques.

Mutual Information (MI) is estimating statistical dependency for feature selection

[KSG04], and is widely used as a non-parametric approach to evaluating data dependencies.

33

Algorithm 1: Target-Focused Feature Selection

Input: β : Budget; FPT, FNT, CT :

Thresholds for false positive, false negative, and confidence respectively;

X : Train set; X
′
: Validation set; Xtest : Test set;

y : Targets for X,X
′
and Xtest;

F : {f1, f2, ..., fn}, set of available features

Parameter: FS← {} : features selected;

M ← model optimizing ELBO(λ)

F ← function for computing vi : value for feature i;

FPθ, FNθ, confidenceθ : current false positive,

false negative and confidence for specific target θ

Output: SF ⊆ F within budget β

1: while |SF| < β,FPθ > FPT,FNθ > FNT,

confidenceθ < CT do

2: for fi ∈ F do

3: Train M(X, SF ∪ fi, y)

4: vi ← F (M(X
′
, SF ∪ fi, y), FS, fi)

5: end for

6: FS← FS ∪ fi | argmaxi vi ∈ V

7: FPθ, FNθ, confidenceθ ← M(Xtest, FS, y)

8: end while

9: return solution

The MI approach works by estimating the correlation level based on entropy from k-nearest

neighbor distances.

Max-relevance min-redundancy (mRMR) [PLD05] and Advanced mRMR (Am-

RMR) [JLO19] are first-order incremental feature selection methods based on Mutual Infor-

mation (mRMR) or Pearson’s correlation (AmRMR) that eliminates redundancy in features

while selecting relevant ones.

34

Least absolute shrinkage and selection operator (Lasso) model [Tib96] is an

L1-based feature selection approach. Lasso is an ”automatic” approach to feature selection,

performing some regularization and filtering unwanted features.

Extremely randomized trees (Extra Trees) [GEW06] is a tree-based model per-

forming feature selection based on the importance values computed by the model.

A budgeted cost sensitive learning approach (CSL) [KGK19b] is a deep Q-

networks based approach for cost-sensitive feature acquisition

A deep reinforcement learning-based approach (DRL) [JPL19] is a deep reinforce-

ment learning approach to formalizing the problem as a Markov decision process (MDP) and

solve it with linearly approximated Q-learning.

4.4.1 Datasets

We evaluate our model on an image classification task, as well as a breast cancer detection

task. Both datasets chosen from the UCI machine learning repository [DK17a]. In addition,

we evaluate various disease prediction tasks assembled using the Centers for Disease Control

and Prevention’s (CDC) National Health and Nutrition Examination Survey (NHANES)

[nha18] data.

We select a target of particular interest for each of our sets, that we would like our model

to focus on when deciding which features to acquire. Projecting this to the real world, the

focus target will be a specific health issue in a dataset of symptoms and possible tests or

images, pointing to more than one potential target class.

The data is as follows: From the UCI machine learning repository, we use SatLog data

2. A dataset of evaluating image data and identifying a particular type of soil in satellite

images. Again from UCI, we use the Breast Cancer Wisconsin dataset 3. Providing features

that are computed from a digitized image of a fine needle aspirate (FNA) of a breast mass.

2Available here: UCI Statlog (Landsat Satellite)

3Available here: UCI Breast Cancer Wisconsin

35

https://archive.ics.uci.edu/ml/datasets/Statlog+(Landsat+Satellite)
https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)

From NHANES, we construct two datasets ourselves based on the approach described by

[KKG19]. One for evaluating diabetes, and one for evaluating heart diseases. To construct

our datasets, we join all possible NHANES tables that are correlated with our targets. For

example, we merge all tables containing correlated features to any of five heart conditions

for the heart disease dataset. This merge causes the resulting sets to have a vast amount of

possible features.

Dataset statistics and the target chosen for each dataset are listed in Table 4.1. For

the NHANES datasets, targets are renamed from the original data for convenience. Blood

glucose refers to the feature LBXGLU, the amount of glucose in the blood when fasting,

used here to indicate whether or not an individual has diabetes. Congestive heart failure

(CHF) refers to the feature MCQ160B, and it is one of 5 heart conditions we construct the

dataset for (MCQ160E, MCQ160F, MCQ160C, MCQ160B, MCQ180B).

4.4.2 Evaluation Methodology

Assuming a constant budget for features, we run all feature selection approaches on the

same training subset of the data and iteratively evaluate each feature we add. We select a

single target to act as the focus of our method. We emphasize the model confidence for that

specific target value that we wish to maximize overall targets. The target chosen for each

dataset is listed in Table 4.1.

The compared models were constructed with the following parameters:

(i) Mutual information (MI) between our training data and the training target was cal-

culated using a different number of neighbors. Balancing the estimation variance and bias,

we evaluated number of neighbors k ∈ [1, 2, 3, 5, 10]. The k = 3 instance, giving the best

average result in all cases was selected.

(ii) mRMR/AmRMR was evaluated on ”MIQ”, ”MID”, and ”Rvalue” feature evaluation

methods.

(iii) Lasso with cross-validation was used in this experiment. In order to find the best

α value for the regularization process, we considered α ∈ [1, 0.1, 0.001, 0.0005, 0.0001]. The

36

best setup of Lasso for the average case was as follows: a maximum number of iterations

was set to 1000, tolerance was set to 0.1, and the number of cross-validation folds set to 10.

(iv) Extra Trees classifier was used in our experiments. The number of estimators in this

model was set to 1000, with no maximum depth defined. The minimum number of samples

to split a node was set to 2, and the quality of split was measured by Gini impurity.

(v) CSL was evaluated using a Baysian L1 utility function. We ran the model for up to

40000 epochs to allow the model time to learn. We stopped the model when it converged.

(vi) DRL approach was evaluated using many models with different cost-accuracy trade-

off hyper-parameter values. We ran the model for up to 40000 epochs to allow the model

time to learn. We stopped the model when it converged.

(vii) Our Target-Focused (TF) feature selection was trained using ω1 = 0.4, ω2 = ω3 =

0.3.

The machine used for evaluation had specifications: Intel 12 core i9-7920x (2.90GHz)

CPU, 128 GB RAM, and 4 GeForce RTX 2080TI GPUs.

4.4.3 Run Time Comparison

Finding a globally optimal feature subset out of a collection of available features is an

NP-Hard problem. Instead of spending an exponential amount of time evaluating subsets,

feature selection methods use heuristics to select an approximation of an optimal set. In our

experiments, we compare with polynomial-time statistical methods (MI, mRMR/AmRMR,

Lasso, Extra Trees), and deep learning approaches (CSL, DRL). Our proposed model trains a

shallow machine learning model, using a single layer estimating the latent distribution, falling

in the middle of these two groups in terms of complexity. In practice, taking NHANES heart

dataset as our baseline, we see Extra Trees and mutual information running fastest, finishing

within 30 minutes - 1 hour, followed by MI and mRMR/AmrMR taking about 1 hour - 2

hours. Our method and the deep learning methods take advantage of the GPUs on our

machine since they heavily rely on linear computation. With a single GPU, our method

takes between 2-3 hours to finish. CSL takes approximately three days, and DRL takes 4-5

37

Dataset Size Features Targets Focus target Missingness

UCI Breast cancer 569 32 2 Malignant 0%

UCI Satlog 4435 37 6 Damp grey soil 0%

NHANES Diabetes 25474 581 2 Blood Glucose 25%

NHANES Heart 49346 555 5 CHF 25%

Table 4.1: Datasets statistics

days to finish and return results.

4.5 Results

In this section, we report confidence, false positive, and false negative scores and F1 scores

of our model at intervals as features are acquired. We separate our comparison to statistical

methods for feature selection and deep learning approaches for sequential feature acquisition.

When plotting model trends of the metrics mentioned above, we denote the variance scores

of model confidence as the line margin on confidence plots, as shown in the plots below.

4.5.1 Comparing with statistical methods

On datasets with low feature count and little missingness, our method achieved better overall

scores, faster than the comparable methods For a specific target value. As can be seen in

Table 4.2.

Figure 4.1 shows a confidence trend for acquiring 30 features on the Breast Cancer Wis-

consin dataset using our method, comparing specific target confidence in the four compared

models. In this case, our model can be seen on par with the confidence achieved by the

Mutual information and Extra trees methods. As shown in Table 4.2, our model presents

slightly better F1 scores, indicating a faster false positive and false negative reduction. The

breast cancer dataset proved to be a relatively simple prediction problem; it can be seen that

all methods performed relatively well, achieving reasonable model confidence and F1 scores.

38

F1 scores

Breast Cancer Satlog

f MI mRMR Lasso Extra Trees TF MI mRMR Lasso Extra Trees TF

5 0.93 0.94 0.80 0.91 0.95 0.70 0.27 0.35 0.08 0.86

10 0.94 0.93 0.83 0.94 0.93 0.64 0.68 0.72 0.78 0.90

15 0.93 0.94 0.88 0.95 0.94 0.80 0.70 0.85 0.78 0.90

20 0.93 0.93 0.94 0.95 0.93 0.83 0.71 0.85 0.81 0.90

25 0.93 0.93 0.94 0.95 0.94 0.83 0.77 0.87 0.81 0.91

Table 4.2: Comparing F1 scores for feature selection on low feature count sets. f indicates

the number of features acquired.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Number of features

0.0

0.2

0.4

0.6

0.8

1.0

co
nf

id
en

ce
 p

er
ce

nt
 s

co
re

TF
MI
LASSO
ET
MRMR

Figure 4.1: Comparing model confidence

in predicting malignant breast cancer.

Line thickness indicates variance.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Number of features

0.0

0.2

0.4

0.6

0.8

1.0

co
nf

id
en

ce
 p

er
ce

nt
 s

co
re

TF
MI
LASSO
ET
MRMR

Figure 4.2: Comparing model confidence

in predicting one class out of the Sat-

log dataset. Line thickness indicates vari-

ance.

Figure 4.2 shows a confidence trend for acquiring 30 features on the Satlog dataset using

our and compared methods. Here we can see our target-focused method achieves a more

confident model faster, as well as a better overall F1 score. In this case, the target of focus

chosen appeared to be the hardest target to model out of the available targets, since all

compared models struggled to find features that best model the data, in addition to it being

39

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Number of features

0.0

0.1

0.2

0.3

0.4

0.5

FP
/F

N
 p

er
ce

nt
ag

e

y = Grey soil_fp
y = Grey soil_fn

(a)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Number of features

0.0

0.1

0.2

0.3

0.4

0.5

FP
/F

N
 p

er
ce

nt
ag

e

y = Grey soil_fp
y = Grey soil_fn

(b)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Number of features

0.0

0.1

0.2

0.3

0.4

0.5

FP
/F

N
 p

er
ce

nt
ag

e

y = Grey soil_fp
y = Grey soil_fn

(c)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Number of features

0.0

0.1

0.2

0.3

0.4

0.5

FP
/F

N
 p

er
ce

nt
ag

e

y = Grey soil_fp
y = Grey soil_fn

(d)

Figure 4.3: Analysis of UCI Satlog dataset comparing FP/FN rates as features are ac-

quired. 4.3a shows evaluation using our approach, 4.3b shows evaluation using mRMR

”MIQ” method, 4.3c shows evaluation using Lasso method, 4.3d shows evaluation using

Extra trees

40

F1 scores

NHANES Diabetes NHANES Heart

f MI mRMR Lasso Extra Trees TF MI mRMR Lasso Extra Trees TF

5 0.76 0.79 0.61 0.79 0.92 0.66 0.55 0.28 0.39 0.72

10 0.78 0.77 0.73 0.79 0.92 0.31 0.48 0.59 0.57 0.78

15 0.80 0.79 0.77 0.77 0.92 0.78 0.69 0.56 0.32 0.87

20 0.78 0.80 0.76 0.74 0.92 0.68 0.63 0.61 0.68 0.87

25 0.76 0.80 0.64 0.77 0.92 0.85 0.76 0.66 0.47 0.86

Table 4.3: Comparing F1 scores for feature selection on high feature count sets. f indicates

the number of features acquired.

one of the minority classes. Despite that, our model has gained the most confidence while

using a low number of features. Figures 4.3a to 4.3d show the FP/FN evaluation over the

Satlog dataset. We see our method shows a consistent non-volatile decline in FP rates while

maintaining a low FN rate throughout.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Number of features

0.0

0.2

0.4

0.6

0.8

co
nf

id
en

ce
 p

er
ce

nt
 s

co
re

TF
MI
LASSO
ET
MRMR

Figure 4.4: Comparing model confidence

in predicting congestive heart failure.

Line thickness indicates variance.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Number of features

0.0

0.2

0.4

0.6

0.8

co
nf

id
en

ce
 p

er
ce

nt
 s

co
re

TF
MI
LASSO
ET
MRMR

Figure 4.5: Comparing model confidence

in predicting diabetes. Line thickness in-

dicates variance.

Table 4.3 shows the F1 scores of the different feature selection methods compared on high

feature count datasets, with missing values and lots of features. Here our model heuristic

41

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Number of features

0.0

0.1

0.2

0.3

0.4

0.5

FP
/F

N
 p

er
ce

nt
ag

e

y = LBXGLU_fp
y = LBXGLU_fn

(a)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Number of features

0.0

0.1

0.2

0.3

0.4

0.5

FP
/F

N
 p

er
ce

nt
ag

e

y = Grey soil_fp
y = Grey soil_fn

(b)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Number of features

0.0

0.1

0.2

0.3

0.4

0.5

FP
/F

N
 p

er
ce

nt
ag

e

y = LBXGLU_fp
y = LBXGLU_fn

(c)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Number of features

0.0

0.1

0.2

0.3

0.4

0.5

FP
/F

N
 p

er
ce

nt
ag

e

y = LBXGLU_fp
y = LBXGLU_fn

(d)

Figure 4.6: Analysis of NHANES Diabetes constructed dataset comparing FP/FN rates as

features are acquired. 4.6a shows evaluation using our approach, 4.6b shows evaluation using

mRMR ”MIQ” method, 4.6c shows evaluation using Lasso method, 4.6d shows evaluation

using Extra trees.

42

F1 scores

Breast Cancer Satlog

f CSL DRL TF CSL DRL TF

5 0.91 0.76 0.95 0.00 0.23 0.86

10 0.93 0.88 0.93 0.22 0.51 0.90

15 0.92 0.86 0.94 0.49 0.35 0.90

20 0.92 0.92 0.93 0.62 0.45 0.90

25 0.95 0.86 0.94 0.70 0.10 0.91

Table 4.4: Comparing F1 scores for feature selection on low feature count sets. f indicates

the number of features acquired.

is evaluated on publicly available real-world healthcare data. Our method, being specific

target aware, can consistently pick out a good subset of the features, consequently using

fewer features that contribute most to maximizing the selected target class in focus.

As can be seen in the diabetes confidence evaluation in Figure 4.5, and in the FP/FN

evaluation in Figures 4.6a to 4.6d, our method outperformed the compared methods in mini-

mizing FP and FN scores quickly, in addition to achieving a consistent amount of confidence

in the target of interest relatively fast. It can be seen in Figure 4.5 that all comparable

methods achieve a high amount of confidence quicker than our target-focused method. How-

ever, comparing Figures 4.6a to 4.6d we can see our model minimizes false positive and false

negative scores quicker and therefore receives higher F1 scores.

Confidence evaluation for the heart disease dataset can be seen in Figure 4.4. Our model

is gaining confidence using fewer features as before and keeps a relatively increasing trend

of confidence. Other models failed to increase their confidence significantly as this was the

most complex task, with multiple targets and high dimensionality.

43

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Number of features

0.0

0.2

0.4

0.6

0.8

1.0

co
nf

id
en

ce
 p

er
ce

nt
 s

co
re

TF
CSL
DRL

Figure 4.7: Comparing model confidence

in predicting malignant breast cancer.

Line thickness indicates variance.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Number of features

0.0

0.2

0.4

0.6

0.8

1.0

co
nf

id
en

ce
 p

er
ce

nt
 s

co
re

TF
CSL
DRL

Figure 4.8: Comparing model confidence

in predicting one class out of the Sat-

log dataset. Line thickness indicates vari-

ance.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Number of features

0.0

0.2

0.4

0.6

0.8

1.0

F1
 s

co
re

TF
CSL
DRL

Figure 4.9: Comparing model F1 curve in

predicting malignant breast cancer. Line

thickness indicates variance.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Number of features

0.0

0.2

0.4

0.6

0.8

1.0

F1
 s

co
re

TF
CSL
DRL

Figure 4.10: Comparing model F1 curve

in predicting one class out of the Sat-

log dataset. Line thickness indicates vari-

ance.

44

4.5.2 Comparing with deep learning methods

As shown in Table 4.4, we achieve faster convergence on all datasets with little missingness

and low feature count.

Similar to the statistical methods comparison, our model can be seen gaining confidence

faster than compared methods. Figure 4.7 shows a confidence trend for acquiring 30 features

on the Breast Cancer Wisconsin dataset using our target focused (TF) method, comparing

specific target confidence in the three compared models. Our model can be seen gaining

confidence slightly faster than the CSL method. As shown in Figure 4.9 the F1 score curve

climb suggests faster learning of our target of interest using fewer features in both our method

and CSL. As our method gains confidence faster, it has a slight advantage on CSL in terms

of observed performance on predicting our target.

Figure 4.8 shows a confidence trend for acquiring 30 features on the Satlog dataset using

compared methods. For the task with high class count and low feature count, we are able

to show much higher confidence convergence. Since the target chosen was the least frequent

one, it appears that both deep learning approaches struggle to learn the target given the

amount of data available. Despite data shortage, our model has gained the most confidence

while using a low number of features. Figure 4.10 shows the F1 score curve evaluation over

the Satlog dataset. We see our method shows a steady non-volatile gain, consistent with

learning the target of interest with low FP, FN rates.

In Table 4.5 we can see the F1 scores of the deep learning feature selection methods along

with our approach compared on high feature count datasets, with missing values and lots of

features. Here our model heuristic is evaluated on publicly available real-world healthcare

data. Our method is able to consistently outperform the deep learning methods in terms of

F1 scores.

Figure 4.11 shows a steady increase in confidence in our model in what is essentially the

most challenging type of task with multiple classes of heart conditions and a vast amount

of features. Our target-focused approach is able to gain confidence efficiently towards the

target of interest. Looking at the F1 curve in Figure 4.13 suggests that as both CSL and DRL

45

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Number of features

0.0

0.2

0.4

0.6

0.8

1.0

co
nf

id
en

ce
 p

er
ce

nt
 s

co
re

TF
CSL
DRL

Figure 4.11: Comparing model confi-

dence in predicting congestive heart fail-

ure. Line thickness indicates variance.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Number of features

0.0

0.2

0.4

0.6

0.8

1.0

co
nf

id
en

ce
 p

er
ce

nt
 s

co
re

TF
CSL
DRL

Figure 4.12: Comparing model confidence

in predicting diabetes. Line thickness in-

dicates variance.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Number of features

0.0

0.2

0.4

0.6

0.8

1.0

F1
 s

co
re

TF
CSL
DRL

Figure 4.13: Comparing model F1 curve

in predicting congestive heart failure.

Line thickness indicates variance.

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Number of features

0.0

0.2

0.4

0.6

0.8

1.0

F1
 s

co
re

TF
CSL
DRL

Figure 4.14: Comparing model F1 curve

in predicting diabetes. Line thickness in-

dicates variance.

46

F1 scores

NHANES Diabetes NHANES Heart

f CSL DRL TF CSL DRL TF

5 0.92 0.69 0.92 0.58 0.64 0.72

10 0.90 0.89 0.92 0.48 0.33 0.78

15 0.90 0.87 0.92 0.61 0.46 0.87

20 0.89 0.89 0.92 0.51 0.63 0.87

25 0.89 0.88 0.92 0.60 0.46 0.86

Table 4.5: Comparing F1 scores for feature selection on low feature count sets. f indicates

the number of features acquired.

continue to acquire features, they are not improving the overall performance on our target.

Meanwhile, our model can continuously acquire features that will enhance performance on

the target of interest and receive higher F1 scores throughout.

Diabetes task confidence can be seen in Figure 4.12, and its corresponding F1 curve

in Figure 4.14. While DRL feature selection starts with the most confidence, it can be

seen in the F1 plot that the overall performance did not correspond with confidence scores,

suggesting high FP rates for our target of interest. Conversely, our approach and the CSL

model both did well in gaining confidence towards our target of focus, with our model yielding

slightly higher F1 scores.

4.5.3 Final note

Since the other feature selection models are unaware of the single target uncertainty in the

model, the results obtained by the compared models could be largely dependent on the

distribution of targets. In effect, the selected target of focus might get better results if it

is also the majority target. All models compared were able to find features to construct

an efficient, frugal model on at least one of the sets, but our method has shown higher

consistency across all sets. While real-world health data usually is sparse and feature-rich,

we can see that even on smaller datasets with fewer features, our method provides a good

47

heuristic as to the value of features when acquired towards a single target.

4.6 Impact on Healthcare Discussion

Development of learning models that will maximize confidence and acquire features while

considering their costs could be the catalyst for adopting these models by health professionals.

For certain diagnostics, the ability to accurately measure the FP and FN rates of a model

significantly affects its usability in a healthcare setting. The ability to assist a healthcare

provider’s diagnostic skills and decision-making process using a learning model is dependent

on the provider’s ability to trust such a model. Trust could be established if a model

accurately advertises its expected statistical guarantees given the data that was fed into it.

For example, as a physician diagnoses a patient, feeding low-cost data (such as a standard

medical questionnaire) into a machine learning model that is trained to diagnose a specific

disease will keep track of a vast amount of possible tests that could be performed next on

a patient. Additionally, the target-specific model will provide the expected gain towards a

diagnosis or ruling out a hypothesis while considering the cost of all such tests.

Using a confidence-based feature selection method then allows for an informed decision-

making process using actionable data from a machine learning model. That model can utilize

vastly more data than is typically taken into account in a diagnosis process performed by a

human. Training a target-specific model on as much expert knowledge as possible will allow

this information to propagate and be used quickly in a machine learning context, where

esoteric cases can be efficiently considered by selecting the most critical features to acquire

next.

48

CHAPTER 5

Real-Time Decentralized knowledge Transfer at the

Edge1

In this chapter, we propose an algorithm for knowledge transfer between agents.

We define a real-time knowledge transfer architecture consisting of horizontal knowledge

transfer models in charge of moving information between source layers and target layers, as

shown in Figure A.1. Additionally, We evaluate our knowledge transfer method and show

it can successfully model data seen by other agents while retaining local insights without

exposing any data used by the source models.

5.0.1 Problem Setup

Translating knowledge from source and target parameters to new parameters that contain

information from both source and target M :
2n×n
R −→

n×n
R , we strive to minimize the following

objective function L.

L = |(W ∗X + b−WaX + b)|+ |(W ∗X + b−WbX + b)|, (5.1)

W ∗ = ((W_
a Wb)M), (5.2)

where
2n×n

(W_
a Wb) represents the combined parameters from a source

n×n
Wa and target

n×n
Wb ,

transformed into a new n × n matrix W ∗ by the transformation term M . The first term

1This chapter is based on ”Goldstein, O., Kachuee, M., Shiell, D. and Sarrafzadeh, M., 2020.
Real-Time Decentralized knowledge Transfer at the Edge. arXiv preprint arXiv:2011.05961.

49

Input
Dataset A

Layer 1

Model B
(Target)

Model A
(Source)

Layer 1

Output Layer Output Layer

Cross
Entropy

Loss

Input
Dataset B

Cross
Entropy

Loss

(a) Local Train Step

Layer 1

Model B
(Target)

Model A
(Source)

Layer 1

Output Layer Output Layer

Cross
Entropy

Loss

Input
Dataset B

Relative
Entropy

Loss

Transfer
Layer

Layer 1

(b) Knowledge Transfer Step

Figure 5.1: High-level intuitive illustration of our proposed knowledge transfer method. The

transfer layer uses both the source and target model layers parameters and produces a new

layer for the target model. The horizontal model then evaluates knowledge transfer by

producing a combined loss term, which in turn is used to optimize the transfer process.

is the difference between the outputs using the transformed matrix, and the outputs using

the untransformed source. The second term is the difference between the outputs using the

transformed matrix and the outputs using the untransformed target.

5.1 Decentralized Learning at the Edge

Our goal is to facilitate knowledge transfer between edge models that are total strangers.

The only connection between source and target models is being part of the same network,

sharing and consuming metadata about other models in the network. Models are able to

choose source models based on their defined task and meta parameters, such as geographical

location (for debiasing and data differentiation expectations) and data already acquired.

Once a source to target pipeline is created, the target model will converge faster on local

data and learn how to predict or classify targets that were seldom or never before seen by

the target model. Working on an edge network, real-world costs are taken into account. For

50

example, the benefit of adding a source should be evaluated against the added model run-

time incurred by that specific source. To show this architecture works well in practice, we

need to establish real-world guarantees when deploying this architecture on a latency-minded

network.

5.1.1 Horizontal Models for Knowledge Transfer

For a target model, transferring information into layer i, we construct a transfer pipeline

flowing from a layer in the source model si ∈ LS, to a corresponding layer in the target

model ti ∈ LT . This pipeline consists of a shallow model mi ∈ M that is matched to the

type of source and target layers (dense, convolution, normalization, etc.). Once a pipeline is

in place, the agent learning the target model can control the orchestration of learning steps

involving source models. For example, an agent might have a transfer step from each of its

source models after every single local step, or it might use an entire epoch for each of the

remote and local learning sources.

5.1.1.1 Horizontal model structure

For layers with more than two dimensions (convolutions), we attach a model consisting of

a single convolution with an input of 2n channels, the concatenated size of the source and

target layers, and an output of n channels. For layers with less than two dimensions, we

attach a model consisting of a single dense layer with a concatenated input of 2n × n and

an output n × n. Therefore source and target layers si, ti must be of the same type. Each

transfer model mi produces a new target layer t∗i ∈ L∗T . Each transfer model for the same

source runs at the same iteration, replacing all previous layers LT with new layers L∗T . Figure

5.2 shows an example single model defined between a source and a target layer.

5.1.1.2 Pipeline construction

Constructing the knowledge transfer pipeline involves iterating over source and target model

layers and matching a model to pairs of layers. For a source and target using the same

51

Source
Convolution
64X64X3X3

Target
Convolution
64X64X3X3 Transfer Model

Source
Convolution
64X64X3X3

Source
Convolution

64X128X3X3

Convolution
64X64X3X3

New Target
Convolution
64X64X3X3

Figure 5.2: example of a convolution knowledge transfer model, producing a single new

target layer.

model architecture, there is a 1 to 1 correlation, and a model is created for selected pairs of

matching layers. For dissimilar models, there is some freedom with pairing up layers. Since

investigating the best possible layer pairing is out of the scope of this work, we focus our

examples on similar models, where pairing is done symmetrically. In addition to the unique

model, each transfer pipeline receives a personal optimizer. Figure 5.3 shows a demo of our

entire pipeline structure.

Conv1*

Conv1 BN1 Dense

Source

Target

Conv1 BN1 Dense Outputs

Outputs

Transfer1

BN1*

Transfer2

Dense*

Transfer3

Figure 5.3: Horizontal pipeline structure, producing our replacement target layers.

5.1.1.3 Knowledge transfer objectives

Since our knowledge transfer happens while the target model is training on local data, we

have to make sure parameters do not lose information learned locally while optimizing the

52

knowledge transfer pipeline. We do this by combining two objective functions: one for each

local and transfer parts. First, we use a local objective based on the model requirements. In

this work, we will use the cross-entropy loss used in classification,

loss1 =
N∑
i=1

−log
exi∑
j e

x
j

. (5.3)

Our second term operates on the new target layers L∗T that have been produced by all

pipelines and facilitates moving information into the target model. To achieve that, we feed

both the source and target models the same local inputs, and measure the difference in

the distribution of outputs. Our second loss term is defined as the Kullback-Leibler (KL)

divergence Loss between the two vectors P and Q,

loss2 = DKL(P ||Q) =
N∑
i=1

p(xi) · (log p(xi)− log q(xi)). (5.4)

Our learning process is then divided into two interchanging parts. In the first, we train

our model as usually done on local data. Using loss1, we update our local target model

parameters by inputting local data and calculating the local loss term. In the second, we

combine knowledge from source and target layers si, ti and run through the pipeline that

produces a new target layer t∗i . Once all such new layers L∗T have been produced, we use the

same inputs used in the first local step to evaluate and optimize the transfer pipeline. The

loss term for pipeline optimization while preserving local learning is then

L =
α ∗ loss1 + β ∗ loss2

2
, (5.5)

Where α and β are coefficients controlling the loss magnitude of each of the parts who’s sum

equals 1.

Once pipeline optimization stagnates, we reduce the learning rate by a constant factor.

This allows for a transfer layer to stabilize over time and then remain essentially constant

through the remainder of our training time. Each type of layer is allowed a different time

to stabilize, i.e., we have found that a convolution transfer layer should be allowed approx-

imately 3 times more epochs with no decreased loss than a dense transfer layer before the

learning rate is slashed. Additionally, we have found the factor applied to the learning rate

should be five times higher for a dense transfer layer than a convolution transfer layer.

53

5.2 Collaborating in a Multi-Agent Network

In order to encourage models to collaborate with stranger models, the benefits should out-

weigh the drawbacks by a good margin. Agents should be able to estimate what collaboration

with a potential source would yield. To do that, agents need to share some basic information

about their local model and data. Since all agents are part of the same network, making

their model available to another agent is a relatively simple task. Any agent on our network

will be able to view remote models, explore their architecture, and learned parameters. An

agent will also advertise what type of data is fed to their local model. For example, if a

model classifies ten different types of vehicles, it should be advertised along with how much

data from each class has been fed into the model so far. This information allows a potential

collaborator to select models that contain data that they do not see as much of.

For our problem formulation, we assume all agents on our network report statistics re-

garding their data distribution as well as model statistics and that those models are available

for other agents to inspect. In making a selection of sources, an agent will consider the fol-

lowing in its potential source models.

Source task Given a set of possible sources of information A and a target b, a choice of

good sources will take into account the intersection of classes Xa ∩ Xb observed by a source

a ∈ A and target b, and the difference between them, Xa \ Xb. A target might want sources

with a large difference set, a large intersection, or both.

Source model Given a set of possible sources of information A and a target b, a choice of

good sources will consider the structure of the source model and account for the intersection

of layers between all layers of a source La where a ∈ A and layers of a target Lb, La ∩ Lb.

A target might only be interested in sources with the same structure as his own for a 1 to 1

relationship or would consider models with a different structure where there might not be a

direct match for each layer on either side.

54

Source data stats For each of the classes seen by a source model xai ∈ Xa, where a ∈ A,

the distribution of data seen for each of the classes will be considered.

5.2.1 Algorithm

Algorithm 2: Train target model using local data and remote knowledge

Input:

b is the target model, lbi is the ith layer of the model

A is a list of remote sources, Lai are the ith layers of the source models

M is an array of models corresponding to each layer of interest.

x is the local data sample

repeat

outputs1 ← b(x)

loss1 ← LocalLossTerm(outputs1, labels1)

loss2 ← 0

b← LocalOptimizer(loss1, b)

for a in A do

outputs2 ← a(x)

loss2 = loss2+

RemoteLossTerm(outputs1, outputs2)

end for

loss2 = loss2/SizeOf(A)

loss = (loss1 + loss2)/2

for mi in M do

mi ← PipelineOptimizer(loss2,mi)

lbi ← mi(lbi,Lai)

end for

until end training

Our Algorithm 2 describes the sequence of operations taken on the local agent’s side and

55

abstracts away some of the procedures taken when optimizing and fetching remote source

knowledge. Additionally, since this is the local view of the knowledge transfer process, the

remote sources training process is not explicitly shown here but is assumed to be happening

simultaneously. Each of the models b,mi ∈ M has its optimizer that scales as knowledge

gain plateaus locally or from a remote source.

5.2.2 Runtime

5.2.2.1 Hardware used

Running our experiments, we used a single NVIDIA® Tesla® M60 GPU per target model.

Our machine was equipped with 36 core Intel® Xeon® Silver 4210 and 128Gb of memory.

Approximately 32Mb of disk space was used to keep information about remote source models

used in the training process.

5.2.2.2 Analysis

Using our pairwise transfer requires multiple steps for each epoch in addition to the local

training step. Clearly, the larger the number of remote collaborating sources, the more

time each epoch lasts. Extensive experiments using two remote sources showed an increase

of approximately a 1.28 factor to the target model’s run time. However, an encouraging

measurement shows that learning time, as measured in epoch over accuracy gained, has

decreased slightly more than the increase in learning time at 0.7 of the time required to

achieve similar accuracy in the non-knowledge-transfer version of our model.

Going through a single epoch of CIFAR10 data using a batch size of 128 takes approx-

imately 30 seconds for a single target model and two remote models. Training our model

for 30 epochs, as reported in the chapter, takes approximately 15 minutes. The amount of

messages exchanged on the network were a total of 60.

56

5.3 Experiments

We experiment with our knowledge transfer architecture and validate it performs well in

several key areas. We make a comparison both with similar methods, as well as different

configurations of a knowledge transfer network. We test a learning set-up where models

spend one epoch learning local data, followed by one epoch of transferring knowledge from

remote sources. Datasets used in our comparisons are CIFAR-10 [KH09], CelebA [LLW15]

and FMNIST [XRV17]. Data is distributed non-i.i.d. between three agents. For CIFAR-10

and FMNIST, Local data comprises four out of the ten targets available in the datasets, and

each of the remote source models is trained on three of the targets available. For CelebA, we

focus on detecting smiling faces and distribute the data between the three agents without

overlap. To emulate a situation where a local model has minimal exposure to some targets

and needs to acquire knowledge about these targets from a remote model, we add 5% random

data to the local data pool. This addition creates a slight overlap with training data to the

remote models. For all our experiments and comparisons, we use Resnet-50 as our base

model.

5.3.1 Comparing with related models

Our first comparison is with a modified knowledge distillation [HVD15] method, where we

adapt knowledge distillation to a real-time, actively learning scenario. Since pairwise knowl-

edge transfer methods such as transfer learning and knowledge distillation are not designed

for real-time knowledge transfer, we compare with a variation of these that is a valid op-

tion for real-time execution. The basic form of knowledge distillation can be applied to a

real-time knowledge transfer case by minimizing the logit distance of the source and target

models as they are learning new data. Our second comparison is based on [VBT17], where

we implement an ADMM [ZYZ18] Gossip algorithms based neighbor-to-neighbor knowledge

transfer with a random component. Lastly, we compare to a decentralized, federated learning

approach for non-i.i.d. data as described in [ZLL18, MMR16]. We consider the consolidated

result of this approach to be comparable to our local model when only a single agent’s

57

Table 5.1: Comparison of average accuracy after 25 epochs across our 3 compared models.

Accuracy was averaged over 25 runs.

Average Accuracy - CIFAR-10

Ours KD Gossip Federated

Local data 0.95 0.96 0.63 0.70

Remote

data

0.60 0.50 0.52 0.66

Combined 0.77 0.71 0.56 0.68

Average Accuracy - CelebA

Ours KD Gossip Federated

Local data 0.97 0.94 0.70 0.93

Remote

data

0.91 0.93 0.54 0.91

Combined 0.93 0.93 0.60 0.92

Average Accuracy - FMNIST

Ours KD Gossip Federated

Local data 0.93 0.92 0.64 0.76

Remote

data

0.67 0.64 0.66 0.76

Combined 0.77 0.75 0.65 0.76

improvement is measured, where that agent corresponds to our termed local agent.

Figure 5.4 depicts the difference between the pairwise knowledge transfer approach (ours,

knowledge distillation, and Gossip) and the federated approach (Federated Learning).

Source A Source B

Target

Federated
Knowledge

Consolidation

(a) Federated knowledge transfer

Source A Source B

Target

Knowledge
Transfer
Model

Knowledge
Transfer
Model

(b) Pairwise knowledge transfer

Figure 5.4: Comparing the two knowledge transfer configurations used in our comparison.

Table A.1 compares accuracy on the our sets. We report the average accuracy over 25

58

runs for each local, remote, and combined target. As shown in the table, our method can best

retain local insights while increasing accuracy on all targets. In Figure 5.5 we can see the

learning curve of all compared models, in addition to a baseline comparison with a Resnet-50

model trained on local data with no knowledge transfer. As can be seen in the plot, our

method can increase accuracy faster by facilitating knowledge transfer and is stabler while

in the process of learning.

Tables 5.2, 5.3, 5.4, and 5.5 show the distribution of predictions for each of our compared

models as they compare to true labels in the CIFAR-10 dataset. Each line represents a

single true label. The diagonal shows true positive predictions, and other entries on the row

represent false negative predictions.

Exploring our purposed knowledge transfer, we investigate Tables 5.2, and 5.3. As knowl-

edge is transferred to our model we transition from Table 5.2 to Table 5.3. We can observe

the redistribution of predictive knowledge on the different labels and the increase in true

positives for the data seldom observed before (labels plane to dog incl.). For example, we

can see that the knowledge transferred to our local model improved the number of correct

predictions of deer from 452 to 678. In addition, deer were previously classified as frog 174

times, but only 70 times after knowledge transfer. On the other hand, horse, which was

observed abundantly by our model, was mistaken for deer only 8 times and for a frog, 19

times before knowledge transferred but was mistaken for deer 28 times after and for frog

only 9 times. We believe this is evidence of true observable intuitive knowledge transferring

between models. After all, a horse is closer to deer in appearance, and therefore our model

adjusted its mistakes in a way that makes intuitive sense. Moreover, our model corrected its

understanding of labels that were sparsely seen before, i.e., fewer false negative predictions

were made on these labels. Those were redistributed to labels that are closer in appearance.

Comparing with related models, we investigate Tables 5.4, and 5.5. It can be seen that

the distribution of correct predictions is more evenly spread out across all targets, indicating

adopting more remote knowledge while abandoning some of the local insights learned by

the model. For example, the federated and gossip-based models predicted that horses are a

bird 33 and 46 times, respectively. These mistakes happened even though local knowledge

59

contained an abundance of horse examples that should have been prioritized over increasing

global accuracy. Another interesting distinction is observing the subset of targets making

a large percentage of the accuracy gained in the federated and gossip-based models. For

example, our model made most of its mistakes by incorrectly classifying cars as trucks. On

the other hand, since trucks were abundantly observed, very few mistakes were made in

classifying trucks. In the federated and gossip models, the number of cars falsely classified

as trucks decreased significantly, while incorrectly classifying trucks increased proportionally.

This example brings to light the trade-off that we need to take into account when knowl-

edge transferring. In our attempt to preserve local insights while increasing global accuracy

from remote knowledge, we give up on our model gaining a more uniformly distributed un-

derstanding of the other targets. For our use case, where a model’s priority should be the

local data, global accuracy can still be increased by having knowledge distributed less evenly

within our model.

(a) CIFAR-10

0 5 10 15 20 25 30
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Ours
Federated
Gossip
KD
Baseline

(b) FMNIST

0 5 10 15 20 25 30
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Ours
Federated
Gossip
KD
Baseline

Figure 5.5: Comparing knowledge distillation, Gossip algorithms based method, decentral-

ized federated learning, and our method.

Tables 5.6, 5.7, 5.8, and 5.9 show the distribution of predictions for each of our compared

models as they compare to true labels in the FMNIST dataset. Each line represents a

single true label. The diagonal shows true positive predictions, and other entries on the row

represent false negative predictions.

60

Comparing true labels vs. predicted labels for our Resnet-50 on local data, with no knowledge

transfer on CIFAR-10. T denotes true labels, P denotes predicted label.

Table 5.2: No knowledge transfer

P plane P car P bird P cat P deer P dog P frog P horse P ship P truck

T plane 537 1 35 2 13 5 36 45 193 133

T car 5 510 0 2 3 7 34 14 103 322

T bird 52 1 405 25 50 30 236 139 48 14

T cat 15 0 22 312 26 88 286 171 52 28

T deer 13 1 36 32 452 7 174 235 43 7

T dog 6 1 19 103 18 475 135 212 18 13

T frog 2 0 4 7 5 6 961 9 4 2

T horse 1 0 2 5 8 7 19 942 7 9

T ship 4 3 0 1 1 0 9 2 953 27

T truck 3 3 0 5 0 0 9 14 16 950

Table 5.3: Our Pairwise knowledge transfer

P plane P car P bird P cat P deer P dog P frog P horse P ship P truck

T plane 705 4 45 4 15 1 17 18 107 84

T car 16 693 3 0 0 4 12 3 46 223

T bird 70 0 589 25 86 40 90 52 24 24

T cat 21 1 53 459 53 139 124 83 25 42

T deer 23 1 57 32 678 22 70 94 20 3

T dog 9 2 42 146 27 599 46 99 9 21

T frog 3 2 16 7 6 6 946 4 4 6

T horse 4 0 4 13 28 13 9 916 1 12

T ship 21 4 3 1 1 0 6 2 952 10

T truck 8 21 1 3 0 1 3 3 21 939

Table 5.4: Federated learning

P plane P car P bird P cat P deer P dog P frog P horse P ship P truck

T plane 588 43 61 44 42 15 14 16 111 66

T car 15 791 7 10 5 13 9 14 36 100

T bird 58 5 467 112 105 90 61 55 36 11

T cat 27 13 74 435 88 182 71 62 20 28

T deer 22 7 117 102 507 69 51 90 23 12

T dog 19 5 60 253 60 475 28 75 13 12

T frog 5 13 72 99 63 51 659 13 11 14

T horse 21 6 33 76 76 80 11 663 7 27

T ship 61 49 15 29 18 12 7 9 763 37

T truck 30 116 10 40 12 13 15 18 54 692

Table 5.5: ADMM Gossip

P plane P car P bird P cat P deer P dog P frog P horse P ship P truck

T plane 726 11 76 31 22 4 4 9 91 26

T car 18 841 7 10 2 4 13 1 41 63

T bird 59 5 608 70 104 45 52 21 23 13

T cat 26 8 94 514 83 142 52 39 24 18

T deer 18 2 81 64 697 33 40 47 15 3

T dog 12 4 60 195 63 568 21 48 18 11

T frog 8 5 53 84 50 14 769 6 9 2

T horse 23 3 46 42 88 56 8 707 7 20

T ship 38 23 11 16 2 9 3 2 883 13

T truck 40 111 7 21 4 0 4 12 45 756

61

Comparing tables 5.6 and 5.7 we can see the increase in global accuracy when knowledge

transfer is used. While in the non knowledge transfer matrix there is a slightly better ac-

curacy in some of the local targets (shirt to Ankle boot incl.) it generally performs worst

when classifying remote data and makes more mistakes on these. After knowledge transfer

we can see some local targets benefit, for example sneaker. We believe this is due to gain-

ing knowledge of what sandals look like as the errors made misclassifying these decreased

dramatically.

Comparing with other decentralized knowledge transfer models, tables 5.8 and 5.9 show

a more uniform distribution of the knowledge. Knowledge assimilated in these models seem

to come in expense of our local knowledge. For example, in our model, the remote targets

(T-shirt to Sandal incl.) are heavily miscllasified as a shirt. In both the Federated and Gossip

approaches these mistakes decrease. However, this comes on the expense of classifying our

local data, shirt, correctly. As can be seen in the tables, the true positives of shirt decreased

in both Federated Learning and Gossip. This happens because these model gain information

that contributed to global accuracy but damages the model’s understanding of local data.

5.3.2 Different mesh configurations

Benchmarking our model in different network configurations captures the various possibilities

of configured knowledge transfer networks, where remotely defined components might be out

of our control. For example, a remote source might or might not have an active pipeline with

another unrelated agent, changing the overall knowledge transfer graph. Conducting these

experiments is meant, on the one hand, to show the benefits of our approach as compared to

a centralized method, and on the other, to capture the added benefit that could be gained

by having agents cooperating on the network in a pairwise fashion. When allowing agents to

construct pipelines in a pairwise approach, network configurations could be more elaborate

than a centralized knowledge consolidation. Here we compare our method in four such

scenarios.

1. The local agent has defined pipelines with two remote agents, but they did not ex-

62

Comparing true labels vs. predicted labels for our Resnet-50 on local data, with no knowledge

transfer on FMNIST. T denotes true labels, P denotes predicted label.

Table 5.6: No knowledge transfer

P T-shirt/top P Trouser P Pullover P Dress P Coat P Sandal P Shirt P Sneaker P Bag P Ankle boot

T T-shirt/top 351 1 17 12 0 0 605 0 13 1

T Trouser 0 947 1 5 2 1 40 0 4 0

T Pullover 1 1 551 1 74 0 366 0 6 0

T Dress 8 9 8 525 39 0 392 0 15 4

T Coat 0 0 70 5 485 0 431 0 8 1

T Sandal 0 0 8 0 0 731 3 143 78 37

T Shirt 14 1 19 3 17 0 927 0 19 0

T Sneaker 0 0 0 0 0 4 0 836 31 129

T Bag 2 0 1 0 0 0 15 1 980 1

T Ankle boot 0 0 0 0 0 1 1 8 0 990

Table 5.7: Our Pairwise knowledge transfer

P T-shirt/top P Trouser P Pullover P Dress P Coat P Sandal P Shirt P Sneaker P Bag P Ankle boot

T T-shirt/top 551 3 38 20 1 1 366 0 20 0

T Trouser 0 949 18 6 5 0 18 0 4 0

T Pullover 8 1 657 4 48 0 253 0 29 0

T Dress 8 9 70 617 20 2 263 0 11 0

T Coat 0 2 139 14 495 0 318 0 32 0

T Sandal 0 0 0 0 0 872 0 60 22 46

T Shirt 55 2 77 9 30 2 801 0 24 0

T Sneaker 0 0 0 0 0 36 0 842 10 112

T Bag 0 0 2 2 0 0 14 0 979 3

T Ankle boot 0 0 0 0 0 1 0 9 1 989

63

Comparing true labels vs. predicted labels for our Resnet-50 on local data, with no knowledge

transfer on FMNIST. T denotes true labels, P denotes predicted label.

Table 5.8: Federated learning

P T-shirt/top P Trouser P Pullover P Dress P Coat P Sandal P Shirt P Sneaker P Bag P Ankle boot

T T-shirt/top 752 6 40 76 12 1 87 3 23 0

T Trouser 4 951 6 27 6 0 3 0 3 0

T Pullover 12 0 729 21 1139 0 90 0 9 0

T Dress 21 8 17 875 40 0 32 0 7 0

T Coat 1 1 126 42 705 0 116 0 9 0

T Sandal 0 0 0 3 0 933 0 44 2 18

T Shirt 125 6 154 66 102 0 509 0 38 0

T Sneaker 0 0 0 0 0 42 0 918 1 39

T Bag 1 1 9 4 2 6 10 8 959 0

T Ankle boot 0 0 0 1 0 7 1 71 1 919

Table 5.9: ADMM Gossip

P T-shirt/top P Trouser P Pullover P Dress P Coat P Sandal P Shirt P Sneaker P Bag P Ankle boot

T T-shirt/top 860 3 20 43 7 3 50 0 14 0

T Trouser 2 962 3 22 4 0 5 0 2 0

T Pullover 14 1 785 13 97 0 84 0 6 0

T Dress 35 10 26 865 31 0 29 1 2 1

T Coat 1 0 124 50 722 0 96 0 7 0

T Sandal 0 0 0 1 0 944 0 40 3 12

T Shirt 240 3 140 43 87 0 460 0 27 0

T Sneaker 0 0 0 0 0 23 0 944 0 33

T Bag 4 0 6 4 6 1 7 5 966 1

T Ankle boot 0 0 0 0 0 10 1 49 0 940

64

Table 5.10: Comparison of average accuracy after 25 epochs across our 3 compared mesh

configurations. Accuracy was averaged over 25 runs.

Average Accuracy - CIFAR-10

Our Half Mesh Our Full Mesh Our Transitive Federated

Local data 0.95 0.93 0.97 0.70

Remote data 0.60 0.61 0.56 0.66

Combined 0.77 0.74 0.72 0.68

change information between them. This corresponds to a half mesh configuration.

2. The local agent has defined pipelines with two remote agents, and they did exchange

information between them. This corresponds to a full mesh configuration.

3. The local agent has defined a pipeline with a single remote agent who has himself

defined a pipeline with another single remote agent. This corresponds to a transitive

knowledge transfer.

4. In addition to the 3 scenarios above, we compare with federated learning implantation

of our model, where all models are consolidated to a single model.

Figures 5.4 and 5.7 depicts the different configurations a network of three learning agents

might be arranged in. The average accuracy of our different mesh configuration experiments

can be seen in Table 5.10. It can be seen that our model works similarly regardless of the mesh

configuration, as long as the local agent has a direct pipeline to the remote models. When

considering the transitive configuration confusion matrix (in the appendix), it can be seen

that second-hand knowledge transfer is a bit less accurate on remote data and more accurate

on local data. This measurement indicates our model did not learn as many remote insights

as in the other two configurations. Still, it appears second-hand knowledge is propagated in

the model, as the confusion matrix will show.

In Figure 5.6a we can see how our local model learns in the different configurations.

While slight differences exist, it appears that knowledge efficiently flows from the two source

agents to our target model despite the difference in the network configuration. Additionally,

65

0 5 10 15 20 25 30
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Ac

cu
ra

cy

Our Local
Our Full Mesh Local
Our Transitive Local
Federated

(a) Comparing different knowledge transfer net-

work configurations of our method, as seen from

the local agent’s perspective.

0 5 10 15 20 25 30
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Our Full Mesh Remote
Our Transitive Remote

(b) Comparing different knowledge transfer net-

work configurations of our method, as seen from

a remote agent’s perspective.

Figure 5.6: CIFAR-10

we can see that the transitive pipeline causes a slight volatility increase in the learning graph.

This volatility could be attributed to our local agent’s ”second-hand” knowledge from source

model A. Compared to the federated method, volatility is considerably less in either network

configuration in our method.

In Figure 5.6b we can see a comparison between the same configurations previously

inspected, only this time accuracy is measured over the way model B is learning (defined

in Figure 5.7). Similar to our local agent, remote model B learns comparably despite the

configuration of the network. We remind the reader that model B started with less data

(3 classes out of 10), and therefore a slightly lower accuracy could be expected. Despite

that, the remote model’s accuracy is comparable to the local model’s. It seems our method

creates an efficient knowledge transfer model based on local insights. Therefore, knowledge

gained remotely is absorbed in the local model in similar learning stages, thereby affecting

the learning graph similarly.

Tables 5.11 and 5.12 show the distribution of predictions as they compare to true labels

for the two new cases of a full mesh knowledge graph and transitive knowledge graph. As we

would expect, the full mesh network moves knowledge to the local model similar to the half

66

Table 5.11: Comparing true labels vs. pre-

dicted labels for our local model, with a full

mesh knowledge transfer network. T denotes

true labels, P denotes predicted label.

P plane P car P bird P cat P deer P dog P frog P horse P ship P truck

T plane 695 17 67 6 9 0 9 38 93 66

T car 8 773 0 1 0 2 13 4 20 179

T bird 70 6 611 29 39 44 89 81 16 15

T cat 17 14 63 414 32 148 153 94 24 41

T deer 9 1 126 43 567 16 73 138 21 6

T dog 4 15 70 127 17 579 52 106 10 20

T frog 4 9 38 4 3 3 922 6 4 7

T horse 2 2 9 12 10 20 4 928 4 9

T ship 17 13 3 1 2 0 4 5 939 16

T truck 8 23 0 1 0 1 2 9 11 945

Table 5.12: Comparing true labels vs. pre-

dicted labels for our local model, in a tran-

sitive knowledge transfer network. T denotes

true labels, P denotes predicted label.

P plane P car P bird P cat P deer P dog P frog P horse P ship P truck

T plane 631 7 45 3 12 0 26 40 146 90

T car 7 715 0 1 0 3 14 6 36 218

T bird 40 4 495 25 62 33 194 102 28 17

T cat 12 1 34 422 27 97 204 118 34 51

T deer 15 1 26 29 613 11 122 157 22 4

T dog 6 0 22 138 18 485 114 178 12 27

T frog 0 0 5 5 4 0 977 5 2 2

T horse 2 0 0 6 7 5 8 958 5 9

T ship 6 6 0 1 1 0 5 2 961 18

T truck 2 9 0 1 0 0 1 8 15 964

mesh network. We can see true positives increase and false negatives fall in a very similar

way. Some dissimilarities do exist; for example, one relatively big difference we can see is that

car true positives rose significantly higher on the full mesh network, suggesting an increased

aptitude to learning that label in the full mesh structure. In the transitive network, all true

positives similarly increased. One interesting observation is that the frequently observed

labels (label frog to truck incl.) increased in true positive observations, even above the

no knowledge transfer case. This result suggests that exchanging information with remote

models could improve our ability to learn local data.

5.4 Discussion

In an edge-like networking environment, local data will affect how a local agent operates.

Inability to share local data limits how agents could collaborate and benefit from valuable

local insights unavailable elsewhere. Constructing pipelines to transfer knowledge without

exposing private data is one way agents can collaborate and source learned insights into data

unavailable to them locally. Prioritizing local knowledge in the transfer process is critical in

the way agents operate on edge networks. Since data is distributed non-i.i.d. geographically

67

Source A Source B

Target

Knowledge
Transfer
Model

Knowledge
Transfer
Model

Knowledge
Transfer
Model

(a) Full mesh knowledge transfer

Source A Source B Target
Knowledge

Transfer
Model

Knowledge
Transfer
Model

(b) Transitive knowledge transfer

Figure 5.7: Comparing three knowledge transfer configuration over a network of learning

agents not willing to share their local data.

(across edge nodes), it is essential to train transfer models that are ”familiar” with the

specific distribution of a source. Additionally, minimizing communication costs by having

as few transfer steps as possible is important. For this reason, having a separate trained

component to facilitate the transfer helps reduce the training time of the target model.

This chapter has proposed such a set-up and has shown the benefits to models that

collaborate with remote sources learning different data. Exploring different possible config-

urations, we have shown that although a knowledge transfer network structure depends on

agents we do not control, Our local model benefits in the same way from the ability to source

insights from remote models, regardless of the structure.

As seen in our experiments, a modified knowledge distillation method can achieve close

results to our proposed method. In some cases, this will result in better performance as

there is no extra model to train. However, in most collaborative cases, having a transfer

model that is co-evolved with a source will create a less volatile and more accurate pipeline,

as shown in our experiment results. While we reported results for our cutoff time of 25-30

epochs, it should be noted that in the case of FMNIST federated learning will achieve better

accuracy than our model given enough time. We believe that for cases where many sources

will be considered, time to converge and volatility are non-issues, and local accuracy is not

68

prioritized, federation might be a better choice. However, in the case where we wish to

preserve local insights and limit the communication of a handful of agents on a network, our

method will be a better choice.

69

CHAPTER 6

Conclusion

This thesis has examined the role decentralized networks play in near future connectivity

requirements and has proposed an architecture and algorithms to close that gap. We have

demonstrated the benefits of having both computational paths that can operate as meta-data

exchange channels for coordination or limited message passing. And the benefit of having a

globally connected data store for context retention and global low latency availability. We

have investigated the cost-aware approach of acquiring features based on a specific target

of interest out of two or more targets. We see a frugal approach as an essential addition to

the process of feature selection on data streams as data availability grows dramatically and

utilization of data remains somewhat inefficient, particularly in the domain of healthcare.

We have discussed the application of our target-focused approach to both well-known sources

of machine learning datasets and real-world public healthcare data converted into datasets.

We have demonstrated the value of having a target-aware method to feature selection com-

pared to feature selection methods that are target-agnostic. We have introduced a Bayesian

confidence-based scoring mechanism that we proceeded to show is robust in both scalabil-

ity and consistency on different types of datasets. Practically, we were able to minimize

uncertainty in a specific target of interest with a minimal budget while minimizing the gen-

eral uncertainty, false positive, and false-negative rates. Finally, we proposed an algorithm

for decentralized knowledge transfer tailored to edge networks. Our method can efficiently

source information from remote models based on a target model’s needs and prioritize locally

learned data while enhancing understanding of data that was not available locally.

70

APPENDIX A

Decentralized Knowledge Transfer for Cancer

Detection from Images

Medical data observed in patients local to a provider are by definition a biased sample,

as different populations will experience different variants of a medical condition depending

on local conditions and genetic variants. In the case of skin cancer, it would be fair to

assume that in sunny places where exposure to UV radiation is expected, skin cancer will

offer us more variants of this disease than in a cold place with less UV exposure. In an

optimal scenario, the ability to exchange local medical data collected by providers on demand

would have lead to better performing predictive and classification models, especially on

cases that would be otherwise rarely seen locally [SWL02, SZC20]. For example, a model

in Sweden could ideally source information it lacks from the Australian model about skin

cancer variations when it encounters a sample it is unsure of. However, since medical data

are highly protected, exchanging raw patient data in this way would not be possible. We

would then require a different mechanism for exchanging model knowledge without exposing

patient data.

Using a method for real-time knowledge transfer tailored to the decentralized nature of

edge networks [GKS20], we propose a dynamic information exchange network for medical

data distributed unevenly based on location. Specifically, we exchange information learned

regarding cancer classification allowing learners to take advantage of information learned by

another remote agent, as shown in Figure A.1. This knowledge transfer pipeline allows for

surgical precision in adding knowledge and is done privately, with no need to share data used

to construct the model. Using this knowledge transfer mechanism enables accurate answers

to model queries on data sparsely or never before seen by a local model.

71

Transfer Learning [TS10, RMK05, YZH18] is one knowledge transfer mechanism com-

monly used machine in learning. This technique leverages a pre-trained source model to

improve training a target model for a corresponding task. Recycling learned parameters, a

source model is used as a basis for a learning process where it is adapted to new informa-

tion by limiting further training to the lower layers of the source model. Transfer Learning

improves the time it takes to learn the new task in the same domain as the source task as

well as the final performance of the model. Knowledge distillation from a group of source

models [HVD15, LKS20] is another approach for knowledge transfer where the original set

or a subset of the data used to train the source models is leveraged. Distilling knowledge

from source to target is done by defining a cross-entropy loss between outputs of source and

target softmax layers. Detecting breast cancer in images, transfer learning has been used

to adapt a deep learning model pre-trained on generic image classification [DSK18]. This

approach involves using two well-known image classification models as source targets and

allowing retraining of the last two layers, convolution and a dense layer, to absorb the new

breast cancer image data. Knowledge distillation can be used to improve detection of chest

X-Ray Abnormalities [HG20]. Using a robust teacher-student selection and optimization,

this method can enhance the distillation process by suggesting a new saliency technique and

using self-training. Transfer Learning deals with training a target model using an already

trained source model. In our case, source and target could both still be in the process of

learning a model and should still be able to benefit each other. Moreover, transfer learning

and distillation are normally evaluated on a distinct set of labels. We are interested in both

inheriting the classification power of the source model as well as add local knowledge.

Federated Learning [KMY16, HAA20, MMR17, HTT19, WYS20] aggregates distributed

agents updates in real-time into a single centralized model that is better fitted to the overall

data. Solving a decentralized modeling of data, the federation is real-time and privacy-

preserving, making it especially suited for the data-driven healthcare requirements [RHL20].

Predicting preterm birth from distributed EHR records [BJV19], federated learning is able

to keep patient data private while exploiting the knowledge available on local nodes in a

robust centralized model. While federated models capture the decentralized knowledge flow

72

we are interested in, they aggregate it in a centralized manner. A resulting model will trend

toward a uniform distribution of confidence overall target classes. In our case, we are after

a model that prioritizes local information while still sourcing remote data.

To solve this, we utilize our method for decentralized pairwise knowledge transfer de-

scribed in chapter 5.

Input
Dataset A

Layer 1

Model B
(Target)

Model A
(Source)

Layer 1

Output Layer Output Layer

Cross
Entropy

Loss

Input
Dataset B

Cross
Entropy

Loss

(a) Local Train Step

Layer 1

Model B
(Target)

Model A
(Source)

Layer 1

Output Layer Output Layer

Cross
Entropy

Loss

Input
Dataset B

KL
Divergence

Loss

Transfer
Layer

Layer 1

(b) Knowledge Transfer Step

Figure A.1: High-level intuitive illustration of our proposed knowledge transfer method for

cancer data. The transfer layer uses both the source and target model layers parameters and

produces a new layer for the target model. The horizontal model then evaluates knowledge

transfer by producing a combined loss term, which in turn is used to optimize the transfer

process.

A.1 Experiments

We show our method performs well for our experiments when medical data is distributed in

a non-i.i.d way across three learning agents. Since a local model arbitrarily selects source

models from which to absorb knowledge, we show the case where information is exchanged

in only one way, from source to target. We chose a pre-trained Resnet-50 as our base

model as it performs well on image classification tasks out of the box. Since the images in

73

Table A.1: Comparison of average accuracy across our 3 compared models. Accuracy was

averaged over 25 runs.

Average Accuracy

Brain tumour Skin cancer

transfer no transfer transfer no transfer

Local data 0.96 0.99 0.86 0.88

Remote data 0.92 0.86 0.79 0.52

Combined 0.94 0.92 0.75 0.70

Table A.2: Comparing true labels vs. predicted labels for our local model predicting skin

cancer, with no knowledge transfer. T denotes true labels, P denotes predicted label, pink

denotes the local classes

P akiec P bcc P bkl P df P mel P vasc

T akiec 37 0 5 0 3 0

T bcc 10 28 8 5 2 0

T bkl 24 9 71 7 21 0

T df 7 0 0 5 0 0

T mel 15 3 14 1 35 0

T vasc 0 0 0 0 0 19

our cancer datasets are highly similar, we chose to facilitate knowledge transfer only across

the two bottom-most layers (the last dense layer and the previous convolution). This way,

the high-level image understanding is retained, and information is added to the granular

differentiation.

A.1.1 Datasets

We test our method on two cancer detection tasks. The first is a melanoma detection task

using skin lesion images [GCC16] which contains over 10,000 images for six classes: Bowen’s

74

Table A.3: Comparing true labels vs. predicted labels for our local model predicting skin

cancer, in a pairwise knowledge transfer environment. T denotes true labels, P denotes

predicted label, pink denotes the local classes

P akiec P bcc P bkl P df P mel P vasc

T akiec 37 0 6 0 2 0

T bcc 7 36 4 3 2 1

T bkl 11 7 86 6 21 1

T df 0 0 2 10 0 0

T mel 9 2 18 0 38 1

T vasc 0 0 0 0 1 18

disease (akiec), basal cell carcinoma (bcc), benign keratosis-like lesions (bkl), dermatofibroma

(df), melanoma (mel), melanocytic nevi (nv) and vascular lesions (vasc). The second set is

brain tumor detection task with over 3,700 images [KBP13], where image classes are a

binary ”1” for the existence of a tumor and ”0” for no tumor. In our tests, we distribute

the data between three agents such that no overlap exists between agents. Then we add

5% random data from the entire set to our local agent to simulate a situation where a

small amount of data exists locally but not enough to meaningfully learn those classes,

consequently promoting the need to source more data in these classes. In the brain tumor

case, since classes are binary, we test how exchanging information in a binary task improves

decision making.

A.1.2 Results

Our results inspect the benefit of our pairwise knowledge transfer in a network of three learn-

ing agents with non-i.i.d distributed data between them. We evaluate the added accuracy

from a local agent’s perspective, as our pipeline can be defined arbitrarily without remote

agent active participation. Table A.1 shows the shift in accuracy on local, remote, and com-

bined data with and without knowledge transfer. The table shows that in all sets, some

75

0 5 10 15 20 25 30
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

Skin cancer transfer
Skin cancer no transfer

(a) Skin cancer identification

0 5 10 15 20
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Ac
cu

ra
cy

Brain tumour transfer
Brain tumour no transfer

(b) Brain tumour identification

Comparing learning with our knowledge transfer, and without our knowledge transfer.

local accuracy has been sacrificed to gain remote knowledge and improve global accuracy.

However, since our pipeline prioritizing local information, local accuracy remains close to a

non transfer case.

Tables A.2 and A.3 show the resulting confusion matrix over the skin cancer identification

targets. Knowledge transfer results in better accuracies for most classes. It can be seen that

some additional classification mistakes are made on our local targets. Equivalently less

prediction mistakes are made on the remote targets.

Figures A.2a and A.2b show improved learning speed and accuracy when knowledge

transfer is added. This improvement indicated that sourcing knowledge not only benefits

model accuracy but also speed of convergence.

76

REFERENCES

[AAB16] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al.
“Tensorflow: Large-scale machine learning on heterogeneous distributed sys-
tems.” arXiv preprint arXiv:1603.04467, 2016.

[AGO13] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, and Jorge Luis
Reyes-Ortiz. “A Public Domain Dataset for Human Activity Recognition using
Smartphones.” In ESANN, 2013.

[AM05] Mussa Abdella and Tshilidzi Marwala. “The use of genetic algorithms and neural
networks to approximate missing data in database.” In Computational Cybernet-
ics, 2005. ICCC 2005. IEEE 3rd International Conference on, pp. 207–212. IEEE,
2005.

[And57] Theodore W Anderson. “Maximum likelihood estimates for a multivariate nor-
mal distribution when some observations are missing.” Journal of the american
Statistical Association, 52(278):200–203, 1957.

[ARZ18] Sanjeev Arora, Andrej Risteski, and Yi Zhang. “Do GANs learn the distribution?
some theory and empirics.” 2018.

[ASV11] Navid Amini, Majid Sarrafzadeh, Alireza Vahdatpour, and Wenyao Xu.
“Accelerometer-based on-body sensor localization for health and medical moni-
toring applications.” Pervasive and mobile computing, 7(6):746–760, 2011.

[AWD20] Aliya Aleryani, Wenjia Wang, and Beatriz De La Iglesia. “Multiple Imputation
Ensembles (MIE) for Dealing with Missing Data.” SN Computer Science, 1:1–20,
2020.

[BCC17] Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink, Vatche
Ishakian, Nick Mitchell, Vinod Muthusamy, Rodric Rabbah, Aleksander Slomin-
ski, et al. “Serverless computing: Current trends and open problems.” In Re-
search Advances in Cloud Computing, pp. 1–20. Springer, 2017.

[BET08] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. “Speeded-up ro-
bust features (SURF).” Computer vision and image understanding, 110(3):346–
359, 2008.

[BG10] S van Buuren and Karin Groothuis-Oudshoorn. “mice: Multivariate imputation
by chained equations in R.” Journal of statistical software, pp. 1–68, 2010.

[BGP06] Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah. “Random-
ized gossip algorithms.” IEEE transactions on information theory, 52(6):2508–
2530, 2006.

77

[BHP97] H Bentz, M Hagstroem, and G Palm. “Selection of relevant features and examples
in machine learning.” Neural Networks, 2(4):289–293, 1997.

[Bis95] Christopher M Bishop. Neural networks for pattern recognition. Oxford univer-
sity press, 1995.

[Bis06] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer-Verlag, Berlin, Heidelberg, 2006.

[BJV19] Sabri Boughorbel, Fethi Jarray, Neethu Venugopal, Shabir Moosa, Haithum
Elhadi, and Michel Makhlouf. “Federated uncertainty-aware learning for dis-
tributed hospital ehr data.” arXiv preprint arXiv:1910.12191, 2019.

[BM98] Catherine L Blake and Christopher J Merz. “UCI Repository of machine learning
databases [http://www. ics. uci. edu/˜ mlearn/MLRepository. html]. Irvine, CA:
University of California.” Department of Information and Computer Science, 55,
1998.

[CB19] Luca Corinzia and Joachim M Buhmann. “Variational federated multi-task learn-
ing.” arXiv preprint arXiv:1906.06268, 2019.

[CBG00] Diogo Ayres-de Campos, Joao Bernardes, Antonio Garrido, Joaquim Marques-de
Sa, and Luis Pereira-Leite. “SisPorto 2.0: a program for automated analysis of
cardiotocograms.” Journal of Maternal-Fetal Medicine, 9(5):311–318, 2000.

[CC11] Olivier Chapelle and Yi Chang. “Yahoo! learning to rank challenge overview.”
In Proceedings of the Learning to Rank Challenge, pp. 1–24, 2011.

[CCD13] Suming Jeremiah Chen, Arthur Choi, and Adnan Darwiche. “An Exact Algo-
rithm for Computing the Same-Decision Probability.” In IJCAI, pp. 2525–2531,
2013.

[CCD14] Suming Jeremiah Chen, Arthur Choi, and Adnan Darwiche. “Algorithms and
applications for the same-decision probability.” Journal of Artificial Intelligence
Research, 49:601–633, 2014.

[CCD15] Suming Jeremiah Chen, Arthur Choi, and Adnan Darwiche. “Value of Informa-
tion Based on Decision Robustness.” In AAAI, pp. 3503–3510, 2015.

[CDA16a] Gabriella Contardo, Ludovic Denoyer, and Thierry Artières. “Recurrent neural
networks for adaptive feature acquisition.” In International Conference on Neural
Information Processing, pp. 591–599. Springer, 2016.

[CDA16b] Gabriella Contardo, Ludovic Denoyer, and Thierry Artieres. “Sequential Cost-
Sensitive Feature Acquisition.” In International Symposium on Intelligent Data
Analysis, pp. 284–294. Springer, 2016.

[CDB17] YooJung Choi, Adnan Darwiche, and Guy Van den Broeck. “Optimal feature
selection for decision robustness in Bayesian networks.” In Proceedings of the
26th International Joint Conference on Artificial Intelligence (IJCAI), 2017.

78

[CHM14] Hyunseok Chang, Adiseshu Hari, Sarit Mukherjee, and TV Lakshman. “Bringing
the cloud to the edge.” In 2014 IEEE Conference on Computer Communications
Workshops (INFOCOM WKSHPS), pp. 346–351. IEEE, 2014.

[CLC19] Pengfei Chen, Benben Liao, Guangyong Chen, and Shengyu Zhang. “Under-
standing and Utilizing Deep Neural Networks Trained with Noisy Labels.” arXiv
preprint arXiv:1905.05040, 2019.

[com] multi-access-edge computing. “https://www.etsi.org/technologies/multi-access-
edge-computing.”.

[CXD12a] Arthur Choi, Yexiang Xue, and Adnan Darwiche. “Same-decision probability:
A confidence measure for threshold-based decisions.” Int. J. Approx. Reasoning,
53:1415–1428, 2012.

[CXD12b] Arthur Choi, Yexiang Xue, and Adnan Darwiche. “Same-decision probability:
A confidence measure for threshold-based decisions.” International Journal of
Approximate Reasoning, 53(9):1415, 2012.

[CXW12] Minmin Chen, Zhixiang Xu, Kilian Weinberger, Olivier Chapelle, and Dor Ke-
dem. “Classifier cascade for minimizing feature evaluation cost.” In Artificial
Intelligence and Statistics, pp. 218–226, 2012.

[CZC10] B Barla Cambazoglu, Hugo Zaragoza, Olivier Chapelle, Jiang Chen, Ciya Liao,
Zhaohui Zheng, and Jon Degenhardt. “Early exit optimizations for additive
machine learned ranking systems.” In Proceedings of the third ACM international
conference on Web search and data mining, pp. 411–420. ACM, 2010.

[CZZ13] Peng Cao, Dazhe Zhao, and Osmar Zaiane. “An optimized cost-sensitive SVM for
imbalanced data learning.” In Pacific-Asia Conference on Knowledge Discovery
and Data Mining, pp. 280–292. Springer, 2013.

[Dar09] Adnan Darwiche. Modeling and reasoning with Bayesian networks. Cambridge
university press, 2009.

[DBP16] Vincent Dumoulin, Ishmael Belghazi, Ben Poole, Olivier Mastropietro, Alex
Lamb, Martin Arjovsky, and Aaron Courville. “Adversarially learned inference.”
arXiv preprint arXiv:1606.00704, 2016.

[DG17] Dheeru Dua and Casey Graff. “UCI Machine Learning Repository.”, 2017.

[DK17a] Dua Dheeru and Efi Karra Taniskidou. “UCI Machine Learning Repository.”,
2017.

[DK17b] Dua Dheeru and Efi Karra Taniskidou. “UCI Machine Learning Repository.”,
2017.

79

[DL91] J. S. Denker and Y. LeCun. “transforming neural-net output levels to probability
distributions.” In R. Lippmann, J. Moody, and D. Touretzky, editors, Advances
in Neural Information Processing Systems (NIPS 1990), volume 3, Denver, CO,
April 1991. Morgan Kaufman.

[DLR77] Arthur P Dempster, Nan M Laird, and Donald B Rubin. “Maximum likelihood
from incomplete data via the EM algorithm.” Journal of the royal statistical
society. Series B (methodological), pp. 1–38, 1977.

[DSK16] Hamid Dadkhahi, Nazir Saleheen, Santosh Kumar, and Benjamin Marlin.
“Learning Shallow Detection Cascades for Wearable Sensor-Based Mobile Health
Applications.” arXiv preprint arXiv:1607.03730, 2016.

[DSK18] Erkan Deniz, Abdulkadir Şengür, Zehra Kadiroğlu, Yanhui Guo, Varun Bajaj,
and Ümit Budak. “Transfer learning based histopathologic image classification
for breast cancer detection.” Health information science and systems, 6(1):1–7,
2018.

[EBC10] Dumitru Erhan, Yoshua Bengio, Aaron Courville, Pierre-Antoine Manzagol, Pas-
cal Vincent, and Samy Bengio. “Why does unsupervised pre-training help deep
learning?” Journal of Machine Learning Research, 11(Feb):625–660, 2010.

[EFM16] Kirstin Early, Stephen E Fienberg, and Jennifer Mankoff. “Test time feature
ordering with FOCUS: interactive predictions with minimal user burden.” In
Proceedings of the 2016 ACM International Joint Conference on Pervasive and
Ubiquitous Computing, pp. 992–1003. ACM, 2016.

[EHJ04] Bradley Efron, Trevor Hastie, Iain Johnstone, Robert Tibshirani, et al. “Least
angle regression.” The Annals of statistics, 32(2):407–499, 2004.

[Ell17] Alex Ellis. “Introducing Functions as a Service (Open-FaaS).” URL: https://blog.
alexellis. io/introducing-functions-as-a-service, 2017.

[EMF16] Kirstin Early, Jennifer Mankoff, and Stephen E Fienberg. “Dynamic Question
Ordering in Online Surveys.” arXiv preprint arXiv:1607.04209, 2016.

[EVL20] Gudrun Eisele, Hugo Vachon, Ginette Lafit, Peter Kuppens, Marlies Houben,
Inez Myin-Germeys, and Wolfgang Viechtbauer. “The effects of sampling fre-
quency and questionnaire length on perceived burden, compliance, and careless
responding in experience sampling data in a student population.” PsyArXiv
preprint PsyArXiv:10.31234, 2020.

[FCB07] Alberto Freitas, Altamiro Costa-Pereira, and Pavel Brazdil. “Cost-sensitive deci-
sion trees applied to medical data.” In International Conference on Data Ware-
housing and Knowledge Discovery, pp. 303–312. Springer, 2007.

[FGJ09] Armando Fox, Rean Griffith, Anthony Joseph, Randy Katz, Andrew Konwinski,
Gunho Lee, David Patterson, Ariel Rabkin, and Ion Stoica. “Above the clouds: A

80

berkeley view of cloud computing.” Dept. Electrical Eng. and Comput. Sciences,
University of California, Berkeley, Rep. UCB/EECS, 28(13):2009, 2009.

[GAS15] Hassan Ghasemzadeh, Navid Amini, Ramyar Saeedi, and Majid Sarrafzadeh.
“Power-aware computing in wearable sensor networks: An optimal feature selec-
tion.” IEEE Transactions on Mobile Computing, 14(4):800–812, 2015.

[GCC16] D Gutman, N Codella, Emre Celebi, Brian Helba, Michael Marchetti, Nabin
Mishra, and Allan Halpern. “Skin lesion analysis toward melanoma detection.”
In International Symposium on Biomedical Imaging (ISBI),(International Skin
Imaging Collaboration (ISIC), 2016), 2016.

[GD18] David Güera and Edward J Delp. “Deepfake video detection using recurrent
neural networks.” In 2018 15th IEEE International Conference on Advanced
Video and Signal Based Surveillance (AVSS), pp. 1–6. IEEE, 2018.

[GE03] Isabelle Guyon and André Elisseeff. “An introduction to variable and feature
selection.” Journal of machine learning research, 3(Mar):1157–1182, 2003.

[GEW06] Pierre Geurts, Damien Ernst, and Louis Wehenkel. “Extremely randomized
trees.” Machine learning, 63(1):3–42, 2006.

[GG16] Yarin Gal and Zoubin Ghahramani. “Dropout as a Bayesian approximation:
Representing model uncertainty in deep learning.” In international conference
on machine learning, pp. 1050–1059, 2016.

[GGI17] Zoubin Ghahramani, Y Gal, and R Islam. “Deep Bayesian Active Learning with
Image Data.” 2017.

[GGR02a] Russell Greiner, Adam J Grove, and Dan Roth. “Learning cost-sensitive active
classifiers.” Artificial Intelligence, 139(2):137–174, 2002.

[GGR02b] Russell Greiner, Adam J. Grove, and Dan Roth. “Learning Cost-sensitive Active
Classifiers.” Artif. Intell., 139(2):137–174, August 2002.

[Gha15] Zoubin Ghahramani. “Probabilistic machine learning and artificial intelligence.”
Nature, 521:452 EP –, 05 2015.

[GK11] Tianshi Gao and Daphne Koller. “Active Classification based on Value of Clas-
sifier.” In J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems 24, pp.
1062–1070. Curran Associates, Inc., 2011.

[GKK13] Peter Groves, Basel Kayyali, David Knott, and Steve Van Kuiken. “The ‘big
data’revolution in healthcare.” McKinsey Quarterly, 2(3), 2013.

[GKS20] Orpaz Goldstein, Mohammad Kachuee, Dereck Shiell, and Majid Sarrafzadeh.
“Real-Time Decentralized knowledge Transfer at the Edge.” arXiv preprint
arXiv:2011.05961, 2020.

81

[GME15] Pedro Garcia Lopez, Alberto Montresor, Dick Epema, Anwitaman Datta, Teruo
Higashino, Adriana Iamnitchi, Marinho Barcellos, Pascal Felber, and Etienne
Riviere. “Edge-centric computing: Vision and challenges.”, 2015.

[GPM14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. “Generative adversar-
ial nets.” In Advances in neural information processing systems, pp. 2672–2680,
2014.

[GPS17] Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. “On calibration of
modern neural networks.” arXiv preprint arXiv:1706.04599, 2017.

[HAA20] Chaoyang He, Murali Annavaram, and Salman Avestimehr. “Group Knowledge
Transfer: Federated Learning of Large CNNs at the Edge.” Advances in Neural
Information Processing Systems, 33, 2020.

[Ham94] DM Hamby. “A review of techniques for parameter sensitivity analysis of envi-
ronmental models.” Environmental monitoring and assessment, 32(2):135–154,
1994.

[Has92] Sherif Hashem. “Sensitivity analysis for feedforward artificial neural networks
with differentiable activation functions.” In Neural Networks, 1992. IJCNN.,
International Joint Conference on, volume 1, pp. 419–424. IEEE, 1992.

[HBB17] Kelsey Hightower, Brendan Burns, and Joe Beda. Kubernetes: Up and Running
Dive into the Future of Infrastructure. O’Reilly Media, Inc., 1st edition, 2017.

[HDE12] He He, Hal Daumé III, and Jason Eisner. “Cost-sensitive dynamic feature selec-
tion.” In ICML Inferning Workshop, 2012.

[HG20] Thi Kieu Khanh Ho and Jeonghwan Gwak. “Utilizing Knowledge Distillation in
Deep Learning for Classification of Chest X-Ray Abnormalities.” IEEE Access,
8:160749–160761, 2020.

[HLY19] Byeongho Heo, Minsik Lee, Sangdoo Yun, and Jin Young Choi. “Knowledge
transfer via distillation of activation boundaries formed by hidden neurons.” In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pp.
3779–3787, 2019.

[HMK16] He He, Paul Mineiro, and Nikos Karampatziakis. “Active information acquisi-
tion.” arXiv preprint arXiv:1602.02181, 2016.

[HO13] Stefan Herzog and Dirk Ostwald. “Sometimes Bayesian statistics are better.”
Nature, 494(7435):35–35, 2013.

[HRU17] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and
Sepp Hochreiter. “Gans trained by a two time-scale update rule converge to a
local nash equilibrium.” In Advances in Neural Information Processing Systems,
pp. 6626–6637, 2017.

82

[HS06] Geoffrey E Hinton and Ruslan R Salakhutdinov. “Reducing the dimensionality
of data with neural networks.” science, 313(5786):504–507, 2006.

[HTS99] Trevor Hastie, Robert Tibshirani, Gavin Sherlock, Michael Eisen, Patrick Brown,
and David Botstein. “Imputing missing data for gene expression arrays.”, 1999.

[HTT19] Chaoyang He, Conghui Tan, Hanlin Tang, Shuang Qiu, and Ji Liu. “Central
server free federated learning over single-sided trust social networks.” arXiv
preprint arXiv:1910.04956, 2019.

[HVD15] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. “Distilling the knowledge in a
neural network.” arXiv preprint arXiv:1503.02531, 2015.

[HYJ16] Shamsul Huda, John Yearwood, Herbert F Jelinek, Mohammad Mehedi Has-
san, Giancarlo Fortino, and Michael Buckland. “A hybrid feature selection with
ensemble classification for imbalanced healthcare data: A case study for brain
tumor diagnosis.” IEEE access, 4:9145–9154, 2016.

[HZ94] Geoffrey E Hinton and Richard S Zemel. “Autoencoders, minimum description
length and Helmholtz free energy.” In Advances in neural information processing
systems, pp. 3–10, 1994.

[HZR16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep residual learn-
ing for image recognition.” In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 770–778, 2016.

[JC07] Shihao Ji and Lawrence Carin. “Cost-sensitive feature acquisition and classifica-
tion.” Pattern Recognition, 40(5):1474–1485, 2007.

[JGJ99] Michael I. Jordan, Zoubin Ghahramani, Tommi S. Jaakkola, and Lawrence K.
Saul. “An Introduction to Variational Methods for Graphical Models.” Machine
Learning, 37(2):183–233, Nov 1999.

[JGP16] Eric Jang, Shixiang Gu, and Ben Poole. “Categorical reparameterization with
gumbel-softmax.” arXiv preprint arXiv:1611.01144, 2016.

[JK02] Kalervo Järvelin and Jaana Kekäläinen. “Cumulated gain-based evaluation of IR
techniques.” ACM Transactions on Information Systems (TOIS), 20(4):422–446,
2002.

[JLH19] Yunhun Jang, Hankook Lee, Sung Ju Hwang, and Jinwoo Shin. “Learning what
and where to transfer.” arXiv preprint arXiv:1905.05901, 2019.

[JLO19] Insik Jo, Sangbum Lee, and Sejong Oh. “Improved Measures of Redundancy and
Relevance for mRMR Feature Selection.” Computers, 8(2):42, 2019.

[JPL17] Jaromı́r Janisch, Tomáš Pevnỳ, and Viliam Lisỳ. “Classification with Costly
Features using Deep Reinforcement Learning.” arXiv preprint arXiv:1711.07364,
2017.

83

[JPL19] Jaromı́r Janisch, Tomáš Pevnỳ, and Viliam Lisỳ. “Classification with costly fea-
tures using deep reinforcement learning.” In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 33, pp. 3959–3966, 2019.

[KA13] Martin Krzywinski and Naomi Altman. “Points of significance: Importance of
being uncertain.”, 2013.

[KB14] Diederik Kingma and Jimmy Ba. “Adam: A method for stochastic optimization.”
arXiv preprint arXiv:1412.6980, 2014.

[KBF12] Sergey Karayev, Tobias Baumgartner, Mario Fritz, and Trevor Darrell. “Timely
object recognition.” In Advances in Neural Information Processing Systems, pp.
890–898, 2012.

[KBP13] Michael Kistler, Serena Bonaretti, Marcel Pfahrer, Roman Niklaus, and Philippe
Büchler. “The Virtual Skeleton Database: An Open Access Repository for
Biomedical Research and Collaboration.” J Med Internet Res, 15(11):e245, Nov
2013.

[KCL19] Pasha Khosravi, YooJung Choi, Yitao Liang, Antonio Vergari, and Guy Van den
Broeck. “On tractable computation of expected predictions.” In Advances in
Neural Information Processing Systems, pp. 11169–11180, 2019.

[KCZ14] Matt J Kusner, Wenlin Chen, Quan Zhou, Zhixiang Eddie Xu, Kilian Q Wein-
berger, and Yixin Chen. “Feature-Cost Sensitive Learning with Submodular
Trees of Classifiers.” In AAAI, pp. 1939–1945, 2014.

[KDM18] Mohammad Kachuee, Sajad Darabi, Babak Moatamed, and Majid Sarrafzadeh.
“Dynamic Feature Acquisition Using Denoising Autoencoders.” IEEE transac-
tions on neural networks and learning systems, 2018.

[KGK19a] Mohammad Kachuee, Orpaz Goldstein, Kimmo Kärkkäinen, Sajad Darabi, and
Majid Sarrafzadeh. “Opportunistic Learning: Budgeted Cost-Sensitive Learning
from Data Streams.” 2019.

[KGK19b] Mohammad Kachuee, Orpaz Goldstein, Kimmo Kärkkäinen, and Majid Sar-
rafzadeh. “Opportunistic Learning: Budgeted Cost-Sensitive Learning from Data
Streams.” In International Conference on Learning Representations, 2019.

[KH09] Alex Krizhevsky and Geoffrey Hinton. “Learning multiple layers of features from
tiny images.” Technical report, Citeseer, 2009.

[KHM17] Mohammad Kachuee, Anahita Hosseini, Babak Moatamed, Sajad Darabi, and
Majid Sarrafzadeh. “Context-aware feature query to improve the prediction per-
formance.” In Signal and Information Processing (GlobalSIP), 2017 IEEE Global
Conference on, pp. 838–842. IEEE, 2017.

[KKG19] Mohammad Kachuee, Kimmo Karkkainen, Orpaz Goldstein, Davina Zaman-
zadeh, and Majid Sarrafzadeh. “Nutrition and Health Data for Cost-Sensitive
Learning.” arXiv preprint arXiv:1902.07102, 2019.

84

[KKM17] Mohammad Kachuee, Mohammad Mahdi Kiani, Hoda Mohammadzade, and
Mahdi Shabany. “Cuffless Blood Pressure Estimation Algorithms for Contin-
uous Health-Care Monitoring.” IEEE Transactions on Biomedical Engineering,
64(4):859–869, 2017.

[KMH17] Mohammad Kachuee, Lisa D Moore, Tali Homsey, Hamidreza Ghasemi Dama-
vandi, Babak Moatamed, Anahita Hosseini, Ruyi Huang, James Leiter, Daniel
Lu, and Majid Sarrafzadeh. “An Active Learning Based Prediction of Epidu-
ral Stimulation Outcome in Spinal Cord Injury Patients Using Dynamic Sample
Weighting.” In Healthcare Informatics (ICHI), 2017 IEEE International Confer-
ence on, pp. 478–483. IEEE, 2017.

[KMY16] Jakub Konečnỳ, H Brendan McMahan, Felix X Yu, Peter Richtárik,
Ananda Theertha Suresh, and Dave Bacon. “Federated learning: Strategies for
improving communication efficiency.” arXiv preprint arXiv:1610.05492, 2016.

[KSD17] Iryna Korshunova, Wenzhe Shi, Joni Dambre, and Lucas Theis. “Fast face-swap
using convolutional neural networks.” In Proceedings of the IEEE International
Conference on Computer Vision, pp. 3677–3685, 2017.

[KSG04] Alexander Kraskov, Harald Stögbauer, and Peter Grassberger. “Estimating mu-
tual information.” Physical review E, 69(6):066138, 2004.

[KSH12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification
with deep convolutional neural networks.” In Advances in neural information
processing systems, pp. 1097–1105, 2012.

[KVC20] Pasha Khosravi, Antonio Vergari, YooJung Choi, Yitao Liang, and Guy Van den
Broeck. “Handling missing data in decision trees: A probabilistic approach.”
arXiv preprint arXiv:2006.16341, 2020.

[KW13a] Diederik P. Kingma and Max Welling. “Auto-Encoding Variational Bayes.”
CoRR, abs/1312.6114, 2013.

[KW13b] Diederik P Kingma and Max Welling. “Auto-encoding variational bayes.” arXiv
preprint arXiv:1312.6114, 2013.

[KWS18] Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas Pfefferle,
and Christos Kozyrakis. “Pocket: Elastic ephemeral storage for serverless ana-
lytics.” In 13th {USENIX} Symposium on Operating Systems Design and Imple-
mentation ({OSDI} 18), pp. 427–444, 2018.

[KYR11] Balaji Krishnapuram, Shipeng Yu, and R Bharat Rao. Cost-sensitive Machine
Learning. CRC Press, 2011.

[LBC17] Shuang Liu, Olivier Bousquet, and Kamalika Chaudhuri. “Approximation and
convergence properties of generative adversarial learning.” In Advances in Neural
Information Processing Systems, pp. 5545–5553, 2017.

85

[LBO12] Yann A LeCun, Léon Bottou, Genevieve B Orr, and Klaus-Robert Müller. “Ef-
ficient backprop.” In Neural networks: Tricks of the trade, pp. 9–48. Springer,
2012.

[LCB98] Yann LeCun, Corinna Cortes, and Christopher JC Burges. “The MNIST
database of handwritten digits.”, 1998.

[LCW18] Jundong Li, Kewei Cheng, Suhang Wang, Fred Morstatter, Robert P Trevino,
Jiliang Tang, and Huan Liu. “Feature selection: A data perspective.” ACM
Computing Surveys (CSUR), 50(6):94, 2018.

[LDW20] Linchao Li, Bowen Du, Yonggang Wang, Lingqiao Qin, and Huachun Tan. “Esti-
mation of missing values in heterogeneous traffic data: Application of multimodal
deep learning model.” Knowledge-Based Systems, p. 105592, 2020.

[LEV09] Hugo Larochelle, Dumitru Erhan, and Pascal Vincent. “Deep Learning using
Robust Interdependent Codes.” In AISTATS, pp. 312–319, 2009.

[Lew97] David D Lewis. “Reuters-21578 text categorization test collection, distribution
1.0.” 1997.

[LJM19] Steven Cheng-Xian Li, Bo Jiang, and Benjamin Marlin. “Learning from Incom-
plete Data with Generative Adversarial Networks.” In International Conference
on Learning Representations, 2019.

[LKS20] Tao Lin, Lingjing Kong, Sebastian U Stich, and Martin Jaggi. “Ensemble
distillation for robust model fusion in federated learning.” arXiv preprint
arXiv:2006.07242, 2020.

[LLW15] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. “Deep Learning Face
Attributes in the Wild.” In Proceedings of International Conference on Computer
Vision (ICCV), December 2015.

[LLY06] Peng Liu, Lei Lei, Junjie Yin, Wei Zhang, Wu Naijun, and Elia El-Darzi. “Health-
care data mining: Prediction inpatient length of stay.” In Intelligent Systems,
2006 3rd International IEEE Conference on, pp. 832–837. IEEE, 2006.

[LPB16] B. Lakshminarayanan, A. Pritzel, and C. Blundell. “Simple and Scalable Predic-
tive Uncertainty Estimation using Deep Ensembles.” ArXiv e-prints, December
2016.

[LR18] Steven R Livingstone and Frank A Russo. “The Ryerson Audio-Visual Database
of Emotional Speech and Song (RAVDESS): A dynamic, multimodal set of facial
and vocal expressions in North American English.” PloS one, 13(5):e0196391,
2018.

[LR19] Roderick JA Little and Donald B Rubin. Statistical analysis with missing data,
volume 793. Wiley, 2019.

86

[LS95] Huan Liu and Rudy Setiono. “Chi2: Feature selection and discretization of nu-
meric attributes.” In Tools with artificial intelligence, 1995. proceedings., seventh
international conference on, pp. 388–391. IEEE, 1995.

[LSA12] Mars Lan, Lauren Samy, Nabil Alshurafa, Myung-Kyung Suh, Hassan
Ghasemzadeh, Aurelia Macabasco-O’Connell, and Majid Sarrafzadeh. “Wanda:
An end-to-end remote health monitoring and analytics system for heart failure
patients.” In Proceedings of the conference on Wireless Health, p. 9. ACM, 2012.

[Luc16] Sam Lucero et al. “IoT platforms: enabling the Internet of Things.” White
paper, 2016.

[LWM20] Suwen Lin, Xian Wu, Gonzalo Martinez, and Nitesh V Chawla. “Filling Missing
Values on Wearable-Sensory Time Series Data.” In Proceedings of the 2020 SIAM
International Conference on Data Mining, pp. 46–54. SIAM, 2020.

[LWS12] Dijun Luo, Fei Wang, Jimeng Sun, Marianthi Markatou, Jianying Hu, and
Shahram Ebadollahi. “Sor: Scalable orthogonal regression for non-redundant
feature selection and its healthcare applications.” In Proceedings of the 2012
SIAM International Conference on Data Mining, pp. 576–587. SIAM, 2012.

[LXL17] Meng Liu, Chang Xu, Yong Luo, Chao Xu, Yonggang Wen, and Dacheng Tao.
“Cost-Sensitive Feature Selection via F-Measure Optimization Reduction.” In
AAAI, pp. 2252–2258, 2017.

[LY17] Choong Ho Lee and Hyung-Jin Yoon. “Medical big data: promise and chal-
lenges.” Kidney research and clinical practice, 36(1):3, 2017.

[MAS18] Mehdi Mohammadi, Ala Al-Fuqaha, Sameh Sorour, and Mohsen Guizani. “Deep
learning for IoT big data and streaming analytics: A survey.” IEEE Communi-
cations Surveys & Tutorials, 20(4):2923–2960, 2018.

[MB17] Pavel Mach and Zdenek Becvar. “Mobile edge computing: A survey on architec-
ture and computation offloading.” IEEE Communications Surveys & Tutorials,
19(3):1628–1656, 2017.

[MF18] Pierre-Alexandre Mattei and Jes Frellsen. “missIWAE: Deep Generative Mod-
elling and Imputation of Incomplete Data.” arXiv preprint arXiv:1812.02633,
2018.

[MG99] Dunja Mladenic and Marko Grobelnik. “Feature selection for unbalanced class
distribution and naive bayes.” In ICML, volume 99, pp. 258–267, 1999.

[MGW06] Tammara Massey, Tia Gao, Matt Welsh, Jonathan H Sharp, and Majid Sar-
rafzadeh. “The design of a decentralized electronic triage system.” In AMIA
annual symposium proceedings, volume 2006, p. 544. American Medical Infor-
matics Association, 2006.

87

[MHZ14] Fan Min, Qinghua Hu, and William Zhu. “Feature selection with test cost con-
straint.” International Journal of Approximate Reasoning, 55(1):167–179, 2014.

[MKK18] Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida.
“Spectral normalization for generative adversarial networks.” arXiv preprint
arXiv:1802.05957, 2018.

[MKS13] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. “Playing atari with deep
reinforcement learning.” arXiv preprint arXiv:1312.5602, 2013.

[MKS15] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. “Human-level control through deep reinforcement learning.”
Nature, 518(7540):529, 2015.

[MM01] George B Moody and Roger G Mark. “The impact of the MIT-BIH arrhythmia
database.” IEEE Engineering in Medicine and Biology Magazine, 20(3):45–50,
2001.

[MMR16] H Brendan McMahan, Eider Moore, Daniel Ramage, and Blaise Aguera y Ar-
cas. “Communication-Efficient Learning of Deep Networks from Decentralized
Data.(2016).”, 2016.

[MMR17] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. “Communication-efficient learning of deep networks
from decentralized data.” In Artificial Intelligence and Statistics, pp. 1273–1282.
PMLR, 2017.

[MOC15] Toni Mastelic, Ariel Oleksiak, Holger Claussen, Ivona Brandic, Jean-Marc Pier-
son, and Athanasios V Vasilakos. “Cloud computing: Survey on energy effi-
ciency.” Acm computing surveys (csur), 47(2):33, 2015.

[MP18] Karthika Mohan and Judea Pearl. “Graphical models for processing missing
data.” arXiv preprint arXiv:1801.03583, 2018.

[MS19] Paul Micaelli and Amos J Storkey. “Zero-shot knowledge transfer via adversarial
belief matching.” In Advances in Neural Information Processing Systems, pp.
9551–9561, 2019.

[MSS19] Mehryar Mohri, Gary Sivek, and Ananda Theertha Suresh. “Agnostic Federated
Learning.”, 2019.

[Mur12] Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. The MIT
Press, 2012.

[Mur18] Jared S Murray et al. “Multiple imputation: a review of practical and theoretical
findings.” Statistical Science, 33(2):142–159, 2018.

88

[NDR13] Nagarajan Natarajan, Inderjit S Dhillon, Pradeep K Ravikumar, and Ambuj
Tewari. “Learning with noisy labels.” In Advances in neural information pro-
cessing systems, pp. 1196–1204, 2013.

[NDR18] Sriraam Natarajan, Srijita Das, Nandini Ramanan, Gautam Kunapuli, and Pre-
drag Radivojac. “On Whom Should I Perform this Lab Test Next? An Active
Feature Elicitation Approach.” In Proceedings of the Twenty-Seventh Interna-
tional Joint Conference on Artificial Intelligence, IJCAI-18, pp. 3498–3505. In-
ternational Joint Conferences on Artificial Intelligence Organization, 7 2018.

[Nea96] Radford M. Neal. Bayesian Learning for Neural Networks. Springer-Verlag,
Berlin, Heidelberg, 1996.

[Nea04] Richard E Neapolitan et al. Learning bayesian networks, volume 38. Pearson
Prentice Hall Upper Saddle River, NJ, 2004.

[NH10] Vinod Nair and Geoffrey E Hinton. “Rectified linear units improve restricted
boltzmann machines.” In Proceedings of the 27th international conference on
machine learning (ICML-10), pp. 807–814, 2010.

[nha18] “National Health and Nutrition Examination Survey.”, 2018.

[NJ09] Thomas Dyhre Nielsen and Finn Verner Jensen. Bayesian networks and decision
graphs. Springer Science & Business Media, 2009.

[NMS19] Gaurav Kumar Nayak, Konda Reddy Mopuri, Vaisakh Shaj, R Venkatesh Babu,
and Anirban Chakraborty. “Zero-shot knowledge distillation in deep networks.”
arXiv preprint arXiv:1905.08114, 2019.

[NOG18] Alfredo Nazabal, Pablo M Olmos, Zoubin Ghahramani, and Isabel Valera.
“Handling incomplete heterogeneous data using VAEs.” arXiv preprint
arXiv:1807.03653, 2018.

[NS17] Feng Nan and Venkatesh Saligrama. “Adaptive Classification for Prediction Un-
der a Budget.” In Advances in Neural Information Processing Systems, pp. 4727–
4737, 2017.

[OGK15] Seyyed Salar Latifi Oskouei, Hossein Golestani, Mohamad Kachuee, Matin
Hashemi, Hoda Mohammadzade, and Soheil Ghiasi. “GPU-based Acceleration
of Deep Convolutional Neural Networks on Mobile Platforms.” arXiv preprint
arXiv:1511.07376, 2015.

[ORE16] Michael K Ong, Patrick S Romano, Sarah Edgington, Harriet U Aronow, An-
drew D Auerbach, Jeanne T Black, Teresa De Marco, Jose J Escarce, Lorraine S
Evangelista, Barbara Hanna, et al. “Effectiveness of remote patient monitoring
after discharge of hospitalized patients with heart failure: the Better Effectiveness
After Transition–Heart Failure (BEAT-HF) randomized clinical trial.” JAMA in-
ternal medicine, 176(3):310–318, 2016.

89

[ORN15] Tadashi Okoshi, Julian Ramos, Hiroki Nozaki, Jin Nakazawa, Anind K Dey, and
Hideyuki Tokuda. “Attelia: Reducing user’s cognitive load due to interruptive
notifications on smart phones.” In Pervasive Computing and Communications
(PerCom), 2015 IEEE International Conference on, pp. 96–104. IEEE, 2015.

[PGC17] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang,
Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer.
“Automatic differentiation in PyTorch.” In NIPS-W, 2017.

[PGH16] Yunchen Pu, Zhe Gan, Ricardo Henao, Xin Yuan, Chunyuan Li, Andrew Stevens,
and Lawrence Carin. “Variational autoencoder for deep learning of images, labels
and captions.” In Advances in neural information processing systems, pp. 2352–
2360, 2016.

[PKU15] Erman Pattuk, Murat Kantarcioglu, Huseyin Ulusoy, and Bradley Malin.
“Privacy-aware dynamic feature selection.” In Data Engineering (ICDE), 2015
IEEE 31st International Conference on, pp. 78–88. IEEE, 2015.

[PLD05] Hanchuan Peng, Fuhui Long, and Chris Ding. “Feature selection based on mutual
information: criteria of max-dependency, max-relevance, and min-redundancy.”
IEEE Transactions on Pattern Analysis & Machine Intelligence, (8):1226–1238,
2005.

[PPG17] Wei Ping, Kainan Peng, Andrew Gibiansky, Sercan O Arik, Ajay Kannan, Sharan
Narang, Jonathan Raiman, and John Miller. “Deep voice 3: Scaling text-to-
speech with convolutional sequence learning.” arXiv preprint arXiv:1710.07654,
2017.

[PVZ15] Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, et al. “Deep face recog-
nition.” In bmvc, volume 1, p. 6, 2015.

[Qui86] J. Ross Quinlan. “Induction of decision trees.” Machine learning, 1(1):81–106,
1986.

[Ran14] Rajiv Ranjan. “Streaming big data processing in datacenter clouds.” IEEE
Cloud Computing, 1(1):78–83, 2014.

[RHL20] Nicola Rieke, Jonny Hancox, Wenqi Li, Fausto Milletari, Holger R Roth, Shadi
Albarqouni, Spyridon Bakas, Mathieu N Galtier, Bennett A Landman, Klaus
Maier-Hein, et al. “The future of digital health with federated learning.” NPJ
digital medicine, 3(1):1–7, 2020.

[RKK20] Seunghyoung Ryu, Minsoo Kim, and Hongseok Kim. “Denoising Autoencoder-
Based Missing Value Imputation for Smart Meters.” IEEE Access, 8:40656–
40666, 2020.

[RLA14] Scott Reed, Honglak Lee, Dragomir Anguelov, Christian Szegedy, Dumitru Er-
han, and Andrew Rabinovich. “Training deep neural networks on noisy labels
with bootstrapping.” arXiv preprint arXiv:1412.6596, 2014.

90

[RMK05] Michael T Rosenstein, Zvika Marx, Leslie Pack Kaelbling, and Thomas G Di-
etterich. “To transfer or not to transfer.” In NIPS 2005 workshop on transfer
learning, volume 898, pp. 1–4, 2005.

[Ros14] Brian C Ross. “Mutual information between discrete and continuous data sets.”
PloS one, 9(2):e87357, 2014.

[ROS16] Jorge-L Reyes-Ortiz, Luca Oneto, Albert Sama, Xavier Parra, and Davide An-
guita. “Transition-aware human activity recognition using smartphones.” Neu-
rocomputing, 171:754–767, 2016.

[Rub76] Donald B Rubin. “Inference and missing data.” Biometrika, 63(3):581–592,
1976.

[Rub04] Donald B Rubin. Multiple imputation for nonresponse in surveys, volume 81.
John Wiley & Sons, 2004.

[RZK19] Maithra Raghu, Chiyuan Zhang, Jon Kleinberg, and Samy Bengio. “Transfusion:
Understanding transfer learning for medical imaging.” In Advances in neural
information processing systems, pp. 3347–3357, 2019.

[Sat17] Mahadev Satyanarayanan. “The emergence of edge computing.” Computer,
50(1):30–39, 2017.

[Sch81] Jeff Schlimmer. “Mushroom records drawn from The Audubon Society field guide
to north American mushrooms.” GH Lincoff (Pres), New York, 1981.

[SCS17] Virginia Smith, Chao-Kai Chiang, Maziar Sanjabi, and Ameet Talwalkar. “Fed-
erated Multi-Task Learning.”, 2017.

[SCW11] Myung-kyung Suh, Chien-An Chen, Jonathan Woodbridge, Michael Kai Tu,
Jung In Kim, Ani Nahapetian, Lorraine S Evangelista, and Majid Sarrafzadeh.
“A remote patient monitoring system for congestive heart failure.” Journal of
medical systems, 35(5):1165–1179, 2011.

[SCZ16] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. “Edge com-
puting: Vision and challenges.” IEEE Internet of Things Journal, 3(5):637–646,
2016.

[SD16] Weisong Shi and Schahram Dustdar. “The promise of edge computing.” Com-
puter, 49(5):78–81, 2016.

[Set12] Burr Settles. “Active learning.” Synthesis Lectures on Artificial Intelligence and
Machine Learning, 6(1):1–114, 2012.

[SG02] Joseph L Schafer and John W Graham. “Missing data: our view of the state of
the art.” Psychological methods, 7(2):147, 2002.

[Sha09] Devavrat Shah. Gossip algorithms. Now Publishers Inc, 2009.

91

[SHY17] Hajin Shim, Sung Ju Hwang, and Eunho Yang. “Why Pay More When You
Can Pay Less: A Joint Learning Framework for Active Feature Acquisition and
Classification.” arXiv preprint arXiv:1709.05964, 2017.

[SKS20] Marek Śmieja, Maciej Ko lomycki, Lukasz Struski, Mateusz Juda, and Mário A. T.
Figueiredo. “Can auto-encoders help with filling missing data?” In ICLR 2020
Workshop on Integration of Deep Neural Models and Differential Equations, 2020.

[SLY15] Kihyuk Sohn, Honglak Lee, and Xinchen Yan. “Learning structured output rep-
resentation using deep conditional generative models.” In Advances in neural
information processing systems, pp. 3483–3491, 2015.

[SO98] Joseph L Schafer and Maren K Olsen. “Multiple imputation for multivariate
missing-data problems: A data analyst’s perspective.” Multivariate behavioral
research, 33(4):545–571, 1998.

[SRA08] Andrea Saltelli, Marco Ratto, Terry Andres, Francesca Campolongo, Jessica Cari-
boni, Debora Gatelli, Michaela Saisana, and Stefano Tarantola. Global sensitivity
analysis: the primer. John Wiley & Sons, 2008.

[SRG10] K Srinivas, B Kavihta Rani, and A Govrdhan. “Applications of data mining
techniques in healthcare and prediction of heart attacks.” International Journal
on Computer Science and Engineering (IJCSE), 2(02):250–255, 2010.

[SS95] Peter K. Sharpe and RJ Solly. “Dealing with missing values in neural network-
based diagnostic systems.” Neural Computing & Applications, 3(2):73–77, 1995.

[SWL02] Amy Soller, Janyce Wiebe, and Alan M Lesgold. “A machine learning approach
to assessing knowledge sharing during collaborative learning activities.” In CSCL,
pp. 128–137, 2002.

[SYY17] Yaozhong Song, Stephen S Yau, Ruozhou Yu, Xiang Zhang, and Guoliang Xue.
“An approach to QoS-based task distribution in edge computing networks for
IoT applications.” In 2017 IEEE international conference on edge computing
(EDGE), pp. 32–39. IEEE, 2017.

[SZC20] Rachael Hwee Ling Sim, Yehong Zhang, Mun Choon Chan, and Bryan
Kian Hsiang Low. “Collaborative machine learning with incentive-aware model
rewards.” In International Conference on Machine Learning, pp. 8927–8936.
PMLR, 2020.

[SZS13] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Er-
han, Ian Goodfellow, and Rob Fergus. “Intriguing properties of neural networks.”
arXiv preprint arXiv:1312.6199, 2013.

[Tib96] Robert Tibshirani. “Regression shrinkage and selection via the lasso.” Journal
of the Royal Statistical Society. Series B (Methodological), pp. 267–288, 1996.

92

[TIL04] Emmanuel Munguia Tapia, Stephen S Intille, and Kent Larson. “Activity recog-
nition in the home using simple and ubiquitous sensors.” In International Con-
ference on Pervasive Computing, pp. 158–175. Springer, 2004.

[TKD16] Dustin Tran, Alp Kucukelbir, Adji B. Dieng, Maja Rudolph, Dawen Liang, and
David M. Blei. “Edward: A library for probabilistic modeling, inference, and
criticism.” arXiv preprint arXiv:1610.09787, 2016.

[TLS89] Naftali Tishby, Esther Levin, and Sara A. Solla. “Consistent inference of prob-
abilities in layered networks: Predictions and generalization.” In Anon, editor,
IJCNN Int Jt Conf Neural Network, pp. 403–409. Publ by IEEE, 12 1989.

[TMC02] Benjamin B Thompson, Robert J Marks, Jai J Choi, Mohamed A El-Sharkawi,
Ming-Yuh Huang, and Carl Bunje. “Implicit learning in autoencoder novelty
assessment.” In Neural Networks, 2002. IJCNN’02. Proceedings of the 2002 In-
ternational Joint Conference on, volume 3, pp. 2878–2883. IEEE, 2002.

[TS10] Lisa Torrey and Jude Shavlik. “Transfer learning.” In Handbook of research on
machine learning applications and trends: algorithms, methods, and techniques,
pp. 242–264. IGI global, 2010.

[TS13] Kirill Trapeznikov and Venkatesh Saligrama. “Supervised sequential classifica-
tion under budget constraints.” In Artificial Intelligence and Statistics, pp. 581–
589, 2013.

[TSM17] Tarik Taleb, Konstantinos Samdanis, Badr Mada, Hannu Flinck, Sunny Dutta,
and Dario Sabella. “On multi-access edge computing: A survey of the emerging
5G network edge cloud architecture and orchestration.” IEEE Communications
Surveys & Tutorials, 19(3):1657–1681, 2017.

[TZA17] Cao Truong Tran, Mengjie Zhang, Peter Andreae, and Bing Xue. “Multiple
imputation and genetic programming for classification with incomplete data.”
In Proceedings of the Genetic and Evolutionary Computation Conference, pp.
521–528, 2017.

[VBT17] Paul Vanhaesebrouck, Aurélien Bellet, and Marc Tommasi. “Decentralized col-
laborative learning of personalized models over networks.” 2017.

[VJ04] Paul Viola and Michael J Jones. “Robust real-time face detection.” International
journal of computer vision, 57(2):137–154, 2004.

[VLB08] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol.
“Extracting and composing robust features with denoising autoencoders.” In
Proceedings of the 25th international conference on Machine learning, pp. 1096–
1103. ACM, 2008.

[VS10] Alireza Vahdatpour and Majid Sarrafzadeh. “Unsupervised discovery of abnor-
mal activity occurrences in multi-dimensional time series, with applications in

93

wearable systems.” In Proceedings of the 2010 SIAM International Conference
on Data Mining, pp. 641–652. Society for Industrial and Applied Mathematics,
2010.

[Wan18] Charlie Wang. “HTTP vs. MQTT: A tale of two IoT protocols.”, 2018.

[Wil97] Christopher KI Williams. “Computing with infinite networks.” In Advances in
neural information processing systems, pp. 295–301, 1997.

[WKB18] Yichuan Wang, LeeAnn Kung, and Terry Anthony Byrd. “Big data analyt-
ics: Understanding its capabilities and potential benefits for healthcare organi-
zations.” Technological Forecasting and Social Change, 126:3–13, 2018.

[WLZ18] Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Andrew Tao, Jan Kautz, and
Bryan Catanzaro. “High-resolution image synthesis and semantic manipulation
with conditional gans.” In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 8798–8807, 2018.

[WRK17] Stephen F Weng, Jenna Reps, Joe Kai, Jonathan M Garibaldi, and Nadeem
Qureshi. “Can machine-learning improve cardiovascular risk prediction using
routine clinical data?” PloS one, 12(4):e0174944, 2017.

[WTS19] Shiqiang Wang, Tiffany Tuor, Theodoros Salonidis, Kin K Leung, Christian
Makaya, Ting He, and Kevin Chan. “Adaptive federated learning in resource
constrained edge computing systems.” IEEE Journal on Selected Areas in Com-
munications, 37(6):1205–1221, 2019.

[WYS20] Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and
Yasaman Khazaeni. “Federated learning with matched averaging.” arXiv
preprint arXiv:2002.06440, 2020.

[WZH14] Jialei Wang, Peilin Zhao, Steven CH Hoi, and Rong Jin. “Online feature selection
and its applications.” IEEE Transactions on Knowledge and Data Engineering,
26(3):698–710, 2014.

[XGS21] Jie Xu, Benjamin S Glicksberg, Chang Su, Peter Walker, Jiang Bian, and Fei
Wang. “Federated learning for healthcare informatics.” Journal of Healthcare
Informatics Research, 5(1):1–19, 2021.

[XKW14] Zhixiang Eddie Xu, Matt J Kusner, Kilian Q Weinberger, Minmin Chen, and
Olivier Chapelle. “Classifier cascades and trees for minimizing feature evaluation
cost.” Journal of Machine Learning Research, 15(1):2113–2144, 2014.

[XRV17] Han Xiao, Kashif Rasul, and Roland Vollgraf. “Fashion-MNIST: a Novel Image
Dataset for Benchmarking Machine Learning Algorithms.”, 2017.

[XWC12] Zhixiang Xu, Kilian Weinberger, and Olivier Chapelle. “The greedy miser:
Learning under test-time budgets.” arXiv preprint arXiv:1206.6451, 2012.

94

[YHZ17] Shanhe Yi, Zijiang Hao, Qingyang Zhang, Quan Zhang, Weisong Shi, and Qun
Li. “Lavea: Latency-aware video analytics on edge computing platform.” In
Proceedings of the Second ACM/IEEE Symposium on Edge Computing, p. 15.
ACM, 2017.

[YIJ17] Ashkan Yousefpour, Genya Ishigaki, and Jason P Jue. “Fog computing: To-
wards minimizing delay in the internet of things.” In 2017 IEEE international
conference on edge computing (EDGE), pp. 17–24. IEEE, 2017.

[YJV18] Jinsung Yoon, James Jordon, and Mihaela Van Der Schaar. “Gain: Missing data
imputation using generative adversarial nets.” arXiv preprint arXiv:1806.02920,
2018.

[YKR09] Shipeng Yu, Balaji Krishnapuram, Romer Rosales, and R Bharat Rao. “Active
sensing.” In Artificial Intelligence and Statistics, pp. 639–646, 2009.

[YLK20] Joonyoung Yi, Juhyuk Lee, Kwang Joon Kim, Sung Ju Hwang, and Eunho Yang.
“Why Not to Use Zero Imputation? Correcting Sparsity Bias in Training Neural
Networks.” In International Conference on Learning Representations, 2020.

[YLS20] Tianlong Yu, Tian Li, Yuqiong Sun, Susanta Nanda, Virginia Smith, Vyas Sekar,
and Srinivasan Seshan. “Learning Context-Aware Policies from Multiple Smart
Homes via Federated Multi-Task Learning.” In 2020 IEEE/ACM Fifth Inter-
national Conference on Internet-of-Things Design and Implementation (IoTDI),
pp. 104–115. IEEE, 2020.

[YZH18] Wei Ying, Yu Zhang, Junzhou Huang, and Qiang Yang. “Transfer learning via
learning to transfer.” In International Conference on Machine Learning, pp.
5085–5094, 2018.

[ZBP14] Indre Zliobaite, Albert Bifet, Bernhard Pfahringer, and Geoffrey Holmes. “Active
learning with drifting streaming data.” IEEE transactions on neural networks
and learning systems, 25(1):27–39, 2014.

[ZGM18] Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. “Self-
attention generative adversarial networks.” arXiv preprint arXiv:1805.08318,
2018.

[ZLL18] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chan-
dra. “Federated learning with non-iid data.” arXiv preprint arXiv:1806.00582,
2018.

[ZQL05] Shichao Zhang, Zhenxing Qin, Charles X Ling, and Shengli Sheng. “” Missing
is useful”: missing values in cost-sensitive decision trees.” IEEE transactions on
knowledge and data engineering, 17(12):1689–1693, 2005.

[ZYZ18] Tianyun Zhang, Shaokai Ye, Kaiqi Zhang, Jian Tang, Wujie Wen, Makan Fardad,
and Yanzhi Wang. “A systematic dnn weight pruning framework using alternat-
ing direction method of multipliers.” In Proceedings of the European Conference
on Computer Vision (ECCV), pp. 184–199, 2018.

95

[ZZZ18] Wei Zheng, Xiaofeng Zhu, Yonghua Zhu, and Shichao Zhang. “Robust Feature
Selection on Incomplete Data.” In Proceedings of the Twenty-Seventh Inter-
national Joint Conference on Artificial Intelligence, IJCAI-18, pp. 3191–3197.
International Joint Conferences on Artificial Intelligence Organization, 7 2018.

96

	Introduction
	Related Work
	Dynamic Data Stream Edge Architecture
	Computation Delegation
	Computation Orchestration

	Cost Aware Feature Selection
	Uncertainty Measurements
	Feature Selection
	Data Imbalance

	Decentralized Information Absorption
	Knowledge transfer
	Federated Learning
	Peer-to-Peer

	Decentralized Architecture for Dynamic Data Stream Analysis and Manipulation
	Problem Definition
	Proposed Edge Architecture
	Background
	CDN as a platform for EdgeCompute
	Extending a CDN
	Resulting set up and real-world example

	Experiments and Measurements
	Emotion detection from voice samples
	Text to speech
	Video stream manipulation

	Comparison with different architectures

	Cost-Aware Target-Focused Feature Selection
	Preliminaries
	Notation
	Background

	Target-Focused Feature Selection
	Problem Set-Up
	Feature Value Measurement and Acquisitions

	Time Complexity Analysis
	Evaluation
	Datasets
	Evaluation Methodology
	Run Time Comparison

	Results
	Comparing with statistical methods
	Comparing with deep learning methods
	Final note

	Impact on Healthcare Discussion

	Real-Time Decentralized knowledge Transfer at the Edge
	Problem Setup
	Decentralized Learning at the Edge
	Horizontal Models for Knowledge Transfer

	Collaborating in a Multi-Agent Network
	Algorithm
	Runtime

	Experiments
	Comparing with related models
	Different mesh configurations

	Discussion

	Conclusion
	Decentralized Knowledge Transfer for Cancer Detection from Images
	Experiments
	Datasets
	Results

	References

