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Probabilistic Bisection with Spatial Metamodels

Sergio Rodriguez and Michael Ludkovski

Department of Statistics and Applied Probability,
University of California, Santa Barbara, Santa Barbara, CA, USA 93106

{srodriguez,ludkovski}@pstat.ucsb.edu

Abstract

Probabilistic Bisection Algorithm performs root finding based on knowledge acquired
from noisy oracle responses. We consider the generalized PBA setting (G-PBA) where the
statistical distribution of the oracle is unknown and location-dependent, so that model
inference and Bayesian knowledge updating must be performed simultaneously. To this
end, we propose to leverage the spatial structure of a typical oracle by constructing a
statistical surrogate for the underlying logistic regression step. We investigate several
non-parametric surrogates, including Binomial Gaussian Processes (B-GP), Polynomial,
Kernel, and Spline Logistic Regression. In parallel, we develop sampling policies that
adaptively balance learning the oracle distribution and learning the root. One of our
proposals mimics active learning with B-GPs and provides a novel look-ahead predictive
variance formula. The resulting gains of our Spatial PBA algorithm relative to earlier
G-PBA models are illustrated with synthetic examples and a challenging stochastic root
finding problem from Bermudan option pricing.

Keywords: Stochastic Root-Finding, Simulation metamodeling, Uncertainty Quantifica-
tion.

1 Introduction

The Probabilistic Bisection Algorithm (PBA) is a numeric estimation procedure for learning
an unknown parameter x∗ (defined on a bounded search space, without loss of generality
[0, 1]) based on the information provided by noisy responses observed independently at sam-
pling/querying sites x1:n := (x1, . . . , xn). In the context of the Stochastic Root Finding
Problem (SRFP) (Pasupathy and Kim, 2011; Waeber et al., 2011), the PBA can be used
to learn the root, x∗ := h−1(0), of a noisily observed real-valued function h : [0, 1] → R.
Specifically we consider an oracle of the form

Y (xn) := signZ(xn), (1)

where the structural form of the (random) responses Z(xn) in (1) is given by

Z(xn) := h(xn) + ε(xn). (2)
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The noise component ε(xn) in (2) is assumed to be a symmetric heteroscedastic (i.e., input-
dependent) random term with mean E[ε(xn)] = 0 and variance Var(ε(xn)) := σ2(x), with
independent realizations across different oracle calls.

The PBA leverages the classical bisection search strategy in a noise-free setting: repeatedly
halve the search region and then select a subinterval in which a root must lie for further
processing. The stochastic PBA accounts for the noise in the oracle responses by considering
x∗ as the realization of an absolutely continuous random variable X∗ ∼ g0 with prior density
g0 supported on [0, 1]. The PBA then works with the sign of the noisy function evaluations (1),
which provide information as to whether x∗ lies to the left or to the right of a given xn, in
order to subsequently update a posterior density for X∗,

gn(X∗) := p(X∗|Y1:n, x1:n). (3)

Thus, gn is the pdf of the root locationX∗ conditional on the history Y1:n := (Y1(x1), . . . , Yn(xn))

of oracle responses, the sampling locations x1:n and the prior g0. The posterior (3) then serves
for the twin purposes of guiding the election of the next sampling location xn+1 at which to
query (1), as well as to provide a point estimator x̂n for X∗ (e.g., the posterior median or
mean of gn(·)).

Due to the noise term ε(xn) in the simulation outputs Z(xn) in (1), the responses Y (xn) =

signZ(xn) translate into potentially inaccurate oracle directions. To account for such “mis-
takes”, the PBA considers the probability of correct sign,

p(xn) := P
(
Y (xn) = sign{xn − x∗}

)
, (4)

henceforth referred to as oracle specificity or accuracy, which is then used to update knowl-
edge about X∗ by re-weighting the current gn proportionally to p(xn). Waeber et al. (2013)
provided an explicit recursive updating formula under the restrictive condition that the oracle
accuracy is a known constant p(x) = p∗ > 1/2 for all x ∈ (0, 1). This assumption of spatial
oracle stationarity would tend to be met in applications where the transition between regions
in h is abrupt. As an example, if a city’s water supply were contaminated with a danger-
ous chemical we would want to localize the extent of contamination as quickly as possible,
and if the chemical did not dissolve well in water but instead tended to stay concentrated, we
would face a situation with such abrupt transition between contaminated and uncontaminated
water (Powell and Ryzhov, 2012).

However, in the more general and practical case, including the SRFP in (2), p(x) is
unknown and location-dependent and hence must be itself estimated. The Generalized PBA
(G-PBA) that we developed in Rodriguez and Ludkovski (2017) extends the classical PBA by
using the observed data to construct a point estimate, p̂(x), for p(x), as well as to learn the
root location X∗ in parallel. The proposed estimators p̂(xn+1) under the aforementioned G-
PBA paradigm were constructed locally at xn+1 (i.e., without using information from previous
locations x1:n). As such, they were robust to arbitrary specification of p(·) and made minimal
assumptions about the oracle.

Surrogate modeling. In this article we construct a spatial G-PBA by modeling the
entire oracle accuracy x 7→ p(x) using a surrogate.
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The surrogate relies on two main premises: (i) Due to symmetrical noise distribution of the
functional responses (2), the oracle accuracy (4) can be re-formulated as p(x)= max{θ(x), 1−
θ(x)}, where

θ(x) := E
[
1{Z(x)>0}

]
(5)

is the probability of observing a positive oracle response. Thus, inference on p(x) can be
performed by inferring θ(x) first and then plugging in a spatial-based estimate θ̂n(x) into
p(x)= max{θ̂n(x), 1− θ̂n(x)}, and (ii) the smoothness of the map x 7→ θ(x), implies that p(x)

and p(x′) should be similar when x and x′ are deemed close to each other.
The spatial structure is natural in the root-finding context and provides two key benefits.

On the one hand, it improves estimation of a given p(xn) through leveraging the knowledge
acquired at previous sampling locations x1:n−1. On the other hand, it enables better sampling
strategies by furnishing a prediction p̂(x) at arbitrary, unsampled sites x. In contrast, in G-
PBA, p̂(xn+1) was only available a posteriori after sampling at xn+1.

The resulting Spatial G-PBA strategy blends the root-centric framework of PBA and
the function-centric paradigm of response surface modeling (RSM). Indeed, a further alter-
native for solving the SRFP would be to learn the entire θ(·) and then take x̂ = θ̂−1(0.5)

since h(x∗) = 0 ⇔ θ(x∗) = 0.5. Thus, stochastic root-finding can be recast as a (localized)
learning task, namely contour-finding for θ(·) at the level 0.5. Strategies similar to Bayesian
optimization (Jones et al., 1998; Chevalier et al., 2014) can then be employed to efficiently
target this objective during sequential design. Nevertheless, several challenges are encoun-
tered with such an approach that are circumvented in PBA. First, a major feature of PBA
is full uncertainty quantification: the algorithm provides not only the point estimate x̂ but
also the entire posterior distribution fn of X∗ conditional on the data. Typical RSM models
return only point estimates (or pointwise credible intervals) of θ(x); the latter are difficult
to “invert” into uncertainty about θ−1(0.5) (Azzimonti et al., 2016). Second, existing experi-
mental design approaches for contour-finding are developed only for simple models (e.g. with
zero or constant observation noise), and their performance in a complex stochastic setting
like ours is poorly understood. In contrast, the PBA framework explicitly targets the goal
of reducing uncertainty about X∗. PBA moreover exploits the structural knowledge of a
unique root to speed up estimation, an option that is not available in contour-finding. Third,
contour-finding usually assumes continuous response, and nontrivial modifications (essentially
“logistic” contour-finding) are necessary to handle binary Yn ∈ {−1, 1}. In contrast, PBA is
intrinsically designed for binomial responses.

Given the above discussion, we construct a hybrid algorithm that borrows the best of
both worlds. We exploit the smoothness of h that implies spatial dependence in θ(·) and
hence accelerates learning the oracle. At the same time, we employ the paradigm of PBA
to construct the knowledge state fn (a pseudo-posterior of X∗) that is the primary driver of
sampling decisions and uncertainty quantification. For the RSM component, we rely on two
key concepts. First, we investigate non-parametric architectures that have the flexibility to
consistently learn the entire response x 7→ θ(x) and to handle non-uniform simulation designs.
The latter point is key as we wish to organically refine the surrogate in regions where more
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inputs are placed (namely close to the root), but at the same time give a good global fit. To
handle the binary responses (1) we employ logistic regression which represents the probability
of observing a positive response θ(x) = E[1Zn(x)>0] via a latent process ϕ(x) := logit(θ(x)).
Other link functions can also be used but as we show in the sections below, the canonical
Bernoulli logit link is best suited for our needs. For capturing the spatial surrogate ϕ, we
consider Gaussian Process (GP) models, as well as spline, kernel and polynomial logistic
regressions. Second, we apply batched sampling that significantly lowers the computational
overhead of surrogate construction and improves the learning of θ(·). Replicated experimental
designs allow to blend the local inference of θ(xn) with the global fitting of the surrogate.
They also offer a new aspect of sequential design, namely adaptive replication, linking to the
active learning literature in Bayesian optimization.

Summary of Contributions and Related Literature. Our contributions can be
traced along two directions. First, the developed G-PBA algorithm extends existing proba-
bilistic bisection schemes in Jedynak et al. (2012); Waeber et al. (2011, 2013); Waeber (2013);
Frazier et al. (2016), in particular making them much more efficient even when the oracle
distribution is a priori unknown. Thus, we contribute to the stochastic root-finding toolkit.
Second, our work has independent interest in terms of applications of binomial GP (B-GP)
surrogates. To this end, we provide an original result for the look-ahead variance formula of
a binomial GP, that to our knowledge is not available in existing literature. This provides a
new application of B-GPs in the context of active learning, linking to related work in Kapoor
et al. (2007); Tesch et al. (2013); Wang et al. (2016).

In the extensive numerical section, we demonstrate that by introducing a spatial surrogate
we are able to improve PBA’s accuracy in the root estimation. By using three different
synthetic examples, we show that absolute residuals decay faster using spatial surrogates
than their corresponding (local) G-PBA methods. Additionally, the posterior uncertainty of
the root estimate, as measured by the width of the posterior credible interval (CI), is reduced
and, most importantly, the probability coverage (i.e., the proportion of macro-runs where the
CI contains the actual root value) drastically increases with respect to their local counterparts.

The rest of the paper is organized as follows. In Section 2 we describe the model method-
ology used to provide a spatial estimate for p(·). Section 2.2 then describes an adaptive
batching/replication scheme in order to determine the number of replicates an+1 given an
estimated surrogate model. Section 3 develops the surrogate-based sampling schemes for the
SRFP. In Sections 4 and 5 we illustrate the developed Spatial G-PBA with several synthetic
examples and a challenging real-world application coming from an Optimal Stopping problem.

2 Spatial Modeling of the Oracle

PBA works in the sequential setting, adaptively picking query sites xn+1 given information
from previous queries. The latter is summarized via a knowledge state fn which captures
the Bayesian formulation of the SRFP, translating the task of learning the root X∗ into
quantifying the corresponding posterior uncertainty. At each iteration n = 1, . . ., the oracle is
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called an ≥ 1 times at a fixed sampling location xn with the responses (Z1(xn), . . . , Zan(xn))

aggregated via the total number of positive signs observed at xn:

Bn(xn) :=

an∑
j=1

1{Zj(xn)>0}. (6)

The overall information set by round n is therefore Dn := (B1:n, a1:n, x1:n). We shall dis-
tinguish between the macro counter n that keeps track of PBA iterations, i.e. the number
of distinct sites x1:n, and the wall clock Tn :=

∑n
i=1 ai that counts total number of function

evaluation and hence the overall computational expense. Occasionally, we abuse the notation,
switching between writing fn and fTn .

Given the current knowledge state fn and a total simulation budget of T > 0 wall-clock
iterations, the fundamental G-PBA loop is:

Initialize T0 and p̂0;
while Tn < T do

Choose xn+1 based on fn and p̂n(·);
Call the oracle an+1 times at xn+1 and record Bn+1 as in (6);
Use (an+1, Bn+1) to update fn+1 ← Ψ(fn, Bn+1; p̂(xn+1), an+1) and re-fit p̂n+1(·);
Update wall-clock time: Tn+1 ← Tn + an+1 and increment n← n+ 1 ;

end
return Knowledge state fn ' gn and estimator for the root location x̂n.

Algorithm 1: G-PBA iterations

In the general case of unknown and varying oracle specificity, the key ingredients of Algo-
rithm 1 are:

(GPBA-I) statistical learning sub-routine for p̂(·).

(GPBA-II) the mechanism to update knowledge states Ψ : fn → fn+1;

(GPBA-III) the sampling rule η for selecting xn+1 = η(fn; p̂n) given fn and p̂n.

Learning sub-routine for p̂(·). For estimating the oracle specificity, G-PBA relies on the
aggregated number Bn of positive signs observed at xn across an oracle queries. Replicates
decouple the problems of learning X∗ and of learning p(·); they also boost the signal-to-
noise ratio which allows faster convergence at the macro-level. The original G-PBA did
this locally, returning an estimate p̂(xn) depending solely on (xn, an, Bn). In this paper we
extend (GPBA-I) by introducing a surrogate model x 7→ ϕ(x) on (5) which is built upon
the history of binomial responses B1:n := (B1(x1), . . . , Bn(xn)) observed at all queried x1:n.
In particular, we have that Bn(x) ∼ Bin(an, θ(x)) is a binomial random variable which is
statistically sufficient and unbiased for θ(x). To learn θ(·) we therefore regress B1:n against
the locations x1:n, linking each xi to θ(xi) via the canonical Bernoulli link function:

log

(
θ(xi)

1− θ(xi)

)
= ϕ(xi), i = 1, . . . , n. (7)
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We consider two families for ϕ(·): (A) Gaussian random field approach (Williams and Ras-
mussen, 2006) that takes ϕ as a latent Gaussian process (GP) and outputs the posterior
distribution p(ϕ∗|Dn); (B) a linear additive model that assumes that ϕ is an element of a
linear space H spanned by a collection of basis functions, i.e., ϕ(x) =

∑p
j=1 βjφj(x), with the

coefficients β := (β1, . . . , βp) fitted, for example, by penalized MLE.
Given the fitted surrogate ϕ̂n, the estimate for p(·) is a plug-in estimate of the form:

p̂n(x) := max{θ̂n(x), 1− θ̂n(x)}; where θ̂n(x) ≡ Θ(ϕ̂n(x)) := [1 + e−ϕ̂n(x)]−1. (8)

Updating knowledge states.
The knowledge state fn is intended to capture all available information aboutX∗ given Dn.

Since the true Bayesian posterior gn is not attainable due to unknown p(·), we notationally
distinguish between the approximate knowledge state fn and the true gn (3). For assimilating
information, we mimic the exact Bayesian updating from Waeber et al. (2011) and use the
batched knowledge state transition introduced in Rodriguez and Ludkovski (2017). Thus we
take fn+1 = Ψ(fn, xn+1, Bn+1; p̂n+1, an+1) with

Ψ(fn, xn+1, Bn+1; p, a)(u)∝


[
p(xn+1)

Bn+1(1− p(xn+1))
a−Bn+1

]
fn(u), xn+1 < u

[
(1− p(xn+1))

Bn+1p(xn+1)
a−Bn+1

]
fn(u), xn+1 ≥ u.

(9)

Note that we replace the unknown p(xn+1) with the surrogate-based p̂n+1(xn+1). Over mul-
tiple rounds, this implies that fn depends on the historical estimates ϕ̂1:n(x1:n) introducing a
complex path-dependency between the latest knowledge state and the past surrogates of p(·).

Sampling strategies. A sampling policy η is a rule which maps knowledge states
to actions, namely sampling decisions. The sampling decision to be made at step (n + 1)

concerns the new query site xn+1 and the respective number of replicates an+1. We consider
two complementary ideas: (i) first select an+1 and then xn+1; (ii) choose xn+1 and then
determine the respective an+1.

Approach (i) utilizes fixed replication amount a ≥ 1 and selects the new xn+1 using an
information-theoretic criterion. In analogy to the Information Directed Sampling (IDS) policy
used in the G-PBA context (Rodriguez and Ludkovski, 2017), we consider a criterion based
on the batched expected Kullback-Leibler (KL) divergence E[D(fn+1; fn)] between fn and the
updated knowledge state fn+1 = Ψ(fn, x,Bn+1; p̂n+1, a),

I(x, fn; p̂n(x), a) := EB(x)
p̂

[∫ 1

0
log2

(
fn(u|B(x), a)

fn(u)

)
fn(u)du

]
; (10)

where the expectation is taken with respect to the random variable B(x) ∼ Bin(a, p̂n(x)) and
p̂n(·) is recovered using (8). Given the acquisition function (10), the next sampling location
is its greedy maximizer

xsIDS
n+1 := arg sup

x∈(0,1)
I(x, fn; p̂n(x), a).

The IDS rule was shown to be optimal for the base case of known and constant p(x) and
a = 1 (Jedynak et al., 2012). In that case it is known to correspond to selecting xn+1 which
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maximizes the conditional mutual information between the oracle response Yn+1(xn+1) and
X∗ given fn. Approach (ii), dubbed Randomized Quantile Sampling (RQS), selects locations
using the knowledge state fn as a proposal density, i.e., xRQS

n+1 ∼ fn(·) and then adaptively
picks an+1. The RQS strategy resembles Thompson sampling (Russo and Van Roy, 2016) and
was shown to be competitive with IDS (and frequently slightly better) in the earlier G-PBA
context. Conditional on xn+1, an+1 is then picked to control the surrogate accuracy at xn+1

in order to ensure the right amount of learning.
Estimating the root X∗. The final ingredient is the rule x̂n to construct a point estimate

of the root x∗ based on fn. In analogy to the classical PBA setting (Waeber et al., 2013), we
utilize the posterior median which we find is generally more robust than say the mean, as fn
is often skewed or multi-modal,

x̂n := median(fn). (11)

2.1 Binomial Gaussian Process Regression

GPs can conveniently be used to specify prior distributions for Bayesian inference in the
regression context and are widely adopted for sequential design tasks. In G-PBA they facil-
itate managing the sample budget for calling (2) by quantifying the predictive uncertainty
at the next sampling site xn+1 in terms of the number of replicates an+1 (Kamiński, 2015;
Binois et al., 2018b). The related Binomial Gaussian processes (B-GPs) (also known as GP
classification and originally introduced in Williams and Barber (1998)) arise naturally in the
context of latent variable regression for (5). In this case, the ϕ is seen as a realization of a
random process whose finite dimensional distribution follows a Multivariate Normal (MVN)
distribution and whose spatial dependency is described by a (stationary) covariance function.

While for plain regression with Gaussian noise inference can be done in closed form, since
for a given election of covariance kernel the posterior corresponds also to a GP (Williams
and Rasmussen, 2006), this is no longer the case for B-GPs. Indeed, since the binomial data
likelihood is not conjugate to the Gaussian prior, exact inference is analytically intractable
and therefore approximations to the predictive posterior must be conducted. One route
summarized in Nickisch and Rasmussen (2008) is based on approximating the non-Gaussian
posterior with a tractable Gaussian distribution. Some of the most common instances of such
schemes are the Laplace Approximation (LA) (Williams and Barber, 1998) and Expectation
Propagation (EP) (Minka, 2001).

Let us assume that the surrogate ϕ in (7) is drawn from a GP prior, ϕ ∼ GP(0, κϑ(·, ·)),
characterized by a covariance kernel function κϑ(·, ·) and parameterized by a vector of hy-
perparameters ϑ ≡ (τ2, l). One of the most commonly used kernels is the Matérn-5/2 family,

κϑ(xi, xj) := τ2
[
1 +
√

5r/l + 5r2/(3l2)
]
e−
√
5r/l r := |xi − xj |; (12)

where τ2 ≥ 0 is the intrinsic GP variance, and l > 0 is the length-scale, which governs how
fast the correlation decreases as the distance |xi − xj | between inputs increases.
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Binomial GPs as latent variable models. For fixed hyper-parameter ϑ, the joint
distribution of the vector ϕ1:n := (ϕ1(x1), . . . , ϕn(xn)) is a MVN

ϕ1:n ∼ N(0,Kn), (13)

where E[ϕ1:n|x1:n] = 0 is the mean vector and Kn ≡ Cov(ϕ1:n|x1:n) is the covariance matrix
with entries κϑ(xi, xj) = Cov(ϕi, ϕj |xi,j). Inference of θ(·) in (5) is conducted in two stages.
First, we compute the posterior distribution of the vector ϕ1:n given the training data Dn :=

(B1:n, a1:n), consisting of the history of binomial Bi responses and number of queries ai at
each location xi,

p(ϕ1:n|Dn) ∝ p(B1:n|ϕ1:n, a1:n)p(ϕ1:n); (14)

which is proportional to the binomial data likelihood p(B1:n|ϕ1:n, a1:n) times the MVN prior
p(ϕ1:n) given by (13). Second, the posterior predictive distribution ϕ∗ ≡ ϕ∗(x) at a location
x ∈ (0, 1) is

p(ϕ∗|Dn) :=

∫
p(ϕ∗, ϕ̃1:n|Dn, x)dϕ̃1:n, (15)

which is calculated by marginalizing the distribution of ϕ∗ over the joint posterior distribution
of (ϕ1:n, ϕ∗) given by (14). Finally, the predicted θ̂GP (x) is produced by averaging the inverse
link function with respect to (15); i.e., θ̂GPn (x) :=

∫
(1 + e−ϕ∗)−1 · p(ϕ∗|Dn)dϕ∗.

Remark 1. Following the classical inference paradigm for binomial regression we assume that
θ(ϕ(xi)) is related to the random variable ϕ(xi) via the canonical logistic link function (7).
Although other link functions can be entertained (such as the probit link), we use the logistic
one since this link is used to obtain closed-form expressions for adaptive replication (see
Lemma 2.1 in Section 2.2).

The main challenge in computing the joint posterior (14) is that the MVN prior over
ϕ1:n does not correspond to a conjugate prior for the binomial likelihood, so either analytic
approximations of integrals or solutions based on MCMC sampling are required. A commonly
used method is to approximate the non-Gaussian posterior p(ϕ1:n|Dn) with a Gaussian one
via Laplace Approximation.

Laplace Approximation. The Laplace method is constructed from the second order
Taylor expansion of the score function, L(ϕ1:n) := log p(ϕ1:n|Dn), around its mode:

ϕ̂n = arg max
ϕn

p(ϕn|Dn).

In Appendix A we show that this method yields a MVN approximation:

p(·|Dn) ' q(·|Dn, ϕ̂n) = N(·; ϕ̂n, (K−1n + Ŵn)−1), (16)

where
ϕ̂n := (ϕ̂1;n, . . . , ϕ̂n;n) (17)

is found numerically via Newton-Raphson iterations using the training data Dn, and Ŵn

is the n × n Fisher Information matrix of the binomial (negative) log-likelihood l(ϕ1:n) :=

log p(B1:n|a1:n, ϕ1:n). Importantly, if the canonical link is used, then the i-th entry of Ŵn

corresponds to the variance of the binomial response Bi at xi:
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Lemma 2.1. Under the Bernoulli link function (7), the Hessian Ŵn(ϕ1:n) = −∆l(ϕ1:n) is
diagonal:

wij =

{
aiΘ(ϕi;n)(1−Θ(ϕi;n)), i = j,

0 i 6= j, for i, j = 1, . . . , n.
(18)

Hence, we have that Ŵn = diag(ŵ1;n, . . . , ŵn;n); where ŵi;n := aiΘ(ϕ̂i;n)(1−Θ(ϕ̂i;n)) are
evaluated at the posterior mode (17). Having found the joint (16), the (approximated) predic-
tive posterior density ϕ∗ ∼ N(mn(x), s2n(x)) is also Gaussian with mean mn(x) ≡ mn(x; ϕ̂n)

and posterior variance s2n(x) ≡ s2n(x; ϕ̂n):

mn(x) := KT
nK

−1
n ϕ̂n; (19a)

s2n(x) := κTn (Kn + Ŵ−1
n )−1κn, (19b)

where κn := (κ(x, x1), . . . , κ(x, xn))T is the n× 1 vector of covariances between ϕ∗ and ϕ1:n.
The resulting point estimate for θ(x) given Dn is thus

θ̂GPn (x) :=

∫
R

(1 + e−ϕ∗)−1N(ϕ∗;mn(x), s2n(x))dϕ∗, x ∈ (0, 1). (20)

Numerically, θ̂GPn (x) is obtained by approximating the integral in (20) via a quadrature
method. In particular we use integrate() which is part of the core distribution of R and
relies on the Gauss-Kronrod quadrature method (R Core Team, 2016).

Hyper-parameter estimation. The above model specification is valid for fixed hyper-
parameters ϑ. To optimize the latter, we consider a maximum a posteriori estimate (MAP),
ϑ̂ := arg maxϑ{log q(Dn|ϑ) + log q0(ϑ)} based on a prior q0(·). In order to obtain ϑ̂ we use
the package GPstuff (Vanhatalo et al., 2013), which uses interleaved numerical optimization:
at iteration m given ϑ̂(m), evaluate the covariance matrixKn(ϑ̂(m)) = (κϑ̂(m)(xi, xj))

n
i,j=1 and

so estimate the mode ϕ̂(m)
n ; then fix ϕ̂(m)

n and find ϑ̂(m+1) = arg maxϑ log q(Dn|ϑ, ϕ̂(m)
n ) +

log q0(ϑ), where q(Dn|ϑ, ϕ̂(m)
n ) is the data marginal log-likelihood,

log q(Dn|ϑ, ϕ̂n) = −1

2
ϕ̂TnKn(ϑ)−1ϕ̂n+log p(B1:n|a1:n, ϕ̂n)−1

2
log{|Kn(ϑ)|·|Kn(ϑ)−1+Ŵn(ϕ̂n)|},

which is available in closed-form, see Algorithm 5.1 in Williams and Rasmussen (2006).

2.2 Adaptive Batching using the Posterior GP Variance

The posterior variance sn(·) of the surrogate quantifies the quality of learning the latent GP.
It can be used to guide sampling decisions via the associated information gain regarding ϕ(·).
This is achieved by considering the look-ahead sn+1(·) conditional on sampling at xn+1. For
plain GPs, sn+1 is independent of the future response and hence can be evaluated exactly.
Unfortunately, for binomial GPs the look-ahead predictive variance does depend on the future
Bn+1(xn+1). Specifically, Equation (21) expresses the fact that s2n+1(xn+1) depends on the
entire ϕ̂n+1 (computed based on Dn+1).
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Theorem 2.2. The look-ahead variance s2n+1(xn+1) at a new location xn+1 under the Laplace
approximation (19) is given by

s2n+1(xn+1) =

(
1

s2n(xn+1; ϕ̂1:n,n+1)
+

1

an+1 ·Θ(ϕ̂n+1,n+1)(1−Θ(ϕ̂n+1,n+1))

)−1
(21)

'

(
1

s2n(xn+1)
+

1

an+1θ̂GPn (xn+1)(1− θ̂GPn (xn+1))

)−1
, (22)

where s2n(xn+1) is the iteration-n posterior variance from (19b) and θ̂GPn (xn+1) is from (20).

The approximation in (22) aims to remove the dependence of (21) on Bn+1 by using only
information available at iteration n. To do so, we approximate the denominator of the first
term in (21) via s2n(xn+1; ϕ̂n) ' s2n(xn+1; ϕ̂1:n;n+1), that is, using the estimated posterior
mode at time n. Similarly, the future local binomial variance in the second term of (21) is
approximated by its iteration-n counterpart an+1θ̂

GP
n (xn+1)(1− θ̂GPn (xn+1)); see the full proof

in the Appendix.
The look-ahead variance forms the basis of numerous expected improvement (EI) design

heuristics that quantify the gain from sampling at xn+1, see e.g. Jones et al. (1998); Chevalier
et al. (2014). Below we adapt these concepts to the setting of binomial GPs by quantifying
the approximate reduction in posterior variance of ϕ(xn+1) due to sampling an+1 replicates
at xn+1 and hence allowing optimization of an+1 conditional on xn+1. Related batched EI
criteria have recently appeared in Kamiński (2015); see also Binois et al. (2018a).

The idea of adaptive replication is to aim for driving the iteration-n+1 variance s2n+1(xn+1) ≤
νn below a threshold νn. Using the variance decomposition formula in the RHS of (22) and
solving for aνn+1 we have that:

aνn+1 ≥
1

θ̂n(xn+1)(1− θ̂n(xn+1))
·
(

1

νn
− 1

s2n(xn+1)

)
.

We therefore consider the following adaptive replication scheme:

âνn+1 := aν0 ·1{s2n(xn+1)<νn}+
1

θ̂n(xn+1)(1− θ̂n(xn+1))

(
1

νn
− 1

s2n(xn+1)

)
·1{s2n(xn+1)≥νn}. (23)

Remark 2. We focus on the predictive uncertainty in the latent process ϕ as a measure to
determine an+1 —as opposed to the predictive variance of the random variable θ(ϕ(xn+1)).
Focusing on the uncertainty of the latent GP is a common strategy in sequential design
(especially when the data likelihood is Gaussian), see for example Ankenman et al. (2010);
Chen and Zhou (2017). Another common measure for constructing sequential designs is the
posterior predictive entropy (Kapoor et al., 2007) which is the preferred uncertainty measure
in the active learning framework.

2.3 MLE-Based Binomial Regression

An alternative approach to B-GPs is to fit a linear surrogate of the form ϕ(x) := βTφ(x) for
a given set of basis functions. Thus we seek the best fit in the function space H = span(φj :
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j = 1, . . . , p). The coefficients β ∈ Rp can be found by optimizing the penalized binomial
log-likelihood criterion

min
β

n∑
i=1

{
Bi

p∑
j=1

βjφj(xi) + ai log

1 + exp
( p∑
j=1

βjφj(xi)
)}+

1

2
λJ (

p∑
j=1

βjφj), (24)

where J (ϕ) is a penalty functional. The above specification includes the classical logistic
regression model when the basis elements in H are monomials and λ = 0, which we also
implemented with AIC-based selection of the degree of the polynomial.

Kernel Logistic Regression (KLR). Another choice is the family of positive definite
kernel functions φj(·) := κlj (·; ξj), where each basis element κlj (·, ξj) is indexed by a location
parameter ξj and a scale parameter lj . The corresponding space of functions H is a Reproduc-
ing Kernel Hilbert Space with penalty functional J (ϕ) = ||ϕ||22 = βTΦβ, where Φij = φj(xi).
A popular choice is the Gaussian radial kernel :

κl(x; ξ) := exp

(
−|x− ξ|

2

l2

)
. (25)

KLR behaves similarly to Support Vector Machines: data inputs are mapped to a space
spanned by positive definite kernel functions, and the loss function being optimized are also
similar (Zhu and Hastie, 2005). For our purposes, it is natural to use ξi = xi, i.e. a separate
kernel function for each query location.

Spline Logistic Regression (SLR). A further commonly used functional space H is
the B-spline basis where the φj ’s are piecewise continuous functions defined in terms of a set
of knots. Namely, an order-P spline with knots (ξj)

p
j=1 is a piecewise-polynomial of order P ,

and has continuous derivatives up to order P − 2. The B-spline family takes P = 4 and can
be represented in terms of p > 0 basis functions: φ1(x) = 1, φ2(x) = x, and for j = 2, . . . , p,
φj+1(x) = dj(x)− dj−1(x), where

dj(x) :=
(x− ξj)3+ − (x− ξp)3+

ξp − ξj
, j = 2, . . . , p. (26)

The basis coefficients β are fitted by penalizing the curvature of ϕ(·) using J (ϕ) = ||ϕ′′||22.

3 Sampling Policies

To make sampling decisions based on the surrogate ϕ and the information about X∗ contained
in fn we investigate three types of policies.

Batched Information-Directed Sampling. Our first approach utilizes fixed repli-
cation a ≥ 1 and selects the next xn+1 to maximize the estimated batched expected KL
divergence between the knowledge state at Tn and Tn + a as in (10), available in closed-form
according to Theorem 3.1.

11



Theorem 3.1. Let x ∈ (0, 1) and fn be the current knowledge state with cumulative distribu-
tion function (CDF) Fn(·). The expected KL divergence, E[D(fn+1; fn)] between fn+1 and
fn from a queries at x is given by

E[D(fn+1; fn)] = E
[
log2

(
(1− p(x))Bp(x)a−B

cn(x,B)

)]
Fn(x) (27a)

+ E

[
log2

(
p(x)B̃(1− p(x))a−B̃

cn(x, B̃)

)]
(1− Fn(x)). (27b)

where the expected values (27a) and (27b) are taken with respect to B ∼ Bin(a, 1−θ(x)) and
B̃ ∼ Bin(a, θ(x)), respectively.

Proof. By definition, the KL divergence between fn and fn+1 is:

D(fn+1; fn) =

∫ 1

0
log2

(
fn+1(u)

fn(u)

)
fn(u)du.

Since Pp(B = j|a, x, u) := Bin(j; a, 1− θ(x))1{u≤x} +Bin(j; a, θ(x))1{u>x} and for 0 < u < x∗

we have that fn+1(u) := [(1 − p(x))Bp(x)a−B]fn(u)/cn(x,B), cf. (9), so taking expectations
end up with

E[D(fn+1; fn)] =

∫ x

0
E
[
log2

(
(1− p(x))Bp(x)a−B

cn(x,B)

)]
fn(u)du

+

∫ 1

x
E

[
log2

(
p(x)B̃(1− p(x))a−B̃

cn(x, B̃)

)]
fn(u)du

which simplifies to (27). Above

cn(x,B) :=
[
(1− p(x))B(x)p(x)a−B(x)

]
Fn(x) +

[
p(x)B(x)(1− p(x))a−B(x)

]
(1− Fn(x))

is the normalizing constant of the updating (9).

We now re-use KL divergence to define an acquisition function I(x, fn; p(x), a) := Ep[D(fn+1; fn)]

as in (27) (emphasizing the dependence on the oracle accuracy p) and which is to be maxi-
mized over x. To illustrate the relationship between the knowledge state fn and the batched
information-criterion x 7→ I(x, fn; p(·), a), Figure 1 shows a realization of the Spatial IDS/PBA
algorithm for a fixed batch size a = 100 for n = 0, . . . , 9 starting with g0 ≡ Unif(0, 1) prior on
X∗. The underlying response is (31) consisting of a decreasing linear function h1 with root at
x∗ = 1/3, and for now we assume access to the true oracle accuracy p(x) = Φ(5|x− 1/3|), so
that the knowledge state is the exact Bayesian posterior gn. We notice that sampling at xsIDS

n+1

concentrates gn rapidly around the root x∗. Furthermore, I typically has two local maxima,
along with a global minimum at x∗ (sampling at the root is completely uninformative due to
p(x∗) = 0.5). The right panel of Figure 1 plots x 7→ I(x, g9; p(x), a10) across different repli-
cation values a10 ∈ {1, 10, 5, 100, 250}. It can be seen that as the batch size a is increased,
information gain increases, but the maximizer arg max I(x, g9; p(x), a) (vertical dotted lines)
does not change significantly. This is partly because the posterior g9 is already concentrated.
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Figure 1: Data acquisition procedure using the batched information criterion
I(·, gn; p(·), an+1) starting with a Uniform prior g0 for the linear test function (31) and
x∗ = 1/3. The first row shows the true Bayesian posterior gn for n ∈ {0, 1, 9}. The sec-
ond row depicts the information gain function along with its maximizer xn+1 (vertical dotted
lines). The right-bottom plot shows the information criterion I for several replication sizes
a10 ∈ {1, 10, 50, 100, 250} with the corresponding maximizers xsIDS

10 of the information crite-
rion I (vertical dotted lines) given the knowledge state g9 obtained by updating g0 using fixed
replication amounts a1:9 = 100.

Crucially, maximizing (27) requires knowledge of the entire x 7→ p(x). This was one of the
main challenges in the original G-PBA, where IDS was applied ad hoc after estimating p(x̃i)
at a set of M ≥ 2 candidate locations x̃1:M . However, under our spatial modeling setting one
can plug-in the surrogate p̂n(x) and compute the maximizer of the resulting I conditional on
sampling an+1 ≥ 1 times at any x ∈ (0, 1). Thus, xn+1 is chosen greedily as the maximizer of
I(·, fn, p̂n(·), an+1), that is,

xsIDS
n+1 := arg max

x∈(0,1)
I(x, fn; p̂n(x), an+1). (28)

A numeric optimization procedure is needed to find xsIDS
n+1. In our experiments below we

utilize the R package NLopt (Johnson, 2014). In particular, we use the DIRECT (DIviding
RECTangles) algorithm (Jones et al., 1993) that implements gradient-free deterministic-search
global optimization.

The next two schemes switch the order, first picking xn+1 and then an+1.
Adaptive One-Step IDS policy. Note that (28) requires specifying the replication

amount an+1. To implement the adaptive replication scheme (23) within the IDS approach,
we use an ad hoc heuristic which first maximizes I using a = 1 to get xn+1 and then selects
the replication amount aνn+1. Let

xAda-sIDS
n+1 := arg max

x∈(0,1)
I(x; fn, p̂n(x), 1). (29)
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Conditional on xn+1, an+1 is then picked to control the surrogate uncertainty at xn+1 ac-
cording to (23). Observe that Ada-IDS is only feasible with a B-GP surrogate furnishing the
predictive variance sn(xn+1).

Randomized Quantiles Sampling. The RQS strategy randomizes the next sampling
location according to

xRQS
n+1 := F−1n (Un+1), where Un+1 ∼ Unif(0, 1). (30)

The RQS policy can be interpreted as sampling based on the posterior distribution of X∗.
This tends to sample close to the mean of fn but will also occasionally explore the latter’s
tails, capturing the trade-off between exploitation and exploration. An attractive feature of
RQS is that it relies solely on fn so the surrogate θn is only used for updating fn in (9).

3.1 The Spatial Generalized Probabilistic Bisection Algorithm

Summarizing the above developments, Algorithm 2 specifies the ingredients for blending surro-
gate modeling with probabilistic bisection. Two remarks are in order. First, the initialization
step is non-sequential: we begin by employing N0 × a0 = T0 � T oracle evaluations to build
ϕ̂N0 , picking equidistant (i.e. space-filling) sites x1:N0 in (0, 1) and a0 ≥ 1 replications per site.
The corresponding fT0 is constructed via (9). Second, the surrogate re-fitting step in Algo-
rithm 2 is user-controlled, since re-fitting can be expensive. In principle, re-fitting could be
stopped entirely once n is large enough, keeping the overhead cost of predicting θn(x) fixed,
rather than increasing in n. We also note that the chosen surrogates are non-sequential,
i.e. re-estimating ϕ̂n is done from scratch, rather than via an updating formula (like is done
for fn).

4 Numeric Examples

We proceed to empirically assess the performance of Algorithm 2. To do so, we mix-and-
match the three components that the user must pick: the sampling policy η, surrogate model
for θ̂ and the batch size a (fixed or adaptive). To analyze the algorithm sensitivity to (η, p̂, a),
we consider multiple metrics regarding the quality of the root estimates, namely absolute
residuals, credible interval length, and corresponding coverage. Furthermore, we benchmark
against schemes that are allowed to use the true posterior gn and p(·), quantifying the impact
of learning the oracle. Our numeric examples are based on three test functions which capture
different aspects and difficulties typically encountered in SRFPs, such as heteroscedasticity
or zero curvature at the root location.

4.1 Experimental Setup

In analogy to Waeber (2013); Rodriguez and Ludkovski (2017), we utilize the following three
test functions hi(x) defined for x ∈ (0, 1):
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PBA parameters: Prior f0; T0 and a0 ≥ 1. Set N0 := T0/a0;
Surrogate initialization: Regress B1:N0 on locations x1:N0 to obtain the
surrogate model θ̂N0 ;

Update knowledge state starting from f0 to fT0 given θ̂N0 , B1:N0 and x1:N0 ;
n← N0, Tn ← T0, Dn ← (B1:N0 , a1:N0);
while Tn < T do

Using fn generate next sampling location xn+1 and batch size an+1;
Query oracle an+1 times at xn+1 to observe Bn+1(xn+1);
if (OPTIONAL) then

Re-fit surrogate for θ̂n+1 based on Dn+1 = (Dn, Bn+1, an+1);
else

θ̂n+1 ← θ̂n;
Update knowledge state at xn+1 fn+1 ← Ψ(fn, xn+1, Bn+1; p̂n+1, an+1) using
p̂n+1 = max{θ̂n+1(xn+1), 1− θ̂n+1(xn+1)};
Update Tn ← Tn + an+1 and n← n+ 1;

end
return Knowledge state fN and estimator for the root location x̂N = median(fN );

Algorithm 2: Spatial Generalized-PBA.

linear h1(x) = X∗ − x, σ1(x) = 0.2; (31)

exponential h2(x) = e2(X
∗−x) − 1, σ2(x) = 0.2 · 1{x<X∗} + 1 · 1{x>X∗}; (32)

cubic h3(x) = (X∗ − x)3, σ3(x) = 0.025. (33)

In all cases the stochastic simulator (2) consists of a Normally distributed ε(x)∼N(0, σ2i (x))

random noise and the root location X∗ ∼ Unif(0, 1) is drawn from a Uniform distribution on
(0, 1). We thus have that the ground-truth oracle θ(x) is given by θi(x) := Φ(−hi(x)/σi(x))

for i = 1, 2, 3.
Figure 2 displays the test functions hi(x) with x∗ = 1/3 (first row), the maps x 7→ θi(x)

(second row), and the corresponding logit(θi(x)) (third row) used for constructing ϕ̂. The base
example we investigate is the linear function (31) whose slope is constant and significantly
different from zero in locations close to the root X∗ and therefore leads to a simpler SRFP.
In contrast, the curvature of (32) together with the non-constant σ2(x) create a skew in the
oracle and the posterior fn. Finally, example (33) represents a difficult root-finding setting
due to h′3(X∗) = 0, which implies that p(x) ' 1/2 in the vicinity of X∗.

Performance Evaluation Metrics. For a given configuration (η, p̂, a) we use the fol-
lowing four performance metrics of the resulting Spatial G-PBA that all rely on fn:

1. Absolute residuals: to determine the accuracy of the estimator x̂n := median(fn) we
consider the L1-residuals,

r(fn) := |x̂n − x∗|; (34)
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Figure 2: Synthetic test functions (31), (32) and (33) for Section 4.

2. Credible intervals: we evaluate the degree of uncertainty associated to the unknown root
location X∗ through the length of a symmetric (1−α)% credible interval (CI) between
the α/2 and (1− α/2) percentiles of fn:

l1−α(fn) := F−1n (1− α/2)− F−1n (α/2); (35)

3. Coverage: to measure the accuracy of the above CI we evaluate

c1−α(fn) := Pr
{
x∗ ∈ [F−1n (α/2), F−1n (1− α/2)]

}
, (36)

where the averaging in Pr{·} is across Monte-Carlo (MC) runs of the algorithm to
capture the sampling distribution. If c1−α(fn) � (1 − α) the coverage test indicates
that fn prematurely collapses or equivalently overstates its confidence about X∗. Small
CI length l1−α relative to residuals r will lead to low coverage c. For both c and l we
use α = 0.05.

4. KL divergence: given the chosen querying sites x1:n, we compare fn to the true pos-
terior gn (which is available for our three synthetic examples but not for the case-
study in Section 5) using the KL divergence, D(fn; gn). Since both fn and gn are
updated at the same set of knots (sorted in increasing order) x̃1:n, we may write
gn(x) :=

∑n
j=1 g(x̃j−1)1x∈[x̃j−1,x̃j) and fn(x) :=

∑n
j=1 f(x̃j−1)1x∈[x̃j−1,x̃j), with x̃0 := 0

and x̃n := 1. We then obtain

D(fn; gn) :=
n∑
j=1

log

(
f(x̃j)

g(x̃j)

)
f(x̃j)(x̃j − x̃j−1). (37)

We make the usual convention that log(f(x)/g(x))f(x) = 0 if f(x) = 0 (including when
g(x) = 0); as well as log(f(x)/g(x))f(x) = +∞ if g(x) = 0 and f(x) > 0 (Cover and
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Thomas, 2006). Practically, to estimate the average KL divergence we consider only
finite values.

Performance metrics 1-4 are averaged using a total of MC = 100 Monte Carlo macro-
iterations. To make all schemes comparable, we fix X∗(i) ∼ Unif(0, 1) and each combination of
(η, p̂, a) is applied using the same root value X∗(i) during the i-th MC iteration, i = 1, . . . ,MC.
Surrogates for p(·):

• B-GP. For the binomial GP (B-GP) we use the 5/2-Matérn covariance kernel (12). The
hyper-parameters ϑ = (τ2, l) are estimated via a Bayesian MAP estimation procedure,
placing a square root uniform prior (i.e., q0(

√
τ2) ∝ 1) on τ2 and a Student-t prior

on the length scale parameter l (both default priors for binomial GPs in GPstuff).
Although parameter estimation can be expensive, the B-GP is re-fitted and updated
every Tn = an simulation outputs; that is, the hyper-parameters ϑ̂ are re-fitted and the
posterior mode ϕ̂n is re-computed every time a new pair of sampling location/binomial
response is observed, such that the surrogate is able to assimilate acquired information.

• KLR. Kernel Logistic Regression (KLR) is implemented with the Gaussian kernel basis
function (25) using a fixed length scale parameter l ≡ 1 and centering φj at each
sampling location ξj ≡ xj , j = 1, . . . , n (implying that we use as many kernel functions
as sampling points to learn ϕ). Since we would like to induce a surrogate model ϕ̂ that
closely resembles the local estimators p̂(·), we use a (small) fixed value λ = 0.01 as the
penalty parameter for optimizing (24). Numerically, we implement KLR as stated in
Algorithm 1 of Zhu and Hastie (2005).

• SLR: We consider a smoothing spline logistic regression (SLR) model where the penalty
coefficient λ̂ (aka smoothing parameter) is estimated via Generalized Cross-Validation (Fried-
man et al., 2001) jointly with the spline basis coefficients. In this case, the spline knots
ξj are placed at percentiles of the sampling locations x1:n. Thus, as the mass of fn con-
centrates around x∗ (and hence sampling locations x1:n concentrate around the root),
more knots ξj ’s are also placed near X∗, making the surrogate more localized in regions
where the variability of the binomial responses Bn is maximal.

• LR. Polynomial logistic regression with ϕ(x) = β0 +
∑5

j=1 βjx
5, a quintic polynomial

and zero penalty λ = 0 (to enforce surrogate flexibility). Both the SLR and LR sur-
rogates are implemented using the gam() routine from the mgcv package in R (Wood,
2001).

Sampling Policies η:

• Spatial Information-Directed Sampling (sIDS) (28);

• Spatial Randomized Quantile Sampling (sRQS) (30);

• One-step sIDS (29) combined with the adaptive replication scheme aνn+1.
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For the initialization stage in Algorithm 2 we use N0 equally spaced x1:N0 to learn ϕN0(·)
non-sequentially. In our experiments all surrogates are initialized using T0 := 5000 (i.e., 25%
of total sampling budget) oracle evaluations with a0 ∈ {100, 250} which results in N0 :=

T0/a0 ∈ {50, 20} initial training locations.
Adaptive Replication aνn+1. The scheme (23) has two parameters: theminimum replication
amount aν0 and the variance thresholding sequence (νn)n≥1. In our experiments, we use aν0 := 1

in order to favor exploration in regions where the spatial surrogate ϕ already learned p(·)
sufficiently well, as quantified in terms of the predictive posterior GP variance (19b). For νn
we use the following two variants (see Algorithm 2):

ν(100)n := 0.1/n when a0 = 100 and ν(250)n := 0.05/n when a0 = 250. (38)

This choice is linked to the fact that since the initialization stage budget T0 is fixed, larger
a0 makes N0 smaller and hence leads to larger sn, and so we take the thresholds νn larger
as well. To avoid excessive batching which could occasionally arise in our implementation
we bound aνn+1 (specifically by 1000 in all experiments). This allows to manage the overall
sampling budget in order to enforce exploration.

Figure 3 depicts the realized replication amounts n 7→ aνn+1(xn+1) using the one-step
sIDS policy (29) applied to our running example (31) (during initialization, n ≤ N0 := T0/a0,
an ≡ a0 is fixed). We observe that aνn+1 generally slowly decreases as n rises, although the local
behavior can be quite “spiky”: sometimes a large batch is required to bring s2n(xn+1) below
νn, see top panels of Figure 3. One reason is that as n increases, the sampling concentrates
around x∗. Since this region quickly becomes well-explored, we usually obtain quite low
s2n(xn+1) making an+1 low as well. To give a sense of the macro-time behavior, by T = 2 · 104

the median number of sampling locations is NT = 291 and NT = 116 (for mean replication
amounts of 70 and 170 respectively) for the thresholding sequences ν(100)n and ν(250)n in (38).

4.2 Illustrating Spatial G-PBA

Figure 4 compares the fitted surrogate models using a fixed dataset DηN (in order to remove
the effect of the design and target surrogate accuracy) generated using two different sampling
policies η: sIDS (first row) and sRQS (second row) implemented using the true posterior gn
and the linear test function (31). For all models a fixed batch size a ≡ 100 and N = 200 total
training locations is used. Figure 4 depicts three fundamental features of spatial G-PBA:
(i) the sIDS strategy achieves lower posterior X∗-uncertainty relative to the sRQS policy,
as seen in the narrower confidence bands depicted in the right panel; (ii) the design of the
sIDS strategy brackets the root, gradually squeezing the posterior fn towards X∗; and (iii)
the spatial surrogates succeed in learning the true θ1(x) := Φ(−1/3−x

0.20 ) especially around the
root, cf. the left panels of the Figure. As a result, root estimation is significantly improved
and leads to reliable posterior CIs on the right panels of Figure 4.
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ν
(100)
n = 0.1/n (first column) and ν(250)n = 0.05/n (second column), when the initial batch size
a0 for initializing the B-GP is a0 = 100, 250, respectively. Second row : adaptive replication
amount aνn+1(xn+1) (y-axis) in macro-time n (x-axis) selecting xn+1 using the one-step IDS
criterion (29).

4.3 Results

Table 1 shows the results for the linear test function (31). To allow a direct comparison to
the non-spatial G-PBA, the last few rows present the performance of the best local G-PBA
schemes as identified in Rodriguez and Ludkovski (2017):

• the empirical majority proportion, p̄(xn) := max{Bn/an, 1−Bn/an}; and

• the posterior mode given p̄(xn), p̂L0(x) := arg maxp∈(1/2,1) π(p|p̄(x)); where π(·|p̄(x)) is
the posterior density of p seen as a random variable with prior π0 ≡ Unif(1/2, 1).

The local estimators p̄ and p̂L0 are then applied within two non-spatial G-PBA policies:

• Deterministic-IDS (Det-IDS) which chooses xn+1 by maximizing I(x̃n,i; fn, p̂(x̃n,i), a0)

among the two candidates x̃n,i ∈ {F−1n (0.25), F−1n (0.75)} (i.e., the 25-th and 75-th
quantiles of fn);

• Local RQS which selects xn+1 according to (30).

Table 1 demonstrates that using surrogate modeling substantially improves root estimation
relative to the original G-PBA. Indeed, we obtain significantly lower residuals (roughly half as
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Figure 4: Spatial G-PBA with the linear test function (31). Left : B-GP, and SLR surrogates
trained on a fixed dataset obtained using the sIDS policy (first row) and the sRQS policy
(second row) at T = 2 · 104 and batch size a = 100 (so that N = 200). The x-axis is
zoomed to the neighborhood of x∗ = 1/3, so does not show the full DN . Right : posterior
inter-quantile range (shaded regions) across spatial surrogates (colors) and sampling policies
(rows) as a function of Tn. We also show the corresponding root estimates x̂n = median(fn)

(lines). The true θ(·), as well as the estimated median using gn (i.e., knowledge state with
the true θ(·)) is shown with a dashed line, respectively.

big), and narrower CI across while maintaining a high probability coverage. The latter shows
that the knowledge state fT is correctly converging to the true root value X∗. In particular,
polynomial logistic regression (LR) offers a good choice as it minimizes the average residuals
and length of CI, as well as matches the nominal coverage ĉ(fT ) ≈ 0.95, confirming that fT
is close to the true posterior gT .

Importantly, we can see that spatial modeling leads to a nearly two orders of magnitude
reduction in the average KL divergence between fT and gT , primarily due to the lower bias
in the estimation of p(·) relative to the two local estimators considered. Thus, spatial G-PBA
successfully resolves the problem of fT experiencing premature collapse which was a major
concern in G-PBA where cα was frequently unacceptably low. We note that D̂(fT ; gT ) is
consistently low across all surrogate models ϕ, indicating that the goodness-of-fit for θ(·) is
not overly sensitive to the choice of the surrogate type.

In terms of the sampling policies, sIDS outperforms sRQS since the respective average
residuals and CI length are lower while preserving a high coverage probability. For the repli-
cation regime an, we note a preference for a = 250 (i.e., a total of N = 80 design sites) which
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Table 1: Performance Monte-Carlo metrics for the test function h1 at T = 20, 000.

Policy η p̂
r̂(fT ) (10−2) l̂0.95(fT ) (10−2) ĉ0.95(fT ) D̂(fT ; gT )

a0=100 a0=250 a0=100 a0=250 a0=100 a0=250 a0=100 a0=250

sIDS

B-GP 0.2241 0.1874 0.8931 0.9215 0.88 0.98 0.62 0.39
KLR 0.2106 0.2037 0.8998 0.9496 0.95 0.96 0.57 0.38
SLR 0.1864 0.1954 0.8669 0.8810 0.87 0.89 0.64 0.59
LR 0.1956 0.1709 0.8852 0.8708 0.94 0.98 0.56 0.38

sRQS

B-GP 0.2230 0.1985 1.2683 1.3497 0.95 0.99 0.61 0.48
KLR 0.2152 0.1734 1.2052 1.3843 0.99 0.99 0.51 0.41
SLR 0.1935 0.2181 1.2027 1.2302 1.00 0.96 0.57 0.60
LR 0.1840 0.2012 1.2543 1.3174 0.96 0.97 0.56 0.50

Ada-sIDS
B-GP

0.2016 0.2060 0.9730 1.0051 0.97 0.96 0.34 0.33
Ada-sRQS 0.3025 0.2398 1.4612 1.5013 0.99 1.00 0.16 0.22

Det-IDS
p̄ 0.3692 0.2996 0.0196 0.0773 0.01 0.05 26.58 7.85
p̂L0 0.4377 0.3576 0.0769 0.2068 0.03 0.13 21.78 6.40

RQS
p̄ 0.4422 0.2528 0.0000 0.0038 0.00 0.01 31.74 19.59
p̂L0 0.4099 0.2735 0.0384 0.0202 0.01 0.03 32.60 17.63

tends to yield better learning rates about p(·) (and therefore about X∗) compared to a = 100,
as measured by the average KL divergence. Adaptive batching generally under-performs, es-
pecially sRQS that frequently uses excessive batch sizes (see Fig. 3) far from the root, and
hence does not exploit sufficiently. At the same time, adaptive batching achieves the lowest
KL divergence. It remains an open question how to best select the thresholding sequence.

Empirical results for the exponential and cubic test functions. Tables 2 and 3
show the performance metrics for the test functions h2 and h3, respectively. Results are largely
similar. As for h1 we observe a large improvement in performance relative to non-spatial G-
pBA, especially in terms of the coverage probability ĉ, which was improved from ĉ0.95 ≈ 0

(meaning the algorithm fails completely in providing a CI for x∗) to the actual nominal CI
coverage value, see the right-most columns of Table 2 and Table 3. In terms of sampling
policies, we note that sIDS again outperforms sRQS in terms of average absolute residuals and
length of CI for both h2 and h3. Furthermore, polynomial logistic regression (LR) continues
to be the best surrogate choice combined with fixed batch of an ≡ 100 (i.e., using a total
of N = 200 design points) implying a preference for exploration in these harder problems.
We note that B-GP performs worse, especially for h2, possibly due to the non-smoothness of
θ2(·) at the root (cf. Figure 2). Because B-GP assumes a smooth response surface it fails to
properly capture such “cusp” that calls for a spatially non-stationary covariance structure.

4.4 Evaluating the Quality of the Design

To focus on the sampling aspect of spatial G-PBA, we examine more closely the designs x(a,η)1:n

obtained from implementing the sampling policy η and batch size a. For this analysis we
return to h1 in (31) and use B-GP as the representative surrogate with a fixed batch size
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Table 2: Performance Monte-Carlo metrics for the test function h2 at T = 20, 000.

Policy η p̂
r̂(fT ) (10−2) l̂0.95(fT ) (10−2) ĉ0.95(fT ) D̂(fT ; gT )

a0=100 a0=250 a0=100 a0=250 a0=100 a0=250 a0=100 a0=250

sIDS

B-GP 0.5330 0.4439 1.1043 1.1666 0.45 0.53 1.61 1.41
KLR 0.4537 0.4098 0.7974 0.8751 0.46 0.44 3.23 2.79
SLR 0.4352 0.4076 1.0995 1.2555 0.67 0.80 1.21 0.86
LR 0.3814 0.4128 1.0641 1.1795 0.60 0.56 2.08 1.61

sRQS

B-GP 0.4817 0.5162 1.4630 1.6117 0.70 0.73 1.35 1.42
KLR 0.4602 0.5440 1.0787 1.3580 0.57 0.60 2.68 1.91
SLR 0.3956 0.4250 1.6651 1.7434 0.82 0.83 0.93 0.86
LR 0.4653 0.5143 1.7161 1.5902 0.79 0.67 1.40 1.34

Ada-sIDS
B-GP

0.5095 0.4883 1.3638 1.2129 0.49 0.52 1.62 1.83
Ada-sRQS 0.5586 0.5088 1.6736 1.7562 0.74 0.77 1.00 0.97

Det-IDS
p̄ 0.6848 0.4418 0.0211 0.1158 0.02 0.07 27.40 8.85
p̂L0 0.6570 0.5756 0.0090 0.3639 0.01 0.18 24.10 6.99

RQS
p̄ 0.7075 0.4846 0.0428 0.0649 0.02 0.07 27.88 12.36
p̂L0 0.8442 0.4686 0.0477 0.0527 0.02 0.06 24.43 10.71

of a = 100. To judge the quality of x(a,η)1:n for the SRFP, we compute the resulting exact
posterior g(a,η)n (·|x(a,η)1:n ) and evaluate the resulting absolute residual |median(ga,ηn ) − x∗| and
corresponding length of (1−α)%-CI. A design that is better quantifying uncertainty about X∗

should have lower residuals and lower CI. We then benchmark the resulting metrics against
the following baseline schemes which utilize the true p(x) (and therefore the actual posterior
density gn):

xn+1 := arg max
x∈(0,1)

I(x, gn; p(x), a) (IDS)

xn+1 := G−1n (Un+1), Un+1 ∼ Unif(0, 1); (RQS)

xn+1 ∼ Unif(0, 1). (Unif)

The sampling strategy (IDS) is optimal in the sense of maximizing the expected KL
distance between gn and gn+a, and hence we use it as an upper bound on performance;
(Unif) is a passive policy used as a lower bound. To make the baseline policies comparable
with the spatial G-PBA strategies, we implement the former with batched sampling using
the transition function (9) and a = 100. We also match the initialization step, employing
N0 = T0/a0 equidistant locations x1:N0 (with T0 = 5000) to construct gT0 , from which (IDS),
(RQS) and (Unif) are implemented.

Figure 5 visualizes the results. We observe that sIDS is the sampling policy which best
approximates the true IDS, and that all G-PBA strategies significantly outperform the (Unif)
baseline strategy. Interestingly, both randomized and information-directed policies appear to
have similar asymptotic performance in terms of average residuals and CI length.
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Table 3: Performance Monte-Carlo metrics for the test function h3 at T = 20, 000.

Policy η p̂
r̂(fT ) (10−2) l̂0.95(fT ) (10−2) ĉ0.95(fT ) D̂(fT ; gT )

a0=100 a0=250 a0=100 a0=250 a0=100 a0=250 a0=100 a0=250

sIDS

B-GP 4.3661 4.2959 8.2188 9.7472 0.57 0.64 1.87 1.57
KLR 4.3403 4.5771 13.0221 12.0456 0.76 0.76 1.32 1.36
SLR 4.4470 4.6160 7.3444 7.7896 0.49 0.46 2.35 2.23
LR 3.7645 3.6936 10.6028 10.5738 0.71 0.70 1.52 1.39

sRQS

B-GP 4.1913 4.0209 10.7298 10.8774 0.67 0.67 1.70 1.45
KLR 3.9131 3.7121 14.2680 14.0897 0.81 0.84 1.17 0.98
SLR 4.0451 4.1825 10.3663 10.2469 0.69 0.68 1.79 2.03
LR 3.6513 4.1276 12.9502 11.5623 0.80 0.66 1.27 1.31

Ada-sIDS
B-GP

4.1540 4.2334 11.1918 11.3152 0.68 0.67 1.11 1.11
Ada-sRQS 4.1874 4.0915 11.6808 12.9052 0.67 0.76 1.39 1.05

Det-IDS
p̄ 5.3257 4.8835 0.0187 0.4446 0.00 0.03 33.34 11.93
p̂L0 5.7587 5.3403 0.0001 0.3862 0.00 0.01 27.94 10.01

RQS
p̄ 5.1556 4.7262 0.0000 0.2978 0.00 0.01 37.77 15.16
p̂L0 5.3406 4.7325 0.0001 0.7267 0.00 0.02 31.77 12.68

5 Case-Study: Root-Finding for Optimal Stopping

In this section, we apply the spatial G-PBA Algorithm 2 to solve the root-finding sub-routine
for pricing a Bermudan Put option (Ludkovski, 2018). Valuing a Bermudan option with
maturity T̃ is equivalent to solving an optimal stopping problem

V (t, x) := sup
T̃≥τ≥t,τ∈S

E [H(τ,Xτ )|Xt = x] ,

where (Xt) is a stochastic process and H(t, x) is the reward function. Assuming the classical
discretized Black-Scholes model with time step ∆t we have that (Xt) is a log-normal random
walk and H(t, x) := e−rt(KPut−x)+, where KPut is the strike price and r > 0 is the interest
rate. In this setting, it is well-known that there is a unique exercise boundary x∗(t) ≤ KPut,
and one should exercise at the first t when Xt drops below this boundary. Finding the
exercise boundaries {x∗(t)} reduces to solving a sequence of SRFPs, that is, pricing the
Bermudan Put is equivalent to finding the solutions x∗(t) of the equation h(t, x) = 0 for
t = T̃ −∆t, T̃ − 2∆t, . . . , 0, where h(t, x) := V (t, x)−H(t, x) is the timing value.

The Longstaff and Schwartz (2001) method (LSM) recursively builds noisy simulators for
h(t, x) by generating forward paths xt:T̃ of the state process (Xt) and computing corresponding
path-wise stopping times τ ≡ τ(t + ∆t, xt:T̃ ) = min{s > t : xs ≤ x∗(s)} ∧ T̃ . Namely, the
pathwise difference ZLSMt (xt) := H(τ, xτ ) − H(t, xt) between future and immediate reward
over the given trajectory xt:T̃ satisfies E[Zt(xt)] = h(xt; t), matching the structure of the
oracle (2). The random component ε(t, x) arises intrinsically from the randomness in the
X-trajectory.

We implement the spatial G-PBA for the Bermudan Put oracle using KPut = 40, r =

0.06, σ = 0.25, T̃ = 1 and ∆t = 0.04, restricting the root-finding to the “in-the-money” domain
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Figure 5: Comparison of spatial sampling policies with respect to baseline policies using the
true posteriors gT . Left panel : average absolute residuals, median(gT ), against wall-clock time
T ; Right panel: average length of 95% CI l0.95(gT ) against T . Replication amounts fixed at
an = 250 ∀n.

x ∈ (25, 40). Following the discussion in Section 5 in Rodriguez and Ludkovski (2017), to
conform to the assumption of a symmetric noise distribution, we employ pre-averaging that
considers the sign of an average of R > 1 oracle evaluations:

Ȳ LSM
R (x) := sign Z̄R(x), Z̄R(x) :=

1

R

R∑
r=1

ZLSMr (x). (39)

The role of pre-averaging is to alleviate statistical anomalies of ε(·) via the Central Limit
Theorem; the resulting oracle accuracy for this case-study is: pLSMR (x) := P(Ȳ LSM

R (x) =

sign{x∗ − x}). Below we continue to record the clock-time Tn based on underlying oracle
evaluations (rather than the pre-averaged ones).

Due to the non-standard noise distribution and very low signal-to-noise ratio, this is a
difficult root-finding problem; in particular since we keep the simulation budget to T =

20, 000. We implement the simulator (39) with R = 25, which is roughly the minimal level
of pre-averaging required to alleviate the skew of ZLSM (Rodriguez and Ludkovski, 2017),
and a batch size of an ≡ 500. Thus, the effective number of replicates at each location is
ã := a/R = 20. All surrogates are initialized with ϕ̂N0 based on T0=0.25×T=5000 function
evaluations using N0 := T0/a = 10 design sites over the interval (25, 40). The adaptive
replication scheme (23) is implemented with aνn+1 = min{âνn+1, a/R}, where aν0 := 1 and
νPutn := 0.5/n, so that the maximum number of oracle evaluations is at most a = 500 per
querying location.

5.1 Results

Table 4 shows the average residuals, length of CI, and coverage probability of the spatial
G-PBA schemes compared against the baseline root location x̂∗(t) ' 35.1249 (here t = 0.6)
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Table 4: Spatial G-PBA Performance in the Bermudan Put SRFP with simulation budget
T = 20, 000. All metrics are averages across MC = 100 macro-replications of the algorithms.

η p̂ r̂(fT ) l̂0.95(fT ) ĉ0.95(fT ) (in %)

sIDS

B-GP 0.3210 0.8903 69.00
KLR 0.3598 0.6351 53.33
SLR 0.3158 0.9878 77.00
LR 0.2753 1.0687 88.50

sRQS

B-GP 0.2988 1.4064 86.00
KLR 0.3121 0.8209 62.00
SLR 0.3180 1.2005 74.50
LR 0.2913 1.4039 90.50

Ada-sIDS
B-GP

0.2225 0.6944 80.00
Ada-sRQS 0.3011 1.1121 76.47

found in Rodriguez and Ludkovski (2017). This time, adaptive replication with the one-
step sIDS policy (29) is the best-performing scheme. One reason could be that it allows
for more sampling locations (median number of sampling locations was median(NT ) = 55,
as apposed to 40 for the fixed an schemes). Among the rest, sIDS policy coupled with
the polynomial logistic regression model (LR) also performs very well, consistent with our
findings in Section 4. Relative to the non-spatial PBA in Rodriguez and Ludkovski (2017)
two important improvements are noted: (i) much better coverage probabilities, indicating the
gains in learning p(·) and hence maintaining a reliable knowledge state; (ii) residuals below
0.25 while they used to be about 0.35.

6 Conclusion

We have developed a family of numerical schemes that extend generalized probabilistic bisec-
tion (Rodriguez and Ludkovski, 2017) by modeling the unknown oracle accuracy p(·) through
a spatial surrogate based on non-parametric binomial regression. The spatial structure yields
two key benefits: (I) given the surrogate, the IDS criterion I can be predicted for any x,
allowing direct optimization of next querying site selection like in standard PBA; (II) em-
ploying a GP surrogate quantifies the predictive uncertainty of additional samples and hence
allows for adaptive batching schemes. Adaptive replication allows to automatically fine-tune
exploration by reducing replication amounts in regions where p(·) is already learned well.
Our numeric experiments confirm the advantages of Spatial G-PBA relative to the original
proposals in Rodriguez and Ludkovski (2017) with the new algorithm inducing more accurate
root estimates and better quantifying the posterior uncertainty about x∗.

Looking ahead, one motivation for considering PBA in the context of SRFP is its Bayesian
flavor that allows in particular to apply informative priors f0 as a way to warm-start the root
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search. This offers one way to lift PBA, which is intrinsically limited to a one-dimensional set-
ting, to higher dimensions. The analogue of SRFP in two-dimensions is noisy (zero-)contour-
finding, which can be viewed as a collection of root-finding problems in the first coordinate
x1, indexed by the second coordinate x2. Assuming the zero-contour is smooth, one may then
try to solve for a few x∗(x2) and then “connect the dots” through interpolation (or a further
surrogate model). Such searches can be made efficient with G-PBA by using fN (·;x2) as a
basis for an informative prior f0(·;x′2) at a new x′2. We leave such investigations to future
research.
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Appendices

Appendix A Binomial GPs and Laplace Approximation

Binomial log-likelihood Gradient and Hessian. We use the Bernoulli link function
Θ(ϕ) = (1 + e−ϕ)−1 which implies that conditional on ϕi = ϕ(xi), the number of positive
responses Bi :=

∑ai
j=1 1{Zj>0} follows a binomial distribution Bi∼Bin(ai,Θ(ϕi)) with log-

likelihood function (in the latent ϕ1:n):

l(ϕ1:n) ≡ log p(B1:n|ϕ1:n, a1:n) =

n∑
j=1

{
log

(
ai
Bi

)
+Bi log θ(ϕi) + (ai −Bi) log[1− θ(ϕi)]

}
.

Since Θ′(ϕ) := Θ(ϕ)[1 − Θ(ϕ)], the corresponding gradient vector un(ϕ1:n) := ∇l(ϕ1:n) is
given by

∂ϕi l(ϕ1:n) = ui = Bi
Θ′(ϕi)

Θ(ϕi)
− (ai −Bi)

Θ′(ϕi)

1−Θ(ϕi)
= Bi[1−Θ(ϕi)] + (Bi − ai)Θ(ϕi)

= Bi − aiθ(ϕi), i = 1, . . . , n, (40)

which is a function of ϕi only. Differentiating un again therefore yields the diagonal n × n
Hessian matrix Wn(ϕ1:n) = −∆ log p(B1:n|ϕ1:n, a1:n) as specified in (18).

Normal Approximation to the Joint Posterior Distribution. By Bayes’ rule the
posterior p(ϕ1:n|Dn) is proportional to the Binomial likelihood p(B1:n|ϕ1:n, a1:n, x1:n) times
the zero-mean GP prior p(ϕ1:n|x1:n). Taking the log of the unnormalized joint posterior we
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obtain

L(ϕ1:n) ∝ log p(B1:n|ϕ1:n, a1:n, x1:n) + log p(ϕ1:n|x1:n)

:= log p(B1:n|ϕ1:n, a1:n, x1:n)− 1

2
ϕT1:nK

−1
n ϕ1:n −

1

2
log |Kn| −

n

2
log 2π. (41)

Denote by ϕ̂n := arg maxϕn
L(ϕn) = arg maxϕn

p(ϕn|Dn). Expanding L(·) around ϕ̂n gives
L(ϕn) = L(ϕ̂n)+ 1

2(ϕn−ϕ̂n)T [∆L(ϕ̂n)](ϕn−ϕ̂n)+· · · ; where the linear term in the expansion
is zero because the log-posterior density has zero derivative at its mode. As discussed in
Gelman et al. (2014), the remainder terms of higher order fade in importance relative to the
quadratic term when ϕn is close to ϕ̂n and the sample size n is large. Taking first and second
partial derivatives of L(ϕ1:n) with respect to ϕ1:n and combining with (40)-(18) we obtain:

∇L(ϕ1:n) = un(ϕ1:n)−K−1n ϕ1:n, (42)

∆L(ϕ1:n) = −Wn(ϕ1:n)−K−1n ; (43)

At the mode of L(ϕ1:n) we have

∇L(ϕ̂n) = 0 ⇒ ϕ̂n = Knun(ϕ̂n) (44)

as a self-consistent nonlinear equation determining ϕ̂n. In order to solve (44), an iterative
procedure based on classical Newton-Raphson search is employed.

Next, the Hessian of the score function ∆L(ϕn) is interpreted as the inverse covariance
matrix, leading to the Gaussian approximation q(·|Dn) to the true posterior p(·|Dn)

q(·|Dn) := N(·; ϕ̂n,Σn) where Σn ≡ (K−1n +Wn(ϕ̂n))−1. (45)

Predictive distribution. The approximated predictive pdf ϕ∗(x) at a test location
x ∈ (0, 1) is Gaussian ϕ∗(x) ∼ N(mn(x; ϕ̂n), s2n(x; ϕ̂n)) with the mean mn(x; ϕ̂n) given by:

mn(x; ϕ̂n) :=

∫
E[ϕ(x)|ϕ̃1:n]p(ϕ̃1:n|Dn)dϕ̃1:n

= κTnK
−1
n

∫
ϕ̃1:np(ϕ̃1:n|Dn)dϕ̃1:n

= κTnK
−1
n E[ϕ1:n|Dn] ' κTnK−1n ϕ̂n; (46)

where κTn ≡ (κ(x1, x), . . . , κ(xn, x)), matching (19a). Likewise, the approximated predictive
variance, sn(x; ϕ̂n) ≡ Var(ϕ(x)|Dn, ϕ̂n, x), is given by (cf. (19b)):

sn(x; ϕ̂n) := E[Var(ϕ(x)|ϕ1:n, x1:n)|Dn] + Var(E[ϕ(x)|ϕ1:n, x1:n, x]|Dn)

= E[τ2 − κTnK−1n κn|Dn] + Var(κTnκ−1n ϕ1:n|Dn)

= τ2 − κTnK−1n κn + κTnK
−1
n Var(ϕ1:n|Dn)K−1n κn

' τ2 − κTnK−1n κn + κTnK
−1
n (K−1n +Wn(ϕ̂n))−1K−1n κn

= τ2 − κTn (Kn +Wn(ϕ̂n)−1)−1κn,

where the last line is true via the matrix inversion lemma applied to (Kn +Wn(ϕ̂n)−1)−1:

κTn (Kn +Wn(ϕ̂n)−1)−1κn = κTn{K−1n −K−1n (K−1n +Wn(ϕ̂n))−1K−1n }κn
= κTnK

−1
n − κTn (x)K−1n (K−1n +Wn(ϕ̂n))−1K−1n κn.
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Appendix B Predictive Variance Decomposition for Binomial
GPs under Laplace Approximation (Theorem 2.2)

Proof. Set ϕ̂n+1 ≡ (ϕ̂1;n+1, . . . , ϕ̂n+1;n+1) to be the (n+1)-dimensional estimated mode based
on training data Dn+1 obtained at locations x1:n+1; and let

Ŵn+1;n+1 := diag{ŵ1;n+1, . . . , ŵn+1;n+1}, ŵi ≡ wi(ϕ̂i;n+1)

be the Hessian matrix (18) evaluated at ϕ̂n+1. Then, we have that the (n + 1) × (n + 1)

covariance matrix Σn+1 ≡ (Kn+1 + Ŵn+1)
−1) of the joint approximated posterior (45) can

be partitioned as:

Σn+1 =

(
Σ1:n;n+1 κ∗n
(κ∗n)T τ2 + ŵ−1n+1;n+1

)
, (47)

where κ∗n := (κ(x1, xn+1), . . . , κ(xn, xn+1))
T is a n × 1 column vector of covariances of ϕ1:n

against ϕn+1, and τ2 = κ(xn+1, xn+1) is scalar. Applying the Matrix Inversion Theorem Hen-
derson and Searle (1981), the inverse of (47) is:

Σ−1n+1 =

(
Σ−11:n;n+1 + (Σ−11:n;n+1κ

∗
n)(Σ−11:n;n+1κ

∗
n)Ta−1 −Σ−11:n;n+1κ

∗
na
−1

−(Σ−11:n;n+1κ
∗
n)Ta−1 a−1

)

=

(
Σ−1n;n+1 0

0 0

)
+ a−1

(
(Σ−11:n;n+1κ

∗
n)(Σ−11:n;n+1κ

∗
n)T −Σ−11:n;n+1κ

∗
n

−(Σ−11:n;n+1κ
∗
n)T 1

)
,

where the scalar is a := (τ2 + ŵ−1n+1;n+1)− (κ∗n)TΣ−11:n;n+1κ
∗
n

= ŵ−1n+1;n+1 + (τ2 − (κ∗n)TΣ−11:n;n+1κ
∗
n) = ŵ−1n+1;n+1 + s2n(xn+1; ϕ̂1:n,n+1).

Substituting the expression for Σ−1n+1 obtained above in the predictive variance formula
(19b), we have that the posterior predictive variance given the dataset Dn+1 is:

s2n+1(xn+1; ϕ̂n+1) := τ2 − (κ∗n)TΣ−1n+1κ
∗
n

= τ2 − uT
{(

Σ−11:n;n+1 0

0 0

)
+ a−1

(
vvT −v
−vT 1

)}
u

= τ2 − uT
(

Σ−1n;n+1 0

0 0

)
u− a−1uT

(
vvT −v
−vT 1

)
u

=
[
τ2 − (κ∗n)TΣ−11:n;n+1κ

∗
n

]
− a−1[b2 − bτ2 − τ2b+ τ4], b1×1 ≡ (κ∗n)Tv

= s2n(xn+1; ; ϕ̂n)− a−1(τ2 − b)2;

where we set vn×1 ≡ Σ−11:n;n+1κ
∗
n and let u(n+1)×1 ≡ (κ∗n τ

2)T be the concatenation of the
vector κ∗n and the scalar τ2. Simplifying, we finally get:

s2n+1(xn+1; ϕ̂n+1) = s2n(xn+1; ϕ̂1:n;n+1)−
1

a
(τ2 − (κ∗n)TΣ−11:n;n+1κ

∗
n)2

= s2n(xn+1; ϕ̂1:n;n+1)−
(s2n(xn+1; ϕ̂1:n;n+1))

2

ŵ−1n+1 + s2n(xn+1; ϕ̂n;n+1)
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=
s2n(xn+1; ϕ̂1:n;n+1)ŵ

−1
n+1;n+1

ŵ−1n+1;n+1 + s2n(xn+1; ϕ̂1:n;n+1)

=

(
1

s2n(xn+1; ϕ̂1:n;n+1)
+

1

ŵ−1n+1;n+1

)−1
.

Finally, we notice that ŵn+1;n+1 := an+1Θ(ϕ̂n+1;n+1) (1−Θ(ϕ̂n+1;n+1)) which leads to (21).
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