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ABSTRACT OF THE DISSERTATION

MalAnalysis: A Systematic Framework for Identifying Weaknesses in Malware Detection
and Analysis Tools

by

Sri Shaila G

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2021

Prof. Michalis Faloutsos, Chairperson

Malware infects thousands of systems globally each day causing millions of dollars in dam-

ages. Tools like anti-malware engines and disassemblers are essential front-line tools in

malware defense. Anti-malware engines are used to detect malware while disassemblers are

used to analyze the malware, understand its operations, and defuse it. Our overarching

goal is to identify and improve our ability to detect and understand malware and consists

of three major thrusts. First, we address the problem of identifying which available disas-

sembler gives the most accurate disassembly for malware binaries of the ARM and MIPS

architecture. Surprisingly, our comprehensive and systematic evaluation revealed that dis-

assemblers have complementary capabilities. Furthermore, it also led to a bug discovery in

Ghidra. Second, we leverage the results from our evaluation, identify weaknesses in disas-

semblers, and we develop methods to improve disassembly accuracy. As a key novelty, we

develop the first approach to combine disassemblers efficiently using an ensemble approach

to improve disassembly accuracy significantly. Third, we adopt a hacker-centric approach

and we stress-test the effectiveness and robustness of anti-malware engines against IoT mal-
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ware. Our goal is to develop evasion techniques that: (a) minimize the required effort to

modify the source code and (b) preserve the functionality of the malware. Surprisingly,

we find that anti-malware engines rely significantly on string matching for detection and

labelling. Leveraging this, we show that some simple techniques achieve 100% evasion rate

for IoT malware binaries by applying string manipulations in the source code. This thesis

is a significant contribution towards: (a) assessing existing and developing new capabilities

in disassembling binaries, and (b) understanding how anti-malware engines detect and label

malware, especially in the space of IoT malware.
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Chapter 1

Introduction

Binary disassemblers and anti-malware engines are essential front-line tools in mal-

ware defense: timely and efficient detection and reverse engineering of the malware binary

is critical to identify and understand malware. An incident in 2017 highlights the impor-

tance of this issue: two ransomwares, WannaCry and Petya infected over 230,000 Windows

PCs across 150 countries by exploiting a vulnerability in Microsoft’s implementation of the

Server Message Block protocol in a span of one day. These malwares were spreading at an

alarming rate of 10,000 devices per hour, affecting systems across multiple industries ren-

dering them unusable. These attacks cost over $14 billion dollars in damages. In addition to

monetary losses, these attacks also threaten the availability of critical services. For example,

system failures in hospitals prevent health care providers from accessing or updating patient

information. Such situations can potentially cripple the health care system [137, 138]. In

the event of these attacks, malware analysts race against time to understand their mode of
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propagation and operation to contain the negative effects of the attack. These analysts also

update anti-malware engines such that that they can detect similar malware in future.

Binary disassemblers are also used for other purposes like malware classification

tasks [71, 136, 31] and to aid in dynamic analysis [44]. Disassemblers are also used to extract

features from malware binaries. Commonly extracted features include API calls, strings,

control-flow-graphs, opcode frequency and byte code n-grams [134]. Malware classification

techniques are then evaluated by using anti-malware engines [162]. Disassemblers are also

used to extract useful configuration information so that the dynamic analysis will have a

higher chance of activating the malware [67].

The emergence of malware on Internet of Things (IoT) devices is the next battle-

ground for cybersecurity and requires the development of novel security methods and tools.

IoT devices have started to emerge in 1999 approximately and the term IoT encompasses

a vast number of devices, including industrial controllers, home sensors, printers, smart

refrigerators, and devices of the power-grid infrastructure. Market analysis estimated 5.8

billion Internet-connected IoT devices in 2020 [60]. The architecture and the variability of

the configuration of these devices requires new types of software and new techniques for

analyzing this software, which includes malware.

The key problems that we address in this thesis are: (a) which disassembler should

a malware analyst choose to get the most accurate disassembly to detect, analyze and

defuse IoT malware quickly, and (b) how easy it is for IoT malware authors to evade anti-

malware engines? A variety of disassembler options, both commercial and non-commercial

exist. Furthermore, malware authors can choose to compile the malware source code using
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various compiling configurations. Compiling malware source code using different compilers,

optimization levels and different architectures leads to different binaries at the assembly

code level [27, 46]. There is limited work done on evaluating disassemblers for certain

architectures. The development and emergence of new disassembler tools in recent years

makes older works outdated. There is also very limited previous work done on evading

anti-malware engines by applying simple techniques to modify malware source code.

This thesis makes three main original contributions in the space of IoT malware

analysis, and as such, we focus on: (a) MIPS and ARM architectures, and (b) malware

binaries. Firstly, we conduct a systematic and comprehensive evaluation of disassemblers

by using a malware dataset. The value of our analysis is supported by our identification of a

bug in the NSA-supported Ghidra disassembler. Secondly, we design and implement a novel

way to combine disassemblers by using machine learning techniques to improve disassembly

accuracy consistently: across compilers, architectures and compilation options. Lastly, we

show that anti-malware engines are brittle as they rely significantly on string matching. As

a result, introducing and manipulating strings in the source-code can lead to a significant

number of false negatives and false positives.

The previous works are not comprehensive enough and do not offer any conclusive

results. We will provide a detailed discussion of previous efforts in each chapter. Here,

we only make the following high-level comments. Most previous work has evaluated disas-

semblers for the MIPS architecture. Additionally, most previous works have used benign

binaries including benchmarks of benign software to conduct their evaluation, and as such,

we cannot assume that the disassemblers will give similar results for malware binaries. Sec-
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ondly, the work that evaluated ARM binaries only considered certain optimization levels.

Thirdly, no previous work has evaluated disassemblers for MIPS binaries. Finally, no pre-

vious work has gauged how easy or difficult it is for a malware author to evade detection

from anti-malware engines by applying simple techniques on IoT malware source code.

In more detail, here is a quick summary of the three thrusts of this thesis.

Thrust 1: IDAPro for IoT Malware analysis? Defending against the threat of IoT

malware will require new techniques and tools. An important security capability, that

precedes a number of security analyses, is the ability to reverse engineer IoT malware

binaries effectively. A key question is whether PC-oriented disassemblers can be effective

on IoT malware, given the difference in the malware programs and the processors that

support them. We develop a systematic approach and a tool for evaluating the effectiveness

of disassemblers on IoT malware binaries. The key components of the approach are: (a)

we find the source code for 20 real-world malware programs, (b) we compile them to form

a test set of 240 binaries using various compiler optimization options, device architectures,

and considering both stripped and unstripped versions of the binaries, and (c) we establish

the ground-truth for all these binaries for six disassembly accuracy metrics, such as the

percentage of correctly disassembled instructions, and the accuracy of the control flow graph.

Overall, we find that IDA Pro performs well for unstripped binaries with a precision and

recall accuracy of over 85% for all the metrics. However, IDA Pro’s performance deteriorates

significantly with stripped binaries, mainly because the recall accuracy of identifying the

start of functions drops to around 60% for both platforms. The results for the stripped

ARM and MIPS binaries are similar to stripped x86 binaries in [10]. Interestingly, we find
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that most compiler optimization options, except the -O3 option for the MIPS architecture,

do not cause any noticeable effect in the accuracy. We view our approach as an important

capability for assessing and improving reverse engineering tools focusing on IoT malware.

Thrust 2: DisCo: Combining Disassemblers for Improved Performance Which

disassembler should a malware analyst choose in order to get the most accurate disassembly

and be able to detect, analyze and defuse malware quickly? There is no clear answer to this

question: (a) the performance of disassemblers varies across configurations, and (b) most

prior work on disassemblers focuses on benign software and the x86 CPU architecture.

In this work, we take a different approach and ask: why not use all the disassemblers

instead of picking one? We present DisCo, a novel and effective approach to harness the

collective capability of a group of disassemblers combining their output into an ensemble

consensus. We develop and evaluate our approach using 1760 IoT malware binaries compiled

with different compilers and compiler options for the ARM and MIPS architectures. First,

we show that DisCo can combine the collective wisdom of disassemblers effectively. For

example, our approach outperforms the best contributing disassembler by as much as 17.8%

in the F1 score for function start identification for MIPS binaries compiled using GCC

with O3 option. Second, the collective wisdom of the disassemblers can be brought back

to improve each disassembler. As a proof of concept, we show that byte-level signatures

identified by DisCo can improve the performance of Ghidra by as much as 13.6% in terms

of the F1 score. Third, we quantify the effect of the architecture, the compiler, and the

compiler options on the performance of disassemblers. Finally, the systematic evaluation
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within our approach led to a bug discovery in Ghidra v9.1, which was acknowledged by the

Ghidra team.

Thrust 3: MalEvasion: Simple string manipulations derail malware detection

How effective and robust are anti-malware engines against IoT malware? In this work, we

adopt a malware author-centric point of view whose goal is to avoid detection. The key

question is what is a systematic “evasion” method, which will also adhere to the following

requirements: (a) minimize the required effort for modifying the source code, and (b)

preserve the functionality of the malware.As key contribution, we show that anti-malware

engines in VirusTotal are brittle as they rely significantly on string matching. As a result,

introducing and manipulating strings in the source-code can lead to false negatives and false

positives. As a proof of concept, we develop DisCo, a systematic framework to stress-test

and confuse anti-malware engines. We evaluate our framework using 1750 binaries compiled

with different compilers and compiler options for the ARM and MIPS architectures and

we use the 71 anti-malware engines provided by VirusTotal. First, we show that anti-

malware engines are easily fooled by our simple string manipulation techniques: 100% of

the malware binaries are reported as benign if we use a widely-used detection threshold.

Second, we also show that we can make engines report false positives and affect their

”signature” database. We can do this by adding arbitrary strings into malware programs

that we submit to VirusTotal: the engines learn to use these strings as malware signatures.

Using this approach, we make 6 string-modified benign binaries that are deemed as malware

by more than 8 engines, including Avast, AVG and Fortinet. Finally, we observe that there
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is no free lunch: the engines with higher recall on malware binaries are prone to false

positives on string-modified benign binaries.

Overall, this thesis constitutes a significant step towards detecting and under-

standing malware, and the limitations of the currents methods. We envision that our work

will be used by disassembler developers to test, evaluate, and improve their tools. We also

believe that our work allows malware analysts to get the most accurate disassembly outputs

from all available disassemblers. Finally, our identification of weaknesses and limitations

will hopefully help the security community develop better methods and tools.
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Chapter 2

A Systematic Approach to

Evaluate Disassemblers on IoT

Malware

IoT malware is emerging as the new battleground of cybersecurity. Leaders in

the technology industry like Ericsson forecast that there will be around 18 billion devices

related to the Internet of Things (IoT) [52]. The expansion of the scope of IoT devices has

redefined communication and information transfer between users and smart devices. While

this trend continues to offer a new level of connectivity and convenience, it also poses a

serious threat to the security and the privacy of users and the stored data in the devices.

Recent attacks on IoT devices such as Mirai [15] and Moose [20] highlight the need to defend

these devices. On the other hand, IoT malware developers release the source code to the

public as it has been the case for Mirai [12], and Lightaidra [11]. Black hat hackers make
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use of such source code to create malware that targets IoT devices to engage in malicious

activities [154]. Further, the software eco-system for IoT devices is quite heterogeneous and

not as mature with respect to security [44].

In this chapter, we address the question of the effectiveness of binary disassemblers

for analyzing IoT malware. These tools are critical first steps in reverse engineering malware

binaries, which is necessary to enable a number of analyses of their security. Thus, answering

this question will shed light on the larger issue of the effectiveness of the existing PC-focused

defense mechanisms for IoT malware. We focus on IDA Pro [66], which is a state of the art

disassembler for binary analysis [10]. To elaborate, we seek to assess the reverse engineering

capabilities of IDA Pro by using six popularly used disassembly accuracy metrics, for a set of

ARM or MIPS IoT malware binaries. These metrics assess different aspects of the accuracy

of IDA Pro and are important for the correct structure of the disassembled code, as well as

the construction of its control flow graph. The metrics include the percentage of correctly

disassembled and identified instructions, function starts, function parameter counts, basic

blocks, control flow graph (CFG), and call graph accuracy. We also seek to investigate the

effect that various compilation options have on the disassembly performance.

Key challenge: Ideally, the disassembly accuracy or the effectiveness of a dissas-

embler should be measured by establishing the structural and semantic similarity between

the source code and the assembly code of the binary. However, the syntax differences

between the two languages is a challenging task that requires extensive manual effort.

To the best of our knowledge, there has not been any previous studies of the

performance of disassemblers on IoT malware and benign binaries. The closest related work
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by Andriesse et al. [10] evaluates the performance of 9 disassemblers for the x86 architecture

(PC-based) on benign binaries. Other related work can be grouped into the following

categories: (a) static analysis of malware [33, 76]; (b) disassemblers in malware analysis:

using disassemblers in analyzing the malware structure [77, 112]; (c) IoT binary analysis:

analyzing code similarities of IoT firmware to identify known vulnerabilities [57, 158]; and

(d) IoT malware analysis: analyzing the behavior of IoT malware [15, 154, 44]. We discuss

related work further in the Related Work Section.

As our key contribution, we develop a systematic and comprehensive approach and

the resultant tool for assessing the effectiveness of disassemblers on IoT malware binaries.

The novelty of our work can be summarized as follows:

a. We evaluate the performance of disassemblers for the ARM and

MIPS architectures: We evaluate the performance of disassemblers for the ARM and MIPS

architectures on malware programs. Each of these architectures have their own instruction

sets, hence new non-trivial tools are needed. By contrast, previous work [10] focused on the

x86 architecture (PC-based) on benign software, the SPEC CPU2006 benchmark, which

consists of the standard libc binaries.

b. Our approach is fully automated: In contrast to previous effort [10], our

approach obtains the ground-truth for 100% of the code bytes automatically, and thus, can

be used in large-scale studies.

Results. We demonstrate our technique by using it evaluate the widely-used IDA

Pro [66].Our findings can be summarized as follows:
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a. IDA Pro performs well on unstripped binaries. We find that IDA Pro

does well across all metrics of interest for both architectures, and all compilation options for

unstripped binaries. The percentage accuracy for all metrics is over 85%. Specifically, we

find that ARM binaries seem to lend themselves to more accurate reconstruction compared

to MIPS binaries, although the difference is relatively small.

b. Stripped binaries challenge the performance of IDA Pro. We find

that IDA Pro fails to correctly identify a significant fraction of Function-Start Addresses

for stripped binaries for both architectures. Also, IDA Pro misses 37.7% and 39.6% of the

functions in stripped binaries for ARM and MIPS respectively. We conjecture that in the

absence of the symbol table, the function recognition algorithm of IDA Pro has a hard time

determining the beginning and end of functions.

c. Compilation options have limited effect. We studied the effect of different

compiler options on disassembler effectiveness for unstripped binaries. Interestingly, we

found that the compilation optimization options do not have any noticeable effect on any

of the six metrics for the unstripped binaries for both architectures, and this is particularly

true for ARM. For MIPS, there are a few exceptions, where some non-trivial change is

observed. For example, the -O3 compiler option, and to a lesser extent -O2, cause a small

drop in the detection of Function-Start Addresses for the unstripped MIPS binaries.

We argue that our work provides an important building block for developing tools

and methodologies for reverse engineering malware. This work has led to the following

tangible outcomes: (a) a set of IoT malware source codes, (b) ground truth, and (c) a usable

platform that can help accelerate static analysis and disassemblers in the IoT malware space.
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2.1 Disassembly Metrics

In this section, we present our approach for evaluating the effectiveness of binary

disassemblers on IoT malware. Checking the correctness of disassembled code requires a

good understanding about all instructions in the architecture sets and about how disassem-

blers work. The following sections will discuss the disassembly metrics we have used for the

evaluation, and implementation details of the evaluation which include the workflow of our

technique. Binary analysts understand and analyze binaries by viewing the assembly level

instructions, basic blocks, control flow graphs, and call graphs. Each address in the code

section usually contains one instruction. A basic block is comprised of a straight line code

sequence with no branches in except to the entry and no branches out except at the exit.

A CFG shows how the basic blocks are connected to each other. It is defined as a graph

showing all the possible paths that might be traversed through a program during its exe-

cution. In our work, we consider the intra-procedural CFG, which is a graph showing how

all the basic blocks within a function are connected to each other to form all the possible

paths. Call graphs represent the relationships between functions in a program. Each node

represents a function in the program and each edge represents a caller function that calls a

callee function.

2.1.1 Metrics Used

In our evaluation, we use 6 frequently used metrics which provide a comprehensive

view of the capability of the disassembler. A malware analyst uses features whose accu-

12



racy are measured by these metrics to describe the binary and to reconstruct the malware

behavior. The same metrics have been used in prior reverse engineering studies [10].

We provide a description of the metrics below:

1. Correctly identified instructions (CI): the percentage of correctly disassembled

instructions. Disassembled instructions at an address location in which the ground-

truth contains an instruction are considered as correctly disassembled instructions.

2. Correctly identified function starts (CFS): the percentage of correctly identi-

fied function start addresses. Function starts addresses which are matched with the

ground-truth are considered as correctly identified functions starts. Otherwise they

are considered as incorrect function starts (IFS).

3. Correctly identified function parameters (CFP): the percentage of functions

with non-zero parameters for which the number of function parameters was correctly

identified by the disassembler when compared to the function parameter number sup-

plied by DWARF.

4. Correctly identified Basic Blocks (CIBB): the percentage of basic blocks with

the correct start and end address containing all instructions within that address ranges

as shown by the ground-truth.

5. CFG Accuracy (CFGA): the percentage of basic blocks found within a function

that have the correct start and end address with the correct number of successor

blocks that also have the correct start and end address as shown in ground-truth.

We only consider a basic block as having the correct connections in the CFG if it
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satisfies all these conditions. Otherwise we mark that basic block as having incorrect

connections. Here, we are referring to inter procedural control flow graph.

6. Call Graph Accuracy (CGA): the percentage of correctly identified instructions

that invoke another function which are found under the correct function as shown in

the ground-truth.

2.2 Dataset

We were able to collect the source code of 20 IoT malware programs,from two re-

sources (14 from the first source and 6 from the second): a) live websites such as Github.com

and Pastebin.com where developers released the code for research purposes,1 and b) source

codes shared as archives of files with instructions on Black hat hackers’ websites. These

source codes were randomly selected from the sites and all source codes were written in the

C language.

2.3 System Design and Implementation

The key components of our approach are outlined below:

Step 1: Source code and compilation.

We compiled all the source codes in our dataset in different ways to evaluate the

disassembler. Specifically, we consider the effects that different architectures and compiler

optimization options have on the accuracy of IDA Pro’s binary disassembly as we explain

below.

1https://github.com/ifding/iot-malware
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Figure 2.1: The visual overview of our approach for evaluating the effectiveness of a disas-
sembler on IoT malware.

a. Compiler options. We study the effects of compiler options like -O{0,1,2,3,s}

where each optimize the binary differently: compilation time, execution time, or the size of

the binary. We also study the impact of stripped binaries where any debugging information

such as function names is removed.

We used the GCC v5.5.0 cross compiler to generate 240 binaries from malware

source codes.

Our technique can be applied to generate the ground-truth to evaluate all possible

compiler options. However, in view of the page limit restrictions, we only present the results

of the evaluation of IDA Pro for selected compiler options.

b. Target architectures. We generate binaries for both the ARM (Version 5,

Little Endian) and MIPS (R3000, Little Endian) architectures, which are the dominant

architectures used in embedded and IoT devices. In the following sections, we will refer

to these architectures as ARM and MIPS respectively. Note that both these architecture

are popular among IoT devices, and they differ in instruction sets from PC-based (x86 &

x86 64) architectures.
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Step 2: Establishing the ground-truth. Here, we establish the ground-truth

for all the binaries that we have generated. In this work we use a combination of DWARF

v3 [35] and Capstone v3.0.4 [119] to create the ground-truth. DWARF is used to extract

the debugging information for each variable, type and procedure from the source code while

Capstone translates binary bytes into assembly instructions for the respective architectures.

We use the -g3 compiler option in order to obtain the DWARF debugging informa-

tion. DWARF provides a mapping between source level code and the assembly instructions

in the binary. Stripped binaries do not contain this information. The ground truth infor-

mation of the corresponding unstripped binary is used to evaluate the stripped binaries.

We used Capstone to linearly disassemble instructions starting from an initial set

of known addresses provided by the DWARF mapping. This set comprises of the entry

point and function start address.The linear disassembling continues from one instruction to

the next in a linear ascending order until the end of the function is reached.

This seemingly straight forward solution contains a challenge. Architectures like

ARM contain inline data [98] that needs to be identified and labelled as data in our ground-

truth.

We overcome this problem by studying how the inlined data is used by assembly

code. Inlined data is used by the assembly code by using load operations which use pc-

relative addressing modes. Since the pc register always points to the instruction address of

the next instruction, we can calculate the addresses that contain inlined data when these

load instructions are disassembled. This approach yields 100% ground-truth for the code

bytes in the test binaries making it suitable for large scale fully automated analysis.
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We use the details and the information obtained about each instruction from Cap-

stone to generate the ground-truth for all the metrics.This process is represented by the

Malware Source Code Collection and the Compilation modules in Figure 2.1. None of the

malware programs are obfuscated.

Step 3: Applying the disassembler.

We apply the disassembler on all our binaries, and extract the values for each

metric in our evaluation. Here, we evaluate IDA Pro 6.8 [66], as it is the most commonly

used disassembler by security analysts. We have used IDAPython API and created scripts

for each architecture to collect the information about all of the metrics for each of the

understudy malware binaries. The IDAPython API contains functions that allows us to

extract all the functions found in the binary, the basic blocks found in the functions,the

instructions found in each basic block, and the functions that are called from within each

function. We ran these scripts in IDA Pro’s default mode to extract the values for each

metric for our evaluation. This step is represented by the Disassembler module in Figure 2.1.

Step 4: Evaluation. We compare the results of the disassembler with the ground-

truth to generate the evaluation report. This step is represented by the Report Generator

module in Figure 2.1.

The tables in the following sections summarize the results of our findings are

found in the next page. The tables show the percentage accuracy for each of the six

disassembly metrics. We have computed the accuracy in terms of precision and recall for

most of the metrics. The precision refers to the percentage of correctly identified metrics

instances among all the instances identified by IDA Pro while the recall refers to the fraction
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of correctly identified metrics instances among all the metrics instances identified in the

ground-truth.

2.4 Our Study

In this section, we present the evaluation result for IDA Pro 6.8; our techniques

can be used for evaluating other disassemblers in a similar fashion.

In this study we used 20 malware source codes to generate a total of 240 binaries for

both MIPS and ARM CPU architecture. Our evaluation process consists of two parts that

evaluate the effect of a) compiler options and b) stripped binaries on IDA Pro disassembler

tool.

1. The effect of compiler options. We assess the accuracy of IDA Pro for

each of the disassembly metrics for the five compilation options: -O0, -O1,-O2,-O3 and -Os.

We use 200 binaries which includes 100 binaries for MIPS and the other 100 for ARM

architecture.

2. The effect of binary stripping. This part evaluates the accuracy of the

disassembler tool in retrieving the disassembly metrics for the stripped binaries. In this

work we focus on stripped binaries created using -O3 optimization option. We chose this

option because it is the most commonly used option by malware authors in Makefiles. In

this analysis we generated 40 stripped binaries which consists of 20 binaries for ARM and

20 for MIPS.

Since the precision for the CI and the CFP is 100% in all the options, this infor-

mation is omitted in the result tables. IDA Pro incorrectly identifies functions in two ways.
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It may “miss” a function start or it may identify “multiple” functions within one function.

The first case adversely affects recall and the second case affects precision for the CFS ac-

curacy. Summing the precision and the “extra” percentages and recall with “missing” will

result in 100%. In short, the percentages under the missing and the extra functions give

the percentages of functions whose actual start addresses are missed and incorrectly added

by IDA Pro.

2.4.1 The Effect of Compiler Options

Table 2.1 shows the effect of compilation optimization options on the accuracy of

IDA Pro in disassembling ARM and MIPS binaries. We highlight some of the results and

explain the observed discrepancies.

A. Performance of IDA Pro on ARM binaries. For the ARM architecture,

IDA Pro is able to find all the disassembled instructions for all of the 5 different compiler

optimization options. IDA Pro shows near perfect recall for CFS for all binaries. This shows

that IDA Pro manages to identify almost all the functions in the ground-truth (zeroes in

the “missing” row). On the other hand, the precision for all options falls slightly below

perfect since in most cases, IDA Pro also finds an extra function for it incorrectly splits

a function, divsi3, an integer library routine from the standard libc function, into two

separate functions. This accounts for the percentage values in the row titled “extra”,

representing the additional functions that were added incorrectly.

We observed an interesting phenomenon while investigating the discrepancies of

IDA Pro regarding CFP which shows the percentage of correctly identified number of pa-
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CI Correctly identified instructions CIBB Correctly identified Basic Blocks

CFS Correctly identified function starts CFGA Control Flow Graph Accuracy

IFS Incorrectly identified function starts CGA Call Graph Accuracy

CFP Correctly identified function parameters

ARM MIPS
-O0 -O1 -O2 -O3 -Os -O0 -O1 -O2 -O3 -Os

CI Recall 100 100 99.9 99.9 100 98.4 97.8 99.6 99.5 98.8

CFS
Precision 99.7 99.6 99.2 99.6 99.4 100 100 98.5 94.5 100
Recall 100 100 100 100 99.9 99.9 100 100 100 99.9

IFS
Missing 0 0 0 0 0.05 0.06 0 0 0 0.06
Extra 0.3 0.4 0.8 0.4 0.6 0 0 1.5 5.4 0

CFP Recall 92.5 97.2 97 96.1 97.4 0 0 0 0 0

CIBB
Precision 99.8 100 99.9 99.9 99.9 85.3 89.0 98.9 98.5 90.6
Recall 99.9 100 99.9 99.9 99.9 87.3 89.0 98.8 98.5 90.6

CFGA
Precision 99.6 99.7 99.6 99.7 99.6 99.9 99.9 98.8 94.7 99.9
Recall 99.7 99.7 99.6 99.8 99.6 99.3 99.9 98.8 94.7 99.2

CGA
Precision 100 99.9 100 99.9 100 100 100 98.7 98.1 100
Recall 100 99.9 100 99.9 100 98.9 100 98.7 98.1 98.9

Table 2.1: ARM & MIPS architecture: The effects of compiler optimization options over
our 20 malware source codes.

rameters from the functions with non-empty parameter. We observe that IDA Pro, identifies

3 parameters for the main() function. These parameters are reported as: int argc, const

char **argv, and const char ** envp. However, only the first 2 are found in the source
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ARM MIPS
Unstripped Stripped Unstripped Stripped

CI Recall 99.9 99.9 99.5 99.5

CFS
Precision 99.5 99.5 94.5 91.2
Recall 100 62.2 100 60.3

IFS
Missing 0 37.7 0 39.6
Extra 0.4 0.5 5.5 8.8

CFP Params 96.1 0 0 0

CIBB
Precisions 99.9 99.9 98.5 97.8
Recall 99.9 99.9 98.5 97.1

CFGA
Precision 99.7 99.1 94.7 89.0
Recall 99.8 85.0 94.7 78.5

CGA
Precision 99.9 99.4 98.1 92.0
Recall 99.9 88.2 98.1 89.5

Table 2.2: The effect of stripping: for both ARM and MIPS architectures and using opti-
mization -O3

code as well as the ground-truth data. This is why we observe a not perfect accuracy for

the CFP for the -O1, -O2, -O3, and -Os options. Specifically, IDA Pro did not find any

parameters for some functions with non-zero parameters for one of the binaries with the

-Os compilation option. This caused the parameter accuracy for the -Os compilation to be

worse than the other compilation options.

The CFGA accuracy is over 99%. Upon investigation we found that the incorrect

splitting of functions, like the divi3 function mentioned above, accounts for the imperfect

precision and recall. We also noticed that a few CIBB were being split into two. This

further created isolated blocks in the CFG. The precision and the recall for the CFGA is

very close to perfect across all the 5 compilation options.

B. Performance of IDA Pro on MIPS binaries. For the MIPS architecture,

we noticed a slight drop in the recall for the CI primitive compared to the ARM binaries.

Upon investigation, we attributed this to the fact that some instructions were not correctly
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identified by IDA Pro. Further analysis revealed that most of the missing instructions are

“add” instructions.

The CFS metric shows perfect precision for -O0, -O1, and -Os for the MIPS binaries

and it has close to perfect recall for all 5 compilation options. We see that 0.06% of the

functions in the ground-truth missed by IDA Pro for the -O0 and -Os compiling options,

while 1.5% and 5.4% of the functions reported for -O2 and -O3 compiling options are

additional functions that are incorrectly found by IDA Pro. Since intra-procedural CFG

accuracy is directly dependent on correct identification of function starts, CFG accuracy

drops as the CFS accuracy drops. IDA Pro generated the most number of additional

functions for MIPS binaries compiled with the -O3 compiler option. IDA Pro is not able to

retrieve any parameters for the MIPS architecture.

We consider a block as being matched, if the start address and the end address

and the number of instructions within the block match a basic block in the ground-truth.

Hence, in general, the matched CIBB accuracy suffers as the percentage of missed instruc-

tions increases. The number and the distribution of the missed instructions also affect the

percentage of matched CIBB. If the missing instructions are spread out across a larger

number of CIBB, then the number of matched CIBB will be reduced. This causes the vari-

ations in the accuracy of matched CIBB across the compiler options for the MIPS binaries.

Precision and recall of matched CIBB is the lowest, when the binary is compiled with -O0,

and highest for -O2 and -O3 option.

For CFG accuracy, we only take into account the start and end address of each of

the Basic Blocks and the start and end addresses of the successive connected CIBB. Hence,
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the presence of missing instructions does not affect the CFG accuracy. Since CFG accuracy

decreases as the number of incorrectly identified additional functions increases, the CFG

accuracy of the binary with -O3 compilation is the lowest with 94.7% precision and 94.7%

recall. The CFG accuracy for MIPS binaries compiled with the other options for both the

recall and precision is about 98.2% to 99.9%.

The precision and recall for fucntion start also affect the CGA accuracy. MIPS

binaries compiled with the -O1 option have perfect precision and recall because all the

functions were identified correctly. The other binaries have less than perfect accuracy,

because some of the call instructions were wrongly categorized as belonging to another

function.

2.4.2 The Effect of Binary Stripping

We compare the results between stripped and unstripped binaries in our study

in Table 2.2. IDA Pro finds all the instructions for both the stripped and the unstripped

binaries for the ARM architecture. The number of missed instructions remains about the

same for the MIPS malware binaries.

However, stripped binaries make the detection of CFS much harder: the number

of missed functions increases significantly to 37.7% for stripped ARM binaries and to 39.6%

for stripped MIPS binaries. Upon investigation, we found two reasons for these failures:

(a) IDA Pro cannot associate some instructions to any function, and usually displays the

instructions in red color as , and (b) parts of a function may also be erroneously attributed

to another function.
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Figure 2.2: ARM & MIPS stripped binaries: Mean and variance for the metrics in our
result.

IDA Pro identifies a higher percentage of extra functions erroneously in stripped

MIPS binaries compared to stripped ARM binaries. This causes the precision and the

recall for the CFGA metric for the MIPS stripped binary to be lowered to 85.0% and 78.5%

respectively. Incorrect function identification could be attributed to both: (a) failing to

report functions that exist in the ground-truth, and (b) reporting extra functions due to

erraneous splitting of a function by IDA Pro erroneously.
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Interestingly, even though the errors due to function misses is high, around 37.7%

and 39.6% for the ARM and MIPS stripped binaries, their adverse effect on the CFG

accuracy is relatively small. Upon investigation, we found that IDA Pro tends to miss

smaller functions with few basic blocks. Precision and recall for this CFGA metric is

noticeably higher for the ARM (vs. the MIPS) unstripped binaries due to the much higher

accuracy in function start identification. The percentage of missed functions in unstripped

binaries for both platforms is 0%.

For unstripped binaries compiled with the -O3 option, the percentage of extra

functions incorrectly identified by IDA Pro is higher for the MIPS binaries with 5.4%,

compared to the ARM binaries with only 0.4% additional functions. The matched basic

block percentage precision is over 99% for the ARM binaries, while these percentages for

the MIPS binaries is slightly lower. We attribute this to the larger fraction of missing

instructions in the MIPS binaries compared to the ARM binaries. -O0 misses the most

number of instructions while -O2 and -O3 miss the least.

We observe that the CGA precision for the unstripped ARM binary is very close

to 100%. The call graph precision and recall for the MIPS unstripped binary falls slightly

to 98.12%. We attribute the errors to the larger fraction of the call instructions, which were

categorized to belong to the ”extra” functions found by IDA Pro.

In stripped binaries, the CGA precision in ARM binaries stands at 99.4% because

the number of ”extra” functions found by IDA Pro is much lesser for the ARM architecture

than compared to the MIPS architecture. The CGA precision for the stripped MIPS binaries

falls to 92.0% due the larger fraction of call instructions that were categorised as being part
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of the ”extra” functions. The recall for the CGA of both the ARM and MIPS stripped

binaries falls to to 88.2% and 89.5%, due to the increased percentage of missing functions.

Stripping has limited effect on the CGA precision for ARM binaries because the

percentage of incorrectly identified additional functions found is very low, around 0.5% for

both stripped and unstripped binaries. There is noticeable fall in precision for CGA from

98.1% to 92.0% when MIPS binaries are stripped. This is because stripping in MIPS binaries

leads to an increase in the percentage of incorrectly identified additional functions from 5.5%

to 8.8%. Stripping leads a significant reduction in recall for CGA in both architectures

because it causes a significant increase in the percentage of missed functions, 37.7% for the

ARM architecture and 39.6% for MIPS architecture when compared to unstripped binaries.

When call instructions are incorrectly placed under the wrong functions, the precision and

recall of CGA will be adversely affected.

Figure 2 shows the mean and the variance in the precision and recall for each of the

metrics for each of the unstripped binaries. It shows that Ida Pro works consistently well

on all the stripped binaries for both architectures for CIBB. We noticed a high variation of

about 10% for recall for CFS for both architectures. The variation in recall for CFGA and

CGA for stripped MIPS binaries is 9% and 14% respectively. In contrast, these values for

stripped ARM binaries are 3.7% and 5.3%. A possible reason for this observation could be

that functions with lesser number of blocks and direct calls are consistently missed across

all the stripped ARM binaries

The recall for the CFS is 62.2% and 60.3% and has a high variance of 10.6% and

9.2% for ARM and MIPS respectively.
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2.5 Discussion

Our findings show that IDA Pro does well for unstripped ARM and MIPS binaries

for the various compiler options with greater than 90% and 85% accuracy across all metrics.

We ignore CFP in MIPS binaries because IDA Pro is unable to retrieve parameters for this

architecture.

Our results for the ARM and MIPS stripped binaries are similar to the results

from [10] for stripped x86 binaries for the CI and CIBB. These metrics have precision and

recall of more than 97%.

IDA Pro misses 37.7% and 39.6% of the CFS in the ARM and MIPS stripped

binaries respectively. These percentages are slightly higher that the percentages shown in

the previous work [10] for the stripped x86 binaries which stands around 35%. Our recall for

the CGA metric is 88.2% and 89.5% for the stripped ARM and MIPS binaries respectively.

In contrast, [10] reports perfect recall for stripped x86 binaries. We could not compare our

results for the CFGA, because the previous work has considered inter-procedural CFG. We

have considered intra-proecedural CFG, since that is the default output from IDA Pro. IDA

Pro could not retrieve the parameters for unstripped ARM and MIPS binaries.

Disassemblers usually identify function starts and ends by scanning the binary for

known series of instructions that usually form the start and end of functions [8]. The large

portion of function start misses by IDA Pro for both the ARM and MIPS binaries suggest

that the function prologue and epilogue signature databases are missing a some commonly

found function prologues and epilogues.
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The decision to use IDA Pro for stripped binaries depends on the metrics and the

accuracy required by the analyst for their work. If we desire a recall exceeding 85%, then

we cannot rely on the CFS and CFGA generated by IDA Pro. Hence, tools that rely on

these metrics will suffer from limited accuracy as well.

2.6 Limitations and Future Work

In this work, we have used the source code of 20 IoT malware programs, which

we compiled using various compiler options. We have focused on malware for this project

because many recent research efforts [57, 158, 15, 154, 44] use binary disassemblers like

IDA Pro to analyze IoT malware. We believe that our work will give malware researchers

a better idea about the level of accuracy that they can expect from IDA Pro. In this work,

we evaluate IDA Pro 6.8 because this was the version that we had experience with and was

available to us. Here, we discuss the limitations of our work and future improvements.

Benign Binaries. We did not assess the performance of IDA Pro on benign

binaries. It would be interesting to see if the performance of IDA Pro varies between

benign and malicious software.

Other Compilers. We have used the GCC v5.5.0 compiler to compile the mal-

ware source codes for the experiments. We have used this GCC version because its the

most widely used and commonly supported GCC version by many tools [50]. It would be

interesting to assess the effect of different compilers on the performance of IDA Pro.

Other Platforms. We have compiled our malware source codes into ARM (Ver-

sion 5, Little Endian) and MIPS (R3000, Little Endian) binaries and used these binaries
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in our test suite. Other commonly used architectures for IoT malware include x86-64,

PowerPC and Motorola 68000 [37], and we plan to evaluate these platforms in the future.

Evasion. Malware authors employ evasive techniques like obfuscation to hinder

analysts from reading and understanding their code. Obfuscated code and packing tech-

niques are also applied to confuse disassemblers. The malware programs that we have used

are unobfuscated.

2.7 Related Work

To the best of our knowledge, no previous studies have been done on the per-

formance of disassemblers on IoT malware. A recent and extensive study [10] assess the

effectiveness of disassemblers on PC-based architecture and with benign software in contrast

to the IoT architecture and malware source code that we use here. Specifically, the study

evaluates the performance of 9 commonly used disassemblers for x86 architecture and using

software from the SPEC CPU2006 benchmark. Overall, they found IDAPro to be the best

disassembler. They found that IDAPro does well for correctly identifying Instructions, Ba-

sic Blocks and Call Graph. However, it does poorly in identifying Function-Start Addresses

and Number of Non-Zero Function Parameters.

We highlight some of the related work based on the following categories.

Static analysis of malware. These works statically analyze malware binaries

to extract features from CFGA and frequently found code bytes to detect malware binaries

[33, 76].
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Disassemblers in malware analysis. Several efforts use disassemblers in an-

alyzing the malware structure like call graphs [77]. These studies use disassemblers for

malware classification. However, and they do not evaluate the performance of the disas-

semblers that they have used in their work. These works serve as motivation for our work

which is to understand the effectiveness of disassemblers which are crucial tools in malware

detection and classification techniques.

IoT firmware analysis: detecting vulnerability. These efforts analyze the

binary code of IoT firmware to identify known bugs and vulnerabilities by extracting features

from CFG so that they can be fixed in a timely manner [57, 158].

IoT malware analysis. There have been several studies analyzing the behavior

of IoT malware [15, 154, 112, 44]. The studies focus mostly on the behavior, and the spread

patterns of IoT malware and using static and dynamic analysis.

2.8 Conclusion

We develop a comprehensive and systematic method and the resultant tool for

evaluating the effectiveness of disassemblers on IoT malware binaries. We apply our tool

on IDAPro [66], a widely-used disassembler in the binary analysis research. We assess the

performance of the tool on six disassembly metrics, which capture how well we can recover

instructions, basic blocks, and the control flow graph. We also explore a wide range of

compilation options and consider two target architectures, ARM and MIPS.

Overall, we find that IDAPro works quite well for unstripped binaries across all

primitives of interest (e.g. ≥ 85% recovery accuracy) and for both architectures. However,
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stripped binaries seem to present significant challenges: IDA Pro does not perform as well

with stripped binaries (e.g. function-start identification drops to 60% for both architectures.

Interestingly, we find that the compilation options (-Ox ) have limited effect on the accuracy

of IDA Pro.

We view our approach as an important capability for assessing and improving

reverse engineering tools focusing on malware. In addition, the malware source code repos-

itory, the ground-truth and our software tools and extensions can hopefully accelerate the

research in this space.
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Chapter 3

A Large Scale Evaluation of

Disassemblers for IoT Malware

Binary disassemblers are essential front-line tools in malware defense: timely and

efficient reverse engineering of the malware binary is critical. An incident in 2017 highlights

the importance of this issue: two ransomwares, WannaCry and Petya infected over 230 000

Windows PCs across 150 countries by exploiting a vulnerability in Microsoft’s implementa-

tion of the Server Message Block protocol in a span of one day. These attacks cost over $4

billion dollars in damages [91, 24]. The rapid spread of these malwares had malware ana-

lysts racing against time to understand their mode of propagation and operation in order

to contain them.

Which disassembler should a malware analyst choose for a rapidly-spreading mal-

ware binary to get the most accurate results? This is the question that motivates our work.

Here we focus on malware that targets MIPS and ARM architectures, given that such
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malware has received significantly less attention. In addition, these architectures are widely

used in IoT devices, which are increasingly becoming targets of choice for malware [152, 12].

Currently, there is no clear answer to the above question, for the ARM and, and even more

so, the MIPS architecture. We elaborate on two contributing factors to this problem.

First, there is a plethora of disassemblers both free and commercial, but research

so far has not determined a clear and consistent winner.The performance of a disassembler

can vary based on the type of the malware binary, which can be created by using various:

(a) compilers, (b) compiler optimization flags, and (c) target CPU architectures. These

variations can lead to significant differences in the assembly code found in the resultant bi-

nary [47, 27]. Note that determining the compilation parameters for a given stripped binary

is a challenging task. Despite some recent studies [10, 72], the effect of these variations on

the accuracy of disassembly are not well understood, especially for the MIPS architecture.

Second, the average performance of a disassembler may not be sufficient to inform

the correct answer: we need to assess its worst case performance as well. This reliability

aspect of a disassembler is lost when we only report average performance, and even standard

deviation does not fully capture it. The ideal disassembler should offer accurate disassembly

consistently for each binary. The binary at hand may belong to the minority group of

binaries for which the overall-best disassembler performs poorly. This poor performance at

”crunch-time” can translate into massive financial and societal damage.

There is limited prior work for the our problem here as it focuses on: (a) malware,

and (b) the MIPS and ARM architectures. In contrast, most previous work seems to focus

on benign binaries and the x86, and most recently, the ARM architecture. We highlight
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the two most relevant studies. The most recent work [72] evaluates several disassemblers

using only benign binaries and for the ARM architecture only. Another work [10] evaluates

disassemblers for the x86-64 architecture. Both studies [10, 72] endorse IDA Pro, a popular

commercial disassembler,in terms of overall performance and find that accurate function

start identification remains a challenge.

In this chapter, we conduct an extensive evaluation of our approach using five

disassemblers on a wide spectrum of scenarios using 1760 binaries. Specifically, we consider

the following configuration options: (a) two architectures, MIPS and ARM, (b) two

different compilers, GCC and Clang, and (c) five compiler optimization levels. We compile

the malware source code with various configurations and implement significant instrumen-

tation to create the ground truth. We compare the the output of each disassembler with

the ground-truth to evaluate it.

Note that we focus on the function start identification metric, which is a key

disassembly metric [72]. To quantify the variability, in addition to the average performance,

we consider the 5-percentile of the worst case performance (5PWC), which we define

later. Finally, we introduce the Relative Performance Improvement (RPI) metric as

the difference between the performance of DisCo for a group of disassemblers and that of

the best performing individual disassembler in the group.

3.1 Dataset and Compilation Configuration

We train and evaluate DisCo by using a total of 1160 IoT malware binaries which

were compiled from 58 IoT malware programs with various configuration options. These
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programs contain a total of about 90K functions. The malware source codes were collected

from Github, which hosts thousands of malware repositories [121].

Specifically, we retrieved our malware from repository threatland/TL-BOTS1, which

contains source files of a vast array of botnet families from 2014 to the present day. Our mal-

ware data set spans several malware families including Mirai, Gafgyt, Tsunami and Pilkah,

which have been widespread in recent years [13, 135, 142, 143, 152]. Mirai, Gafgyt and

Tsunami make up the majority, 89.74% of all ELF binaries that were submitted to Virus-

Total between January 2015 and August 2018. [39]. Furthermore, security researchers have

noticed new variants belonging to these malware families that are used to launch thousands

of attacks in recent years [123, 124]. Source codes of over hundred variants of malware

belonging to these families have been traced back to online repositories [39]. Hence, we

believe that our dataset is representative of the malware found in the wild.

Our large scale evaluation study includes (a) various disassemblers, and (b) various

compilation configurations and architectures.

The five baseline disassemblers: We consider 5 disassemblers, Angr [150], IDA

Pro [66], Ghidra [108], BAP [23], and Radare2 [111] in our work. IDA Pro performed the

best in previous studies and other disassemblers have been used in recent evaluation studies

[72, 10].

We consider the following configurations and options.

a. Architectures: We consider two architectures, ARM version 5 and MIPS

R3000. We focus on these architectures because the majority, 66.0% of the ELF malware

1https://github.com/threatland/TL-BOTS
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binaries, belong to these architectures according to VirusTotal database [39]. Each archi-

tecture has different assembly language which requires different method and tools.

b. Compilers: We have compiled each program with two compilers: GCC version

5.5.0 and the Clang version 9.0. For the remainder of the paper, we will use GCC to refer

to GCC version 5.5.0, Clang to refer to Clang version 9.0, ARM to refer to ARM version 5

and MIPS to refer to MIPS R3000.

c. Five compilation optimization levels: For each architecture and for each

compiler, we have considered 5 compiler optimization levels: O0, O1, O2, O3, and Os. Each

level optimizes the binary in the three-way trade-off between compilation time, execution

time, and the size of the binary.

d. Stripped and unstripped binaries: We only report results on stripped

binaries, because the performance of some disassemblers deteriorates significantly when

binaries are stripped [59]. Furthermore, around half of all ELF malware are stripped [39].

Finally, we focus on non-obfuscated binaries, as most disassemblers are not de-

signed to work for obfuscated binaries. A recent large scale study shows that most IoT

malware is non-obfuscated and unpacked [39].

3.2 Disassembly Metrics

Note that we focus on the function start identification metric, which is a key

disassembly metric [72]. To quantify the variability, we use two methods to measure perfor-

mance: (a) the average, and (b) the 5-percentile of worst case performance (5PWC)

across the binaries in a testing set. The 5PWC value indicates that 5% of the binaries
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perform equal to or worse than this value [94]. We argue that binary-centric performance

is important for a practitioner, who, given a new binary, would like to have an estimate of

its worst case performance.

3.3 Disassemblers Evaluated

We consider 5 disassemblers, Angr [150], IDA Pro [66], Ghidra [108], BAP [23],

and Radare2 [111] in our work. IDA Pro performed the best in previous studies and other

disassemblers have been used in recent evaluation studies [72, 10]. We consider the following

configurations and options.

3.4 Ghidra Bug Discovery

In evaluating Ghidra, we ended up evaluating two versions of Ghidra, as a new

version Ghidra was released during the course of our study. Specifically, Ghidra v9.1 was

released in 23rd October 2019, replacing Ghidra v9.0.4. Our evaluation showed that in

some cases the newer version performed worse than the older version for ARM binaries

only. In figures 3.1 , we show that Ghidra v9.0.4 consistently outperforms Ghidra v9.1 for

the average F1 scores for ARM binaries that were compiled with both Clang and GCC. For

binaries compiled with GCC, Ghidra v9.0.4 outperforms by as much as 10.4% and 12.9%

for the average and the 5PWC F1 scores. For binaries compiled with Clang, Ghidra v9.0.4

outperforms by as much as 12.2% and 19.6% for the average and the 5PWC F1 scores.
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Figure 3.1: Ghidra v9.0.4 outperforms Ghidra v9.1: Mean F1 Score for ARM binaries
compiled with GCC and Clang.

These figures also show that the average performance of Ghidra v9.1 is lower than the worst

case performance of Ghidra v9.0.4 for most optimization levels.

Deep dive: the source of the problem. Intrigued, we wanted to understand

the root cause of the problem. This involved finding the function starts where the two

versions differed and then tracing what functional module of Ghidra would create this

discrepancy. We traced it to a misconfiguration in the database of function start signatures

in Ghidra v9.1. Specifically, we found that certain tag was attached in the function signature

byte pattern for the ARM architecture. This database is named the ARM LE pattern.xml

file and is found under the /Ghidra/Processors/ARM/data/patterns directory. This file
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contains sequences of byte patterns that are known to be found at the start of functions

in the ARM architectures. A new tag < alignmark = ”0”bits = ”3”/ > was added to some

of the rules, which are used to detect function starts. This tag prevented the disassembler

from applying these rules, and that made it miss function starts.

We shared our discovery with the Ghidra developers, which they acknowledged.

Our detailed bug report along with the suggested patch can be found under the issue

section in the Ghidra repository2 accompanied by extensive documentation. Unfortunately,

this bug has not been fixed in the latest version of Ghidra, v9.2.2, which was released on

29th December 2020. We find that the database of function signatures for ARM and its

performance for ARM binaries is identical to that of Ghidra v9.1. As a result, we suggest

the use of Ghidra v9.0.4 for ARM binaries, while for MIPS, the newer versions can be used.

3.5 Evaluation

Overall, the evaluation results show that disassembler performance varies signif-

icantly across compilation configurations and architectures. In figures 4.4 and 4.7, we see

that that (a) Angr does worse for ARM binaries than MIPS binaries, (b) Radare2 does

much worse for ARM binaries compiled with Clang than ARM binaries compiled with GCC

and (c) disassemblers tend to perform worse when binaries are compiled with the O2 or the

O3 compilation level..

2https://github.com/NationalSecurityAgency/ghidra/issues/1532
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Figure 3.2: Average and 5PWC for F1 Score for Function Start Identification for MIPS
binaries compiled with Clang.

Figure 3.3: Average and 5PWC for F1 Score for Function Start Identification for MIPS
binaries compiled with GCC.

We noticed that disassembler performance varies greatly even for binaries of the

same configuration. In table 4.3, we observe that the differences between the average and

the 5PWC F1 scores range widely between 6.3-41.5% for GCC and 9.5-34% for Clang for

MIPS binaries. This suggests that the disassembly accuracy that we can expect from a

disassembler can vary greatly across binaries.

40



Figure 3.4: Average and 5PWC for F1 Score for Function Start Identification for ARM
binaries compiled with Clang.

Figure 3.5: Average and 5PWC for F1 Score for Function Start Identification for ARM
binaries compiled with GCC.

More interestingly, we observe that the ”relative ranking” of the disassemblers can

vary per binary. In fact, it is not unlikely that a lower-ranked disassembler based on average

performs better for a number of binaries compared to a higher-ranked disassembler. For

example, in table 4.3, we see that Ghidra outperforms IDA Pro by 5.0% in terms of the

average F1 score for MIPS binaries with GCC. However, IDA Pro outperforms Ghidra by
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GCC Clang
Aver. 5PWC Aver. 5PWC

Angr 82.0 71.5 86.8 77.3

BAP 56.9 15.3 62.1 28.1

Ghidra 76.8 57.2 85.3 70.1

IDA Pro 71.8 65.5 73.0 63.5

Radare2 68.5 45.6 65.6 45.0

Table 3.1: Disassembler performance varies significantly even within binaries
that were compiled in the same way: We show the average and 5PWC F1 score for
function starts, CFS, for binaries compiled with the O3 optimization level for MIPS.

MIPS ARM
GCC Clang GCC Clang

Angr 82.0 86.8 50.2 43.9

BAP 56.9 62.1 63.6 47.0

Ghidra 76.8 85.3 87.0 91.3

IDA Pro 71.8 73.0 79.1 76.0

Radare2 68.5 65.6 74.0 NS

Table 3.2: DisCo combines disassemblers effectively: We show the average CFS F1
score for binaries compiled with the O3 optimization level. NS means not supported.

8.3% for the 5PWC score. Intrigued by this, we looked at individual binaries. We found

that IDA Pro outperformed Ghidra in 25.9% of the binaries in this dataset and by at least

10%. Therefore, answering the question ”which is the better disassembler for a specific

binary?” does not have an easy answer, even if we know the average performance.

Observation 2: Disassembler performance is affected significantly by all

three factors: (a) architecture, (b) compiler, and (c) compilation levels. This

observation is not surprising, but quantifying the extent of the effect is interesting. Our

results in table 4.2 and 4.3 reveals several insights.

a. The effect of the architecture: Some disassemblers have better support

for binaries belonging to one architecture compared to another. The more striking case is
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Angr, which gives an average F1 score in the 80s for MIPS binaries, in contrast to 40s

and 50s for ARM binaries and this applies to both GCC and Clang as shown in table 4.2.

The effect of the architecture is interesting for BAP as it depends on the compiler: BAP

with Clang does better than GCC in MIPS, but BAP with Clang does worse than GCC

in ARM. The exact values are shown in table 4.2. In general, a practitioner needs to be

mindful of this kind of variations for different architectures.

b. The effect of the compiler: The compiler affects the performance for some

disassemblers significantly for both the average and the worst case. For example, BAP has

an average F1 score of 63.6% for ARM binaries with GCC and only 47.0% for ARM binaries

with Clang (see table 4.2).

Similarly, we see that Ghidra performs better for Clang for both MIPS and ARM.

For MIPS, its performance increases from 76.8% for GCC to 85.3% for Clang on average,

and from 57.2% for GCC to 70.1% for Clang in the worst case.

c. The effect of the compiler optimization level: Disassembler performance

is affected by the compiler optimization levels used during compilation significantly. Most

disassemblers tend to perform worse when binaries are compiled with the O2 or the O3

compilation level. Figures 4.4 and 4.5 illustrate this for average and 5PWC F1 score for

MIPS binaries compiled with Clang and GCC. Similar trends have also been observed for

ARM binaries. Figures 4.6 and 4.7 illustrate this for average and 5PWC F1 score for ARM

binaries compiled with Clang and GCC.
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3.6 Discussions And Future Work

Our evaluation results show that: (a) function start identification accuracy of

disassemblers vary greatly even when binaries are compiled in the same way, and (b) that

function start identification accuracy of disassemblers is affected by architecture, compiler

and compilation levels. Hence, as a result, it is hard to pinpoint a single ”best” disassembler

that will perform well in all configuration scenarios.

Since a malware analyst may not know about the compilation configurations that

were used to compile the binary, it would be hard for him to decide on the best disassembler

to disassemble the binary at hand. We leave improving disassembly accuracy as future work.

3.7 Related Work

The most recent study [72] evaluates various disassemblers by using benign ARM

binaries. They observe that various disassemblers offer different levels of accuracy for differ-

ent types of programs. Another related work [10] evaluates the performance of disassemblers

by using benign binaries for the x86 architecture. Both works endorse IDA Pro as the best

disassembler. In terms of malware binaries, a recent work [59] focuses exclusively on IDA

Pro (version 6.8) and on a limited set of malware binaries. They found that malware au-

thors tend to prefer to use the -O{3} options and that IDA Pro performs poorly for CFS for

stripped binaries compiled with that option. That effort differs from our work significantly

as: (a) it does not propose to combine disassemblers, and (b) it evaluates only IDA Pro in

contrast to the five disassemblers that we use here.

44



3.8 Conclusion

Our evaluation shows that none of the disassemblers can consistently provide re-

liable disassembly accuracy across the malware binaries in our dataset. This highlights the

urgent need to improve disassembly accuracy, which tackle next.
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Chapter 4

DisCo: Combining Disassemblers

for Improved Disassembly

Accuracy

Binary disassemblers are essential front-line tools in malware defense: timely and

efficient reverse engineering of the malware binary is critical. An incident in 2017 highlights

the importance of this issue: two ransomwares, WannaCry and Petya infected over 230 000

Windows PCs across 150 countries by exploiting a vulnerability in Microsoft’s implementa-

tion of the Server Message Block protocol in a span of one day. These attacks cost over $4

billion dollars in damages [91, 24]. The rapid spread of these malwares had malware ana-

lysts racing against time to understand their mode of propagation and operation in order

to contain them.
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Which disassembler should a malware analyst choose for a rapidly-spreading mal-

ware binary to get the most accurate results? This is the question that motivates our work.

Here we focus on malware that targets MIPS and ARM architectures, given that such

malware has received significantly less attention. In addition, these architectures are widely

used in IoT devices, which are increasingly becoming targets of choice for malware [152, 12].

Currently, there is no clear answer to the above question, for the ARM and, and even more

so, the MIPS architecture. We elaborate on two contributing factors to this problem.

Figure 4.1: DisCo effectively combines disassemblers for superior performance:
The gain in the performance over the best input can be as high as +17.8% with a com-
bined performance 99.8% in F1 score combining five disassemblers. The results shown are
for malware binaries compiled with GCC for MIPS with the O3 compilation level. The
approach can work with different sets of disassemblers. We show the improvement using
only freely available disassemblers (+12.4% with a total of 94.4%).

First, there is a plethora of disassemblers both free and commercial, but research

so far has not determined a clear and consistent winner. The performance of a disassembler

can vary based on the type of the malware binary, which can be created by using various:

(a) compilers, (b) compiler optimization flags, and (c) target CPU architectures. These

variations can lead to significant differences in the assembly code found in the resultant bi-

nary [47, 27]. Note that determining the compilation parameters for a given stripped binary

is a challenging task. Despite some recent studies [10, 72], the effect of these variations on

the accuracy of disassembly are not well understood, especially for the MIPS architecture.
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Second, the average performance of a disassembler may not be sufficient to inform

the correct answer: we need to assess its worst case performance as well. This reliability

aspect of a disassembler is lost when we only report average performance, and even standard

deviation does not fully capture it. The ideal disassembler should offer accurate disassembly

consistently for each binary. Going back to our motivating example, the binary at hand may

belong to the minority group of binaries for which the overall-best disassembler performs

poorly. This poor performance at ”crunch-time” can translate into massive financial and

societal damage.

There is limited prior work for the our problem here as it focuses on: (a) malware,

and (b) the MIPS and ARM architectures. In contrast, most previous work seems to focus

on benign binaries and the x86, and most recently, the ARM architecture. We highlight

the two most relevant studies. The most recent work [72] evaluates several disassemblers

using only benign binaries and for the ARM architecture only. Another work [10] evaluates

disassemblers for the x86-64 architecture. Both studies [10, 72] endorse IDA Pro, a popular

commercial disassembler, in terms of overall performance and find that accurate function

start identification remains a challenge. We revisit previous work in section 5.5.

In this work, we take a different approach and pose the question: Why don’t we

benefit from the wisdom of all the disassemblers instead of picking one? To this end, we

present DisCo (Disassembler Combination), a systematic approach to harness the collec-

tive capabilities of a group of disassemblers to obtain superior results. The main challenge

is to ensure that the resultant model combines the strengths of the disassemblers while side-

stepping the individual weaknesses. Our key contribution is an effective way to combine
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disassemblers, which consists of two steps: (a) evaluating the effectiveness of each disas-

sembler to create training data, (b) creating and training an appropriate machine learning

algorithm to synthesize their individual outputs into a combined output. In the first step,

we compile the malware source code with various configurations and implement significant

instrumentation to create the ground truth. We compare the the output of each disassem-

bler with the ground-truth to evaluate it and create the training data. In the second step,

we use a neural network to create a stacking ensemble, which takes as input: (a) the output

of each disassembler, and (b) selected data from the actual binary.

We conduct an extensive evaluation of our approach using five disassemblers on

a wide spectrum of scenarios using 1760 binaries. Specifically, we consider the following

configuration options: (a) two architectures, MIPS and ARM, (b) two different com-

pilers, GCC and Clang, and (c) five compiler optimization levels. Note that we focus on

the function start identification metric, which is a key disassembly metric [72]. To quantify

the variability, in addition to the average performance, we consider the 5-percentile of

the worst case performance (5PWC), which we define later. Finally, we introduce the

Relative Performance Improvement (RPI) metric as the difference between the per-

formance of DisCo for a group of disassemblers and that of the best performing individual

disassembler in the group.

In summary, the contribution of our work can be summarized in the following key

observations:

a. DisCo is effective in combining disassemblers. DisCo can combine the

capabilities of different groups of disassemblers to achieve relative performance improve-
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ment, RPI. In table 4.1, we show that DisCo achieves an RPI of up to 17.8% across various

configuration options. Furthermore, there is an even larger improvement of up to 27.5%

in the worst case 5PWC metric. We showcase the effectiveness of our approach visually in

figure 4.1. Considering only our four non-commercial disassemblers, from table 4.1, we see

that DisCo(Free) has an RPI of up to 12.4% for MIPS.

b. DisCo can be used to improve other disassemblers. We show that

the collective power of the disassemblers, which DisCo synthesizes, can be brought back

to improve each disassembler. As a proof of concept, we create, Ghidra+, an improved

version of Ghidra, which can achieve up to 13.6% better F1 score compared to Ghidra.

Our systematic evaluation of disassemblers also reveals a bug in Ghidra v9.1, which was

acknowledged by the Ghidra team.

c. Configuration options affect disassembly performance significantly

including their relative ranking. We find that the ranking of the best performing

disassemblers varies for different configurations. For example, Angr is the best among the

group for MIPS with O3 for both GCC and Clang, but it performs the lowest for the ARM

architecture (see table 4.2). Furthermore, we find that the compiler optimization levels

impact the performance significantly: most disassemblers do fairly well with O0 and O1,

but do worse with O3 option. These observations and our results in general strongly argue

in favor of the promise of a combined solution.

Open-sourcing and data sharing. Our intention is to maximize the impact of

this work by enabling and encouraging the community to use our resources. We open-source

our software including our code, models and signature pattern files and make our datasets
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publicly available to maximize their impact.1 We envision that DisCo will be used by open

sourced disassembler communities to collaborate and improve their disassembly capabilities

to build the next generation of disassemblers.

4.1 Dataset

We train and evaluate DisCo by using a total of 1760 IoT malware binaries which

were compiled from 88 IoT malware programs with various configuration options. The

malware source codes were collected from Github, which hosts thousands of malware repos-

itories [121]. To avoid overfitting, we separate the training and testing datasets at the level

of malware programs. Thus, we use 30 of the 88 malware programs for training and the

remaining 58 programs for testing. As we are focusing on function starts, it is worth men-

tioning that the training set contained about 54K functions and the testing set contained

about 90K functions.

More specifically, we retrieved our malware from repository threatland/TL-BOTS2,

which contains source files of a vast array of botnet families from 2014 to the present day.

Our malware data set spans several malware families including Mirai, Gafgyt, Tsunami and

Pilkah, which have been widespread in recent years [13, 135, 142, 143, 152]. Mirai, Gafgyt

and Tsunami make up the majority, 89.74% of all ELF binaries that were submitted to

VirusTotal between January 2015 and August 2018. [39]. Furthermore, security researchers

have noticed new variants belonging to these malware families that are used to launch

thousands of attacks in recent years [123, 124]. Source codes of over hundred variants of

1https://github.com/gsrishaila/DisCo-Combining-Disassemblers-for-Improved-Performance.git
2https://github.com/threatland/TL-BOTS
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malware belonging to these families have been traced back to online repositories [39]. Hence,

we believe that our dataset is representative of the malware found in the wild.

Since malware binaries may share certain characteristics that could be absent in

benign software, we also show the generalizability of DisCo by applying it on a small set

of benign binaries from SPEC 2017 benchmark. We discuss this in more detail in section

4.5.1. We also discuss the coverage of the data set in section 5.4.

As shown in figure 4.1, we show the effectiveness of combining various disassemblers

effectively through our comprehensive study. Our study includes (a) various disassemblers,

and (b) various compilation configurations and architectures.

4.2 Disassemblers and Compilation Configurations

The five baseline disassemblers: We consider 5 disassemblers, Angr [150], IDA

Pro [66], Ghidra [108], BAP [23], and Radare2 [111] in our work. IDA Pro performed the

best in previous studies and other disassemblers have been used in recent evaluation studies

[72, 10]. We consider the following configurations and options.

a. Architectures: We consider two architectures, ARM version 5 and MIPS

R3000. We focus on these architectures because the majority, 66.0% of the ELF malware

binaries, belong to these architectures according to VirusTotal database [39]. Each archi-

tecture has different assembly language which requires different method and tools.

b. Compilers: We have compiled each program with two compilers: GCC version

5.5.0 and the Clang version 9.0.
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For the remainder of the paper, we will use GCC to refer to GCC version 5.5.0,

Clang to refer to Clang version 9.0, ARM to refer to ARM version 5 and MIPS to refer to

MIPS R3000.

c. Five compilation optimization levels: For each architecture and for each

compiler, we have considered 5 compiler optimization levels: O0, O1, O2, O3, and Os. Each

level optimizes the binary in the three-way trade-off between compilation time, execution

time, and the size of the binary.

d. Stripped and unstripped binaries: We only report results on stripped

binaries, because the performance of some disassemblers deteriorates significantly when

binaries are stripped [59]. Furthermore, around half of all ELF malware are stripped [39].

Finally, we focus on non-obfuscated binaries, as most disassemblers are not de-

signed to work for obfuscated binaries. A recent large scale study shows that most IoT

malware is non-obfuscated and unpacked [39]. We will apply DisCo on obfuscated malware

in future studies, where we conjecture that combining disassemblers could be more effective

due to the poorer performance of individual disassemblers.

4.3 Motivating Case Study

We present the key design and implementation ideas behind our approach. We

start by presenting a case study that motivates and informs the design of our approach.

Motivating case-study: Disassemblers ”see” different things. Combining the base-

line diassemblers will only be beneficial if each disassembler recovers different parts of the

binary structure. Individual disassemblers can miss some function starts (false negatives)
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Figure 4.2: Motivating observation: Disassemblers complement each other. IDA Pro
identifies 241 function starts and Ghidra 352 that the other does not identify. Similarly, the
falsely identified function starts (260 and 40) seem to be disjoint. An efficient combination
could improve the overall performance.

or erroneously identify a function start where there isn’t one (false positive). Our intuition

suggests that different disassemblers should have complimentary capabilities because they

use different algorithms to identify the structure of the binary. We provide evidence that

disassemblers produce different results, which enable the superior performance of DisCo as

we see later in the paper.

We use IDA Pro and Ghidra to disassemble a random subset of binaries in our

data set with focus on the CFS metric. IDA Pro has a 88.4% precision and and 60.2%

recall. The corresponding values for Ghidra is 98.1% and 63.5%. Note that the numerical

difference alone does not prove complementary capabilities, because the IDA Pro output

may be subsumed by the Ghidra output, providing no additional information.

Observation 1. The two disassemblers have complementary results.

Each disassembler correctly identified certain function starts that the other disassembler
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missed. Specifically, 7.3% of the actual function starts were identified only by IDA Pro,

while 10.7% of the function starts were identified only by Ghidra.

Observation 2. Combining the results should be done carefully. While

this finding supports our intuition, it also shows that taking a simple union of the outputs

from disassemblers will not necessarily guarantee optimal performance, especially for preci-

sion. This is because 11.6% and 1.9% of the functions starts found by IDA Pro and Ghidra

were false positives.

We confirmed this observation by using two straightforward approaches. First, we

applied a simple union of the outputs from disassemblers. We took a set of 58 MIPS binaries

that were compiled with the Clang compiler at the O3 optimization level and applied the

simple union technique on the outputs of all 5 disassemblers. This technique gave a precision

of 48.6% and recall of 93%. This result shows that taking a simple union of all disassembler

outputs will lead to low precision due to the presence of many false positives. Second, we

considered the majority voting ensemble, in which a function start needs to be approved by

a majority of the disassemblers. We repeated our experiment on the same set of binaries.

This approach gave a perfect precision of 100%, but a recall of 65.6%. The low recall is

because certain functions starts are only identified by a few of the disassemblers.

These initial results show the need for a more intelligent combination method,

which we present below.
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Figure 4.3: An overview of DisCo and its functional modules.

4.4 System Design and Implementation

We show the high-level architecture of DisCo in Figure 4.3. The blue boxes cor-

respond to data used in the training phase, while the green ones are used in the testing

phase. The yellow boxes are modules of DisCo.

a. Creating the Ground Truth: Before we evaluate and combine the disassem-

blers, we need to create training and testing datasets. To achieve this, we start with malware

source code, but even then establishing the ground-truth requires some instrumentation and

effort.

To obtain ground-truth, all the binaries are compiled with the -g option to attach

richer debugging information to the resultant binaries. We use the DWARF library to

identify function start addresses. We used a python script with imported DWARF libraries

to create the ground-truth for each of our 1760 binaries.

b. Evaluating the disassemblers: Each binary in the training set is disassem-

beled with each disassembler. We compare the outputs from each disassembler with the

ground-truth and use these results to: (a) create the training data for the ensemble model,
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and (b) to extract useful information, which we can be used to improve each disassembler.

This information is represented by the Disassembly Intelligence box in figure 4.3.

c. Creating the ensemble model: An ensemble model gives superior prediction

performance by integrating multiple models effectively [120]. The goal of DisCo’s ensemble

model is to combine the complementary disassembler capabilities in a way that increases the

recall (identifies more real function starts) and precision (less misidentifications) compared

to what is achieved by any of the disassemblers individually. A well-crafted ensemble model

discovers complex correlation patterns in the output of the individual disassemblers and

recognizes context specific strengths and weaknesses to combine these outputs effectively.

There are various ways to implement an ensemble model with respect to how the

baseline disassemblers’ output is combined. We decided to use stacking, where the output

is combined using a neural networks [144]. A stacked ensemble model learns the best way to

combine classification labels from multiple models. While other choices could be considered

(e.g., majority vote), stacking achieves superior performance for many applications [3, 105],

and works well in our context as well.

A realistic problem assumption. To emulate a realistic scenario, we assume that

we only know the architecture for a given binary. In other words, we only know if a binary

is compiled for MIPS or ARM. We do not assume knowledge of the compiler or compilation

level used to produce the binary. As a result, we develop two analysis engines (and two

ensemble models), one for each architecture.

The initial ensemble model. In the initial design, we used only one type of input,

boolean values that represents whether a particular disassembler detected a particular func-
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tion start. However, this model did not provide good results. Our investigation revealed

that this information was insufficient and that additional context information from binary

is required for effective predictions.

The context-aware ensemble model. We develop a ”context aware” ensemble model

by including information around the candidate function start location. For the MIPS

architecture, we include two instructions before and after the potential function start. Since,

each instruction is four bytes, we include 8 bytes before and after the potential function

start. For the ARM architecture, we only include the 8 bytes after the candidate function

start. The reason is that often there is inline data between functions in ARM binaries, and

hence, 8 bytes before a function start may be data bytes, which adds noise to the process.

Note that we treat the bytes (which correspond to binary instructions) as categorical data,

since the numerical value of an instruction does not convey any additional information

(other than the identity of the instruction).

d. Using DisCo: DisCo can be used by disassembly developers, malware analyst

or security practitioners.

Relative Perfomance Improvement (RPI)
Average 5PWC

MIPS ARM MIPS ARM
GCC Clang GCC Clang GCC Clang GCC Clang

DisCo(All) 17.8 12.7 11.9 8.0 27.5 19.1 16.3 12.3

DisCo(Free) 12.4 6.2 8.7 4.5 19.9 12.5 10.7 6.2

DisCo(IdaGhi) 5.8 2.5 7.2 5.2 8.3 7.9 12.5 9.1

Table 4.1: The Relative Performance Improvement can be substantial: We show
the Relative Performance Improvement for ARM and MIPS for binaries compiled with
GCC and Clang (-03 compilation level). The combined solution of DisCo is a significant
improvement over the best contributing disassembler for both the average and 5PWC.
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1. Accurate disassembly: A practitioner can use DisCo to analyze a malware

binary of interest. She can use the platform, which we intend to open-source: she just

needs to provide the binary to obtain the results as shown in figure 4.3. Alternatively,

she can develop (or fork) her own version and expand with additional training data and

disassemblers.

2. Improving other disassemblers: Developers can use DisCo to improve the

performance of other disassemblers. First, we can provide the cases where a disassembler

failed. This information alone can help the developers improve their approach. Second,

DisCo can also generate new information that a disassembler can include in its knowledge

base. For example, in the case of function start identification, DisCo can provide byte

patterns that can be used as function start signatures. These signatures can be incorporated

into the database of the disassembler. Ghidra has a well-defined interface for accepting such

external information, which is why we selected it to showcase this capability, as we explain

later in this section.

4.4.1 Implementation issues

We elaborate on some key implementation details for the choices made in building

our instance of DisCo. These choices were done carefully and deliberately, and lead to good

results demonstrating the promise of the approach. In the future, we will consider more

options and different ways to fine-tune the performance further as we discuss in section 5.4.

Creating the training and test sets: The training set for each model is created

by allowing all disassemblers in the group to identify functions from 600 binaries compiled

from the 30 malware programs in our training set. The testing set consists of 1160 binaries
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compiled from 58 other malware programs in our testing set. These binaries were compiled

with 2 compilers, GCC and Clang and with five compilation levels, O0,O1,O2,O3,Os. Note

that we create and train two different models for each of our two architectures.

We disassemble each binary by using each of the five disassemblers to get the

training and testing input for our model. We create a set containing functions start locations

that were identified by at least one disassembler. We use a boolean value to represent the

”vote” of each disassemblers for each candidate function start. We also record 8 bytes after

each function start. For MIPS binaries, we also record 8 bytes before each function start

as explained before. We provide these inputs into the model.

Deploying the disassemblers. Some disassemblers can be used with different

operational options, and we selected the most optimal options based on previous work [72].

Furthermore, in the case of Ghidra v9.1 we discovered a bug, which affected its performance

for the ARM architecture. We discuss this in the next section. Interestingly, that bug was

not present in version v9.0.4. We opted to give Ghidra the ”benefit of the doubt” and used

version v9.0.4 for the ARM architectures, and version v9.1 for the MIPS architecture.

Note that Angr fails to complete disassembly for some binaries, and terminates

without output, as has been observed in previous studies [72]. We use and report only the

cases where Angr disassembles a binary successfully.

Combining different disassemblers: three DisCo variants: Our approach

can combine any number of disassemblers that a practitioner would have available, as long

as they can be included in our training pipeline.
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We consider three variants of DisCo as our focus is to show the potential of har-

nessing the collective capabilities of different groups of disassemblers.

DisCo(All): We considered all five disassemblers: Angr, IDA Pro, Ghidra, BAP,

and Radare2.

DisCo(Free): We considered only the non-commercial disassemblers: Angr,

Ghidra, BAP, and Radare2.

DisCo(IdaGhi): We considered two disassemblers: IDA Pro and Ghidra.

We share more details about the models used for DisCo(All). The ARM model was

trained on 26K functions and tested on 50K functions. The MIPS model was trained on 28K

functions and tested on 40K functions.The function starts in the training and testing set for

each architecture differ because the number of function starts missed by all disassemblers

and the number of falsely identified function starts identified by each disassembler for each

configuration varies. We used a feedforward based neural network with 2 hidden layers for

each model. The first layer had 1000 nodes while the second layer had 250 nodes. We used

these parameters because they gave the most optimal results when we used the 10 fold cross

validation to train the model.

We created the models for DisCo(Free) and DisCo(IdaGhi) in a similar way. The

number of functions used to train and test the model will be lesser than the number used for

DisCo(All) because we are combining lesser number of disassemblers. Hence, the training

time required was also lesser.
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The output of these DisCo versions produces the results shown as Improved Dis-

assembly in figure 4.3. Note that it is well established that Radare2 does not support ARM

binaries compiled with Clang [72].

Improving disassemblers: the case of Ghidra+. As a proof of concept,

we show how DisCo can improve disassemblers focusing on Ghidra. DisCo can generate

function starts signature by using the training data which we include in Ghidra’s database.

We use two DisCo variants, DisCo(Free) and DisCo(All) to improve Ghidra 9.1.

The improved versions of Ghidra are called Ghidra+(Free) and Ghidra+(All) respectively.

As we will see later, both improved versions perform overall significantly better compared

to the original Ghidra.

4.5 Experimental Evaluation

We evaluate the effectiveness of our approach with the datasets which we described

in section 4.1 using the ground-truth which we discussed in section 4.4.1. We group our

experimental results around the following three questions.

Q1: How beneficial is the combination of disassemblers?

Q2: How can our approach improve a disassembler?

Q3: Which factors affect disassembler performance?

We answer each question with a series of observations. Going one step further, we

also provide a set preliminary investigations into issues that include the performance of our

approach on benign malware.
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MIPS ARM
GCC Clang GCC Clang

DisCo(All) 99.8 99.5 98.9 99.3

DisCo(Free) 94.4 93.0 95.7 95.8

DisCo(IdaGhi) 82.6 87.8 94.2 96.5

Ghidra+(All) 90.4 88.6 91.0 98.1

Ghidra+(Free) 90.1 87.4 91.7 98.0

Angr 82.0 86.8 50.2 43.9

BAP 56.9 62.1 63.6 47.0

Ghidra 76.8 85.3 87.0 91.3

IDA Pro 71.8 73.0 79.1 76.0

Radare2 68.5 65.6 74.0 NS

Table 4.2: DisCo combines disassemblers effectively: We show the average CFS
F1 score for binaries compiled with the O3 optimization level. Ghidra+ shows significant
improvement over Ghidra. NS means not supported.

Q1: How beneficial is the combination of disassemblers? Our results suggest that

combining the disassemblers provides significantly superior performance. We provide the

RPI values for each DisCo variant in table 4.1. In tables, 4.2 and 4.3. we show the

performance of DisCo variants, Ghidra+ variants and other disassemblers for CFS metric.

Table 4.3 shows both average and 5PWC performance for the MIPS binaries. All tables

show the results for binaries compiled with the O3 compiler optimization levels. Despite

having extensive tables for all configurations, we are not able to show them due to space

limitations. As we already discussed in the previous section, Radare2 does not support ARM

binaries compiled with Clang. Hence, it does not make sense to include in the combined

solution.

Observation 1: Combining disassemblers provides significant improve-

ment for both average and worst case. Combining the collective wisdom of disas-

semblers leads to significant improvements, often in the double-digits, in both the average

and the worst case metrics in our experiments. In table 4.1, we see that each of our DisCo
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variants give consistent positive RPI values of up to 17.8% for the average F1 score and up

to 27.5% for the 5PWC F1 scores for all configuration options. This shows that we have

combined the disassemblers efficiently.

First, we see a significant performance increase on the average F1 score of function

start identification. In table 4.2, we see that DisCo(All) gives an average F1 score of 98.9%

or above for binaries of both architectures and compilers. When compared with the best

performing disassembler, this is an improvement of up to 17.8% for GCC and 12.7% for

Clang binaries in the MIPS architecture. The corresponding values for ARM binaries are

11.9% for GCC and 8.0% for Clang.

Second, we see a significant improvement in the worst case performance as this is

captured by the 5PWC metric of the worst performing binaries for each disassembler. In

table 4.3, we see that DisCo(All) provides an improvement of 27.5% for GCC and 19.1%

for Clang for the MIPS binaries compared to the 5PWC of our individual disassemblers.

We also see that the other DisCo variants also provide significant improvements, though

smaller than that of DisCo(All).

Observation 2: Each disassembler seems to add value to the union.

Unsurprisingly, combining more disassemblers leads to better average and 5PWC scores. In

table 4.2, we see that the performance improves when we go: (a) from DisCo(IdaGhi) to

DisCo(All), and (b) from DisCo(Free) to DisCo(All) for both architectures and different

compilers. Note that comparing DisCo(Free) and DisCo(IdaGhi) is less straightforward, as

the Free group does not include IDA Pro. In table 4.3, we see even larger improvement for

the 5PWC values between DisCo(All) and the other two DisCo variants.
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GCC Clang
Aver. 5PWC Aver. 5PWC

DisCo(All) 99.8 99.0 99.5 96.4

DisCo(Free) 94.4 91.4 93.0 89.8

DisCo(IdaGhi) 82.6 73.8 87.8 78.0

Ghidra+(All) 90.4 75.0 88.6 78.5

Ghidra+(Free) 90.1 73.0 87.4 78.5

Angr 82.0 71.5 86.8 77.3

BAP 56.9 15.3 62.1 28.1

Ghidra 76.8 57.2 85.3 70.1

IDA Pro 71.8 65.5 73.0 63.5

Radare2 68.5 45.6 65.6 45.0

Table 4.3: Combining the disassemblers improves the worst case performance
significantly: We show the average and 5PWC F1 score for function starts, CFS, for
binaries compiled with the O3 optimization level for MIPS. Ghidra+ also shows significant
improvement in its worst case performance compared to Ghidra.

The more interesting observation is that even the disassemblers that do not perform

well on their own seem to still add value when included in the ensemble model. The

improvement is more pronounced for the worst case performance metric. An indication of

this can be found in table 4.3. If we rank the disassembler performance for MIPS binaries

based on the average scores in decreasing order, we get Angr, Ghidra, IDA Pro, Radare2

and Bap. Although IDA Pro is the third best performing disassembler, including it in the

combination, namely going from DisCo(Free) to DisCo(All), improves the average F1 score

and 5PWC by as much as 6.5% and 6.6% for Clang respectively.

We observe a similar phenomenon in table 4.2. Ghidra and IDA Pro are the best

performing disassemblers for binaries of the ARM architecture. However, the performance of

DisCo(All) outperforms DisCo(IdaGhi) by up to 4.7% for this architecture. In other words,

even adding the three lower-performing disassemblers leads to improved performance.
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Observation 3: Disassembler performance varies significantly across bi-

naries. As mentioned in the previous chapter, we noticed that disassembler performance

varies greatly even for binaries of the same configuration. In table 4.3, we observe that the

differences between the average and the 5PWC F1 scores range widely between 6.3-41.5%

for GCC and 9.5-34% for Clang for MIPS binaries. This suggests that the disassembly

accuracy that we can expect from a disassembler can vary greatly across binaries.

More interestingly, we observe that the ”relative ranking” of the disassemblers can

vary per binary. In fact, it is not unlikely that a lower-ranked disassembler based on average

performs better for a number of binaries compared to a higher-ranked disassembler. For

example, in table 4.3, we see that Ghidra outperforms IDA Pro by 5.0% in terms of the

average F1 score for MIPS binaries with GCC. However, IDA Pro outperforms Ghidra by

8.3% for the 5PWC score. Intrigued by this, we looked at individual binaries. We found

that IDA Pro outperformed Ghidra in 25.9% of the binaries in this dataset and by at least

10%. Therefore, answering the question ”which is the better disassembler for a specific

binary?” does not have an easy answer, even if we know the average performance.

Q2: How can our approach improve a disassembler?We show how the extracted

wisdom of a group of disassemblers can improve an individual disassemblers.

Observation 4: Information from DisCo improves Ghidra substantially.

As mentioned in section 5.2, we use the DisCo model to update the function signature byte

pattern file for any disassembler which can utilize such information. We use DisCo(Free)
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and DisCo(All) to create two new versions of Ghidra, Ghidra+(Free) and Ghidra+(All)

respectively.

Our results show that Ghidra+(All) exhibits considerable improvement over Ghidra

for both the average and 5PWC scores. In table 4.2, we see that Ghidra+(All) improves

the performance of Ghidra by up to 13.6% for the MIPS binaries and by up to 6.8% for the

ARM binaries. In table 4.3, we see that Ghidra+(All) also improves the 5PWC scores by

17.8% for the MIPS binaries compiled with GCC and by 8.4% for MIPS binaries compiled

with Clang. DisCo(All) added an additional of 1696 signatures for the ARM architecture

and 3418 signatures to the MIPS architecture in Ghidra+(All). Overall, Ghidra+(Free)

also exhibits similar improvements over Ghidra with two Ghidra+ versions differing by a

maximum of 2% for the average and 5PWC scores.

We wanted to compare the performance between an improved Ghidra and the

DisCo that helped it improve by providing signatures. It turns out that the DisCo variant

typically performs better in most cases, but not all! Both DisCo variants perform better

than the corresponding Ghidra+ variants in all the cases except for DisCo(Free) for the

ARM binaries compiled with Clang. We show the results for the O3 compilation level in

tables 4.2 and 4.3, while qualitatively similar results were obtained for other compilation

level. DisCo(All) outperforms Ghidra+(All) by 1.2 - 10.9% while DisCo(Free) outperforms

Ghidra+(Free) by 4.0 - 5.6%. Interestingly, in the case of ARM Clang, Ghidra+(Free)

performs better than DisCo(Free) by 2.2%, but note they both perform better than the

original Ghidra. The usual superior performance of the DisCo variant over Ghidra+ variant

is not surprising. The neural network model can find complex relationships between the
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inputs and the outputs. All these complex relationships of the ensemble model cannot be

fully captured by the byte patterns of function signatures. We will investigate the case of

ARM Clang in the future, especially since our other investigations often led to interesting

insights.

Q3: Which factors affect disassemble performance? As mentioned in the previous

chapter, disassembler performance is affected significantly by all three factors:

(a) architecture, (b) compiler, and (c) compilation levels. Our results in table 4.2

and 4.3 reveals several insights.

a. The effect of the architecture: Some disassemblers have better support

for binaries belonging to one architecture compared to another. The more striking case is

Angr, which gives an average F1 score in the 80s for MIPS binaries, in contrast to 40s

and 50s for ARM binaries and this applies to both GCC and Clang as shown in table 4.2.

The effect of the architecture is interesting for BAP as it depends on the compiler: BAP

with Clang does better than GCC in MIPS, but BAP with Clang does worse than GCC

in ARM. The exact values are shown in table 4.2.

In general, a practitioner need to be mindful of this kind of variations for different

architectures.

b. The effect of the compiler: The compiler affects the performance for some

disassemblers significantly for both the average and the worst case. For example, BAP has

an average F1 score of 63.6% for ARM binaries with GCC and only 47.0% for ARM binaries

with Clang (see table 4.2).
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Figure 4.4: Average and 5PWC for F1 Score for Function Start Identification for MIPS
binaries compiled with Clang.

Figure 4.5: Average and 5PWC for F1 Score for Function Start Identification for MIPS
binaries compiled with GCC.

Similarly, we see that Ghidra performs better for Clang for both MIPS and ARM.

For MIPS, its performance increases from 76.8% for GCC to 85.3% for Clang on average,

and from 57.2% for GCC to 70.1% for Clang in the worst case.

c. The effect of the compiler optimization level: Disassembler performance

is affected by the compiler optimization levels used during compilation significantly. Most

disassemblers tend to perform worse when binaries are compiled with the O2 or the O3
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compilation level. Figures 4.4 and 4.5 illustrate this for average and 5PWC F1 score for

MIPS binaries compiled with Clang and GCC. Similar trends have also been observed for

ARM binaries. Figures 4.6 and 4.7 illustrate this for average and 5PWC F1 score for ARM

binaries compiled with Clang and GCC.

Our results show that DisCo(All) is less sensitive to compiler optimization levels

compared to other disassemblers. Even when we consider the best disassembler for each

architecture, the difference in mean F1 scores for the various optimizations is 10.1% for the

Figure 4.6: Average and 5PWC for F1 Score for Function Start Identification for ARM
binaries compiled with Clang.

Figure 4.7: Average and 5PWC for F1 Score for Function Start Identification for ARM
binaries compiled with GCC.
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ARM architecture and 13.7% for the MIPS architecture. In contrast, DisCo(All) reduces

this difference to 1.0% for the ARM binaries and 1.2% for the MIPS binaries. This increase

in the reliability of the results is yet another argument in favor of the value of combining

disassemblers.

The overarching conclusion further supports the benefit of DisCo: the performance

of disassemblers is affected by configuration options. As a result, it is hard to pinpoint a

single ”best” disassembler that will perform well in all configuration scenarios. In addition,

we see that DisCo is minimally sensitive to these variants: as the 5PWC is very close to

the high average performance. In other words, DisCo offers good performance reliably with

small variation across many different configurations.

4.5.1 Some Exploratory Investigations

We further evaluate DisCo by testing its capabilities in the following situations:

(a) limited training data, and (b) benign binaries. Note that due to space limitations, this

is mostly a preliminary study, which we intend to substantiate in future.

We show that DisCo performs well in these situations by using DisCo(IdaGhi). In

this subsection, we focus more on DisCo(IdaGhi) as an instantiation of DisCo. We create

the training set by compiling 16 malware source codes. DisCo was created by combining the

outputs from IDA Pro and Ghidra from the training set binaries. Figure 4.8 shows the re-

sults when we evaluated DisCo on 4 malware binaries compiled from 4 other malware source

codes and 9 benign binaries from the SPEC2017 benchmark. All binaries were compiled

with GCC from C language source codes with O3 option for the MIPS architecture.
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Preliminary Investigation 1: How sensitive is DisCo to the training set

size? We conduct the following experiment to assess the sensitivity of DisCo to the training

set. We use a subset of 16 malware source codes for training. In this case, we focused on

DisCo(IdaGhi), since combining only two disassemblers could stress test the capabilities of

DisCo using the MIPS GCC scenario. It turns out that even in this case the performance

was able to improve the F1 score by 6.7% for the malware binaries which is comparable

to the 5.8% improvement we saw in our larger training dataset. This initial experiment

suggests that DisCo can perform well with limited number of training data. We intend to

study how performance is affected by the size of the training data in future.

Preliminary Investigation 2: Does DisCo work well for benign binaries

too? We wanted to see if our approach can work well for benign binaries. DisCo was able

to improve the F1 score by 4.4% for the benign binaries respectively. This suggests that the

performance improvement by DisCo could also apply to benign binaries. Note that here

DisCo was trained on malware binaries. We will further investigate if by training on benign

binaries would bring the performance improvement closer to the improvement we saw with

malware binaries.

Preliminary Investigation 3: Are malware binaries harder to disassem-

ble than benign binaries? Evaluation results based on the limited set of malware and

benign binaries suggest that both disassemblers, IDA Pro and Ghidra perform better in F1

score for the CFS metric for benign binaries. IDA Pro performs better for benign binaries

by 7.7%, while Ghidra performs better for benign binaries by 7.4%. A possible reason for

this could be using benign binaries from well known benchmarks to test disassemblers.
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Figure 4.8: Benign and malware binaries: DisCo improves the performance even in
the case of benign binaries. DisCo improves the F1 score by 6.7% for malware and 4.4%
for benign binaries. Disassembling benign binaries seems easier. The reported results are
for the MIPS architecture with GCC and the O3 compilation level.

4.6 Discussions And Future Work

In this section, we discuss the broader context and limitations of our work.

How will DisCo be used in practice? As we already mentioned, DisCo pro-

vides: (a) more accurate disassembly for a given binary, and (b) information to improve

individual disassemblers. Therefore, we envision two different types of users: (a) security

practitioners, who want to understand a malware binary, and (b) developers of disassem-

blers. Users can either use our approach to instantiate their own version of DisCo or use

our own open-source version of the tool. Note that using commercial disassemblers will

require a license. Developers of disassemblers can use DisCo as a mechanism to evaluate

their tool, compare their tool with other tools, and extract information that can improve

their tool. We saw a case study of this in the previous section where we improved Ghidra.
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Furthermore, we enthusiastically invite the community to help improve and extend our ap-

proach by: (a) introducing more capabilities, such as adding disassemblers, and (b) adding

more samples to the training and testing datasets.

Can we improve the performance of DisCo further? Although the initial

results are significant, there are ways to farther improve the performance of our approach. In

certain cases, DisCo misses identifying function starts. The operands of some instructions

around the function start can be one of multiple registers. We conjecture that if the training

set does not contain all variants of these instructions, with the various possible registers

as operands, the model can miss recognizing these kinds of function start byte patterns.

Increasing the size of training data may help to address this problem. Finally, we can also

improve performance by including more disassemblers.

Our ultimate goal is to include as many disassemblers as possible in DisCo, which

will strengthen the combined performance. In future, we plan to add two more disassem-

blers, Hopper [48] and Binary Ninja [70], to further improve the combined performance. We

can share our preliminary results with Binary Ninja [70]. We report the results from the

MIPS architecture here for the O3 compilation level. Binary Ninja performed very well in

our dataset with F1 scores of 92.6% for GCC and 95.7% Clang for MIPS. Combining all six

disassemblers leads to an RPI 4.7% for GCC and 3.5% Clang on the average performance

for MIPS. In addition, the 5PWC of the combined performance showed a more significant

improvement: 10.8% for GCC and 11.9% Clang. Recall that previous work found that

IDA Pro performed better than Binary Ninja in their dataset [72]. These variations further

highlight the benefit of combining disassemblers.
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Is there an ”optimal” set of disassemblers to combine? Our position is

to sidestep the best-disassembler question and instead use the collective power of all the

disassemblers that one can afford to purchase and integrate in a DisCo-like approach. The

motivation is that each disassembler can provide useful and unique information for various

compilation configurations. However, it is natural to ask for the minimum set of disassem-

blers to provide great performance. To answer, an extensive study that encompasses: (a)

source code variations, in terms of programming approaches, styles and application types,

and (b) various compiler configurations is needed.

Can DisCo improve each disassembler? We argue that DisCo is a systematic

approach to evaluate and cross-pollinate disassemblers to improve each one. First, we

showcased this capability when we improved Ghidra by adding function start signatures in

its knowledge-base. Second, our systematic approach can pin-point systemic weaknesses in

the disassemblers. As we saw, we found a bug in Ghidra v9.1. We envision this knowledge-

transfer and evaluation operation to be infrequent. For example, it can take place every

three to six months, or be prompted by events, such as new releases of the disassemblers,

or the addition of new training data in DisCo.

We chose to use 8 bytes around function starts in DisCo as input to the model

for the following reasons. In the ARM and MIPS architecture, each instruction is 4 bytes

long. We started by looking at byte patterns used in Ghidra. We noticed that for the

ARM architecture, most rules tend to use 8 to 16 bytes around the function start with

varying numbers of instructions taken before and after the function start. For the MIPS

architecture, most rules use 8 to 20 bytes before the function start and 8 to 12 bytes after

75



the function start. Our goal was to to use the minimum number of bytes, which can shorten

the training time and reduce the possibility of overfitting. Hence, we decided to start with

8 bytes before and after the function start. Since we obtained good results by using 8 bytes,

we did not explore using other numbers of bytes.

How much can our approach generalize? Our goal here is to introduce the

idea of combining disassemblers as a new way of thinking about disassembling and show

that it leads to promising results. To obtain these results, we had to focus on specific choices

of compiler configurations such as MIPS and ARM architectures, C language programs,

and focused on the CFS metric. A natural question is how much can we generalize this

approach. We are confident that our approach can extend and generalize to: (a) any

number of disassemblers, (b) binaries of various architectures, (c) different compilers and

compilation options, and (d) different programming languages. One possible extension of

our work is to apply our technique to a variable length Instruction Set Architecture, (ISA)

like x86. In such a scenario, we could decide on the number of bytes used as inputs to the

model by referring to open sourced disassemblers or by experimenting with various numbers

of bytes. Each of these extensions vary in the required effort.

Are our datasets representative? This is the typical and fair, hard question

for any evaluation study. First, we made a point to include in our dataset a number of

the most prominent and recent malware families, as we saw in section 4.1. Second, our

goal is to show the ability of our approach to leverage the merits of each disassembler. We

argue that the ”intelligence” of our algorithm is second-order question: a different dataset

may affect the individual performance of each disassembler, but that does not affect the
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Avg. time for
MIPS binaries(s)

Avg. time for
ARM binaries(s)

Angr 26.7 12.0

BAP 5.7 5.1

Ghidra 32.1 28.2

Ghidra+(All) 31.2 30.6

IDA Pro 29.4 9.9

Radare2 1.2 1.2

Table 4.4: Time requirements for various disassemblers: We show the average time
required for each disassembler for each binary.

capability of DisCo to combine these performances. Of course, if the algorithms perform

badly, the combined performance will be lower than what we saw here. In other words, the

disassemblers need to keep up with the malware intricacies, as DisCo is simply leveraging

their combined capability.

For what types of binaries does DisCo work well? Our work focuses on

IoT malware binaries. This influences our choices in terms of architectures, compiler, and

training and testing datasets. While there are various types of binaries and platforms we

can consider, the overarching statement is that combining different disassemblers can only

provide better results, if it is done efficiently with sufficient training.

Benign binaries. Disassembly of benign binaries can also benefit from a combined

approach. First, we showed some promising initial results in section 4.5.1, where we tested

on a small set of benign binaries from the SPEC 2017 without training for benign binaries.

We plan to conduct a large scale study of DisCo on benign binaries.

Obfuscated binaries. Developers often obfuscate their binaries to impede one’s

ability to reverse engineer them. Note that most disassembler methods and related studies

focus on unobfuscated binaries [10, 19, 9]. One recent works that considered some obfuscated
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binaries found that obfuscation poses a challenge to disassembly tools and that different

tools offer varying performance for these binaries [72]. Here, we did not consider obfuscated

binaries on disassembly accuracy, but we intend to study this in the future.

What is the time requirement to use DisCo? If we want to use DisCo

on a test binary then we need to extract some information from the binary from all five

disassemblers in the group. The most time efficient way will be to use the disassemblers

in parallel. We recorded the time taken for various disassemblers to analyze 400 binaries.

Table 4.4 shows the average time needed by the various disassembler tools to analyze a

binary. This time is the total time required by the disassembler to disassemble the binary

and run python scripts to extract information from the binary that will be used by the

DisCo model later. Hence, on average, when we use DisCo(All) for a given binary using our

model, we can obtain outputs of all 5 disassemblers in 30.2 seconds if we operate them in

parallel. The time taken to train the model for each architecture for DisCo(All) is 1 hour.

Ghidra+(All), on average requires 30.9 seconds to analyze a binary.

4.7 Related Work

To the best of our knowledge, there has not been any previous study that has

combined the capabilities of disassemblers to improve disassembly accuracy. Furthermore,

there is relatively limited prior work at the intersection of disassembling (a) malware bina-

ries, and (b) the MIPS and ARM architectures. Since we have used an ensemble model to

combine disassemblers, we also include a brief overview of studies on ensemble learning.We

group other previous work into the categories below.
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a. Evaluating Disassemblers: The more recent study [72] evaluates various

disassemblers by using benign ARM binaries. They observe that various disassemblers

offer different levels of accuracy for different types of programs. Another related work [10]

evaluates the performance of disassemblers by using benign binaries for the x86 architecture.

Both works endorse IDA Pro as the best disassembler. In terms of malware binaries, a recent

work [59] focuses exclusively on IDA Pro (version 6.8) and on a limited set of malware

binaries. They found that malware authors tend to prefer to use the -O{3} options and

that IDA Pro performs poorly for CFS for stripped binaries compiled with that option. That

effort differs from our work significantly as: (a) it does not propose to combine disassemblers,

and (b) it evaluates only IDA Pro in contrast to the five disassemblers that we use here.

b. Developing Novel Disassembly Techniques: Several studies propose effi-

cient disassembly techniques, but we have not found any effort that attempts to combine

multiple disassemblers.

A recent study [9] uses the control flow graph to improve function identification in

stripped binaries. However, this technique tends to fail to identify functions called by using

tail calls and can only be used in architectures with specific opcode for function calls, unlike

ARM. Other works focus on other aspects of disassembly like security, speed and handling

obfuscation in x86 binaries [160, 82, 85]. Other works present techniques like superset

disassembly, probabilistic disassembly, and static analysis based method for x86 binaries [17,

97, 117]. Some works propose machine learning techniques for disassemebly [74] and to

identify function starts [122, 16, 23, 132]. However, later works found that some of these

works suffer from evaluation bias [9]. Other approaches use heuristics and or well-known
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function signatures to identify function starts [83, 150, 133]. Another work [55] proposes

a technique to translate assembly code into Intermediate Representation(IR) to recover

control flow graphs and identify function boundaries for various architectures. Another

work [113] combines probabilistic fingerprint of binary code with a probabilistic graphical

model to match function names to program structure in stripped x86 64 binaries. A very

recent work [96] introduces a technique to calculate the probability that an instruction

would start at a certain address. Such techniques aim to improve the instruction recovery

rates in architectures like x86 where instructions can have varied sizes. In contrast, assembly

instructions found in the ARM and MIPS binaries have a fixed size of 4 bytes, so the start of

the next instruction can be predicted. Another work [19], presents a speculative disassembly

technique for THUMB binaries.

Commercial Tools and Platforms: There are many existing disassemblers that

can analyze binaries of various architectures. Some examples include IDA Pro, Hopper,

Dynist, BAP, ByteWeight, Jakstab, Angr, Ghidra and Binary Ninja. [66, 48, 92, 92, 23,

16, 78, 150, 108, 70].

Dynamic analysis and sandboxes: There are many efforts that use dynamic

execution to analyze a malware binaries, which is a complementary approach to the static

analysis, which is our focus here. Indicatively, we can mention a few recent efforts [44, 45, ?,

?] that create platforms that manage to activate IoT malware malware. Another work [28]

develops an IoT sandbox which can support 9 kinds of CPU architectures including ARM

and MIPS.
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c. Previous studies on ensemble learning: A recent survey [125] reviews both

traditional and newer ensemble learning techniques and analyzes the trends and limitations

of these methods. Other works propose methods to quantify the benefit of using an ensemble

for a set of classifiers [22, 81]. Another work finds the reason behind trends in test errors

in voting methods [128].

4.8 Conclusion

The overarching novelty of the work is the idea of harnessing the collective power

of the many disassemblers that are available in the security community. To substantiate

this idea, we develop DisCo, a systematic approach to analyze and synthesize disassemblers.

The goal is to achieve the best possible disassembling performance for IoT malware binaries.

Hence, we focus on the ARM and MIPS architectures.

First, we show that DisCo can combine the collective power of disassemblers ef-

fectively as it consistently outperforms each individual disassembler. For example, our

approach outperforms the best contributing disassembler by as much as 17.8% for F1 score

for function start identification for MIPS binaries compiled with GCC with O3 option.

We then show that the collective power of the disassemblers can be brought back

to improve each disassembler. We showcase this capability by developing Ghidra+, which

outperforms the initial Ghidra by as much as 13.6% in terms of F1 score by simply using

function signatures identified in our approach. In addition, our systematic evaluation within

our approach led to a bug discovery: a bug introduced in Ghidra 9.1, for which the Ghidra

team expressed appreciation.
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Finally, we conduct a study to understand the effect that configuration and scenar-

ios have on disassembly performance. We study the effect of the architecture, the compiler,

and the compiler options affect the performance of disassemblers significantly. We find that

the performance varies significantly, and find further evidence that there is no one single

best disassembler especially if we consider performance per binary, and not just on average.

This further supports the idea that combining disassemblers promises to provide significant

advantage over each individual method.

The contribution of our work is three fold. Firstly, we present an evaluate DisCo,

an ensemble of the five popularly used disassemblers for various compilation scenarios to

combine their complementary capabilities. Our approach achieves higher performance than

any individual disassembler. Secondly, we show how our model can be used to improve

other disasssemblers and lastly we have shown that compiler options affect function start

identification for most disassemblers.

Our work in perspective. Our work is a significant step in assessing existing

and developing new capabilities in disassembling binaries, especially in the space of IoT

malware. We hope to enable developers and users of such tools to make informed decisions

leveraging both our system and the datasets that we have and will continue to develop. We

plan to open-source and share all our tools and data and hope that this encourages further

research in this direction.
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Chapter 5

MalEvasion : Simple string

manipulations derail malware

detection

IoT malware malware has emerged as a serious threat. Over 41 billion IoT devices

will be present worldwide by 2025 [25]. The Mirai attack in 2016 shows why we need to

safeguard IoT devices. Mirai was first observed in August 2016. By October 2016, Mirai

was able to successfully launch a DDOS attack against high-profile targets like Krebs on

Security and Dyn [157, 14] with the help of a botnet. This resulted in major disruptions in

Internet services across Europe and US that lasted for 83 hours. This attack left 131 000

IoT devices infected and resulted in a loss of $440K [109, 149].

Taking a hacker-centric view, we ask the following key question: ”what are simple

techniques that can be used to avoid being detected by VirusTotal engines?”. This is the
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question that motivates our work. In more detail, we frame the question with the following

constraints and assumptions. First, we require evasion techniques to have the following

characteristics: (a) be easy to apply and (b) preserve original functionality of the malware

program. Second,since we assume the position of hackers, we have access to the malware

source code. Third, we focus on the MIPS and ARM architectures because most devices

affected by IoT malware belong to these architectures [6].

Figure 5.1: MalEvasion: simple techniques can evade VirusTotal engines repeat-
edly and effectively on MIPS: (a) applying technique T1 reduces the detection from
roughly 25 to 3 engines, (b) the engines ”learn” to recognize the submitted binaries going
back to 21 engines within two weeks, (c) applying technique T2 reduces detection to 6 en-
gines, (d) re-applying technique T1 (with different input parameter) works again reducing
detection to roughly 4 engines. The red line is a commonly used threshold for arriving at a
final determination for malicious nature of the binary.

An efficient way to evaluate the vast majority of anti-malware engines is through

the widely-used VirusTotal platform [155]. VirusTotal is a free online service that analyzes

binaries by using 71 anti-malware engines [148]. VirusTotal reports how each engine clas-

sifies a binary: (a) malicious or benign, and (b) malware family [147]. VirusTotal has been
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extensively used in research to label datasets and evaluate tools [29, 58, 62, 75, 21, 139,

141, 163]. We are grateful to the VirusTotal team as their work makes our research study

possible.

There is relatively limited work on the problem as we frame it here: unlike most

previous work, we focus on: (a) modifying the source code, and (b) IoT malware. In

more detail, we can group previous efforts in the following categories. One category focuses

on manipulating the binaries to evade detection [89, 54, 7]. Another category focuses

on evaluating the detection capabilities of VirusTotal engines [99, 163] by using a set of

binaries, but without developing evasion techniques. We discuss related work in detail in

section 5.5.

In this work, we make two main contributions. First, we develop MalEvasion,

a framework that includes a set of simple but effective evasion techniques to evade anti-

malware engines. Second, we conduct a systematic study of the robustness (or lack thereof)

of 71 engines in VirusTotal using our framework and 1740 binaries. We study two function-

alities of anti-malware engines, malware detection and malware family labelling.

Our overarching observation is that anti-malware engines are over-reliant on using

source-code-level strings for detecting and labelling a given binary. Our key observations

can be summarized in the following points. They are also captured in figure 5.1.

a. Our simple evasion techniques work well. MalEvasion includes two simple

evasion techniques but effective techniques achieving an evasion rate of more than 95% in

our binaries. Technique T1 manipulates strings in the source code (e.g. ”Connection

established”) by adding a user provided string between every pair of characters in the
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initial strings. Technique T2 adds a line of code between every two lines of code in the

source code. This line of code does not affect the functionality of the program.

Figure 5.1 summarizes the effect of applying our techniques on 560 MIPS binaries.

Applying T1 leads to successful evasion from 22 engines to around 2 on average. Within

two weeks, the engines learn and we have roughly 20 engines that classify the same modified

binaries as malware. Applying T2 after makes the number of engines go down to roughly

5. T1 technique can also be reused with a new input string to evade detection.

b. Benign binaries can be misclassified by adding strings. We further

demonstrate the engines’s reliance on strings by causing false positives. We can do this

by simply adding strings from a malware program to a benign program. We perform this

by first manipulating strings found in a malware program. We compiled these programs

and submitted the string-modified binaries to VirusTotal. Many engines including ”high-

reputation” engines like Avast, AVG and Fortinet detected these binaries as malware. One

of the string-modified ARM binary and 5 of the MIPS binaries are classified as malware.

Engines also use strings found in binaries for identifying the malware family. For example,

for 81.7% of the binaries, an engine that gives a Gafgyt label to a malware binary also gives

a Gafgyt label to the benign binary containing strings from that malware. Figures 5.6 and

5.7 illustrate these observations.

c. Engines that exhibit high recall on malware binaries are prone to

false positives with benign binaries. We found that all the engines that achieve the

top 10 recall rates (84.9% and above for our datasets) also more likely to misclassify benign

binaries in which we added malware strings as shown in Tables 5.4 and 5.5.
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5.1 Background and Datasets

In this section, we discuss about related background concepts and our datasets.

We use the following definitions and metrics to evaluate the engines.

We use the term corresponding binaries to refer to different versions of the same

program. For example, binaries in dataset D1 are compiled with -O0 option while binaries,

while binaries in D2 are compiled with -O3 option. The performance of anti-malware engines

will compare the classification and labels for such corresponding pairs.

a. Recall (E, D) is the percentage of binaries in a set of malicious binaries, D,

that are flagged as malware by a set of engines, E.

b. Consistency (e, D1, D2). is the percentage of the pair of corresponding

binaries across datasets D1 and D2 which receive the same label from a engine, e. Note

that we can check consistency at levels of granularity: (a) identification of malware, and

(b) the label of malware family.

Threshold for malware in VirusTotal,(T). How do we reach a consensus

across the 71 engines in VirusTotal which do not always agree? Previous work suggests

that a binary can be considered to be a malware if 2-15 engines flag it as malware [163].

8.5 falls in the middle of this range. Hence we set the threshold, T to 8. For the purposes

of our study, we will say that the VirusTotal engines consider a binary as malware

when more than 8 engines flag it as malware. Note that varying this threshold will

ultimately affect the trade off between false negatives and false positives.

We have used a total of 1750 in our study. Binaries in our dataset were compiled

with the following compilation configuration. We did this because a malware author can also
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Dataset No. of Binaries

M1 280

M1 T1 280

M1 T1T2 280

M1 T1’ 280

M2 240

M2 T1 240

B1 10

B1 MS 70

B1 OMS 70

Total 1750

Table 5.1: The binary datasets used in our study.

employ these techniques. This is because creating multiple binaries which are functionally

equivalent but vary at the assembly code level can maximize the chance of evading detection.

This can be easily achieved by using different compilation configurations [47, 27].

a. Architectures: We consider two architectures, ARM version 5 and MIPS

R3000. We focus on these architectures because (a) they are vulnerable to IoT malware

and (b) 66.0% of the ELF malware binaries belong to these architectures according to

VirusTotal database [40].

b. Compilers and Versions: We consider four compilers and versions, GCCv5.5.0,

Clangv9.0, Clangv4.0, and Clangv4.0 with OLLVM. For the remainder of the paper, we will

use GCC to refer to GCC version 5.5.0, Clang to refer to Clang version 9.0, Clang4 to refer

to Clangv4.0 and Clang4(OLLVM) to refer to Clangv4.0 used with OLLVM [?]. OLLVM is

a tool that offers obfuscation options that can be used with Clang compilers. It offers 3 dif-

ferent kinds of obfuscations which can be applied during compilation. They are instruction

substitution, bogus control flow and control flow flattening. We have used all the obfusca-

tion options available in OLLVM in this study to investigate the effects of obfuscation on

the VirusTotal engines.
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c. Compilation optimization levels: We use five compiler optimization flags,

O0,O1,O2,O3 and Os. We focus on stripped binaries in this work because around half

of all ELF malware are stripped and malware analysis tools find stripped binaries more

challenging [40, 59].

The data sets: Table5.1 summarizes our datasets. We have two main malware

datasets, M1 and M2. M1 contains 280 malware binaries while M2 contains 240 malware

binaries. Both datasets contain binaries that were compiled with the all the compilation

configurations described above.

We made an effort to span a relatively wide range of malware types. We collected

8 of the malware programs from a GitHub malware repository, threatland/TL-BOTS, which

contains source files of a vast array of malware families which includes Trojans, IRC, Mirai,

Gafgyt, and QBots from 2014 to the present day. The remaining 5 codes were obtained

from other online repositories in GitHub and Pastebin. Note that all the programs that we

have used in our study have been used in recent studies on malware [59, 130].We use 7 of

these programs to create the M1 dataset and the rest to create the M2 dataset. We will

explain our choice of datasets in Section 5.4.

We also created a small main benign binary dataset, B1 containing 10 binaries.

We obtained them by compiling a bubble sort program [?] using the GCC compiler with all

five compilation options for both architectures. The bubble sort program only had 41 lines

of code. All our source codes are written in the C language.

Creating modified malware datasets. To evaluate the engines, we apply our

evasion techniques on our datasets, which we describe later. We name our datasets in the
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following way. Names that do not contain the underscore symbol refer to main datasets.

The part of the name before the underscore refers to the main datasets, M1, M2 or B1. The

part of the name after the underscore refers to the evasion technique(s) that was applied

on the source code to obtain the binaries in that dataset.

First, we created variations of M1 by applying: (a) evasion technique T1 on M1 to

create M1 T1 with string parameter ”PD”, (b) technique T2 on M1 T1 to get M1 T1T2,

(c) We also reapplied T1 on M1 with string parameter ”*∧” to get M1 T1’. We also applied

similar variations to the M2 dataset.

We generated B1 MS and B1 OMS in the following way. We extracted strings the

initial malware strings (refer to as MS) from M1 and added them to B1 to form B1 MS. We

extracted our manipulated manipulated strings (referred to as OMS) from M1 T1 and added

them to B1 binaries to form B1 OMS. MS stands for malware strings and OMS stands for

our manipulated strings. Binaries in B1 MS are called string-added binaries while binaries

in B1 OMS are called string-modified binaries. In this work, we specifically define strings to

be all characters found between a pair of unescaped double quotes found in source codes and

binaries. A unique characteristic of IoT malware is that it constantly sends and receives

messages from other infected devices and C&C servers. [?, 6]. These messages are found as

strings in the source code.

5.2 Overview of MalEvasion

We present key ideas and insights in developing the MalEvasion framework. The

key goal of MalEvasion framework is to provide techniques to evade detection from anti-
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malware engines in VirusTotal. These techniques should be (a) easy to apply and (b)

preserve original functionality of the malware program.

The insights that should not have worked. We present the insights that led

to two simple methods that we thought that would never work. Much to our surprise, they

did.

First, we thought of focusing on strings in the source code of the malware. These

strings include the strings that appear in the communication between IoT malware and

its C&C servers [6]. Upon investigation, we found that the source codes of IoT programs

contain many strings that are used for such communication. We decided to investigate if

manipulating these strings would be help the malware evade detection.

Second, for altering the sequence of commands, we thought of an equally simple

approach that would not change the functionality of the code. We thought of inserting a

single line of code, like a printf statement between every two lines of code in the source

code.

Initially, we thought that the engines would consider the semantics of a binary

code and sophisticated analysis of the structure of the binary. Hence, we thought that

these ideas are way too simple to be effective. We were wrong.

We define our two evasion techniques, T1 and T2 below. We apply both techniques

on malware source codes.

Technique T1 (param1): This function takes in a string parameter. We ma-

nipulate all the strings in the source code by adding this string parameter between every

two characters in each string in the source code.
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Ensuring no functional change. Note that we can easily remove the added

characters of strings before we use the string. All we need is a simple function call that will

remove the param1 string from between the original characters of the string. To prove this

point, we add such function in the source code when we employ technique T1. This ensures

that the resultant binaries from the modified program remains functionally equivalent to the

original binary. In essence, this step ensures that the binary contains manipulated strings

when it is statically analyzed. However, when the binary is actually executed, the original

versions of the strings will be used.

This function takes any string of any length of the user’s choice as its parameter.

In this study, we used this technique with two kinds of string parameters, ”PD” and ”*∧”.

This serves to validate that this technique is effective when it is applied with different

parameters. For simplicity, we use T1 to refer to cases where use use this function with

”PD” as its parameter and T1’ to refer to cases where we use use this function with ”*∧”.

Technique T2: In this technique, we add a non-functional statement between

each two lines of code in the source code. Here we experiment with a printf with with null

or an actual string. The method is general, we can choose to use it with a manipulated

string or not. Even in the case where we have an actual string, the effect on the functionality

of the malware is minimal. Furthermore, many IoT devices, like routers and printers do not

come with a screen to display messages so the printf statement will have no actual effect.
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Figure 5.2: MalEvasion can evade VirusTotal engines repeatedly and effectively
for 100% of ARM the binaries in M1: Applying T1 on ARM binaries in M1 reduces
average number of engines that detect malwares from 25.4 to 2.49. Two weeks later, applying
T2 on the binaries reduces average number of engines that detect malwares from 20.5 to 5.7.
Applying T1’ two months after we applied T1 reduces the engines that detected malware
from 25.4 to 4.3.

5.3 Experimental Evaluation

We test the robustness of the engines by using MalEvasion and the datasets de-

scribed in section 5.1. We group our experimental results around the following three ques-

tions. We answer each question with a series of observations.

Q1: Are our evasion techniques effective?

Q2: Can we make benign programs appear as malware?

Q3: Which engines are more reliable?

The following observation provides a summary of our study.

Overarching observation: Engines are overly reliant on strings for malware

detection and labelling. For most engines, modifying source-code level strings leads to

evasion causing false negatives. Adding strings found in malware binaries to benign binaries
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results in being detected as malware, causing false positives. Binaries with similar strings

also tend to share the same malware labels.

Figure 5.3: MalEvasion evades VirusTotal engines for 100% of binaries in M2:
Applying T1 reduces the average number of engines that detect malwares from 29.3 to 2.5
for ARM binaries and from 28.8 to 1.7 for MIPS binaries in M2.

Q1: Are our evasion techniques effective? Our results show that both our evasion

techniques, T1 and T2 can be applied to evade detection from engines for at least two

months. The average and the standard deviation of the number of engines that detected

the MIPS and ARM binaries in M1 as malware for each technique is shown in Figures 5.1

and 5.2. Figure 5.3 shows the results when T1 is applied on M2. Applying T1 on both main

malware datasets, M1 and M2 causes evasion in 100% of binaries. Applying T2 on the M1

dataset causes evasion in 97.9% of ARM binaries and 99.3% of the MIPS binaries.

Observation 1: T1 achieves 100% evasion in M1 and M2. We follow

the steps below to evaluate our evasion techniques.We first conduct the following multi-step

study using the M1 dataset.We show the results for the MIPS and ARM binaries in Figures
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5.1 and 5.2 respectively. Note that we repeat the first two steps with dataset M2, which

corroborated our observations. Figure 5.3 shows our results for the M2 dataset.

Figure 5.4: OLLVM obfuscation techniques do not lead to evasion: The number of engines
that detected binaries as malware in M1 is between 25-26.5 for both architectures when
Clang4 or Clang4(OLLVM) is used.

Step 1: Verifying the malicious nature of dataset M1. We find the number

of engines that flag our binaries as malware. We confirm that more than T engines flag

each of the binaries as malware. In each subsequent step, we observe the number of engines

that flag the binaries as malware in the dataset used in that step.

In this step, we observed that using obfuscation techniques in the OLLVM tool,

like instruction substitution, adding bogus control flow and control flow flattening on the

binary does not lead to evasion from anti-malware engines. Using Clang4(OLLVM) does

not reduce the average number of engines that flagged the binaries as malware. As shown in

figure 5.4, the average number of engines that flagged binaries as malware in M1 is between
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Figure 5.5: OLLVM obfuscation techniques do not lead to evasion: The number of engines
that detected binaries as malware in M2 is between 27-28.5 for both architectures when
Clang4 or Clang4(OLLVM) is used.

25 and 26.5 for both architectures when Clang4 or Clang4(OLLVM) is used. As shown in

figure 5.5, the average number of engines that flagged binaries as malware in M2 is between

27 and 28.5 for both architectures when Clang4 or Clang4(OLLVM) is used.

Step 2: We assess engines using the M1 T1 dataset. Recall that M1 T1 is

created by applying technique T1 on the M1 dataset.

Step 3: We reassess engines using the M1 T1 dataset two weeks later.

The goal is to detect how the engines evolve.

Step 4: We assess engines using the M1 T1T2 dataset. We obtain M1 T1T2

by applying technique T2 on M1 T1.

Step 5: We assess engines using the M1 T1’ dataset 2 months after Step

2. We then compare the results.
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Technique T1 can be used to evade engines for binaries of all compiler configura-

tions. The average number of engines that detected the ARM and the MIPS binaries as

malware in dataset M1 is 25.4 and 24.9 respectively. The standard deviation is 3.2 and 3.5

respectively. Applying T1 on M1 resulted in 100% evasion for binaries belonging to both

architectures. Figures 5.1 and 5.2 show that the average number of engines that detected

the MIPS and the ARM binaries as malware in M1 T1 is 2.6 and 2.5 respectively. The

standard deviation is 1.5 and 1.7 respectively.

Applying technique T1 on dataset M2 gives similar results. Figure 5.3 shows that

the average number of engines that detected the initial ARM and the MIPS binaries in M2

is 29.3 and 28.8 respectively. The standard deviation is 3.7 and 3.6 respectively. Applying

T1 on M2 resulted in 100% evasion for both architectures. The average number of engines

that detected the ARM and the MIPS malware in M2 T1 is 2.5 and 2.6 respectively. The

standard deviation is 1.7 and 1.5 respectively.

Observation 2: Engines learn to detect binaries in M1 T1 as malware in

two weeks. We were pleasantly surprised to see that VirusTotal engines seemed to learn:

they were able to detect 99.3% of ARM and MIPS binaries in M1 T1 as malware 2 weeks

after we submitted them to VirusTotal. The average number of engines that detected the

ARM and the MIPS binaries as malware is 20.5 and 20.9. The standard deviation for both

architectures is 6.9. This observation is an indication that engines are updated frequently

which aligns with observations from previous studies [163].
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Unfortunately, as we will see in later observations, at least a part of this learning

is only ”string-deep”, which means that: (a) insufficient to provide a permanent solution to

our T1 technique, which can change its input string parameter.

Observation 3: Technique T2 achieves greater than 95% evasion. We

apply technique T2 on M1 T1 and obtain dataset M1 T1T2. As shown in Figures 5.1 and

5.2, we find that 99.3% of the MIPS binaries and 97.9% of ARM binaries evaded detection

by the engines. The average number of engines that detected the MIPS and the ARM

binaries in M1 T1T2 as malware is 5.8 and 5.7 respectively which is below the detection

threshold of 8. The standard deviation is 1.0 and 0.9 respectively.

Observation 4: Technique T1 can be effective repeatedly: just use a

new string parameter. We apply technique T1 with a new string parameter ”*∧” to

create dataset M1 T1’: 100% of its binaries evade detection! As shown in Figures 5.1 and

5.2, the average number of engines that detected the binaries in M1 T1’ is 3.5 and 4.3 for

MIPS and ARM binaries respectively. The standard deviation is 2.2 and 1.9 respectively.

What makes this observation more interesting is that by now the engines have

been trained on datasets M1 T1 and M1 T1T2. All binaries in M1 T1T2 are classified as

malware 1.5 months after the they were submitted to VirusTotal. The average number of

engines that detected the ARM and the MIPS binaries as malware in this dataset is 23.0

and 23.4 respectively. The standard deviation for both architectures is 2.5.

Observation 5: The engines rely heavily on strings for detection. Sum-

marizing these four observations, we can state that engines use strings to detect malware.

Observation 1 shows that applying technique T1 provides very high evasion rates for both
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architectures. Observation 4 shows that technique T1 can be repeatedly applied to the mal-

ware source code, each time with different parameters to achieve good evasion even after 2

months since we first applied and submitted binaries obfuscated with T1.

Q2: Can we make benign programs appear as malware? Here we want to go deeper

and understand in more detail what features trigger detection by the anti-malware engines.

To achieve this, we consider two complementary approaches.

First, we analyze the percentage of binaries that were classified as malware before

and after applying our evasion techniques. A decrease in in the number of engines that

detected a malware binary as malware indicates that our evasion techniques have modified

some feature in the binary that is being used by engines to detect malware. Observations

1 - 4 suggest that engines use: (a) source code level strings, as shown by technique T1, and

(b) sequence of instructions, as shown by technique T2.

Second, we can reduce the instructions in order to isolate the instructions that

trigger detection by the engines. For this, we remove parts of a source code before compiling

it and submitting it to VirusTotal. We find that a small set of source-code strings is enough

for engines to detect the malware. We use this technique to make observations 6 and 8.

Observation 6: Engines misclassify benign programs if they have ap-

propriate strings. We added all strings found in each malware program in M1 separately

to the bubble sort program described in Section 5.1 and compiled them to form the B1 MS

dataset. In more detail, the strings from each of the malware program were added into a

string array in the sort program. A for loop was added to print all the strings in the array

in the main function of the program. This loop ensures that all the strings in the array is
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Figure 5.6: Over-reliance of engines on strings leads to false positives: On average,
22.9 and 6.9 engines detected ARM binaries in B1 MS and B1 OMS as malware.On average,
23.3 and 7.2 engines detected MIPS binaries in B1 MS and B1 OMS as malware.

used in the program. This step prevents the situation where unused variables get omitted

during the compilation process. We compiled all the modified sorting program with GCC

for both architectures for all compilation optimization levels. Note that the unmodified sort

program was not detected as malware by any of the engines for both architectures for all

optimizations.

Figure 5.6 shows that adding malware strings to a benign sorted program increases

the average number of engines that detected the ARM and MIPS binaries from 0 to 22.9

and 0 to 23.3 respectively. The standard deviation for the modified sorted programs is

3.2 and 2.9 for the ARM and MIPS binaries respectively. For reference, this roughly the

number of engines that detected the binaries compiled with GCC in M1 ( 25.8 for ARM

and 26.7 MIPS). As a result, all binaries in B1 MS are classified as malware as they have

significantly more than 8 engines vouching against them.

100



Set of strings Misclassifying Engines

(added to benign programs) ARM binaries MIPS binaries

”GET /fuck1hex” Kaspersky -

”buf: %s̈, ”/proc/cpuinfo” ,
”gethostbyname”,
”BOGOMIPS”,
”assword:”, ”ncorrect”

Avast, AVG,
Avast-Mobile,
Kaspersky,
ZoneAlarm by
Check Point

Avast-Mobile,
Kaspersky

”root”, ”invalid”,
”incorrect”,”user”,
”login”, ”name”,
”gayfgt”,”buf: %s”,
”/bin/sh”, ”/proc/cpuinfo”,
”BOGOMIPS”

Avast,
Avast-Mobile,
AVG,Rising
Sophos

Avast-Mobile,
Rising,
Sophos

Table 5.2: Engines classify benign programs with strings from malware as mal-
ware: Sets of malware strings whose appearance in benign programs leads to misclassifi-
cation and the engines that are fooled. Surprisingly, the misclassification is not consistent
across the ARM and MIPS architectures.
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How far can push the misclassification of benign binaries? Intrigued by

the above results, we want to push the envelope further. We find that only a small subset

of malware strings can lead to a misclassification. Each row in Table 5.2 shows a sets of

strings used by some engines to detect malware. The occurrence of these strings in the

modified sort binary is sufficient to make the engines flag it as malware. Surprisingly, the

engines that detect an ARM and a MIPS binary containing these sets of strings and the

instructions for the sort program as malware is different in some cases. Although we have

the full list of strings that can cause many engines to detect malware, we cannot show all

of them due to page limit restrictions.

Taking one step further, we show that some engines seem to solely rely on iden-

tifying signature strings to detect malware. We ascertain this by compiling a C program

that only contains a set strings shown in Table 5.2 and a for loop to print these strings.

This short program of around 10 lines make the engines in the table flag them as malware.

This suggests that at least some engines can classify a program based solely on blacklisted

strings.

Observation 7: Engines rely on strings for malware family classification.

Here we go deeper into the misclassification of string-enhanced benign binaries and examine

what malware family is reported. We find that the malware family label of 83.1% and

79.3% of the string-enhanced ARM and MIPS benign binaries in B1 MS is the same as the

corresponding malware binary in M1. This observation seems to further validate that the

engines rely heavily on strings for malware family classification.
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Figure 5.7: Engines use strings to label malware: For ARM binaries, the bright
diagonal grids for Gafgyt, Mirai and Tsunami show that when the malware from M1 is
classified as belonging to one of these families, greater than 80% of the corresponding
benign binary will be assigned to the same family. For MIPS binaries, the bright diagonal
grids for Gafgyt and Mirai show that when the malware from M1 is classified as belonging to
one of these families, greater than 75% of the corresponding benign binary will be assigned
to the same family.

Note that we focus on three major IoT malware families: Gafgyt, Mirai and

Tsunami [40]. For simplicity, we did not distinguish between different sub-classifications or

versions in a family. For example, we consider a binary to belong to the Gafgyt family, if

the assigned label contains the family name, ”Gafgyt”. Note that since we only compare

labels given by a specific engine, the fact that different engines may have different labelling

conventions [68, 99] does not affect our observations here.

In more detailed, a heatmap-style matrix that captures the full picture of label

similarity is shown in Figure 5.7. The bright diagonal grid for Gafgyt and Mirai in both

figures show that when the malware binary is classified as Gafgyt or Mirai, greater than

75% of the corresponding benign binary also receives the same label. For ARM binaries,

when the malware binary is classified as Tsunami 100%, of the corresponding benign binary

also receives the same label. For MIPS binaries, this percentage is 41.7%. Additionally,
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we also found that 32.8% and 25.8% of the corresponding pairs for the ARM and MIPS

binaries received identical labels.

Strings Triggered Engines

Initial strings: ”Failed opening raw socket.”,”SCANNER ON — OFF”, ”OFF”
Our strings: ”FPDaPDiPDlPDePDdPD PDoPDpPDePDnPDiPDnPDgPD PDrPDaPDwPD PDsPDoPDcPDkPDePDtPD.”, ”
SPDCPDAPDNPDNPDEPDRPD PDOPDNPD PD—PD PDOPDFPDF”, ”OPDFPDF”

AhnLab-V3,
Fortinet

Initial string: ”cd /tmp —— cd /var/run ——cd /mnt —— cd /root —— cd/;busybox tftp 185.112.248.68
-c get tftp.sh;sh tftp.sh;busybox tftp -r tftp2.sh -g185.112.248.68;
shtftp2.sh;busybox wgethttp://185.112.248.68/gtop.sh;chmod +xgtop.sh; sh gtop.sh”
Our string: ”cPDdPD PD/PDtPDmPDpPD PD—PD—PD PDcPDdPD PD/PDvPDaPDrPD/PDrPDuPDnPD ...”

Ikarus

Initial string: ”(null)”
Our string: ”(PDnPDuPDlPDlPD)”

Fortinet

Table 5.3: Engines add new strings found in malwares as signatures: the strings
that we have created eventually become ”signatures” for malware. Adding these strings in
benign software makes some engines flag them as malware!

Observation 8: Engines add newly found malware strings to their set

of features. Some engines detect binaries in B1 OMS as malware. Figure 5.6 shows the

average number of engines that detected the ARM and the MIPS binaries in B1 OMS is

6.9 and 7.2 respectively. The corresponding standard deviation is 0.9 and 1.1. One of the

ARM binary and five of the MIPS binaries were classified as malware because more than

8 engines detected them as malware.

Similar to our findings in observation 6, only a small subset of strings from M1 T1

is required to be found in benign binaries to be detected as malware. Table 5.3 shows some

of the strings from M1 T1 that are used by the engines to detect malware. For ease of

reading, we have also stated the original version of the strings. Binaries containing these

strings were detected as malware by the same engines regardless of the architecture of the

binary. Interestingly, we note that the presence of corresponding original versions of these

strings in benign binaries do not cause any engines to detect it as malware.

This observation shows that malware authors can easily influence the set of black-

listed strings that are used by engines for malware detection. This opens up the possibility
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ARM MIPS

B1 MS B1 OMS B1 MS B1 OMS

ALYac,AVG,
Ad-Aware,
AhnLab-V3,
Avast,Avast-
Mobile,
BitDefender,
BitDefender-
Theta,
ClamAV,Emsisoft,
FireEye, Fortinet,
GData,Kaspersky,
MAX,
MicroWorld-
eScan,
Microsoft,Rising,
Sophos,Tencent,
ZoneAlarm

AVG,
AhnLab-V3,
Avast,
Avast-Mobile,
Cyren,Fortinet

ALYac,AVG,
Ad-Aware,
AhnLab-V3,
Avast,
Avast-Mobile,
BitDefender,
BitDefender-
Theta,
ClamAV,Emsisoft,
FireEye,Fortinet,
GData,Kaspersky,
MAX,
MicroWorld-
eScan,
Microsoft,Rising,
Sophos,Symantec,
Tencent,
ZoneAlarm

AVG,
AhnLab-V3,
Avast,
Avast-Mobile,
Cyren,
Fortinet

Table 5.4: The overly aggressive engines: we list the engines that classify at least 80%
of the benign binaries in B1 MS and B1 OMS as malware.

for the malware author to add strings that are commonly found in benign programs into

malware. If these engines use any of these strings to detect malware, then benign ware

containing the string will be detected as malware. Malware authors can also inject some

of the strings from malware into benign ware to make it seem like malware. These actions

will reduce the credibility of these engines.

Q3: Which engines are more reliable? We have seen that some engines tend

to be over reliant on using string features to detect malware. The logical next step is to

identify which engines are more reliable for which compilation configurations. In practice,
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we are unaware of the compilation configurations that are used to produce the given binary.

We quantify the reliability of an engine by using two metrics, recall and consistency.

Figure 5.8: False positive detection: Many Engines detected benign binaries: 33 engines
detect benign binaries with malware strings as malware

Observation 9: 21 engines incorrectly detect at least 80% of binaries in

B1 MS. Figure 5.8 shows all the engines that detected benign binaries as malware. Table

5.4 shows the engines that detected atleast 80% of the binaries in B1 MS as malware. 21

of these engines incorrectly detected 80% or more of binaries in B1 MS belonging to both

architectures. We observed similar behaviour from one more engine, Symantec for MIPS

architecture.

A lesser number of engines detected binaries in B1 OMS as malware compared to

the B1 MS dataset. 6 engines incorrectly detected 80% or more of the binaries in B1 OMS

for both architectures. We conjecture that a lesser number of engines detect the benign

binaries in B1 OMS because the manipulated strings found in malware was introduced

more recently by us in July. Hence, only a few engines have added our obfuscated malware

strings as a feature to detect malware.
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ARM MIPS

Recall Consistency Recall Consistency

Avast-Mobile
AVG
Avast
Fortinet
TrendMicro-
HouseCall,
Ikarus,
GData,
Microsoft,
MicroWorld-
eScan,
BitDefender,
MAX,Ad-Aware

Avast-Mobile,
Fortinet,
DrWeb,
AVG,
Avast,
Ikarus,
TrendMicro,
-HouseCall,
McAfee-GW-
Edition,
McAfee,
BitDefender,
Ad-Aware,
MicroWorld-
eScan,
MAX,FireEye

Avast-Mobile,
Avast,AVG,
TrendMicro-
HouseCall,
Ikarus,Fortinet,
GData,Microsoft,
MicroWorld-
eScan,
Ad-Aware,MAX

Fortinet,
Avast-Mobile,
Ikarus,
AVG,
Avast,
TrendMicro-
HouseCall,
McAfee,
McAfee-GW-
Edition,
MicroWorld-
eScan,
Ad-
Aware,FireEye,
BitDefender,
MAX,Emsisoft

Table 5.5: Top engines: We show the top performing engines that give the top 10 scores
for recall and consistency for each architecture.

Observation 10: No-free-lunch: The higher-recall engines on malware

datasets exhibit higher misclassifation for benign datasets, B1 MS and B1 OMS

Table 5.5 shows the best performing engines that gives the top 10 scores for recall and

consistency. Here, we calculate the performance of all engines in VirusTotal for 4 malware

datasets, M1, M2, M1 T1 and M1 T1T2. Note that we recorded these results 2 weeks after

we submitted the binaries in M1 T1 and M1 T1T2 to VirusTotal. The top engines give a

recall score of 84.4% or higher for ARM binaries and 85.3% or higher for MIPS binaries.

We calculate the consistency by finding the average consistency between two groups

of malware binaries. First, we find the percentage of corresponding binaries that were

detected as malware for: (a) M1 and M1 T1 datasets, and (b) M1 and M1 T1T2 datasets.

The top engines give an average consistency score of 84.2% or higher for ARM binaries and

84.7% or higher for MIPS binaries.
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Interestingly, we found that all the list of top engines, except the DrWeb engine,

have misclassified some benign binaries in B1 MS. All except four engines in this list have

misclassified 80% or more of the binaries in B1 MS. The better performing four engines,

TrendMicro-HouseCall, Ikarus, McAfee and McAfee-GW-Edition misclassified 20-75% of

the binaries in B1 MS.

Observation 11: Technique T1 affects malware family-level labelling

consistency. We study the malware labels given by each engine to each pair of corre-

sponding binaries in the M1 and M1 T1 datasets. Surprisingly, we found that in most

cases, each binary in the pair is assigned to different malware families. Figure 5.9 summa-

rize the results for ARM and MIPS binaries respectively in a heatmap-style matrix.

Figure 5.9: The heatmap of confusion: The dark diagonals for Gafgyt, Mirai and
Tsunami show that less than 20% of the corresponding pairs of ARM binaries from the
M1 and M1 T1 datasets are assigned to the same malware family. The dark diagonal cells
for Gafgyt, Mirai and Tsunami show that less than 20% of the corresponding pairs of
MIPS binaries from the M1 and M1 T1 datasets are assigned to the same malware family.
Furthermore, the white cell (Gafgyt, Tsunami) means that 100% of the binaries initially
detected as Tsunami are classified as Gafgyt after applying technique T1.

The dark diagonal grids for Gafgyt, Mirai and Tsunami in both figures show that

for both architectures, when the malware binary from the M1 dataset is classified as Gafgyt,
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Mirai or Tsunami, less that 20% of the corresponding binary in the M1 T1 dataset is given

the same malware family label. In more detail, for both architectures, when the malware

binary from M1 is classified as a Gafgyt sample, 70-75% of the corresponding binary receives

a family label which does not represent any of the three families. This percentage becomes

50-60% when we consider Mirai samples.

We also found that only 2.6% and 2.5% of the corresponding pairs for the ARM

and MIPS binaries received identical labels. As we have shown in observation 7, a much

higher percentage, 32.8% and 25.8% of the corresponding pairs for the ARM and MIPS

binaries received identical labels when we compare M1 and B1 MS. This finding suggests

that the labelling functionality in engines mainly relies on strings to decide the family of a

malware.

ARM MIPS

Engines M1 M1
T1

M1
T1T2

M1 M1
T1

M1
T1T2

Kaspersky 99.3 0 0 100 0 0

Sophos 75.0 0 0 70.7 0 0

ESET-NOD32 99.3 72.1 0 97.1 77.1 0

Table 5.6: Even high-reputation engines have poor recall on modified malware:
the engines have high recall for the initial malware but poor recall for malware manipulated
by MalEvasion.

Observation 12: String manipulation affects recall rates of even for

”high-reputation” engines. Current literature and study has collectively and informally

suggested a group of ”high-reputation” engines1 [26, 145, 79, 163]. However, even these

engines are affected by our simple evasion techniques by often a significant drop in their

detection: from 70-99% down to 0!. Table 5.6 summarizes the results for some of these

1The engines that are consistently reported as better performing are: Kaspersky, Symantec, AVG,
F-Secure, Ikarus, McAfee, Microsoft, ESET-NOD32, and Sophos.
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engines. Kaspersky gives almost perfect recall for binaries in M1 for both architecture,

but gives 0% recall for binaries in M1 T1 and M1 T1T2. Sophos has a 70 - 75% recall

for binaries in M1 but gives 0% recall for corresponding binaries in M1 T1 and M1 T1T2.

ESET-NOD32 has atleast 97% recall for binaries in M1, and drops only to 72-77% with

technique T1, and drops to zero when both techniques are applied. The significant reduction

in recall for binaries in M1 T1T2 compared to binaries in M1 T1 and M1 could be attributed

to a significant reliance on string-based and command-sequence fingerprinting patterns even

for these higher-reputation engines.

The difference in recalls between the M1 and the M1 T1 dataset is atleast 20% for

all high-reputation engines except AVG and F-Secure for both architectures. AVG gives a

recall of atleast 95% for both datasets for both architectures. F-Secure consistently gives

a recall of below 10% for both architectures for all four malware datasets, M1, M1 T1,

M1 T1T2 and M2. Hence, the difference in its recall scores for the M1 and M1 T1 datasets

is also minimal. Three engines, Ikarus, McAfee and Symantec give higher recalls for the

ARM binaries in M1 T1 dataset compared to M1. The difference in recalls are 22.1%, 55.0%

and 32.14%. The corresponding difference in recall for MIPS binaries are 25.7%, 52.9%

and 34.3%. Microsoft performs better for the M1 dataset by 26.4% compared to the M1 T1

dataset for recall. The corresponding difference for MIPS is 25%.

Overall, our observation shows that with the exception of AVG, none of the other

high-reputation engines give consistently high recalls for M1 and M1 T1 datasets. This

shows that there there is a good chance for both versions of the malware author’s binary,
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the one compiled without using any of our evasion technique and the one compiled after

applying technique T1 to evade few of the high-reputation engines.

Figure 5.10: The recall of the engines is particularly low for the Clang4(OLLVM) compiler
in M1 T1 for both ARM (left) and MIPS (right).

Figure 5.11: The M1 T1 dataset exhibits the least consistency for compilers among all the
datasets.

Observation 13 (Sensitivity 1): The choice of compiler has significant

effect on malware detection rates. We study how the compiler affects the performance

of the engines. Here, we present results for the top engines mentioned in Observation 9.
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We find that the recall and consistency for each of these engines for both metrics for each

of the four malware datasets, M1, M1 T1, M1 T1T2 and M2 separately.

Using technique T1 and Clang4(OLLVM) increases the chan- ces of

evasion. We want to find the dataset and the compiler that would give the worst average

recall and consistency. To do this, we take the average recall for all top engines for binaries

compiled with each compiler for each dataset. We find that the engines give the lowest

recall in the M1 T1 dataset for binaries compiled with Clang4(OLLVM). The average recall

for binaries in M1 T1 compiled with Clang4(OLLVM) is 57.0% for ARM and 59.8% MIPS.

The recall rates given by the other three compilers for this dataset for both architectures is

above 90%.

Upon farther investigation, we find that that half of the 16 top engines for each ar-

chitecture exhibit poor recall: 20% or less for both architectures. Figure 5.10 illustrates this

result. We find that the remaining 8 engines, Avast-Mobile, Fortinet, Ikarus, Avast, AVG,

TrendMicro-HouseCall,McAfee-GW-Edition and McAfee give recalls of 85% and above for

all compilers for this dataset.

Dataset M1 T1 also gave the lowest average consistency among all the datasets. In

this section, we are considering the consistency in detection between 4 binaries compiled with

4 different compilers, GCC Clang, Clang4 and Clang4(OLLVM) when all other compiler

configuration are kept constant. The average consistency for all engines in this dataset for

ARM binaries is 52.3% while the average consistency for MIPS binaries is 54.6%. This

result is not surprising, because half of the top engines had a low recall of 20% or less for

binaries compiled with Clang4(OLLVM) in this dataset. These engines, except Microsoft,
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also have a consistency score of 20% or below for architectures. Microsoft has a consistency

score of 17.1% and 25.7% for ARM and MIPS binaries. Figure 5.11 shows the consistency

of each of the top engines for all four malware datasets for both architectures. The average

consistency for all the other datasets for both architecture is at least 74%.

A malware author can maximise her chances of evasion by compiling

his binaries with multiple compilers. Interestingly, we observe that only 3 engines give

consistently high consistency scores for all datasets for both compilers. These three engines

are Avast-Mobile, AVG, and Avast and they give a consistency score of at least 85% for

all datasets for both architectures. We do not consider DrWeb because it gives 0% recall

for ARM binaries compiled with Clang4 and Clang4(OLLVM) for M1 and M2. All other

engines have a minimum difference of at least 30% between consistency scores of the four

datasets for both architectures. This shows that these engines have a difficulty in detecting

all the four versions of a binary that was compiled with the four different compilers in at

least one dataset.

Observation 14 (Sensitivity 2): Compilation options have a relative

small effect on the performance of the engines. Here we present the results for

binaries in M1. Three engines, Ikarus, McAfee and McAfee-GW-Edition have at least 15%

higher recalls for binaries compiled with O0 options compared to binaries compiled with O1

and O2 options in M1. DrWeb gives a recall that is 17.9% lower for binaries compiled with

the Os option compared to other options. We did not observe any difference above 15% in

recall rates between binaries compiled with various optimizations for the other datasets.
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5.4 Discussion

We discuss the broader context and limitations of our work.

a. How will MalEvasion be used in practice? MalEvasion can be used

by the analysts and engineers to stress-test the effectiveness of an anti-malware engine.

Specifically, our approach can test in an engine is able to: (a) detect both the initial and

the manipulated versions of a malware binary, (b) detect malware binaries that are compiled

with various compilers and compilation options as malware, (c) prone to false positives, and

(d) can correctly identify the malware family label consistently across manipulations and

different compilation configurations.

b. Are our datasets representative? This is a difficult question for any em-

pirical study, that can mostly be answered indirectly. First, recall that our malware covers

several major malware families, such as Gafgyt, Tsunami, and Mirai, as we discussed in a

few places earlier. Second, our malware is real malware because not only it is described

as such, but the combined wisdom of the engines classifies it as such in its initial version.

Third, recent studies have found significant number of malware source code on public soft-

ware archives like GitHub [121, 80, 95, 6]. These studies argue that malware authors tend

to make their codes publicly available for two reasons: (a) for creating an online brand and

reputation, and (b) for establishing an alibi if their code is found implicated in an attack.

With public source code, they can hide behind the excuse that many people had access to

the code when they face legal issues [80]. As explained earlier, we collected all our mal-

ware source codes from popular public software repositories that contain a wide variety of
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malware source codes. Source codes from these repositories have also been used in recent

malware related works [59, 130].

c. How powerful are our evasion techniques? A key message from our study

is that simple techniques cause significant evasion on state of the art detection engines.

Furthermore, the goal of our work is to investigate how robust anti-malware engines are

against IoT malware from the perspective of the malware author. Our simple evasion

techniques, especially T1 leverages the fact that IoT malware contains many strings that

are used for C&C communication. In section 5.3, we show that both our techniques can

give high evasion rates of above 95% for binaries compiled with various architectures and

compilation configurations. We also provide evidence that our evasion techniques work

because engines rely heavily on string features to detect and label malware. We validated

this by submitting benign binaries containing malware strings to the VirusTotal engines.

Hence, our evasion techniques will work well as long as two requirements are met: (a) the

malware program contains strings, and (b) the engine analyzing the malware places high

importance on string features, just like most of the VirusTotal engines seem to do now.

d. Do these results apply to the desktop versions of engines? Some of

these engines in VirusTotal have desktop versions, meaning the full commercial software

version that a security analyst can download and use to analyze IoT malware. Previous

work compared the detection capability of the desktop version to the version in VirusTotal

and found that the VirusTotal versions have higher F1 scores [163]. Based on this, one

could argue that the VirusTotal versions could be reasonable indicators of the capability
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of the desktop versions. A more authoritative answer would require some experimentation,

which extends beyond the scope of this paper.

5.5 Related Work

To the best of our knowledge, there has not been any previous study that focuses

on applying simple evasion techniques on source codes to evade and evaluate VirusTotal

engines for ARM and MIPS binaries. Furthermore, there is relatively limited work done

at the intersection of (a) IoT malware, (b) VirusTotal engines evasion via source code

manipulation and (c) VirusTotal engines evaluation.

We group related previous work into the categories below.

a. Modifying source-code to evade detection: Very few works have focused

on this flavor of the problem. The most relevant work modified Visual Basic (VBA) source-

code programs on Windows machines to avoid detection from 3 anti-malware engines [32].

b. Modifying binaries to evade detection: A large body of work focus on

modifying malware binaries to avoid detection. This is a significantly different problem

from what we focus on here. The majority of the work focuses on Windows platforms in

contrast to our focus on IoT platforms [7, 30, 88, 43, 61]

c. Evaluating anti-malware engines on VirusTotal: We found two relatively

recent works which study the performance of engines on VirusTotal. The most recent work

assesses the stability of the classification of VirusTotal engines for over a year [163] but did

not do any code manipulation. Their key result was that VirusTotal engines tend to detect

obfuscated benign binaries as malware. Another work engines [99] found that on average,
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VirusTotal engines have a recall of 59% and finds the malware family correctly for only

6.4% of the binaries. Neither of these studies proposes evasion methods, as we do here, and

this enables us to understand deeper what features confuse these engines.

5.6 Conclusion

In this work, we put ourselves in the shoes of a malware author and ask the

question: ”how can we avoid detection with minimal effort?” By doing so, we also stress-test

the limits of the capabilities of anti-malware engines. We develop MalEvasion, a systematic

framework to stress-test and confuse VirusTotal engines, which can help us understand

what features these engines focus on.

First, we find that our two simple techniques, string manipulations and adding

”filler” lines of code is sufficient to give high evasion rates of above 95%. These solutions

require minimal effort to be deployed and they do not change the functionality of the

program.

Second, we find that engines place high importance on strings found in binaries,

causing them to report false positives. We do this by submitting a program containing our

string to VirusTotal. VirusTotal engines learn to use our strings in malware binaries as

malware signatures. Adding these strings to a benign program will cause it to be detected

as malware.

Third, we find that engines that give high recall and consistency also produce false

positives.
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We believe that our study is a significant step in understanding how VirusTotal

engines detect and label malware. We envision that our framework will be used to improve

the detection and labelling capabilities of VirusTotal engines.

118



Chapter 6

Conclusion

The key problems that we address in this thesis are: (a) which disassembler should

a malware analyst choose to get the most accurate disassembly to detect, analyze and defuse

IoT malware quickly, and (b) how easy it is for IoT malware authors to evade anti-malware

engines? Our studies show that: (a) none of the existing dis assemblers can give accurate

disassembly for binaries of various architectures and compilation configurations and that

combining disassemblers gives the most accurate disassembly, and (b) anti-malware engines

can be easily evaded by using simple techniques to modify malware source code.

DisCo provides a solution to the problem of inaccurate disassembly because it

combines the collective power of disassemblers effectively. We showed that it consistently

outperforms the best disassembler in a group of disassemblers. For example, our approach

outperforms the best contributing disassembler by as much as 17.8% for F1 score for func-

tion start identification for MIPS binaries compiled with GCC with O3 option. We then

show that the collective power of the disassemblers can be brought back to improve each
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disassembler. We showcase this capability by developing Ghidra+, which outperforms the

initial Ghidra by as much as 13.6% in terms of F1 score by simply using function signatures

identified in our approach. In addition, our systematic evaluation within our approach led

to a bug discovery: a bug introduced in Ghidra 9.1, for which the Ghidra team expressed

appreciation.

We also found that anti-malware can be easily evaded for months by applying sim-

ple evasion techniques in the source code. We develop MalEvasion, a systematic framework

to stress-test and confuse VirusTotal engines, which can help us understand what features

these engines focus on. First, we find that our two simple techniques, string manipulations

and adding ”filler” lines of code is sufficient to give high evasion rates of above 95%. These

functionality preserving solutions require minimal effort to be deployed. Second, we find

that engines place high importance on strings found in binaries, causing them to report false

positives. We do this by submitting a malware program containing our strings to VirusTo-

tal. VirusTotal engines learn to use our strings in malware binaries as malware signatures.

Adding these strings to a benign program will cause it to be detected as malware. Our

findings show that the malware detection and labelling capabilities of VirusTotal engines

are brittle and can be easily confused.
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