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ABSTRACT OF THE DISSERTATION

Learning through Auxiliary Supervision for Multi-modal Low-resource Natural Language
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by
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Professor Kai-Wei Chang, Chair

Despite much success, the effectiveness of deep learning models largely relies on the

availability of large amounts of labeled data. A large amount of labeled data, however,

is costly to acquire in many applications of interest, which hinders the applicability of

these models, especially in resource-poor settings. On the other hand, with the growth

of the internet, an enormous amount of user-generated data have been accumulated

which is readily available and free. Although they may not annotate the necessary

structured output of the target downstream tasks, they can provide relevant information

and background knowledge which can be formed into auxiliary learning signals to enhance

the target application. Hence, computational approaches for leveraging the open-source

data as well as utilizing the resource-rich corpora in low-resource applications can enable

us to build models for a broad spectrum of languages, domains, and modalities regardless

of their training data size.

This dissertation discusses the fundamental challenges and proposes several approaches

for multi-modal low-resource NLP problems that (1) construct auxiliary training data

from un/labeled (open-source) resources and (2) learn through the auxiliary data and

enhance the downstream application. The proposed approaches in this dissertation are

effectively applied across a wide range of NLP applications, including sequence tagging,

text classification, natural language inference, text to code generation, QA, and more.
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CHAPTER 1

Introduction

1.1 Overview

Natural Language Processing (NLP) is a sub-field of AI that enables a computing system

mimicking the human interactions. Advancements of deep neural networks have facilitated

usage of NLP application in multiple dimensions. It has been widely applied to different

applications/tasks including machine translation, question answering (QA), dialogue

systems and so on. It has also been applied to various domains (e.g., social media,

e-commerce, medical/education sector, etc.,) languages (e.g., English, Arabic etc., ), and

miscellaneous modalities (e.g., text, code, audio, image, video etc.,) and so on.

However, a key limitation of such deep neural NLP models is that training them

require a large amount of annotated data while outputs of NLP problems are often

structured and/or parallel and annotating them needs domain knowledge and expertise

which makes it costly and time consuming to obtain high quality annotated data. As a

result, we witness the majority NLP problems acrross all over different dimensions (e.g.,

domains/languages) are poor in resources, specially in terms of labeled training data. For

example, world languages like Quechua and Navajo in South Africa do not even have a

good written form1, let alone a large size Wikipedia or datasets annotated by trained

human workers. Furthermore, due to the lack of sufficient training data, many NLP

applications are only limited to a few domains or languages such as machine translation

(MT) systems is only available for 100 out of 7K world languages.

Low-resource phenomena is in fact beyond just lack of training data in specific domains

1https://langhotspots.swarthmore.edu/fastfacts.html
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or languages. Many NLP problems intrinsically mimic the scenario of a low-resource

setting. Let us consider a multi-modal example task of text to code generation. In the

task of code generation, a concept is given in a natural language sequence and the target

task is to generate the corresponding source code in the respective programming language

(e.g., Python or Java). As Figure 1.1 shows, a source code consists of very diverse tokens

(e.g., variable names, class or method names, operators, data types etc., ) and is extremely

challenging to generate just from the given natural language sentence. Therefore, we do

need some auxiliary supervision on the fly while performing the target task.

Figure 1.1: Example illustration of text to code generation task. Source code consists of
a very diverse token sequences (red circled) and it is extremely challenging to generate
them just from a given natural language sentence w/o any additional hints.

Apart from the scarcity of annotated data or the insufficiency of necessary information

in the training data, there are other possible reasons why majority NLP problems exhibit

are poor in resources. For example, often times we witness that a model may work for

a specific benchmark but does not work on real inputs2. The reasons is user-generated

texts in real-world applications are often fragmented, noisy and different from training

such as in products review or tweeter people often write incomplete sentences (See Figure

1.2). In addition, in order to reduce data processing time and expedite the inference,

we may deliberately filter out less informative/relevant words and the resultant input

2http://www.cs.cmu.edu/~ytsvetko/jsalt-part1.pdf
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text becomes fractured for which there is no training data. Thus they also simulate a

low-resource regime. Therefore to bring the benefit of advancing NLP technologies for all

domains, applications, languages and modalities, this dissertation develops a framework

to mitigate the low-resource bottlenecks in multi-modal NLP problems.

Figure 1.2: User-generated texts in real-world applications are often fragmented, noisy
and different from ideal training data. Left. Incomplete sentences w/ different missing
words still have the same meaning. Right. Short form or word w/ unknown meaning.

To build the framework, I took my motivation from humans. As human often solves

problems using all his experience not just specific to that particular problem, I believe

we can bring into additional information as a form of auxiliary data by leveraging the

available high-resource source corpora or the open-source resources that accumulates an

enormous amount of user generated data which are readily available and cost-effective.

Although these data may not annotate the necessary outputs of our target task, they can

provide relevant information and background knowledge which can be formulated some

learning signals to enhance the NLP models. For example, to write down our source source

code, we often look the API guidelines in library documentation websites (e.g., Pytorch,

Tensorflow), we search it on Google or browse through examples on open source platforms

such as Stack Overflow or even look into our previous source code on Github. We go

through the top few relevant ones and adopt them in our settings. Similarly for the task

of text to code generation, relevant code snippets can supplement the model w/ useful

hints. Therefore, my research goal is to extract useful information from available resources

as a form of auxiliary training data and to develop architecture independent approaches

incorporating the auxiliary information in a structured way in order to enhance a wide

range of NLP applications. In a nutshell there are two modules in my framework:
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• Module-1: Constructing auxiliary training data: In this module I develop

a principled way for constructing the auxiliary data to enhance the low-resource

multi-modal NLP applications. As discussed above, I focus on extracting (i.e.,

selecting or retrieving) additional useful information from the high-resource

source corpora (e.g., English language) or open-source repositories (e.g., Wikipedia,

Github) for the target low-resource application (e.g., Swahili language or text to

code generation multi-modal task). We divide the settings of the corresponding

NLP problems and the extraction of additional information in the following three

types:

– Type-1: New training corpora: in this low-resource scenario, we construct

a new training dataset of x → y format by selecting and combining a set of

potential high-resource source corpora where x, y are the corresponding input,

output. In terms of the granularity, this is a corpora level augmentation and

can facilitate zero-shot learning. Here, the source corpora are labeled data

and will be directly used as the training set for the target task.

– Type-2: Additional features: In this setting, we assume we have a training

dataset (<x, y>) but may need additional hints to better learning to map to

the outputs. We bring new token sequences as such auxiliary hints/features.

Formally this augmentation can be noted as: x⊕ x′ ⊕ y′ → y where x′, y′ are

single/multiple additional features (set of token sequences) in the input and

output space respectively. We retrieve such relevant token sequences from a

large candidate sets (e.g., open-source repositories such as Github or Wikipedia).

Here, the retrieval corpora can be both paired (labeled) or unlabeled data.

In terms of the granularity this is a feature level augmentation and in our

contexts, we considered text documents (token sequences) as the features.

– Type-3: Additional instances: In this setting we assume we have a train-

ing dataset (<x, y>) but insufficient in size or the data is imbalanced (less

training example for particular class/label y). We augment with new instances

(<xnew, y>) where xnew is a candidate text retrieved from an unlabeled
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corpora or perturbed from the base text x. In terms of the granularity, this is a

instance level augmentation. Note that while the perturbation of the base text

are mostly based on paraphrasing (e.g., word replacements or back-translation

or using generative models such as GPT-2 etc.,) in literature, as per our focus

(extraction), we select different words, phrases or sentences from base text x

and use them as the perturbed text xnew. Therefore, Type-3 augmentation can

be further decomposed into words/phrase/sentence sub-categories.

• Module-2: Learning from the auxiliary supervision: This module takes input

the training data constructed by Module-1 and formulate an auxiliary learning

signals using it. A key advantage of our modular approach is that Module-1 simply

constructs a new training dataset leaving Module-2 as generic to different dimensions

(tasks, domains, languages and modalities) and can be adopted to any off-the-shelf

models w/o requiring much change in the underlying model architectures (e.g.,

LSTM, Transformers etc.,). In particular, for the aforementioned Module-1 types,

we consider a few specific tasks (e.g., language modeling, text classification, text

to code generation, code to text summarization, QA, natural language inference,

parts-of-speech tagging) and showcase that our approach effectively enhance the

corresponding state-of-the-art model of different architectures in multiple aspects

including performance, speed, robustness and interpretability.

1.2 Thesis Statement

Low-resource NLP models suffers greatly due to the insufficiency of training data. On the

other hand, w/ the growth of technology, an enormous amount of labeled and unlabeled

data in multiple modalities (code, text, image, video, external libraries etc.,) has been

accumulated which are readily available and cost-effective. However, these resource-rich

and open-source data may not annotate the necessary outputs of our target task nor they

are all useful. Our thesis statement is active selection/retrieval of auxiliary supervision

can enhance a wide range of NLP applications.
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1.3 Outline of This Thesis

The rest of this document is organized as follows.

High-resource sources
(domain/languages) 

Low-resource target
(domain/language) 

Quantify and Select 
potential source corpora

Chapter-2

Open-source resources Retrieve code/summary/type Enhanced code/summary 

Retrieve relevant privacy policyOpen-source resources

Select 
words/phrase/sentences

Bad location 
but tasty food

Base instances
(No external data)

Fast, robust and 
interpretable text classifier

Better QA system

Chapter-3, 4

Chapter-5

Chapter-6

Figure 1.3: Overview of the chapters in this thesis. The module workflow is left to right.

Chapter 2 introduces our work (Parvez and Chang, 2021) on selecting potential

high-resource source corpora (i.e., Type-1 corpora level data selection) for zero-shot

cross-lingual and cross-domain transfer learning. We propose a method to quantify the

usefulness of the sources and identify the beneficial transfer sources. We then show that

leveraging them, a number of low-resource text classification tasks can be enhanced.

In Chapter 3, 4 we discuss two of our works (Parvez et al., 2018, 2021) on the Type-2

feature level data selection and incorporation. For an example text to code generation

6



task, we present how can we retrieve auxiliary features and incorporate them for better

generation. In the first work Chapter-4, we use a rule-based selection technique and use

different rule-based off-the-shelf state-of-the-art tools, libraries, resources (e.g., symbol

table) to find the entity type information (e.g., variable data types such as int, float,

user-defined class etc.,) of the entity names (e.g., variables, operator, function or method

name etc.,) for better code generation. In our second work Chapter 5, we develop a

dense code retriever than can retrieve relevant candidate code from a large unlabeled

open-source code repository Github. Using this, we retrieve top-k relevant code and use

them as auxiliary feature while generating the code from text.

In Chapter 5, we then further improve our retriever model and apply it for question

answering on privacy policies (Parvez et al., 2022). For each queries in our training set,

we retrieve new relevant policy statements from the unlabeled Google Play Store Policy

documents and add the paired instance <query, retrieved policy> (Type-3 instance level

data) in the training set which lead to a new state-of-the-art performance on this task.

Chapter 6 develops a computationally inexpensive selector model that can select the

relevant words/phrase/sentences from an input text as per a given selection rate. We

vary the rates and collect the different versions of the same input text. We then augment

them as additional instances (Type-3 instance level data) and improve the performance,

speed, and robustness of a text classifier model.

Finally, in Chapter 7 we summarize the contributions and findings of this thesis and

provide a brief overview of the future works.
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CHAPTER 2

Evaluating and Selecting Transfer Sources for

Enhancing Low-resource Target Applications

Transfer learning that adapts a model trained on data-rich sources to low-resource targets

has been proven an effective approach to enhance the low-resource applications in natural

language processing (NLP). A common transfer practice is to simply choose only a few

potential sources to train the transfer models. For example, many cross-lingual studies

consider only the English language as the source–limiting the auxiliary supervision to be

leveraged from other high-resource sources. In contrast, when training a transfer model

over multiple sources, not every source is beneficial for the target. To better transfer a

model, it is essential to understand the usefulness of the sources. In this Chapter, we

develop an efficient source valuation framework for quantifying the usefulness of the sources

(e.g., domains/languages) and use it for selecting the potential transfer source corpora. We

finally create a training set augmenting the selected source corpora (i.e., Type-1 corpora

level). Experiments and comprehensive analyses on both cross-domain and cross-lingual

transfers demonstrate that our framework is not only effective in choosing useful transfer

sources but also the source values match the intuitive source-target similarity.

2.1 Introduction

Transfer learning has been widely used in learning models for low-resource scenarios by

leveraging the supervision provided in data-rich source corpora. It has been applied to

NLP tasks in various settings including domain adaptation (Blitzer et al., 2007; Ruder

and Plank, 2017), cross-lingual transfer (Täckström et al., 2013; Wu and Dredze, 2019),
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Figure 2.1: SEAL-Shap estimates the value of each source corpus by the average marginal
contribution of that particular source corpus to every possible subset of the source
corpora. Each block inside SEAL-Shap denotes a possible subset and the marginal
contribution is derived by the difference of transfer results while trained with and without
the corresponding source. Based on the source values, we select a subset of source corpora
that achieves high transfer accuracy.

and task transfer (Liu et al., 2019b; Vu et al., 2020).

A common transfer learning setting is to train a model on a set of sources and then

evaluate it on the corresponding target (Yao and Doretto, 2010; Yang et al., 2020).1

However, not every source corpus contributes equally to the transfer model. Some of

them may even cause a performance drop (Ghorbani and Zou, 2019; Lin et al., 2019).

Therefore, it is essential to understand the value of each source in the transfer learning

not only to achieve a good transfer performance but also for analyzing the source-target

relationships.

1In this paper, we focus on two transfer learning scenarios: 1) cross-lingual and 2) cross-domain. We
train a model on a set of source corpora and evaluate on a target corpus where each “corpus” refers to
the corresponding domain or language.
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Nonetheless, determining the value of a source corpus is challenging as it is affected by

many factors, including the quality of the source data, the amount of the source data, and

the difference between source and target at lexical, syntax and semantics levels (Ahmad

et al., 2019; Lin et al., 2019). The current source valuation or ranking methods are often

based on single source transfer performance (McDonald et al., 2011; Lin et al., 2019; Vu

et al., 2020) or leave-one-out approaches (Tommasi and Caputo, 2009; Li et al., 2016;

Feng et al., 2018; Rahimi et al., 2019). They do not consider the combinations of the

sources. Consequently, they may identify the best single source corpus effectively but

their top-k ranked source corpora may achieve limited gain in transfer results.

In this paper, we introduce SEAL-Shap (Source sElection for trAnsfer Learning

via Shapley value), a source valuation framework2 (see Fig 2.1) based on the Shapley

value (Shapley, 1952; Roth, 1988) in cooperative game theory. SEAL-Shap adopts the

notion of Shapely value to understand the contribution of each source by computing the

approximate average marginal contribution of that particular source to every possible

subset of the sources.

Shapley value is a unique contribution distribution scheme that satisfies the necessary

conditions for data valuation like fairness and additivity (Dubey, 1975; Jia et al., 2019a,b).

As many model explanation methods including Shapley value are computationally costly

(Van den Broeck et al., 2021), in a different context of features and data valuation in

machine learning, Ghorbani and Zou (2019) propose to use an approximate Shapley value

to estimate the feature or data values.

However, the existing approximation methods for estimating Shapley values are not

scalable for NLP applications. NLP models are often large (e.g., BERT (Devlin et al.,

2019)) and NLP transfer learning usually assumes a large amount of source data. To deal

with the scalability issue, we propose a new sampling scheme, a truncation method, and

a caching mechanism to efficiently approximate the source Shapley values.

We evaluate the effectiveness of SEAL-Shap under various applications in quantifying

2Our source codes are available at https://github.com/rizwan09/NLPDV/
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the usefulness of the source corpora and in selecting potential transfer sources. We

consider two settings of source valuation or selection: (1) where a small target corpus is

available; and (2) where we only have access to the linguistic or statistical features of the

target, such as language distance to the sources, typological properties, lexical overlap etc.

For the first setting, we use the small target data as the validation set to measure the

values of the sources w.r.t the target. For the second setting, we follow Lin et al. (2019)

to train a source ranker based on SEAL-Shap and the available features.

We conduct extensive experiments in both (zero-shot) cross-lingual and cross-domain

transfer settings on three NLP tasks, including POS tagging, sentiment analysis, and

natural language inference (NLI) with different model architectures (BERT and BiLSTM).

In a case study, on the cross-lingual transfer learning, we exhibit that the source language

values are correlated with the language family and language distance—indicating that our

source values are meaningful and follow the intuitive source-target relationships. Lastly,

we analyze the approximation correctness and the run-time improvement of our source

valuation framework SEAL-Shap.

2.2 Source Valuation Framework

We propose SEAL-Shap, a source valuation framework. We start with the setting where

we have only one target and multiple sources. We denote the target corpus by V and

the corresponding set of source corpora by D = {D1, · · · , Dm}. Our goal is to quantify

the value Φj of each source corpus Dj to the transfer performance on V and explain

model behaviors. Once the source values are measured, we can then develop a method to

select either all the sources or a subset of sources (i.e., ⊆ D) that realizes a good transfer

accuracy on V . Below, we first review the data Shapley value and its adaptation for

transfer learning. Then, we describe how SEAL-Shap efficiently quantifies Φj and how to

use it to select a subset of sources for model transfer.
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2.2.1 Background

2.2.1.1 Data Shapley Value

Shapley value is designed to measure individual contributions in collaborative game theory

and has been adapted for data valuation in machine learning (Ghorbani and Zou, 2019; Jia

et al., 2019a,b). In the transfer learning setting, on a target corpus V , let Score(CΩ, V )

represent the transfer performance of a model C trained on a set of source corpora Ω.3

The Shapley value Φj is defined as the average marginal contribution of a source corpus

Dj to every possible subsets of corpora D:

1

m

∑
Ω⊆D−Dj

Score(CΩ∪Dj
, V )−Score(CΩ, V )(
m−1
|Ω|

) .

2.2.1.2 TMC-Shap for Transfer Learning:

Computing the exact source-corpus Shapley value, described above, is computationally

difficult as it involves evaluating the performances of the transfer models trained on all

the possible combinations of the source corpora. Hence, Ghorbani and Zou (2019) propose

to approximate the evaluation by a truncated Monte Carlo method. Given the target

corpus V and a set of source corpora D, for each epoch, a source training data set Ω ⊆ D

is maintained and a random permutation π on D is performed (corresponds to line 6

in Algorithm 1 which is discussed in Sec 2.2.2). Then it loops over every source corpus

πj in the ordered list π and compute its marginal contribution by evaluating how much

the performance improves by adding πj to Ω: Score(CΩ∪πj
, V ) − Score(CΩ, V ). These

processes are repeated multiple rounds and the average of all marginal contributions

associated with a particular source corpus is taken as its approximate Shapley value (line

18 in Algorithm 1). When the size of Ω increase, the marginal contribution of adding

a new source corpus becomes smaller. Therefore, to reduce the computation, Ghorbani

and Zou (2019) propose to truncate the computations at each epoch when the marginal

3In this paper, we consider a model trained on the union of the source data and the loss function for
training the model is aggregated from the loss functions defined on each source. However, our approach
is agnostic to how the model is trained and can be integrated with other training strategies.
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contribution of adding a new source πj is smaller than a user defined threshold Tolerance

(line 10-11, 18 in Algorithm 1).4

2.2.2 SEAL-Shap

Despite that TMC-Shap improves the running time, it is still unrealistic to use it in

our setting where both source data and model are large. For example, in cross-lingual

POS tagging on Universal Dependencies Treebanks, on average, it takes more than 200

hours to estimate the values of 30 source languages with multi-lingual BERT (See Sec

5.4). Therefore, in the following, we propose three techniques to further speed-up the

evaluation process.

2.2.2.1 Stratified Sampling

When computing the marginal contributions, training a model C on the entire training

set Ω is computationally expensive. Based on extensive experiments, when computing

these marginal contributions, we find that we do not need the performance difference

of models trained with the entire training sets. For a reasonably large source corpus,

20-30% samples5 in each source achieve lower but representative performance difference, in

general. Therefore, we sample a subset of instances to evaluate the marginal contributions.

To address computational limitation and scale to large data, sampling techniques have

been widely discussed (L’heureux et al., 2017). In particular, we employ a stratified

sampling (Neyman, 1992) to generate a subset T from Ω by sampling training instances

from each source corpus Ωx with a user defined sample rate η. Then, we train the model

on T (line 14-15 in Algorithm 1). The quantitative effectiveness of this technique is

discussed in Sec 5.4 and the impact of different sampling rates are presented in Fig 2.5.

4Setting Tolerance to 0 turns off the truncation.

5Higher sampling rate typically leads to better approximation but are expensive in run-time.
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Algorithm 1 SEAL-Shap
Input:
Source corpora D = {D1, · · · , Dm},
target corpus V ,
Random sampler S,
sample size η,
num of epochs nepoch,
Classifier C

Output:
Source-corpora Shapley values {Φ1...,Φm}

Initialize:
Score cache S ← {},
source Shapley values Φx ← 0 for x = 1 . . .m,
epoch t← 0
Dsamp ← {S(Dx, η),∀Dx ∈ D}
CDsamp ← Train C on Dsamp

while Converge or t < nepoch do

t← t+ 1

π : Random permutation of D
v0 ← ρ

for j ∈ {1, · · ·m} do

Ω← {π1, · · · , πj}
if | Score(CDsamp , V ) - vj−1| < Tolerance then

vj ← vj−1

else

if Ω /∈ S then

T ← {S(Ωx, η),∀Ωx ∈ Ω}
Cj ← Train C on T
Insert Ω into S with SΩ ← Score(Cj, V )

vj ← SΩ

Φπj
← t−1

t
Φπj

+ 1
t
(vj − vj−1)
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2.2.2.2 Truncation

As discussed in Sec 2.2.1, at each epoch, Ghorbani and Zou (2019) truncate the com-

putations once a marginal contribution becomes small when looping over the ordered

list π of that corresponding epoch, typically for the last few sources in π. On the other

hand, at the beginning of each epoch, when computing the marginal contribution by

adding the first source corpus π1 into an empty Ω, the contribution is computed by the

performance gap between a model trained on π1 and a random baseline model without any

training. Usually, the performance of a random model (v0) is low and hence, the marginal

contribution is high in the first step, in general. As this scale of marginal contributions

at the first step is drastically different from later steps, it leads TMC-Shap to converge

slowly. Hence, to restrict the variance of the marginal contributions, we down weight the

marginal contributions of the first step by setting v0 = ρ, where ρ is a hyper-parameter6

indicating the baseline performance of a model (line 7, 18 in Algorithm 3).

2.2.2.3 Caching

When computing the source Shapley values, we have to repeatedly evaluate the perfor-

mance of the model on different subsets of source corpora. Sometimes, we may encounter

subsets that we have evaluated before. For example, consider a set of source corpora

D = {D1, D2, D3} and we evaluate their Shapley values through two permutations:

π1 = [D3, D1, D2], and π2 = [D1, D3, D2]. When we compute the marginal contribution

of the last source corpus D2, in both cases the training set Ω = {D1, D3}. That is, if

we cache the result of Score(CD1∪D3), then we can reuse the scores. We implement this

cache mechanism in line 1, 13, 16, 17 in Algorithm 3. With these optimization techniques,

we improve the computation time by about 2x (see Sec 5.4). This enables us to apply

this techniques in NLP transfer learning.

Note that whenever an Ω causes a cache miss, for each source Ωx, as discussed above

in this Section, we sample a new set of instances (line 13-14 in Algorithm-1). Thus, given

6Typically a factor of the performance achieved when using only one source, or all the sources together
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a reasonably large number of epochs, our approach performs sampling for a large number

of times and in aggregation, it evaluates a wide number of samples in each source.

2.2.3 SEAL-Shap for Multiple Targets

Many applications require to evaluate the values of a set of sources with respect to a set

of targets. For example, under the zero-shot transfer learning setting, we assume a model

is purely trained on the source corpora without using any target data. Consequently, then

the same trained model can be evaluated on multiple target corpora. With this intuition,

whenever the model is trained on a new training set Ω, SEAL-Shap evaluates it on all the

target corpora and caches all of them accordingly.

2.2.4 Source Values without Evaluation Corpus

In the previous discussions above, we assume a small annotated target corpus is available

and can be used to evaluate the transfer performances. However, in some scenarios, only

some linguistic or statistical features of the sources and targets, such as language distance

and word overlap, are available. Lin et al. (2019) show that by using these features, we

can train a ranker to sort the sources to unknown targets by predicting their value. In

the following, we extend their ranker by incorporating it with SEAL-Shap.

Given the set of training corpora D and the actual target corpus V , we iteratively

consider each training corpus Dj as target and the rest m-1 corpora as the sources.

We compute the corresponding source values YDj

D = {ΦD1 , . . . ,ΦDj−1
,ΦDj+1

, . . . ,ΦDm}.

Now, w.r.t the target Dj, the linguistic or statistical features of the source corpora (e.g.,

language distance from the target, lexical overlap between the corresponding source

and the target) XDj

D = {F j(D1),. . . ,F
j(Dj−1), F

j(Dj+1),. . . ,F
j(Dm)} where F j denotes

the source feature generator function for the corresponding target Dj. This feature

vector of the source corpora (XDj

D ) is a training input and their value vector (YDj

D ) is the

corresponding training output for the ranker. We repeat this for each training corpus and

generate the respective training inputs and outputs for the ranker. Once trained, for the
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actual target V and the source corpora D, the ranker can predict the values of the source

corpora YV
D only based on the linguistic source features X V

D .

2.2.5 Source Corpora Selection by SEAL-Shap

The source values computed in Sec 2.2.2-2.2.4 estimate the usefulness of the corresponding

transfer sources and can be used to identify the potential sources which lead to the good

transfer performances. We select the potential source corpora in two ways. (i) Top-k: We

simply sort the sources based on their values and select the user defined top-k sources.

(ii) Threshold: When an annotated evaluation dataset in target corpus V is available,

after computing the source values, we empirically set a threshold θ and select each source

that has source value higher than θ. On that evaluation target corpus, we tune and set θ

for which the corresponding transfer model achieves the best performance.

2.3 Experimental Settings

We conduct experiments on zero-shot cross-lingual and cross-domain transfer settings.

Models are trained only on the source languages/domains and directly applied in target

languages/domains.

Cross-lingual Datasets We conduct experiments on two popular cross-lingual transfer

problems: (i) universal POS tagging on the Universal Dependencies Treebanks (Nivre

et al., 2018). Following Ahmad et al. (2019), we select 31 languages of 13 different language

families. (ii) natural language inference on the XNLI dataset (Conneau et al., 2018),

that covers 15 different languages. XNLI task is a 3-way classification task (entailment,

neutral, and contradiction).

Cross-domain Datasets We consider three domain transfer tasks: (i) POS tagging:

we use the SANCL 2012 shared task datasets (Petrov and McDonald, 2012) that has six

different domains. (ii) Sentiment analysis: we use the multi-domain sentiment datasets (Liu

et al., 2017) which has several additional domains than the popular Blitzer et al. (2007)

17



((a)) UD Treebank, target: en ((b)) XNLI, target: vi

((c)) mtl-dom-senti, target: E ((d)) mGLUE, target:MNLI-mm

Figure 2.2: Performance, and run time with up to top-3 sources ranked by different
approaches. (a), (b) denotes cross-lingual and (c), (d) denotes cross-domain transfer. All
models have same training configurations (e.g., sample size). All the run times are final
except for Greedy DFS where it increases linearly with top-k. Adding top-2 and top-3
ranked sources, other methods drop their accuracy across the tasks while ours shows a
consistent gain in all tasks and achieves the best results with top-3 sources.

dataset. (iii) NLI: we consider a (modified) binary classification (e.g., entailed or not)

dataset used in Ma et al. (2019). It is made upon modification on GLUE tasks (Wang

et al., 2018) and has four domains. As GLUE test sets are unavailable, for each target

domain, we use the original dev set as the pseudo test set and randomly select 2,000

instances from its training set as the pseudo dev set. Table 2.1 summaries the statistics

of the tasks and datasets in our experiments.
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Transfer Task Dataset #target #source

Language POS tag UD Treebank 31 30
NLI XNLI 15 14

Domain
POS tag SANCL 2012 6 5
NLI mGLUE 4 7+
Sentiment Ana. mlt-dom-senti 14 13

Table 2.1: Task statistics. #sources are for each target. In (m)odified GLUE, #sources
is 8 for target MNLI, and 7 otherwise. “mlt-dom-senti” refers to Liu et al. (2017).

Classifier and Preprocessing For all domain transfer tasks, we use BERT and for

all language transfer tasks, we use multi-lingual BERT (Devlin et al., 2019) models

except for cross-doman POS tagging where we consider the state-of-the-art BiLSTM

based Flair framework (Akbik et al., 2018). For BERT models, we use the Transformers

implementations in the Huggingface library Wolf et al. (2019a). For significance test,

we use an open-sourced library.7 By default, no preprocessing is performed except

tokenization.

2.4 Results and Discussion

In the following, we first verify SEAL-Shap is an effective tool for source valuation. Then,

we evaluate the source values when an evaluation target corpus is unavailable. In Sec

2.4.3, we interpret the relations between sources and targets based on the SEAL-Shap

values. Finally, we analyze our method with comprehensive ablation studies.

2.4.1 Evaluating Source Valuation

We assess our source valuation approach in compare to the following baselines: (i) Baseline-

s: source values are based on the single source transfer performance. (ii) Leave-one-out

(LOO): source values are based on how much transfer performance we loose if we train

the model on all the sources except the corresponding one. (iii) Baseline-r: a random

7github.com/neubig/util-scripts/blob/master/paired-bootstrap.py
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baseline that assigns random values to sources.8 (iv) Greedy DFS: the top-1 ranked source

is same as that of Baseline-s. Next, it selects one of the remaining sources as top-2 that

gives the best transfer result along with the top-1 and so on. (v) Lang-Dist: (if available)

in reverse order of target-source language distance (Ahmad et al., 2019).9

2.4.1.1 Balancing Source Corpora

In the experiements, our focus is to understand the values of the sources. For some

datasets, the sizes of source corpora are very different. For example, in UD Treebank,

the number of instances in Czech, and Turkish is 69k, 3.5k, respectively. Since data-size

is an obvious factor, we conduct experiments on balanced data to reduce the influence

of data-size in the analysis. We sub-sample the source corpora to ensure their sizes are

similar. Specifically, for the cross-domain NLI task, we sample 20k instances for each

source. For others, we sub-sample each source such that the size of the corpus is the same

as the smallest one in the dataset. However, our approach can handle both balanced or

unbalanced data and the source values are similar in conclusions (e.g., see Fig 2.5).

2.4.1.2 Results

We first compare these methods by selecting top-k sources ranked by each of the approach

and reporting the corresponding transfer performance. With k = 3, we plot the corre-

sponding transfer results and the running time for valuation in Fig 2.2. As mentioned

in Sec 5.1, the relatively strong Baseline-s can select the best performing top-1 source

but with top-2 and top-3 sources, the performances drop on cross-domain sentiment

analysis and cross-lingual POS tagging (See Fig 2.2(c) and 2.2(a)) while our approach

shows a consistent gain in all of the these tasks and with top-3 sources it achieves the

best performances.

8Our experiments with different seeds result in different but similar results.

9Ahmad et al. (2019) compute the distances from an annotated dependency parse tree based on UD
Treebank.
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Lang en All Source Baseline-r Baseline-s SEAL-Shap
en - 82.71 86.32 86.39 88.55∗$†

fr - 94.60 94.63 94.83 94.79
da 88.3 88.94 89.30 89.23 89.47∗

es 85.2 93.15 93.00 93.04 93.21$

it 84.7 96.58 96.43 96.71 96.67
ca - 91.54 91.64 90.78 92.08∗$†

sl 84.2 93.28 93.50 92.89 93.52∗†

nl 75.9 90.10 90.19 90.14 90.26
ru - 92.98 92.91 92.71 93.13∗$†

de 89.8 90.79 91.07 91.44 91.06
he - 76.67 75.75 75.43 76.73$†

cs - 93.89 93.04 93.94 94.81∗$†

sk 83.6 95.68 95.62 95.53 95.81†

sr - 97.55 97.47 97.43 97.58†

id - 84.10 85.23 85.50 85.97∗$

fi - 87.13 86.89 86.86 87.05
ko - 63.59 64.27 63.77 64.19
hi - 81.49 80.27 79.94 82.41∗$†

ja - 66.86 65.99 67.71 67.81∗$

fa 72.8 81.03 80.69 82.37 81.79
Average - 82.98 83.05 83.15 83.66

Table 2.2: Performance on universal POS tagging when using each of language as the
target language and the rest as source languages . ’*’, ‘$’, ‘†’ denote SEAL-Shap model is
statistically significantly outperforms All Sources, Baseline-r and Baseline-s respectively
using paired bootstrap test with p ≤ 0.05. “en” refers to the only source (“en”) results in
Wu and Dredze (2019).

Next, as in Sec 2.2.5, we tune a threshold θ and either select all the sources as useful

or a smaller subset of m number of sources (i.e., m < |D|) whose SEAL-Shap values

are higher than θ. In the followings, we compare the model performances of these m

sources selected by SEAL-Shap with the same top-m sources ranked by the aforementioned

baseline methods. Being relatively weak or slow, we do not further report performances

for LOO, Lang-Dist, and Greedy DFS. Rather we consider another strong baseline All

Sources that uses all the source corpora D. This is a strong baseline as it is trained on

more source-corpus instances in general.

Cross-Lingual POS Tagging We evaluate the source selection results on zero-shot

cross-lingual POS tagging in Table 2.2. Among the 31 target languages, in 21 of them,
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Model WSJ EM N A R WB Avg
MMD 96.12 96.23 96.40 95.75 95.51 96.95 96.16
RENYI 96.35 96.31 96.62 95.52 95.97 96.75 96.25

All Sources 95.95 95.39 96.94 95.15 96.08 97.10 96.10
Baseline-r 95.98 93.41 93.78 93.14 95.25 97.10 94.78
SEAL-Shap 96.14∗$ 95.47$ 97.02$ 95.30∗$ 96.17$ 97.10 96.20

Table 2.3: POS tagging results (% accuracy) on SANCL 2012 Shared Task. ’*’ and ‘$’
denote the model using SEAL-Shap statistically significantly outperforms All Sources and
Baseline-r respectively using paired bootstrap test with p ≤ 0.05. MMD, and RENYI
refer to Liu et al. (2019a) which use auxiliary unlabelled data in the target domain and
focus on instance selection. Baseline-s has exactly same results as SEAL-Shap.

Model bg ru tr ar vi hi sw ur Avg

XLM-MLM 74.0 73.1 67.8 68.5 71.2 65.7 64.6 63.4 68.54
mBERT(en) 68.9 69.0 61.6 64.9 69.5 60.0 50.4 58.0 62.79

All Sources 74.03 73.59 65.21 68.94 74.39 67.31 52.67 64.37 67.56
Baseline-r 74.69 74.53 65.85 68.68 75.03 66.69 52.97 63.69 67.77
Baseline-s 73.23 73.73 65.67 68.36 74.11 67.07 52.59 63.31 67.26
Ours 74.95 73.85 65.63 69.24 75.71 67.78 52.73 64.67 68.07

Table 2.4: XNLI results. As a reference, we include two results from the recently published
papers mBERT (Wu and Dredze, 2019) and “XLM-MLM” (Lample and Conneau, 2019).
mBERT is trained on “en” only and “XLM-MLM” is applicable to XNLI languages only.

SEAL-Shap selects a small subset of source corpora. From the Table, overall, SEAL-Shap

selects source corpora with high usefulness for training the model, and except for few

cases the model constantly outperforms all the baselines by more than 0.5% in avg token

accuracy. In 13 of them, it is statistically significant by a paired bootstrap test. The

gap is especially high for English, Czech, and Hindi. These results demonstrate that

SEAL-Shap is capable in both quantifying the source values and also in source selection.

Cross-Domain POS Tagging Table 2.3 presents the POS tagging results in zero-

shot domain transfer on SANCL 2012 shared task. In 5 out of 6 targets, SEAL-Shap

outperforms all baselines except Baseline-s. For each target domain with only 5 sources,

Baseline-s source values match with ours in general. However, SEAL-Shap significantly

outperforms Baseline-r on all 5 cases and All-Sources twice. It even outperforms MMD,
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Model books kitchen dvd baby MR Avg

Cai and Wan (2019) 87.3 88.3 88.8 90.3 76.3 86.2

All Sources 87.3 90.3 88.3 92.3 79.3 87.5
Baseline-r 87.0 90.5 87.3 91.8 78.8 87.1
Baseline-s 86.8 89.8 87.0 92.5 77.5 86.7
SEAL-Shap 87.3 90.8 88.8 92.5 79.5 87.8

Table 2.5: Cross-domain transfer results on multi-domain sentiment analysis task. Cai
and Wan (2019) use unlabelled data from the target domain.

Model SNLI QQP QNLI MNLI-mm Avg
Ma et al. (2019) 88.30 73.90 59.10 - 76.23
All Sources 88.69 72.96 50.65 89.47 75.45
Baseline-r 88.11 72.71 50.53 89.18 75.13
Baseline-s 88.72 73.47 50.98 89.69 75.72
SEAL-Shap 88.72 73.47 54.75 89.69 76.66

Table 2.6: Zero-shot results on modified GLUE. Ma et al. (2019) selects instances from
one source domain at once while we select a subset of source corpora.

and RENYI (Liu et al., 2019a) on Newsgroups (N), Reviews (R), and Weblogs (WB)

despite they select source data at instance level and use additional resources.

Cross-Lingual NLI In Table 2.4, we show the XNLI results in 8 target languages where

SEAL-Shap selects a small subset of source corpora. Among them, in 3 languages, Baseline-

r marginally surpasses ours. However, in 5 other languages SEAL-Shap outperforms all

the baselines with clear margin specially on Bulgarian, Vietnamese with about 1% better

accuracy.

Cross-Domain NLI Next, we evaluate SEAL-Shap on the modified GLUE dataset in

Table 2.6. SEAL-Shap outperforms Baseline-s once and other baselines in all cases. Its

highest performance improvement is gained on QNLI, where it outperforms others by 4%.

Cross-Domain Sentiment Analysis Among the 13 target domains in the multi-domain

sentiment analysis dataset, in 5 domains SEAL-Shap selects a small subset. As in Table

2.5), with a large margin, SEAL-Shap achieves higher accuracy than all other baselines

and, in 4 cases, it is even better than Cai and Wan (2019) that uses unlabeled target

data.
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Figure 2.3: Cross-lingual POS tagging accuracies on different target languages using top-3
sources ranked by SEAL-Shap. The ranker (red) selects similar sources as using SEAL-Shap
with annotated target data (blue). Ranker trained to predict SEAL-Shap values (red) performs
better than baseline (green) (Lin et al., 2019).

Our experimental evidences show that SEAL-Shap is an effective tool in choosing

useful transfer sources and can achieve higher transfer performances than other source

valuation approaches.

2.4.2 Results without an Evaluation Corpus

We evaluate the effectiveness of SEAL-Shap to build a straightforward ranker that directly

computes the source values without any evaluation target corpus (see Sec 2.2.4). We use

the ranker in Lin et al. (2019) as the underlying ranking model. First, we show that the

source values evaluated by the ranker is as good as SEAL-Shap that uses its annotated

target dataset. We compare the transfer performances of the top-k sources based on the

source values computed with and without the evaluation corpus. Then, we show that the

ranker trained with SEAL-Shap is more effective than training it with the existing single

source based Baseline-s.

In cross-lingual POS tagging on UD Treebank, for each of the 31 target languages, we

set aside that language and consider the remaining 30 languages as the training corpora.

We then train the ranker as described in Sec 2.2.4 and compute the source values using

it. As for reference, we pass the evaluation target dataset and the 30 source languages
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Figure 2.4: Cross-lingual POS tagging SEAL-Shap values, referring to the relative
contribution of the source languages.

to SEAL-Shap to compute their values on the evaluation dataset. With k = 3, we

compare the transfer results of the top-k sources of these two methods in Fig 2.3. We also

plot the results of the baseline ranker (Lin et al., 2019) that is trained with Baseline-s.

Results show that the ranker source values are similar to the sources values estimated by

SEAL-Shap with an annotated evaluation dataset and also it outperforms the baseline.

2.4.3 Interpret Source Value by SEAL-Shap

In this Section, we show that SEAL-Shap values provide a means to understand the

usefulness of the transfer sources in cross-lingual and cross-domain transfer. We first

analyze cross-lingual POS tagging. Following Ahmad et al. (2019), we consider using

language family and word-order distance as a reference distance metric. We anticipate

that languages in the same language family with smaller word-order distance from the
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((a)) XNLI, target: ’es’,
R <10%

((b)) mGLUE, target:
MNLI-mm, R=10-20%

((c)) SANCL’12, target:
wsj, R ∼50%

Figure 2.5: Source values by TMC-Shap and ours. TMC-Shap uses unbalanced full
source corpora whereas SEAL-Shap that achieves similar source values uses balanced and
sampled source corpora. Even with a small sample rate (R), source order is almost same.
Higher sampling rate typically refers to better approximation but leads to expensive
runtime. In general, for a reasonably large corpus, 20-30% samples (>few thousands) are
found sufficient to achieve reasonable approximation.

Figure 2.6: Similar SEAL-Shap value curves for two closely related target languages in cross-
lingual POS tagging.

target language are more valuable in multi-lingual transfer. We plot SEAL-Shap of source

languages evaluated on two target languages English (“en”) and Hindi (“hi”) in Fig 2.4.

In the x-axis, a common set of twenty different source languages are grouped into ten

different language families and sorted based on the word order distance from English. As

the figure illustrates, Germanic and Romance languages have higher Shapley values when

using English as the target language. The value gradually decreases for language of other

families when the word order distance increase. As for the target language Hindi, the

trend is opposite, in general.

Analogously, as in Figure 2.8, for cross-domain NLI, we find that correlation between

QNLI, and QQP is high whereas between MNLI-mm and QQP, it is lower.
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Figure 2.7: Similar SEAL-Shap value curves for two closely related XNLI targets “en” and “fr”.
In XNLI, the source corpora are prepared by machine translating from “en”. This data processing
may affect the source values. Translation into “zh” being relatively better, although different
from both targets, its source values are higher than others.

Figure 2.8: SEAL-Shap value on cross-domain NLI, referring to relative contribution
of source domains. For target domain MNLI-mm, source domain QQP has the lowest
contribution, whereas for target domain QNLI, source domain QQP has the highest
contribution.

SEAL-Shap on Similar Targets Intuitively, if two target corpora are similar, the

corresponding Shapley values of the source corpora when transferring to these two targets

should be similar as well. To verify, in Fig 2.6, we plot the Shapley values of twenty nine

source languages for targets Russian and Serbian on cross-lingual POS tagging. Also we

plot the source values when transferring a NLI model to English and French in Fig 2.7.

We observe that the corresponding curves are almost identical, and SEAL-Shap in fact

selects the same set of source corpora as potential. These results suggest that if there is

no sufficient data in the target corpus, it is also possible to use a neighboring corpus as a

proxy to compute SEAL-Shap values.
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Prob. Transfer Target #Targets #Samples Caching Time
(hours)

NLI Domain MNLI-mm

1 ✗ ✗ 300∗
1 ✗ ✓ 101
1 20k ✓ 18
3 20k ✓ 5

POS Language Arabic (ar)

1 ✗ ✗ 210∗
1 ✗ ✓ 180∗
1 3.3k ✓ 25
31 3.3k ✓ 3.5

Table 2.7: Running time for computing approximate Shapley value. The marker
∗represents the time is estimated by extrapolation. #Targets indicates number of target
corpus evaluated simultaneously. #Samples is the number of samples used to train model
for computing marginal contribution. TMC-Shap is equivalent to disable all the techniques
(the first row of each block).

Source Values Influenced by Data Processing Typically, the sources with least

or negative source values are from the domains/languages that are different from the

targets (e.g., Fig 2.4). However, in some cases, source usefulness (i.e., values) is affected

by the data preparing process. For example, in XLNI, the source corpora are prepared by

machine translation from “en” (Conneau et al., 2018) and the quality of this translation

into “zh” is better in compare to other languages, in general. Consequently, in Fig 2.7,

“zh” has higher source value for both targets “en” and “fr”.

2.4.4 Analysis and Ablation Study

Finally, we analyze the proposed Algorithm 3 for computing Shapley value approximately.

How good is the approximation? In Fig 2.5, we compare SEAL-Shap with TMC-

Shap (Ghorbani and Zou, 2019) on three datasets Overall, the Shapley values obtained by

SEAL-Shap and TMC-Shap are highly correlated and their relative orders are matched,

while SEAL-Shap is much more efficient. Note that, the rankings themselves being

same/similar, the model performances using the same/similar top-k sources are same/sim-

ilar, too; therefore, we do not list their transfer performances furthermore.
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Figure 2.9: SEAL-Shap value with two (colored) seeds.

Ablation Study: We examine the effectiveness of each proposed components in SEAL-

Shap. Results are shown in Table 2.7. Results show that without the proposed approxi-

mation, TMC-Shap is computational costly and is impractical to use to analyze the value

of source corpus in the NLP transfer setting. All the proposed components contribute to

significantly speed-up the computations.

Shapley Value Computation Time without different Factors: We consider two

example problem to transfer both language and domain: (i) UDPOS tagging for language

transfer (ii) modified GLUE NLI for domain transfer. We consider the “initial score” to All

Sources/2 and R ; nepoch to 30, and 50 for these two respective target task, for the data

Shapley computation as in Algorithm 1, we then switch different factors as in reported in

Table 6 (in the main paper) as record the corresponding Shapley value computation time.

Is the approximation sensitive to the order of permutations? As SEAL-Shap is a

Monte Carlo approximation, we study if SEAL-Shap is sensitive to the random seed using

the cross-lingual POS tagging task. To analyze, we first compute a reference Shapley

values by running SEAL-Shap until empirically convergence (blue line). Then, we report

the Shapley value produced by another random seed. Fig 2.9 shows that with enough

epochs, the values computed by different random seeds are highly correlated.

Number of Sources Selected: Below, Table 2.8 shows out of the 30 source languages,

how many of them the are selected as potential sources by SEAL-Shap for each target

language. For the remaining targets, SEAL-Shap selects 27 source languages as potential.
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Target Lang. #Sources Selected
en 9
fr 29
da 29
it 26
ca 25
sl 29
nl 28
de 28
he 29
id 26
ar 30
ja 29

Table 2.8: Number of sources selected from 30 different languages by SEAL-Shap for the
task of cross-lingual POS tagging. For the remaining 18 target languages, SEAL-Shap
selects 27 source languages as potential.

2.5 Related Work

As discussed in Section 5.1, transfer learning has been extensively studied in NLP to

improve model performance in low-resource domains and languages. In the litearture,

various approaches have been proposed to various tasks, including text classification Zhou

et al. (2016); Kim et al. (2017), natural language inference Lample et al. (2018); Artetxe

and Schwenk (2019), sequence tagging Täckström et al. (2013); Agić et al. (2016); Kim

et al. (2017); Ruder and Plank (2017), dependency parsing Guo et al. (2015); Meng et al.

(2019). These prior studies mostly focus on bridging the domain gap between sources

and targets.

In different contexts, methods including influence functions and Shapley values have

been applied to value the contribution of training data Koh and Liang (2017); Lundberg

et al. (2018); Jia et al. (2019a). Specifically, Monte Carlo approximation of Shapley

values has been used in various applications Maleki (2015); Jia et al. (2019a); Ghorbani

and Zou (2020); Tripathi et al. (2020); Tang et al. (2020); Sundararajan and Najmi

(2019). However they are either task/model specific or not scalable to NLP applications.

Oppositely, Kumar et al. (2020a) discuss the problems of using Shapley value for model
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explanation. In contrast, we apply efficient Shapley value approximation in NLP transfer

learning and analyze the source-target relationships.

2.6 Summary

In this work, we propose Shapley value as a metric to quantify the usefulness of a

source corpora. We develop a framework SEAL-Shap to approximate the Shapely value

efficiently and to select the potential sources. The selected corpora are merged together

(Type-1 corpora level) to create the a training set for the the transfer model. We

conduct extensive sets of experiments on three text classification tasks (natural language

inference (NLI), POS tagging, and sentiment analysis), two zero-shot transfer learning

settings (domain and language) and two notable families of neural architectures (LSTM

v.s. transformers). We posit that the auxiliary supervision from the selected transfer

sources significantly enhances these applications w/ achieving several state-of-the-art

performances. Shapely values also makes the source-target correlation interpretable.

However, a possible limitation of this approach could be that it may be applicable to

only corpora level and may be extended to instance level. The possible reasons could be

two folds:

• #sources will be extremely high and so does become the number model retraining

• marginal contribution would be negligible and numerically unstable if each element

is an instance instead of a corpora.

Therefore a new retrieval system may be necessary for instance-level candidate ranking

and selection.
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CHAPTER 3

Retrieving and Incorporating Relevant Code and

Summary for Code Generation and Summarization

In the previous Chapter, we developed a framework for selecting corpora and discussed

its limitations for retrieving example/instance level candidates. In this Chapter, we

will develop such a retriever model and enhance a downstream task. We take the tasks

of text to code generation and code to summarization as two example multi-modal

downstream tasks which intrinsically mimics low-resource scenarios and enhance them w/

the additional hints/features retrieved by our retriever model (i.e., Type-2 feature level

auxiliary supervision).

3.1 Introduction

In recent years, automating source code generation and summarization is receiving

significant attention due to its potential in increasing programmers’ productivity and

reducing developers’ tedious workload. Consequently, various approaches have been

explored in the literature to facilitate code generation (Yin and Neubig, 2017a; Gu et al.,

2016b) and code documentation/summarization (Ahmad et al., 2020a; Wei et al., 2019;

Allamanis et al., 2018). Despite initial success, most of the generated code still suffers from

poor code quality (Xu et al., 2021). Therefore, the question remains—how to generate

better code from a given summary and vice versa.

Source code generation and summarization, however, are intrinsically complex and

challenging. They involve generating diverse token sequences such as different variables,

operators, keywords, classes, and method names (Parvez et al., 2018), which requires
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Figure 3.1: Illustration of our proposed framework REDCODER for code generation.
Given an input summary, we first retrieve top-k candidate code (k=1 in this example).
We then aggregate them and based on that a generator module generates the target
sequence.

understanding the programming languages at lexical, syntax, and semantics levels. To

combat these issues, recent studies (e.g., Ahmad et al. (2021a); Guo et al. (2021); Xu

et al. (2020); Feng et al. (2020a); Xu et al. (2020)) take a learning-based approach—they

train representations of code and the associated text by leveraging existing high-quality

source code and short text descriptions available in open-source repositories and question

answering forums such as GitHub and Stack Overflow. Then fine-tune the representation

models on the downstream tasks. Although these dataset contains high-quality human-

written code and text, since the existing approaches do not directly leverage them during

the generation process, the gain achieved by these approaches is still limited, especially

when the source code is long.

To overcome this, we take advantage of the existing high-quality source code and

their description by including them directly in the generation process that are retrieved

via information retrieval technique. In this work, we present REDCODER, a Retrieval

augmentED CODe gEneration and summaRization framework. While designing RED-

CODER, we take motivation from how developers take advantage of existing resources.

For example, developers often search for relevant code in the code repository, and if

found, adapt the retrieved code in their own context. Similarly, when an API usage is

unclear, they search in question answering forums (e.g., StackOverflow) (Brandt et al.,

2010; Sadowski et al., 2015). Such an additional resource helps developers to increase

their development productivity (Li et al., 2013).

33



We design REDCODER as a two-step process (see Figure 3.1). In the first step, given

the input (nl text for code generation, or code snippet for summarization) a retriever

module retrieves relevant source code (for code generation) or summaries (for code

summarization) from a database.1 In the second step, a generator processes the retrieved

code/summary along with the original input to generate the target output. In this

way, REDCODER enhances the generation capability by augmenting the input through

retrieval. The two-step process allows us to design a modular and configurable framework

for source code and summary generation. Various designs of retriever and generator

models can be incorporated into this framework.

Existing cross-encoder code retrievers being computationally expensive, their applica-

bility to retrieve from a large database is limited (Humeau et al., 2020). A natural choice

would be to use sparse term based retrievers such as TF-IDF or BM25 (Robertson and

Zaragoza, 2009). However, the retriever module in REDCODER should exhibit a good un-

derstanding of source code and programmers’ natural language, which is a non-trivial task

due to the syntactic and semantic structure of the source code (Guo et al., 2021; Ahmad

et al., 2021a). Such an expectation of searching for semantically similar code and summary

may not be attainable by a sparse token level code retriever (e.g., BM25). To that end, we

design the retriever module in REDCODER based on programming languages (PL) and

natural languages (NL) understanding models (e.g., GraphCodeBERT (Guo et al., 2021)).

This retriever module extends the state-of-the-art dense retrieval technique (Karpukhin

et al., 2020a) using two different encoders for encoding the query and document.

As for the generator, REDCODER can handle retrieval databases consisting of both

unimodal (only code or natural language description) and bi-modal instances (code-

description pairs) and makes the best usage of all the auxiliary information that are

available. Yet, to incorporate information, we augment the retrieved information only in

the input level. It does not modify the underlying architecture of the generator module

—preserving its model agnostic characteristics.

1The database could be open source repositories (e.g., GitHub) or developers’ forums (e.g., Stack
Overflow).
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Figure 3.2: Example input/output for the code generation and summarization tasks.

We evaluate the effectiveness of REDCODER on two popular programming languages

(Java and Python) on both code generation and code summarization tasks. The empirical

results show that, REDCODER’s concept of retrieval augmented generation elevates

the state-of-the-art code generation from an Exact Match score of 18.6 to 23.4 and the

summary generation BLEU-4 score from 18.45 to 22.95 even when we forcefully remove

the target candidate from the retrieved code or summary. With further experiments,

we establish the importance of both the retrieved code and retrieves summary in the

generation process. The source code for reproducing our experiments are at https:

//github.com/rizwan09/REDCODER.

3.2 Background

We first introduce the problem formulation and discuss the fundamentals of the retriever

and generator components that REDCODER is built upon.

3.2.1 Problem Formulation

Our goal is two folds: (i) code generation: Generating source code (C), given their

natural language description, such as code summaries, code comments or code intents

(S); (ii) code summarization: Generating natural language summaries S, given source

code snippets C. Fig 3.2 shows an example.
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Let X and Y denote a collection of input and output sequences (X = S1, . . . , Sn, Y =

C1, . . . , Cn in code generation, X = C1, . . . , Cn, Y = S1, . . . , Sn in summary generation

). We assume that we have access to a retrieval database consisting of an extensive

collection of source code (e.g., aggregated from GitHub or Stack Overflow) or summaries

(e.g., docstrings, code comments) (YR). Note that, target sequences (Y ) may or may not be

present in the retrieval database (YR). Now, given an input x ∈ X, a retriever retrieves the

top-k relevant output sequences from the database: Y1,Y2, . . . ,Yk ∈ YR. Then the input

sequence x is augmented with the retrieved sequences to form x′ = x⊕ Y1 ⊕ Y2 . . .⊕ Yk,

where ⊕ denote the concatenation operation. Finally, a generator generates the target

output y ∈ Y given x′. In the following, we first discuss the base retriever and generator

modules used in REDCODER and then how we improve these components is in Section

5.2.

3.2.2 Retriever: DPR

Information retrieval (IR) systems or retriever models are designed to retrieve the top-k

relevant documents that presumably best provide the desired information (Manning et al.,

2008). Term-based retrieval methods, a.k.a. sparse retrieval models, such as TF-IDF

or BM25 (Robertson and Zaragoza, 2009) use sparse vector representations to perform

lexical matching and compute relevance scores to rank the documents based on a query.

On the other hand, dense retrieval methods encode documents into a fixed-size

representations and retrieve documents via maximum inner product search (Sutskever

et al., 2014; Guo et al., 2016). Particularly of interests, Karpukhin et al. (2020a) propose

a Dense Passage Retriever (DPR) model for open-domain question answering (QA). It

consists of two encoders (Q(.) and P(.)) that encode queries and passages, respectively.

The similarity of a query q and a passage p is defined by the inner product of their encoded

vectors sim(p, q) = Q(q)T · P (p). Given a query q, a positive (relevant) passage p+, and a

set of n irrelevant passages p−i , DPR optimizes the classification loss:

L = − log
esim(q,p+)

esim(q,p+) +
∑n

i=1 e
sim(q,p−i )

.
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Figure 3.3: An example retrieved code that is relevant yet does not match the reference.

Karpukhin et al. (2020a) propose to fine-tune DPR using in-batch negatives (Gillick

et al., 2019; Yih et al., 2011) with curated “hard” negatives using BM25 (candidates

with high BM25 scores but contain no sub-string that match the target). We refer to

Karpukhin et al. (2020a) for details.

3.2.3 Generator: PLBART

PLBART (Ahmad et al., 2021a) is a sequence-to-sequence Transformer model (Vaswani

et al., 2017) that is pre-trained on a huge collection of source code and natural language

descriptions via denoising autoencoding. PLBART has shown promise in several soft-

ware engineering applications, including code generation and summarization. We adopt

PLBART as the generator module in our proposed framework, REDCODER.

3.3 Proposed Framework: REDCODER

Our proposed code generation and summarization framework, REDCODER generates

the target code or summary by augmenting the input x with relevant code snippets or

summaries. We build our retriever module by training a DPR model differently from

(Karpukhin et al., 2020a). With an intelligent scheme, we then augment the retrieved

candidates and their pairs (if available) to provide auxiliary supervision to the generator.

We briefly describe the model components in this section.
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3.3.1 Retriever: SCODE-R

Architecture The retriever module of REDCODER is built upon the DPR model (Karpukhin

et al., 2020a) and we call it SCODE-R (Summary and CODE Retriever). SCODE-R

composed of two encoders that encode source code and natural language summary. We

use bidirectional Transformer encoders (Vaswani et al., 2017) that are pre-trained on

source code and natural language summaries. Specifically, we explore CodeBERT (Feng

et al., 2020b) and GraphCodeBERT (Guo et al., 2021) as the code and summary encoders

for SCODE-R.

Input/Output SCODE-R takes an input sequence x (code or summary) and retrieves

a set of relevant documents from a database of output sequences Y (if the input is code,

then the output is summary and vice versa). SCODE-R returns the the top-k output

sequences {Y1,Y2, . . . ,Yk}, where sim(x,Yi) ≥ sim(x,Yj)∀j > i.

Training We fine-tune SCODE-R using a set of parallel examples (xi, yi) of code and

summaries. As mentioned in Section 3.2.2, DPR originally proposed to be fine-tuned

using in-batch negatives and curated “hard” negatives from BM25 retrieved passages

for open-domain QA. The key idea behind “hard” negatives is to fine-tune DPR to

distinguish the target passage from relevant passages that do not contain the target

answer. However, unlike open-domain QA, a retrieved code or summary that is not the

target could still benefit code generation or summarization (verified in Section 3.6). We

provide an example in Figure 3.3; although the retrieved code does not match the target

one but can facilitate generating it. Therefore, we fine-tune SCODE-R without any “hard”

negatives. Specifically, for each training instance (xi, yi), the corresponding output yi is

considered as positive and the other in-batch outputs (i.e., the outputs of other instances

in the same batch - y1, . . . , yi−1, yi+1, . . . , ybsz) as negatives. Figure 3.4 shows an example

of SCODE-R fine-tuning for code generation task.
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Figure 3.4: Training scheme of the retriever module (SCODE-R) of our proposed framework
REDCODER for the code generation task. Unlike in open-domain QA (Karpukhin et al.,
2020a), we do not use “hard” negatives (e.g., candidates retrieved by BM25 that do not
exactly match the reference) during fine-tuning.

3.3.2 Generator: SCODE-G

We adopt PLBART as discussed in Section 3.2.3 as the generator module of REDCODER

and call it SCODE-G (Summary and CODE Generator). The input sequence x is

concatenated with the top-k retrieved sequences to form the augmented input sequence,

x′ = x ⊕ Y1 ⊕ Y2 . . . ⊕ Yk. The augmented input x′ is fed to PLBART to estimate

pgen(y|x′).

Note that a source code often consists of docstrings, comments that can be extracted

to form code – summary pairs. In the retrieval databases, code and summaries are either

singleton (e.g., code without a description or a problem statement without any code)

or parallel. Therefore, we consider two retrieval settings that require separate modeling

consideration for the generator.
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Figure 3.5: REDCODER-EXT input for code generation.

Dataset Gen. Sum. Lang. Train Valid Test |Code| |Summary|
CodeXGLUE

✓ ✓
Java 164,923 5,183 10,955 97 12

(Lu et al., 2021) Python 251,820 13,914 14,918 99 14
Concode Iyer et al. (2018) ✓ ✗ Java 100,000 2,000 2,000 27 72

Table 3.1: Dataset Statistics. Gen., and Sum. refers to code generation and summarization
tasks respectively. Summary denotes a natural language description paired with each
code. For Concode, the input summary includes the corresponding environment variables
and methods. All lengths are computed and averaged before tokenization.

Case 1: Retrieve candidates are singleton In this case, we concatenate the original

input sequence x and the top-k retrieved candidates with a special separator token.

x′ = x [csep] Y1 [csep] Y2 . . . [csep] Yk.

This is our default setting and we refer this as REDCODER in this work.

Case 2: Retrieve candidates are pairs In this case, retrieved candidates are pair of

code and natural language (NL) summary. We augment the input sequence using both of

them as follows.

x′ = x [csep] Y1 [nsep] X1 [csep] Y2

[nsep] X2 . . . [csep] Yk [nsep] Xk,

where Xj and Yj are parallel sequences (e.g., Yj is a piece of code and Xj is its corresponding

summary for the code generation task) retrieved from the database. We conjecture that
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the additional information Xj complements the input sequence x and verify its effectiveness

in the experiments.

Note that retrieve candidates could be a mix of singleton and pairs. In case of a

singleton candidate, we simply replace Xj or Yj with an empty string. We refer this

setting as REDCODER-EXT. Although, REDCODER-EXT is a more general setting

which includes “Case 1”, we study them separately to understand how these two retrieval

settings benefit the target tasks. We illustrate an example on code generation in Figure

3.5. In both cases, the augmented input x′ is truncated to match PLBART’s maximum

input length 512.

3.4 Experiment Setup

Method Java Python
Type Name EM BLEU CodeBLEU EM BLEU CodeBLEU
Retrieval BM25 0.00 4.90 16.00 0.00 6.63 13.49
Based SCODE-R 0.00 25.34 26.68 0.00 22.75 23.92

Generative

CodeBERT 0.00 8.38 14.52 0.00 4.06 10.42
GraphCodeBERT 0.00 7.86 14.53 0.00 3.97 10.55
CodeGPT-adapted 0.00 7.10 14.90 0.01 3.11 11.31
PLBART 0.00 10.10 14.96 0.00 4.89 12.01

Retrieval BM25 + PLBART 0.10 11.37 15.52 0.03 6.99 13.89
Augmented REDCODER 8.95 26.92 31.15 8.88 22.74 28.93
Generative REDCODER-EXT 10.21 28.98 33.18 9.61 24.43 30.21

Table 3.2: Results on code generation on CodeXGLUE (Lu et al., 2021).

In order to investigate the effectiveness of our framework, we perform a comprehensive

study and analysis on code generation and summarization in two programming languages,

Java and Python.

3.4.1 Datasets and Implementations

Datasets We perform evaluation on both the tasks using the code summarization dataset

from CodeXGLUE (Lu et al., 2021). It is curated from CodeSearchNet (Husain et al.,
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2019) by filtering noisy examples. In addition, we conduct code generation experiments

in Java using the Concode benchmark (Iyer et al., 2018). The dataset statistics are

summarized in Table 3.1.

Retrieval Databases To generate a source code given its natural language descrip-

tion or a summary given the code, our proposed approach REDCODER first retrieves

prospective candidates from an existing code or summary database. We form the code

retrieval database using the deduplicated source code (on average 1.4M functions in

Java and Python) that consists of both paired (59%) and monolingual code, released in

CodeSearchNET (Husain et al., 2019). As for building the summary retrieval database,

we extract the high quality natural language summaries from the paired instances in

the training sets of CodeSearchNET. As many of the summaries are duplicated, we also

consider the training sets in the other four available languages Ruby, Javascript, Go, and

PHP. We then further enlarge it by aggregating the additional summaries from the CCSD

corpus (Liu et al., 2021). After performing deduplication, we retain 1.1M unique code

summaries and for evaluating REDCODER-EXT, 20% of them can be used as pairs with

the corresponding Java and Python source code. We provide the statistics of the retrieval

databases in Appendix. Note that the retrieval databases contain code and summaries

that are curated from real developers’ open sourced repositories on GitHub. By default,

we exclude the target code/summary from the retrieval database.

Implementations As mentioned in Section 5.2, REDCODER has two disjoint compo-

nents. First, the dense retriever SCODE-R is implemented adopting DPR (Karpukhin

et al., 2020a) and the encoders in DPR are initialized from GrpahCodeBERT available

in the Huggingface API (Wolf et al., 2020). In addition, we implement a baseline BM25

retriever. We use the official codebase of PLBART (Ahmad et al., 2021a) and set max

epoch to 15, patience to 5, learning rate to 2× 10−5. We tune the batch size in {8, 16, 32,

64, 72} and the k value for top-k retrieval up to 10 for code generation and in range {10,

30, 50, 100} for code summarization. As some candidate code and summaries are short

in length, we tune with this upper bound of k to accommodate as many candidates as

possible within PLBART’s maximum input length.
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Methods EM BLEU CodeBLEU
Retrieval based methods
BM25 0.0 20.3 23.7
SCODE-R 0.0 32.6 36.5
Generative methods
Seq2Seq 3.1 21.3 26.4
Guo et al. (2019) 10.1 24.4 29.5
Iyer et al. (2019) 12.2 26.6 -
GPT-2 17.4 25.4 29.7
CodeGPT-2 18.3 28.7 32.7
CodeGPT-adapted 20.1 32.8 36.0
CodeBERT 18.0 28.7 31.4
GraphCodeBERT 18.7 33.4 35.9
PLBART 18.6 36.7 38.5
Retrieval augmented generative methods
BM25+PLBART 21.4 40.2 41.8
REDCODER 23.4 41.6 43.4
REDCODER-EXT 23.3 42.5 43.4

Table 3.3: Code generation results on Concode dataset. SCODE-R was initialized with
CodeBERT. GraphCodeBERT initialized results are similar.

3.4.2 Evaluation Metrics

BLEU Following prior works (Ahmad et al., 2021a; Feng et al., 2020a), we compute

the corpus level BLEU (Papineni et al., 2002) and the smoothed BLEU-4 (Lin and Och,

2004) scores for code generation and summarization tasks.

CodeBLEU To demonstrate syntactic and semantic data flow correctness of code

generation models, we report CodeBLEU (Ren et al., 2020). CodeBLEU is a weighted

average of lexical, abstract syntax tree, and data flow match.

Exact Match (EM) indicates the percentage of output sequences that exactly match

the references.

3.4.3 Baseline Methods

We compare REDCODER w.r.t. a number of state-of-the-art code models. We classify

them into two categories: (i) retrieval based models and (ii) generative models. We study
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Methods Python Java
Retrieval based methods
BM25 1.92 1.82
SCODE-R 14.98 15.87
Generative methods
Seq2Seq 15.93 15.09
Transformer 15.81 16.26
RoBERTa 18.14 16.47
CodeBERT 19.06 17.65
GraphCodeBERT 17.98 17.85
PLBART 19.30 18.45
Retrieval augmented generative methods
BM25 + PLBART 19.57 19.71
REDCODER 21.01 22.94
REDCODER-EXT 20.91 22.95

Table 3.4: Evaluation BLEU-4 score for code summarization on CodeXGLUE. Baseline
results are reported from Ahmad et al. (2021a).

Methods CodeXGLUE (Java) CodeXGLUE (Python) Concode (Java)
BLEU EM CodeBLEU BLEU EM CodeBLEU BLEU EM CodeBLEU

SCODE-R 36.6 21.0 37.9 35.6 19.2 35.1 70.3 61.7 72.0
REDCODER 36.3 29.4 41.4 32.1 27.5 38.0 76.7 67.5 76.5
REDCODER-EXT 42.8 37.0 47.3 38.9 34.5 43.8 81.7 76.2 81.7

Table 3.5: Results on code generation keeping the target code in the retrieval database.

both generative models that are trained from scratch and are pre-trained on programming

and natural languages.

3.4.3.1 Retrieval based models

We examine two retriever baselines and consider the top-1 retrieved candidate as the

prediction.

• Dense Retriever We consider DPR as the dense retriever baseline. We evaluate both

the officially released models trained on the natural language open-domain QA task and

a variant called DPR (code) that we fine-tune on the evaluation datasets.

• Sparse Retriever The second baseline is a sparse retriever that uses the BM25

algorithm to compute relevance scores.
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Settings Methods Python Java
RoBERTa 0.587 0.599

Cross- RoBERTa (code) 0.610 0.620
Encoder CodeBERT 0.672 0.676

GraphCodeBERT 0.692 0.691

Bi- DPR 0.093 0.064
DPR (code) 0.398 0.462Encoder SCODE-R 0.690 0.686

Table 3.6: MRR results on code retrieval from the validation and test set in CodeXGLUE.
Our bi-encoder retriever SCODE-R is comparable with other cross-encoder models while
it is much faster. DPR refers to Karpukhin et al. (2020a) and DPR (code) is trained with
BM25 “hard” negative training schema built upon our source code datasets.

3.4.3.2 Generative models

The generative models work in a sequence-to-sequence (Seq2Seq) fashion.

• RoBERTa, RoBERTa (code) RoBERTa models (Liu et al., 2019c) pre-trained on

natural language corpora, and source code from CodeSearchNet (Husain et al., 2019)

respectively.

• CodeBERT (Feng et al., 2020a) is pretrained with a hybrid objective incorporating

masked language modeling (Devlin et al., 2018) and replaced token detection (Clark et al.,

2020).

• GraphCodeBERT (Guo et al., 2021) is pre-trained by modeling the data flow graph

of source code. GraphCodeBERT holds the state-of-the-art results on code search using

CodeSearchNet.

• GPT-2, CodeGPT-2, and CodeGPT-adapted are GPT-style models that are

pre-trained on natural language (Radford et al., 2019) and code corpora CodeXGLUE (Lu

et al., 2021).

• PLBART (Ahmad et al., 2021a) is the generator module of our proposed framework.

In addition, we train an LSTM based Seq2Seq model with attention mechanism (Luong

et al., 2015b) and a Transformer model (Vaswani et al., 2017) on the benchmark datasets.
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3.5 Results

3.5.1 Code Generation

Table 3.2 and Table 3.3 show the evaluation results on code generation from summary

descriptions on CodeXGLUE, and Concode datasets, respectively. First, we compare

REDCODER with the state-of-the-art code generation models. They are transformers

models pre-trained with different objectives using external resources of different sizes.

Among them, the relatively strong baseline PLBART has an EM score of 18 on the

Concode dataset while it rarely generates any code that matches the real target code

in CodeXGLUE (See Table 3.2) . The BLEU and CodeBLEU scores are also low. Such

result indicates that automated code lacks quality and correctness without the proper

supervision in the input to the generator.

Among the retriever-only models, SCODE-R significantly outperforms BM25. As

expected, the EM is zero as targets are filtered from the retrieval, and CodeBLEU scores

are high as they are real code. However, although the retrieved code does not exactly match

the target code, they are quite relevant (e.g., Figure 3.3). When comparing retrieval-only

models to generative models, it is interesting to note that SCODE-R surpasses PLBART

by a large margin on CodeXGLUE (Table 3.2), suggesting that retrieved code has high

overlapping with target code that can benefit the generation.

Overall, the retrieval augmented generative models excel in code generation. Our

proposed framework REDCODER outperforms PLBART by a large margin, validating the

advantage of reusing existing codebases to help code generation. The REDCODER-EXT

gains are even higher. For CodeXGLUE (Java, Python) and Concode, the gains in BLEU

are 18.88, 19.54, and 5.8. Comparing REDCODER to REDCODER-EXT shows that

BLEU scores on Concode and all metrics on CodeXGLUE are improved by ∼1%. These

results confirm our conjecture that complementing input with paired summaries of the

retrieved code help code generation. We provide a qualitative example in Table 3.6 to

explain how the retrieved information helps PLBART in generation.
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Input summary: Get the MuxerStream at the given position.

((a)) SCODER Retrieval (Rank-1) [BLEU: 0.4298]

1 public Muxer getMuxer () {
2 long cPtr = VideoJNI.MuxerStream_getMuxer(swigCPtr , this);
3 return (cPtr == 0) ? null : new Muxer (cPtr , false );
4 }

Paired summary: Get the Muxer that this stream belongs to

((b)) SCODER Retrieval (Rank-3) [BLEU: 0.6740]

1 public DemuxerStream getStream (int streamIndex)
2 throws java.lang.InterruptedException , java.io.IOException {
3 long cPtr = VideoJNI.Demuxer_getStream(swigCPtr , this , streamIndex );
4 return (cPtr == 0) ? null : new DemuxerStream (cPtr , false);
5 }

((c)) REDCODER Prediction [BLEU: 0.6170]

1 public MuxerStream getMuxerStream (int position) {
2 long cPtr = VideoJNI.MuxerStream_getMuxer(swigCPtr , this , position );
3 return (cPtr == 0) ? null : new MuxerStream (cPtr , false);
4 }

((d)) REDCODER-ext Prediction [BLEU: 0.8062]

1 public MuxerStream getMuxer (int streamIndex)
2 throws java.lang.InterruptedException , java.io.IOException {
3 long cPtr = VideoJNI.MuxerStream_getMuxer(swigCPtr , this , streamIndex );
4 return (cPtr == 0) ? null : new MuxerStream (cPtr , false);
5 }

((e)) Reference (Gold Output)

1 public MuxerStream getMuxer (int streamIndex)
2 throws java.lang.InterruptedException , java.io.IOException {
3 long cPtr = VideoJNI.MuxerStream_getMuxer(swigCPtr , this , streamIndex );
4 return (cPtr == 0) ? null : new MuxerStream (cPtr , false);
5 }

Figure 3.6: A qualitative example to show the effectiveness of retrieval-augmented
generation as proposed in REDCODER framework
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3.5.2 Code Summarization

We compare REDCODER with three sets of baseline methods for code summarization,

and Table 3.4 shows the results. Among the two retrieval base methods, SCODE-R

performs significantly well, confirming the advantages of dense retrieval over its sparse

counterpart. Out of the generative methods, PLBART excels on code summarization as

it leverages an extensive collection of natural language descriptions during pre-training.

As anticipated, retrieval augmented generative methods outperform the other two sets of

models. We see that the “BM25 + PLBART” model improves over PLBART, confirming

our conjecture that retrieval augmented techniques have the promise to improve code

summarization. Our proposed framework REDCODER and its variant REDCODER-EXT

outshine “BM25 + PLBART”, surpassing its performance by ∼1.5 and ∼3.2 points for

Python and Java languages, respectively.

3.6 Analysis

In this Section, we analyze REDCODER’s performance on the following points.

Retrieval database includes the target sequence As expected, SCODE-R perfor-

mances are much better than those in Table 3.2, 3.3, and 3.4. In all cases, REDCODER

gets more enhanced when target is present in the retrieval database. For the code gen-

eration task, we plot the recall@k curve for k upto 10 for both Java and Python on

CodeXGLUE dataset when the retrieval contains the target in Figure 3.7. As we can see,

SCODE-R significantly outperforms in both languages and for all k values.

Bi-encoder SCODE-R vs cross-encoder retrievers Table 3.6 shows the retrieval

performance of different alternative retrieval techniques that we considered in REDCODER.

SCODE-R performs comparably well with GraphCodeBERT while being significantly

faster and scalable Humeau et al. (2020). Note that, SCODE-R also uses GraphCodeBERT

to initialize its encoders (see Figure 3.4). However, SCODE-R’s design of using different

encoders for query and documents enables pre-indexing of database and faster retrieval in
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Figure 3.7: Recall@K for CodeR and BM25. CodeR refers to SCODE-R used for source
code retrieval.

practice.

Performance vs target length Figure 3.8 shows the code generation performances

of different models w.r.t. the target code length for Python. While the generator model

(PLBART)’s performance consistently decreases with increasing code size, the retriever

(SCODE-R) performs consistently well. Such consistent performance from SCODE-R

boosts performance of REDCODER (and also REDCODER-EXT) significantly higher

than the generative model counterpart. For Java, we find similar results.

Performance vs #retrievals Figure 3.9 shows that typically the performance improves

more with more retrievals on both tasks. However, roughly 5 code and 30 summaries

work sufficiently well.

Human evaluation Finally, we evaluate the quality of code generated by SCODE-G

using human evaluation. In Table 3.7, we perform a human evaluation for code generation

task on a subset of the test set in CodeXGLUE (Python). In this study, we compare

REDCODER generated code with the code retrieved by SCODE-R. Note that both

REDCODER and SCODE-R using the same retrievers, but REDCODER generates code

using SCODE-G, while SCODE-R outputs code written by real programmers. We sample
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Figure 3.8: (Python) Code gen. BLEU vs target len.

30 instances where REDCODER generated code has a lower BLEU score than that of the

SCODE-R and investigate whether the quality of code generated by them are significantly

different on these cases.

Model Human Evaluation Automatic Metric
Similarity Relevance Compilability BLEU EM CodeBLEU

SCODE-R 2.09 3.00 3.16 11.56 0.00 16.66
REDCODER 2.06 2.94 3.10 10.70 0.07 18.31

Table 3.7: Human evaluation on code generation (CodeXGLUE-Python). REDCODER
(SCODE-R + SCODE-G) achieves similar scores as SCODE-R that directly retrieves
developers’ written code which suggests that the quality of the code generated by SCODE-
G are competitive with real code from programmers’ perspective.

As programming requires a specific skill, we do not evaluate the quality of the code

generation using the mass crowd workers. We recruit 7 Ph.D. students studying in

computer science as volunteers2 to score (1 to 5) code based on three criteria (i) similarity,

and (ii) relevance w.r.t. the target code; (iii) the compilability of the generated code.

The ratings show that both models receive similar scores, with a slightly higher score

for SCODE-R in terms of similarity to the target code, relevancy, and compilability. This

2Before participating in the evaluation process, all the participants are informed that it is a voluntary
task and it may take roughly 30 minutes to perform the evaluation.
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((a)) CodeXGLUE (Java) gen. ((b)) CodeXGLUE (Python) gen.

((c)) CodeXGLUE (Java) sum. ((d)) CodeXGLUE (Python) sum.

Figure 3.9: Code gen. and sum. performance vs #retrievals. In general performance
improves with higher number of augmented candidates.

shows that the quality of the code generated by SCODE-G are competitive with real code

from programmers’ perspective. Interestingly, REDCODER achieves higher scores than

SCODE-R in CodeBLEU and Exact Match even on the cases where its BLEU score is

lower.

Qualitative Example In Figure 3.6, we show an example of generated code by a baseline

and different modules of REDCODER. The input summary asks to write a code (in Java)

to get a MuxerStream given a position .

We show two of the corresponding retrieved code, their summaries (for bimodal

instances), generated code of PLBART, REDCODER, and REDCODER-EXT. As can

be seen, PLBART generates a basic but relevant code; both retrieved code (rank-1 and

rank-3) contains the statements with variable cPtr one of them is of MuxerStream class,

and another is from DeMuxerStream class. REDCODER generates a somewhat correct

code of MuxerStream class and it takes the position argument too. Seemingly, while

fusing the retrieved code, we suspect that as the tentative function name MuxerStream
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mentioned in the input summary does not match the function name DeMuxerStream of

the rank-3 retrieved code, it only adapts one line containing cPtr from rank-3 retrieved

code (line #3) and takes the rests including the function definition (i.e., line #1) from

the rank-1 retrieved code. Now when REDCODER-EXT is allowed to leverage the

summaries of the retrieved code, it can match the summary of the rank-3 retrieved code

with the input, and that is why it produces the MuxerStream class object but with the

throw exceptions from the rank-3 retrieved code.

Performance Difference of PLBART on CodeXGLUE and Concode Concode is

a relatively easier dataset for code generation and retrieval due to several pre-processing

steps taken by its authors. Along with additional contexts (environment variables and

methods) in the input summary, Concode artifacts the target code by replacing the

specific variable names with generic tokens.

1 void function(Element arg0 ,

2 Formula arg1) {

3 arg0.addElement(

4 "concode_string"). setText(

5 arg1.getText ());

6 }

Therefore, we suspect that due to this, PLBART achieves good EM score for Concode

but not for the generation of real code in CodeXGLUE.

Analogously for the retrieval models, code retrieved by BM25 have also a large word

overlapping with the targets in Concode in contrast to CodeXGLUE (1st row in Table 2

and 3 in the main paper). Consequently, BM25 retrieval boosts PLBART (i.e., BM25 +

PLBART) more in Concode than that in CodeXGLUE (3rd row for the bottom in Table 2

and 3 in the main paper) Overall, we anticipate all these skewness in model performances

are due to the dataset characteristics.
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Dataset Lang. Task
Retrieval Database

|Size| |Nonparallel|CSNet CCSD Concode

CodeXGLUE
Python Gen. ✓ ✗ ✗ 1.2M 504K

Sum. ✓ ✓ ✗ 1.1M 833K

Java Gen. ✓ ✗ ✗ 1.6M 543K
Sum. ✓ ✓ ✗ 1.1M 903K

Concode Java Gen. ✗ ✗ ✓ 104K 0

Table 3.8: Retrieval database statistics. “Size” refers to both of parallel and nonparallel
code or summaries. As Concode has a different data format, we only retrieve from
itself. Nonparallel means the retrieval candidates are only code (for code gen.) and only
summaries (for code sum.). CSNet (CodeSearchNet), CCSD refer to Husain et al. (2019)
and Liu et al. (2021).

code target present summary CodeXGLUE (Java) CodeXGLUE (Python)
retrieval in retrieval retrieval BLEU EM CodeBLEU BLEU EM CodeBLEU
✗ ✗ ✗ 10.1 0.0 14.96 4.89 0.0 12.01

✓

✗
✗ 26.92 8.95 31.15 22.74 8.88 28.93
✓ 28.98 10.21 33.18 24.43 9.61 30.21

✓
✗ 36.33 29.41 41.38 32.14 27.48 38.02
✓ 42.82 36.99 47.25 38.87 34.51 43.78

Table 3.9: Ablation results on source code generation using the retrieved code and its
summary together when the reference target code is absent and present in the retrieval
database respectively.

Methods CodeXGLUE-Python CodeXGLUE-Java
BLEU-4 ROUGE-L BLEU-4 ROUGE-L

SCODE-R 46.6 53.8 48.0 55.7
REDCODER 47.0 55.4 50.4 58.8
REDCODER-EXT 47.1 55.5 50.4 58.7

Table 3.10: Evaluation results of code summarization keeping the target summary in the
retrieval database.

3.7 Related Works

Code Summarization. In recent years, source code summarization attracted a lot of

attention (Iyer et al., 2016; Liang and Zhu, 2018; Allamanis et al., 2016; Hu et al., 2018b;

Ahmad et al., 2020a). Many of these works view code as a sequence of token. Other

approaches leverage the structural properties of code using Tree based model (Shido et al.,

2019; Harer et al., 2019; Hu et al., 2018a; LeClair et al., 2019). In literature, several
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Figure 3.10: #Code per target length. Figure 3.11: BLEU vs target len. (Java)

retrieval-based methods were proposed that leverage retrieved information along with the

input code. For example, Zhang et al. (2020) retrieves similar code snippet and use those

as an auxiliary input for summarization. On the other hand, Hayati et al. (2018) retrieves

related summaries for augmenting summarization input. Different from these approaches,

REDCODER leverages both the retrieved code and its summary to augment the input.

Code Generation. Generating source code is a major stepping stone towards automated

programming. Yin and Neubig (2017a), and Rabinovich et al. (2017a) proposed code

generation as abstract syntax tree generation to ensure its syntactic correctness. Recent

advancements in pre-training language models on unlabeled source code data (Lu et al.,

2021; Ahmad et al., 2021a) showed colossal promise towards learning code syntax and

semantics, resulting in improved code generation models.

Code Retrieval and Others. Numerous software engineering applications require

information retrieval. Sadowski et al. (2015); Xia et al. (2017); Stolee et al. (2014); Sim

et al. (2011) show that developers search for related code, API examples for implementing

or adapting new APIs. Design of REDCODER is inspired by developers’ behavior while

writing code. Developers use search engines for retrieving off-the-shelf libraries (Hucka

and Graham, 2018), or “usable” source code (Rahman et al., 2018) for adapting in the

development process (Nasehi et al., 2012; Arwan et al., 2015; Ponzanelli et al., 2014).

Similarly, REDCODER retrieves existing code or summaries and adapts them to generate

the target code or summary. In contrast, Hashimoto et al. (2018) optimizes a joint
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objective; Zhang et al. (2020); Liu et al. (2021) do not consider any decoder pre-training,

Lewis et al. (2020) fine-tunes both of the retriever and the generator end-to-end. For open

domain QA, Izacard and Grave (2021) propose a similar model of alternative generator

(multi-encoder uni-decoder).

3.8 Conclusion

We propose REDCODER to automate developers’ writing of code and documentation by

reusing what they have written previously. We evaluate REDCODER on two benchmark

datasets and the results demonstrate a significant performance boost with the help of the

retrieved information. In the future, we want to extend REDCODER to support other

code automation tasks such as code translation.

3.9 Summary

In this work, we build a dense retriever model to retrieve code and summaries from

large pool of candidates (e.g., Github). For the example tasks of code generation and

summarization, we use the top-k retrieved candidates on the fly as additional hints/features

when generating the code and summaries respectively. With comprehensive studies on

three benchmark datatsets for two programming languages (Java and Python), we

demonstrate that just raw the retrieved candidates themselves can bring such useful

auxiliary supervision that sourpusses the existing generative baselines. Leveraging them

the generative models further excels the output quality and achieves new stat-of-the-art

performances. However, we only modify the encoder input of the (encoder-decoder)

generative models in this Chapter and more task oriented improvements on the decoder

sides are also possible. Additionally, in the future, we plan to explore such retrieval

augmented models for other multi-modal applications (e.g., text-image and text-speech).
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CHAPTER 4

Retrieving and Leveraging Entity-type Information for

Language Modelling on Text with Named Entities

Text in many domains involves a significant amount of named entities. While generating

such text or code, predicting the entity names is often challenging for a language model or

a decoder model as they appear less frequent on the training corpus. One such example

application is the code generation task we discussed in the previous Chapter where we

enhance it partially w/o considering any task oriented improvements on the decoder side.

As a continuation, in this Chapter, we will be using simple rule-based off-the-shelf tools

such as Symbol tables to retrieve task-oriented entity type information (e.g., variable/data

types int, float, user-defined class etc.,) and use to further enhance the generation. Here,

we will be presenting a novel and effective approach to building a discriminative language

model (similar to the decoding step in an encoder-decoder model) which can learn the

entity names by leveraging their retrieved entity type information. This is based on our

work Parvez et al. (2018) which is also a Type-2 feature level auxiliary supervision. We

also introduce two benchmark datasets based on recipes and Java programming codes,

on which we evaluate the proposed model. Experimental results show that our model

achieves 52.2% better perplexity in recipe generation and 22.06% on code generation than

the state-of-the-art language models.

4.1 Introduction

Language model is a fundamental component in Natural Language Processing (NLP) and

it supports various applications, including document generation (Wiseman et al., 2017),
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text auto-completion (Arnold et al., 2017), spelling correction (Brill and Moore, 2000), and

many others. Recently, language models are also successfully used to generate software

source code written in programming languages like Java, C, etc. (Hindle et al., 2016; Yin

and Neubig, 2017b; Hellendoorn and Devanbu, 2017; Rabinovich et al., 2017b). These

models have improved the language generation tasks to a great extent, e.g., (Mikolov

et al., 2010; Galley et al., 2015). However, while generating text or code with a large

number of named entities (e.g., different variable names in source code), these models

often fail to predict the entity names properly due to their wide variations. For instance,

consider building a language model for generating recipes. There are numerous similar,

yet slightly different cooking ingredients (e.g., olive oil, canola oil, grape oil, etc.—all are

different varieties of oil). Such diverse vocabularies of the ingredient names hinder the

language model from predicting them properly.

To address this problem, we propose a novel language model for texts with many

entity names. Our model learns the probability distribution over all the candidate words

by leveraging the entity type information. For example, oil is the type for named entities

like olive oil, canola oil, grape oil, etc.1 Such type information is even more prevalent

for source code corpus written in statically typed programming languages (Bruce, 1993),

since all the variables are by construct associated with types like integer, float, string, etc.

Our model exploits such deterministic type information of the named entities and

learns the probability distribution over the candidate words by decomposing it into two

sub-components: (i) Type Model. Instead of distinguishing the individual names of the

same type of entities, we first consider all of them equal and represent them by their type

information. This reduces the vocab size to a great extent and enables to predict the

type of each entity more accurately. (ii) Entity Composite Model. Using the entity type

as a prior, we learn the conditional probability distribution of the actual entity names at

inference time. We depict our model in Fig. 6.1.

To evaluate our model, we create two benchmark datasets that involve many named

1Entity type information is often referred as category information or group information. In many
applications, such information can be easily obtained by an ontology or by a pre-constructed entity table.
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place					proteins in							center				of									a									dish			with		vegetables on					each						side										.		

place				chicken in						center					of												a									dish					with				broccoli on						each						side								.		

entity name	w P(w|proteins) P(w)

q chicken 0.43 0.35	x	0.43

q beef 0.19 0.35	x	0.19

q .. .. ..

Language	Model	(type	model)

Language	Model	(entity	composite	type	model)

type P(type)

q proteins 0.35

q vegetables 0.11

q .. ..

type P(type)

q vegetables 0.52

q fruits 0.22

q .. ..

entity name	w P(w|vegetables) P(w)

q broccoli 0.26 0.52	x	0.26

q potatoes 0.21 0.52	x	0.21

q .. .. ..

Figure 4.1: An example illustration of the proposed model. For a given context (i.e.,
types of context words as input), the type model (in bottom red block) generates the type
of the next word (i.e., the probability of the type of the next word as output). Further,
for a given context and type of each candidate (i.e., context words, corresponding types
of the context words, and type of the next word generated by the type model as input),
the entity composite model (in upper green block) predicts the next word (actual entity
name) by estimating the conditional probability of the next word as output. We conduct
joint inference over both models to leverage type information for generating text.

entities. One is a cooking recipe corpus2 where each recipe contains a number of ingredients

which are categorized into 8 super-ingredients (i.e., type); e.g., “proteins”, “vegetables”,

“fruits”, “seasonings”, “grains”, etc. Our second dataset comprises a source code corpus of

500 open-source Android projects collected from GitHub. We use an Abstract Syntax

Tree (AST) (Parsons, 1992) based approach to collect the type information of the code

identifiers.

Our experiments show that although state-of-the-art language models are, in general,

good to learn the frequent words with enough training instances, they perform poorly

on the entity names. A simple addition of type information as an extra feature to a

neural network does not guarantee to improve the performance because more features

may overfit or need more model parameters on the same data. In contrast, our proposed

2Data is crawled from http://www.ffts.com/recipes.htm.
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method significantly outperforms state-of-the-art neural network based language models

and also the models with type information added as an extra feature.

Overall, followings are our contributions:

• We analyze two benchmark language corpora where each consists of a reasonable

number of entity names. While we leverage an existing corpus for recipe, we curated

the code corpus. For both datasets, we created auxiliary corpora with entity type

information. All the code and datasets are released.3

• We design a language model for text consisting of many entity names. The model

learns to mention entities names by leveraging the entity type information.

• We evaluate our model on our benchmark datasets and establish a new baseline

performance which significantly outperforms state-of-the-art language models.

4.2 Related Work and Background

Class Based Language Models. Building language models by leveraging the deter-

ministic or probabilistic class properties of the words (a.k.a, class-based language models)

is an old idea (Brown et al., 1992; Goodman, 2001). However, the objective of our model is

different from the existing class-based language models. The key differences are two-folds:

1) Most existing class-based language models (Brown et al., 1992; Pereira et al., 1993;

Niesler et al., 1998; Baker and McCallum, 1998; Goodman, 2001; Maltese et al., 2001)

are generative n-gram models whereas ours is a discriminative language model based on

neural networks. The modeling principle and assumptions are very different. For example,

we cannot calculate the conditional probability by statistical occurrence counting as these

papers did. 2) Our approaches consider building two models and perform joint inference

which makes our framework general and easy to extend. In Section 4.4, we demonstrate

that our model can be easily incorporated with the state-of-art language model. The

closest work in this line is hierarchical neural language models (Morin and Bengio, 2005),

3https://github.com/uclanlp/NamedEntityLanguageModel
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which model language with word clusters. However, their approaches do not focus on

dealing with named entities as our model does. A recent work (Ji et al., 2017) studied

the problem of building up a dynamic representation of named entity by updating the

representation for every contextualized mention of that entity. Nonetheless, their approach

does not deal with the sparsity issue and their goal is different from ours.

Language Models for Named Entities. In some generation tasks, recently developed

language models address the problem of predicting entity names by copying/matching

the entity names from the reference corpus. For example, Vinyals et al. (2015) calculates

the conditional probability of discrete output token sequence corresponding to positions

in an input sequence. Gu et al. (2016a) develops a seq2seq alignment mechanism which

directly copies entity names or long phrases from the input sequence. Wiseman et al.

(2017) generates document from structured table like basketball statistics using copy and

reconstruction method as well. Another related code generation model (Yin and Neubig,

2017b) parses natural language descriptions into source code considering the grammar

and syntax in the target programming language (e.g., Python). Kiddon et al. (2016)

generates recipe for a given goal, and agenda by making use of items on the agenda. While

generating the recipe it continuously monitors the agenda coverage and focus on increasing

it. All of them are sequence-to-sequence learning or end-to-end systems which differ from

our general purpose (free form) language generation task (e.g., text auto-completion,

spelling correction).

Code Generation. The way developers write codes is not only just writing a

bunch of instructions to run a machine, but also a form of communication to convey

their thought. As observed by Donald E. Knuth (Knuth, 1992), “The practitioner of

literate programming can be regarded as an essayist, whose main concern is exposition

and excellence of style. Such an author, with thesaurus in hand, chooses the names of

variables carefully and explains what such variable means." Such comprehensible software

corpora show surprising regularity (Ray et al., 2015; Gabel and Su, 2010) that is quite

similar to the statistical properties of natural language corpora and thus, amenable to
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large-scale statistical analysis (Hindle et al., 2012). (Allamanis et al., 2017) presented a

detailed survey.

Although similar, source code has some unique properties that differentiate it from

natural language. For example, source code often shows more regularities in local

context due to common development practices like copy-pasting (Gharehyazie et al.,

2017; Kim et al., 2005). This property is successfully captured by cache based language

models (Hellendoorn and Devanbu, 2017; Tu et al., 2014). Code is also less ambiguous

than natural language so that it can be interpreted by a compiler. The constraints for

generating correct code is implemented by combining language model and program analysis

technique (Raychev et al., 2014). Moreover, code contains open vocabulary—developers

can coin new variable names without changing the semantics of the programs. Our model

aims to addresses this property by leveraging variable types and scope.

LSTM Language Model. In this paper, we use LSTM language model as a running

example to describe our approach. Our language model uses the LSTM cells to generate

latent states for a given context which captures the necessary features from the text. At

the output layer of our model, we use Softmax probability distribution to predict the

next word based on the latent state. Merity et al. (2017) is a LSTM-based language

model which achieves the state-of-the-art performance on Penn Treebank (PTB) and

WikiText-2 (WT2) datasets. To build our recipe language model we use this as a blackbox

and for our code generation task we use the simple LSTM model both in forward and

backward direction. A forward directional LSTM starts from the beginning of a sentence

and goes from left to right sequentially until the sentence ends, and vice versa. However,

our approach is general and can be applied with other types of language models.

4.3 A Probabilistic Model for Text with Named Entities

In this section, we present our approach to build a language model for text with name

entities. Given previous context w̄ = {w1, w2, .., wt−1}, the goal of a language model is to
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predict the probability of next word P (wt|w̄) at time step t, where wt ∈ V text and V text

is a fixed vocabulary set. Because the size of vocabulary for named entities is large and

named entities often occur less frequently in the training corpus, the language model

cannot generate these named entities accurately. For example, in our recipe test corpus

the word “apple” occurs only 720 times whereas any kind of “fruits” occur 27,726 times.

Existing approaches often either only generate common named entities or omit entities

when generating text (Jozefowicz et al., 2016).

To overcome this challenge, we propose to leverage the entity type information when

modeling text with many entities. We assume each entity is associated with an entity type

in a finite set of categories S = {s1, s2, .., si, .., sk}. Given a word w, s(w) reflects its entity

type. If the word is a named entity, then we denote s(w) ∈ S; otherwise the type function

returns the words itself (i.e, s(w) = w). To simplify the notations, we use s(w) ̸∈ S to

represent the case where the word is not an entity. The entity type information given by

s(w) is an auxiliary information that we can use to improve the language model. We use

s(w̄) to represent the entity type information of all the words in context w̄ and use w

to represent the current word wt. Below, we show that a language model for text with

typed information can be decomposed into the following two models: 1) a type model θt

that predicts the entity type of the next word and 2) an entity composite model θv that

predicts the next word based on a given entity type.

Our goal is to model the probability of next word w given previous context w̄:

P (w|w̄; θt, θv) , (4.1)

where θt and θv are the parameters of the two aforementioned models. As we assume the

typed information is given on the data, Eq. (4.1) is equivalent to

P (w, s(w)|w̄, s(w̄); θt, θv) . (4.2)

A word can be either a named entity or not; therefore, we consider the following two
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cases.

Case 1: next word is a named entity. In this case, Eq. (4.2) can be rewritten as

P (s(w) = s|w̄, s(w̄); θt, θv)×

P (w|w̄, s(w̄), s(w) = s; θv, θt)
(4.3)

based on the rules of conditional probability.

We assume the type of the next token s(w) can be predicted by a model θt using

information of s(w̄), and we can approximate the first term in Eq. (4.3)

P (s(w)|w̄, s(w̄); θt, θv) ≈ P (s(w)|s(w̄), θt) (4.4)

Similarly, we can make a modeling assumption to simplify the second term as

P (w|w̄, s(w̄), s(w), θv, θt)

≈ P (w|w̄, s(w̄), s(w), θv).
(4.5)

Case 2: next word is not a named entity. In this case, we can rewrite Eq. (4.2) to

be

P (s(w) ̸∈ S|w̄, s(w̄), θt)×

P (w|w̄, s(w̄), s(w) ̸∈ S, θv) .
(4.6)

The first term in Eq. (4.6) can be modeled by

1−
∑
s∈S

P (s(w) = s|s(w̄), θt),

which can be computed by the type model4. The second term can be again approximated

by (4.5) and further estimated by an entity composition model.

4Empirically for the non-entity words,
∑

s∈S P (s(w) = s|s(w̄) ≈ 0
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Typed Language Model. Combine the aforementioned equations, the proposed

language model estimates P (w|w̄; θt, θv) by

P (w|w̄, s(w̄), s(w), θv)×
P (s(w)|s(w̄), θt) if s(w) ∈ S

(1−
∑

s∈S P (s(w)=s|s(w̄), θt)) if s(w) ̸∈ S

(4.7)

The first term can be estimated by an entity composite model and the second term

can be estimated by a type model as discussed below.

4.3.1 Type model

The type model θt estimates the probability of P (s(w)|s(w̄), θt). It can be viewed as

a language model builds on a corpus with all entities replaced by their type. That is,

assume the training corpus consists of x = {w1, w2, .., wn}. Using the type information

provided in the auxiliary source, we can replace each word w with their corresponding

type s(w) and generate a corpus of T = {s(wi), s(w2), .., s(wn)}. Note that if wi is not

an named entity (i.e., s(w) ̸∈ S), s(w) = w and the vocabulary on T is V text ∪ S.5 Any

language modeling technique can be used in modeling the type model on the modified

corpus T . In this paper, we use the state-of-the-art model for each individual task. The

details will be discussed in the experiment section.

5In a preliminary experiment, we consider putting all words with s(w) ̸∈ S in a category “N/A”.
However, because most words on the training corpus are not named entities, the type “N/A” dominates
others and hinder the type model to make accurate predictions.
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4.3.2 Entity Composite Model

The entity composite model predicts the next word based on modeling the conditional

probability P (w|w̄, s(w̄), s(w), θv), which can be derived by

P (w|w̄, s(w̄); θv)∑
ws∈Ω(s(w)) P (ws|w̄, s(w̄); θv)

, (4.8)

where Ω(s(w)) is the set of words of the same type with w.

To model the types of context word s(w̄) in P (w|w̄, s(w̄); θv), we consider learning a

type embedding along with the word embedding by augmenting each word vector with a

type vector when learning the underlying word representation. Specifically, we represent

each word w as a vector of [vw(w)T ; vt(s(w))T ]T , where vw(·) and vt(·) are the word vectors

and type vectors learned by the model from the training corpus, respectively. Finally, to

estimate Eq. (4.8) using θv, when computing the Softmax layer, we normalize over only

words in Ω(s(w)). In this way, the conditional probability P (w|w̄, s(w̄), s(w), θv) can be

derived.

4.3.3 Training and Inference Strategies

We learn model parameters θt and θv independently by training two language models type

model and entity composite model respectively. Given the context of type, type model

predicts the type of the next word. Given the context and the type information of the all

candidate words, entity composite model predicts the conditional actual word (e.g., entity

name) as depicted in Fig 6.1. At inference time the generated probabilities from these

two models are combined according to conditional probability (i.e., Eq. (4.7)) which gives

the final probability distribution over all candidate words6.

Our proposed model is flexible to any language model, training strategy, and optimiza-

6While calculating the final probability distribution over all candidate words, with our joint inference
schema, a strong state-of-art language model, without the type information, itself can work sufficiently
well and replace the entity composite model. Our experiments using (Merity et al., 2017) in Section 4.4.1
validate this claim.
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Algorithm 2 Language Generation
Input:

Language corpus X = {w1, w2, .., wn},
type s(w) of the words,
integer number m.

Output: θt, θv, {W1,W2, ..,Wm}

Training Phase:
Generate T = { s(w1), s(w2), .., s(wn)}
Train type model θt on T
Train entity composite model θv on X using [wi; s(wi)] as input

Test Phase (Generation Phase):

for i = 1 to m do

for w ∈ V text do

Compute P (s(w)|s(w̄), θt)
Compute P (w|w̄, s(w̄), s(w), θv)
Compute P (w|w̄; θt, θv) using Eq.(4.7)

Wi ← argmaxwP (w|w̄; θt, θv)

tion. As per our experiments, we use ADAM stochastic mini-batch optimization (Kingma

and Ba, 2014). In Algorithm 2, we summarize the language generation procedure.

4.4 Experiments

We evaluate our proposed model on two different language generation tasks where there

exist a lot of entity names in the text. In this paper, we release all the codes and datasets.

The first task is recipe generation. For this task, we analyze a cooking recipe corpus.

Each instance in this corpus is an individual recipe and consists of many ingredients’.

Our second task is code generation. We construct a Java code corpus where each instance

is a Java method (i.e., function). These tasks are challenging because they have the

abundance of entity names and state-of-the-art language models fail to predict them

properly as a result of insufficient training observations. Although in this paper, we

manually annotate the types of the recipe ingredients, in other applications it can be
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acquired automatically. For example: in our second task of code generation, the types are

found using Eclipse JDT framework. In general, using DBpedia ontology (e.g., “Berlin”

has an ontology “Location”), Wordnet hierarchy (e.g., “Dog” is an “Animal”), role in sports

(e.g., “Messi” plays in “Forward”; also available in DBpedia7), Thesaurus (e.g., “renal

cortex”, “renal pelvis”, “renal vein”, all are related to “kidney”), Medscape (e.g., “Advil”

and “Motrin” are actually “Ibuprofen”), we can get the necessary type information. As

for the applications where the entity types cannot be extracted automatically by these

frameworks (e.g., recipe ingredients), although there is no exact strategy, any reasonable

design can work. Heuristically, while annotating manually in our first task, we choose the

total number of types in such a way that each type has somewhat balanced (similar) size.

We use the same dimensional word embedding (400 for recipe corpus, 300 for code

corpus) to represent both of the entity name (e.g., “apple”) and their entity type (e.g.,

“fruits”) in all the models. Note that in our approach, the type model only replaces named

entities with entity type when it generates next word. If next word is not a named entity,

it will behave like a regular language model. Therefore, we set both models with the same

dimensionality. Accordingly, for the entity composite model which takes the concatenation

of the entity name and the entity type, the concatenated input dimension is 800 and 600

respectively for recipe and code corpora.

4.4.1 Retrieving Ingredient Types and the Results of Recipe Generation

4.4.1.1 Recipe Corpus Pre-processing:

Our recipe corpus collection is inspired by (Kiddon et al., 2016). We crawl the recipes

from “Now You’re Cooking! Recipe Software” 8. Among more than 150,000 recipes in this

dataset, we select similarly structured/formatted (e.g, title, blank line then ingredient

lists followed by a recipe) 95,786 recipes. We remove all the irrelevant information (e.g.,

author’s name, data source) and keep only two information: ingredients and recipes. We

7http://dbpedia.org/page/Lionel_Messi

8http://www.ffts.com/recipes.htm
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set aside the randomly selected 20% of the recipes for testing and from the rest, we keep

randomly selected 80% for the training and 20% for the development. Similar to (Kiddon

et al., 2016), we pre-process the dataset and filter out the numerical values, special tokens,

punctuation, and symbols.9 Quantitatively, the data we filter out is negligible; in terms

of words, we keep 9,994,365 words out of 10,231,106 and the number of filter out words is

around ∼2%. We release both of the raw and cleaned data for future challenges. As the

ingredients are the entity names in our dataset, we process it separately to get the type

information.

4.4.1.2 Retrieving Ingredient Type

As per our type model, for each word w, we require its type s(w). We only consider

ingredient type for our experiment. First, we tokenize the ingredients and consider each

word as an ingredient. We manually classify the ingredients into 8 super-ingredients:

“fruits”, “proteins”, “sides”, “seasonings”, “vegetables”, “dairy”, “drinks”, and “grains”. Some-

times, ingredients are expressed using multiple words; for such ingredient phrase, we

classify each word in the same group (e.g., for “boneless beef” both “boneless” and “beef”

are classified as “proteins”). We classify the most frequent 1,224 unique ingredients10

which cover 944,753 out of 1,241,195 mentions (top 76%) in terms of frequency of the

ingredients. In our experiments, we omit the remaining 14,881 unique ingredients which

are less frequent and include some misspelled words. The number of unique ingredients

in the 8 super ingredients is 110, 316, 140, 180, 156, 80, 84, and 158 respectively. We

prepare the modified type corpus by replacing each actual ingredient’s name w in the

original recipe corpus by the type (i.e., super ingredients s(w)) to train the type model.

9For example, in our crawled raw dataset, we find that some recipes have lines like “===MM-
MMM===” which are totally irrelevant to our task. For the words with numerical values like “100 ml”,
we only remove the “100” and keep the “ml” since our focus is not to predict the exact number.

10We consider both singular and plural forms. The number of singular formed annotated ingredients
are 797.
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4.4.1.3 Recipe Statistics

In our corpus, the total number of distinct words in vocabulary is 52,468; number of

unique ingredients (considering splitting phrasal ingredients also) is 16,105; number of

tokens is 8,716,664. In number of instances train/dev/test splits are 61,302/15,326/19,158.

The average instance size of a meaningful recipe is 91 on the corpus.

4.4.1.4 Configuration

We consider the state-of-the art LSTM-based language model proposed in (Merity et al.,

2017) as the basic component for building the type model, and entity composite model. We

use 400 dimensional word embedding as described in Section 4.4. We train the embedding

for our dataset. We use a minibatch of 20 instances while training and back-propagation

through time value is set to 70. Inside of this (Merity et al., 2017) language model, it

uses 3 layered LSTM architecture where the hidden layers are 1150 dimensional and has

its own optimization and regularization mechanism. All the experiments are done using

PyTorch and Python 3.5.

4.4.1.5 Baselines

Our first baseline is ASGD Weight-Dropped LSTM (AWD_LSTM) (Merity et al., 2017),

which we also use to train our models (see ’Configuration’ in 4.4.1.4). This model achieves

the state-of-the-art performance on benchmark Penn Treebank (PTB), and WikiText-2

(WT2) language corpus. Our second baseline is the same language model (AWD_LSTM)

with the type information added as an additional feature (i.e., same as entity composite

model).

4.4.1.6 Results of Recipe Generation

We compare our model with the baselines using perplexity metric—lower perplexity means

the better prediction. Table 4.1 summarizes the result. The 3rd row shows that adding
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Model Dataset Vocabulary Perplexity(Recipe Corpus) Size

AWD_LSTM original 52,472 20.23

AWD_LSTM modified type 51,675 17.62
type model

AWD_LSTM original 52,472 18.23
with type feature

our model original 52,472 9.67

Table 4.1: Comparing the performance of recipe generation task. All the results are on
the test set of the corresponding corpus. AWD_LSTM (type model) is our type model
implemented with the baseline language model AWD_LSTM (Merity et al., 2017). Our
second baseline is the same language model (AWD_LSTM) with the type information
added as an additional feature for each word.

type as a simple feature does not guarantee a significant performance improvement

while our proposed method significantly outperforms both baselines and achieves 52.2%

improvement with respect to baseline in terms of perplexity. To illustrate more, we

provide an example snippet of our test corpus: “place onion and ginger inside chicken .

allow chicken to marinate for hour .”. Here, for the last mention of the word “chicken”,

the standard language model assigns probability 0.23 to this word, while ours assigns

probability 0.81.

4.4.2 Retrieving Token Types and the Results of Code Generation

4.4.2.1 Code Corpus Pre-processing

We crawl 500 Android open source projects from GitHub11. GitHub is the largest open

source software forge where anyone can contribute (Ray et al., 2014). Thus, GitHub also

contains trivial projects like student projects, etc. In our case, we want to study the

coding practices of practitioners so that our model can learn to generate quality code. To

ensure this, we choose only those Android projects from GitHub that are also present in

11https://github.com
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Google Play Store12. We download the source code of these projects from GitHub using

an off the shelf tool GitcProc (Casalnuovo et al., 2017).

Since real software continuously evolves to cater new requirements or bug fixes, to

make our modeling task more realistic, we further study different project versions. We

partition the codebase of a project into multiple versions based on the code commit

history retrieved from GitHub; each version is taken at an interval of 6 months. For

example, anything committed within the first six months of a project will be in the first

version, and so on. We then build our code suggestion task mimicking how a developer

develops code in an evolving software—based on the past project history, developers add

new code. To implement that we train our language model on past project versions and

test it on the most recent version, at method granularity. However, it is quite difficult

for any language model to generate a method from the scratch if the method is so new

that even the method signature (i.e., method declaration statement consisting of method

name and parameters) is not known. Thus, during testing, we only focus on the methods

that the model has seen before but some new tokens are added to it. This is similar to

the task when a developer edits a method to implement a new feature or bug-fix.

Since we focus on generating the code for every method, we train/test the code

prediction task at method level—each method is similar to a sentence and each token in

the method is equivalent to a word. Thus, we ignore the code outside the method scope

like global variables, class declarations, etc. We further clean our dataset by removing

user-defined “String” tokens as they increase the diversity of the vocabularies significantly,

although having the same type. For example, the word sequences “Hello World!” and

“Good wishes for ACL2018!!” have the same type java.lang.String.VAR.

4.4.2.2 Retrieving Token Type

For every token w in a method, we extract its type information s(w). A token type can

be Java built-in data types (e.g., int, double, float, boolean etc.,) or user or framework

12https://play.google.com/store?hl=en
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defined classes (e.g., java.lang.String, io.segment.android.flush.FlushThread etc.). We

extract such type information for each token by parsing the Abstract Syntax Tree (AST)

of the source code13. We extract the AST type information of each token using Eclipse

JDT framework14. Note that, language keywords like for, if, etc. are not associated

with any type. Next, we prepare the type corpus by replacing the variable names with

corresponding type information. For instance, if variable var is of type java.lang.Integer,

in the type corpus we replace var by java.lang.Integer. Since multiple packages might

contain classes of the same name, we retain the fully qualified name for each type15.

4.4.2.3 Code Corpus Statistics

In our corpus, the total number of distinct words in vocabulary is 38,297; the number of

unique AST type (including all user-defined classes) is 14,177; the number of tokens is

1,440,993. The number of instances used for train and testing is 26,600 and 3,546. Among

these 38,297 vocabulary words, 37,411 are seen at training time while the rests are new.

4.4.2.4 Configuration

To train both type model and entity composite model, we use forward and backward

LSTM (See Section 4.2) and combine them at the inference/generation time. We train

300-dimensional word embedding for each token as described in Section 4.4 initialized by

GLOVE (Pennington et al., 2014). Our LSTM is single layered and the hidden size is

300. We implement our model on using PyTorch and Python 3.5. Our training corpus

size 26,600 and we do not split it further into smaller train and development set; rather

we use them all to train for one single epoch and record the result on the test set.

13AST represents source code as a tree by capturing its abstract syntactic structure, where each node
represents a construct in the source code.

14https://www.eclipse.org/jdt/

15Also the AST type of a very same variable may differ in two different methods. Hence, the context is
limited to each method.

72



Model Dataset Vocabulary Perplexity(Code Corpus) Size

SLP-Core original 38,297 3.40

fLSTM original 38,297 21.97
fLSTM [type model ] modified type 14,177 7.94
fLSTM with type feature original 38,297 20.05
our model (fLSTM) original 38,297 12.52

bLSTM original 38,297 7.19
bLSTM [type model ] modified type 14,177 2.58
bLSTM with type feature original 38,297 6.11
our model (bLSTM) original 38,297 2.65

Table 4.2: Comparing the performance of code generation task. All the results are on
the test set of the corresponding corpus. fLSTM, bLSTM denotes forward and backward
LSTM respectively. SLP-Core refers to Hellendoorn and Devanbu (2017).

4.4.2.5 Baselines

Our first baseline is standard LSTM language model which we also use to train our modules

(see ‘Configuration’ in 4.4.2.4). Similar to our second baseline for recipe generation we

also consider LSTM with the type information added as more features16 as our another

baseline. We further compare our model with state-of-the-art token-based language model

for source code SLP-Core (Hellendoorn and Devanbu, 2017).

4.4.2.6 Results of Code Generation:

Table 4.2 shows that adding type as simple features does not guarantee a significant

performance improvement while our proposed method significantly outperforms both

forward and backward LSTM baselines. Our approach with backward LSTM has 40.3%

better perplexity than original backward LSTM and forward has 63.14% lower (i.e., better)

perplexity than original forward LSTM. With respect to SLP-Core performance, our

model is 22.06% better in perplexity. We compare our model with SLP-Core details in

case study-2.

16LSTM with type is same as entity composite model.
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4.5 Quantitative Error Analysis

To understand the generation performance of our model and interpret the meaning of the

numbers in Table 4.1 and 4.2, we further perform the following case studies.

4.5.1 Case Study-1: Recipe Generation

As the reduction of the perplexity does not necessarily mean the improvement of the

accuracy, we design a “fill in the blank task” task to evaluate our model. A blank place

in this task will contain an ingredient and we check whether our model can predict it

correctly. In particular, we choose six ingredients from different frequency range (low, mid,

high) based on how many times they have appeared in the training corpus. Following

Table shows two examples with four blanks (underlined with the true answer).

Example fill in the blank task

1. Sprinkle chicken pieces lightly with salt.

2. Mix egg and milk and pour over bread.

We further evaluate our model on a multiple choice questioning (MCQ) strategy

where the fill in the blank problem remains same but the options for the correct answers

are restricted to the six ingredients. Our intuition behind this case-study is to check

when there is an ingredient whether our model can learn it. If yes, we then quantify the

learning using standard accuracy metric and compare with the state-of-the-art model to

evaluate how much it improves the performance. We also measure how much the accuracy

improvement depends on the training frequency.

Table 4.3 shows the result. Our model outperforms the fill in the blank task for

both cases, i.e., without any options (free-form) and MCQ. Note that, the percentage of

improvement is inversely proportional to the training frequencies of the ingredients—less-

frequent ingredients achieve a higher accuracy improvement (e.g., “Apple” and “Tomato”).

This validates our intuition of learning to predict the type first more accurately with
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Accuracy
Ingredient Train Freq. #Blanks Free-Form MCQ

AWD_LSTM Our AWD_LSTM Our

Milk 14, 136 4,001 26.94 59.34 80.83 94.90
Salt 33,906 9,888 37.12 62.47 89.29 95.75
Apple 7,205 720 1.94 30.28 37.65 89.86
Bread 11,673 3,074 32.43 52.64 78.85 94.53
Tomato 12,866 1,815 2.20 35.76 43.53 88.76

Chicken 19,875 6,072 22.50 45.24 77.70 94.63

Table 4.3: Performance of fill in the blank task.

lower vocabulary set and then use conditional probability to predict the actual entity

considering the type as a prior.

4.5.2 Case Study-2: Code Generation

Programming language source code shows regularities both in local and global context

(e.g., variables or methods used in one source file can also be created or referenced from

another library file). SLP-Core (Hellendoorn and Devanbu, 2017) is a state-of-the-art code

generation model that captures this global and local information using a nested cache

based n-gram language model. They further show that considering such code structure

into account, a simple n-gram based SLP-Core outperforms vanilla deep learning based

models like RNN, LSTM, etc.

In our case, as our example instance is a Java method, we only have the local context.

Therefore, to evaluate the efficiency of our proposed model, we further analyze that

exploiting only the type information are we even learning any global code pattern? If yes,

then how much in comparison to the baseline (SLP-Core)? To investigate these questions,

we provide all the full project information to SLP-Core (Hellendoorn and Devanbu, 2017)

corresponding to our train set. However, at test-time, to establish a fair comparison, we

consider the perplexity metric for the same methods. SLP-Core achieves a perplexity

3.40 where our backward LSTM achieves 2.65. This result shows that appropriate type

information can actually capture many inherent attributes which can be exploited to
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build a good language model for programming language.

4.6 Conclusion

Language model often lacks in performance to predict entity names correctly. Applications

with lots of named entities, thus, obviously suffer. In this work, we propose to leverage

the type information of such named entities to build an effective language model. Since

similar entities have the same type, the vocabulary size of a type based language model

reduces significantly. The prediction accuracy of the type model increases significantly

with such reduced vocabulary size. Then, using the entity type information as prior

we build another language model which predicts the true entity name according to the

conditional probability distribution. Our evaluation and case studies confirm that the

type information of the named entities captures inherent text features too which leads to

learn intrinsic text pattern and improve the performance of overall language model.

4.7 Summary

In this chapter, we showed that modeling entity-type information improves the language

modeling. We developed a joint inference model to compute the probability of a next

token/word to generate. We use simple rule-based tools to find the entity-type information.

Extensive experiments on two language generation tasks demonstrates the effectiveness

of our approach. Our future works include the exploration of other sources of both

domain/language universal or domain/language specific information to improve the

generation more.
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CHAPTER 5

Retrieve and Augment Relevant Policy Documents for

Question Answering on Privacy Policies

In Chapter 2, we have discussed Type-2 corpora level auxiliary supervision and in

Chapter 3, and 4, Type-2 feature level auxiliary supervision. In the following two

Chapters, we will be presenting Type-3 instance level auxiliary supervision. Particularly,

in this Chapter, we first improve the instance retriever developed in Chapter 3 and then

use them to retrieve and augment new instances in an example data imbalanced (i.e.,

a low-resource) application "question answering on privacy policies". New instances

brought by our approach significantly enhance the task and scored a new state-of-the-art

performance. This Chapter is based on our work Parvez et al. (2022).

5.1 Introduction

Understanding privacy policies that describe how user data is collected, managed, and

used by the respective service providers is crucial for determining if the conditions outlined

are acceptable. Policy documents, however, are lengthy, verbose, equivocal, and hard to

understand (McDonald and Cranor, 2008; Reidenberg et al., 2016). Consequently, they

are often ignored and skipped by users (Commission et al., 2012; Gluck et al., 2016).

To help the users better understand their rights, privacy policy QA is framed to

answer sentence selection task, essentially a binary classification task to identify if a

policy text segment is relevant or not (Harkous et al., 2018). However, annotating policy

documents requires expertise and domain knowledge, and hence, it is costly and hard to

obtain. Moreover, as most texts in policy documents are not relevant, the data is heavily
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Segmented policy document S
(s1) We do not sell or rent your personal information to third parties for their direct
marketing purposes without your explicit consent.
(sn) ...We will not let any other person, including sellers and buyers, contact you, other
than through your ...
Queries I annotating the red segment as irrelevant
(i1) How does Fiverr protect freelancers’ personal information?
(i2) What type of identifiable information is passed between users on the platform?
Queries R annotating the red segment as relevant
(r1) What are the app’s permissions?
(r2) What type of permissions does the app require?
Queries D that annotators disagree about relevance
(d1) Do you sell my information to third parties?
(d2) is my information sold to any third parties?

Table 5.1: QA (sentence selection) from a policy document S. Sensitive: For queries
R and I, annotators at large tagged sentence s1 as relevant, and irrelevant respectively.
On the other hand, sentence sn, though analogous to s1 in meaning, was never tagged as
relevant. Ambiguous: For queries D, experts interpret s1 differently and disagree on
their annotations.

imbalanced. For example, the only existing dataset, PrivacyQA (Ravichander et al., 2019)

has 1,350 questions in the training dataset, and the average number of answer sentences

is 5, while the average length of policy documents is 138 sentences.

We mitigate data imbalance by augmenting positive QA examples in training set in

this work. Specifically, we develop automatic retrieval models to supplement relevant

policy sentences for each user query. The queries we keep unchanged as they usually have

minor variants and are limited to a few forms (Wilson et al., 2016).

Augmenting privacy policies is challenging. First, privacy statements often describe

similar information (Hosseini et al., 2016). Thus, their annotations are sensitive to

small changes in the text (see Table 5.1), which may not be tackled using the existing

augmentation methods based on data synthesis. For example, Kumar et al. (2020b)

identifies that even linguistically coherent instances augmented via generative models

such as GPT-2 (Anaby-Tavor et al., 2020) do not preserve the class labels well. Hence, we

consider a retrieval-based approach to augment the existing policy statements to address

this. Given a pre-trained LM and a small QA dataset, we first build a dense sentence
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retriever (Karpukhin et al., 2020b). Next, leveraging an unlabeled policy corpus with

0.6M sentences crawled from web applications, we perform a coarse one-shot sentence

retrieval for each query in the QA training set. To filter the noisy candidates retrieved,

we then train a QA model (as an oracle) using the same pre-trained LM and data and

couple it with the retriever.

Second, privacy policies are ambiguous; even skilled annotators dispute their interpreta-

tions, e.g., for at least 26% questions in PrivacyQA, experts disagree on their annotations

(see Table 5.1). Therefore, a single retriever model may not capture all relevant policy

segments. To combat this, we propose a novel retriever ensemble technique. Different

pre-trained models learn distinct language representations due to their pre-training objec-

tives, and hence, retriever models built on them can retrieve a disjoint set of candidates

(verified in Section 6.4). Therefore, we build our retrievers and oracles based on multiple

different pre-trained LMs (See Figure 6.1). Finally, we train a user-defined QA model on

the aggregated corpus using them.

We evaluate our framework on the PrivacyQA benchmark. We elevate the state-of-the-

art performance significantly (10% F1) and achieve a new one (50% F1). Furthermore,

our ablation studies provide an insightful understanding of our model. We will release all

data and code upon acceptance.

5.2 Methodology

The privacy policy QA is a binary classification task that takes a user query q, a sentence

p from policy documents and outputs a binary label z ∈ {0, 1} that indicates if q and p

are relevant or not. As most sentences p are labeled as negative, our goal is to retrieve

relevant sentences to augment the training data and mitigate the data imbalance issue.

Given a QA training dataset D = {(qi, pi, zi)}mi=1, for each question in D, we (1) retrieve

positive sentences from a large unlabeled corpus. (2) filter the noisy examples using

oracle models and aggregate final candidates. The final candidates are combined with the

base data D to train the QA models. We use an ensemble of retrievers and oracles built
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Figure 5.1: Our framework. Given a pre-trained LM, we train a (i) retriever, (ii) QA
model (oracle) both on the small-size labeled data. From an unlabeled corpus, we first,
retrieve the coarse relevant sentences (positive examples) for the queries in the training set
and use the oracle to filter out noisy ones. We repeat this for multiple different pre-trained
LMs. Finally we aggregate them to expand the positive examples in the training set and
learn any user-defined final QA model.

upon various pre-trained LMs throughout the whole process. Details are discussed in the

following.

5.2.1 Policy Document Retriever

Our retriever module is built upon the Dense Passage Retriever (DPR) model Karpukhin

et al. (2020b). It consists of two encoders Q(·) and P (·) that encode the queries and

the policy sentences, respectively. The relevance of a query q and a policy sentence

p is calculated by the dot product of Q(q) and P (p), i.e., sim(q, p) = Q(q)T · P (p).

For each positive pair in D, it optimizes only the cross-entropy loss with in-batch

negatives Henderson et al. (2017); Parvez et al. (2021). We train a retriever RL on D,

where the encoders in RL are initialized with a pre-trained LM L. At inference, RL

retrieves the top-k most relevant policy sentences from an unlabeled corpus of policy

sentences P = {p1, . . . , pM} for each query qi in D, i.e., RL({qi}mi=1,P , k) = {(qi, pj, 1) :
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i ∈ [m], pj ∈ Ptop(qi, k)}, where Ptop(qi, k) = argmaxP ′⊂P,|P ′|=k

∑
p∈P ′ sim(qi, p).

5.2.2 Filtering Oracle

To filter out the noisy retrievals from RL({qi}mi=1,P , k), we train a QA (i.e., a text-

classification) model (QL) using the training data D as an oracle to predict whether a

query q and a (retrieved) policy sentence p are relevant or not (i.e., QL(q, p) ∈ {0, 1}). Note

that both QL and retriever RL are built upon the same pre-trained LM L (e.g., BERT).

However, the retriever model is a bi-encoder model that can pre-encode, index, and rank

a large number of candidates. In contrast, our filtering oracle model is a cross-encoder

text-classifier (e.g., BERT) that can achieve comparatively higher performances Humeau

et al. (2019) (i.e., hence better as a filter) but can not pre-encode and hence can not

be used for large scale retrieval (more differences are in Section 5.4). We verify the

effectiveness of oracle filtering in Section 5.4. We denote retrieval outputs after filtering

as DL = {(q, p, 1) : QL(q, p) = 1,∀(q, p, 1) ∈ RL({qi}mi=1,P , k)}.

5.2.3 Retriever Ensemble and Data Augmentation

Unlike other NLP domains, a privacy policy sentence can frequently have multiple

interpretations (see Table 5.1). Hence, a single retrieved corpus DL may not capture all

relevant candidates covering such diverse interpretations. To this end, we use a set of

pre-trained LMs L = {L1, . . . , Ll} and aggregate all the corresponding retrieved corpora,

Daug =
⋃

L∈LDL. In Section 6.4, we show that retrieved corpora using multiple pre-trained

LMs with different learning objectives can bring a different set of relevant candidates.

Lastly, we aggregate Daug with D (i.e., final train corpus T = Daug ∪D) and train our

final QA model with user specifications (e.g., architecture, pre-trained LM).

5.3 Experiments

In this section, we evaluate our approach and present the findings from our analysis.
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PrivacyQA
Source Mobile application
Question annotator Mechanical Turkers
Form of QA Sentence selection
Answer type A list of sentences
# Unique policy docs train: 27, test: 8
# Unique questions train: 1350, test: 400
# QA instances train: 185k, test: 10k
Avg Q. Length train: 8.42 test: 8.56
Avg Doc. Length train: 3.1k, test: 3.6k
Avg Ans. Length train: 124, test: 153

Table 5.2: Brief summary of PrivacyQA benchmark.

Settings We evaluate our approach on PrivacyQA benchmark (a brief statistics of this

dataset is in Table 5.2) and recall that this is in fact a text classification task. Following

Ravichander et al. (2019), we use precision, recall, and F1 score as the evaluation metrics.

As for the retrieval database P , we crawl privacy policies from the most popular mobile

apps spanning different app categories in the Google Play Store and end up with 6.5k

documents (0.6M statements). By default, all retrievals use top-10 candidates w/o filtering.

All data/models/codes are implemented using (i) Huggingface Transformers (Wolf et al.,

2019b), (ii) DPR (Karpukhin et al., 2020b) libraries.

Baselines We fine-tune three pre-trained LMs on PrivacyQA as baselines: (i) BERT :

Our first baseline is BERT-base-uncased (Devlin et al., 2019) which is pre-trained on

generic NLP textual data. A previous implementation achieves the exiting state-of-the-art

performance (BERT+Unams. in Ravichander et al. (2019)). (ii) PBERT : We adapt BERT

to the privacy domain by fine-tuning it using masked language modeling on a corpus of

130k privacy policies (137M words) collected from apps in the Google Play Store (Harkous

et al., 2018). Note that the retrieval database P is a subset of this data that is less

noisy and crawled as a recent snapshot (more in Section 5.4) (iii) SimCSE : We take the

PBERT model and apply the unsupervised contrasting learning SimCSE (Gao et al., 2021)

model on the same 130k privacy policy corpus. We also consider three other retrieval

augmented QA models based on individual pre-trained LM without ensemble: (iv) BERT-
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Method Oracle Precision Recall F1
Human - 68.8 69.0 68.9
W/o data augmentation
BERT+Unans.

-

44.3 36.9 39.8
BERT (reprod.) 48.0±2.04 37.7±1.19 42.2±1.54

PBERT 51.2±0.41 42.7±0.64 46.6±0.42

SimCSE 48.4±0.80 41.4±0.67 44.7±0.71

Retriever augmented

BERT-R ✗ 39.0±0.78 52.4±1.65 44.7±0.40

✓ 48.1±1.38 44.7±0.85 46.3±0.46

PBERT-R ✗ 48.7±1.91 44.1±1.79 46.3±1.61

✓ 49.2±1.56 44.9±1.97 47.0±1.21

SimCSE-R ✗ 47.0±2.14 44.5±2.41 45.7±1.86

✓ 48.6±2.18 43.9±1.21 46.1±1.56

Ensemble retriever augmented
Baseline-E ✗ 22.2±0.80 54.4±0.80 31.4±0.78

REDCODER ✓ 47.4±0.61 50.5±2.24 48.9±0.78

REDCODER-EXT ✓ 51.0±0.38 48.7±0.91 49.8±0.70

Table 5.3: Test performances on PrivacyQA (mean±std). BERT+Unans. refers to the
previous SOTA performance (Ravichander et al., 2019). Retrieved candidates improves all
the baseline QA models, especially when being filtered. Our ensemble retriever approach
combines them and achieves the highest gains.

R: L = {BERT}, (v) PBERT-R: L = {PBERT}, (vi) SimCSE-R: L = {SimCSE}. We

first construct T (both settings: w/ and w/o oracle) and fine-tune on it the corresponding

pre-trained LM as the final QA model. Finally, we consider one more ensemble retrieval

augmented baseline (vii) Baseline-E, which is precisely the same as ours (settings below),

except there are no intermediate filtering oracles.

Ours We construct out augmented corpus T , discussed in Section 5.2.3, using the (i)

all three aforementioned pre-trained LMs: L = {BERT, PBERT, SimCSE} (ii) domain

adapted models only: L = {PBERT, SimCSE}. For brevity, we call them: Ensemble

Retriever Augmentation (ERA) and Ensemble Retriever Augmentation–Domain Adapted

ERA-D. By default, we fine-tune SimCSE as the final QA model.
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Query Type % B PB S ERA
Data Collection 42 45 46 46 48
Data Sharing 25 43 37 41 43
Data Security 11 65 61 60 60
Data Retention 4 52 35 35 56
User Access 2 72 48 31 61
User Choice 7 41 60 42 31
Others 9 36 45 52 55
Overall 100 45 47 48 49

Table 5.4: F1-score breakdown (values are in Appendix). B, PB, S refers to retrievers
BERT-R, PBERT-R, and SimCSE-R. Different models performs better for different types
(black-bold). ERA combines them and enhances performances for all categories (except:
red).

5.3.1 Results and Analysis

The results are listed in Table 5.3. Overall, domain adapted models PBERT and SimCSE

excel better than the generic BERT model. The retrieval augmented models enhance the

performances more, specially the recall score, as they are added as additional positive

examples. However, they might contain several noisy examples (see Table 5.6 and Table

5.7), and filtering those out improves the precision scores for all three retrievers. Finally,

ERA and ERA-D aggregate these high-quality filtered policies–leading toward the highest

gain (10% F1 from the previous baseline) and a new state-of-the-art result with an F1

score of ∼50. Note that Baseline-E unifies all the candidates w/o any filtering performs

considerably worse than all other models, including each retrieval model: Baseline-E

augments more candidates as positives, which explains the highest recall score; in the

meantime, as it does not filter any, the corresponding precision score is oppositely the

lowest.

Table 5.4 and Table 5.5 show the performance breakdown for different query types.

For questions related to data collection, data sharing, and data security, the performance

difference among the models is relatively small (≤ 5% F1); for data retention and user

access, BERT-R, that is pre-trained on generic NLP texts, performs significantly well

(> 15% F1), possibly because the answers to these query types focus on providing
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Query Type total B PB S REDCODER
Data Collection 6280 1901 1157 1186 1806
Data Sharing 4734 1332 777 1092 1268
Data Security 994 416 399 423 393
Data Retention 453 150 98 110 173
User Access 221 89 47 43 87
User Choice 493 91 49 24 55
Others 28 2 1 2 4
Overall 10332 3135 2084 2334 2935

Table 5.5: Number of correct predictions. Note that F1-score is not proportional to the
accuracy. B, PB, S refers to retrievers BERT-R, PBERT-R, and SimCSE-R. Different
models performs better for different types (black-bold). ERA combines them and enhances
performances for all categories

numerical evidence for the questions (e.g., How many days the data are retained?) that

is less irrelevant to the domain of privacy policies; and for other types of questions the

domain adapted models performs better (> 15% F1). In general, the individual retrieval

augmented models learned w/ different corpora and objectives perform at different scales

for each type, and combining their expertise, ERA enhances the performances for all

types.
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Figure 5.2: Venn diagram of low mutual agreement (<1%) among retrievers (a); even
amplified after filtering (b).

Next, we show the Venn diagram of overlapping retrievals in Figure 5.2. Although

policy statements describe similar information (i.e., have common phrases), they are often

verbose and equivocal (i.e., multiple-different interpretations). Consequently, retrievers w/

different objectives and training corpora rank them differently. Therefore, although being
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retrieved from the same corpus, candidates retrieved by different models rarely match

fully but may have much overlapping information and improve the model performances

equitably. For example, from Table 5.3, while the performances of BERT-R, PBERT-R

and SimCSE-R w/ filtering are similar (∼46), their overlapping (exact match) is < 1%

from Figure 5.2 (qualitative examples in Table 5.6 and Table 5.7). At the same time, the

raw retrieval corpora have a high BLEU score of (≥ 0.78). This validates our hypothesis

that retrievers built upon different pre-trained LMs learn diverse representations and

consequently retrieve diverse candidates.

Q: who all has access to my medical information?

Gold: i) Apple HealthKit to health information and to share that information with your
healthcare providers. ii) Your use of our Application with that healthcare institution
may be subject to that healthcare institution’s policies and terms.

Correct Retrievals: (i) We may share your information with other health care providers,
laboratories, government agencies, insurance companies, organ procurement organizations,
or medical examiners. -(SimCSE-R) (ii) Do not sell your personal or medical information
to anyone. -(BERT-R) (iii) Lab, Inc will transmit personal health information to
authorized medical providers. -(PBERT-R) (iv) To organ and tissue donation requests:
By law, we can disclose health information about you to organ procurement organizations.
-(BERT-R)

Incorrect Retrievals: (i) However, we take the protection of your private health
information very seriously. -(SimCSE-R) (ii) All doctors, and many other healthcare
professionals, are included in our database. -(PBERT-R) (iii) You may be able to access
your pet’s health records or other information via the Sites. -(BERT-R) (iv) will say
“yes” unless a law requires us to disclose that health information.-(BERT-R) (v) do not
claim that our products “cure” disease.-(BERT-R) (vi) Has no access to your database
password or any data stored in your local database on your devices.-(BERT-R)

Table 5.6: A fraction of retrieval examples (i).

5.4 Ablation Study

Are oracles needed? From Table 5.4, in general, aggregating retrievals with oracle

filtering enhances model performances than crude additions. Qualitative examples are in
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Q: do you sell my photos to anyone?

Gold: i) We use third-party service providers to serve ads on our behalf across the Internet
and sometimes on the Sites. (ii) These companies may use your personal information to
enhance and personalize your shopping experience with us, to communicate with you
about products and events that may be of interest to you and for other promotional
purposes. iii) Your use of our Application with that healthcare institution may be
subject to that healthcare institution’s policies and terms. (iv) We may share personal
information within our family of brands. (v) From time to time we share the personal
information we collect with trusted companies who work with or on behalf of us. (vi) No
personally identifiable information is collected in this process. (vii) We use third-party
service providers to serve ads on our behalf across the Internet and sometimes on our
Sites and Apps.

Correct Retrievals: (i) The Application does not collect or transmit any personally
identifiable information about you, such as your name, address, phone number or email
address. -(SimCSE-R) (ii) Some of this information is automatically gathered, and could
be considered personally identifiable in certain circumstances, however it will generally
always be anonymised prior to being viewed by Not Doppler, and never sold or shared.
-(BERT-R) (iii) We also use the Google AdWords service to serve ads on our behalf
across the Internet and sometimes on this Website. -(PBERT-R) (iv) To organ and
tissue donation requests: By law, we can disclose health information about you to organ
procurement organizations. -(BERT-R)

Incorrect Retrievals: (i) When you upload your photos to our platform or give us
permission to access the photos stored on your device, your photo content may also
include related image information such as the time and the place your photo was taken
and similar “metadata” captured by your image capture device. -(SimCSE-R) (ii) These
are not linked to any information that is personally identifiable.-(BERT-R)

Table 5.7: A fraction of retrieval examples (ii).

Table 5.6 and Table 5.7.

A common oracle. Performances of ERA (last row in Table 5.4) with a common oracle

based on SimCSE for all the retrievers regardless of their corresponding pre-trained

models are 49.2, 45.2, and 47.1, respectively–validating the requirement of filtering using

the corresponding pre-trained LM.

Other pre-trained LM as the final QA model. Fine-tuning PBERT instead of

SimCSE on T (last two rows in Table 5.3) becomes: 47.0, 47.1, 47.0 and 51.0, 45.9, 48.3,

respectively. This shows that our approach is generic and enhances the performance

regardless of the end model.
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Which pre-trained LMs to use? Table 5.4 shows ERA-D that combines fewer pre-

trained LMs may even outperform the one with more models, ERA. Though here we

consider a simple approach (in-domain) for selecting the potential subset of models, this

paves a new direction for future research (e.g., Parvez and Chang (2021)).

Qualitative examples. Table 5.6 and Table 5.7 show some example retrievals of different

models. They are distinct from expert annotated ones and can bring auxiliary knowledge.

Privacy Policy Data Crawling & Retrieval Statistics We crawl our English retrieval

corpus from Google App Store using the Play Store Scraper1.

Query Type No. of Retrieval
Data Collection 2893
Data Sharing 1848
Data Security 891

Data Retention 542
User Access 145
User Choice 335

Others 14

Table 5.8: Retrieval statistics per query type.

Table 5.8 shows the statistics of our (ERA) augmented corpus per each question

category in the PrivacyQA training set.

Difference Between the Filtering Oracle and the Retriever The retriever model

is a bi-encoder model whose model parameters are fine-tuned with in-batch negative loss

(discussed in Section 5.2.1 in the main paper), hyper-parameters are tuned based on

average rankings (DPR OFFICIAL PAGE) and that can pre-encode, index and rank a

large number of candidates while our filtering oracle model is a cross-encoder text-classifier

(e.g., BERT) that is fine-tuned w/o any additional in-batch negatives and in-general

achieves comparatively higher performance (Humeau et al., 2019) (i.e, hence better as a

filter) but can not pre-encode and hence can not be used for large scale retrieval.

Difference Between Pre-training and Retrieval Corpus 130k documents were

1https://github.com/danieliu/play-scraper
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collected before 2018 and by that time, the GDPR2 and CCPA3 were not enforced by then.

Thus, the 130k documents are out-of-date and some content might not be comprehensive

as the retrieval corpus. Besides, the 130k documents provided by (Harkous et al., 2018)

contains some noises since we observe that the documents are not all written in English.

However, as the data size is larger, we still use it for pre-training. In contrast, our

corpus was collected after 2020 and we filtered out some possible noises (e.g., filtering out

non-English document) while crawling.

5.5 Related Works

A line of works focuses on using NLP techniques for privacy policies Wilson et al. (2016);

Harkous et al. (2018); Zimmeck et al. (2019); Bui et al. (2021); Ahmad et al. (2021b).

Besides the QA tasks as sentence selection, Ahmad et al. (2020b) propose another

SQuAD-like Rajpurkar et al. (2016) privacy policy reading comprehension dataset for

a limited number of queries. Oppositely, we focus on the more challenging one, which

allows unanswerable questions and “non-contiguous” answer Ravichander et al. (2021). In

relevant literature works, retrieval augmented methods are applied in various contexts

including privacy policies (e.g., Van et al. (2021); Keymanesh et al. (2021); Yang et al.

(2020)). Non-retrieval data aggregation has also been studied under different NLP contexts

(e.g., bagging Breiman (1996), meta learning Parvez et al. (2019a)). However, we uniquely

aggregate the retriever outputs using different pre-trained language models.

5.6 Limitations

In this paper, we show that leveraging multiple different pre-trained LMs can augment

high-quality training examples and enhance the QA (sentence selection) task on privacy

policies. Our approach is generic and such unification of different kinds of pre-trained

2https://gdpr-info.eu/

3https://oag.ca.gov/privacy/ccpa
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language models for text data augmentation can improve many other low-resourced tasks

or domains. However, it is possible that our approach:

• may not work well on other scenarios (e.g., domains/language or tasks etc.,).

• subject to the choice of particular set of models. For example, as mentioned in

Section, 5.4, fine-tuning pre-trained models other than SimCSE Gao et al. (2021)

as the final QA model achieve lower gain.

• may not work for certain top-k retrievals. For example, from Table 5.9, we get

different results with different scales for variable top-k values (e.g., top-10, top-100).

Method Filter top-k Precision Recall F1

BERT-R ✗ 10 39.9 50.8 44.7
✓ 10 46.5 45.5 46.0

PBERT-R

✗ 10 48.4 45.6 46.9
✓ 10 46.9 43.3 45.1
✗ 50 47.8 45.5 46.7
✓ 50 49.5 46.3 47.8

SimCSE-R

✗ 10 48.4 47.2 47.8
✓ 10 49.4 44.8 47.0
✗ 100 42.1 41.3 41.7
✓ 100 51.0 45.2 47.9

Table 5.9: Model performances with and without filtering with top-k. In general, without
filtering, augmenting the retrieved candidates enhances recall but may reduce the precision
(and hence may not improve the overall F1). Filtering, however improves the performance
specially with larger top-k candidates.

5.7 Conclusion

We develop a noise-reduced retrieval-based data augmentation method that combines

different pre-trained language models. Although we focus on the privacy policy domain,

our approach can also be applied to other domains. We will leave the exploration as

future work.
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5.8 Summary

Prior studies in privacy policies frame the question answering (QA) tasks as identifying

the most relevant text segment or a list of sentences from the policy document for a

user query. However, annotating such a dataset is challenging as it requires specific

domain expertise (e.g., law academics). Even if we manage a small-scale one, a bottleneck

that remains is that the labeled data are heavily imbalanced (only a few segments are

relevant) –limiting the gain in this domain. In this Chapter, we propose a a novel retrieval

based method for augmenting the rare class examples. Using our augmented data on

the PrivacyQA benchmark, we elevate the existing baseline by a large margin (10% F1)

and achieve a new state-of-the-art F1 score of 50%. Our ablation studies provide further

insights into the effectiveness of our approach.

91



CHAPTER 6

Selecting and Augmenting Relevant Text Spans for Fast

and Robust Text Classification

In this Chapter, we design a generic framework for learning a fast and robust text

classification model that achieves high accuracy under different budgets (i.e., time needed

for inference). We dynamically filter a large fraction of unimportant words by a low-

complexity selector such that any high-complexity classifier only needs to process a small

fraction of text, relevant for the target task. Next, we vary the selection rate of our

proposed selector model and generate different versions of filtered text (fractured but

relevant). We aggregate them as new training examples (i.e., Type-3 instance level

aggregation) for the end classifier, allowing it to achieve competitive performance on any

fractured sentences at inference time. This Chapter is based on our work Parvez et al.

(2019b).

6.1 Introduction

Recent advances in deep neural networks (DNNs) have achieved high accuracy on many

text classification tasks. These approaches process the entire text and encode words and

phrases in order to perform target tasks. While these models realize high accuracy, the

computational time scales linearly with the size of the documents, which can be slow for

a long document. In this context, various approaches based on modifying the RNN or

LSTM architecture have been proposed to speed up the process (Seo et al., 2017; Yu

et al., 2017). However, the processing in these models is still fundamentally sequential and

needs to operate on the whole document which limits the computational gain. In contrast
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Figure 6.1: Our proposed framework. Given a selection rate, a selector is designed to
select relevant words and pass them to the classifier. To make the classifier robust against
fractured sentences, we aggregate outputs from different selectors and train the classifier
on the aggregated corpus.

to previous approaches, we propose a novel framework for efficient text classification

on long documents that mitigates sequential processing. The framework consists of a

selector and a classifier. Given a selection budget as input, the selector performs a coarse

one-shot selection deleting unimportant words and pass the remainder to the classifier.

The classifier then takes the sentence fragments as an input and performs the target

task. Figure 6.1 illustrates the procedure. This framework is general and agnostic to the

architecture of the downstream classifier (e.g., RNN, CNN, Transformer).

However, three challenges arise. First, to build a computationally inexpensive system,

the selector must have negligible overhead. We adopt two effective yet simple architectures

to design selectors based on word embeddings and bag-of-words. Second, training multiple

distinct models for different budgets is unfeasible in practice, especially when model size

is large. Hence, our goal is to learn a single classifier that can adapt to the output of

any selector operating at any budget. Consequently, this classifier must be robust so

that it can achieve consistent performance with different budgets. Third, the input to

the classifier in our framework is a sequence of fractured sentences which is incompatible

with a standard classifier that trained on the full texts, causing its performance degrades
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significantly. One potential but unfeasible solution is to train the classifier with a

diverse collection of sentence fragments which is combinatorially numerous. Another

approach is to randomly blank out text (a.k.a. blanking-noise), leads to marginalized

feature distortion (Maaten et al., 2013) but this also leads to poor accuracy as DNNs

leverage word combinations, sentence structure, which this approach does not account

for. To mitigate this problem, we propose a data aggregation framework that augments

the training corpus with outputs from selectors at different budget levels. By training

the classifier on the aggregated structured blank-out text, the classifier learns to fuse

fragmented sentences into a feature representation that mirrors the representation obtained

on full sentences and thus realizes high-accuracy. We evaluate our approach through

comprehensive experiments on real-world datasets1.

6.2 Related Work

Several approaches have been proposed to speed up the DNN in test time (Wu et al.,

2017; Choi et al., 2017). LSTM-jump (Yu et al., 2017) learns to completely skip words

deemed to be irrelevant and skim-RNN (Seo et al., 2017) uses a low-complexity LSTM to

skim words rather than skipping. Another version of LSTM-jump, LSTM-shuttle (Fu and

Ma, 2018) first skips a number of words, then goes backward to recover lost information

by reading some words skipped before. All these approaches require to modify the

architecture of the underlying classifier and cannot easily extend to another architecture.

In contrast, we adopt existing classifier architectures (e.g., LSTM, BCN (McCann et al.,

2017)) and propose a meta-learning algorithm to train the model. Our framework is

generic and a classifier can be viewed as a black-box. Similar to us, Lei et al. (2016)

propose a selector -classifier framework to find text snippets as justification for text

classification but their selector and classifier have similar complexity and require similar

processing times; therefore, it is not suitable for computation gain. Various feature

1Our source code is available at:
https://github.com/uclanlp/Fast-and-Robust-Text-Classification
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selection approaches (Chandrashekar and Sahin, 2014) have been discussed in literature.

For example, removing predefined stop-words (see Appendix A), attention based models

(Bahdanau et al., 2014; Luong et al., 2015a), feature subspace selection methods (e.g.,

PCA), and applying the L1 regularization (e.g., Lasso (Tibshirani, 1996) or Group

Lasso (Faruqui et al., 2015), BLasso (?)). However, these approaches either cannot obtain

sparse features or cannot straightforwardly be applied to speed up a DNN classifier.

Different from ours, Viola and Jones (2001); Trapeznikov and Saligrama (2013); Karayev

et al. (2013); Xu et al. (2013); Kusner et al. (2014); Bengio et al. (2015); Leroux et al.

(2017); Zhu et al. (2019); Nan and Saligrama (2017); Bolukbasi et al. (2017) focus on

gating various components of existing networks. Finally, aggregating data or models has

been studied under different contexts (e.g., in context of reinforcement learning (Ross

et al., 2010), Bagging models (Breiman, 1996), etc.) while we aggregate the data output

from selectors instead of models.

6.3 Classification on a Test-Time Budget

Our goal is to build a robust classifier along with a suite of selectors to achieve good perfor-

mance with consistent speedup under different selection budgets at test-time. Formally, a

classifier C(x̂) takes a word sequence x̂ and predicts the corresponding output label y, and

a selector Sb(x) with selection budget b takes an input word sequence x = {w1, w2, . . . , wN}

and generates a binary sequence Sb(x) = {zw1 , zw2 , . . . , zwN
} where zwk

∈ {0, 1} represents

if the corresponding word wk is selected or not. We denote the sub-sequence of words

generated after filtering by the selector as I
(
x, Sb(x)

)
= {wk : zwk

= 1,∀wk ∈ x}. We

aim to train a classifier C and the selector Sb such that I
(
x, Sb(x)

)
is sufficient to make

accurate prediction on the output label (i.e., C
(
I
(
x, Sb(x)

))
≈ C(x)). The selection

budget (a.k.a selection rate) b is controlled by the hyper-parameters of the selector. Higher

budget often leads to higher accuracy and longer test time.
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6.3.1 Learning a Selector

We propose two simple but efficient selectors.

6.3.1.1 Word Embedding (WE) selector

We consider a parsimonious word-selector using word embeddings (e.g., GloVe (Pennington

et al., 2014)) as features to predict important words. We assume the informative words

can be identified independently and model the probability that a word wk is selected

by P (zwk
= 1|wk) = σ(θTSwk), where θS is the model parameters of the selector Sb, wk

is the corresponding word vector, and σ is the sigmoid function. As we do not have

explicit annotations about which words are important, we train the selector Sb along with

a classifier C in an end-to-end manner following Lei et al. (2016), and an L1-regularizer

is added to control the sparsity (i.e., selection budget) of Sb(x).

6.3.1.2 Bag-of-Words selector

We also consider using an L1-regularized linear model (Zou and Hastie, 2005; Ng, 2004;

Yuan et al., 2010) with bag-of-words features to identify important words. In the bag-

of-words model, for each document x, we construct a feature vector x ∈ {0, 1}|V |, where

|V | is the size of the vocabulary. Each element of the feature vector xw represents if a

specific word w appearing in the document x. Given a training set X , the linear model

optimizes the L1-regularized task loss. For example, in case of a binary classification task

(output label y ∈ {1,−1}),

J(xt, yt) = log
(
1 + exp(−ytθTxt)

)
θ∗ = argminθ

∑
(xt,yt)∈X

J(xt, yt) +
1

b
∥θ∥1,

where θ ∈ R|V | is a weight vector to be learned, θw corresponds to word w ∈ V , and b is

a hyper-parameter controlling the sparsity of θ∗ (i.e., selection budget). The lower the

budget b is, the sparser the selection is. Based on the optimal θ∗, we construct a selector
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Model SST-2 IMDB AGNews Yelp
acc r t speedup acc r t speedup acc r t speedup acc r t speedup

Baseline 85.7 100 9 1x 91.0 100 1546 1x 92.3 100 59 1x 66.5 100 3487 1x
Bag-of-Words 78.8 75 5.34 1.7x 91.5 91 1258 1.2x 92.9 97 48 1.2x 59.7 55 2325 1.6x

Our framework 82.6 65 4.6 2x 92.0 91 1297 1.2x 93.1 91 46 1.3x 64.8 55 2179 1.6x
85.3 0 9 1x 92.1 0 1618 1x 93.2 0 57 1x 66.3 0 3448 1x

Table 6.1: Accuracy and speedup on the test datasets. r, t denotes the selection rate (%),
test-time respectively. Test-times are measured in seconds. The speedup rate is calculated
as the running time of a model divided by the running time of the corresponding baseline.
For our framework, top row denotes the best speedup and the bottom row denotes the
best test accuracy achieved. Overall best accuracies and best speedups are boldfaced.
Our framework achieves accuracies better than baseline with a speedup of 1.2x and 1.3x
on IMDB, and AGNews respectively. With same or higher speedup, our accuracies are
much better than Bag-of-Words.

that picks word w if the corresponding θ∗w is non-zero. Formally, the bag-of-words selector

outputs Sb(x) = {δ(θw ̸= 0) : w ∈ x}, where δ is an indicator function.

6.3.2 The Data Aggregation Framework

In order to learn to fuse fragmented sentences into a robust feature representation, we

propose to train the classifier on the aggregated corpus of structured blank-out texts.

Given a set of training data X = {(x1, y1), .., (xt, yt), .., (xm, ym)}, we assume we

have a set of selectors S = {Sb} with different budget levels trained by the framework

discussed in Section 6.3.1. To generate an aggregated corpus, we first apply each selector

Sb ∈ S on the training set, and generate corresponding blank-out corpus I(X , Sb) ={
I
(
xt, Sb(xt)

)
,∀xt ∈ X

}
. Then, we create a new corpus by aggregating the blank-out

corpora: T =
⋃

Sb∈S I(X , Sb).2 Finally, we train the classifier CT on the aggregated

corpus T . As CT is trained on documents with distortions, it learns to make predictions

with different budget levels. The training procedure is summarized in Algorithm 1. In

the following, we discuss two extensions of our data aggregation framework.

First, the blank-out data can be generated from different classes of selectors with

2Note that, the union operation is used just to aggregate the train instances which does not hinder
the model training (e.g., discrete variables).
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Algorithm 3 Data Aggregated Training Schema
Input:
Training corpus X ,
a set of selectors with different budget levels S = {Sb},
classifier class C

Output: A robust classifier CT

Initialize the aggregated corpus: T ← X
for Sb ∈ S do

Sb ← Train a selector Sb ∈ S with budget level b on X
Generate a blank-out dataset I(X , Sb)

Aggregate data: T ← T ∪ I(X , Sb)

CT ← Train a classifier C on T
return CT

different features or architectures. Second, the blank-out and selection can be done in

phrase or sentence level. Specifically, if phrase boundaries are provided, a phrase-level

aggregation can avoid a selector from breaking compound nouns or meaningful phrases

(e.g., “Los Angeles”, “not bad“). Similarly, for multi-sentenced documents, we can enforce

the selector to pick a whole sentence if any word in the sentence is selected.

World News .. plant searched. Kansai Electric Power’s nuclear power plant in Fukui .. was
searched by police Saturday ..

Business Telecom Austria taps the Bulgarian market. Telecom Austria, Austrias largest
telecoms operator, obtained ..

Sci/Tech .. Reuters - Software security companies and handset makers, including Finland’s
Nokia (NOK1V.HE), are ..

Table 6.3: Examples of the WE selector output on AGNews. Bold words are selected.

6.4 Experiments

To evaluate the proposed approach, we consider four benchmark datasets: SST-2 (Socher

et al., 2013), IMDB (Maas et al., 2011), AGNews (Zhang et al., 2015), and Yelp (Con-

neau et al., 2016) and two widely used architectures for classification: LSTM, and
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((a)) IMDB ((b)) AGNews ((c)) SST-2

Figure 6.2: Performance under different test-times on IMDB, AGNews, and SST-2. All
the approaches use the same LSTM model as the back-end. Bag-of-Words model and
our framework have the same bag-of-words selector cascaded with this LSTM classifier
trained on the original training corpus and aggregated corpus, respectively. Our model
(blue dashed line) significantly outperform others for any test-time budget. Also its
performance is robust, while results of skim-RNN is inconsistent with different budget
levels.

BCN (McCann et al., 2017). We evaluate the computation gain of models in terms of

overall test-time, and the performance in terms of accuracy. We follow Seo et al. (2017)

to estimate the test-time of models on CPU and exclude the time for data loading.

In our approach, we train a classifier with both WE and bag-of-words selectors with 6

selection budgets3 {50%, 60%, . . . , 100%} by the word-level data aggregation framework.

We evaluate the computation gain of the proposed method through a comparative study of

its performance under different test-times by varying the selection budgets in comparison

to the following approaches: (1) Baseline: the original classifier (i.e., no selector, no data

aggregation) (2) skim-RNN : we train a skim-RNN model and vary the amount of text

to skim (i.e., test-time) by tuning θ parameter as in Seo et al. (2017). (3) Bag-of-Words:

filtering words by the bag-of-words selector and feeding the fragments of sentences to the

original classifier (i.e., no data aggregation). This approach serves as a good baseline

and has been considered in the context of linear models (e.g., Chang and Lin (2008)).

For a fair comparison, we implement all approaches upon the same framework using

3For the very large Yelp dataset, 3 selection budgets {50%, 60%, 70%} are used.
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AllenNLP library4, including a re-implementation of the existing state-of-art speedup

framework skim-RNN (Seo et al., 2017)5. As skim-RNN is designed specifically for

accelerating the LSTM model, we only compare with skim-RNN using LSTM classifier.

Each corresponding model is selected by tuning parameters on validation data. The model

is then frozen and evaluated on test-data for different selection budgets.

Figure 6.2 demonstrates the trade-off between the performance, and the test-time for

each setting. Overall, we expect the error to decrease with a larger test-time budget. From

Figure 6.2, on all of the IMDB, AGNews, and SST-2 datasets, LSTM classifier trained

with our proposed data aggregation not only achieves the lowest error curve but also

the results are robust and consistent. That is our approach achieves higher performance

across different test-time budgets and its performance is a predictable monotonic function

of the test-time budget. However, the performance of skim-RNN exhibits inconsistency

for different budgets. As a matter of fact, for multiple budgets, none of the skim-RNN,

and LSTM-jump address the problem of different word distribution between training and

testing. Therefore, similar to skim-RNN, we anticipate that the behavior of LSTM-jump

will be inconsistent as well6. Additionally, since LSTM-jump has already been shown

to be outperformed by skim-RNN, we do not further compare with it. Next, we show

that our framework is generic and can incorporate with other different classifiers, such

as BCN (see Table 6.1)7. When phrase boundary information is available, our model

can further achieve 86.7 in accuracy with 1.7x speedup for BCN on SST-2 dataset

by using phrase-level data aggregation. Finally, one more advantage of the proposed

framework is that the output of the selector is interpretable. In Table 6.3, we present

that our framework correctly selects words such as “Nokia”, “telecom”, and phrases such

4https://allennlp.org/

5The official skim-RNN implementation is not released.

6As an example, from Table 6 in Yu et al. (2017), the performance of LSTM-jump drops from 0.881
to 0.854 although it takes longer test-time (102s) than the baseline (81.7s).

7Because of the inherent accuracy/inference-time tradeoff, it is difficult to depict model comparisons.
For this reason, in Figure 2, we plot the trade-off curve to demonstrate the best speedup achieved by our
model for achieving near state-of-art performance. On the other hand, test results are tabulated in Table
1 to focus attention primarily on accuracy.

100

https://allennlp.org/


as “searched by police”, “software security” and filters out words like “Aug.”, “users” and

“products”.

Note that nevertheless we focus on efficient inference, empirically our method is no

more complex than the baseline during training. Despite the number of training instances

increases, and so does the training time for each epoch, the number of epochs we require

for obtaining a good model is usually smaller. For example, on the Yelp corpus, we only

need 3 epochs to train a BCN classifier on the aggregated corpus generated by using 3

different selectors, while training on the original corpus requires 10 epochs.

6.5 Conclusion

We present a framework to learn a robust classifier under test-time constraints. We

demonstrate that the proposed selectors effectively select important words for classifier

to process and the data aggregation strategy improves the model performance. As future

work we will apply the framework for other text reading tasks. Another promising direction

is to explore the benefits of text classification model in an edge-device setting. This

problem naturally arises with local devices (e.g., smart watches or mobile phones), which

do not have sufficient memory or computational power to execute a complex classifier,

and instances must be sent to the cloud. This setting is particularly suited to ours since

we could choose to send only the important words to the cloud. In contrast, skim-RNN

and LSTM-jump, which process the text sequentially, have to either send the entire text

to the server or require multiple rounds of communication between the server and local

devices resulting in high network latency.

6.6 Summary

This chapter builds a computationally inexpensive selector model to identify words/phras-

es/sentences in the input text relevant for the target task. This Chapter also presents

a data augmentation technique to leverage the auxiliary supervision from the selector
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model in a structured way and enhance the text classification task in performance, speed

and robustness. On four benchmark text classification tasks, we demonstrate that the

framework gains consistent speedup with little degradation in accuracy on various test-

time budgets. In addition, being robust, the more test-time budget is afforded, the higher

performance gain is achieved.
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CHAPTER 7

Conclusion and Future Work

Natural language processing has brought about revolutionary improvement in different

sectors of our life. However, it requires an immense amount of labeled data to train the

NLP models which are very hard to acquire as annotating them needs a long time, specific

human skillsets as well as user data in practice could be very heterogeneously different from

ideal cases. In this dissertation, towards the goal of enriching supervision and combating

training data scarcity, we cover two important directions: how to select/retrieve relevant

data automatically and how to incorporate auxiliary supervision from the retrieved data.

While we have an enormous amount of open-sourced data which are user generated

and free not all of them are useful and feasible to process. In Chapter 2, we develop a

source data valuation framework what can quantifies the usefulness of a training corpora.

Then, to retrieve relevant instances from an corpora, we build a dense retriever model in

Chapter 3. In Chapter 5, we further improve the retriever. In Chapter 6, we develop a

more fine-grained selector to identify relevant words or phrases in a text instance. As for

the auxiliary data sources, in this dissertation, we have found that when selected/retrieved

properly external resources, data form other existing tools/methods prevailed in the

literature, standard linguistic information or domain knowledge as well as the underlying

structure present in the base data itself can provide additional supervision to the NLP

models.

With the retrieved relevant data, the next step is to come up with methods to from

auxiliary supervising from them. In this dissertation, we show that auxiliary supervision

can be obtained via a simple input-output formatted training data augmentation which is

architecture agnostic and can be adopted w/ any off-the-self model w/ much changing.
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However modification of the models may bring further improvements as well. For example

(i) in Chapter 3, we develop a retriever augmented framework for multi-modal generative

model that leverage both unimodal and bi-modal (code and text) retrieved candidates;

(ii) in Chapter 4, we build a joint inference probabilistic model that leverages rule-based

task-oriented auxiliary information and enhance the generation even further. Regarding

the extents of enhancements of downstream tasks, we find that incorporating the non-

parametric auxiliary information in a principled way can easily update model memory

without retraining them and enhance a wide range of NLP applications in various aspects

including performance, speed, robustness and interpretability.

However, several questions and related problems still remained as open problems such

as (i) we consider the text-code multi-modality problems in this dissertation. Can auxiliary

information improve other multi-modal low-resource NLP problems? One practical use-

case would be medical image captioning. (ii) how to perform the multi-modal retrieval

of auxiliary information based on the data structure present in the candidates (e.g.,

context flow tree of the source code)? (iii) Retrieved information on-the-fly guides the

generation task as a template. Can these be useful for making the generation diverse such

as automated diverse dialogue generation tasks and so on. We leave them as a future

exploration of this dissertation.
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