
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Acceleration of Compute-Intensive Applications on Field Programmable Gate Arrays

Permalink
https://escholarship.org/uc/item/2sv48697

Author
Rodriguez Borbon, Jose Milet

Publication Date
2020

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2sv48697
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Acceleration of Compute-Intensive Applications on
Field Programmable Gate Arrays

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Jose Milet Rodŕıguez Borbón

March 2020

Dissertation Committee:

Dr. Walid Najjar, Chairperson
Dr. Nael Abu-Ghazaleh
Dr. Amit Roy-Chowdhury
Dr. Sheldon X.-D. Tan

Copyright by
Jose Milet Rodŕıguez Borbón

2020

The Dissertation of Jose Milet Rodŕıguez Borbón is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

I would like to thank my advisor, Dr. Walid Najjar whose patience was immov-

able at every turn. In the difficult moments, your insight and experience provided the much

needed guidance to my research. I would like to thank the members of my dissertation

committee, Dr. Nael Abu-Ghazaleh, Dr. Amit Roy-Chowdhury, and Dr. Sheldon X.-D.

Tan, for reviewing my dissertation and for listening to my research findings.

I would like to thank all the fellow students in my lab. Xiaoyin Ma for your early

support during my first days in the lab. The end of your work in the lab was the beginning of

mine. Skyler Windh for your friendship and for showing me the fundamentals of the digital

world. It was always fun to chat and to drink tons of coffee with you. Prerna Budhkar for

been a perceptive and reliable friend. At the times when the darkness was getting too close,

you provided flashes of light to illuminate my road. Bashar Romanous for your patience

and attentiveness. Although we had different points of view, at the end of the day, a bar

of chocolate and a few minutes of discussion were enough to find common ground. Amin

K. Chahouki for your friendship. While working with you, I learned to distinguish between

sharp and rocky drawings. Junjie Huang for your devotion. One email was enough to get

you on the road to the school.

I would like to express gratitude to my family. To my wife, Ting, for all your hard

work, support, and patience during my studies. You always encouraged me to pursue my

dreams; to my little daughter, Emily, for providing me tons of happiness and hope.

I would like to express gratitude to my father Emilio, and my mother Alva Virginia.

From Dad and Mom, I learned to get up early, to work hard, to face hard times, and to

iv

enjoy time with my relatives and friends. To my sisters and bothers-in-law Olga, Sofia,

Maidy, Gustavo, Rubio, Oscar, and all my nephews.

I would like to express gratitude to my uncles, aunties, cousins, and all my extended

family. To my uncles and aunts Carlos, Jesus, Mario, Rey, Julia, and Cristina for all their

help. To my cousin Rey Ariel for showing me the roads to the college. To my cousins Jose

Hernan and Luz Mariana for their great character.

I would like to acknowledge all my friends and fellow students who provided guid-

ance and assistance: Victor, Jose Hugo, Boris, David, Albenis, Frankly, Aldemar, Harvey,

Fernando, German, Jonathan, Elizabeth, Sankalp, Mark, Dawn, Jason, Nhat, Joobin, Stefan,

Uy, and many others.

In addition, chapter three of this dissertation contains two of my previous published

works. The full citations are:

Jose M. Rodriguez-Borbon, Xiaoyin Ma, Amit K. Roy-Chowdhury, and Walid

Najjar. Heterogeneous acceleration of HAR applications. IEEE Transactions on Circuits

and Systems for Video Technology, Vol. 30, No. 3, March 2020.

Xiaoyin Ma, Jose M. Rodriguez-Borbon, Amit K. Roy-Chowdhury, and Walid

Najjar. Optimizing hardware design for human action recognition. IEEE 26th International

Conference on Field Programmable Logic and Applications (FPL), Lausanne, 2016, pp. 1-

11.

v

To my family for all their hard work and support.

vi

ABSTRACT OF THE DISSERTATION

Acceleration of Compute-Intensive Applications on
Field Programmable Gate Arrays

by

Jose Milet Rodŕıguez Borbón

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, March 2020

Dr. Walid Najjar, Chairperson

In recent years, the field of high performance computing has been facing a new

challenge: achieving high throughput at the lowest energy cost. Recent interest in field

programmable gate arrays (FPGA) has been spurred by their significant growth in density

and speed. While they were, until recently, considered an alternative to application-specific

integrated circuits (ASIC) for low volume designs, they have become an alternative compute

platform that achieves much higher floating point operations (FLOPS) per unit of energy.

To partially offset the massive cost of the energy consumption in CPUs and GPUs,

this dissertation explores the design and implementation of high-throughput energy-efficient

compute-intensive applications on FPGAs. I show how these demanding applications can be

built. To this end, I have chosen three applications from diverse domains: (a) Human Action

Recognition from the field of computer vision and image processing, (b) Quantum Dynamics

Simulations from the field of computational physics, and (c) the QR decomposition of Tall-

and-Skinny Matrices from the field of high performance linear algebra. Regarding (a), I

show that FPGAs combined with GPUs outperforms homogeneous platforms by a factor of

vii

1.3 while consuming 50% less energy. In regards to (b), for systems having over a thousand

atoms, I show that FPGAs using wide pipelines oriented towards the processing of sparse

matrices surpasses competing platforms by a factor of 1.5 while consuming 4.0× less energy.

In terms of (c), for tall-and-skinny matrices having over 50K rows, I show that FPGAs using

wide and deep pipelines can exceed the performance of competing platforms by a factor of

1.5 while executing as much as twice more FLOPS per unit of energy.

viii

Contents

List of Figures xii

List of Tables xvi

1 Introduction 1

2 Background 10
2.1 Reconfigurable Architectures . 10
2.2 The Micron Wolverine Co-Processor Series 13
2.3 Wolverine Co-Processor Series Comparison 15
2.4 Related Work . 16

2.4.1 Human Action Recognition (HAR) Applications on FPGAs 16
2.4.2 Quantum Dynamics Simulations on FPGAs 18
2.4.3 QR Decomposition of Tall-and-Skinny Matrices on FPGAs 20

3 Acceleration of HAR Applications 24
3.1 Problem Description . 27
3.2 Fixed-Point HOG3D HAR . 30
3.3 FPGA Implementation . 34

3.3.1 Pre-processing Engine . 34
3.3.2 Cell Descriptor Engine . 36
3.3.3 Block Descriptor Engine . 37
3.3.4 Video Descriptor Engine . 38

3.4 GPU Implementation . 41
3.4.1 Pre-processing Engine . 42
3.4.2 Cell Descriptor Engine . 43
3.4.3 Block Descriptor Engine . 44
3.4.4 Video Descriptor Engine . 45

3.5 Complexity Analysis . 46
3.5.1 Pre-processing Engine . 47
3.5.2 Cell Descriptor Engine . 48
3.5.3 Block Descriptor Engine . 49

ix

3.5.4 Video Descriptor Engine . 49
3.6 Experimental Results . 50

3.6.1 FPGA Synthesis . 51
3.6.2 FPGA Throughput . 52
3.6.3 GPU Throughput . 53
3.6.4 Heterogeneous HAR . 57
3.6.5 Energy Efficiency Comparison . 59
3.6.6 Comparison With Related Works 61

3.7 Conclusions . 63

4 Acceleration of Quantum Simulations 65
4.1 Introduction . 65
4.2 Theory and Computational Methodology 68
4.3 Chemical Systems and General FPGA Matrix Operations 71
4.4 Baseline FPGA Design and Architecture 73

4.4.1 Real-Valued Matrix Multiplications on FPGAs 73
4.4.2 Complex-Valued Matrix Multiplications on FPGAs 78

4.5 Optimized FPGA Design for Efficient Propagation of RT-TDDFTB Electron
Dynamics . 80

4.6 Experimental Results and Discussion . 85
4.6.1 Experimental Environment . 85
4.6.2 Single vs. Double Precision . 87
4.6.3 Computational Speedup of FPGAs vs. GPUs and CPUs 89
4.6.4 Energy Consumption of CPUs, GPUs, and FPGAs 93
4.6.5 Performance on Recent FPGA Hardware Architectures 95

4.7 Conclusion . 95

5 Acceleration of the QR Decomposition of Tall-and-Skinny Matrices in
FPGAs 97
5.1 Introduction . 97
5.2 QR Decomposition . 100

5.2.1 QR Decomposition For TSMs . 100
5.2.2 QR Decomposition Using Householder Reflections 102
5.2.3 Householder Reflectors - Complexity Analysis 104
5.2.4 QR Decomposition in CPUs and GPUs 105

5.3 Proposed Micro-architecture . 106
5.3.1 Proposed Optimizations . 106
5.3.2 RTL Implementation . 111

5.4 Experimental Results . 117
5.4.1 Area Utilization . 118
5.4.2 Execution Times and Efficiency . 119
5.4.3 Comparison with CPUs and GPUs 121
5.4.4 Operations per Clock Cycle and Efficiency 124
5.4.5 Energy Efficiency . 125
5.4.6 Conclusions . 126

x

6 Conclusions 128

Bibliography 131

xi

List of Figures

1.1 U.S. data center power consumption [29]. 2
1.3 Energy efficiency as a function of solution number [55]. All the solutions to

the left of the vertical are software-based while the the solutions to the right
are hardware-based. 6

2.1 The FPGA reconfigurable architecture. 11
2.2 The Wolverine reconfigurable co-processor. 14

3.1 On the left, the reduced fixed-point recognition accuracy using χ2 kernel
versus bit-width. On the right, the mean-squared error (MSE) of the video
descriptors for the KTH dataset. 33

3.2 Pre-processing engine: Four modules are responsible for the computation of
the integral videos along the x, y, and t axis. 35

3.3 Components of the cell descriptor engine. 36
3.4 Components of the block descriptor engine. 37
3.5 Components of the video descriptor engine. 39
3.6 Matrix multiplication component. The top p FIFOs contain the elements

rows of matrix Q. The left-most FIFO contains the elements of the columns
of matrix R. In the center, the distances are computed and accumulated. . 40

3.7 Components of the pre-processing engine. 42
3.8 Cell descriptor engine. Two kernels are responsible for the computation of

the cell descriptors. 44
3.9 Block descriptor engine. Two kernels are responsible for computing the block

descriptors. 44
3.10 Video descriptor engine. Kernels used in the process of computing the video

descriptors. 46
3.11 Heterogeneous HAR desing. (1) The transferring of data from the host to

the FPGA (2) The execution in the FPGA (3) The transferring of data from
the FPGA to the CPU (4) The transferring of data from the CPU to the
FPGA (5) The execution in the GPU (6) The transferring of data from the
GPU to the CPU. 57

xii

3.12 Heterogeneous HAR pipeline. The pipeline has four steps: (a) the transfer-
ring of data from the host to the FPGA (H-FPGA) and from the FPGA
to the host (FPGA-H); (b) the execution in the FPGA (FPGA); (c) the
transferring of data between the host and the GPU (H-GPU); and (d) the
execution in the GPU (GPU). 59

4.1 A representative subset of the carbon nanoribbons with various lengths ex-
amined in this work. 71

4.2 Sparsity of the matrix product S−1 · Ĥ[ρ̂] as a function of nanoribbon size. 72
4.3 Schematic of parallelized matrix multiplication on FPGAs. The computation

of the block C11 can be obtained via the outer-products between the columns
of A11 and the rows of B11. 74

4.4 High-level view of the design for parallelizing the RT-TDDFTB simulations
in hardware. In this figure, the Scheduler directs the execution of tasks to
the other modules. The Read (Write) controller reads (writes) one input
matrix from (to) the off-chip memory. Finally, the Multiply-and-Accumulate
module executes the matrix multiplication operation. 76

4.5 Hardware implementation of the Multiply-and-Accumulate module. This
module executes the real-valued outer-products between the columns of ma-
trix A and the rows of matrix B. The partial results are stored in block
RAMs. The final results are stored in the FIFOs shown at the bottom. On
the right part, the components of the Multiply-and-Accumulate unit are shown. 76

4.6 Hardware implementation of the Complex Multiply-and-Accumulate module.
This module executes the complex outer-products between the real columns
of matrix A and the complex rows of matrix B. The values of the resulting
matrix are serialized to the bottom FIFOs sr and si. 79

4.7 Hardware implementation of the Complex Accumulator module. This module
executes the operation αTij + βCk−1

ij . The values of Tij are in the top-left

FIFO while the values of Ck−1
ij are in the top-right FIFO. The complex results

are stored in the bottom FIFOs. 80
4.8 Schematic of the compressed sparse blocks (CSB) matrix representation used

in this work. The input matrix is divided into four blocks of size 4×4. While
the block pointer points to an array containing the number of nonzero ele-
ments per block, the coordinate list (COO) pointer points to an array con-
taining the column index, row index, and the value of the nonzero elements
in each block. 82

4.9 Hardware implementation of the optimized blocked complex-matrix multi-
plication module. My implementation harnesses the Block and COO pointer
to exploit the sparsity of Ai1, and, as a result, dramatically decreases the
complexity of the computation Ai1B1j . 83

xiii

4.10 Schematic of the Micron Wolverine FPGA used in this work. This hardware
architecture is comprised of a CPU with one FPGA attached via a PCIEx-
press Line. The FPGA is first configured with the specific simulation to be
executed, and the CPU sends commands to the FPGA via the host interface.
These commands include operations such as writing (reading) data to (from)
the FPGA external memory, executing the computation, and querying the
status of the computation. 86

4.11 Absorption spectra of various carbon nanoribbons computed in single- and
double-precision comprised of (a) 426, (b) 842, (c) 1,674, and (d) 3,338 atoms.
In all cases, the absorption spectra computed in single precision is nearly
indistinguishable from the double-precision spectra. 88

4.12 Comparison of computational speedup for the CPUs, GPUs (K40 architec-
ture), and FPGAs (Virtex-7 architecture). For clarity, the speedup of each
hardware platform is normalized by dividing its execution time by the timings
of the CPU running two threads.. 92

4.13 Comparison of energy consumption for FPGAs, GPUs, and CPUs. 94

5.1 QR Decomposition for tall-and-skinny matrices (TSMs). This binary tree
represents the QR decomposition of A such that Ai = QiRi and

(Rj

Rj+1

)
=

QaRa. 101
5.2 Tiling the QR decomposition. Instead of applying the QR Decomposition

on blocks of size (2n − j) × (n − j) as shown is part (a), I partition the
decomposition in tiles of size (2n−j)×t. Next, I apply the QR decomposition
to the left-most tile and save the reflectors as shown in part (b). Finally, I
apply these reflectors to the remaining tiles as shown in parts (c) and (d). 107

5.3 QR decomposition using Householder reflectors. At the top, the operation

a
(1)
1 = Q1a1 is executed via a shallow pipeline. On the bottom, the operation

a
(4)
1 = Q4Q3Q2Q1a1 is executed via a deep pipeline. 108

5.4 Iteration j of the QR decomposition for upper triangular matrices R1 and
R2. On (a) the non-optimized QR decomposition, and on (b), the optimized
QR decomposition. 110

5.5 Processing element (PE) responsible for the computation of the Householder
reflector Qk i.e. the vector uk along with the parameter γk. 112

5.6 Processing element (PE) responsible for applying the Householder reflectors
Qk to an incoming vector aj such that tj = Qkaj 112

5.7 HR Decomposition engine, which computes the reflectors Qk and applies
these reflectors to the incoming vectors aj 113

5.8 Execution times Vs. number of engines . 119
5.9 (a) Execution times and (b) efficiency of the QR decomposition via House-

holder reflectors for 16 engines. 120
5.10 Execution times as a function of the number of rows for QR decomposition

on FPGAs, GPUs, and CPUs. 122
5.11 Double-precision floating point operations (FLOPS) per clock cycle for CPUs,

GPUs, and FPGAs and their efficiency. 124

xiv

5.12 Energy efficiency for CPUs, GPUs, and FPGAs. 126

xv

List of Tables

1.1 Comparison of the peak number of FLOPs per platform 5

2.1 Micron Wolverine comparison . 15
2.2 Comparison of QR decomposition via Householder reflectors designs in FPGAs 21

3.1 Pre-processing engine complexity analysis 47
3.2 Cell descriptor complexity analysis . 48
3.3 Video descriptor complexity analysis . 50
3.4 FPGA resource utilization percentages per engine. Image size 320× 240 . . 51
3.5 Virtex-7 FPGA throughput per engine. Image Size 320× 240 52
3.6 K20, K40 and K80 throughput per engine when processing eight videos in

parallel. Image size 320× 240 . 54
3.7 Heterogeneous HAR design execution times per task. Image size 640× 480 57
3.8 Energy usage (Joules), energy efficiency (Frames/Joule), and throughput

(FPS) per platform. Image size 640× 480 60

4.1 System size (number of atoms and Hamiltonian matrix size) and mean squared
errors (MSEs) for the various carbon nanoribbons computed with the FPGA-
enabled RT-TDDFTB approach. 89

4.2 Virtex-7 FPGA utilization for computing RT-TDDFTB electron dynamics 90

5.1 Computational complexity analysis . 104
5.2 Micron Wolverine II comparison . 117
5.3 Area utilization per co-processor . 118
5.4 Comparison of the parameters of the three accelerators 121

xvi

Chapter 1

Introduction

Compute-intensive applications execute a large number of operations per clock cy-

cle, transfer extensive amounts of data between the on-chip and off-chip memory, and con-

sequently require important on-chip memory resources. In this dissertation, I explore the

acceleration of compute-intensive applications on field programmable gate arrays (FPGA).

The acceleration of such applications is important because of the advent of three trends:

the massive increase of operational costs in data centers due to energy consumption, the

exponential increase of resources available on FPGAs, and the high energy efficiency demon-

strated by FPGAs while executing arithmetic operations.

The first critical trend taking place is the massive increase of the operational cost

of data centers due to energy consumption [14, 49, 138] as shown in Figure 1.1. Over the

years, chip makers, along with the high performance community, have sought to improve

performance without accounting for energy consumption. As shown in this figure, between

the year 2000 and 2005, the energy consumption in data centers in the U.S. doubled [14].

1

Figure 1.1: U.S. data center power consumption [29].

For the year of 2008, it has been reported that the annual cost due to energy consumption

exceeded the acquisition cost for small and medium-size data centers [7]. For the year 2013,

it was estimated that data centers and servers consumed over 70 billion kWh (kilowatt

hours) i.e. the equivalent to 1.8 percent of the total electricity consumption in the U.S.,

costing about $ 7.0 billion in electricity per year [49]. These energy expenditures are the

equivalent to the energy consumption of over 6.0 million U.S. households [49]. In addition

to the energy required for the operation of the servers, the infrastructure needed to operate

these data centers (cooling systems, air-conditioning, and power delivery devices among

others) requires additional energy encompassing up to 50% of the energy required by the

data centers [14].

Due to such large energy expenditures, DARPA has declared energy-efficient com-

puting as the next frontier for the high performance computing community. For the new

2

decade, the most energy-efficient computer in the U.S. should deliver at much as one exaflop

(1018 floating point operations per second) using only 20 million watts (MW) [138]. For

today’s standards, achieving such impressive performance per unit of energy would require

over 50× gains in throughput with minimal increases in energy expenditures [9].

The second important trend taking place is the exponential increase in FPGAs

density and throughput since their inception. To illustrate FPGA improvements in resources

and performance, I report the increases in the amount of Look-up Tables (LUT), block

RAMs (BRAM), digital signal processors (DSP), and frequency over time. In addition, I

show how these resources have been utilized. Shannon [127] and her team have measured

the resources gains of FPGAs in the last 25 years. In their work [127], they sampled the

amount of resources (LUTs, BRAMs, DSPs) of the largest FPGA per year per vendor. In

addition, for the same period of time, they sampled the resource utilization (LUTs, BRAMs,

DSPs) for a number of projects. Given the availability of resources per device per year and

the utilization of resources per project per year, they interpolate the data and report the

trends.

For the availability of LUTs and its utilization, the observed trends are shown

in Figure 1.2a. To construct this figure, first, the maximum size FPGA per vendor per

year is found. Next, using the FPGA specifications, a scatterplot showing the LUTs per

FPGA per year is constructed. Then, a regression curve modeling the relation between the

number of LUTs and time is built as shown in the curve at the top. Moreover, for the same

period of time, a number of research projects are sampled along with the LUTs utilization.

As before, a scatterplot showing the LUTs utilization per project per year is constructed.

3

(a) Evolution of 4-LUTs in the largest FPGA
and the usage per year [127].

(b) Evolution of the BRAMs in the largest
FPGA and the usage per year [127].

(c) Evolution of DSPs in the largest FPGA
and the usage per year [127].

(d) Evolution of the maximum frequency
of the largest FPGA and the frequency
achieved per year [127].

4

Then, a regression curve modeling the relation between the parameters is built as shown in

the bottom line.

The same methodology is used to measure the availability of BRAMs and DSPs as

shown in Figures 1.2b and 1.2c respectively. Moreover, to achieve high performance, FPGA

applications have to target high operating frequencies as well. Using the methodology

described above, Shannon et al. [127] reports on the maximum operating frequency of the

largest device per vendor per year and the operating frequency of the sampled projects per

year as shown in Figure 1.2d. By inspection of Figures 1.2a, 1.2b, 1.2c, and 1.2d, I conclude

that over time, there has been an exponential increase of the resources and the operating

frequency of the FPGAs.

To better assess the computational power of FPGAs with respect to CPUs and

GPUs, in terms of FLOPS, the following table shows the nominal peak performance of

typical platforms. The FLOPS for CPUs and GPUs is as per the specifications. To de-

Table 1.1: Comparison of the peak number of FLOPs per platform

Platform Frequency Single FLOPS/s Double FLOPS/s

NVIDIA K40 GPU 745 MHz 4.29 TFLOPS 1.43 TFLOPS
Xilinx UltraScale(VU9P) FPGA 400 MHz 1.09 TFLOPS 547 GFLOPS
Intel E5-2697V2 CPU (12 Cores) 2.7 GHz 518.4 GFLOPS 259.2 GFLOPS

rive the number of FLOPS in the FPGA, we proceed as follows. A single precision fused

multiply-and-add operation uses 5 DSPs while the same operation in double-precision takes

10 DSPs. The chip has 6840 DSP units. As a result, we get 2 × 1368 × 400 × 106 = 1094

single precision GFLOPS per second. Similar calculations apply to the peak performance

in double precision.

5

In addition to the massive increase of the operational cost due to energy con-

sumption in data centers and the exponential increase of resources in the FPGA, another

trend has made its mark on the field: FGPAs have shown to be more energy efficient than

competing platforms at the processing compute-intensive workloads. Figure 1.3 compares

the energy efficiency of CPUs and FPGAs. In the work of Horowitz [55], it is shown that

FPGAs

Microprocessors

Figure 1.3: Energy efficiency as a function of solution number [55]. All the solutions to the
left of the vertical are software-based while the the solutions to the right are hardware-based.

conventional Von Neumann architectures (CPUs and GPUs) are capable of achieving a high

throughput at the expenses of consuming excessive amounts of energy. For instance, this

work shows that the overall execution of a 32-bit add instruction on a 45 nm CPU takes

about 70 pJ, with the actual add operation consuming only 0.1 pJ; 99.9% of the energy

is wasted on tasks including fetching (and decoding) the instructions and controlling the

datapath. In addition, this work also shows that one can achieve important energy savings

6

(on the order of a hundred-fold or more) through the use of hardware specialization (digital

signal processors, FPGAs, or ASICs).

By observing these trends, this dissertation explores whether it is possible to build

compute-intensive applications able to match, or even outpace, the performance of com-

peting platforms while delivering better throughout per unit of energy. To do so, I have

chosen three applications from diverse domains. They are (a) Human Action Recognition

from the field of computer vision and image processing, (b) Quantum Dynamics Simulations

from the field of computational physics, and (c) the QR decomposition of Tall-and-Skinny

Matrices from the field of high performance linear algebra. When taken together, these

three applications have the following characteristics:

• They require the execution of hundreds of arithmetic operations (i.e. DSP) per clock

cycle. For example, in the case of (a), the clustering algorithm requires the execution

of hundreds of multiply-and-add operations per clock cycle. In the case of (b), the

blocked multiplication of complex matrices requires wide pipelines able to execute

hundreds of floating point operations per clock cycle. In the case of (c), the fast

decomposition of matrices requires deep and wide pipelines able to execute hundreds

of floating point operations per clock cycle.

• To support a high number of arithmetic operations per clock cycle, these applications

require extensive usage of block RAMs. In the case of (b), to support the multiplication

of complex matrices on the FPGA, it is required to store the input values, partial

results, and the final results in large BRAMs. For (c), the use of on-chip tiles is

paramount and as a result, the requirements for BRAMs are extensive as well.

7

• The requirements of hundreds of operations per clock cycle along with extensive block

RAMs, implies the need for additional resources to glue together DSPs and BRAMs.

Those resources can include LUTs, registers, multiplexers, and decoders.

• Along with the extensive usage of resources, these applications require a high operating

frequency in order to match, or surpass, the performance of competing platforms.

• For these applications, it is desirable to execute a high number of floating point

operations per unit of energy. For example, in the case of (b), executing a simulation

with a few thousand atoms can take days, and as a result, the use of energy-efficient

platforms is crucial.

The rest of this dissertation is organized as follows. Chapter two details previous

work. There, I describe the experimental platforms used in this work. In addition, I present

previous approaches to human action recognition, quantum dynamics simulations, and the

QR decompositions of tall-and-skinny matrices in FPGAs versus competing platforms such

as CPUs and GPUs.

In chapter three, I present my compute-intensive human action recognition engine.

By taking advantage of an heterogeneous approach, my design is able to match and outpace

the performance of similar applications running on homogeneous platforms by a factor of

1.3 while using 50% less energy. The high performance achieved by my design is due to the

high utilization of resources. My design exploits the extensive number of DPS in the target

device, and as a result, it executes hundreds of fix-point operations per clock cycle while

operating at over 150 MHz.

8

In chapter four, I show my design for the execution of quantum dynamics simu-

lations on FPGAs. By offloading the most intensive calculations of these simulations onto

an FPGA, I show that FPGAs can exceed the performance of commercial libraries running

on GPUs and CPUs. For systems having thousands of atoms, my design is 1.5× faster

and has lower expenditures of energy. To achieve such performance, my engine relies on

the execution of over five hundred single-precision floating point operations per clock cycle

while operating at 166 MHz.

In chapter five, I present my design for the QR decomposition of tall-and-skinny

matrices on FPGAs. Compared with commercial libraries running on GPUs, my design

is 3.0× faster for matrices having up to 256 columns. Compared with highly optimized

libraries running on CPUs, my design is 1.5× faster for matrices having over 50K rows.

Additionally, my design uses less energy. The high performance of my engine relies on

the execution of over 256 double-precision floating point operations per clock cycle while

operating at 266 MHz. In chapter six, I present my conclusions.

9

Chapter 2

Background

2.1 Reconfigurable Architectures

FPGAs devices appeared at the beginning of 1980. At first, FPGAs mostly

consisted of programmable logic devices (PLD) and complex programmable logic devices

(CPLD) that facilitated the communication between digital entities as well as the com-

munication with the surrounding environment. As these programmable devices gained

popularity, they made inroads in other markets, namely the implementation of network

and memory interfaces. Due to the challenges involved in processing millions of networks

packets quickly, FGPA designers added more resources to the device. As a result, FPGAs

grew in performance and density. Around 2010, FPGAs made another wave of expansion

in the field of general purpose computation. To achieve this, FGPA designers added ad-

ditional LUTs, BRAMs, DSPS, and fast interfaces to move data to and from the FPGA.

By the year 2015 or so, FPGAs achieved density and performance comparable to low- and

10

middle-end CPUs. As a result, academic and industrial computational solutions based on

FPGAs increased.

Today, in addition to high throughput interfaces to access off-chip memories, FP-

GAs incorporate millions of LUTs, thousands of DSP cores, and thousands of BRAMs. As

such, FPGAs are making their way in to the field of high performance computing and its

applications. Figure 2.1 shows the fundamental components of a modern FPGA [66, 24].

As shown in this figure, the architecture consists of configurable logic blocks (CLB), pro-

CLB CLB

SM SM

CLB

DSPCLB

SM SM

CLB DSPCLB

CB CB

CB CB

CB CB

CB CB

CB CB

LUT/RLE FF

LUT/RLE FF

BLE #1

BLE #N

CB Output Crossbar

Input Crossbar

CLB

Feedback
inputs

M
em

or
y

B
lo

ck

Figure 2.1: The FPGA reconfigurable architecture.

grammable switch matrices (SM), configurable block memories (BRAM), configurable I/O

blocks, DSP blocks, among others.

CLBs are the fundamental building blocks of FPGAs. These blocks contain com-

binational and sequential logic oriented towards the implementation of small finite state

machines (FSM). CLBs usually contain RAM units to implement combinational logic func-

tions in the form of LUTs, flip-flops to implement registers, and multiplexers to facilitate

the routing of the signals. In addition, CLBs contain clock and reset signals to drive and

reset the execution of the internal logic.

11

Programmable SMs facilitate the communication between the CLBs, BRAMs,

DSPs, and other components inside the FPGA. By using long lines, these switches make it

possible for fast communication between blocks that might be far apart. In addition, these

switches have short lines to facilitate the communication between nearby blocks. In order

to enable or disable connections, these SMs use transistors.

Block RAMs are distributed units of memory able to hold up data. Typically,

these BRAMs can store either 18 or 36 Kbits of data. These BRAMs can be shaped in

multiple ways. BRAMs can be cascaded (or adjoined) so as to create taller (or wider)

blocks. In addition, BRAMs can be addressed in various modes. For example, single port

BRAMs can be addressed by a single digital process (for example, a FSM) while dual port

BRAMs can be addressed by multiple digital processes (for example, multiple FSMs).

Configurable I/O blocks allow communication between the FPGA and the sur-

rounding environment. They are designed to read and write signals to and from the sur-

rounding devices. Usually, these I/O pins are connected to input and output buffers and

they can be programmed for active high or active low signaling.

DSP blocks facilitate the implementation of operations in either integer, fix-point,

or floating point arithmetic. These operations include addition, multiplication, and multiply-

and-accumulate among others. Usual inputs and outputs to these block include signals

having 18, 25, or 32 lines. Because DSPs are implemented in hard logic, they are able to

operate at high frequencies.

In addition to these cores, FPGA vendors also include traditional CPU processors

(soft-processors) in the FPGA fabric. These soft-processors use limited amount of resources

12

and operate with low power budgets. As a result, FPGAs equipped with soft-processors are

mostly deployed in embedded systems. Other FPGA cores include analog cores and high

density RAM cores (ultra RAMs).

2.2 The Micron Wolverine Co-Processor Series

Having described the fundamental components of FPGAs, in this section, I de-

scribe the development platform I have used through my work. The Wolverine platform is

a heterogeneous platform [94] that offers the best features of two different worlds. While the

CPU unit allows the execution of highly optimized software libraries, the FPGA unit allows

the execution of highly optimized hardware pipelines. The Wolverine co-processor is a pro-

grammable hardware platform that can be reconfigured so as to meet the needs of different

workloads. These reconfigurable solutions are usually called personalities. These personal-

ities can be used to fully, or partially, accelerate workloads coming from multiple domains.

The architecture of the Wolverine heterogeneous co-processor is shown in Figure 2.2.

As shown in this figure, the Wolverine platform is made of a CPU, a co-processor,

and the global shared virtual memory. The communication between the host and the co-

processor is via PCI express lines. The Wolverine co-processor has four main components:

the host interface, the application engines (AE), the memory crossbar network, and the

memory controllers (MC).

These AEs are reconfigurable and can be programmed as per the application re-

quirements. As shown in this figure, each AE is able to both send and receive instructions to

and from the host interface. Typical instructions include starting, resuming, and finishing

13

Figure 2.2: The Wolverine reconfigurable co-processor.

a task. Likewise, AEs can issue request to the memory crossbar network. Typical requests

to the memory crossbar network include executing a read, executing a write, executing an

atomic write, among others. For every memory request made, the memory subsystem is-

sues a response. These responses can include the confirmation of a write operation and the

response to a read request. In addition, some Wolverine boards allow direct communication

between the AEs through an AE-to-AE interface. Otherwise, the communication between

AEs is via the host or the FPGA off-chip memory.

The host interface allows the communication between the host and the co-processor.

This interface is responsible for processing all the instructions coming (or going) from (or

to) the host application. When the destination of a host instruction is an AE, the host in-

terface redirects that instruction to the respective AE. Likewise, this interface also redirects

the instructions originating in AEs going to the host.

14

As mentioned above, the memory crossbar network allows the communication

between the AEs and the MCs. Each time that an AE issues a command to the FPGA

off-chip memory, this crossbar is responsible for redirecting the request to the appropriate

MC. Likewise, each time that the a MC sends a response to a AE, this crossbar redirects the

response to the appropriate destination. In short, this crossbar presents a uniform interface

of the off-chip memory subsystem allowing for an easy-to-use communication mechanism

between the AEs and the off-chip memory.

The Wolverine memory subsystem typically has four memory controllers (MC).

Each MC has one DIMM and each DIMM has two ranks. Moreover, each rank has eight

banks. As a result, this memory subsystem has 64 memory banks.

2.3 Wolverine Co-Processor Series Comparison

Table 2.1 compares the Wolverine co-processors used in this work.

Table 2.1: Micron Wolverine comparison

Feature Wolverine Wolverine Wolverine
I II-A II-B

Year 2014 2018 2018

FPGA Virtex-7 UltraScale+ UltraScale+
(VX2000) (VU7P) (VU9P)

- Registers 2443K 1576K 2364K
- Lookup Tables (LUT) 1221K 788K 1182K
- Block RAMs 1203 1440 2160
- Block Ultra RAMs - 640 960
- DSPs 2160 4560 6840

Memory Channels 32 32 32

Off-chip Memory 32 GB 64 GB 64 GB

Bandwidth 42.5 GB/s 68 GB/s 68 GB/s

Frequency 166 MHz 266 MHz 266 MHz

15

One of the main differences between the Wolverine I and the Wolverine II series is

the operating frequency. In addition, the Wolverine II has more in-chip memory and has a

larger bandwidth. In this work, initial projects have targeted the Wolverine I co-processor

while recent developments have targeted the Wolverine II board.

2.4 Related Work

Having described the co-processors used in this work, next, I present relevant work

in the acceleration of Human Action Recognition, Quantum Dynamics Simulations, and the

QR Decomposition of Tall-and-Skinny Matrices.

2.4.1 Human Action Recognition (HAR) Applications on FPGAs

Early HAR applications are based on HCF and consist of four steps: sampling

the video signal, computing features per region of interest, merging these features to get a

fixed-size video feature, and finally, training a classifier. Sampling is dense or sparse [51].

Techniques to compute the features of a region include the scale-invariant feature transform

(SIFT) [85] and the histogram of oriented gradients (HOG) [90, 69]. The features of the

regions are usually merged via a bag-or-words approach [74, 26], and SVMs are commonly

used for classification [123]. Initial work in this field includes a behavioral recognition

system via sparse spatio-temporal features [31]. Similarly, spatio-temporal features, along

with local SVMs, have been proposed [123].

Recent approaches to HAR algorithms are based on learned features [76]. In

this approach, a machine learning algorithm samples the video at predetermined positions,

16

learns the local features, aggregates these features, and finally, classifies them. Early work

using learned features includes a biologically-inspired system for action recognition [61].

This system takes inspiration from the dual stream organization of the visual cortex: one

stream processes the shapes while the second stream processes the motion. Also, a CNN

containing a three-dimensional receptive field learns to classify human actions [54]. This

network generates action descriptions and uses a feed-forward NN in the classification stage.

In order to improve the accuracy of traditional CNNs, one stream CNNs, re-

searchers have studied two-streams CNNs [64, 132, 148, 36, 156, 33]. In a typical configura-

tion, the first stream learns the spatial features while the second stream learns the temporal

features. Variations on this model set one of the streams to learn the features of the optical

flow, the motion flow, or the context of the scene, among others. Moreover, the outputs

of the streams are usually fused via a fully connected feed-forward neural network. Fur-

ther, to reduce the computational complexity of two-streams CNNs, factorized CNNs are

proposed [140]. Factorized CNNs using spatial convolutional kernels along with temporal

convolutional kernels are designed to reduce the complexity of the CNNs while maintaining

the recognition accuracy.

Hybrid methods using HCF and learned features have been studied as well. In

this approach, the fusion of HCFs boost the performance of the CNNs. Likewise, the

fusion of learned features boost the performance of HCF-based classifiers. These designs

include a method for recognizing human actions via the fusion of HCF features, based on

dense trajectories, and deep-learned features [147]. Also a system for human detection and

tracking that uses learned features and SVM classifiers [155]. Further, to save computations,

17

it has been evaluated whether features extracted from CNNs can be re-purposed for related

tasks [32].

Hou et al. [57] proposes an FPGA real-time HAR system operating at 600 fps.

It has a recognition rate of 93.2% when working with a human gesture database with four

actions. The recognition rate drops to 80.8% when a few additional gestures are added.

Although this system has a competitive throughput, its recognition rate is nontrivial to

predict when working with challenging benchmarks having a larger number of classes. Con-

versely, my system achieves competitive accuracy with benchmarks having over 50 classes.

Additionally, my design has a larger throughput ranging from 455 fps to 1, 304 fps.

2.4.2 Quantum Dynamics Simulations on FPGAs

Modern quantum chemistry techniques depend critically on massively-parallelized

hardware to enable the calculation of both ground- and electronic-excited states. Platforms

including CPUs, application-specific integrated circuits (ASICs), GPUs, and FPGAs have

been used in the task of simulating the classical dynamics of atoms and molecules, and

lately, these platforms have been used in the task of simulating the behavior of systems

governed by the laws of quantum dynamics.

The Anton machine [129] is one of the pioneering ASIC platforms dedicated to the

simulation of the classic dynamics of molecules. This massive parallel device is composed

of hundreds of processing elements interacting via a fast tri-dimensional communication

network. Each processing element is composed of two high-throughput interacting subsys-

tems. The first subsystem calculates the forces between interacting particles and the second

computes the Fast Fourier Transform (FFT) among other calculations. While ASICs chips

18

can be orders of magnitude faster than general purpose computational platforms, they are

very expensive to design and hard to modify.

In addition, researchers have targeted the acceleration of classical and quantum

dynamics simulations in GPUs. The work in [3] shows that molecular dynamics simula-

tions can be fully implemented on GPU notwithstanding the lacking of support for double

precision floating point arithmetic in early devices. Moreover, the work in [43, 120] devel-

ops a set of libraries targeting the acceleration of molecular dynamics entirely on GPUs.

By taking advantage of the message-passing interface (MPI), as well as the support for

double-precision floating point calculations, these libraries are able to run in either single or

multiple GPU environments. Due to the availability of more single precision floating point

units than double precision units in GPUs, the use of dynamic precision arithmetic [86] has

been proposed. In this work, it is shown that the error of the calculations of the electron

repulsion integrals can be minimized by calculating the large integrals in double precision

and the other integrals in single precision.

Moreover, the design of hardware engines for the simulation of molecular dynamics

in FPGAs has been addressed as well. For instance, a large-scale reconfigurable cluster for

the simulation of molecular dynamics has been proposed [75]. This system features a high-

bandwidth, low latency 3D torus network that makes possible the communication between

the kernels. The work in [154] presents an end-to-end engine targeting the simulation of

molecular dynamics. This engine features online particle-pair generation, short and long

range force evaluation, bonded interactions, motion updates, and particle migration. In

19

this work, they propose a number of micro-architectures to compute bounded interactions,

force summations with motion updates, and FFTs, among others.

2.4.3 QR Decomposition of Tall-and-Skinny Matrices on FPGAs

Previous researchers have addressed the development of efficient software and

hardware solutions to decompose matrices via the QR method. In the area of CPUs,

important techniques to increase the performance of the QR decomposition has been pro-

posed [12, 30, 46]. For instance, methods to consolidate the application of Householder

reflectors via matrix multiplications [12] make it possible to accelerate the computation in

platforms that have large caches. Furthermore, communication-avoiding methods are gain-

ing traction [30]. These techniques are able to execute the QR decomposition in multiple

nodes while minimizing the exchange of data. As far as GPUs, a communication-avoiding

QR factorization routine for TSMs has been presented [4]. In this work, the entire decom-

position is executed on the GPU via compute-bound kernels. A high-performance method

to execute the QR factorization on GPUs is described in [65]. This method takes advantage

of the highly optimized matrix multiplication routines in GPUs and outperforms existing

libraries such as the MKL and MAGMA routines for large matrices.

Researchers have proposed cores targeting the QR decomposition of matrices in

FPGAs as well. In the case of QR decomposition via GSs, CHs, and GRs, these works

include [125, 150, 40, 13]. The QR decomposition via the HR method has not received as

much attention despite its compelling features including lower complexity, higher stability,

20

Table 2.2: Comparison of QR decomposition via Householder reflectors designs in FPGAs

Work Ref. [141] Ref. [114] This Work

Year 2011 2012 2020

Synthesis Tool ISE 10.0 ISE 10.0 Vivado 17.2

FPGA Virtex-5 Virtex-6 Virtex-7 (Ultrascale+)

Frequency MHz 150 315 266

Peak GFLOPs 10.2 129 68

Max. FLOPs/Cycle 64 409 256

Efficiency for TSM (%) 7.0 - 11.0 36.0 28.7 - 54.2

Target Matrix Shape Square TSM TSM

Matrix Shape (R,C) (10K, 10K) (10K, 51) (10K, 64-512)

Block Parallelization 2 1 16

Dot-Products Stream Reduction Tree Stream Reduction

Pipelined Reflectors 16 1 4

and its larger degree of parallelism [42]. Table 2.2 compares my work with existing HR

approaches.

In previous work, Tai et al. [141] proposed a QR decomposition engine for the

decomposition of large square matrices. In this design, the input matrix A is divided into

square tiles, and then the HR decomposition is executed in multiple steps. In the first step,

HR decomposition is applied to the top leftmost tile, and then, the computed reflectors

are saved into the off-chip memory. Next, the engine reads the remaining tiles in the top

row (one at a time), reads the reflectors, and applies them. In the second step, the HR

decomposition takes the top leftmost tile as input (an upper-triangular tile) resulting from

the previous step, and the tile right below and executes the HR decomposition. As before,

the reflectors computed in this step are saved to the off-chip memory. Next, the engine reads

the remaining tiles in the first and second row, reads the saved reflectors, and applies them.

At the end, by combining steps one and two, the QR factorization of the input matrix is

achieved.

21

My work is distinct from the previous study in multiple ways. First, the work

by Tai et al. targets the decomposition of large square matrices, whereas my work targets

the decomposition of TSMs. For TSMs, I make use of recent developments including the

decomposition of matrices via binary trees and the fast decomposition of upper triangular

matrices [30]. Second, my work targets the decomposition of a large number of tiles in

parallel whereas the work by Tai et al. targets the decomposition of fewer tiles. Third,

due to the shape of the input matrices, my work targets Tall-and-Skinny tiles instead of

Square tiles, since the former favors a higher performance for the problem at hand. On

the other hand, both works include common techniques such as the use of stream reduction

circuits [40], the application of reflectors via deep pipelines, and the decomposition of on-

chip tiles.

In previous work, Rafique et al. [114] proposed an FPGA engine targeting the

decomposition of very skinny matrices, matrices having up to 51 columns. In their work,

the input matrix is first divided in blocks having twice as many rows as columns. Next,

these blocks are brought to the on-chip memory, and then they are decomposed via a HR

decomposition engine. The output of the first step is a series of upper triangular blocks. In

the next step, two triangular blocks are brought to the on-chip memory, and then they are

decomposed. The results are written back to the off-chip memory. The process of reading,

merging, and writing upper triangular blocks continues until the final decomposition is

found.

My work has a number of deviations from this prior work. First, while the work

by Rafique et al. targets the decomposition of up to two blocks in parallel, my work

22

targets the decomposition of multiple blocks simultaneously. Second, my work targets the

decomposition where large blocks have to be tiled before they are processed, whereas the

work by Rafique et al. targets the decomposition of matrices where the individual blocks

fit in on-chip memories (blocks size 102 × 51), Third, as described in chapter five, the

execution of the HR decomposition requires the execution of large dot-products. While the

work by Rafique et al. executes these products via resource-intensive reduction circuits,

my work uses resource-aware reduction circuits [40]. As stated in the Introduction, tree-

based reduction circuits are very fast at the cost of using prohibitive amounts of hardware

resources. Although the proposed reduction trees have an impressive peak performance for

the problem at hand, achieving as much as half of this performance is not feasible. For

example, when the input blocks are upper triangular, the reduction tree operates over zero

elements most of the time, and as a consequence, these reduction trees only deliver about

one quarter of their peak performance. In this scenario, my engine achieves over 50% of the

peak performance.

23

Chapter 3

Acceleration of HAR Applications

Human action recognition (HAR) algorithms take one or more video sequences

as input, usually a few hundred frames, and produce one or more output(s) categorizing

the possible action(s) executed by the actor(s) within the video clip(s). Applications of

HAR algorithms include health care, assisted living, surveillance, automated video indexing,

security, autonomous navigation, robotics, mobile computing, etc. Even though significant

progress has recently been made in the design and implementation of HAR applications,

several challenges remain: higher throughput for handling large video sequences, lower

complexity for real-time applications, highly parallel implementations for faster response

times, and energy efficient designs for embedded and mobile applications [51, 146, 56].

HAR algorithms rely on the extraction of video features. These can be computed

at regular positions (called dense sampling) or at points of interest (sparse sampling). Video

features can be designed by experts in the field, called hand-crafted features (HCF), such as

histogram of gradients (HOG), or they can be inferred using machine learning techniques

24

or learned features, such as convolutional neural networks (CNNs). Once the video features

are extracted, they can be used to train a classifier, such as a support vector machine (SVM)

or a softmax classifier.

HAR implementations based on CNNs have been shown to achieve a higher recog-

nition accuracy than HCF HAR algorithms. However, this advantage comes at a price:

lower throughput, higher computational load and costly energy consumption per frame.

Suleiman et al. [139] shows that HCF HAR algorithms are 311X more energy efficient than

their CNN counterparts. When the features are learned with larger CNNs, the through-

put gap grows to the order of the thousands. Moreover, Zou et al. [161] shows that HAR

algorithms based on learned features with only three convolutional layers have comparable

accuracy and 100X higher energy usage than HCF HAR algorithms. As the accuracy of

the CNN increases, the energy gap grows dramatically.

The proliferation of video cameras and other forms of image sensing technologies

have pushed a large part of the video processing tasks to the edge devices and hence have

increased the pressure on achieving high processing rates at low energy budgets. My objec-

tive is the explore and evaluate the designs of HOG3D-based HAR that can achieve both high

throughput and low energy consumption while maintaining acceptable levels of accuracy.

In this chapter, I extend the work presented in [88], whose focus was the fixed-

point performance evaluation of HOG3D HAR algorithm [69] on FPGAs, by evaluating

the performance and energy consumption of HOG3D implementations on FPGAs, GPUs,

and CPUs. I have profiled the performance of the different HOG3D stages, namely pre-

processing, cell descriptor computation, block descriptor computation and video descriptor

25

computation. Based on this analysis, along with the supporting experimental data, I have

identified the strengths and weaknesses of each accelerator for HOG3D. By combining the

strengths of each platform, I propose a high performance heterogeneous implementation that

takes advantage of the strengths of both FPGAs and GPUs, thereby achieving a higher

throughput as well as a lower energy consumption per frame than either homogeneous

implementation.

For the FPGA, I have implemented the HOG3D application on the Micron Wolver-

ine 2000 with a Xilinx Virtex 7 FPGA and 32 GB of local memory [94]. For the GPU, I have

implemented the design on the NVIDIA K20, K40 and K80 [102]. These implementations

are compared to a multi-threaded software application running on the Intel Xeon-E5520

quad-core CPU. The contributions of my work are [118]:

• A high-throughput GPU implementation of the HOG3D algorithm that achieves

166.8X speedup over the CPU one as well as 3.1X speedup when compared with the

FPGA design. A high-throughput FPGA implementation of the HOG3D algorithm

that achieves 53.8X speedup over the CPU. Furthermore, while the energy efficiency

of the software implementation is well below one frame/joule, the GPU design energy

efficiency is 5.4 frames/joule.

• A detailed I/O and computational complexity analysis for each of the four modules

I have identified in the HOG3D design. Based on this analysis, along with the ex-

perimental measurements of the throughput and energy consumption per platform, I

have identified the strengths and weaknesses of both FPGAs and GPUs accelerators.

26

• I propose and evaluate a heterogeneous design that seamlessly combines both FPGA

and GPU platforms in a single system: the video pre-processing is executed on the

FPGA and the video descriptor extraction is executed in the GPU. This heterogeneous

design demonstrates a 1.3X speedup over the GPU and is 1.5X more energy efficient

than either homogeneous designs when applied on VGA data as opposed to QVGA

data as in [88]

3.1 Problem Description

The four stages of the HOG3D algorithm are as follows1:

(a) Pre-processing: In this step, the algorithm computes the partial derivatives

along the x, y, and t axes

dx = p[x+ 1, y, t]− p[x, y, t]

dy = p[x, y + 1, t]− p[x, y, t]

dt = p[x, y, t+ 1]− p[x, y, t]

(3.1)

Next, the algorithm computes the integral of the derivatives

v∂x[x, y, t] =
∑
y′≤y

∑
x′≤x

dx[x′, y′, t] (3.2)

v∂y[x, y, t] and v∂t[x, y, t] are computed in a similar fashion. Finally, the routine computes

the integrals videos

iv∂x[x, y, t] =
∑
t′≤t

v∂x[x, y, t′] (3.3)

iv∂y[x, y, t] and iv∂t[x, y, t] are computed similarly.

1In this work, the terms features and descriptors are used interchangeably.

27

(b) Cell Descriptor Computation: HOG3D considers the set of integral videos as a

spatiotemporal volume. Volumes are sampled using a 3D block. Blocks are further divided

into r×r×r cells. In addition, cells are divided into s×s×s sub-blocks. For each sub-block,

the algorithm computes the mean gradient vector ḡb = [ḡb∂x, ḡb∂y, ḡb∂t]
T . The component

ḡb∂x is computed as

ḡb∂x =J(t+ l)− J(t) (3.4)

where J(t) = iv∂x[x, y, t] + iv∂x[x + w, y + h, t] − iv∂x[x, y + h, t] − iv∂x[x + w, y, t]. Here,

w, h and l are implementation parameters. Similar equations are used to compute ḡb∂y and

ḡb∂t. Subsequently, the algorithm quantizes each vector ḡb using a regular icosahedron. To

quantize ḡb, the routine centers the icosahedron at its origin in a three dimensional space.

Let Pk,3 be the matrix where each row contains the icosahedron coordinates of the central

point of face i

Pk×3 =



p10 p11 p12

p20 p21 p22

...

pk0 pk1 pk2


HOG3D calculates the normalized quantization vector ĝb by computing

ĝb =
P × ḡb
||ḡb||2

(3.5)

Next, the algorithm thresholds the elements of vector ĝb using a given parameter

α1. If ĝ′b is the resulting vector after the threshold operation (if ĝb[j] < α1 then ĝ′b[j] = 0

28

else ĝ′b[j] = α1 − ĝb[j]) then, the routine uses a scaling factor to obtain the sub-block

descriptor

gb =
||ḡb||2
||ĝ′b||2

q̂′b (3.6)

Then, HOG3D computes the vector c′ by adding, element by element, the s×s×s sub-block

descriptors inside the cell

c′[j] =

s×s×s−1∑
i=0

gbi[j] j = 0, .., k − 1 (3.7)

In addition, the routine normalizes c′. The resulting vector is the cell descriptor

c =
c′

||c′||2
(3.8)

(c) Block Descriptor Computation: HOG3D calculates the block descriptor h by concate-

nating the cell descriptors inside the block

h = {cr×r×r−1, .., c1 , c0} (3.9)

Here h ∈ Rd a d-dimensional space. The result of this step is a set of block descriptors

H = {hi}i=0..n−1.

(d) Video Descriptor Computation: Because the number of descriptors changes

from video to video, a technique for aggregating varying size descriptors into a fixed-size

descriptor has to be implemented [26]. In here, a vocabulary D = {dj}j=0..m−1 with dj ∈

Rd is given. To compute fixed-size descriptors, HOG3D computes the distances between

each block descriptor hi and each visual word dj . Next, the algorithm increments by one the

histogram slot of the visual word dj , i.e. x[j], that is closest to hi. The resulting histogram

29

x ∈ Rm is used as the video descriptor. Finally, the routine uses the video descriptor x

as input of a classifier. Notice that J(t + l) − J(t) is the sum of the pixels between t and

t+ l, excluding t, in the area of rectangle (x, y, w, h). In my design, l is always two, and as

a result, the design gets simplified. First, the integral video images are computed between

adjacent integral images only

iv∂x[x, y, t] = v∂x[x, y, t′] + v∂x[x, y, t′ − 1] (3.10)

Second, because the computation of J(t+ l)− J(t) excludes t, ḡb∂x is computed as

ḡb∂x =J(t+ l) (3.11)

Further, ḡb∂y and ḡb∂t are computed similarly.

As shown above, the implementation of the HOG3D algorithm requires the nor-

malization of a number of low dimensional vectors, see (3.5), (3.6), and (3.8). As a result,

the Euclidean norm has to be computed. To optimize hardware resources, the Euclidean

norm can be approximated as proposed in [116]

‖u‖2 ≈ (1− λ)Max(|u[i]|i=0,.,p−1) + λ

p−1∑
i=0

|u[i]| (3.12)

with λ < 1. As shown in this equation, this method is inexpensive to implement in hardware

as it does not require the implementation of the resource-hungry square root operation.

3.2 Fixed-Point HOG3D HAR

In this section, I report on the evaluation of the fixed-point HOG3D recognition

accuracy using four benchmarks:

30

• The KTH benchmark is a collection of 599 videos with six actions [123].

• The UCF11 benchmark is a collection of 1,600 videos with 11 action categories in-

cluding basketball shooting, horseback riding, swinging among others [82, 83].

• The UCF50 benchmark is a collection of 6,680 videos with 50 actions [115]. This

benchmark includes all the actions in UCF11, plus 39 additional actions. As with

UCF11, this dataset is challenging due to its diverse conditions as well as the number

of actions.

• The UCF101 benchmark [135], a collection of 101 human actions containing 13,320

video clips. This benchmark extends the UCF50 by adding additional actions. This

benchmark is particularly challenging due to the diverse set of conditions including

illumination, viewpoint, scale, camera motion, backgrounds, etc.

My fixed-point HOG3D implementation is based in the double-precision floating-point im-

plementation described in [69]. Starting from this source code, I added dense sampling,

fixed-point arithmetic, and half-precision floating arithmetic. To sample the input video,

my routine uses a 3D block. The overlapping between adjacent blocks is 50%. While my

routine keeps the temporal scale fix, the spatial scale is increased by a factor of
√

2 until

the size of the block is larger than the size of the image. The algorithm divides each 3D

block into 64 cells, four cells per dimension. Furthermore it divides each 3D cell into eight

sub-blocks, two sub-blocks per dimension. As a result, the size of the block descriptor is

640 elements: 64 = 4× 4× 4 cell descriptors and ten elements per cell descriptor when the

algorithm uses half of the icosahedron orientations. For each of the HOG3D stages, I set

the input bit-width as well as the output bit-width; if m is the number of integer bits and

31

n is the number of fractional bits, the total bit-width is m+ n. To minimize overflows and

underflows, the operands have been normalized whenever possible. The maximum bit-width

is set to 27 bits and the minimum to eight bits. For further details refer to my previous

work [88].

To evaluate the accuracy of my HAR recognition method, my algorithm uses re-

duced fixed-point arithmetic along with a modified version of the SVM library LIBSVM [19].

Here, I added a χ2 kernel. In addition, my algorithm observes the experimental settings

described in [69]. In particular, I use leave-one-group-out cross validation. Since the videos

in every dataset are grouped, said N groups, I train a SVM with N − 1 groups and make

predictions about the videos in the left-out-group. If the left-out-group has k videos and

p predictions are correct, the recognition accuracy is p/k. I repeat this process for all the

groups and report the average recognition accuracy for both floating point and fixed-point

precision.

The results are shown in Figure 3.1. The ′half ′ and ′single′ results are from

my modified HOG3D implementation working in half and single precision floating point.

The ′fxp27′ down to ′fxp8′ results correspond to the fixed-point HOG3D implementation

when working with 27 down to eight bits. For the UCF101 benchmark, I only report the

recognition accuracy for single precision floating point and for ′fxp27′, ′fxp16′, and ′fxp8′

fixed-point precision.

The accuracy of the original double-precision floating point implementation [69],

and my ′single′ precision floating point implementation are comparable for all the bench-

marks [88]. Moreover, the recognition accuracy for the KTH benchmark is high, it decreases

32

Figure 3.1: On the left, the reduced fixed-point recognition accuracy using χ2 kernel versus
bit-width. On the right, the mean-squared error (MSE) of the video descriptors for the
KTH dataset.

for the UCF101 benchmark for all fixed-point precisions. This is consistent with the fact

that the UCF101 is the hardest benchmark to recognize. The recognition accuracy behav-

ior is significant for reduced fixed-point arithmetic. As show in the figure, as the bit-width

decreases from 27 bits to eight bits, the recognition accuracy is comparable to that of the

single precision floating point albeit small fluctuations. The half-precision implementation

has the lowest overall recognition accuracy. This behavior is mostly due to the character-

istics of the range and the precision of half-precision floating point numbers. In the case

of reduced fixed-point arithmetic, the range and precision are dynamic; they change from

stage to stage while the range and precision of the half-precision floats remain static [88].

Moreover, I compute the mean-squared error (MSE) by comparing the values of

the fixed-point video descriptor with those of the double-precision video descriptors, the

ground truth. In Figure 3.1, I only report the MSE of the KTH dataset because it has

the largest value. As shown in the plot, the MSE is well below 1 × 10−2 for twelve bits

and above. For ten bits and eight bits, the MSE increases, although it always remains

33

below 5× 10−2. In brief, these results show it is feasible to implement HOG3D in reduced

fixed-point arithmetic without compromising its accuracy.

3.3 FPGA Implementation

In this section, I describe the implementation of HOG3D in FPGAs. In this

design, all arithmetic operations use reduced fixed-point operands. Operations such as

multiplications and divisions have been implemented in Xilinx fixed-point cores [37]. When

the result of an arithmetic operation overflows the result is saturated on-the-fly. Due to the

design of the DSP units in the Virtex-7 FPGAs and to minimize logic usage, the result of

operations including multiplications and divisions are always truncated [52].

The input of the algorithm are streams of gray-scale videos consisting of 97 images.

The output is the video descriptor vector x with 1000 elements. Unless otherwise described,

four videos are moved from the CPU to the FPGA off-chip memory for processing. Then

four engines process each video. The description of each engine is given in what follows.

3.3.1 Pre-processing Engine

This engine is responsible for computing the integral videos. Figure 3.2 shows the

modules responsible for computing the integral videos along the x, y, and t axes. In this

design, all communications between modules are implemented via FIFOs [41]. As shown

in Figure 3.2, the computation of the integral videos is straightforward. The read image

module reads three images at a time from off-chip memory, the images at indexes t, t+ 1,

and t + 2, in a row by row fashion. Next, the gradients module computes the derivatives

34

Figure 3.2: Pre-processing engine: Four modules are responsible for the computation of the
integral videos along the x, y, and t axis.

of the input pixels along the x, y, and t axes. The integral image module computes the

integrals of the gradients. To do so, for each input array, it calculates the integral of the

current row in a register. Also, this module maintains an on-chip copy of the integral of the

previous row. By adding these two integrals, this module obtains an integral image. The

integral video module takes as input two integral images per axis, adds them together, and

writes the integral video into a FIFO. Finally, the resulting integral videos are written to

the off-chip memory.

Notice that in my design, the use of FIFOs facilitates the communication between

modules as well as the modularization of the design. Each module reads from inputs FIFOS,

execute the required computations, and write results to the output FIFOs. In summary,

this design reads 97 gray-scale images per video and outputs 144 = 48× 3 pairwise integral

videos with two bytes per element. On-chip computations are performed in reduced fixed-

point arithmetic with either 8 or 16 bits operands. To improve throughput, I replicate this

engine eight times. As a result, this engine can process eight videos in parallel.

35

3.3.2 Cell Descriptor Engine

Figure 3.3 shows the modules responsible for the computation of the cell descrip-

tors. The read integral videos module reads the integral videos from off-chip memory as

Figure 3.3: Components of the cell descriptor engine.

required in the computation of the mean gradient vector ḡb. The mean-gradient module

computes vector ḡb along with its norm. The sub-block normalization module computes the

sub-block descriptor gb by executing the matrix vector multiplication P× ḡb. Matrix P10×3

is stored on-chip.

The cell descriptor module computes the normalized vector cj . Since the compu-

tation of the sub-block descriptors proceeds in a cell by cell order, each time a sub-block

descriptor is computed, the unnormalized cell descriptor is updated as described in (3.7).

Next, this module computes the normalized cell descriptor and writes the results into a

FIFO. Finally, the normalized cell descriptors are written to the off-chip memory.

To take advantage of the FPGA resources, I replicate this engine four times. Hence,

my design processes four videos in parallel. For each incoming integral video and for each

cell descriptor, this engine computes two sub-block descriptors in parallel. Furthermore,

parallel calculations have been implemented when feasible. In the case of the operation

P× ḡb, thirty multiplications are executed in parallel. In the case of vector normalizations,

36

divisions and multiplications are executed in parallel as well. In brief, for each incoming

video, this engine reads the pairwise integral videos, computes the sub-block descriptors,

and outputs the normalized cell descriptors vectors. While the inputs to this module are

2-bytes arrays, the outputs are ten-element vectors. On-chip operations are executed in 16

bits. After vector normalizations, the width of the elements in the output vector reduces

to eight bits.

3.3.3 Block Descriptor Engine

This engine reads the normalized cell descriptors, computes the block descriptors,

transposes the block descriptors, and writes the results to the off-chip memory. This engine

is composed of three modules, as shown in Figure 3.4.

Figure 3.4: Components of the block descriptor engine.

The read cell descriptor module reads the normalized cell descriptors cj from the

off-ship memory. Next, the block descriptor module concatenates sixty-four cell descriptors

and writes the resulting vector, h size 64×10, into a FIFO. Then, the transposition module

transposes the descriptors. In this process, the output of the block descriptor module is

written into eight FIFOs, with each FIFO containing one block descriptor. Finally, this

37

module pops the eight FIFOs and writes the results of the off-chip memory, one column per

FIFO, i.e. the transpose operation.

To gain performance, I replicate this engine four times, and as a result, four videos

are processed in parallel. For each incoming video and for each block descriptor, this engine

reads and writes four cell descriptors in parallel. In short, the input of this module is an

array of cell descriptors and the output is an array of block descriptors. All operands in

this module are one-byte wide.

3.3.4 Video Descriptor Engine

The next step is to compute the video descriptors. This engine takes two inputs;

the first input is the set of block descriptors H, and the second input is a set of pre-

computed cluster centers D. The goal of this module is to find for each element in H

the nearest neighbor in D, and finally, to find the distribution of the block descriptors per

each given center. In this design, the set D is mapped to the reference matrix Rm×d, and

the set H is mapped to the query matrix Qd×n. As a result, nearest neighbor problem

can be formulated as a matrix multiplication problem i.e. Cm×n = R × Q with c[i, j] =∑
k=0,..,d−1(r[i, k] − q[k, j])2. Thus, matrix C contains all the distances between the given

m centers and the n query points.

Matrix multiplications on FPGAs has been studied extensively [160, 35]. In this

work, I have followed the directions of the design proposed in [72] with modifications. The

computation of matrix C is blocked. For illustration purposes, let us assume that the size

of every block Cij is p×p, moreover, that m = k ∗p and n = s∗p. Matrix C can be written

38

as

Cm×n =



C10 C11 ... C1s

C20 C21 ... C2s

...

Ck0 Cks


The computation of sub-matrices Cij is from top to bottom and from left to right. In this

work, matrix R has n× 640 elements. The reference centers have been normalized off-line.

The components of this engine are shown in Figure 3.5.

Figure 3.5: Components of the video descriptor engine.

The read matrices module is responsible for reading the columns of sub-matrix

Rid one at the time into a FIFO, in addition, the rows of sub-matrix Qdj one at the time

into p FIFOs. The matrix multiplication module executes the multiplication Cij = RidQdj .

The layout of this component is shown in Figure 3.6. At the beginning, this module reads

the first element in the FIFO containing r[0, 0] and it also reads the p FIFOs containing

q[0, 0], q[0, 1], .., q[0, p− 1]. Next, p subtraction-and-multiplications are executed in parallel.

The results are stored in p BRAM accumulators with each accumulator having p addresses

and 16 bits per address. This process continues until the last element, r[p−1, 0], of the first

39

Figure 3.6: Matrix multiplication component. The top p FIFOs contain the elements rows
of matrix Q. The left-most FIFO contains the elements of the columns of matrix R. In the
center, the distances are computed and accumulated.

column in Rid is multiplied by the current row q[0, 0], q[0, 1], .., q[0, p−1]. Next, this module

executes the outer-product between the elements in the second column of Rid and the second

row of Qdj . This module continues to execute outer-products until the calculation of the

sub-matrix Cij is complete. Results are written into p FIFOs. Also, by incrementing the

number of operation executed in parallel, the parameter p, I can take advantage of the DSPs

present in the FPGA: the larger is p, the greater the performance.

The nearest center module finds the nearest center for every object in Q. Each

time a sub-matrix Cij is computed, this module reads from p FIFOs. For every FIFO, i.e.

for every object qj ∈ Q, this module keeps track of the minimal distance and the associated

center thus far. Since the sub-matrices Cij are computed top-to-bottom and left-to-right,

each time that a bottom sub-block is computed i.e. Ck0,Ck1, ..,Cks, this module outputs

the centers associated with qj . These centers are written to p FIFOs.

40

The video descriptor module reads the outputs of the previous module. Every time

that this module reads a center, the BRAM memory address associated with that center

is incremented by one. When all the nearest centers are found, this module outputs the

video descriptor vector x, to the off-chip memory. Notice that the computation of vector

x can potentially harm the throughput as the nearest center module outputs as many as

320 centers per cycle. To speed up the computation of x, I use a reduction tree with ten

nodes at the top level. Each of those node computes local video descriptor by processing

32 inputs. In the next level of the tree, the local video descriptors are merged into pairs.

This reduction continues until the final video descriptor is found. To improve throughput,

I replicate this engine four times such that four videos are processed in parallel. For each

engine, the parameter p has been steadily increased until the resources in the FPGA are

nearly exhausted. In this design, I set p to 320 such that 1,280 multiplications are executed

in parallel. While all input elements are one byte, the output elements are two bytes.

On-chip computations are executed in two bytes.

3.4 GPU Implementation

In this section, I describe the implementation of HOG3D in GPUs. I use 32-

bit integer arithmetic and single precision floating point arithmetic. My implementation

processes eight videos in parallel by taking advantage of CUDA streams [102, 105]. In

this scenario, each stream is responsible for processing one video. Moreover, kernel calls

are issued in a breadth-first fashion across all the running streams. For the purpose of

illustration, let us assume that eight CUDA streams S1,..,S8 are running in parallel and

41

each stream has two kernels K1 and K2. The GPU executes kernel K1 on all eight streams:

S1(K1), .., S8(K1) followed by S1(K2), .., S8(K2). In my design, the GPU executes eight

streams. For each stream, one video having 97 gray-scale images is transferred from the host

main memory to the GPU off-chip memory. Eventually, the HAR algorithm is executed

using four engines as described below.

3.4.1 Pre-processing Engine

The pre-processing engine computes the pairwise integral videos along the x, y,

and t axis. Figure 3.7 shows the kernels used in this engine. The image gradients kernel

Figure 3.7: Components of the pre-processing engine.

computes the gradients along the x, y, and t axis. In this step, each image is divided in tiles

of size 16 × 16. The partition of an image into tiles facilitates coalesced I/O operations.

Each tile is then loaded into shared memory along with the halo elements. For every tile,

the kernel computes the gradients along the x, y and t axis.

Subsequently, the integral images kernel, the right hand side of Figure 3.7, reads

the gradients and computes the integrals of the images. Calculating the integral of the

42

images is challenging for GPUs due to the presence of thread divergences [124, 11]. My

design is similar to the work presented in [11], with modifications.

In the first step, the integral columns kernel reads the gradients, using one CUDA

thread per column, integrates the values of the columns, and writes the resulting integrals to

the off-chip memory. While the first step can be executed efficiently by one CUDA thread,

the computation of integrals along the rows requires synchronization between the threads

in a CUDA block. In the second step, the integral row kernel reads the computed column

integrals into shared memory. The algorithm computes the row integrals in two phases: the

up-sweep phase and the down-sweep phase. In the up-sweep phase, the kernel computes

the prefix-sum for all odd elements. In the down-sweep phase, the kernel computes the

prefix-sum for all even elements. In my work, because the rows of the input images are no

larger than 640, the prefix-sum per row can be implemented in shared memory; the routine

sets the row size to N = 1024 and pads the data as necessary. After padding, the kernel

uses N/2 threads, takes 2Log2(N) − 1 steps, and executes 2(N − 1) additions [11]. The

resulting array integrals are then written to the off-chip memory.

Finally, the integral video kernel reads two integral images per axis, adds their

values, and writes the results back to the off-chip memory. In this kernel, threads are

mapped to the columns such that coalesced memory accesses is achieved.

3.4.2 Cell Descriptor Engine

In this engine, the algorithm computes the cell descriptors cj . Figure 3.8 shows

the kernels involved in this computation.

43

Figure 3.8: Cell descriptor engine. Two kernels are responsible for the computation of the
cell descriptors.

Thesub-block descriptor kernel computes the mean-gradient vector gb. In this de-

sign, a thread is responsible for computing the mean-gradient. To improve the performance,

the matrix P10×3 is stored in constant memory and the mean-gradient is stored in shared

memory. The cell descriptor kernel computes the vector c. Specifically, a thread reads the

normalized sub-block descriptors inside the cell, adds their values, executes vector normal-

ization, and finally, writes the resulting vector to the off-chip memory. In this design, a

thread is responsible for computing the normalized cell descriptors using shared memory.

3.4.3 Block Descriptor Engine

The block descriptor engine computes the block descriptors using two kernels as

shown in Figure 3.9. The block descriptor kernel reads the cell descriptors c and computes

Figure 3.9: Block descriptor engine. Two kernels are responsible for computing the block
descriptors.

the block descriptor h. Results are written to the off-chip memory. Because this kernel is

I/O bounded, its performance is improved by increasing the number of threads executing

off-chip reads and writes. In this work, a thread is responsible for reading and for writing

44

each element in h. The block transposition kernel reads, transposes, and writes an array

size 640× 10, 240. Matrix transposition using tiles is a well-studied kernel [104, 119, 11].

3.4.4 Video Descriptor Engine

In this engine, the video descriptor is computed via a nearest neighbor clustering

algorithm. Given two vectors x ∈ Rd and y ∈ Rd, their Euclidean distance is given by

ρ(x,y)2 = (x− y)T (x− y) = ||x||2 + ||y||2 − 2xTy (3.13)

Furthermore, distances between vectors can be computed via matrices [38]. Let

R and Q be two matrices size d × m and d × n respectively. R represents m reference

centers and Q represents n block descriptors. Let ρ2(R,Q) be a m × n matrix containing

the distances between the reference centers and the block descriptors. Then ρ2(R,Q) can

be computed as

ρ2(R,Q) = NR + NQ − 2RTQ (3.14)

In this equation, the elements of the jth row of NR are all equal to
∑i=d−1

i=0 (R[i, j])2.

The elements of the jth column of NQ are all equal to
∑i=d−1

i=0 (Q[i, j])2. To save memory,

in this design, I represent NR and NQ as vectors. Further, because the reference centers

are predefined, NR and RT are computed off-line. Figure 3.10 shows the kernels involved

in the computation of the video descriptors.

The norms kernel computes vector NQ. In this design, a CUDA thread is respon-

sible for computing NQ[j]. This assignment makes it possible to optimize off-chip memory

bandwidth. The matrix multiplication kernel executes RTQ by means of the CUBLAS

45

Figure 3.10: Video descriptor engine. Kernels used in the process of computing the video
descriptors.

library [104]. The distances kernel calculates the matrix ρ2(R,Q). In this work, a CUDA

thread is responsible for computing the distances between the reference centers and the

block descriptors i.e. ρ2(R,Q)[i, j]. To do so, it reads elements NR[i] and NQ[j] along with

element ρ2(R,Q)[i, j]. Next, it computes the distance, as shown in (3.14), and writes the

values to off-chip memory.

The membership kernel finds the membership of every object in Q. To optimize

the bandwidth, a CUDA thread is responsible for computing the membership of qj by means

of scanning column j in matrix ρ2(R,Q). Results are written to the off-chip membership

vector. Finally, the video descriptor kernel computes vector x in two steps. In the first step,

the privatized step, threads read the elements of the membership vector. As the coalesced

reads are executed, the video descriptor is computed, in shared memory, by means of atomic

adds. In the second step, the global step, threads write atomically to the shared video

descriptor vector in the off-chip memory [121].

3.5 Complexity Analysis

In this section, the complexity of the FPGA and the GPU design per engine is

given. I assume the HOG3D algorithm takes as inputs 97 gray-scaled images having M

46

rows and N columns. Also, I assume that each sub-block descriptor contains K elements,

each cell descriptor contains eight sub-block descriptors, and each block descriptor contains

64 cell descriptors. Moreover, the design processes C cell descriptors, n block descriptors,

and m reference centers. Each block descriptor and each reference center vector has 64×K

elements. Moreover, the matrix multiplication RT ×Q operation is blocked, and the size

of the block is p. Without loss of generality, I assume that m/p and n/p are integers.

3.5.1 Pre-processing Engine

Table 3.1 shows the results of the complexity analysis.

Table 3.1: Pre-processing engine complexity analysis

I/O operations FPGA MN(97 + 144)
GPU MN(97 + 144 + 144× 8)

Arithmetic Operations FPGA 144(7MN − 4M − 2N)
GPU 144(9MN − 6M − 2N)

In FPGAs, the pre-processing engine requires the reading of 97 images and the

writing of 144 integral video images, 48 for each dimension. In GPUs, the pre-processing

engine requires 8MN additional I/O operations per integral video image: 2MN writes due

to computation of the gradients, 2MN reads and 2MN writes due to the computation of

the integral of the derivatives, and 2MN reads due to the computation of the integral video

image.

In FPGAs the computation of the integral videos is executed in three steps. (a)

The computation of the derivatives per input image takes M(N − 1) operations. (b) The

integral of the derivatives, takes 2MN −M − N operations. Hence, the computation of

47

the integrals of the gradients for two images requires 2(3MN − 2M − N) operations. (c)

The computation of the pairwise integral videos requires MN additions. In GPUs, steps

(a) and (c) are as in the case of FPGAs. Step (b) takes 3MN − 2M − N operations:

the integrals along the columns require (M − 1)N operations and integrals along the rows

require 2M(N − 1) operations. Hence, the computation of the integrals of the gradients for

two images requires 2(4MN − 3M −N) operations.

Taking into consideration the complexity analysis and the proposed design for

FPGAs and GPUs, I observe that this engine is I/O bounded. In the case of FPGAs, the

bound applies despite the larger number of arithmetic operations. This engine computes

three integral videos in parallel. In addition, the computation of the gradients, the integral

of the gradients, and the pairwise integral videos is pipelined.

3.5.2 Cell Descriptor Engine

The complexity analysis is given in Table 3.2.

Table 3.2: Cell descriptor complexity analysis

I/O operations FPGA C(8(12) +K)
GPU C(8(12) + 8K + 9K)

Arithmetic Operations FPGA C(8(11K) + 11K + c)
GPU C(8(11K) + 11K + c)

In FPGAs, the computation of one sub-block descriptor takes twelve reads, see

(3.11), and the computation of the cell descriptor takes K writes. In GPUs, the computation

of each sub-block descriptor takes K additional writes and the computation of the cell

descriptors takes 8K additional reads. In FPGAs, as well as GPUs, the computation of the

48

sub-block descriptor qb takes 11K operations2. The computation of the cell descriptor cj

requires 11K operations3.

The computation of the cell descriptors in FPGAs is I/O bounded despite the

larger number of arithmetic operations. While the arithmetic operations are parallelized

and pipelined, at least K operations are executed in parallel per pipeline, the reading of the

integral videos is serial. Moreover, in GPUs, the performance of this engine is bounded by

the number of arithmetic operations as a CUDA thread is responsible for the computation

of each sub-block and cell descriptor.

3.5.3 Block Descriptor Engine

In FPGAs, the computation of each block descriptor involves the reading and

writing of 64 cell descriptors i.e. 2n(64C) = 2n(d) I/O operations. In GPUs, additional

2nd I/O operations due to transpositions must be executed. For both FPGAs and GPUs,

this engine is I/O bounded.

3.5.4 Video Descriptor Engine

Table 3.3 shows the results of the complexity analysis.

In the FPGA, the computation of each sub-matrix Cij size p× p takes 2dp reads.

Moreover, writing the video descriptor vector x takes m writes. Computing each element

c[i, j] takes d subtractions, d multiplications, and d−1 additions. As a result, the total num-

ber of operations per sub-matrix Cij is (3d− 1)(p2). Finding the membership of each block

25K operations due to P × ḡb, K divisions, K comparisons, 3K operations due to squared roots, plus K
multiplications.

37K operations are due to additions and 4K operations are due to normalizations. The constant c
accounts for few additional operations.

49

Table 3.3: Video descriptor complexity analysis

I/O operations FPGA 2(dmn/p) +m

I/O operations GPU 2(dmn/p) +mn +
n(d+ 2) + 2mn +
mn+ n

Arithmetic Operations FPGA (3d− 1)(mn) + nm

Arithmetic Operations GPU (2d− 1)mn +
3mn+ n(2d− 1) +
(m− 1)n+ n

descriptor takes (m − 1) comparisons. Moreover, the computation of the video descriptor

vector takes n additions.

The computation of the video descriptor in GPUs is described in three steps. First,

the computation of matrix RTQ takes 2pd∗(mn/p2) reads, mn writes, dmn multiplications,

and (d − 1)mn additions. Second, the computation of ρ2(R,Q) is executed in two parts.

(a) Computing NQ requires dn reads, n writes, dn multiplications and (d− 1)n additions.

(b) Computing ρ2(R,Q) requires n reads and the reading and writing of a matrix size mn.

Moreover mn multiplications and 2mn additions are required. Third, the computation of

the video descriptor x requires mn reads, n writes, (m−1)∗n comparisons, and n additions.

Finally, this engine is computed bounded.

3.6 Experimental Results

In this section, I discuss the throughput and the energy efficiency of the HOG3D

design in FPGAs and GPUs. At the end, I propose a heterogeneous HOG3D (HHAR)

algorithm.

50

3.6.1 FPGA Synthesis

In this part, I describe the results of the synthesis, placing, and routing. The

testbed is composed of two Intel Xeon CPUs E5-2640 and two Virtex-7 FPGAs [94]. Each

FPGA has 32 memory channels. To achieve maximum bandwidth per channel, 1.25 GB/s, a

64-byte exclusive request has to be issued. Otherwise, a channel can handle request sizes of

1,2,4, or 8 bytes at the expenses of decreasing the effective bandwidth. While I implemented

all the engines in Verilog HDL, the synthesis is executed in Vivado 16.4. First, simulations

are executed to attest the accuracy of the results. Next, I addressed timing errors until

the design meets the timing requirements (166 MHz). Table 3.4 shows the percentage of

utilization of the resources in the FPGA per module.

Table 3.4: FPGA resource utilization percentages per engine. Image size 320× 240

Available Pre-processing Cell Block Video
Resources (%) Desc (%) Desc (%) Desc (%)

Registers (2443K) 15.49 17.33 14.26 21.22

LUTs (1221K) 20.91 24.79 17.96 25.06

LUTRam (344K) 19.87 16.80 16.41 25.20

Block Rams (1.2K) 40.21 42.52 39.36 87.41

DSPs (2.1K) 0.00 20.00 1.48 59.44

Memory Channels (32) 100.00 100.00 100.00 75.00

To analyze the resource utilization per engine, I split the engines into two groups

taking as the dividing factor the utilization of memory channels. Group one, the pre-

processing, the cell descriptor and block descriptor engine, uses 100% of the memory chan-

nels while the second group, the video descriptor engine, uses 75% only. By inspection of

the resource utilization table, I notice that engines in the first group have high I/O utiliza-

tion and lower on-chip resource utilization whereas engines in the second group have high

51

on-chip resource utilization and low I/O utilization. In other words, the number of I/O

operations constrains the performance of the first group of engines, whereas the number of

arithmetic operations constrains the performance of the second group of engines.

3.6.2 FPGA Throughput

In this section, I describe the performance of the FPGA design. The performance

per engine is shown in Table 3.5. In this table, the time to move the data from the host to

the FPGA and back is not reported.

Table 3.5: Virtex-7 FPGA throughput per engine. Image Size 320× 240

Engine Videos Processed Throughput (fps)

Pre-processing 8 11,184

Cell Descriptor 4 3,110

Block Descriptor 4 11,186

Video Descriptor 4 3,036

Overall Throughput (fps) 4 1,088

Table 3.5 shows that the pre-processing and the block descriptor engines have the

highest throughput while the other two engines have the lowest. The high performance

of the pre-processing engine is the result of two factors. First, it contains eight kernels

with each kernel processing three images in parallel. Second, it benefits of the high I/O

performance offered by WX-2000 memory system due to data locality during reads and

writes [94]. The use of pipelining increases the throughput further. The block descriptor

engine has a high performance as well. Notice this engine is fully constrained by the off-

chip bandwidth. In this regard, this engine partially benefits from contiguous memory reads

52

since cell descriptors are represented as 16 contiguous bytes. Writes are always issued in

eight-byte chunks.

The cell descriptor engine has the next best performance. The performance of

this engine is limited by the sparsity of the off-chip reads. Although the number of I/O

operations the engine issues is low, memory requests are issued to non-contiguous memory

regions. In addition, because the design uses 100% of the memory channels, further gains

in performance by means of increasing the processing pipelines is not feasible. The video

descriptor engine has the lowest performance. The performance of this engine is limited by

the computational complexity of the matrix multiplication operation, see Table 3.1. Further

gains in performance are not feasible as resources have been nearly exhausted, see Table 3.4.

Overall, when working with images size 320 × 240, the maximum throughput in

steady state is 3,036 fps when four FPGAs are used. In steady state engine one processes

four videos. Moreover, not considering reconfiguration time, the maximum throughput

achieved by one FPGA is 1,088 fps. This calculation accounts for the time it takes for an

image to move across each engine.

3.6.3 GPU Throughput

In this section, I analyze the performance of the GPU design. The first testbed

consists of an Ubuntu workstation equipped with an Intel I7-860 processor, 8GB of RAM,

and a K20 GPU. The second testbed consists of an Ubuntu workstation equipped with an

Intel Xeon E5-520 processor, 24GB of RAM, and a K40 GPU. Finally, the third testbed

consists of a CentOS workstation equipped with an Intel Xeon E5-2680 processor, 32GB

of RAM and a K80 GPU. The code is compiled with the CUDA compiler release 7.5

53

and the Basic Linear Algebra Subroutines. In all the experiments, the error correction

capabilities (ECC) are disabled. Table 3.6 shows the throughput per engine for each GPU.

The discussion that follows applies to the K20 GPU. Similar analysis applies to the K40

and K80 GPUs as these devices share the same architecture.

Table 3.6: K20, K40 and K80 throughput per engine when processing eight videos in
parallel. Image size 320× 240

K20 (fps) K40 (fps) K80 (fps)

Pre-processing 3,310 4,044 5,306

Cell Descriptor 13,241 17,143 23,594

Block Descriptor 118,154 128,000 243,810

Video Descriptor 9,458 11,294 16,203

Overall Throughput(fps) 2,033 2,487 3,370

From the table, I notice the K20 is very fast at computing the block descriptors,

engine three, and very slow at pre-processing the videos, engine one. Two elements provide

insight on the performance of engine three. First, the performance of this engine is purely

I/O bounded. Second, the K20 off-chip memory bandwidth is high, i.e. 208 GB/s. The

engine computing the cell descriptors, has the next best performance. Close inspections of

the performance of this engine shows the kernel computing the sub-block(cell) descriptors

taking 66(34) % of the running time. The performance of this engine is limited by the

amount of work the engine must execute and by the uncoalesced nature of the reads during

the computation of the sub-block descriptors. Thread divergences present during vector

normalizations limit the performance as well.

The performance of engine four, namely the computation of the video descriptors,

has the next best performance. Inspecting the performance of this engine reveals that about

60% of the time is spent executing the matrix multiplication. The remaining time is spent

54

in nearly equal parts in the kernels responsible for computing QN , ρ(R,Q)2 and x. In

this engine, elements limiting gains in performance include the complexity of the matrix

multiplication (see Table 3.3 in Section VII), the use of block barriers, and the use of atomic

primitives during the computation of the video descriptor vector x.

Notably, the pre-processing engine has the lowest performance. The pre-processing

complexity analysis (see Table 3.1 in Section VII), explains in part this behavior. When

compared with the FPGA complexity, the GPU executes MN(144 × 8) additional I/O

operations. Moreover, while the number of the arithmetic operations per integral video in

FPGAs is proportional to 7MN , this complexity is proportional to 9MN in GPUs. On

closer inspection, the GPU running times show that engine one spends 55.0%, 28.9%, 12.2%,

and 3.8% computing the row integrals, the columns integrals, the image gradients, and the

integral videos respectively. Issues affecting the performance of the row integrals kernel

include the presence of control flow divergences, the presence of synchronization primitives,

and the effective amount of work that a thread executes per step.

Bialas [10] shows that block thread divergences on Kepler GPUs cost as much as

116 clock cycles. Letrendre [79] shows that the extra cost of using block synchronization

primitives in the presence of global memory reads ranges from few hundreds up to a thou-

sand cycles. Likewise, the cost of global memory writes in the presence of synchronization

primitives is comparable, although it tops at about 700 cycles. The extra cost of using

block synchronization primitives in the presence of shared memory reads is near 350 clock

cycles. Similarly, when synchronization primitives are used, the cost of shared memory

writes is near 220 cycles. Furthermore, the row integral kernel executes 2(N − 1) additions

55

in 2Log2(N)−1 steps when N/2 threads are used. If N = 512, the number of additions per

step is 61 ≈ 1022/17. In this case, the amount of work per thread per step is 0.24 ≈ 61/256.

In other words, during row integration threads do not execute any useful work 76% of the

time.

In addition, I notice that, although recent GPU architectures include novel soft-

ware and hardware optimizations [23], in my work, those optimizations do not increase

the throughout of the row integral kernel notwithstanding the expected gains in perfor-

mance due to the new architecture. While the single instruction multiple thread (SIMT)

execution model supports independent thread scheduling, this model does not increase the

performance of the kernel under analysis because synchronization between the collaborating

threads during the up-sweep and the down-sweep is still required i.e. in the best scheduling

scenario, the integral row kernel still requires 2Log(N) − 1 steps. Further research reveals

that the low performance displayed by the row integral kernel is part of a broader set of

performance challenges faced by GPUs when processing workloads with irregularities as

shown in [16, 21, 48].

I notice that, although theK20 GPU can process fifteen videos in parallel, the gains

in performance are diminishing as the number of videos increases. The peak performance

is achieved when the number of videos processed is ten. Above ten videos, the performance

remains constant. Below seven videos, the throughput drops by 30 fps and below. In brief,

when working with images size 320 × 240, the throughput of the K20, K40, and K80 is

2,033 fps, 2,487 fps, and 3,370 fps respectively. The K80 speedup is 1.3X(1.6X) when

56

compared with the K40(K20). The K80 implementation takes advantage of the dual GPU

design.

3.6.4 Heterogeneous HAR

Based on the throughput results obtained for the K20 GPU and the Virtex-7

FPGA, in this section, I develop a heterogeneous HAR (HHAR) design. In this design, the

pre-processing is executed in the FPGA. The data is then moved from the FPGA to the

host and from the host to the GPU, and finally, the cell, block, and video descriptors are

computed in the GPU. Figure 3.11 shows the steps required by my HHAR design. Table 3.7

Figure 3.11: Heterogeneous HAR desing. (1) The transferring of data from the host to the
FPGA (2) The execution in the FPGA (3) The transferring of data from the FPGA to the
CPU (4) The transferring of data from the CPU to the FPGA (5) The execution in the
GPU (6) The transferring of data from the GPU to the CPU.

shows the execution times of the steps involved in the algorithm for images size 640× 480.

Table 3.7: Heterogeneous HAR design execution times per task. Image size 640× 480

Step Resource Time (ms)

(1) Host to FPGA Data Transfer PCIe G3 ×16 65.24

(2) Pre-processing Virtex 7 274.70

(3) FPGA to Host Data Transfer PCIe G3 ×16 379.16

(4) Host to GPU Data Transfer PCIe G2 ×16 225.84

(5) Cell, Block and Video Desc. K20 591.50

57

Table 3.7 shows the times it takes to process eight videos in parallel. In this design,

776 = 97× 8 gray-scale images are transferred from the host to the FPGA. Next, the pre-

processing engine is executed in the FPGA. The resulting 8×144 2-byte integral videos are

then transferred from the FPGA to the host and from the host to the GPU. Finally, the

GPU executes the cell, block, and video descriptor engines. The time to transfer the video

descriptor back to the CPU, step six, is below one millisecond, and as a result, it is not

reported.

By inspection of Table 3.7, I notice that the execution of the block, cell, and video

descriptor engines on the GPU takes the longest time followed by the time it takes to transfer

data from the FPGA to the host. Moreover, it is possible to overlap the movement of data

from the host to the FPGA (and vice versa) with the execution of the kernel in the FPGA;

the call wdm dispatch in the Convey Development Kit is non-blocking [93]. Likewise, it is

possible to overlap the movement of data between the host and the GPU with the execution

of a kernel in the GPU given that several practices are observed [105]. Considering these

overlaps, the communication time between the host and the FPGA dominates the FPGA

execution time. Similarly, the execution time in the GPU dominates the communication

time between the host and the GPU.

Based on these observations, I propose a host controlled four stage pipeline, see

Figure 3.12. In this plot, the notation Bx,Rx and B*x, R*x identifies the set of double

buffers used in the FGPA and the GPU. In steady state, reached at step six, the maximum

latency of the pipeline is 591.50 ms. This is the time it takes the GPU to process eight videos

58

Figure 3.12: Heterogeneous HAR pipeline. The pipeline has four steps: (a) the transferring
of data from the host to the FPGA (H-FPGA) and from the FPGA to the host (FPGA-H);
(b) the execution in the FPGA (FPGA); (c) the transferring of data between the host and
the GPU (H-GPU); and (d) the execution in the GPU (GPU).

in parallel. Based on these considerations, the HAR design has a cumulative throughout of

1,311 fps; 163 fps per input video.

3.6.5 Energy Efficiency Comparison

Next, I compare the energy efficiency of each platform. For the GPUs, the power

is measured using the NVIDIA Management Library [105]. Once the power plot is drawn,

corrections have been made to have an accurate power estimation [17]. The FPGA power

consumption is measured using the Convey Development Kit [93]. This API allows the user

to query the power usage of the FPGA as the application is executed. In all platforms,

the computed power accounts for the idle power and the dynamic power consumption. The

energy usage and energy efficiency per platform and per engine are shown in Table 3.8.

Although my heterogeneous HAR design works with any GPU, I report the results with the

K20 GPU.

59

Table 3.8: Energy usage (Joules), energy efficiency (Frames/Joule), and throughput (FPS)
per platform. Image size 640× 480

HHAR K20 K40 K80

Pre-processing (J) 17.2 74.0 80.3 125.2

Cell Desc (J) 41.0 14.4 13.8 20.5

Block Desc (J) 4.8 1.7 1.4 2.0

Video Desc (J) 98.9 34.7 35.7 35.6

Total Energy (J) 161.9 124.8 131.2 183.3

Efficiency (F/J) 8.0 3.6 3.9 5.4

Throughput (FPS) 1,304 455 517 998

For the pre-processing stage in the HHAR design, I report the energy measured

via the Convey Development Kit and for all other stages, I report the energy measured via

the NVIDIA Development Kit. To obtain the throughput and energy efficiency of the pre-

processing engine in the FPGA, I have synthesized its design for VGA images (640× 480)

and measured the throughput and power consumption. The resource usage is shown in

Table 3.4. Eight engines processing gray-scale images have a cumulative throughput of

2,796 fps while requiring about 36.8 joules i.e. 13.1 mJ/F.

Moreover, the HHAR energy calculation shown in Table 3.8 does not takes into

account the energy used by the host or the PCIe buses. My HHAR design requires additional

energy to move 707.8MB from the FPGA memory to the host memory and from the

host memory to the GPU memory. My research indicates this additional energy is minor

compared to the energy used by a kernel running in either the FPGA or the GPU. It is

estimated that DDR3 memories dissipate approximately 1.5 W/GBit on average and close

to 2.5 W/GBit at peak usage [56, 89]. In the case of memory reads, the reading of 32

bits requires close to 620 pJ [56]. Using these figures, I estimate the energy required for

reads and writes 707.8MB is below one joule. In addition, my experiments reveal that the

transfer of 5.6 GBits from the host to the GPU requires about a dozen Watts, as reported

60

by the sensor in the GPU, although precise measures of the energy required bit the PCIe

links is challenging. More importantly, adding few joules to the energy consumption of my

HHAR design will not alter the overall results.

From this, I notice that the HHAR design has the highest throughout, in frames

per second (fps), and it is the most energy-efficient design, in frames per joules (F/J),

followed by the K80. My HHAR design has a cumulative throughput of 1,311 fps: 163

fps for each incoming video. In addition, it achieves 2.0X(2.2X) higher energy efficiency

when compared with the K40(K20). The K20 and K40 GPUs have comparable comparable

energy efficiency and the K80 is more energy efficient by a factor of 1.5 and 1.4 respectively.

Notice that if my HHAR design uses the K40 or K80, instead of the K20 GPU, the design

will further increase both the energy efficiency and the throughout.

3.6.6 Comparison With Related Works

Prior work on HOG has focused mostly on two dimensions (HOG2D) for object

recognition. Instead, I use histogram of gradients in three dimensions (HOG3D), which is

particularly important for HAR. Working with the temporal dimension adds to the com-

plexity of the algorithm in all its stages.

Previous research of HOG2D for object recognition in GPUs includes the work

presented in [53, 113, 81]. When processing images size 640 × 480, as in this work, these

designs achieve throughputs ranging from 16 fps up to 38 fps. While the focus of the work

in [53] is the identification of vehicles in real time, the work in [113, 81] focuses in the

identification of pedestrians using batch approaches. In addition, these researchers focus

61

their attention on achieving high throughput and high energy efficiency using well-establish

algorithms.

Research of HOG2D for object detection in FPGAs includes [63, 98, 95, 47, 101,

87]. When processing images size 640×480, these designs achieve throughputs ranging from

30 fps up to 526 fps although the work in [47] processes higher resolution images at the

expense of lower throughput. As in the case of GPUs, the focus of this work is in achieving

high throughput. In addition, lowering the computational complexity of the design without

sacrificing the recognition accuracy is paramount.

The acceleration of HOG3D has not received the same attention as that of HOG2D.

The work in [57] targets HAR applications in FPGAs although it operates at 600 fps while

using images size 320 × 240. This design has a recognition rate of 93.2% working with a

small set of actions. Its recognition drops to 80.8% when a few more actions are added. In

comparison, my work achieves a throughput of 1,311 fps on 640 × 480 images when eight

videos streams are processed in parallel. Also, while the work in [1] and [57] target datasets

having few classes, my work targets datasets having over 50 classes.

Furthermore, although my work is orthogonal to those focused into improving the

accuracy of HAR applications, I state that my HCF design, with multiple scale support,

has recognition accuracy comparable to state-of-the-art CNNs. In the case of the HMBD-

514 [71], the recognition accuracy of CNNs [132] is 59.4% when two-stream CNNs are used.

When only the temporal or spatial stream is used, the recognition accuracy drops to 54.6%

and 40.5% respectively. When hybrid approaches are used [147], the recognition accuracy

4This benchmark is comparable to the UCF50 benchmark. It has 51 action categories and 7,000 video
clips

62

reaches 65.9%. My 16-bits reduced fix-point HHAR design achieves 60.1% recognition

accuracy in the UCF50.

Finally, the higher accuracy demonstrated by CNNs on HAR applications [70, 64,

142] comes at the cost of higher power consumption and lower throughput. The results

in [139] show that feature extraction using HOG is 311X and 13,486X more energy efficient

and has 34.7X and 1,562X higher throughput than AlexNet [70] and VGG-16 [133] respec-

tively. The work in [161] shows that a five-layer CNN has comparable accuracy to those

of HOG designs while consuming 100X more energy. In addition, my experiments show

that my hybrid design is 44.7X more energy efficient and achieves 13.4X higher throughput

than AlexNet on the Titan X GPU [103].

3.7 Conclusions

In this work, I have investigated the throughput and energy efficiency of HOG3D-

based HAR applications acceleration on FPGAs and GPUs for edge computing where high

performance and energy economy are at a premium. I have identified four stages in this

application and have explored the design constraints of each stage on the target platforms.

I have developed a detailed I/O and computational complexity analysis of each of these

stages and used this insight to guide my heterogenous implementation. My results show

that a heterogeneous implementation where the first stage, the video pre-processing, is

implemented on the FPGA and the other three stages are implemented on the GPU achieves

the highest throughput and energy efficiency. Specifically, the heterogeneous HAR algorithm

achieves 1.3X speedup when compared with the K80 GPU, 2.5X when compared with the

63

K40 GPU, and 2.8X when compared with the K20 GPU. Similarly, my heterogeneous HAR

design is 1.5X and 2.0X more energy efficient when compared with the K80 and K40 GPUs.

I have shown that HOG3D can be implemented via a reduced fixed-point processing pipeline

without compromising the recognition accuracy. Additionally, my design has comparable

accuracy to those of HAR design using five-layer CNNs while been more energy efficient.

64

Chapter 4

Acceleration of Quantum

Simulations

4.1 Introduction

Modern quantum chemistry techniques depend critically on massively parallelized

computational hardware to enable accurate calculations of the many-body electronic Schrödinger

equation. Indeed, over the past two decades, the quantum chemistry community has wit-

nessed tremendous technological advancements in computing that have enabled simula-

tions of chemical/material systems of increasing complexity. These advancements have

become even more prominent as we rapidly approach the dawn of exascale computing,

with machines capable of performing a million trillion floating-point calculations per sec-

ond [126, 91, 77]. However, to enable these massive calculations, recent exascale computing

guidelines [78, 39, 117] have strongly cautioned that this increase in computing power should

65

only require a modest increase in power consumption (to offset both operation costs and

deleterious climate change effects). Maintaining this delicate balance between computa-

tional performance vs. energy efficiency is extremely difficult since recent reports [92, 55]

have shown that even small supercomputing centers regularly consume 500-1000 kW of

power over the course of the year, resulting in over $1 million for power costs alone. These

estimates do not even account for cooling costs, which have been reported to make up

25–50% of total power required by large data centers [122]. To partially mitigate these is-

sues, this work is a first attempt to address these emerging parallelization and power-usage

concerns via FPGAs.

While my use of FPGAs bears some resemblance to the techniques used by Shaw

and co-workers to accelerate molecular dynamics calculations with the customized Anton

machine [129, 130, 131], the approach utilized in my work has several distinct differences.

In particular, Anton belongs to a class of computing architectures known as application-

specific integrated circuits (ASICs), which are extremely expensive to design and hard to

modify when new types of calculations are desired. Compared to ASICs, FPGAs can be

re-configured for a variety of applications. In addition, FPGA solutions are significantly

less expensive to manufacture and to power.

In this chapter, I present the first application of FPGAs for use in massively par-

allelized quantum dynamics of large chemical systems (up to 3,338 atoms). My motivation

for implementing RT-TDDFTB with FPGAs is two-fold: (1) the RT-TDDFTB formalism is

highly parallelizable, and (2) the techniques presented in this work can be used as a first step

towards full DFT-based electron dynamics simulations on FPGAs. To assess the advantages

66

of the proposed design, I compare its performance with that of the RT-TDDFTB simula-

tions using two highly optimized libraries: (1) the RT-TDDFTB simulations implemented

in the CUBLAS Linear Algebra Library [104] (running on a NVIDIA K40 GPU), and (2)

the RT-TDDFTB simulations implemented in the Intel Math Kernel Library (MKL) [145]

(running on a Intel Xeon processor) in conjunction with OpenMP for multi-threading. The

contributions of my work are three-fold:

• I have implemented a highly optimized engine that focuses on the execution of RT-

TDDFTB simulations on FPGAs. The engine takes advantage of various hardware

optimization techniques such as tiling, deep pipelining, and memory bursting. Multiple

parallel instances of this engine are placed and routed on a Virtex FPGA running at

166 MHz. By exploiting the structure of the input matrices, the engine is able to

execute over 256 complex-value floating point operations per clock cycle.

• For medium and large RT-TDDFTB simulations, the proposed engine outperforms

the competing platforms. In particular, when the RT-TDDFTB simulation has over a

thousand atoms, my engine achieves an 1.4× speedup compared with the competing

libraries. Furthermore, because the performance of the proposed engine increases lin-

early with the number of atoms under simulation, the performance gaps are expected

to increase for larger systems.

• In addition, my experimental results show that the proposed engine is energy-efficient.

On average, CPUs and GPUs consume 3.77 and 4.05 times more energy respectively.

These gains in energy efficiency are due to the presence of highly optimized wide and

deep pipelines. While the wide pipelines allows for the parallel execution of tiled

67

matrix multiplication operations, the deep pipelines allows for the serial execution of

dozens of complex-value floating point operations within these blocks.

4.2 Theory and Computational Methodology

Before proceeding with a detailed description of my FPGA parallelization en-

hancements, I first give a brief overview of the RT-TDDFTB formalism. Over the past

few years, the RT-TDDFTB approach has garnered significant attention as an extremely

efficient technique for probing the non-equilibrium electron dynamics of extremely large

chemical systems. Specifically, the RT-TDDFTB approach have been used to understand

photo-injection dynamics in dye-sensitized TiO2 solar cells [110, 99, 100], many-body inter-

actions in solvated nanodroplets [109], and excitation energy transfer dynamics in plasmonic

arrays [59, 60]. These real-time quantum dynamics calculations are carried out by apply-

ing a time-dependent electric field to the initial ground state density matrix, resulting in

an explicitly time-dependent Hamiltonian Ĥ(t)=Ĥ0 − E0(t) · µ̂(t), where E0(t) is the ap-

plied electric field, and µ̂(t) is the dipole moment operator. Since the quantum system

is directly propagated in the time-domain, E0(t) can have any arbitrary time-dependent

form. For example, if E0(t) is a Dirac delta function, E0(t) = δ(t − t0), this yields an

optical absorption spectrum (obtained after a Fourier transform of the time-evolving dipole

moment). However, if E0(t) takes the form of a sinusoidal perturbation, it represents a

continuous interaction of the system with monochromatic light in the time domain. When

either of these time-dependent fields are applied, the density matrix ρ̂ evolves according to

68

the Liouville-von Neumann equation of motion which, in the nonorthogonal-DFTB basis,

is given by

∂ρ̂

∂t
=

1

i}
(S−1 · Ĥ[ρ̂] · ρ̂− ρ̂ · Ĥ[ρ̂] · S−1), (4.1)

where Ĥ is the Hamiltonian matrix (which implicitly depends on the density matrix), S−1

is the inverse of the overlap matrix, and } is Planck’s constant. When the applied incident

fields are smaller than the internal fields in a molecule or material, the system is in the

linear response regime [96]. Under these conditions, the time evolution of the dipole moment

operator can be expressed as the convolution between the applied electric field perturbation,

resulting in the following response function of the system

〈µ̂(t)〉 =

∫ ∞
0
α(t− τ)E(τ)dτ, (4.2)

where E(τ) is the electric field that induces a perturbation in the Hamiltonian, and α(t−τ)

is the polarizability tensor. Upon application of the convolution theorem, Equation 4.2

can be expressed in the frequency domain as 〈µ̂(ω)〉 = α(ω)E(ω). The imaginary part

of the average polarizability, ᾱ is an experimentally measurable quantity related to the

photoabsorption cross section by the expression σ(ω) = 4πω/c · Im(ᾱ), where c is the speed

of light, and Im(ᾱ) is the imaginary part of the average polarizability.

In this work, I utilized the DFTB+ code [5] to construct the ground-state Hamil-

tonian, overlap matrix elements, and the initial single-electron density matrix within the

self-consistent DFTB approach. With these ground-state quantities pre-computed, excited-

state electron dynamics calculations were carried out with a customized RT-TDDFTB im-

plementation on both GPU and FPGA hardware architectures. To enhance the efficiency

69

of the RT-TDDFTB calculations, the majority (roughly over 75%) of the computation of

Equation 4.1 was offloaded to a co-processor either an FPGA or a GPU as described pre-

viously. To enable this efficiency, Equation 4.1 was computed in multiple steps as follows.

1) In the CPU, the self-consistent charge (SCC) and non-SCC Hamiltonian matrices

are parsed in conjunction with the overlap matrix, orbital-wise electron fillings, and

spatial coordinates of the system. The corresponding data structures for the density,

overlap, and Hamiltonian matrices are subsequently generated.

2) Within the CPU, the matrix product S−1 · Ĥ[ρ̂(t)] is computed.

3) The matrices ρ̂(t), ρ̂(t)T , ρ̂(t −∆t), and the matrix resulting from step 2 are trans-

ferred to the co-processor (i.e., a GPU or an FPGA).

4) ρ̂1(t+∆t) = 1
i} {(S

−1Ĥ[ρ̂(t)])ρ̂(t)}) (2∆t) + ρ̂(t−∆t) is computed in the co-processor.

5) ρ̂2(t+ ∆t) = 1
i} {(S

−1Ĥ[ρ̂(t)])ρ̂(t)T } (2∆t) is computed in the co-processor.

6) The resulting matrices from steps 4 and 5 are transferred to the CPU where the

three-point formula ρ̂(t) = ρ̂1(t) − ρ̂2(t)T is computed (i.e., a simple subtraction of

two pre-computed quantities with little computational overhead).

7) The density ρ̂ and Hamiltonian Ĥ matrices are updated in the CPU.

8) The entire process starting with step 2 is repeated to propagate the electron dynamics

for the desired time duration. The time-dependent charges, dipole moment, and

density matrices are subsequently processed.

70

4.3 Chemical Systems and General FPGA Matrix Opera-

tions

Since the main focus of this work is to implement and understand FPGA perfor-

mance gains for computing electron dynamics, I have chosen a representative set of large

chemical structures to assess its efficiency and computational scaling. To this end, I have

constructed a set of hydrogen-terminated carbon nanoribbons [152] ranging from 62 – 3,338

atoms, and Figure 4.1 depicts a subset of these structures as a function of size. It is worth

mentioning that I specifically chose 3,338 atoms as the upper limit since this corresponds

to the maximum matrix size that can be held in the memory of the GPU used in my

performance benchmarks.

Figure 4.1: A representative subset of the carbon nanoribbons with various lengths exam-
ined in this work.

In computing the electron dynamics of these large nanoribbons, it is worth noting

that both the Hamiltonian matrix Ĥ and the inverse of the overlap matrix S−1 in Equa-

tion 4.1 are real-valued, whereas the density matrix ρ̂ is complex-valued. Moreover, while

71

the density matrix ρ̂(t) is dense, the matrix product S−1 · Ĥ[ρ̂] is sparse, which increases

as a function of the nanoribbon size as shown in Figure 4.2.

0

20

40

60

80

100

62 218 322 426 530 634 738 842 1674 3338

S
pa

rs
it

y
(%

)

Number of Atoms

Figure 4.2: Sparsity of the matrix product S−1 · Ĥ[ρ̂] as a function of nanoribbon size.

To efficiently parallelize the RT-TDDFTB calculations on FPGAs, I designed a

software/hardware kernel that executes steps four and five (which are the most computa-

tionally demanding steps, as described above) and has the capacity for transferring matrices

to and from the co-processor. Moreover, by supporting the matrix operations described in

step four, the implementation for the matrix operations described in step five is already

satisfied since the reading of ρ̂(t − ∆t) can be omitted in the latter step. To this end, I

created a general-purpose hardware kernel to support the operation

Ck = αAB + βCk−1, (4.3)

where the superscript k denotes the kth iteration, A is a real-valued matrix, and the

matrices B and C along with the parameters α and β are complex-valued. As such, the

RT-TDDFTB simulations in the co-processor can be enabled by setting A = S−1 · Ĥ[ρ̂(t)],

B = ρ̂(t) or B = ρ̂(t)T , and Ck−1 = ρ̂(t − ∆t). In addition, the parameter α was set to

1
i}(2∆t) while the parameter β is real and set to one. As described in the next, my kernel

72

exploits the sparsity of A and allows us to decrease both the input/output (I/O) and the

computational complexity of the matrix operations to be offloaded to the FPGA.

4.4 Baseline FPGA Design and Architecture

I first present a general (but detailed) hardware design for carrying out parallelized

matrix multiplications. I designate this as the “baseline” FPGA hardware design, with

Section 4.4.1 describing my baseline implementation for real-valued matrix multiplications

and Section 4.4.2 giving my modifications for complex-valued matrix operations. Section 4.5

presents additional acceleration techniques tailored specifically to the efficient propagation

of RT-TDDFTB electron dynamics on FPGAs.

4.4.1 Real-Valued Matrix Multiplications on FPGAs

The multiplication of real-valued matrices on FPGAs continues to be a topic of

interest, [35, 72, 62, 160, 159, 80, 8] and to enable the computations required by the RT-

TDDFTB simulations (Eq. 4.3) I have modified a previous design [72] that was used for real-

valued, dense matrix multiplication. I commence with Figure 4.3, which depicts a general-

purpose schematic for parallelization of real-valued matrix multiplication on FPGAs. To

allow my baseline design to be completely general, the size of the matrices A, B, and C

are n × m, m × l, and n × l, respectively. Moreover, matrices A, B, and C have been

partitioned into sub-blocks of size p×m, m× p, and p× p, respectively (with n/p and l/p

being integer numbers). Within this schematic, the computation of each block Cij can be

obtained via multiplications of the corresponding blocks in A and B (i.e., C11 = A11B11).

73

More generally, each block Cij can be calculated as outer products (·) between the columns

of block Ai1 and the rows of block B1j such that Cij = a1 · b1 + a2 · b2 + ... + am · bm,

where the column vector ai is the ith column of block Ai1 and the row vector bi is the ith

row of block B1j . In the terminology of computational linear algebra algorithms, matrices

having the form ak ·bk are rank-one matrices, and the addition of rank one matrices is called

a rank one update [151, 143]. By using these rank one updates, I can improve both I/O

bandwidth and parallelism, since if one element of the column vector ak as well as the row

vector bk are available, I can execute p multiply-and-accumulate operations simultaneously.

Moreover, bk can be reused p times to improve the performance of matrix multiplications

on FPGAs [35, 72].

Figure 4.3: Schematic of parallelized matrix multiplication on FPGAs. The computation
of the block C11 can be obtained via the outer-products between the columns of A11 and
the rows of B11.

The general framework for carrying out these parallelized matrix multiplication

operations on FPGAs is shown as a high-level flowchart in Figure 4.4. This hardware engine

is comprised of six modules designated as the Scheduler, Reader, Read A Controller, Read

B Controller, Multiply-and-Accumulate, and the Write C Controller. All communication

between these modules is executed via first-in first-out blocks (FIFOs) [41]. While the

74

design of FPGA Readers, Writes, and Controllers is generally well established, multiple

designs have been proposed for the implementation of the Multiply-and-Accumulate unit.

In this work, I have modified a previous design [72] in which one FIFO (shown in the top

left of Figure 4.5) stores the elements of the columns of matrix Ai1 (i.e., the column vectors

ak). Similarly, at the top of Figure 4.5, the module has p FIFOs to store the rows of the

matrix B1j (i.e., the row vectors bk). In the center of Figure 4.5, p Multiply-and-Accumulate

units execute the multiply-and-accumulate operation. At the bottom of Figure 4.5, p FIFOs

are used for storing the final values of Cij with each FIFO having capacity for p elements.

The right part of Figure 4.5 shows the components of a Multiply-and-accumulate unit. A

block RAMs (BRAM) is used to store the partial values of Cij . Each block RAM have p

addresses with either 32 or 64 bits per address to hold single or double precision numbers.

A multiplexer is used to multiplex one of the inputs of the adder. During most of the

computation, the input to the adder is a numerical value from the BRAM; however, the

multiplexer outputs zero when the calculation of a new block Cij starts.

The computation of Cij commences as follows. First, the Controller signals the

reading of the first row of block B1j and the first column of block Ai1, which are executed

by the Read B and Read A Controller, respectively. These values are stored in the p

FIFOs labeled bk,0, ..., bk,p−1 and the FIFO labeled ai,k respectively. The Controller then

commands the Multiply-and-Accumulate module to carry out p multiplications in parallel;

i.e., a[0, 0] ∗ b[0, j] for j = 0, ..., p− 1. The results of these multiplications are subsequently

added to the zero values coming from the multiplexers and the results are stored in the

BRAM at address zero. After the element a[1, 0] arrives to the top-left FIFO, the Controller

75

Figure 4.4: High-level view of the design for parallelizing the RT-TDDFTB simulations in
hardware. In this figure, the Scheduler directs the execution of tasks to the other modules.
The Read (Write) controller reads (writes) one input matrix from (to) the off-chip memory.
Finally, the Multiply-and-Accumulate module executes the matrix multiplication operation.

Figure 4.5: Hardware implementation of the Multiply-and-Accumulate module. This module
executes the real-valued outer-products between the columns of matrix A and the rows of
matrix B. The partial results are stored in block RAMs. The final results are stored in
the FIFOs shown at the bottom. On the right part, the components of the Multiply-and-
Accumulate unit are shown.

76

signals the execution of p new multiplications and p new additions. Finally, the results are

stored in RAM at address one, and this process continues until the outer product between

the first column of Ai1 and the first row of B1j is completed.

In addition to the tasks mentioned above, the Controller directs the execution of

the outer product between the second column of Ai1 and the second row of Bj1. The results

of these multiplications are then added to the previous values stored in the BRAM. This

process continues until the outer product between the last column of Ai1 and the last row

of Bj1 is executed. At this point, the operation Cij = Ai1B1j is completed, and the results

are stored in the p BRAM. The content of the BRAM is written to the ci,0, ..., ci,p−1 FIFOs

one row at the time. Finally, the Scheduler signals to the Write C Controller to write the

content of these FIFOs to the off-chip memory, and this process continues until all the Cij

blocks are computed.

It is worth mentioning a few practical notes that can be used to enhance the

efficiency of real-valued matrix multiplication on FPGAs. First, the block Cij does not

have to be square, and its size can be tailored to any specific FPGA hardware platform [35].

For example, if the block Cij has dimensions of p × q, the parameter p can be increased

to yield higher efficiency on FPGA platforms that have more on-chip memory. Second, for

FPGAs with abundant floating point units (FPU), the parameter q can be increased as well.

Third, if the delay in the floating point addition is v cycles, it is desirable to have p ≥ v

to maintain computational efficiency. This constraint arises since the accumulations of the

previous outer product must be finished before the next outer product starts, or the pipeline

77

will be stalled. Finally, if one has access to large FPGAs, or multiple FPGAs, several Cij

blocks can be computed in parallel using the computational techniques discussed previously.

4.4.2 Complex-Valued Matrix Multiplications on FPGAs

In this section, I describe my customized baseline design for complex-valued matrix

multiplications on FPGAs. While the FPGA engine described in the previous section

supports the real-valued matrix multiplication in the expression C = AB, I implemented a

new design for computing complex-valued matrix multiplications required for propagating

RT-TDDFTB electron dynamics (cf. Eqs. 4.1 and 4.3). To support this new capability, I

first compute an intermediate matrix Tij given by

Tij = Ai1B1j , (4.4)

where the blocks of the matrix A and B are real- and complex-valued, respectively. Fig-

ure 4.6 depicts my customized complex-valued multiply-and-accumulate module that ex-

ecutes this parallelized operation. Compared to the real-valued multiply-and-accumulate

module shown previously in Figure 4.5, p multiply-and-accumulate units have been added

so as to compute the real (tri,k) and imaginary (tii,k) values of Tij in parallel. In this figure,

the elements of Tij are serialized (on row at the time) into two FIFOs, labeled sr and si

that contain the real and imaginary elements of Tij . With these values in hand, I next

compute the following matrix

Ck
ij = αTij + βCk−1

ij , (4.5)

78

which is carried out by the Complex Accumulator module shown in Figure 4.7. The design

depicted in Figure 4.7 has been harnessed with a new Read C Controller module. This

additional FPGA module reads the complex values of matrix Ck−1 from the off-chip memory

into the FIFOs labeled cr and ci (i.e., the real and imaginary parts of Ck−1). The Complex

Accumulator module executes eight multiplications and six additions, with the real and

imaginary values of Ck
ij written into the FIFOs labeled tr and ti, respectively. At the end

of the computation, the Writer C Controller writes the block Ck
ij into the off-chip memory.

Figure 4.6: Hardware implementation of the Complex Multiply-and-Accumulate module.
This module executes the complex outer-products between the real columns of matrix A
and the complex rows of matrix B. The values of the resulting matrix are serialized to the
bottom FIFOs sr and si.

79

Figure 4.7: Hardware implementation of the Complex Accumulator module. This module
executes the operation αTij + βCk−1

ij . The values of Tij are in the top-left FIFO while the

values of Ck−1
ij are in the top-right FIFO. The complex results are stored in the bottom

FIFOs.

4.5 Optimized FPGA Design for Efficient Propagation of

RT-TDDFTB Electron Dynamics

Having described my baseline FPGA design, I now present further optimizations

that were added to speed up the RT-TDDFTB simulations. In these simulations, as men-

tioned above, the matrix A = S−1 · Ĥ[ρ̂(t)] is sparse, whereas the matrices B = ρ̂(t) and

Ck−1 = ρ̂(t−∆t) are dense. As a result, my baseline design was modified to take advantage

of the sparsity of A to satisfy the following three constraints:

1) Since the input matrix Ck−1 is dense, all the elements of the matrix Tij are required

to execute the addition shown in Equation 4.5. Thus, a number of operations in the

multiplication of Ai1B1j must be executed to generate all the elements of Tij .

80

2) To generate all the values of Tij , one must initialize and output the values of the

BRAM into the corresponding FIFOs within my baseline Complex Multiply-and-

Accumulate module depicted in Figure 4.6. The initialization of the BRAM can be

achieved by executing the outer products between the first column of the block Ai1

and the first row of block B1j . Similarly, the outputs can be generated by executing

the outer products between the last column of block Ai1 and the last row of B1j .

3) One can take advantage of the sparsity of A by utilizing a sparse matrix representation

scheme. For instance, in computations where all the elements in the columns of Ai1

are zero, it is not necessary to read the corresponding row in the matrix B1j since the

results of these multiplications are zero. The only exception to this situation is the

second constraint mentioned previously.

To address the requirements mentioned above, I utilized a compressed sparse blocks

(CSB) representation [15] with additional customized modifications. A schematic of this

representation is shown in Figure 4.8. To enable these parallelized calculations, Ref. [15]

utilizes an integer array that contains the number of nonzero elements per block, where

each block is represented using the compressed sparse row (CSR) representation. In this

work, I also utilized an integer array containing the number of elements per block; however,

I represent each block using a coordinate list format (COO) representation. In the COO

representation, the input matrix can be represented in row- or column-major order; I chose

the latter convention since this representation meets the requirements of my design. For

computational efficiency, my implementation browses the block Ai1 one column at a time;

thus, before matrix A is sent from the CPU to the FPGA, it is first divided into blocks,

81

and its CSB representation is generated. The matrices B and C are then sent to the FPGA

as flat two dimensional arrays.

Figure 4.8: Schematic of the compressed sparse blocks (CSB) matrix representation used in
this work. The input matrix is divided into four blocks of size 4×4. While the block pointer
points to an array containing the number of nonzero elements per block, the coordinate list
(COO) pointer points to an array containing the column index, row index, and the value of
the nonzero elements in each block.

To accommodate the CSB representation of matrix A, additional modifications

of my baseline implementation are required. These modifications only alter the Read A

Controller and Read B Controller modules, with minor changes to the Complex Multiply-

and-Accumulate module. Figure 4.9 depicts my enhanced FPGA design where the Read

A Controller now includes two additional input signals: the Block Pointer and the COO

Pointer. My enhanced design operates as follows:

1) To compute Tij , the Read A Controller signals the Reader to read the elements of

block Ai1. This operation makes use of the Block and COO signal.

82

Figure 4.9: Hardware implementation of the optimized blocked complex-matrix multipli-
cation module. My implementation harnesses the Block and COO pointer to exploit the
sparsity of Ai1, and, as a result, dramatically decreases the complexity of the computation
Ai1B1j .

2) The Reader places the elements of the COO array (the column index, row index, and

real values of Ai1) into the FIFO labeled fma.

3) The Read A Controller reads the elements in the fma FIFO and signals the Read B

Controller to read the next row (the column index in the COO array indicates the

next row to read in the block B1j). In addition, the Read A Controller places the

elements of the columns of Ai1 into the ari,k FIFO.

4) The Read A Controller notifies the Complex Multiply-and-Accumulate module (via

the fpb FIFO) when a new outer product between the columns of Ai1 and the rows

of B1j has to be executed.

5) The Complex Multiply-and-Accumulate module reads the input FIFOs brk,0, b
i
k,0, ..., b

r
k,p−1, b

i
k,p−1

as indicated in FIFO fpb. In addition, this module reads the input FIFO ari,k. These

83

reading operations correspond to the next row in B1j and the next column-element

in Ai1, respectively.

6) Once these 2p+1 FIFOs are populated, the Complex Multiply-and-Accumulate module

executes p complex multiply-and-accumulate operations and stores the results into the

BRAM.

7) As in my baseline design, this process continues until all the outer products between

the columns of Ai1 and the rows of B1j are completed. At the end, Tij is fully

calculated.

8) Finally, the Complex Accumulator, shown in Figure 4.7, takes Tij as input and com-

putes Ck
ij as described in my baseline design.

The FPGA design, as described previously, functions properly and efficiently in

steady state, assuming that the pipelines do not have to be stalled. However, due to the

sparsity of the input block Ai1, I must account for stalls, which occur when a row of Tij

is updated at cycle k, and later, when the same row has to be updated at cycle k + s.

Because the add operation in the FPGA takes v cycles, these updates are allowed if s ≥ v,

otherwise I intentionally stall the pipeline for v − s cycles. The BRAM block shown at the

bottom left of Figure 4.9 is used to track when a row in Tij is updated. When row w of

Tij gets updated, the Complex Multiply-and-Accumulate module writes the wth position

of this BRAM with the value of a counter. If row w requires an update, the Complex

Multiply-and-Accumulate module queries the BRAM at position w and determines whether

the pipeline has to be stalled by comparing the current value of the counter with the value

stored in the BRAM.

84

It is worth noting that when the elements in the fma FIFO are processed, the

Read A Controller is able to signal to the Read B Controller which specific rows in block

B1j to read. Each time that a row of B1j is skipped, significant savings in bandwidth, as

well as in the number of floating point multiplications, are achieved. Thus, for every row

skipped, 4(2p) bytes are saved in I/O bandwidth, and p complex-valued multiplications

and additions, are also avoided. As a result, by implementing all the FPGA acceleration

strategies discussed previously, both the I/O as well as the complexity of computing Tij

are significantly lowered.

4.6 Experimental Results and Discussion

4.6.1 Experimental Environment

Figure 4.10 depicts a schematic of the FPGA hardware used in this work, which is

composed of an Intel Xeon CPU E5-2460 interfaced with a Virtex-7 FPGA [94]. This specific

FPGA configuration has 32 memory channels, each of which has a theoretical bandwidth

of 1.25 GB/s. As such, to achieve maximum I/O performance, I configured my FPGA to

execute read/write requests of 64 bytes aligned to 64-byte addresses (the FPGA can carry

out read/write requests of 8, 4, 2, or 1 byte, but these smaller sizes result in a lower I/O

performance). My FPGA implementation was written using Verilog HDL, and my hardware

design was simulated with ModelSim [44] to test its accuracy. My FPGA implementation

was synthesized, placed, and routed with Vivado 17.3 [37]. The target frequency of the

85

40 GB/sec

External Memory
External Memory

Host Interface

(HIX)

8 GB/sec

Application
Engine

Memory
Controllers

PCIExpress Gen3 x8

Figure 4.10: Schematic of the Micron Wolverine FPGA used in this work. This hardware
architecture is comprised of a CPU with one FPGA attached via a PCIExpress Line. The
FPGA is first configured with the specific simulation to be executed, and the CPU sends
commands to the FPGA via the host interface. These commands include operations such as
writing (reading) data to (from) the FPGA external memory, executing the computation,
and querying the status of the computation.

FPGA was set to 167 MHz. All arithmetic operations were implemented on Xilinx cores [52]

by taking advantage of either digital signal processors (DSP) or lookup tables (LUTs).

To assess the performance of my FPGA implementation against other computa-

tional hardware, I also examined computational timings and energy expenditures of both

GPUs and CPUs. For the GPU benchmark tests, I utilized an NVIDIA K40 GPU equipped

with an Intel Xeon E5-520 processor and 24 GB of RAM. To ensure a fair assessment of

computational efficiency, my GPU-based RT-TDDFTB code was compiled with CUDA (re-

lease 9.0) in conjunction with the CUBLAS linear algebra library [104] to achieve optimal

computational performance on the GPU. In all my GPU-based tests/comparisons, error

correction capabilities (ECC) were disabled. For the CPU tests, I utilized an Intel Xeon

E5-2643 processor operating at 3.40 GHz with 256 GB of RAM. Similar to my GPU bench-

86

mark tests, the CPU implementation utilized optimized routines within the Intel Math

Kernel Library (MKL) in conjunction with OpenMP for multi-threading.

4.6.2 Single vs. Double Precision

I first present various metrics/benchmarks for calculating absorption spectra as

a function of system size. Figure 4.11 shows the effects of carrying out the RT-TDDFTB

simulations in single/double precision for several of the nanoribbons described above. The

absorption spectrum for each nanoribbon was generated by propagating Eq. 4.1 in the

presence of a Dirac delta electric field impulse applied along three mutually orthogonal

directions to compute the polarizability tensor. The resulting time-varying dipole moment

was then Fourier transformed to give the absorption spectrum. Regardless of the nanoribbon

size, Figure 4.11 shows that the resulting spectra were extremely similar, independent of

whether it was computed in single or double precision.

Table 4.1 gives a more quantitative comparison of numerical accuracy by calcu-

lating the mean squared error (MSE) of the computed spectra according to the following

expression

MSE =
1

n

n∑
i=1

(yi − ŷi)2, (4.6)

where y is the absorption spectrum of the nanoribbon computed in double precision and ŷ

is the corresponding spectrum calculated in single precision. I obtained a maximum MSE

of 4.2 (corresponding to the largest nanoribbon), with many of the smaller nanoribbons

exhibiting much lower errors. These benchmark results are important since RT-TDDFTB

calculations performed in single precision significantly reduce the I/O bandwidth as well

87

Single Precision

Double Precision

A
bs

or
ba

nc
e

(a
rb

. u
ni

ts
)

Energy (eV)

(a)

Single Precision

Double Precision

A
bs

or
ba

nc
e

(a
rb

. u
ni

ts
)

Energy (eV)

(b)

Single Precision

Double Precision

A
bs

or
ba

nc
e

(a
rb

. u
ni

ts
)

Energy (eV)

(c)

Single Precision

Double Precision

A
bs

or
ba

nc
e

(a
rb

. u
ni

ts
)

Energy (eV)

(d)
Figure 4.11: Absorption spectra of various carbon nanoribbons computed in single- and
double-precision comprised of (a) 426, (b) 842, (c) 1,674, and (d) 3,338 atoms. In all cases,
the absorption spectra computed in single precision is nearly indistinguishable from the
double-precision spectra.

88

Table 4.1: System size (number of atoms and Hamiltonian matrix size) and mean squared
errors (MSEs) for the various carbon nanoribbons computed with the FPGA-enabled RT-
TDDFTB approach.

Number of Atoms Matrix Size MSE

62 194 ∼ 0
218 746 0.1
322 1,114 0.1
426 1,482 0.2
530 1,850 0.5
634 2,218 0.8
738 2,586 0.9
842 2,954 1.1

1,674 5,898 2.2
3,338 11,786 4.2

as the DSP resources [112] in FPGAs. Specifically, in FPGAs, the multiplication of two

double or two single precision numbers requires 11 and 3 DSPs, respectively [52, 37]. As

such, notwithstanding other hardware considerations, FPGAs can execute at least three

times more multiplications per clock cycle when single precision arithmetic is used.

4.6.3 Computational Speedup of FPGAs vs. GPUs and CPUs

In this section, I compare the computational efficiency of the RT-TDDFTB FPGA

implementation against execution times obtained with the GPU and CPU. Because FPGAs

are configured at the hardware level, I can take advantage of all the resources available on

the FPGA by including all of the I/O channels and most of the BRAM (nearly 75%). In

particular, my RT-TDDFTB simulations were replicated such that four Cij blocks of size

64 × 64 were computed in parallel, which allows 512 = 4(64 × 2) single-precision floating

89

Table 4.2: Virtex-7 FPGA utilization for computing RT-TDDFTB electron dynamics
Resource Available Total Utilization per

Utilization (%) FPGA Engine (%)

Registers 2443K 45.11 11.27

LUTs 1221K 49.42 12.35

LUT RAM 344K 25.25 6.31

Block RAM 1.2K 74.27 18.56

FPUs 2.1K 55.56 13.89

Memory Channels 32 100 25

point operations per clock cycle. Table 4.2 provides a detailed accounting of the resources

utilized by my FPGA implementation.

To ensure a fair comparison of computational efficiency, my GPU-based RT-

TDDFTB code used optimized cuSPARSE libraries to compute the S−1 · Ĥ[ρ̂] matrix in

Compressed Sparse Column (CSC) format. However, I did not observe any gains in ef-

ficiency (GPUs are less efficient for sparse matrix operations, as discussed further in the

paragraphs below); as such, I report GPU performance and energy metrics for calcula-

tions that only utilized the CUBLAS dense routines [104]. For the CPU calculations and

comparisons, my RT-TDDFTB simulations were executed on two and eight threads. Fig-

ure 4.12 compares the computational speedup obtained with the FPGA, GPU, and CPU for

nanoribbon systems containing 62 – 3,338 atoms. As is customary in hardware performance

profiling, the computational speedup of each hardware platform is normalized by dividing

its execution time by the timings of the CPU running two threads.

For small RT-TDDFTB simulations on systems containing 62 – 530 atoms, the 8-

thread CPU outperforms both the FPGA and GPU (with the GPU being slightly faster than

the FPGA). The lower performance of the FPGA can be attributed to the size of the input

matrices: since the FPGA relies on wide and deep pipelines to achieve high throughput,

90

these pipelines are not able to reach a steady-state when the input matrices are small.

Moreover, the latency of the off-chip memory (which is on the order of hundreds of cycles

for the hardware used in this work [94]), results in further inefficiencies. These latencies

deepen the pipelines, and as a result, larger inputs are required before the pipelines achieve

a steady-state. Thus, for RT-TDDFTB simulations on chemical/material systems with a

small number of atoms, the pipelines are heavily underutilized. However, when the system

size reaches 634 atoms, my FPGA implementation becomes more efficient than the GPU

and is competitive with the 8-thread CPU. Finally, for large RT-TDDFTB simulations on

systems containing over 842 atoms (where the sparsity is over 90%, as shown in Figure 4.2),

my FPGA implementation outperforms both the GPU and CPU. Most importantly, as

the number of atoms increases, the performance gap between the FPGA and the other

competing hardware platforms increases as well (with the FPGA achieving a 5× speedup

for the largest system).

It is also worth mentioning that the computational performance of the GPU and

CPU starts to saturate/plateau for large systems, whereas the performance of the FPGA

continues to increase. My FPGA implementation outperforms other platforms since it

was specifically designed to take advantage of the sparsity of S−1 · Ĥ[ρ̂], which effectively

decreases the I/O and computational complexity of the problem (even more efficiently than

GPUs). In particular, the performance of my FPGA implementation grows as a function of

system size since the sparsity of S−1 · Ĥ[ρ̂] increases with the number of atoms (cf. Figure

4.2).

91

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

62 218 322 426 530 634 738 842 1674 3338

C
om

pu
ta

ti
on

al
 S

pe
ed

up

Number of Atoms

2 CPU Threads 8 CPU Threads GPU FPGA

Figure 4.12: Comparison of computational speedup for the CPUs, GPUs (K40 architecture),
and FPGAs (Virtex-7 architecture). For clarity, the speedup of each hardware platform is
normalized by dividing its execution time by the timings of the CPU running two threads..

As demonstrated in my benchmark comparisons, it is important to emphasize

that the multiplication of large, sparse matrices on GPUs is quite inefficient. Specifi-

cally, GPUs are much better suited for dense matrix operations and achieve about 60%

of their theoretical peak performance, as measured in floating point operations per second,

or FLOPS [27, 153]. However, GPU performance significantly degrades as the sparsity of

the input matrices increases (even when a sparse library is used), resulting in about 10%

FLOPS of the theoretical peak performance [27, 157, 48]. GPUs suffer this significant drop

in efficiency since they belong to a hardware classification known as single instruction mul-

tiple data (SIMD) architectures [50] – a class of computational architectures that can only

execute the same instruction over multiple streams of data. In short, GPUs were specifically

designed to only (1) access contiguous chunks of data in off-chip memory via coalesced reads

and writes, (2) provide a high off-chip memory bandwidth, (3) store efficiently small blocks

of data in on-chip memory, and (4) execute a maximum number of floating point opera-

tions [67]. However, when the inputs of the matrices are sparse, GPUs encounter several

92

difficulties that incur immense computational overhead, including: (1) storing the input

matrices in a sparse matrix representation format, (2) accessing the data in an indirect

fashion, since the metadata describing the input matrix has to be accessed before the data

itself is read, (3) not having enough inputs (due to the sparsity of the input data) to fully

saturate the floating point units, and (4) having a non-trivial distribution of equal work

among the stream processors [84]. While FPGAs encounter the first, second, and fourth

difficulties mentioned previously, their pipelines can be customized to take advantage of the

granularity of the input data. Moreover, FPGAs can be adapted to provide fine-grained

access to off-chip memory, flexible on-chip memory storage, and wide/deep pipelines to fully

tackle the problem at hand [134, 48]. As such, the use of FPGAs for these RT-TDDFTB

electron dynamics applications shows significant performance gains (even beyond modern

GPUs), particularly for large chemical/material systems.

4.6.4 Energy Consumption of CPUs, GPUs, and FPGAs

For the RT-TDDFTB electron dynamics performed on the GPU and FPGA, I

measured the raw power by utilizing the NVIDIA management library and the Micron

development kit [94, 2], respectively. For the GPU benchmarks, I utilized the correction

scheme in Ref. [17] to give an accurate power estimation; in the CPU, the power was

measured via the Likwid [144] suite. In my assessment of the FPGA and GPU platforms,

the reported energy consumption does not include the energy consumed by the CPU since

the majority of the computation (over 75%) was carried out on the co-processor (i.e., either

93

1

10

100

1000

10000

100000

426 842 1674 3338

E
ne

rg
y

(W
.m

in
)

Number of atoms

FPGA GPU CPU

Figure 4.13: Comparison of energy consumption for FPGAs, GPUs, and CPUs.

the FPGA or GPU), and accounting for the power expenditures consumed by the CPU did

not alter the observed trends.

Figure 4.13 compares the energy consumption in units of Watt-minutes for my

experimental platforms. The total energy was calculated by integrating the power as a

function of time that each hardware platform consumes per calculation. In the GPU, the

power usage was limited to 150 W. As shown in Figure 4.13, the energy gap between the

FPGA and GPU/CPU increases dramatically with the number of atoms in the system (note

the logarithmic scale on the vertical axis). On average, the CPU and GPU consume 3.77

and 4.05 times more energy, respectively, than the FPGA, and this difference in energy

efficiency is expected to further increase with system size. Similar to the computational

speedups already described, these massive calculations can be executed in an energy-efficient

manner since my FPGA implementation was specifically designed for the task at hand. In

general, CPUs and GPUs are relatively expensive to power with an energy efficiency of 10

MOPS/nW, whereas FPGAs are about 5 times more cost effective with an efficiency of 50

MOPS/nW [55].

94

4.6.5 Performance on Recent FPGA Hardware Architectures

While my previous simulations were conducted on modern server-grade Virtex-

7 FPGAS, I have migrated (synthesized, placed, and routed) my hardware design to a

Virtex Ultrascale chip to forecast the gains in performance due to these newer hardware

architectures. This migration is straightforward since the components used in my design are

fully compatible with each other [37]. Specifically, (1) the Verilog modules used previously

were directly implemented on this newer hardware, and (2) the Xilinx FPUs and block

RAMs were migrated effortlessly since these units are forward compatible. With these

relatively easy modifications, my RT-TDDFTB electron dynamics could be executed at

266 MHz on the VU9P Virtex UltraScale chip (when my design is routed in this device,

52.5%, 50.8%, and 53.3% of the LUTs, block RAM, and ultra-block RAM resources are

used, respectively). In short, because my design is quite general and can be placed/routed

in a newer FPGA operating at 266 MHz (compared to the 167 MHz of my current FPGA),

my implementation has the capability to run even faster, with additional performance gains

of 62%, even beyond the computational speedup observed in Figure 4.12.

4.7 Conclusion

In this chapter, I have presented the first application of field programmable gate

arrays (FPGAs) for the fast and energy-efficient calculation of real-time electron dynamics

in large chemical/material systems. Because FPGAs have not been used by the quantum

dynamics community, I have provided a detailed description of my approach as a self-

contained reference, followed with additional acceleration techniques tailored specifically

95

to the efficient propagation of RT-TDDFTB electron dynamics. To thoroughly test and

understand the performance of the proposed FPGA engine, I have examined a variety

of performance benchmarks that include single vs. double precision tests, computational

speedup comparisons against GPUs/CPUs, detailed energy consumption measurements,

and an assessment of performance gains on competing platforms.

My implementation allows the parallel execution of wide and deep pipelines tai-

lored for the efficient execution of RT-TDDFTB electron dynamics. By offloading the

most intensive and repetitive calculations into the FPGA, I show that the computational

performance of my hardware implementation can surpass that of optimized commercial

mathematical libraries running on high-performance GPUs and CPUs. In addition to this

computational speedup, I show that FPGAs are energy-efficient and consume about four

times less energy than the competing platforms. Moreover, FPGA performance has dou-

bled in the last few years[128], and the implementation techniques and performance metrics

demonstrated in this work indicate that FPGAs could also play a promising role in the accel-

eration (and energy-efficient calculation) of other types of quantum chemistry and materials

science applications in the near future.

96

Chapter 5

Acceleration of the QR

Decomposition of Tall-and-Skinny

Matrices in FPGAs

5.1 Introduction

One of the fundamental problems in high performance computing is the fast decom-

position of a matrix A into two or more factors. Notable algorithms include the Cholesky,

LU, QR, SVD, spectral, singular value, and Schur decompositions [136]. In this chapter, I

examine the design of energy-efficient high-throughput cores for the QR decomposition of

tall-and-skinny matrices (TSMs); that is, matrices with a few hundred columns and tens

of thousands of rows. The QR decomposition of TSMs has pervasive applications, with

the most well-known being the solution of least squares problems [42]. In least squares,

97

the input matrices have a few hundred columns that correspond to the observed parame-

ters, and thousands of rows, which represent the number of observations. In the field of

video and image processing for stationary background subtraction [18], the input matrices

have a few hundred columns that correspond to the given images and tens of thousands

of rows representing the pixels. In the field of wireless communication [20], the input ma-

trices have dozens of rows that correspond to the number of receiving antennas and a few

columns that represent the number of transmitting antennas. Additional applications in-

clude communication-avoiding algorithms [30], the computation of eigenvalues [137], and

the computation of Krylov subspaces [143].

While multiple studies [6, 97, 111, 108, 73] have addressed the design of efficient

cores for the QR decomposition of matrices using methods such as Gram-Schmidt Orthog-

onalization (GS) (and its modifications), the Cholesky Decomposition (CH), and Givens

Rotations (GR), the QR decomposition via Householder reflectors (HR) has, surprisingly,

received less attention despite the fact the algorithm is numerically stable, parallelizable, and

has a favorable computational complexity [58, 143]. Indeed, the HR decomposition method

has been named as one of the ten most important algorithms of the last century [34].

In this chapter I propose an engine capable of decomposing TSMs in parallel

with resource-aware reduction circuits [40, 158], thereby achieving a higher computational

efficiency. Moreover, I take advantage of additional optimizations including tiling, double

buffering, wide and deep pipelines, and memory burst accesses. I have implemented an HR

decomposition core that targets the factorization of TSMs on a Micron SB-852 board [94].

The performance of the proposed core is compared against two configurations: (1) the QR

98

solver within the Intel MKL routines [145] running on an Intel quad-core processor, and (2)

the QR solver in the CUDA basic linear algebra subroutines (CUBLAS) [104] running on a

K40 GPU.

The contributions of my work are three-fold:

• I develop a flexible and scalable QR solver core that targets the decomposition of

TSMs on FPGAs. By taking advantage of the numerical stability of the HR method,

along with resource-aware reduction circuits, my design splits the input matrix into

a series of blocks and executes the QR decomposition in parallel. Multiple parallel

instances of this core are placed and routed on a Virtex UltraScale+ FPGA running

at 266 MHz. This architecture can be easily scaled up or down for implementations

on embedded or server-scale FPGAs. For the task at hand, my design achieves the

highest efficiency (54%) compared to similar FPGA designs (36%) [114].

• The performance of the proposed engine matches and surpasses that of the Intel

MKL QR solver [145], a highly optimized library, running on a quad-core CPU. For

matrices having a few thousands rows, my engine matches the performance of the

MKL QR solver. As the number of rows in the input matrix increases, my design

outperforms the MKL QR solver by a factor of 1.5×. Compared to the performance

of the CUBLAS QR solver [104] running on a GPU, my design achieves a speedup

ranging from 1.5× to 3.0× for matrices having up to 256 columns. When the input

matrix has 512 columns, my design closely follows the performance of the library

running on the GPU; however, it executes more floating point operations (FLOPS)

per Joule.

99

• My experimental results show that while CPUs and GPUs execute at most 0.45 and

0.60 GFLOPs/Joule, respectively, my design executes 1.03 GFLOPS/Joule. These

gains in energy efficiency are obtained because the proposed engine uses wide and

deep pipelines: when the input matrix has a few hundred columns, the proposed

engine executes 2.3× (12.4×) more FLOPS per clock cycle than the GPU (CPU).

5.2 QR Decomposition

QR decomposition factors a real valued matrix An×n into two matrices, Qn×n

and Rn×n, such that A = QR with Q an orthogonal matrix (QQT = QTQ = I) and R

an upper triangular matrix (Ri,j = 0 for i > j) [151, 143, 42]. When the input matrix

A is nonsingular, the decomposition is unique, given that the diagonal elements of R are

positive. More generally, when A is m× n, with m ≥ n, the decomposition is still possible

with Q being an m×m matrix and R being an m× n matrix. Specifically,

A = QR = [Q1 Q2]

 R1

0

 = Q1R1, (5.1)

with R1 of size n× n , Q1 of size m× n, Q2 of size m× (m− n), and the matrix 0 having

dimensions of (m− n)× n.

5.2.1 QR Decomposition For TSMs

Although the QR decomposition can be applied to square matrices, my focus is on

decomposing TSMs Am×n such that m� n [30]. As shown in figure 5.1, the input matrix

100

Figure 5.1: QR Decomposition for tall-and-skinny matrices (TSMs). This binary tree rep-
resents the QR decomposition of A such that Ai = QiRi and

(Rj

Rj+1

)
= QaRa.

A of size 8n× n is partitioned into four blocks A1, ...,A4, with Ai of size 2n× n. The QR

decomposition is implemented in three steps.

1. Four processors decompose A1, ..,A4 such that A1 = Q1R1, A2 = Q2R2, A3 =

Q3R3, and A4 = Q4R4 are computed in parallel.

2. Two processors decompose R1, ...,R4 such that

 R1

R2

 = Q5R5 and

 R3

R4

 =

Q6R6 are computed in parallel.

3. One processor decomposes R5 and R6 such that

 R5

R6

 = Q7R7.

In this figure, each Qi has a size of 2n× n and Ri is n× n. Notice that stage (b) takes the

factors R1,R2,R3, and R4 from stage (a) as inputs. Likewise, stage (c) uses the factors R5

and R6 from stage (b). As a result, in this approach, one only requires the computation of

matrices Ri. Once R7 is found, finding matrix Q is immediate because Q = AR−1.

101

As described, the QR Decomposition of matrices can be achieved using four meth-

ods. The classical GS method is known to be numerically unstable due to rounding errors

in finite precision arithmetic, although its instabilities can be removed via a modified ap-

proach [143]. Likewise, CH is known to be numerically unstable because the condition

number of the matrix AAT is the square of the condition number of A [42]. On the other

hand, GR and HR methods are known to be numerically stable given that certain practices

are observed [42]. In this work, I investigate the performance of HR for decomposing TSMs

in FPGAs. My decision is mainly based on the fact that this decomposition is numeri-

cally stable, and as a result, no additional hardware is dedicated to maintain its stability.

Moreover, it has a lower computational complexity compared to the CH method [151, 42].

5.2.2 QR Decomposition Using Householder Reflections

Let x = (x0, x1, ..., xn−1)
T be a vector. The HR method [151, 143] transforms

x into y = (y0, 0, ..., 0)T by constructing a matrix Qn×n, usually called a Householder

reflector, such that

Q


x0

...

xn−1

 =


y0

...

0

 . (5.2)

The HR decomposition transforms vector x into vector y = (−σ, 0, ..., 0)T with σ = ±||x||2.

The matrix Q that achieves such a transformation is built as follows. Define vector u as

u = x− y = (x0 + σ, x1, ..., xn−1)
T (5.3)

102

and the parameter γ as γ = 2
||u||22

. The matrix Q is given by

Q = I− γuuT , (5.4)

where In×n is the identity matrix. In addition to annihilating multiple elements in a vec-

tor, the HR decomposition can be used to calculate the R component in the QR decom-

position A = QR. In this approach, the application of a set of Householder reflectors

Q1,Q2,...,Qn [151, 143] to matrix A leads to the computation of matrix R. Algorithm I

shows the canonical implementation of this decomposition.

Algorithm I - Canonical QR Decomposition of A size m× n.
1 for k = 1 to n− 1 do

// Step One - Generate Householder reflector
2 xk = A(k : m, k)
3 d1 = ddot(xk,xk)
4 d2 =

√
d1

5 uk = xk

6 uk(1) = xk(1) + sign(xk(1))d2
7 d3 = d1uk(1)
8 γk = −2

d3
// Step two - Update trailing columns of A

9 for j = k to n do
10 aj = A(k : m, j)
11 d4 = (γk)ddot(aj ,uk)
12 tj = axpy(aj , d4,uk)
13 A(j : m, j) = tj
14 end for
15 end for

In this routine, the operation ddot(x,y) executes the dot-product between the

arguments. Likewise, the operation axpy(x, d,y) executes the vector subtraction x− (d)y.

As shown in this routine, the canonical QR decomposition has two major steps: (1) the

computation of the HR reflector, see Equation 5.4, and (2) the updating of the trailing

103

columns

Qjai = ai − γj(uT
j ai)uj . (5.5)

where ai is a column of A.

5.2.3 Householder Reflectors - Complexity Analysis

Now I analyze the computational complexity of applying the HR method to the

decomposition shown in figure 5.1. Table 5.1 summarizes my analysis. In this analysis, the

Table 5.1: Computational complexity analysis

Task Complexity
Householder Vector (Ai) 3n2 + n
QA Mults + Adds (Ai) 4n((5/6)n2 + n+ 1/6)

Householder Vector (Ri) n2 + 3n
QR Mults + Adds (Ri) 4n(n+ 1)(n/6 + 5/6)

matrices Ai have a size of 2n× n while the matrices Ri are n× n. The computation of the

first vector u1 requires at least 2n multiplications with 2n additions plus the computation

of the square-root operation. Next, the vector u2 has to be computed for a (2n−1)×(n−1)

sub-matrix. Thus, the computation of all the vectors ui requires at least
∑n−1

i=0 (2n − i) =

(3/2)n2 + n/2 multiplications and an equal number of additions. The complexity of the

application of matrices Qn, ..., Q2, Q1 can be computed in a similar fashion. In the second

case, parts (b) and (c) in figure 5.1, the computation of the vectors ui is executed over

columns of size 2 up to n + 1 so as to take advantage of the upper triangular matrices R,

otherwise the calculations are as before.

104

5.2.4 QR Decomposition in CPUs and GPUs

The HR decomposition in CPUs and GPUs is typically implemented via blocks. In

this approach, the input matrix Am×n is divided in tiles [65, 12], such that A = [A1A2...Ak]

with Ai of size m× r and k = n/r an integer. The method is shown in Algorithm II.

Algorithm II - QR Decomposition in CPUs and GPUs
1 for j = 1 to r do
2 S1 [u, γ] = house(A1(j : m, j))
3 S2 A1(j : m, j : r) = A1(j : m, j : r)− γu(uTA1(j : m, j : r))
4 S2 V(:, j) = [zeros(j − 1, 1);u] ; B(j) = γ
5 end for
6 S3 Y = V(:, 1) ; W = −B(1) ·V(:, 1)
7 for j = 2 to r do
8 S3 u = V(:, j)
9 S3 z = −B(j) · u−B(j) ·W(YTu)
10 S3 W = [W z] ; Y = [Y u]
11 end for
12 S4 A(:, r + 1 : n) = A(:, r + 1 : n) + YWTA(:, r + 1 : n)
13 S5 execute step one

This algorithm takes five steps. In step one (S1), the reflectors Q1,Q2, ...,Qr for

the tile A1 are computed. In step two (S2), the reflectors are applied to tile A1. In step

three (S3), the reflectors Q1,Q2, ...,Qr are transformed. In step four (S4), the reflectors are

applied to the remaining tiles of A. In the last step (S5), the previous steps repeat starting

from A
(1)
2 , where A

(1)
2 = Q1,Q2, ...,QrA2

As far as the computational complexity of this routine, I notice that S1 has a

complexity proportional to O(mr) since the execution time is dominated by the calcula-

tion of dot-products involving vectors of size m. The complexity of S2 is proportional to

O(r(mr)) since each iteration operates over matrices of size m× r. The complexity of S3 is

proportional to O(r(rm)) due to the presence of the matrix-vector product Y Tu in addition

105

to the product W (Y Tu). Finally, the complexity of S4 is proportional to that of matrix

multiplication.

5.3 Proposed Micro-architecture

In this section, I describe the design and implementation of the HR accelerator

engine. The engine makes use of techniques to increase the performance in FPGAs, namely

tiling, deep pipelines, double buffering, replication of pipelines, and memory bursting [25,

22].

5.3.1 Proposed Optimizations

My parallel-blocked approach optimizes the QR decomposition of TSMs via a

set of optimization techniques including (a) parallel blocked decomposition, (b) tile QR

decomposition, (c) efficient processing of the tiles via deep pipelines, (d) efficient processing

of the tiles in the Ri blocks, (e) efficient computation of the dot-products, (f) efficient access

to the off-chip memory, (g) and efficient use of FPGA resources. In the following, I describe

each optimization.

(a) Parallel blocked QR decomposition. As shown in Figure 5.1, the QR decomposi-

tion of TSMs can be executed in parallel by multiple processing engines. In this regard, the

decomposition of multiple blocks Ai in parallel is advantageous due to the large number of

rows in the input matrix. Likewise, once the blocks Ai are decomposed, the decomposition

of the blocks Ri in parallel is highly beneficial as the large number of rows in the input

106

matrix implies the presence of multiple levels in the decomposition tree. In my work, I de-

compose multiple blocks in parallel since the limiting factor is the availability of resources

in the target device.

(b) Tiling the QR decomposition. At iteration j, as shown in Figure 5.2(a), the QR

decomposition has to be applied to a (2n− j)× (n− j) block. Due to the iterative nature

of the decomposition, (see Algorithm I), it is useful to store a large potion of this block

in on-chip memory since storing the entire block is not feasible due to the limited memory

resources on the FPGA. Thus, I tile the QR decomposition as shown in Figure 5.2 (b), (c),

and (d).

Figure 5.2: Tiling the QR decomposition. Instead of applying the QR Decomposition on
blocks of size (2n− j)× (n− j) as shown is part (a), I partition the decomposition in tiles
of size (2n− j)× t. Next, I apply the QR decomposition to the left-most tile and save the
reflectors as shown in part (b). Finally, I apply these reflectors to the remaining tiles as
shown in parts (c) and (d).

In this figure, the maximum size of the tile is 2n × t where 2n is the maximum

number of rows in Ai and t is the number of columns in the tile. The QR decomposition

using tiles involves two steps. In the first step, the QR decomposition is applied to the

107

most-left tile as shown in Figure 5.2 (b). This step involves the computation of t reflectors

and the application of these reflectors to the t columns in the tile. While the first reflector

Q1 is applied t times, the last reflector Qt is applied once. In addition, these reflectors are

saved into the on-chip memory. In the second step, the saved reflectors are applied to the

remaining tiles as shown in Figure 5.2 (c) and (d). Here, each reflector is applied t times

per tile. Notice that by adjusting t, I can tailor the decomposition in environments with

copious, as well as scarce, on-chip memory resources.

(c) Efficient processing of the tiles via deep pipelines. While the canonical ap-

proach presented in Algorithm I assumes that one reflector Q is applied to each incoming

vector aj per iteration, in my work, I apply multiple reflectors 1 via deep pipelines. Fig-

ure 5.3 illustrates my approach when four reflectors are applied in a pipeline fashion.

Figure 5.3: QR decomposition using Householder reflectors. At the top, the operation

a
(1)
1 = Q1a1 is executed via a shallow pipeline. On the bottom, the operation a

(4)
1 =

Q4Q3Q2Q1a1 is executed via a deep pipeline.

1While technically the word Householder reflector refers to the matrix Q = I − γuuT , in this work I use
the word reflector to refer to the vector u also. The context of the discussion makes it clear if I am talking
about Q or u.

108

At the top of this figure, I apply reflector Q1 to all the columns of the current tile,

one column at a time via a shallow pipeline. The result of the operation is A(1) = Q1A. In

the bottom part, I apply the reflectors Q1,..,Q4 to each column of the tile. This operation

is illustrated in Equation 5.6.

A(4) = Q4Q3Q2Q1A = (I− γ4u4u
T
4)(I− γ3u3u

T
3)(I− γ2u2u

T
2)(I− γ1u1u

T
1)A (5.6)

Notice that by applying multiple reflectors for each incoming vector, I can take advan-

tage of the copious resources available in the FPGA namely BRAMs, DSPs, and LUTs.

Furthermore, I also use this approach in the processing of the Ri blocks.

(d) Efficient processing of the tiles in the Ri blocks. As described in the canonical

QR decomposition (see Algorithm I), the QR decomposition has two main steps: (1) the

generation of the reflectors Q1, and (2) their application. When the inputs to the QR

decomposition are the upper triangular matrices Ri, further optimizations [30] for both

steps are possible as shown in Figure 5.4.

At iteration j (see Figure 5.4(a)), the non-optimized HR decomposition works

over tiles of size ((n − j) + n) × t. Because the elements below the diagonal in matrices

R1 and R2 are zero, the computation of the reflector Qj can be optimized as shown in the

left-most tile in part Figure 5.4(b). The optimized HR decomposition works over tiles of

size (t+ (j + t))× t.

109

Figure 5.4: Iteration j of the QR decomposition for upper triangular matrices R1 and R2.
On (a) the non-optimized QR decomposition, and on (b), the optimized QR decomposition.

(e) Efficient computation of dot-products. As shown in Algorithm I, the com-

putation of the reflectors Qi, and their application, requires the efficient computation of

dot-products. As the decomposition of the tiles in Ai advances, the size of these dot-

products decreases. The size of the vectors involved in these dot-products goes from 2n to

t + n. Likewise, as the decomposition of the tiles in Ri advances, the size of the vectors

goes from 2t to t+n. As a result, it is important to implement a flexible circuit that easily

adapts to these requirements. To meet these needs, I have implemented a resource-aware

reduction circuit as described in [40]. This circuit uses two FIFOs, two multiplexers, one

adder, one register, and one controller. In addition to being resource-aware, this circuit has

a latency proportional to the size of the input.

(f) Efficient access to the off-chip memory. By inspection of Algorithm I, I observe

that accessing the matrices Ai, and Ri, is in a column major fashion. Moreover, my

benchmarks indicate that in the FPGA development environment [94], accessing off-chip

110

arrays via columns (when the arrays are stored in row major fashion) drastically reduces

the performance of the I/O memory subsystem. Because such a low I/O performance

(about 10% of the nominal peak performance) negatively impacts the performance of the

decomposition, I transpose the input matrix in the host before sending it to the off-chip

memory in the FPGA. In addition, the target coprocessor favors the access of 64-byte

chunks of data aligned to the 64 memory channels addressed. As a result, I align the FPGA

memory arrays to 64-bit addresses and access the off-chip memory using 64-byte chunks of

data whenever possible.

(g) Efficient use of FPGA resources. In addition to having a resource-aware re-

duction circuit, I have taken other steps to minimize resource utilization. For example,

to coordinate the execution of tasks between the modules, I make extensive use of small

FIFOs, including one-bit FIFOs; i.e., signaling FIFOs. Finally, all floating-point operations

are implemented via hard DSP cores to save hardware logic.

5.3.2 RTL Implementation

In this section I describe the RTL engines responsible for executing the QR de-

composition of TSMs via HR. First, I introduce the processing element (PE) responsible for

computing the HR and the PE responsible for applying these reflectors. Then, I introduce

the architecture of my design.

Figure 5.5 shows the PE that computes Householder reflectors. This PE follows

the steps described in Algorithm I regarding the generation of the Householder reflectors.

111

Figure 5.5: Processing element (PE) responsible for the computation of the Householder
reflector Qk i.e. the vector uk along with the parameter γk.

The input to this PE is the vector xk, the top-left FIFO, and the output is the reflector Qk

(the vector uk along with the parameter γk). In this figure, notice that the computation

of
∑i=n−1

i=0 (xi)
2 is via the resource-aware reduction circuit as described in section 5.3.1.

Moreover, to facilitate the flow of data during the computations, this PE makes use of three

FIFOs.

The PE responsible for applying the HR is shown in Figure 5.6. This PE follows

Figure 5.6: Processing element (PE) responsible for applying the Householder reflectors Qk

to an incoming vector aj such that tj = Qkaj .

112

the steps described in Algorithm I regarding the updating of the trailing columns. The

inputs to this PE are the reflector Qk (the pair uk and γk) and the target vector aj ; the

output is the transformed vector tj . As in the case of the previous PE, this PE makes

use of a resource-aware reduction circuit as well as FIFOs. In this figure, notice that by

setting the output of the multiplexer to zero, this PE can execute the identified operation

i.e. aj = Qkaj .

The engine responsible for executing the QR decomposition is shown in Figure 5.7.

This engine is made of four modules: Scheduler, Reader, Cache, and the Writer along with

Figure 5.7: HR Decomposition engine, which computes the reflectors Qk and applies these
reflectors to the incoming vectors aj .

five PEs. To exchange messages between components, I use FIFOs [41], and the tile and

reflector BRAMs store the data and the reflectors of the tile under decomposition. The

Scheduler controls the execution of the aforementioned modules and PEs. At the beginning,

the BRAM blocks and the caches are initialized with zero values.

113

As shown in Figure 5.2, the tile QR decomposition involves two steps. The com-

putation of the reflectors for the current tile, and the application of these reflectors to the

remaining tiles. To simplify the description, I assume that each tile has 2n × 8-sized ele-

ments such that each tile contains eight columns. In what follows, I explain the operation

of this engine when it executes step one, and then, its operation when it executes step two.

Regarding the first step, the computation of the reflector Q1 is as follows.

1. The Scheduler begins the execution by signaling to the Reader to read the first column

of the current tile. The off-chip memory responses arrive in an orderly fashion to a

FIFO within the Reader module.

2. The Reader makes two copies of the incoming vector: one copy goes to the PE

Compute-Reflector, and the other goes to the PE Apply-Reflector I as shown in Fig-

ure 5.7.

3. The PE Compute-Reflector computes the reflector Q1 as shown in Figure 5.5. More-

over, this PE writes Q1 to the reflector BRAM. This BRAM unit has two dual-port

blocks: one to store the vectors uk and the other to store the parameters γk.

4. The Cache module is responsible for storing four reflectors. As explained above, I take

advantage of these reflectors to build deep pipelines. When the reflector u1 arrives,

this module writes it into a dual-port BRAM. Likewise, the parameter γ1 is written

into a register.

5. The PE Apply-Reflector I applies the reflector Q1, arriving from the Cache, to the

incoming vector a1, arriving from the Reader, as depicted in Figure 5.6.

114

6. The PEs Apply-Reflector II, III, and IV execute the identity operation to the incoming

vector. The output of the PE Apply-Reflector IV is vector Q1a1. Moreover, this

module writes its output to the tile BRAM and to a FIFO within the Writer.

7. The Writer writes Q1a1 to the off-chip memory.

At this point, the reflector Q1 is on cache. Moreover, once the reflector Q1 is

computed, the engine proceeds to compute the vector Q1a2.

1. This step is similar to step one described above, but this time, the engine reads the

second column of the current tile.

2. The Reader copies the incoming vector to a FIFO within the PE Apply-Reflector I.

3. The PE Apply-Reflector I computes the vector Q1a2 by using, in addition, the reflec-

tor Q1 in the Cache module.

4. The PEs Apply-reflector II, III, and IV apply the identity operation over the incoming

vector. Next, the output of the PEs Apply-reflector IV (i.e., the vector Q1a2), is

written to the tile BRAM as well as the off-chip memory.

The computation of the reflector Q2 is as follows.

1. The Reader reads Q1a2 from the tile BRAM and copies this vector in a FIFO inside

PE Compute-Reflector and to a FIFO inside the PE Apply-Reflector I.

2. The PE Compute-Reflector computes the reflector Q2. Furthermore, it stores this

reflector into the respective BRAM and into the Cache module.

115

3. In parallel, the PE Apply-Reflector I outputs the vector Q1a2 by executing the identity

operation.

4. The PE Apply-Reflector II applies reflector Q2 to the incoming vector Q1a2. After-

wards, the modules Apply-Reflector III and Apply-Reflector IV execute the identity

operation over the incoming vector.

5. Finally, the resulting vector Q2Q1a2 is written into the tile BRAM and into the

off-chip memory.

At this point, the reflectors Q1 and Q2 are available in the Cache module as well

as the reflector BRAM. The computation of the reflectors Q3 and Q4 is executed similarly.

Once the reflectors Q1, Q2, Q3, and Q4 are computed, the engine applies these reflectors

to the remaining four columns in the current tile. In this process, it reads one column

at a time, and subsequently applies these four reflectors via a deep pipeline as shown in

Figure 5.7.

Since the current tile has eight columns, one requires the computation of another

set of reflectors. This process is as described above with the difference that the computation

of reflectors starts at column five in the tile. Once these reflectors are computed, the

decomposition of the current tile finishes. At this point, the reflector BRAM contains eight

reflectors, and all results of the decomposition of the first tile are written to the off-chip

memory. At this point, the first step finishes.

In the second step, the engine makes use of the eight reflectors stored in the BRAM

and then applies them to the columns in the next tile, four reflectors at a time. In this

116

step, the PE Compute-Reflector does not computes reflectors, it only reads reflectors from

the BRAM.

5.4 Experimental Results

My experimental work was carried out on the Wolverine II [94] co-processor series.

All of my experimental work (placement, routing, and execution) utilized the SB-852VU7P

version of the Wolverine II board. I have also placed and routed my design for execution

on the SB-852VU9P version of that board. Table 5.2 compares these co-processors.

Table 5.2: Micron Wolverine II comparison

Feature SB-852VU7P SB-852VU9P

FPGA VU7P VU9P
- Registers 1576K 2364K
- Lookup Tables (LUT) 788K 1182K
- Block RAMs 1440 2160
- Block Ultra RAMs 640 960
- DSPs 4560 6840
Memory Channels 32 32
Off-chip Memory (DDR4) 64 GB 64 GB
Bandwidth 68 GB/s 68 GB/s
Frequency 266 MHz 266 MHz

As shown in the table above, these co-processors are very similar, and the main

difference is the amount of FPGA resources per board. The first board uses a Xilinx VU7P

FPGA, and the second board uses a Xilinx VU9P FPGA. As stated above, my experimental

testbed consists of an Intel CPU E5-2460 with a SB-852VU7P board [94] . All the engines

are implemented in Verilog, and were synthesized, placed, and routed Vivado 17.3 [37]. I

address all timing errors until the design meets the timing requirements of 266 MHz, which

is imposed by the Micron Wolverine II board design. My engines take double precision

117

floating point (DPFP) matrices as input, and all arithmetic operations are implemented on

Xilinx DSP cores [52].

5.4.1 Area Utilization

The decomposition engines are replicated on the FPGA to process as many blocks

in parallel as possible. Table 5.3 shows the resources required by these engines when they

are placed and routed in each of the two co-processors. The SB-852VU7P and SB-852VU9P

Table 5.3: Area utilization per co-processor

Resource SB-852VU7P (%) Utilization SB-852VU9P (%) Utilization
(Total) (10 Engines) (Total) (16 Engines)

Registers 1576K 61.11 2364K 54.4
Lookup Tables (LUT) 788K 71.09 1182K 63.0
LUT RAMs 394K 29.0 591K 24.7
Block RAMs 1.4K 65.4 2.2K 55.9
Ultra RAMs 640 18.75 960 20.0
DSPs 4.6K 21.8 6.8K 23.1
Memory Channels 32 62.5 32 100

co-processors can accommodate 10 and 16 engines respectively. In both cases, I place the

on-chip tile blocks and reflector blocks in URAM memories (see Figure 5.7) due to their

large capacity, and all other memory blocks are placed in conventional BRAMs. Each

engine uses one channels for reads and another for writes. By doing so, I prevent stalls in

the pipeline due to starvation of data (pending reads), or stalls due to the saturation of the

output FIFOs (pending writes). The usage of LUT RAMs is mostly due to the presence of

distributed FIFOs to coordinate the execution of operations.

118

5.4.2 Execution Times and Efficiency

I generate an Am×n TSM with m � n as shown in Figure 5.1. Each Ai of size

2n× n (with m/2n being an integer) is a non-singular uniformly distributed matrix.

Figure 5.8: Execution times Vs. number of engines

Figure 5.8 shows the execution times for the QR decomposition of matrices having

256 columns and 4096 – 65536 rows, as computed on 4 to 16 engines. In this figure, the

execution times for 4 and 8 engines are measured on the SB-852VU7P board. The execution

times for 16 engines are an estimation based on the specifications of the SB-852VU9P board

after placing and routing [94]. As shown in this figure, the execution times are inversely

proportional to the number of engines. This result is expected because the engines are able

to execute decomposed individual blocks independently and the amount of work per block

is the same as shown in table 5.1. Because the performance of the proposed design is a

linear function of the number of engines, for this point on, I only report the performance

of the design for 16 engines.

119

Figure 5.9: (a) Execution times and (b) efficiency of the QR decomposition via Householder
reflectors for 16 engines.

Figure 5.9(a) shows the execution times when the number of engines is set to 16

while the number of columns increases from 64 to 512 and the number of rows from 4096

to 65536. In this figure, when the number of rows is fixed and the number of columns

is increased, the execution time increases quadratically. Conversely, when the number of

columns is fixed and the number of rows is increased, the execution time increases approxi-

mately linearly. In Figure 5.9(b), I show the efficiency of the engine (the ratio of the executed

FLOPS and the nominal peak performance per clock cycle). Notice that in steady-state,

each reflector executes four floating point operations simultaneously as shown in Figure 5.6.

As a result, the 16 engines are able to execute a maximum of 256 = 16(4× 4) FLOPS per

clock cycle. As shown in Figure 5.9(b), the efficiency of my design is a function of the size

of the input matrices. My engine has a maximum efficiency of 54.2% when the matrices Ai

have a size of 1024× 512 and a minimum efficiency of 28.6% when the matrices have a size

of 128×64. In these cases, the matrices Ri have sizes of 512×512 and 64×64, respectively.

120

5.4.3 Comparison with CPUs and GPUs

The CPU testbed consists of a workstation equipped with an Intel i7-3370 proces-

sor and 8 GB of RAM running the Intel MKL double precision QR solver [145]. The code

is compiled with the gcc compiler version 7.4.0. In all CPU experiments, I use four threads,

as the use of additional threads does not improve performance. The GPU testbed consists

of a workstation with with an Intel E5-520 processor, 24 GB of RAM, and an NVIDIA K40

GPU 2. The code is compiled with the CUDA compiler release 9.0 and the double-precision

QR solver from the CUBLAS linear algebra library [104]. The frequency of the GPU is set

to 562 MHz and the auto-boost feature as well as the error correction capabilities (ECC)

are disabled. Table 5.4 compares the features of the accelerators.

Table 5.4: Comparison of the parameters of the three accelerators

Accelerator Frequency Peak GFLOPS/s Cores

Intel i7-3370 CPU 3.4 GHz 108.8 4
NVIDIA K40 GPU 562 MHz 935.0 2,496
Micron SB-852VU9P 266 MHz 68.0 16

For the FGPA and the GPU, the data is first copied from the host to the accelerator

local memory. Next, the QR solver is invoked, either in hardware or software. Finally, the

resulting matrix is moved from the accelerator to the host for verification. The time to

move the data to and from the accelerator local memory is not included in the execution

time.

Figure 5.10 shows the execution times for the target platforms for matrices with

4096 - 65536 rows and 64 - 512 columns. From this figure, I notice that the FPGA and

2I use one of the K40 devices available within the K80 GPU.

121

Figure 5.10: Execution times as a function of the number of rows for QR decomposition on
FPGAs, GPUs, and CPUs.

the library running on the CPU are very fast when the input matrix has 256 columns and

less, although the CPU library loses its edge for matrices having 256 columns and over 64K

columns. For the cases of 64, 128, and 256 columns, the FPGA engine has a speedup of

2.0×, 3.0×, and 1.3× compared with the library running on the GPU. For the case of 512

columns, the routine running on the GPU edges the performance of the proposed FPGA

engine. Moreover, the proposed engine and the CPU library have an equivalent performance

for most of the cases, although for very tall matrices with 64K rows and more, the FPGA

is faster by a factor of up to 1.5×.

The performance of the accelerators can be elucidated by analyzing the pipelines

running in the FPGA as well as the QR solver running on the CPU and the GPU. In the

FPGA, the QR decomposition of the tiles is divided into two steps as shown in Algorithm I.

Because the computation of reflectors is serial; i.e., reflector Qi+1 has to be computed after

reflector Qi is available, the performance of the first step is limited by its sequential nature.

122

In addition, the computation of the reflectors does not favor high performance because the

cost of this calculation is dominated by the dot-products as shown in Equation 5.3. Second,

the application of the reflectors favors deep (the number of reflectors applied) and wide

pipelines (the number of running engines); and as a result, higher performance is possible.

In short, when the input matrix has a low number of columns, the loss in performance of

the first step limits the overall performance of my design. Otherwise, as the number of

columns increases, the performance of my design increases as well.

In the CPU and the GPU, the QR decomposition can also be divided roughly

in two major steps, namely the computation of the reflectors (S1, S2, and S3) and their

application (S4) as shown in Algorithm II. Because the computation of the reflectors

(S1), the application of the reflectors to the current tile (S2), and their transformation

(S3) are serial in nature, the first step has limited performance. Moreover, the second step

is dominated by the matrix products of the form (I + YW T)A(i) and, as a result, greater

performance is achieved due to the highly optimized matrix multiplication routines available

on the CPU and the GPU [28, 149].

In addition, for TSMs, I attribute the rather low performance of the QR solver on

the CPUs and GPUs to the existence of trade-offs in the implementation of Algorithm II.

Regarding this routine, setting the parameter r has broad consequences. If r is small, the

algorithm does little progress per iteration because the resulting number of tiles is large.

The large number of tiles implies that steps S1, S2, and S3 have to be executed multiple

times. Moreover, step S4 suffers because the multiplication of matrices has to be executed

over small matrices [68, 28], namely W and Y . If r is larger, it enhances the performance

123

of step S4 at the cost of increasing the execution times of the other steps. Moreover, my

experiments indicate that typical values of r are 8, 16, and 32. In GPUs, larger values of r

are not practical due to the limited capacity of shared memories [68].

5.4.4 Operations per Clock Cycle and Efficiency

I measure the number of FLOPs executed per clock cycle as well as the efficiency

of the platforms as shown in Figure 5.11. In this figure, I only report the FLOPS per

Figure 5.11: Double-precision floating point operations (FLOPS) per clock cycle for CPUs,
GPUs, and FPGAs and their efficiency.

clock cycle and efficiency for 65536 rows; these metrics are nearly the same for 32768 rows

and lower. I observe that in my design, and the GPU, there is a sustained increase in the

number of FLOPS per clock cycle as the number of columns in the input matrix increases

from 64 to 512. In short, for 512, 256, 128, and 64 columns, the proposed engine executes

1.4×, 2.3×, 5.0×, and 4.4× more FLOPS per cycle compared to the other platforms. In

addition, in terms of efficiency (i.e., the achieved performance divided by the nominal peak

performance), my engine comes out first as it is able to achieve 54.2% of the nominal peak

124

performance. The libraries running on the CPU (GPU) achieve 32.1% (5.8%) of the peak

performance of the hosting platform.

I note that the proposed design is placed and routed at 266 MHz since the interface

to the off-chip memory in the development board is hardened at this frequency. Because I

use standard Xilinx cores, namely floating point cores, FIFOS, and BRAMs, I rationalize

that my design can be placed and routed at higher frequencies with minimum effort. In

particular, memory interfaces running at higher frequencies have been available on the

market for a while [134, 45].

5.4.5 Energy Efficiency

Lastly, I compare the energy efficiency in (FLOPS/Joule) for each platform. For

the CPU, GPU, and FPGA, I measure the raw power by taking advantage of the LIKWID

monitoring tools [144], the NVIDIA management library [106], and the Convey development

kit [94] respectively 3. In the CPU and GPU, I measure the FLOPS per each task by taking

advantage of hardware counters [107, 105]. In the FPGA, I analytically derive the operations

executed by the engine. On the GPU, once the power data is obtained, corrections are made

so as to have an accurate power estimation [17]. Figure 5.12 shows the energy efficiency per

platform. I only report the energy efficiency when the number of rows is fixed at 65536. In all

cases, the energy efficiency of the FPGA is higher compared to other platforms. Compared

to the GPU, the engine running on the FPGA is 5.4×, 7.7×, 2.8×, and 2.3× more energy

efficient when the matrices have 64, 128, 256, and 512 columns respectively. Compared

3In the case of the FPGA, I measure the power consumption of 10 engines (the SB-852VU7P), and then,
I extrapolate the power consumption to 16 engines (the SB-852VU9P).

125

Figure 5.12: Energy efficiency for CPUs, GPUs, and FPGAs.

to the CPU, the proposed engine is 2.0×, 3.0×, 3.0×, and 2.3× more energy efficient

for the same task. It should be noted that FPGA technological capabilities continue to

increase [128] in both clock frequency and available on-chip resources (memory, DSP, etc.).

As such, the expected performance of FPGA-based accelerators is expected to increase even

further with the added benefit of energy efficiency [55].

5.4.6 Conclusions

In this work I propose a high-throughput FPGA engine capable of executing the

QR decomposition of tall-and-skinny matrices (TSMs). My design is based on the highly

stable, parallelizable, and low complexity Householder (HR) decomposition method. The

HR engine takes advantage of a series of performance optimizations including tiling, wide

and deep pipelines, resource-aware reductions circuits, as well as fast access to off-chip mem-

ory. Due to these optimizations, my engine achieves the highest computational efficiency

compared to previous studies: while previous approaches achieve up to 36% efficiency, my

design achieves an efficiency of 54%. Because my design uses resource-aware circuits, it can

126

be used to tackle the QR decomposition of the full spectrum of tall-and-skinny matrices,

including those with hundreds of columns and matrices with tens of thousands of rows.

Moreover, by tailoring the number of engines in execution, as well as the number of House-

holder reflectors applied, the proposed engine can be implemented in embedded as well as

server-grade FGPAs.

My experimental evaluation shows that the proposed engine outperforms the MKL

solver on an Intel Quad-Core processor by a factor of 1.5× when the input matrices have over

50K rows. For matrices having up to 256 columns, my engine outperforms the QR solver

running on the K40 GPU by a factor of 3.0×. An evaluation of the energy efficiency of these

three platforms shows that CPUs and GPUs execute up to 0.45 and 0.60 GFLOPS/Joule

respectively, while my design executes up to 1.03 GFLOPS / Joule. This energy efficiency

is due to the use of highly efficient deep and wide pipelines executing over a hundred of

FLOPS per clock cycle.

127

Chapter 6

Conclusions

In the new century, the field of high performance computing has witnessed the

birth of computational devices (CPUs and GPUs) executing billions of arithmetic opera-

tions per second. To achieve such impressive performance, the high performance community

has depended on very high operating frequencies in conjunction with power-hungry solu-

tions such as large cache units, colossal branch predictors, and complex datapaths. High

frequencies and power-hungry units are the leading factors towards the massive increase of

the operational cost in data-centers due to the extensive use of energy.

Simultaneously, the field has also observed the birth, expansion, and consolidation

of computing applications based on field programmable gate arrays (FPGA). While early

FPGAs did not have enough resources and speed to compete with traditional computing

platforms (CPUs and GPUs), today these devices can execute billions of operations per

second and operate at high frequencies. In addition, due to the custom designs of the

reconfigurable pipelines, FPGAs have been shown to be energy-efficient.

128

This dissertation has shown how to build high-throughput, energy-efficient, compute-

intensive applications on FPGAs to partially offset the massive operational cost due to

energy consumption in traditional computing platforms. I have shown that wide and deep

pipelines running in FGPAs can achieve comparable performance to those of traditional

computing platforms, and that these designs are capable of executing more operations per

unit of energy.

In chapter three, I proposed a heterogeneous approach based on an extensive

algorithmic and experimental analysis of the human action recognition (HAR) application.

My results showed that my heterogeneous implementation where the video pre-processing

is implemented on the FPGA and the remaining stages are implemented on the GPU,

achieves the highest throughput and energy efficiency. The heterogeneous design combines

the strengths of both FPGA and GPU platforms, and achieves a 1.3× speedup compared

with competing homogeneous platforms while being 1.5× more energy-efficient.

In chapter four, I presented the first application of FPGAs to the field of quan-

tum dynamics simulations. By taking advantage of the structure of the input matrices and

offloading the most intensive calculations onto an FPGA, I showed that the computational

performance of my design for real-time electron dynamics calculations exceeds that of highly

optimized commercial libraries running on recent CPUs and GPUs. For quantum simula-

tions having over a thousands of atoms, my engine is 1.5× faster while consuming 4.0× less

energy. As a result, the proposed engine demonstrates that high-throughput energy-efficient

designs based on FPGAs can play an important role in the acceleration of applications in

the upcoming field of quantum dynamics.

129

In chapter five, I presented a high-throughput engine that targets the decompo-

sition of tall-and-skinny matrices (TSM) on FPGAs. While comparable QR solvers based

on FPGAs achieve an efficiency of 36%, my design has an efficiency of 54%. In addition,

my experimental work showed that the proposed design outperforms highly optimized QR

solvers running on CPUs and GPUs. For TSM having over 50K rows, my design outper-

forms a highly optimized QR solver running in an quad-core processor by a factor of 1.5.

In addition, for TSMs having 256 columns and less, my design outperforms a commercial

QR solver library running in a high-performance GPU by a factor of 3.0. On top of being

high performance, my design is energy-efficient; it executes twice as many floating point

operations per unit of energy.

130

Bibliography

[1] Ahmed Al Maashri, Michael Debole, Matthew Cotter, Nandhini Chandramoorthy,
Yang Xiao, Vijaykrishnan Narayanan, and Chaitali Chakrabarti. Accelerating neuro-
morphic vision algorithms for recognition. In Design Automation Conference (DAC),
pages 579–584. IEEE, 2012.

[2] Jason H. Anderson and Farid N. Najm. Power estimation techniques for FPGAs.
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 12(10):1015–
1027, October 2004.

[3] Joshua A. Anderson, Chris D. Lorenz, and Alex Travesset. General purpose molecular
dynamics simulations fully implemented on graphics processing units. Journal of
computational physics, 227(10):5342–5359, 2008.

[4] Michael Anderson, Grey Ballard, James Demmel, and Kurt Keutzer. Communication-
avoiding QR decomposition for GPUs. In 2011 IEEE International Parallel & Dis-
tributed Processing Symposium, pages 48–58, Anchorage, AK, USA, 2011. IEEE.

[5] Balint Aradi, Ben Hourahine, and Th Frauenheim. DFTB+, A sparse matrix-
based implementation of the DFTB method. The Journal of Physical Chemistry
A, 111(26):5678–5684, July 2007.

[6] Semih Aslan, Sufeng Niu, and Jafar Saniie. FPGA implementation of fast QR decom-
position based on Givens rotation. In IEEE 55th International Midwest Symposium
on Circuits and Systems (MWSCAS), pages 470–473, Boise, ID, USA, 2012. IEEE.

[7] Christian L. Belady. In the data center, power and cooling costs more than the it
equipment it supports. https://www.electronics-cooling.com/, February 2007.

[8] Faycal Bensaali, Abbes Amira, and Reza Sotudeh. Floating-point matrix product
on FPGA. In 2007 IEEE/ACS International Conference on Computer Systems and
Applications, pages 466–473. IEEE, 2007.

[9] Keren Bergman, Shekhar Borkar, Dan Campbell, William Carlson, William Dally,
Monty Denneau, Paul Franzon, William Harrod, Kerry Hill, Jon Hiller, Sherman
Karp, Stephen Keckler, Dean Klein, Robert Lucas, Mark Richards, Steven Scarpelli,

131

https://www.electronics-cooling.com/

Al an Scott, Allan Snavely, Thomas Sterling, R. Stanley Williams, and Katherine
Yelick. Exascale computing study: Technology challenges in achieving exascale sys-
tems. Defense Advanced Research Projects Agency Information Processing Techniques
Office (DARPA IPTO), Tech. Rep, 15, 2008.

[10] Piotr Bialas and Adam Strzelecki. Benchmarking the cost of thread divergence in
CUDA. In International Conference on Parallel Processing and Applied Mathematics,
pages 570–579. Springer, 2015.

[11] Berkin Bilgic, Berthold K.P. Horn, and Ichiro Masaki. Efficient integral image com-
putation on the GPU. In 2010 IEEE Intelligent Vehicles Symposium, pages 528–533.
IEEE, 2010.

[12] Christian Bischof and Charles Van Loan. The WY representation for products of
Householder matrices. SIAM Journal on Scientific and Statistical Computing, 8(1):s2–
s13, 1987.

[13] Akkarat Boonpoonga, Sompop Janyavilas, Phaophak Sirisuk, and Monai Krairiksh.
FPGA implementation of QR decomposition using MGS algorithm. In International
Symposium on Applied Reconfigurable Computing, pages 394–399, Bangkok, Thailand,
2010. Springer.

[14] David J. Brown and Charles Reams. Toward energy-efficient computing. Communi-
cations of the ACM, 53(3):50–58, 2010.

[15] Aydin Buluç, Jeremy T. Fineman, Matteo Frigo, John R. Gilbert, and Charles E. Leis-
erson. Parallel sparse matrix-vector and matrix-transpose-vector multiplication using
compressed sparse blocks. In ACM Proceedings of the twenty-first annual symposium
on Parallelism in algorithms and architectures, pages 233–244, 2009.

[16] Martin Burtscher, Rupesh Nasre, and Keshav Pingali. A quantitative study of ir-
regular programs on GPUs. In 2012 IEEE International Symposium on Workload
Characterization (IISWC), pages 141–151. IEEE, 2012.

[17] Martin Burtscher, Ivan Zecena, and Ziliang Zong. Measuring GPU power with the
K20 built-in sensor. In ACM Proceedings of Workshop on General Purpose Processing
Using GPUs, pages 28–36, Salt Lake City, UT, USA, 2014. ACM.

[18] Emmanuel J. Candès, Xiaodong Li, Yi Ma, and John Wright. Robust principal
component analysis? Journal of the ACM (JACM), 58(3):11, 2011.

[19] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A library for support vector ma-
chines. ACM transactions on intelligent systems and technology (TIST), 2(3):1–27,
2011.

[20] Abha Chauhan and Rajesh Mehra. Analysis of QR decomposition for MIMO sys-
tems. In IEEE International Conference on Electronic Systems, Signal Processing
and Computing Technologies, pages 69–73, Nagpur, India, 2014. IEEE.

132

[21] Shuai Che, Bradford M. Beckmann, Steven K Reinhardt, and Kevin Skadron. Pan-
notia: Understanding irregular GPGPU graph applications. In IEEE International
Symposium on Workload Characterization (IISWC), pages 185–195. IEEE, 2013.

[22] Shuai Che, Jie Li, Jeremy W. Sheaffer, Kevin Skadron, and John Lach. Accelerating
compute-intensive applications with GPUs and FPGAs. In IEEE Symposium on
Application Specific Processors, pages 101–107, Anaheim, CA, USA, 2008. IEEE.

[23] Jack Choquette, Olivier Giroux, and Denis Foley. Volta: Performance and pro-
grammability. IEEE Micro, 38(2):42–52, 2018.

[24] Pong P. Chu. FPGA prototyping by VHDL examples: Xilinx Spartan-3 version. John
Wiley & Sons, 2011.

[25] Jason Cong, Zhenman Fang, Michael Lo, Hanrui Wang, Jingxian Xu, and Shao-
chong Zhang. Understanding performance differences of FPGAs and GPUs. In 26th
IEEE Annual International Symposium on Field-Programmable Custom Computing
Machines (FCCM), pages 93–96, Boulder, CO, USA, 2018. IEEE.

[26] Gabriella Csurka, Christopher Dance, Lixin Fan, Jutta Willamowski, and Cédric Bray.
Visual categorization with bags of keypoints. In Workshop on Statistical Learning in
Computer Vision (ECCV), volume 1, pages 1–2. Prague, 2004.

[27] Anthony Danalis, Gabriel Marin, Collin McCurdy, Jeremy S. Meredith, Philip C.
Roth, Kyle Spafford, Vinod Tipparaju, and Jeffrey S. Vetter. The scalable heteroge-
neous computing (SHOC) benchmark suite. In ACM Proceedings of the 3rd Workshop
on General-Purpose Computation on Graphics Processing Units, pages 63–74. ACM,
2010.

[28] Anthony Danalis, Gabriel Marin, Collin McCurdy, Jeremy S. Meredith, Philip C.
Roth, Kyle Spafford, Vinod Tipparaju, and Jeffrey S. Vetter. The scalable heteroge-
neous computing SHOC benchmark suite. In ACM Proceedings of the 3st Workshop
on General-Purpose Computation on Graphics Processing Units, pages 63–74, New
York, NY, USA, 2010. ACM.

[29] Miyuru Dayarathna, Yonggang Wen, and Rui Fan. Data center energy consumption
modeling: A survey. IEEE Communications Surveys & Tutorials, 18(1):732–794,
2015.

[30] James Demmel, Laura Grigori, Mark Hoemmen, and Julien Langou. Communication-
optimal parallel and sequential QR and LU factorizations. SIAM Journal on Scientific
Computing, 34(1):A206–A239, 2012.

[31] Piotr Dollár, Vincent Rabaud, Garrison Cottrell, and Serge Belongie. Behavior recog-
nition via sparse spatio-temporal features. In Joint IEEE International Workshop on
Visual Surveillance and Performance Evaluation of Tracking and Surveillance, pages
65–72. IEEE, 2005.

133

[32] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng,
and Trevor Darrell. DeCAF: A deep convolutional activation feature for generic visual
recognition. In arXiv preprint, pages 647–655, 2013.

[33] Jeffrey Donahue, Lisa Anne Hendricks, Sergio Guadarrama, Marcus Rohrbach, Sub-
hashini Venugopalan, Kate Saenko, and Trevor Darrell. Long-term recurrent convo-
lutional networks for visual recognition and description. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 2625–2634,
2014.

[34] Jack Dongarra and Francis Sullivan. Guest editors’ introduction: The top 10 algo-
rithms. IEEE Computing in Science & Engineering, 2(1):22, 2000.

[35] Yong Dou, Stamatis Vassiliadis, Georgi Krasimirov Kuzmanov, and Georgi Nedeltchev
Gaydadjiev. 64-bit floating-point FPGA matrix multiplication. In Proceedings of the
2005 ACM/SIGDA 13th international symposium on Field-programmable gate arrays,
pages 86–95. ACM, 2005.

[36] Christoph Feichtenhofer, Axel Pinz, and Andrew Zisserman. Convolutional Two-
Stream network fusion for video action recognition. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, pages 1933–1941, 2016.

[37] Tom Feist. Vivado design suite, 2012. https://www.xilinx.com/support/documentation.

[38] Vincent Garcia, Eric Debreuve, Frank Nielsen, and Michel Barlaud. K-nearest neigh-
bor search: Fast GPU-based implementations and application to high-dimensional
feature matching. In 2010 IEEE International Conference on Image Processing, pages
3757–3760. IEEE, 2010.

[39] Konstantinos Georgopoulos, Iakovos Mavroidis, Luciano Lavagno, Ioannis Papaefs-
tathiou, and Konstantin Bakanov. Energy-efficient heterogeneous computing at ex-
aSCALE—ECOSCALE. In Hardware Accelerators in Data Centers, pages 199–213.
Springer, 2019.

[40] Marco Gerards, Jan Kuper, André Kokkeler, and Bert Molenkamp. Streaming reduc-
tion circuit. In 12th IEEE Euromicro Conference on Digital System Design, Archi-
tectures, Methods and Tools, pages 287–292, Patras, Greece, 2009. IEEE.

[41] Kahn Gilles. The semantics of a simple language for parallel programming. Informa-
tion Processing, 74:471–475, 1974.

[42] Gene H. Golub and C.F. Van Loan. Matrix computations. The Johns Hopkins Uni-
versity Press, Baltimore, MD, USA, 2013.

[43] Andreas W. Gotz, Mark J. Williamson, Dong Xu, Duncan Poole, Scott Le Grand, and
Ross C. Walker. Routine microsecond molecular dynamics simulations with AMBER
on gpus. 1. Generalized born. Journal of chemical theory and computation, 8(5):1542–
1555, 2012.

134

[44] Mentor Graphics. Modelsim. Advanced simulation and debugging. https://www.

mentor.com/, 2012.

[45] Zhi Guo, Walid Najjar, Frank Vahid, and Kees Vissers. A quantitative analysis of the
speedup factors of FPGAs over processors. In Proceedings of the 12th ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, pages 162–170, New
York, NY, USA, 2004. ACM.

[46] Bilel Hadri, Hatem Ltaief, Emmanuel Agullo, and Jack Dongarra. Tile QR factoriza-
tion with parallel panel processing for multicore architectures. In IEEE International
Symposium on Parallel & Distributed Processing (IPDPS), pages 1–10, Atlanta, GA,
USA, 2010. IEEE.

[47] Michael Hahnle, Frerk Saxen, Matthias Hisung, Ulrich Brunsmann, and Konrad Doll.
FPGA-based real-time pedestrian detection on high-resolution images. In Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
Workshops, pages 629–635. IEEE, 2013.

[48] Robert J. Halstead, Jason Villarreal, and Walid Najjar. Exploring irregular memory
accesses on FPGAs. In ACM Proceedings of the 1st Workshop on Irregular Applica-
tions: Architectures and Algorithms, pages 31–34. ACM, 2011.

[49] Elizabeth Kopits Heather Klemick and Ann Wolverton. Data center energy efficiency
investments: Qualitative evidence from focus groups and interviews. https://www.

epa.gov/sites/production/files/2017-11/documents/2017-06_0.pdf, Novem-
ber 2017.

[50] John L. Hennessy and David A. Patterson. Computer architecture: A quantitative
approach. Morgan Kaufmann, San Mateo, CA, 1990.

[51] Samitha Herath, Mehrtash Harandi, and Fatih Porikli. Going deeper into action
recognition: A survey. Image and Vision Computing, Elsevier, 60:4 – 21, 2017.

[52] Tom Hill. Xilinx DSP design platforms: Simplifying the adoption of FPGAs for DSP,
2009. https://www.xilinx.com/support/documentation.

[53] Manato Hirabayashi, Shinpei Kato, Masato Edahiro, Kazuya Takeda, Taiki Kawano,
and Seiichi Mita. GPU implementations of object detection using HOG features and
deformable models. In 2013 IEEE 1st International Conference on Cyber-Physical
Systems, Networks, and Applications (CPSNA), pages 106–111. IEEE, 2013.

[54] Kim Ho-Joon, Joseph S. Lee, and Yang Hyun-Seung. Human action recognition
using a modified convolutional neural network. In International Symposium on Neural
Networks, pages 715–723. Springer, 2007.

[55] Mark Horowitz. Computing’s energy problem (and what we can do about it). In IEEE
International Solid-State Circuits Conference Digest of Technical Papers (ISSCC),
pages 10–14, San Francisco, CA, USA, 2014. IEEE.

135

https://www.mentor.com/
https://www.mentor.com/
https://www.epa.gov/sites/production/files/2017-11/documents/2017-06_0.pdf
https://www.epa.gov/sites/production/files/2017-11/documents/2017-06_0.pdf

[56] Mark Horowitz. Computing’s energy problem (and what we can do about it). In 2014
IEEE International Conference on Solid-State Circuits Conference Digest of Technical
Papers (ISSCC), pages 10–14. IEEE, 2014.

[57] Zuoxun Hou, Hongbo Zhu, Nanning Zheng, and Tadashi Shibata. A single-chip 600-
fps real-time action recognition system employing a hardware friendly algorithm. In
2014 IEEE International Symposium on Circuits and Systems (ISCAS), pages 762–
765. IEEE, 2014.

[58] Alston S. Householder. Unitary triangularization of a nonsymmetric matrix. Journal
of the ACM (JACM), 5(4):339–342, 1958.

[59] Niranjan V. Ilawe, M. Belén Oviedo, and Bryan M. Wong. Real-time quantum dynam-
ics of long-range electronic excitation transfer in plasmonic nanoantennas. Journal of
chemical theory and computation, 13(8):3442–3454, 2017.

[60] Niranjan V. Ilawe, M. Belén Oviedo, and Bryan M. Wong. Effect of quantum tun-
neling on the efficiency of excitation energy transfer in plasmonic nanoparticle chain
waveguides. Journal of Materials Chemistry C, 6(22):5857–5864, 2018.

[61] Hueihan Jhuang, Thomas Serre, Lior Wolf, and Tomaso Poggio. A biologically inspired
system for action recognition. In 11th International Conference on Computer Vision
(ICPR), pages 1–8. IEEE, 2007.

[62] Ž. Jovanović and V. Milutinović. FPGA accelerator for floating-point matrix multi-
plication. IET Computers & Digital Techniques, 6(4):249–256, 2012.

[63] Ryoji Kadota, Hiroki Sugano, Masayuki Hiromoto, Hiroyuki Ochi, Ryusuke
Miyamoto, and Yukihiro Nakamura. Hardware architecture for HOG feature extrac-
tion. In Fifth IEEE International Conference on Intelligent Information Hiding and
Multimedia Signal Processing, pages 1330–1333. IEEE, 2009.

[64] Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Suk-
thankar, and Li Fei-Fei. Large-scale video classification with convolutional neural
networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1725–1732, 2014.

[65] Andrew Kerr, Dan Campbell, and Mark Richards. QR decomposition on GPUs.
In ACM Proceedings of 2nd Workshop on General Purpose Processing on Graphics
Processing Units, pages 71–78, New York, NY, USA, 2009. ACM.

[66] Steve Kilts. Advanced FPGA design: Architecture, implementation, and optimization.
John Wiley & Sons, 2007.

[67] David B. Kirk and Wen-Mei W. Hwu. Programming massively parallel processors: A
hands-on approach. Morgan Kaufmann, Cambridge, MA, USA, 2016.

[68] David B. Kirk and Wen-Mei W. Hwu. Programming massively parallel processors:
A hands-on approach. Morgan kaufmann, 225 Wyman Street, Waltham, MA, 02451,
USA, 2016.

136

[69] Alexander Klaser, Marcin Marszalek, and Cordelia Schmid. A spatio-temporal de-
scriptor based on 3D-gradients. In 19th British Machine Vision Conference, pages
275:1–10, Leeds, United Kingdom, September 2008.

[70] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification with
deep convolutional neural networks. In Proceedings of the 25th International Confer-
ence on Neural Information Processing Systems, pages 1097–1105. Curran Associates
Inc., 2012.

[71] Hilde Kuehne, Hueihan Jhuang, Rainer Stiefelhagen, and Thomas Serre. HMDB51: A
large video database for human motion recognition. In High Performance Computing
in Science and Engineering, pages 571–582. Springer, 2013.

[72] Vinay B.Y. Kumar, Siddharth Joshi, Sachin B. Patkar, and H. Narayanan. FPGA
based high performance double-precision matrix multiplication. In ACM Proceedings
of the 2009 22nd International Conference on VLSI Design, volume 38, pages 341–
346. ACM, 2009.

[73] Martin Langhammer and Bogdan Pasca. High-performance QR decomposition for
FPGAs. In Proceedings of the 2018 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pages 183–188, Monterey, CA, USA, 2018. ACM.

[74] Ivan Laptev, Marcin Marszalek, Cordelia Schmid, and Benjamin Rozenfeld. Learning
realistic human actions from movies. In IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 1–8. IEEE, 2008.

[75] Abhijeet G. Lawande, Alan D. George, and Herman Lam. Novo-g#: a multidimen-
sional torus-based reconfigurable cluster for molecular dynamics. Concurrency and
Computation: Practice and Experience, 28(8):2374–2393, 2016.

[76] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–2324,
1998.

[77] Christopher T. Lee and Rommie E. Amaro. Exascale computing: A new dawn for
computational biology. IEEE Computing in science & engineering, 20(5):18–25, 2018.

[78] Laurent Lefèvre and Jean-Marc Pierson. Introduction to special issue on sustainable
computing for ultrascale computing. ScienceDirect, 17:25–26, 2018.

[79] James T. Letendre. Understanding and modeling the synchronization cost in
the GPU architecture. PhD thesis, Rochester Institute of Technology, 2013.
https://scholarworks.rit.edu/.

[80] Walter B. Ligon, Scott McMillan, Greg Monn, Kevin Schoonover, Fred Stivers, and
Keith D. Underwood. A re-evaluation of the practicality of floating-point operations
on FPGAs. In Proceedings of the IEEE Symposium on FPGAs for Custom Computing
Machines (Cat. No.98TB100251), pages 206–215. IEEE, 1998.

137

[81] Kirt Lillywhite, Dah-Jye Lee, and Dong Zhang. Real-time human detection using
histograms of oriented gradients on a GPU. In Workshop on Applications of Computer
Vision, pages 1–6. IEEE, 2009.

[82] Jingen Liu, Jiebo Luo, and Mubarak Shah. Recognizing realistic actions from videos in
the wild. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 1996–2003. IEEE, 2009.

[83] Jingen Liu, Yang Yang, and Mubarak Shah. Learning semantic visual vocabularies
using diffusion distance. In 2009 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 461–468. IEEE, 2009.

[84] Weifeng Liu and Brian Vinter. CSR5: An efficient storage format for cross-platform
sparse matrix-vector multiplication. In Proceedings of the 29th ACM on International
Conference on Supercomputing, pages 339–350. ACM, 2015.

[85] David G. Lowe. Object recognition from local scale-invariant features. In The proceed-
ings of the Seventh International Conference on Computer Vision, volume 2, pages
1150–1157. IEEE, 1999.

[86] Nathan Luehr, Ivan S. Ufimtsev, and Todd J. Martinez. Dynamic precision for electron
repulsion integral evaluation on graphical processing units (gpus). Journal of Chemical
Theory and Computation, 7(4):949–954, 2011.

[87] Xiaoyin Ma, Walid Najjar, and Amit K. Roy-Chowdhury. Evaluation and acceleration
of High-Throughput Fixed-Point object detection on FPGAs. IEEE Transactions on
Circuits and Systems for Video Technology, 25(6):1051–1062, 2015.

[88] Xiaoyin Ma, Jose M. Rodriguez-Borbon, Walid Najjar, and Amit K. Roy-Chowdhury.
Optimizing hardware design for human action recognition. In 26th IEEE International
Conference on Field Programmable Logic and Applications (FPL), pages 1–11. IEEE,
2016.

[89] Krishna T. Malladi, Frank A. Nothaft, Karthika Periyathambi, Benjamin C. Lee,
Christos Kozyrakis, and Mark Horowitz. Towards energy-proportional datacenter
memory with mobile DRAM. In Annual International Symposium on Computer Ar-
chitecture (ISCA), pages 37–48. IEEE, 2012.

[90] R.K. McConnell. Method of and apparatus for pattern recognition, 1986. US Patent
4,567,610.

[91] Paul Messina. The exascale computing project. IEEE Computing in Science & En-
gineering, 19(3):63–67, 2017.

[92] Hans Meuer, Erich Strohmaier, Jack Dongarra, Horst Simon, and Martin Meuer. Top
500 list. http://www.top500.org/, 2012.

[93] Micron. Convey PDK reference manual, 2015. http://www.conveysupport.com/.

138

http://www.top500.org/

[94] Micron. Micron SB-852 Wolverine II, 2020.
https://www.micron.com/products/advanced-solutions/advanced-computing-
solutions/hpc-single-board-accelerators/sb-852.

[95] Kosuke Mizuno, Yosuke Terachi, Kenta Takagi, Shintaro Izumi, Hiroshi Kawaguchi,
and Masahiko Yoshimoto. An FPGA implementation of a HOG-based object detection
processor. IPSJ Transactions on System LSI Design Methodology, 6:42–51, 2013.

[96] Shaul Mukamel. Principles of nonlinear optical spectroscopy, page 543. Oxford Uni-
versity Press, New York, U.S.A, 1995.

[97] Sergio D. Muñoz and Javier Hormigo. High-throughput FPGA implementation of QR
decomposition. IEEE Transactions on Circuits and Systems II, 62(9):861–865, 2015.

[98] Kazuhiro Negi, Keisuke Dohi, Yuichiro Shibata, and Kiyoshi Oguri. Deep pipelined
one-chip FPGA implementation of a real-time image-based human detection algo-
rithm. In International Conference on Field-Programmable Technology, pages 1–8.
IEEE, 2011.

[99] Christian F. A. Negre, Valeria C. Fuertes, M. Belén Oviedo, Fabiana Y. Oliva, and
Cristián G. Sánchez. Quantum dynamics of light-induced charge injection in a model
dye–nanoparticle complex. The Journal of Physical Chemistry C, 116(28):14748–
14753, 2012.

[100] Christian F. A. Negre, Karin J. Young, M. Belén Oviedo, Laura J. Allen, Cristián G.
Sánchez, Katarzyna N. Jarzembska, Jason B. Benedict, Robert H. Crabtree, Philip
Coppens, Gary W. Brudvig, and Victor S. Batista. Photoelectrochemical hole injec-
tion revealed in polyoxotitanate nanocrystals functionalized with organic adsorbates.
Journal of the American Chemical Society, 136(46):16420–16429, 2014.

[101] Vinh Ngo, Arnau Casadevall, Marc Codina, David Castells-Rufas, and Jordi Carra-
bina. A high-performance HOG extractor on FPGA. arXiv preprint arXiv:1802.02187,
2018.

[102] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel
programming with CUDA. Queue, 6(2):40–53, 2008.

[103] NVIDIA. GPU-Based deep learning inference: A performance and power analysis.
White Paper, 2015. https://www.nvidia.com/.

[104] NVIDIA. CUBLAS NVIDIA’s dense linear algebra on GPUs, 2018.
https://developer.nvidia.com/cublas/.

[105] NVIDIA. CUDA toolkit documentation, 2018. https://docs.nvidia.com/cuda/.

[106] NVIDIA. NVML API reference, 2018. https://docs.nvidia.com/deploy/nvml-api/.

[107] Georg Ofenbeck, Ruedi Steinmann, Victoria Caparros, Daniele G. Spampinato, and
Markus Püschel. Applying the roofline model. In 2014 IEEE International Symposium

139

on Performance Analysis of Systems and Software (ISPASS), pages 76–85, Monterey,
CA, USA, 2014. IEEE.

[108] Safaa S. Omran and Ahmed K. Abdul-Abbas. Fast QR decomposition based on
FPGA. In IEEE International Conference on Advanced Science and Engineering
(ICOASE), pages 189–193, Duhok, Iraq, 2018. IEEE.

[109] M. Belén Oviedo and Bryan M. Wong. Real-time quantum dynamics reveals complex,
many-body interactions in solvated nanodroplets. Journal of chemical theory and
computation, 12(4):1862–1871, 2016.

[110] M. Belén Oviedo, Ximena Zarate, Christian F.A. Negre, Eduardo Schott, Ramiro
Arratia-Pérez, and Cristián G. Sánchez. Quantum dynamical simulations as a tool for
predicting photoinjection mechanisms in dye-sensitized TiO2 solar cells. The journal
of physical chemistry letters, 3(18):2548–2555, 2012.

[111] Michael Parker, Volker Mauer, and Dan Pritsker. QR decomposition using FPGAs.
In IEEE National Aerospace and Electronics Conference (NAECON) and Ohio Inno-
vation Summit (OIS), pages 416–421, Dayton, OH, USA, 2016. IEEE.

[112] Pavel Pokhilko, Evgeny Epifanovsky, and Anna I. Krylov. Double precision is not
needed for many-body calculations: Emergent conventional wisdom. Journal of chem-
ical theory and computation, 14(8):4088–4096, 2018.

[113] Victor Adrian Prisacariu and Ian Reid. fastHOG - A real-time GPU implementation
of HOG. http://www.robots.ox.ac.uk/~victor/pdfs/prisacariu_reid_tr2310_
09.pdf, 2009.

[114] Abid Rafique, Nachiket Kapre, and George A. Constantinides. Enhancing perfor-
mance of tall-skinny QR factorization using FPGAs. In 22nd IEEE International
Conference on Field Programmable Logic and Applications (FPL), pages 443–450,
Oslo, Norway, 2012. IEEE.

[115] Kishore K. Reddy and Mubarak Shah. Recognizing 50 human action categories of
web videos. Machine Vision and Applications, Springer, 24(5):971–981, 2013.

[116] Frank Rhodes. On the metrics of Chaudhuri, Murthy and Chaudhuri. Pattern Recog-
nition, 28(5):745–752, 1995.

[117] Alvise Rigo, Christian Pinto, Kevin Pouget, Daniel Raho, Denis Dutoit, Pierre-Yves
Martinez, Chris Doran, Luca Benini, Iakovos Mavroidis, Manolis Marazakis, Valeria
Bartsch, Guy Lonsdale, Antoniu Pop, John Goodacre, Annaik Colliot, Paul Car-
penter, Petar Radojković, Dirk Pleiter, Dominique Drouin, and Benôıt Dupont de
Dinechin. Paving the way towards a highly energy-efficient and highly integrated
compute node for the exascale revolution: The ExaNoDe approach. In 2017 IEEE
Euromicro Conference on Digital System Design (DSD), pages 486–493. IEEE, 2017.

140

http://www.robots.ox.ac.uk/~victor/pdfs/prisacariu_reid_tr2310_09.pdf
http://www.robots.ox.ac.uk/~victor/pdfs/prisacariu_reid_tr2310_09.pdf

[118] Jose M. Rodriguez-Borbon, Xiaoyin Ma, Amit K. Roy-Chowdhury, and Walid Najjar.
Heterogeneous acceleration of HAR applications. IEEE Transactions on Circuits and
Systems for Video Technology, 30(3):888–902, March 2020.

[119] Greg Ruetsch and Paulius Micikevicius. Optimizing matrix transpose in CUDA, 2009.
https://www.cs.colostate.edu/cs675/MatrixTranspose.pdf.

[120] Romelia Salomon-Ferrer, Andreas W. Gotz, Duncan Poole, Scott Le Grand, and
Ross C. Walker. Routine microsecond molecular dynamics simulations with AMBER
on GPUs. 2. Explicit solvent particle mesh Ewald. Journal of chemical theory and
computation, 9(9):3878–3888, 2013.

[121] Jason Sanders and Edward Kandrot. CUDA by example: An introduction to general-
purpose GPU programming. Addison-Wesley Professional, 1st edition, 2010.

[122] Richard Sawyer. Calculating total power requirements for data centers. http://

accessdc.net/Download/, 2004. White Paper, American Power Conversion.

[123] Christian Schuldt, Ivan Laptev, and Barbara Caputo. Recognizing human actions: A
local SVM approach. In Proceedings of the 17th IEEE International Conference on
Pattern Recognition (ICPR), volume 3, pages 32–36. IEEE, 2004.

[124] Shubhabrata Sengupta, Aaron E. Lefohn, and John D. Owens. A work-efficient step-
efficient prefix sum algorithm. In Workshop on Edge Computing Using New Com-
modity Architectures (EDGE), pages 26–27, 2006.

[125] Anatoli Sergyienko and Oleg Maslennikov. Implementation of Givens QR-
decomposition in FPGA. In Parallel Processing and Applied Mathematics, pages
458–465, Berlin, Germany, 2006. Springer.

[126] Robert Service. Computer science. What it’ll take to go exascale. Science, New York,
NY, 335(6067):394, 2012.

[127] Lesley Shannon, Veronica Cojocaru, Cong Nguyen Dao, and Philip H.W. Leong.
Technology scaling in FPGAs: Trends in applications and architectures. In 2015 IEEE
23rd Annual International Symposium on Field-Programmable Custom Computing
Machines, pages 1–8. IEEE, 2015.

[128] Lesley Shannon, Veronica Cojocaru, Cong Nguyen Dao, and Philip H.W. Leong.
Technology scaling in FPGAs: Trends in applications and architectures. In IEEE
23rd Annual International Symposium on Field-Programmable Custom Computing
Machines, pages 1–8, Vancouver, BC, Canada, 2015. IEEE.

[129] David E. Shaw, Martin M. Deneroff, Ron O. Dror, Jeffrey S. Kuskin, Richard H.
Larson, John K. Salmon, Cliff Young, Brannon Batson, Kevin J. Bowers, Jack C.
Chao, Michael Eastwood, Joseph Gagliardo, J.P. Grossman, C. Richard Ho, Dou-
glas Ierardi, István Kolossváry, John Klepeis, Timothy Layman, Christine McLeavey,
Mark Moraes, Rolf Mueller, Edward Priest, Yibing Shan, Jochen Spengler, Michael

141

http://accessdc.net/Download/
http://accessdc.net/Download/

Theobald, Brian Towles, and Stanley Wang. Anton, a special-purpose machine for
molecular dynamics simulation. Communications of the ACM, 51(7):91–97, 2008.

[130] David E. Shaw, Ron O. Dror, John K. Salmon, J.P. Grossman, Kenneth M. Macken-
zie, Joseph A. Bank, Cliff Young, Martin M. Deneroff, Brannon Batson, Kevin J.
Bowers, Edmond Chow, Michael Eastwood, Douglas Ierardi, John L. Klepeis, Jef-
frey Kuskin, Richard H. Larson, Kresten Lindorff-Larsen, Paul Maragakis, Mark A.
Moraes, Stefano Piana, Yibing Shan, and Brian Towles. Millisecond-scale molecu-
lar dynamics simulations on Anton. In ACM Proceedings of the conference on high
performance computing networking, storage and analysis, page 39. ACM, 2009.

[131] David E. Shaw, Paul Maragakis, Kresten Lindorff-Larsen, Stefano Piana, Ron O.
Dror, Michael P. Eastwood, Joseph A. Bank, John M. Jumper, John K. Salmon,
Yibing Shan, and Willy Wriggers. Atomic-level characterization of the structural
dynamics of proteins. Science, 330(6002):341–346, 2010.

[132] Karen Simonyan and Andrew Zisserman. Two-Stream convolutional networks for
action recognition in videos. In Advances in Neural Information Processing Systems,
pages 568–576, 2014.

[133] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[134] Scott Sirowy and Alessandro Forin. Where’s the beef? Why FPGAs are so fast.
Microsoft Research, Microsoft Corp., Redmond, WA, 98052, 2008.

[135] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. UCF101: A dataset of
101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402,
2012.

[136] G.W. Stewart. The decompositional approach to matrix computation. IEEE Com-
puting in Science & Engineering, 2(1):50–59, 2000.

[137] Gilbert Strang. Introduction to linear algebra. Wellesley-Cambridge Press, Wellesley,
MA, USA, 1993.

[138] Balaji Subramaniam, Winston Saunders, Tom Scogland, and Wu-chun Feng. Trends
in energy-efficient computing: A perspective from the green500. In 2013 IEEE Inter-
national Green Computing Conference Proceedings, pages 1–8. IEEE, 2013.

[139] Amr Suleiman, Yu-Hsin Chen, Joel Emer, and Vivienne Sze. Towards closing the
energy gap between HOG and CNN features for embedded vision. 2017 IEEE Inter-
national Symposium on Circuits and Systems (ISCAS), pages 1–4, 2017.

[140] Lin Sun, Kui Jia, Dit-Yan Yeung, and Bertram E. Shi. Human action recognition
using factorized spatio-temporal convolutional networks. In Proceedings of the IEEE
International Conference on Computer Vision (ICPR), pages 4597–4605, 2015.

142

[141] Yi-Gang Tai, Kleanthis Psarris, and Chia-Tien Dan Lo. Synthesizing tiled matrix
decomposition on FPGAs. In 21st IEEE International Conference on Field Pro-
grammable Logic and Applications (FPL), pages 464–469, Chania, Greece, 2011.
IEEE.

[142] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri.
Learning spatiotemporal features with 3D convolutional networks. In Proceedings of
the IEEE International Conference on Computer Vision (ICCV), pages 4489–4497,
2015.

[143] Lloyd N. Trefethen and David Bau III. Numerical linear algebra. SIAM, 3600 Market
Street, 6th Floor, Philadelphia, PA, 19104, USA, 1997.

[144] Jan Treibig, Georg Hager, and Gerhard Wellein. LIKWID: A lightweight performance-
oriented tool suite for x86 multicore environments. In 39th IEEE International Con-
ference on Parallel Processing Workshops, pages 207–216, San Diego, CA, USA, 2010.
IEEE.

[145] Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, Qing Wu,
and Yajuan Wang. Intel Math Kernel Library, 2014. https://software.intel.com/en-
us/mkl.

[146] Heng Wang, Muhammad Muneeb Ullah, Alexander Klaser, Ivan Laptev, and Cordelia
Schmid. Evaluation of local spatio-temporal features for action recognition. In British
Machine Vision Conference, pages 124.1–124.11, London, United Kingdom, 2009.
BMVA Press.

[147] Limin Wang, Yu Qiao, and Xiaoou Tang. Action recognition with trajectory-pooled
deep-convolutional descriptors. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 4305–4314, 2015.

[148] Limin Wang, Yuanjun Xiong, Zhe Wang, and Yu Qiao. Towards good practices for
very deep two-stream convnets. arXiv preprint arXiv:1507.02159, 2015.

[149] Qian Wang, Xianyi Zhang, Yunquan Zhang, and Qing Yi. AUGEM: Automatically
generate high performance dense linear algebra kernels on x86 CPUs. In IEEE Pro-
ceedings of the International Conference on High Performance Computing, Network-
ing, Storage and Analysis, pages 1–12, Denver, CO, USA, 2013. IEEE.

[150] Xiaojun Wang and Miriam Leeser. A truly two-dimensional systolic array FPGA
implementation of QR decomposition. ACM Transactions on Embedded Computing
Systems (TECS), 9(1):3, 2009.

[151] David S. Watkins. Fundamentals of matrix computations. John Wiley & Sons, 222
Rosewood Drive, Danvers, MA, USA, 2004.

[152] Bryan M. Wong, Simon H. Ye, and Greg O’Bryan. Reversible, opto-mechanically in-
duced spin-switching in a nanoribbon-spiropyran hybrid material. Nanoscale, 4:1321–
1327, 2012.

143

[153] Carl Yang, Aydın Buluç, and John D. Owens. Design principles for sparse matrix
multiplication on the GPU. In European Conference on Parallel Processing, pages
672–687. Springer, 2018.

[154] Chen Yang, Tong Geng, Tianqi Wang, Rushi Patel, Qingqing Xiong, Ahmed
Sanaullah, Jiayi Sheng, Charles Lin, Vipin Sachdeva, Woody Sherman, and Mar-
tin Herbordt. Fully integrated On-FPGA molecular dynamics simulations. arXiv
preprint arXiv:1905.05359, 2019.

[155] Ming Yang, Shuiwang Ji, Wei Xu, Jinjun Wang, Fengjun Lv, Kai Yu, Yihong Gong,
Mert Dikmen, Dennis J. Lin, and Thomas S. Huang. Detecting human actions in
surveillance videos. In TREC Video Retrieval Evaluation Workshop, 2009.

[156] Bowen Zhang, Limin Wang, Zhe Wang, Yu Qiao, and Hanli Wang. Real-time ac-
tion recognition with enhanced motion vector CNNs. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 2718–2726,
2016.

[157] Yan Zhang, Yasser H. Shalabi, Rishabh Jain, Krishna K. Nagar, and Jason D. Bakos.
FPGA vs. GPU for sparse matrix vector multiply. In 2009 IEEE International Con-
ference on Field-Programmable Technology, pages 255–262. IEEE, 2009.

[158] Ling Zhuo, Gerald R. Morris, and Viktor K. Prasanna. High-performance reduction
circuits using deeply pipelined operators on FPGAs. IEEE Transactions on Parallel
and Distributed Systems, 18(10):1377–1392, 2007.

[159] Ling Zhuo and Viktor K. Prasanna. Scalable and modular algorithms for floating-
point matrix multiplication on FPGAs. In 18th IEEE International Parallel and
Distributed Processing Symposium., page 92. IEEE, 2004.

[160] Ling Zhuo and Viktor K. Prasanna. Scalable and modular algorithms for floating-
point matrix multiplication on reconfigurable computing systems. IEEE Transactions
on Parallel and Distributed Systems, 18(4):433–448, 2007.

[161] Will Y. Zou, Xiaoyu Wang, Miao Sun, and Yuanqing Lin. Generic object detection
with dense neural patterns and regionlets. arXiv preprint arXiv:1404.4316, 2014.

144

	List of Figures
	List of Tables
	Introduction
	Background
	Reconfigurable Architectures
	The Micron Wolverine Co-Processor Series
	Wolverine Co-Processor Series Comparison
	Related Work
	Human Action Recognition (HAR) Applications on FPGAs
	Quantum Dynamics Simulations on FPGAs
	QR Decomposition of Tall-and-Skinny Matrices on FPGAs

	Acceleration of HAR Applications
	 Problem Description
	 Fixed-Point HOG3D HAR
	 FPGA Implementation
	Pre-processing Engine
	Cell Descriptor Engine
	Block Descriptor Engine
	Video Descriptor Engine

	 GPU Implementation
	Pre-processing Engine
	Cell Descriptor Engine
	Block Descriptor Engine
	Video Descriptor Engine

	 Complexity Analysis
	Pre-processing Engine
	Cell Descriptor Engine
	Block Descriptor Engine
	Video Descriptor Engine

	 Experimental Results
	FPGA Synthesis
	FPGA Throughput
	GPU Throughput
	Heterogeneous HAR
	Energy Efficiency Comparison
	Comparison With Related Works

	 Conclusions

	Acceleration of Quantum Simulations
	Introduction
	Theory and Computational Methodology
	Chemical Systems and General FPGA Matrix Operations
	Baseline FPGA Design and Architecture
	Real-Valued Matrix Multiplications on FPGAs
	Complex-Valued Matrix Multiplications on FPGAs

	Optimized FPGA Design for Efficient Propagation of RT-TDDFTB Electron Dynamics
	Experimental Results and Discussion
	Experimental Environment
	Single vs. Double Precision
	Computational Speedup of FPGAs vs. GPUs and CPUs
	Energy Consumption of CPUs, GPUs, and FPGAs
	Performance on Recent FPGA Hardware Architectures

	Conclusion

	 Acceleration of the QR Decomposition of Tall-and-Skinny Matrices in FPGAs
	Introduction
	QR Decomposition
	QR Decomposition For TSMs
	QR Decomposition Using Householder Reflections
	Householder Reflectors - Complexity Analysis
	QR Decomposition in CPUs and GPUs

	 Proposed Micro-architecture
	Proposed Optimizations
	RTL Implementation

	 Experimental Results
	Area Utilization
	Execution Times and Efficiency
	Comparison with CPUs and GPUs
	Operations per Clock Cycle and Efficiency
	Energy Efficiency
	Conclusions

	Conclusions
	Bibliography

