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Abstract

On partially wrapped Fukaya categories

by

Zachary Aaron Sylvan

Doctor of Philosophy in Mathematics

University of California, Berkeley

Professor Denis Auroux, Chair

We define a new class of symplectic spaces called “pumpkin domains”, which roughly speak-
ing comprise a Liouville domain and a Liouville hypersurface of its boundary. To such an
object we assign an A∞-category called its partially wrapped Fukaya category. An exact
Landau-Ginzburg model gives rise to a pumpkin domain, and the partially wrapped Fukaya
category of this pumpkin domain is meant to agree with the Fukaya category one is supposed
to assign to the Landau-Ginzburg model. As evidence, we prove a formula that relates the
partially wrapped Fukaya category of a pumpkin domain to the wrapped Fukaya category
of its underlying Liouville domain. This operation is mirror to removing a divisor.



i

Contents

Contents i

1 Introduction 1
1.1 Background: mirror symmetry and Fukaya categories . . . . . . . . . . . . . 1
1.2 Pumpkin domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Stop removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Geometric setup 7
2.1 Liouville domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Stops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Pumpkin domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Hamiltonians for stops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.5 Geometric gluing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Partially wrapped Fukaya categories 18
3.1 Lagrangian Floer cohomology . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 A∞ categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Units and isomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Continuation functors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5 Homotopies between continuation functors . . . . . . . . . . . . . . . . . . . 37
3.6 Moving stops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4 Stop removal 48
4.1 Closed strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2 Nondegenerate stops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3 A filtration on the quotient category . . . . . . . . . . . . . . . . . . . . . . 57
4.4 Coproduct disks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.5 The main homotopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.6 Closed-open maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.7 Annuli, part 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.8 Annuli, part 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76



ii

4.9 The last homotopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

A Energy and compactness 88
A.1 Action inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
A.2 A maximum principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

Bibliography 96



iii

Acknowledgments

Above all, I’d like to thank my advisor Denis Auroux for his support, guidance, and patience.
A substantial fraction of the good ideas in this thesis are his, and it would be a sad husk of a
text without them. I am also grateful to Mohammed Abouzaid, Sheel Ganatra, David Nadler,
and Katrin Wehrheim for a number of valuable discussions. More broadly, my mathemati-
cal perspective has benefited from many fantastic conversations with Theo Johnson-Freyd,
Vinicius Gripp Barros Ramos, Yanki Lekili, Nick Sheridan, and Hiro Tanaka.

I would also like to thank my undergraduate advisor Steve Bell and my parents for their
encouragement at various points of my life, along with Catherine Salthouse for getting me
through the last few months.

This work was partially supported by NSF grants DMS-0838703, DMS-1007177, and
DMS-1264662.



1

Chapter 1

Introduction

1.1 Background: mirror symmetry and Fukaya

categories

Mirror symmetry was first discovered as a relationship between pairs of Calabi-Yau manifolds
which exchanges two parameters on an associated field theory. It was conjectured that every
Calabi-Yau manifold belongs to such a mirror pair, and this conjecture was later extended
to Landau-Ginzburg models. For the purposes of mirror symmetry, we can take a Landau-
Ginzburg model to be a Kähler space X with a holomorphic function W : X → C called the
superpotential. The best understood case is where one member is a toric variety Xn and
the other is a Landau-Ginzburg model X̌ =

(
(C∗)n, W̌

)
, where the superpotential is given

by an explicit formula depending on the fan of X. This formula was extended to complete
intersections in toric varieties by Givental [15] and Hori–Vafa [16].

Kontsevich’s 1994 homological mirror symmetry (HMS) conjecture [17] predicted that
mirror symmetry should interchange two triangulated categories associated to the mirror
Calabi-Yaus X and X̌. Specifically, the derived category of coherent sheaves on X from
algebraic geometry should be equivalent to the derived Fukaya category of X̌ from symplec-
tic geometry, and vice versa. Subsequent work extended the HMS conjecture to Landau-
Ginzburg models [18]. Moreover, although homological mirror symmetry was first stated
in the setting of derived categories, it has since become well understood that in fact, these
derived equivalences should lift to chain-level A∞ quasi-equivalences.

Another less direct approach to mirror symmetry is to assign to X a singular space Λ
which is meant to be the skeleton of some Weinstein manifold M . The pair (M,Λ) then
has two flavors of Fukaya category, called partially wrapped and infinitesimally wrapped,
which are meant to be equivalent to the dg-categories Coh(X) and Perf(X), respectively.
The equivalence proceeds by combining the coherent-constructible correspondence [9] and
the Nadler–Zaslow correspondence [22]. This approach is explored by Fang–Liu–Treumann–
Zaslow in [10].

The starting point in all definitions of Fukaya categories is the construction, due to Floer
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[11], of a cochain complex CF ∗(L0, L1) associated to a pair of Lagrangian submanifolds
(L0, L1) in a sufficiently well-behaved symplectic manifold M . His construction considers
Morse theory on the space of paths from L0 to L1 and interprets the gradient flow equation
on this space as a holomorphic curve equation for maps u : R× [0, 1]→M . Fukaya described
how to enhance the Floer cochain complex of (L,L) to an A∞-algebra, whose structure is
given by a sequence of multilinear maps

µd : (CF ∗(L,L))⊗d → CF ∗(L,L)

for d ≥ 1 satisfying certain relations. A systematic study of the existence of these Fukaya
A∞-algebras was undertaken by Fukaya–Oh–Ohta–Ono in [13].

The construction of Fukaya categories is analogous to this, where instead of a single
Lagrangian we have multiple Lagrangians, and the operations µd take the form

µd : CF ∗(Ld−1, Ld)⊗ · · · ⊗ CF ∗(L0, L1)→ CF ∗(L0, Ld)

and satisfy the same algebraic relations. In this case, the Fukaya category of M , denoted
F(M), is the A∞-category with objects the properly embedded Lagrangians in M and with
hom(L0, L1) := CF ∗(L0, L1). The operations µd provide the A∞ structure, with µ1 defined
as the differential on the Floer cochain complex and µ2 acting as composition in the category.

In noncompact manifolds, Lagrangian Floer theory depends on a choice of Hamiltonian
perturbations, and as a result there are many types of Fukaya categories of noncompact
symplectic manifolds. For our purposes the most immediately relevant definitions are due
to Seidel [23] and Abouzaid–Seidel [6]. The first is known as the Fukaya-Seidel category
of a Lefschetz fibration, and it is the Fukaya category associated to a Landau-Ginzburg
model with finitely many nondegenerate critical points. The second is the wrapped Fukaya
category, which is the Fukaya category associated to open Calabi-Yau manifolds. These may
be viewed as Landau-Ginzburg models with superpotential W = 0. There is an A∞ functor
from the Fukaya-Seidel category to the wrapped Fukaya category called the acceleration
functor, and this corresponds to forgetting the superpotential, or more precisely to deleting
all of its terms. Abouzaid and Seidel give a universal characterization of this functor as a
certain localization in [5]. The goal of this thesis is to generalize this result. To that effect,
we define a symplectic object called a pumpkin domain and construct its partially wrapped
Fukaya category. This is meant to capture the Floer theory of an exact Landau-Ginzburg
model which is not necessarily a Lefschetz fibration. We then prove a “stop removal” formula,
which characterizes the acceleration functor as a quotient and identifies its kernel.

1.2 Pumpkin domains

A Liouville domain is a compact exact symplectic manifold with boundary (M,ω = dλ), such
that the Liouville vector field Z defined by ıZω = λ points out along the boundary. Attaching
the positive part of the symplectization of ∂M canonically extends M to a noncompact exact
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symplectic manifold M̂ in such a way that Z becomes a complete vector field. Standard
examples of Liouville domains are cotangent bundles with their canonical symplectic forms
and smooth affine complex varieties with the restriction of the standard symplectic form∑n

i=1 dxi ∧ dyi on Cn.
For ρ > 0, let Hρ be the half-plane {<(z) ≥ −ρ} with the Liouville form

λHρ =
1

2
xdy − 1

2
ydx.

A stop is a proper exact symplectic embedding σ : F̂ ×Hρ → M̂ , where F̂ is the completion
of some Liouville domain of dimension 2 less than M . F is called the fiber of σ, and
Dσ := σ|F̂×{0} is called its divisor. It is useful to think of Dσ as a symplectic submanifold of

∂M , which we can pretend is the intersection of σ(F̂ ×R+) with ∂M . A pumpkin domain is
a Liouville domain M along with a finite collection σ of disjoint stops.

We prove in Proposition 2.2.4 that any Liouville hypersurface of ∂M can be perturbed
to be the divisor of a stop. In particular, if W : M̂ → C is a superpotential, then the generic
fiber of W can be extended to a stop σW , and the triple (M,λM , {σW}) is the pumpkin
domain associated to the Landau-Ginzburg model (M,W ). Similarly, if M is equipped with
a singular Lagrangian skeleton Λ ⊂ M with ∂Λ smooth, then we may thicken ∂Λ ⊂ ∂M in
the contact directions to obtain a Liouville hypersurface, which in turn gives rise to a stop
σΛ. The triple (M,λM , {σΛ}) is the pumpkin domain associated to the Lagrangian skeleton
(M,Λ). In the situations where W and Λ are mirror to smooth projective toric varieties, ∂Λ
is a skeleton for the generic fiber of W , so they give rise to the same pumpkin domain.

For a Liouville domain M and a field K of characteristic 2 we can form the wrapped
Fukaya category W(M) with coefficients in K: this is the A∞ category whose objects are
the exact Lagrangian submanifolds of M̂ which are Z-invariant near infinity, and whose
morphism spaces hom(L0, L1) are defined to be the free K-vector space generated by the
time 1 chords of a Hamiltonian vector field XH . Here, H is a positive Hamiltonian which is
quadratic in the symplectization coordinate and chosen to make L0 and L1 transverse.

The A∞ operations are defined using perturbed holomorphic disks as follows. For µ1,
we consider maps u : R× [0, 1]→ M̂ such that u|R×{i} maps to Li and which satisfy Floer’s
equation

∂su+ J(∂tu−XH) = 0,

where s and t are the coordinates on R and [0, 1], respectively, and J is an almost complex
structure which is chosen to be compatible with ω and well-behaved at infinity. When such
a map is isolated (up to R-translation) and asymptotic to XH-chords γ± as s → ±∞, it
contributes one term of γ− to µ1(γ+). The higher operations µd are defined by counting
similarly perturbed holomorphic (d + 1)-gons. Together, they satisfy the A∞ associativity
equations

d∑
k=1

k∑
i=1

µk(γd, . . . , γi+d−k+1, µ
d−k+1(γi+d−k, . . . , γi), γi−1, . . . , γ1) = 0.
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WhenM is equipped with a pumpkin structure σ = {σ1, . . . , σk}, one can carefully choose
the quadratic Hamiltonians so that all intersections of XH chords with the spikes σ(F̂ ×R+)
occur in the positive (counterclockwise) direction, and similarly one can choose the complex
structures so that all holomorphic polygons intersect the divisors positively. Once this is
done, each stop σi ∈ σ induces a filtration by N on the morphisms in wrapped category.
The partially wrapped Fukaya category Wσ(M) is the subcategory of W(M) generated by
those chords which intersect no stops.

Conjecture 1.2.1. If (M,λM ,σ) is the pumpkin domain associated to a Landau-Ginzburg
model (M,W ), then Wσ(M) is the Fukaya category one is meant to associate to (M,W ). In
particular, if (M,W ) is mirror to a Fano variety X, then

dgCoh(X) ∼= TwπWσ(M),

where dgCoh(X) is a dg-category enhancing DbCoh(X), and TwπWσ(M) is a triangulated
enlargement of Wσ(M).

Similarly, if (M,λM ,σ) is the pumpkin domain associated to a Lagrangian skeleton
Λ ⊂M , then Wσ(M) coincides with the partially wrapped Fukaya category of (M,Λ).

1.3 Stop removal

The main result of this paper, Theorem 4.2.7, relies on the technical assumption is that a
stop is nondegenerate. In analogy to Ganatra’s terminology [14] which calls a Liouville do-
main nondegenerate if it admits a collection of Lagrangians satisfying Abouzaid’s generation
criterion [1], a stop is nondegenerate if it supports a collection of Lagrangians satisfying a
similar condition. For a precise definition of nondegeneracy, see Section 4.2. In a future
version of this paper [26], we will prove that any stop whose fiber is a Riemann surface or a
cotangent bundle is nondegenerate.

An approximate version of the stop removal formula (Theorem 4.2.7) can be stated as
follows:

Theorem 1.3.1. Let M be a pumpkin domain, and let σ ∈ σ be a nondegenerate stop. Let
B ⊂ Wσ(M) be the full subcategory of objects supported near the image of σ. Then there is
a fully faithful functor

Wσ(M)
/
B ↪→Wσ\{σ}(M),

where the quotient is a quotient of an A∞ category by a full subcategory in the sense of
Lyubashenko-Ovsienko [20]. In particular, if σ contains only one stop σ, then this quotient
recovers the ordinary wrapped category.

The key ingredient of the proof of Theorem 4.2.7 is an auxiliary filtration onWσ\{σ}(M),
presented as the trivial quotient A =Wσ\{σ}(M)

/
B. The benefit of this quotient presenta-

tion is that it naturally contains the category A0 =Wσ(M)
/
B(σ) as the minimally filtered
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part, which makes it possible to build a homotopy which retracts A onto A0. The homotopy
itself requires a filtered version of the annulus trick, which was introduced in [1] and extended
in [14] and [4]. Specifically, one factors the identity operation as a composition of a product
and a coproduct, where the coproduct is required to have one output land in the partially
wrapped complex.

As an application, consider the Landau-Ginzburg model (M,W ) = (C3, xyz), which is
mirror to the pair of pants. This has generic fiber (C∗)2, whose wrapped Fukaya category is
generated by the single Lagrangian L = (R+)2. It turns out that in Theorem 4.2.7 it suffices
to consider those objects of B which are parallel transports of Lagrangians in the fiber. Thus,
in this case, we can replace B with a single Lagrangian L̃ which is the parallel transport of L
over the arc that curves around σ. This expresses the trivial category W(C3) as a quotient

of Wσ(M) by L̃, which means L̃ generates Wσ(M). This is predicted by mirror symmetry

in [3], where Abouzaid and Auroux compute the endomorphism algebra of L̃.
More abstractly, in view of Conjecture 1.2.1, Theorem 1.3.1 can be thought of as a

characterization of the acceleration functor

A : Fuk(M,W )→ Fuk(M, 0).

This characterization is dual to that of [5] and can be thought of as extending Abouzaid
and Seidel’s result to more general Landau-Ginzburg models. In fact, one could dream of a
situation in which the theory of pumpkin domains has been extended to intersecting stops.
In this case, a theorem analogous to Theorem 1.3.1 would give a strong refinement of the
acceleration functor.

Conjecture 1.3.2. Suppose W =
∑d

i=1Wi is a sum of monomials. Then σWi
and σWj

are generically expected to intersect. However, if partially wrapped Fukaya categories are
developed for intersecting stops, one expects

W{σW }(M) ∼=Wσ(M),

where σ = {σW1 , . . . , σWd
}. In this case, deleting a stop corresponds to deleting a monomial

from W . For (M,W ) mirror to a toric variety X, this in turn corresponds to deleting a toric
divisor from X.

1.4 Outline of the thesis

In Chapter 2, we define stops and pumpkin domains. We prove Proposition 2.2.4, which
shows that stops exist, and we use it to give basic examples of pumpkin domains. We then
describe how to glue pumpkin domains along stops. This will be used in an upcoming paper
[25] where we will explain how to recover the partially wrapped Fukaya category of a gluing
from the partially wrapped Fukaya categories of the original pumpkin domains and certain
functors associated to the stops.
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In Chapter 3, we define partially wrapped Fukaya categories. We then construct various
Floer theoretic operations on Fukaya categories, with the objective of proving that partially
wrapped Fukaya categories are invariant under isotopies of the stops. The reader who is
willing to take for granted that one can construct equivalences between Fukaya categories
by counting holomorphic polygons may safely skip Sections 3.4 and 3.5.

Finally, in Chapter 4, we state the precise version of Theorem 1.3.1 and give its proof.
We begin by constructing the filtration and the coproduct operation. Then we construct a
sequence of smaller homotopies which interpolate between the composition of product with
coproduct and a projection to the partially wrapped part. The key observation here is that
every time a long XH-chord intersects the spike of a stop σ, it does so by first entering the
stop, then intersecting the spike, and then leaving the stop. Thus, by carefully choosing
incidence conditions with the boundary of the image of σ, we construct in Section 4.9 an
operation which looks like the identity but is homotopic to zero.
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Chapter 2

Geometric setup

2.1 Liouville domains

Our basic object of study will be Liouville domains (M,λM), which are compact manifolds
with boundary such that ωM := dλM is symplectic, and such that the Liouville vector
field ZM defined by ıZMωM = λM points outward along the boundary. This implies that
α = λM |∂M is a contact form, and flowing along −ZM gives a collar

(U, λM) ∼= ((0, 1]× ∂M, rα).

Thus, we can attach the rest of the symplectization of ∂M to obtain the completion
M̂ := M ∪∂M [1,∞) × ∂M . M̂ comes with a natural 1-form λ̂M , symplectic form ω̂M ,
and Liouville vector field ẐM .

A good class of mappings between Liouville domains F and M is that of Liouville
maps, which are proper embeddings φ : F̂ ↪→ M̂ such that

φ∗λ̂M = λ̂F + df for some compactly supported f , and

φ∗ẐF = ẐM away from a compact set.
(2.1.1)

Note that the second condition is redundant for codimension zero maps. In general, it can
be rephrased as saying that the symplectic orthogonal of the image of φ lies in the kernel of
λ̂M . A Liouville isomorphism, then, is just a Liouville map that is a diffeomorphism. Two
Liouville maps into the same target are said to be orthogonal if, along their intersection,
the symplectic orthogonal to each is tangent to the other.

A version of Moser’s lemma holds in this setting [7]:

Lemma 2.1.1. Let (F, λtF ) and (M,λtM) be smooth families of Liouville domains for t ∈ [0, 1].
Suppose there exists a Liouville map φ : (F, λ0

F ) → (M,λ0
M). Then φ extends to an isotopy

of Liouville maps φt : (F, λtF )→ (M,λtM).

Occasionally we will use the stronger notion of an isomorphism of exact symplectic
manifolds, which is a diffeomorphism φ : M → M ′ of exact symplectic manifolds (not
necessarily Liouville domains or their completions) satisfying φ∗λM ′ = λM .
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Given two Liouville domains M and M ′, one can attempt to form their product. The
result is an exact symplectic manifold with corners. One can non-canonically round the
corners to obtain a Liouville domain. The result completes to (M̂ × M̂ ′, λ̂M + λ̂M ′), so the
product is at least defined up to isomorphism. We’ll use M ×M ′ to denote the resulting
Liouville domain for any choice of boundary.

If we additionally have a Liouville map φ : F →M , then the product

φ× idM ′ : F ×M ′ →M ×M ′

is not quite a Liouville map, but it becomes one if we replace λF by φ∗λM . By definition,
this doesn’t change the Liouville isomorphism class of F , and in the sequel we’ll often make
such compactly supported changes implicitly when talking about products. If φ′ : F ′ → M ′

is another Liouville map, then φ× idM ′ and idM × φ′ are orthogonal.
A collection of pairwise orthogonal Liouville maps σi : Fi →M induces further Liouville

maps
σji : Fji = σi(Fi) ∩ σj(Fj)→ Fi (2.1.2)

for i 6= j. If i, j, k as above are distinct, then σji and σki are orthogonal.

2.2 Stops

Symplectic manifolds often come with additional data, such as a global meromorphic function
or a distinguished collection of Lagrangians. For Floer theoretic purposes, this data can often
be encoded as a set of framed complex hypersurfaces.

Definition 2.2.1. Let (M2n, λM) and (F 2n−2, λD) be Liouville domains. For ρ > 0, denote
by Hρ the set {z ∈ C | <(z) ≥ −ρ} with the standard exact symplectic structure coming

from C. A stop of width ρ in M with fiber F is a proper embedding σ : F̂ × Hρ → M̂
satisfying

σ∗λ̂M = λ̂F + λHρ + df

for some compactly supported f . If σ is a stop, then Dσ := σ|F̂×{0} is a Liouville map, which
we’ll call its divisor. In what follows, we’ll often identify Dσ with its image.

The requirement that a stop be a proper map is important. It means that all of the data
lives on the boundary, which will be needed to obtain well behaved gluing operations. The
notion of width, on the other hand, is just a notational convenience. Specifically, if ρ′ = tρ,
then Hρ and Hρ′ are isomorphic as exact symplectic manifolds via

(x, y) 7→ (tx, t−1y).

We will also sometimes wish to narrow a stop, that is to embed Hρ into some enlarged
angular sector

Sρ,s = D̄2
ρ ∪
{
reiθ ∈ C | r > 0, |θ| ≤ s

}
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with ρ, s > 0. While this can’t be done in a way that strictly preserves the Liouville form, it
can be done in a way that only modifies the Liouville form in some small annulus around zero
and fixes the positive real axis. For this, one can take the large time flow of a Hamiltonian
which, outside of the annulus, takes the form r2 sin θ. Crossing with the fiber, this might
cause the Liouville vector field to fail to point outward along ∂F ×D2

ρ. However, since the

modification to λC is bounded, we replace F with a larger piece of F̂ so that λC is small
compared to λF , end hence outward pointingness will be preserved at this new boundary.
This shows

Lemma 2.2.2. Let (M,λM) be a Liouville domain and σ0 : F̂ × Sρ,s → M̂ be a proper
codimension zero embedding with

σ∗0λ̂M = λ̂F + λSρ,s + df

for some compactly supported f . Then there is a new Liouville form λ̂′M = λ̂M +dg, where g

is supported in a small tube around σ0(F̂ ×{0}), such that as a map into (M̂, λ̂′M), σ0|(F̂×{0})
extends to a stop σ with σ(F̂ × R+) = σ0(F̂ × R+).

Definition 2.2.3. A map satisfying the properties of σ0 above will be called a narrow stop.

A stop also constrains the behavior of the Liouville form near its divisor. This too will
be needed for gluing, though it is not hard to modify a given Liouville map to look like the
divisor of a stop. In fact, we have the following:

Proposition 2.2.4. Let (M2n, λM) be a Liouville domain, and let P ⊂ ∂M be a compact
hypersurface with boundary such that (P, λM |P ) is a Liouville domain. Choose f : P → [1

2
, 1]

to be a continuous function such that

1. f is smooth and less than 1 on the interior of P .

2. f |∂P = 1.

3. f−1(t) is transversely cut out and contact for t > 1
2
.

4. F = graph(f) ⊂M is a smooth submanifold that is parallel to Z to infinite order along
its boundary.

Then (F, λM |F ) is a Liouville domain, and its inclusion into M extends to a Liouville map
φ. Moreover, one can construct a new Liouville form λ′M = λM + dh such that, after moving
∂M out, φ becomes the divisor of a stop in (M,λ′M) with fiber F .

Note that h was not required to vanish in a neighborhood of ∂M . Of course, by Lemma
2.1.1, one can arrange that it does, at the expense of a homotopy of F .
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Proof. To see that F is a Liouville domain, it suffices to show that ωM |F is symplectic,
since then outward-pointingness is clear from condition 4. In fact, this is automatic near the
boundary, since there F is close to the symplectization of the contact manifold ∂P . Thus,
we can consider only what happens away from the boundary, which allows us to transport
the question to P . For this, let f̃ : P → M be the graph map p 7→ (f, p), so that we are

interested in whether f̃ ∗ωM is symplectic on the interior of P . Then f̃ ∗λM = fλM |P , so that

f̃ ∗ωM = df ∧ λM |P + fωM |P . We compute

(f̃ ∗ωM)n−1 = (ωn−1
M )|P + df ∧ λM |P ∧ (ωn−2

M )|P .

The first term is positive because (P, λM |P ) is a Liouville domain, while the second term is
nonnegative by condition 3. This implies that F is a Liouville domain, and it follows from
the definitions that φ is a Liouville map.

Our next step then is to exhibit F locally as the divisor of a stop. To do this, we will
use Moser’s argument to modify the Liouville form on M in a neighborhood of F . For that
to be effective, we will want to frame F so that, when we try to extend φ to a stop, it will
know which way points out.

Choose a nonvanishing vector field X ∈ Γ(TM̂ |F̂ ) that is symplectically orthogonal to F̂
and, in the symplectization coordinates (r, p) on (0,∞)× ∂M , is of the form X = (g ∂

∂r
, X∂),

where g ≥ 0 and X∂ is tangent to P . The choice is unique up to scaling by a positive function.
Next, pick a second vector field Y ∈ Γ(TM̂ |F̂ ), also orthogonal to F̂ , such that the radial
component of Y vanishes identically and ωM(X, Y ) = 1. By the symplectic neighborhood
theorem on a compact part of M̂ , we can find a number ρ > 0 and a symplectic embedding
ψ : F2 ×D2

ρ → M̂ , where F2 is the part of F̂ with r ≤ 2, such that

(i) ψ|F2×{0} = φ

(ii) ψ∗
∂
∂x

= X along F2

(iii) ψ∗
∂
∂y

= Y along F2.

where x = <(z) and y = =(z) are the coordinates on D2
ρ.

It is time to change λ. Let θ = λF2×D2
ρ
−ψ∗λ̂M . Then θ is closed and θ|F2 = 0, so we can

find a primitive h0 of θ on a neighborhood of F2 with h0|F2 = 0. Shrinking ρ, we can assume
that h0 is defined on all of F2×D2

ρ. Consider a family of cutoff functions κt : F2×D2
ρ → [0, 1]

indexed by t ∈ (0, ρ) and satisfying the following conditions:

(iv) κt is independent of the F component and is rotationally invariant and radially nonin-
creasing in the D2 component when r ≤ 1
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(v) κt = 1 when |z| ≤ t
3

and r ≤ 1

(vi) κt = 0 when |z| ≥ 2t
3

or r ≥ 3
2

(vii) |dκt| < 4
t

with respect to some fixed t-independent product metric on F2 × D2
ρ which

is Euclidean on the D2
ρ factor

(viii) κt0(p, t0z) = κt1(p, t1z) for all (p, z) ∈ F2 ×D2 and ti ∈ (0, ρ).

We can rephrase this last condition as saying that shrinking t corresponds to conjugation by
a rescaling of the D2 component.

We will see that the function h in the statement of the lemma can be taken to be ψ∗(κth0)
for sufficiently small t. For now, let us denote that function by ht. The first thing to notice
is that for t sufficiently small, the Liouville vector field Zt

M associated to λtM = λM + dht
points out along the boundary of M , so that (M,λtM) is a Liouville domain. To see this, note
that λM vanishes on the symplectic orthogonal to [1, 2] × ∂F , where [1, 2] ⊂ (0,∞) is the
symplectization component, so θ does as well. Thus, h0 vanishes quadratically on [1, 2]×∂F .
This, combined with conditions (vi) and (vii), implies that dht has magnitude O(t). Since
the condition that Z points outward is open, this gives the desired conclusion.

It remains to find some t for which φ extends to a stop in (M,λtM). By Lemma 2.2.2,
it is enough to extend φ to a narrow stop. By (v), we can find the disk part of a narrow
stop, so we need only find an angular sector over which we can finish extending φ. The naive
solution here is to just pick a small angular sector and flow out via Z, which works, but one
needs to ensure that this doesn’t get snagged on some interesting piece of M . This is where
the framing of ψ becomes important.

For convenience, let’s now identify F̂ × D2
ρ with its image under ψ. Let δ > 0 be such

that if r > 1− δ, then for all sufficiently small t the flow of Zt
M escapes to infinity. Because

of (ii), for t sufficiently small and r ≤ 1 − δ, the original Liouville vector field ẐM has an
x-component (ẐM)x which is positive and bounded away from zero along F̂ ×{2t

3
}. By (vi),

the same is true of Ẑt
M . By openness, we can find some angle s0 ∈ (0, π

2
) such that Ẑt

M points

out of F̂ ×D2
2t
3

when r ≤ 1− δ and the angular D2-coordinate θ belongs to [−s0, s0]. Since

(Ẑt
M)y vanishes on F , s0 can be chosen to be independent of t. Indeed, as t → 0, s0 could

be taken to increase to π
2
. We want to show that there exists some smaller s such that Ẑt

M

takes
F̂ ×

{
t
3
eiθ | −s ≤ θ ≤ s

}
through (

F̂ ×
{

2t
3
eiθ | −s0 ≤ θ ≤ s0

})
∪
(
∂M × (1− δ,∞)

)
.
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If we can, then we’re done, since we know that the flow of Ẑt
M starting anywhere in the latter

set escapes to infinity. To accomplish this, it is enough to show that and there exist positive
constants C and D, with D small (strictly less than c−1

2c−1−1
tan s), such that∣∣∣∣∣(Ẑt

M)y

(Ẑt
M)x

∣∣∣∣∣ < C ·
∣∣∣y
x

∣∣∣+D and (Ẑt
M)x > 0 (2.2.1)

when t is small, θ ∈ [−s0, s0], and r ≤ 1− δ. It turns out we can take C = 1 + ε and D = ε
for arbitrary small ε > 0. Specifically, remember that Zt

M is the vector field dual to

λtM = κt ·
(
λ̂F +

xdy − ydx
2

)
+ (1− κt)λM + h0dκt.

Note we’ve switched to the interior part of M , since that is where all our current problems
live. Note also that |(Zt

M)y| is given by
∣∣λtM( ∂

∂x
)
∣∣ and similarly with x and y switched. In

the above formula, the λ̂F term doesn’t affect (2.2.1), so it can be ignored. Furthermore,
to lowest order, the h0dκt term is strictly beneficial from the perspective of (2.2.1). To see
this, note that there is a positive function E ∈ C∞(F ) such that dh0 = −Edy +O(|z|) near
F × {0}, so that h0 = −Ey +O(|z|2). Thus, using conditions (vii), we see that

h0dκt = −xy
|z|

∂κt
∂|z|

dx− y2

|z|
∂κt
∂|z|

dy +O(t).

Now ∂κt
∂|z| is nonpositive by assumption, and dx is dual to − ∂

∂y
, so the first term leads to a

negative y-component when y is positive and a positive y-component when y is negative.
This means that its contribution to Zt

M will never enlarge |θ|. Similarly, the second term is
dual to a nonnegative function times ∂

∂x
, so it too will never enlarge |θ|. Hence, it suffices

to show that (2.2.1) can be satisfied with h0 replaced by h̃0 = h0 + Ey, i.e. after discarding
the leading order term.

For this, we will need to separately consider two pieces. Pick w ∈ (1
3
, 2

3
) to be such that

κt(p, wt) 6= 1 and, if |z| < wt, θ ∈ [−s0, s0], and r ≤ 1− δ, then

‖h̃0dκt(p, z)‖ <
εκt
4
x (2.2.2)(

1− κt(p, wt)
)
·
∥∥d (λM ( ∂∂x)) (p, 0)

∥∥ < εκt
6
. (2.2.3)

When |z| ≥ wt, there is a positive t-independent lower bound on (1 − κt)λM( ∂
∂y

), whereas

after replacing h0 by h̃0 every other term of λtM( ∂
∂x

) and λtM( ∂
∂y

) tends uniformly to zero as

t→ 0. Thus, we can satisfy (2.2.1) as long as we can reach |z| = wt. But when |z| < wt, we
can again shrink t so that (2.2.3) implies

(1− κt)|λM( ∂
∂x

)| < εκt
5
x. (2.2.4)
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But now, using the positivity of λM( ∂
∂y

), we have∣∣∣∣∣(Ẑt
M)y

(Ẑt
M)x

∣∣∣∣∣ =

∣∣∣∣∣ 1
2
κty − (1− κt)λM( ∂

∂x
)− h̃0dκt(

∂
∂x

)
1
2
κtx+ (1− κt)λM( ∂

∂y
) + h̃0dκt(

∂
∂y

)

∣∣∣∣∣
≤
|y|+ 2

5
εx+ 1

2
εx

x− 1
2
εx

< (1 + ε) ·
∣∣∣y
x

∣∣∣+ ε

as desired.

Example 2.2.5. Let W : M → C be an exact Lefschetz fibration [23], and let γ : [0,∞)→ C
be a properly embedded, asymptotically radial ray that avoids the critical values of W . Then
we can modify the Liouville structure on M in a neighborhood of W−1(γ) to obtain a stop
modeled on W−1(γ(0)).

More generally, we can do the above for any holomorphic fibration. This is the construc-
tion that we will use to define the partially wrapped Fukaya category of a Landau-Ginzburg
model.

2.3 Pumpkin domains

Definition 2.3.1. From here on, the basic geometric object we will deal with is a pumpkin
domain. This is a triple (M,λM ,σ) with (M,λM) a Liouville domain and σ = {σ1, . . . , σk}
a collection of stops in M such that the images of σi and σj are disjoint for i 6= j. For
technical simplicity, we make the additional assumption that every stop σi strictly preserves
the Liouville form on M̂ \M . Since a pumpkin domain only has finitely many stops, this
can always be achieved by moving ∂M out.

An equivalence of pumpkin domains (M,λM ,σ) and (M ′, λM ′ ,σ
′) is a homotopy of

collections of disjoint stops σt = {σt1, . . . , σtk}, where σti is a stop in M with fiber (Fi, λ
t
Fi

),
together with a Liouville isomorphism ψ : M →M ′ such that σ0 = σ and ψ ◦σ1

i = σ′i. Here,
M and M ′ are required to have the same number of stops.

We’ll usually abuse notation and use M to refer to the pumpkin domain (M,λM ,σ).

Example 2.3.2. Fix a positive integer n, and consider the map un : C→ C given by

un(z) = zn+1 − 1.

Then u∗λC is almost a Liouville form on C, except that its derivative vanishes at the origin.
Choose a cutoff function κ : R → [0, 1] with κ(x) = 1 for x ≤ 1

4
and κ(x) = 0 for x ≥ 1

2
.

Next, choose ε > 0 such that u∗ωC + εd(κ(|z|)λC) is symplectic. Let σn = {σn0 , . . . , σnn} be
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the set of un-lifts of the inclusion H 1
2
↪→ C ordered counterclockwise with σn0 specified by

σn0 (0) = 1. Then this data describes a pumpkin domain

Cn := (C, u∗λC + εκ(|z|)λC,σn).

Its underlying Liouville domain is Liouville isomorphic to C, and it has n+ 1 stops, all with
fiber the point. Note that iR ⊂ C1 is invariant under the flow of the Liouville vector field.

Definition 2.3.3. Let M be a Liouville domain. Then the stabilization of M is the pumpkin
domain

ΣM = M × C1.

As a Liouville domain, ΣM is just isomorphic to the product M ×C. As for the stops, there
are two of them, both with fiber M , and their divisors sit over 1 and −1.

Remark 2.3.4. Though we will not deal with them, one is sometimes given manifolds with
stops that intersect. In this situation, it is reasonable to ask that the stops are orthogonal:
it should be the case that if σi has fiber Fi and width ρi, then there is a Liouville splitting

image(σ1) ∩ image(σ2) = (Dσ1 ∩Dσ2)×Hρ1 ×Hρ2

that induces the splittings given by each of the stops individually. This gives rise to a more
natural setting of Liouville domains with stops, not necessarily disjoint, and here the fiber of
a stop will again be a Liouville domain with stops. Well definedness is achieved by induction
on dimension. This approach has the advantage of being closed under products; in particular
it admits arbitrary stabilizations.

2.4 Hamiltonians for stops

Let M be a pumpkin domain. To obtain an invariant Floer theory, we will need to find
a class of Hamiltonians on M that is well adapted to the pumpkin structure. To state a
compatibility condition, we need a convention for Hamiltonian vector fields, which we set as
dH = −ıXHω.

Definition 2.4.1. A compatible Hamiltonian on (M,λM ,σ) is a function H ∈ C∞(M̂)
such that

1. H is strictly positive.

2. dH(ẐM) = 2H outside of a compact set.

3. XH is tangent to Dσ for each stop σ ∈ σ.

4. For each stop σ ∈ σ, dθ(XH) is nowhere negative on a neighborhood of σ(F̂ × R+).
Here, θ is the angular coordinate on the right half plane.
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In particular, this last condition says that any integral curve for XH has only positive inter-
sections with σ(F̂ × R+).

It’s worth noting that the space of Hamiltonians compatible with a given pumpkin domain
forms a convex cone. Additionally, if one thinks of a Liouville domain M as a pumpkin
domain with no stops, then a compatible Hamiltonian on M is just a positive quadratic
Hamiltonian, as usual.

Lemma 2.4.2. Every pumpkin domain admits a compatible Hamiltonian.

Proof. We need to show that conditions (3) and (4) can be achieved. For this, let (M,λM ,σ)
be a pumpkin domain, and assume without loss of generality that σ has only one element
σ with fiber F and width ρ. Fix a compatible Hamiltonian g on F . We want to extend
this compatibly to all of F̂ × Hρ, since then we can just patch it into M . For that, choose
a nondecreasing smooth function a : R≥0 → [0, 1] with a|[0,1] = 0 and a|[2,∞] = 1, and set
f(z) = |z|4a(|z|4) as a function on Hρ. Define h : R≥0 → R≥0 by h(x) = 1

2
a(x) log x. Our

candidate Hamiltonian is given by

Hcand(p, z) = e2h(f(z))g
(
φF (−h(f(z)), p)

)
+ e2h(g(p))f

(
φC(−h(g(p)), z)

) (2.4.1)

where φF (t, ·) and φC(t, ·) are the time t flows of the Liouville vector fields of F and C,
respectively. One readily checks that Hcand satisfies conditions (1)-(3), so we need only
to find some condition under which it satisfies (4). Now, since f is rotationally invariant,
condition (4) is equivalent to the requirement that ∂

∂x
Hcand ≥ 0 for z = x ∈ R+. This clearly

holds for the second term, and for the first we compute

∂

∂x
e2h◦fg

(
φF (−h(f(x)), p)

)
= e2h◦f (h ◦ f)′(x) ·

(
2g − dg(ẐF )

)
.

Since h ◦ f is nonnegative and nondecreasing, it is enough to require dg(ẐF ) ≤ 2g globally.
This can be achieved by just making g bigger on the interior of F .

Remark 2.4.3. We will usually have not one, but a family of compatible Hamiltonians
parametrized by some space Σ. In this situation, we require that the compact set in condition
2 in Definition (2.4.1) can be chosen Σ-independently.

There is another class of Hamiltonians we will want to consider, namely those whose
vector fields generate Liouville automorphisms. These have a characterization similar to
that of compatible Hamiltonians:

Definition 2.4.4. A linear Hamiltonian on (M,λM ,σ) is a function H` ∈ C∞(M̂) such
that

1. dH`(ẐM) = H` outside of a compact set.
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2. XH` is tangent to Dσ for each stop σ ∈ σ.

A linear Hamiltonian is said to be transverse if, outside of a compact piece of M̂ , it is of
the form b

√
H for b ∈ R and H a compatible Hamiltonian. Near infinity, this is equivalent to

asking that its flow is either identically zero or transverse to the contact distribution, hence
the name.

Lemma 2.4.5. Let ψt be the flow of a time-dependent linear Hamiltonian. Then outside of
a compact set, ψt can be approximated rel endpoints in C0 by the flow of a time-dependent
transverse Hamiltonian.

Proof. Fix an auxiliary compatible Hamiltonian H, where H is of the form 2.4.1 with f
interpolating from |z|2 to |z|4 instead of from 0 to |z|4. Write H` for the positive transverse
Hamiltonian

√
H and let φτ

H` be its time τ flow. For sufficiently large A ∈ R, note that
φAt
H` ◦ψt is the flow of a transverse Hamiltonian, and fix such an A. Then for f : [0, 1]→ [0, 1]

a nondecreasing function of slope at most 2, we have that ψft = φ2At
H` ◦ ψf(t) is also the flow

of a transverse Hamiltonian. Pick f to be as above, constant on many small intervals, and
C0-close to id[0,1] rel endpoints. Then we can compose ψft with a large flow in the direction
of −XH` on the constant intervals to obtain the desired approximation.

2.5 Geometric gluing

Let (M,λM ,σ) and (M ′, λM ′ ,σ
′) be pumpkin domains. Let Fi and F ′j be the fibers of σi

and σ′j, respectively. When Fi and F ′j are isomorphic, we would like to form a new pumpkin
domain M #σi σ′j

M ′. To do this, let us fix an isomorphism φ : Fi → F ′j . Replacing the 1-form

λF ′j by (φ−1)∗λFi , we can assume φ is an isomorphism of exact symplectic manifolds. Due

to the noncompact Hρ factor in the domain of σ′j, this causes σ′j to cease being a stop. To
fix that, we need to modify λM ′ . Now σi and σ′j are stops with the same fiber F , and so we
can make one last modification of λM and λM ′ , this one compactly supported and exact, to
assume that σi and σ′j themselves strictly preserve the Liouville forms.

That done, we can write down the gluing. Pick a positive number a that is smaller than
the widths ρi and ρ′j of σi and σ′j. With this data, we can define the underlying Liouville
domain of M #σi σ′j

M ′ as(
M̂ \ σi(F̂ × {<(z) ≥ a})

)
q
(
M̂ ′ \ σ′j(F̂ × {<(z) ≥ a})

)/
∼

where ∼ is the identification

σi(F̂ × {−a < <(z) < a}) = σ′j(F̂ × {−a < <(z) < a})

via (p, z) 7→ (p,−z). The stops are just

σM #
σi σ′

j
M ′ := (σ \ {σi})q (σ′ \ {σ′j}),
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which makes sense since the stops are disjoint.
Suppose now that we had a 1-parameter family of pumpkin domains (M,λM ,σ

t), that
is an equivalence between (M,λM ,σ

0) and (M,λM ,σ
1). Then the diffeomorphism type of

M #
σti σ′j

M ′ is independent of t, and by Moser’s lemma we get a family of Liouville isomor-

phisms Ψt : M #
σ0
i σ′j

M ′ → M #
σti σ′j

M ′. Pulling back the stops in M #
σti σ′j

M ′ via Ψt, we see

that our homotopy of stops in M results only in a homotopy of stops in the gluing. Repeating
this on the M ′ side, we obtain

Lemma 2.5.1. Gluing descends to an operation on equivalence classes of pumpkin domains,
and at this level it depends only on the triple (σi, σ

′
j, [φ]). Here, [φ] is the connected component

that φ belongs to in the space of Liouville isomorphisms from Fi to F ′j.

We will often find that the image of a stop is too small to contain interesting global
geometric objects. To remedy this, we will often make use of the following construction.

Definition 2.5.2. Let (M,λM ,σ) be a pumpkin domain, and let σ ∈ σ be a stop with fiber
F . Then the trivial gluing at σ, written M [σ], is the pumpkin domain M #σ σ0

ΣF .

Trivial gluing effectively replaces σ with σ1 and doesn’t change the pumpkin equivalence
class of M . Indeed, it can be achieved by homotoping λM in the class of Liouville forms
and moving σ out. The benefit of trivial gluing is that it gives rise to the ZM -invariant
hypersurface F̂ × iR.
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Chapter 3

Partially wrapped Fukaya categories

3.1 Lagrangian Floer cohomology

For convenience of notation, we’ll assume everything in sight is graded. Specifically, we
require that all of our Liouville domains satisfy 2c1(M) = 0, and further that they come

with a choice of fiberwise universal cover L̃Gr(M) of their bundle of unoriented Lagrangian
Grassmannians. Given two Liouville domains M1 and M2, their product is graded in the
unique way that extends L̃Gr(M1)×ZL̃Gr(M2). All codimension zero symplectic embeddings
will be assumed to preserve these covers.

Definition 3.1.1. Given a pumpkin domain M , a Lagrangian L ⊂ M is an exact, ori-
ented, properly embedded Lagrangian submanifold of M̂ which is parallel to ẐM outside of
a compact set. It is required to be graded in the standard sense, namely that it is equipped
with a lift to L̃Gr(M) of the natural section L → LGr(M). For compatibility with the
pumpkin structure, we require that L does not intersect any σi(F̂ × R≥0).

An interior Lagrangian is a Lagrangian which completely avoids the images of the
stops and whose image under the projection M̂ \M → ∂M does as well. It is easy to see
that any Lagrangian is isotopic via a linear Hamiltonian to an interior Lagrangian.

Given a compatible Hamiltonian H on M , we want to consider a class J (M,H) of
almost complex structures which are adapted to H. An element J ∈ J (M,H) is a smooth
almost complex structure on M̂ which is compatible with ω̂M and satisfies the following three
conditions. First, there is some c > 0 such that

dH ◦ J = −cHλ̂M (3.1.1)

outside of a compact set. Second, the restriction J |ker dH∩ker λ̂M
, i.e. the contact portion of J ,

is asymptotically ẐM -invariant. Third, for each stop σ ∈ σ, we require that the projection
to Hρ is holomorphic along Dσ. In other words, the divisor of each stop is required to be an
almost complex submanifold, and the restriction of J to its symplectic orthogonal coincides
with multiplication by i in the base.
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Lemma 3.1.2. For any pumpkin domain (M,λM ,σ) and compatible Hamiltonian H, the
space J (M,H) is contractible and non-empty.

Proof. We prove only the last part, for which it is enough to construct such an almost
complex structure near the divisor of a stop σ. Let F be the fiber of σ, and pick an almost
complex structure JF ∈ J (F,H|F̂ ). Since the symplectic orthogonal to Dσ lies in the kernel
of both dH and λM outside of a compact set, there is no obstruction to extending JF to
TM̂ |Dσ while satisfying Equation (3.1.1). Now just extend to the rest of M̂ .

To endow J (M,H) with the structure of a complete metric space, one needs to fix
the compact set for (3.1.1). This prevents the existence of a sequence of almost complex
structures which satisfies (3.1.1) only outside of ever larger compact sets, so that the limit
satisfies it nowhere. To obtain transversality results, we will require that H is quadratic
and all Lagrangians are ẐM -invariant outside the compact set. We choose the compact
sets implicitly as part of the data of H, for example to equal H−1((−∞, r + 1]), where
H−1((−∞, r]) is the smallest sublevel set of H outside of which it is strictly quadratic and
the Lagrangians are strictly conical.

We will in fact need time-dependent, or more generally domain-dependent almost complex
structures. For this, suppose Σ is a smooth manifold, possibly with boundary or corners,
and that we’ve chosen a Σ-parametrized family of compatible Hamiltonians H. Denote by
J Σ(M,H) the set of smooth maps J : Σ→ J (M̂, ω̂M) satisfying

J(z) ∈ J (M,H(z))

for all z ∈ Σ, and such that (3.1.1) holds pointwise outside of a Σ-independent compact
subset of M̂ . Here, J (M̂, ω̂M) is the space of all ω̂M -compatible almost complex structures.
Likewise, for families of domain-dependent almost complex structures, we require that the
compact set can be chosen uniformly for the family. In practice, we will choose the compact
set implicitly to be a sublevel set for the family of Hamiltonians.

Now suppose L0 and L1 are Lagrangians in M , and H is a compatible Hamiltonian. We
say that H is nondegenerate for the pair (L0, L1) if the following two conditions hold. First,
φ(L0) is transverse to L1, where φ is the time 1 flow of XH . Second, if dim(M) ≥ 4, then
no two points of φ(L0) ∩ L1 are Liouville translates of one another. If H is nondegenerate,
set X(L0, L1;H) to be the set of time 1 XH-chords starting on L0 and ending on L1. Since
everything was graded, chords γ ∈ X(L0, L1) are equipped with a degree deg(γ) given by
topological intersection number with the Maslov cycle.

For J ∈ J [0,1](M,H), we consider maps

u : Z = R× [0, 1]→ M̂

mapping R×{0} to L0 and R×{1} to L1. For fixed γ+ and γ− in X(L0, L1, H), let R̃(γ+; γ−)
be the collection of such maps satisfying Floer’s equation

∂su+ J(t)(∂tu−XH) = 0 (3.1.2)
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with s and t the coordinates on R and [0, 1], respectively, and such that

lim
s→±∞

u(s, ·) = γ±. (3.1.3)

The transversality arguments in [12] show that

Lemma 3.1.3. Fix a pumpkin domain (M,λM , σ), Lagrangians L0 and L1, and a nonde-
generate compatible Hamiltonian H. Then there is a comeager subset

J [0,1]
reg (M,H) ⊂ J [0,1](M,H)

such that, for any J ∈ J [0,1]
reg (M,H) and γ± ∈ X(L0, L1), R̃(γ+; γ−) is a smooth manifold of

dimension deg(γ−)− deg(γ+). In this case, the translation R-action on R̃(γ+; γ−) is free if
and only if γ+ 6= γ−.

In the above situation, if deg(γ−) > deg(γ+), define R(γ+, γ−) := R̃(γ+; γ−)/R. This is
again a smooth manifold, and it has a compactification given by broken Floer trajectories.
Specifically, consider the set

R(k)(γ+; γ−) =
∐

γi∈X(L0,L1),γ0=γ+

deg(γi)<deg(γi+1)<deg(γ−)

R(γ0; γ1)× · · · × R(γk; γ−). (3.1.4)

This union is finite, since the sequence γi needs to have strictly decreasing action, while there
are only finitely many chords with action below that of γ+ (cf. Section A.1). Now Gromov
compactness says that the union

R(γ+; γ−) =
∐
k

R(k)(γ+; γ−)

has a natural compact metric space structure in which R(γ+; γ−) is a dense open subset. In
particular, if deg(γ−)− deg(γ+) = 1, then R(k)(γ+; γ−) is empty for all k ≥ 1, which means

R(γ+; γ−) = R(γ+; γ−)

is a finite set. To define the Floer complex, we need one more standard result, first proven
in [11].

Lemma 3.1.4. Suppose we are in the situation of Lemma 3.1.3, and that J ∈ J [0,1]
reg (M,H)

and deg(γ−)− deg(γ+) = 2. Then

R(γ+; γ−) = R(0)(γ+; γ−)qR(1)(γ+; γ−)

is a compact 1-manifold with boundary, and its boundary is precisely R(1)(γ+; γ−).



CHAPTER 3. PARTIALLY WRAPPED FUKAYA CATEGORIES 21

Let K be a field of characteristic 2. We define a graded vector space CW ∗(L0, L1) by
degree as

CW k(L0, L1) =
⊕

γ∈X(L0,L1)
deg(γ)=k

Kγ.

Fixing J ∈ J [0,1]
reg (M,H), we define a differential

δ : CW k(L0, L1)→ CW k+1(L0, L1)

by

δγ+ =
∑

deg(γ−)−deg(γ+)=1

#R(γ+; γ−) · γ−,

where #R(γ+; γ−) is the mod-2 count of elements of R(γ+; γ−). Now, δ2 counts broken
trajectories connecting chords of index difference 2, which are precisely elements of some
R(1). By Lemma 3.1.4, this makes up the boundary of some one-dimensional moduli space,
so it has an even number of elements. This means δ2 = 0, so

(
CW ∗(L0, L1), δ

)
is a cochain

complex, called the wrapped Floer cochain complex of L0 with L1.
Each stop σ ∈ σ induces a filtration by N on CW ∗(L0, L1) as follows: Condition (4) in

Definition 2.4.1 means that for any γ ∈ X(L0, L1), the intersections of γ with σ(F̂ ×R+) are
all positive. Denote the number of such intersections nσ(γ).

Lemma 3.1.5. The Floer differential δ never increases nσ. In other words, nσ induces a
filtration on wrapped Floer cochain complexes.

Proof. Suppose u ∈ R(γ+; γ−). Since our Lagrangians avoid σ(F̂×R≥0), the winding number
of ∂u about Dσ coincides with the difference nσ(γ+) − nσ(γ−). By definition, this winding
number also gives the topological intersection number of u with Dσ. Thus, it is enough to
show that u has only positive intersections with Dσ.

Recall Gromov’s trick, which interprets H-perturbed holomorphic curves as unperturbed
holomorphic sections of Z × M̂ , for a special choice of almost complex structure. Since Jt
fixes Dσ and XH is tangent to Dσ, Gromov’s trick will present Z×Dσ as an almost complex
submanifold of Z × M̂ . This means its intersections with the section given by u are all
positive, and linear algebra shows that the same holds for the original intersections.

Combining the above for all the stops σi ∈ σ, we get a filtration on CW ∗(L0, L1) by N|σ|.

Definition 3.1.6. The partially wrapped Floer cochain complex of L0 with L1, de-
noted CW ∗

σ(L0, L1), is the 0-filtered part of CW ∗(L0, L1). In other words, it is the subcom-
plex generated by those H-chords which don’t traverse any of the stops.
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3.2 A∞ categories

We’ll now construct the Fukaya A∞-categories that enhance the above Floer complexes. To
begin, we establish some notation for associahedra and strip-like ends.

Following [23], for d ≥ 2, letRd+1 denote the space of disks with d+1 boundary punctures,
labeled ζ0 to ζd and ordered counterclockwise, modulo conformal equivalence. Rd+1 lives

naturally as interior of the d’th Stasheff associahedron Rd+1
, where the boundary faces are

products of lower dimensional associahedra indexed by irreducible rooted trees with d ordered
leaves. To be explicit, by irreducible we mean that the root vertex has valency at least two
and the internal vertices have valency at least three.

Associated to the associahedra are their dg-operad of top cells, and an A∞-category is
a category over this operad. Explicitly, an A∞-category A consists of

1. A collection of objects ObA.

2. For each pair of objects a0, a1 ∈ ObA, a graded K-vector space hom(a0, a1).

3. For k ≥ 1 and all sequences of k objects L0, . . . , Lk, a map of degree 2− k

µk : hom(Lk−1, Lk)⊗ · · · ⊗ hom(L0, L1)→ hom(L0, Lk) (3.2.1)

satisfying the A∞ associativity relations

d∑
k=1

k∑
i=1

µk(γd, . . . , γi+d−k+1, µ
d−k+1(γi+d−k, . . . , γi), γi−1, . . . , γ1) = 0. (3.2.2)

For an detailed treatment of A∞-categories, we refer the reader to chapter 1 of [23].
For Σ a boundary-punctured Riemann surface and ζ ∈ Σ a boundary puncture, a posi-

tive strip-like end is a holomorphic embedding

ε : Z+ = R≥0 × [0, 1]→ Σ (3.2.3)

sending R≥0 × {0} and R≥0 × {1} to ∂Σ, and satisfying

lim
s→∞

ε(s, t) = ζ.

Similarly, a negative strip-like end for ζ is a holomorphic embedding

ε : Z− = R≤0 × [0, 1]→ Σ (3.2.4)

sending R≤0 × {0} and R≤0 × {1} to ∂Σ, and satisfying

lim
s→−∞

ε(s, t) = ζ.
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If Σ+ has a positive strip-like end ε+ and Σ− has a negative strip-like end ε−, then we can
glue Σ+ and Σ− with length ` > 0 by removing ε+([`,∞)× [0, 1]) and ε−((−∞,−`])× [0, 1])
and identifying, for s ∈ (0, `), ε+(s, t) with ε−(s− `, t). The resulting glued surface inherits
any data on Σ± supported away from the images of ε±.

A boundary-punctured Riemann surface with strip-like ends is a boundary-
punctured Riemann surface Σ, along with a choice of a positive or negative strip-like end for
each boundary puncture, such that the images of the strip-like ends are pairwise disjoint.
For a disk Σd+1 ∈ Rd+1, we require this to be a choice of strip-like end εi for each ζi, where εi
is positive for i > 0 and negative for i = 0. Seidel has shown that we can make a universal
and consistent choice of strip like ends: we can choose, for all d ≥ 2, a collection of

strip-like ends for each Σd+1 varying smoothly over Rd+1, and such that near ∂Rd+1
they

agree with the strip-like ends induced by gluing. See [23] for details.
A universal and consistent choice of strip-like ends gives rise to a thick-thin decompo-

sition of each Σd+1 ∈ Rd+1, which we modify slightly from Seidel’s convention. Namely, for
a strip-like end ε, define its m-shift εm by

εm(s, t) =

{
ε(s+m, t) if ε is a positive strip-like end

ε(s−m, t) if ε is a negative strip-like end.
(3.2.5)

Similarly, if S ∈ Σd+1 is a finite-length strip obtained as the overlap from gluing ε+ and ε−

with length `, then Sm ⊂ S is the possibly empty finite-length strip obtained as the overlap
from gluing (ε+)m and (ε−)m with length `− 2m. Now our thick-thin decomposition can be
declared to be the 3-shift of Seidel’s. In other words, the thin part of Σd+1 is the union of
the images of all 3-shifts of strip-like ends and all 3-shifts of gluing regions, and the thick
part is its complement.

Remark 3.2.1. To be properly pedantic, one should first define a gluing region S of length
`S to be good if the strip-like ends induced by Σ± agree with the strip-like ends on Σ, and
to be very good if the corresponding gluing region is good and disjoint from all other good
gluing regions for all lengths ` ≥ `S. Then one defines the thin part to include only the
3-shifts of those gluing regions which are very good. This eliminates further choices from
the setup and makes it easy to see that the thick part is nonempty.

In everything that follows, we will assume that that we’ve fixed a universal and consistent
choice of strip-like ends.

Next, we recall Abouzaid’s rescaling trick from [1]. Departing slightly from our earlier
notation, let φτ be the diffeomorphism of M̂ given by the time log τ flow of the Liouville vector
field. Note that pullback by φτ sends Lagrangians to Lagrangians, compatible Hamiltonians
to compatible Hamiltonians, and preserves equation (3.1.1). Suppose then that we’ve fixed
Lagrangians L0 and L1, along with a nondegenerate Hamiltonian H and regular almost
complex structure J . Then we get a natural bijection between solutions to (3.1.2) with
boundary conditions (L0, L1) and solutions to

∂su+ (φτ )∗J(t)(∂tu− (φτ )∗XH) = 0 (3.2.6)
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with boundary conditions
(
(φτ )∗L0, (φ

τ )∗L1

)
. The identity

(φτ )∗XH = X 1
τ

(φτ )∗H

lets us rewrite (3.2.6) as
∂su+ Jτ (t)(∂tu−XHτ ), (3.2.7)

where

(Jτ , Hτ ) =
(
(φτ )∗J,

1

τ
(φτ )∗H

)
again satisfies equation (3.1.1). Since Hτ = τH near infinity, we can make Hτ bigger than
any other given compatible Hamiltonian by taking τ sufficiently large.

Let us fix, for each pair of Lagrangians (Li, Lj) in M , a nondegenerate Hamiltonian H i,j,

along with an almost complex structure J i,j ∈ J [0,1]
reg (M,H i,j). The pair (H i,j, J i,j) is known

as a Floer datum for (L0, L1), and it singles out well defined wrapped and partially wrapped
Floer complexes. In the sequel, this choice will be usually be implicit, and we will write,
e.g., X(Li, Lj) instead of X(Li, Lj, H

i,j).
For d ≥ 2 and a d + 1-tuple of Lagrangians (L0, . . . , Ld), we wish to define a family of

maps
µd : CW ∗(Ld−1, Ld)⊗ · · · ⊗ CW ∗(L0, L1)→ CW ∗(L0, Ld) (3.2.8)

of degree 2− d which satisfy an analog of Lemma 3.1.5. Let Σ ∈ Rd+1. From our consistent
and universal choice, Σ is equipped with a collection of strip-like ends. Let ∂iΣ be the edge
of Σ between ζi and ζi+1, or in the case i = d between ζd and ζ0, and label ∂iΣ with the
Lagrangian Li.

The following definition is important to the present situation, but we state it in enough
generality that we won’t need to rewrite it too many times.

Definition 3.2.2. A Floer datum on a boundary-punctured Riemann surface Σ with
strip-like ends and Lagrangian labels consists of

1. A positive real number wi for each puncture ζi.

2. A sub-closed 1-form β on Σ satisfying β|∂Σ = 0 and (ε1i )
∗β = widt for all i.

3. A Σ-parametrized compatible Hamiltonian H on M satisfying a bunch of conditions:

a) dΣH ∧ β ≤ 0 outside of a compact set. Here we view H as a function on Σ× M̂ ,
and dΣH is the component of dH in the Σ-direction. Moreover, dΣH vanishes
on outward normal vectors at ∂Σ, and dβ is strictly negative and bounded away
from zero on the support of dΣH.

b) For each positive strip-like end εi, let L0 and L1 be the Lagrangians assigned
to the boundary components of Σ containing εi(R≥0 × {0}) and εi(R≥0 × {1}),
respectively. Then there is a scaling constant τi > 0 such that

wiH = H0,1
τi
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on the image of εi.

c) For each negative strip-like end εi, let L0 and L1 be the Lagrangians assigned
to the boundary components of Σ containing εi(R≤0 × {0}) and εi(R≤0 × {1}),
respectively. Then there is a scaling constant τi > 0 such that

wiH = H0,1
τi

on the image of εi.

4. A Σ-parametrized almost complex structure J ∈ J Σ(M,H) such that

a) For each strip-like end as above, J satisfies

J = J0,1
τi

on the image of ε2i .

b) Let c : Σ → R+ be the constant in the compatibility condition (3.1.1). Then the
support of dc is disjoint from the support of dΣH.

5. A smooth function τE : ∂Σ→ (0,∞) such that τE(z) = τi for all ends ζi and all points
z ∈ ∂Σ ∩ image(εi).

A Floer datum for a boundary-punctured Riemann surface without Lagrangian labels
consists of a Floer datum for every Lagrangian labeling of that Riemann surface.

Lemma 3.2.3. Let Σ be a boundary-punctured Riemann surface with strip-like ends and
Lagrangian labels. Then the space of Floer data on Σ is nonempty and contractible.

Proof. For existence, choose β, which determines wi. Then choose H to be Σ-independent
outside of the strip-like ends. A choice of H determines τi, and from there we can fill in
choices of J and τE.

For contractibility, we choose data in the order wi, then β, then τi, then H, J , and τE.
Each space of choices forms a contractible set depending on the previous choices.

Following Abouzaid, we consider conformal rescalings of Floer data. Namely, we say
that the Floer data (β,H, J, τE) and (β′, H ′, J ′, τ ′E) are conformally equivalent if there are
constants C,W > 0 such that

β = Wβ′, H =
1

W
(H ′)C , J = (J ′)C , τE = Cτ ′E. (3.2.9)

If Σ+ has a positive strip-like end ε+i and Σ− has a negative strip-like end ε−j , and the
corresponding Lagrangian labels agree, then Floer data on Σ+ and Σ− can be glued by
rescaling one and patching together the data. Specifically, one chooses C and W so that
τ+
i = Cτ−j and w+

i = Ww−j and uses those constants in (3.2.9) to define a new Floer datum
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on Σ+. The precise Floer datum obtained by iterated gluing depends on the order of the
gluings, but its conformal equivalence class does not.

We now specialize back to the disks with which we will construct the A∞ structure. For
that we will need coordinate charts near ∂Rd+1, which we choose as in [23], but with the

exponential gluing profile. In other words, if S ⊂ ∂Rd+1
is a boundary stratum corresponding

to a rooted tree T with labeled leaves, then a chart for Rd+1
near Σ ∈ S is∏

internal vertices v

Uv ×
∏

internal edges e

[0, ae). (3.2.10)

Here, Uv is a subset of the spaceRm+1 corresponding to the vertex v, and [0, ae) is an interval
of gluing parameters corresponding to the edge e, where gluing parameter ρ corresponds to

the length ` = e
1
ρ . The identity map from such a chart to one obtained from the logarithmic

gluing profile ` = −1
π

log ρ is smooth, and hence any smooth data on the classical associahedra
can be pulled back to smooth data in these charts.

Definition 3.2.4. A universal and conformally consistent choice of Floer data forRd+1

consists of, for all d ≥ 2, a Floer datum K(Σ) = (β,H, J, τE) for each Σ varying smoothly

over Rd+1, and such that near ∂Rd+1
it satisfies the following consistency condition.

1. For Σ sufficiently close to the boundary of Rd+1, K(Σ) coincides on the thin part up
to a conformal rescaling with the Floer datum induced by gluing.

2. In a chart of the form (3.2.10), we can consider the restriction of K(Σ) to each piece
Σi ∈ Rm+1 from which Σ is glued. This gives a family of Floer data on Σi parametrized
by

U ×
∏
e

(0, ae)× E,

where U ⊂ Rm+1 is a neighborhood of Σi, the intervals consist of the gluing parameters
for gluing regions adjacent to Σi, and E contains all the remaining terms in (3.2.10).
We require that this family extends smoothly to

U ×
∏
e

[0, ae)× E,

and that on U ×
∏

e{0} × E it agrees up to a family of conformal rescalings with the
family of Floer data that was chosen for Rm+1.

Though our situation is slightly different from Abouzaid’s, Lemma 4.3 from [1] still holds,
namely

Lemma 3.2.5. Universal and conformally consistent choices of Floer data exist. Moreover,
if K0 is such a choice and KΣ is another Floer datum on some Σ ∈ Rd+1, then KΣ can be
extended to a universal and asymptotically consistent choice that agrees with K0 on Rm+1

for all m < d.
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Let (L0, . . . , Ld) be a (d+ 1)-tuple of Lagrangians, and let

γi ∈

{
X(Li−1, Li) i 6= 0

X(L0, Ld) i = 0.
(3.2.11)

Given a Floer datum K = (β,H, J, τE) on some Σ ∈ Rd+1, we can consider maps u : Σ→ M̂
satisfying the generalized Floer equation

J ◦ (du−XH ⊗ β) = (du−XH ⊗ β) ◦ j (3.2.12)

and such that u(∂iΣ) ⊂ (φτE)∗Li and u(ζi) = (φτi)∗γi in the sense of (3.1.3). More, given
a universal and conformally consistent choice K, we can consider Rd+1(γd, . . . , γ1; γ0), the
space of such maps as Σ varies in Rd+1 and K varies with Σ. Note that as with solutions to
the Floer’s equation on strips, a conformal rescaling of K induces a canonical identification
of the corresponding versions of Rd+1(γd, . . . , γ1; γ0). In the sequel, we will usually make this
identification implicitly.

Lemma A.2.2 shows that the maps u as above are constrained to take values in some
compact part of M̂ , so that the Gromov compactness theorem applies. This says that

Rd+1(γd, . . . , γ1; γ0) has a natural compactification Rd+1
(γd, . . . , γ1; γ0) obtained by adding

in broken configurations similar to those in equation (3.1.4). We enumerate those broken
configurations with exactly two nonconstant components:

Rm+1+1(γd, . . . , γi+d−m+1, γ̃, γi, . . . , γ1; γ0)

×Rd−m+1(γi+d−m, . . . , γi+1; γ̃)

1 ≤ m ≤ d− 2

0 ≤ i ≤ m

γ̃ ∈ X(Li, Li+d−m)

(3.2.13a)

Rd+1(γd, . . . , γi+1, γ̃, γi−1, . . . , γ1; γ0)

×R(γi; γ̃)

1 ≤ i ≤ d

γ̃ ∈ X(Li−1, Li)
(3.2.13b)

R(γ̃; γ0)×Rd+1(γd, . . . , γ1; γ̃) γ̃ ∈ X(L0, Ld) (3.2.13c)

The first kind occur when a sequence of curves has domains approaching ∂Rd+1, and the
other two occur when energy escapes through one of the strip-like ends. The configurations
with more than two components are in general some combination of the above, but since
they don’t show up in the construction of Fukaya categories, we won’t worry about them.
As with Floer trajectories in (3.1.4), there are only finitely many intermediate chords γ̃ for
which at least one of the above products is nonempty.

The key analytic ingredient is

Lemma 3.2.6. There is a subset Kreg(M) of the space of universal and conformally consis-
tent choices of Floer data for Rd+1 which is dense and such that any K ∈ Kreg(M) has the
following properties.
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1. For all d ≥ 2, all L0, . . . , Ld, and all γi as in (3.2.11), the corresponding moduli space
Rd+1(γd, . . . , γ1; γ0) is a smooth manifold of dimension deg(γ0)−

∑d
i=1 deg(γi) + d− 2.

2. If deg(γ0)−
∑d

i=1 deg(γi) = 2− d, then Rd+1(γd, . . . , γ1; γ0) is compact.

3. If deg(γ0) −
∑d

i=1 deg(γi) = 3 − d, then Rd+1
(γd, . . . , γ1; γ0) is a compact topological

1-manifold with boundary, and its boundary is the union of all binary broken curves
(3.2.13).

Proof. The proof is explained in [23], Section 9.

Fix an element K ∈ Kreg(M), and hence a moduli space Rd+1(γd, . . . , γ1; γ0) for all d and
all γi. We can now define what will be the A∞ operations µd. Namely, one sets µ1 to be the
Floer differential δ, and

µd(γd, . . . , γ1) =
∑

γ0∈X(L0,Ld)

deg(γ0)−
∑d
i=1 deg(γi)=2−d

#Rd+1(γd, . . . , γ1; γ0) · γ0

if d ≥ 2. One can check that, when they’re zero-dimensional, the products in (3.2.13) encode
all possible ways of composing two µd’s with the given inputs and output. Since these make
up the boundary of a compact 1-manifold, the total number of elements is even, so the µk

satisfy the A∞ relations (3.2.2).

Definition 3.2.7. The wrapped Fukaya category of a pumpkin domain (M,λM ,σ),
denoted W(M,λM), is the A∞-category whose objects are Lagrangians in M , in the sense
of Definition 3.1.1, and such that hom(L0, L1) = CW ∗(L0, L1). The A∞ structure is given
by the µd described above.

The interior wrapped Fukaya category W int(M,λM) is the full subcategory of the
wrapped category containing only the interior Lagrangians of M .

Remark 3.2.8. Seidel has observed that while our wrapped Fukaya category of a pumpkin
domain embeds a full subcategory of the wrapped Fukaya category of the underlying Liouville
domain, the latter category can have strictly more objects. These take the form of Lagrangian
submanifolds which intersect the stops in an essential way. This is, however, impossible when
M is a Weinstein domain.

As with the Floer differential, the disks defining the higher compositions have only iso-
lated positive intersections with the divisors of the stops. The result is that theA∞ operations
preserve the intersection filtrations induced by the stops.

Lemma 3.2.9. Let σ ∈ σ be a stop. Then, for any d ≥ 1 and composable sequence of
morphisms γ1, . . . , γd, we have

nσ
(
µd(γd, . . . , γ1)

)
≤

d∑
i=1

nσ(γi).



CHAPTER 3. PARTIALLY WRAPPED FUKAYA CATEGORIES 29

In particular, this says that the A∞ operations preserve the partially wrapped complexes,
so we can define

Definition 3.2.10. For (M,λM ,σ) a pumpkin domain, its partially wrapped Fukaya
category Wσ(M,λM) is the subcategory of W(M,λM) with all the same objects and such
that

homWσ(L0, L1) = CW ∗
σ(L0, L1)

The interior partially wrapped Fukaya category W int
σ (M,λM) is the full subcate-

gory of the partially wrapped category containing only the interior Lagrangians of M .

As we will see, the two versions of the partially wrapped Fukaya category are in fact quasi-
equivalent, but certain functors will be much easier to write down when we have access to
both.

3.3 Units and isomorphisms

Here we give a mostly standard review of the construction of isomorphisms inside Fukaya
categories. We do this because there are a number of places where it is important that these
maps come from holomorphic curves. Specifically, we need to see that there are sufficiently
strong maximum principles, as well as analogs of Lemmas 3.1.5 or 3.2.9.

The relevant situation is that we have a family of Lagrangians Lt parametrized by
t ∈ [0, 1]. Such an isotopy can be generated by a Hamiltonian Ht which, for all t, is linear
up to a term which is locally constant near the ends of Lt. This means there exists a linear
Hamiltonian H`

t whose Hamiltonian vector field agrees with that of Ht near the ends of Lt.
We say that the family Lt is transverse if H`

t can be taken to be transverse for all t.
To construct an isomorphism from L0 to L1, we need to consider Riemann surfaces with

moving Lagrangian labels. The starting point is Definition 3.2.2, which applies as long as the
labels don’t move inside the strip-like ends, but it isn’t quite enough to achieve compactness.
For that to work out, we need to control where the label moves and be a bit more careful
about the sub-closed 1-form.

Additionally, for lack of a better maximum principle, we will construct holomorphic
curves only for transverse families of Lagrangians. However, the proof of Lemma 2.4.5 shows
that any family of Lagrangians can be C0-approximated rel endpoints by a transverse family.

Definition 3.3.1. Let Σ be a boundary-punctured Riemann surface with strip-like ends.
For us, a moving Lagrangian label on a component E of ∂Σ consists of a finite union of
closed intervals TE ⊂ E which avoids the images of the strip-like ends, along with a smooth
transverse E-parametrized family of Lagrangians which is constant outside of TE.
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Definition 3.3.2. Let Σ be a boundary-punctured Riemann surface with strip-like ends and
moving Lagrangian labels. A Floer datum for Σ consists of a 5-tuple (β,H, J, τE, β

`) with
the following properties:

1. (β,H, J, τE) satisfies all of the conditions in Definition 3.2.2.

2. For each boundary component E ⊂ ∂Σ, dβ is strictly negative in a neighborhood of
TE.

3. β` is a 1-form on Σ such that

a) Outside of a fixed compact subset of M̂ , dβ is bounded away from zero on the
support of β`.

b) β` vanishes in the strip-like ends of Σ.

c) Let c : Σ → R+ be the constant in the compatibility condition (3.1.1). Then the
support of β` is disjoint from the support of dc.

d) There is a compact subset of M̂ outside of which, for any z ∈ ∂Σ and ξ ∈ Tz∂Σ, the
Hamiltonian vector field associated to β`(ξ)

√
H(z) is tangent to the Lagrangian

deformation associated to ξ.

For a family P of Floer data, we require as usual that all compact subsets of M̂ appearing
in this definition can be taken P-independently.

If TE is empty so that Σ has non-moving Lagrangian labels, then a Floer datum on Σ in
the sense of Definition 3.2.2 induces one in the new sense by taking β` = 0.

Before we get to specific instances of moving Lagrangians, it is worth considering the
general features of holomorphic curves with moving Lagrangian boundary conditions. For
such Floer data, the appropriate version of the holomorphic curve equation is

J ◦ (du−XH ⊗ β −X√H ⊗ β
`) = (du−XH ⊗ β −X√H ⊗ β

`) ◦ j (3.3.1)

for a map u : Σ → M̂ with boundary conditions given by the moving Lagrangian labels.
Because we’ve restricted to transverse families of Lagrangians, all the expected properties
survive. In particular, Lemma A.2.2 still holds, as does positivity of intersections:

Lemma 3.3.3. Let σ ∈ σ be a stop. If Σ is connected, then any solution to (3.3.1) which is
not contained in Dσ has only isolated positive intersections with Dσ.

Let D(Lt) be a disk with one negative boundary puncture ζ and a moving Lagrangian
label corresponding to the family Lt, such that in the coordinates of the strip-like end,
R− × {0} is labeled with L0 and R− × {1} is labeled with L1. Denote by KD(Lt)(M) the
space of Floer data on D(Lt). Then we can examine the regularity and compactness of the
associated moduli spaces of holomorphic curves:
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Lemma 3.3.4. For γ ∈ X(L0, L1), let D(Lt, γ) denote the space of solutions to (3.3.1)
with boundary conditions given by the moving Lagrangian label, and which are asymptotic
to (φτ )∗γ at ζ. Then there is a comeager subset KD(Lt)

reg (M) ⊂ KD(Lt)(M) such that for any

K ∈ KD(Lt)
reg (M), the following hold.

1. For all γ, D(Lt, γ) is a smooth manifold of dimension deg(γ).

2. If deg(γ) = 0, then D(Lt, J, γ) is compact.

3. If deg(γ) = 1, then D(Lt, J, γ) has a Gromov compactification D(Lt, γ) which is a
compact topological 1-manifold with boundary, and there is a canonical identification

∂D(Lt, γ) =
∐

γ̃∈X(L0,L1)

R(γ̃; γ)×D(γ̃). (3.3.2)

In this case, γ̃ necessarily has degree 0.

Fix a Floer datum K ∈ KD(Lt)
reg (M), and hence a moduli space D(Lt, γ) for all γ. Define

an element eLt ∈ homW(L0, L1) by

eLt =
∑

γ∈X(L0,L1)

#D(Lt, γ) · γ. (3.3.3)

By Lemma 3.3.3, D(Lt, γ) is empty if n(γ) > 0, so that eLt in fact lies in homWσ(L0.L1).
Further, note that the right hand side of (3.3.2) precisely describes the coefficient of γ in
∂eLt , from which we conclude that eLt is closed. For Lt = L0 a constant family, we likewise
obtain an element eL0 ∈ homWσ(L0, L0).

Lemma 3.3.5. In the wrapped and partially wrapped Fukaya categories, eL0 is a homology
unit for L0.

Proof. We show only that µ2(|γ|, |eL0|) = |γ| for γ ∈ hom(L0, L1) closed, since the proof
of the transposed identity is identical. To do this, we will use an interpolating family of
holomorphic strips to construct a chain homotopy between µ2(eL0 , ·) and idhom(L0,L1).

Let Z0,1 be the strip R × [0, 1] with R × {0} labeled by L0 and R × {1} labeled by L1.
Let K = (βq, Hq, Jq, (τE)q, β

`
q) be a family of Floer data on Z0,1 parametrized by q ∈ (0, 1)

and satisfying

1. As q approaches 0, K converges in C∞ to (dt,H0,1, J0,1, 1, 0).

2. For q sufficiently close to 1, K coincides up to conformal equivalence on the thin part,
i.e. 3-shift of the gluing region, with the Floer datum induced by gluing ζ ∈ D(L0) to
ζ1 ∈ Σ2+1 with gluing parameter 1− q (length −1

π
log(1− q)).
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3. Near q = 1, the restriction of K to the pieces D(L0) and Σ2+1 extends smoothly to a
(1− ε, 1]-parametrized family which agrees up to conformal equivalence at q = 1 with
the previously chosen data.

As always, among the space of such Floer data, there is a comeager subset for which the
moduli space Z0,1(γ; γ′) of solutions to (3.3.1) with appropriate boundary and asymptotic
conditions is a smooth manifold of dimension deg(γ′)− deg(γ) + 1.

Fixing such a K, we consider the Gromov compactification of the above moduli space
when it is 1-dimensional. This gives it the structure of a compact topological 1-manifold
with boundary, and the boundary consists of all 0-dimensional configurations of the following
spaces:

R̃(γ; γ′)

R2+1(γ, γ̃; γ′)×D(L0, γ̃)

R(γ̃; γ′)×Z0,1(γ; γ̃)

Z0,1(γ̃; γ′)×R(γ; γ̃)

The first two correspond to degenerations of the domain as q tends to 0 or 1, respectively,
while the last two correspond to energy escaping out one of the strip-like ends. In algebraic
terms, the first two correspond to idhom(L0,L1) and µ2(eL0 , ·), respectively, while the last two
describe a chain homotopy generated by Z0,1.

Corollary 3.3.6. The inclusion Wσ(M) → W(M) is a cohomologically unital functor. In
particular, any isomorphism in the partially wrapped Fukaya category is an isomorphism in
the fully wrapped Fukaya category.

A similar argument, this time interpolating between µ2(eL1−t , eLt) and eL0 , shows

Lemma 3.3.7. eLt is an isomorphism in the wrapped and partially wrapped Fukaya cate-
gories.

Using the fact that every Lagrangian is isotopic to an interior Lagrangian, and that any
linear Hamiltonian isotopy can be approximated in C0 by a transverse isotopy, one obtains

Corollary 3.3.8. The inclusion W int
σ (M,λM) ↪→Wσ(M,λM) is a quasi-equivalence.

3.4 Continuation functors

Here, we sketch a construction of continuation maps and their enhancements to A∞-functors.
These functors provide quasi-equivalences that relate the Fukaya categories obtained by
making different universal and consistent choices of Floer data. Our construction aims to be
efficient rather than elegant, and to this end we will build our moduli spaces starting with
the boundary rather than the interior. The heuristic model which underlies all our choices
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is the space of ideal polygons in the hyperbolic upper half-plane with a corner at infinity,
modulo translation. This space, suitably compactified, realizes Stasheff’s multiplihedra. For
other, nicer descriptions of the multiplihedra in the context of Floer theory, we refer the
reader to [21].

To achieve associativity of strip-like end gluing in the boundary charts, we first need an
auxiliary definition.

Definition 3.4.1. An intrinsic width function consists, for each d ≥ 2, of d smooth
functions wdi : Rd+1 → R≥0, i = 1, . . . , d, with the following properties:

1. w2
1 = w2

2 = 0.

2. Suppose Σd+1 is obtained by gluing ζn ∈ Σk+1 to ζ0 ∈ Σl+1 with length `. Then for all
` sufficiently large, we have

wdi (Σ
d+1) =


wki (Σ

k+1) if i < n

wli+1−n(Σl+1) + ` if n ≤ i < n+ l

wki+1−l(Σ
k+1) if i ≥ n+ l.

In other words, for ζi not separated from ζ0 by the long gluing region, wdi is unchanged,
while for those that are, wdi increases by the length of the intervening gluing region.

Intrinsic width functions can be built by induction in d, and consistency near the corners

of Rd+1
amounts to the associativity of addition. Let us fix, once and for all, an intrinsic

width function. We are now prepared to construct the multiplihedra as a compactified space
of domains.

Construction 3.4.2. Let S1+1 = {Z}, where Z is equipped with a positive strip-like end ε+
and a negative strip-like end ε− at +∞ and−∞, respectively. For d ≥ 2 let Sd+1 = Rd+1×R+,
where we temporarily forget all choices of strip-like ends. That is, we allow ourselves to have
already chosen strip-like ends for a disk Σ ∈ Rd+1 but not for Σ thought of as an element

(Σ, w) ∈ Sd+1. Instead, we will construct a compactification Sd+1
to be a model of the

multiplihedron, and in doing so we will end up making a universal choice of strip-like ends
εS for Sd+1.

Before we begin, note that the multiplihedra are not in general manifolds with corners,
but rather are a slightly more general type of smooth space. In addition to interior and
boundary charts, it has charts parametrized by spaces of the form Rm× (V ∩ [0, a)n), where
m ≤ d − 3 and V ⊂ Rn is a weighted homogeneous variety which is smooth on (0, a)n. We
will first describe the honest codimension 1 boundary, and then we will discuss how to fill in
the generalized corners.

Suppose then by induction that we have constructed Sd+1
to have boundary and gener-

alized corners parametrized by associahedra and multiplihedra of lower dimension, and that
we have consistently chosen strip-like ends on Σ for every (Σ, w) ∈ Sk+1 for k < d. Suppose
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further that these strip-like ends agree up to shifts with those chosen for Σ as an element of
Rk+1. We wish to do the same for Sd+1.

Start by constructing a boundary chart which corresponds to taking w to 0, where w
is the R+ parameter. For this, take a small open subset U ⊂ Rd+1. Then for a small and
ρ ∈ (0, a), we attach S1+1×U×[0, a) to Sd+1 via (Z,Σ, ρ) 7→ (Σ, ρ). The notation is intended
to suggest gluing the positive end of Z to the negative end of Σ, and indeed doing this with

length ` = e
1
ρ induces a collection of strip-like ends on Σ thought of as (Σ, ρ) ∈ Sd+1. Denote

by Sd+1
0 the space obtained by adding to Sd+1 the above boundary faces.

Next, consider the boundary strata that appear when w tends to infinity. Here, a bound-
ary chart is of the form U ×

∏m
i=1 Ui × [0, a), where U ⊂ Rm+1 and Ui ⊂ Sdi+1

0 . To
describe the attaching map for ρ ∈ (0, a), we need to produce a pair (Σ, w) from the data(
Σm+1, {(Σdi+1, wi)}

)
. For the width, set w = e

1
ρ . For the surface, glue simultaneously and

for all i the negative strip-like end of Σdi+1 to the positive strip-like end εi in Σm+1 with
length `i = w − wi − wmi (Σm+1). This choice of gluing length ensures well defined corner
charts when we compactify the Rm+1 and Sdi+1 components. Once again, this gluing induces
a choice of strip-like ends on Σ which varies with w.

The remaining boundary charts are obtained by compactifying all of the Rk+1 compo-
nents. These appear either at w = 0 or ∞ on their own, or at w ∈ (0,∞] as the non-width
part of some Sk+1. For an Rk+1 coming on its own, compactify it as the associahedron that
it is. For the others, following the notation of (3.2.10), a boundary chart for Sk+1 is of the
form

Uroot ×
∏

non-root
internal vertices v

Uv ×
∏

internal edges e

[0, ae).

Here, Uv is as in (3.2.10), while, Uroot is a small open subset of Sm+1, where m is the valency
of the root vertex. When all gluing parameters are nonzero, the identification with a subset

of Sd+1 is as for Rd+1
, with the extra R+-factor in Sm+1 mapping to the corresponding factor

in Sd+1 via identity. This gluing induces strip-like ends on Σ for (Σ, w) near the remaining
boundary components, and it remains only to attach the generalized corners and choose
strip-like ends on the interior.

The compactification at w ∈ (0,∞) also gives rise to ordinary corners, for which the
inductive hypothesis guarantees that the induced strip-like ends don’t depend on the order
of gluing. Similarly, we compactify the Rd+1 component at w = 0 and obtain more ordinary
corners, and again the inductive hypothesis guarantees consistency. It remains to consider
the corners at w = +∞. When we looked at the codimension 1 portion of this limit, we
enforced a correlation among gluing lengths which allowed us to associate a number w to the
glued disk. For the corners, we instead consider the space (0, a)n of all possible combinations
of gluing parameters, and observe that the correlations give rise to a submanifold of (0, a)n

for which w is well-defined. This submanifold naturally closes to a singular submanifold of
[0, a)n which is topologically a manifold with boundary. Along with terms associated to the
interiors of Rm+1 and Sk+1, this provides the desired chart for a generalized corner.
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To complete the inductive construction, simply choose a collection of Sd+1-parametrized
shifts which, when applied to the strip-like ends on Rd+1, interpolate between those we
constructed near ∂Sd+1.

Remark 3.4.3. While the boundary charts for Sd+1 depended on a family of choices, the
smooth structure does not. To see this, note first that any two choices differ by a collection
of smooth families of shifts. In the boundary charts, these can be corrected by modifying
the gluing parameters and shifting the implicit width function.

Suppose we had, for each pair of Lagrangians (Li, Lj), two choices of Floer data (H i,j
0 , J i,j0 )

and (H i,j
1 , J i,j1 ). Let K0 and K1 be universal and conformally consistent choices of Floer

data for Rd+1 which are built from these data. For the choice (Kν ,Jν), we will will denote
the resulting Floer-theoretic doodads with a subscript of ν, e.g. Xν(Li, Lj), Rν(γ+; γ−),
CW ∗

ν (Li, Lj), or Wσ,ν(M,λM).
Fixing a universal choice of strip-like ends εS , we proceed to choose data on Sd+1 which

interpolates between K0 and K1. Namely, suppose we are given a (d + 1)-tuple of La-
grangians (L0, . . . , Ld), which induces Lagrangian labels on every disk component of every

point of Sd+1
. In this situation, a Floer datum on Σ consists of a 4-tuple (β,H, J, τE) which

satisfies Definition 3.2.2, except that in conditions 3b and 4a for the positive ends, we replace
(H0,1, J0,1) with (H0,1

0 , J0,1
0 ), while in conditions 3c and 4a for the negative ends, we replace

(H0,1, J0,1) with (H0,1
1 , J0,1

1 ). In other words, we use the “0” data for the inputs and the “1”
data for the output.

Consider the space KS(M) of universal and conformally consistent choices of Floer
data for Sd+1. Elements K ∈ KS(M) consist of a choice, for each (Σ, w) ∈ Sd+1, of a Floer
datum K(Σ, w) on Σ such that the family varies smoothly on Sd+1 and satisfies the following
analog of Definition 3.2.4:

Near each boundary stratum as parametrized in Construction 3.4.2, K(Σ, w)
coincides up to conformal equivalence on the εS-thin part with the Floer datum
determined by gluing, where all Floer data for disks Σm+1 ∈ Rm+1 belong to
whichever of K0 or K1 will make them a priori gluable. On the thick part, the
restriction of K(Σ, w) to each piece extends smoothly to the boundary, where
it is conformally equivalent to the previously chosen Floer datum.

(3.4.1)

For such a choice K, one can consider

γi ∈

{
X0(Li−1, Li) i 6= 0

X1(L0, Ld) i = 0.
(3.4.2)

and the corresponding moduli space Sd+1(γd, . . . , γ1; γ0) of solutions to (3.2.12) with the
obvious boundary and asymptotic conditions. This space has a Gromov compactification

Sd+1
(γd, . . . , γ1; γ0) obtained by adding in appropriate broken configurations. We enumerate
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those broken configurations with only one R or Rd+1 component.

Rk+1
1 (γ̃k, . . . , , γ̃1; γ0)

×
k∏
i=1

Smi+1
(
γ∑i

j=1mj
, . . . , γ∑i−1

j=1mj+1; γ̃i

) mi ≥ 1,
∑
mi = d

γ̃i ∈ X1

(
L∑i−1

j=1 mj
, L∑i

j=1 mj

) (3.4.3a)

Sm+1+1(γd, . . . , γi+d−m+1, γ̃, γi, . . . , γ1; γ0)

×Rd−m+1
0 (γi+d−m, . . . , γi+1; γ̃)

0 ≤ i ≤ m ≤ d− 2

γ̃ ∈ X0(Li, Li+d−m)
(3.4.3b)

Sd+1(γd, . . . , γi+1, γ̃, γi−1, . . . , γ1; γ0)

×R0(γi; γ̃)

1 ≤ i ≤ d

γ̃ ∈ X0(Li−1, Li)
(3.4.3c)

R1(γ̃; γ0)× Sd+1(γd, . . . , γ1; γ̃) γ̃ ∈ X1(L0, Ld) (3.4.3d)

The first type comes from the boundary component of Sd+1
where w tends to infinity, while

the second comes from w finite or zero. The other two come from energy escaping through
the strip-like ends. The same transversality argument as in Lemma 3.2.6 gives

Lemma 3.4.4. There is a subset KSreg(M) ⊂ KS(M) which is dense and such that any
K ∈ KSreg(M) has the following properties.

1. For all d ≥ 1, all L0, . . . , Ld, and all γi as in (3.4.2), the corresponding moduli space
Sd+1(γd, . . . , γ1; γ0) is a smooth manifold of dimension deg(γ0)−

∑d
i=1 deg(γi) + d− 1.

2. If deg(γ0)−
∑d

i=1 deg(γi) = 1− d, then Sd+1(γd, . . . , γ1; γ0) is compact.

3. If deg(γ0) −
∑d

i=1 deg(γi) = 2 − d, then Sd+1
(γd, . . . , γ1; γ0) is a compact topological

1-manifold with boundary, and its boundary is the union of all broken curves which
appear in (3.4.3).

Remark on proof. The proof of the first two parts is standard. For the third part, when the
broken configurations involve only one gluing region, the proof is identical to the proof for the
A∞ operations. For configurations involving several gluing regions with correlated lengths,
we proceed as follows. To start, note that an index count shows that the configurations
in (3.4.3a) are the only ones which can occur. Thus, we consider the full corner [0, a)k in
which the space of allowed gluing parameters is a 1-dimensional subvariety. By the Whitney
extension theorem, we may extend our Floer data to this larger space of domains, and by
rerunning the transversality argument we may assume the extension is regular. Since have
a broken curve for which each component occurs in index 0, the analytic gluing map with
domain (0, a′)k for a′ � a is bijective to the index k portion of the larger moduli space of
maps with the appropriate subset of domains (not just those obtained by gluing with the
given lengths, but also by perturbing the unglued domains in Rk+1 and Smi+1). Taking
the 1-dimensional subset with correlated gluing lengths then gives the corresponding end of
Sd+1(γd, . . . , γ1; γ0).
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For d ≥ 1, define Fd : CW ∗
0 (Ld−1, Ld)⊗ · · · ⊗ CW ∗

0 (L0, L1)→ CW ∗
1 (L0, Ld) by

Fd(γd, . . . , γ1) =
∑

γ0∈X1(L0,L1)

deg(γ0)−
∑d
i=1 deg(γi)=1−d

#Sd+1(γd, . . . , γ1; γ0) · γ0. (3.4.4)

As usual, the characterization in Lemma 3.4.4 of the boundary of the 1-dimensional compo-
nents of Sd+1(γd, . . . , γ1; γ0) implies that

d−1∑
m=0

m∑
i=0

Fm+1
(
γd, . . . , γi+d−m+1, µ

d−m
0 (γi+d−m, . . . , γi+1), γi, . . . , γ1

)
+

d∑
k=1

∑
mi≥1∑k
i=1mi=d

µk1

(
Fmk(γ∑k

j=1 mj
, . . . , γ∑k−1

j=1 mj+1), . . . ,Fm1(γm1 , . . . , γ1)
)

= 0

This collection of equations, as d ranges over the positive integers, is precisely the condition
that F is an A∞-functor from W0(M,λM) to W1(M,λM).

Definition 3.4.5. F is called continuation functor determined by (K,J).

By positivity of intersections, we see as in Lemma 3.1.5 that Fd sends Wσ,0(M,λM) to
Wσ,1(M,λM), so that F restricts to a functor on partially wrapped Fukaya categories. We
also call this restricted functor F, and still refer to it as a continuation functor.

3.5 Homotopies between continuation functors

To show that continuation functors are quasi-equivalences, it is enough to construct homo-
topies on the linear part, since that shows that they induce isomorphisms on homology.
However, to prove that partially wrapped Fukaya categories are invariant under isotopies
of the stops, it will be convenient to construct a full A∞ homotopy between a given pair
of continuation functors. To this end, we sketch the construction of a sequence of spaces
which parametrize homotopies in the same way that the associahedra and multiplihedra
parametrize composition and maps. We call these spaces homotohedra for lack of a better
term, though we won’t prove that they’re polyhedra.

Construction 3.5.1. The construction of the dth homotohedron T d+1
is similar to that for

the multiplihedron in Construction 3.4.2. Namely, one takes the space Sd+1, adds in an extra
parameter, and compactifies with boundary strata that manifestly induce the A∞-homotopy
equations. In this case, things are even easier than before, since as smooth spaces we can

take T d+1 = Sd+1×(0, d) and T d+1
= Sd+1×[0, d]. The trickiness is in choosing the strip-like

ends.
To begin, suppose we are given two universal choices of strip-like ends εαS and εβS for the

multiplihedra, which we think of as two different models of the multiplihedron Sd+1
α and
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Sd+1
β . For d = 1, pick a family of strip-like ends on Z parametrized by (Z, q) ∈ T 1+1 which

coincides with εαS near q = 0 and with εβS near q = 1. Thus, we identify (Z, 0) ∈ T 1+1
with

Z ∈ S1+1
α and (Z, 1) ∈ T 1+1

with Z ∈ S1+1
β .

For d > 1, we likewise identify Sd+1 × {0} with Sd+1

α and Sd+1 × {d} with Sd+1

β , and
we choose strip-like ends in a small neighborhood of these faces to be independent of the

[0, d]-parameter. We aim to extend this choice to ∂Sd+1 × (0, d) as follows. The boundary
at w = 0 is of the form S1+1 × Rd+1 × (0, d), which we identify with T 1+1 × Rd+1 via
(Z,Σ, q) 7→ ((Z, q

d
),Σ). The gluing chart is as with the associahedron and doesn’t change

q. The boundary at w = +∞ is more complicated. Here, unlike with the associahedra, the
boundary face is identified with a product of associahedra, multiplihedra, and homotohedra
which change discretely with q. Specifically, suppose we are in a face of T of the form

U ×
m∏
i=1

Ui × (0, d)

where U ⊂ Rm+1 and Ui ⊂ Sdi+1. Then, for q ∈
(∑m

i=j+1 di,
∑m

i=j di

)
, we make the

identification

Sdi+1 =


Sdi+1
α if i < j

Sdj+1 ×
{
q −

∑m
i=j+1 di

}
⊂ T dj+1 if i = j

Sdi+1
β if i > j.

(3.5.1)

For q of the form
∑m

i=j+1 di for some j, we make the simpler identification

Sdi+1 =

{
Sdi+1
α if i ≤ j

Sdi+1
β if i > j.

(3.5.2)

If, for k < d, we have chosen strip-like ends for T k+1 which agree near the above boundary
faces with those given by gluing, we can do the same for T d+1 by induction. Extending this
family of strip-like ends arbitrarily to the interior, we obtain the desired choice.

Let Kα and Kβ be universal and conformally consistent choices of Floer data for Sd+1
α

and Sd+1
β , respectively. Assume that they both interpolate between K0 and K1, and that

they are both regular in the sense of Lemma 3.4.4. As with continuation functors, consider
the space KT (M) whose elements KT are families of Floer data for T d+1 which are universal
and conformally consistent in the obvious way, with the following strengthening:

In Definition 3.2.4, we ask that the smooth extension to the q = 0 or d bound-
ary strata agrees to infinite order to the family of Floer data induced by gluing.

(3.5.3)

This ensures that any consistent choice for T k+1 for k < d can be extended to T d+1.
Specifically, it avoids the danger of non-smoothness near the interface strata (3.5.2). Let-
ting KT denote such a choice, we examine the corresponding spaces of holomorphic curves
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T d+1(γd, . . . , γ1; γ0). Here, γi satisfy (3.4.2) as for functors. This space has a Gromov com-

pactification T d+1
(γd, . . . , γ1; γ0) obtained by adding in possibly-broken configurations. As

usual, these include terms which can come from either energy escape through the ends or
domain degeneration to the boundary of T d+1. In this case, however, some of the new ob-
jects include ordinary non-broken disks coming from the q = 0 and q = d components. We
enumerate those new configurations with at most one R or Rd+1 component.

Rk+1
1 (γ̃k, . . . , , γ̃1; γ0)

×
r−1∏
i=1

Smi+1
α

(
γ∑i

j=1mj
, . . . , γ∑i−1

j=1mj+1; γ̃i

)
× T mr+1

(
γ∑r

j=1 mj
, . . . , γ∑r−1

j=1 mj+1; γ̃r

)
×

k∏
i=r+1

Smi+1
β

(
γ∑i

j=1 mj
, . . . , γ∑i−1

j=1 mj+1; γ̃i

)
1 ≤ r ≤ k ≤ d

mi ≥ 1,
∑
mi = d

γ̃i ∈ X1

(
L∑i−1

j=1 mj
, L∑i

j=1 mj

) (3.5.4a)

T m+1+1(γd, . . . , γi+d−m+1, γ̃, γi, . . . , γ1; γ0)

×Rd−m+1
0 (γi+d−m, . . . , γi+1; γ̃)

0 ≤ i ≤ m ≤ d− 2

γ̃ ∈ X0(Li, Li+d−m)
(3.5.4b)

T d+1(γd, . . . , γi+1, γ̃, γi−1, . . . , γ1; γ0)

×R0(γi; γ̃)

1 ≤ i ≤ d

γ̃ ∈ X0(Li−1, Li)
(3.5.4c)

R1(γ̃; γ0)× T d+1(γd, . . . , γ1; γ̃) γ̃ ∈ X1(L0, Ld) (3.5.4d)

Sd+1
α (γd, . . . , γ1; γ0) (3.5.4e)

Sd+1
β (γd, . . . , γ1; γ0) (3.5.4f)

Rk+1
1 (γ̃k, . . . , , γ̃1; γ0)

×
r∏
i=1

Smi+1
α

(
γ∑i

j=1mj
, . . . , γ∑i−1

j=1mj+1; γ̃i

)
×

k∏
i=r+1

Smi+1
β

(
γ∑i

j=1 mj
, . . . , γ∑i−1

j=1 mj+1; γ̃i

)
0 ≤ r ≤ k

1 ≤ k ≤ d

mi ≥ 1,
∑
mi = d

γ̃i ∈ X1

(
L∑i−1

j=1 mj
, L∑i

j=1 mj

) (3.5.4g)

Sm+1+1
α (γd, . . . , γi+d−m+1, γ̃, γi, . . . , γ1; γ0)

×Rd−m+1
0 (γi+d−m, . . . , γi+1; γ̃)

0 ≤ i ≤ m ≤ d− 2

γ̃ ∈ X0(Li, Li+d−m)
(3.5.4h)

Sm+1+1
β (γd, . . . , γi+d−m+1, γ̃, γi, . . . , γ1; γ0)

×Rd−m+1
0 (γi+d−m, . . . , γi+1; γ̃)

0 ≤ i ≤ m ≤ d− 2

γ̃ ∈ X0(Li, Li+d−m)
(3.5.4i)

Sd+1
α (γd, . . . , γi+1, γ̃, γi−1, . . . , γ1; γ0)

×R0(γi; γ̃)

1 ≤ i ≤ d

γ̃ ∈ X0(Li−1, Li)
(3.5.4j)
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Sd+1
β (γd, . . . , γi+1, γ̃, γi−1, . . . , γ1; γ0)

×R0(γi; γ̃)

1 ≤ i ≤ d

γ̃ ∈ X0(Li−1, Li)
(3.5.4k)

R1(γ̃; γ0)× Sd+1
α (γd, . . . , γ1; γ̃) γ̃ ∈ X1(L0, Ld) (3.5.4l)

R1(γ̃; γ0)× Sd+1
β (γd, . . . , γ1; γ̃) γ̃ ∈ X1(L0, Ld) (3.5.4m)

Here, one should think of (3.5.4a)-(3.5.4d) as completely analogous to (3.4.3). The next
two, (3.5.4e) and (3.5.4f), correspond to degenerations q → 0 and q → d. (3.5.4g) comes
from taking w → ∞ as in (3.4.3a), except that q takes a nongeneric value. The remaining
configurations come from taking q to 0 or d in (3.5.4b)-(3.5.4d). The usual transversality
argument gives

Lemma 3.5.2. There is a subset KTreg(M) ⊂ KT (M) which is dense and such that any
K ∈ KTreg(M) has the following properties.

1. For all d ≥ 1, all L0, . . . , Ld, and all γi as in (3.4.2), the corresponding moduli space
T d+1(γd, . . . , γ1; γ0) is a smooth manifold of dimension deg(γ0)−

∑d
i=1 deg(γi) + d.

2. If deg(γ0)−
∑d

i=1 deg(γi) = −d, then T d+1(γd, . . . , γ1; γ0) is compact.

3. If deg(γ0) −
∑d

i=1 deg(γi) = 1 − d, then T d+1
(γd, . . . , γ1; γ0) is a compact topological

1-manifold with boundary, and its boundary is the union of all configurations of the
form (3.5.4a)-(3.5.4f).

Remark on proof. For the most part, the proof is identical to that for the moduli spaces
associated to functors in Lemma 3.4.4. In this case, there are also many broken configurations
with only one gluing parameter which don’t appear. This happens because they correspond
to isolated values of q, and varying q gives another deformation parameter. Therefore, they
occur in codimension at least two. Alternatively, one could simply note that the terms with
a gluing parameter and no T k+1 would have to occur in negative index, and this is prohibited
by the regularity of Kα and Kβ.

For d ≥ 1, define T d : CW ∗
0 (Ld−1, Ld)⊗ · · · ⊗ CW ∗

0 (L0, L1)→ CW ∗
1 (L0, Ld) by

T d(γd, . . . , γ1) =
∑

γ0∈X1(L0,L1)

deg(γ0)−
∑d
i=1 deg(γi)=−d

#T d+1(γd, . . . , γ1; γ0) · γ0. (3.5.5)

By definition, we may treat T as a pre-natural transformation from Fα to Fβ. The char-
acterization in Lemma 3.5.2 of the boundary strata of the 1-dimensional components of
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T d+1(γd, . . . , γ1; γ0) implies that

Fd+1
β (γd, . . . , γ1)− Fd+1

α (γd, . . . , γ1) =

d−1∑
m=0

m∑
i=0

Tm+1
(
γd, . . . , γi+d−m+1, µ

d−m
0 (γi+d−m, . . . , γi+1), γi, . . . , γ1

)
+

d∑
k=1

k∑
r=1

∑
mi≥1∑k
i=1 mi=d

µk1

(
Fmkβ (γ∑k

j=1mj
, . . . , γ∑k−1

j=1 mj+1), . . . ,F
mr+1

β (γ∑r+1
j=1 mj

, . . . , γ∑r
j=1mj+1),

Tmr(γ∑r
j=1mj

, . . . , γ∑r−1
j=1 mj+1),

Fmr−1
α (γ∑r−1

j=1 mj
, . . . , γ∑r−2

j=1 mj+1), . . . ,Fm1
α (γm1 , . . . , γ1)

)
.

This collection of equations, as d ranges over the positive integers, is precisely the condition
that Fβ − Fα = dT , i.e. T generates an A∞-homotopy between Fα and Fβ.

By positivity of intersections, we see as in Lemma 3.1.5 that T d sends Wσ,0(M,λM) to
Wσ,1(M,λM), so that T induces a homotopy between Fα and Fβ on the partially wrapped
Fukaya categories as well.

3.6 Moving stops

We are now equipped to prove the following statement.

Proposition 3.6.1. Suppose (M,λM ,σ) and (M ′, λM ′ ,σ
′) are equivalent pumpkin domains.

Then Wσ(M) is quasi-equivalent to Wσ(M ′).

For this, it is enough to consider the case where M = M ′ is a fixed Liouville domain and
the equivalence of pumpkin domains arises from an isotopy of stops σt with varying fiber.
Note that if the fiber were nonvarying, then one could find a path of Liouville isomorphisms
M →M which take σ0 to σt. For time-dependent fiber, this fails. Since we may decompose
the isotopy σt as a sequence of small isotopies, Proposition 3.6.1 follows from the easier

Lemma 3.6.2. Let (M,λM) be a Liouville domain and σt a [0, 1]-parametrized family of
pumpkin structures on M . Suppose every interior Lagrangian in (M,λM ,σ0) is a Lagrangian
in (M,λM ,σt) for all t. Then there is a quasi-equivalence W int

σ0
(M)→Wσ1(M).

The rest of this section is devoted to the proof of Lemma 3.6.2. In what follows, we
will use M0 to denote the pumpkin domain (M,λM ,σ0) and M1 to denote the pumpkin
domain (M,λM ,σ1). From the data of the stops, we obtain two presentations of the fully
wrapped Fukaya category W(M0) and W(M1). These categories are quasi-equivalent via
any continuation functor, but the quasi-equivalences don’t respect the stop filtrations. To
obtain a map of partially wrapped Fukaya categories, we will need to be more careful.
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The idea is to construct a sequence of continuation functors associated to ever-slower
isotopies of the stops for which we will be able to take Gromov limits. Unlike the contin-
uation functors themselves, these Gromov limits will satisfy positivity of intersections with
the divisors, which will allow us to define maps of partially wrapped Fukaya categories. To
construct our sequence of functors, we will consider Floer data on the multiplihedra com-
patible with increasingly shifted strip-like ends. To ensure Gromov convergence, we need to
carefully choose our isotopies to be compatible as we move along the sequence. For this, we
make the following technical definition.

Definition 3.6.3. A slowing family consists of the following data.

• For each integer n ≥ 1, a universal choice of strip-like ends εS,n for the multiplihedra.

• For each integer n ≥ 1 and all d ≥ 1, a diffeomorphism Φd
n : Sd+1 → Sd+1 and a family

of diffeomorphisms I(Σ,w),n : Σ→ Φd
n(Σ) parametrized by (Σ, w) ∈ Sd+1.

• For all d ≥ 1 and each (Σ, w) ∈ Sd+1, a function t(Σ,w) : Σ → [0, 1] varying smoothly
on Sd+1 with the following properties.

These data are required to satisfy the following conditions.

1. Φd
1 = idSd+1 , and Φd

n is isotopic to idSd+1 .

2. For (Σ, w) near the boundary of Sd+1, let (Σi, wi) be the disks in Ski+1 for ki < d and
Σj be the disks in Rmj+1 for mj ≤ d from which (Σ, w) is glued. Then Φd

n(Σ, w) is
glued from Φki

n (Σi, wi) and Σj.

3. I(Σ,w),1 = idΣ, and I(Σ,w),n is isotopic to idΣ. Additionally, I(Σ,w),n sends εS,n to εS,1.

4. For (Σ, w) near the boundary of Sd+1, let (Σi, wi) be the disks in Ski+1 for ki < d
and Σj be the disks in Rmj+1 for mj ≤ d from which (Σ, w) is glued. Let Σ0

i ⊂ Σi

be the complement of the strip-like ends. Then under the identifications coming from
condition (2), the restrictions to Σ0

i of I(Σ,w),n and I(Σi,wi),n coincide, and the restriction
of I(Σ,w),n to Σj is the identity.

5. For any fixed d and k, the family I over Sd+1 × Z>0 is uniformly bounded in Ck.

6. For all (Σ, w) ∈ Sd+1, there is a decomposition Σ = U q S, where U is open and S is
biholomorphic to a disjoint union of rectangles Ri, with the following properties.

a) I(Φdn)−1(Σ,w),n is holomorphic on (I(Φdn)−1(Σ,w),n)−1(U).

b) Ri can be taken to be of the form [0, ai] × [0, 1], with ∂Σ ∩ S mapping to
[0, ai] × {0, 1}. Moreover, (I(Φdn)−1(Σ,w),n)−1(Ri) is biholomorphic to a rectangle
[0, bi,n]×[0, 1], and in these coordinates I(Φdn)−1(Σ,w),n(s, t) takes the form (fi,n(s), t).

c) The above functions fi,n satisfy
∂fi,n
∂s
≤ 1 everywhere and

∂fi,n
∂s

< 1
n

on f−1
i,n ([ai

3
, 2ai

3
]).
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7. t(Σ,w) is 0 on the positive strip-like ends and 1 on the negative strip-like ends.

8. For (Σ, w) near the boundary of Sd+1, let (Σi, wi) be the disks in Ski+1 for ki < d
from which (Σ, w) is glued. Then t(Σ,w) agrees with the extension by 1 and/or 0 of the
functions t(Σi,wi).

9. In the decomposition of condition (6), dt(Σ,w) is supported on the union of the sub-
rectangles [ai

3
, 2ai

3
] × [0, 1], and on these subrectangles t(Σ,w) depends only on the first

coordinate.

Note that condition (6c) implies that the rectangle lengths bi,n tend to infinity with n.

To construct a slowing family, one chooses first εS,1 arbitrarily and second the family of
functions t such that dt(Σ,w) is supported near the thin part. Then, one arranges that the
embeddings and additional choices of strip-like ends increase the gluing lengths and stretch
the support of dt(Σ,w).

From the perspective of Floer theory, a slowing family modifies the compatibility con-
ditions between Hamiltonians or almost complex structures and stops. When the stops
were fixed, compatibility was roughly the condition that their divisors were almost complex
submanifolds. In the presence of a slowing family, we ask that this holds pointwise in the
domain. Concretely, let t be a family over the multiplihedron of functions t(Σ,w) : Σ→ [0, 1].
Then a t-compatible Hamiltonian on (Σ, w) ∈ Sd+1 is a Σ-parametrized quadratic Hamilto-
nian H such that, for all z ∈ Σ and all σ ∈ σt(Σ,w)(z), XH(z) is tangent to Dσ. Likewise, an
almost complex structure is adapted to (t, H) if, for all z ∈ Σ , it lies in J (M,H(z)) for the
pumpkin structure σt(Σ,w)(z).

Let K0 and K1 be universal and conformally consistent choices of Floer data for the A∞
structure for M0 and M1, respectively. Fix a slowing family, and let K1 be a universal and
conformally consistent choice of Floer data for εS,1 which is regular in the sense of Lemma
3.4.4. Here, the notion of a universal and conformally consistent choice of Floer data is as
for the multiplihedra in Section 3.4, except that the family of Hamiltonians H is required to
be t-compatible and the family of almost complex structures J is required to be adapted to
(t, H). For n ≥ 2, let Kn be a universal and conformally consistent choice of Floer data for
εS,n which is regular and 2−n-close to I∗nK

1 in Cn. Define Fn : W int(M0) → W(M1) to be
the continuation functor determined by Kn.

In addition to functors, we need homotopies of the same kind. For this, we consider the
analog of a slowing family for the homotohedron.

Definition 3.6.4. Fix a slowing family. Then an interpolating family consists of the
following data.

• For each integer n ≥ 1, a universal choice of strip-like ends εT ,n for the homotohedra.

• For each integer n ≥ 1 and all d ≥ 1, a diffeomorphism Ψd
n : T d+1 → T d+1 and a family

of diffeomorphisms I(Σ,w,q),n : Σ→ Ψd
n(Σ) parametrized by (Σ, w, q) ∈ T d+1.
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• For all d ≥ 1 and each (Σ, w, q) ∈ T d+1, a function t(Σ,w,q) : Σ→ [0, 1] varying smoothly
on T d+1 with the following properties.

These data are required to satisfy the following conditions.

1. εT ,n interpolates between εS,n and εS,n+1 in the sense of Construction 3.5.1. That is,
it agrees with εS,n for small q and εS,n+1 for large q.

2. Ψd
1 = idT d+1 and Ψd

n is isotopic to idT d+1 . Additionally, Ψd
n and fixes the q-component.

3. For (Σ, w, q) near the boundary of T d+1, let (Σi, wi) be the disks in Ski+1 for ki ≤ d
and Σj be the disks in Rmj+1 for mj ≤ d and, if applicable, (Σ′, w′, q′) the disk in T j+1

from which (Σ, w, q) is glued. Then Ψd
n(Σ, w, q) is glued from Φki

n (Σi, wi) for (Σi, wi) of
type α, (Φki

2 )−1(Φki
n+1(Σi, wi)) for (Σi, wi) of type β, Ψj

n(Σ′, w′, q′), and Σj. Here, the
types α and β refer to the assignments in (3.5.1) and (3.5.2).

4. I(Σ,w,q),1 = idΣ, and I(Σ,w,q),n is isotopic to idΣ. Additionally, I(Σ,w,q),n sends εT ,n to
εT ,1.

5. For (Σ, w, q) near the boundary of T d+1, let (Σi, wi) be the disks in Ski+1 for ki ≤ d and
Σj be the disks in Rmj+1 for mj ≤ d and, if applicable, (Σ′, w′, q′) the disk in T j+1 from
which (Σ, w, q) is glued. Let Σ0

i ⊂ Σi and (Σ′)0 ⊂ Σ′ be the complements of the strip-
like ends. Then under the identifications coming from condition (3), the restriction of
I(Σ,w,q),n to Σ0

i coincides with I(Σi,wi),n for (Σi, wi) of type α and (I(Σi,wi),2)−1◦I(Σi,wi),n+1

for (Σi, wi) of type β. Similarly, the restrictions to (Σ′)0 of I(Σ,w,q),n and I(Σ′,w′,q′),n

coincide. Finally, the restriction of I(Σ,w,q),n to Σj is the identity.

6. For any fixed d and k, the family I over T d+1 × Z>0 is uniformly bounded in Ck.

7. For all (Σ, w, q) ∈ T d+1, there is a decomposition Σ = U q S, where U is open and S
is biholomorphic to a disjoint union of rectangles Ri, with the following properties.

a) I(Ψdn)−1(Σ,w,q),n is holomorphic on (I(Ψdn)−1(Σ,w,q),n)−1(U).

b) Ri can be taken to be of the form [0, ai] × [0, 1], with ∂Σ ∩ S mapping to
[0, ai] × {0, 1}. Moreover, (I(Ψdn)−1(Σ,w,q),n)−1(Ri) is biholomorphic to a rectan-
gle [0, bi,n] × [0, 1], and in these coordinates I(Ψdn)−1(Σ,w,q),n(s, t) takes the form
(fi,n(s), t).

c) The above functions fi,n satisfy
∂fi,n
∂s
≤ 1 everywhere and

∂fi,n
∂s

< 1
n

on f−1
i,n ([ai

3
, 2ai

3
]).

8. t(Σ,w,q) is 0 on the positive strip-like ends and 1 on the negative strip-like ends.

9. For (Σ, w, q) near the boundary of T d+1, let (Σi, wi) be the disks in Ski+1 for ki ≤ d
and, if applicable, (Σ′, w′, q′) the disk in T j+1 from which (Σ, w, q) is glued. Then
t(Σ,w,q) agrees with the extension by 1 and/or 0 of the functions t(Σi,wi) for (Σi, wi) of
type α, (I(Σi,wi),2)∗t

Φ
ki
2 (Σi,wi)

for (Σi, wi) of type β, and t(Σ′,w′,q′).
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10. In the decomposition of condition (7), dt(Σ,w,q) is supported on the union of the sub-
rectangles [ai

3
, 2ai

3
]× [0, 1], and on these subrectangles t(Σ,w,q) depends only on the first

coordinate.

Fix an interpolating family. As with functors, choose a universal and conformally con-
sistent family of Floer data K1

T for εT ,1 interpolating between K1 and K2 which is regular
in the sense of 3.5.2. For n ≥ 2, let Kn

T be a universal and conformally consistent choice of
Floer data for εT ,n interpolating between Kn and Kn+1 which is regular and 21−n-close to
I∗nK

1
T in Cn. Define Tn to be the pre-natural transformation generating a homotopy from

Fn to Fn+1 determined by Kn
T .

Proof of Lemma 3.6.2. We begin by replacing W(M1) with the limit of the diagram

· · · id−→W(M1)
id−→W(M1)

id−→W(M1),

which can be described in the following way. This is a categoryW lim(M1) whose objects are
the same as those ofW(M1) and whose morphism spaces are homotopy limits of the identity
chain map. Concretely, this means

homk
Wlim(M1)(L0, L1) =

∞∏
n=1

homk
Wlim(M1)(L0, L1)n,

where
homk

Wlim(M1)(L0, L1)n = homk
W(M1)(L0, L1)⊕ homk−1

W(M1)(L0, L1)

for all n. Let
g =

(
(γ1, η1), (γ2, η2), . . .

)
∈ homWlim(M1)(L0, L1).

The differential µ1
Wlim(M1)

is given by the formula(
µ1
Wlim(M1)g

)
n

= (∂γn, γn + γn+1 + ∂ηn),

where ∂ = µ1
W(M1). This can be visualized diagrammatically as

· · · hom∗W(M1)(L0, L1) hom∗W(M1)(L0, L1) hom∗W(M1)(L0, L1)

hom∗W(M1)(L0, L1) hom∗W(M1)(L0, L1) hom∗W(M1)(L0, L1)

id
id

id

∂

id
id

∂

id

∂

∂ ∂ ∂
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The higher A∞ maps are defined via

(
µd
Wlim(M1)

(gd, . . . , d1)
)
n
=

(
µd
W(M1)

(γnd , . . . , γ
n
1 ),

d∑
i=1

µd
W(M1)

(γn+1
d , . . . , γn+1

i+1 , η
n
i , γ

n
i−1, . . . , γ

n
1 )

)
.

We will also want the subcategory W lim
σ1

(M) generated by sequences g of chords satisfying
nσ(γi) = nσ(ηi) = 0 for all σ ∈ σ1 and all sufficiently large i. In other words, it consists of
those generators whose total intersection number with the stops is finite.

There is a strict A∞-functor W(M1) → W lim(M1) which is the identity on objects and
sends γ ∈ homW(M1)(L0, L1) to

(
(γ, 0), (γ, 0), . . . ). This functor is an isomorphism on ho-

mology, and so it is a quasi-equivalence. Similarly, the restriction of this functor toWσ1(M)
is a quasi-equivalence ontoW lim

σ1
(M). Thus, to construct a functor toWσ1(M), it suffices to

give a functor to W lim(M1) whose image lies in W lim
σ1

(M).
Now, the sequences Fn and Tn together define an A∞-functor F : W int(M0)→W lim(M1)

given by the formula
Fd =

(
(Fd1, T

d
1 ), (Fd2, T

d
2 ), . . .

)
.

We wish to show that F|Wint
σ0

(M) maps into W lim
σ1

(M). For this, it suffices to consider a fixed
stop σt ∈ σt and fixed inputs and outputs. We want to show that a sequence of holomorphic
curves un ∈ Sd+1

Kn (γd, . . . , γ1; γ0) must eventually have nonnegative topological intersection
number with Dσt , where σt is the Σ-parametrized version of σt. We also need the same
statement with T d+1

Kn
T

instead of Sd+1
Kn , but the proof of that is identical.

Assume for a contradiction that there is an increasing sequence nj such that unj has
strictly negative topological intersection number withDσt . Without loss of generality, assume
further that all compatible Hamiltonians are split near Dσt . This is achieved, for example,
by the Hamiltonians constructed in the proof of Lemma 2.4.2. Choose a small t-dependent
tubular neighborhood of Dσt , and let S be the boundary of that neighborhood. For a generic
choice of S, u−1

nj
(S) is a disjoint union of embedded circles for all j. Let Σnj be the domain

of unj , and let znj ∈ Σnj be such that unj(znj) ∈ Dσt(zj)
and unj has negative degree on the

smallest circle in u−1
nj

(S) surrounding znj .
Since all Floer data are approximately pulled back from fixed ones on a compact domain,

Arzelà-Ascoli applies to give a subsequence nj′ for which Knj′ and the complex structures
on the domain converge in C∞ on an increasing sequence of neighborhoods of znj′ . The limit
of this data is a boundary-punctured Riemann surface Σ together with a Hamiltonian H, a
sub-closed 1-form β, and an almost-complex structure J ∈ J (M,H) which are compatible
with the stop σt, where t is now constant. The rectangular coordinates from the definition
of a slowing family give rise to strip-like ends on Σ, and in these coordinates β is asymptotic
to a 1-form of the form f(t)dt.

For this subsequence, the discussion in Appendix A.2 gives a uniform maximum principle,
and hence we may apply Gromov compactness at znj′ to get a subsequence unj′′ which
converges in C∞loc to some nonconstant curve u with domain Σ. There is no issue of bubbling
at z = lim znj′′ because the symplectic form is exact. Now t is constant on Σ, so positivity
of intersections applies. In particular, u has only positive intersections with Dσt , and u(z)
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is such an intersection. Since u has finite energy, it is asymptotic at the punctures to XH-
chords, and because H is split such chords cannot intersect S. Thus, u−1(S) separates z
from ∂Σ.

Identifying znj′′ and its neighborhoods with z and subsets of Σ, we see now that the

smallest circle of u−1
nj′′

(S) surrounding z is contained in Σ for large j′′. Since u is C0-close to

unj′′ , it has negative winding number about Dσt on this circle. This contradicts positivity of
intersections for u and completes the proof.
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Chapter 4

Stop removal

4.1 Closed strings

Theorem 1.3.1 relies on the existence of a closed string version of partially wrapped Floer
homology. This will take the form of a filtration on the symplectic homology chain complex,
which we now explain.

Let (M,λM ,σ) be a pumpkin domain. Pick a compatible Hamiltonian H̃ and an S1-
family of perturbing Hamiltonians Pt : M̂ → R≥0, where t ∈ R/Z ∼= S1, which satisfy the
following conditions.

Pt is bounded, and ‖XPt‖ decays exponentially in the symplectization coordi-

nate
√
H̃ for any metric of the form ω̂M(·, J ·) with J ∈ J (M,H).

(4.1.1)

Ht := H̃ + Pt is nondegenerate in the sense that for any 1-periodic orbit x
of the time-dependent vector field XHt , the Poincaré return map of x does not
have 1 as an eigenvalue.

(4.1.2)

For each σ ∈ σ, H̃ is of the form (2.4.1) near Dσ, with f(z) = c|z|2 and c > 0.
Similarly, Pt is independent of the Hρ-coordinate near Dσ, and XHt satisfies
condition (4) of Definition 2.4.1.

(4.1.3)

Note that perturbing Hamiltonians P can be constructed by taking sums of functions of the
form κ◦H, whereH is a compatible Hamiltonian and κ : R+ → R+ is a positive nondecreasing
function which is eventually constant.

Let X(Ht) be the space of 1-periodic orbits of Ht. Because Ht is nondegenerate, this
is a discrete space. The symplectic cochain complex SC∗(M) is the graded K-vector space
generated by X(Ht) with grading given by the cohomological Conley-Zehnder index, see
[2]. For this situation, we switch to a different convention for almost complex structures.
Namely, we follow Ganatra [14] and define the space of almost complex structures of rescaled
contact type J S1

resc(M,Ht). This consists of S1-families of almost complex structures Jt
which are ω̂M -compatible and satisfy the following three conditions. First, there is some
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t-independent constant cresc > 0 such that, for all t,

dH̃ ◦ Jt = −crescλ̂M (4.1.4)

outside of a t-independent compact set. Second, the restriction Jt|ker dH∩ker λ̂M
is asymptot-

ically ẐM -invariant. Third, for each stop σ ∈ σ, the projection to Hρ is holomorphic along

Dσ. Given Jt ∈ J S1

resc(M,Ht), we can consider maps u : R × S1 → M̂ satisfying Floer’s
equation

∂su+ Jt(∂tu−XHt) = 0

and asymptotic as s→ ±∞ to orbits x± ∈ X(Ht). The moduli space of such maps, denoted

Q̃(x+, x−), satisfies the obvious analog of Lemmas 3.1.3 and 3.1.4, i.e.

Lemma 4.1.1. For generic choices of Pt, there is a comeager subset

J S1

reg (M,Ht) ⊂ J S1

resc(M,Ht)

such that, for any Jt ∈ J S1

reg (M,Ht) and x± ∈ X(Ht), the following hold.

1. Q̃(x+;x−) is a smooth manifold of dimension deg(x−)− deg(x+), and the translation

R-action on Q̃(x+;x−) is free if and only if x+ 6= x−. In this case, write Q(x+;x−)

for the quotient Q̃(x+;x−)/R.

2. If deg(x−)− deg(x+) = 1, then Q(x+;x−) is compact.

3. If deg(x−) − deg(x+) = 2, then Q(x+;x−) admits a Gromov compactification as a
topological 1-manifold with boundary, and its boundary is in natural bijection with∐

y∈X(Ht)
Q(y;x−)×Q(x+; y).

Remark on proof. Because (4.1.4) is so stringent, we allow small perturbations of Pt. These
can be made without changing the set X(Ht), and in concert with the freedom to perturb
cresc they allow us to achieve transversality even when dimM = 2. This was not an issue
for chords because, when dimM = 2, all chords outside of a compact set in a given end live
in different relative homotopy classes.

With regards to compactness, our maximum principle does not apply in the presence
of a time-dependent perturbing Hamiltonian, but by choosing a symplectization coordinate

r =
√
H̃ we find ourselves in Ganatra’s setup and can apply Theorem A.1 of [14].

Fix Jt ∈ J S1

reg(M,Ht). The differential ∂ on SC∗(M) is given by

∂x+ =
∑

deg(x−)−deg(x+)=1

#Q(x+;x−) · x−

and satisfies ∂2 = 0 by the usual argument which looks at ends of 1-dimensional moduli
spaces. The cohomology SH∗(M) := H∗(SC∗(M), ∂) is known as symplectic cohomology.
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The pumpkin structure σ endows SC∗(M) with a filtration similar to that for open
strings but slightly more subtle due to the fact that orbits can live on the divisor of a stop.
We describe a part of it, which will suffice for our purposes. Let Xσ(Ht) ⊂ X(Ht) be the
set of orbits which do not intersect σ(F̂ × R+) and do not live in Dσ for any σ ∈ σ. Let
SC∗σ(M) ⊂ SC∗(M) be the graded linear subspace generated by Xσ(Ht).

Lemma 4.1.2. SC∗σ(M) is a subcomplex of SC∗(M).

Proof. We need to show that if x− intersects σ(F̂ × R+) or lives in Dσ for some σ ∈ σ,

then Q̃(x+;x−) is empty for any x+ ∈ X(Ht). In the first case, the conclusion follows from
positivity of intersections as in Lemma 3.1.5. In the second, the asymptotics in [24], combined
with assumption (4.1.3), ensure that x− behaves as if it had strictly positive winding number
around Dσ. This puts us back in the regime where we can use positivity of intersections.

Definition 4.1.3. SC∗σ(M) is called the partially wrapped symplectic cochain com-
plex.

We will be interested in holomorphic curves which interpolate between the open and the
closed string worlds. For this, we make the following definitions

Definition 4.1.4. A punctured Riemann surface with boundary, ends, and cylin-
ders is a Riemann surface

Σ = Σ \ (Z∂Σ ∪ ZΣ),

where Σ is a compact Riemann surface with boundary, Z∂Σ is a finite subset of the boundary
of Σ, and ZΣ is a finite subset of the interior of Σ, together with the following additional
data.

1. For each ζ ∈ Z∂Σ, a positive or negative strip-like end at ζ.

2. For each ζ ∈ ZΣ, a positive or negative cylindrical end at ζ. These are holomorphic
embeddings

ε+ : R≥0 × S1 → Σ or ε− : R≤0 × S1 → Σ, (4.1.5)

respectively, such that lims→±∞ ε±(s, t) = ζ.

3. A finite number of finite cylinders δi. These are holomorphic embeddings

δi : [ai, bi]× S1 → int(Σ).

Additionally, we require that all ends and finite cylinders have disjoint images. For cylindrical
ends and finite cylinders, we define their m-shifts as with strips and define the thin part of
Σ to be the union of the 3-shifts of all ends, finite cylinders, and, if Σ comes with an implicit
gluing decomposition, finite strip-like gluing regions.

A punctured Riemann surface with labeled boundary, ends, and cylinders is a
punctured Riemann surface Σ with boundary, ends, and cylinders, along with an assignment
of a Lagrangian Li ⊂ M̂ to each boundary component ∂iΣ of Σ.
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Definition 4.1.5. Let Σ be a punctured Riemann surface with labeled boundary, ends, and
cylinders. A Floer datum on Σ is a 5-tuple (β,H, P, J, τE), where

• β is a 1-form on Σ

• H is a Σ-parametrized compatible Hamiltonian

• P is a function P : Σ× M̂ → R+

• J is a Σ-parametrized ω̂M -compatible almost complex structure

• τE is a function τE : ∂Σ→ R+

with the following properties.

1. Outside the images of the cylindrical ends and finite cylinders, (β,H, J, τE) satisfy the
conditions of Definition 3.2.2.

2. dβ, dΣH ∧ β, and dΣP ∧ β are nonpositive everywhere.

3. For each cylindrical end εi, (ε1i )
∗β = widt for some positive real number wi. Similarly,

for each finite cylinder δi, (δ1
i )
∗β = widt for some positive real number wi.

4. For each cylindrical end or finite cylinder, there is a scaling constant τi > 0 such that

wiH = H̃τi

on the image of that cylindrical end or finite cylinder.

5. There is some strictly positive function g : Σ× R+ → R+ such that

dH ◦ J = −g(H)λ̂M

outside a Σ-independent compact set.

6. The restriction J |ker dH∩ker λ̂M
is asymptotically ẐM -invariant.

7. For each stop σ ∈ σ, the projection to Hρ is holomorphic along Dσ.

8. For each cylindrical end or finite cylinder,

J(s, t) = (Jt)τi := (φτi)∗Jt

in the 2-shift of that cylindrical end or finite cylinder.
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9. P is globally bounded, and ‖XP‖ decays exponentially in the symplectization coordi-
nate. Moreover, P is locally constant outside the 2-shifts of the cylindrical ends and
finite cylinders, and in the 3-shifts of the cylindrical ends and finite cylinders it satisfies

wiP (s, t) = (Pt)τi + Ai :=
1

τi
(φτi)∗Pt + Ai

for some constant Ai depending on the cylindrical region.

A Floer datum for a punctured Riemann surface Σ with boundary, ends, cylinders, but no
Lagrangian labels, consists of a Floer datum for each Lagrangian labeling of Σ.

For such Floer data, we again have a notion of conformal equivalence. Two Floer data
(β,H, P, J, τE) and (β′, H ′, P ′, J ′, τ ′E) are conformally equivalent if there are constants
A,C,W with C,W > 0 such that

β = Wβ′, H =
1

W
(H ′)C , P =

1

W
(P ′)C + A, J = (J ′)C , τE = Cτ ′E.

As before, solutions u : Σ→ M̂ to

J ◦ (du−XH+P ⊗ β) = (du−XH+P ⊗ β) ◦ j (4.1.6)

with boundary conditions u(∂iE) ⊂ (φτE)∗Li are related to solutions u′ : Σ→ M̂ to

J ′ ◦ (du′ −XH′+P ′ ⊗ β′) = (du′ −XH′+P ′ ⊗ β′) ◦ j (4.1.7)

with boundary conditions u′(∂iE) ⊂ (φτ
′
E)∗Li via Liouville pullback.

4.2 Nondegenerate stops

To make the statement of Theorem 1.3.1 precise, we need to introduce a few notions. To
begin, we need the following.

Definition 4.2.1. Let (M,λM ,σ) be a pumpkin domain, and let σ ∈ σ be a stop with
fiber F . Note that interior Lagrangians of M and ΣF give rise to interior Lagrangians of
M [σ] via inclusion. An interior Lagrangian L in M [σ] is said to be supported in σ if it
is isomorphic in Wσ(M [σ]) to an interior Lagrangian of ΣF . Let B(σ) ⊂ W(M [σ]) and
Bσ(σ) ⊂ Wσ(M [σ]) denote the full subcategories of objects supported in σ. More generally,
for a subset σ′ ⊂ σ, let Bσ′(σ) denote the full subcategory ofWσ′(M [σ]) composed of objects
supported in σ.

Although we will generally work in M [σ] when dealing with a given stop σ, we will
want to state results in M alone. In this case, we abuse notation and denote again by
Bσ(σ) ⊂ Wσ(M) the full subcategory of objects whose image under the quasi-equivalence
Wσ(M)→Wσ(M [σ]) lie in Bσ(σ).
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Note that B(σ) is a contractible subcategory, in the sense that for all L ∈ B(σ), the unit
eL ∈ hom1

W(M)(L,L) is exact. To see this, assume L ⊂M [σ] is an interior Lagrangian of ΣF .
Then that L can be isotoped clockwise through Dσ to a Lagrangian L′ such that L has no
chords to L′ of small action. This means, by an energy argument, that the isomorphism from
L to L′ given by Lemma 3.3.7 is the zero morphism, which implies that eL is exact. Hence,
the same holds for any object isomorphic to L. More generally, for σ′ ⊂ σ not containing
σ, Bσ′(σ) is contractible.

Let σ′ = σ \ {σ}. By the universal property of a quotient category [8][19], since the
image of Bσ(σ) is contractible, the inclusion Wσ(M) → Wσ′(M) factors up to homotopy
through the quotient Wσ(M)/Bσ(σ):

Wσ(M)/Bσ(σ)

Wσ(M) Wσ′(M)

SR (4.2.1)

The second notion we need is that of a nondegenerate stop. This is a statement about the
image of a certain open-closed string map, which we now describe. The Hochschild homology
of Bσ(σ) can be given as the homology of a chain complex

CC∗(Bσ(σ)) =
∞⊕
d=1

Kγd ⊗ · · · ⊗ γ1 (4.2.2)

where γi ∈ hom(Li, Li+1) is a cyclically composable sequence of morphisms in Bσ(σ). The
grading is cohomological and is given by

deg(γd ⊗ · · · ⊗ γ1) =
d∑
i=1

deg(γi) + 1− d.

The differential δ : CC∗(Bσ(σ)) → CC∗+1(Bσ(σ)) comes from the A∞ structure on B(σ),
namely

δ(γd ⊗ · · · ⊗ γ1) =
∑
i,j≥0
i+j<d

µi+j+1(γi, . . . , γd−j)⊗ γd−j−1 ⊗ · · · ⊗ γi+1

+
∑
i,j≥1
i+j≤d

γd ⊗ . . .⊗ γi+j ⊗ µj(γi+j−1, . . . , γi)⊗ γi−1 ⊗ · · · ⊗ γ1

where γ0 := γd.
The open-closed string map OC : CC∗(Bσ(σ))→ SC∗(M [σ]) counts holomorphic annuli,

as described in [1]. Following Abouzaid, let R1
d be the space of disks with one interior
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puncture and d ≥ 1 boundary punctures, one of which is distinguished. For Σ ∈ R1
d, label the

interior puncture by ζ− and the boundary punctures ζ1 through ζd, ordered counterclockwise,
with the distinguished puncture labeled ζd. R1

d has a natural compactification to a manifold

with corners R1

d whose codimension one faces can be canonically identified with∐
2≤k≤d
1≤i≤k

R1

d+1−k ×R
k+1,i q

∐
2≤k≤d−1
1≤i≤d−k

R1

d+1−k ×R
k+1

. (4.2.3)

Here, Rk+1,i
is diffeomorphic to Rk+1

, but if Σd ∈ Rk+1
, then the corresponding point of

Rk+1,i
is Σd with the additional datum that ζi ∈ Σd is distinguished. In other words, it is

the space of disks with one negative puncture, d positive punctures, and such that the ith
puncture is considered special. The first term in (4.2.3) corresponds then to a collection of
punctures which includes ζd colliding, while the second corresponds to some other collection
colliding. In this case, the additional index i keeps track of where the collision occurred.

A collection of ends for Σ ∈ R1
d, making it into a punctured Riemann surface with bound-

ary, ends, and cylinders, consists of a positive strip-like end εi for each boundary puncture ζi,
along with a negative cylindrical end ε− at ζ−. In this case, we ask that ε− has a very special
form. Specifically, in the holomorphic coordinates on Σ where int(Σ) = {z ∈ C | 0 < |z| < 1}
and ζd = 1, we require that

ε−(s, t) = ae2π(s+it) with a ∈ R positive. (4.2.4)

for some positive number a ∈ R. A universal family of ends for R1
d consists of a collection

of ends on each Σ ∈ R1
d for every d, such that near the boundary of R1

d it agrees up to a
rotation of ε− with the collection induced by gluing. This rotation correction is unavoidable,

since boundary components R1

d+1−k × R
k+1,i

have the same ends for all i, so that without
rotation at most one could glue to a configuration which satisfies (4.2.4). However, because
we are using an exponential gluing profile the magnitude of the rotation vanishes to infinite

order at the boundary, and hence the family of strip-like ends extends smoothly to R1

d. One
sees as with Rd+1 that universal families of ends for R1

d exist, and we fix one once and for
all.

A universal and conformally consistent choice of Floer data for R1
d consists of, for

all d ≥ 1, a Floer datum (β,H, P, J, τE) for each Σ ∈ R1
d varying smoothly over R1

d, and such

that near ∂R1

d it agrees to infinite order with the conformal class of not-quite Floer datum
determined by gluing. We say not-quite due to the rotation corrections for the strip-like
ends, which among other things cause the glued datum to not be a Floer datum in the above
sense. Denote by KOC(M [σ]) the space of universal and conformally consistent choices of
Floer data for R1

d.
Given K ⊂ KOC(M [σ]), we can consider the resulting spaces of holomorphic curves.

Given a collection of Lagrangian labels Li and asymptotic ends

γi ∈ X(Li, Li+1) and x− ∈ X(Ht),
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we are interested in the space
R1
d(γd, . . . , γi;x−).

This consists of all maps u : Σ→ M̂ [σ] for Σ ∈ R1
d satisfying (4.1.6) with u(Ei) ⊂ (φτE)∗Li,

u(ζi) = (φτi)∗γi, and u(ζ−) = (φτ−)∗x−.

Lemma 4.2.2. There is a dense subset KOCreg (M [σ]) ⊂ KOC(M [σ]) such that, for every uni-
versal choice K ∈ KOCreg (M [σ]), the following hold.

1. For any d ≥ 1, any sequence of Lagrangians L1, . . . , Ld, and any collection of chords
γi ∈ X(Li, Li+1) and orbit γ− ∈ X(Ht), R1

d(γd, . . . , γi; γ−) is a smooth manifold of

dimension deg(x−)−
∑d

i=1 deg(γi) + d− n− 1. Here, n is half the dimension of M .

2. If deg(x−)−
∑d

i=1 deg(γi) = n+ 1− d, then R1
d(γd, . . . , γi;x−) is compact.

3. If deg(x−)−
∑d

i=1 deg(γi) = n+ 2− d, then R1
d(γd, . . . , γi;x−) admits a Gromov com-

pactification as a compact topological 1-manifold with boundary, and its boundary is in
natural bijection with∐

2≤k≤d
1≤i≤k

γ̃∈X(Ld+1−i,Lk+1−i)

R1
d+1−k(γ̃, γd−i, . . . , γ1+k−i;x−)×Rk+1(γk−i, . . . , γd+1−i; γ̃)

q
∐

γ̃∈X(Ld,L1)

R1
d(γ̃, γd−1, . . . , γ1;x−)×R(γd; γ̃)

q
∐

2≤k≤d−1
1≤i≤d−k

γ̃∈X(Li,Li+k)

R1
d+1−k(γd, . . . , γi+k, γ̃, γi−1 . . . , γ1;x−)×Rk+1(γi+k−1, . . . , γi; γ̃)

q
∐

1≤i<d
γ̃∈X(Li,Li+1)

R1
d(γd, . . . , γi+1, γ̃, γi−1 . . . , γ1;x−)×R(γi; γ̃)

q
∐

x̃∈X(Ht)

Q(x̃;x−)×R1
d(γd, . . . , γ1; x̃).

(4.2.5)

Remark on proof. As with the Floer cylinders, the C0 estimates in [14] give a bound on how
far elements u ∈ R1

d(γd, . . . , γi; γ−) can protrude into the symplectization in the cylindrical
ends. Everywhere else, we can apply Lemma A.2.2. Together, these show that the image
of any u is constrained to lie in a compact set depending only on K∆ and the ends γi and
γ−.

Define OC : CC∗(Bσ(σ))→ SC∗+n(M [σ]) by

OC(γd ⊗ · · · ⊗ γ1) =
∑

x∈X(Ht)

deg(x)=
∑d
i=1 deg(γi)+n+1−d

#R1
d(γd, . . . , γi;x) · x.
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The boundary strata in (4.2.5) tell us that OC is a chain map. Further, arguing as in Lemma
4.1.2 gives

Lemma 4.2.3. The image of OC lies in SC∗σ(M [σ]).

Definition 4.2.4. A stop σ ∈ σ is nondegenerate if there is a closed Hochschild chain
y ∈ CC1−n(Bσ(σ)) such that OC(y) = fσ, where fσ ∈ SC1

σ(M [σ]) is a saddle unit of σ as
described below.

Morally speaking, a saddle unit is any cocycle which lives in the central fiber of ΣF ⊂M [σ]
and represents the unit of SH∗(F ) when thought of as a chain in SC0(F ). The drop in de-
gree from 1 to 0 comes from the fact that the central fiber lives at a saddle point of the
Liouville vector field for C1, which translates to an index 1 Morse critical point for nice
choices of compatible Hamiltonian. However, such a cocycle is often exact in SC∗σ(M [σ]), so
the careful definition of fσ instead involves a count of holomorphic caps.

Concretely, let Σ be C equipped with the negative cylindrical end εf asymptotic to ∞
given by

εf (s, t) = e−2π(s+it)

Let KC(M [σ]) denote the space of Floer data on Σ. Given a Floer datum Kf ∈ KC(M [σ])
and an orbit x ∈ X(Ht), we are interested in the resulting moduli space space C(x). This is

the space of all maps u : Σ→ M̂ [σ] satisfying (4.1.6) and

lim
s→−∞

u(εf (s, t)) = (φτ )∗x(t),

where τ is the conformal factor Kf assigns to ∞ ∈ Σ, and for which

u(0) ∈ Yσ,

where Yσ ⊂ M̂ [σ] is the hypersurface which comes from F̂ × iR ⊂ ΣF . The last condition is
the interesting one. Indeed, that is the only place where the stop σ comes into the definition
of fσ, and without it we would just obtain the unit of symplectic cohomology.

Lemma 4.2.5. There is a comeager subset KC
reg(M [σ]) ⊂ KC(M [σ]) such that for any

Kf ∈ KC
reg(M [σ]), the following hold.

1. For all x ∈ X(Ht), C(x) is a smooth manifold of dimension deg(x)− 1.

2. If deg(x) = 1, then C(x) is compact.

3. If deg(x) = 2, then C(x) has a Gromov compactification C(x) which is a compact
topological 1-manifold with boundary, and there is a canonical identification

∂C(x) =
∐

x̃∈X(Ht)

Q(x̃;x)× C(x̃).

In this case, x̃ necessarily has degree 1.
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Definition 4.2.6. A saddle unit of σ is any chain

fσ =
∑

x∈X(Ht)
deg(x)=1

#C(x) · x

obtained from a Floer datum Kf ⊂ KC
reg(M [σ]). It follows from Lemma 4.2.5 and positivity

of intersections that such a chain is in fact a closed element of SC1
σ(M [σ]).

We restate Theorem 1.3.1, which is now technically precise.

Theorem 4.2.7. Let (M,λM ,σ) be a pumpkin domain, and let σ ∈ σ be a nondegenerate
stop. Set σ′ = σ \ {σ}. Then the map SR : Wσ(M)/Bσ(σ)→Wσ′(M) from (4.2.1) is fully
faithful.

4.3 A filtration on the quotient category

To prove Theorem 4.2.7, we will work in Lyubashenko–Ovsienko’s model for the quotient of
an A∞-category by a full subcategory [20], which is the A∞ version of Drinfeld’s construction
for dg-categories [8]. For an A∞-category A and a full subcategory B ⊂ A, the quotient
A/B is the A∞-category with the same objects as A and whose morphism spaces are given
by

homA/B(L0, L1) =
∞⊕
k=0

⊕
Bi∈B

homA(Bk, L1)⊗ homA(Bk−1, Bk)⊗ · · · ⊗ homA(L0, B1),

where for k = 0 the right-hand side is just homA(L0, L1). The grading is given by

deg(γk ⊗ · · · ⊗ γ0) =
k∑
i=0

deg(γi)− k.

The differential µ1
A/B is the bar differential, i.e.

µ1
A/B(γk ⊗ · · · ⊗ γ0) =

∑
0≤i≤j≤k

γk ⊗ · · · ⊗ γj+1 ⊗ µ1+j−i(γj, . . . , γi)⊗ γi−1 ⊗ · · · ⊗ γ0.

The higher operations are similar. Specifically, we have

µdA/B

(
(γkdd ⊗ · · · ⊗ γ

0
d), . . . , (γ

k1
1 ⊗ · · · ⊗ γ0

1)
)

=
∑

0≤i≤k1
0≤j≤kd

γkdd ⊗ · · · ⊗ µ
i+j+d+

∑d−1
s=2 ks(γjd, . . . , γ

k1−i
1 )⊗ · · · ⊗ γ0

1 .
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In this model, Wσ(M)/Bσ(σ) is naturally a subcategory of Wσ′(M)/Bσ′(σ), and SR is just
the inclusion.

Further, we can work in M [σ], so in fact we will study the inclusion

SRinc : Wσ(M [σ])/Bσ(σ) ↪→Wσ′(M [σ])/Bσ′(σ). (4.3.1)

For the sake of readability, we will write homσ in place of homWσ(M [σ])/Bσ(σ) and homσ′ in
place of homWσ′ (M [σ])/Bσ′ (σ). Similarly, we’ll write µkσ′ and µkσ for the A∞ operations on the
quotient categories.

Theorem 4.2.7 is equivalent to the assertion that SRinc is fully faithful, which follows
from the following statement:

Proposition 4.3.1. Assume σ is nondegenerate, and let L0 and L1 be interior Lagrangians
in M [σ]. Then there is a retraction

R : hom∗σ′(L0, L1)→ hom∗σ(L0, L1)

with the following property:

For any finite dimensional subcomplex C ⊂ hom∗σ′(L0, L1), there is a chain
map from hom∗σ′(L0, L1) to itself which is homotopic to the identity and agrees
with R on C.

(4.3.2)

As a topological analogy, this says that R is a deformation retraction on compact subsets. In
particular, it is a quasi-isomorphism.

To construct R and prove that it satisfies (4.3.2), we will build an increasing filtration
on the morphism spaces of Wσ′(M [σ])/Bσ′(σ) and a homotopy that moves us down in the
filtration.

Definition 4.3.2. Consider the lexicographic order on N2, namely (n,m) < (n′,m′) if n < n′

or n = n′ and m < m′. This has order type ω2, so in particular it is a well-ordering.
Define A∗n,m ⊂ hom∗σ′(L0, L1) to be the graded vector subspace generated by{

γk ⊗ · · · ⊗ γ0
∣∣∣ ( k∑

i=0

nσ(γi), k

)
< (n,m)

}
.

Then A∗n,m is a subcomplex, and A∗n,m ⊂ A∗n′,m′ whenever (n,m) < (n′,m′). Note that
A∗1,0 = hom∗σ(L0, L1), and that the A∗n,m form an exhausting filtration of hom∗σ′(L0, L1),
which we call the main filtration.

To prove Proposition 4.3.1, we will construct a map of graded vector spaces

∆y : hom∗σ′(L0, L1)→ hom∗−1
σ′ (L0, L1)
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such that
Ry := id + µ1

σ′∆y + ∆yµ
1
σ′ (4.3.3)

is the identity on A∗1,0 = hom∗σ(L0, L1) and strictly decreases the filtration on A∗n,m for
(n,m) > (1, 0). Since the filtration is well-ordered, the sequence

γ,Ry(γ), Ry(Ry(γ)), . . .

stabilizes, and hence the infinite iterate

R∞y : hom∗σ′(L0, L1)→ hom∗σ′(L0, L1)

is well defined.

Lemma 4.3.3. For an element γ ∈ hom∗σ′(L0, L1), let (n,m)(γ) be the smallest pair for
which γ ∈ A∗m,n. Then for any Ry such that

1. Ry(γ) = γ for γ ∈ A∗1,0, and

2. (n,m)(Ry(γ)) < (n,m)(γ) whenever (n,m)γ > (1, 0),

R∞y satisfies the conditions on R in Proposition 4.3.1.

Proof. Since the iterates of Ry stabilize for any element, they stabilize after finitely many
steps on any finite dimensional subspace. Thus, for any finite dimensional subcomplex C,
there is some n such that Rn

y agrees with R∞y on C. Since Ry is homotopic to the identity,
so is the finite iterate Rn

y .

4.4 Coproduct disks

The map ∆y giving rise to Ry will be given by a certain coproduct operation, which will
come as always from counts of holomorphic disks. We describe these now.

Definition 4.4.1. For nonnegative integers d, k, l,let Rd;k,l be the abstract moduli space
of coproduct disks. These are disks Σ with d + k + l + 3 boundary punctures labeled in
counterclockwise order as follows.

1. ζi, for i increasing from −k to +l. These will eventually be equipped with positive
strip-like ends.

2. ζa, which will eventually be equipped with a negative strip-like end.

3. ζj for j increasing from 1 to d. These will eventually be equipped with positive strip-like
ends.

4. ζb, which will eventually be equipped with a negative strip-like end.
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The punctures ζ0, ζa, and ζb are considered distinguished points. Observe that any disk
with n + 3 punctures can made into an element of some Rd;k,l with d + k + l = n by

specifying and labeling three distinguished points. The compactified moduli space Rd;k,l
is

diffeomorphic to the associahedron R(d+k+l+2)+1
, where the identification can be taken to

match ζ0 with ζ0. The codimension r boundary faces of Rd;k,l
are identified with products of

some lower-dimensional Rd′;k′,l′ with r lower-dimensional associahedra inductively as follows.
For a codimension 1 face, a point corresponds to a pair of disks identified at new boundary

punctures ζ̃, and we may look at the induced labels of boundary punctures on these two
disks. One of these disks, which we call Σ0, contains two or three distinguished points, while
the other disk Σ1, contains one or zero. In each case Σ0 will be taken to lie in Rd′;k′,l′ , but
there are several ways that this can happen.

1. The first possibility is that Σ0 contains all three distinguished points. In this case it
is identified with an element of Rd′;k′,l′ by matching up the distinguished points. Σ1 is
identified with a point of Rm+1 by taking ζ̃ to be the root.

2. The second possibility, similar to the first, is that Σ0 contains ζa and ζb, while Σ1

contains ζ0. In this case Σ0 is identified with the element of Rd′;k′,l′ which has ζa and
ζb in the same place and ζ0 in the position of ζ̃. Σ1 is again identified with a point of
Rm+1 by taking ζ̃ to be the root. By remembering the distinguished point ζ0 ∈ Σ1, we
may upgrade it to an element of Rm+1,i for some i.

3. The third and fourth possibilities are that Σ1 contains ζa or ζb. We assume that
ζa ∈ Σ1, as the other situation is strictly similar. In this case, for Σ0, ζ̃ takes the place
of ζa as the third distinguished point, while Σ1 is identified with an element of Rm+1

by setting ζa to be the root.

For a higher codimension face, we obtain a decomposition by following a sequence of faces,
each of which has codimension 1 in the previous. To see that the decomposition is unique,

note that an element Σ of the boundary of Rd;k,l
is a disk with boundary nodes described

by a tree T . If at least two distinguished points of Σ live on the same component, then that
component is the one identified with an element of Rd′;k′,l′ . Otherwise, there is a unique
vertex v of T such that every path from v to a vertex containing a distinguished point leaves
v along a different edge. The component of Σ identified with a point of Rd′;k′,l′ is the one
corresponding to v.

As indicated, a collection of strip-like ends for a disk Σ ∈ Rd;k,l consists of a positive
strip-like end at each puncture ζi and ζj, along with a negative strip-like end at each of ζa and
ζb, such that the images of the ends are pairwise disjoint. A universal choice of strip-like
ends for Rd;k,l consists of, for all d, k, l ≥ 0, a collection of strip-like ends for each Σ ∈ Rd;k,l

which varies smoothly over Rd;k,l and agrees near the boundary with the collection of ends
induced by gluing. As with associahedra, a universal choice of strip-like ends for Rd;k,l can
be constructed inductively, and we fix one once and for all.
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Similarly, a universal and conformally consistent choice of Floer data for Rd;k,l

consists of, for all d, k, l ≥ 0, a Floer datum for each Σ ∈ Rd;k,l which varies smoothly over
Rd;k,l, and which additionally satisfies the asymptotic consistency condition of Definition
3.2.4 with Rd+1 replaced by Rd;k,l. Let K∆(M [σ]) denote the space of all universal and
conformally consistent choices Floer data for Rd;k,l.

For any K∆ ∈ K∆(M [σ]), we obtain a perturbed Cauchy-Riemann operator. Given
Lagrangians L0, . . . , Ld and B−k−1, . . . , Bl and chords

γi ∈ X(Bi−1, Bi) γa ∈ X(L0, Bl)

γj ∈ X(Lj−1, Lj) γb ∈ X(B−k−1, Ld),
(4.4.1)

we can consider the space Rd;k,l(~γ?, ~γ?; γb, γa), where ~γ? and ~γ? are the tuples (γd, . . . , γ1)

and (γl, . . . , γ−k), respectively. This consists of all maps u : Σ→ M̂ [σ], with Σ ranging over
Rd;k,l, satisfying (3.2.12) with

u(ζi) = (φτi)∗γi u(ζa) = (φτa)∗γa

u(ζj) = (φτ
j

)∗γj u(ζb) = (φτb)∗γb

and with the appropriate boundary conditions, where τi is the rescaling factor assigned to
ζi, and similarly with τ j, τa, and τb. As usual, Lemma A.2.2 tells us that the images of
such u are all contained in a fixed compact subset of M̂ , so Gromov compactness gives

Rd;k,l(~γ?, ~γ?; γb, γa) a natural compactification Rd;k,l
(~γ?, ~γ?; γb, γa) whose new points are bro-

ken configurations consisting of one element of Rd′;k′,l′((~γ?)′, (~γ?)
′; γ′b, γ

′
a) for some d′ ≤ d,

k′ ≤ k, and l′ ≤ l, along with disks contributing to the A∞ structure. We list those configu-
rations with exactly two nonconstant components.

Rd;k+1−m,l(~γ?, (γl, . . . , γi+m, γ̃, γi−1, . . . , γ−k); γb, γa)

×Rm+1(γi+m−1, . . . , γi; γ̃)

2 ≤ m ≤ −i ≤ k

γ̃ ∈ X(Bi−1, Bi+m−1)
(4.4.2a)

Rd;k,l+1−m(~γ?, (γl, . . . , γi+m, γ̃, γi−1, . . . , γ−k); γb, γa)

×Rm+1(γi+m−1, . . . , γi; γ̃)

2 ≤ m ≤ 1 + l − i ≤ l

γ̃ ∈ X(Bi−1, Bi+m−1)
(4.4.2b)

Rd;k+i,l−i+1−m(~γ?, (γl, . . . , γi+m, γ̃, γi−1, . . . , γ−k); γb, γa)

×Rm+1(γi+m−1, . . . , γi; γ̃)

−k ≤ i ≤ 0

min{2, 1− i} ≤ m ≤ l − i+ 1

γ̃ ∈ X(Bi−1, Bi+m−1)

(4.4.2c)
Rd;k,l(~γ?, (γl, . . . , γi+1, γ̃, γi−1, . . . , γ−k); γb, γa)

×R(γi; γ̃)

−k ≤ i ≤ l

γ̃ ∈ X(Bi−1, Bi)
(4.4.2d)

Rd+1−m;k,l((γd, . . . , γi+m, γ̃, γi−1, . . . , γ1), ~γ?; γb, γa)

×Rm+1(γi+m−1, . . . , γi; γ̃)

2 ≤ m ≤ d+ 1− i ≤ d

γ̃ ∈ X(Li−1, Li+m−1)
(4.4.2e)
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Rd;k,l((γd, . . . , γi+1, γ̃, γi−1, . . . , γ1), ~γ?; γb, γa)

×R(γi; γ̃)

1 ≤ i ≤ d

γ̃ ∈ X(Li−1, Li)
(4.4.2f)

Ri+j+1+1(γl, . . . , γl−j+1, γ̃, γ
i, . . . , γ1; γa)

×Rd−i;k,l−j((γd, . . . , γi+1), (γl−j, . . . , γ−k); γb, γ̃)

0 ≤ i ≤ d

max{0, 1− i} ≤ j ≤ l

γ̃ ∈ X(Li, Bl−j)

(4.4.2g)

R(γ̃; γa)×Rd;k,l(~γ?, ~γ?; γb, γ̃) γ̃ ∈ X(L0, Bl) (4.4.2h)

Ri+j+1+1(γd, . . . , γd+1−i, γ̃, γj−k−1, . . . , γ−k; γb)

×Rd−i;k−j,l((γd−i, . . . , γ1), (γl, . . . , γj−k); γ̃, γa)

0 ≤ i ≤ d

max{0, 1− i} ≤ j ≤ k

γ̃ ∈ X(Bj−k−1, Ld−i)

(4.4.2i)

R(γ̃; γb)×Rd;k,l(~γ?, ~γ?; γ̃, γa) γ̃ ∈ X(B−k−1, Ld) (4.4.2j)

This looks like a lot, but the first four are just different ways that an A∞ disk can break off on
the “subscript” side, of which the first three differ only in the placement of the marked input.
The others, in pairs, describe the possible breakings of an A∞ disk on the “superscript” side,
at ζa, and at ζb.

Lemma 4.4.2. There is a dense subset K∆,reg(M [σ]) ⊂ K∆(M [σ]) such that, for every
K∆ ∈ K∆,reg(M [σ]), the following hold.

1. For any Lagrangians L0, . . . , Ld and B−k−1, . . . , Bl and any chords γj,γ
j, γa, and γb as

in 4.4.1, Rd;k,l(~γ?, ~γ?; γb, γa) is a smooth manifold of dimension

deg(γa) + deg(γb)−
d∑
r=d

deg(γr)−
l∑

s=−k

deg(γs) + d+ k + l − n.

2. Whenever

nσ(γa) + nσ(γb) >
d∑
r=1

nσ(γr) +
l∑

s=−k

nσ(γs),

Rd;k,l(~γ?, ~γ?; γb, γa) is empty.

3. If

deg(γa) + deg(γb)−
d∑
r=1

deg(γr)−
l∑

s=−k

deg(γs) = n− d− k − l,

then Rd;k,l(~γ?, ~γ?; γb, γa) is compact.

4. If

deg(γa) + deg(γb)−
d∑
r=1

deg(γr)−
l∑

s=−k

deg(γs) = n− d− k − l + 1,
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then Rd;k,l(~γ?, ~γ?; γb, γa) admits a Gromov compactification as a compact topological 1-
manifold with boundary, and its boundary is in natural bijection with the configurations
(4.4.2).

4.5 The main homotopy

We are now prepared to begin constructing the operation ∆y which is used in the defini-
tion of the basic retraction Ry in (4.3.3). Concretely, we will give a formula for ∆v for
v = γq ⊗ · · · ⊗ γ1 ∈ CC∗(Bσ(σ)) and extend to all of CC∗(Bσ(σ)) by linearity. For now, we
define a coproduct operation ∆0

v. This is the main homotopy. Later on, we will define a
second operation hv and set ∆v = ∆0

v + hv.
For a morphism γ = γm ⊗ · · · ⊗ γ0 ∈ hom∗σ′(L0, L1) define

∆0
v(γ) =

∑
0≤i≤m+1

0≤d≤m+1−i
k+l<q

nσ(γr)=0 ∀r<i

∑
γa,γb

nσ(γa)=0

deg(γa)+deg(γb)=
∑i+d−1
r=i deg(γr)+

∑l
s=q−k deg(γs)+n−d−k−l

#Rd;k,l((γi+d−1, . . . , γi), (γl, . . . , γq−k); γb, γa) · γ̂, (4.5.1)

where tuples with increasing or nonexistent indices are the empty tuple (), and

γ̂ := γm ⊗ · · · ⊗ γi+d ⊗ γb ⊗ γq−k−1 ⊗ · · · ⊗ γl+1 ⊗ γa ⊗ γi−1 ⊗ · · · ⊗ γ0 (4.5.2)

is required to be composable. Again the indices for the Hochschild chain v are cyclically
ordered. A straightforward calculation gives that ∆0

v is homogeneous of degree deg(v)+n−2.
In particular, ∆0

v has degree -1 when deg(v) = 1−n, which is precisely the grading required
in Definition 4.2.4.

Remark 4.5.1. The key condition here is that, in the output, all chords starting with γa must
have crossing number zero with σ. This is what allows the resulting chain map to interact
with the intersection filtration. In particular, we will see that µ1

σ′∆
0
y + ∆0

yµ
1
σ′ is nontrivial

precisely at the smallest r such that nσ(γr) 6= 0, where it is homotopic to the identity up to
terms lower in the main filtration.

We begin by examining the configurations of holomorphic disks which appear in ∆0
vµ

1
σ′(γ).

These come in two types.

The first type occurs when the superscript inputs for ∆0
v do not include the

output for µ1
σ′ . In this case, there are two components which are disjoint and

do not want to glue together.

(4.5.3)

The second type occurs when the superscript inputs for ∆0
v do include the

output for µ1
σ′ . In this case, the configuration is a broken disk of the form

(4.4.2e) or (4.4.2f).
(4.5.4)
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Next, we examine the configurations of holomorphic disks which appear in µ1
σ′∆

0
v(γ).

These come in five types.

The first type occurs when the inputs for µ1
σ′ do not include any of γa, γb,

or the γi coming from the unused components of v. In this case, there are
two components which are disjoint and do not want to glue together. These
configurations are exactly the same as those in (4.5.3), so their contributions
to ∆0

vµ
1
σ′ + µ1

σ′∆
0
v cancel.

(4.5.5)

The second type occurs when the inputs for µ1
σ′ consist of one or more of

the γi coming from the unused components of v. In this case, the configura-
tion consists of two disjoint disks, each of which uses different portions of the
Hochschild chain v.

(4.5.6)

The third type occurs when the inputs for µ1
σ′ include γa but not γb. In this

case, the configuration is a broken disk of the form (4.4.2g) or (4.4.2h).
(4.5.7)

The fourth type occurs when the inputs for µ1
σ′ include γb but not γa. In this

case, the configuration is a broken disk of the form (4.4.2i) or (4.4.2j).
(4.5.8)

The fifth type occurs when the inputs for µ1
σ′ include both γa and γb. In this

case, the configuration is formally an annulus with two nodes. The outside of
this annulus is labeled with some substring of γ and an output chord γ̃, while
the inside is labeled with the entire Hochschild chain v. Let

Av : hom∗σ′(L0, L1)→ hom
∗+deg(v)+n−1
σ′ (L0, L1)

be the linear map obtained by counting only such annuli.

(4.5.9)

We claim that, modulo terms which decrease the main filtration,

∆0
vµ

1
σ′ + µ1

σ′∆
0
v = ∆0

δv + Av. (4.5.10)

For this, it suffices to consider those contributions to ∆0
vµ

1
σ′ + µ1

σ′∆
0
v which come from

configurations which avoid Dσ. Considering only such configurations, we want to see that
the terms coming from (4.5.3)-(4.5.8) add up to the corresponding portion of ∆0

δv. To do so,
note that there are two types of configurations which contribute to ∆0

δv. The first type occurs
when the output of the A∞ disk contributing to δv is not an input of Rd;k,l(~γ?, ~γ?; γb, γa), so
instead it appears in γ̂. In this case, the configuration is precisely what is counted in (4.5.6).
The remaining type of configuration occurs when the output of the A∞ disk contributing to
δv is a component of ~γ?. In this case, the broken configuration is one of (4.4.2a)-(4.4.2d).
Because the spaces in (4.4.2) form the boundary of a compact 1-manifold, we are left with
terms coming from configurations of the form (4.4.2e)-(4.4.2j). On the other hand, for spaces
of coproduct disks which do not intersectDσ, the condition that nσ(γa) = 0 is preserved under
breaking off an A∞ disk. Thus, the operation coming from these configurations coincides
precisely with the sum of the remaining terms (4.5.4), (4.5.7), and (4.5.8).
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Since we will eventually be interested in replacing v with the closed chain y, we can ignore
the δv term in (4.5.10). Moreover, since our goal is to show that Ry satisfies the conditions
of Lemma 4.3.3, we may ignore all terms of ∆0

vµ
1
σ′ + µ1

σ′∆
0
v which strictly decrease the main

filtration. Because all operations involved satisfy positivity of intersections and y is made
up of chords with nσ = 0, the only way in which they can fail to decrease the filtration is
by failing to decrease the length of a generator γm ⊗ · · · ⊗ γ0. For the annulus term Ay,
this only happens when the broken annuli are labeled with zero or one γj input. Write
Ay =

∑
ν,µA

ν,µ
y , where Aν,µy is the operation coming from those broken holomorphic annuli

with µ superscript inputs and intersection number ν with Dσ. This means, for Aν,µy (γ) 6= 0,
we have

(n,m)(Aν,µy (γ)) = (n,m)(γ) + (−ν, 1− µ).

We conclude

Lemma 4.5.2. Let y be a closed element of CC∗(Bσ(σ)). Then, up to terms which decrease
the main filtration, ∆0

yµ
1
σ′ + µ1

σ′∆
0
y = A0,0

y + A0,1
y .

4.6 Closed-open maps

The eventual objective will be to show that A0,0
y +A0,1

y is homotopic to a closed-open operation

COfiltx depending on a cochain x ∈ SC∗σ(M [σ]), where it will turn out that x = OC(y). We
now construct this operation.

Let R0+1
1 be the singleton set containing a disk D0,1

1 with one interior puncture ζ+ and
one boundary puncture ζ0. Up to biholomorphism, there is a unique such disk. Equip ζ0

with a negative strip-like end ε0 and ζ+ with a positive cylindrical end ε+. As with the
punctured disks giving rise to OC, we ask that ε+ has a very special form. Specifically, in
the holomorphic coordinates on D0,1

1 where int(Σ) = {z ∈ C | 0 < |z| < 1} and ζ0 = −1, we
require that

ε+(s, t) = ae−2π(s+it) with a ∈ R positive. (4.6.1)

Going up in dimension, let R1+1
1 be the space of disks with one interior puncture ζ+ and

two boundary punctures ζ0 and ζ1. The corresponding compactified moduli space R1+1

1 is

R1+1

1 =
(
R2+1 ×R0+1

1

)
qR1+1

1 q
(
R2+1 ×R0+1

1

)
, (4.6.2)

where the two broken configurations correspond to the two ways of attaching the negative
end of D0,1

1 to one of the two positive ends of the unique disk Σ2+1 ∈ R2+1. Choose smooth,
disjointR1+1

1 -parametrized families of positive strip-like ends ε1 for ζ1, negative strip-like ends
ε0 for ζ0, and positive cylindrical ends ε+ for ζ+, which satisfy the compatibility conditions

1. In the gluing charts of the form [0, a)×R2+1×R0+1
1 with gluing length ` = e

1
ρ , where

ρ ∈ [0, a), the families of ends agree to infinite order at ρ = 0 with those induced by
gluing.
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2. For all Σ ∈ R1+1
1 , in the holomorphic coordinates on Σ where the interior of Σ is the

punctured disk {z ∈ C | 0 < |z| < 1} and ζ0 = −1, ε+ satisfies (4.6.1).

Unlike with open-closed maps, for careful choices of ends elsewhere the agreement to infinite
order could be strengthened to agreement in a neighborhood of the boundary, but there is no
benefit to doing so. One could also extend the above and construct a map to Hochschild co-
homology as in [14], but in our application the higher terms would reduce the main filtration,
so we ignore them.

A conformally consistent choice of Floer data for the closed-open maps consists of a
Floer datum on D0,1

1 , along with a Floer datum on Σ for each Σ ∈ R1+1
1 varying smoothly

over R1+1
1 , and such that near ∂R1+1

1 it agrees to infinite order with the conformal class of
not-quite Floer data determined by gluing. Denote by KCO(M [σ]) the space of conformally
consistent choices of Floer data for the closed-open maps.

Given K ⊂ KCO(M [σ]), we can consider the resulting holomorphic curves. Given La-
grangian labels Li and asymptotic ends γi as in (3.2.11) and x+ ∈ X(Ht), we are interested
in the spaces

R0+1
1 (x+; γ0)

R1+1
1 (x+, γ1; γ0).

These consists of all maps u : Σ→ M̂ [σ] for Σ ∈ R0+1
1 or Σ ∈ R1+1

1 , respectively, satisfying
(4.1.6) with u(Ei) ⊂ (φτE)∗Li, u(ζi) = (φτi)∗γi, and u(ζ+) = (φτ+)∗x+.

Lemma 4.6.1. There is a dense subset KCOreg (M [σ]) ⊂ KCO(M [σ]) such that, for every
K ∈ KCOreg (M [σ]), the following hold.

1. For any Lagrangian L, chord γ0 ∈ X(L,L), and orbit x+ ∈ X(Ht), R0+1
1 (x+; γ0) is

a smooth manifold of dimension deg(γ0) − deg(x+). Additionally, it is empty unless
nσ(γ0) ≤ nσ(x+).

2. If deg(γ0)− deg(x+) = 0, then R0+1
1 (x+; γ0) is compact.

3. If deg(γ0) − deg(x+) = 1, then R0+1
1 (x+; γ0) admits a Gromov compactification as a

compact topological 1-manifold with boundary, and its boundary is in natural bijection
with ∐

x̃∈X(Ht)

(
R0+1

1 (x̃; γ0)×Q(x+; x̃)
)
q

∐
γ̃∈X(L,L)

(
R(γ̃; γ0)×R0+1

1 (x+; γ̃)
)
. (4.6.3)

4. For any pair of Lagrangians L0 and L1, any pair of chords γ0, γ1 ∈ X(L0, L1), and any
orbit x+ ∈ X(Ht), R1+1

1 (x+, γ1; γ0) is a smooth manifold of dimension

deg(γ0)− deg(γ1)− deg(x+) + 1.

It is empty unless nσ(γ0) ≤ nσ(γ1) + nσ(x+).
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5. If deg(γ0)− deg(γ1)− deg(x+) = −1, then R1+1
1 (x+, γ1; γ0) is compact.

6. If deg(γ0) − deg(γ1) − deg(x+) = 0, then R1+1
1 (x+, γ1; γ0) admits a Gromov compact-

ification as a compact topological 1-manifold with boundary, and its boundary is in
natural bijection with∐

x̃∈X(Ht)

(
R1+1

1 (x̃, γ1; γ0)×Q(x+; x̃)
)
q

∐
γ̃∈X(L0,L1)

(
R1+1

1 (x+, γ̃; γ0)×R(γ1; γ̃)
)

q
∐

γ̃∈X(L0,L1)

(
R(γ̃; γ0)×R1+1

1 (x+, γ1; γ̃)
)

q
∐

γ̃∈X(L1,L1)

(
R2+1(γ̃, γ1; γ0)×R0+1

1 (x+; γ̃)
)
q

∐
γ̃∈X(L0,L0)

(
R2+1(γ1, γ̃; γ0)×R0+1

1 (x+; γ̃)
)
.

(4.6.4)

Definition 4.6.2. Suppose u ∈ R1+1
1 (x+, γ1; γ0) with x+ ∈ SC∗σ(M [σ]) and nσ(γ0) = nσ(γ1).

Then, by positivity of intersections, u doesn’t pass through Dσ. Let Σ be the domain of u,
and let e : [0, 1] → Σ be a path with e(0) ∈ E0 and e(1) = ζ+. Since u avoids Dσ, so does
u ◦ e, and hence the topological intersection number of u ◦ e with σ(F̂ ×R+) is well defined
and independent of the choice of e. Let nCOσ (u) be this number. The filtered closed-open
moduli space R1+1,filt

1 (x+, γ1; γ0) is the connected component of R1+1
1 (x+, γ1; γ0) consisting

of u with nCOσ (u) = 0.
For nσ(γ0) < nσ(γ1), we take R1+1,filt

1 (x+, γ1; γ0) to be empty, though one could just as
well take it to be all of R1+1

1 (x+, γ1; γ0).

For x ∈ SC∗σ(M [σ]), define COfiltx : hom∗σ′(L0, L1) → hom
∗+deg(x)−1
σ′ (L0, L1) to depend

linearly on x and, for x ∈ X(Ht) a generator, to satisfy

COfiltx (γm ⊗ · · · ⊗ γ0) =
∑

0≤i≤m+1
nσ(γr)=0∀r<i

γ̃ making the result composable
deg(γ̃)=deg(x)

#R0+1
1 (x; γ̃) · γm ⊗ · · · ⊗ γi ⊗ γ̃ ⊗ γi−1 ⊗ · · · ⊗ γ0

+
∑

0≤i≤m
nσ(γr)=0∀r<i

γ̃ making the result composable
deg(γ̃)=deg(x)+deg(γi)−1

#R1+1,filt
1 (x, γi; γ̃) · γm ⊗ · · · ⊗ γi+1 ⊗ γ̃ ⊗ γi−1 ⊗ · · · ⊗ γ0.

(4.6.5)

Note, as with the coproduct, that we have only allowed configurations where all long chords
occur after the new one. The filtered moduli space is the object which captures the contri-
butions of ∆0

y for which nσ(γa) = 0 while nσ(γb) > 0.
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4.7 Annuli, part 1

To relate A0,0
y +A0,1

y with COfiltOC(y), we follow Abouzaid’s construction in [1]. Specifically, we
will coherently extend his first and second homotopies to allow for one outer input and verify
that the result is a homotopy on hom∗σ′(L0, L1). This section constructs the first homotopy.
The result is a homotopy h1

y such that, for δy = 0, the operation A0,0
y +A0,1

y + h1
yµ

1
σ′ + µ1

σ′h
1
y

counts analytically gluable broken annuli.
For that, let

P0
d =

∐
k,l≥0
m≥2

k+l+m=d+1

[0, 1]×Rm+1 ×R0;k,l
.

Note that this differs slightly from Abouzaid’s terminology. First, the superscript of zero
means that there are no outer inputs, meaning that we should think of gluing the first
input ζ1 of the A∞ disk to the first output ζa of the coproduct, and likewise we should glue
the last input ζm of the A∞ disk to the last output ζb of the coproduct. Second, we do not
bother identifying paired boundary components. When we consider holomorphic curves with
domains in P0

d , this means that there will be extra boundary terms which cancel in pairs.
Similarly, let

P1
d =

∐
k,l≥0
m≥2

k+l+m=d+1

[0, 1]×Rm+1 ×R1;k,l

q
∐
k,l≥0
m≥3

k+l+m=d+2

[0, 1]×Rm+1,1 ×R0;k,l q
∐
k,l≥0
m≥3

k+l+m=d+2

[0, 1]×Rm+1,m ×R0;k,l
.

Here, the first term is as before except with an outer input in the coproduct disk. For the
other two, we have an extra distinguished input on the A∞ disk. In this case, we attach ζa
to the first nondistinguished input and ζb to the last nondistinguished input.

Definition 4.7.1. Before we can start to choose Floer data, we need some auxiliary defini-
tions. For any disk

Σ ∈ Rm+1 qRm+1,1 qRm+1,m
,

let

ζfirst =

{
ζ1 for Σ ∈ Rm+1 qRm+1,m

ζ2 for Σ ∈ Rm+1,1

ζlast =

{
ζm for Σ ∈ Rm+1 qRm+1,1

ζm−1 for Σ ∈ Rm+1,m
.

For a two-component stable disk

Σ ∈ ∂
(
Rm+1 qRm+1,1 qRm+1,m

)
,
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the main component of Σ is the component which contains at least two of {ζ0, ζfirst, ζlast}.
For a stable disk with more than two components, the main component is the one for which
ζ0, ζfirst, and ζlast all lie in different directions.

Definition 4.7.2. For p = (t,Σm+1,Σj;k,l) ∈ P id, a Lagrangian labeling of p consists of a
Lagrangian labeling for each of Σm+1 and Σj;k,l such that the labels at ζfirst ∈ Σm+1 agree
with the labels at ζa ∈ Σj;k,l, and similarly with ζlast and ζb. A universal and conformally
consistent choice of Floer data KP for the first homotopy consists, for all d ≥ 1 and
i ∈ {0, 1} and each p = (t,Σm+1,Σj;k,l) ∈ P id with Lagrangian labels, of a Floer datum
KP(p) on Σm+1 with the corresponding labels, such that KP varies smoothly on P id and has
the following properties.

1. For t = 0, KP(p) agrees up to conformal rescaling with the Floer datum on Σm+1

chosen for the A∞ structure.

2. For t = 1, the configuration is gluable to an annulus after a conformal rescaling.

Concretely, let r∆ : Rj;k,l → (0,∞) be the unique smooth function with r∆(Σ) = τb
τa

for

Σ ∈ Rj;k,l. Similarly, let

rµ :
∐
P id → (0,∞)

be the unique smooth function with

rµ(p) =
τlast(p)

τfirst(p)
,

where τfirst and τlast are the rescaling factors that KP assigns to the ends ζfirst ∈ Σm+1

and ζlast ∈ Σm+1, respectively. We require that

rµ(1,Σm+1,Σj;k,l) = r∆(Σj;k,l).

3. If Σm+1 is a nontrivial stable disk, then on every component of Σm+1 aside from the
main component, KP(p) is conformally equivalent to the Floer datum chosen for that
disk as an element of the associahedron.

4. If Σm+1 is a nontrivial stable disk, let Σmain be its main component. If Σmain doesn’t
contain ζfirst, let Σfirst be the possibly-nodal connected piece of Σm+1\Σmain containing
ζfirst. Likewise, if Σmain doesn’t contain ζlast, let Σlast be the possibly-nodal connected
piece of Σm+1 \ Σmain containing ζlast. Define a probably-nodal disk

Σbig :=
(
Σfirst q Σj;k,l q Σlast

)
/(ζa = ζfirst, ζb = ζlast) ∈ R

j′;k′,l′

.

Then the restriction of KP(t,Σm+1,Σj;k,l) to Σmain is conformally equivalent to the
Floer datum KP(t,Σmain,Σbig).
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5. Suppose Σj;k,l is a nontrivial stable disk, and that Σleaf ⊂ Σj;k,l is an irreducible A∞-
type component which is only attached to the rest of Σj;k,l at the negative puncture.
In other words, Σleaf has one nodal negative puncture, zero other negative punctures,
and its positive punctures are all honest positive punctures of Σj;k,l instead of nodes.
Define

Σsmall = Σj;k,l \ Σleaf .

Then KP(t,Σm+1,Σj;k,l) is conformally equivalent to KP(t,Σm+1,Σsmall).

Denote by KP(M [σ]) the space of universal and conformally consistent choices of Floer data
for the first homotopy.

Suppose we have picked some universal choice KP ⊂ KP(M [σ]). For a generator

v = γd ⊗ · · · ⊗ γ1 ∈ CC∗(Bσ(σ)),

let Bi ∈ Bσ(σ) be such that γi ∈ X(Bi−1, Bi). For L an interior Lagrangian of M [Σ] and
γ0 ∈ X(L,L), define

P0
d(v; γ0) =

∐
k,l≥0
k+l<d

P0,0,0;k,l
d (v; γ0)

where P 0,0,0;k,l
d (v; γ0) is the union over all

p = (t,Σµ,Σ∆) ∈ [0, 1]×R(d−k−l+1)+1 ×R0;k,l

of the space of all maps

u : Σ∆ q Σµ → M̂ [σ]

satisfying the following conditions.

1. Write u∆ := u|Σ∆
and uµ := u|Σµ . Then

u∆ ∈ R0;k,l ((), (γl, . . . , γd−k); γb, γa)

for some γa ∈ X(L,Bl) and γb ∈ X(Bd−k−1, L).

2. uµ satisfies (3.2.12) for the Floer datum KP(p).

3. Let τE(p) be the boundary rescaling function assigned to Σµ by KP(p). Then

u (∂iΣµ) ∈

{(
φτE(p)

)∗
L for i = 0 or d− k − l + 1(

φτE(p)
)∗
Bl+i−1 otherwise

where ∂iΣµ is the portion of the boundary between ζi and ζi+1, ordered cyclically.
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4. Let τi be the rescaling factor assigned by KP(p) to ζi ∈ Σµ. Then

u(ζ0) = (φτ0)∗γ0

u(ζ1) = (φτ1)∗γa

u(ζi) = (φτi)∗γl+i−1 for 2 ≤ i ≤ d− k − l
u(ζd−k−l+1) = (φτd−k−l+1)∗γb.

For any fixed v ∈ CC∗(Bσ(σ)), by the discussion in Appendix A.1, there are only finitely
many choices of intermediate chords (γa, γb) which u∆ can approach. The maximum principle
(Lemma A.2.2) and the usual Gromov compactness argument then imply that the spaces

P0,0,0;k,l
d (v; γ0) have Gromov compactifications P0,0,0;k,l

d (v; γ0) obtained by allowing either or
both of u∆ and uµ to break.

Lemma 4.7.3. There is a dense subset KPreg(M [σ]) ⊂ KP(M [σ]) such that, for any choice
KP ∈ KPreg(M [σ]), the following hold.

1. For any d ≥ 1, any Lagrangian L, any v = γd ⊗ · · · ⊗ γ1 ∈ CC∗(Bσ(σ)), and any
chord γ0 ∈ X(L,L), P0,0,0;k,l

d (v; γ0) is a smooth manifold with boundary of dimension
deg(γ0) − deg(v) + 1 − n. Additionally, it is empty unless nσ(γ0) = 0. The boundary
comes from the fact that the space of domains, even before compactification, has a [0, 1]
factor.

2. If deg(γ0)− deg(v) = n− 1, then P0,0,0;k,l
d (v; γ0) is compact.

3. If deg(γ0) − deg(v) = n, then P0,0,0;k,l

d (v; γ0) is a compact topological 1-manifold with
boundary, and its boundary consists of all broken configurations u of the following types.

In the first type of configuration, t ∈ (0, 1),

u∆ ∈ ∂R0;k,l((), (γl, . . . , γd−k); γb, γa),

while uµ is a map uµ : Σµ → M̂ [σ] satisfying the Cauchy-Riemann
equation perturbed by the Floer datum chosen for (t,Σµ,Σ∆) with
the corresponding boundary and asymptotic conditions, where Σ∆

is the nodal disk which is the domain of u∆.

(4.7.1)
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In the second type of configuration, t ∈ (0, 1),

u∆ ∈ R0;k,l((), (γl, . . . , γd−k); γb, γa),

while uµ has broken, such that one component is an honest A∞ disk
u0
µ which has neither γa nor γb as an input. Such a disk is either a

portion of the Hochschild differential on v or a Floer strip which out-

puts γ0. The other disk, umainµ , is a map umainµ : Σmain
µ → M̂ [σ] sat-

isfying the Cauchy-Riemann equation perturbed by the Floer datum
chosen for (t,Σmain

µ ,Σ∆) with the induced boundary and asymptotic
conditions.

(4.7.2)

In the third type of configuration, t ∈ (0, 1),

u∆ ∈ R0;k,l((), (γl, . . . , γd−k); γb, γa),

while uµ has broken, such that one component is an honest A∞
disk uinµ which has γa or γb as an input but does not have γ0 as its

output. The other, uoutµ , is a map uoutµ : Σout
µ → M̂ [σ] satisfying the

Cauchy-Riemann equation perturbed by the Floer datum chosen for
(t,Σout

µ ,Σbig) with the induced boundary and asymptotic conditions,
where Σbig is the broken disk formed by joining the domains of u∆

and uinµ .

(4.7.3)

In the fourth type of configuration, t = 0, in which case u is a
two-component broken annulus of the type contributing to A0,0

v .
(4.7.4)

In the fifth type of configuration, t = 1, in which case u is a two-
component broken annulus which can be glued into an honest per-
turbed holomorphic annulus.

(4.7.5)

In the previous notation, these cases comprise seventeen types of boundary strata, each
of which is described by a formula slightly different from the others.

For v as above and γ1 ∈ X(L0, L1) with L0 and L1 interior Lagrangians in M [Σ], define

P1
d(v; γ0) =

∐
k,l≥0
k+l<d

(
P1,0,0;k,l
d (v, γ1; γ0)q P0,1,0;k,l

d (v, γ1; γ0)q P0,0,1;k,l
d (v, γ1; γ0)

)

for certain spaces Pqa,j,qb;k,ld (v, γ1; γ0). These describe broken annuli with qa outer inputs
between the output and the a-node, j outer inputs on the coproduct, and qb outer inputs
between the b-node and the output. Concretely, for qa + j+ qb = 1, this is the union over all

p = (t,Σµ,Σ∆) ∈ [0, 1]×R(d−k−l+qa+qb+1)+1 ×Rj;k,l
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of the space of all maps

u : Σ∆ q Σµ → M̂ [σ]

satisfying essentially the same conditions as for P0,0,0;k,l(v; γ0):

1. Write u∆ := u|Σ∆
and uµ := u|Σµ . Then

u∆ ∈

{
R0;k,l ((), (γl, . . . , γd−k); γb, γa) for j = 0

R1;k,l ((γ1), (γl, . . . , γd−k); γb, γa) for j = 1

for some γa ∈ X(Lqa , Bl) and γb ∈ X(Bd−k−1, L1−qb).

2. uµ satisfies (3.2.12) for the Floer datum KP(p).

3. Let τE(p) be the boundary rescaling function assigned to Σµ by KP(p). Then

u (∂iΣµ) ∈


(
φτE(p)

)∗
L0 for i = 0 and, if qb = 1, for i = d− k − l + 1(

φτE(p)
)∗
L1 for i = d− k − l + qa + qb + 1 and, if qa = 1, for i = 1(

φτE(p)
)∗
Bl+i−qa−1 otherwise

where ∂iΣµ is the portion of the boundary between ζi and ζi+1, ordered cyclically.

4. Let τi be the rescaling factor assigned by KP(p) to ζi ∈ Σµ. Then

u(ζ0) = (φτ0)∗γ0

u(ζ1+qa) = (φτ1+qa )∗γa

u(ζi) = (φτi)∗γl+i−qa−1 for 2 + qa ≤ i ≤ d− k − l + qa

u(ζd−k−l+qa+1) = (φτd−k−l+qa+1)∗γb.

If qa = 1, then we further require u(ζ1) = (φτ1)∗γ1. Similarly, if qb = 1, we require
u(ζd−k−l+2) = (φτd−k−l+2)∗γ1.

Once again Gromov compactness holds, and the compactified spaces Pqa,j,qb;k,ld (v, γ1; γ0)
are obtained by allowing either or both of u∆ and uµ to break.

Lemma 4.7.4. For an appropriate choice of KPreg(M [σ]) in Lemma 4.7.3, the following hold
for every K ∈ KPreg(M [σ]).

1. For any d ≥ 1 and all qa, j, qb ≥ 0 with qa + j + qb = 1, any Lagrangians L0, L1, any
v = γd⊗· · ·⊗γ1 ∈ CC∗(Bσ(σ)), and any chords γ0, γ

1 ∈ X(L0, L1), Pqa,j,qb;k,ld (v, γ1; γ0)
is a smooth manifold with boundary of dimension deg(γ0)− deg(γ1)− deg(v) + 2− n.
Additionally, it is empty unless nσ(γ0) ≤ nσ(γ1).

2. If deg(γ0)− deg(γ1)− deg(v) = n− 2, then Pqa,j,qb;k,ld (v, γ1; γ0) is compact.
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3. If deg(γ0)−deg(γ1)−deg(v) = n− 1, then Pqa,j,qb;k,ld (v, γ1; γ0) is a compact topological
1-manifold with boundary, and its boundary consists of all broken configurations u of
the following types.

In the first type of configuration, t ∈ (0, 1),

u∆ ∈ ∂Rj;k,l((), (γl, . . . , γd−k); γb, γa),

while uµ is a map uµ : Σµ → M̂ [σ] satisfying the Cauchy-Riemann
equation perturbed by the Floer datum chosen for (t,Σµ,Σ∆) with
the corresponding boundary and asymptotic conditions.

(4.7.6)

In the second type of configuration, t ∈ (0, 1),

u∆ ∈ Rj;k,l((), (γl, . . . , γd−k); γb, γa),

while uµ has broken, such that one component is an honest A∞
disk u0

µ which has neither γa nor γb as an input. Such a disk is
either a portion of the Hochschild differential on v, or it is a 1-
or 2-input disk involving γ1 and/or γ0. The other disk, umainµ , is

a map umainµ : Σmain
µ → M̂ [σ] satisfying the Cauchy-Riemann equa-

tion perturbed by the Floer datum chosen for (t,Σmain
µ ,Σ∆) with the

induced boundary and asymptotic conditions. This configuration is
still part of P1

d(v, γ1; γ0) unless u0
µ involves both γ1 and γ0, in which

case the configuration is instead part of P0;k,l(v, γ̃) with γ̃ an input
of u0

µ.

(4.7.7)

In the third type of configuration, t ∈ (0, 1),

u∆ ∈ Rj;k,l((), (γl, . . . , γd−k); γb, γa),

while uµ has broken, such that one component is an honest A∞
disk uinµ which has γa or γb as an input but does not have γ0 as its

output. The other, uoutµ , is a map uoutµ : Σout
µ → M̂ [σ] satisfying the

Cauchy-Riemann equation perturbed by the Floer datum chosen for
(t,Σout

µ ,Σbig) with the induced boundary and asymptotic conditions,
where Σbig is the broken disk formed by joining the domains of u∆

and uinµ .

(4.7.8)

In the fourth type of configuration, t = 0, in which case u is a two-
component broken annulus of the type contributing to A0,1

v . Indeed,
A0,1
v is a count of precisely such annuli satisfying either nσ(γ1) = 0

or qa = 0, nσ(γa) = 0, and nσ(γ0) = nσ(γ1).

(4.7.9)
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In the fifth type of configuration, t = 1, in which case u is a two-
component broken annulus which can be glued into an honest per-
turbed holomorphic annulus.

(4.7.10)

While P0
d(v; γ0) already extends the moduli space giving rise to A0,0

v , for A0,1
v we need

to look at a connected component of P 1
d (v, γ1; γ0) as hinted by (4.7.9). This is the space

P1
d,filt(v, γ

1; γ0) consisting of those u ∈ P 1
d (v, γ1; γ0) for which either (1) nσ(γ1) = 0, or (2)

qa = 0, nσ(γa) = 0, and nσ(γ0) = nσ(γ1). For an equivalent description closer in spirit to
the filtered closed-open moduli space, choose for all Σµ a path e : [0, 1]→ Σµ starting on the
edge ∂0Σµ and ending on ∂1+qaΣµ. P1

d,filt(v, γ
1; γ0) is the space of all u which avoid Dσ and

for which the topological intersection number u ◦ e with σ(F̂ × R+) vanishes.

Define a linear map h1
y : hom∗σ′(L0, L1)→ hom

∗+deg(v)+n−2
σ′ (L0, L1) to depend linearly on

y and, for v = γd ⊗ · · · ⊗ γ1 ∈ CC∗(Bσ(σ)), to be given by

h1
v(γ

m ⊗ · · · ⊗ γ0) =
∑

0≤i≤m+1
nσ(γr)=0 ∀r<i

γ̃ making the result composable
deg(γ̃)=deg(v)+n−1

#P0
d(v; γ̃) · γm ⊗ · · · ⊗ γi ⊗ γ̃ ⊗ γi−1 ⊗ · · · ⊗ γ0

+
∑

0≤i≤m
nσ(γr)=0 ∀r<i

γ̃ making the result composable
deg(γ̃)=deg(v)+deg(γi)+n−2

#P1
d,filt(v, γ

i; γ̃) · γm ⊗ · · · ⊗ γi+1 ⊗ γ̃ ⊗ γi−1 ⊗ · · · ⊗ γ0.
(4.7.11)

In the same way, we define the gluable annulus maps

Ã0,0
y and Ã0,1

y : hom∗σ′(L0, L1)→ hom
∗+deg(v)+n−1
σ′ (L0, L1)

via

Ã0,0
v (γm⊗ · · · ⊗ γ0) =

∑
0≤i≤m+1

nσ(γr)=0∀r<i
γ̃ making the result composable

deg(γ̃)=deg(v)+n

#
[
P0
d(v; γ̃)

]
t=1
· γm⊗ · · · ⊗ γi⊗ γ̃ ⊗ γi−1⊗ · · · ⊗ γ0 (4.7.12a)

Ã0,1
v (γm ⊗ · · · ⊗ γ0) =

∑
0≤i≤m

nσ(γr)=0∀r<i
γ̃ making the result composable
deg(γ̃)=deg(v)+deg(γi)+n−1

#
[
P1
d,filt(v, γ

i; γ̃)
]
t=1
· γm ⊗ · · · ⊗ γi+1 ⊗ γ̃ ⊗ γi−1 ⊗ · · · ⊗ γ0,

(4.7.12b)
where the notation [·]t=1 refers to the portion of the corresponding moduli space which occurs
at t = 1. This is the portion of the boundary of the 1-dimensional part of the filtered moduli
space described in (4.7.5) and (4.7.10).
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Lemma 4.7.5. Up to terms which decrease the main filtration,

h1
vµ

1
σ′ + µ1

σ′h
1
v = h1

δv + A0,0
v + A0,1

v + Ã0,0
v + Ã0,1

v . (4.7.13)

Proof. Write h1
v = (h1

v)
0,0 + (h1

v)
0,1, where (h1

v)
0,0 is the part of h1

v coming from the first sum
in (4.7.11), while (h1

v)
0,1 is the part coming from the second sum. We begin by analyzing

the part of h1
vµ

1
σ′ + µ1

σ′h
1
v which increases word length. This consists of all ways of applying

(h1
v)

0,0 and µ1
Wσ′ (M [σ]) in some order. All such terms cancel except those in which µ1

Wσ′ (M [σ])

is applied to the output of h1
v, which we see constitute the part of (4.7.2) which do not

contribute to the Hochschild differential. We therefore examine the rest of the boundary of
the corresponding 1-dimensional moduli space.

The rest of the Hochschild differential appears in (4.7.1), giving rise to a (h1
δv)

0,0. The rest
of (4.7.1) comes from the breaking of an A∞ disk outputting ζa or ζb. Such disks precisely
form the contribution of (4.7.3) for a different connected component, and so they cancel

in pairs. The remaining terms (4.7.4) and (4.7.5) correspond precisely to A0,0
v and Ã0,0

v ,
respectively, which confirms the portion of (4.7.13) which increases word length.

For the portion which preserves word length, in order to avoid leaving the filtered moduli
space, we consider only the part of µ1

σ′ which does not decrease intersection number. Among
such terms, we are interested in all ways of performing both µ2

Wσ′ (M [σ]) and (h1
v)

0,0 or both

µ1
Wσ′ (M [σ]) and (h1

v)
0,1 in some order. These again cancel when the operations take place

at different places in γm ⊗ · · · ⊗ γ0 ∈ homσ′(L0, L1). The remaining terms include not
just the non-Hochschild part of (4.7.7), but also the component of (4.7.6) given by a Floer
strip escaping at the outer input of the coproduct, as in (4.4.2f). The rest of the argument
proceeds as above.

4.8 Annuli, part 2

We can now construct the homotopy between Ã0,0
y + Ã0,1

y and COfiltOC(y) for a Hochschild cycle

y ∈ CC∗(Bσ(σ)). This is the induced effect of the Cardy relation for wrapped Floer theory
[1][14] on the quotient category, modified to interact with the intersection filtration.

For d ≥ 1, let A0+1
d be the space of conformal annuli Σ with the following data

1. d punctures on the inner boundary, labeled ζ1 through ζd in clockwise order. Note
that this becomes a standard counterclockwise ordering after exchanging the inner and
outer boundary components.

2. One puncture ζ0 on the outer boundary component, such that in coordinates

int(Σ) = {z ∈ C | 1 < |z| < R} (4.8.1)

for some R > 1 with ζd = 1, we have ζ0 = −R.
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A0+1
d admits a Deligne-Mumford compactification A0+1

d which is a manifold with stratified
boundary. In addition to ordinary smooth corners, it has boundary strata of codimension at
least two for which neighborhoods are subvarieties of the standard corner [0, a)i × (−a, a)j.
This is similar to the situation with multiplihedra. Its codimension 1 boundary components
come in three types.

1. The first type occurs as some of the inner boundary punctures come together while R
remains finite and strictly greater than 1. Such configurations are described by∐

2≤k≤d
1≤i≤k

A0+1
d+1−k ×R

k+1,i q
∐

2≤k≤d−1
1≤i≤d−k

A0+1
d+1−k ×R

k+1 (4.8.2)

as in (4.2.3). As before, the index i in the second term keeps track of where the
punctures collided.

2. The second type occurs as R tends to 1. Because of the anti-alignment condition
on ζ0 and ζd, Σ has to break into a nodal configuration in which ζ0 and ζd are on
different irreducible components. Thus, Σ must have at least two components, and
the codimension 1 condition is that it breaks into exactly two components. Such
configurations are described by ∐

k,l≥0
m≥2

k+l+m=d+1

Rm+1 ×R0;k,l,

which we identify with int[P0
d ]t=1, the interior of the portion of P0

d lying over t = 1.

3. The third type occurs as R tends to ∞. In this case, we obtain two disks attached
nodally at their centers, and the anti-alignment condition gives rise to a preferred
angular gluing parameter. The configuration is thus parametrized by

R0+1
1 ×R1

d,

where the alignment conditions on the cylindrical ends for CO and OC implements the
restriction on gluing angles. We then obtain boundary charts by introducing a gluing
parameter ρ satisfying ρ = 1

log `
, where ` is the gluing length for the cylindrical ends.

The higher codimension strata are either combinations of the above or paired boundary
strata of [P0

d ]t=1, or in other words configurations which arise as the boundary of two different
components of [P0

d ]t=1.
Next, let A1+1

d for d ≥ 1 be the space of conformal annuli Σ with the following data

1. d punctures on the inner boundary, labeled ζ1 through ζd in clockwise order. Note
that this becomes a standard counterclockwise ordering after exchanging the inner and
outer boundary components.
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2. Two punctures ζ0 and ζ1 on the outer boundary component, such that in coordinates
(4.8.1) with ζd = 1, we have ζ0 = −R.

A1+1
d admits a Deligne-Mumford compactification A1+1

d which is again a manifold with strat-
ified boundary. Its codimension 1 boundary components come in four types, the first three

of which are essentially the same as for A0+1

d .

1. The first type occurs as some of the inner boundary punctures come together while R
remains finite and strictly greater than 1. Such configurations are described by∐

2≤k≤d
1≤i≤k

A1+1
d+1−k ×R

k+1,i q
∐

2≤k≤d−1
1≤i≤d−k

A1+1
d+1−k ×R

k+1. (4.8.3)

2. The second type occurs as R tends to 1. Such configurations can be identified with
int[P1

d ]t=1, the interior of the portion of P1
d lying over t = 1.

3. The third type occurs as R tends to ∞ and is parametrized by

R1+1
1 ×R1

d.

4. The fourth type occurs when ζ1 collides with ζ0 while R ∈ (1,∞). This case is
formally similar to the first, but here we reduce the number of outer punctures. The
configurations are described by

R2+1 ×A0+1
d .

As before, the higher codimension strata are either combinations of the above or paired
boundary strata of [P1

d ]t=1.
A collection of strip-like ends for an annulus Σ ∈ Aj+1

d consists of positive strip-like ends
εi at ζi for i ∈ {1, . . . , d} and, if applicable, ε1 at ζ1, along with a negative strip-like end
ε0 at ζ0, such that the images of the ends are pairwise disjoint. A cylinder for Σ is a finite
cylinder δ : [a, b]× S1 → Σ which is disjoint from the strip-like ends and, in the coordinates
(4.8.1) with ζd = 1 and ζ0 = −R, takes the form

δ(s, t) = ce−2π(s+it) with c ∈ R positive.

A universal choice of ends and cylinders for Aj+1
d consists, for all d ≥ 1 and

j ∈ {0, 1}, of a collection of strip-like ends for each Σ ∈ Aj+1
d which varies smoothly over

Aj+1
d , along with a cylinder for Σ whenever R ≥ 2 which also varies smoothly over Aj+1

d ,
which satisfy

1. The strip-like ends agree to infinite order at the boundary with the collection of strip-
like ends induced by gluing.

2. Near R =∞, the cylinder agrees with the finite cylinder induced by gluing.
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3. When R = 2, the width b− a of the cylinder is zero.

Fix once and for all a universal choice of strip-like ends and cylinders for Aj+1
d .

Similarly, a universal and conformally consistent choice of Floer data for Aj+1
d

consists, for all d ≥ 0 and j ∈ {0, 1}, of a Floer datum for each Σ ∈ Aj+1
d varying smoothly

over Aj+1
d , and such that at the boundary it agrees to infinite order with the conformal class

of Floer data induced by gluing. It is easy to see that conformal consistency can be achieved,

at least away from the R = 1 boundary of Aj+1

d . At the R = 1 boundary, one needs the
observation that, for fixed d, the Floer data on paired boundary strata of Pjd agree up to a
global conformal factor, so consistency can be extended across the corresponding strata of

∂Aj+1

d . Let KA(M [σ]) denote the space of all universal and conformally consistent choices
of Floer data for Aj+1

d .
Given KA ∈ KA(M [σ]), we obtain spaces of holomorphic annuli. For j = 0, these are

specified by a generator v = γd ⊗ · · · ⊗ γ1 ∈ CC∗(Bσ(σ)) and a chord γ0 ∈ X(L,L) with L
an interior Lagrangian in M [σ]. The resulting moduli space

A0+1
d (v; γ0)

is the space of all maps u : Σ→ M̂ [σ] for Σ ∈ A0+1
d satisfying (4.1.6) such that u(ζi) = (φτi)∗γi

and with the corresponding boundary conditions. Similarly, if L0 and L1 are interior La-
grangians of M [σ] and γ0, γ

1 ∈ X(L0, L1), then we obtain

A1+1
d (v, γ1; γ0),

the space of perturbed holomorphic curves u with domain in A1+1
d such that u(ζi) = (φτi)∗γi

and u(ζ1) = (φτ
1
)∗γ1, and which satisfy the appropriate boundary conditions.

As usual, A0+1
d (v; γ0) and A1+1

d (v; γ1, γ0) have Gromov compactifications A0+1

d (v; γ0) and

A1+1

d (v; γ1, γ0), respectively, which are obtained by including broken configurations.

Lemma 4.8.1. There is a dense subset KAreg(M [σ]) ⊂ KA(M [σ]) such that, for every uni-
versal choice KA ∈ KAreg(M [σ]), the following hold.

1. For any d ≥ 1, any Lagrangian L, any generator v = γd⊗ · · · ⊗ γ1 ∈ CC∗(Bσ(σ)), and
any chord γ0 ∈ X(L,L), A0+1

d (v; γ0) is a smooth manifold of dimension

deg(γ0)− deg(v) + 1− n.

Additionally, it is empty unless nσ(γ0) = 0.

2. If deg(γ0)− deg(v) = n− 1, then A0+1
1 (v; γ0) is compact.
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3. If deg(γ0) − deg(v) = n, then A0+1

1 (v; γ0) is a compact topological 1-manifold with
boundary, and its boundary consists of all broken configurations of the following types.

The first type corresponds to the domain hitting a boundary stratum

of A0+1

d of the form (4.8.2) or a Floer strip breaking off at a punc-
ture on the inner boundary. In symbols, these are essentially the
same as the first four terms of (4.2.5), though there we separated
the chords making up v.

(4.8.4)

The second type comes from a Floer strip breaking off at γ0 and is
parametrized by ∐

γ̃∈X(L,L)

R(γ̃; γ0)×A0+1
d (v; γ̃).

(4.8.5)

The third type comes from the domain hitting the R = 1 boundary
and is precisely [P0

d(v; γ0)]t=1.
(4.8.6)

The fourth type comes from the domain hitting R = ∞ and is
parametrized by ∐

x̃∈X(Ht)

R0+1
1 (x̃; γ0)×R1

d(γd, . . . , γ1; x̃)
(4.8.7)

4. For any d ≥ 1 any Lagrangians L0, L1, any generator v = γd⊗· · ·⊗γ1 ∈ CC∗(Bσ(σ)),
and any chords γ0, γ

1 ∈ X(L0, L1), A1+1
1 (v, γ1; γ0) is a smooth manifold of dimension

deg(γ0)− deg(γ1)− deg(v) + 2− n. Additionally, it is empty unless nσ(γ0) ≤ nσ(γ1).

5. If deg(γ0)− deg(γ1)− deg(v) = n− 2, then A1+1
1 (v, γ1; γ0) is compact.

6. If deg(γ0) − deg(γ1) − deg(v) = n − 1, then A1+1

1 (v, γ1; γ0) is a compact topological
1-manifold with boundary, and its boundary consists of all broken configurations of the
following types.

The first type corresponds to the domain hitting a boundary stratum

of A1+1

d of the form (4.8.3) or a Floer strip breaking off at a punc-
ture on the inner boundary. In symbols, these are also essentially
the same as the first four terms of (4.2.5).

(4.8.8)
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The second type comes from a Floer strip breaking off at γ1 or γ0 or
from a collision of ζ1 with ζ0. Such configurations are parametrized
by ∐
γ̃∈X(L0,L1)

A1+1
d (v, γ̃; γ0)×R(γ1; γ̃) q

∐
γ̃∈X(L0,L1)

R(γ̃; γ0)×A1+1
d (v, γ1; γ̃)

q
∐

γ̃∈X(L0,L0)

R2+1(γ1, γ̃; γ0)×A0+1
d (v; γ̃) q

∐
γ̃∈X(L1,L1)

R2+1(γ̃, γ1; γ0)×A0+1
d (v; γ̃).

(4.8.9)
The third type comes from the domain hitting the R = 1 boundary
and is precisely [P1

d(v, γ1; γ0)]t=1.
(4.8.10)

The fourth type comes from the domain hitting R = ∞ and is
parametrized by∐

x̃∈X(Ht)

R1+1
1 (x̃, γ1; γ0)×R1

d(γd, . . . , γ1; x̃)
(4.8.11)

To extend the filtered versions of the moduli spaces for the closed-open maps and the
first homotopy, choose for all Σ ∈ A1+1

d a path e : [0, 1] → Σ such that e(0) is on the outer
boundary component to the right of ζ0 and e(1) is on the inner boundary. Then for any γ0

and γ1 with nσ(γ0) = nσ(γ1) and any u ∈ A1+1
d (v; γ1; γ0), u ◦ e is a path between interior

Lagrangians which avoids Dσ, so it has a well defined intersection number with σ(F̂ ×R+).
Since the chords γi for i > 0 have nσ(γi) = 0, we can homotope the end of e through ζi
without changing the intersection number. This implies that the intersection number is
independent of the choice of e, and so we call it nAσ (u). The space

A1+1
d,filt(v, γ

+; γ0)

consists of all u ∈ A1+1
d (v; γ1; γ0) which avoid Dσ and satisfy nAσ (u) = 0.

The space A1+1
d,filt(v, γ

+; γ0) is a union of connected components of A1+1
d (v, γ+; γ0), and

its boundary inherits the filtered condition. In other words, they are the same except in the
following two ways. First, all annuli, broken annuli, and closed-open maps are replaced by
their filtered versions. Second, for nσ(γ0) = nσ(γ1) > 0, the terms∐

γ̃∈X(L1,L1)

R2+1(γ̃, γ1; γ0)×A0+1
d (v; γ̃)

in (4.8.9) no longer contribute.
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Define a linear map h2
y : hom∗σ′(L0, L1)→ hom

∗+deg(v)+n−2
σ′ (L0, L1) to depend linearly on

y and, for v = γd ⊗ · · · ⊗ γ1 ∈ CC∗(Bσ(σ)), to be given by

h2
v(γ

m ⊗ · · · ⊗ γ0) =
∑

0≤i≤m+1
nσ(γr)=0 ∀r<i

γ̃ making the result composable
deg(γ̃)=deg(v)+n−1

#A0+1
d (v; γ̃) · γm ⊗ · · · ⊗ γi ⊗ γ̃ ⊗ γi−1 ⊗ · · · ⊗ γ0

+
∑

0≤i≤m
nσ(γr)=0 ∀r<i

γ̃ making the result composable
deg(γ̃)=deg(v)+deg(γi)+n−2

#A1+1
d,filt(v, γ

i; γ̃) · γm ⊗ · · · ⊗ γi+1 ⊗ γ̃ ⊗ γi−1 ⊗ · · · ⊗ γ0.
(4.8.12)

By essentially the same argument as for Lemma 4.7.5, we conclude

Lemma 4.8.2. Up to terms which decrease the main filtration,

h2
vµ

1
σ′ + µ1

σ′h
2
v = h2

δv + Ã0,0
v + Ã0,1

v + COfiltOC(v). (4.8.13)

4.9 The last homotopy

Our goal now is to construct, for a saddle unit fσ ∈ SC1
σ(M [σ]), a homotopy h3

fσ
between

COfiltfσ
and an operation idσ which, while not the identity, induces the identity on the portion

of the associated graded of hom∗σ′(L0, L1) which does not lie in hom∗σ(L0, L1).
Thus, let Kf be a Floer datum on C giving rise to fσ as in 4.2.6. Denote by DY the

closed unit disk with a puncture ζY0 at −1, which we equip with a negative strip-like end εY0
and a family of finite cylinders δY as follows. Let D0,1

1 be as in Section 4.6 with negative
strip-like end ε0. Then ε0 induces εY0 via the unique biholomorphism D0,1

1 → DY \ {0}. For
the cylinders, we are interested in a (0, 1

2
]-parametrized family

δD,Y (ρ) : [aρ, bρ]× S1 → int(DY )

which satisfies

1. For ρ close to 0, δD,Y (ρ) agrees with the finite cylinder obtained by gluing εf on C to

ε+ on D0,1
1 with length e

1
ρ . Here, we are implicitly using the biholomorphism from the

glued surface to DY which sends 0 ∈ C to 0 ∈ DY and ζ0 to ζY0 .

2. b 1
2

= a 1
2
. In other words, at ρ = 1

2
, the cylinder has width zero.

We will think of this data as a (0, 1]-parametrized space of Riemann surfaces with boundary,
ends, and cylinders DY (ρ), which for ρ ∈ (0, 1

2
] is equipped with the strip-like end εY0 and

finite cylinder δD,Y (ρ) and for ρ > 1
2

is equipped only with εY0 .
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We consider smooth families of Floer data KD,Y (ρ) on DY (ρ) such that, in a gluing chart
near ρ = 0, KD,Y extends smoothly to 0, where it is conformally equivalent to the Floer data
chosen for C and D0,1

1 . Let KD,Y (M [σ]) denote the space of such families.
In addition to the above data, choose pD : (0, 1] → [0, 1] to be a nondecreasing smooth

function which is 0 on (0, 1
3
] and 1 on [1

2
, 1]. Similarly, choose a smooth isotopy Yσ(ρ) of

properly embedded hypersurfaces in M̂ [σ] which avoid σ(F̂ × R≥0) for all ρ and satisfy the
following conditions. First, Yσ(ρ) = Yσ for ρ ≤ 1

4
. Second, Yσ(ρ) ∈ image(σ) for ρ ≥ 1

3
,

and moreover Yσ(1) is transverse to all chords between interior Lagrangians which appear in
Wσ′(M [σ]).

Let L be an interior Lagrangian of M [σ], and let γ ∈ X(L,L). Given a family of Floer
data KD,Y ∈ KD,Y (M [σ]), let DY (γ) be the union over all ρ ∈ (0, 1] of the spaces DYρ (γ) of
maps

u : DY → M̂ [σ]

satisfying the following conditions.

1. u satisfies (4.1.6) for KD,Y (ρ).

2. u(z) ∈ (φτE(ρ)(z))∗L for z ∈ ∂DY , and u(ζY0 ) = (φτ(ρ))∗γ, where τ is the conformal
factor that KD,Y assigns to ζY0 .

3. u(pD(ρ)) ∈ Yσ(ρ).

Gromov compactness applies to DY (γ), and in fact the situation is better than expected.
Namely, suppose ρi is a sequence with pD(ρi) < 1 but lim pD(ρi) = 1, and that ui ∈ DYρi(γ)
is a Gromov convergent sequence. Then we expect the Gromov limit to contain a bubble
component with the incidence condition. However, in this case everything is exact, so all
bubbles are constant. Thus, the incidence condition on the bubble is equivalent to an
incidence condition on ∂DY , which means the incidence condition is a point of L∩Yσ(lim ρi).
However, Yσ(ρ) lies in the image of σ whenever pD(ρ) = 1, while L is an interior Lagrangian,
which means that no such point exists. This shows that, in fact, DYρ (γ) is empty for pD(ρ)
sufficiently close to 1.

Applying the usual transversality argument, we now obtain

Lemma 4.9.1. There is a comeager subset KD,Yreg (M [σ]) ⊂ KD,Y (M [σ]) such that for any
KD,Y ∈ KD,Yreg (M [σ]), the following hold.

1. For all interior Lagrangians L and all γ ∈ X(L,L), DY (γ) is a smooth manifold of
dimension deg(γ). It is empty if nσ(γ) > 0.

2. If deg(γ) = 0, then DY (γ) is compact.
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3. If deg(γ) = 1, then DY (γ) has a Gromov compactification DY (γ) which is a compact
topological 1-manifold with boundary, and there is a canonical identification

∂DY (γ) =
∐

x̃∈X(Ht)

R0+1
1 (x̃; γ)× C(x̃) q

∐
γ̃∈X(L,L)

R(γ̃; γ)×DY (γ̃)

Fix KD,Y ∈ KD,Yreg (M [σ]). We now repeat the above with one input. Choose a diffeomor-

phism Ψ: [0, 1]→ R1+1

1 such that Ψ(0) is nodal at the first positive puncture of Σ2+1 ∈ R2+1

and Ψ(1) is nodal at the second positive puncture of Σ2+1. Let ZY be the strip R × [0, 1],
where R × {i} is ∂iZ

Y , and the ends −∞ and +∞ are labeled ζY0 and ζY1 , respectively.
Then Ψ induces a (0, 1)-parametrized family of strip-like ends εZ,Yq on ZY by specifying, for
q ∈ (0, 1), the embedding Ψ(q) ↪→ ZY which sends ∂Ψ(q) to ∂ZY , ζi to ζYi , and ζ+ to a point
on {0} × (0, 1). Extend this to a (0, 1] × (0, 1)-parametrized family εZ,Y with the following
properties

1. For (ρ, q) ∈ (0, 1]× (0, 1) with ρ small or q ≤ 1
4

or q ≥ 3
4
, εZ,Y (ρ, q) agrees with εZ,Yq .

2. For ρ close to 1 and q ∈ [1
4
, 3

4
], εZ,Y (ρ, q) agrees up to shift with the canonical strip-like

ends on Z.

Similarly, choose a smooth (0, 1
2
] × (0, 1)-parametrized family of finite cylinders δZ,Y on

ZY as follows.

1. For (ρ, q) ∈ (0, 1]×(0, 1) with ρ small, δZ,Y (ρ, q) agrees with the finite cylinder obtained

by gluing εf on C to ε+ on Ψ(q) with length e
1
ρ .

2. For q close to 0 or 1, δZ,Y (ρ, q) agrees with the finite cylinder induced by gluing DY (ρ)
to the appropriate input of Σ2+1 with length dictated by consistency with Ψ.

3. For ρ = 1
2

and any q, the cylinder δZ,Y (ρ, q) has width zero.

We then think of this data as a (0, 1]× (0, 1)-parametrized space of Riemann surfaces with
boundary, ends, and cylinders ZY (ρ, q), which for ρ ∈ (0, 1

2
] is equipped with the strip-like

ends εZ,Y and finite cylinder δD,Y (ρ) and for ρ > 1
2

is equipped only with εZ,Y .
Consider the space KZ,Y (M [σ]) of smooth, (0, 1] × (0, 1)-parametrized families of Floer

data KZ,Y on ZY with the following properties.

1. For (ρ, q) ∈ (0, 1]× (0, 1) with ρ small, KZ,Y (ρ, q) extends smoothly to ρ = 0, where it
agrees up to conformal equivalence with the Floer data chosen for C and Ψ(q).

2. For q close to 0 or 1, KZ,Y (ρ, q) is conformally close in the sense of Definition 3.2.4 to
the Floer datum induced by gluing DY (ρ) to the appropriate input of Σ2+1 with length
dictated by consistency with Ψ.
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3. For ρ = 1 and q ∈ [1
4
, 3

4
], KZ,Y (ρ, q) is conformally equivalent to the Floer perturbation

(H0,1, dt, 1) which gives rise to the Floer differential.

Finally, we choose a function pZ : (0, 1]×(0, 1)→ ZY extending pD in the following sense.
For q near 0 or 1, pD(ρ) can be thought of as a point on the thick part of DY , and we require
pZ(ρ, q) to be the point of ZY with corresponds to pD(ρ) under gluing. For ρ close to 0,
pZ(ρ, q) agrees with the point of ZY (ρ, q) coming from the origin in C under the gluing of
C to Ψ(q). For ρ close to 1, we require that pZ(ρ, q) is ρ-independent and depends on q in
the following way. For q ≤ 1

3
or q ≥ 2

3
, pZ(ρ, q) is on the boundary of ZY . For q ∈ [1

3
, 2

3
], the

[0, 1]-component of pZ increases monotonically from 0 to 1.
Let L0 and L1 be interior Lagrangians of M [σ], and let γ0, γ1 ∈ X(L0, L1). For a universal

choice KZ,Y ∈ KZ,Y (M [σ]), the corresponding space of holomorphic strips is called ZY (γ1; γ0)
and is the union over all (ρ, q) ∈ (0, 1]× (0, 1) of the spaces ZYρ,q(γ) of maps

u : ZY → M̂ [σ]

satisfying the conditions

1. u satisfies (4.1.6) for KZ,Y (ρ, q).

2. u(z) ∈ (φτE(ρ)(z))∗Li for z ∈ ∂iDY , and u(ζYi ) = (φτi(ρ,q))∗γi, where τi is the conformal
factor that KZ,Y assigns to ζYi .

3. u(pZ(ρ, q)) ∈ Yσ(ρ).

The compactness situation is the same as before, and we have

Lemma 4.9.2. There is a comeager subset KZ,Yreg (M [σ]) ⊂ KZ,Y (M [σ]) such that for any
KZ,Y ∈ KZ,Yreg (M [σ]), the following hold.

1. For all interior Lagrangians L0, L1 and all γ0, γ1 ∈ X(L0, L1), ZY (γ1; γ0) is a smooth
manifold of dimension deg(γ0)− deg(γ1) + 1. It is empty if nσ(γ0) > nσ(γ1).

2. If deg(γ0)− deg(γ1) = −1, then ZY (γ1; γ0) is compact.

3. If deg(γ0) − deg(γ1) = 0, then ZY (γ1; γ0) has a Gromov compactification ZY (γ1; γ0)
which is a compact topological 1-manifold with boundary, and its boundary is in natural
bijection with ∐

x̃∈X(Ht)

R1+1
1 (x̃, γ1; γ0)× C(x̃) q

∐
γ̃∈X(L0,L1)

ZY (γ̃; γ0)×R(γ1; γ̃)

q
∐

γ̃∈X(L1,L1)

R2+1(γ̃, γ1; γ0)×DY (γ̃) q
∐

γ̃∈X(L0,L0)

R2+1(γ1, γ̃; γ0)×DY (γ̃)

q
∐

γ̃∈X(L0,L1)

R(γ̃; γ0)×ZY (γ1; γ̃) q
∐
t∈(0,1)

γ0(t)∈Yσ(1)

R̃(γ1; γ0).
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Of course, by Lemma 3.1.3, the last term only occurs when γ0 = γ1.

As with the other homotopies, there is a filtered version of ZY (γ1; γ0). This is obtained
by choosing, for all (ρ, q), a path e : [0, 1]→ ZY such that e(0) ∈ ∂0Z

Y and e(1) = pZ(ρ, q).
The filtered component ZYfilt(γ1; γ0) consists of all u ∈ ZY (γ1; γ0) such that u avoids Dσ and

u ◦ e has topological intersection number zero with σ(F̂ × R+). The condition that Yσ(ρ)
avoids σ(F̂ × R≥0) ensures that this is indeed a connected component of ZY (γ1; γ0).

Fixing KZ,Y ∈ KZ,Yreg (M [σ]), define a linear map h3
fσ

: hom∗σ′(L0, L1) → hom∗−1
σ′ (L0, L1)

by

h3
fσ(γm ⊗ · · · ⊗ γ0) =

∑
0≤i≤m+1

nσ(γr)=0 ∀r<i
γ̃ making the result composable

deg(γ̃)=0

#DY (γ̃) · γm ⊗ · · · ⊗ γi ⊗ γ̃ ⊗ γi−1 ⊗ · · · ⊗ γ0

+
∑

0≤i≤m
nσ(γr)=0∀r<i

γ̃ making the result composable
deg(γ̃)=deg(γi)−1

#ZYfilt(γi; γ̃) · γm ⊗ · · · ⊗ γi+1 ⊗ γ̃ ⊗ γi−1 ⊗ · · · ⊗ γ0.
(4.9.1)

We are finally rewarded for the bizarre filtered moduli spaces:

Lemma 4.9.3. Let fσ be a saddle unit, and let γ = γm ⊗ · · · ⊗ γ0 ∈ hom∗σ′(L0, L1) have∑m
i=0 nσ(γi) > 0. Then, up to terms which decrease the main filtration,(

h3
fσµ

1
σ′ + µ1

σ′h
3
fσ

)
(γ) = COfiltfσ

(γ) + γ (4.9.2)

Proof. Following the usual argument, we obtain(
h3
fσµ

1
σ′ + µ1

σ′h
3
fσ

)
(γ) = COfiltfσ

(γ) +
∑

0≤i≤m
nσ(γr)=0∀r<i

∑
t∈(0,1)
γi(t)∈Yσ(1)

γi(t′)6∈σ(F̂×R+) for any t′<t

#R̃(γi; γi) · γ.

The coefficient #R̃(γi; γi) is of course 1, but we include it for clarity. Examining the con-
ditions on the sums, we see that the only i which contributes is the smallest i such that
nσ(γi) 6= 0. For this γi, let t0 ∈ (0, 1) be the first time at which γi intersects σ(F̂ × R+).
Since γi starts outside the image of σ, it crosses Yσ(1) topologically once before t0, and hence
the sum contributes a total coefficient of 1.

For y ∈ CC∗(Bσ(σ)) closed with OC(y) = fσ a saddle unit, set hy := h1
y + h2

y + h3
fσ

. This
is the last ingredient we need to prove the stop removal formula:

Proof of Theorem 4.2.7. Since σ is nondegenerate, there is some y ∈ CC∗(Bσ(σ)) such that
δy = 0 andOC(y) is a saddle unit. Define a linear map ∆y : hom∗σ′(L0, L1)→ hom∗−1

σ′ (L0, L1)
by

∆y(γ) =

{
∆0
y + hy if (n,m)(γ) > (1, 0)

0 otherwise.
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Let Ry = id + µ1
σ′∆y + ∆yµ

1
σ′ be the basic retraction as in Section 4.3. It suffices to show

that Ry satisfies the conditions of Lemma 4.3.3, as this would prove Proposition 4.3.1 and
hence Theorem 4.2.7. Condition (1) is trivial. To prove Condition (2), combine Equation
4.5.10 with Lemmas 4.7.5, 4.8.2, and 4.9.3.
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Appendix A

Energy and compactness

To prove the various compactness claims, we need to know that, given a set of input chords
or orbits, there are only finitely many possible outputs, and that these constrain the resulting
holomorphic curves to some compact subset of our ambient spaceM . Appendix A.1 addresses
the first part of this. For the second, we use Appendix A.2 away from cylindrical ends
and interpolate to Ganatra’s setup ([14] Appendix A) near those. Our maximum principle
coincides with his for the “unperturbed region” on a separating open set, and so they patch
together. All of the included proofs are essentially standard.

A.1 Action inequalities

Let Σ be a Riemann surface with boundary components ∂iΣ, interior punctures zj, and
boundary punctures ζk. Let εj be cylindrical ends at zj, and likewise let εk be strip-like ends
at ζk, such that the images of the ends are pairwise disjoint.

Suppose further we are given a Liouville domain (M,λM), and that ∂iΣ is labeled with
a smooth transverse family of Lagrangians {Li(z) ∈ M̂ | z ∈ ∂iΣ} which is constant in

the strip-like ends. Additionally, we have a Σ-parametrized compatible Hamiltonian H̃, a
Σ-parametrized perturbing Hamiltonian P , along with 1-forms β and β` with the following
properties.

1. On the cylindrical and strip-like ends, let t be the coordinate of the compact S1 or
[0, 1] factor, and let s be the coordinate on the R≥0 or R≤0 factor. Then H̃ is both
s- and t-independent, P is s-independent, and β = wdt for some positive constant w
depending on the end.

2. dβ ≤ 0 and β|∂Σ = 0.

3. Outside of a compact set, dΣH̃ ∧ β ≤ 0, and further there is some c < 0 such that
H̃dβ + dΣH̃ ∧ β ≤ c on the support of β`.
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4. For any z ∈ ∂iΣ and ξ ∈ Tz∂Σ, the vector field β`(ξ) ·X√
H̃(z)

is tangent outside of a

compact set to the deformation of Li(z) associated to ξ.

5. P is globally bounded, and ‖XP‖ decays exponentially in the symplectization coordi-

nate
√
H̃ for any metric coming from some J ∈ J Σ(M, H̃).

6. dΣP ∧ β ≤ 0, and the supports of β` and dP are disjoint.

Finally, we suppose we have some Σ-parametrized ω̂M -compatible almost complex structure
J .

Set H = H̃ + P . We consider the spaceM of maps u : Σ→ M̂ sending every z ∈ ∂iΣ to
a point Li(z) and satisfying the inhomogeneous Cauchy-Riemann equation

J ◦ (du−XH ⊗ β −X√
H̃
⊗ β`) = (du−XH ⊗ β −X√

H̃
⊗ β`) ◦ j

where j is the almost-complex structure on Σ. Given a Kähler metric on Σ, define the
geometric energy of such u as

Egeom(u) =

∫
Σ

‖du−XH ⊗ β −X√
H̃
⊗ β`‖2dvol,

where the metric on M̂ is Σ-dependent and is obtained from J . This is independent of the
choice of Kähler metric on Σ and is in fact given by

Egeom(u) =

∫
Σ

(
u∗ω̂M − u∗(dM̂H) ∧ β − u∗(dM̂

√
H̃) ∧ β`

)
.

In fact, this formula would hold and the theory would go through if
√
H̃ were replaced with

any other linear Hamiltonian H` satisfying [H,H`] = 0, but it is hard to find such H`.
We also define the topological energy of u by

Etop(u) =

∫
Σ

(
u∗ω̂M − d(u∗Hβ)− d(u∗

√
H̃β`)

)
= Egeom(u)−

∫
Σ

(
u∗Hdβ + u∗(dΣH) ∧ β + u∗

√
H̃dβ` + u∗(dΣ

√
H̃) ∧ β`

)
.

Lemma A.1.1. There is some constant C ∈ R depending only on Σ, H̃, P , β, and β` for
which

Etop(u) ≥ Egeom(u) + C

for all u ∈M.

Proof. We begin by noting that Hdβ, dΣH ∧ β,
√
H̃dβ`, and dΣ

√
H̃ ∧ β` all belong to

Ω2(Σ;C∞(M̂)) and are compactly supported in the Σ-direction. Moreover, Hdβ and dΣH̃∧β
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are asymptotically quadratic in the symplectization coordinate r, while dΣ
√
H̃ ∧ β` and√

H̃dβ` are linear in r and dΣP ∧ β is nonpositive by assumption. Thus, condition 3 above
shows that

Hdβ + (dΣH) ∧ β +
√
H̃dβ` + (dΣ

√
H̃) ∧ β`

is nonpositive outside of a compact subset of Σ× M̂ . This means that it is bounded above,
and because it is compactly supported in the Σ-direction this gives the desired conclusion.

We now examine the relation between action and topological energy . For any u ∈ M
with Egeom(u) <∞, u converges at εj to a 1-periodic orbit xj of wjXH and at εk to a chord
γk of wkXH , for appropriate 1-parameter specializations of H. Before we define the action,
choose for each boundary component ∂iΣ a smooth family of functions fi(z) ∈ C∞(Li(z))
which satisfy d[fi(z)] = λ̂M |Li(z) and are independent of z in the strip-like ends. For an orbit
x, define

A(x) =

∫
S1

(
x∗λ̂M − wx∗Hdt

)
.

For a chord γ, let L0 and L1 be the Lagrangians containing γ(0) and γ(1), respectively, and
let f0 and f1 be the primitives chosen above for L0 and L1. Define

A0(γ) =

∫
[0,1]

(
γ∗λ̂M − wγ∗Hdt

)
A(γ) =

∫
[0,1]

(
γ∗λ̂M − wγ∗Hdt

)
+ f0(γ(0))− f1(γ(1)).

With this set up, we have

Lemma A.1.2. There is some constant D ∈ R depending only Σ, H̃, β`, {Li}, and {fi}
for which

Etop(u) ≤
∑

positive
cylindrical
ends εj

A(xj) +
∑

positive
strip-like
ends εk

A(γk)−
∑

negative
cylindrical
ends εj

A(xj)−
∑

negative
strip-like
ends εk

A(γk) +D

for all u ∈M.

Proof. To begin, pick an element η ∈ Ω1(∂Σ; Γ(TM̂)) which agrees with X√
H̃
β` outside of

a compact subset of ∂Σ × M̂ and such that, for all z ∈ ∂iΣ and ξ ∈ Tz∂Σ, the vector field
η(z)(ξ) is tangent to the deformation of Li(z) associated to ξ. For any u ∈ M of finite
energy, du|∂Σ − η(u(z)) is then valued at z ∈ ∂iΣ in vector fields tangent to the Lagrangian
submanifold Li(z).

Next, for each i, let L(i) be the smooth manifold underlying Li(z), so that we may view

Li(z) as a family of exact Lagrangian embeddings Λi(z) : L(i) ↪→ M̂ . Moreover, we may
arrange that for any vector field ξ ∈ Γ(T∂iΣ), we have

LξΛi = η(ξ)
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After pulling back by Λi, we may view fi(z) as functions on L(i) × ∂iΣ.
For any u ∈M of finite energy, set

A0(u) =
∑

positive
cylindrical

ends εj

A(xj) +
∑

positive
strip-like
ends εk

A0(γk)−
∑

negative
cylindrical

ends εj

A(xj)−
∑

negative
strip-like
ends εk

A0(γk)

A(u) =
∑

positive
cylindrical

ends εj

A(xj) +
∑

positive
strip-like
ends εk

A(γk)−
∑

negative
cylindrical

ends εj

A(xj)−
∑

negative
strip-like
ends εk

A(γk).

We evaluate

Etop(u) =

∫
∂Σ

(
u∗λ̂M − u∗Hβ − u∗

√
H̃β`

)
= A0(u) +

∫
∂Σ

(
u∗λ̂M − u∗

√
H̃β`

)
= A0(u) +

∫
∂Σ

(
〈λ̂M , du− η(u)〉+ 〈λ̂M , η(u)〉 − u∗

√
H̃β`

)
≤ A0(u) +

∑
i

∫
∂iΣ

(
〈dL(i)fi, du− η(u)〉+ 〈λ̂M , X√

H̃
(u)β`〉 − u∗

√
H̃β`

)
+D1

≤ A0(u) +
∑
i

∫
∂iΣ

〈dL(i)fi, du− η(u)〉+D2

= A0(u) +
∑
i

∫
∂iΣ

u∗dL(i)fi +D2

= A0(u) +
∑
i

∫
∂iΣ

(
u∗dfi − d∂iΣfi(u)

)
+D2

= A(u)−
∑
i

∫
∂iΣ

d∂iΣfi(u) +D2

As a 1-form on ∂iΣ, this final integrand is compactly supported and globally bounded inde-
pendently of u, so it can be bounded by an additive constant. This completes the proof.

Because Egeom(u) ≥ 0 for any u ∈M, Lemmas A.1.1 and A.1.2 give an upper bound on
the action of the output chords and orbits in terms of the data on Σ and the action of the
input chords and orbits. To obtain finiteness, we note that for any orbit x on the portion of
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M̂ where H is quadratic, we have

A(x) =

∫
S1

(
x∗λ̂M − wx∗Hdt

)
=

∫
S1

(
λ̂M(wXH)dt− wx∗Hdt

)
= w

∫
S1

(
x∗(2H̃)dt− x∗H̃dt

)
+ w

∫
S1

(
λ̂M(XP )dt− x∗Pdt

)
= w

∫
S1

H̃(x)dt+ w

∫
S1

(
λ̂M(XP )− x∗P

)
dt.

The first integral is very nearly the same as wH̃(x(t0)), while the second is globally bounded.
In particular A is proper and bounded below on the space of XH-orbits. A similar result
holds for A(γ) or A0(γ). Thus, the space of possible outputs for a given choice of inputs is
compact. Since our Hamiltonians are nondegenerate, this shows that it is finite.

A.2 A maximum principle

With data as above, we further assume that P = 0, J is asymptotically ẐM -invariant on the
contact planes ker dH ∩ ker λ̂M , and that there is some compact subset K ⊂ M̂ such that,
outside Σ×K,

dM̂H ◦ J = −g(H)λ̂M (A.2.1)

for some strictly positive function g. Additionally, we require that there is some k such that
dβ < k < 0 on the supports of ∂ΣH and β`.

Note that H(z) is quadratic for all z ∈ Σ, which means we can write dΣH = Hν for
some ν ∈ Ω1(Σ, C∞(M̂)). Moreover, we may enlarge K to assume ν is ẐM -invariant on the
complement of Σ×K.

We are interested in two regimes. In the first, ∂ΣH = 0 and β` = 0, but g is allowed to
be Σ-dependent. In the second, g(x) = cx for some c > 0, and no assumptions are made on
∂ΣH or on β`. In either case, we will use the Hopf maximum principle, which states that
if some function F : Σ → R satisfies ∆F ≥ 0 modulo dF , then the local maxima of F all
occur on ∂Σ, and that at such local maxima the outward normal derivative of F is strictly
positive. We take F = H ◦ u, and compute

dcF = dΣH(u) ◦ j + dM̂H ◦ du ◦ j

= Fν(u) ◦ j + dM̂H ◦ (du−XHβ −X√Hβ
`) ◦ j

= Fν(u) ◦ j − g(F )λ̂M ◦ (du−XHβ −X√Hβ
`)

= Fν(u) ◦ j − g(F ) ·
(
u∗λ̂M − 2Fβ −

√
Fβ`

)
.
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In the first regime, ν = 0 and β` = 0, so that modulo dF we have

∆F · dvol = −ddcF

= dΣg(F ) ∧
(
u∗λ̂M − 2Fβ

)
+ g(F ) · (u∗ω̂M − 2Fdβ)

= dΣg(F ) ∧ −1

g(F )
dcF + g(F ) ·

(
[u∗ω̂M − u∗(dM̂H) ∧ β − u∗(dM̂

√
H) ∧ β`]

+u∗(dM̂H) ∧ β − 2Fdβ
)
.

The dcF term is linear in dF and can be ignored, and in the first regime dH = dM̂H, so
modulo dF we are left with

∆F · dvol = g(F ) ·
(
‖du−XHβ −X√Hβ

`‖2 + u∗(dH) ∧ β − 2Fdβ
)

= g(F ) ·
(
‖du−XHβ −X√Hβ

`‖2 + dF ∧ β − 2Fdβ
)

= g(F ) ·
(
‖du−XHβ −X√Hβ

`‖2 − 2Fdβ
)
.

The right hand side is globally nonnegative, so the Hopf maximum principle applies.
In the second regime, we instead have

dcF = Fν ◦ j − cFu∗λ̂M + 2cF 2β + cF
3
2β`.

For convenience of notation, we will write in local coordinates

−ν(u) ◦ j = cν1(s, t, u(s, t))ds+ cν2(s, t, u(s, t))dt,

where ν1 and ν2 are functions on Σ × M̂ which are ẐM -invariant outside Σ × K. Modulo
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dF , this gives

−ddcF = cF ·
(

(D1ν2 −D2ν1)ds ∧ dt+ 〈D3ν1, du〉 ∧ ds+ 〈D3ν2, du〉 ∧ dt

+ u∗ω̂M − 2Fdβ −
√
Fdβ`

)
= cF ·

(
‖du−XHβ −X√Hβ

`‖2 + u∗(dM̂H) ∧ β + u∗(dM̂
√
H) ∧ β`

+ 〈D3ν1, du〉 ∧ ds+ 〈D3ν2, du〉 ∧ dt− 2Fdβ −
√
Fdβ` + (D1ν2 −D2ν1)ds ∧ dt

)
= cF ·

(
‖du−XHβ −X√Hβ

`‖2 + dF ∧ β + d
√
F ∧ β` − dΣH(u) ∧ β − dΣ

√
H(u) ∧ β`

+ 〈D3ν1, du−XHβ −X√Hβ
`〉 ∧ ds+ 〈D3ν2, du−XHβ −X√Hβ

`〉 ∧ dt
+ 〈D3ν1, XHβ +X√Hβ

`〉 ∧ ds+ 〈D3ν2, XHβ +X√Hβ
`〉 ∧ dt

− 2Fdβ −
√
Fdβ` + (D1ν2 −D2ν1)ds ∧ dt

)
= cF ·

(
‖du−XHβ −X√Hβ

`‖2

+ 〈D3ν1, du−XHβ −X√Hβ
`〉 ∧ ds+ 〈D3ν2, du−XHβ −X√Hβ

`〉 ∧ dt
+ 〈D3ν1, XHβ +X√Hβ

`〉 ∧ ds+ 〈D3ν2, XHβ +X√Hβ
`〉 ∧ dt

− 2Fdβ − Fν(u) ∧ β − 1

2

√
Fν(u) ∧ β` −

√
Fdβ` + (D1ν2 −D2ν1)ds ∧ dt

)
.

Now D3ν1 and D3ν2 vanish on ẐM and are ẐM -invariant. Since the metric ω̂M(·, J ·) grows
with H in the ∂M directions, ‖D3ν1‖ and ‖D3ν2‖ tend to zero as H tends to infinity. Thus,
we can apply Cauchy-Schwarz and obtain that, modulo dF ,

−ddcF ≥ cF ·
(
‖du−XHβ −X√Hβ

`‖2dvol − 1

c
‖D3ν‖‖du−XHβ −X√Hβ

`‖dvol

+ 〈D3ν1, XHβ +X√Hβ
`〉 ∧ ds+ 〈D3ν2, XHβ +X√Hβ

`〉 ∧ dt

− 2Fdβ − Fν(u) ∧ β − 1

2

√
Fν(u) ∧ β` −

√
Fdβ` + (D1ν2 −D2ν1)ds ∧ dt

)
= cF ·

((
‖du−XHβ −X√Hβ

`‖ − 1

2c
‖D3ν‖

)2
dvol − 2Fdβ − Fν(u) ∧ β

+ 〈D3ν1, XHβ +X√Hβ
`〉 ∧ ds+ 〈D3ν2, XHβ +X√Hβ

`〉 ∧ dt

− 1

2

√
Fν(u) ∧ β` −

√
Fdβ` + (D1ν2 −D2ν1)ds ∧ dt− 1

4c2
‖D3ν‖2dvol

)

On the other hand, −2Fdβ and −Fν(u) ∧ β are assumed to be nonnegative, and moreover
−2Fdβ grows faster than any term in the last two lines and is assumed to be strictly positive
on the support of those terms. Thus, the right hand side is nonnegative for sufficiently large
F . In particular, we obtain
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Lemma A.2.1. In the above setup, suppose there is some k such that dβ < k < 0 on the
supports of dΣH and β`, and that

support(dΣg) ∩
(
support(dΣH) ∪ support(β`)

)
= ∅.

Then there is some R depending on g, H, β, and β`, but not on u, for which u∗H satisfies
the Hopf maximum principle outside of H−1((−∞, R)).

It remains to prevent maxima on ∂Σ. For this, let ξ be a vector field along ∂Σ which
points in the negative direction, so that jξ points outward. We calculate

dF (jξ) = dcF (ξ) = dΣH(u)(jξ)− g(F ) ·
(
λ̂M(du(ξ))− 2Fβ(ξ)−

√
Fβ`(ξ)

)
= dΣH(u)(jξ)− g(F )λ̂M

(
du(ξ)−X√Hβ

`(ξ)
)

= dΣH(u)(jξ).

This gives

Lemma A.2.2. In the situation of Lemma A.2.1, if additionally dΣH vanishes on outward
normal vectors at ∂Σ, then u∗H has no local maxima outside H−1((−∞, R)). In other words,
u∗H is bounded by the larger of R and the values of H on the asymptotic XH chords and
orbits.
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