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              ABSTRACT OF THE DISSERTATION 

 

Compiler Support for 

Customizable Domain-Specific Computing 

by 

Hui Huang 

Doctor of Philosophy in Computer Science 

University of California, Los Angeles, 2014 

Professor Jason Cong, Chair 

 

It is known that with the support of domain-specific customizable heterogeneous 

architecture, energy efficiency can be significantly improved by adapting architectures to 

match the requirements of a given application or application domain. One of the main 

challenges in this emerging trend is how to efficiently take the advantage of the 

heterogeneity and customization features in those architectures. This research investigates 

developing efficient compiler support to automate the platform mapping and code 

transformation process.  

First, considering customizable computing engines, we have investigated both 

tightly-coupled and loosely-coupled computing elements. In terms of tightly-coupled 

computing engine customization, customizable vector ISA supports are explored to better 

exploit data-level parallelism in the high performance applications. We identify the needs 
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and opportunities to explore customized vector instructions and quantify their benefits. 

We build an automatic compilation flow in LLVM-2.7 compiler infrastructure to 

efficiently identify customized vector instructions from a given set of applications. The 

memory alignment overhead, which is known to be critical for vector processing 

efficiency, has been optimized in our customized vector ISA identification flow. To 

support efficient vector ISA customization, we design a composable vector unit (CVU), 

which can be used both separately and in a chained mode, to support a large number of 

virtualized custom vector instructions with minimal area overhead. The results show that 

our approach achieves an average 27% speedup over the state-of-art vector ISA.  

Second, in terms of loosely-coupled computing elements, it is known that on-chip 

accelerators are combined with general-purpose cores in an effort to amortize the cost of 

the design across many application domains. In recent days programmable accelerators 

(PA) are widely investigated in the design of domain-specific architectures to improve the 

system performance and power. Micro-architectures with a series of PAs have been 

explored to provide more general supports for customization. One important feature in 

the PA-rich systems is that the target computational kernels are compiled with a set of 

pre-defined PA templates and dynamically mapped to real PAs at runtime. This imposes a 

demanding challenge on the compiler side regarding how to generate high-quality PA 

mapping code. We present an efficient PA compilation flow, which is fairly scalable in 

mapping large computation kernels into PA-rich architectures and provides support for 

full pipelined execution to achieve the highest energy efficiency. A concept called 

maximal PA candidate is proposed to drastically reduce the number of input PA 

candidates in the mapping phase without influencing the overall mapping optimality. 

Efficient pre-selection and pruning techniques are employed to further speedup the 

maximal PA mapping process. Our experimental results show that for 12 

computation-intensive standard benchmarks, the proposed approach achieves a 

significant improvement on the compilation time comparing to the state-of-art PA 
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compilation approaches. The average mapping quality is improved by 23.8% and 32.5% 

for connected PA candidates and disjoint ones, respectively. 

Third, in domain-specific computing multi-level software-controlled memories have been 

commonly used to better utilize domain-specific knowledge of particular applications and 

achieve high performance/energy efficiency. At the level of L1 memory, while 

conventional cache works well for general workloads, some recent works explore the 

idea of using a hybrid cache, which can be flexibly partitioned into a traditional cache 

and an SCM. In the hybrid cache architecture, first-level SCM has been utilized as 

prefetch buffer to hide memory access latency. We quantify the impact of data reuse on 

SCM prefetching efficiency and propose a reuse-aware SCM prefetching (RASP) scheme, 

which shows 31.2% performance gain over previous work. On the other hand, SCM has 

also been widely used in last level on-board memory to reduce the data movements 

between computing cores (i.e. host processor and accelerator cores), which is usually 

transferred through low-bandwidth bus and known to be one of the major performance 

bottlenecks in modern heterogeneous systems. To efficiently manage LL-SCM, we 

propose a task-level-reuse-graph (TLRM) based LL-SCM data movement scheme to 

minimize the amount of data transfers between heterogeneous computing cores through 

the slow PCIe bus. With the introduction of TLRM, the data movement optimization 

between host and accelerator cores can be approximated using a linear programming 

based solution, and an average 25% reduction of host-accelerator data transfers is 

observed from previous work. 
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Chapter 1.  Introduction 

 

1.1 Customizable Heterogeneous Architecture 

As discussed in [2], in order to meet ever-increasing computing needs and overcome 

power density limitations, the computing industry has halted simple processor frequency 

scaling and entered the era of parallelization, with tens to hundreds of computing cores 

integrated in a single processor, and hundreds to thousands of computing servers 

connected in a warehouse-scale data center. However, such highly parallel, 

general-purpose computing systems still face serious challenges in terms of performance, 

power, heat dissipation, space, and cost. Recently the research focus has moved from 

parallelization to domain-specific customization in which computing engines and 

interconnects can be specialized to a particular application domain to gain significant 

improvement in power-performance efficiency comparing to general-purpose 

architecture.  

The motivation of domain-specific customizable computing platform is derived on three 

observations:  

1) Each user typically has a high computing demand only in one or a few selected 

application domains (e.g., graphics for game developers, circuit simulation for integrated 

circuit design houses, financial analytics for investment banks) [2], which makes 

developing a customizable computing platform where computing engines and memories 

can be specialized to a particular application domain possible. Taking the advantage of 

the domain-specific knowledge, these architectures normally can gain significant 

improvements in power-performance efficiency comparing to a general-purpose 

architecture.  
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2) The power-performance gap between a fully customized platform, such as 

application-specific integrated circuit (ASIC), and a general-purpose platform can be very 

large. A case study of the 128-bit key AES encryption algorithm is discussed in [2]. An 

ASIC implementation in 0.18um CMOS achieves 3.86Gbits/second at 350mW, while the 

same algorithm coded in Java and executed on an embedded SPARC processor yields 

450bits/second at 120mW. This difference implies a performance/power efficiency gap of 

approximately 3 million Gbits/seconds/Watts.  

3) It is very costly to implement a fully customized ASIC architecture for each 

application, due to the fact that the non-recurring engineering cost of an ASIC design at 

the current 45nm CMOS technology is over $50M [3] and the design cycle can easily 

exceed a year. The large ASIC cost also imposes a strong need for an architecture 

platform to be efficiently customized to a wide range of applications in one domain or a 

set of domains, which can bridge the huge performance/power gap between ASICs and 

general-purpose processors with moderate hardware costs.  

To realize the order-of-magnitude performance/power efficiency improvement via 

customization with reasonable cost, both industry and academia have been turning their 

attention on developing customizable heterogeneous platforms. For example, NVIDIA‟s 

Fermi GPU introduces memory customization capability, in which the shared memory 

space can be reconfigured into either cache or scratchpad memory with multiple possible 

sizes.  

A more general customizable architecture is presented in [2], which includes: 1) 

integration of customizable cores and co-processors that will enable power-efficient 

performance tuned to the specific needs of an application domain; and 2) reconfigurable 

high-bandwidth and low-latency on- and off-chip interconnects, which can be customized 

to specific applications. Figure 1-1 illustrates an example of such customizable 
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domain-specific architecture, in which a set of fixed cores coexist with customizable 

cores, programmable fabric, and a set of distributed cache banks ($).  

 

 

Figure 1-1. Customizable heterogeneous platform for domain-specific computing. 

As we know, fixed cores can vary dramatically in their energy efficiency, computational 

power, and area, but have limited reconfigurability. One example of this kind of 

architecture is the IBM Cell, with one general-purpose PPE core and the more numerous, 

but simpler, SPE cores. On the other hands, customizable cores provide coarse-grained 

adaptation to application demand, offering a number of discrete, tunable options that can 

be set, with flexibility somewhere between FPGAs and fixed cores. It is possible to 

design cores with a rich set of tunable characteristics to enable significant 

performance/power efficiency, such as customizable vectorization support or computing 

accelerator support.  

With the emergency of the customizable domain-specific platform, one of the main 

challenges is how to efficiently take the advantage of the heterogeneity and customization 

features in those architectures.  
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This problem can be recapped as how to map one or a set of applications to a 

customizable heterogeneous platform with high performance/power efficiency. 

Considering that manual optimization is time-consuming and also not scalable as the 

design space increases, it is very important to develop efficient compiler support to 

automate this platform mapping. 

1.2 Compiler Support for Customizable 

Domain-Specific Computing 

As we discussed, with the support of customizable domain-specific platform, 

performance/power efficiency can be significantly improved by adapting architectures to 

match the requirements of a given application or application domain. On the other hand, 

this also imposes challenges on the compiler size to provide high-quality mapping 

solution on such reconfigurable architectures. The existence of heterogeneity greatly 

increases the complexity of its programming model. For example, the code executed on 

host processors cannot be directly used on hardware accelerators. In addition, explicit 

data transfers are required for host-accelerator communication. In this section, we will 

briefly look through three customizable heterogeneous platforms, including 

tightly-coupled customized vector unit and loosely-coupled programmable accelerators 

and customizable memories.  

1.2.1 Customizable Vector Unit 

It has been discussed that customization can achieve significant power-performance 

efficiency improvement [21], and this is also the case with the vector or SIMD 

applications. Recently increasing attention has been given to customized vector ISA 

support from both academia and industry. For example, Convey system [39] supports 

application-specific vector instruction set, with which users are allowed to reconfigure 

the vector ISA to match different application features. The authors of [16] propose a 
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SystemC-based support for customized vector instruction. The work in [15] introduces a 

customized vector instruction set for multimedia applications and the work in [36] 

explores customized SIMD units with high-level synthesis techniques.   

This trend presents new challenges to both compiler and architecture designs to provide 

efficient customized vector ISA support. At compiler side, the challenge will be how to 

efficiently identify application/domain-specific vector instruction and perform automatic 

customized vectorization.  

A crucial step to achieve high performance in a customized vector design is the 

identification of frequently executed instructions. There already exist extensive work on 

customized scalar instruction exploration [12][17][38]. However, a naïve employment of 

the existing techniques without considering the vector features will result in inefficient 

customized vector instruction generation.  For example, one important feature of vector 

processing is the existence of memory alignment. For example, AltiVec requires memory 

accesses to be aligned at a 16-byte boundary and it cannot handle unaligned vector loads 

and stores; In AVX mis-aligned memory accesses are supported with a large performance 

penalty.  

We introduce an automatic LLVM-based compilation flow to extract customized vector 

instructions from one or a set of applications. Pattern recognition approaches have been 

used here to identify frequently appeared customized vector instruction candidates and 

an optimal alignment insertion scheme has been developed to reduce the memory 

alignment overhead. This flow is tested on the composable vector processing units 

(CVUs), which can be chained together to create customized vector instructions. This 

design allows programmable customized vector extensions and can achieve up to 52% 

speedup over standard vector ISA and 14.6X area gain over the dedicated ASIC-based 

design. 
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1.2.2 Customizable Computing Accelerator 

Programmable accelerator (PA) has been proposed to enable varying degrees of 

customization together with general-purpose cores [51] [54] [55] [56] [57]. In a standard 

PA architecture, a programmable accelerator template is implemented inside each PA unit 

to support a selected set of computation tasks with reasonable hardware design costs. The 

entire pre-defined PA template may support a relatively complicated computation task, 

while it can be reconfigured dynamically to perform a set of simpler but more general 

sub-tasks. Therefore, each accelerator unit in a PA-rich system can be customized to 

computation tasks with different granularity, which enables efficient switching among 

varying degrees of customization at runtime.  

With more flexible customization support, the PA-rich design has been raised as a 

promising solution to improve the system performance-power efficiency. However, this 

design trend imposes a demanding challenge on the compiler side – how to generate 

high-quality PA mapping code which can efficiently utilize the programmable execution 

units existing in a PA-rich architecture. 

In general, the PA compilation flow can be divided into two phases - PA candidate 

identification and PA template mapping. Given the data flow graph (DFG) of application 

kernels, the PA candidate identification phase extracts all the data flow subgraphs which 

are executable on the PA units. To decide whether a subgraph is executable on PA units, 

subgraph isomorphism checking is performed between the subgraph and the PA templates. 

After that, the identified candidates will be fed into the mapping phase, in which a subset 

of candidates will be mapped to PA templates to accelerate the target kernels. 

As discussed in [60], since the PA candidates identification and PA mapping problems are 

both difficult to solve, scalability has been considered as a main problem in the existing 

PA compilation flows. Considering that the number of PA candidates grows exponentially 

with the size of input DFG and PA template, the mapping problem may become 
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intractable for large DFG blocks. When disjoint PA candidates are considered, the 

mapping problem size is even larger after including all the legal combinations of 

connected PA candidates. 

The other challenge comes with the pipelined PA execution. In a fully pipelined PA 

design, input data comes in at every clock cycles, buffers or dummy PAs [99] need to be 

inserted to guarantee the correctness of pipeline behavior. This serves as a new 

demanding resource requirement, which is not considered in previous work.  

Targeting scalable PA compilation of fully pipelined execution, we build an automatic PA 

compilation flow, which supports both connected and disjoint PA candidates. Delay units 

are inserted in the PA mapping graph to balance the path delays in a pipelined execution. 

Comparing to the scalable PA compilation approaches proposed in [60] and [55], our 

approach achieves a significant reduction on the overall compilation time. The 

corresponding mapping quality has been improved by 23.8% and 32.5% on average for 

mapping the connected-only and disjoint PA candidates, respectively. We also investigate 

the impact of a given throughput target on resource usage in accelerator pipelines. Here 

resource usage includes not only PAs, but also delay units required to balance path delay. 

An optimal PA mapping algorithm is used to efficiently map on-chip accelerator 

resources to a pipelined execution. Compared to the PA compilation approaches proposed 

in [60], our approach achieves a significant reduction on mapping size and up to 33.8% 

improvement on system performance. 

1.2.3 Customizable Memory 

Modern high performance processors are known to be abundant in processing elements, 

e.g. general-purpose cores or customized hardware accelerators (FPGA, GPU, etc.). 

Memory accesses become an increasing performance bottleneck, preventing applications 

from fully exploiting the computing power. To alleviate the memory bottleneck, 

communication optimizations, including memory latency reduction and efficient 
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bandwidth utilization, turns out to be crucial for system performance and energy 

efficiency. Traditional hardware-controlled cache suffers from „blind‟ data movement 

decisions, which are made independent with program behavior. As an alternative, 

software-controlled memories (SCM) have been employed either as an independent 

storage unit or sitting together with D-cache/I-cache to effectively enhance performance 

and power. This trend has already been reflected on real designs, e.g., NVIDIA‟s latest 

Fermi GPU has software controlled scratchpad memories (SPM) called “shared memory” 

which can be partitioned into cache and SPM at configuration points 1:3 or 3:1, with 

SPM and L1 cache sitting on top of L2 cache. Similarly, the local store in IBM‟s Cell 

broadband can be managed as a combination of direct buffers to store access with regular 

patterns and software-controlled cache as a fall-back solution [73].  

Comparing to single-level SCM, multi-level SCM designs provides better tradeoff the 

access speed difference between different memory levels, therefore has been widely 

explored. In typical embedded processors, the L1 SCM normally consists with fast 

SRAM memories (e.g. scratchpad memories) and last level (LL) SCM can be either 

SRAM or DRAM (e.g. FPGA‟s off-chip memory and GPU‟s global memory). The 

optimization target of SCMs sitting at different memory level also differs. 

L1 SCM normally is a small piece of fast memory, which sits closest to the computing 

core and is responsible to feed data in time. Targeting low memory access latency, L1 

SCM has been utilized as prefetch buffers in embedded systems and parallel architectures 

to hide memory access latency [1]. This is motivated by the fact that conventional cache 

prefetching suffers from the problem that the data evicted from cache by the newly 

prefetched data is still “alive,” i.e., will be accessed frequently in the near future. An 

extreme case is that N prefetched elements are mapped to the same set in a 

direct-mapping cache. Therefore, only the last element will be kept in the cache after 

prefetching, while the previous N −1 data transfers are useless with additional energy 
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overhead. On the other hand, SCM-based prefetching can make a “smart” eviction 

decision, thereby avoiding such cache prefetch inefficiency.   

On the other hand, shared last level SCM has been widely utilized in heterogeneous 

parallel architectures to tradeoff the low bandwidth from main memory. For example, the 

performance of PCIe bus connecting host memory is ~10GB/s, which turns out to be an 

important bottleneck of modern heterogeneous systems. Accordingly, how to efficiently 

reuse the data stored in LL-SCM becomes one of the major compiler challenges in a 

heterogeneous system where workloads distributed on different computing cores. 

Compared to hardware-controlled memories, the introduction of SCM as a last level 

buffer offers optimization potential on cross-core data transfers by taking the advantage 

of the knowledge of target applications.  

To fully utilize the multi-level SCM memory space, we have investigated prefetching and 

reuse capability for L1 and LL SCM, respectively. We propose a reuse-aware SCM 

prefetching scheme, called RASP, to hide memory access latency and minimize the 

number of data transfers from lower-level memory; To efficiently manage LL-SCM, we 

propose a task-level-reuse-graph based LL-SCM data movement scheme to minimize the 

amount of data transfers between heterogeneous computing cores through the slow PCIe 

bus. An average 25% reduction of host-accelerator data transfers is observed from 

previous work. 
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Chapter 2. Compiler Support for 

Customizable Vector Instruction 

Extension 
Vectorization has been commonly employed in the high performance computing domain 

to exploit data-level parallelism in those applications. In this chapter we analyze the 

needs and opportunities to explore customized vector instructions and quantify their 

benefits. We build an automatic compilation flow in LLVM-2.7 compiler infrastructure to 

efficiently identify customized vector instructions from a given set of applications. The 

memory alignment overhead, which is known to be critical for vector processing 

efficiency, has been optimized in our customized vector ISA exploration flow. This flow 

is tested on the composable vector units, which can be used separately or in a chained 

mode to support a large number of (virtual) customized vector instruction units with 

minimal area overhead.  The results show that our approach achieves an average 27% 

speedup over the state-of-art vector ISA. We also observe a large area (around 11.6X) 

gain over the dedicated ASIC-based design. 

2.1 Introduction 

SIMD vector processors are very effective in executing programs with extensive 

data-level parallelism, such as multimedia processing, graphics and scientific computing. 

In recent years, vector extension has become one of the most common additions to both 

general purpose microprocessors and super computers, due to the growing demands on 

high-performance computing. There are several state-of-art vector ISAs in the market, 

such as Intel‟s AVX [40], Motorola/IBM‟s AltiVec [23].  

It has been recognized that customization can achieve significant performance 

improvement [15] and this is also the case with the vector or SIMD applications. 
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Recently increasing attention has been paid to customized vector ISA support. The 

authors of [12] propose SystemC-based support for customized vector ISA. The work in 

[11] introduces a customized vector instruction set for multimedia applications. The work 

in [23] designs customized SIMD units with high-level synthesis techniques. The newly 

developed Convey system [26] provides supports for application-specific vector 

instruction sets, with which users are allowed to reconfigure the vector ISAs to match 

different application domains. This trend presents new challenges to both compiler and 

architecture design to provide efficient customized vector ISA support with small 

hardware cost. 

At compiler side, the main challenge is how to efficiently identify 

application/domain-specific vector instructions and perform automatic customized 

vectorization. A crucial step to achieve high performance in a customized vector design is 

the identification of frequently executed vector instructions. There already exist extensive 

work on customized scalar instruction exploration (e.g. [8][13]. However, a naïve 

employment of the existing techniques on the input program without considering the 

vector features will result in inefficient customized vector instruction generation. One 

important feature of vector processing is the existence of memory alignment problem 

raised by the vector architecture [18]. For example, AltiVec requires memory accesses to 

be aligned at a 16-byte boundary and it cannot handle unaligned vector loads and stores; 

In AVX mis-aligned memory accesses are supported with a large performance penalty. 

Here a mis-aligned memory reference means that the address of the data is not a multiple 

of the vector register size [26]. Let‟s look at the example in Figure 2-1 (without loss of 

generality, we assume for array reference A[i1][i2]….[iN], the starting address of each 

array dimension, namely A[0][0]…[0], A[i1][0]…[0], A[i1][i2][0]…[0], …, 

A[i1][i2]..[iN-1][0], has been aligned to memory boundary).  

As shown in Figure 2-1(b), arrays A, B and C are loaded into vector register VR1-3 in a 

mis-aligned manner. If we directly perform a vector add on the 3 vector registers, it will 

generate incorrect results, where A[i] = B[i] + C[i]; to resolve it, vector register VR1 and 

VR2 are shifted to left by 3 elements and 2 elements, respectively in Figure 2-1(c). 
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Therefore, in order to ensure the functionality correctness, the “shifted” alignment of the 

input nodes needs to match that of the output node. This alignment constraint imposes 

challenges on automatic vectorization process due to its sizable impact on the 

power-performance efficiency in vector processing. 

for i = 0 to n

      A[i] = B[i+3] + C[i+2];

(a)

VR1

VR2

VR3

B[0] ...

(b) (c)

+
B[i] ...

C[0] ... C[i] ...

A[0] ... A[i] ...

B[3] ...

+
B[i+3] ...

C[2] ... C[i+2] ...

A[0] ... A[i] ...

 

Figure 2-1. (a) One example loop (b) Mis-aligned vector addition (c) Aligned vector 

addition. 

In the customized vector ISA exploration phase, if the memory alignment issue has not 

been resolved properly, it may result in undesired overhead on performance. Let‟s 

consider a vectorizable loop shown below (without loss of generality. Here we assume 

A[0], B[0], etc. are aligned to memory boundary).  

                        for i = 0 to n 

                        A[i] += B[i+1]*C[i]; 

The scalar customized instruction candidates inside this loop only contain one 

multiply-add (MAC) operation. While for vector exploration, since additional alignment 

instructions are required to resolve the unaligned array reference B[i+1], both MAC and 

aligned MAC should be considered as customized vector instruction candidates, as shown 

in Figure 2-1(b). If we simply replace the sequential loop with unaligned vector MAC 

operations, it may result in either incorrect execution or pay considerable performance 

penalty.  

Earlier implementations of vector processor [7] [18]re all based on non-customized 

vector instructions. The vector instructions in VIRAM are designed to vectorize 
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embedded system applications by adding support for narrower data-type and different 

styles of permutation. VESPA [26] is a flexible FPGA-based vector engine. However it 

only supports integer vector operations. 

 

       (a) (b)

align

align

+

+
* +

*

*
*

 

Figure 2-2. (a) Customized scalar instruction candidates (b) Customized vector 

instruction candidates. 

In this chapter we introduce an automatic compilation flow to perform 

alignment-efficient customized vector instruction identification, and the architectural 

support for area-efficient customized vector operations. 

(1) We identify the existing opportunities to derive customized vector instructions. A 

boundary-extension technique and an operation-based vectorizability checking 

technique are developed to fully investigate customized vector instruction 

exploration space.  

(2) We propose an LLVM-based compilation flow to extract customized vector 

instructions from one or a set of applications. Pattern-based approaches have been 

used here to identify beneficial customized instruction candidate 

(3) We propose an optimal memory alignment scheme that minimizes the total shifting 

distance to generate alignment-efficient vector patterns.  
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This flow is tested on the composable vector processing units (CVUs), which can be 

chained together to create customized vector instructions. This design allows 

programmable customized vector extensions and can achieve up to 52% speedup over 

standard vector ISA and 14.6X area gain over the dedicated ASIC-based design. 

2.2 Motivational Example 

In this section, we illustrate the existence of application-specific or domain-specific 

customized vector patterns with real-life applications. 

Let‟s first consider one computation kernel in jacobi rician-denoise [41] which is a 

double precision floating point application in the medical imaging domain.  Figure 2-3 

shows the kernel loop in this application, which performs five-point stencil computation 

on a 2D image. Seven arrays are involved in the computation kernel as inputs and the 

loop body can be vectorized without violating data dependencies. (here we only consider 

vectorization through the innermost loop)  

              

  for m = 1 to M - 1

        for n = 1 to N - 1

              u[m][n] = (ulast[m][n] + DT * (ug[m][n+1] + 

                                                                 ug[m][n-1]  + 

                                                                 ug[m+1][n] +

                                                                 ug[m-1][n]  + 

                                                                 GM*f[m][n])) 

                                  / (c[m][n] + DT * (g[m][n+1] + 

                                                                 g[m][n-1]  + 

                                                                 g[m+1][n] +

                                                                 g[m-1][n]  + 

                                                                 r[m][n]))
 

Figure 2-3. . One kernel loop in jacobi rician-denoise. 

Figure 2-4 shows the corresponding data flow graph for the vectorizable loop, in which 

each node represents a vector instruction, such as vector-add or vector-multiply.  Each 

vector input is denoted by the array name followed by alignment value normalized to 

output u[m][n]. For example, the relevant alignment offset between u[m][n] and 
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ug[m][n-1] is 1,  therefore “ug:1”has been used to represent vector input ug[m][n-1]. 

From Figure 2-4, we can see the two branches of div operation are similar to each other in 

terms of both operation counts and data path. The left branch contains nine operation 

nodes and the right one contains eight nodes – only differ from each other by one mul 

operation, which exposes the opportunity to extract repeatedly executed customized 

vector instructions, sizing from one operation to eight operations. Two vector pattern 

candidates with occurrence equaling two have been highlighted in Figure 2-4. 

 

 

                  

align:0

*

+

*
+

+

+ +

/

*

+

+

+

+ +

ulast : 0

ug : 1 ug : -1

ug : 0

f : 0

c : 0

g : 1 g : -1

r : 0

g : 0

ug : 0

align:0 align:0 align:0

 

Figure 2-4. Data flow graph of kernel loop in jacobi rician-denoise. 

In this example, note that since ug[m][n+1] and ug[m][n-1] both serve as inputs to the 

same vector add operation and they are mis-aligned array references, two alignment 

nodes are inserted to match them to the alignment offset of ug[m][n], namely 0. The same 

scenario also applies to array reference g[m][n-1] and g[m][n+1]. Our optimization on 
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alignment node insertion will be discussed in Section 2.3.   

In addition to application-specific customized vector patterns, there also exist common 

vector patterns inside a specific application domain due to the similarity in computing 

models or algorithms, as shown in Figure 2-5. Figure 2-5(a) shows a double precision 

vectorizable accumulation of SQR operation, e.g., a[i]*a[i]. The kernel code pieces in 

Figure 2-5(b) and (c) are extracted from rician-denoise and level-set segmentation [41] in 

the medical imaging domain. The vectorizable SQR-accumulation operation appears in 

both applications (4 times in rician-denoise and 3 times in segmentation), thus they can 

benefit from the same customized vector ISA extension. 

              

(b)

(a)

+

SQR

(c)

  for m = 1 to M-1

        for n = 1 to N-1

              g[m][n] = 1.0/sqrt( EPSILON +

                  SQR(u[m][n] - u[m][n+1]) +

                  SQR(u[m][n] - u[m][n-1])  +

                  SQR(u[m][n] - u[m+1][n]) +

                  SQR(u[m][n] - u[m-1][n]) );

  for m = 1 to M-1

      Grad[n] = coeff*( SQR(Dx_0[m]) +

                                   SQR(Dy_0[m]) +

                                   SQR(Dz_0[m]) );

 

Figure 2-5. (a) Data flow graph of SQR-accumulate (b) Kernel code piece in jacobi 

rician-denoise (c) Kernel code piece in level-set segmentation. 

2.3 Customized Vectorization Flow 

Figure 2-6 shows the components of our customized vector instruction identification 

framework. This framework is implemented in LLVM-2.7 compiler infrastructure [42] 

with Omega Library [43] for dependency analysis. The flow is invoked as a back-end 

pass on the optimized LLVM intermediate representation (IR) code. As discussed in [9], 

automatic vectorization performed at source-level is usually decoupled from standard 

back-end optimization, comparing to lower-level IR, which is closer to the machine-level 
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code and can take the advantage of operating on optimized code. In our case, the 

optimized LLVM IR is used as top-level input in the customized vector instruction 

identification framework. 

Figure 2-7 shows the kernel loop in rician-denoise application (to better illustrate each 

step in the framework, gauss-seidel implementation [41] is used here, which contains 

loop-carried true dependency). 

   

Complementary Code 

Elimination

Vectorizability 

Checking

Alignment Node 

Insertion

Alignment-inclusive 

Vectorizable 

Identification

Code Generation

 

Figure 2-6. Customized vector instruction identification flow. 

 The data flow graph of the corresponding LLVM intermediate representation is shown 

in Figure 2-8.  Each node in the data flow graph is labeled with the operation it performs 

and each edge represents the data flow dependency between two nodes.  

            

  for m = 1 to M - 1

        for n = 1 to N - 1

               u[m][n] = (u[m][n] + DT * (u[m][n+1] + 

                                                            u[m][n-1]  + 

                                                            u[m+1][n] +

                                                            u[m-1][n]  + 

                                                            GM*f[m][n])) 

                               / (c[m][n] + DT * (g[m][n+1] + 

                                                             g[m][n-1]  + 

                                                             g[m+1][n] +

                                                             g[m-1][n]  + 

                                                             r[m][n]))
 

Figure 2-7. Kernel code of gauss-seidel rician-denoise. 

In this example, the node phi generates the value of loop induction variable n for the 

inner loop. If the value is obtained from the outer loop body, n equals 1; otherwise, n 

equals its current value plus one, namely the output of the add node under phi. To 
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calculate the address at the second array dimension for references u(g)[m][n-1] and 

u(g)[m][n+1], another two add nodes below phi accept the output of phi node, namely the 

value of n, and perform the corresponding array subscript calculation. The calculated 

array indices are sent to the getelementptr (gep) node to generate the address for the 

corresponding array element, which is followed by a load (ld) operation to access 

memory. 

                                                                          

 Algorithm 2-1. Vectorizable Code Region Extraction                                                                                                        

1.  G : LLVM-IR-based data flow graph of a given loop nest 

2.  BI : a set of boundary array / scalar input nodes in G  

3.  BO : a set of boundary output nodes in G 

4. 

5.  for each node v in G, 

6.      if there exist a path from v to  one node in BO and a path    

         from one node in BI to v,  

7.            add v to V; 

8. for each node v in V sorted in topological order, 

9.      if for any  input t to v,  t   BI ∪ V_vec, 

10.       add v to V_vec; 

11.    else 

12.       if there exists an edge t‟→v such that t‟   BI ∪ V_vec, 

13.           add v to BI;                                             
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2.3.1 Vectorizable Code Region Extraction 

To extract the customized vector patterns which perform real computations, we need to 

remove the complementary nodes existing in the original LLVM IR, such as the loop 

invariant and branch instructions. Note that this cannot be achieved by simply removing 

operations in those classes and then performing customized vector instruction exploration 

on the reduced data flow graph. For example, in Figure 2-8 the three add operations 

below the phi node perform address calculation instead of real computation, thus should 

not be explored as customized vector instruction candidates. In our flow, we propose a 

boundary-node-directed vectorizable code region extraction approach. 

*

+

*
+

+

+ +

/

*

+

+

+

r[m][n]

gep

st

gep

ld

ld ld ld ld

+ +

ld ld ld ld

ld

ld

phi

gep

+ + +

gep gep gep gep gep gep gep

gep

gep

icmp

br

u[m][n]

u[m][n+1]
u[m][n-1]

u[m+1][n]
u[m-1][n]

f[m][n]

g[m][n+1]
g[m][n-1]

g[m+1][n] g[m-1][n]

u[m][n]

 

Figure 2-8.  Data flow graph of gauss-seidel rician-denoise. 
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Definition 2-1. The boundary nodes of the vectorizable code region in loop L are defined 

to be the legal inputs and outputs to a vector instruction, including memory load/store 

operations to continuous memory space (here we only consider array subscript as a 

linear combination of loop induction variable and constant), constants and scalar 

variables with value fixed inside L. 

In Algorithm 2-1, any node that locates outside the subgraph enclosed by the boundary 

nodes will be removed, as shown in Figure 2-9(a). 

 

Figure 2-9. Complementary code elimination, vectorizability checking and 

alignment node insertion in the kernel code of gauss-seidel rician-denoise. 

The nodes in set V but not V_vec are called “prohibited nodes”, Those nodes cannot be 

vectorized due to illegal inputs. For example, the third addition in Figure 2-10(a) accepts 

random array access as input, which makes it in-vectorizable. However, we can introduce 

temporary arrays and apply loop distribution techniques to make it become a new 

“boundary node” (lines 11-12).  In this case the operations following the in-vectorizable 

node will not be prohibited from vectorization, which helps to enlarge the customized 

vector pattern exploration space. As shown in Figure 2-10(b), L add operations in second 

inner loop can be performed in parallel. (Assume L equals the vector register length) This 

technique is referred as boundary extension in the remaining part of this chapter. 
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for i = 0 to n

      A[i] = B[i] + *(ptr[i]) + C[i];

for i = 0 to n with step size L

      for j = 0 to L

             tmp[j] = *(ptr[i+j]);

      for j = 0 to L

             A[i+j] = B[i+j] + tmp[j] + C[i+j];

(a)

(b)  

             Figure 2-10. (a) Original code (b) Transformed code. 

 

2.3.2 Operation-based Vectorizability Checking 

Theorem 2-1. [29] A statement contained in at least one loop can be vectorized if the 

statement is not included in any cycle of dependences. 

In the traditional loop vectorization techniques [29], one statement contains a set of 

operations and a corresponding memory store. For example, the statement in Figure 2-7 

contains 13 operations. In those techniques, each statement is treated as the basic 

vectorization unit. However, this may lead to the loss of existing vectorization 

opportunities. For example, the loop body in Figure 2-7 contains one statement with 

self-dependency cycle. Based on Theorem 2-1, if the traditional approach is applied, all 

of the 13 operations inside that statement will be treated as in-vectorizable nodes. 

However, since the loop-carried true dependency only exists between u[m][n] and 

u[m][n-1], the nodes operated on the other array references can be executed in parallel 

without violating the existing dependency. Those vectorization opportunities will be 

missing in the statement-based approach. 

To fully investigate the customized vector pattern space, we perform an operation-based 

dependency checking after applying the conventional statement-based approach. In the 

proposed operation-based dependency checking, each operation node in the vectorizable 

code region is treated as the basic vectorization unit to allow partial vectorization inside 
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one statement.  

 

 Algorithm 2-2. Vectorizability Checking 

1.  V_vec : vectorizable nodes obtained from Algorithm 2-1.  

2.  S :  a set of statements inside the given loop nest  

3.    

4. Perform statement-based vectorization algorithm [28] on S,    

   add the nodes adjacent to the violated dependency edges  to N; 

5. for each node n in N, 

6.      remove n from V_vec and add it to N; 

7.  for each node v in V_vec sorted in topological order, 

8.        if there exists an edge v→ n or n→v such that n   N, 

9.            remove v from V_vec and add it to N; 

 

In Algorithm 2-2, the statement-based vectorization algorithm is first applied to 

differentiate vectorizable and in-vectorizable statements. For the in-vectorizable 

statements, further dependency checking is performed in an operation-based manner. 

Assume the statement is not vectorizable due to a set of violated dependency edges, lines 

8-9 separate the operation nodes carrying the violated dependencies from those not. As 

shown in Figure 2-9(b), the violated dependency is between u[m][n-1] and u[m][n], the 

add operation associated with u[m][n-1] has been excluded from the vectorizable code 

region after dependency checking, as well as the downstream nodes reachable from 

u[m][n-1].  The statement can be partially vectorized by executing the unshaded nodes 

in parallel. By applying the operation-based vectorization check, the exploration space for 

customized vector pattern is further enlarged and exposes more opportunity to extract 
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beneficial instruction candidates. Comparing to statement-based approach, the extra 

complexity overhead of Algorithm 2-2 is O(|V_vec|) where |V_vec| is the number of 

nodes in the vectorizable code region. 

2.3.3 Vectorizable Data Flow Graph Expansion 

In this section we describe techniques to insert alignment instructions explicitly into the 

original data flow graph in presence of mis-alignment. The alignment offset of a memory 

access is defined as the byte-offset to the memory boundary of the array elements to be 

accessed at the first iteration in a normalized loop. For example, in the loop in Figure 

2-1(a), the alignment offsets for accessing array X and Y are 3 and 2, respectively. 

An alignment instruction is one that combines results of two neighboring vector load 

instructions and logically performs a shift on the vector registers. Note that there are 

different ways to insert alignment instructions. In [24] several heuristics are described, 

including zero-shift, eager-shift, lazy-shift and dominant-shift. A typical strategy is shown 

in Figure 2-11(a). 

B‟[i] = B[i+3] ;   //shift by 3

C‟[i] = C[i+2] ;   //shift by 2

A[i] = B‟[i] + C‟[i];

(a)

B‟[i+2] = B[i+3] ;   //shift by1

A‟[i+2] = B‟[i+2] + C[i+2];

A[i] = A‟[i+2] ;      //shift by 2

(b)  

Figure 2-11. (a) Shifting scheme 1 (b) Shifting scheme 2. 

Here the total shift distance is 3+2=5. Yet, when each alignment instruction shifts a vector 

register by only one, the solution is suboptimal. A better solution is in Figure 2-11(b), 

where the total shifting distance is 1+2=3. 

In this chapter, we introduce an optimal shift scheme, with the goal of minimizing the 

total shifting distance; as in our architecture, we shift by one for each alignment 

instruction to reduce hardware cost. Our method is based on a mathematical 
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programming formulation, and is able to obtain the optimal solution efficiently by taking 

advantage of the total unimodularity of the constraint matrix. 

Without loss of generality, we consider a data flow graph where each node is either a 

memory load/store or an arithmetic instruction that takes two inputs produces one output. 

For each arithmetic instruction I, a pair of integers  21,  is introduced to model its 

alignment property, where 21 /   is the relative offset of the first/second input operand 

with regard to the output of I. In the previous example, the addition operation has an 

alignment vector (3, 2).  For each arithmetic instruction I, we associate a label on each 

of its port 321 ,, III ooo  to indicate the actual alignment offset on its input operand 21 , II oo  or 

its output 
3

Io . To ensure correctness after alignment, we need to make sure  

 131

III oo   

232

III oo   

            (1) 

 

             (2) 

This constraint means that the relative alignment offset between each input operand and 

the output value is fixed, and that they can be changed simultaneously when alignment 

instructions are inserted properly. In the above example, we have 23 213   ooo .  

For a memory access instruction m, its alignment offset is always zero, as we only do 

load/store in aligned fashion. We have constraint 

 0mo              (3) 

When the output of an instruction s is used by another instruction t as its first (or any 

other) operand, alignment instructions may be needed to shift the result of s. Let ds denote 

the shifting distance, and we have 

  os
3
- ot

1
 ≤ ds   (4) 

  ot
1
 - os

3 
≤ ds   (5) 
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he above constraints means that we need to shift at least |os
3
-ot

1
|.  

When instruction s is used by multiple instructions {t1, t2, …, tm}, the total shifting 

distance is at least oti
1
-otj

1
. This is because any alignment offset between oti

1
 and otj

1
 will 

be covered during the alignment. We have 

 oti
1
- otj

1
 ≤ ds, for all i,j              (6) 

Combining the above constraints, we have the following formulation as an integer-linear 

programming. 

minimize ∑ds  

subject 

to 

131

III oo   for all instruction I 

 232

III oo   for all instruction I 

 om = 0 for all memory access 

m  

 os
3
- ot

1
 ≤ ds for all s used by t 

 ot
1
 - os

3 
≤ ds for all s used by t 

 oti
1
- otj

1
 ≤ ds for all s used by t1 and t2 

 All variables are integers         (7) 

 

   

The above formulation tries to minimize the total shifting distance for all values. For the 

aforementioned example, denote the instructions as 1(load x), 2(load y), 3(the addition), 

4(store to z), the formulation is 

minimize d1 + d2 + d3 

subject to o1 = 0 
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 o2 = 0 

 o4 = 0 

 o3
1
 – o3

3
 = 3 

 o3
2
 – o3

3
 = 2 

 o1-o3
1
 ≤ d1 

 o3
1
 – o1 ≤d1 

 o2-o3
2
 ≤ d2 

 o3
2
-o2 ≤d2 

 o3
3
-o4≤d3 

 o4-o3
3
≤d3 

 All variables are integers 

Integer-linear programming formulations are known as a general-purpose tool for 

modeling combinational optimization problems, including those notoriously hard ones. 

An typical ILP solver, even if equipped with sophisticated algorithms (like cutting planes, 

dual decomposition), will still rely on enumerative approaches such as branch-and-bound, 

and thus still runs in exponential time in many practical cases. Therefore, the problems 

that can be solved by ILP are limited in practice. Fortunately, for the above formulation, 

we can show that the integrality constraints are unnecessary. That is, the problem 

formulation can be solved as a linear programming problem without the integrality 

constraints, while still guaranteeing integral solutions. This is because we can take 

advantage of the special structure in the constraint matrix for this specific problem. In the 

following, we show mathematically why the above formulation can be solved optimally 

in polynomial time. 

Definition 2-2. (Total unimodularity). A matrix A is totally unimodular if every square 

submatrix of A has a determinant either 0, 1 or -1. 
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Clearly, a totally unimodular matrix can only have entries 0, 1, or -1. Total unimodularity 

plays an important role in combinatorial optimization, due to the result in Lemma 1. 

Lemma 2-1 [28]. If A is totally unimodular and b is a vector of integers, every extreme 

point of polyhedron {x: Ax ≤ b} is integral. 

Lemma 2-1 implies that an integer linear programming problem can be solved without 

the integrality constraints when its constraint matrix is totally unimodular and the 

right-hand side is integral. 

Many previous work have taken advantage of the total unimodularity of the constraint 

matrix in a number of applications [28]. In fact, our formulation leads to a constraint 

matrix that has exactly the same structure as that of [19]. Thus the following theorem can 

be derived: 

Theorem 2-2. The problem is tractable and can be solved in polynomial time with linear 

programming algorithm [19]. 

After the optimal alignment scheme is derived from the unimodularity of this formuation, 

the original data flow graph will be expanded to include the corresponding alignment 

nodes, as shown in Figure 2-9(c). 

2.3.4 Pattern-Based Customized Vector Instruction 

Identification 

This section presents the pattern-based approach to efficiently identify the vector pattern 

candidates from the data flow graph expanded by inserting optimized alignment nodes. 

The pattern recognition approach we use is based on [18] work which is very scalable in 

benefit of subgraph enumeration and similarity checking technique. A breadth-first (HPR) 

search strategy is adopted in our flow to discover frequent pattern candidates in practice.   

HPR, as suggested by its name, is a complete search algorithm which discovers patterns 

with a breath-first-search approach. At step k + 1, all the convex patterns with k nodes are 
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extended by one neighbor node using the proposed subgraph enumeration techniques. 

After a new subgraph is generated, it is compared to the existing patterns to perform 

graph isomorphism checking. If a subgraph is isomorphic to an existing pattern P, we call 

it a pattern instance of P. A characteristic-vector based filtering scheme is adopted to 

reduce the number of the graph isomorphism checking. The characteristic vector captures 

important properties of the original subgraph such that if the signature of a subgraph is 

significantly different than the signature of a given pattern, this subgraph is not needed 

for matching with the pattern, which avoids the graph isomorphism checking. 

By applying the pattern-based approaches to the expanded data flow graph from Section 

2.2, we can extract all the frequently executed vector pattern candidates with associated 

alignment information.  

To measure the gain of a given customized vector pattern, we have used a model to 

estimate the energy-performance-product improvement in our flow. To simplify the 

model, we do not consider the boundary cases in a loop. 

          
)

#
1()

||
(1#)( a l i g n

c r i i t c a l d i s t
i n s tLL

P
i n s tpg a i n 


   

Here #inst represents the estimated execution time with scalar instruction support; L is 

the length of vector register, namely the higher level of data parallelism supported by 

vector architecture. The length of critical path ( || criitcalP ) divided by the data 

parallelism factor L is used to estimate the vector execution time. Considering that with 

the complex customized vector patterns, the instruction counts can be reduced 

accordingly, which corresponds to less energy consumption on instruction decoding logic, 

as well as the potential reduction in the L1 instruction cache misses. Another benefit 

comes from the reduced number of branch prediction operation in the transformed vector 

code. The estimated instruction count ratio between customized vector instruction and 

scalar instruction equals
instL #

1


, which is used to measure the difference in power 

consumption. Note that additional alignment instructions are introduced in the vectorized 
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code, which should also be taken into consideration in the energy-performance model. 

Here   is the scaled energy cost by shifting one element and aligndist  is the overall 

shifting distance introduced by the alignment instructions in the customized vector 

pattern. 

2.4 Experiment Results 

2.4.1 Evaluation Methodology 

We have considered nine applications from widely known standard benchmarks suite like 

Parsec [10] (streamcluster and swaptions), Rodinia [13][14] (cutcp, mri-q and 

mri-gridding) and four applications from the medical imaging domain [41] (denoise, 

deblur, registration and segmentation).  

We evaluate the proposed customized vector instruction extraction flow by running full 

system simulations on each benchmark.  The overall simulator framework is 

implemented upon Simics [31] and the GEMS toolset [32] in the single core 

configuration. Normal vector engine support has been added to this framework. Figure 

2-12 shows our architectural support for composable vector units (CVUs). It consists of a 

series of CVUs, a programmable crossbar and a sequencer. They are all tightly-coupled 

connected to the core. The composable vector units are connected together through the 

programmable crossbar. The inputs to the programmable crossbar are from the outputs of 

CVUs and the core‟s register file. The outputs of the crossbar are connected to CVUs. 

The sequencer, which is programmed by the core, is responsible for reprograming the 

crossbar in every scheduling step. In this way different connection patterns between 

CVUs can be supported. Internally the crossbar is a series of multiplexers.  
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         Figure 2-12. The CVU architecture. 

 

2.4.2 Pattern Recognition Results 

Table 3-1 shows the customized vector pattern recognition results for the nine benchmark 

kernels. At each row, columns 2-6 represents lines of kernel code, the number of pattern 

found, the number of pattern instances and runtime, respectively. For example, test bench 

streamcluster, the code in its kernel contains 96 lines of C code, and the 92 vector 

patterns are found with 240 pattern instances. The overall runtime is less than one second. 

From Table 3-1 we can see, the average number of instances for each pattern inside the 

kernel is around 4. The repeated occurrence of the same vector pattern in program kernels 

exposes the opportunity of program execution speedup by providing the customized 

vector support for the corresponding pattern.  

The last column in Table 3-1 shows the area synthesis result for patterns in each 

benchmark, in total the area equals 5574062 um
2
.  

Table 2-1. Pattern recognition results on 9 computation-intensive benchmarks and 

their synthesized area on ASIC. 

 #line #pattern #inst time (s) Area (um
2
) 
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streamcluster 96 92 240 0.13 117193 

swaptions 152 69 292 0.21 153371 

cutcp 67 78 285 0.19 471836 

mri-q 79 71 100 0.33 62424 

mri-gridding 119 119 385 0.49 904371 

denoise 274 187 650 0.52 1357131 

deblur 202 29 151 0.24 227410 

registration 222 1499 3122 1.42 506124 

segmentation 179 2211 4172 1.72 1774202 

 

2.4.3 Alignment Optimization Results 

To illustrate the of the proposed alignment insertion scheme, we have compared our 

solution to four alignment policies proposed in [24], in terms of the overall shifting 

distance and number of inserted alignment nodes (normalized to our solution). The four 

reference points in this evaluation include: 

(i) Zero-shift policy (Z)   

Shift each mis-aligned array reference to the alignment offset of 0 immediately after it 

is loaded from memory. 

(ii) Eager-shift policy (E)   

Shift each mis-aligned array reference directly to the alignment of the store. 

(iii) Lazy-shift policy (L)   

Based on the eager-shift policy, but delay shifting as long as the alignment offset 

matches between nodes with the same output node. 

(iv) Dominant-shift policy (D)   
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Shift each mis-aligned array reference to the most dominant alignment offset in the 

graph. 

Table 2-2. Comparison on overall shifting distance. 

 Z E L D 

fft 3.4 2 2 1 

streamcluster 2.8 2.4 1 2.4 

rician-denoise 1 1 1 1 

registration 1.5 1.5 1 1.5 

segmentation 1 2 1 1 

 

We list the comparisons among the five alignment policies, as shown in Table 3-2. Here 

only the results of five applications with complicated mis-aligned patterns, such as stencil 

computations in the medical imaging domain and the mis-alignment introduced by sum 

reduction technique in streamcluster; The shifting distance in Table 3-2 has been 

normalized to the proposed solution, in which we can see our solution can generate the 

minimal shifting distance for all the five applications. Among the four schemes proposed 

in [24], for a few applications the lazy-shift or dominant-shift solution also equals the 

optimal one, and outperforms zero/eager solutions. While the intrinsic heuristic feature in 

the two policies lead to less efficient solutions in other cases. The overhead to calculate 

the optimal solution is less than 7% of the overall compilation time. 

 

2.4.4 Performance Comparison Results  

We consider three reference points in the experiments: 

(i) Normal vector (NV): Execution of the program using standard state-of-art vector 

instructions (Intel AVX).  
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(ii)  Dedicated custom vector (DCV):  Execution of the program using dedicated 

ASIC-based customized vector instructions. 

(iii) Composable vector (CCV):  Execution of the program using CVU-based 

customized vector instructions. 

Figure 2-13 shows the normalized speedup on each individual benchmark. Speedups have 

been normalized to the normal vector version. We make the following observations: 

(i) Benchmarks such as mri-gridding, mri-q and deblur achieve a very large speedup. 

This is because the kernels in these benchmarks i.e., the critical functions have a 

structured pattern which is suitable for our architecture. Our compilation flow 

successfully captured such vectorizable patterns. 

(ii) Benchmarks denoise, registration and segmentation achieve moderately good 

speedups. We find the patterns in those benchmarks contains two or three parallel add 

and mul operations. Due to the available CVU resource constraint we have, such 

parallelism cannot be fully supported in the CVU-based design.  

(iii) The execution time difference between CCV and DCV is very small. Though the 

latter design does not need to consider the resource constraint. On average CCV is 5% 

slower than the DCV design on all the benchmarks, which further illustrate the efficiency 

of our CVU configuration selection strategy.  

                                

                          Figure 2-13. Normalized speedup.                                                                                  

2.5 Conclusion and Future Work 

 Customized vector domain has attracted increasing attention from both academia and 

industry. To provide efficient customization support, in this chapter we introduce an 
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LLVM-based compilation flow to perform automatic customized vector ISA extension. A 

composable vector unit (CVU) is proposed to support a large number of customized 

vector instruction by allowing chaining among vector units. Our future direction is to 

extend the composable vector unit design to a multi-core environment such that the 

CVUs can be shared among multiple requesting cores.  
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Chapter 3. Compilation for 

Programmable Accelerators 

In recent days programmable accelerators (PA) are widely investigated in the design of 

domain-specific architectures to improve the system performance and power. 

Micro-architectures with a series of PA have been proposed to provide more general 

supports for customization. One important feature in the PA-rich systems is that the target 

computational kernels can be compiled with pre-defined PA templates and dynamically 

mapped onto real PAs at runtime. This imposes a demanding challenge on the compiler 

side regarding how to generate high-quality PA mapping code. In this chapter, we present 

an efficient PA compilation flow which is fairly scalable in mapping large computation 

kernels into PA-rich architectures. A concept called maximal PA candidate is proposed to 

drastically reduce the number of input PA candidates in the mapping phase without 

influencing the mapping optimality. Efficient pre-selection and pruning techniques are 

employed to further speedup the maximal PA mapping process. Our experimental results 

show that for 12 computation-intensive standard benchmarks, the proposed approach 

achieves a significant improvement on the compilation time comparing to the state-of-art 

PA compilation approaches. The average mapping quality is improved by 23.8% and 32.5% 

for connected PA candidates and disjoint ones, respectively. 

3.1 Introduction 

Customization is an appealing solution to increase performance power efficiency, which 

is one of the primary design concerns in the era of many-core systems. A recent industry 

trend to address it is introducing computation accelerators in many-core designs. The 

Convey system [51], Intel‟s Larrabee [52] and Nallatech [53] are example of this. The 

accelerators, which are normally designed as specialized hardware blocks in the 

general-purpose processors, can be implemented to support a wide variety of tasks, 

ranging from fairly simple ones (e.g., a multiply accumulate operation) to more complex 
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ones (e.g., FFT, encryption/decryption or video encoding/ decoding). However, very 

complicated accelerators will suffer from the same non-recurring hardware cost as most 

ASIP work does. On the other hand, a simple accelerator design, which may be general 

enough for most applications, cannot achieve significant power-performance gains with 

limited hardware specialization. 

To solve this problem, programmable accelerator (PA) has been proposed to enable 

varying degrees of customization in an accelerator-rich systems [51] [54] [55] [56] [57]. 

In a standard PA architecture, a programmable accelerator template is implemented inside 

each PA unit to support a selected set of computation tasks with reasonable hardware 

design costs. The entire pre-defined PA template may support a relatively complicated 

computation task, while it can be reconfigured dynamically to perform a set of simpler 

but more general sub-tasks. Therefore, each accelerator unit in a PA-rich system can be 

customized to computation tasks with different granularity, which enables efficient 

switching among varying degrees of customization at runtime. 

          

                Figure 3-1. Example of a CCA implementation [4]. 
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Figure 3-1 shows the accelerator template used in a configurable computation accelerator 

(CCA) design proposed in [54]. The CCA is built with 15 functional units arranged in a 

two-dimensional array, in which each functional unit can perform arithmetic or logical 

operations. Four input data are fed to the top row and processed by each row to generate 

two outputs at maximal. Functional units in different rows are connected with full 

interconnects, so that data can be transferred between any two computation units from 

two adjacent rows. At runtime, the interconnects in this CCA implementation can be 

configured by hardware control signal to support any 4-input 2-output computation 

patterns with dependency depth less than 5, namely all the legal computation subgraphs 

in the given template. In this case, the programmable or configurable accelerators can 

efficiently accelerate a wide range of applications with flexible customization support. In 

a later work [55] the built-in full interconnect in this CCA template is simplified to 

further reduce the area cost while still provides enough customization diversity. 

As we discussed, with more flexible customization support, the PA-rich design has been 

raised as a promising solution to improve the system performance-power efficiency. 

However, this design trend imposes a demanding challenge on the compiler side – how to 

generate high-quality PA mapping code which can efficiently utilize the programmable 

execution units existing in a PA-rich architecture. 

Different from most of the traditional instruction-set-extension work [58] [59], which 

aims at designing a highly customized instruction set for a given set of applications, the 

PA compilation flow targets at efficiently partitioning application kernels into 

PA-executable code pieces, or PA candidate, and mapping them with the pre-defined PA 

template. 

In general, the PA compilation flow can be divided into two phases - PA candidates 

identification and PA template mapping. Given the data flow graph (DFG) of application 

kernels, the PA candidates identification phase extracts all the data flow subgraphs which 

are executable on the PA units. To decide whether a subgraph is executable on PA units, 
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subgraph isomorphism checking is performed between the subgraph and the PA templates. 

After that, the identified candidates will be fed into the mapping phase, in which a subset 

of candidates will be mapped to PA templates to accelerate the target kernels. 

As discussed in [60], since the PA candidates identification and PA mapping problems are 

both difficult to solve, scalability has been considered as a main problem in the existing 

PA compilation flows. Considering that the number of PA candidates grows exponentially 

with the size of input DFG and PA template, the mapping problem may become 

intractable for large DFG blocks. When disjoint PA candidates are considered, the 

mapping problem size is even larger after including all the legal combinations of 

connected PA candidates. 

There already exist a few relevant work investigating developing scalable mapping 

methods to obtain optimal solutions for moderate-size application kernels. For example, 

in [60], a scalable subgraph mapping algorithm is proposed to generate optimal PA 

mapping solutions with connected PA candidates. The limitation of this work is the 

lacking support of disjoint PA candidates due to scalability problem, thus it cannot fully 

utilize the existing parallelism in a PA template. An extension of this work is discussed in 

[55], in which the optimally selected connected accelerator patterns are greedily grouped 

into disjoint ones. However, there is no guarantee on the optimality of the corresponding 

PA mapping solution, which has been generated in a heuristic way. 

To better illustrate the scalability problem in PA compilation, here we use an application 

from the medical imaging domain as an example, which is called segmentation [61]. 

Following the flow proposed in [60], the PA candidates identification phase extracts 1147 

connected PA candidates from the kernel block in segmentation, which contains 115 

nodes. To map those PA candidates optimally, the PA mapping algorithm in [60] takes 

more than 30 minutes to complete. From this example we can see, the exponentially 

increased number of PA candidates in the identification phase imposes fast-growing 

pressure on the mapping phase which itself is an NP-complete problem [60]. In this case, 
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purely optimizing the PA mapping phase, such as the work in [60] and [55], cannot 

release the scalability problem efficiently when large data blocks or PA templates are 

considered. 

To alleviate the scalability problem in PA compilation, in this chapter contributes we 

introduce a concept called maximal PA candidate to efficiently reduce problem size in the 

ensuing PA mapping phase while maintains the mapping optimality. Our experiment 

results show that on average the number of input PA candidates in the PA mapping phase 

has been reduced by 210X and 82X for mapping connected candidates and disjoint ones, 

respectively. We also show a scalable PA compilation flow with the support of disjoint PA 

candidates. Comparing to the scalable PA compilation approaches proposed in [60] and 

[55], our approach achieves a significant reduction on the overall compilation time. The 

corresponding mapping quality has been improved by 23.8% and 32.5% on average for 

mapping the connected-only and disjoint PA candidates, respectively. 

 

3.2 Related Work 

In this section, we briefly discuss the existing accelerator mapping flows, which can be 

categorized into the heuristic approach and the exact approach. 

As discussed in Section 3.1, both the PA candidates identification and PA mapping 

problems are difficult to solve. Heuristic approaches have been employed as a standard 

flow to reduce the mapping complexity. A widely-employed heuristic method is to 

perform greedy enumeration and immediate selection [62]. In this flow, a seed node is 

picked and grows by gradually adding neighbor nodes until the expanded subgraph is no 

longer executable on the PA template. Then the corresponding subgraph is immediately 

mapped to a PA unit. This process will be repeatedly applied in the remaining data flow 

graph until it is empty. Heuristics normally can generate feasible solutions with 

reasonable compilation time. However, there is no guarantee on the optimality of the 
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compilation results. 

 

 

Figure 3-2. A sample PA template. 

On the other hand, a standard exact mapping flow can be described as full enumeration 

followed by optimal mapping [60] [63]. Here full enumeration means enumerating all the 

possible PA candidates in the target kernels. Then the optimal mapping algorithm, such as 

ILP-based or branch-and-bound approach, will be applied on the full set of PA candidates. 

Efficient pruning techniques have been proposed in [60] and [63] to reduce the mapping 

time. However, due to the fact that the number of PA candidates may grow exponentially 

with the size of the data flow graph and PA template, the problem size for the optimal 

mapping algorithm may still be very large and thus make the optimal approach intractable 

[55]. 

When disjoint subgraphs are considered, the number of PA candidates further explodes. 

Therefore a mixture of heuristic and exact approaches has been employed to balance the 

time complexity and mapping optimality. For example, the authors of [55] first generate 

optimal PAT mapping solution for connected candidates, then greedily group the selected 

connected PA candidates into possible disjoint one, which may not be optimal. 

There also exists another set of works focus on generating the maximal multiple-input 
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single-output patterns (MAXMISO or SUBMAXMISO) without limiting the number of 

inputs or size [64][65]. In [66] and [67], immediate selection is applied to the connected 

MAXMISO subgraph and an ILP-based approach has been used to optimally packing the 

selected connected subgraphs into disjoint ones. The generated solution also has the 

problem of sub-optimality, since the connected subgraphs are selected in a heuristic way 

and both work assume that no overlapping exist among MAXMISOs. Another limitation 

in the these work is that the MAXMISO subgraphs are defined to be the subgraphs with 

maximal size and are generated without considering the micro-architectural constraints, 

such as size and data flow structure. In this case these work cannot be applied to the PA 

compilation problem, since the selected subgraphs may not be executable on the PAs. 

 

Figure 3-3. (a) DFG of the kernel loop in rician-denoise. (b) One PA mapping 

solution. (c) Runtime PA configuration of (b). 

As discussed above, most of the previous PA compilation works either suffer from limited 

scalability or sub-optimality of the PAT mapping results, which may largely reduce the 

possible performance-power efficiency gain when run general applications on the PA-rich 

designs. 

3.3 PA Compilation Example 

In this section, we use a real-life medical imaging application, rician-denoise [41], to 

illustrate the PA compilation results on a sample PA template. 
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As shown in Figure 3-2, the sample PA template used here is a 4-level binary-tree 

structure, in which each node can either perform arithmetic operations or forward the 

input value to its output. The interconnect between two rows is designed in a way that 

each data can be transferred to next row or be directly accessed as a PA output. In this 

case at maximal 15 outputs are supported in this PA template, while the PA template in 

Figure 3-1 only allows two PA outputs at maximum, which largely restricted the possible 

support for disjoint PA candidates. Therefore it is not very suitable to test the PA 

compilation flow supporting disjoint PA candidates. Note that our proposed flow can be 

applied to any predefined PA template and the template in Figure 3-2 is only used here as 

one example. 

Figure 3-3(a) shows the simplified data flow graph of the kernel loop in rician-denoise, 

which contains 14 arithmetic operation nodes (add, multiply and divide). Figure 3-3(b) 

shows two selected PA candidates pac1 and pac2 which covers the entire DFG. Let‟s first 

look at the connected candidate pac2, it is isomorphic to subgraph {1, 4, 9, 10, 13} in the 

given PA template, therefore is identified as a PA candidate. The corresponding runtime 

PA configuration is shown in Figure 3-3(c), in which the 15-node PA unit pa2 will 

dynamically reconfigured to match the 5 computations in pac2.  The remaining nodes in 

the PA template will not perform real computations in this mapping. 

Comparing to the connected-only case, PA compilation with disjoint PA candidates can 

better take the advantage of the data-level parallelism inside PA template. For example, 

pac1 in Figure 3-3(b) contains two connected subgraphs. Since both subgraphs in pac1 are 

PA-executable and the outputs of nodes 13 and 14 in pa1 of Figure 3-3(c) can be 

calculated without violating data dependency constraint, pac1 itself is also a PA candidate 

and can be mapped to one PA template. As shown in Figure 3-3(c), nodes 1, 2, 5, 6, 8 are 

mapped to template nodes 1, 2, 9, 10, 13; nodes 3, 4, 7, 9 are mapped to template nodes 5, 

6, 11, 14. 
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3.4 Preliminaries and Problem Formulation 

To formally formulate the proposed maximal PA compilation problem, in this section we 

first introduce the necessary definitions and theorems. 

Here we assume the input data flow graph is a DAG called G<V, E>, in which each node 

in V represents an operation it performs and each edge in E represents the data 

dependency between two nodes. The pre-defined acyclic PA template graph is called 

T<VT, ET >, in which VT and ET include a set of operation nodes and data dependency 

edges in the PA template, respectively. The operation nodes that are not supported in the 

given PA template are called forbidden nodes. Without loss of generality, in the rest of 

this chapter we assume G is the data flow graph after removing all the forbidden nodes. 

Definition 3-1. Given an input data flow graph G <V, E >, a subgraph G*<V*, E*>  

G<V, E > is convex if there exists no path between any two nodes in G* which involves a 

node V -V* 

Definition 3-2. If G*<V* E*> is a subgraph of G<V, E >, which consists of K 1 

connected components G1* < V1*, E1* >, G2* < V2*, E2* >, ..., GK*< V K *, EK*>. G*< 

V*, E*> is called a legal subgraph of G if (i) ∀ i, Gi*<Vi*, Ei*> is convex (i  [1, K]) 

(ii) there exists no data dependency between any pair of connected components in G*, 

when K > 1. 

Definition 3-2 can be applied to both connected (when K = 1) and disjoint subgraphs 

(when K > 1). It ensures that the enumerated legal subgraphs can be scheduled on the PA 

template without violating data dependency constraints. 

Definition 3-3. Given a PA template T <VT ,ET > and an input data flow graph G < V, 

E >, a subgraph G*< V*, E*>  G < V, E > is called an PA candidate if there exist a 

legal subgraph T*  T, which is isomorphic to G*. 
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Based on Definition 3-3, we can further define the concept of maximal PA candidate as 

follows: 

Definition 3-4. A PA candidate G*< V* E*> is called a maximal PA candidate, if ∀Vi  

V -V*, the expanded subgraph G
+
 <V* {vi}, E*> is not a PA candidate. 

For example, PA candidate pac2 in Figure 3-3(b) is not a maximal PA candidate, since it 

can be expanded by adding nodes 8 or 9 and the expanded graph is still a PA candidate. 

pac1 is a maximal PA candidates since it cannot be further expanded and mapped to the 

PA candidate without violating the data dependency constraints. 

 

 

Figure 3-4. Two compatible maximal PA candidates. 

Note that PA candidates may overlap with each other at a certain set of nodes. If it is 

possible to distribute each overlapping node to exactly one maximal PA candidate and the 

transformed subgraphs are still PA-executable, the overlapping candidates are called 

compatible PA candidates and the corresponding transformed subgraphs without 

overlapping nodes are called overlapping- free subgraphs. Figure 3-4 shows two maximal 

PA candidates pac1 and pac2, which overlap with each other at nodes 8 and 9. They are 
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compatible with each other since we can remove nodes 8 and 9 from pac2 and the 

remaining graph is still a PA candidate. 

Given a mapping solution consisting of N PA candidates, the PA utilization efficiency can 

be evaluated by 
|𝑉|

𝑁×|𝑉𝑇|
, in which |V| and |V

T
 | refers to the size of target DFG and PA 

template. A higher utilization efficiency implies the computational resources present in 

the PA template have been fully utilized. Considering that both |V| and |V
T
 | are given, we 

need to minimize the number of selected PA candidates in a mapping solution to improve 

PA utilization. In this case, we can formulate the PA compilation problem into two 

sub-problems: 

Problem 3-1. PA candidate identification. Given an input data flow graph G and PA 

template T, identify all the PA candidates in G, which can run on the PA units. 

Problem 3-2. PA mapping. Given an input data flow graph G and a set of identified PA 

candidates, select a minimal number of non-overlapping PA candidates which can cover 

the entire G and map each selected PA candidate to a PA unit. 

We can see that the enumerated PA candidates can be either connected or disjoint, 

therefore the mapping phase may involve a very large number of PA candidates and 

becomes difficult to obtain the optimal solution. To make this problem more tractable, we 

propose a maximal PA compilation flow, which can be partitioned into the two 

sub-problems as blow: 

Problem 3-3. Maximal PA candidates identification. Given an input data flow graph G 

and PA template T, enumerate all the maximal PA candidates in G, which can run on the 

PA units. 

Problem 3-4. Maximal PA mapping. Given an input data flow graph G and a set of 

enumerated maximal PA candidates, select a minimal number of compatible maximal PA 

candidates which can cover the entire G. 

Note that the number of maximal PA candidates is much smaller than total number of PA 
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candidates. For example, the PA candidates {14}, {12, 14}, {13, 14}, {12, 13, 14} share 

the same maximal PA candidate pac2 in Figure 3-4. Hence the problem size in the 

maximal PA mapping phase can be largely reduced. 

Theorem 3-1. The optimal solution for the original PA mapping problem defined in 

Problem 3-2 equals the optimal solution for the maximal PA mapping problem defined in 

Problem 3-4. 

Proof. Assume the optimal solution for the maximal PA mapping problem contains N 

maximal PA candidates and the optimal solution for the original PA mapping problem 

contains M PA candidates. 

(i) Assume that the optimal PA mapping solution contains M non-overlapping PA 

candidates {P1, P2, ..., PM}. For each Pi in the optimal solution, if Pi is a maximal PA 

candidate, let Pi* = Pi; If Pi not a maximal PA candidate, expand it by adding neighboring 

nodes until a corresponding maximal PA candidate Pi
m

 is generated, let Pi
*
 = Pi

m
. The 

derived set of PA candidate {P1*, P2*, ..., PM*} contains M maximal PA candidates, 

which covers the entire data flow graph and are compatible with each other (the 

corresponding overlapping-free subgraphs are {P1, P2, ..., PM}). Therefore {P1*, P2*, ..., 

PM*} is one feasible solution for the maximal PA mapping problem, and we have M N. 

(ii) Assume that the optimal maximal PA mapping solution contains N compatible 

maximal PA candidates { P1, P2, ..., PN}. For each Pi in the optimal solution, Pi*is defined 

to be the corresponding overlapping-free subgraph of Pi. The derived set of PA candidates 

{P1*, P2*, ..., PN*} contains N PA candidates which do not overlap with each other. 

Therefore {P1*, P2*, ..., PN*} is one feasible solution for the original PA mapping 

problem, and we have N M. 

From (i) and (ii), we can get N = M. 

Theorem 3-1 demonstrate the optimality of the proposed maximal compilation flow, in 

which the original PA mapping problem is transformed to the maximal PA mapping 
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problem with a much smaller problem size. 

3.5 Maximal PA Compilation Flow 

In this section we discuss the proposed maximal PA compilation flow, which is performed 

in two steps: maximal PA candidate identification and maximal PA mapping. 

3.5.1 Maximal PA Candidates Identification 

Efficient pattern identification techniques have been investigated in a wide range of work 

[67] [68] [69]. In our flow, the subgraph identification and isomorphism checking 

techniques proposed in [18] are employed to generate connected PA candidates efficiently. 

At step k + 1, all the PA candidates with k nodes are extended by adding one neighbor in 

topological order to reduce duplicate identification. After a new subgraph G* is generated, 

it will be compared to the subgraphs of the given PA template for graph isomorphism 

checking. A filtering scheme based on characteristic vector (CV) [67] is applied here to 

reduce the number of expensive graph isomorphism checking operations. 

If G* with k + 1 nodes is a PA candidate, all the subgraphs of G* with k nodes will be 

marked as non-maximal. In this case, when k increases to the maximal PA size, all the 

maximal connected PA candidates have been generated. 

The work in [69] proves that any connected component of a disjoint PA candidate must 

be a connected PA candidate. Therefore the disjoint PA candidates can be generated by 

grouping a set of connected ones together. In our flow, at step l + 1, all the non-maximal 

PA candidates with l connected components are extended by adding one connected 

component and all the subgraphs of G* will be marked as non-maximal. 

Note that instead of generating all the disjoint PA candidates in an input data flow graph, 

we only target at those which can be mapped to the pre-given PA template. Therefore the 

micro-architectural constraints in the PA template, such as depth, size, number of 

inputs/outputs, can be applied to prune the identification space. For example, after 

covering the disjoint PA candidate pac1 with pa1 in Figure 3-3(c), the entire PA template 
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will be occupied and no more nodes can be mapped to the remaining nodes {3, 4, 7, 8, 12, 

15} in the PA template without violating the data dependency constraint. Therefore the 

disjoint PA candidate pac1 will not be grouped with any new connected component to 

form a larger PA candidate and can be removed from the set of PA candidates to be 

further expanded. Similarly, size and number of ports for each newly-generated disjoint 

PA candidates are also collected during the identification process for early pruning. 

Another example is the PA template designed in [54], in which only two outputs are 

supported. This imposes a fairly strict constraint on the disjoint PA candidate generation 

and hence efficient output-port-directed pruning strategy presented in [69] can be applied 

to reduce the exploration complexity. 

3.5.2 Maximal PA Mapping 

Now that we have a set of maximal PA candidates, a subset of those candidates need to be 

selected and mapped to PA units. 

Here we present a branch-and-bound algorithm to generate the optimal covering solution 

with maximal PA candidates. Taking the advantage of the features of maximal PA 

candidates, efficient preprocessing and pruning techniques have been developed to reduce 

the algorithm runtime. The proposed maximal PA mapping approach is shown in 

Algorithm 1. The algorithm inputs include a data flow graph G and a set of maximal PA 

candidates MP. The final output is a subset of MP which covers G with the minimal 

number of maximal PA candidates. As shown in lines 8-15, the entire mapping flow can 

be divided into three stages: pre-selection, greedy-sol-gen and max-cover, as discussed 

below: 

pre-selection As we discussed in Section 3.2, the exact algorithms for the PA mapping 

problem accept a full set of identified PA candidates as inputs. Therefore at most cases a 

node in G is covered only by one PA candidate, unless it is disconnected from other nodes 

in G. For example, node 14 in Figure 3-4 can be covered by possible PA candidates such 
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as {14}, {12, 14}, {13, 14}, etc. On the other hand, when we only include maximal PA 

candidates in the mapping phase, node 14 is only contained in one maximal PA candidate 

pac2 in Figure 3-4. In this case, we can directly conclude that PA candidate pac2 will be 

selected in the optimal covering solution, and remove all the nodes covered by pac2 from 

G. Then the mapping process only needs to be applied to the remaining data flow graph 

with less PA candidates. For example, after pac2 is selected, the remaining graph contains 

7 nodes, which is only half of the original size. 

greedy-sol-gen Note that in a branch-and-bound approach, the current optimal solution is 

usually used to prune the searching space and speedup the covering process. For example, 

if we know that the best possible solution generated from the current step is worse than 

the current optimal solution, we can immediately stop branching at the current direction 

and save the corresponding algorithm runtime. In this case, the initial solution should be 

set as close as possible to the real optimal one for fast pruning. In Algorithm 3-1, a 

greedy covering solution with disjoint PA candidates is used to enable fast initial pruning, 

as shown in line 9. 

max-cover Lines 17-40 show the branch-and-bound based covering algorithm, which is 

applied to the reduced data flow graph generated after the pre-selection stage. For each 

maximal PA candidate, it can be either included or excluded in a feasible solution, as 

shown in lines 14-15 and lines 36-37. Here if the second parameter decision equals true, 

the corresponding PA candidate will be selected in the current solution, otherwise not. In 

this case all the possible combinations will be evaluated to obtain the optimal solution. 

When the entire graph is covered after adding a new PA candidate, the corresponding 

covering solution will be compared to the current optimal solution at line 21. If the 

newly-generated solution turns out to be better, compatibility checking will be performed 

on the selected PA candidates. The current optimal solution will be updated if the selected 

PA candidates are compatible with each other, as shown in lines 22-25. 

Assume each overlapping node vi is covered in ni PA candidates, therefore in the worst 
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case ∏ 𝑛𝑖 non-overlapping node assignment schemes need to be evaluated to decide 

whether a set of overlapping PA candidates are compatible or not. To perform fast 

compatibility checking, tight nodes are first removed from the overlapping node set. Here 

an overlapping node v is a called tight node of PA candidate P if all the overlapping-free 

subgraphs of P will contain v. For example, the overlapping nodes locating in a path 

between two nodes in P are tight nodes, if the corresponding two nodes do not belong to 

the overlapping set. Therefore it should be directly assigned to P, otherwise the convexity 

of P cannot be maintained. In this case, if a node v is the tight node of more than one 

selected PA candidates, we can directly conclude that no overlapping-free node 

assignment scheme exists and the covering solution is not compatible. After removing the 

tight nodes, all the possible node assignment schemes in the remaining overlapping set 

will be evaluated in which the same pruning technique using tight nodes can be applied. 

The overlapping removal problem itself is computational demanding, but it will only be 

performed when a better solution has been found. In practice, with efficient pre-selection 

as well as the initial greedy solution obtained at line 9, the number of overlapping PA 

candidates and nodes during compatibility checking process is small. As shown in 

Section 3.6, the total algorithm runtime, including compatibility checking, is fairly 

affordable. 

In order to efficiently prune the searching space, at line 13, all the PA candidates are 

sorted in the decreasing order of its size in G
-
, namely |si|, which ensures that the size of 

the currently added PA candidate is always greater than (or equal to) the PA candidates 

added later. With this observation, we can conclude that after the i
th

 PA candidate has 

been selected, at least ⌈
𝑁

𝑠𝑖
⌉ PA candidates are needed to cover the remaining graph, where 

N equals the number of uncovered nodes. Therefore, at lines 33-34, an early optimality 

checking is performed to evaluate the current partial covering solution. If the best 

possible covering solution by continuing growing the currently selected PA candidate set 

is worse than the optimal solution we have obtained so far, no further searching from the 



 

51 

current state will be performed and the algorithm will directly return to an earlier 

covering state. 

 

Algorithm 3-1. Maximal PA Mapping Algorithm 

1: G(V, E): input data flow graph 

2: MP: a set of maximal PA candidates MP1(V1, E1), ..., MPN(VN, EN) 

3: MP
s
: the set of pre-selected maximal PA candidates 

4: MP*: a subset of MP which covers G optimally 

5: V
s
: the nodes covered by MP

s
 

6: 

7: Procedure max-PA-mapping() 

8: pre-selection(); 

9: optimal_sol = greedy-sol-gen(); 

10: for each PA candidate MPi  MP-MP
s
 do 

11:     si = |{v|v  Vi && v  V
s
}| 

12: end for 

13: sort PA candidates in MP - MP
s
 in decreasing order of si 

14: max-cover(1, true); 

15: max-cover(1, false); 

16: 

17: Procedure max-cover(i, decision) 

18: if decision = true then 
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19:     add MPi  MP - MP
s
 in MP* 

20:     if MP* covers V -V
s
 then 

21:       if |MP*|+|MP
s
|< optimal_sol then 

22:         if the PA candidates in MP*+MP
s
 are compatible with each other then 

23:           optimal_sol = |MP*|+|MP
s
|; 

24:           optimal_set = MP*+MP
s
; 

25:         end if 

26:       end if 

27:     return; 

28:     end if 

29: end if 

30: if i+1 > |MP-MP
s
| then 

31:     return; 

32: end if 

33: if |MP*|+⌈
#𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑛𝑜𝑑𝑒𝑠

𝑠𝑖
⌉ ≥ optimal_sol then 

34:     return; 

35: end if 

36: max-cover(i+1, true); 

37: max-cover(i+1, false); 

38: if decision = true then 

39:     remove MPi from MP* 

40: end if 
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3.6 Experimental Results 

3.6.1 Experiment Setup 

We evaluate the proposed maximal PA compilation flow on 12 computation-intensive 

applications from widely-known benchmark suites and computing domains, with the 

kernel DFG size ranging from moderate to large. The test cases include five benchmarks 

from the SPEC2006 suite [70] (calculix, leslie3d, povray, bwaves and lbm), four 

applications from the medical imaging domain [41] (compressive sensing, registration, 

rician-denoise and segmentation), and three applications from the Rodinia benchmark 

suite [13][14] (heartwall, leukocyte and cfd), which is designed for heterogeneous 

computer systems with accelerators. The applications inside each benchmark suite are 

listed in the increasing order of application kernel size. 

Here we consider two scenarios: (1) PA compilation only with connected PA candidates 

(2) PA compilation with disjoint PA candidates. The proposed PA compilation flow is 

evaluated in both cases, and compared with the representative previous work [60] [55] 

targeting scalable PA compilation.  

Our PA compilation flow is implemented with the LLVM compiler infrastructure [42]. In 

the experiments, the tested benchmarks are compiled with all the standard optimizations 

in O3 turned on. The compilation time is obtained on a 4-core Intel Xeon CPU (E5404) 

running at 2 GHZ. 

3.6.2 Comparison Results 

In this section, we show the comparison results of four PA compilation flows - scalable 

connected PA compilation (SC-PAC) [60], the proposed maximal connected PA 

compilation (MC-PAC), scalable disjoint subgraph mapping(SD-PAC) [55] and the 

proposed maximal disjoint PA compilation (MD-PAC), in which the first two approaches 

only target connected PA candidates and the last two consider disjoint candidates. 
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Compilation time. Table 4-1 shows the comparison results on the PA compilation time. 

Following [60] and [55], 600 second is used as a maximum time limit, upon which the PA 

compilation will be terminated and the best solution generated by this time point will be 

reported. Note that 1 sec. in Table 4-1 means that the compilation can complete in one 

second. 

From Table 4-1, we can make the following observations: 

(1) The compilation time of SC-PAC and SD-PAC are very close to each other. The 

reason is that SC-PAC is a sub-routine of SDPAC. In SD-PAC, the optimal connected PA 

mapping solution is first generated with SC-PAC. After that, a greedy grouping operation 

is performed on the selected PA candidates with negligible time overhead, as shown in 

Table 4-1. 

(2) In the connected compilation case, the maximal PA compilation algorithm can 

complete in less than 10 seconds for all the benchmarks, while the SC-PAC flow fails to 

complete for six test cases, and its compilation time increases quickly when the 

compilation problem size grows. 

(3) In the disjoint compilation case, the results are similar, in which MD-PAC can 

complete in no more than 300 seconds for all test cases. 

The large gap of algorithm runtime between SC(D)-PAC and MC(D)-PAC can be 

explained with Table 4-2 and Table 4-3. The problem size of PA mapping is related to two 

factors - the target DFG size and the total number of PA candidates which can be selected 

into a mapping solution. As we discussed, with the proposed concept of maximal PA 

candidates, both factors can be efficiently reduced. From Table 4-2 we can see, by only 

including the maximal ones, the total number of PA candidates in the mapping phase can 

be reduced by 210X and 82X on average in the connected and disjoint case, respectively. 

Table 4-3 shows the reduction on the number of nodes to be covered in the kernel DFG, 

after the pre-selection discussed in Section 3.5.2 is applied. SC-PAC and SD-PAC 

normally need to cover the size of the entire DFG, since most DFG nodes belong to more 
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than one PA candidate and cannot be selected directly. While in MC-PAC and MD-PAC, 

the number of nodes to cover can be reduced by 20% and 25% on average, as shown in 

Table 4-3. 

Note that for lbm, segmentation and cfd, a greedy MD-PAC approach has been applied 

after generating all the maximal connected PA candidates, which results in a much 

smaller runtime. The reason is that the disjoint pattern enumeration is too costly in those 

benchmarks, e.g., in segmentation, the number of PA candidates with two connected 

component already exceeds 20,000. To solve this problem, once all the connected PA 

candidates have been identified, the mapping problem size of PA compilation is roughly 

estimated as the product of target DFG size and the number of identified PA candidates. 

In our disjoint PA compilation flow, if this product is larger than a given value (e.g. 9000), 

a greedy compilation algorithm will be invoked, in which all the maximal connected PA 

candidates are further grouped into disjoint PA candidates and fed into the mapping phase. 

Since the maximal connected candidates will not be removed after the grouping operation, 

this can ensure the solution generated in our flow is always better than or equal to that in 

[55]. 

Algorithm Scalability. To illustrate the scalability of the proposed maximal PA 

compilation flow, we plot compilation time with the corresponding problem size for the 

12 benchmarks. Here the compilation problem size is estimated as the product of target 

DFG size and the number of identified PA candidates. 

As shown in Figure 3-5, SC-PAC and SD-PAC runs fairly fast for moderate-size 

applications, while exhibits limited scalability when the problem size grows. Note that 

leukocyle is one application which can be compiled within 600 seconds even with a large 

problem size. This is because the real runtime will also be influenced by other factors, 

such as subgraph overlapping and the efficiency of the initial greedy solution. The 

estimated problem size is used here to provide an insight of the overall trend. 
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Figure 3-5. Algorithm runtime vs. input problem size. 

Considering the maximal PA compilation flow, the increased problem size has a small 

effect on the MC-PAC runtime and it can finish quickly for all the 12 benchmarks. When 

disjoint PC candidates are included, the corresponding compilation flow MDPAC 

gradually slows down as the problem size increases, but it still can finish in less than 300 

seconds for all the benchmarks tested. As we discussed, when the estimated problem size 

exceed a given threshold, a greedy MD-PAC process will be invoked and the 

corresponding compilation time falls drastically while still can generate reasonable 

mapping quality, which will be shown later in this section. This further demonstrates the 

scalability of the proposed maximal compilation flow to deal with large benchmarks or 

PA templates, even including the disjoint PA candidates. 

Table 3-1. Comparisons on PA compilation time (sec) 

 calculix Leslie. povray bwaves lbm c.s. reg. denoise seg. h.w. leuk. cfd 

SC  284.3  -  -  - - 1  1  34.2  - 2.1  338  - 

MC  1  1  1  1  4.1  1  1  1  5.2  1  1  1  

SD  284.9  -  - - - 1  1  34.6  - 2.2  339  - 

MD  14  17  29  277  14.6  1  1  11  18.9  1  284.1  1 
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Table 3-2. Comparisons on the number of PA candidates 

 calculix Leslie. povray bwaves lbm c.s. reg. denoise seg. h.w. leuk. cfd 

SC(D)  269  413  507  425  204  35  198  349  1147  252  618  416  

MC  12  16  29  21  36  11  14  19  44  11  33  27  

MD  98  31  378  215  54  28  103  162  57  11  270  46  

 

Table 3-3. Kernel size reduction with pre-selection 

 calculix Leslie. povray bwaves lbm c.s. reg. denoise seg. h.w. leuk. cfd 

Orig. 31 36 42 44 48 19 27 37 75 17 46 52 

MC 9 10 10 5 3 6 8 7 20 4 11 5 

MD 10 13 10 7 0 9 10 7 0 8 18 0 

 

Mapping optimality. Figure 3-6 shows the comparison results on the final mapping 

solution, which equals the number of selected PA candidates to cover the target DFG. 

From the results we can see, comparing to the optimal approach SC-PAC, MC-PAC 

generates better mapping solution at 6 applications with relatively large kernel size. This 

is due to the fact that with those large test cases, SC-PAC cannot finish within 600 

seconds and thus cannot obtain the actual optimal result even though the approach itself 

is optimal. On average, MC-PAC can achieve 14% improvements over SC-MAC in terms 

of the mapping quality, and MD-PAC can achieve 23.8% improvements over the heuristic 

approach SD-PAC and 32.5% improvements comparing to the results of SC-PAC with 

connected PA candidates. 
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3.7 Algorithm Generalization 

So far we have discussed the maximal PA compilation flow to cover the target 

applications with a minimum number of non-overlapping maximal PA candidates. This 

flow can be further generalized in two directions. 

Longest PA path length optimization In PA mapping work, there exist another set of 

work targeting at finding the PA mapping solution with minimal longest PA path length, 

which can be called as min-length optimization. Here the length of a PA path is calculated 

by the number of PA units locating on the path. Algorithm 1 can be easily modified to 

generate the optimal min-length solution. In this case, the maximal PA candidates are 

sorted in decreasing order of longest path length (in terms of DFG nodes) at line 13 in 

Algorithm 1, instead of size. Therefore we can ensure the longest node-wise path length 

of the currently added subgraph, denoted by l, is always no less than the ones added later. 

In this case, to cover the remaining DFG with longest node-wise path length equaling L, 

at least ⌈
𝐿

𝑙
⌉ PA units are needed to cover the L nodes. Assume the current shortest path 

length is ls, which equals the smallest number of selected PA candidates locating in the 

same path. At lines 33-34, we can apply similar pruning strategy - if ⌈
L

l
⌉+ls is no less than 

the current optimal solution, the algorithm will return to an earlier covering stage, since 

the best possible solution if we continue adding new PA candidates into the current partial 

solution cannot be better than the best solutions we have obtained so far. 

Overlapping By allowing overlapping, duplicate computations may be performed and 

have a side effect on performance/power efficiency. Therefore most previous work does 

not allow selected PA candidates to be overlapped with each other. However, the 

existence of overlapping PA candidates may result in a better mapping solution, as 

discussed in [58]. To generalize Algorithm 1, we can prove the optimal solution for a 

general PA mapping problem, which need not to be non-overlapping, equals the optimal 

solution for a general maximal PA mapping problem without compatibility constraint. 
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The proof is similar to the proof of Theorem 3-1. 

 

Figure 3-6. Comparisons on PA compilation result. 

Therefore the modified Algorithm 1 after removing the compatibility checking at line 22 

can be directly applied to the general maximal PA mapping problem. 

3.8 Conclusions 

In this chapter we introduce a new PA compilation flow based on maximal PA candidates. 

The proposed flow shows significant improvements in terms of compilation time, result 

quality as well as scalability. One thing to note here - currently PA candidates are defined 

with subgraph isomorphism, while in general full equivalence checking techniques can be 

applied to check whether the two computational subgraphs generate the same results, 

which will be investigated in the future work. 

 



 

60 

Chapter 4. Compilation for Fully 

Pipelined Accelerators 
Programmable accelerators (PA) are widely investigated in the design of domain-specific 

architectures to improve system performance and power. In PA-rich systems, target 

computational kernels are compiled with pre-defined PA templates and dynamically 

mapped onto real PAs. To secure highest energy efficiency, full pipelining has become a 

critical factor in PA design. This imposes demanding challenges on compiler regarding 

how to generate high quality mapping code. In this chapter we propose an optimal PA 

mapping algorithm to efficiently map computation kernels onto a series of fully pipelined 

accelerators. The proposed approach achieves an average 1.24X speedup comparing to 

previous work. 

4.1 Introduction 

Customization is an appealing solution to increase performance-power efficiency, which 

is one of the primary design concerns in the era of many-core systems. A recent industry 

trend to address it is by designing and integrating fixed-function computation accelerators 

on the die, targeting application domains demanding high performance and 

power-efficient execution. Graphs, media, audio and imaging are example domains of 

this [96][97]. Although fixed-function accelerators can be designed to provide the best 

performance/energy efficiency for a specific domain, it suffers from poor flexibility 

problem, hence are not suitable for the domains with constantly changing use protocols.  

To address this problem, programmable accelerator (PA) has been proposed to enable 

varying degrees of customization in accelerator-rich systems [39][54][55][22][98]. In a 

standard PA architecture, a programmable accelerator template is implemented in each 

PA unit to support a selected set of computation tasks with reasonable hardware design 

costs. The entire pre-defined PA template can be dynamically reconfigured to perform a 

set of simpler but more general subtasks. Therefore, each accelerator unit in a PA-rich 
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system can be customized to computation tasks with different granularity, which enables 

efficient switching among varying degrees of customization at runtime. One example is 

the PA template used in [54], which can be configured by hardware control signals at 

runtime to support all the 4-input 2-output computation patterns with dependency depth 

less than 5.  

Prior PA-flavor designs were proposed in the era when transistor count is a limited kind 

of resources. Taking CGRA (coarse-grained reconfigurable architecture) as an example, 

each processing element is placed with multiple instructions through modulo scheduling, 

thus needs to switch among different modes when execute these instructions. This kind of 

time multiplexing incurs extra control logics and is necessary only when the transistor 

resource is limited. In the era of dark silicon, the system performance is no longer limited 

by transistor count, but mainly constrained by energy consumption. Motivated by this 

trend, fully pipelined programmable accelerator without unnecessary time multiplexing 

has been designed to achieve the highest energy efficiency, such as [99].  

On the other hand, the emergence of those PA-based designs imposes a demanding 

challenge on the compiler side − how to generate high-quality PA mapping code to 

achieve the highest energy efficiency. The first challenge is how to fully utilize on-chip 

resources. Note that the computation carried by a PA at runtime, which can be called 

active region, is one subtask supported by its PA template. The total number of PAs used 

to cover a given input kernel highly depends on the active region size of each PA instance, 

and a number of PA compilation work [55][60] targets finding an optimal PA mapping 

solution with least PA usage. The second challenge comes with the pipelined PA 

execution. In a fully pipelined PA design, input data comes in at every clock cycles, 

buffers or dummy PAs [99] need to be inserted to guarantee the correctness of pipeline 

behavior. This serves as a new demanding resource requirement, which is not considered 

in previous work.  

In this chapter, we investigate and model the impact of throughput target on resource 
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usage in accelerator pipelines. Here resource usage includes not only PAs, but also 

buffers required to balance path delay. We also propose an optimal PA mapping 

algorithm to efficiently map on-chip accelerator resources to pipelined execution. 

Compared to the PA compilation approaches proposed in [60], our approach achieves a 

significant reduction on mapping size and up to 33.8% improvement on system 

performance 

 

4.2 Overview of Fully Pipelined PA 

In this section, we use a real world example to illustrate the execution model of one 

recently-design fully pipelined PA architecture called CHARM [99].  

Figure 4-1 shows the basic architecture of CHARM. It consists of a set of PAs as 

computation elements, with dedicated interconnects in a chain. But most of the data ports 

of computation elements will go through a pipelined permutation data network to support 

arbitrary topology of the data flow graph in user applications. There are also a small 

number of delay units connected to the data network to provide temporary storage if any 

data element will be used by different modules in different time slots. The local SPM 

banks in the memory complex iterate the regular access patterns of load/store operations 

in user applications and read/write data under the control of address generations. While 

one side of SPMs is connected to the data network, the other side is connected to global 

data unit for data from external memory. There is also a synchronization unit for pipeline 

management, and a configuration unit to provide all the modules with constant 

configuration bits generated by an accelerator/buffer controller (ABC) from compiler 

binaries. The controller is a module that directly talks with ABC and monitors the status 

of all the modules in an island. 

Figure 4-2 shows a sample PA template containing four computation nodes in total, 

which can be configured to all the one-node, two-node, three-node subgraphs of itself. 
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This PA template is designed following the Xilinx DSP48E structure [100], which is 

frequently used in a variety of applications. When the kernel loop in Figure 4-3 (a) is 

mapped to the underlying hardware, each load/store operation will be mapped to 

pipelined address generators coupled with scratch-pad memories. Each 

add/subtract/multiply operation will be be mapped to a pipelined PA. As shown in Figure 

4-3 (b), the kernel loop is partitioned into 4 PAs, which contains nodes {2, 6}, {3, 7}, {4, 

8, 10} and {1, 5, 9, 11} respectively. All the edges in the data flow graph of the kernel 

loop will be mapped to a pipelined data network. Every clock cycle, five data elements 

associated with the five input data array references will be loaded for computation. In the 

next cycle, while the last five data elements are still wandering at the intermediate stages, 

the other five data elements for the next loop iterations are sent to the network. This full 

pipeline guarantees high energy efficiency of computation and full exploitation the 

benefits of regular computation/access patterns of the target application. 

 

Figure 4-1. Architecture of CHARM 
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Figure 4-2. A sample PA template  

 

One thing to note is that during pipelined execution some data elements in the data 

network will be used by multiple modules in different cycles. For example, the data 

element generated by u[i][j] will be used by PA0-PA3 in Figure 4-3 (b). This result in 

four different paths which start from u[i][j] and end at PA3 - {u[i][j], PA3}, {u[i][j], 

PA0, PA3}, {u[i][j], PA2, PA3} and {u[i][j], PA1, PA2, PA3}. Therefore we need to 

insert delay units to temporarily store these data elements between its first use and its last 

use. As shown in Figure 4-3 (c), two delay units are inserted to balance the delay along 

those four paths. The challenge is that due to the full pipelining feature of our underlying 

hardware, each delay unit will receive a new data element every clock cycle. To reduce 

the amount of delay units used in a pipelined execution, we need to reduce the lifetime of 

each data element as much as possible. This motivates us to do path balancing for 

resource and energy savings. 

4.3 Preliminaries 

Definition 1  Given an input data flow graph G<V,E>, a set of PA candidates 

 ),(),...,(),,( 222111 MMM EVGEVGEVG , we define ),(. MMM EVMG  as a PA mapping 

graph, if it satisfies: (1) there exist an injective function   Mi VvKivGf  ,,1:.  (2) 

Mio VVGfGfGf  )(...)(.)(. 221 ; (3) VVVVV ioK  ..... 21 ; (4) 

EEEEE MK  ..... 21 .  

In other words, each PA candidate or memory reference node in the G is mapped to one 
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node in MG (constraint (1&2)). MG covers the original data flow graph (constraint 

(3&4)). Figure 4-3 (b) shows a PA mapping graph in which each node either corresponds 

to a PA candidate or a memory reference. Since it takes four PA templates to cover the 

input data flow graph, the size of MG equals four times the template size.  

Definition 2  A digraph G<V,E> is called a balanced graph, if it satisfies: for ∀u∈V, 

∀v∈V, if there exist at least one path from u to v, then all the paths from u to v have the 

same path length. Here the length of a path p is defined to be the number of vertices in p.  

Based on the definition above, we can see Figure 4-3 (c) is a balanced mapping graph, 

since all the paths from node u[i][j] and PA3 have length 4. 

 

Figure 4-3. (a) Mapping solution I of rician-denoise. (b) Mapping graph of (a). (c) 

Balanced mapping graph of (a). 

4.4 Throughput-Aware Path Balancing 

In this section, we discuss a general delay unit insertion scheme under a given accelerator 

pipeline throughput, represented by a initial interval (II). Suppose there exist K paths 

𝑃1, 𝑃2, … , 𝑃𝐾 from vertex u to v with length li (0 < i <= K). Without loss of generality, 

we can assume 𝑙1 ≤ 𝑙2 ≤ ⋯ ≤ 𝑙𝐾. Then during pipelined execution with one input data 

coming in every II cycles,  IIllK /)( 1
 
delay units need to be added to path pi to 

guarantee the arrival time of vertex u‟s K inputs are equal. 
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From the discussion above we can see when II equals 1, namely a full pipelined 

execution, the system exhibits the most demanding requirement on the number of delay 

units.  

 

Figure 4-4. Delay unit insertion (II = 2). 

To further illustrate the impact of II on delay unit insertion, we use Figure 4-4 to show the 

balanced mapping graph of Figure 4-3 (b) when II equals 2. In this case, only 1 delay unit 

need to be inserted at paths from u[i][i] to PA3. Assuming data uT is stored in delay unit 

D at cycle T, the value of uT are sent to PA1, PA0, PA2 and PA3 at cycle T, T+1 and 

T+2, respectively. At cycle T+2, a new data uT+1 comes in and overwrites uT in delay 

unit D. Figure 4-5 further illustrates the behavior of delay units in both Figure 4-3(b) (2 

delay units, II=1) and Figure 4-4 (1 delay unit, II=2). As we can see, when II equals 1, a 

new data will come in every clock cycle. In order to inject delay 2, two chained delay 

units are inserted at the output of reference u[i][j]. The value of uT is sent to both PA1 

and the first delay unit at cycle T; at cycle T+1, uT will be sent to PA0, PA2 and the 

second delay unit, and the first delay unit is overwritten by a new data uT+1; at cycle 

T+2, uT is sent to PA3 from the second delay unit, as shown in Figure 4-5(b). When II 
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equals 2, a new data will come in every two cycles. In this case, the delay unit in Figure 

4-5(a) holds the value of uT until T+2 - during this period, uT is accessed by PA1 at 

time T, by PA0 and PA1 at time T+1, finally consumed by PA2 at time T+2. At the 

same time, the next data uT+1 overwrites the value of uT in the delay unit.  

 

Figure 4-5. Chained delay units for a target II. 

Figure 4-6 shows the chained delay unit insertion scheme under a given II. Delay unit Di 

holds each data for II cycles, then pass it to Di+1. As we can see, in total  IIllK /)( 1  

delay units are inserted in the chain to provide delay )( 1llK  . 

We‟ve shown that given a PA mapping graph, it can be transformed into a balanced graph 

by adding delay in the unbalanced paths. Note that if there is no cycle in the PA mapping 

graph, delay can be added to the primary input of each path by postponing its access from 

on-chip memory. In this case no area overhead will be incurred from delay unit insertion.  

As one can see from Figure 4-7, different mapping solutions may lead to different path 

balancing results. For example, mapping solution in Figure 4-7(a) contains 5 PA nodes. It 

is larger than the size of Figure 4-3(b), which covers the data flow graph with only 4 PA 

nodes. However, if we look at the path balancing between u[i][j] and its output PA nodes, 

the maximal path length difference equals 1. This means only 1 delay unit need to be 
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inserted to enable a pipelined execution, as shown in Figure 4-7(c). Therefore the total 

mapping size of Figure 4-3(c) is 4*area(T) + 2*area(delay_unit), and the total mapping 

size of Figure 4-7(c) equals 5*area(T) + 1*area(delay_unit). If the PA system is equipped 

with a smaller number of delay units comparing to the amount of PAs, which is usually 

the case considering interconnect design complexity, mapping solution in Figure 4-7 will 

be selected since it consumes less scarce resource in the system. On the other hand, this 

further enlarges the search space when looking for an optimal mapping solution. 

 

Figure 4-6. Delay propagation when II = 1 and 2. 

 

Figure 4-7. (a) Mapping solution II of rician-denoise. (b) Mapping graph of (a). (c) 

Balanced mapping graph of (a). 

 

4.5 Pipelined PA Mapping 

In this section, we introduce an optimal delay unit insertion approach and a 

corresponding balanced PA mapping algorithm to efficiently map on-chip accelerator 

resources to a pipelined execution. 
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4.5.1 Delay Unit Insertion 

We consider a PA mapping graph which contains one or multiple undirected cycles. As 

shown in Figure 4-8, node s is the entry node, or split node, of a cycle; node m is the exit 

node, or merge node, of a cycle. After delay unit insertion, the lengths of any two paths 

between a split node and a merge node are the same. Without loss of generality, here we 

only consider the nodes covered by cycles, denoted by VC. 

 

Figure 4-8. An undirected cycle in a data flow graph. 

As discussed in Section 4.4, the goal of delay unit insertion is to make the lengths of all 

paths in a cycle (between the split node and the merge node) equal. One simple but 

greedy solution is to add delay units at the output ports of the split node to make the 

length of each path the same. However, this simple heuristic cannot guarantee the 

optimality of the final solution. As shown in Figure 4-9(a), there are two neighboring 

undirected cycles – the left one contains node 1, 2, 3, 5, 7 and the right one contains node 

1, 3, 4, 5, 6, 8, 9. Following the heuristic approach, one delay unit will be inserted 

between split node 1 and node 3 to balance the path length in the right cycle. In addition, 

two delay units need to be inserted between node 1 and node 2 to balance the path lengths 

in the left cycle. In total three delay units are added to the original data flow graph. This 
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scheme is not optimal, considering that after introducing one additional delay at path 

1->3->5->9 of the right cycle, the length of the longest path (1->3->5->7) in the left cycle 

also increases. Figure 4-9(b) shows an optimal solution with only two delay units needed 

to balance the path length in both cycles.  

 

Figure 4-9. (a) A greedy delay unit insertion scheme. (b) An optimal delay unit 

insertion scheme. 

For each cycle node v, we associate a label (dv, d1, d2, … dn) on v and each of its output 

nodes o1, o2, … on (only consider output nodes covered by at least one cycle) to indicate 

the depth of v and its output nodes. Each solution provides a way to organize the delay 

unit insertion. For each node, the basic constraint is di – dv > 0, which implies node depth 

will increase from an input node to an output node. When node v is used by its output 

node oi, the result of v may need be delayed before it is fed to oi, and the actually delay 

offset between v and oi can be calculated by di – dv. 

When node v is used by multiple nodes o1, o2, … on, we construct a set Sv = {d1 – dv, d2 – 

dv, … dn – dv }, and claim the minimum number of inserted delay units at the output ports 

of v equals max(Sv ) – min(Sv), namely the difference between the biggest delay offset and 

the smallest offset. 

Below is the mathematical programming formulation for the delay unit insertion problem,  
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𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑚𝑣

𝑣∈  

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝑑𝑢  𝑑𝑣   ≤ 𝑚𝑣, 𝑣 ∈     𝑢 ∈   𝑜𝑢𝑡𝑝𝑢𝑡(𝑖)     𝑢 ∈      ( ) 

𝑑𝑢  𝑑𝑤 ≤ 𝑚𝑣,                  𝑣 ∈     𝑢, 𝑤 ∈   𝑜𝑢𝑡𝑝𝑢𝑡(𝑖)   𝑢, 𝑤 ∈     ( ) 

𝑑𝑖,  𝑚𝑖 ≥  ,                      𝑖 ∈    ( ) 

Here we introduce a variable mv for node v, which represents the maximal delay offset 

difference among v‟s output nodes. Using the above model, the problem is solved using a 

linear programming solver as the underlying constraint matrix is totally unimodular. It 

can be solved optimally in polynomial time [107]. 

4.5.2 Balanced PA Mapping 

In this section, we introduce a branch-and-bound based optimal PA mapping algorithm 

with balanced path delay and smallest mapping size. Here the size of a mapping solution 

is defined to be the total area of the balanced mapping graph, including the area of both 

PA and delay units. The mapping size metric can also be defined as num(PA) + 

α*num(delay_unit) Here the value α is set to unit_area(delay_unit)/unit_area(PA). We 

can also set α to be io(delay_unit)/io(PA), which equals the ratio between the number of 

IO ports of each delay unit and each PA. In this case, this metric measures the pressure on 

the interconnect design imposed by the corresponding PA mapping solution.  

As shown in Algorithm 4-1, if the second parameter decision is true, the corresponding 

PA candidate will be selected in the current solution, otherwise not (as shown in lines 

13-15). In this case all the possible combinations will be evaluated to obtain the optimal 

solution. When the entire data flow graph is covered after adding a new PA candidate, the 

newly generated mapping solution will be compared to the current optimal solution. If it 

turns out to be better, the current optimal solution will be updated in line 18.  

In order to efficiently prune the searching space, we‟ve developed a pruning technique 
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combining two metrics (line 26): (1) PA candidates are added in the decreasing order of 

their size. In this case, after the ith PA candidate with size si has been selected, at least 

 iN/s  PA candidates are needed to cover the remaining data flow graph, where N equals 

the number of uncovered nodes. (2) With d delay units generated in the current partial 

mapping solution (Figure 4-10), at least d delay units are needed to balance the path delay 

difference in the corresponding complete mapping graph. 

 

Figure 4-10. A partial mapping graph. 

 

Algorithm 4-1  Balanced PA Mapping Algorithm 

1: G(V, E): input data flow graph 

2: P: a set of PA candidates P1(V1, E1), ..., PN(VN, EN) 

3: S: 0 

4: II: target throughput 

5: 

6: Procedure balanced-PA-mapping() 

7: optimal_sol = greedy-sol-gen(); 

8: sort PA candidates in P in decreasing order of size 

9: balanced-cover(0, true); 

10: balanced-cover(0, false); 
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11: 

12: Procedure balance-cover(i, decision) 

13: if decision = true then 

14:     add Pi in S 

15:     if S covers G then 

16:       if |S| + alpha*total_delay_unit < optimal_sol then 

17:           optimal_sol = |S| + alpha*total_delay_unit; 

18:         end if 

19:     return; 

20:     end if 

21: end if 

22: if i+1 > |P| then 

23:     return; 

24: end if 

25: if |S|+⌈
#𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑛𝑜𝑑𝑒𝑠

𝑠𝑖
⌉ + alpha*total_delay_unit ≥ optimal_sol then 

26:     return; 

27: end if 

28: balanced-cover(i+1, true); 

29: balanced-cover(i+1, false); 

30: if decision = true then 

31:     remove Pi from S 

32: end if 
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4.6 Experimental Results 

4.6.1 Experiment Setup 

We evaluate the proposed maximal PA compilation flow on 10 computation-intensive 

applications from widely known benchmark suites and computing domains. The testcases 

include three benchmarks from the SPEC2006 suite [70] (calculix, povray and bwaves), 

five applications from the image processing domain [41] (gradient, registration, 

rician-denoise, segmentation and edge sobel), and two applications from the Rodinia 

benchmark suite [13] (leukocyte and cfd), which is designed for heterogeneous computer 

systems with accelerators.  

Our PA compilation flow is implemented with the LLVM compiler infrastructure [42]. To 

further evaluate our compilation flow, we have extended Simics [31] and GEMS[32] and 

conduct cycle-accurate simulations on a recently-developed pipeflined PA architecture 

called CHARM. 

4.6.2 Comparison Results 

In this section, we evaluate the proposed balanced PA mapping algorithm (BPM) with an 

optimal PA mapping flow in [60]. In [60] the optimization objective is to minimize PA 

usage when covering the input kernel graph. We apply Algorithm 4-1 to generate a 

corresponding balanced map for [60]. 

Mapping optimality. Figure 4-11(a) shows the comparison results when mapping to a 

fully pipelined execution (II = 1), including the usage of both PA and delay units. y-axis 

shows the number of PAs and delay units occupied in the corresponding mapping 

solution.  

From the results we can see, by applying balanced PA mapping, the delay unit usage has 

been significantly reduced in all the benchmarks. On average, BPM requires 32.6% less 

delay units comparing to [60]. On the other hand, the PA usage in both BPM and [60] are 
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similar. This means when we set the value of α small, BPM will converge to a solution 

close to PA-optimal solution. Note that the PA usage in BPM may be larger than that 

in [60] but with more balanced mapping graph (gradient, povary and leuocyte). 

Figure 4-11 (b) shows mapping size of BPM when mapped to a pipelined execution with 

different II (normalized to corresponding mapping size of [60]). As we can see from the 

figure, when II increases, the pressure on delay unit usage will be released, therefore the 

mapping size gap between BPM and [60] becomes smaller. When II is small, such as in a 

fully pipelined execution, the mapping quality difference between BPM and [60] is the 

most significant. This demonstrates the usage of BPM targeting pipelined accelerator 

execution. On average, the proposed flow achieves a 17.7% reduction on the total 

mapping size, with the maximal reduction up to 27.2% when II = 1.  

 

Figure 4-11. (a) Mapping size comparison of BPM and [9] (II = 1) (b) Mapping size 

comparison of BPM under different II. 
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Performance. Figure 4-12 shows the comparison of execution time on CHARM platform 

(II=1). The performance gain comes from improved data level parallelism when the 

overall mapping size is reduced. Given a limited number of accelerators and delay units, 

a smaller mapping solution implies higher degree of accelerator duplication to support 

parallel execution, so that multiple copies of accelerators can execute at independent loop 

iteration space. In CHARM, dummy PAs which are used to route data and do not perform 

any computation are inserted as delay units. On average, the overall performance gain of 

BPM is 23.6% over [60].  

 

Figure 4-12. Performance comparison. 

4.7 Conclusion 

PA-rich platforms and full pipelining have been considered closely to provide high 

performance and power efficiency. On the other hand, it also brings a number of 

challenges on compilers to generate high-quality acceleration codes. In this chapter we 

discuss the impact of pipeline II on the resource usage in a pipelined PA system. An 

optimal PA mapping algorithm is proposed to map input programs onto a target pipelined 

execution. The proposed flow shows significant improvements in terms of mapping 

quality and system performance. 
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Chapter 5. Communication 

Optimization for Software-Controlled 

Memories 
Multi-level software-controlled memories (SCM) have been extensively utilized in 

heterogeneous embedded systems. The knowledge of data access pattern enables the 

opportunity for compile-time communication optimizations, which can be applied to 

different SCM levels to hide memory access latency and improve bandwidth utilization. 

In this chapter we quantify the impact of data reuse pattern on both L1 and shared 

last-level (LL) SCM management. We propose a reuse-aware data movement scheme for 

multi-level SCMs. 31.2% performance and energy improvements are observed with L1 

SCM prefetching. The host-accelerator data transfers are reduced by 25% comparing to 

previous work [102].  

5.1 Introduction 

As discussed in Chapter 3, modern high-performance platforms are equipped with 

abundant computing elements. In order to fully utilize the available computing resources, 

communication optimizations become major challenges for designers. The inclusion of 

cache is one traditional way for general-purpose core to manage data movement. 

However, the hardware-controlled feature of cache makes it difficult to make a 

customized decision based on program behavior. As an alternative, software controlled 

memories (e.g. scratchpad memory or SPM) have been widely used in embedded systems 

and commercial high-performance processors, such as IBM‟s Cell processor and 

NVIDIA‟s GPUs. Programmers can tune the software manually or through special 

compiler support to manage SCM explicitly and control data movement in a more 

predictable way. Figure 5-1 shows a heterogeneous parallel architecture with 

general-purpose processor core (e.g. Intel Xeon) and fast hardware accelerator cores (e.g. 

FPGA or GPU). The accelerator cores sit beyond two levels of SCMs (private L1 SCM 
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and shared L2 SCM).  

 

 

A number of work addressing the compiler support for efficient SCM management have 

been developed. The allocation scheme in SCM can be divided into two categories. The 

first category targets L1 (on-chip) SCM allocation. To hide access latency to lower level 

memories, L1 SCM can be utilized as a prefetch buffer with explicit control over data 

replacement policy. Compared with conventional cache prefetching, SCM-based 

prefetching can avoid the scenario in which the data evicted from cache by the newly 

prefetched data is still “alive,” i.e., will be accessed frequently in the near future. 

However, limited attention has been given to SCM prefetching in the literature. For 

example, the management scheme in [72] only includes initial prefetching operations 

with no further analysis of prefetching for dynamic data transfers, and program execution 

may stall due to late SPM buffer update. In fact, prefetching too late to hide the memory 

access latency will harm the overall performance, while prefetching too early will put 

stress on the required SPM size to accommodate those data before their first access. The 

work in [80] prefetches the entire array into scratchpad memory (or SPM, one type of L1 

SCM) before its access with the assumption that the entire array can fit into SPM. 

However, this is usually not the case, such as scientific applications with large input array. 

In [73], the direct buffers in Cell‟s local store (SPM) are utilized to support data 

Figure 5-1. Two-level SCM-based heterogeneous platform. 
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prefetching with runtime library support. In [81], array prefetching in SPM is managed 

through Markov-chain-based prediction. In [82], SPM is used as a prefetch buffer for 

video applications by gradually overwriting old data with new data. One common 

limitation of those works is that SPM prefetching decisions are made independently 

without considering possible data reuse pattern. For example, [73] and [81] only focus on 

applications without regular memory reuse, and the scheme proposed in [82] works only 

for streaming applications. There exist some unified prefetching and reuse schemes for 

cache. For example, prefetching instructions in [83] are issued only for the memory 

references with high probability to be a miss. However, since the work targets a normal 

cache, the compiler does not have explicit control over data eviction, and cache pollution 

may still occur. Besides, since the cache block to store the prefetched data is determined 

by hardware, data layout and eviction set selection are not considered in this chapter. The 

same problem also exists in other cache prefetching work such as [84] and [85]; hence, 

those works cannot be directly applied to SCM prefetching. 

The second category targets last level SCM management to balance the low bandwidth 

from main memory, which can be further divided into static allocation and dynamic 

allocation. In static allocation schemes, data layout in SCM is determined at compile time 

and will remain fixed throughout program execution. Examples of static SCM allocation 

schemes include [74], [75], [76] and [77]. Compared with a static scheme, dynamic 

allocation allows SPM data transfers during execution and hence can better accommodate 

run-time program requirements. For example, the work in [78] applies loop and data 

transformation to efficiently reduce the number of data transfers between SCM and main 

memory. In [79] a compiler-driven approach is presented which partitions the program 

into code regions and the bring-in/swap-out sets for each region are determined 

heuristically. In [80] the authors propose a dynamic compiler-directed approach to 

manage SPM through array live-range partitioning and graph coloring. The SPM buffer 

allocation approach in [72] is based on memory access pattern analysis to improve data 
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reuse. In [101], a dynamic programming-based data allocation approach is proposed for 

one program region. Then the optimal solution for each program region is heuristically 

combined as a global solution. In [102], a highly complex, integer LP formulation is 

proposed to calculate the global optimal SCM allocation. Those previous works rely on 

the assumption that all the compute kernels will be executed on the hardware accelerated 

cores. However, in reality commodity processor cores also serves as a competitive 

computing resource. For example, data transfers between host memory and global SCM 

are quite common in CUDA-based GPU programming when two consecutive tasks are 

allocated to GPU core and processor core, respectively. In addition, neither work supports 

partial data transfers, namely the entire array has to be treated as one data item. This 

restriction will lead to inefficient memory utilization at run-time, which also 

differentiates the last level SCM management problem from the traditional register 

allocation problem, as discussed below.  

Register allocation is one of the most widely studies topics in computer science 

[103][106]. Its goal is to assign unbounded number of variables to a finite number of 

machine registers without interfering the lifetime of each variable. Variables which 

cannot be assigned to machine registers need to be moved to memory, which is called 

spilling. Register allocation has been proved to be NP-complete [104][105], which can be 

reduced to a graph-coloring problem. The major difference between registration and the 

last level SCM management discussed here is whether the variable in the problem 

formulation is divisible. With partial transfer supported, last level SCM management can 

be approximated as an LP problem and solved in polynomial time. We can also prove the 

near-optimality of the LP solution, when the total number of candidate arrays is smaller 

than to the total number of accesses. This is usually the case in most scientific 

applications. 

Targeting the multi-level SCM hierarchy, we propose a reuse-aware L1 SCM prefetching 

scheme to hide memory access latency and minimize the amount of data transfers from 
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lower-level memory. The concept of reuse candidate graph is introduced to guide 

prefetching decisions. The proposed scheme is evaluated with cache prefetching, 

prefetch-only SPM management and a DRDU-generated SPM management scheme [72]. 

We also develop a task-level-reuse-graph based LL-SCM data movement scheme to 

minimize the amount of data transfers between heterogeneous computing cores through 

the slow PCIe bus. Partial array transfers are supported in our approach. An average 25% 

reduction of host-accelerator data transfers is observed from previous work.  

5.2 L1-SCM Management 

5.2.1 Impact of Reuse Pattern on SCM Prefetching Efficiency 

With explicit control on data movement, we need to identify the prefetched and evicted 

data sets, which is essential for an SCM prefetching scheme. The basic implementation is 

to prefetch data P iterations earlier than its actual access to hide the load latency, where P 

is the estimated prefetch latency from lower-level memory in terms of loop iteration [86]. 

In other words, in order to hide the memory access latency, the prefetching instruction of 

the memory reference set at iteration i+P+1 will be issued at iteration i and will replace 

iteration i‟s data access set. In this scheme SCM is mainly used as prefetch buffer with 

size P+1. Figure 5-2 shows a simplified loop kernel code of 429.mcf from the SPEC2006 

suite. At iteration i the newly prefetched data for iteration i+P+1, replace cost[i], head[i] 

and tail_potential[i] which will not be re-accessed later. 

For programs with regular data reuse patterns, the naive prefetching scheme that simply 

replaces the data accessed at the current iteration with the data set to be accessed after P 

iterations is not efficient. More specifically, the data to be prefetched or brought in may 

already reside in SCM. In this case, duplicate prefetching for the same data from 

conventional memory will increase the number of issued prefetching instructions as well 

as the total energy consumption. On the other hand, if the data to be re-accessed in the 

near future is moved out of SCM, those data need to be re-prefetched into SCM before 



 

82 

the next accesses, which also will introduce additional overhead. Figure 5-3(a) shows the 

kernel code of 401.bzip2 from the SPEC2006 benchmark. We can see that iteration i = 8 

is the dividing point where reuse occurs and the prefetching set shrinks by half since the 

data to be prefetched have already been brought into SCM at an earlier iteration. For 

example, fmap[4] is brought into SCM as fmap[i] at iteration i = 4, and is re-accessed as 

fmap[i−4] at iteration i = 8. The iteration space after iteration 8 can be seen as a “stable” 

region, and the prefetching set for any iteration in that region only contains fmap[i]. 

       

Figure 5-2. (a) Simplified kernel of 429.mcf. (b) SCM management of 429.mcf. 

Figure 5-3 further illustrates the difference between prefetching schemes with/without 

considering reuse patterns. The prefetch-only and reuse-aware SCM prefetching schemes 

are shown in Figure 5-3 (b)(c). In the reuse-aware scheme, the prefetch set at iteration i 

only contains one element fmap[i+P+1], as fmap[i+P−3] has already been prefetched at 

iteration i−4. The corresponding retiring set only contains fmap[i−4]. Compared with the 

prefetch-only scheme, the number of prefetch instructions issued at each iteration is 

reduced by 2X, and the associated access to lower-level memory will also be reduced 

accordingly. In Section 5.4 we show that compared to the prefetch-only scheme, the 

reuse-aware prefetch strategy can achieve up to a 42.6% reduction on energy 
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consumption and a 39.3% reduction on execution time. 

 

Figure 5-3. (a) Simplified kernel of 401.bzip2. (b) Prefetch-only SCM management 

of 401.bzip2. (c) Reuse-aware SCM prefetching scheme of 401.bzip2. 

5.2.2 RASP: Reuse-Aware SCM Management 

5.2.2.1 Preliminaries 

Definition 5-1. [16] Given a normalized n-level loop nest, suppose there is data 

dependence between memory reference R1 at iteration  ⃐ and reference R2 at iteration  , 

then the reuse distance vector �⃐� is defined as a vector of length n such that _d(R1,R2) = 

 ⃐   ⃐. 

Definition 5-2. A reuse candidate graph is a directed graph G(VG,EG) where VG are 

array references in a uniformly generated set (UGS)
1
 and each reuse edge Vs→Vd (Vs, Vd 

∈ VG) in EG represents the data dependence between references Vs and Vd with reuse 

                                                        

1 A uniformly generated set is a set of affine references of the same array with the same access matrix.  
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distance vector �⃐�( (Vs,Vd). Assume �⃐�( (Vs,Vd ) = (d1 ,d2, . . ., dn), the length of reuse edge 

Vs→Vd, denoted by l(Vs,Vd ), is defined to be ∑ (𝑑𝑖  ∏    1
𝑛
  𝑖 )1

𝑖 𝑛 , where    1 is the 

upperbound of j
th

-level loop nest (Un+1 = 1). 

One example of a reuse candidate graph built for the kernel code in the rician-denoise [17] 

application is shown in Figure 5-4. Each vertex in the reuse candidate graph represents 

one array reference. The directed edge from u[i+1][ j+1] to u[i][ j+1] with reuse distance 

vector �⃐� = (1,0) implies that u[i][ j+1] at iteration �⃐�  �⃐�. will reuse the array element 

accessed by u[i+1][ j +1] at iteration , and the length of Vi→Vj equals M. If SCM size is 

large enough to hold data until the next access at �⃐� (Vi,Vj) iterations later, the 

corresponding reuse edge Vi→Vj will be marked as an active edge. Notice that the reuse 

candidate graph is constructed for UGS references; a loop may have more than one reuse 

candidate graphs. The reuse candidate graph of irregular or non-affine references only 

contains one vertex, namely the reference itself. 

In order to analyze reuse possibility and calculate the number of required data transfers 

into SCM, local region and reuse region are defined for each vertex in the reuse 

candidate graph. 

Definition 5-3. Given reuse candidate graph G with iteration space U, for each reference 

Vk in G, we define the local region of Vk to be the iteration subspace in which data 

accessed by reference Vk is prefetched from lower-level memory, denoted by LVk ; Vk’s 

reuse region is defined to be the iteration subspace in which access to Vk can reuse data 

stored in SCM for other references, denoted by RVk and RVk =U −LVk . 

From Definition 5-3 we can conclude that the total size of local region of all the vertices 

in G equals the amount of data needed to be brought into SCM, since the data accessed in 

the local region of a given memory reference is prefetched directly from lower-level 
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memory instead of reusing its parent memory reference in G. 

Based on the discussion above, we can formulate the reuse − aware SCM prefetching 

problem as follows: 

 

Figure 5-4. (a) Normalized kernel loop of rician-denoise. (b) Reuse candidate graph 

built on (a). 

Problem 5-1. Given the reuse candidate graphs G constructed for a loop nest, the 

maximal SCM size S and the estimated prefetch latency P, select a set of reuse edges to 

be active and create a SCM buffer for each vertex in G accordingly to hide the access 

latency P, so that the number of required data transfers from conventional memory 

hierarchy is minimized, under the constraint that the total size of the allocated SCM 

buffers cannot exceed S.  

5.2.2.2 SCM Buffer Allocation 

In the proposed scheme, one single SCM is seen as a one-dimensional address space and 

shared among all the inner-loop memory references. In previous work, affine address 

transformation has been used to map original data addresses to the corresponding address 

in SCM [88] [89]. The transformed SCM address space is not compact, which will lead to 

a waste of the limited SCM memory resource. 
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In the proposed management scheme, each vertex Vk in the reuse candidate graph will be 

allocated a SCM buffer bufVk of size L. In order to hide the memory access latency, L has 

to be larger than the estimated prefetch latency P, as discussed in Section 5.2. In this case 

array access A[i] in a normalized loop nest will be mapped to an SCM address at SCM 

[posA+i%L], where SCM represents the entire one-dimensional SCM memory space and 

posA is the starting address of A‟s buffer. 

Given reuse candidate graph G and a set of selected active reuse edges E, the SCM buffer 

size L allocated for each reference Vk in G is set as follows:  

    𝑚𝑖𝑛*𝑃    𝑙(  ,   ), | 𝑣  |+                            ( ) 

In Equation 1, |LVk | is the size of Vk‟s local region and Vk→Vm represents the longest 

active outgoing edge of Vk. Equation 1 can be derived from the following two cases: 

Case 1 : There is no active outgoing edge of Vk in E, namely l(Vk,Vm) equals 0. In this 

case, Vk will not be reused by any other vertex, hence SCM is merely used as a prefetch 

buffer of size P+1. However, if the amount of data needed to be brought into SCM, 

namely |LVk |, is smaller than P+1, SCM buffer size is set to |LVk |. 

Case 2 : There exist active outgoing edges of Vk in E, which means Vk will be reused later 

by other vertices. If |LVk|≥P + 1 + l(Vk,Vm), data accessed at iteration _i of vertex Vk will 

bestored in SCM until its next access at iteration  ⃐  �⃐� (Vk,Vm) and be replaced with data 

prefetched at iteration  ⃐  �⃐� (Vk,Vm). Hence the required SCM buffer size equals P+1+| 

�⃐� (Vk,Vm)|, namely P+1+l(Vk,Vm); Otherwise, only data in the local region of Vk need to 

be prefetched into SCM, the allocated SCM buffer size equals |LVk |. 

As shown in Figure 2-2(c), the reuse distance vector between fmap[i−4] and fmap[i] is 

(4); therefore the SCM buffer size for fmap[i] equals P+5. Buffer size for fmap[i−4] is set 

to 4 (assume P≥4) since the size of its local region equals 4. 
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5.2.2.3 Data Transfer Measurement 

Theorem 5-1. Assume that Vi in reuse candidate graph G has no active incoming edges, 

the number of reduced data transfers by activating reuse edge Vi→Vj with reuse distance 

vector �⃐�(Vi,Vj) = (d1, d2, . . ., dn), equals ∏ (   |𝑑 |)𝑛
  1  

 

Figure 5-5. (a) Iteration space partition of reference u[i+1][j+1]. (b) Iteration space 

partition of reference u[i+1][j]. 

Proof. Two conditions need to be satisfied to ensure that memory reference Vj at iteration 

(t1, t2,...,tn) can reuse Vi at (d1,d2,...,dn) iterations before: (1) 0 ≤ tk ≤ Uk, ∀ k ∈ [1, n] (Ui is 

the upperbound of the k
th

-level loop); (2) 0 ≤ tk −dk ≤ Uk, ∀ k ∈ [1, n]. The two 

conditions are derived from the fact that both the first and second accesses fall into the 

iteration space. The number of iterations satisfying (1) and (2) is the total number of 

reuses that occur. 

Theorem 5-1 can be used to calculate the number of remaining data transfers given a set 

of active reuse edges. However, in Figure 2-3(b), suppose edge u[i+1][j+2]→u[i+1][j+1] 

and edge u[i+1][j+1]→u[i+1][j] are both selected as active edges, Theorem 5-1 still 

works for vertex u[i+1][j+1] since u[i+1][j+2] has no active incoming edge, while it is 

not the case for vertex u[i+1][ j]. The iteration subspace R, in which access to vertex 

u[i+1][ j +1] can reuse earlier u[i+1][ j+2], is shown in Figure 2-4(a) with soft dots. 
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Vertex u[i+1][ j] at iteration  will reuse u[i+1][ j+1] at iteration −1. If iteration  

−1 locates in region R, u[i+1][ j] needs to go upwards to visit vertex u[i+1][ j+2] at 

iteration −2. However, the allocated SCM buffer for vertex u[i+1][ j+2] is only P+2 

which only can hold data of one more iteration; hence the reuse attempt of u[i+1][ j] will 

fail in this case. 

For a vertex with active incoming edges, the size of its local region equals the number of 

required data transfers into SCM. Figure 2-4(b) shows the local and reuse region of 

u[i+1][ j] where reuse along edge u[i+1][ j+1]→u[i+1][ j] is enabled. In general, the local 

and reuse region of vertex Vk can be derived as follows:  

Theorem 5-2. Given reuse candidate graph G with iteration space U, assume the active 

incoming edge set of vertex Vk is {Vi1→Vk, Vi2→Vk, ..., Vin→Vk}, Vk’s reuse region RVk = 

{t| t∈U ∧ ((t−d(Vi1 ,Vk)∈LVi1 ∨ t−d(Vi2 ,Vk)∈LVi2 ... ∨ t−d(Vin ,Vk)∈LVin ) }; Vk’s 

local region LVk = U−RVk .  

Proof. Vk can reuse the data from the local region of its inputs Vi within the corresponding 

reuse distance, namely RVk,Vi = { t| t∈U∧(t−d(Vi ,Vk)∈LVi}. When consider all the 

inputs {Vi1, Vi2, ..., Vin}, RVk equals the union of each region region {t|t∈U∧ 

((t−d(Vi1 ,Vk)∈LVi1∨t−d(Vi2 ,Vk)∈LVi2 ...∨t−d(Vin ,Vk)∈LVin )}.  

Theorem 5-2 can be applied to vertices of a given reuse candidate graph in topological 

order to identify their local and reuse regions, i.e., starting from the root vertex which has 

no active incoming edge and its local region is the entire iteration space U. 

5.2.2.4 Reuse-Aware SCM Prefetching Algorithm 

In this section we present a reuse-aware SCM prefetching algorithm, namely RASP, 

aimed at hiding memory access latency and minimizing data transfers from lower-level 

memory. In general, a SCM buffer is allocated to each vertex in the reuse candidate graph, 

either for pure prefetching or unified prefetching and reuse.  
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Algorithm 5-1 Reuse-Aware SCM Prefetching (RASP) Algorithm 

1: U : iteration space of loop nest l 

2: G : reuse candidate graph set constructed for loop nest l 

3: E : set of activated edges in   

4: S : maximal size of SCM storage 

5: P : estimated prefetch latency 

6: 

7: For all the vertices v in G, set initial SCM buffer size to be P+1 with local region U 

8: while 1 do 

9:     traverse all the unactivated edges in G and calculate their SCM utilization ratio 

10:    activate the edge (u,v) with largest positive utilization ratio under SCM size 

constraint 

11:    add edge (u,v) to E  

12:    add all the edges (u,v’) to E if l(u, v’) ≤ l(u,v) 

13:    update SCM buffer size of u 

14:    update local/reuse region of v, {v’} and vertices reachable from v and { v’} along 

edges in   

15:    if size of   remains the same then 

16:      break; 

17:     end if 

18: end while 

To find the active reuse edge sets with minimum required data transfers under SCM size 

constraint is NP-hard, as one can reduce a Knapsack problem to it. To balance the 

runtime overhead, we propose a heuristic algorithm to approximate the optimal solution. 
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As shown in the RASP algorithm, edges in the reuse candidate graphs are activated one 

by one under the maximal SCM size constraint. Here activate edge u→v means allocate a 

SCM buffer for u which is large enough for the corresponding reuse to occur. Hence, 

when edge u→v is activated, all the edges starting at u with a smaller required SCM size, 

namely a smaller edge length, should also be activated accordingly, as shown in line 12. 

The metric used to indicate SCM utilization efficiency is called SCM utilization ratio, 

which equals the ratio of data transfer reduction to the buffer size increment by activating 

a given reuse edge (u,v). The amount of reduced data transfers after activating edge (u,v) 

equals the size difference of the local region of vertex v and all the vertices reachable 

from v along selected active edges, which can be obtained with Theorem 5-2. 

Lines 10-13 show that after an edge ending at vertex v has been activated, the local/reuse 

region updates are applied to vertex v and the vertices reachable from v along edges in the 

current active set E. The updates for v‟s downstream vertices are necessary since the 

reduction of v‟s local region after activating edge (u, v) has further impact to v‟s 

descendants. 

Note that the worst-case time complexity of the RASP algorithm is O(n
4
), where n is the 

number of vertices in the reuse candidate graph set.  

After the finalization of the activated edge set, the prefetching scheme for each vertex can 

be determined accordingly. v will be removed from the prefetching set for iterations in its 

reuse region. 

5.3 LL-SCM Management  

5.3.1 Architecture Model 

In modern heterogeneous multi-core systems, hardware accelerator cores usually sit 

beyond multi-level SCMs. This multi-level SCM design helps to better tradeoff the size 

and bandwidth differences between different memory levels. In typical embedded 

processors, the L1 SCM normally consists of fast SRAM memories (or SPM) and 
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LL-SCM can be either SRAM or DRAM (e.g. FPGA‟s off-chip memory and GPU‟s 

global memory). Figure 5-1 is one example of a two-level SCM-based architecture, in 

which each hardware core has a private L1 SCM and a shared LL (or L2) SCM. The 

general purpose core, which is treated as host processor, communicates with hardware 

accelerator cores through PCIe bus connecting to the shared LL-SCM.  

5.3.2 Application Execution Model 

Applications are represented with a directed acyclic graph (DAG) G(V, E). Different 

from the data flow graph depicted in Chapter 2, each node in V represents a task which is 

executed either on the host processor or on one of the hardware accelerator cores. Here 

we restrict each task to be executed on exactly one core. A directed edge u0→u1 in E 

represents a precedence dependency between two tasks represents by the u0 and u1. Each 

task is also associated with three parameters t_start, t_exec and core_type – t_start(v) 

represents the scheduled starting time for task v; t_exec(v, k) represents the execution 

time of task v on core k; core_type(v) represents the processor or accelerator core task v is 

mapped to. Here we call the tasks mapped to host cores host tasks, and the tasks mapped 

to accelerator cores accelerator tasks. With t_start and t_exec, the completion time t_end 

for task v can be easily calculated by t_start(v) + t_exec(v, core_type(v)).  

 

 

In the remaining discussion, we assume that the parallel execution is not allowed between 

Figure 5-6. (a) Example of task graph. (b) Merged task graph. 
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host and accelerator cores, which is common in practice. Figure 5-6(a) shows an example 

task graph with 5 task nodes, in which T0 is mapped to host core, and T1~T4 are mapped 

to accelerator cores. When two tasks mapped to the same type of cores have overlapping 

lifetime [t_start, t_end], a merged task node will be generated and replace the original 

two nodes. As shown in Figure 5-6, node T1 and T2 are merged into one node in task 

graph Figure 5-6(b) since they have overlapping lifetime on accelerator cores. This 

guarantees the sequential execution order in the final task graph. 

5.3.3 Task-Level-Reuse-Graph Based LL-SCM Management 

5.3.3.1 Task-Level Reuse Graph (TLRG) 

Given the merged task graph and pre-determined task mapping decisions, a data structure 

called task-level reuse graph (TLRG) is created for each array accessed in the program. 

Definition 5-3. A task level reuse graph for array d is a directed graph G(V,E) where vi 

∈ V represents an accelerator task vi which accesses array d; the directed edge vi→vj (vi, 

vj ∈ V) in E represents a RAR or RAW dependence on array d between neighboring 

accelerator tasks vi and vj. 
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Figure 5-7(a) is an example of the merged task graph, in which each node is labeled with 

its topological id. Figure 5-7(b) shows the corresponding data dependency graphs for 

array A and B. As one can see, array A is accessed by tasks T0~T4 with RAW, WAR, 

RAW and RAR dependencies associated with each edge. Similarly, array B is accessed 

by tasks T2~T5 with RAW, WAR and RAW dependencies. By the definition of TLRG, 

Figure 5-7(b) can be reduced to Figure 5-7(c), in which only accelerator task nodes and 

read-after-read/write dependencies are maintained. The other set of dependency edges 

(WAW and WAR) are removed in TLRG since there is no need to hold an array in 

LL-SCM if it will be updated in its next access. One thing to note is that since array A is 

not modified by host task T3, the original RAR dependency edge from T2 to T3 is 

propagated to T4 in Figure 5-7 (c), namely the next accelerator task node reading A. 

Figure 5-7. (a) Example task graph. (b) Task level data dependency graphs for array A 

and B. (c) Task level reuse graphs for array A and B. 
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5.3.3.2 Problem Statement 

When executing accelerator task k, there are two sets of data or array items Dk residing in 

LL-SCM: (i) arrays which are accessed by task k, denoted by Dk
1
; (ii) arrays which will 

be read by another accelerator task executed later, denoted by Dk
2
. Here we assume for 

each accelerator task, Dk
1
 can always fits in LL-SCM. In general, program 

transformations (e.g. loop distribution or tiling) can be applied to partition the task node 

into smaller sub-tasks, which is beyond the scope of this discussion.  

If we look at the sources of host-accelerator communication, the first one is due to the 

limited LL-SCM size. There is no guarantee that the second set of arrays Dk
2
 can be 

completely kept in LL-SCM until its next reuse. If Dk exceeds the LL-SCM size limit, 

PCIe-based data transfers will be incurred to migrate a subset of Dk to host memory; the 

second source of host-accelerator data exchange is the existence of RAW dependency 

between accelerator and host tasks (e.g. an array read by an accelerator task is 

overwritten by an earlier host task). In this case, explicit data transfers between host 

memory and LL-SCM are needed in order to keep memory coherency between the two 

cores, which is an unavoidable overhead associated with the a specific task mapping 

result.  

Theoreom 5-1. Given a task graph G(V, E) associated with a task mapping decision, the 

amount of host-accelerator data transfers incurred by true dependency between host and 

accelerator tasks remains the same when LL-SCM management scheme changes. 

Proof is obvious. Since the task mapping has been fixed, no matter how LL-SCM 

management changes, RAW dependency must be satisfied. Therefore the data migration 

due to RAW dependencies cannot be eliminated or saved. In other words, only the second 

set Dk
2
 can be considered for communication overhead reduction.  

Based on the discussion above, the LL-SCM management problem can be formulated as 

follows: 
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Problem 5-2. Given task level reuse graphs {TLRGi} for a set of arrays {di} and the size 

constraint for LL-SCM, construct data transfer scheme for each array di such that: (1) 

when di is accessed by an accelerator task, it is in LL-SCM. (2) the total amount of data 

stored in LL-SCM at each task does not exceed the LL-SCM size constraint. (3) the total 

amount of data exchange between LL-SCM and host memory is minimized.  

5.3.3.3 Mathematical Formulation 

For each array i at task node vj in TLRGi, we introduce two variables mii,vj and moi,vj. mii,vj  

represents the portion of data which are moved from host memory to LL-SCM for array i 

at task vj. Similarly, moi,vj represents the portion of array i which are moved from 

LL-SCM to host memory at task vj. The total amount of data moved in and out at task vj 

can be formulated as ∑ (𝑚𝑖𝑖,𝑣 
 𝑚𝑜𝑖,𝑣 

)  𝑠𝑖𝑧𝑒𝑖𝑖∈ , where 𝑠𝑖𝑧𝑒𝑖 represents the size of 

array I, and D represents the entire set of arrays accessed in the program. Below is the 

mathematical programming formulation for the data transfer minimization problem: 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ (𝑚𝑖𝑖,𝑣𝑗
 𝑚𝑜𝑖,𝑣𝑗

)  𝑠𝑖𝑧𝑒𝑖

𝑣 ∈𝑇𝐿𝑅𝐺𝑖𝑖∈ 

 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

𝑚𝑖𝑖,𝑣 
≥  , 𝑖 ∈  ,   𝑣 ∈     𝑖      ( ) 

𝑚𝑜𝑖,𝑣 
≥  , 𝑖 ∈  ,   𝑣 ∈     𝑖      ( ) 

𝑚𝑜𝑖,𝑣 
  𝑚𝑖𝑖,𝑣   

  , 𝑖 ∈  ,   𝑣  𝑣  1 ∈     𝑖     ( ) 

 ∑ 𝑠𝑖𝑧𝑒𝑖

𝑖∈ 𝑘
 

 ∑ (  𝑚𝑜𝑖,𝑣𝑗
)  𝑠𝑖𝑧𝑒𝑖 ≤       ,

𝑖∈ 𝑘
2

    𝑣𝑗  𝑣𝑗  ∈     𝑖  𝑛𝑑 𝑘 ∈ (𝑣
𝑗
, 𝑣𝑗  ) ( ) 

𝑚𝑖𝑖,𝑣 
  , 𝑖𝑓 𝑣 ∈     𝑖  𝑠 𝑛𝑜 𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔 𝑒𝑑𝑔𝑒       ( ) 

𝑚𝑖𝑖,𝑣 
  , 𝑖𝑓 𝑣  1  𝑣 ∈     𝑖   𝑛𝑑 𝑣   𝑣  1    ( ) 

𝑚𝑜𝑖,𝑣 
  , 𝑖𝑓 𝑣 ∈     𝑖  𝑠 𝑛𝑜 𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔 𝑒𝑑𝑔𝑒,    
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                             𝑜  𝑖𝑓 𝑣  𝑣  1 ∈     𝑖   𝑛𝑑 𝑣  1   𝑣    ( ) 

The first two constraints impose non-negativity of the amount of data transfers at each 

task. The third constraint imposes integrity of data accessed at a specific task, which can 

be utilized to further simplify the LP formulation by merging mi and mo variables along 

TLRG each edge into one. The fourth constraint imposes size constraint at each task k. 

Theorem 5-3. Given array set D and the corresponding task level reuse graph set 

{TLRGi(Vi, Ei)}, there exists one optimal solution for Problem 5-2, in which for each 

array di, the host-accelerator data exchange only occurs at task node v∈Vi. 

Proof: Assuming in there exists one optimal data transfer solution of Problem 5-2, in 

which host-accelerator data transfers occur for array di at a non-TLRG task node k. We 

use transk. to denote the data transfer at task node k. There are three possible scenarios: 

(1) k < v0, namely the data transfer happens before the first accelerator tasks starts. In this 

case, we can find an equivalent solution by delaying transk to transv0. 

(2) vj < k <vj+1, where 0 <= j < |Vi|-1, namely the data transfer happens between two task 

level reuse nodes vj and vj+1. If transk is host-to-accelerator data transfer, we can postpone 

it to node vj+1; otherwise, transk can be moved to task node vj. In both cases, the data 

transfer incurred by the transformed scheme is equivalent to the original one. 

(3) k > v|Vi|-1, namely the data transfer happens after the last accelerator tasks ends. In this 

case, we can find an equivalent solution by making transk happen immediately after task 

v|Vi|-1 completes. 

From Theorem 5-3 we can see that the host-to-accelerator and accelerator-to-host data 

transfer of the same array at two neighboring TLRG nodes always have the same amount, 

as depicted in the third set of constraints. On the other hand, by utilizing the concept of 

TLRG, the problem size of the LP formulation can be significantly reduced comparing to 

previous work [102] in which data movement is enabled at every task. 

The fourth set of constraints can be explained by Figure 5-7. After executing task T2, the 
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amount of array A storing in LL-SCM equals (  𝑚𝑜 ,2)  𝑠𝑖𝑧𝑒  until its next reuse at 

task T4. Therefore during this period the LL-SCM space occupied by array A remains to 

be (  𝑚𝑜 ,2)  𝑠𝑖𝑧𝑒 . In the fourth set of constraints, the first term calculates the 

memory space occupied by the arrays accessed at task k. The second term represents the 

set of arrays stored in LL-SCM for future reuse. 

In addition to TLRG, the problem size of the LP formulation can be further reduced by 

removing variables created for the „boundary‟ nodes, as shown in (5)(7) and 

consecutively-executed task nodes in TLRG in (6)(7). The associated mi and mo variables 

for those nodes can be eliminated safely, since the data transfer behavior is 

pre-determined and it has no influence on the solution optimality. 

Constraint (5) means if task vj is the first accelerator access of the most up-to-date array i, 

array i need to be migrated from host memory to LL-SCM. Similar case is for (7). If two 

consecutive tasks are both mapped to accelerator cores and access the same array, no 

host-accelerator migration of that array will happen between these two tasks, as depicted 

in (6) and (7).  

5.3.3.4 Rounding and Optimality Discussion 

Note that the amount of optimal data transfer obtained for the LP formulation in 5.3.3.3 

may not be an integer value. For example, if at a specific task the value of move-out 

variable (mo) for an array of size 100 equals 0.881, the optimal data movement scheme 

cannot be strictly followed. It is impossible to transfer a non-integer amount in practice. 

To generate a practical solution, after an optimal solution is obtained for the LP 

formulation, rounding is conducted on the corresponding data transfer amount – For array 

i, the amount of outgoing data transfers at task node vj in TLRGi is rounded to ⌈𝑚𝑜𝑖,𝑣 
 

𝑠𝑖𝑧𝑒𝑖⌉, which guarantees the size constraint of LL-SCM will not be violated at node vj. 

Enforced by constraint (3), the same amount of incoming data transfers will be incurred 
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at node vj+1.   

Theorem 5-4. Assume the amount of data transfers in the rounding solution 

equals 𝑑𝑟𝑜𝑢𝑛𝑑𝑖𝑛 , and the optimal solution equals 𝑑𝑜𝑝𝑡, we have 𝑑𝑟𝑜𝑢𝑛𝑑𝑖𝑛 ≤ 𝑑𝑜𝑝𝑡    

∑ | 𝑇𝐿𝑅𝐺𝑖
|𝑖∈ , where | 𝑇𝐿𝑅𝐺𝑖

| is the number of nodes in array i’s task level reuse graph. 

Proof:   ∑ | 𝑇𝐿𝑅𝐺𝑖
|𝑖∈  equals the maximal possible amount of additional data 

transferred incurred by rounding. 

Theorem 5-4 demonstrates the optimality of the rounded LP solution. When the number 

of arrays accessed is not large, which is usually the case in real time applications, the 

rounded LP solution is fairly close to the optimal solution. 

5.4 Experiment Results 

5.4.1 Experiment Setup 

We evaluate the proposed L1-SCM management scheme on a simulation platform built 

upon Simics [90] with GEMS [91]. Omega library [22] is used for memory reuse analysis. 

The energy results are obtained with HP McPAT tool [92]. Table 5-1 shows the 

architecture parameters used in our model. 

The first-level memory is partitioned into programmer-transparent cache and 

compiler-managed SCM memory space at the ratio of 1:3, 2:2 or 3:1, which is close to 

Fermi‟s 3:1 and 1:3 configuration points. An in-flight counter is added for each SCM 

block to check whether prefetching has finished or not. This can ensure the correctness of 

program functionality. 

Table 5-1.  Architecture parameters 

Processor Core Sun UltraSPARC III Cu processor core 

L1 SCM 32KB, 64 byte block, 2 cycle access latency 

L2 SCM 512MB, 64 byte block, 20 cycle access latency 
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Main Memory  4GB, 320 cycle access latency 

The proposed L1-SCM management scheme is compared with three reference points in 

our experiments. The first reference point is cache prefetching with the entire L1 memory 

allocated to conventional cache [93]. The second reference point is a hybrid memory 

system in which SCM is used as a prefetch buffer, following the prefetch-only scheme 

discussed in Section 5.1. The third reference point is the DRDU generated SCM 

management scheme [72]. 

The LL-SCM management is compared with two reference points in our experiments. 

The first reference point is the heuristic algorithm proposed in [101] which generates 

local optimal solution for each task using dynamic programming. A greedy algorithm is 

developed to create the global LL-SCM management scheme. The second reference point 

is an ILP-based approach proposed in [102], which evaluates all the possible data 

movement decisions at each task. Neither of these two works supports fractional data 

movement. 

5.4.2 Comparison Results 

5.4.2.1 Comparison on L1-SCM management  

Performance. Figure 5-8 shows the overall performance comparison results for the eight 

benchmark kernels, where the four bars correspond to the cache prefetching scheme, 

SCM prefetch-only scheme, DRDU and RASP scheme. As shown in the figure, RASP 

exhibits speedup ranging from 9.6% to 44.3% in six out of eight applications, compared 

to the cache-only scheme. In hmmer a slight performance degradation occurs. The reason 

is that the access pattern in hmmer has strong data locality which can be captured well by 

conventional cache architecture. In addition, cache pollution is less likely to happen here 

since the next access will occur soon. In this case the extra instruction overhead of 

calculating the SCM address cannot be offset by the small amount of reduced data 

transfers. 
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When compared to the SCM prefetch-only scheme, mcf and lbm are two special cases in 

which data access patterns are either random or streaming. In this case the generated 

SCM prefetch-only scheme is exactly the same as RASP. This also explains the small 

performance difference, when compared to DRDU in these two applications. For most of 

the remaining applications, the performance improvement over the SCM prefetch-only 

scheme is less than that over cache, since cache pollution is avoided in the SCM 

prefetching scheme. 

On average RASP has achieved a 15.9%, 12.9% and 18.5% performance improvement 

over cache prefetching, prefetch-only SCM management and DRDU results. The 

corresponding maximal gains are 44.3%, 39.3% and 32.8%, respectively.  

Memory Access Latency. The comparison of normalized memory access latency is 

shown in Figure 5-9. We can see that the memory access latency reduction in RASP is 

larger than the performance improvement for most of the test cases, when compared to 

cache prefetch and the SCM prefetch-only scheme. This can be explained by the 

instruction overhead introduced by explicit SCM management. In summary, RASP has 

shown an average 31.6% memory access latency reduction over the cache-only case, a 

26.4% reduction over the SCM prefetch-only case and an average 19.5% reduction over 

DRDU result. The corresponding maximal gains are 59.6%, 46.2% and 50.3%, 

respectively. 

 

Figure 5-8. Comparison of execution time. 
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Figure 5-9. Comparison of memory access latency. 

 

Figure 5-10. Comparison of energy consumption. 

Energy Consumption. Figure 5-10 shows the energy consumption comparison among 

the four schemes. Since cache can take advantage of the existing data locality in the 

program and save further access to lower-level memory, a 6% energy decrease of cache 

prefetching over the SCM prefetch-only scheme is observed.  

On the other hand, up to 44.7%, 42.6% and 27.7% energy gains are achieved by RASP 

over the other three schemes. The reasons include the intrinsic less energy consumption 

for SCM access as well as the reduced number of accesses to lower-level memory by 

efficiently utilizing the reuse pattern with SCM. The average energy consumption 

reduction of RASP is 22% and 31.2% over cache and the SCM prefetch-only case, 

respectively. The average 10% energy reduction over DRDU comes from the improved 

execution time, as well as the reduced SCM data transfers. 
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5.4.2.2 Comparison on LL-SCM management 

The proposed LL-SCM management scheme is evaluated on a 3-phase medical imaging 

pipeline and a 11-phase in-house neuron network training benchmark. The medical 

imaging pipeline consists of rician-denoise, registration followed by segmentation. In 

total there are 10 tasks with 11 arrays involved, including two accelerator tasks in denoise, 

three accelerator tasks in registration, two host tasks and three accelerator tasks in 

segmentation. The neuron network training benchmark contains 10 accelerator tasks and 

1 host task with 4 arrays as optimization candidates. 

Table 5-2. Comparison on problem size. 

 Medical image pipeline Neuron network training 

#variables #constraints #variables #constraints 

ILP formulation [102] 30 106 40 148 

LP formulation  6 13 6 16 

 

Problem size. In the ILP-based approach [102], three 0-1 variables are created for each 

array at every task phase, indicating whether an array is moved into LL-SCM before the 

current task, whether an array is evicted from LL-SCM after the current task, and whether 

an array resides in LL-SCM at current task, respectively. In total 30 binary variables are 

created for the medical pipeline and 40 variables are created for neuron network training. 

On the other hand, by utilizing the concept of TLRG, the total number of optimization 

variables in the proposed LP formulation is 6 in both cases, which show a 5X and a 6.8X 

reduction from [102], respectively. Table 5-2 also presents the number of constraints in 

the problem formulation, as we can see, the proposed LP formulation has a 6X and a 

9.5X reduction comparing to [102], respectively.  
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Figure 5-11. Comparison of host-accelerator communication. 

Optimality. To illustrate the optimality of the proposed LP solution, we compare the 

amount of host-accelerator data transfer with [102] (ILP, no partial data transfer support) 

as well as an optimal ILP-based formulation considering partial data transfer. As shown 

in Figure 5-11, we observed a 20% and 30.2% data transfer reduction over [102] in the 

target imaging pipeline and neuron network training, respectively. The source of this 

reduction comes from the support of partial data transfer in the proposed approach, which 

can utilize the LL-SCM memory space in a more efficient way. In addition, the gap 

induced by rounding are less than 0.1% in both cases comparing to an optimal ILP 

solution, which further demonstrate the optimality of the proposed LP approach when the 

application TLRG graph is small (as shown in Table 5-2). 

5.4.3 Discussion of L1-SCM Utilization Efficiency 

Figure 5-12 shows the comparison between RASP and DRDU in terms of SCM buffer 

size and the number of data transfers from lower-level memory. We only include 

applications with regular reuse patterns in this comparison. The same SCM size 

constraint is applied to the two approaches and the prefetching scheme in RASP is 

disabled for fairness. In general, we can see that the number of data transfers from 
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lower-level memory of RASP is 7% smaller over the DRDU result and 41.2% smaller 

over the original program. The buffer size of RASP is 22.7% smaller than the DRDU 

buffer size. The smaller required SCM size in RASP scheme implies a higher SCM 

storage utilization ratio, which also provides more space to harmonize with SCM 

management techniques working on other program elements, e.g. [94]. 

 

       Figure 5-12. Comparison of buffer size and SCM data transfers. 

5.5 Conclusions and Future Work 

In this chapter we introduce a reuse-aware SCM prefetching scheme to efficiently utilize 

SPM memory space and a task-level-reuse-graph based LL-SCM data movement scheme 

to minimize the amount of data transfers between heterogeneous computing cores and 

host processors. The proposed L1-SCM prefetch scheme shows a significant 

performance/power improvement against previous SCM management techniques and an 

average 25% reduction of host-accelerator data transfers is observed over previous 

LL-SCM management work, which demonstrates the impact of reuse patterns on 

accelerator memory management efficiency. Note that the proposed schemes can be 

combined with traditional techniques of data locality optimization, i.e., loop interchange 

or tiling, to further improve the usage of SCM. The co-optimization effectiveness will be 
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investigated in our future work.  
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Chapter 6.  Conclusion Remarks 
In this research, we use customized vector units, programmable accelerators and hybrid 

memory to showcase the compilation for computing or memory components in a 

heterogeneous system. The experiments conducted on these platforms also demonstrate 

the computing power of multi-core heterogeneous architectures. We believe the 

next-generation compute engines will incorporate more heterogeneous processor cores or 

accelerators, which will make virtualization increasingly important.  

Beyond component optimization, the next step ahead is system-level optimization, which 

is not just a simple addition of each module. For example, communication between 

different modules is a crucial design factor which has restricted the efficient utilization of 

the ample on-chip computing resources (i.e., accelerators). Note that system-level 

optimizations not only include compiler transformations, but also involve architecture 

designs and even algorithm design. This thesis presents a few building blocks for the 

system-level compiler optimization. 

As one can see from the thesis, the introduction of heterogeneity and customization opens 

a door to improving energy/performance efficiency in SoC designs. A further step will be 

leveraging these two features in enterprise data centers, i.e., enabling more 

power-efficient management of enterprise workloads. Today‟s data centers are already 

equipped with a wide collection of heterogeneous technologies, i.e. operating systems, 

storage, hardware/tools from multiple vendors, applications with different business 

requirements. The scale of modern data centers also increases the complexity of 

management. We believe that it brings not only more challenges but also more interesting 

research topics to investigate along this path. 
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