
UCLA
UCLA Electronic Theses and Dissertations

Title
Compiler Support for Customizable Domain-Specific Computing

Permalink
https://escholarship.org/uc/item/2s79r0jr

Author
Huang, Hui

Publication Date
2014

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2s79r0jr
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Compiler Support for

Customizable Domain-Specific Computing

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Computer Science

by

Hui Huang

2014

i

© Copyright by

Hui Huang

2014

ii

 ABSTRACT OF THE DISSERTATION

Compiler Support for

Customizable Domain-Specific Computing

by

Hui Huang

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2014

Professor Jason Cong, Chair

It is known that with the support of domain-specific customizable heterogeneous

architecture, energy efficiency can be significantly improved by adapting architectures to

match the requirements of a given application or application domain. One of the main

challenges in this emerging trend is how to efficiently take the advantage of the

heterogeneity and customization features in those architectures. This research investigates

developing efficient compiler support to automate the platform mapping and code

transformation process.

First, considering customizable computing engines, we have investigated both

tightly-coupled and loosely-coupled computing elements. In terms of tightly-coupled

computing engine customization, customizable vector ISA supports are explored to better

exploit data-level parallelism in the high performance applications. We identify the needs

iii

and opportunities to explore customized vector instructions and quantify their benefits.

We build an automatic compilation flow in LLVM-2.7 compiler infrastructure to

efficiently identify customized vector instructions from a given set of applications. The

memory alignment overhead, which is known to be critical for vector processing

efficiency, has been optimized in our customized vector ISA identification flow. To

support efficient vector ISA customization, we design a composable vector unit (CVU),

which can be used both separately and in a chained mode, to support a large number of

virtualized custom vector instructions with minimal area overhead. The results show that

our approach achieves an average 27% speedup over the state-of-art vector ISA.

Second, in terms of loosely-coupled computing elements, it is known that on-chip

accelerators are combined with general-purpose cores in an effort to amortize the cost of

the design across many application domains. In recent days programmable accelerators

(PA) are widely investigated in the design of domain-specific architectures to improve the

system performance and power. Micro-architectures with a series of PAs have been

explored to provide more general supports for customization. One important feature in

the PA-rich systems is that the target computational kernels are compiled with a set of

pre-defined PA templates and dynamically mapped to real PAs at runtime. This imposes a

demanding challenge on the compiler side regarding how to generate high-quality PA

mapping code. We present an efficient PA compilation flow, which is fairly scalable in

mapping large computation kernels into PA-rich architectures and provides support for

full pipelined execution to achieve the highest energy efficiency. A concept called

maximal PA candidate is proposed to drastically reduce the number of input PA

candidates in the mapping phase without influencing the overall mapping optimality.

Efficient pre-selection and pruning techniques are employed to further speedup the

maximal PA mapping process. Our experimental results show that for 12

computation-intensive standard benchmarks, the proposed approach achieves a

significant improvement on the compilation time comparing to the state-of-art PA

iv

compilation approaches. The average mapping quality is improved by 23.8% and 32.5%

for connected PA candidates and disjoint ones, respectively.

Third, in domain-specific computing multi-level software-controlled memories have been

commonly used to better utilize domain-specific knowledge of particular applications and

achieve high performance/energy efficiency. At the level of L1 memory, while

conventional cache works well for general workloads, some recent works explore the

idea of using a hybrid cache, which can be flexibly partitioned into a traditional cache

and an SCM. In the hybrid cache architecture, first-level SCM has been utilized as

prefetch buffer to hide memory access latency. We quantify the impact of data reuse on

SCM prefetching efficiency and propose a reuse-aware SCM prefetching (RASP) scheme,

which shows 31.2% performance gain over previous work. On the other hand, SCM has

also been widely used in last level on-board memory to reduce the data movements

between computing cores (i.e. host processor and accelerator cores), which is usually

transferred through low-bandwidth bus and known to be one of the major performance

bottlenecks in modern heterogeneous systems. To efficiently manage LL-SCM, we

propose a task-level-reuse-graph (TLRM) based LL-SCM data movement scheme to

minimize the amount of data transfers between heterogeneous computing cores through

the slow PCIe bus. With the introduction of TLRM, the data movement optimization

between host and accelerator cores can be approximated using a linear programming

based solution, and an average 25% reduction of host-accelerator data transfers is

observed from previous work.

v

The dissertation of Hui Huang is approved.

Jens Palsberg

Glenn Reinman

Lieven Vandenberghe

Jason Cong, Committee Chair

University of California, Los Angeles

2014

http://www.ee.ucla.edu/~hsel/ppl_mcfrankchang.html
http://www.ee.ucla.edu/~hsel/ppl_mcfrankchang.html

vi

 TABLE OF CONTENTS

 1 Introduction ... 1

1.1 Customizable Heterogeneous Architecture .. 1

1.2 Compiler Support for Customizable Domain-Specific Computing 4

1.2.1 Customizable Vector Unit ... 4

1.2.2 Customizable Computing Accelerator .. 6

1.2.3 Customizable Memory .. 7

2 Compiler Support for Customizable Vector Instruction Extension 10

2.1 Introduction .. 10

2.2 Motivational Example .. 14

2.3 Customized Vectorization Flow ... 16

2.3.1 Vectorizable Code Region Extraction ... 19

2.3.2 Operation-based Vectorizability Checking .. 21

2.3.3 Vectorizable Data Flow Graph Expansion .. 23

2.3.4 Pattern-Based Customized Vector Instruction Identification 27

2.4 Experiment Results ... 29

2.4.1 Evaluation Methodology ... 29

2.4.2 Pattern Recognition Results .. 30

2.4.3 Alignment Optimization Results ... 31

2.4.4 Performance Comparison Results ... 32

vii

2.5 Conclusion and Future Work .. 33

3 Compilation for Programmable Accelerators ... 35

3.1 Introduction .. 35

3.2 Related Work .. 39

3.3 PA Compilation Example ... 41

3.4 Preliminaries and Problem Formulation ... 43

3.5 Maximal PA Compilation Flow .. 47

3.5.1 Maximal PA Candidates Identification.. 47

3.5.2 Maximal PA Mapping ... 48

3.6 Experimental Results .. 53

3.6.1 Experiment Setup .. 53

3.6.2 Comparison Results... 53

3.7 Algorithm Generalization ... 58

3.8 Conclusions .. 59

4 Compilation for Fully Pipelined Accelerators .. 60

4.1 Introduction .. 60

4.2 Overview of Fully Pipelined PA ... 62

4.3 Preliminaries ... 64

4.4 Throughput-Aware Path Balancing .. 65

4.5 Pipelined PA Mapping .. 68

4.5.1 Delay Unit Insertion .. 69

4.5.2 Balanced PA Mapping ... 71

4.6 Experimental Results .. 74

viii

4.6.1 Experiment setup ... 74

4.6.2 Comparison Results... 74

4.7 Conclusion .. 76

5 Communication Optimization for Software-Controlled Memories .. 77

5.1 Introduction .. 77

5.2 L1-SCM Management .. 81

5.2.1 Impact of Reuse Pattern on SCM Prefetching Efficiency 81

5.2.2 RASP: Reuse-Aware SCM Management .. 83

5.3 LL-SCM Management ... 90

5.3.1 Architecture Model ... 90

5.3.2 Application Execution Model ... 91

5.3.3 Task-Level-Reuse-Graph Based LL-SCM Management 92

5.4 Experiment Results ... 98

5.4.1 Experiment Setup .. 98

5.4.2 Comparison Results... 99

5.4.3 Discussion of L1-SCM Utilization Efficiency 103

5.5 Conclusions and Future Work .. 104

6 Conclusion Remarks ... 106

References .. 107

ix

LIST OF FIGURES

Figure 1-1. Customizable heterogeneous platform for domain-specific computing. .. 3

Figure 2-1. (a) One example loop (b) Mis-aligned vector addition (c) Aligned vector

addition. ... 12

Figure 2-2. (a) Customized scalar instruction candidates (b) Customized vector

instruction candidates... 13

Figure 2-3. . One kernel loop in jacobi rician-denoise. ... 14

Figure 2-4. Data flow graph of kernel loop in jacobi rician-denoise. 15

Figure 2-5. (a) Data flow graph of SQR-accumulate (b) Kernel code piece in jacobi

rician-denoise (c) Kernel code piece in level-set segmentation. 16

Figure 2-6. Customized vector instruction identification flow. 17

Figure 2-7. Kernel code of gauss-seidel rician-denoise. ... 17

Figure 2-8. Data flow graph of gauss-seidel rician-denoise. 19

Figure 2-9. Complementary code elimination, vectorizability checking and alignment

node insertion in the kernel code of gauss-seidel rician-denoise. 20

Figure 2-10. (a) Original code (b) Transformed code. ... 21

Figure 2-11. (a) Shifting scheme 1 (b) Shifting scheme 2. .. 23

Figure 2-12. The CVU architecture. .. 30

Figure 2-13. Normalized speedup. ... 33

Figure 3-1. Example of a CCA implementation [4]. .. 36

Figure 3-2. A sample PA template. ... 40

Figure 3-3. (a) DFG of the kernel loop in rician-denoise. (b) One PA mapping solution.

(c) Runtime PA configuration of (b). ... 41

Figure 3-4. Two compatible maximal PA candidates. .. 44

x

Figure 3-5. Algorithm runtime vs. input problem size... 56

Figure 3-6. Comparisons on PA compilation result. .. 59

Figure 4-1. Architecture of CHARM ... 63

Figure 4-2. A sample PA template .. 64

Figure 4-3. (a) Mapping solution I of rician-denoise. (b) Mapping graph of (a). (c)

Balanced mapping graph of (a). ... 65

Figure 4-4. Delay unit insertion (II = 2). ... 66

Figure 4-5. Delay propagation when II = 1 and 2. ... 67

Figure 4-6. Chained delay units for a target II. .. 68

Figure 4-7. (a) Mapping solution II of rician-denoise. (b) Mapping graph of (a). (c)

Balanced mapping graph of (a). ... 68

Figure 4-8. An undirected cycle in a data flow graph.. 69

Figure 4-9. (a) A greedy delay unit insertion scheme (b) An optimal delay unit

insertion scheme... 70

Figure 4-10. A partial mapping graph. ... 72

Figure 4-11. (a) Mapping size comparison of BPM and [9] (II = 1) (b) Mapping size

comparison of BPM under different II. .. 75

Figure 4-12. Performance comparison. .. 76

Figure 5-1. Two-level SCM-based heterogeneous platform. 78

Figure 5-2. (a) Simplified kernel of 429.mcf. (b) SCM management of 429.mcf. 82

Figure 5-3. (a) Simplified kernel of 401.bzip2. (b) Prefetch-only SCM management of

401.bzip2. (c) Reuse-aware SCM prefetching scheme of 401.bzip2. 83

Figure 5-4. (a) Normalized kernel loop of rician-denoise. (b) Reuse candidate graph

built on (a). ... 85

file:///C:/Users/huingbear/Desktop/dissertation_draft_Hui_v2.docx%23_Toc384106021

xi

Figure 5-5. (a) Iteration space partition of reference u[i+1][j+1]. (b) Iteration space

partition of reference u[i+1][j]. .. 87

Figure 5-6. (a) Example of task graph (b) Merged task graph. 91

Figure 5-7. (a) Example task graph. (b) Task level data dependency graph for array A

and B. (c) Task level reuse graph for array A and B. 93

Figure 5-8. Comparison of execution time. ... 100

Figure 5-9. Comparison of memory access latency. .. 101

Figure 5-10. Comparison of energy consumption. .. 101

Figure 5-11. Comparison of host-accelerator communication………….................104

Figure 5-12. Comparison of buffer size and SCM data transfers. 104

file:///C:/Users/huingbear/Desktop/dissertation_draft_Hui_v2.docx%23_Toc384106026
file:///C:/Users/huingbear/Desktop/dissertation_draft_Hui_v2.docx%23_Toc384106027
file:///C:/Users/huingbear/Desktop/dissertation_draft_Hui_v2.docx%23_Toc384106027

xii

 LIST OF TABLES

Table 2-1. Pattern recognition results on 9 computation-intensive benchmarks and

their synthesized area on ASIC. .. 30

Table 2-2. Comparison on overall shifting distance. ... 32

Table 3-1. Comparisons on PA compilation time (sec) .. 56

Table 3-2. Comparisons on the number of PA candidates ... 57

Table 3-3. Kernel size reduction with pre-selection .. 57

Table 5-1. Architecture parameters .. 98

Table 5-2. Comparison on problem size. ... 102

xiii

ACKNOWLEDGMENTS

I am deeply grateful to my advisor Professor Jason Cong for his guidance, support and

vision throughout my Ph.D. study. During the past five years Jason offers persistent

support, constructive suggestions, criticisms and encouragements when guide my

graduate research, and has given me the valuable opportunity to turn research ideas into

real products. Without his continuous guidance and support, this dissertation would not

have been possible.

I would also like to express my appreciation to my doctoral committee members,

Professor Jens Palsberg, Professor Glenn Reinman and Professor Lieven Vandenbergh.

Their comments provides deep insight and greatly improve the quality of this

dissertation.

In addition, I would like to thank all my colleagues in the UCLA VAST lab, especially

Wei Jiang, Chunyue Liu, Yi Zou and Bin Liu. Their insight in research, optimistic life

attitude and generous spirit largely encourage me to overcome the difficulties

encountered from the beginning until the end of my Ph.D. study. I really appreciate and

cherish the time working closely with these talented colleagues.

Finally, I would like to take this opportunity to thank my parents Hongmin Huang and

Chunhua Zhao, my fiancé and best friend Maoqi Wang. Although the separation from

them is painful, their love consistently support me to pursue the Ph.D. degree and higher

goals in my life. I dedicate this dissertation to them.

This research was partially supported by the MARCO Gigascale System Research Center

(GSRC) and the Center for Domain-Specific Computing (CDSC) funded by the NSF

Expedition in Computing Award CCF-0926127 and the NSF grant CCF-0903541.

http://www.zhihu.com/question/19786036

xiv

VITA

2004-2008 B.S. Department of Computer Science

Peking University, Beijing, P.R. China

PUBLICATIONS

Jason Cong, Hui Huang, Chiyuan Ma, Bingjun Xiao, and Peipei Zhou, “A Fully Pipelined

and Dynamically Composable Architecture of CGRA”, International Symposium on

Field-Programmable Custom Computing Machines (FCCM 2014), pp. 9-16, May 2014.

Hui Huang, Taemin Kim and Yatin Hoskote, “Edit Distance Based Instruction Merging

Technique to Improve Flexibility of Custom Instructions Toward Flexible Accelerator

Design”, Proceedings of the 19th Asia and South Pacific Design Automation Conference

(ASP-DAC 2014), Jan. 2014.

Jason Cong, Mohammad Ali Ghodrat, Michael Gill, Beayna Grigorian, Hui Huang and

Glenn Reinman, “Composable Accelerator-rich Microprocessor Enhanced for Adaptivity

and Longevity”, Proceedings of the International Symposium on Low Power Electronics

and Design (ISLPED 2013), pp. 305-310, Sep.2013.

Yu-Ting Chen, Jason Cong, Hui Huang, Chunyue Liu and Glenn Reinman, “Combined

Static and Dynamic Optimizations for Hybrid SRAM and STT-RAM Caches”,

Proceedings of International Symposium on Low Power Electronics and Design (ISLPED

2012), August 2012.

Yu-Ting Chen, Jason Cong, Hui Huang, Chunyue Liu and Glenn Reinman,

“Reconfigurable Hybrid Cache: An Energy-Efficient Last-Level Cache Design”,

Proceedings of Design, Automation and Test Europe (DATE 2012), March 2012.

Jason Cong, Mohammad Ali Ghodrat, Michael Gill, Hui Huang, Bin Liu, Raghu

Prabhakar and Glenn Reinman, “Compilation and Architecture Support for Custom

Vector Instruction Extension”, Proceedings of the 17th Asia and South Pacific Design

Automation Conference (ASPDAC 2012), pp. 652-657, Jan. 2012.

Jason Cong, Karthik Gururaj, Hui Huang, Chunyue Liu, Glenn Reinman and Yi Zou, "An

Energy-Efficient Adaptive Hybrid Cache”, in the Proceedings of International

Symposium on Low Power Electronics and Design (ISLPED 2011), pp. 67-72, August

2011.

http://cadlab.cs.ucla.edu/~bjxiao/release/CHARM_fccm2014.pdf
http://cadlab.cs.ucla.edu/~bjxiao/release/CHARM_fccm2014.pdf

xv

Jason Cong, Hui Huang, Chunyue Liu and Yi Zou, “A Reuse-Aware Prefetching

Algorithm for Scratchpad Memory”, in Proceedings of 48th Design Automation

Conference (DAC 2011), pp. 960-965, June 2011.

Jason Cong, Hui Huang and Wei Jiang, “Pattern-Mining for Behavioral Synthesis”, IEEE

Transactions on Computer-Aided Design (TCAD 2011), Volume 30, Issue 6, pp. 939-944,

June 2011.

Jason Cong, Hui Huang and Wei Jiang, “A Generalized Control-Flow-Aware Pattern

Recognition Algorithm for Behavior Synthesis,” in Proceedings of Design, Automation

and Test Europe (DATE 2010), pp. 1255-1260, March 2010.

1

Chapter 1. Introduction

1.1 Customizable Heterogeneous Architecture

As discussed in [2], in order to meet ever-increasing computing needs and overcome

power density limitations, the computing industry has halted simple processor frequency

scaling and entered the era of parallelization, with tens to hundreds of computing cores

integrated in a single processor, and hundreds to thousands of computing servers

connected in a warehouse-scale data center. However, such highly parallel,

general-purpose computing systems still face serious challenges in terms of performance,

power, heat dissipation, space, and cost. Recently the research focus has moved from

parallelization to domain-specific customization in which computing engines and

interconnects can be specialized to a particular application domain to gain significant

improvement in power-performance efficiency comparing to general-purpose

architecture.

The motivation of domain-specific customizable computing platform is derived on three

observations:

1) Each user typically has a high computing demand only in one or a few selected

application domains (e.g., graphics for game developers, circuit simulation for integrated

circuit design houses, financial analytics for investment banks) [2], which makes

developing a customizable computing platform where computing engines and memories

can be specialized to a particular application domain possible. Taking the advantage of

the domain-specific knowledge, these architectures normally can gain significant

improvements in power-performance efficiency comparing to a general-purpose

architecture.

2

2) The power-performance gap between a fully customized platform, such as

application-specific integrated circuit (ASIC), and a general-purpose platform can be very

large. A case study of the 128-bit key AES encryption algorithm is discussed in [2]. An

ASIC implementation in 0.18um CMOS achieves 3.86Gbits/second at 350mW, while the

same algorithm coded in Java and executed on an embedded SPARC processor yields

450bits/second at 120mW. This difference implies a performance/power efficiency gap of

approximately 3 million Gbits/seconds/Watts.

3) It is very costly to implement a fully customized ASIC architecture for each

application, due to the fact that the non-recurring engineering cost of an ASIC design at

the current 45nm CMOS technology is over $50M [3] and the design cycle can easily

exceed a year. The large ASIC cost also imposes a strong need for an architecture

platform to be efficiently customized to a wide range of applications in one domain or a

set of domains, which can bridge the huge performance/power gap between ASICs and

general-purpose processors with moderate hardware costs.

To realize the order-of-magnitude performance/power efficiency improvement via

customization with reasonable cost, both industry and academia have been turning their

attention on developing customizable heterogeneous platforms. For example, NVIDIA‟s

Fermi GPU introduces memory customization capability, in which the shared memory

space can be reconfigured into either cache or scratchpad memory with multiple possible

sizes.

A more general customizable architecture is presented in [2], which includes: 1)

integration of customizable cores and co-processors that will enable power-efficient

performance tuned to the specific needs of an application domain; and 2) reconfigurable

high-bandwidth and low-latency on- and off-chip interconnects, which can be customized

to specific applications. Figure 1-1 illustrates an example of such customizable

3

domain-specific architecture, in which a set of fixed cores coexist with customizable

cores, programmable fabric, and a set of distributed cache banks ($).

Figure 1-1. Customizable heterogeneous platform for domain-specific computing.

As we know, fixed cores can vary dramatically in their energy efficiency, computational

power, and area, but have limited reconfigurability. One example of this kind of

architecture is the IBM Cell, with one general-purpose PPE core and the more numerous,

but simpler, SPE cores. On the other hands, customizable cores provide coarse-grained

adaptation to application demand, offering a number of discrete, tunable options that can

be set, with flexibility somewhere between FPGAs and fixed cores. It is possible to

design cores with a rich set of tunable characteristics to enable significant

performance/power efficiency, such as customizable vectorization support or computing

accelerator support.

With the emergency of the customizable domain-specific platform, one of the main

challenges is how to efficiently take the advantage of the heterogeneity and customization

features in those architectures.

4

This problem can be recapped as how to map one or a set of applications to a

customizable heterogeneous platform with high performance/power efficiency.

Considering that manual optimization is time-consuming and also not scalable as the

design space increases, it is very important to develop efficient compiler support to

automate this platform mapping.

1.2 Compiler Support for Customizable

Domain-Specific Computing

As we discussed, with the support of customizable domain-specific platform,

performance/power efficiency can be significantly improved by adapting architectures to

match the requirements of a given application or application domain. On the other hand,

this also imposes challenges on the compiler size to provide high-quality mapping

solution on such reconfigurable architectures. The existence of heterogeneity greatly

increases the complexity of its programming model. For example, the code executed on

host processors cannot be directly used on hardware accelerators. In addition, explicit

data transfers are required for host-accelerator communication. In this section, we will

briefly look through three customizable heterogeneous platforms, including

tightly-coupled customized vector unit and loosely-coupled programmable accelerators

and customizable memories.

1.2.1 Customizable Vector Unit

It has been discussed that customization can achieve significant power-performance

efficiency improvement [21], and this is also the case with the vector or SIMD

applications. Recently increasing attention has been given to customized vector ISA

support from both academia and industry. For example, Convey system [39] supports

application-specific vector instruction set, with which users are allowed to reconfigure

the vector ISA to match different application features. The authors of [16] propose a

5

SystemC-based support for customized vector instruction. The work in [15] introduces a

customized vector instruction set for multimedia applications and the work in [36]

explores customized SIMD units with high-level synthesis techniques.

This trend presents new challenges to both compiler and architecture designs to provide

efficient customized vector ISA support. At compiler side, the challenge will be how to

efficiently identify application/domain-specific vector instruction and perform automatic

customized vectorization.

A crucial step to achieve high performance in a customized vector design is the

identification of frequently executed instructions. There already exist extensive work on

customized scalar instruction exploration [12][17][38]. However, a naïve employment of

the existing techniques without considering the vector features will result in inefficient

customized vector instruction generation. For example, one important feature of vector

processing is the existence of memory alignment. For example, AltiVec requires memory

accesses to be aligned at a 16-byte boundary and it cannot handle unaligned vector loads

and stores; In AVX mis-aligned memory accesses are supported with a large performance

penalty.

We introduce an automatic LLVM-based compilation flow to extract customized vector

instructions from one or a set of applications. Pattern recognition approaches have been

used here to identify frequently appeared customized vector instruction candidates and

an optimal alignment insertion scheme has been developed to reduce the memory

alignment overhead. This flow is tested on the composable vector processing units

(CVUs), which can be chained together to create customized vector instructions. This

design allows programmable customized vector extensions and can achieve up to 52%

speedup over standard vector ISA and 14.6X area gain over the dedicated ASIC-based

design.

6

1.2.2 Customizable Computing Accelerator

Programmable accelerator (PA) has been proposed to enable varying degrees of

customization together with general-purpose cores [51] [54] [55] [56] [57]. In a standard

PA architecture, a programmable accelerator template is implemented inside each PA unit

to support a selected set of computation tasks with reasonable hardware design costs. The

entire pre-defined PA template may support a relatively complicated computation task,

while it can be reconfigured dynamically to perform a set of simpler but more general

sub-tasks. Therefore, each accelerator unit in a PA-rich system can be customized to

computation tasks with different granularity, which enables efficient switching among

varying degrees of customization at runtime.

With more flexible customization support, the PA-rich design has been raised as a

promising solution to improve the system performance-power efficiency. However, this

design trend imposes a demanding challenge on the compiler side – how to generate

high-quality PA mapping code which can efficiently utilize the programmable execution

units existing in a PA-rich architecture.

In general, the PA compilation flow can be divided into two phases - PA candidate

identification and PA template mapping. Given the data flow graph (DFG) of application

kernels, the PA candidate identification phase extracts all the data flow subgraphs which

are executable on the PA units. To decide whether a subgraph is executable on PA units,

subgraph isomorphism checking is performed between the subgraph and the PA templates.

After that, the identified candidates will be fed into the mapping phase, in which a subset

of candidates will be mapped to PA templates to accelerate the target kernels.

As discussed in [60], since the PA candidates identification and PA mapping problems are

both difficult to solve, scalability has been considered as a main problem in the existing

PA compilation flows. Considering that the number of PA candidates grows exponentially

with the size of input DFG and PA template, the mapping problem may become

7

intractable for large DFG blocks. When disjoint PA candidates are considered, the

mapping problem size is even larger after including all the legal combinations of

connected PA candidates.

The other challenge comes with the pipelined PA execution. In a fully pipelined PA

design, input data comes in at every clock cycles, buffers or dummy PAs [99] need to be

inserted to guarantee the correctness of pipeline behavior. This serves as a new

demanding resource requirement, which is not considered in previous work.

Targeting scalable PA compilation of fully pipelined execution, we build an automatic PA

compilation flow, which supports both connected and disjoint PA candidates. Delay units

are inserted in the PA mapping graph to balance the path delays in a pipelined execution.

Comparing to the scalable PA compilation approaches proposed in [60] and [55], our

approach achieves a significant reduction on the overall compilation time. The

corresponding mapping quality has been improved by 23.8% and 32.5% on average for

mapping the connected-only and disjoint PA candidates, respectively. We also investigate

the impact of a given throughput target on resource usage in accelerator pipelines. Here

resource usage includes not only PAs, but also delay units required to balance path delay.

An optimal PA mapping algorithm is used to efficiently map on-chip accelerator

resources to a pipelined execution. Compared to the PA compilation approaches proposed

in [60], our approach achieves a significant reduction on mapping size and up to 33.8%

improvement on system performance.

1.2.3 Customizable Memory

Modern high performance processors are known to be abundant in processing elements,

e.g. general-purpose cores or customized hardware accelerators (FPGA, GPU, etc.).

Memory accesses become an increasing performance bottleneck, preventing applications

from fully exploiting the computing power. To alleviate the memory bottleneck,

communication optimizations, including memory latency reduction and efficient

8

bandwidth utilization, turns out to be crucial for system performance and energy

efficiency. Traditional hardware-controlled cache suffers from „blind‟ data movement

decisions, which are made independent with program behavior. As an alternative,

software-controlled memories (SCM) have been employed either as an independent

storage unit or sitting together with D-cache/I-cache to effectively enhance performance

and power. This trend has already been reflected on real designs, e.g., NVIDIA‟s latest

Fermi GPU has software controlled scratchpad memories (SPM) called “shared memory”

which can be partitioned into cache and SPM at configuration points 1:3 or 3:1, with

SPM and L1 cache sitting on top of L2 cache. Similarly, the local store in IBM‟s Cell

broadband can be managed as a combination of direct buffers to store access with regular

patterns and software-controlled cache as a fall-back solution [73].

Comparing to single-level SCM, multi-level SCM designs provides better tradeoff the

access speed difference between different memory levels, therefore has been widely

explored. In typical embedded processors, the L1 SCM normally consists with fast

SRAM memories (e.g. scratchpad memories) and last level (LL) SCM can be either

SRAM or DRAM (e.g. FPGA‟s off-chip memory and GPU‟s global memory). The

optimization target of SCMs sitting at different memory level also differs.

L1 SCM normally is a small piece of fast memory, which sits closest to the computing

core and is responsible to feed data in time. Targeting low memory access latency, L1

SCM has been utilized as prefetch buffers in embedded systems and parallel architectures

to hide memory access latency [1]. This is motivated by the fact that conventional cache

prefetching suffers from the problem that the data evicted from cache by the newly

prefetched data is still “alive,” i.e., will be accessed frequently in the near future. An

extreme case is that N prefetched elements are mapped to the same set in a

direct-mapping cache. Therefore, only the last element will be kept in the cache after

prefetching, while the previous N −1 data transfers are useless with additional energy

9

overhead. On the other hand, SCM-based prefetching can make a “smart” eviction

decision, thereby avoiding such cache prefetch inefficiency.

On the other hand, shared last level SCM has been widely utilized in heterogeneous

parallel architectures to tradeoff the low bandwidth from main memory. For example, the

performance of PCIe bus connecting host memory is ~10GB/s, which turns out to be an

important bottleneck of modern heterogeneous systems. Accordingly, how to efficiently

reuse the data stored in LL-SCM becomes one of the major compiler challenges in a

heterogeneous system where workloads distributed on different computing cores.

Compared to hardware-controlled memories, the introduction of SCM as a last level

buffer offers optimization potential on cross-core data transfers by taking the advantage

of the knowledge of target applications.

To fully utilize the multi-level SCM memory space, we have investigated prefetching and

reuse capability for L1 and LL SCM, respectively. We propose a reuse-aware SCM

prefetching scheme, called RASP, to hide memory access latency and minimize the

number of data transfers from lower-level memory; To efficiently manage LL-SCM, we

propose a task-level-reuse-graph based LL-SCM data movement scheme to minimize the

amount of data transfers between heterogeneous computing cores through the slow PCIe

bus. An average 25% reduction of host-accelerator data transfers is observed from

previous work.

10

Chapter 2. Compiler Support for

Customizable Vector Instruction

Extension
Vectorization has been commonly employed in the high performance computing domain

to exploit data-level parallelism in those applications. In this chapter we analyze the

needs and opportunities to explore customized vector instructions and quantify their

benefits. We build an automatic compilation flow in LLVM-2.7 compiler infrastructure to

efficiently identify customized vector instructions from a given set of applications. The

memory alignment overhead, which is known to be critical for vector processing

efficiency, has been optimized in our customized vector ISA exploration flow. This flow

is tested on the composable vector units, which can be used separately or in a chained

mode to support a large number of (virtual) customized vector instruction units with

minimal area overhead. The results show that our approach achieves an average 27%

speedup over the state-of-art vector ISA. We also observe a large area (around 11.6X)

gain over the dedicated ASIC-based design.

2.1 Introduction

SIMD vector processors are very effective in executing programs with extensive

data-level parallelism, such as multimedia processing, graphics and scientific computing.

In recent years, vector extension has become one of the most common additions to both

general purpose microprocessors and super computers, due to the growing demands on

high-performance computing. There are several state-of-art vector ISAs in the market,

such as Intel‟s AVX [40], Motorola/IBM‟s AltiVec [23].

It has been recognized that customization can achieve significant performance

improvement [15] and this is also the case with the vector or SIMD applications.

11

Recently increasing attention has been paid to customized vector ISA support. The

authors of [12] propose SystemC-based support for customized vector ISA. The work in

[11] introduces a customized vector instruction set for multimedia applications. The work

in [23] designs customized SIMD units with high-level synthesis techniques. The newly

developed Convey system [26] provides supports for application-specific vector

instruction sets, with which users are allowed to reconfigure the vector ISAs to match

different application domains. This trend presents new challenges to both compiler and

architecture design to provide efficient customized vector ISA support with small

hardware cost.

At compiler side, the main challenge is how to efficiently identify

application/domain-specific vector instructions and perform automatic customized

vectorization. A crucial step to achieve high performance in a customized vector design is

the identification of frequently executed vector instructions. There already exist extensive

work on customized scalar instruction exploration (e.g. [8][13]. However, a naïve

employment of the existing techniques on the input program without considering the

vector features will result in inefficient customized vector instruction generation. One

important feature of vector processing is the existence of memory alignment problem

raised by the vector architecture [18]. For example, AltiVec requires memory accesses to

be aligned at a 16-byte boundary and it cannot handle unaligned vector loads and stores;

In AVX mis-aligned memory accesses are supported with a large performance penalty.

Here a mis-aligned memory reference means that the address of the data is not a multiple

of the vector register size [26]. Let‟s look at the example in Figure 2-1 (without loss of

generality, we assume for array reference A[i1][i2]….[iN], the starting address of each

array dimension, namely A[0][0]…[0], A[i1][0]…[0], A[i1][i2][0]…[0], …,

A[i1][i2]..[iN-1][0], has been aligned to memory boundary).

As shown in Figure 2-1(b), arrays A, B and C are loaded into vector register VR1-3 in a

mis-aligned manner. If we directly perform a vector add on the 3 vector registers, it will

generate incorrect results, where A[i] = B[i] + C[i]; to resolve it, vector register VR1 and

VR2 are shifted to left by 3 elements and 2 elements, respectively in Figure 2-1(c).

12

Therefore, in order to ensure the functionality correctness, the “shifted” alignment of the

input nodes needs to match that of the output node. This alignment constraint imposes

challenges on automatic vectorization process due to its sizable impact on the

power-performance efficiency in vector processing.

for i = 0 to n

 A[i] = B[i+3] + C[i+2];

(a)

VR1

VR2

VR3

B[0] ...

(b) (c)

+
B[i] ...

C[0] ... C[i] ...

A[0] ... A[i] ...

B[3] ...

+
B[i+3] ...

C[2] ... C[i+2] ...

A[0] ... A[i] ...

Figure 2-1. (a) One example loop (b) Mis-aligned vector addition (c) Aligned vector

addition.

In the customized vector ISA exploration phase, if the memory alignment issue has not

been resolved properly, it may result in undesired overhead on performance. Let‟s

consider a vectorizable loop shown below (without loss of generality. Here we assume

A[0], B[0], etc. are aligned to memory boundary).

 for i = 0 to n

 A[i] += B[i+1]*C[i];

The scalar customized instruction candidates inside this loop only contain one

multiply-add (MAC) operation. While for vector exploration, since additional alignment

instructions are required to resolve the unaligned array reference B[i+1], both MAC and

aligned MAC should be considered as customized vector instruction candidates, as shown

in Figure 2-1(b). If we simply replace the sequential loop with unaligned vector MAC

operations, it may result in either incorrect execution or pay considerable performance

penalty.

Earlier implementations of vector processor [7] [18]re all based on non-customized

vector instructions. The vector instructions in VIRAM are designed to vectorize

13

embedded system applications by adding support for narrower data-type and different

styles of permutation. VESPA [26] is a flexible FPGA-based vector engine. However it

only supports integer vector operations.

 (a) (b)

align

align

+

+
* +

*

*
*

Figure 2-2. (a) Customized scalar instruction candidates (b) Customized vector

instruction candidates.

In this chapter we introduce an automatic compilation flow to perform

alignment-efficient customized vector instruction identification, and the architectural

support for area-efficient customized vector operations.

(1) We identify the existing opportunities to derive customized vector instructions. A

boundary-extension technique and an operation-based vectorizability checking

technique are developed to fully investigate customized vector instruction

exploration space.

(2) We propose an LLVM-based compilation flow to extract customized vector

instructions from one or a set of applications. Pattern-based approaches have been

used here to identify beneficial customized instruction candidate

(3) We propose an optimal memory alignment scheme that minimizes the total shifting

distance to generate alignment-efficient vector patterns.

14

This flow is tested on the composable vector processing units (CVUs), which can be

chained together to create customized vector instructions. This design allows

programmable customized vector extensions and can achieve up to 52% speedup over

standard vector ISA and 14.6X area gain over the dedicated ASIC-based design.

2.2 Motivational Example

In this section, we illustrate the existence of application-specific or domain-specific

customized vector patterns with real-life applications.

Let‟s first consider one computation kernel in jacobi rician-denoise [41] which is a

double precision floating point application in the medical imaging domain. Figure 2-3

shows the kernel loop in this application, which performs five-point stencil computation

on a 2D image. Seven arrays are involved in the computation kernel as inputs and the

loop body can be vectorized without violating data dependencies. (here we only consider

vectorization through the innermost loop)

 for m = 1 to M - 1

 for n = 1 to N - 1

 u[m][n] = (ulast[m][n] + DT * (ug[m][n+1] +

 ug[m][n-1] +

 ug[m+1][n] +

 ug[m-1][n] +

 GM*f[m][n]))

 / (c[m][n] + DT * (g[m][n+1] +

 g[m][n-1] +

 g[m+1][n] +

 g[m-1][n] +

 r[m][n]))

Figure 2-3. . One kernel loop in jacobi rician-denoise.

Figure 2-4 shows the corresponding data flow graph for the vectorizable loop, in which

each node represents a vector instruction, such as vector-add or vector-multiply. Each

vector input is denoted by the array name followed by alignment value normalized to

output u[m][n]. For example, the relevant alignment offset between u[m][n] and

15

ug[m][n-1] is 1, therefore “ug:1”has been used to represent vector input ug[m][n-1].

From Figure 2-4, we can see the two branches of div operation are similar to each other in

terms of both operation counts and data path. The left branch contains nine operation

nodes and the right one contains eight nodes – only differ from each other by one mul

operation, which exposes the opportunity to extract repeatedly executed customized

vector instructions, sizing from one operation to eight operations. Two vector pattern

candidates with occurrence equaling two have been highlighted in Figure 2-4.

align:0

*

+

*
+

+

+ +

/

*

+

+

+

+ +

ulast : 0

ug : 1 ug : -1

ug : 0

f : 0

c : 0

g : 1 g : -1

r : 0

g : 0

ug : 0

align:0 align:0 align:0

Figure 2-4. Data flow graph of kernel loop in jacobi rician-denoise.

In this example, note that since ug[m][n+1] and ug[m][n-1] both serve as inputs to the

same vector add operation and they are mis-aligned array references, two alignment

nodes are inserted to match them to the alignment offset of ug[m][n], namely 0. The same

scenario also applies to array reference g[m][n-1] and g[m][n+1]. Our optimization on

16

alignment node insertion will be discussed in Section 2.3.

In addition to application-specific customized vector patterns, there also exist common

vector patterns inside a specific application domain due to the similarity in computing

models or algorithms, as shown in Figure 2-5. Figure 2-5(a) shows a double precision

vectorizable accumulation of SQR operation, e.g., a[i]*a[i]. The kernel code pieces in

Figure 2-5(b) and (c) are extracted from rician-denoise and level-set segmentation [41] in

the medical imaging domain. The vectorizable SQR-accumulation operation appears in

both applications (4 times in rician-denoise and 3 times in segmentation), thus they can

benefit from the same customized vector ISA extension.

(b)

(a)

+

SQR

(c)

 for m = 1 to M-1

 for n = 1 to N-1

 g[m][n] = 1.0/sqrt(EPSILON +

 SQR(u[m][n] - u[m][n+1]) +

 SQR(u[m][n] - u[m][n-1]) +

 SQR(u[m][n] - u[m+1][n]) +

 SQR(u[m][n] - u[m-1][n]));

 for m = 1 to M-1

 Grad[n] = coeff*(SQR(Dx_0[m]) +

 SQR(Dy_0[m]) +

 SQR(Dz_0[m]));

Figure 2-5. (a) Data flow graph of SQR-accumulate (b) Kernel code piece in jacobi

rician-denoise (c) Kernel code piece in level-set segmentation.

2.3 Customized Vectorization Flow

Figure 2-6 shows the components of our customized vector instruction identification

framework. This framework is implemented in LLVM-2.7 compiler infrastructure [42]

with Omega Library [43] for dependency analysis. The flow is invoked as a back-end

pass on the optimized LLVM intermediate representation (IR) code. As discussed in [9],

automatic vectorization performed at source-level is usually decoupled from standard

back-end optimization, comparing to lower-level IR, which is closer to the machine-level

17

code and can take the advantage of operating on optimized code. In our case, the

optimized LLVM IR is used as top-level input in the customized vector instruction

identification framework.

Figure 2-7 shows the kernel loop in rician-denoise application (to better illustrate each

step in the framework, gauss-seidel implementation [41] is used here, which contains

loop-carried true dependency).

Complementary Code

Elimination

Vectorizability

Checking

Alignment Node

Insertion

Alignment-inclusive

Vectorizable

Identification

Code Generation

Figure 2-6. Customized vector instruction identification flow.

 The data flow graph of the corresponding LLVM intermediate representation is shown

in Figure 2-8. Each node in the data flow graph is labeled with the operation it performs

and each edge represents the data flow dependency between two nodes.

 for m = 1 to M - 1

 for n = 1 to N - 1

 u[m][n] = (u[m][n] + DT * (u[m][n+1] +

 u[m][n-1] +

 u[m+1][n] +

 u[m-1][n] +

 GM*f[m][n]))

 / (c[m][n] + DT * (g[m][n+1] +

 g[m][n-1] +

 g[m+1][n] +

 g[m-1][n] +

 r[m][n]))

Figure 2-7. Kernel code of gauss-seidel rician-denoise.

In this example, the node phi generates the value of loop induction variable n for the

inner loop. If the value is obtained from the outer loop body, n equals 1; otherwise, n

equals its current value plus one, namely the output of the add node under phi. To

18

calculate the address at the second array dimension for references u(g)[m][n-1] and

u(g)[m][n+1], another two add nodes below phi accept the output of phi node, namely the

value of n, and perform the corresponding array subscript calculation. The calculated

array indices are sent to the getelementptr (gep) node to generate the address for the

corresponding array element, which is followed by a load (ld) operation to access

memory.

 Algorithm 2-1. Vectorizable Code Region Extraction

1. G : LLVM-IR-based data flow graph of a given loop nest

2. BI : a set of boundary array / scalar input nodes in G

3. BO : a set of boundary output nodes in G

4.

5. for each node v in G,

6. if there exist a path from v to one node in BO and a path

 from one node in BI to v,

7. add v to V;

8. for each node v in V sorted in topological order,

9. if for any input t to v, t BI ∪ V_vec,

10. add v to V_vec;

11. else

12. if there exists an edge t‟→v such that t‟ BI ∪ V_vec,

13. add v to BI;

19

2.3.1 Vectorizable Code Region Extraction

To extract the customized vector patterns which perform real computations, we need to

remove the complementary nodes existing in the original LLVM IR, such as the loop

invariant and branch instructions. Note that this cannot be achieved by simply removing

operations in those classes and then performing customized vector instruction exploration

on the reduced data flow graph. For example, in Figure 2-8 the three add operations

below the phi node perform address calculation instead of real computation, thus should

not be explored as customized vector instruction candidates. In our flow, we propose a

boundary-node-directed vectorizable code region extraction approach.

*

+

*
+

+

+ +

/

*

+

+

+

r[m][n]

gep

st

gep

ld

ld ld ld ld

+ +

ld ld ld ld

ld

ld

phi

gep

+ + +

gep gep gep gep gep gep gep

gep

gep

icmp

br

u[m][n]

u[m][n+1]
u[m][n-1]

u[m+1][n]
u[m-1][n]

f[m][n]

g[m][n+1]
g[m][n-1]

g[m+1][n] g[m-1][n]

u[m][n]

Figure 2-8. Data flow graph of gauss-seidel rician-denoise.

20

Definition 2-1. The boundary nodes of the vectorizable code region in loop L are defined

to be the legal inputs and outputs to a vector instruction, including memory load/store

operations to continuous memory space (here we only consider array subscript as a

linear combination of loop induction variable and constant), constants and scalar

variables with value fixed inside L.

In Algorithm 2-1, any node that locates outside the subgraph enclosed by the boundary

nodes will be removed, as shown in Figure 2-9(a).

Figure 2-9. Complementary code elimination, vectorizability checking and

alignment node insertion in the kernel code of gauss-seidel rician-denoise.

The nodes in set V but not V_vec are called “prohibited nodes”, Those nodes cannot be

vectorized due to illegal inputs. For example, the third addition in Figure 2-10(a) accepts

random array access as input, which makes it in-vectorizable. However, we can introduce

temporary arrays and apply loop distribution techniques to make it become a new

“boundary node” (lines 11-12). In this case the operations following the in-vectorizable

node will not be prohibited from vectorization, which helps to enlarge the customized

vector pattern exploration space. As shown in Figure 2-10(b), L add operations in second

inner loop can be performed in parallel. (Assume L equals the vector register length) This

technique is referred as boundary extension in the remaining part of this chapter.

u[m][n+1]

f[m][n]

ld

*

+

*
+

+

+ +

/

*

+

+

+

r[m][n]

st

ld

ld ld ld ld

+ +

ld ld ld ld

ld

u[m][n]

u[m][n-1]
u[m+1][n]

u[m-1][n]
g[m][n+1]

g[m][n-1]
g[m+1][n] g[m-1][n]

u[m][n]

(a)

*

+

*
+

+

+ +

/

*

+

+

+

r[m][n]

+ +

u[m][n]

u[m][n+1]
u[m][n-1]

u[m+1][n]
u[m-1][n]

f[m][n]

g[m][n+1] g[m][n-1]

g[m+1][n]
g[m-1][n]

u[m][n]

(b)

*

+

*

+

+

+

r[m][n]

+ +

u[m+1][n] u[m-1][n]

f[m][n]

g[m][n+1] g[m][n-1]

g[m+1][n] g[m-1][n]

(c)

align:0 align:0

21

for i = 0 to n

 A[i] = B[i] + *(ptr[i]) + C[i];

for i = 0 to n with step size L

 for j = 0 to L

 tmp[j] = *(ptr[i+j]);

 for j = 0 to L

 A[i+j] = B[i+j] + tmp[j] + C[i+j];

(a)

(b)

 Figure 2-10. (a) Original code (b) Transformed code.

2.3.2 Operation-based Vectorizability Checking

Theorem 2-1. [29] A statement contained in at least one loop can be vectorized if the

statement is not included in any cycle of dependences.

In the traditional loop vectorization techniques [29], one statement contains a set of

operations and a corresponding memory store. For example, the statement in Figure 2-7

contains 13 operations. In those techniques, each statement is treated as the basic

vectorization unit. However, this may lead to the loss of existing vectorization

opportunities. For example, the loop body in Figure 2-7 contains one statement with

self-dependency cycle. Based on Theorem 2-1, if the traditional approach is applied, all

of the 13 operations inside that statement will be treated as in-vectorizable nodes.

However, since the loop-carried true dependency only exists between u[m][n] and

u[m][n-1], the nodes operated on the other array references can be executed in parallel

without violating the existing dependency. Those vectorization opportunities will be

missing in the statement-based approach.

To fully investigate the customized vector pattern space, we perform an operation-based

dependency checking after applying the conventional statement-based approach. In the

proposed operation-based dependency checking, each operation node in the vectorizable

code region is treated as the basic vectorization unit to allow partial vectorization inside

22

one statement.

 Algorithm 2-2. Vectorizability Checking

1. V_vec : vectorizable nodes obtained from Algorithm 2-1.

2. S : a set of statements inside the given loop nest

3.

4. Perform statement-based vectorization algorithm [28] on S,

 add the nodes adjacent to the violated dependency edges to N;

5. for each node n in N,

6. remove n from V_vec and add it to N;

7. for each node v in V_vec sorted in topological order,

8. if there exists an edge v→ n or n→v such that n N,

9. remove v from V_vec and add it to N;

In Algorithm 2-2, the statement-based vectorization algorithm is first applied to

differentiate vectorizable and in-vectorizable statements. For the in-vectorizable

statements, further dependency checking is performed in an operation-based manner.

Assume the statement is not vectorizable due to a set of violated dependency edges, lines

8-9 separate the operation nodes carrying the violated dependencies from those not. As

shown in Figure 2-9(b), the violated dependency is between u[m][n-1] and u[m][n], the

add operation associated with u[m][n-1] has been excluded from the vectorizable code

region after dependency checking, as well as the downstream nodes reachable from

u[m][n-1]. The statement can be partially vectorized by executing the unshaded nodes

in parallel. By applying the operation-based vectorization check, the exploration space for

customized vector pattern is further enlarged and exposes more opportunity to extract

23

beneficial instruction candidates. Comparing to statement-based approach, the extra

complexity overhead of Algorithm 2-2 is O(|V_vec|) where |V_vec| is the number of

nodes in the vectorizable code region.

2.3.3 Vectorizable Data Flow Graph Expansion

In this section we describe techniques to insert alignment instructions explicitly into the

original data flow graph in presence of mis-alignment. The alignment offset of a memory

access is defined as the byte-offset to the memory boundary of the array elements to be

accessed at the first iteration in a normalized loop. For example, in the loop in Figure

2-1(a), the alignment offsets for accessing array X and Y are 3 and 2, respectively.

An alignment instruction is one that combines results of two neighboring vector load

instructions and logically performs a shift on the vector registers. Note that there are

different ways to insert alignment instructions. In [24] several heuristics are described,

including zero-shift, eager-shift, lazy-shift and dominant-shift. A typical strategy is shown

in Figure 2-11(a).

B‟[i] = B[i+3] ; //shift by 3

C‟[i] = C[i+2] ; //shift by 2

A[i] = B‟[i] + C‟[i];

(a)

B‟[i+2] = B[i+3] ; //shift by1

A‟[i+2] = B‟[i+2] + C[i+2];

A[i] = A‟[i+2] ; //shift by 2

(b)

Figure 2-11. (a) Shifting scheme 1 (b) Shifting scheme 2.

Here the total shift distance is 3+2=5. Yet, when each alignment instruction shifts a vector

register by only one, the solution is suboptimal. A better solution is in Figure 2-11(b),

where the total shifting distance is 1+2=3.

In this chapter, we introduce an optimal shift scheme, with the goal of minimizing the

total shifting distance; as in our architecture, we shift by one for each alignment

instruction to reduce hardware cost. Our method is based on a mathematical

24

programming formulation, and is able to obtain the optimal solution efficiently by taking

advantage of the total unimodularity of the constraint matrix.

Without loss of generality, we consider a data flow graph where each node is either a

memory load/store or an arithmetic instruction that takes two inputs produces one output.

For each arithmetic instruction I, a pair of integers 21, is introduced to model its

alignment property, where 21 / is the relative offset of the first/second input operand

with regard to the output of I. In the previous example, the addition operation has an

alignment vector (3, 2). For each arithmetic instruction I, we associate a label on each

of its port 321 ,, III ooo to indicate the actual alignment offset on its input operand 21 , II oo or

its output
3

Io . To ensure correctness after alignment, we need to make sure

 131

III oo

232

III oo

 (1)

 (2)

This constraint means that the relative alignment offset between each input operand and

the output value is fixed, and that they can be changed simultaneously when alignment

instructions are inserted properly. In the above example, we have 23 213 ooo .

For a memory access instruction m, its alignment offset is always zero, as we only do

load/store in aligned fashion. We have constraint

 0mo (3)

When the output of an instruction s is used by another instruction t as its first (or any

other) operand, alignment instructions may be needed to shift the result of s. Let ds denote

the shifting distance, and we have

 os
3
- ot

1
 ≤ ds (4)

 ot
1
 - os

3
≤ ds (5)

25

he above constraints means that we need to shift at least |os
3
-ot

1
|.

When instruction s is used by multiple instructions {t1, t2, …, tm}, the total shifting

distance is at least oti
1
-otj

1
. This is because any alignment offset between oti

1
 and otj

1
 will

be covered during the alignment. We have

 oti
1
- otj

1
 ≤ ds, for all i,j (6)

Combining the above constraints, we have the following formulation as an integer-linear

programming.

minimize ∑ds

subject

to

131

III oo for all instruction I

 232

III oo for all instruction I

 om = 0 for all memory access

m

 os
3
- ot

1
 ≤ ds for all s used by t

 ot
1
 - os

3
≤ ds for all s used by t

 oti
1
- otj

1
 ≤ ds for all s used by t1 and t2

 All variables are integers (7)

The above formulation tries to minimize the total shifting distance for all values. For the

aforementioned example, denote the instructions as 1(load x), 2(load y), 3(the addition),

4(store to z), the formulation is

minimize d1 + d2 + d3

subject to o1 = 0

26

 o2 = 0

 o4 = 0

 o3
1
 – o3

3
 = 3

 o3
2
 – o3

3
 = 2

 o1-o3
1
 ≤ d1

 o3
1
 – o1 ≤d1

 o2-o3
2
 ≤ d2

 o3
2
-o2 ≤d2

 o3
3
-o4≤d3

 o4-o3
3
≤d3

 All variables are integers

Integer-linear programming formulations are known as a general-purpose tool for

modeling combinational optimization problems, including those notoriously hard ones.

An typical ILP solver, even if equipped with sophisticated algorithms (like cutting planes,

dual decomposition), will still rely on enumerative approaches such as branch-and-bound,

and thus still runs in exponential time in many practical cases. Therefore, the problems

that can be solved by ILP are limited in practice. Fortunately, for the above formulation,

we can show that the integrality constraints are unnecessary. That is, the problem

formulation can be solved as a linear programming problem without the integrality

constraints, while still guaranteeing integral solutions. This is because we can take

advantage of the special structure in the constraint matrix for this specific problem. In the

following, we show mathematically why the above formulation can be solved optimally

in polynomial time.

Definition 2-2. (Total unimodularity). A matrix A is totally unimodular if every square

submatrix of A has a determinant either 0, 1 or -1.

27

Clearly, a totally unimodular matrix can only have entries 0, 1, or -1. Total unimodularity

plays an important role in combinatorial optimization, due to the result in Lemma 1.

Lemma 2-1 [28]. If A is totally unimodular and b is a vector of integers, every extreme

point of polyhedron {x: Ax ≤ b} is integral.

Lemma 2-1 implies that an integer linear programming problem can be solved without

the integrality constraints when its constraint matrix is totally unimodular and the

right-hand side is integral.

Many previous work have taken advantage of the total unimodularity of the constraint

matrix in a number of applications [28]. In fact, our formulation leads to a constraint

matrix that has exactly the same structure as that of [19]. Thus the following theorem can

be derived:

Theorem 2-2. The problem is tractable and can be solved in polynomial time with linear

programming algorithm [19].

After the optimal alignment scheme is derived from the unimodularity of this formuation,

the original data flow graph will be expanded to include the corresponding alignment

nodes, as shown in Figure 2-9(c).

2.3.4 Pattern-Based Customized Vector Instruction

Identification

This section presents the pattern-based approach to efficiently identify the vector pattern

candidates from the data flow graph expanded by inserting optimized alignment nodes.

The pattern recognition approach we use is based on [18] work which is very scalable in

benefit of subgraph enumeration and similarity checking technique. A breadth-first (HPR)

search strategy is adopted in our flow to discover frequent pattern candidates in practice.

HPR, as suggested by its name, is a complete search algorithm which discovers patterns

with a breath-first-search approach. At step k + 1, all the convex patterns with k nodes are

28

extended by one neighbor node using the proposed subgraph enumeration techniques.

After a new subgraph is generated, it is compared to the existing patterns to perform

graph isomorphism checking. If a subgraph is isomorphic to an existing pattern P, we call

it a pattern instance of P. A characteristic-vector based filtering scheme is adopted to

reduce the number of the graph isomorphism checking. The characteristic vector captures

important properties of the original subgraph such that if the signature of a subgraph is

significantly different than the signature of a given pattern, this subgraph is not needed

for matching with the pattern, which avoids the graph isomorphism checking.

By applying the pattern-based approaches to the expanded data flow graph from Section

2.2, we can extract all the frequently executed vector pattern candidates with associated

alignment information.

To measure the gain of a given customized vector pattern, we have used a model to

estimate the energy-performance-product improvement in our flow. To simplify the

model, we do not consider the boundary cases in a loop.

)

#
1()

||
(1#)(a l i g n

c r i i t c a l d i s t
i n s tLL

P
i n s tpg a i n

Here #inst represents the estimated execution time with scalar instruction support; L is

the length of vector register, namely the higher level of data parallelism supported by

vector architecture. The length of critical path (|| criitcalP) divided by the data

parallelism factor L is used to estimate the vector execution time. Considering that with

the complex customized vector patterns, the instruction counts can be reduced

accordingly, which corresponds to less energy consumption on instruction decoding logic,

as well as the potential reduction in the L1 instruction cache misses. Another benefit

comes from the reduced number of branch prediction operation in the transformed vector

code. The estimated instruction count ratio between customized vector instruction and

scalar instruction equals
instL #

1

, which is used to measure the difference in power

consumption. Note that additional alignment instructions are introduced in the vectorized

29

code, which should also be taken into consideration in the energy-performance model.

Here is the scaled energy cost by shifting one element and aligndist is the overall

shifting distance introduced by the alignment instructions in the customized vector

pattern.

2.4 Experiment Results

2.4.1 Evaluation Methodology

We have considered nine applications from widely known standard benchmarks suite like

Parsec [10] (streamcluster and swaptions), Rodinia [13][14] (cutcp, mri-q and

mri-gridding) and four applications from the medical imaging domain [41] (denoise,

deblur, registration and segmentation).

We evaluate the proposed customized vector instruction extraction flow by running full

system simulations on each benchmark. The overall simulator framework is

implemented upon Simics [31] and the GEMS toolset [32] in the single core

configuration. Normal vector engine support has been added to this framework. Figure

2-12 shows our architectural support for composable vector units (CVUs). It consists of a

series of CVUs, a programmable crossbar and a sequencer. They are all tightly-coupled

connected to the core. The composable vector units are connected together through the

programmable crossbar. The inputs to the programmable crossbar are from the outputs of

CVUs and the core‟s register file. The outputs of the crossbar are connected to CVUs.

The sequencer, which is programmed by the core, is responsible for reprograming the

crossbar in every scheduling step. In this way different connection patterns between

CVUs can be supported. Internally the crossbar is a series of multiplexers.

30

 Figure 2-12. The CVU architecture.

2.4.2 Pattern Recognition Results

Table 3-1 shows the customized vector pattern recognition results for the nine benchmark

kernels. At each row, columns 2-6 represents lines of kernel code, the number of pattern

found, the number of pattern instances and runtime, respectively. For example, test bench

streamcluster, the code in its kernel contains 96 lines of C code, and the 92 vector

patterns are found with 240 pattern instances. The overall runtime is less than one second.

From Table 3-1 we can see, the average number of instances for each pattern inside the

kernel is around 4. The repeated occurrence of the same vector pattern in program kernels

exposes the opportunity of program execution speedup by providing the customized

vector support for the corresponding pattern.

The last column in Table 3-1 shows the area synthesis result for patterns in each

benchmark, in total the area equals 5574062 um
2
.

Table 2-1. Pattern recognition results on 9 computation-intensive benchmarks and

their synthesized area on ASIC.

 #line #pattern #inst time (s) Area (um
2
)

31

streamcluster 96 92 240 0.13 117193

swaptions 152 69 292 0.21 153371

cutcp 67 78 285 0.19 471836

mri-q 79 71 100 0.33 62424

mri-gridding 119 119 385 0.49 904371

denoise 274 187 650 0.52 1357131

deblur 202 29 151 0.24 227410

registration 222 1499 3122 1.42 506124

segmentation 179 2211 4172 1.72 1774202

2.4.3 Alignment Optimization Results

To illustrate the of the proposed alignment insertion scheme, we have compared our

solution to four alignment policies proposed in [24], in terms of the overall shifting

distance and number of inserted alignment nodes (normalized to our solution). The four

reference points in this evaluation include:

(i) Zero-shift policy (Z)

Shift each mis-aligned array reference to the alignment offset of 0 immediately after it

is loaded from memory.

(ii) Eager-shift policy (E)

Shift each mis-aligned array reference directly to the alignment of the store.

(iii) Lazy-shift policy (L)

Based on the eager-shift policy, but delay shifting as long as the alignment offset

matches between nodes with the same output node.

(iv) Dominant-shift policy (D)

32

Shift each mis-aligned array reference to the most dominant alignment offset in the

graph.

Table 2-2. Comparison on overall shifting distance.

 Z E L D

fft 3.4 2 2 1

streamcluster 2.8 2.4 1 2.4

rician-denoise 1 1 1 1

registration 1.5 1.5 1 1.5

segmentation 1 2 1 1

We list the comparisons among the five alignment policies, as shown in Table 3-2. Here

only the results of five applications with complicated mis-aligned patterns, such as stencil

computations in the medical imaging domain and the mis-alignment introduced by sum

reduction technique in streamcluster; The shifting distance in Table 3-2 has been

normalized to the proposed solution, in which we can see our solution can generate the

minimal shifting distance for all the five applications. Among the four schemes proposed

in [24], for a few applications the lazy-shift or dominant-shift solution also equals the

optimal one, and outperforms zero/eager solutions. While the intrinsic heuristic feature in

the two policies lead to less efficient solutions in other cases. The overhead to calculate

the optimal solution is less than 7% of the overall compilation time.

2.4.4 Performance Comparison Results

We consider three reference points in the experiments:

(i) Normal vector (NV): Execution of the program using standard state-of-art vector

instructions (Intel AVX).

33

(ii) Dedicated custom vector (DCV): Execution of the program using dedicated

ASIC-based customized vector instructions.

(iii) Composable vector (CCV): Execution of the program using CVU-based

customized vector instructions.

Figure 2-13 shows the normalized speedup on each individual benchmark. Speedups have

been normalized to the normal vector version. We make the following observations:

(i) Benchmarks such as mri-gridding, mri-q and deblur achieve a very large speedup.

This is because the kernels in these benchmarks i.e., the critical functions have a

structured pattern which is suitable for our architecture. Our compilation flow

successfully captured such vectorizable patterns.

(ii) Benchmarks denoise, registration and segmentation achieve moderately good

speedups. We find the patterns in those benchmarks contains two or three parallel add

and mul operations. Due to the available CVU resource constraint we have, such

parallelism cannot be fully supported in the CVU-based design.

(iii) The execution time difference between CCV and DCV is very small. Though the

latter design does not need to consider the resource constraint. On average CCV is 5%

slower than the DCV design on all the benchmarks, which further illustrate the efficiency

of our CVU configuration selection strategy.

 Figure 2-13. Normalized speedup.

2.5 Conclusion and Future Work

 Customized vector domain has attracted increasing attention from both academia and

industry. To provide efficient customization support, in this chapter we introduce an

34

LLVM-based compilation flow to perform automatic customized vector ISA extension. A

composable vector unit (CVU) is proposed to support a large number of customized

vector instruction by allowing chaining among vector units. Our future direction is to

extend the composable vector unit design to a multi-core environment such that the

CVUs can be shared among multiple requesting cores.

35

Chapter 3. Compilation for

Programmable Accelerators

In recent days programmable accelerators (PA) are widely investigated in the design of

domain-specific architectures to improve the system performance and power.

Micro-architectures with a series of PA have been proposed to provide more general

supports for customization. One important feature in the PA-rich systems is that the target

computational kernels can be compiled with pre-defined PA templates and dynamically

mapped onto real PAs at runtime. This imposes a demanding challenge on the compiler

side regarding how to generate high-quality PA mapping code. In this chapter, we present

an efficient PA compilation flow which is fairly scalable in mapping large computation

kernels into PA-rich architectures. A concept called maximal PA candidate is proposed to

drastically reduce the number of input PA candidates in the mapping phase without

influencing the mapping optimality. Efficient pre-selection and pruning techniques are

employed to further speedup the maximal PA mapping process. Our experimental results

show that for 12 computation-intensive standard benchmarks, the proposed approach

achieves a significant improvement on the compilation time comparing to the state-of-art

PA compilation approaches. The average mapping quality is improved by 23.8% and 32.5%

for connected PA candidates and disjoint ones, respectively.

3.1 Introduction

Customization is an appealing solution to increase performance power efficiency, which

is one of the primary design concerns in the era of many-core systems. A recent industry

trend to address it is introducing computation accelerators in many-core designs. The

Convey system [51], Intel‟s Larrabee [52] and Nallatech [53] are example of this. The

accelerators, which are normally designed as specialized hardware blocks in the

general-purpose processors, can be implemented to support a wide variety of tasks,

ranging from fairly simple ones (e.g., a multiply accumulate operation) to more complex

36

ones (e.g., FFT, encryption/decryption or video encoding/ decoding). However, very

complicated accelerators will suffer from the same non-recurring hardware cost as most

ASIP work does. On the other hand, a simple accelerator design, which may be general

enough for most applications, cannot achieve significant power-performance gains with

limited hardware specialization.

To solve this problem, programmable accelerator (PA) has been proposed to enable

varying degrees of customization in an accelerator-rich systems [51] [54] [55] [56] [57].

In a standard PA architecture, a programmable accelerator template is implemented inside

each PA unit to support a selected set of computation tasks with reasonable hardware

design costs. The entire pre-defined PA template may support a relatively complicated

computation task, while it can be reconfigured dynamically to perform a set of simpler

but more general sub-tasks. Therefore, each accelerator unit in a PA-rich system can be

customized to computation tasks with different granularity, which enables efficient

switching among varying degrees of customization at runtime.

 Figure 3-1. Example of a CCA implementation [4].

37

Figure 3-1 shows the accelerator template used in a configurable computation accelerator

(CCA) design proposed in [54]. The CCA is built with 15 functional units arranged in a

two-dimensional array, in which each functional unit can perform arithmetic or logical

operations. Four input data are fed to the top row and processed by each row to generate

two outputs at maximal. Functional units in different rows are connected with full

interconnects, so that data can be transferred between any two computation units from

two adjacent rows. At runtime, the interconnects in this CCA implementation can be

configured by hardware control signal to support any 4-input 2-output computation

patterns with dependency depth less than 5, namely all the legal computation subgraphs

in the given template. In this case, the programmable or configurable accelerators can

efficiently accelerate a wide range of applications with flexible customization support. In

a later work [55] the built-in full interconnect in this CCA template is simplified to

further reduce the area cost while still provides enough customization diversity.

As we discussed, with more flexible customization support, the PA-rich design has been

raised as a promising solution to improve the system performance-power efficiency.

However, this design trend imposes a demanding challenge on the compiler side – how to

generate high-quality PA mapping code which can efficiently utilize the programmable

execution units existing in a PA-rich architecture.

Different from most of the traditional instruction-set-extension work [58] [59], which

aims at designing a highly customized instruction set for a given set of applications, the

PA compilation flow targets at efficiently partitioning application kernels into

PA-executable code pieces, or PA candidate, and mapping them with the pre-defined PA

template.

In general, the PA compilation flow can be divided into two phases - PA candidates

identification and PA template mapping. Given the data flow graph (DFG) of application

kernels, the PA candidates identification phase extracts all the data flow subgraphs which

are executable on the PA units. To decide whether a subgraph is executable on PA units,

38

subgraph isomorphism checking is performed between the subgraph and the PA templates.

After that, the identified candidates will be fed into the mapping phase, in which a subset

of candidates will be mapped to PA templates to accelerate the target kernels.

As discussed in [60], since the PA candidates identification and PA mapping problems are

both difficult to solve, scalability has been considered as a main problem in the existing

PA compilation flows. Considering that the number of PA candidates grows exponentially

with the size of input DFG and PA template, the mapping problem may become

intractable for large DFG blocks. When disjoint PA candidates are considered, the

mapping problem size is even larger after including all the legal combinations of

connected PA candidates.

There already exist a few relevant work investigating developing scalable mapping

methods to obtain optimal solutions for moderate-size application kernels. For example,

in [60], a scalable subgraph mapping algorithm is proposed to generate optimal PA

mapping solutions with connected PA candidates. The limitation of this work is the

lacking support of disjoint PA candidates due to scalability problem, thus it cannot fully

utilize the existing parallelism in a PA template. An extension of this work is discussed in

[55], in which the optimally selected connected accelerator patterns are greedily grouped

into disjoint ones. However, there is no guarantee on the optimality of the corresponding

PA mapping solution, which has been generated in a heuristic way.

To better illustrate the scalability problem in PA compilation, here we use an application

from the medical imaging domain as an example, which is called segmentation [61].

Following the flow proposed in [60], the PA candidates identification phase extracts 1147

connected PA candidates from the kernel block in segmentation, which contains 115

nodes. To map those PA candidates optimally, the PA mapping algorithm in [60] takes

more than 30 minutes to complete. From this example we can see, the exponentially

increased number of PA candidates in the identification phase imposes fast-growing

pressure on the mapping phase which itself is an NP-complete problem [60]. In this case,

39

purely optimizing the PA mapping phase, such as the work in [60] and [55], cannot

release the scalability problem efficiently when large data blocks or PA templates are

considered.

To alleviate the scalability problem in PA compilation, in this chapter contributes we

introduce a concept called maximal PA candidate to efficiently reduce problem size in the

ensuing PA mapping phase while maintains the mapping optimality. Our experiment

results show that on average the number of input PA candidates in the PA mapping phase

has been reduced by 210X and 82X for mapping connected candidates and disjoint ones,

respectively. We also show a scalable PA compilation flow with the support of disjoint PA

candidates. Comparing to the scalable PA compilation approaches proposed in [60] and

[55], our approach achieves a significant reduction on the overall compilation time. The

corresponding mapping quality has been improved by 23.8% and 32.5% on average for

mapping the connected-only and disjoint PA candidates, respectively.

3.2 Related Work

In this section, we briefly discuss the existing accelerator mapping flows, which can be

categorized into the heuristic approach and the exact approach.

As discussed in Section 3.1, both the PA candidates identification and PA mapping

problems are difficult to solve. Heuristic approaches have been employed as a standard

flow to reduce the mapping complexity. A widely-employed heuristic method is to

perform greedy enumeration and immediate selection [62]. In this flow, a seed node is

picked and grows by gradually adding neighbor nodes until the expanded subgraph is no

longer executable on the PA template. Then the corresponding subgraph is immediately

mapped to a PA unit. This process will be repeatedly applied in the remaining data flow

graph until it is empty. Heuristics normally can generate feasible solutions with

reasonable compilation time. However, there is no guarantee on the optimality of the

40

compilation results.

Figure 3-2. A sample PA template.

On the other hand, a standard exact mapping flow can be described as full enumeration

followed by optimal mapping [60] [63]. Here full enumeration means enumerating all the

possible PA candidates in the target kernels. Then the optimal mapping algorithm, such as

ILP-based or branch-and-bound approach, will be applied on the full set of PA candidates.

Efficient pruning techniques have been proposed in [60] and [63] to reduce the mapping

time. However, due to the fact that the number of PA candidates may grow exponentially

with the size of the data flow graph and PA template, the problem size for the optimal

mapping algorithm may still be very large and thus make the optimal approach intractable

[55].

When disjoint subgraphs are considered, the number of PA candidates further explodes.

Therefore a mixture of heuristic and exact approaches has been employed to balance the

time complexity and mapping optimality. For example, the authors of [55] first generate

optimal PAT mapping solution for connected candidates, then greedily group the selected

connected PA candidates into possible disjoint one, which may not be optimal.

There also exists another set of works focus on generating the maximal multiple-input

41

single-output patterns (MAXMISO or SUBMAXMISO) without limiting the number of

inputs or size [64][65]. In [66] and [67], immediate selection is applied to the connected

MAXMISO subgraph and an ILP-based approach has been used to optimally packing the

selected connected subgraphs into disjoint ones. The generated solution also has the

problem of sub-optimality, since the connected subgraphs are selected in a heuristic way

and both work assume that no overlapping exist among MAXMISOs. Another limitation

in the these work is that the MAXMISO subgraphs are defined to be the subgraphs with

maximal size and are generated without considering the micro-architectural constraints,

such as size and data flow structure. In this case these work cannot be applied to the PA

compilation problem, since the selected subgraphs may not be executable on the PAs.

Figure 3-3. (a) DFG of the kernel loop in rician-denoise. (b) One PA mapping

solution. (c) Runtime PA configuration of (b).

As discussed above, most of the previous PA compilation works either suffer from limited

scalability or sub-optimality of the PAT mapping results, which may largely reduce the

possible performance-power efficiency gain when run general applications on the PA-rich

designs.

3.3 PA Compilation Example

In this section, we use a real-life medical imaging application, rician-denoise [41], to

illustrate the PA compilation results on a sample PA template.

42

As shown in Figure 3-2, the sample PA template used here is a 4-level binary-tree

structure, in which each node can either perform arithmetic operations or forward the

input value to its output. The interconnect between two rows is designed in a way that

each data can be transferred to next row or be directly accessed as a PA output. In this

case at maximal 15 outputs are supported in this PA template, while the PA template in

Figure 3-1 only allows two PA outputs at maximum, which largely restricted the possible

support for disjoint PA candidates. Therefore it is not very suitable to test the PA

compilation flow supporting disjoint PA candidates. Note that our proposed flow can be

applied to any predefined PA template and the template in Figure 3-2 is only used here as

one example.

Figure 3-3(a) shows the simplified data flow graph of the kernel loop in rician-denoise,

which contains 14 arithmetic operation nodes (add, multiply and divide). Figure 3-3(b)

shows two selected PA candidates pac1 and pac2 which covers the entire DFG. Let‟s first

look at the connected candidate pac2, it is isomorphic to subgraph {1, 4, 9, 10, 13} in the

given PA template, therefore is identified as a PA candidate. The corresponding runtime

PA configuration is shown in Figure 3-3(c), in which the 15-node PA unit pa2 will

dynamically reconfigured to match the 5 computations in pac2. The remaining nodes in

the PA template will not perform real computations in this mapping.

Comparing to the connected-only case, PA compilation with disjoint PA candidates can

better take the advantage of the data-level parallelism inside PA template. For example,

pac1 in Figure 3-3(b) contains two connected subgraphs. Since both subgraphs in pac1 are

PA-executable and the outputs of nodes 13 and 14 in pa1 of Figure 3-3(c) can be

calculated without violating data dependency constraint, pac1 itself is also a PA candidate

and can be mapped to one PA template. As shown in Figure 3-3(c), nodes 1, 2, 5, 6, 8 are

mapped to template nodes 1, 2, 9, 10, 13; nodes 3, 4, 7, 9 are mapped to template nodes 5,

6, 11, 14.

43

3.4 Preliminaries and Problem Formulation

To formally formulate the proposed maximal PA compilation problem, in this section we

first introduce the necessary definitions and theorems.

Here we assume the input data flow graph is a DAG called G<V, E>, in which each node

in V represents an operation it performs and each edge in E represents the data

dependency between two nodes. The pre-defined acyclic PA template graph is called

T<VT, ET >, in which VT and ET include a set of operation nodes and data dependency

edges in the PA template, respectively. The operation nodes that are not supported in the

given PA template are called forbidden nodes. Without loss of generality, in the rest of

this chapter we assume G is the data flow graph after removing all the forbidden nodes.

Definition 3-1. Given an input data flow graph G <V, E >, a subgraph G*<V*, E*>

G<V, E > is convex if there exists no path between any two nodes in G* which involves a

node V -V*

Definition 3-2. If G*<V* E*> is a subgraph of G<V, E >, which consists of K 1

connected components G1* < V1*, E1* >, G2* < V2*, E2* >, ..., GK*< V K *, EK*>. G*<

V*, E*> is called a legal subgraph of G if (i) ∀ i, Gi*<Vi*, Ei*> is convex (i [1, K])

(ii) there exists no data dependency between any pair of connected components in G*,

when K > 1.

Definition 3-2 can be applied to both connected (when K = 1) and disjoint subgraphs

(when K > 1). It ensures that the enumerated legal subgraphs can be scheduled on the PA

template without violating data dependency constraints.

Definition 3-3. Given a PA template T <VT ,ET > and an input data flow graph G < V,

E >, a subgraph G*< V*, E*> G < V, E > is called an PA candidate if there exist a

legal subgraph T* T, which is isomorphic to G*.

44

Based on Definition 3-3, we can further define the concept of maximal PA candidate as

follows:

Definition 3-4. A PA candidate G*< V* E*> is called a maximal PA candidate, if ∀Vi

V -V*, the expanded subgraph G
+
 <V* {vi}, E*> is not a PA candidate.

For example, PA candidate pac2 in Figure 3-3(b) is not a maximal PA candidate, since it

can be expanded by adding nodes 8 or 9 and the expanded graph is still a PA candidate.

pac1 is a maximal PA candidates since it cannot be further expanded and mapped to the

PA candidate without violating the data dependency constraints.

Figure 3-4. Two compatible maximal PA candidates.

Note that PA candidates may overlap with each other at a certain set of nodes. If it is

possible to distribute each overlapping node to exactly one maximal PA candidate and the

transformed subgraphs are still PA-executable, the overlapping candidates are called

compatible PA candidates and the corresponding transformed subgraphs without

overlapping nodes are called overlapping- free subgraphs. Figure 3-4 shows two maximal

PA candidates pac1 and pac2, which overlap with each other at nodes 8 and 9. They are

45

compatible with each other since we can remove nodes 8 and 9 from pac2 and the

remaining graph is still a PA candidate.

Given a mapping solution consisting of N PA candidates, the PA utilization efficiency can

be evaluated by
|𝑉|

𝑁×|𝑉𝑇|
, in which |V| and |V

T
 | refers to the size of target DFG and PA

template. A higher utilization efficiency implies the computational resources present in

the PA template have been fully utilized. Considering that both |V| and |V
T
 | are given, we

need to minimize the number of selected PA candidates in a mapping solution to improve

PA utilization. In this case, we can formulate the PA compilation problem into two

sub-problems:

Problem 3-1. PA candidate identification. Given an input data flow graph G and PA

template T, identify all the PA candidates in G, which can run on the PA units.

Problem 3-2. PA mapping. Given an input data flow graph G and a set of identified PA

candidates, select a minimal number of non-overlapping PA candidates which can cover

the entire G and map each selected PA candidate to a PA unit.

We can see that the enumerated PA candidates can be either connected or disjoint,

therefore the mapping phase may involve a very large number of PA candidates and

becomes difficult to obtain the optimal solution. To make this problem more tractable, we

propose a maximal PA compilation flow, which can be partitioned into the two

sub-problems as blow:

Problem 3-3. Maximal PA candidates identification. Given an input data flow graph G

and PA template T, enumerate all the maximal PA candidates in G, which can run on the

PA units.

Problem 3-4. Maximal PA mapping. Given an input data flow graph G and a set of

enumerated maximal PA candidates, select a minimal number of compatible maximal PA

candidates which can cover the entire G.

Note that the number of maximal PA candidates is much smaller than total number of PA

46

candidates. For example, the PA candidates {14}, {12, 14}, {13, 14}, {12, 13, 14} share

the same maximal PA candidate pac2 in Figure 3-4. Hence the problem size in the

maximal PA mapping phase can be largely reduced.

Theorem 3-1. The optimal solution for the original PA mapping problem defined in

Problem 3-2 equals the optimal solution for the maximal PA mapping problem defined in

Problem 3-4.

Proof. Assume the optimal solution for the maximal PA mapping problem contains N

maximal PA candidates and the optimal solution for the original PA mapping problem

contains M PA candidates.

(i) Assume that the optimal PA mapping solution contains M non-overlapping PA

candidates {P1, P2, ..., PM}. For each Pi in the optimal solution, if Pi is a maximal PA

candidate, let Pi* = Pi; If Pi not a maximal PA candidate, expand it by adding neighboring

nodes until a corresponding maximal PA candidate Pi
m

 is generated, let Pi
*
 = Pi

m
. The

derived set of PA candidate {P1*, P2*, ..., PM*} contains M maximal PA candidates,

which covers the entire data flow graph and are compatible with each other (the

corresponding overlapping-free subgraphs are {P1, P2, ..., PM}). Therefore {P1*, P2*, ...,

PM*} is one feasible solution for the maximal PA mapping problem, and we have M N.

(ii) Assume that the optimal maximal PA mapping solution contains N compatible

maximal PA candidates { P1, P2, ..., PN}. For each Pi in the optimal solution, Pi*is defined

to be the corresponding overlapping-free subgraph of Pi. The derived set of PA candidates

{P1*, P2*, ..., PN*} contains N PA candidates which do not overlap with each other.

Therefore {P1*, P2*, ..., PN*} is one feasible solution for the original PA mapping

problem, and we have N M.

From (i) and (ii), we can get N = M.

Theorem 3-1 demonstrate the optimality of the proposed maximal compilation flow, in

which the original PA mapping problem is transformed to the maximal PA mapping

47

problem with a much smaller problem size.

3.5 Maximal PA Compilation Flow

In this section we discuss the proposed maximal PA compilation flow, which is performed

in two steps: maximal PA candidate identification and maximal PA mapping.

3.5.1 Maximal PA Candidates Identification

Efficient pattern identification techniques have been investigated in a wide range of work

[67] [68] [69]. In our flow, the subgraph identification and isomorphism checking

techniques proposed in [18] are employed to generate connected PA candidates efficiently.

At step k + 1, all the PA candidates with k nodes are extended by adding one neighbor in

topological order to reduce duplicate identification. After a new subgraph G* is generated,

it will be compared to the subgraphs of the given PA template for graph isomorphism

checking. A filtering scheme based on characteristic vector (CV) [67] is applied here to

reduce the number of expensive graph isomorphism checking operations.

If G* with k + 1 nodes is a PA candidate, all the subgraphs of G* with k nodes will be

marked as non-maximal. In this case, when k increases to the maximal PA size, all the

maximal connected PA candidates have been generated.

The work in [69] proves that any connected component of a disjoint PA candidate must

be a connected PA candidate. Therefore the disjoint PA candidates can be generated by

grouping a set of connected ones together. In our flow, at step l + 1, all the non-maximal

PA candidates with l connected components are extended by adding one connected

component and all the subgraphs of G* will be marked as non-maximal.

Note that instead of generating all the disjoint PA candidates in an input data flow graph,

we only target at those which can be mapped to the pre-given PA template. Therefore the

micro-architectural constraints in the PA template, such as depth, size, number of

inputs/outputs, can be applied to prune the identification space. For example, after

covering the disjoint PA candidate pac1 with pa1 in Figure 3-3(c), the entire PA template

48

will be occupied and no more nodes can be mapped to the remaining nodes {3, 4, 7, 8, 12,

15} in the PA template without violating the data dependency constraint. Therefore the

disjoint PA candidate pac1 will not be grouped with any new connected component to

form a larger PA candidate and can be removed from the set of PA candidates to be

further expanded. Similarly, size and number of ports for each newly-generated disjoint

PA candidates are also collected during the identification process for early pruning.

Another example is the PA template designed in [54], in which only two outputs are

supported. This imposes a fairly strict constraint on the disjoint PA candidate generation

and hence efficient output-port-directed pruning strategy presented in [69] can be applied

to reduce the exploration complexity.

3.5.2 Maximal PA Mapping

Now that we have a set of maximal PA candidates, a subset of those candidates need to be

selected and mapped to PA units.

Here we present a branch-and-bound algorithm to generate the optimal covering solution

with maximal PA candidates. Taking the advantage of the features of maximal PA

candidates, efficient preprocessing and pruning techniques have been developed to reduce

the algorithm runtime. The proposed maximal PA mapping approach is shown in

Algorithm 1. The algorithm inputs include a data flow graph G and a set of maximal PA

candidates MP. The final output is a subset of MP which covers G with the minimal

number of maximal PA candidates. As shown in lines 8-15, the entire mapping flow can

be divided into three stages: pre-selection, greedy-sol-gen and max-cover, as discussed

below:

pre-selection As we discussed in Section 3.2, the exact algorithms for the PA mapping

problem accept a full set of identified PA candidates as inputs. Therefore at most cases a

node in G is covered only by one PA candidate, unless it is disconnected from other nodes

in G. For example, node 14 in Figure 3-4 can be covered by possible PA candidates such

49

as {14}, {12, 14}, {13, 14}, etc. On the other hand, when we only include maximal PA

candidates in the mapping phase, node 14 is only contained in one maximal PA candidate

pac2 in Figure 3-4. In this case, we can directly conclude that PA candidate pac2 will be

selected in the optimal covering solution, and remove all the nodes covered by pac2 from

G. Then the mapping process only needs to be applied to the remaining data flow graph

with less PA candidates. For example, after pac2 is selected, the remaining graph contains

7 nodes, which is only half of the original size.

greedy-sol-gen Note that in a branch-and-bound approach, the current optimal solution is

usually used to prune the searching space and speedup the covering process. For example,

if we know that the best possible solution generated from the current step is worse than

the current optimal solution, we can immediately stop branching at the current direction

and save the corresponding algorithm runtime. In this case, the initial solution should be

set as close as possible to the real optimal one for fast pruning. In Algorithm 3-1, a

greedy covering solution with disjoint PA candidates is used to enable fast initial pruning,

as shown in line 9.

max-cover Lines 17-40 show the branch-and-bound based covering algorithm, which is

applied to the reduced data flow graph generated after the pre-selection stage. For each

maximal PA candidate, it can be either included or excluded in a feasible solution, as

shown in lines 14-15 and lines 36-37. Here if the second parameter decision equals true,

the corresponding PA candidate will be selected in the current solution, otherwise not. In

this case all the possible combinations will be evaluated to obtain the optimal solution.

When the entire graph is covered after adding a new PA candidate, the corresponding

covering solution will be compared to the current optimal solution at line 21. If the

newly-generated solution turns out to be better, compatibility checking will be performed

on the selected PA candidates. The current optimal solution will be updated if the selected

PA candidates are compatible with each other, as shown in lines 22-25.

Assume each overlapping node vi is covered in ni PA candidates, therefore in the worst

50

case ∏ 𝑛𝑖 non-overlapping node assignment schemes need to be evaluated to decide

whether a set of overlapping PA candidates are compatible or not. To perform fast

compatibility checking, tight nodes are first removed from the overlapping node set. Here

an overlapping node v is a called tight node of PA candidate P if all the overlapping-free

subgraphs of P will contain v. For example, the overlapping nodes locating in a path

between two nodes in P are tight nodes, if the corresponding two nodes do not belong to

the overlapping set. Therefore it should be directly assigned to P, otherwise the convexity

of P cannot be maintained. In this case, if a node v is the tight node of more than one

selected PA candidates, we can directly conclude that no overlapping-free node

assignment scheme exists and the covering solution is not compatible. After removing the

tight nodes, all the possible node assignment schemes in the remaining overlapping set

will be evaluated in which the same pruning technique using tight nodes can be applied.

The overlapping removal problem itself is computational demanding, but it will only be

performed when a better solution has been found. In practice, with efficient pre-selection

as well as the initial greedy solution obtained at line 9, the number of overlapping PA

candidates and nodes during compatibility checking process is small. As shown in

Section 3.6, the total algorithm runtime, including compatibility checking, is fairly

affordable.

In order to efficiently prune the searching space, at line 13, all the PA candidates are

sorted in the decreasing order of its size in G
-
, namely |si|, which ensures that the size of

the currently added PA candidate is always greater than (or equal to) the PA candidates

added later. With this observation, we can conclude that after the i
th

 PA candidate has

been selected, at least ⌈
𝑁

𝑠𝑖
⌉ PA candidates are needed to cover the remaining graph, where

N equals the number of uncovered nodes. Therefore, at lines 33-34, an early optimality

checking is performed to evaluate the current partial covering solution. If the best

possible covering solution by continuing growing the currently selected PA candidate set

is worse than the optimal solution we have obtained so far, no further searching from the

51

current state will be performed and the algorithm will directly return to an earlier

covering state.

Algorithm 3-1. Maximal PA Mapping Algorithm

1: G(V, E): input data flow graph

2: MP: a set of maximal PA candidates MP1(V1, E1), ..., MPN(VN, EN)

3: MP
s
: the set of pre-selected maximal PA candidates

4: MP*: a subset of MP which covers G optimally

5: V
s
: the nodes covered by MP

s

6:

7: Procedure max-PA-mapping()

8: pre-selection();

9: optimal_sol = greedy-sol-gen();

10: for each PA candidate MPi MP-MP
s
 do

11: si = |{v|v Vi && v V
s
}|

12: end for

13: sort PA candidates in MP - MP
s
 in decreasing order of si

14: max-cover(1, true);

15: max-cover(1, false);

16:

17: Procedure max-cover(i, decision)

18: if decision = true then

52

19: add MPi MP - MP
s
 in MP*

20: if MP* covers V -V
s
 then

21: if |MP*|+|MP
s
|< optimal_sol then

22: if the PA candidates in MP*+MP
s
 are compatible with each other then

23: optimal_sol = |MP*|+|MP
s
|;

24: optimal_set = MP*+MP
s
;

25: end if

26: end if

27: return;

28: end if

29: end if

30: if i+1 > |MP-MP
s
| then

31: return;

32: end if

33: if |MP*|+⌈
#𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑛𝑜𝑑𝑒𝑠

𝑠𝑖
⌉ ≥ optimal_sol then

34: return;

35: end if

36: max-cover(i+1, true);

37: max-cover(i+1, false);

38: if decision = true then

39: remove MPi from MP*

40: end if

53

3.6 Experimental Results

3.6.1 Experiment Setup

We evaluate the proposed maximal PA compilation flow on 12 computation-intensive

applications from widely-known benchmark suites and computing domains, with the

kernel DFG size ranging from moderate to large. The test cases include five benchmarks

from the SPEC2006 suite [70] (calculix, leslie3d, povray, bwaves and lbm), four

applications from the medical imaging domain [41] (compressive sensing, registration,

rician-denoise and segmentation), and three applications from the Rodinia benchmark

suite [13][14] (heartwall, leukocyte and cfd), which is designed for heterogeneous

computer systems with accelerators. The applications inside each benchmark suite are

listed in the increasing order of application kernel size.

Here we consider two scenarios: (1) PA compilation only with connected PA candidates

(2) PA compilation with disjoint PA candidates. The proposed PA compilation flow is

evaluated in both cases, and compared with the representative previous work [60] [55]

targeting scalable PA compilation.

Our PA compilation flow is implemented with the LLVM compiler infrastructure [42]. In

the experiments, the tested benchmarks are compiled with all the standard optimizations

in O3 turned on. The compilation time is obtained on a 4-core Intel Xeon CPU (E5404)

running at 2 GHZ.

3.6.2 Comparison Results

In this section, we show the comparison results of four PA compilation flows - scalable

connected PA compilation (SC-PAC) [60], the proposed maximal connected PA

compilation (MC-PAC), scalable disjoint subgraph mapping(SD-PAC) [55] and the

proposed maximal disjoint PA compilation (MD-PAC), in which the first two approaches

only target connected PA candidates and the last two consider disjoint candidates.

54

Compilation time. Table 4-1 shows the comparison results on the PA compilation time.

Following [60] and [55], 600 second is used as a maximum time limit, upon which the PA

compilation will be terminated and the best solution generated by this time point will be

reported. Note that 1 sec. in Table 4-1 means that the compilation can complete in one

second.

From Table 4-1, we can make the following observations:

(1) The compilation time of SC-PAC and SD-PAC are very close to each other. The

reason is that SC-PAC is a sub-routine of SDPAC. In SD-PAC, the optimal connected PA

mapping solution is first generated with SC-PAC. After that, a greedy grouping operation

is performed on the selected PA candidates with negligible time overhead, as shown in

Table 4-1.

(2) In the connected compilation case, the maximal PA compilation algorithm can

complete in less than 10 seconds for all the benchmarks, while the SC-PAC flow fails to

complete for six test cases, and its compilation time increases quickly when the

compilation problem size grows.

(3) In the disjoint compilation case, the results are similar, in which MD-PAC can

complete in no more than 300 seconds for all test cases.

The large gap of algorithm runtime between SC(D)-PAC and MC(D)-PAC can be

explained with Table 4-2 and Table 4-3. The problem size of PA mapping is related to two

factors - the target DFG size and the total number of PA candidates which can be selected

into a mapping solution. As we discussed, with the proposed concept of maximal PA

candidates, both factors can be efficiently reduced. From Table 4-2 we can see, by only

including the maximal ones, the total number of PA candidates in the mapping phase can

be reduced by 210X and 82X on average in the connected and disjoint case, respectively.

Table 4-3 shows the reduction on the number of nodes to be covered in the kernel DFG,

after the pre-selection discussed in Section 3.5.2 is applied. SC-PAC and SD-PAC

normally need to cover the size of the entire DFG, since most DFG nodes belong to more

55

than one PA candidate and cannot be selected directly. While in MC-PAC and MD-PAC,

the number of nodes to cover can be reduced by 20% and 25% on average, as shown in

Table 4-3.

Note that for lbm, segmentation and cfd, a greedy MD-PAC approach has been applied

after generating all the maximal connected PA candidates, which results in a much

smaller runtime. The reason is that the disjoint pattern enumeration is too costly in those

benchmarks, e.g., in segmentation, the number of PA candidates with two connected

component already exceeds 20,000. To solve this problem, once all the connected PA

candidates have been identified, the mapping problem size of PA compilation is roughly

estimated as the product of target DFG size and the number of identified PA candidates.

In our disjoint PA compilation flow, if this product is larger than a given value (e.g. 9000),

a greedy compilation algorithm will be invoked, in which all the maximal connected PA

candidates are further grouped into disjoint PA candidates and fed into the mapping phase.

Since the maximal connected candidates will not be removed after the grouping operation,

this can ensure the solution generated in our flow is always better than or equal to that in

[55].

Algorithm Scalability. To illustrate the scalability of the proposed maximal PA

compilation flow, we plot compilation time with the corresponding problem size for the

12 benchmarks. Here the compilation problem size is estimated as the product of target

DFG size and the number of identified PA candidates.

As shown in Figure 3-5, SC-PAC and SD-PAC runs fairly fast for moderate-size

applications, while exhibits limited scalability when the problem size grows. Note that

leukocyle is one application which can be compiled within 600 seconds even with a large

problem size. This is because the real runtime will also be influenced by other factors,

such as subgraph overlapping and the efficiency of the initial greedy solution. The

estimated problem size is used here to provide an insight of the overall trend.

56

Figure 3-5. Algorithm runtime vs. input problem size.

Considering the maximal PA compilation flow, the increased problem size has a small

effect on the MC-PAC runtime and it can finish quickly for all the 12 benchmarks. When

disjoint PC candidates are included, the corresponding compilation flow MDPAC

gradually slows down as the problem size increases, but it still can finish in less than 300

seconds for all the benchmarks tested. As we discussed, when the estimated problem size

exceed a given threshold, a greedy MD-PAC process will be invoked and the

corresponding compilation time falls drastically while still can generate reasonable

mapping quality, which will be shown later in this section. This further demonstrates the

scalability of the proposed maximal compilation flow to deal with large benchmarks or

PA templates, even including the disjoint PA candidates.

Table 3-1. Comparisons on PA compilation time (sec)

 calculix Leslie. povray bwaves lbm c.s. reg. denoise seg. h.w. leuk. cfd

SC 284.3 - - - - 1 1 34.2 - 2.1 338 -

MC 1 1 1 1 4.1 1 1 1 5.2 1 1 1

SD 284.9 - - - - 1 1 34.6 - 2.2 339 -

MD 14 17 29 277 14.6 1 1 11 18.9 1 284.1 1

57

Table 3-2. Comparisons on the number of PA candidates

 calculix Leslie. povray bwaves lbm c.s. reg. denoise seg. h.w. leuk. cfd

SC(D) 269 413 507 425 204 35 198 349 1147 252 618 416

MC 12 16 29 21 36 11 14 19 44 11 33 27

MD 98 31 378 215 54 28 103 162 57 11 270 46

Table 3-3. Kernel size reduction with pre-selection

 calculix Leslie. povray bwaves lbm c.s. reg. denoise seg. h.w. leuk. cfd

Orig. 31 36 42 44 48 19 27 37 75 17 46 52

MC 9 10 10 5 3 6 8 7 20 4 11 5

MD 10 13 10 7 0 9 10 7 0 8 18 0

Mapping optimality. Figure 3-6 shows the comparison results on the final mapping

solution, which equals the number of selected PA candidates to cover the target DFG.

From the results we can see, comparing to the optimal approach SC-PAC, MC-PAC

generates better mapping solution at 6 applications with relatively large kernel size. This

is due to the fact that with those large test cases, SC-PAC cannot finish within 600

seconds and thus cannot obtain the actual optimal result even though the approach itself

is optimal. On average, MC-PAC can achieve 14% improvements over SC-MAC in terms

of the mapping quality, and MD-PAC can achieve 23.8% improvements over the heuristic

approach SD-PAC and 32.5% improvements comparing to the results of SC-PAC with

connected PA candidates.

58

3.7 Algorithm Generalization

So far we have discussed the maximal PA compilation flow to cover the target

applications with a minimum number of non-overlapping maximal PA candidates. This

flow can be further generalized in two directions.

Longest PA path length optimization In PA mapping work, there exist another set of

work targeting at finding the PA mapping solution with minimal longest PA path length,

which can be called as min-length optimization. Here the length of a PA path is calculated

by the number of PA units locating on the path. Algorithm 1 can be easily modified to

generate the optimal min-length solution. In this case, the maximal PA candidates are

sorted in decreasing order of longest path length (in terms of DFG nodes) at line 13 in

Algorithm 1, instead of size. Therefore we can ensure the longest node-wise path length

of the currently added subgraph, denoted by l, is always no less than the ones added later.

In this case, to cover the remaining DFG with longest node-wise path length equaling L,

at least ⌈
𝐿

𝑙
⌉ PA units are needed to cover the L nodes. Assume the current shortest path

length is ls, which equals the smallest number of selected PA candidates locating in the

same path. At lines 33-34, we can apply similar pruning strategy - if ⌈
L

l
⌉+ls is no less than

the current optimal solution, the algorithm will return to an earlier covering stage, since

the best possible solution if we continue adding new PA candidates into the current partial

solution cannot be better than the best solutions we have obtained so far.

Overlapping By allowing overlapping, duplicate computations may be performed and

have a side effect on performance/power efficiency. Therefore most previous work does

not allow selected PA candidates to be overlapped with each other. However, the

existence of overlapping PA candidates may result in a better mapping solution, as

discussed in [58]. To generalize Algorithm 1, we can prove the optimal solution for a

general PA mapping problem, which need not to be non-overlapping, equals the optimal

solution for a general maximal PA mapping problem without compatibility constraint.

59

The proof is similar to the proof of Theorem 3-1.

Figure 3-6. Comparisons on PA compilation result.

Therefore the modified Algorithm 1 after removing the compatibility checking at line 22

can be directly applied to the general maximal PA mapping problem.

3.8 Conclusions

In this chapter we introduce a new PA compilation flow based on maximal PA candidates.

The proposed flow shows significant improvements in terms of compilation time, result

quality as well as scalability. One thing to note here - currently PA candidates are defined

with subgraph isomorphism, while in general full equivalence checking techniques can be

applied to check whether the two computational subgraphs generate the same results,

which will be investigated in the future work.

60

Chapter 4. Compilation for Fully

Pipelined Accelerators
Programmable accelerators (PA) are widely investigated in the design of domain-specific

architectures to improve system performance and power. In PA-rich systems, target

computational kernels are compiled with pre-defined PA templates and dynamically

mapped onto real PAs. To secure highest energy efficiency, full pipelining has become a

critical factor in PA design. This imposes demanding challenges on compiler regarding

how to generate high quality mapping code. In this chapter we propose an optimal PA

mapping algorithm to efficiently map computation kernels onto a series of fully pipelined

accelerators. The proposed approach achieves an average 1.24X speedup comparing to

previous work.

4.1 Introduction

Customization is an appealing solution to increase performance-power efficiency, which

is one of the primary design concerns in the era of many-core systems. A recent industry

trend to address it is by designing and integrating fixed-function computation accelerators

on the die, targeting application domains demanding high performance and

power-efficient execution. Graphs, media, audio and imaging are example domains of

this [96][97]. Although fixed-function accelerators can be designed to provide the best

performance/energy efficiency for a specific domain, it suffers from poor flexibility

problem, hence are not suitable for the domains with constantly changing use protocols.

To address this problem, programmable accelerator (PA) has been proposed to enable

varying degrees of customization in accelerator-rich systems [39][54][55][22][98]. In a

standard PA architecture, a programmable accelerator template is implemented in each

PA unit to support a selected set of computation tasks with reasonable hardware design

costs. The entire pre-defined PA template can be dynamically reconfigured to perform a

set of simpler but more general subtasks. Therefore, each accelerator unit in a PA-rich

61

system can be customized to computation tasks with different granularity, which enables

efficient switching among varying degrees of customization at runtime. One example is

the PA template used in [54], which can be configured by hardware control signals at

runtime to support all the 4-input 2-output computation patterns with dependency depth

less than 5.

Prior PA-flavor designs were proposed in the era when transistor count is a limited kind

of resources. Taking CGRA (coarse-grained reconfigurable architecture) as an example,

each processing element is placed with multiple instructions through modulo scheduling,

thus needs to switch among different modes when execute these instructions. This kind of

time multiplexing incurs extra control logics and is necessary only when the transistor

resource is limited. In the era of dark silicon, the system performance is no longer limited

by transistor count, but mainly constrained by energy consumption. Motivated by this

trend, fully pipelined programmable accelerator without unnecessary time multiplexing

has been designed to achieve the highest energy efficiency, such as [99].

On the other hand, the emergence of those PA-based designs imposes a demanding

challenge on the compiler side − how to generate high-quality PA mapping code to

achieve the highest energy efficiency. The first challenge is how to fully utilize on-chip

resources. Note that the computation carried by a PA at runtime, which can be called

active region, is one subtask supported by its PA template. The total number of PAs used

to cover a given input kernel highly depends on the active region size of each PA instance,

and a number of PA compilation work [55][60] targets finding an optimal PA mapping

solution with least PA usage. The second challenge comes with the pipelined PA

execution. In a fully pipelined PA design, input data comes in at every clock cycles,

buffers or dummy PAs [99] need to be inserted to guarantee the correctness of pipeline

behavior. This serves as a new demanding resource requirement, which is not considered

in previous work.

In this chapter, we investigate and model the impact of throughput target on resource

62

usage in accelerator pipelines. Here resource usage includes not only PAs, but also

buffers required to balance path delay. We also propose an optimal PA mapping

algorithm to efficiently map on-chip accelerator resources to pipelined execution.

Compared to the PA compilation approaches proposed in [60], our approach achieves a

significant reduction on mapping size and up to 33.8% improvement on system

performance

4.2 Overview of Fully Pipelined PA

In this section, we use a real world example to illustrate the execution model of one

recently-design fully pipelined PA architecture called CHARM [99].

Figure 4-1 shows the basic architecture of CHARM. It consists of a set of PAs as

computation elements, with dedicated interconnects in a chain. But most of the data ports

of computation elements will go through a pipelined permutation data network to support

arbitrary topology of the data flow graph in user applications. There are also a small

number of delay units connected to the data network to provide temporary storage if any

data element will be used by different modules in different time slots. The local SPM

banks in the memory complex iterate the regular access patterns of load/store operations

in user applications and read/write data under the control of address generations. While

one side of SPMs is connected to the data network, the other side is connected to global

data unit for data from external memory. There is also a synchronization unit for pipeline

management, and a configuration unit to provide all the modules with constant

configuration bits generated by an accelerator/buffer controller (ABC) from compiler

binaries. The controller is a module that directly talks with ABC and monitors the status

of all the modules in an island.

Figure 4-2 shows a sample PA template containing four computation nodes in total,

which can be configured to all the one-node, two-node, three-node subgraphs of itself.

63

This PA template is designed following the Xilinx DSP48E structure [100], which is

frequently used in a variety of applications. When the kernel loop in Figure 4-3 (a) is

mapped to the underlying hardware, each load/store operation will be mapped to

pipelined address generators coupled with scratch-pad memories. Each

add/subtract/multiply operation will be be mapped to a pipelined PA. As shown in Figure

4-3 (b), the kernel loop is partitioned into 4 PAs, which contains nodes {2, 6}, {3, 7}, {4,

8, 10} and {1, 5, 9, 11} respectively. All the edges in the data flow graph of the kernel

loop will be mapped to a pipelined data network. Every clock cycle, five data elements

associated with the five input data array references will be loaded for computation. In the

next cycle, while the last five data elements are still wandering at the intermediate stages,

the other five data elements for the next loop iterations are sent to the network. This full

pipeline guarantees high energy efficiency of computation and full exploitation the

benefits of regular computation/access patterns of the target application.

Figure 4-1. Architecture of CHARM

64

Figure 4-2. A sample PA template

One thing to note is that during pipelined execution some data elements in the data

network will be used by multiple modules in different cycles. For example, the data

element generated by u[i][j] will be used by PA0-PA3 in Figure 4-3 (b). This result in

four different paths which start from u[i][j] and end at PA3 - {u[i][j], PA3}, {u[i][j],

PA0, PA3}, {u[i][j], PA2, PA3} and {u[i][j], PA1, PA2, PA3}. Therefore we need to

insert delay units to temporarily store these data elements between its first use and its last

use. As shown in Figure 4-3 (c), two delay units are inserted to balance the delay along

those four paths. The challenge is that due to the full pipelining feature of our underlying

hardware, each delay unit will receive a new data element every clock cycle. To reduce

the amount of delay units used in a pipelined execution, we need to reduce the lifetime of

each data element as much as possible. This motivates us to do path balancing for

resource and energy savings.

4.3 Preliminaries

Definition 1 Given an input data flow graph G<V,E>, a set of PA candidates

),(),...,(),,(222111 MMM EVGEVGEVG , we define),(. MMM EVMG as a PA mapping

graph, if it satisfies: (1) there exist an injective function Mi VvKivGf ,,1:. (2)

Mio VVGfGfGf)(...)(.)(. 221 ; (3) VVVVV ioK 21 ; (4)

EEEEE MK 21 .

In other words, each PA candidate or memory reference node in the G is mapped to one

65

node in MG (constraint (1&2)). MG covers the original data flow graph (constraint

(3&4)). Figure 4-3 (b) shows a PA mapping graph in which each node either corresponds

to a PA candidate or a memory reference. Since it takes four PA templates to cover the

input data flow graph, the size of MG equals four times the template size.

Definition 2 A digraph G<V,E> is called a balanced graph, if it satisfies: for ∀u∈V,

∀v∈V, if there exist at least one path from u to v, then all the paths from u to v have the

same path length. Here the length of a path p is defined to be the number of vertices in p.

Based on the definition above, we can see Figure 4-3 (c) is a balanced mapping graph,

since all the paths from node u[i][j] and PA3 have length 4.

Figure 4-3. (a) Mapping solution I of rician-denoise. (b) Mapping graph of (a). (c)

Balanced mapping graph of (a).

4.4 Throughput-Aware Path Balancing

In this section, we discuss a general delay unit insertion scheme under a given accelerator

pipeline throughput, represented by a initial interval (II). Suppose there exist K paths

𝑃1, 𝑃2, … , 𝑃𝐾 from vertex u to v with length li (0 < i <= K). Without loss of generality,

we can assume 𝑙1 ≤ 𝑙2 ≤ ⋯ ≤ 𝑙𝐾. Then during pipelined execution with one input data

coming in every II cycles, IIllK /)(1

delay units need to be added to path pi to

guarantee the arrival time of vertex u‟s K inputs are equal.

66

From the discussion above we can see when II equals 1, namely a full pipelined

execution, the system exhibits the most demanding requirement on the number of delay

units.

Figure 4-4. Delay unit insertion (II = 2).

To further illustrate the impact of II on delay unit insertion, we use Figure 4-4 to show the

balanced mapping graph of Figure 4-3 (b) when II equals 2. In this case, only 1 delay unit

need to be inserted at paths from u[i][i] to PA3. Assuming data uT is stored in delay unit

D at cycle T, the value of uT are sent to PA1, PA0, PA2 and PA3 at cycle T, T+1 and

T+2, respectively. At cycle T+2, a new data uT+1 comes in and overwrites uT in delay

unit D. Figure 4-5 further illustrates the behavior of delay units in both Figure 4-3(b) (2

delay units, II=1) and Figure 4-4 (1 delay unit, II=2). As we can see, when II equals 1, a

new data will come in every clock cycle. In order to inject delay 2, two chained delay

units are inserted at the output of reference u[i][j]. The value of uT is sent to both PA1

and the first delay unit at cycle T; at cycle T+1, uT will be sent to PA0, PA2 and the

second delay unit, and the first delay unit is overwritten by a new data uT+1; at cycle

T+2, uT is sent to PA3 from the second delay unit, as shown in Figure 4-5(b). When II

67

equals 2, a new data will come in every two cycles. In this case, the delay unit in Figure

4-5(a) holds the value of uT until T+2 - during this period, uT is accessed by PA1 at

time T, by PA0 and PA1 at time T+1, finally consumed by PA2 at time T+2. At the

same time, the next data uT+1 overwrites the value of uT in the delay unit.

Figure 4-5. Chained delay units for a target II.

Figure 4-6 shows the chained delay unit insertion scheme under a given II. Delay unit Di

holds each data for II cycles, then pass it to Di+1. As we can see, in total IIllK /)(1

delay units are inserted in the chain to provide delay)(1llK .

We‟ve shown that given a PA mapping graph, it can be transformed into a balanced graph

by adding delay in the unbalanced paths. Note that if there is no cycle in the PA mapping

graph, delay can be added to the primary input of each path by postponing its access from

on-chip memory. In this case no area overhead will be incurred from delay unit insertion.

As one can see from Figure 4-7, different mapping solutions may lead to different path

balancing results. For example, mapping solution in Figure 4-7(a) contains 5 PA nodes. It

is larger than the size of Figure 4-3(b), which covers the data flow graph with only 4 PA

nodes. However, if we look at the path balancing between u[i][j] and its output PA nodes,

the maximal path length difference equals 1. This means only 1 delay unit need to be

68

inserted to enable a pipelined execution, as shown in Figure 4-7(c). Therefore the total

mapping size of Figure 4-3(c) is 4*area(T) + 2*area(delay_unit), and the total mapping

size of Figure 4-7(c) equals 5*area(T) + 1*area(delay_unit). If the PA system is equipped

with a smaller number of delay units comparing to the amount of PAs, which is usually

the case considering interconnect design complexity, mapping solution in Figure 4-7 will

be selected since it consumes less scarce resource in the system. On the other hand, this

further enlarges the search space when looking for an optimal mapping solution.

Figure 4-6. Delay propagation when II = 1 and 2.

Figure 4-7. (a) Mapping solution II of rician-denoise. (b) Mapping graph of (a). (c)

Balanced mapping graph of (a).

4.5 Pipelined PA Mapping

In this section, we introduce an optimal delay unit insertion approach and a

corresponding balanced PA mapping algorithm to efficiently map on-chip accelerator

resources to a pipelined execution.

69

4.5.1 Delay Unit Insertion

We consider a PA mapping graph which contains one or multiple undirected cycles. As

shown in Figure 4-8, node s is the entry node, or split node, of a cycle; node m is the exit

node, or merge node, of a cycle. After delay unit insertion, the lengths of any two paths

between a split node and a merge node are the same. Without loss of generality, here we

only consider the nodes covered by cycles, denoted by VC.

Figure 4-8. An undirected cycle in a data flow graph.

As discussed in Section 4.4, the goal of delay unit insertion is to make the lengths of all

paths in a cycle (between the split node and the merge node) equal. One simple but

greedy solution is to add delay units at the output ports of the split node to make the

length of each path the same. However, this simple heuristic cannot guarantee the

optimality of the final solution. As shown in Figure 4-9(a), there are two neighboring

undirected cycles – the left one contains node 1, 2, 3, 5, 7 and the right one contains node

1, 3, 4, 5, 6, 8, 9. Following the heuristic approach, one delay unit will be inserted

between split node 1 and node 3 to balance the path length in the right cycle. In addition,

two delay units need to be inserted between node 1 and node 2 to balance the path lengths

in the left cycle. In total three delay units are added to the original data flow graph. This

70

scheme is not optimal, considering that after introducing one additional delay at path

1->3->5->9 of the right cycle, the length of the longest path (1->3->5->7) in the left cycle

also increases. Figure 4-9(b) shows an optimal solution with only two delay units needed

to balance the path length in both cycles.

Figure 4-9. (a) A greedy delay unit insertion scheme. (b) An optimal delay unit

insertion scheme.

For each cycle node v, we associate a label (dv, d1, d2, … dn) on v and each of its output

nodes o1, o2, … on (only consider output nodes covered by at least one cycle) to indicate

the depth of v and its output nodes. Each solution provides a way to organize the delay

unit insertion. For each node, the basic constraint is di – dv > 0, which implies node depth

will increase from an input node to an output node. When node v is used by its output

node oi, the result of v may need be delayed before it is fed to oi, and the actually delay

offset between v and oi can be calculated by di – dv.

When node v is used by multiple nodes o1, o2, … on, we construct a set Sv = {d1 – dv, d2 –

dv, … dn – dv }, and claim the minimum number of inserted delay units at the output ports

of v equals max(Sv) – min(Sv), namely the difference between the biggest delay offset and

the smallest offset.

Below is the mathematical programming formulation for the delay unit insertion problem,

71

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ 𝑚𝑣

𝑣∈

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

𝑑𝑢 𝑑𝑣 ≤ 𝑚𝑣, 𝑣 ∈ 𝑢 ∈ 𝑜𝑢𝑡𝑝𝑢𝑡(𝑖) 𝑢 ∈ ()

𝑑𝑢 𝑑𝑤 ≤ 𝑚𝑣, 𝑣 ∈ 𝑢, 𝑤 ∈ 𝑜𝑢𝑡𝑝𝑢𝑡(𝑖) 𝑢, 𝑤 ∈ ()

𝑑𝑖, 𝑚𝑖 ≥ , 𝑖 ∈ ()

Here we introduce a variable mv for node v, which represents the maximal delay offset

difference among v‟s output nodes. Using the above model, the problem is solved using a

linear programming solver as the underlying constraint matrix is totally unimodular. It

can be solved optimally in polynomial time [107].

4.5.2 Balanced PA Mapping

In this section, we introduce a branch-and-bound based optimal PA mapping algorithm

with balanced path delay and smallest mapping size. Here the size of a mapping solution

is defined to be the total area of the balanced mapping graph, including the area of both

PA and delay units. The mapping size metric can also be defined as num(PA) +

α*num(delay_unit) Here the value α is set to unit_area(delay_unit)/unit_area(PA). We

can also set α to be io(delay_unit)/io(PA), which equals the ratio between the number of

IO ports of each delay unit and each PA. In this case, this metric measures the pressure on

the interconnect design imposed by the corresponding PA mapping solution.

As shown in Algorithm 4-1, if the second parameter decision is true, the corresponding

PA candidate will be selected in the current solution, otherwise not (as shown in lines

13-15). In this case all the possible combinations will be evaluated to obtain the optimal

solution. When the entire data flow graph is covered after adding a new PA candidate, the

newly generated mapping solution will be compared to the current optimal solution. If it

turns out to be better, the current optimal solution will be updated in line 18.

In order to efficiently prune the searching space, we‟ve developed a pruning technique

72

combining two metrics (line 26): (1) PA candidates are added in the decreasing order of

their size. In this case, after the ith PA candidate with size si has been selected, at least

 iN/s PA candidates are needed to cover the remaining data flow graph, where N equals

the number of uncovered nodes. (2) With d delay units generated in the current partial

mapping solution (Figure 4-10), at least d delay units are needed to balance the path delay

difference in the corresponding complete mapping graph.

Figure 4-10. A partial mapping graph.

Algorithm 4-1 Balanced PA Mapping Algorithm

1: G(V, E): input data flow graph

2: P: a set of PA candidates P1(V1, E1), ..., PN(VN, EN)

3: S: 0

4: II: target throughput

5:

6: Procedure balanced-PA-mapping()

7: optimal_sol = greedy-sol-gen();

8: sort PA candidates in P in decreasing order of size

9: balanced-cover(0, true);

10: balanced-cover(0, false);

73

11:

12: Procedure balance-cover(i, decision)

13: if decision = true then

14: add Pi in S

15: if S covers G then

16: if |S| + alpha*total_delay_unit < optimal_sol then

17: optimal_sol = |S| + alpha*total_delay_unit;

18: end if

19: return;

20: end if

21: end if

22: if i+1 > |P| then

23: return;

24: end if

25: if |S|+⌈
#𝑢𝑛𝑐𝑜𝑣𝑒𝑟𝑒𝑑 𝑛𝑜𝑑𝑒𝑠

𝑠𝑖
⌉ + alpha*total_delay_unit ≥ optimal_sol then

26: return;

27: end if

28: balanced-cover(i+1, true);

29: balanced-cover(i+1, false);

30: if decision = true then

31: remove Pi from S

32: end if

74

4.6 Experimental Results

4.6.1 Experiment Setup

We evaluate the proposed maximal PA compilation flow on 10 computation-intensive

applications from widely known benchmark suites and computing domains. The testcases

include three benchmarks from the SPEC2006 suite [70] (calculix, povray and bwaves),

five applications from the image processing domain [41] (gradient, registration,

rician-denoise, segmentation and edge sobel), and two applications from the Rodinia

benchmark suite [13] (leukocyte and cfd), which is designed for heterogeneous computer

systems with accelerators.

Our PA compilation flow is implemented with the LLVM compiler infrastructure [42]. To

further evaluate our compilation flow, we have extended Simics [31] and GEMS[32] and

conduct cycle-accurate simulations on a recently-developed pipeflined PA architecture

called CHARM.

4.6.2 Comparison Results

In this section, we evaluate the proposed balanced PA mapping algorithm (BPM) with an

optimal PA mapping flow in [60]. In [60] the optimization objective is to minimize PA

usage when covering the input kernel graph. We apply Algorithm 4-1 to generate a

corresponding balanced map for [60].

Mapping optimality. Figure 4-11(a) shows the comparison results when mapping to a

fully pipelined execution (II = 1), including the usage of both PA and delay units. y-axis

shows the number of PAs and delay units occupied in the corresponding mapping

solution.

From the results we can see, by applying balanced PA mapping, the delay unit usage has

been significantly reduced in all the benchmarks. On average, BPM requires 32.6% less

delay units comparing to [60]. On the other hand, the PA usage in both BPM and [60] are

75

similar. This means when we set the value of α small, BPM will converge to a solution

close to PA-optimal solution. Note that the PA usage in BPM may be larger than that

in [60] but with more balanced mapping graph (gradient, povary and leuocyte).

Figure 4-11 (b) shows mapping size of BPM when mapped to a pipelined execution with

different II (normalized to corresponding mapping size of [60]). As we can see from the

figure, when II increases, the pressure on delay unit usage will be released, therefore the

mapping size gap between BPM and [60] becomes smaller. When II is small, such as in a

fully pipelined execution, the mapping quality difference between BPM and [60] is the

most significant. This demonstrates the usage of BPM targeting pipelined accelerator

execution. On average, the proposed flow achieves a 17.7% reduction on the total

mapping size, with the maximal reduction up to 27.2% when II = 1.

Figure 4-11. (a) Mapping size comparison of BPM and [9] (II = 1) (b) Mapping size

comparison of BPM under different II.

76

Performance. Figure 4-12 shows the comparison of execution time on CHARM platform

(II=1). The performance gain comes from improved data level parallelism when the

overall mapping size is reduced. Given a limited number of accelerators and delay units,

a smaller mapping solution implies higher degree of accelerator duplication to support

parallel execution, so that multiple copies of accelerators can execute at independent loop

iteration space. In CHARM, dummy PAs which are used to route data and do not perform

any computation are inserted as delay units. On average, the overall performance gain of

BPM is 23.6% over [60].

Figure 4-12. Performance comparison.

4.7 Conclusion

PA-rich platforms and full pipelining have been considered closely to provide high

performance and power efficiency. On the other hand, it also brings a number of

challenges on compilers to generate high-quality acceleration codes. In this chapter we

discuss the impact of pipeline II on the resource usage in a pipelined PA system. An

optimal PA mapping algorithm is proposed to map input programs onto a target pipelined

execution. The proposed flow shows significant improvements in terms of mapping

quality and system performance.

77

Chapter 5. Communication

Optimization for Software-Controlled

Memories
Multi-level software-controlled memories (SCM) have been extensively utilized in

heterogeneous embedded systems. The knowledge of data access pattern enables the

opportunity for compile-time communication optimizations, which can be applied to

different SCM levels to hide memory access latency and improve bandwidth utilization.

In this chapter we quantify the impact of data reuse pattern on both L1 and shared

last-level (LL) SCM management. We propose a reuse-aware data movement scheme for

multi-level SCMs. 31.2% performance and energy improvements are observed with L1

SCM prefetching. The host-accelerator data transfers are reduced by 25% comparing to

previous work [102].

5.1 Introduction

As discussed in Chapter 3, modern high-performance platforms are equipped with

abundant computing elements. In order to fully utilize the available computing resources,

communication optimizations become major challenges for designers. The inclusion of

cache is one traditional way for general-purpose core to manage data movement.

However, the hardware-controlled feature of cache makes it difficult to make a

customized decision based on program behavior. As an alternative, software controlled

memories (e.g. scratchpad memory or SPM) have been widely used in embedded systems

and commercial high-performance processors, such as IBM‟s Cell processor and

NVIDIA‟s GPUs. Programmers can tune the software manually or through special

compiler support to manage SCM explicitly and control data movement in a more

predictable way. Figure 5-1 shows a heterogeneous parallel architecture with

general-purpose processor core (e.g. Intel Xeon) and fast hardware accelerator cores (e.g.

FPGA or GPU). The accelerator cores sit beyond two levels of SCMs (private L1 SCM

78

and shared L2 SCM).

A number of work addressing the compiler support for efficient SCM management have

been developed. The allocation scheme in SCM can be divided into two categories. The

first category targets L1 (on-chip) SCM allocation. To hide access latency to lower level

memories, L1 SCM can be utilized as a prefetch buffer with explicit control over data

replacement policy. Compared with conventional cache prefetching, SCM-based

prefetching can avoid the scenario in which the data evicted from cache by the newly

prefetched data is still “alive,” i.e., will be accessed frequently in the near future.

However, limited attention has been given to SCM prefetching in the literature. For

example, the management scheme in [72] only includes initial prefetching operations

with no further analysis of prefetching for dynamic data transfers, and program execution

may stall due to late SPM buffer update. In fact, prefetching too late to hide the memory

access latency will harm the overall performance, while prefetching too early will put

stress on the required SPM size to accommodate those data before their first access. The

work in [80] prefetches the entire array into scratchpad memory (or SPM, one type of L1

SCM) before its access with the assumption that the entire array can fit into SPM.

However, this is usually not the case, such as scientific applications with large input array.

In [73], the direct buffers in Cell‟s local store (SPM) are utilized to support data

Figure 5-1. Two-level SCM-based heterogeneous platform.

79

prefetching with runtime library support. In [81], array prefetching in SPM is managed

through Markov-chain-based prediction. In [82], SPM is used as a prefetch buffer for

video applications by gradually overwriting old data with new data. One common

limitation of those works is that SPM prefetching decisions are made independently

without considering possible data reuse pattern. For example, [73] and [81] only focus on

applications without regular memory reuse, and the scheme proposed in [82] works only

for streaming applications. There exist some unified prefetching and reuse schemes for

cache. For example, prefetching instructions in [83] are issued only for the memory

references with high probability to be a miss. However, since the work targets a normal

cache, the compiler does not have explicit control over data eviction, and cache pollution

may still occur. Besides, since the cache block to store the prefetched data is determined

by hardware, data layout and eviction set selection are not considered in this chapter. The

same problem also exists in other cache prefetching work such as [84] and [85]; hence,

those works cannot be directly applied to SCM prefetching.

The second category targets last level SCM management to balance the low bandwidth

from main memory, which can be further divided into static allocation and dynamic

allocation. In static allocation schemes, data layout in SCM is determined at compile time

and will remain fixed throughout program execution. Examples of static SCM allocation

schemes include [74], [75], [76] and [77]. Compared with a static scheme, dynamic

allocation allows SPM data transfers during execution and hence can better accommodate

run-time program requirements. For example, the work in [78] applies loop and data

transformation to efficiently reduce the number of data transfers between SCM and main

memory. In [79] a compiler-driven approach is presented which partitions the program

into code regions and the bring-in/swap-out sets for each region are determined

heuristically. In [80] the authors propose a dynamic compiler-directed approach to

manage SPM through array live-range partitioning and graph coloring. The SPM buffer

allocation approach in [72] is based on memory access pattern analysis to improve data

80

reuse. In [101], a dynamic programming-based data allocation approach is proposed for

one program region. Then the optimal solution for each program region is heuristically

combined as a global solution. In [102], a highly complex, integer LP formulation is

proposed to calculate the global optimal SCM allocation. Those previous works rely on

the assumption that all the compute kernels will be executed on the hardware accelerated

cores. However, in reality commodity processor cores also serves as a competitive

computing resource. For example, data transfers between host memory and global SCM

are quite common in CUDA-based GPU programming when two consecutive tasks are

allocated to GPU core and processor core, respectively. In addition, neither work supports

partial data transfers, namely the entire array has to be treated as one data item. This

restriction will lead to inefficient memory utilization at run-time, which also

differentiates the last level SCM management problem from the traditional register

allocation problem, as discussed below.

Register allocation is one of the most widely studies topics in computer science

[103][106]. Its goal is to assign unbounded number of variables to a finite number of

machine registers without interfering the lifetime of each variable. Variables which

cannot be assigned to machine registers need to be moved to memory, which is called

spilling. Register allocation has been proved to be NP-complete [104][105], which can be

reduced to a graph-coloring problem. The major difference between registration and the

last level SCM management discussed here is whether the variable in the problem

formulation is divisible. With partial transfer supported, last level SCM management can

be approximated as an LP problem and solved in polynomial time. We can also prove the

near-optimality of the LP solution, when the total number of candidate arrays is smaller

than to the total number of accesses. This is usually the case in most scientific

applications.

Targeting the multi-level SCM hierarchy, we propose a reuse-aware L1 SCM prefetching

scheme to hide memory access latency and minimize the amount of data transfers from

81

lower-level memory. The concept of reuse candidate graph is introduced to guide

prefetching decisions. The proposed scheme is evaluated with cache prefetching,

prefetch-only SPM management and a DRDU-generated SPM management scheme [72].

We also develop a task-level-reuse-graph based LL-SCM data movement scheme to

minimize the amount of data transfers between heterogeneous computing cores through

the slow PCIe bus. Partial array transfers are supported in our approach. An average 25%

reduction of host-accelerator data transfers is observed from previous work.

5.2 L1-SCM Management

5.2.1 Impact of Reuse Pattern on SCM Prefetching Efficiency

With explicit control on data movement, we need to identify the prefetched and evicted

data sets, which is essential for an SCM prefetching scheme. The basic implementation is

to prefetch data P iterations earlier than its actual access to hide the load latency, where P

is the estimated prefetch latency from lower-level memory in terms of loop iteration [86].

In other words, in order to hide the memory access latency, the prefetching instruction of

the memory reference set at iteration i+P+1 will be issued at iteration i and will replace

iteration i‟s data access set. In this scheme SCM is mainly used as prefetch buffer with

size P+1. Figure 5-2 shows a simplified loop kernel code of 429.mcf from the SPEC2006

suite. At iteration i the newly prefetched data for iteration i+P+1, replace cost[i], head[i]

and tail_potential[i] which will not be re-accessed later.

For programs with regular data reuse patterns, the naive prefetching scheme that simply

replaces the data accessed at the current iteration with the data set to be accessed after P

iterations is not efficient. More specifically, the data to be prefetched or brought in may

already reside in SCM. In this case, duplicate prefetching for the same data from

conventional memory will increase the number of issued prefetching instructions as well

as the total energy consumption. On the other hand, if the data to be re-accessed in the

near future is moved out of SCM, those data need to be re-prefetched into SCM before

82

the next accesses, which also will introduce additional overhead. Figure 5-3(a) shows the

kernel code of 401.bzip2 from the SPEC2006 benchmark. We can see that iteration i = 8

is the dividing point where reuse occurs and the prefetching set shrinks by half since the

data to be prefetched have already been brought into SCM at an earlier iteration. For

example, fmap[4] is brought into SCM as fmap[i] at iteration i = 4, and is re-accessed as

fmap[i−4] at iteration i = 8. The iteration space after iteration 8 can be seen as a “stable”

region, and the prefetching set for any iteration in that region only contains fmap[i].

Figure 5-2. (a) Simplified kernel of 429.mcf. (b) SCM management of 429.mcf.

Figure 5-3 further illustrates the difference between prefetching schemes with/without

considering reuse patterns. The prefetch-only and reuse-aware SCM prefetching schemes

are shown in Figure 5-3 (b)(c). In the reuse-aware scheme, the prefetch set at iteration i

only contains one element fmap[i+P+1], as fmap[i+P−3] has already been prefetched at

iteration i−4. The corresponding retiring set only contains fmap[i−4]. Compared with the

prefetch-only scheme, the number of prefetch instructions issued at each iteration is

reduced by 2X, and the associated access to lower-level memory will also be reduced

accordingly. In Section 5.4 we show that compared to the prefetch-only scheme, the

reuse-aware prefetch strategy can achieve up to a 42.6% reduction on energy

83

consumption and a 39.3% reduction on execution time.

Figure 5-3. (a) Simplified kernel of 401.bzip2. (b) Prefetch-only SCM management

of 401.bzip2. (c) Reuse-aware SCM prefetching scheme of 401.bzip2.

5.2.2 RASP: Reuse-Aware SCM Management

5.2.2.1 Preliminaries

Definition 5-1. [16] Given a normalized n-level loop nest, suppose there is data

dependence between memory reference R1 at iteration ⃐ and reference R2 at iteration ,

then the reuse distance vector �⃐� is defined as a vector of length n such that _d(R1,R2) =

 ⃐ ⃐.

Definition 5-2. A reuse candidate graph is a directed graph G(VG,EG) where VG are

array references in a uniformly generated set (UGS)
1
 and each reuse edge Vs→Vd (Vs, Vd

∈ VG) in EG represents the data dependence between references Vs and Vd with reuse

1 A uniformly generated set is a set of affine references of the same array with the same access matrix.

84

distance vector �⃐�((Vs,Vd). Assume �⃐�((Vs,Vd) = (d1 ,d2, . . ., dn), the length of reuse edge

Vs→Vd, denoted by l(Vs,Vd), is defined to be ∑ (𝑑𝑖 ∏ 1
𝑛
 𝑖)1

𝑖 𝑛 , where 1 is the

upperbound of j
th

-level loop nest (Un+1 = 1).

One example of a reuse candidate graph built for the kernel code in the rician-denoise [17]

application is shown in Figure 5-4. Each vertex in the reuse candidate graph represents

one array reference. The directed edge from u[i+1][j+1] to u[i][j+1] with reuse distance

vector �⃐� = (1,0) implies that u[i][j+1] at iteration �⃐� �⃐�. will reuse the array element

accessed by u[i+1][j +1] at iteration , and the length of Vi→Vj equals M. If SCM size is

large enough to hold data until the next access at �⃐� (Vi,Vj) iterations later, the

corresponding reuse edge Vi→Vj will be marked as an active edge. Notice that the reuse

candidate graph is constructed for UGS references; a loop may have more than one reuse

candidate graphs. The reuse candidate graph of irregular or non-affine references only

contains one vertex, namely the reference itself.

In order to analyze reuse possibility and calculate the number of required data transfers

into SCM, local region and reuse region are defined for each vertex in the reuse

candidate graph.

Definition 5-3. Given reuse candidate graph G with iteration space U, for each reference

Vk in G, we define the local region of Vk to be the iteration subspace in which data

accessed by reference Vk is prefetched from lower-level memory, denoted by LVk ; Vk’s

reuse region is defined to be the iteration subspace in which access to Vk can reuse data

stored in SCM for other references, denoted by RVk and RVk =U −LVk .

From Definition 5-3 we can conclude that the total size of local region of all the vertices

in G equals the amount of data needed to be brought into SCM, since the data accessed in

the local region of a given memory reference is prefetched directly from lower-level

85

memory instead of reusing its parent memory reference in G.

Based on the discussion above, we can formulate the reuse − aware SCM prefetching

problem as follows:

Figure 5-4. (a) Normalized kernel loop of rician-denoise. (b) Reuse candidate graph

built on (a).

Problem 5-1. Given the reuse candidate graphs G constructed for a loop nest, the

maximal SCM size S and the estimated prefetch latency P, select a set of reuse edges to

be active and create a SCM buffer for each vertex in G accordingly to hide the access

latency P, so that the number of required data transfers from conventional memory

hierarchy is minimized, under the constraint that the total size of the allocated SCM

buffers cannot exceed S.

5.2.2.2 SCM Buffer Allocation

In the proposed scheme, one single SCM is seen as a one-dimensional address space and

shared among all the inner-loop memory references. In previous work, affine address

transformation has been used to map original data addresses to the corresponding address

in SCM [88] [89]. The transformed SCM address space is not compact, which will lead to

a waste of the limited SCM memory resource.

86

In the proposed management scheme, each vertex Vk in the reuse candidate graph will be

allocated a SCM buffer bufVk of size L. In order to hide the memory access latency, L has

to be larger than the estimated prefetch latency P, as discussed in Section 5.2. In this case

array access A[i] in a normalized loop nest will be mapped to an SCM address at SCM

[posA+i%L], where SCM represents the entire one-dimensional SCM memory space and

posA is the starting address of A‟s buffer.

Given reuse candidate graph G and a set of selected active reuse edges E, the SCM buffer

size L allocated for each reference Vk in G is set as follows:

 𝑚𝑖𝑛*𝑃 𝑙(,), | 𝑣 |+ ()

In Equation 1, |LVk | is the size of Vk‟s local region and Vk→Vm represents the longest

active outgoing edge of Vk. Equation 1 can be derived from the following two cases:

Case 1 : There is no active outgoing edge of Vk in E, namely l(Vk,Vm) equals 0. In this

case, Vk will not be reused by any other vertex, hence SCM is merely used as a prefetch

buffer of size P+1. However, if the amount of data needed to be brought into SCM,

namely |LVk |, is smaller than P+1, SCM buffer size is set to |LVk |.

Case 2 : There exist active outgoing edges of Vk in E, which means Vk will be reused later

by other vertices. If |LVk|≥P + 1 + l(Vk,Vm), data accessed at iteration _i of vertex Vk will

bestored in SCM until its next access at iteration ⃐ �⃐� (Vk,Vm) and be replaced with data

prefetched at iteration ⃐ �⃐� (Vk,Vm). Hence the required SCM buffer size equals P+1+|

�⃐� (Vk,Vm)|, namely P+1+l(Vk,Vm); Otherwise, only data in the local region of Vk need to

be prefetched into SCM, the allocated SCM buffer size equals |LVk |.

As shown in Figure 2-2(c), the reuse distance vector between fmap[i−4] and fmap[i] is

(4); therefore the SCM buffer size for fmap[i] equals P+5. Buffer size for fmap[i−4] is set

to 4 (assume P≥4) since the size of its local region equals 4.

87

5.2.2.3 Data Transfer Measurement

Theorem 5-1. Assume that Vi in reuse candidate graph G has no active incoming edges,

the number of reduced data transfers by activating reuse edge Vi→Vj with reuse distance

vector �⃐�(Vi,Vj) = (d1, d2, . . ., dn), equals ∏ (|𝑑 |)𝑛
 1

Figure 5-5. (a) Iteration space partition of reference u[i+1][j+1]. (b) Iteration space

partition of reference u[i+1][j].

Proof. Two conditions need to be satisfied to ensure that memory reference Vj at iteration

(t1, t2,...,tn) can reuse Vi at (d1,d2,...,dn) iterations before: (1) 0 ≤ tk ≤ Uk, ∀ k ∈ [1, n] (Ui is

the upperbound of the k
th

-level loop); (2) 0 ≤ tk −dk ≤ Uk, ∀ k ∈ [1, n]. The two

conditions are derived from the fact that both the first and second accesses fall into the

iteration space. The number of iterations satisfying (1) and (2) is the total number of

reuses that occur.

Theorem 5-1 can be used to calculate the number of remaining data transfers given a set

of active reuse edges. However, in Figure 2-3(b), suppose edge u[i+1][j+2]→u[i+1][j+1]

and edge u[i+1][j+1]→u[i+1][j] are both selected as active edges, Theorem 5-1 still

works for vertex u[i+1][j+1] since u[i+1][j+2] has no active incoming edge, while it is

not the case for vertex u[i+1][j]. The iteration subspace R, in which access to vertex

u[i+1][j +1] can reuse earlier u[i+1][j+2], is shown in Figure 2-4(a) with soft dots.

88

Vertex u[i+1][j] at iteration will reuse u[i+1][j+1] at iteration −1. If iteration

−1 locates in region R, u[i+1][j] needs to go upwards to visit vertex u[i+1][j+2] at

iteration −2. However, the allocated SCM buffer for vertex u[i+1][j+2] is only P+2

which only can hold data of one more iteration; hence the reuse attempt of u[i+1][j] will

fail in this case.

For a vertex with active incoming edges, the size of its local region equals the number of

required data transfers into SCM. Figure 2-4(b) shows the local and reuse region of

u[i+1][j] where reuse along edge u[i+1][j+1]→u[i+1][j] is enabled. In general, the local

and reuse region of vertex Vk can be derived as follows:

Theorem 5-2. Given reuse candidate graph G with iteration space U, assume the active

incoming edge set of vertex Vk is {Vi1→Vk, Vi2→Vk, ..., Vin→Vk}, Vk’s reuse region RVk =

{t| t∈U ∧ ((t−d(Vi1 ,Vk)∈LVi1 ∨ t−d(Vi2 ,Vk)∈LVi2 ... ∨ t−d(Vin ,Vk)∈LVin) }; Vk’s

local region LVk = U−RVk .

Proof. Vk can reuse the data from the local region of its inputs Vi within the corresponding

reuse distance, namely RVk,Vi = { t| t∈U∧(t−d(Vi ,Vk)∈LVi}. When consider all the

inputs {Vi1, Vi2, ..., Vin}, RVk equals the union of each region region {t|t∈U∧

((t−d(Vi1 ,Vk)∈LVi1∨t−d(Vi2 ,Vk)∈LVi2 ...∨t−d(Vin ,Vk)∈LVin)}.

Theorem 5-2 can be applied to vertices of a given reuse candidate graph in topological

order to identify their local and reuse regions, i.e., starting from the root vertex which has

no active incoming edge and its local region is the entire iteration space U.

5.2.2.4 Reuse-Aware SCM Prefetching Algorithm

In this section we present a reuse-aware SCM prefetching algorithm, namely RASP,

aimed at hiding memory access latency and minimizing data transfers from lower-level

memory. In general, a SCM buffer is allocated to each vertex in the reuse candidate graph,

either for pure prefetching or unified prefetching and reuse.

89

Algorithm 5-1 Reuse-Aware SCM Prefetching (RASP) Algorithm

1: U : iteration space of loop nest l

2: G : reuse candidate graph set constructed for loop nest l

3: E : set of activated edges in

4: S : maximal size of SCM storage

5: P : estimated prefetch latency

6:

7: For all the vertices v in G, set initial SCM buffer size to be P+1 with local region U

8: while 1 do

9: traverse all the unactivated edges in G and calculate their SCM utilization ratio

10: activate the edge (u,v) with largest positive utilization ratio under SCM size

constraint

11: add edge (u,v) to E

12: add all the edges (u,v’) to E if l(u, v’) ≤ l(u,v)

13: update SCM buffer size of u

14: update local/reuse region of v, {v’} and vertices reachable from v and { v’} along

edges in

15: if size of remains the same then

16: break;

17: end if

18: end while

To find the active reuse edge sets with minimum required data transfers under SCM size

constraint is NP-hard, as one can reduce a Knapsack problem to it. To balance the

runtime overhead, we propose a heuristic algorithm to approximate the optimal solution.

90

As shown in the RASP algorithm, edges in the reuse candidate graphs are activated one

by one under the maximal SCM size constraint. Here activate edge u→v means allocate a

SCM buffer for u which is large enough for the corresponding reuse to occur. Hence,

when edge u→v is activated, all the edges starting at u with a smaller required SCM size,

namely a smaller edge length, should also be activated accordingly, as shown in line 12.

The metric used to indicate SCM utilization efficiency is called SCM utilization ratio,

which equals the ratio of data transfer reduction to the buffer size increment by activating

a given reuse edge (u,v). The amount of reduced data transfers after activating edge (u,v)

equals the size difference of the local region of vertex v and all the vertices reachable

from v along selected active edges, which can be obtained with Theorem 5-2.

Lines 10-13 show that after an edge ending at vertex v has been activated, the local/reuse

region updates are applied to vertex v and the vertices reachable from v along edges in the

current active set E. The updates for v‟s downstream vertices are necessary since the

reduction of v‟s local region after activating edge (u, v) has further impact to v‟s

descendants.

Note that the worst-case time complexity of the RASP algorithm is O(n
4
), where n is the

number of vertices in the reuse candidate graph set.

After the finalization of the activated edge set, the prefetching scheme for each vertex can

be determined accordingly. v will be removed from the prefetching set for iterations in its

reuse region.

5.3 LL-SCM Management

5.3.1 Architecture Model

In modern heterogeneous multi-core systems, hardware accelerator cores usually sit

beyond multi-level SCMs. This multi-level SCM design helps to better tradeoff the size

and bandwidth differences between different memory levels. In typical embedded

processors, the L1 SCM normally consists of fast SRAM memories (or SPM) and

91

LL-SCM can be either SRAM or DRAM (e.g. FPGA‟s off-chip memory and GPU‟s

global memory). Figure 5-1 is one example of a two-level SCM-based architecture, in

which each hardware core has a private L1 SCM and a shared LL (or L2) SCM. The

general purpose core, which is treated as host processor, communicates with hardware

accelerator cores through PCIe bus connecting to the shared LL-SCM.

5.3.2 Application Execution Model

Applications are represented with a directed acyclic graph (DAG) G(V, E). Different

from the data flow graph depicted in Chapter 2, each node in V represents a task which is

executed either on the host processor or on one of the hardware accelerator cores. Here

we restrict each task to be executed on exactly one core. A directed edge u0→u1 in E

represents a precedence dependency between two tasks represents by the u0 and u1. Each

task is also associated with three parameters t_start, t_exec and core_type – t_start(v)

represents the scheduled starting time for task v; t_exec(v, k) represents the execution

time of task v on core k; core_type(v) represents the processor or accelerator core task v is

mapped to. Here we call the tasks mapped to host cores host tasks, and the tasks mapped

to accelerator cores accelerator tasks. With t_start and t_exec, the completion time t_end

for task v can be easily calculated by t_start(v) + t_exec(v, core_type(v)).

In the remaining discussion, we assume that the parallel execution is not allowed between

Figure 5-6. (a) Example of task graph. (b) Merged task graph.

92

host and accelerator cores, which is common in practice. Figure 5-6(a) shows an example

task graph with 5 task nodes, in which T0 is mapped to host core, and T1~T4 are mapped

to accelerator cores. When two tasks mapped to the same type of cores have overlapping

lifetime [t_start, t_end], a merged task node will be generated and replace the original

two nodes. As shown in Figure 5-6, node T1 and T2 are merged into one node in task

graph Figure 5-6(b) since they have overlapping lifetime on accelerator cores. This

guarantees the sequential execution order in the final task graph.

5.3.3 Task-Level-Reuse-Graph Based LL-SCM Management

5.3.3.1 Task-Level Reuse Graph (TLRG)

Given the merged task graph and pre-determined task mapping decisions, a data structure

called task-level reuse graph (TLRG) is created for each array accessed in the program.

Definition 5-3. A task level reuse graph for array d is a directed graph G(V,E) where vi

∈ V represents an accelerator task vi which accesses array d; the directed edge vi→vj (vi,

vj ∈ V) in E represents a RAR or RAW dependence on array d between neighboring

accelerator tasks vi and vj.

93

Figure 5-7(a) is an example of the merged task graph, in which each node is labeled with

its topological id. Figure 5-7(b) shows the corresponding data dependency graphs for

array A and B. As one can see, array A is accessed by tasks T0~T4 with RAW, WAR,

RAW and RAR dependencies associated with each edge. Similarly, array B is accessed

by tasks T2~T5 with RAW, WAR and RAW dependencies. By the definition of TLRG,

Figure 5-7(b) can be reduced to Figure 5-7(c), in which only accelerator task nodes and

read-after-read/write dependencies are maintained. The other set of dependency edges

(WAW and WAR) are removed in TLRG since there is no need to hold an array in

LL-SCM if it will be updated in its next access. One thing to note is that since array A is

not modified by host task T3, the original RAR dependency edge from T2 to T3 is

propagated to T4 in Figure 5-7 (c), namely the next accelerator task node reading A.

Figure 5-7. (a) Example task graph. (b) Task level data dependency graphs for array A

and B. (c) Task level reuse graphs for array A and B.

94

5.3.3.2 Problem Statement

When executing accelerator task k, there are two sets of data or array items Dk residing in

LL-SCM: (i) arrays which are accessed by task k, denoted by Dk
1
; (ii) arrays which will

be read by another accelerator task executed later, denoted by Dk
2
. Here we assume for

each accelerator task, Dk
1
 can always fits in LL-SCM. In general, program

transformations (e.g. loop distribution or tiling) can be applied to partition the task node

into smaller sub-tasks, which is beyond the scope of this discussion.

If we look at the sources of host-accelerator communication, the first one is due to the

limited LL-SCM size. There is no guarantee that the second set of arrays Dk
2
 can be

completely kept in LL-SCM until its next reuse. If Dk exceeds the LL-SCM size limit,

PCIe-based data transfers will be incurred to migrate a subset of Dk to host memory; the

second source of host-accelerator data exchange is the existence of RAW dependency

between accelerator and host tasks (e.g. an array read by an accelerator task is

overwritten by an earlier host task). In this case, explicit data transfers between host

memory and LL-SCM are needed in order to keep memory coherency between the two

cores, which is an unavoidable overhead associated with the a specific task mapping

result.

Theoreom 5-1. Given a task graph G(V, E) associated with a task mapping decision, the

amount of host-accelerator data transfers incurred by true dependency between host and

accelerator tasks remains the same when LL-SCM management scheme changes.

Proof is obvious. Since the task mapping has been fixed, no matter how LL-SCM

management changes, RAW dependency must be satisfied. Therefore the data migration

due to RAW dependencies cannot be eliminated or saved. In other words, only the second

set Dk
2
 can be considered for communication overhead reduction.

Based on the discussion above, the LL-SCM management problem can be formulated as

follows:

95

Problem 5-2. Given task level reuse graphs {TLRGi} for a set of arrays {di} and the size

constraint for LL-SCM, construct data transfer scheme for each array di such that: (1)

when di is accessed by an accelerator task, it is in LL-SCM. (2) the total amount of data

stored in LL-SCM at each task does not exceed the LL-SCM size constraint. (3) the total

amount of data exchange between LL-SCM and host memory is minimized.

5.3.3.3 Mathematical Formulation

For each array i at task node vj in TLRGi, we introduce two variables mii,vj and moi,vj. mii,vj

represents the portion of data which are moved from host memory to LL-SCM for array i

at task vj. Similarly, moi,vj represents the portion of array i which are moved from

LL-SCM to host memory at task vj. The total amount of data moved in and out at task vj

can be formulated as ∑ (𝑚𝑖𝑖,𝑣
 𝑚𝑜𝑖,𝑣

) 𝑠𝑖𝑧𝑒𝑖𝑖∈ , where 𝑠𝑖𝑧𝑒𝑖 represents the size of

array I, and D represents the entire set of arrays accessed in the program. Below is the

mathematical programming formulation for the data transfer minimization problem:

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 ∑ ∑ (𝑚𝑖𝑖,𝑣𝑗
 𝑚𝑜𝑖,𝑣𝑗

) 𝑠𝑖𝑧𝑒𝑖

𝑣 ∈𝑇𝐿𝑅𝐺𝑖𝑖∈

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

𝑚𝑖𝑖,𝑣
≥ , 𝑖 ∈ , 𝑣 ∈ 𝑖 ()

𝑚𝑜𝑖,𝑣
≥ , 𝑖 ∈ , 𝑣 ∈ 𝑖 ()

𝑚𝑜𝑖,𝑣
 𝑚𝑖𝑖,𝑣

 , 𝑖 ∈ , 𝑣 𝑣 1 ∈ 𝑖 ()

 ∑ 𝑠𝑖𝑧𝑒𝑖

𝑖∈ 𝑘

 ∑ (𝑚𝑜𝑖,𝑣𝑗
) 𝑠𝑖𝑧𝑒𝑖 ≤ ,

𝑖∈ 𝑘
2

 𝑣𝑗 𝑣𝑗 ∈ 𝑖 𝑛𝑑 𝑘 ∈ (𝑣
𝑗
, 𝑣𝑗) ()

𝑚𝑖𝑖,𝑣
 , 𝑖𝑓 𝑣 ∈ 𝑖 𝑠 𝑛𝑜 𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔 𝑒𝑑𝑔𝑒 ()

𝑚𝑖𝑖,𝑣
 , 𝑖𝑓 𝑣 1 𝑣 ∈ 𝑖 𝑛𝑑 𝑣 𝑣 1 ()

𝑚𝑜𝑖,𝑣
 , 𝑖𝑓 𝑣 ∈ 𝑖 𝑠 𝑛𝑜 𝑜𝑢𝑡𝑔𝑜𝑖𝑛𝑔 𝑒𝑑𝑔𝑒,

96

 𝑜 𝑖𝑓 𝑣 𝑣 1 ∈ 𝑖 𝑛𝑑 𝑣 1 𝑣 ()

The first two constraints impose non-negativity of the amount of data transfers at each

task. The third constraint imposes integrity of data accessed at a specific task, which can

be utilized to further simplify the LP formulation by merging mi and mo variables along

TLRG each edge into one. The fourth constraint imposes size constraint at each task k.

Theorem 5-3. Given array set D and the corresponding task level reuse graph set

{TLRGi(Vi, Ei)}, there exists one optimal solution for Problem 5-2, in which for each

array di, the host-accelerator data exchange only occurs at task node v∈Vi.

Proof: Assuming in there exists one optimal data transfer solution of Problem 5-2, in

which host-accelerator data transfers occur for array di at a non-TLRG task node k. We

use transk. to denote the data transfer at task node k. There are three possible scenarios:

(1) k < v0, namely the data transfer happens before the first accelerator tasks starts. In this

case, we can find an equivalent solution by delaying transk to transv0.

(2) vj < k <vj+1, where 0 <= j < |Vi|-1, namely the data transfer happens between two task

level reuse nodes vj and vj+1. If transk is host-to-accelerator data transfer, we can postpone

it to node vj+1; otherwise, transk can be moved to task node vj. In both cases, the data

transfer incurred by the transformed scheme is equivalent to the original one.

(3) k > v|Vi|-1, namely the data transfer happens after the last accelerator tasks ends. In this

case, we can find an equivalent solution by making transk happen immediately after task

v|Vi|-1 completes.

From Theorem 5-3 we can see that the host-to-accelerator and accelerator-to-host data

transfer of the same array at two neighboring TLRG nodes always have the same amount,

as depicted in the third set of constraints. On the other hand, by utilizing the concept of

TLRG, the problem size of the LP formulation can be significantly reduced comparing to

previous work [102] in which data movement is enabled at every task.

The fourth set of constraints can be explained by Figure 5-7. After executing task T2, the

97

amount of array A storing in LL-SCM equals (𝑚𝑜 ,2) 𝑠𝑖𝑧𝑒 until its next reuse at

task T4. Therefore during this period the LL-SCM space occupied by array A remains to

be (𝑚𝑜 ,2) 𝑠𝑖𝑧𝑒 . In the fourth set of constraints, the first term calculates the

memory space occupied by the arrays accessed at task k. The second term represents the

set of arrays stored in LL-SCM for future reuse.

In addition to TLRG, the problem size of the LP formulation can be further reduced by

removing variables created for the „boundary‟ nodes, as shown in (5)(7) and

consecutively-executed task nodes in TLRG in (6)(7). The associated mi and mo variables

for those nodes can be eliminated safely, since the data transfer behavior is

pre-determined and it has no influence on the solution optimality.

Constraint (5) means if task vj is the first accelerator access of the most up-to-date array i,

array i need to be migrated from host memory to LL-SCM. Similar case is for (7). If two

consecutive tasks are both mapped to accelerator cores and access the same array, no

host-accelerator migration of that array will happen between these two tasks, as depicted

in (6) and (7).

5.3.3.4 Rounding and Optimality Discussion

Note that the amount of optimal data transfer obtained for the LP formulation in 5.3.3.3

may not be an integer value. For example, if at a specific task the value of move-out

variable (mo) for an array of size 100 equals 0.881, the optimal data movement scheme

cannot be strictly followed. It is impossible to transfer a non-integer amount in practice.

To generate a practical solution, after an optimal solution is obtained for the LP

formulation, rounding is conducted on the corresponding data transfer amount – For array

i, the amount of outgoing data transfers at task node vj in TLRGi is rounded to ⌈𝑚𝑜𝑖,𝑣

𝑠𝑖𝑧𝑒𝑖⌉, which guarantees the size constraint of LL-SCM will not be violated at node vj.

Enforced by constraint (3), the same amount of incoming data transfers will be incurred

98

at node vj+1.

Theorem 5-4. Assume the amount of data transfers in the rounding solution

equals 𝑑𝑟𝑜𝑢𝑛𝑑𝑖𝑛 , and the optimal solution equals 𝑑𝑜𝑝𝑡, we have 𝑑𝑟𝑜𝑢𝑛𝑑𝑖𝑛 ≤ 𝑑𝑜𝑝𝑡

∑ | 𝑇𝐿𝑅𝐺𝑖
|𝑖∈ , where | 𝑇𝐿𝑅𝐺𝑖

| is the number of nodes in array i’s task level reuse graph.

Proof: ∑ | 𝑇𝐿𝑅𝐺𝑖
|𝑖∈ equals the maximal possible amount of additional data

transferred incurred by rounding.

Theorem 5-4 demonstrates the optimality of the rounded LP solution. When the number

of arrays accessed is not large, which is usually the case in real time applications, the

rounded LP solution is fairly close to the optimal solution.

5.4 Experiment Results

5.4.1 Experiment Setup

We evaluate the proposed L1-SCM management scheme on a simulation platform built

upon Simics [90] with GEMS [91]. Omega library [22] is used for memory reuse analysis.

The energy results are obtained with HP McPAT tool [92]. Table 5-1 shows the

architecture parameters used in our model.

The first-level memory is partitioned into programmer-transparent cache and

compiler-managed SCM memory space at the ratio of 1:3, 2:2 or 3:1, which is close to

Fermi‟s 3:1 and 1:3 configuration points. An in-flight counter is added for each SCM

block to check whether prefetching has finished or not. This can ensure the correctness of

program functionality.

Table 5-1. Architecture parameters

Processor Core Sun UltraSPARC III Cu processor core

L1 SCM 32KB, 64 byte block, 2 cycle access latency

L2 SCM 512MB, 64 byte block, 20 cycle access latency

99

Main Memory 4GB, 320 cycle access latency

The proposed L1-SCM management scheme is compared with three reference points in

our experiments. The first reference point is cache prefetching with the entire L1 memory

allocated to conventional cache [93]. The second reference point is a hybrid memory

system in which SCM is used as a prefetch buffer, following the prefetch-only scheme

discussed in Section 5.1. The third reference point is the DRDU generated SCM

management scheme [72].

The LL-SCM management is compared with two reference points in our experiments.

The first reference point is the heuristic algorithm proposed in [101] which generates

local optimal solution for each task using dynamic programming. A greedy algorithm is

developed to create the global LL-SCM management scheme. The second reference point

is an ILP-based approach proposed in [102], which evaluates all the possible data

movement decisions at each task. Neither of these two works supports fractional data

movement.

5.4.2 Comparison Results

5.4.2.1 Comparison on L1-SCM management

Performance. Figure 5-8 shows the overall performance comparison results for the eight

benchmark kernels, where the four bars correspond to the cache prefetching scheme,

SCM prefetch-only scheme, DRDU and RASP scheme. As shown in the figure, RASP

exhibits speedup ranging from 9.6% to 44.3% in six out of eight applications, compared

to the cache-only scheme. In hmmer a slight performance degradation occurs. The reason

is that the access pattern in hmmer has strong data locality which can be captured well by

conventional cache architecture. In addition, cache pollution is less likely to happen here

since the next access will occur soon. In this case the extra instruction overhead of

calculating the SCM address cannot be offset by the small amount of reduced data

transfers.

100

When compared to the SCM prefetch-only scheme, mcf and lbm are two special cases in

which data access patterns are either random or streaming. In this case the generated

SCM prefetch-only scheme is exactly the same as RASP. This also explains the small

performance difference, when compared to DRDU in these two applications. For most of

the remaining applications, the performance improvement over the SCM prefetch-only

scheme is less than that over cache, since cache pollution is avoided in the SCM

prefetching scheme.

On average RASP has achieved a 15.9%, 12.9% and 18.5% performance improvement

over cache prefetching, prefetch-only SCM management and DRDU results. The

corresponding maximal gains are 44.3%, 39.3% and 32.8%, respectively.

Memory Access Latency. The comparison of normalized memory access latency is

shown in Figure 5-9. We can see that the memory access latency reduction in RASP is

larger than the performance improvement for most of the test cases, when compared to

cache prefetch and the SCM prefetch-only scheme. This can be explained by the

instruction overhead introduced by explicit SCM management. In summary, RASP has

shown an average 31.6% memory access latency reduction over the cache-only case, a

26.4% reduction over the SCM prefetch-only case and an average 19.5% reduction over

DRDU result. The corresponding maximal gains are 59.6%, 46.2% and 50.3%,

respectively.

Figure 5-8. Comparison of execution time.

101

Figure 5-9. Comparison of memory access latency.

Figure 5-10. Comparison of energy consumption.

Energy Consumption. Figure 5-10 shows the energy consumption comparison among

the four schemes. Since cache can take advantage of the existing data locality in the

program and save further access to lower-level memory, a 6% energy decrease of cache

prefetching over the SCM prefetch-only scheme is observed.

On the other hand, up to 44.7%, 42.6% and 27.7% energy gains are achieved by RASP

over the other three schemes. The reasons include the intrinsic less energy consumption

for SCM access as well as the reduced number of accesses to lower-level memory by

efficiently utilizing the reuse pattern with SCM. The average energy consumption

reduction of RASP is 22% and 31.2% over cache and the SCM prefetch-only case,

respectively. The average 10% energy reduction over DRDU comes from the improved

execution time, as well as the reduced SCM data transfers.

102

5.4.2.2 Comparison on LL-SCM management

The proposed LL-SCM management scheme is evaluated on a 3-phase medical imaging

pipeline and a 11-phase in-house neuron network training benchmark. The medical

imaging pipeline consists of rician-denoise, registration followed by segmentation. In

total there are 10 tasks with 11 arrays involved, including two accelerator tasks in denoise,

three accelerator tasks in registration, two host tasks and three accelerator tasks in

segmentation. The neuron network training benchmark contains 10 accelerator tasks and

1 host task with 4 arrays as optimization candidates.

Table 5-2. Comparison on problem size.

 Medical image pipeline Neuron network training

#variables #constraints #variables #constraints

ILP formulation [102] 30 106 40 148

LP formulation 6 13 6 16

Problem size. In the ILP-based approach [102], three 0-1 variables are created for each

array at every task phase, indicating whether an array is moved into LL-SCM before the

current task, whether an array is evicted from LL-SCM after the current task, and whether

an array resides in LL-SCM at current task, respectively. In total 30 binary variables are

created for the medical pipeline and 40 variables are created for neuron network training.

On the other hand, by utilizing the concept of TLRG, the total number of optimization

variables in the proposed LP formulation is 6 in both cases, which show a 5X and a 6.8X

reduction from [102], respectively. Table 5-2 also presents the number of constraints in

the problem formulation, as we can see, the proposed LP formulation has a 6X and a

9.5X reduction comparing to [102], respectively.

103

Figure 5-11. Comparison of host-accelerator communication.

Optimality. To illustrate the optimality of the proposed LP solution, we compare the

amount of host-accelerator data transfer with [102] (ILP, no partial data transfer support)

as well as an optimal ILP-based formulation considering partial data transfer. As shown

in Figure 5-11, we observed a 20% and 30.2% data transfer reduction over [102] in the

target imaging pipeline and neuron network training, respectively. The source of this

reduction comes from the support of partial data transfer in the proposed approach, which

can utilize the LL-SCM memory space in a more efficient way. In addition, the gap

induced by rounding are less than 0.1% in both cases comparing to an optimal ILP

solution, which further demonstrate the optimality of the proposed LP approach when the

application TLRG graph is small (as shown in Table 5-2).

5.4.3 Discussion of L1-SCM Utilization Efficiency

Figure 5-12 shows the comparison between RASP and DRDU in terms of SCM buffer

size and the number of data transfers from lower-level memory. We only include

applications with regular reuse patterns in this comparison. The same SCM size

constraint is applied to the two approaches and the prefetching scheme in RASP is

disabled for fairness. In general, we can see that the number of data transfers from

0

0.2

0.4

0.6

0.8

1

1.2

medical imaging pipeline neuron network training

N
o

rm
al

iz
ed

 a
m

o
u

n
t

o
f

d
at

a
tr

an
sf

er

ILP[102] ILP-optimal LP-rounding

104

lower-level memory of RASP is 7% smaller over the DRDU result and 41.2% smaller

over the original program. The buffer size of RASP is 22.7% smaller than the DRDU

buffer size. The smaller required SCM size in RASP scheme implies a higher SCM

storage utilization ratio, which also provides more space to harmonize with SCM

management techniques working on other program elements, e.g. [94].

 Figure 5-12. Comparison of buffer size and SCM data transfers.

5.5 Conclusions and Future Work

In this chapter we introduce a reuse-aware SCM prefetching scheme to efficiently utilize

SPM memory space and a task-level-reuse-graph based LL-SCM data movement scheme

to minimize the amount of data transfers between heterogeneous computing cores and

host processors. The proposed L1-SCM prefetch scheme shows a significant

performance/power improvement against previous SCM management techniques and an

average 25% reduction of host-accelerator data transfers is observed over previous

LL-SCM management work, which demonstrates the impact of reuse patterns on

accelerator memory management efficiency. Note that the proposed schemes can be

combined with traditional techniques of data locality optimization, i.e., loop interchange

or tiling, to further improve the usage of SCM. The co-optimization effectiveness will be

105

investigated in our future work.

106

Chapter 6. Conclusion Remarks
In this research, we use customized vector units, programmable accelerators and hybrid

memory to showcase the compilation for computing or memory components in a

heterogeneous system. The experiments conducted on these platforms also demonstrate

the computing power of multi-core heterogeneous architectures. We believe the

next-generation compute engines will incorporate more heterogeneous processor cores or

accelerators, which will make virtualization increasingly important.

Beyond component optimization, the next step ahead is system-level optimization, which

is not just a simple addition of each module. For example, communication between

different modules is a crucial design factor which has restricted the efficient utilization of

the ample on-chip computing resources (i.e., accelerators). Note that system-level

optimizations not only include compiler transformations, but also involve architecture

designs and even algorithm design. This thesis presents a few building blocks for the

system-level compiler optimization.

As one can see from the thesis, the introduction of heterogeneity and customization opens

a door to improving energy/performance efficiency in SoC designs. A further step will be

leveraging these two features in enterprise data centers, i.e., enabling more

power-efficient management of enterprise workloads. Today‟s data centers are already

equipped with a wide collection of heterogeneous technologies, i.e. operating systems,

storage, hardware/tools from multiple vendors, applications with different business

requirements. The scale of modern data centers also increases the complexity of

management. We believe that it brings not only more challenges but also more interesting

research topics to investigate along this path.

107

References

[1] J. Cong, Karthik Gururaj, Hui Huang, Chunyue Liu, Glenn Reinman and Yi Zou, "An

Energy-Efficient Adaptive Hybrid Cache," in the Proceedings of International

Symposium on Low Power Electronics and Design (ISLPED 2011), pp. 67-72, August

2011.

[2] J. Cong, V. Sarkar, G. Reinman and A. Bui. Customizable Domain-Specific

Computing. UCLA Computer Science Department Technical Report TR# 100018,

Los Angeles, California, 2010.

[3] Int‟l technology roadmap for semiconductors, http://www.itrs.net/Links/2007ITRS/

Home2007.htm.

[4] R. Kumar, K. Farkas, N. Jouppi, P. Ranganathan and D. Tullsen. Single-ISA

heterogeneous multi-core architectures: the potential for processor power reduction.

In. Proceedings of the International Symposium on Microarchitecture (MICRO),

pp.81-92, 2003.

[5] B. Lee and D. Brooks. Efficiency trends and limits from comprehensive

microarchitectural adaptivity. In. Proceedings of the International Conference on

Architectural Support for Programming Languages and Operating Systems

(ASPLOS), pp.36-47, 2008.

[6] J. Cong, Y. Fan, G. Han, W. Jiang and Z. Zhang. Platform-based behavior-level and

system-level synthesis. In Proceedings of the IEEE International SOC Conference, pp.

199-202, 2006.

[7] K. Atasu, L. Pozzi, and P. Ienne, Automatic application-specific instruction-set

extensions under micro-architectural constraints. In Proc. DAC, pp. 256-261, 2003.

http://www.itrs.net/Links/2007ITRS/%20Home2007.htm
http://www.itrs.net/Links/2007ITRS/%20Home2007.htm

108

[8] L. Bachega, S. Chatterjee, K. A. Dockserz, J. A. Gunnels, M. Gupta, F. G. Gustavson,

C. A. Lapkowskix, G. K. Liu, M. P. Mendell, C. D. Wait, and T. J. C. Ward, A

High-performance SIMD floating point unit for BlueGene/L: architecture,

compilation, and algorithm design. In Proc. PACT, pp. 85–96, 2004.

[9] R. Barik, J. Zhao and V. Sarkar, Efficient selection of vector instructions using

dynamic programming. In Proc. MICRO, pp. 201-212, 2010.

[10] C. Bienia, S. Kumar, J. P. Singh and K. Li. The PARSEC Benchmark Suite:

Characterization and Architectural Implications, In Proc. PACT, 2008.

[11] A. J. C. Bik, M. Girkar, P.M. Grey and X. Tian, Efficient exploitation of

parallelism on Pentium III and Pentium 4 processor-based systems. Intel Technology,

2001.

[12] P. Brisk, A. Kaplan and M. Sarrafzadeh, Area-efficient instruction set synthesis

for reconfigurable system-on-chip designs. In Proc. DAC, 2004.

[13] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and K. Skadron.

Rodinia: A Benchmark Suite for Heterogeneous Computing. In Proc. IISWC, pp.

44-54, 2009.

[14] S. Che, J. W. Sheaffer, M. Boyer, L. G. Szafaryn, L. Wang, and K.Skadron.A

Characterization of the Rodinia Benchmark Suite with Comparison to Contemporary

CMP Workloads.In Proc. IISWC, 2010.

[15] M.O. Cheema and O. Hammami, Customized SIMD unit synthesis for system on

programmable chip – a foundation for HW/SW partitioning with vectorization. In

Proc. ASP-DAC, pp. 54-60, 2006.

[16] V.A. Chouliaras, K. Koutsomyti, T. Jacobs, S. Parr, D.J. Mulvaney and R.J.

Thomson, SystemC-defined SIMD instructions for high performance SoC

architectures. In Proc. ICECS, pp. 1-4, 2006.

109

[17] J. Cong, Y. Fan, G. Han, and Z. Zhang, Application-specific instruction

generation for configurable processor architectures. In Proc. FPGA, pp. 183-189,

2004.

[18] J. Cong and W. Jiang, Pattern-based Behavior Synthesis for FPGA Resource

Reduction, In Proc. FPGA, pp. 107-116, 2008.

[19] J. Cong, B. Liu and Z. Zhang. Scheduling with soft constraints. In Proc. ICCAD,

pp. 47-54, 2009.

[20] J. Cong, B. Liu, S. Neuendor_er, J. Noguera, K. Vissers, and Z. Zhang. High-level

synthesis for FPGAs: from prototyping to deployment. In IEEE TCAD,

30(4):473-491, 2011.

[21] J. Cong, G. Reinman, A. Bui and V. Sarkar, Customizable domain-specific

computing, In IEEE Design & Test, vol. 28, pp. 6-15, 2011.

[22] J. Cong, M. A. Ghodrat, M. Gill, C. Liu, G. Reinman and Yi Zou, AXR-CMP:

Architecture Support in Accelerator-Rich CMPs, In SAW-2, 2011.

[23] K. Diefendorff, P.K. Dubey, R. Hochsprung, and H. Scales. Altivec extension to

powerpc accelerates media processing. In IEEE Micro, pp. 85–95, 2000.

[24] A.E. Eichenberger, P. Wu, and K. O‟Brien, Vectorization for SIMD architectures

with alignment constraints. In Proc. PLDI, pp. 82–93, 2004.

[25] B. Fischer and J. Modersitzki, Curvature based image registration, J. Math.

Imaging Vis., vol. 18, no. 1, pp. 81–85, 2003.

[26] F. Franchetti and M. PÄuschel, A SIMD Vectorizing compiler for digital signal

processing algorithms," in Proc. IPDPS, pp. 20-26, 2002.

[27] T. Henretty, K. Stock, L.N. Pouchet, F. Franchetti, J. Ramanujam and P.

Sadayappan, Data layout transformation for stencil computations on short-vector

SIMD architecture. In Proc. CC, pp. 225-245, 2011.

110

[28] A.J. Hoffman and J. B. Kruskal. Integral boundary points of convex polyhedra. In

H. W. Kuhn and A. W. Tucker, editors, Linear Inequalities and Related Systems, pp.

22–46. Princeton University Press, 1956.

[29] K. Kennedy and John R. Allen. Optimizing compilers for modern architectures: a

dependence-based approach. Morgan Kaufmann Publishers Inc., San Francisco, CA,

USA, 2002.

[30] C.E. Kozyrakis and D.A. Patterson, Scalable vector processors for embedded

systems. IEEE Micro, pp. 36–45, 2003.

[31] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hogberg,

F. Larsson, A. Moestedt, and B. Werner, Simics: A full system simulation platform.

In IEEE Computer, vol. 35, pp. 50-58, 2002.

[32] M. Martin, D. Sorin, B. Beckmann, M. Marty, M. Xu, A. Alameldeen, K. Moore,

M. Hill and D. Wood, Multifacet's general execution-driven multiprocessor simulator

(GEMS) toolset, Computer Architecture News, pp. 92-99, Sept. 2005.

[33] D. Naishlos, M. Biberstein, S. Ben-David, and A. Zaks, Vectorizing for a SIMD

DSP architecture. In Proc. CASES, pp. 2–11, 2003.

[34] D. Nuzman, I. Rosen, and A. Zaks. Auto-vectorization of interleaved data for

SIMD. In Proc. PLDI, pp. 132–143, 2006.

[35] S. Oberman et al, AMD 3DNow! technology and the K6-2 microprocessor. In

HOTCHIPS10, 1998.

[36] V. Raghunathan, A. Raghunathan, M.B. Srivastava and M.D. Ercegovac,

High-level synthesis with SIMD units. In Proc. VLSI Design. pp. 407-413, 2002.

[37] S.C. Woo, M.i Ohara, E. Torrie, J.P. Singh, and A. Gupta.The SPLASH-2

Programs: Characterization and Methodological Considerations. In ISCA, pp. 24-36,

1995.

[38] P. Yu and T. Mitra, Scalable custom instructions identification for instruction-set

extensible processors, in Proc. ICCS, pp. 69-78, 2004.

http://www.cs.wisc.edu/multifacet/papers/can05_gems.pdf
http://www.cs.wisc.edu/multifacet/papers/can05_gems.pdf

111

[39] Convey system, http://www.conveycomputer.com/index. html

[40] Intel AVX, http://software.intel.com/en-us/avx/

[41] ITK software guide, http://www.itk.org/ItkSoftwareGuide .pdf

[42] LLVM Compiler Infrastructure, http://llvm.org/

[43] Omega library , http://www.cs.umd.edu/projects/omega/

[44] Parboil Benchmark suite, http://impact.chrc.illinois.edu/pa rboil.php.

[45] Synopsys design compiler. http://www.synopsys.com

[46] CACTI: http://www.hpl.hp.com/research/cacti/

[47] AutoPilot : http://www.xilinx.com/tools/autoesl.htm

[48] Asanovic K., Beck J., Irissou B., Kingsbury B., Morgan N., Wawrzynek J., "The

T0 Vector Microprocessor" In Proceedings HOT Chips VII, Stanford, CA, August

1995.

[49] R. Espasa, F. Ardanaz, J. Emer, S. Felix, J. Gago, R. Gramunt, I. Hernandez, T.

Juan, G. Lowney, M. Mattina, and A. Seznec. Tarantula: A vector extension to the

alpha architecture. In International Symposium on Computer Architecture, May 2002.

[50] Christos Kozyrakis and David Patterson., "Scalable Vector Processors for

Embedded Systems," IEEE MICRO, vol. 23, no. 6, pages 36-45, November 2003.

[51] Convey computer, http://conveycomputer.com.

[52] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey, S. Junkins,

A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski, T. Juan, and P. Hanrahan,

“Larrabee: A Many-Core x86 Architecture for Visual Computing,” in IEEE.Micro,

vol. 29, no. 1, 2009, pp. 10-21.

[53] Nallatech development systems, http://www.nallatech.com.

[54] N. Clark, J. Blome, M. Chu, S. Mahlke, S. Biles, and K. Flautner, “An

Architecture Framework for Transparent Instruction Set Customization in Embedded

Processors,” in Proc. ISCA, 2005.

http://conveycomputer.com/
http://www.nallatech.com/

112

[55] A. Hormati, N. Clark, and S. Mahlke, “Exploiting Narrow Accelerators with

Data-Centric Subgraph Mapping,” in Proc. CGO, 2007, pp. 341-353.

[56] J. Cong, M. Ghodrat, M. Gill, B. Grigorian, and G. Reinman, “Architecture

Support for Accelerator-Rich CMPs,” in Proc. DAC, 2012.

[57] J. Cong, M. Ghodrat, M. Gill, C. Liu, G. Reinman, and Y. Zou, “Architecture

Support for Accelerator-Rich CMPs,” in 2nd Workshop on SoC Architecture,

Accelerators and Workloads, 2011.

[58] J. Cong, Y. Fan, G. Han, and Z. Zhang, “Application-specific instruction

generation for configurable processor architectures,” in Proc. FPGA, 2004, pp.

183-189.

[59] K. Atasu, L. Pozzi, and P. Ienne, “Automatic application-specific instruction-set

extensions under microarchitectural constraints,” in Proc. DAC. New York, NY, USA:

ACM Press, 2003, pp. 256-261.

[60] N. Clark, A. Hormati, S. Mahlke, and S. Yehia, “Scalable Subgraph Mapping for

Acyclic Computation Accelerators,” in Proc. CASES, 2006, pp. 147-157.

[61] S. Hu, M. Lipasti, and J. Smith, “An Approach for Implementing Efficient

Superscalar CISC Processors,” in Proc. HPCA, 2006, pp. 213-226.

[62] L. Pozzi, K. Atasu, and P. Ienne, “Exact and Approximate Algorithm for the

Extension of Embedded Processor Instruction Sets,” in Proc. TCAD, vol. 25, no. 7,

2006, pp. 1209-1229.

[63] C. Alippi, W. Fornaciari, L. Pozzi, and M. Sami, “A DAG-Based Design

Approach for Reconfigurable VLSI Processors,” in Proc. DATE, 1999, pp. 778-779.

[64] C. Galuzzi, K. Bertels, and S. Vassiliadis, “A Linear Complexity Algorithm for

the Generation of Multiple Input Single Output Instructions of Variable Size,” in Proc.

SAMOS, 2007, pp. 283-293.

113

[65] C. Galuzzi, E. Panainte, Y. Yankova, K. Bertels, and S. Vassiliadis, “Automatic

Selection of Application-Specific Instruction-Set Extensions,” in Proc. CODES+ISSS,

2006.

[66] C. Galuzzi, D. Theodoropoulos, and K. Bertels, “A Clustering Method for the

Identification of Convex Disconnected Multiple Input Multiple Output Instructions,”

in Proc. SAMOS, 2008, pp. 65-73.

[67] J. Cong and W. Jiang, “Pattern-based behavior synthesis for FPGA resource

reduction,” in FPGA. New York, NY, USA: ACM, 2008, pp. 107-116.

[68] P. Bonzini and L. Pozzi, “Polynomial-time subgraph enumeration for automated

instruction set extension,” in DATE. New York, NY, USA: ACM Press, 2007, pp.

1331-1336.

[69] P. Yu and T. Mitra, “Disjoint Pattern Enumeration for Custom Intruction

Identification,” in Proc. FPL, 2007, pp. 273-278.

[70] SPEC CPU2006, http://pec.it.miami.edu/cpu2006/.

[71] S. Che, M. Boyer, J. Meng, D. Tarjan, J. Sheaffer, S. Lee, and K. Skadron,

“Rodinia: A Benchmark Suite for Heterogeneous Computing,” in Proc. IISWC, 2009,

pp. 44-54.

[72] I. Issenin, E. Brockmeyer, M. Miranda, and N. Dutt, “DRDU: A Data Reuse

Analysis Technique for Efficient Scratch-Pad Memory Management,” in ACM Trans.

Des. Autom. Electron. Syst., 2007.

[73] T. Chen, T. Zhang, Z. Sura, and M. Tallada, “Prefetching Irregular References for

Software Cache on Cell,” in Proc. CGO, 2008, pp. 155–164.

[74] R. Banakar, S. Steinke, B. Lee, M. Balakrishnan, and P. Marwedel, “Scratchpad

Memory: A Design Alternative for Cache On-chip Memory in Embedded Systems,”

in Proc. CODES, 2002, pp. 73–78.

[75] J. Sjodin and C. Platen, “Storage Allocation for Embedded Processors,” in Proc.

CASES, 2001, pp. 15–23.

http://pec.it.miami.edu/cpu2006/

114

[76] O. Avissar, R.Barua, and D.Stewart, “An Optimal Memory Allocation Scheme for

Scratchpad-based Embedded Systems,” in ACM TRANS. Embed. Comput. Syst.,

2002, pp. 6–26.

[77] M. Verma, S.Steinke, and P. Marwedel, “Data Partitioning for Maximal

Scratchpad Usage,” in Proc. ASPDAC, 2003, pp. 77–83.

[78] M. Kandemir, J. Ramanujam, J. Irwin, N. Vijaykrishnan, I. Kadayif, and A.

Parikh, “Dynamic Management of Scratchpad Memory Space,” in Proc. DAC, 2001,

pp. 690–695.

[79] S. Udayakumaran and R. Barua, “Compiler-decided Dynamic Memory Allocation

for Scratchpad Based Embedded Systems,” in Proc. CASES, 2003, pp. 276–286.

[80] L. Li, H. Feng, and J. Xue, “Compiler-directed Scratchpad Memory Management

via Graph Coloring,” in ACM Trans. Archit. Code Optim., 2009, pp. 1–17.

[81] T. Yemliha, S. Srikantaiah, M. Kandemir, and O. Ozturk, “SPM Management

Using Markov Chain Based Data Access Prediction,” in Proc. ICCAD, 2008, pp.

565–569.

[82] A. Beric, R. Sethuraman, H. Peters, G. Veldman, J. Meerbergen, and G. Haan,

“Streaming Scratchpad Memory Organization for Video Applications,” in Proc.

Circuits, Signals and Systems, 2004, pp. 427–432.

[83] T. Mowry, M. Lam, and A. Gupta, “Design and Evaluation of a Compiler

Algorithm for Prefetching,” in Proc. ASPLOS, 1992, pp. 62–73.

[84] S. Vanderwiel and D. Lilja, “Data Prefetch Mechanisms,” in ACM Computing

Surveys, 2000, pp. 174–199.

[85] R. M. Rabbah, H. Sandanagobalane, M. Ekapanyapong, and W. Wong, “Compiler

Orchestrated Prefetching via Speculation and Predication,” in Proc. ASPLOS, 2004,

pp. 189–198.

[86] T. C. Mowry, “Tolerating latency through software-controlled data prefetching,”

Ph.D. dissertation, Stanford University, 1994.

115

[87] K. Kennedy and J. Allen, Optimizing Compilers for Modern Architectures: A

Dependence-based Approach. Morgan Kaufmann Publishers Inc., 2002.

[88] M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramanujam, A. Bountev,

and P. Sadayappan, “Automatic Data Movement and Computation Mapping for

Multi-level Parallel Architectures with Explicitly Managed Memories,” in Proc.

PPoPP, 2008, pp. 1–10.

[89] M. Kandemir and A. Choudhary, “Compiler-Directed Scratchpad Memory

Hierarchy Design and Management,” in Proc. DAC, 2002, pp. 628–633.

[90] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hogberg,

F. Larsson, A. Moestedt, and B. Werner, “Simics: A full system simulation platform,”

in IEEE Computer, 2002, pp. 50–58.

[91] M. Martin, D. Sorin, B. Beckmann, M. Marty, M. Xu, A. Alameldeen, K. Moore,

M. Hill, and D. Wood, “Multifacet‟s general execution-driven multiprocessor

simulator(GEMS) toolset,” in Computer Architecture News, 2005, pp. 92–99.

[92] S. Li, J. Ahn, R. Strong, J. Brockman, D. Tullsen, and N. Jouppi, “McPAT: An

Integrated Power, Area, and Timing Modeling Framework for Multi-core and

Many-core Architectures,” in Proc. MICRO, 2009, pp. 469–480.

[93] Sun Microsystems, “UltraSPARC-II Enhancements: Support for Software

Controlled Prefetch,” White Paper, 1997.

[94] B. Egger, S. Kim, C. Jang, J. Lee, S. L. Min, and H. Shin, “Scratchpad Memory

Management Techniques for Code in Embedded Systems without an MMU,” in IEEE

Trans. On Computers, vol. 59, no. 8, 2010, pp. 1047–1062.

[95] A. Bui, K. Cheng, J. Cong, L. Vese, Y. Wang, B. Yuan and Y. Zou, "Platform

Characterization for Domain-Specific Computing", Proceedings of the 17th Asia and

South Pacific Design Automation Conference (ASPDAC 2012), 2012.

[96] Intel Moorestown, http://www.intel.com/pressroom/archive /reference/Mooresto

wnbackgrounder.pdf.

http://www.intel.com/pressroom/archive%20/reference/Moorestownbackgrounder.pdf
http://www.intel.com/pressroom/archive%20/reference/Moorestownbackgrounder.pdf

116

[97] The OMAP5430 Platform, http://www.ti.com/ww/en/omap/omap5/omap5-OM

AP5430.html.

[98] V. Govindaraju, C. Ho, and K. Sankaralingam, “Dynamically Specialized

Datapaths for Energy Efficient Computing,” in Proc. HPCA, 2011, pp. 503–514.

[99] J. Cong, M. A. Ghodrat, M. Gill, B. Grigorian, and G. Reinman, “Charm: A

Composable Heterogeneous Accelerator-Rich Microprocessor,” in ISLPED, 2012, pp.

379–384.

[100] XtremeDSP 48E, http://www.xilinx.com/technology/dsp/xtremedsp.htm.

[101] Q. Zhuge, Y. Guo, J. Hu, W-C Tseng, C. Xue and E H-M Sha, “Minimizing

Access Cost for Multiple Types of Memory Units in Embedded Systems Through

Data Allocation and Scheduling”, in TSP, 2012, Vol. 60, No. 6.

[102] Y. Liu and W. Zhang, “Exploiting Multi-Level Scratchpad Memories for

Time-Predictable Multicore Computing”, in ICCD, 2012, pp. 61-66.

[103] F. Magno, Q. Pereira and J. Palsberg, “Register Allocation via Coloring of

Chordal Graph”, in ASPLAS, 2005, pp. 315-329.

[104] F. Magno, Q. Pereira and J. Palsberg, “Register Allocation after Classical SSA

Elimination is NP-complete”, in FOSSACS, 2006, pp. 79-93.

[105] G.J. Chartin, “Register Allocation and Spilling via Graph Coloring”, in SCC,

1982, pp. 98-105.

[106] C. Andersson, “Register Allocation by Optimal Graph Coloring”, in CC, 2003, pp.

34-45.

[107] J. Cong, B. Liu and Z. Zhang, “Scheduling with Soft Constraints”, in ICCAD,

2009, pp. 47-54.

http://www.ti.com/ww/en/omap/omap5/omap5-OM%20AP5430.html
http://www.ti.com/ww/en/omap/omap5/omap5-OM%20AP5430.html
http://www.xilinx.com/technology/dsp/xtremedsp.htm
http://www.cs.ucla.edu/~palsberg/paper/aplas05.pdf
http://www.cs.ucla.edu/~palsberg/paper/aplas05.pdf
http://www.cs.ucla.edu/~palsberg/paper/aplas05.pdf

