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Abstract for Nonscientists

A genome is a blueprint for an organism. Written in an alphabet of four biochemical letters,
the genome consists of genes and other structural elements. These genes have several pur-
poses, but sometimes they are processed to become proteins. Proteins have many roles, but
those that act as molecular machines are called enzymes. Enzymes can have many differ-
ent functions; for example, one class of enzymes breaks apart molecules, and another class
combines molecules.

In 1995, scientists determined the first complete genome of an organism, meaning they
determined the sequence of all of the letters in the organism’s genome. In 2001, the Human
Genome Project produced a draft of the human genome. Scientists used algorithms to
delineate the different genes, by looking for patterns or signals that suggest certain parts will
be processed proteins and other biomolecules. Scientists have now completed the sequencing
of thousands of other genomes, resulting in millions of genes and protein sequences. However,
experiments to determine a protein’s function are very difficult, and therefore very little is
known about most proteins.

The goal of this project is to suggest functions for each of these millions of uncharacterized
proteins, so they can be used by scientists and software that depend on the information.
The general approach is to describe knowledge as a probabilistic model, and use algorithms
to determine which functions for the protein of interest are likely given that model. The
knowledge we incorporate is based on the two analytical techniques from computational
biology, and can be summarized as (1) proteins that are similar in sequence should have
similar molecular functions, and (2) proteins that are functionally associated are probably
involved in similar processes.

In addition to describing a complete method for prediction of protein function based on
this model, this dissertation evaluates the method as a whole and in part, and discusses
insights and avenues for further research.
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Abstract

The number of known protein sequences is growing faster than the number of curated protein
functions. To help bridge this gap, bioinformatics scientists have created automated methods
for the prediction of protein function. Recently, the focus has been on integrating numerous
data sources, and critical evaluation of these methods show that the integrative approach
improves predictive performance. However, a basic BLAST-based method is still a top
contender.

Computational biologists often use two complimentary approaches to infer functions that
are usually more accurate than a BLAST-based method. Analysis of sequence similarity
networks can dissect protein functions in a superfamily and infer the function of individual
proteins. Briefly, a computational biologist will create a network of proteins in sequence
space, which typically shows clusters of similar proteins. She will then highlight which few
of these proteins have experimental functional annotations, and paint the network according
to other functional features that are broadly available, such as residues in key positions
in an alignment. These data are used to identify proteins where a functional change may
have occurred, which then can be used to delineate protein families or other protein groups
that share a specific function or functional characteristic. However, molecular functional
annotation data are very scarce, and there is not enough of it to draw functional boundaries
with high confidence.

The second method, analysis of genomic context, is often done in conjunction with se-
quence similarity network analysis. This approach uses data about the genome neighbors of
a protein, or more generally, any functional association data, such protein – protein interac-
tion data, to predict a protein’s molecular function. This technique has been used to refine
functional boundaries during sequence similarity network analysis, as well as to generate
hypothesis in the absence of characterization of any close homologs.

In this dissertation, I describe Effusion, our attempt to automate sequence similarity
network analysis and improve on the current methods for the prediction of protein function.
Effusion modernizes the classical BLAST-based approach while avoiding pitfalls common to
state-of-the-art methods. It uses a sequence similarity network to add context for homology
transfer, a probabilistic model to account for the uncertainty in labels and function propa-
gation, and the structure of the Gene Ontology (GO) to best utilize sparse input labels and
make consistent output predictions. Effusion’s model makes it practical to integrate rare
experimental data with the abundant primary sequence and sequence similarity data. Our
model allows for inference with general purpose, state-of-the-art inference algorithms, makes
use of all experimental annotation data, has parameters specific to each GO term, and adds
data-derived pseudocounts to predict rare terms.

Effusion GCA extends Effusion by integrating the chief components necessary for au-
tomating genomic context analysis. It performs its analysis over a sequence similarity –
functional association network, with a model of protein function that includes a representa-
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tion of each protein’s biological process, performs simultaneous inference on multiple aspects
of protein function, and only propagates functional information where it is appropriate.

We assessed our methods using a critical evaluation method and metrics. The results
show that Effusion outperforms standard prediction methods, the most similar prediction
methods, and state-of-the-art prediction methods. Effusion GCA does not perform as well
as Effusion in aggregate, but offered several other insights. We conclude that these methods
represent a significant progress in the field of protein function prediction, and clearly suggest
avenues for further advance.
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Chapter 1

Introduction

Determining the function of gene products is necessary for understanding life, valuable

for applications in health and industry, and a foundational problem in bioinformatics. The

number of protein sequences, now greatly amplified by metagenomic sequencing projects,

continues to grow at a much faster rate than the number of proteins with experimentally

determined or manually curated functions (Figure 1.1). As a result, computational prediction

of protein function is needed more than ever.

The task of predicting protein function is, given no constraints on the data that can

be used, to identify, rank, or score functional terms that have been withheld or can be

experimentally validated. In this work, we are more interested in distinguishing specific

molecular activities, rather than predicting general categories of protein function.

This dissertation presents two methods for the prediction of protein function. Both of

these methods share the following principles of design. First of all, each method is motivated

by an analytical technique that is performed manually by computational biologists. The first

technique is the analysis of sequence similarity networks, and is described in Chapter 2. The

second technique is the analysis of genomic context, and is described in Chapter 3.

Second, we design our models to treat the rare, valuable data very carefully, and we try
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Figure 1.1: Relative rates of growth of protein sequences and non-electronic annotations.
The drop of proteins in TrEMBL is due to a switch to reference proteomes. The shape of
the green arrow is for visibility.

to avoid dilution when incorporating large quantities of less informative data.

Third, we model aspects of protein function probabilistically and in depth, because they

are plagued with uncertainty, rich with information, and the objects of interest. We embed

our knowledge about how proteins and functions interrelate, and then use our model to infer

functions that conform to our model.

1.1 Background for protein function prediction

1.1.1 Proteins

As of 17 March 2017, UniProtKB [88] includes 80,758,400 protein sequences. The growth of

UniProtKB is shown in Figure 1.1.
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1.1.2 Functions

GO represents protein function using a controlled vocabulary of terms. It models three

distinct aspects of protein function: molecular function, biological process, and cellular

component. Each GO term has a name and an identifier. For example, GO term N-

acylmannosamine-6-phosphate 2-epimerase is identified by GO:0047465. There are currently

48,532 terms defined by GO.

GO terms are organized hierarchically; more general activities are ancestors of more

specific activities. For example, isomerase activity is a child of catalytic activity, and is the

parent of racemase and epimerase activity. Root GO terms have no parents, and are the

most general, such as molecular function. Leaf GO terms have no children, and are the most

specific, such as GO:0047465. It is more common for an internal node to have more children

than parents, but GO terms often have multiple parents. For example, cellular metabolic

process has two parents: cellular process and metabolic process. The level of a GO term,

defined as the minimum path length from root to the GO term, ranges from 0 – 12. The

depth of a GO term, defined as the maximum path length from root to the GO term, ranges

from 0 – 17. There is only one GO term at depth 17: calcium export from the mitochondrion

involved in positive regulation of presynaptic cytosolic calcium concentration (GO:1905741).

We focus on predicting molecular function, which is defined as “the biochemical activity

(including specific binding to ligands or structures) of a gene product” [5]. There are 10,885

GO terms in the molecular function ontology, 8,799 of which are leaves.

There are additional features of GO, and caveats for using it. It is continuously changing.

There are other types of relationships besides that between a parent and a child. Please visit

the resource for more information.

A multi-label is a mapping from GO term to boolean value for every GO term in an
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ontology or given subontology. A multi-label may contain values that are unknown.

1.1.3 Annotations and predictions

The Gene Ontology Annotation (GOA) database [16] contains a list of associations between

UniProtKB identifiers and GO terms. Each association is complemented with metadata,

including the date the association was made and an evidence code indicating whether the

annotation was assigned by a curator using either experimental or computational analysis,

or assigned automatically. A positive annotation to a specific GO term implies a positive

annotation to any of its more general ancestor GO terms. Only 562,971 protein sequences

in UniProtKB have an annotation obtained experimentally. These are provided by member

databases and post-processed by the Gene Ontology Consortium (GOC). There are also

electronic annotations in Gene Ontology Annotation (GOA), generated by algorithm. Some

of these algorithms may simply be the mapping of a manually applied keyword to a GO term.

As these annotations come from various labs and genome annotation consortia, neither the

proteins nor the GO terms are studied uniformly.

There are caveats in using GOA. For example, a protein can be both positively and

negatively annotated to the same GO term. Please visit the resource for more information.

A prediction is an electronic annotation with a confidence score. For example, one of the

methods we will use as a baseline uses bitscore(query,subject)
bitscore(query,query) for the score. Probabilistic methods,

such as the ones proposed here, usually use a probability for the score.

1.1.4 Challenges for prediction of protein function

An effective model for protein function prediction must take into account several peculiarities

of protein function and the data available to use for its prediction. There are a tremendous
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number of protein sequences available, but very few are functionally characterized. Experi-

mental annotations, which usually describe a protein’s function in part or at a high level, are

expensive to obtain, rare, and collected with bias. Negative annotations, which indicate that

a given protein does not have a given activity, are nearly non-existent. The space is large,

and there is not a single protein that has a complete multi-label in GOA, with a positive or

negative annotation for every functional term in GO. Some GO terms also have few, or no,

associated proteins, thwarting typical classification algorithms that require many samples

per class.

Although these characteristics complicate function prediction, a method can be con-

structed to benefit from the constraints they impose. For example, a semi-supervised model

can use the multitude of uncharacterized protein sequences, and the calculated pairwise sim-

ilarity between them, to guide the drawing of functional boundaries between protein clusters.

As another example, a method that uses a separate classifier for each GO term will likely

have too few training samples for each one, and the resulting predictions may be inconsistent

with respect to the GO hierarchy. However, viewing the problem as a structured output pre-

diction problem will not only result in consistent output s, but will be able to take advantage

of annotations throughout GO.

1.1.5 Methods for automated function prediction

There are many published methods for the prediction of protein function. We mention

classical or imaginative works here, and describe highly relevant works in the appropriate

chapter.

A common approach for predicting the molecular function of a given query protein is to

search a sequence database of annotated proteins and derive the predicted function from the
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annotations of the most similar sequences found [57, 21]. Despite a number of caveats [86,

75, 85, 77], this approach remains popular due to the wide availability of sequence data, the

speed at which a similarity search can be conducted [3, 15], and the simplicity and robustness

of the method.

The biological rationale supporting this method is that since sequence implies structure,

structure implies function, and the sequence of the query protein is similar to the sequence

of the database hit, then the function of the query protein is probably similar to the function

of the target protein. However, BLAST-based function transfer has limitations: its near-

sightedness can give results inconsistent with the evolutionary history of the protein, and it

does not provide a mechanism for incorporating non-sequence data.

Many methods use networks to predict protein function. Networks for protein function

prediction might represent sequence similarity networks, functional association networks

[58, 83], including protein-protein interaction networks, hybrids of the two, or networks with

heterogeneous nodes that may represent proteins, substrates, function terms, or phenotypes

[48].

Phylogenetic methods also use sequence data, but try to automate phylogenetic analysis

[27, 30, 59]. These methods take as input, or infer, a gene tree that shows how the proteins

are evolutionarily related. Then, using a parsimonious or probabilistic model of function

evolution, these methods compute likely assignments of functions to extant, homologous

proteins and ancestral proteins, therefore predicting functions that are consistent with its

evolutionary history.

Text-mining methods try to extract experimental evidence from published articles and

other text in order to exploit data that is not accessible in databases like GOA.

Some methods infer valuable features to integrate [49], while others incorporate raw data

by automatic feature extraction and selection or use of a deep learning algorithm. Some
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methods can incorporate structured data using kernels that represent functional similarity

or network kernels [80, 43, 44]. Most methods that make use of experimental annotations

can also make use of electronic annotations or predictions from other methods [81]. Several

high-performing methods integrate large numbers of sequence or structural features in an

SVM [22], while others integrate data with carefully built probabilistic models [87]. For a

review of data integration methods for automated function prediction, please see Rentzsch

and Orengo [73].

The proposed methods are based on addressing limitations in the BLAST-based method,

and then extending that method to incorporate a distinct, but related piece of information.

Namely this work proposes a model for probabilistic prediction of protein function, and then

attempts to automate genomic context analysis with careful extensions to the model. Both

methods can be visualized as belief about function propagating around their networks in a

statistically rigorous way.

1.1.6 Evaluation of methods for automated function prediction

Evaluation of protein function is complex. The samples used for training and for evaluation

are derived from GOA, so they are also structured, incomplete, and collected unevenly. The

classes are imbalanced, and it is easy to guess correctly that a protein does not have any

given function, or guess correctly that a protein is involved in a very general activity. The

use of basic evaluation methods and metrics is not always appropriate, and it was difficult

to compare results from more involved evaluation protocols.

An evaluation method defines the procedure for combining prediction methods, functional

data, and metrics to generate performance results. I describe two kinds of evaluation methods

in the next two sections.
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Cross-validation

Cross-validation is a technique where data is repeatedly partitioned into a training dataset

and an evaluation dataset. The prediction methods then use the data in the training dataset

to make predictions for the proteins with data that are in the evaluation dataset and have

been withheld. Then, the predictions are compared to the withheld data, and the perfor-

mance of the method is scored.

For the performance given by the evaluation method to be close to the real-world per-

formance of the classifier, the characteristics of the data in the evaluation dataset should

resemble the real-world data on which the classifier will run. For example, assuming that an

image classifier is going to be used on new images that are similar to the ones in the dataset,

then it is important that the evaluation dataset has images that are similar, but not the

same as images that were used for its training.

There are several types of cross-validations that vary by how they partition the data.

k-fold cross validation partitions the data into k subsamples. For k iterations, one of the

partitions is withheld as the evaluation data, and the other k − 1 partitions are used for

training. Leave-one-out cross-validation is another common type of cross-validation. Where

there are n samples, leave-one-out cross-validation is k-fold cross validation with k = n.

As the simplest cross validation method, the holdout method randomly partitions the data

once, and only does one run of training, prediction, and scoring.

For many machine learning problems, randomly partitioning the data is sufficient. How-

ever, these methods are poorly suited for evaluation of methods for protein function pre-

diction. Consider the case where our dataset includes all annotations in GOA, including

the electronic annotations. So far, this is a reasonable setup, because experimentalists and

computational biologists also have access to experimental annotations when annotating the
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function of proteins. However, if we then decide to use leave-one-out cross validation, we

will overestimate the predictive performance of the method being evaluated. This is because

following the characterization of a single protein, electronic annotation methods propagate

its function to other proteins that are similar in sequence. Removing the multi- for one single

protein, and recovering it from the multi-s of the most similar proteins, is easy, and does not

resemble the real world task of function annotation.

This problem is not limited to electronic annotations. Proteins are not studied uniformly.

It is common for a discovery in one protein to attract others to study similar proteins. The

annotations are correlated in time.

Greene and Troyanskaya [37] studies other biases that effect evaluation of methods for

protein function prediction.

Critical Assessment of Function Annotation (CAFA)

Published methods tend to overstate their performance. While this problem is not limited to

the field of protein function prediction, the large number of pitfalls make accidental errors in

evaluation common, and partial treatment easy to obfuscate. It is common for methods for

protein function prediction to claim near perfect accuracy [82]. To address these issues, the

community in protein function prediction began using critical assessments with a common

protocol and datasets.

Following competition-style assessments in other fields, the first critical assessment for

protein annotation, MouseFunc, ran from July 17, 2006 – October 13, 2006 [51]. MouseFunc

assembled a standard collection of functional data for mouse, had several teams predict GO

terms for mouse proteins, and compared and investigated the predictions.

CAFA [72, 39] is a community experiment that was conceived in late 2009. In its first

run, the organizers announced a set of 48,298 target sequences on September 15, 2010, and



CHAPTER 1. INTRODUCTION 10

asked participants to submit predictions for those targets by January 18, 2011. Compared to

cross validation, the participants were not expected to self-limit their use of data. Instead,

the participants were free to use all available data and methods, including text mining of the

literature and experimental assay. The organizers then evaluated the prediction methods

on the set of annotations that were submitted from the submission deadline until December

14, 2011. CAFA has identified methods, metrics, useful sources of information, areas for

improvement, and other insights for the field. In this work, we make use of the best practices

identified by CAFA.

It is now common for methods to emulate the CAFA experiment for evaluating their

performance. This method, which is called time-stamped evaluation and other names, is a

variation of the holdout method where the data are partitioned by date rather than randomly.

Metrics

The most basic metric for evaluating a classification method is to withhold the true multi-

for a sample, predict the multi-label for that sample, and then compute the accuracy, or

the % correct, where a prediction is correct if it is identical to the true multi-label. In the

field of protein function prediction, this metric would not provide valuable information. A

multi-label is combination of many GO terms. Although only a subset of multi-labels are

valid with respect to the structure of GO, there are still a combinatorial number of them.

Even a highly accurate method would rarely get exactly the right combination of GO terms

to match the multi-label in the gold standard. This is made definite by the fact that, in this

field, the true multi-labels are known to be incomplete. The values reported by this metric

would be uninformatively low.

However, this is a common problem faced by machine learning researchers, for example

when predicting multi-labels (e.g., cat, outside) for an image recognition task. This problem
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is addressed by computing metrics at the label level, such as the number of correctly predicted

labels, the number of incorrectly predicted labels, and the total number of labels predicted.

One caveat, however, is that a bioinformatics scientist cannot easily verify if a label should

have been applied to a particular protein.

The task of protein function prediction involves imbalanced classes; a given protein most

likely does not perform a given function. For a method to achieve wonderful looking perfor-

mance, it need only predict every label false. This is addressed by using the metrics precision

and recall, which do not give favorable consideration to predictions of negative terms. Pre-

cision is the number of true positives over the total number of predicted positives. Recall is

the number of true positives over the total number of positives in the true label.

While, this is effective in a binary classification scenario, it does not address problems

in a multi-label classification scenario. Precision and recall consider all positive labels to

be equally important. A cowardly method could simply predict common terms and avoid

predicting rare terms. However, rare terms are usually more specific than common terms,

and are of more interest to consumers of protein function predictions. A realistic, incomplete

gold standard makes the situation more dire; the performance of the method would be

strongly affected by which of the evaluation proteins were labeled with only the vacuous

root annotation! Many papers address this issue simply by not ignoring annotations and

predictions to the root term during evaluation, but the underlying problem remains; not all

GO terms should be treated equally during evaluation.

This concern was elegantly addressed by Clark. The idea is a version of precision and

recall that use a weighted count based on the information content of the terms.
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wpr(P, T ) =
∑

t∈P ∩T IC(t)
∑

t∈P IC(t)

wrc(P, T ) =
∑

t∈P ∩T IC(t)
∑

t∈T IC(t)
While we now have a good metric for comparing a predicted multi-label to a “true” multi-

label, we have not yet discussed how to score a method that predicts a multi-label for several

proteins, given an evaluation set of “true” multi-labels. The simplest approach is to average

the single-protein metric across all evaluation proteins. However, we know that the gold

standard dataset is incomplete, and doing this would give equal weight to a protein in the

evaluation set with only the root annotation, and a protein with detailed experimental data.

Many papers address this issue simply by only evaluating against proteins with the most

detailed experimental evidence, or excluding the proteins with the least detailed experimental

evidence. But again, the main issue is not resolved; proteins with higher quality annotations

should be given more weight than proteins with low quality annotations. The proxy that

Clark used for quality of an annotation is the information content of the true multi-label.

The metric for the method is then the weighted average of the metrics over the individual

proteins above, where they are weighted by information content of the true annotation.

sw-wpr(τ) =
Ne∑

i=1

IC(Ti)
∑Ne

j=1 IC(Tj)

∑
t∈Pi(τ)∩Ti

IC(t)
∑

t∈Pi(τ) IC(t)

sw-wrc(τ) =
Ne∑

i=1

IC(Ti)
∑Ne

j=1 IC(Tj)

∑
t∈Pi(τ)∩Ti

IC(t)
∑

t∈Ti
IC(t)

There is a tradeoff between a methods accuracy and its recall. However, different con-

sumers of protein function predictions have different requirements; some are looking for clues

into any possible function for the protein, and others are looking for only the most certain

protein function predictions. Since a method’s scores or probabilities are unlikely to be cor-

rect / calibrated with another’s, evaluators can plot one metric that is dependent on the
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method’s score against another metric that is dependent on the method’s score, and come

up with a curve in terms of objective evaluation metrics that allows consumers to choose a

method that performs best at the recall they need.

However, concerns remain. A paper showed, by looking at how reported performance

changes with respect to completeness of the dataset over time, that it is effected by missing

data.

“Gold Standard” Datasets

There are a few standard datasets for training and evaluation of methods for protein function

prediction.

The SwissProt section of UniProt contains manually reviewed entries, with a focus on

model organisms.

GOA, described in Annotations and predictions contains evidence codes that are manu-

ally assigned and Inferred from Electronic Annotation (IEA). These annotations are submit-

ted by UniProt, the Institute for Genomic Research, GeneDB, and organism-specific GOC

members, such as FlyBase. Annotations in GOA are well structured, and are always asso-

ciated with GO terms and an evidence code, and often with a literature reference or other

documentation for its source.

The Structure – Function Linkage Database presents a distinctive alternative to the

aforementioned datasets. Rather than focus on annotations within model organisms, SFLD

curators focus on functionally diverse enzyme superfamilies. These curators perform se-

quence similarity network analysis, collect all experimental evidence from the literature, and

use characteristics of the sequence and structures of the proteins to identify isofunctional

clusters.
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Baselines

Baseline methods are simple methods for protein function prediction that are useful for

giving a frame of reference for the performance metrics and charts.

One of the simplest useful baselines is the Naive method. The Naive method ignores

the particular query protein, and predicts the same GO terms for every query, based on

the background frequencies of the GO term in the dataset. Whereas in a balanced binary

classification setting it would be easy to intuit the value of a performance metric or shape

of a performance chart for a Naive method, this is much more difficult in the case of multi-

classification problem with unbalanced classes.

In this work, we use a modified Naive baseline, Naive+, which is more useful when we

are evaluating proteins which were partially annotated in the training data. For a given

query protein i, this method first predicts with certainty the GO terms for which there was

evidence in the training data. Then, the method predicts GO term g with probability

P (X i
g = True) = P (X i

g = True | X i
GO parents)

×
∏

t∈GO parents
P (X i

t = True)

Therefore, if there is a direct annotation in the training data for the query protein having

catalytic activity, then the method will predict catalytic activity with certainty, but also

predict a relatively high probability for transferase activity, based on P (X i
transferase activity =

True | X i
catalytic activity = True) being high in the background data. Notice that, in the case

of a protein lacking any annotation in the training data, this method reduces to the Naive

method.

This probabilistic propagation of GO terms to more specific GO terms can be applied to

the raw predictions of any method to increase its recall.
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A BLAST-based method is simple enough to be considered a baseline, but offers very good

performance. There are several ways to implement a BLAST-based method that would result

in methods with very different characteristics. We require high query coverage so that our

function transfer is limited to sequences with the same domain architecture. We also use

a relatively strict threshold for sequence similarity. Whereas some BLAST-based methods

only consider the top BLAST hit, we consider all BLAST hits that are more similar than our

thresholds, so that our BLAST-based method has improved coverage. For each hit, for each

preprocessed annotation, our BLAST-based method predicts the GO term with a probability

equal to the bitscore of the hit, divided by the greater of the self alignment scores for the

query and the subject. Therefore, a query protein hitting itself or an identical sequence will

transfer all of its training annotations at 100%.

We also implemented a Random BLAST method. This method uses the same BLAST

hits and training annotations as our BLAST-based method, but the probability for function

transfer, which is shared by all the GO terms for each hit, is chosen uniformly at random.

The quality of the Random BLAST predictions are good for three reasons. First of all,

by using the strict BLAST parameters mentioned above, the predicted GO terms are all

reasonable. Second, the predictions are consistent with the GO hierarchy, because of the

way that preprocessing the annotations propagates direct annotations to more general terms,

and the way that we keep the maximum probability prediction for each GO term. Third, GO

terms that occurred multiple times in the BLAST hits, either because of their generality or

their relevance, have more chances to be transferred to the query with a high probability. By

comparing the performance of this method to the performance of the BLAST-based method,

we hope to give a sense of scale for the differences in performance between the methods that

we evaluate.

The details of our implementation of these baselines, and the other methods that we use
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in our comparisons, are described in the relevant Methods sections.

1.2 Review of topical mathematics

Only a few elementary terms and operations from probability are needed to understand the

bulk of this dissertation. The following reviews these concepts.

1.2.1 Probability

A discrete probability is a function that maps an event to a real positive number less than

one, e.g., P (Rain = yes) = .2 such that the sum of the probabilities of all events is one:

P (Rain = yes) + P (Rain = no) = 1. From now on, let 1 := yes and 0 := no.

Joint Probability

A joint probability is the probability of multiple events happening at once, e.g., P (Rain =

1, Clouds = 1, Grass Wet = 1). Joint probabilities must also sum to unity:

∑

r∈{0,1}

∑

c∈{0,1}

∑

w∈{0,1}
P (Rain = r, Clouds = c, Grass Wet = w) = 1

The table defining a discrete joint probability distribution is O(kN), where there are N

variables at most cardinality k.

Many important probabilities can be computed from a joint probability.

Marginal Probability

A marginal probability is a probability over a subset X of variables in a joint distribution.

It can be calculated from a joint probability by summing over the variables not in X:



CHAPTER 1. INTRODUCTION 17

P (Rain = r) =
∑

c∈{0,1}

∑

w∈{0,1}
P (Rain = r, Clouds = c, Grass Wet = w)

Conditional Probability

A conditional probability P (X = x | Y = y) is a probability of an event X = x given

that another event has occurred Y = y. It can be calculated from a joint distribution,

or a marginal distribution, by normalizing the joint distribution P (X = x, Y = y) by the

probability of the given event P (Y = y). Note that the denominator is a marginal probability

of the numerator. For example,

P (X = x | Y = y) = P (Rain = r | Clouds = c, Grass Wet = w)

= P (Rain = r, Clouds = c, Grass Wet = w)
P (Clouds = c, Grass Wet = w)

= P (Rain = r, Clouds = c, Grass Wet = w)
∑

r∈{0,1} P (Rain = r, Clouds = c, Grass Wet = w)

1.2.2 Parameters and statistics

There are representations of probability distributions that are more concise than a table.

They can also be specified in an analytical form that depend on parameters. Take, for

example, a probability model for the number of heads observed when flipping a coin ten

times. We can represent this as table of one probability for each of the 10 possible outcomes.

Alternatively, we can specify that P (heads observed = k) =
(

10
k

)
πk(1 − π)10−k, where π is a

parameter that describes how likely our coin is to land on heads.

If π = .5, then we are working with a typical fair coin. However, parameters are

paramount. A model that says π = .99 would imply that our coin is loaded and flipping ten

heads in a row is the most likely event. The field of statistics deals with estimating parameters
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from data. One of the most common paradigms for doing this is to attempt to find the param-

eter(s) that maximize the probability of the data, known as the likelihood. For example, if we

observe 5 heads and 5 tails, then Pπ=.5(heads observed = 5) > Pπ=.99(heads observed = 5).

In fact, the maximum likelihood estimate of π would be

π̂ = argmax
π∈[0,1]

Pπ(heads observed = 5)

= .5

1.2.3 Probabilistic graphical models (PGMs)

In joint distributions with many random variables, the table defining the distribution can be

too large to use. Probabilistic graphical models (PGMs) are a framework for representing

complex distributions in factored form. Algorithms exist for performing inference, specifically

for computing marginal probabilities, on general PGMs [66]. We represent our model as a

directed probabilistic graphical model, known as a Bayesian network. With missing edges in

a PGM corresponding to conditional independence assertions, a directed PGM factorizes a

joint distribution into local conditional probabilities

P (X = x) =
∏

xi∈x

P (xi|pa(xi))

.

where x := x1, x2, ...xN and pa(xi) represents the parents of variable xi.

As for any discrete joint distribution, computing marginal probabilities from a simple

PGM consists of summing out the nuisance variables. In the unfactored form of the joint

distribution, this summation would require a number of terms exponential in the number of

variables. In the factored form, however, many computations can be reused by distributing
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summation inward. For example, if our joint distribution P (A, B, C) factors into P (A)P (B |

A)P (C | B) because C is independent of A given B, then we could compute P (C) as follows

P (C) =
∑

a∈A

∑

b∈B

P (A, B, C)

=
∑

a∈A

∑

b∈B

P (C | B)P (A)P (B | A)

=
∑

b∈B

P (C | B)P (B | A)
∑

a∈A

P (A)

This algorithm is called the elimination algorithm. It is an exact algorithm for any

graphical model, but it can result in intermediate factors with too many terms. Algorithms

for approximate inference are either based on sampling or the use of a tractable variant of

the distribution.
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Chapter 2

Effusion: Prediction of Protein
Function with a Probabilistic Model
for Analysis of Sequence Similarity
Networks

2.1 Abstract

2.1.1 Motivation

Sequence similarity networks are one of the primary tools used to investigate sequence-

function relationships in large sets of homologous sequences [6, 13, 8]. Although it is well

known that proteins with similar functions typically cluster together, in practice, experi-

mental annotations are extremely scarce and scattered unevenly across the protein network.

Moreover, most of these annotations describe a protein’s function only in part or at a high

level. Automating the classification of protein functions via clustering is further complicated

by the fact that proteins often have a molecular function that is represented by a whole

hierarchy of terms. In other words, some specific functions should be isolated to a specific

cluster, some general functions might span the entire network of proteins, and these clusters
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often overlap.

2.1.2 Results

We present a method for predicting protein function, Effusion, that uses a sequence similarity

network (SSN) to add context for homology transfer, a probabilistic model to account for the

uncertainty in labels and function propagation, and the structure of the GO to best utilize

sparse input labels and make consistent output predictions. Effusion’s model admits a simple

parameterization that makes it practical to integrate rare experimental data and abundant

primary sequence and sequence similarity. We demonstrate Effusion’s performance using

a critical evaluation method and provide an in-depth analysis. We also dissect the design

decisions we used to address challenges for predicting protein function. Finally, we propose

directions in which the framework of the method can be modified for additional predictive

power.

2.2 Introduction

Here, we propose and evaluate a new method, Effusion, that uses a network of partially

characterized sequences to suggest accurate function predictions. The use of SSNs, the in-

corporation of GO, and the application of PGMs has been previously reported (see Related

work). However, our method, its model, and its parameters are the first to integrate these

features in a way that is accurate, practical, and extensible. Specifically, our model, inspired

by network analysis in computational biology [6, 13, 8, 14], admits a highly interpretable

set of parameters, which we can learn for each GO term and from all experimental annota-

tions, augment them with pseudocounts, and submit to general-purpose inference algorithms.

Evaluation of the predictions shows that our method can accurately discern the molecular
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functions (MFs) of a protein, even when faced with partial, autocorrelated samples and

classes that are imbalanced and related hierarchically.

2.2.1 Sequence similarity

BLAST [3] and DIAMOND [15] are two methods that can quickly search a protein sequence

database for proteins that are similar in sequence to a given query protein sequence and

return scores representing their similarity. Two proteins with high sequence similarity and

statistical significance are assumed to be homologous.

2.2.2 Sequence similarity networks (SSNs)

SSNs often use unannotated proteins to provide context for predicting molecular functions

[6, 8, 35]. Visually, they show putative clusters of conserved function, space between clusters

with few proteins where there may be a change in function, and unexplored regions of the

sequence space [6, 47, 56, 24].

2.2.3 Related work

Network-based methods

Algorithms that use both labeled and unlabeled data are called semi-supervised.

For a review of network-based methods, please see Sharan, Ulitsky, and Shamir [79].

Methods that use GO

Several methods, including sequence similarity-based methods, use the structure of GO to

improve prediction quality, for example by ranking more general terms higher than more

specific terms, or ensuring predicted functions are consistent [28, 9, 64, 38].
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Probabilistic methods

PGMs are especially useful for the prediction of protein function because the topology of the

model is data generated, rather than user generated, and PGMs can model random variables

with complex relationships [46, 25]. For example, SIFTER constructs a probabilistic model

that has the topology of a phylogenetic tree [31].

Most protein network–based PGMs focus on protein-protein interaction networks [42],

but some authors present, or suggest, a PGM based on a sequence similarity network. Car-

roll and Pavlovic [17] and Mitrofanova, Pavlovic, and Mishra [61] additionally incorporate

the structure of GO into their PGM. We build on the ideas of these methods, but use a

model, parameters, and algorithm that are better suited to the problem of predicting pro-

tein function.

Methods that try to automate SSN analysis report severe limitations, including predicting

on very few functional terms, necessitating ad-hoc inference algorithms and post-processing

steps, and forgiving evaluation methods. Our method, Effusion addresses the heart of what

made the other methods impractical.

2.3 Methods

A graphical summary of the method is shown in Figure 2.2.

First, we build a protein network with edges of sequence similarity. This network is

quickly constructed by broadly BLASTing [3] sequence queries to collect homologs (Fig-

ure 2.2 (a)) and using DIAMOND [15] to fill in the all-by-all sequence similarity edges of

the network (Figure 2.2 (b)).

Second, we construct a tractable PGM based on this network. The network is first
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converted to a minimum spanning tree (MST), pruned to query proteins or proteins with

non-electronic annotation, and directed outward from the query (Figure 2.2 (c)). For each

edge in the MST, we link the corresponding MF terms from GO (Figure 2.2 (d)). Since the

model is directed, the parameters have a global probabilistic interpretation: each variable in

the probabilistic model adds a factor representing the conditional probability of that variable

given its parents. We can then learn these parameters from looking at all pairs of neighboring

proteins that have experimental annotations.

Finally, we perform inference with a general-purpose, state-of-the-art inference software

and output the predictions. A network view of the output predictions for two GO terms

are shown in Figure 2.2 (e). Since the method has a GO-structured model of protein func-

tion, detailed predictions are given for every protein in the network. We show the detailed

predictions for the query in Figure 2.2 (f).

The details of the method follow.

2.3.1 Preprocessing

We downloaded the datasets for our analysis in early April, 2017.

• protein sequences: UniProtKB, compiled from SwissProt and TrEMBL, version

2017_03

• experimental annotations: Gene Ontology Annotation Database, version 2017-03-11

• controlled vocabulary: Gene Ontology, version 2017-03-31

• sequence similarity: Computed by BLAST version 2.6.0+ for single query searches, or

via DIAMOND version 0.9.10 for all-by-all calculations

We only included annotations to UniProtKB identifiers, excluding a smaller number

of annotations linked to gene products in other databases. As is standard in the field,
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Figure 2.2: Graphical Summary of Effusion, using UniProt Q4ZIL6 as an example. (a) Ho-
mologs of UniProt Q4ZIL6 collected by BLAST. UniProt Q4ZIL6 has been experimentally
annotated to a descendent of steroid hydroxylase activity (GO:0008395), but this annota-
tion was one of the ones withheld during the test phase, and it has no annotation to any
arachidonic acid 14,15-epoxygenase activity (GO:0008404), an annotation for a homolog of
the query reported by BLAST. (b) A SSN is built from the all-by-all edges computed via
DIAMOND. The network is visualized with Cytoscape [78] using Organic Layout. (c) The
reduced network. The layout is applied to all edges, but only the MST edges are used in the
model. The resulting network is used as the topology of a PGM. (d) The protein function
of each node is represented by a subset of GO, with each GO term represented by Bernoulli
random variable. (e) Two views of the network following inference. The left figure is shaded
according to the probability of GO:0008395. The right figure is shaded according to the prob-
ability of GO:0008404. (f) Probabilities for a subset of terms for query UniProt Q4ZIL6.
Probabilities are calculated for each candidate GO term for each node. Nodes are shaded
from white being 0% to black being 100%, except for the node representing GO:0008395,
which is colored a shade of blue based on its posterior probability.

we excluded IEA annotations. For each positive annotation, we explicitly added positive

annotations for each ancestor GO term for the same protein and annotation metadata (i.e.,

date and evidence code). Similarly, a negative annotation for a protein to a GO term was

considered a negative annotation for the same protein to every descendent GO term. We

refer to the resulting set of annotations as preprocessed annotations.

The dataset for the discovery phase included all preprocessed annotations through 2015.

Annotations from 1 January 2016 onward were withheld for all purposes until final evaluation

and analysis.

2.3.2 Building the protein network

For a given query protein, we build a SSN, where nodes represent proteins and edges represent

pairwise sequence similarity. This network is quickly constructed by collecting homologs with

BLAST, and then using DIAMOND to fill in the all-by-all sequence similarity edges of the
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network. BLAST is run with a permissive E-value threshold (1e-8), but limited to sequences

that cover 90% of the query, and filtered to sequences with a bit score per residue of at least

0.25. We use the resulting sequences to format a DIAMOND DB, and search each resulting

sequence against this DB using DIAMOND (evalue = 1e-8, query-cover = 90%, subject-

cover = 90%), and more restrictive parameters (max-target-seqs = 1000, minimum bit score

per residue of 1.4 × 0.25). The all-by-all calculation uses the more restrictive parameters to

limit the number of edges for reasons of computational practicability. This heuristic usually

provides the MST edges we need for building the model (see [Creation and use of protein

networks]) without wasting space and time.

2.3.3 Constructing a tractable probabilistic graphical model

The protein network is first reduced to make it more amenable to learning and inference.

To get the reduced network, we convert the protein network to a MST (edge weight =

−bit score per residue), direct it outward from the query, and prune it to query proteins or

proteins with non-electronic annotation. The goal of this network reduction was to imbue

local factors with a global probabilistic interpretation, which facilitates parameter learning.

Another benefit of this reduction is that it results in inference running more quickly, by

removing tight loops in SSNs, and allowing pruning. However, we note that the PGM is still

not a tree because variables generally still have multiple parents, coming from GO and from

the corresponding term of the parent protein in the reduced network. Therefore, iterative,

approximation algorithms are needed for inference.
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Protein template

Each protein in the reduced network generates a subgraph in the PGM, by instantiating

a copy of the protein template. The protein template models the molecular function of a

protein. It has the topology of a subgraph of the Gene Ontology Consortium’s molecular

function ontology. Each node in the subgraph is a candidate GO term. Every GO term for

which there is a positive or negative preprocessed annotation in the SSN is a candidate GO

term. Each candidate GO term, for each protein, is modeled as a Bernoulli random variable,

and we ultimately calculate marginal posterior probabilities for each of them.

We implemented and evaluated two models for relating the GO terms within a protein

template: a top-down model and a bottom-up model. Each model has its own advantages

and disadvantages.

In a top-down model, the parent(s) of a variable representing a GO term t for pro-

tein i include the parents (more general terms) in GO, so the factors ψ(xi
t, pa(xi

t)) are

P (xi
t|pa(xi

t)) = P (xi
t|xi

GO parents(t),other model parents(xi
t)). It is more common to model a PGM

in a top-down fashion, because PGMs that limit factor sizes, in particular those that have

only a single parent per node, admit more tractable PGM inference.

However, a top-down model has limitations for modeling protein function. If, for example,

a protein is annotated as a DNA polymerase, then that protein has an implied annotation

to polymerase in general, and that will give the protein a high probability of any type of

polymerase, such as an RNA polymerase. In this scenario, the posterior probability for RNA

polymerase could be higher than the posterior probability for any specific DNA polymerase.

To address this, we added supplementary negative evidence as follows. For each protein

with evidence, if the (weighted, see Parameter learning) contingency table shows that a

particular unobserved term is unlikely (< 50%) given the observed values of its sibling
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terms, then we infer a negative annotation for that sibling. For the example above, since

an annotation for RNA polymerase is unlikely to co-occur with an annotation for DNA

polymerase, then a protein with a positive annotation for DNA polymerase and no annotation

for RNA polymerase would have a supplementary negative annotation for RNA polymerase.

These supplementary negative annotations are considered as evidence and deemed cer-

tain, and since they are not always correct, the necessity of negative annotations is a lim-

itation of the top-down model. For example, a query which is known to have transferase

activity (GO:0016740) in its training data will be given no chance of having hydrolase activity

(GO:0016787), because the two terms are siblings, and P (hydrolase|transferase) = 25.3% <

50%. However, our data show that the terms were co-annotated to the same protein 834

times.

In our example above, we would prefer that our model were powerful enough to allow

evidence for DNA polymerase to explain-away our belief in RNA polymerase. Therefore,

we also experimented with a bottom-up model, where the parents of a variable representing

GO term t for protein i include the children (more specific terms) in GO: ψ(xi
t, pa(xi

t)) :=

P (xi
t|pa(xi

t)) = P (xi
t|xi

GO children(t),other model parents(xi
t)).

We use GO kin to refer to GO parents in the top-down model, and GO children in the

bottom-up model. As we continue the description of our method, model refers generally to

both the top-down and bottom-up model, except as specified.

Incorporating sequence similarity edges

When two proteins are similar in sequence and have an MST edge between them, we connect

the corresponding molecular function terms. Assuming reasonable parameters, the factor

associated with this edge induces two proteins that are similar in sequence to have similar

molecular functions.
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2.3.4 Parameter learning

Since the model is directed, the parameters have a global probabilistic interpretation: each

variable in the probabilistic model adds a factor representing the conditional probability of

that variable given its parents.

For the model just presented, the parameters are P (xi
t | xi

GO kin(t), xBLAST parent(i)
t ), the

probability of protein i having term t, given the GO kin of GO term t for protein i, and the

corresponding GO term for the BLAST parent.

We can learn these parameters from all available experimental data, not just the data

in a network for a specific query. To do so, we compare the label for each protein with a

preprocessed annotation to the label of the of the most similar protein with a preprocessed

annotation. The similarity of the most similar protein must be below the similarity thresholds

specified above. We count the number of times there was a gain of function, loss of function,

or other such events. We use thiolester hydrolase activity (GO:0016790) as an example to

show the contingency tables we use for calculating the parameters. Table 2.1 shows the

contingency table of raw counts.

Table 2.1: Raw contingency table for GO:0016790

Protein’s

annotation to

GO:0016788 (GO

parent)

BLAST

neighbor’s

annotation to

GO:0016790

Count protein

annotation to

GO:0016790 is negative

or unknown

Count protein is

positively

annotated to

GO:0016790

−/? −/? 41446 0

−/? + 5 0

+ −/? 1453 5

+ + 3 19
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Protein’s

annotation to

GO:0016788 (GO

parent)

BLAST

neighbor’s

annotation to

GO:0016790

Count protein

annotation to

GO:0016790 is negative

or unknown

Count protein is

positively

annotated to

GO:0016790

We note also that we learn parameters for each GO term. So, for example, the probability

of a hydrolase losing its ability to hydrolyze ester bonds GO:0016788 over adjacent proteins

is low (1.5%); the probability of a hydrolase losing its ability to hydrolyze a thiolester bond

GO:0016790 is higher (4.3%).

Our contingency tables are based on preprocessed annotations rather than inferred func-

tions, so incomplete annotations result in model that make a gain or loss of function between

neighboring proteins very likely. We address this by weighting the count contributed by each

protein by the information content of the protein’s label IC(label) = ∑
g∈label IC(g). An ex-

ample contingency table of weighted counts is shown in Table 2.2.

Table 2.2: Weighted contingency table for GO:0016790

Protein’s

annotation to

GO:0016788 (GO

parent)

BLAST

neighbor’s

annotation to

GO:0016790

Count protein

annotation to

GO:0016790 is negative

or unknown

Count protein is

positively

annotated to

GO:0016790

−/? −/? 2630000 0

−/? + 421 0

+ −/? 116000 678

+ + 119 1420
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In order for our model to have a chance at predicting rare GO terms, we added pseudo-

counts to our contingency tables. Our aim was to add counts from contingency tables for

similar terms, but with more experimental evidence. Therefore, we transformed each raw

(or information content (IC) weighted) contingency table for GO term g, Craw / weighted
g , with

the recursion

Cpseudo
g := 0.10 × CMRCA(GO parents(g))

Cg = Craw / weighted
g + Cpseudo

g

.

where most recent common ancestor (MRCA) is the recent common ancestor. A contin-

gency table with pseudocounts added to the raw counts are shown in Table 2.3.

Table 2.3: Contingency table for GO:0016790, with pseudocounts. In practice, pseudcounts
are added to the weighted contingency table, but here they are added to the raw table for
illustration purposes.

Protein’s

annotation to

GO:0016788 (GO

parent)

BLAST

neighbor’s

annotation to

GO:0016790

Count protein

annotation to

GO:0016790 is negative

or unknown

Count protein is

positively

annotated to

GO:0016790

−/? −/? 45500 0

−/? + 16.6 0

+ −/? 1930 17.3

+ + 5.07 219
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2.3.5 Information content of GO terms

The information content of a GO term g is calculated by

IC(g) = − log2(P (g | GO parents(g)))

2.3.6 Inference

Our models were complex enough that it was intractable to use exact inference algorithms,

and standard approximate algorithms, such as belief propagation (BP, acronym in this con-

text only), tree-reweighted belief propagation (TRWBP), generalized loop corrected BP

(GLC), Gibbs sampling, and mean field could not reliably compute reasonable probabilities

(e.g., not p = 0.5 for all terms), for the top-down model and especially for the bottom-up

model, due to its higher tree width. However, we found the performance to be similar from

various software implementations of state-of-the-art inference algorithms that performed

well at the recent Uncertainty in Artificial Intelligence (UAI) inference competition, namely

variations on adaptive inference [1] and SampleSearch [36]. By default, we used adaptive

inference with conditioning (ai_cond) when evaluating our test predictions.

Runtime and required memory depends on the number of proteins in the pruned SSN, the

number and topology of the candidate GO terms, and the parameters given to the inference

engine. Since these numbers varied greatly per query, we selected an algorithm that uses the

maximum amount of time and memory given to it. Specifically, we set a per query limit of

40 minutes of CPU time and 8 GB memory.
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2.3.7 Post-processing

Effusion’s predictions could be directly evaluated, but the BLAST-based method’s predic-

tions needed to be post-processed for them to be competitive. We applied the following

post-processing uniformly to the raw predictions of all the methods that we evaluated.

Specifically, methods that do not necessarily use the structure of GO may perform poorly

as a result of predicting a very general term with the same probability as a specific term.

We break ties in favor of more general terms by applying the following transformation:

P new := P raw × P (Depth = GO term depth)

P (Depth = GO term depth) := 1 − ϵ× GO term depth

with ϵ := 0.0001.

Any duplicate predictions that may arise, perhaps as a result of hits to multiple subjects

with annotations to the same GO term, are resolved by keeping only the prediction with the

highest probability.

2.3.8 Evaluation

We performed evaluation via temporal holdout [37]. The testing phase used annotations

through 2015 for training, and withheld annotations from the start of 2016. This reflects the

methodology of the CAFA [72, 39], is reflective of the true task of automating the manual

process of characterization of protein function, and is widely recommended [37].

All 2757 proteins with a new annotation to a GO term in the molecular function ontology

inferred by direct assay (evidence code IDA) were used as the evaluation set. We evaluated

all proteins and all terms with this criterion. We did not limit our evaluation to proteins

that had no annotations in the training set. We included all GO terms in the molecular
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function ontology, and we did not exclude GO terms that are rarely observed, nor did we

exclude proteins annotated only to rare GO terms.

We used performance metrics that are revealing and critical, proposed or suggested by

[20], with minor modifications. weighted true positive (WTP) and weighted false positive

(WFP) are similar to the true positive count and and the false positive count, respectively,

but weight the counts by the information content of the GO terms to account for the im-

balanced, hierarchically structured label space. Dividing WTP by the IC of the predicted

terms gives weighted precision (WPr). Similarly, dividing WTP by the IC of the terms in

the standard gives weighted recall (WRc). In an attempt to upweight high quality sam-

ples and down-weight low quality samples, sample-weighted weighted precision (SW-WPr)

and sample-weighted weighted recall (SW-WRc) additionally use a weighted average over the

evaluation proteins, where the weight is the information content of the true annotation. Nei-

ther recall nor its weighted variants are expected to go to 100%, since, for some evaluation

proteins, withheld GO terms may not exist in any of the preprocessed training annotations.

Ne represents the number of proteins being evaluated.
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wtp(τ) = 1
Ne

Ne∑

i=1

∑

t∈Pi(τ)∩Ti

IC(t)

wfp(τ) = 1
Ne

Ne∑

i=1

∑

t∈Pi(τ)\Ti

IC(t)

wpr(τ) = 1
Ne

Ne∑

i=1

∑
t∈Pi(τ)∩Ti

IC(t)
∑

t∈Pi(τ) IC(t)

wrc(τ) = 1
Ne

Ne∑

i=1

∑
t∈Pi(τ)∩Ti

IC(t)
∑

t∈Ti
IC(t)

sw-wpr(τ) =
Ne∑

i=1

IC(Ti)
∑Ne

j=1 IC(Tj)

∑
t∈Pi(τ)∩Ti

IC(t)
∑

t∈Pi(τ) IC(t)

sw-wrc(τ) =
Ne∑

i=1

IC(Ti)
∑Ne

j=1 IC(Tj)

∑
t∈Pi(τ)∩Ti

IC(t)
∑

t∈Ti
IC(t)

We compare our method against the most similar method described in the literature [17].

Carroll2006 is a close implementation of their method; it does not use our method for adding

supplementary negative evidence, it uses the full network, instead of the reduced network,

and it uses the parameters that they describe. However, it predicts on the same candidate

ontology, rather than a limited one; it uses a general interference algorithm, rather than an

ad-hoc one; it uses the resulting probabilities, rather than thresholded ones; and it uses our

critical evaluation method. Carroll2006Params is a close implementation of Effusion, in that

it uses our reduced network and other modifications, but it uses their parameters, namely,

the normalized BLAST scores.

We also compare our method against SIFTER [32, 76], for which there is full pipeline

available, was shown to be a top performer in CAFA [72, 39], and although its goal is

automated phylogenetic analysis, it is based on sequence-data like Effusion.

We compare our method against a sequence-similarity-based method, referred to in this

paper simply as BLAST, implemented as follows. NCBI BLAST was run with the same

parameters as the homology gathering step as Effusion (task = blastp, E-value = 1e-8,
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qcov_hsp_perc = 90) to collect sequences that align globally, and filter to sequences with

a bit score per residue of at least 0.25. For each hit, for each preprocessed annotation, we

predict the GO term for that annotation for the query with probability equal to the nor-

malized bit score per residue = bit score
max(len(query),len(subject)) . The post-processing steps described

in Post-processing are applied to the raw predictions.

Although our plots use ratio scales, we plot another baseline to convey relative scale.

The Random BLAST method is implemented the same as the BLAST method, using the

same parameters and thresholds, except that the preprocessed annotations are transferred

with a probability equal to a number chosen uniformly at random. Note that this does not

merely assign random probabilities to all candidate GO terms— probabilities will remain

consistent with GO by construction.

2.4 Results

Effusion is a simple sequence-similarity only method that utilizes a probabilistic model to

account for the uncertainty in labels and function propagation, unlabeled protein data to

add context for homology transfer, and the structure of GO to best utilize sparse input

labels and make consistent output predictions. It uses an MST reduction of the network so

that parameters can be calculated from all experimental data, weighted by the quality of

the annotations, augmented with annotations and pseudocounts derived from the data, and

used as input to general purpose PGM inference algorithms.

We provide an implementation of Effusion. The source code, written in Python, is

available online. We rely on software written by others in C++ for the parts of Effusion that

are computationally intensive, namely the database software, similarity computations, and

inference engines.
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We first analyze the predictions made by the method as a whole, and then show the

effects of the various components of the method.

2.4.1 Comparative analysis

The dataset for the test phase contained 2757 proteins that had an Inferred from Direct

Assay (IDA) annotation to the molecular function ontology dated in 2016. All of these were

included for evaluation, except where indicated otherwise.

We evaluated Effusion against the methods described in the methods as BLAST remains a

high-performing method and is used in CAFA evaluations and by many annotation pipelines.

Since both Effusion and BLAST use the same data, the results are highly interpretable.

The BLAST-based method made non-root molecular function predictions for 75.2% (2072

/ 2757) of the evaluation proteins. The remaining proteins did not have a protein with posi-

tive preprocessed annotations within the thresholds. Effusion (top down, adaptive inference

with conditioning) made non-root molecular function predictions for 70.4% (1942 / 2757) of

the total, or 93.7% (1942 / 2072) of the proteins for which BLAST made predictions.

Compared to BLAST, Effusion has additional steps that can fail (e.g., inference) or result

in a loss of proteins with evidence (i.e., the MST heuristic). Therefore, we first looked at

the performance of Effusion (top-down and bottom-up, ai_cond) and the baselines over all

evaluation proteins, including those proteins for which Effusion failed to make a prediction

(Figure 2.3). In all of these plots, Effusion generally performs better than BLAST.

The proteins where Effusion failed to make a prediction, but BLAST was able to make

a prediction, were usually due to artificial limitations on runtime (data not shown), and

a prediction could still be made by a user with a special interest in a specific protein by

removing the limits. Therefore, in order to see how well Effusion typically performs, we
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(a) WFP vs.ăWTP (b) Precision vs.ăRecall

(c) Weighted Precision vs.ăWeighted Recall (d) Sample-Weighted Weighted Precision
vs.ăSample-Weighted Weighted Recall

Figure 2.3: Performance plots over all proteins in the test set, regardless of whether any
of the methods failed to make predictions.
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(a) WFP vs.ăWTP (b) Precision vs.ăRecall

(c) Weighted Precision vs.ăWeighted Recall (d) Sample-Weighted Weighted Precision
vs.ăSample-Weighted Weighted Recall

Figure 2.4: Performance plots over treated proteins.

looked at the performance of the methods over only those evaluation proteins that had a

prediction made by all methods being considered. We call these proteins treated proteins.

The plots are similar to those of Figure 2.3, and are shown in Figure 2.4. As expected from

the evaluation under the full set of evaluation proteins, Effusion generally performed better

than BLAST on all metrics.
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We performed a similar analysis on a per protein basis, essentially comparing 1942 clas-

sifiers of Effusion (top-down, ai_cond) and by BLAST. It is expected that Effusion and

BLAST will predict the same GO terms in the same order for many proteins; the methods

use the same data, and 538 / 1942 of the queries were associated with protein templates (see

[Protein template]) with <= 1 candidate leaf terms, or networks with <= 1 proteins with

evidence. However, we identified 782 proteins where, for the GO terms predicted by both

methods, Effusion reordered the predictions made by BLAST and resulted in a change in

performance, according to area under the wfp vs. wtp curve (y vs. x). In general, Effusion

accumulated the same bits of true positives, with fewer bits of false positives, for 53% (418

/ 782) of the queries (p = 0.03, binomial test with H0=0.5). The percentage increased to

61.9% (313 / 505) when we limited the analysis to those queries where the query itself did

not have evidence.

We were especially interested about the ability of our method to differentiate catalytic

activities. This is an important and difficult problem [2]; in functionally diverse enzyme su-

perfamilies, homologous members have evolved to catalyze many different chemical reactions

[34], and these proteins are often misannotated in public databases [77]. We performed an

additional evaluation constrained to the subset of GO representing these GO terms. Fig-

ure 2.5 plots the performance of our methods on the catalytic subset. The performance of

Effusion (top-down, ai_cond) and BLAST differed on 142 enzymes, according to area under

the the wfp vs. wtp curve. Effusion outperformed BLAST on 91 / 142 64.1% of the queries

(p = 0.0005).

An example from the test dataset that demonstrates Effusion’s utility is the protein

identified by UniProt Q4ZIL6 in Zebrafish (Figure 2.2). One of the experimental an-

notations withheld from the test dataset was for testosterone 6-beta-hydroxylase activity

(GO:0050649), which is a type of GO:0008395. This protein is not experimentally annotated
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(a) WFP vs.ăWTP (b) Precision vs.ăRecall

(c) Weighted Precision vs.ăWeighted Recall (d) Sample-Weighted Weighted Precision
vs.ăSample-Weighted Weighted Recall

Figure 2.5: Performance on catalytic terms. Performance plots over treated proteins.
Annotations and predictions were filtered to catalytic terms
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to GO:0008404.

Effusion was able to combine evidence for GO:0008395 from the surrounding network

context of UniProt Q4ZIL6 (see Figure 2.2 (c)). It correctly predicted GO:0008395 at 36.3%

(Figure 2.2 (e)), at which point Effusion predicted no false positives. Effusion also predicted

GO:0008404 lower at <1% (Figure 2.2 (f)). Table A.1 details the predictions for UniProt

Q4ZIL6 made with Effusion.

BLAST, however, predicted this protein to have GO:0008404 with a probability of 20.0%,

based on its proximity to O54750 (E-value = 1.13045e-86, total bit score 278.87, bit score per

residue = 0.53, alignment length = 488, query length = 523, subject length = 488, identities

= 161, positives = 259). Compared to Effusion, BLAST accumulated 19 false positives

(82.38 bits of information), before predicting GO:0008395 at 17%, based on hitting P13108

(E-value = 2.62e-78, total bit score 256.914, bit score per residue = 0.49, alignment length

= 502, subject length = 502, identities = 167, positives = 256). Predictions for UniProt

Q4ZIL6 made with BLAST are shown in Table A.2.

2.4.2 Creation and use of protein networks

Effusion networks were generated quickly using BLAST to collect the homologs and DIA-

MOND to fill in the all-by-all edges that could be used in the MST (Table 2.4, Figure A.1).

Effusion succeeded in making networks for 98.3% (2710 / 2757) of the queries. The median

number of nodes in the protein network was 268.5, the maximum was 71,286, and 31 net-

works had only the query. The distributions for the number of nodes in the protein network

are shown in Figure A.2.
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Table 2.4: Statistics for the time to build the sequence similarity networks. Times are
rounded to the nearest second

Statistic Time to Build Network (s)

Mean 1233

Std 3463

Min 10

25% 69

50% 173

75% 705

Max 33607

After reducing the network to the MST and pruning the protein network to proteins

that either had evidence or were queries, 899 networks had only the query remaining. This

was due either to an absence of proteins with evidence in the original network, or to the

more stringent threshold used for collecting the MST edges. The mean number of nodes in

the reduced network was 57, if we exclude networks that contained only the query, with a

maximum network size of 3284 nodes. 1987 networks had at least one protein with non-root

positive preprocessed evidence. The distribution of the number of proteins in the reduced

network are shown in Figure A.3, and the distribution of the number of proteins with positive,

non-root evidence is shown in Figure A.4.

We compared Effusion to several baselines that do not use a semi-supervised approach

to measure the value of adding the network context, shown in Figure A.5. The BLAST-like

method used Effusion’s probabilistic framework, but only included network edges from the

query to proteins with evidence. The supervised method also used Effusions’s probabilistic
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framework, but completely unlabeled proteins were deleted from the protein network and

excluded from the subsequent model. The full network version of Effusion, which used the

most unlabeled proteins, performed the best, and the BLAST-like version of Effusion, which

used the fewest unlabeled proteins, performed the worst.

2.4.3 Embedding GO

When viewed as a subontology of GO, the true label of each query protein usually had

multiple leaf molecular functions 58.0% (1,598 / 2,757), with a median of 10 GO terms and

a median of 2 leaf GO terms. Effusion’s subontology of candidate GO terms, derived from

the training annotations in the reduced network, also usually had multiple leaf molecular

functions 55.8% (1,513 / 2,710), with a median of 9.5 GO terms, and a median of 2 leaf GO

terms.

The candidate GO terms overlapped significantly with the terms for the query that were

in the standard, but they did not overlap exactly. Methods that predicted all of the candidate

terms would have incurred, on average, 8.25 true positives (13.08 bits of information), but

also have 7.80 false positives (20.34 bits of information) and 4.79 false negatives (9.86 bits

of information).

The speed at which inference can be run is dominated by the number of parents of a

variable in the graphical model, which are GO parents in the top-down model, or modeled

GO children in the bottom-up model. The distributions for the maximum of these per query

are shown in Figure A.6.

We compared the standard top-down method with supplementary negative evidence, the

standard bottom-up, which does not require negative evidence, and the top-down method

without the supplementary evidence. The performance curves are in Figure A.7. While the
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improvement seen here is modest, it was crucial when experimenting with larger networks

that included non-homologous proteins (e.g., those found by searching protein interaction

databases, data not shown).

Q921C5 provides an example that exemplifies the difference between the models (Fig-

ure A.9). Without supplementary negative evidence, the top-down model incorrectly pre-

dicted Q921C5 as having clathrin binding (GO:0030276) with a probability of 26.4% that

ranked it above a few correct GO terms (Table A.3). This is because the query Q921C5 had

evidence for Rab GTPase binding (GO:0017137) and therefore implied evidence for ancestor

term protein binding (GO:0005515), and P (GO:0030276 | GO:0005515) is relatively high

(11.0%). However, we also have implied evidence for enzyme binding (GO:0019899), and

since GO:0030276 is unlikely (35.7%) to co-occur with GO:0019899, we assume this protein

does not have GO:0030276. The full table of predictions is shown in Table A.4. Notice that

there were some correct GO terms, such as macromolecular complex binding (GO:0044877),

that were also predicted at 0% due to incorrect supplementary negative evidence for the

query. On the other hand, because the bottom-up model has factors over all the child GO

terms, it does not require negative evidence. The bottom-up model predicted GO:0030276

at only 19.6%. A table of predictions for Q921C5 using the bottom-up model is shown in

Table A.5.

2.4.4 Data-derived alterations of parameters

The added value of weighting counts by information content of the sample is shown in Fig-

ure A.10. An example illustrating the effect of weighting is Serine–tRNA ligase (UniProt

P34945), shown in Figure A.11. Without weighting, the probability of a protein being in-

volved in binding (GO:0005488) given its protein network parent has GO:0005488 is 90.7%.



CHAPTER 2. EFFUSION 47

In the network, the probability of correct function decreases quickly, and the query is pre-

dicted at 32.6%. After weighting, P (xGO:0005488
i | xGO:0005488

pa(i) ) increased to 95.2% and the

probability for the query having the term increased to 59.3%.

The value of adding pseudocounts to the contingency table is shown in Figure A.12. An

example from the top-down model is Serine protease 57 (UniProt Q6UWY2), which had

withheld experimental annotation of sulfur compound binding (GO:1901681), is shown in

Figure A.13. This GO term is rarely observed experimentally, so the calculated statistic

for P (xGO:1901681
i | xGO:1901681

pa(i) ) was only 73.8%, the probability for this term decayed quickly

from the protein with evidence to the query protein, and the query protein was predicted

to have GO:1901681 at only 20.6%. After the addition of pseudocounts by the method

described above, the calculated statistic for P (xGO:1901681
i | xGO:1901681

pa(i) ) increased to 92%,

and the prediction for the query increased to 56.2%. Pseudocounts were especially beneficial

for the bottom-up model, due to its sensitivity to probabilities at the leaves.

2.4.5 Inference on real-world protein data

During the discovery phase, we evaluated many of the inference algorithms implemented

in OpenGM [4], libdai [62], and top contenders from the UAI Inference Challenge in 2010

[29], 2014, and 2016 (Figure A.15). Many of the algorithms, particularly the standard

algorithms, crashed, failed to converge, or converged to obviously incorrect probabilities

for a large number of our queries, particularly when running the bottom-up model, which

has much larger factors. We selected adaptive inference with conditioning (ai_cond) [1] for

running the test set predictions, based on its consistent performance during the discovery

phase. Although this method succeeded in making predictions for most 97.7% (1942 / 1987)

proteins with evidence in the reduced network, the software still gave poor results on some
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queries; for example, for 8 queries, the software predicted low probabilities for the root

molecular function term.

Overall, the performance plots in Figure A.15 show two clusters of methods with similar

performance. These clusters correspond to the top-down model and the bottom-up model.

2.5 Discussion

By engineering a method and model that accounts for the essential idiosyncrasies of protein

function prediction, we were able to make predictions that are practical and more accurate

than the standard homology transfer method, using the same primary source of data. Our

method, and our evaluation of it, are focused on identifying specific activities, rather than

transferring the general function of remote homologs. We believe this is particularly useful

to the broad scientific community.

BLAST can be viewed as making predictions on a star shaped network of annotated

proteins. Effusion, however, makes a network from data that is discarded by BLAST, and

uses it to make predictions that consider a query protein’s relative position in a sequence

similarity network. Computing the all-by-all similarity matrix for each of many thousand

queries is now practical with DIAMOND.

Effusion uses PGMs, which are a natural fit for the problem of predicting protein function

for several important reasons. PGMs account for the random error introduced by propagation

of functional information. Second, inference on PGMs results in confidence scores (i.e., the

probabilities) that are useful to consumers of protein function predictions. Third, PGMs

can take advantage of the large amount of unlabeled and partially unlabeled protein data,

while most other methods cannot handle such high degrees of sparseness. Fourth, PGMs

can seamlessly do structured output prediction, and therefore produce predictions that are
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consistent with, and take advantage of, the structure of GO.

There are several reasons for modeling protein function as a hierarchy of Bernoulli ran-

dom variables. A standard multinomial representation would model the probability of K

mutually exclusive outcomes, where K is the number of GO terms. Compared to this rep-

resentation, Effusion directly predicts combinations of GO terms, without assuming that

they are mutually exclusive. Second, we can model relationships between GO terms, so that

annotations to GO terms related to a particular GO term of interest are considered. In

particular, direct and indirect evidence for a general GO term is considered when making

predictions about a more specific GO term of interest. Third, it enables the method to

predict structured outputs, where the predictions for various GO terms are valid in relation

to the structure of GO. It also allows the method to consume structured input with partial

labels.

We implemented and evaluated two constructions for the protein template that generated

models with different semantics. Our analysis revealed interesting tradeoffs between the

two models. Although the bottom-up model has the advantage that it does not require

negative evidence, it has other limitations that offset its value. Namely, it is sensitive to leaf

probabilities, and since each factor typically depends on more variables than it does in the

top-down model, it is also less amenable to inference.

We also evaluated several inference algorithms for use with our method. Although we

could not get reasonable predictions for all queries, even with heuristics, we had much more

success with a top-performing inference software identified by the UAI competition. We

encourage further development of inference algorithms and software, and encourage partici-

pation in critical assessments on real world problems.
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2.5.1 Comparisons to other methods

Many methods for automated function predication benefit from integrating many other types

of data [73, 23], but it is very difficult to perform well controlled comparisons to each method.

Therefore, to evaluate our methods against a large collection of diverse methods, we submit-

ted predictions from a preliminary version of Effusion in the 2017 CAFA challenge (results

and manuscript in preparation by the CAFA consortium).

Effusion’s main similarities to the method described in Carroll and Pavlovic [17] and

Mitrofanova, Pavlovic, and Mishra [61] are the general use of protein networks, modeling of

GO, and a probability model. However, there are fundamental differences with these works in

each aspect of our methods. The previous methods used a model whose factors lack a global

probabilistic interpretation, and since learning maximum likelihood parameters on a per

network basis would have been infeasible, they used normalized similarity scores. Effusion,

on the other hand, has a model whose factors are simply conditional probability functions,

and therefore we can learn maximum likelihood parameters from all available experimental

data. Significantly, this allows us to incorporate parameters that are specific to each GO

term, thereby giving us reasonable results on problems that have a wide range of GO terms,

rather than limiting predictions to only a few (i.e., < 10) GO terms. Additionally, our

formulation allows the incorporation of data derived pseudocounts, inference with general

purpose, rather than ad-hoc, inference algorithms, and ranked probabilities for all GO terms,

rather than setting an arbitrary threshold for prediction. We’ve shown that the differences

between these methods result in drastically different performance.

While it is common for labs to provide the algorithm for predicting protein function,

they rarely provide the pipeline necessary for preparing the data and parameters, making

it difficult to compare methods on the same training and test data. Fortunately, the high-
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throughput pipeline for SIFTER was available. This method is highly relevant because it is

based on sequence similarity, its aim is to discern functions among relatively close homologs

rather than predicting general functions from remote homologs, and also uses a Bayesian

network. There are substantial differences, however. rather than BLAST for homologous

sequences, SIFTER uses Pfam [71] and uses its alignments to build phylogenetic trees. It

uses a continuous time Markov chain in its model for protein function evolution, but does

not use GO. Whereas Effusion currently requires edges to reflect alignment across the entire

sequence, SIFTER combines results from all the Pfam domains in a query protein. While

we have shown that Effusion outperforms SIFTER, we have not determined which of the

differences in method result in the difference in performance.

2.5.2 Directions for future research

In this report, we describe the first version of Effusion, a simple, high performing method

that suggests specific protein function with a model that uses protein networks and incorpo-

rates GO. Although Effusion only uses sequences that are highly similar across their entire

lengths, and only models the molecular function aspect of GO, it is designed to be extendable

to model additional aspects of protein function, and additional, more finely grained relation-

ships between proteins and GO terms. By making use of resources such as domain-centric

GO (dcGO)[33], we could include sequences that align only over a domain, and propagate

function at higher granularity.

Because of the high availability of functional association data [83], and the strong rela-

tionship between a protein’s biological process and its molecular function [12, 69], we are

especially interested in extending Effusion by modeling each protein’s biological process.

This extension could scale manual genomic context analysis, which uses a protein’s genomic
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context and pathway information to infer a protein’s molecular function [74, 90, 91]. Calcu-

lating and incorporating potential ligands and substrate substructures could also be useful

for discerning substrates from biological processes associated with enzymatic function and

metabolism. We are also interested in modeling the cellular component of a protein, be-

cause of the availability of unbiased, high-throughput experimental data for this aspect of a

protein, and the extent to which the location of a protein relates to its molecular role.

A probability distribution, including a PGM, can be used for other purposes besides

computing marginal probabilities. Eventually, we envision the use of Effusion to identify

targets for experimental characterization that would minimize the overall uncertainty in our

belief of protein functions.

Since we only considered MST edges, Effusion could not perfectly capture network bound-

aries (see Figure 2.2). We think it would be valuable to pursue using more of the network

edges, as long as we could still use all the experimental data to calculate parameters and

priors. One approach would be to adopt a phylogenetic tree as the topology of our graphical

model, which was shown to be beneficial for SIFTER [31].

Finally, there are additional ways that could be investigated to improve learning the pa-

rameters. For example, we could differentiate the functions and annotations of each protein,

and model the functions as a latent random variable, resulting in a tree-structured HMM.

We could also use a more inclusive neighborhood function when counting annotation changes

over neighboring functions, or use a continuous Markov chain rather than the discrete one

that we currently use.
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Chapter 3

Effusion GCA: Prediction of Protein
Function with a Probabilistic Model
for Analysis of Genomic Context

3.1 Abstract

3.1.1 Motivation

There are not enough function annotations to delineate functional boundaries using sequence

similarity alone. Manual analysis of genomic context has been successfully used to infer

functions in the absence of characterized close homologs or in the presence of conflicting

evidence. Generalizing and scaling this approach may improve the performance of prediction

algorithms and the quality of genome annotation. However, few methods to date have

attempted to automate genomic context analysis for the prediction of protein function.

3.1.2 Results

We present Effusion GCA a method that propagates – in a statistically rigorous way –

information about a protein’s biological process among functionally associated proteins, and
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uses that information in its simultaneous prediction of molecular function. We evaluate

the performance of Effusion GCA, similar published methods, and various baselines using a

critical method that reflects that real world task of function annotation. We also analyze the

value of each component of the method. Finally, we discuss the results and propose future

directions.

3.2 Introduction

Effusion, presented in the last chapter, establishes a framework for prediction of protein

function via network analysis. The only feature of each protein that the method consid-

ered was pairwise sequence similarity. However, sequence similarity alone is insufficient for

precisely differentiating protein function, and manual network analysis typically considers

a broad array of distinctive features in the sample set, such as the residues in conserved

positions in an alignment. This chapter attempts to extend Effusion in order to accommo-

date another analytical technique from computational biology. Analysis of genomic context

has been useful in generating hypothesis for a protein’s molecular function in the absence

of characterized homologs, and useful for pinpointing a protein’s function in the presence of

conflicting evidence. We hypothesis that the incorporation of this analytical technique into

Effusion will result in a method capable of achieving greater predictive performance.

While the goal is to automate genomic context, the specific approach is to proceed by

asking: how can we use data about functionally associated proteins to predict molecular

function? The method proposed here, Effusion GCA, represents one attempt.
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3.2.1 Genomic context analysis

A motivating example for the use of genomic context comes from Ricardo et al. [74], where

a protein of unknown function was inferred from manual analysis of genomic context (see

Figure 3.1b). The query protein was similar in sequence to nucleotide deaminases, and

was therefore annotated as a putative nucleotide deaminase. However, the query protein

also shared the genomic context of proteins in the histidine degradation pathway. Since

histidine is not a nucleotide, the authors doubted the putative function. Instead, they

hypothesized and validated that, rather than a nucleotide deaminase, the protein was actually

a N-formimino-L-glutamate deiminase.

In the manual analysis just described, the query protein had characterized homologs and

members of its operon were also characterized. However, a common scenario is where none

of the close homologs to the query are characterized, and the either the query is not in

an operon, or the members of the operon are not characterized (Figure 3.1c). The lack of

information directly related to the query is unpromising, but a network view of this problem

gives us hope that information can propagate to the query from more distantly related

proteins. However, finding an assignment of functions to all the proteins that explains

what’s going on in the network is starting to get tough, and the actual scale of the problem

cannot be done manually (Figure 3.1d).

3.2.2 Functional associations

Functionally associated proteins generally describe two or more proteins that work together

to carry out cellular functions. For example, functionally associated proteins may be involved

in the same metabolic pathway, have an activator – enzyme relationship, or are components

in a multiprotein complex. Functional associations can be detected through a combination
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Figure 3.2: GCA case study. (a) Legend. (b) The approximate scale of the manual analysis
in Ricardo et al. [74]. (c) The query is neither similar in sequence to any annotated protein,
nor is it functionally associated with any annotated protein. The network view, however,
suggests that it may still be possible to glean functional information about the query, but
manual analysis would be very difficult. (d) A real-world SSFA network. It was generated
using an early method that iteratively searched BLAST and STRING.

of experimental assay and computational inference, through techniques such as yeast two-

hybrid screening, tests for synthetic lethality or genetic interaction, text-mining, phylogenetic

profiling, genomic proximity, co-localization, and interolog inference.

STRING [58, 83] is a database of known and inferred functional associations. It also

combines multiple data sources in order to give a combined score indicating the confidence

of a functional association. For the dataset used in this work, STRING had 46,049,474 high

confidence (combined score > 900/1000) functional associations. STRING reports that the

newer STRING v10.5 has 1.380 billion interactions, 2031 organisms, and 9.6 million proteins.

There are other sources that aggregate functional association data. MetaCyc provides

well-curated pathway data [18]. BioGRID is a curated repository [19].

3.2.3 Functional associations networks

Pairwise functional association data are often represented as functional association networks.

Analysis is often performed on these networks to identify topological features, such as hubs

and motifs, that may be of biological significance. They have been used, for example, to

identify potential drug-drug interactions.
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3.2.4 Quantification of association between aspects of function

There have been several quantitate studies that measure the association between molecular

function and biological process [7, 12, 40, 70, 50, 84, 11, 52, 68, 10, 53, 69]. These studies

typically identify functional associations to enhance the structure of GO or to compare genes.

In addition to identifying novel pairs of related terms and new methods for identifying

such relations, this research has yielded other insights, such as the ability to reconstitute

manually derived associations, and the observation that different methods produce distinctive

results.

3.2.5 Related work

Network-based methods

Many methods propose a novel method for inferring functional associations [55, 65, 67] or for

combining sources of functional association data [54, 89], in order to predict protein function.

These methods typically focus on predicting biological processs (BPs) [26, 87, 41, 63, 45].

Some methods predict MF via functional association, typically via protein-protein in-

teraction networks that combine functional associations with sequence similarity. These

methods propagate function without regard to the aspect the function: they assume that

functionally associated proteins are likely to share the same BP and MF. The latter assump-

tion, however seems unlikely; it seems more common that two proteins in the same pathway

have different MFs. Expectedly, this assumption has two outcomes. Either methods that

use functional association data perform better at predicting BP, or the method learns pa-

rameters that indicate functional association is relatively uninformative for predicting MF

[60].

In a recent assessment of protein function prediction methods, only one of 17 MF predic-
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tion methods self reported the use of genomic context. This method, ffPred [23], was one of

the best performing methods. However, it integrated genomic context data while discarding

biological knowledge about genomic context that may improve prediction of MF.

3.3 Methods

The method builds on Effusion, and is called Effusion GCA. Effusion models the MF of

each protein, and has factors that include corresponding MF terms for each pair of proteins

that are neighbors in the reduced network. Effusion GCA additionally models the BP of

each protein. The SSFA network has edges that represent either sequence similarity or

functional association. Effusion GCA has factors that include corresponding BP terms for

each endpoint for each edge that represents functional association, in addition to the factors

linking corresponding MF terms for sequence similarity edges.

3.3.1 Preprocessing

In addition to the data used for the sequence similarity-only method, we also downloaded:

• functional associations: STRING, version 10

3.3.2 Building the SSFA network

For a given query protein, we build a SSFA network, where nodes represent proteins and

edges represent either pairwise sequence similarity or functional association. This network is

quickly constructed by collecting homologs with BLAST, collecting functionally associated

proteins from STRING, and then using DIAMOND to fill in the all-by-all sequence similarity

edges of the network. BLAST is run with a permissive E-value threshold (1e-8), but limited
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to global alignments (qcov_hsp_perc = 90), and filtered to sequences with a bit score

per residue of at least .25. STRING is queried for functionally associated proteins with a

combined score of 90%. We use the resulting sequences to format a DIAMOND DB, and

search each resulting sequence against this DB using DIAMOND (evalue = 1e-8, query-

cover = 90%, subject-cover = 90%), and more restrictive parameters (max-target-seqs =

1000, minimum bit score per residue of 1.4 × .25).

3.3.3 Constructing the probabilistic model

As with Effusion, the model network is made tractable by converting it to an MST, pruning

it to nodes with evidence, and directing it outward from the query.

The graphical model then represents the following joint distribution:

P (X = x) =
∏

xi∈x

P (xi|pa(xi))

.

where x := x1, x2, ...xN and pa(xi) represents the model parents of variable xi.

A PGM enables us to build a probabilistic model from smaller components. The com-

ponents of this model are shown in Figure 3.4.

Protein template

The protein template is based on the protein template in Effusion GCA, but is extended with

a representation for the protein’s BP. The representation for BP mirrors that for MF: the

aspect of protein function is modeled as a hierarchy of Bernoulli random variables reflecting

a subgraph of the biological process ontology of GO. Every GO term for which there is a

positive or negative preprocessed annotation in the SSN is a candidate GO term, with two
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Figure 3.4: GCA model. (a) A PGM for a network of 3 proteins. (b) The MF of each
protein is represented by a hierarchy of Bernoulli random variables with the topology of GO.
(c) Proteins that are similar in sequence are likely to have similar MFs. (d) Proteins that are
functionally associated are likely to have similar BPs. (e) Correlations are modeled between
ontologies so that the predicted functions for an individual protein are consistent.
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exceptions. For reasons of computational practicability, candidate BP terms are filtered:

(1) they must be a descendent of metabolic process (GO:0008152), or (2) be an ancestor of

GO:0008152. For example, superoxide metabolic process (GO:0006801) might be a candidate

GO term because it is descendent of GO:0008152, but an ancestor of GO:0006801, such as

cellular process (GO:0009987) would be excluded, because it is not a metabolic process.

As with Effusion, we implemented both a top-down (parent GO terms are parents in the

Bayesian network, referred to as td) and bottom-up model (parent GO terms are children in

the Bayesian network, referred to as bu).

We add edges between MF terms and BP terms within a single protein, allowing belief to

flow between the two aspects of protein function, and reducing the influence of assignments

with unlikely combinations of terms. For reasons of computational tractability, rather than

add edges between every combination of terms from each aspect, we aim to add the most

informative edges, with the justification that each additional edge is one less independence

assumption, and therefore should improve the results, as long as there is enough data to learn

stable parameters. Including some inter-ontological edges and not others may introduce bias,

but we have not determined the extent or effect of this bias.

The algorithm for determining the inter-ontological parents of a candidate term g in the

top-down model is as follows. We collect up to 1000 proteins that are positively labeled

with g, and up to 1000 proteins that are positively labeled with the parents of g, but not

labeled with g. We calculate their labels, assuming a value of zero for GO terms without

a positive preprocessed annotation. We then use the scikit-learn feature selection function

mutual_info_classif to calculate the mutual information between the binary class g and the

values for the candidate functions in the other ontology, and take the top iop candidate

functions in the other ontology. Our analysis is based on iop = 1.
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Inter-protein edges

As with Effusion, when two proteins have similar sequences, we connect the correspond terms

in MF. This adds a factor that says that two proteins that are similar in sequence are likely

to have similar values for each molecular function.

When the edge between two proteins represents a functional association, then we associate

their corresponding BP terms.

Like the edges due to sequence similarity and the edges due to functional associations,

inter-ontological edges are also directed. Every protein i in the reduced network except the

root has a parent protein π(i). If (π(i), i) ∈ ESS in the reduced network, then there is

a directed edge between each corresponding MF term from (π(i), i), and a directed edge

$(IOP(t), t) for each BP term t that has an inter-ontological parent. On the other hand,

if (π(i), i) ∈ EF A in the reduced network, then there is a directed edge between each corre-

sponding BP term from (π(i), i), and a directed edge (IOP (t), t) for each MF term t that

has an inter-ontological parent. We are free to chose which ontology is the parent of the

other ontology for the root node; we chose BP → MF.

3.3.4 Parameter learning

There are three sets of parameters derived from the structure of the graphical model described

in the previous section: the probability of protein i having term t, given the parents of go term

t for protein i, and either the corresponding go term for the blast parent, the corresponding

term for the string parent, or the inter-ontological parents for the same protein. That is,
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P (xi|pa(xi)) =

⎧
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t) ∈ EBLAST
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)
if (xSTRING parent(i)

t , xi
t) ∈ ESTRING

P
(
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)
if (xi

interont parent(t), xi
t) ∈ Einteront.

They are learned from weighted contingency tables with pseudocounts derived from con-

tingency tables of similar terms, as described in the previous chapter.

3.4 Results

3.4.1 Comparative analysis

The dataset for the test phase contained 2757 proteins that had an IDA annotation to the

MF ontology dated in 2016.

The BLAST-based method made non-root MF predictions for 74.3% (2048 / 2757) of the

evaluation proteins. Effusion GCA (top down, adaptive inference with conditioning) made

non-root MF predictions for 60.0% (1655 / 2757) of the total.

We compared Effusion GCA to Effusion, the most similar published method (Mitro-

fanova2010), and informative baseline methods.

We compared the performance over the proteins treated by Effusion GCA, Effusion,

Mitrofnova2010, and the baselines. Mitrofanova2010 was excluded from evaluations over

treated proteins because its low coverage would severely reduce the size of the evaluation

set.

We compared the performance Effusion GCA, Effusion, Mitrofanova2010, and the base-

lines on the catalytic subset.
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(a) WFP vs.ăWTP (b) Precision vs.ăRecall

(c) Weighted Precision vs.ăWeighted Recall (d) Sample-Weighted Weighted Precision
vs.ăSample-Weighted Weighted Recall

Figure 3.5: Performance plots over all proteins in the test set, regardless of whether any
of the methods failed to make predictions.
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(a) WFP vs.ăWTP (b) Precision vs.ăRecall

(c) Weighted Precision vs.ăWeighted Recall (d) Sample-Weighted Weighted Precision
vs.ăSample-Weighted Weighted Recall

Figure 3.6: Performance plots over treated proteins.
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(a) WFP vs.ăWTP (b) Precision vs.ăRecall

(c) Weighted Precision vs.ăWeighted Recall (d) Sample-Weighted Weighted Precision
vs.ăSample-Weighted Weighted Recall

Figure 3.7: Performance on catalytic terms. Performance plots over treated proteins.
Annotations and predictions were filtered to catalytic terms
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We compared Effusion GCA (top-down, ai_cond) and Effusion (top-down, ai_cond) on

a per protein basis, by comparing the 1,496 classifiers of each that both had a non-root MF

annotation, and measuring performance by area under the curve (AUC) under the WTP-

WFP (x-y) curve, when the evaluation was limited to the GO terms predicted by both

methods for the respective query. 1,229 of the classifiers had the same AUC. Effusion GCA

performed better on 121 of the queries. Effusion performed better on 146 of the queries.

When examining the predictions by the best and worst performers, we noticed that many

of them had unreasonable probabilities. Effusion GCA was uncertain that 45 of the query

proteins had the root MF term. In comparison, Effusion was certain of the root MF term

for all except 8 of the query proteins.

An example where Effusion GCA did well compared to Effusion is gamma-aminobutyric

acid receptor subunit epsilon (UniProt P78334). Effusion GCA predicted chloride transmem-

brane transporter activity (GO:0015108) at 29.1% before predicting excitatory extracellular

ligand-gated ion channel activity (GO:0005231) at <1%. Meanwhile, Effusion predicted

GO:0005231 at 89.2% and eventually predicted GO:0015108 at <1%. The performance plot

is shown in Figure B.1, and the predictions are in Table B.1 and Table B.2.

Failed inference was responsible for all of the worst 6 queries Effusion GCA compared

to Effusion, as measured by AUC under the WTP-WFP curve. As the 7th worst prediction

by Effusion, Alpha-ketoglutarate-dependent dioxygenase alkB homolog 3 (UniProt Q96Q83)

had only predictions with probabilities close to 0 or close to 1. Therefore, we suspect that

inference for this query failed to converge, and the performance of Effusion GCA in general

was limited by the performance of the inference algorithm.
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Figure 3.8: SSFA network for UniProt P78334. The nodes are pruned to the same nodes
as in the reduced network, and colored by probability of GO:0015108.

3.4.2 Creation and use of SSFA networks

Figure 3.8 shows an SSFA network. The subgraph induced by the dark edges is the reduced

network, after taking the MST, directing, and pruning to evidence. The whole network is ac-

tually a subgraph induced by the nodes that exist in the reduced network. Figure 3.9 applies

the Prefuse Force Directed layout to the reduced network to highlight the tree structure.

The method could create SSFA networks reliably and quickly (Table 3.1, Figure 3.10).

Effusion GCA succeeded in making networks for 98.3% (2710 / 2757) of the queries. This

is the same number as the Effusion (sequence only) method; Effusion GCA added a number

of sequences that were, usually, non-homologous to the query, but these were only used as

additional input sequences to DIAMOND run on a database of sequences homologous to the

query, and therefore, did not prohibitively increase the number of edges.
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Figure 3.9: Reduced SSFA network for UniProt P78334. The nodes are colored by proba-
bility of GO:0015108.

Table 3.1: Statistics for the time to build the SSFA networks. Times are rounded to the
nearest second

Statistic Time to Build Network (s)

count 2710

mean 2277

std 3748

min 121

25% 762

50% 1176

75% 1987

max 34219

Statistics for the number of proteins that were added to the protein network by querying

STRING is shown in Table 3.2. The network reduction pruned many of these STRING

proteins. The statistics for the number of functionally associated proteins remaining in the

reduced network is also shown in Table 3.2. We report statistics based on a smaller number

of reduced networks, because Effusion GCA only reports statistics after a successful run.

Table 3.2: Statistics for the number of functionally associated proteins in the full SSFA
network and in the reduced SSFA network. Rounded to the nearest integer.

Statistic FA proteins in full SSFA network

FA proteins in reduced SSFA

network

count 2757 2119

mean 3747 15
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Statistic FA proteins in full SSFA network

FA proteins in reduced SSFA

network

std 11264 30

min 0 0

25% 6 0

50% 137 2

75% 1315 16

max 118969 369

Importantly, whereas Effusion had 899 reduced SSN with only one node and 565 problem

instances with no positive evidence, Effusion GCA had only 398 reduced SSFA networks with

only one node and only 269 problem instances with no positive evidence.

3.4.3 Parameters for functional association edges

We investigated the multi-label similarity of two functionally associated proteins, excluding

functionally associated pairs with either protein lacking any annotation for the aspect being

considered. We only counted terms that were annotated by either of the two proteins, so

that the counts would not be dominated by terms not annotated by either protein. We com-

puted this for functional associations used to compute the parameters, and for the functional

associations that occurred in the reduced networks. We report the results, based on 10,000

sampled functional associations, in Table 3.3. We were surprised that two functionally asso-

ciated proteins had such similar MFs, even when we weighted the samples and the terms by

information content. We noticed that there were many identical or highly similar pairs of

MFs that were labeled with terms such as structural constituent of ribosome (GO:0003735)
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Figure 3.10: Distribution of time to build the network

or GO:0005488. This may also have been due to differences in the structures and annota-

tions between MF and BP. Either way, this suggests that it may be useful to differentially

propagate terms within different sub-ontologies (e.g., binding, catalytic activity, structural

molecule activity) for the same GO (e.g., MF). That is, some sub-ontologies of MF, such as

GO:0003735, might be worth propagating over sequence similarity edges. However, we still

assume that functionally associated proteins are less likely to have similar catalytic activ-

ities than proteins with highly similar sequences, and we are focused on a model that will

best distinguish catalytic activities, rather than predicting whether a protein is capable of

binding.
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Table 3.3: Statistics for the number of functionally associated proteins in the full SSFA
network and in the reduced SSFA network.

Statistic in params in reduced network

BP similarity by binary % 28.0% 28.4%

BP similarity by IC % 24.2% 22.3%

BP similarity by SW-IC % 42.3% 35.4%

MF similarity by binary % 29.4% 34.4%

MF similarity by IC % 22.9% 31.7%

MF similarity by SW-IC % 40.7% 50.3%

catalytic similarity by binary % 21.3% 8.82%

catalytic similarity by IC % 18.4% 7.54%

catalytic similarity by SW-IC % 22.7% 9.10%

MF+BP similarity by binary % 29.0% 31.6%

MF+BP similarity by IC % 23.8% 25.8%

MF+BP similarity by SW-IC % 39.8% 38.9%

We looked deeper into this by inspecting the raw contingency tables. As a baseline, we

look at carbohydrate biosynthetic process (GO:0016051). The background probability for

GO:0016051 is low (0.575%). However, given that a protein is functionally associated with a

protein that is annotated to GO:0016051, the probability increases to 24.7%. Remarkably for

non-catalytic molecular function GO:0003735, whereas the background probability is 3.13%

the probability increases to 84.7% when the protein is functionally associated with another

structural constituent of ribosome. However, if we look at an example of a catalytic activity,

hydrolase activity, acting on carbon-nitrogen (but not peptide) bonds, in linear amidines
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(GO:0016813), the background probability of the term is 0.0233%, and the probability of

GO:0016813 given a functionally associated protein is only 8.33%. On the other hand, if

the protein is similar in sequence to a GO:0016813, then our belief that the protein is also a

GO:0016813 goes to 100%.

Mitrofanova, Pavlovic, and Mishra [61] claims that it is infeasible to learn a set of pa-

rameters for each GO term, and therefore uses a shared set of parameters for all GO terms,

similar to those in Table 3.3. Their paper did not have a completely specified algorithm, but

we calculated their parameters as follows. For each query, we determine the candidate on-

tology, sample 1000 functional associations where both proteins are annotated to all aspects

within the candidate ontology. For each functional association, we construct the multi-label

for each protein, such that unannotated terms are assumed negatively annotated, and count

the instances. The final counts are normalized. The parameters calculated for query UniProt

P78334 are shown in Table 3.4. As expected ψ(−, −) is the most likely configuration. Some-

what less expected is that ψ(+, +) is less likely than either of ψ(+, −) and ψ(−, +). We

did not expect these parameters to perform well, and we realize that assuming negative

annotations for terms without annotations is pessimistic, but we were generous in limiting

our counting to functional associations with annotated proteins and terms in the candidate

ontology, and they did not suggest an alternative in text or in code.

Table 3.4: Mitrofanova parameters used for problem instance based on query UniProt
P78334

Parameter Value

ψ(+, +) 8.35%

ψ(+, −) 1.84%
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Parameter Value

ψ(−, +) 1.69%

ψ(−, −) 88.1%

3.4.4 Protein template

An example protein template, including biological process, but excluding the inter-

ontological edges, is shown in Figure 3.11.

The number of candidate GO terms in the model produced by Effusion GCA was typically

much larger than the model produced by sequence-only Effusion. Effusion GCA collects can-

didate MFs from non-homologs in addition to homologs, so Effusion GCA greatly increases

the number of candidate MF terms, and greatly increases the maximum false positives.

Methods that predicted all of the candidate terms would have incurred, on average, 9.09

true positives (14.05 bits of information), but also have 31.64 false positives (74.84 bits of

information) and 4.25 false negatives (8.94 bits of information). These additional MF terms

are shaded blue in Figure 3.11.

There is a performance cost associated with the modeling additional MF terms, due to the

added difficulty for inference, and due to limitations in the model discussed in the previous

chapter. We implemented variants of our method to measure the costs of a more complex

protein template. The functionally-associated molecular functions (FAMF) methods start

with the sequence similarity-only Effusion, and add the additional MF terms. We show

these results for the top-down model with and without supplementary negative evidence in

Figure 3.12, and the results for the bottom-up model in Figure 3.13.

Effusion GCA also models is an additional aspect of protein function, BP, and proteins
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Figure 3.11: Protein template for Effusion GCA. Effusion’s model is shown in white.
Additional candidate MF terms are shaded blue. New candidate BP terms are shaded
yellow.

are often annotated to many different terms within this ontology. The new candidate BP

terms are shaded in yellow in Figure 3.11.

In order to measure the cost of modeling an additional ontology, we implemented vari-

ants of Effusion GCA that ignore evidence for BP, while keeping the model (template and

network) the same, called the ignore BP evidence (IBE) methods. The performance plots

are in Figure 3.12 for the top-down model and Figure 3.13 for the bottom-up model.

Inter-ontological parameters

Each candidate catalytic activity term was linked to the candidate metabolic process term

to which it shared the highest mutual information, and vice versa. The median mean-

correlation-in-template was .236, and a histogram of the mean correlation in template is

shown in Figure 3.14. Examples of such links include those in Table 3.5. An example is

calculated from the raw contingency tables: whereas P (xi
GO:0070566 = 1 | xi

GO:0016779 = 1) =

30.1%, and P (xi
GO:0070566 = 1 | xi

GO:0016779 = 1, xi
GO:1901564 = 1) = 85.3%. In words, given we

know a protein is a nucleotidyltransferase, it is 30.1% likely to be an adenylyltransferase.

But if we also know the protein is involved in organonitrogen compound metabolism, then

the probability that it is a nucleotidyltransferase increases to 85.3%.
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(a) WFP vs.ăWTP (b) Precision vs.ăRecall

(c) Weighted Precision vs.ăWeighted Recall (d) Sample-Weighted Weighted Precision
vs.ăSample-Weighted Weighted Recall

Figure 3.12: Performance plots over treated proteins showing the change in performance
due to changes in the protein template for the top-down model.
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(a) WFP vs.ăWTP (b) Precision vs.ăRecall

(c) Weighted Precision vs.ăWeighted Recall (d) Sample-Weighted Weighted Precision
vs.ăSample-Weighted Weighted Recall

Figure 3.13: Performance plots over treated proteins showing the change in performance
due to changes in the protein template for the bottom-up model.
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Figure 3.14: Histogram of the mean correlation in the protein template

Table 3.5: inter-ontological associations modeled for problem instance based on UniProt
P78334

catalytic activity metabolic process ρ

catalytic activity (GO:0003824) metabolic process (GO:0008152) 0.661003

transferase activity (GO:0016740) macromolecule modification

(GO:0043412)

0.472582

transferase activity, transferring

phosphorus-containing groups

(GO:0016772)

phosphate-containing compound

metabolic process (GO:0006796)

0.618583
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catalytic activity metabolic process ρ

molybdopterin molybdotransferase

activity (GO:0061599)

molybdenum incorporation into

molybdenum-molybdopterin complex

(GO:0018315)

1.000000

nucleotidyltransferase activity

(GO:0016779)

heterocycle metabolic process

(GO:0046483)

0.630559

adenylyltransferase activity

(GO:0070566)

organonitrogen compound metabolic

process (GO:1901564)

0.553178

molybdopterin adenylyltransferase

activity (GO:0061598)

molybdenum incorporation into

molybdenum-molybdopterin complex

(GO:0018315)

0.993850

3.5 Discussion

3.5.1 Comparative anlaysis

We created and analyzed a method for the prediction of protein function that has the essential

components to automate basic analysis of genomic context analysis. Our model is based on

proteins that are similar in sequence having similar MFs, proteins that are functionally

associated having similar BPs, and a protein’s MF being dependent of its BP.

Effusion GCA was able to make predictions for more query proteins than was

Mitrofnova2010. Our predictions were also more accurate than Mitrofnova2010.

However, Effusion GCA performed worse than Effusion. Our results suggest that the

main reason for the decrease in performance was due to failed inference. Both Effusion GCA
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and Effusion were limited to only 40 minutes for inference. However, Effusion GCA’s model

had many more variables, and could have benefited from having more time. This is especially

supported by our implementation of a variant of Effusion GCA that modeled the additional

MF terms and BP, but it then ignored the evidence during inference.

There are alternative hypothesis for the difference in performance between Effusion GCA

and Effusion. Effusion GCA had more candidate functions to choose from. While we violated

an assumption of the top-down model, our data showed that we effectively accounted for

this by adding supplementary negative evidence. Furthermore, the bottom-up model did not

violate this assumption.

We violate other assumptions of our model, but we are not aware of any violation that

would have a major effect on performance. For example, when calculating the parameters,

we assume that the multi-label for each protein is complete and also assume that the multi-

label represents the protein’s function. Rather than formally model the difference between

function and annotation and the missing data, we account for missing data by weighting the

samples by their information content. Also, for each annotated protein, we only consider the

the annotated protein that is most similar in sequence for the BLAST parameters, and the

annotated protein that is most functionally associated for the STRING parameters. However,

the model then applies these parameters to edges in the reduced network, and these edges

are not random samples from the population of edges used to compute the parameters.

3.5.2 Creation and use of SSFA networks

We created a method for the fast creation of SSFA networks, which can be visualized with

Cytoscape and used for manual network analysis for function annotation. The SSFA networks

not only show proteins that are homologous to the query that have function annotations, but
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also proteins that are functionally associated to homologs of the query that have function

annotations.

3.5.3 Functional associations

The parameters we learned from the data indicated that our belief in certain BPs strongly

depends on the BPs of functionally associated proteins. To our surprise, we also found that

functionally associated proteins also have similar MFs, although we expect this is largely

attributable to subontologies of MF for which we are less interested.

Each functional association edge in the reduced network is represented by several edges

between corresponding BP terms in the graphical model. As far as we know, this is the first

time that the parameters for those functional association edges are GO-term specific.

3.5.4 Inter-ontological parameters

Finally, in the protein template, we only added at most one inter-ontological parent for

each catalytic term or metabolic term, and for no other GO terms. Our results show that

the parameters based on these associations were information rich. While adding any edge

should have corresponded with fewer independence assumptions, it is not clear that we did

not bias our results in any way. Alternatively, it is not clear that only considering one inter-

ontological parent for each catalytic term or metabolic term added enough information to

offset the additional candidate GO terms and proteins.

3.5.5 Alternative representations

We only modeled functional associations within a single species, and our model realized that

functionally associated proteins were more likely to be involved in similar BPs. Alternatively,
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we could have represented contextual similarity that could be measured across species. This

logic would have allowed us to realize that homologous proteins with the similar contexts

were more likely to be orthologous and have the same function.

We used BP to model a protein’s context, and propagated BP over functional associations.

Let us consider an alternative representation for the functional context of a protein: the

Pfams in genome neighborhood (PGN). The PGN for a protein is calculated as the set of

Pfam domains [71] in the proteins upstream and downstream the given protein. Now, let us

compare BP with PGN.

PGN can be calculated precisely for every protein which belongs to an organism with

a fully sequenced genome. BP, on the other hand, may be available for every protein, but

depends on annotations that are always incomplete.

In both cases, the micro-labels are not mutually exclusive, and the size of the multi-label

space is the size of the powerset of the micro-labels. Both BP and PGN use a controlled

vocabulary of micro-labels, but they can be combined in ways to represent novel functional

contexts. Pfam domains are defined to prevent overlaps, whereas a single protein can be

annotated with a large number of BP terms. BP, on the other hand, is structured as a

directed acyclic graph (DAG), and the number of valid multi-labels is limited to those that

satisfy the true path rule. The hierarchical structure of GO is useful, but relying on it as

canon may have disadvantages.

In both BP with PGN, it is possible to calculate the similarity between the functional

context of two proteins. Interestingly, this feature would allow us to calculate a hierarchical

clustering of PGNs. Also, both BP and PGN can be correlated with other aspects of function.

Ultimately, we chose BP because it is a curated, human readable, extensively used and

extensively studied.
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3.5.6 Other contributions

Although our focus is on predicting MFs, and catalytic activities in particular, research in

other labs focus instead on prediction of BP or pathway. Although we did not evaluate it

yet, our method simultaneously predicts BP terms.

Additionally, our model can be used for ensuring the quality of function annotations, by

flagging proteins with an unlikely combination of annotations.

3.5.7 Directions for future research

Our method was motivated by genomic context analysis, but more research is needed to fully

automate that technique. First of all, the analysis in Ricardo et al. [74] used knowledge of

the likely substrate substructures in a pathway. Therefore, we would need to extend Effusion

GCA to model substrate and substrate similarity. Second, as previously mentioned, it would

also be useful to compare the context of a protein across organisms. Third, it may be useful

to add a factor including the MF terms of functionally associated proteins. The reason for

this would be to induce a particular composition of MF terms between cliques of functionally

associated proteins. It is, of course, unlikely that all proteins in an operation perform the

same function.
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Chapter 4

Discussion and conclusions

4.1 Contributions

This dissertation represents a significant advance in prediction of protein function. It presents

two methods, Effusion and Effusion GCA.

Effusion is a framework for prediction of protein function on a sequence similarity net-

work. It is a modern probabilistic approach that can tolerate the sparsity of function annota-

tions. It also takes advantage of the structure of GO. Using a critical method for evaluation,

we have shown that while previously published similar works were unable to make predic-

tions that were more accurate than a BLAST-based method, Effusion performs much better

than BLAST.

Effusion GCA extended Effusion to add the essential components for automation of basic

analysis of genomic context. Although it performed better than the most similar published

method, its performance in aggregate did not perform better than Effusion. After detailed

analysis of instances where Effusion GCA performed particularly poorly, we suspect that

this degradation in performance was largely due to limited time given to a more complex

model. Whatever the reason, there are many avenues for enhancing the performance of the
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method.

Each component of our model was interesting. For example, our parameters can tell us

how likely a methylase in a nitrogen compound metabolic process, or how likely that two

proteins that are similar in sequence have the same catalytic activity. These components can

be used in ways besides prediction of protein function. For example, the protein template

can flag a protein as having an unlikely combination of protein functions.

We were rigorous in our evaluation and analysis. We withheld all annotations from a

point in time onward for testing. The methods that were compared used the same training

and test data. We evaluated variants of our method to see the value or cost associated with

different components of our model.

As a probabilistic model, our method can do more than compute marginal probabilities.

It can also be used for computing the variance, or uncertainty, of the model given the

evidence. This would make Effusion useful for target selection, i.e., determining which

proteins to subject to further study.

Effusion and Effusion GCA provide networks for manual analysis of protein networks.

These networks can be visualized with Cytoscape to see protein similarity, functional asso-

ciations, functional annotation data, and predictions.

4.2 Failed attempts

We experimented with variations on network building, probabilistic model semantics, priors,

and inference algorithms.

Conventionally, a sequence similarity network, with no natural directionality and tight

cliques, would be an undirected PGM, known as a Markov random field (MRF). Indeed, this

is the representation used by previously published methods. However, as we can tell from the
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literature and from our own implementation, that representation required concessions that

precluded practical prediction of protein function. Specifically, these methods used shared

parameters among all GO terms, prediction on very few GO terms, excessive, unfounded in-

dependence assumptions, ad-hoc inference algorithms and post-processing steps, and custom

evaluation methods.

Due to transitivity of sequence similarity, sequence similarity networks have tight loops.

Particularly in MRFs with this topology, belief propagation may fail to converge, or converge

to the wrong answer. While sampling-based algorithms like Gibbs sampling are guaranteed

to converge to the right answer, we observed that the tight cliques in the network prevented

convergence.

We also experimented with inference using GraphLab for distributed inference, Alchemy

for lifted inference, OpenGM for fast inference with C++ templates, and the various algo-

rithms implemented in libDAI.

One approach we tried was to use a Metropolis-Hastings algorithm that clustered the

network and used a proposal that jumped over unlikely states by flipping all of the values of

all random variables in a cluster. While we found that this was effective with a network of

proteins using a single GO term, it was not clear how we would flip a protein’s value when

that value had the structure of our protein template.

We then tried to get rid of the loops in our protein network via a MST. That approach

remained in our final incarnation of Effusion. However, we could not apply a MST to

remove loops within each instance of the protein template, since they were necessary for our

hypothesis, which required that we model the relationship between MF and BP.

Therefore, based on our observation that only a small subset of possible assignments to

GO are valid, we tried to consider each protein as a single variable with a scope equal to

the size of the number of functions that are valid with respect to GO. However, we soon
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found that we could not model enough candidate GO terms for high performance. A high

performing method for protein function prediction must not limit inclusion of experimental or

manually curated function annotation data. However, there have been recent developments

in the combinatorics and dimensionality reduction of the function space defined by GO.

Significantly, we could not avoid learning the parameters on a per network basis. Al-

though we came up with a formulation of our potentials with very few parameters, this

model did not benefit from learning the parameters from all data in GOA, and it suffered in

the common case of extremely sparsely annotated networks.

4.3 Limitations

Unfortunately, our model adds new problems that do not affect other methods.

In our evaluation, we excluded IEA annotations. This is the standard in the field, because

of the leakage that results from including IEA annotations when doing standard cross vali-

dation, and because the inclusion of IEA evidence obfuscates the contributions of a method.

In addition, IEA annotations older than one year are deleted, so they would only appear

in the evaluation set. However, there are methods that would contribute information that

would be complementary to Effusion. For example, one method may generate electronic an-

notations that are produced through docking experiments. Unfortunately, these electronic

annotations are so numerous that their inclusion would result in explosive growth in the

number of candidate GO terms, rendering our method infeasible.

For computational reasons, our model reduced the protein network into a MST. We

observed that the edges of the MST typically connected nodes within the same cluster of

the reduced network. However, a MST cannot perfectly capture network boundaries. We

are very interested in including more edges in our model, as long as it does not compromise
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the integrity and performance of our model.

Effusion blurs the lines between annotation and function. During training, labels rep-

resent annotations. Any protein which missing evidence for a GO term is considered to

be negatively annotated to that GO term. However, during inference, our labels represent

functions, and any protein which does not have evidence for a GO term is considered to be

unknown. Using parameters learned for annotations may not be the maximum likelihood

parameters for functions. We mitigate this by weighting the samples we use for calculating

the parameters by the information content of the samples. That way, an idealized protein

with a complete annotation would carry the most weight for calculating parameters, but pro-

teins with incomplete annotations are still useful for computing parameters of rare terms.

This could be addressed with more rigor by using a model during learning that represent

functions as latent variables, if such a model were tractable.

Our model utilizes the dependencies between various aspects of protein function. How-

ever, as more aspects are modeled, this may become very complicated. The modeling se-

mantics of conditional random fields suggest one avenue for addressing this problem.

4.4 Directions for future research

We started with modeling molecular function and sequence similarity, and demonstrated how

to add biological process and functional associations. However, our framework is designed

to extend to additional aspects of protein function and protein similarity. One aspect we

are interested in modeling is the celular component of each protein. Exploratory analysis

indicates that the probability of certain classes of enzymes depend on the cellular location of

a protein Figure 4.1. Also, unlike MF and BP, there is high throughput, relatively unbiased

experimental data indicating the celular component for proteins for some organisms. Finally,
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Figure 4.1: Probability of certain enzyme classes given cellular location

it would be straightforward to add to our framework, since, like MF and BP, it is another

aspect for which GO provides an ontology.

As a proof of concept, Effusion only collected homologous proteins that were aligned

over 90% with the query protein. While this avoided predicting functions that were due to a

domain not shared by the query, it could result in a significant decrease in recall. However,

we could also include proteins that only align partially, and use a resource like dcGO to only

propagate the GO terms relevant to that domain, as in Figure 4.2.

There could be several benefits to modeling substrate and propagating it via substrate

binding site similarity. The results of docking experiments could provide evidence where it
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Protein A

Binding domain Catalytic domain

Protein B

Binding domain Catalytic domain

Query Protein

Binding domain Catalytic domain

Figure 4.2: A finer grained representation of sequence similarity to propagate function
more carefully. Only functions corresponding to shared domains should be propagated.
Consider two highly similar proteins with domain architecture A-B-C and A-B-Z. We should
not transfer functional information caused by domain C from the former protein to the latter
protein.

is available. Homologous proteins may be more likely to act on the same substrate if they

have similar substrate binding sites. Similarly, functionally associated enzymes may be more

likely to act on substrates of with similar substructures.

As we discussed in Directions for future research, factors that include GO terms from

at most two proteins may be insufficient for representing all of our knowledge regarding

analysis of genomic context. A factor including the entire set of functionally associated

proteins would be necessary to enforce a particular distribution of functions among the

proteins. This may be feasible, since operons generally only contain a few proteins, but it

would still be a computational burden.
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Table A.1: Predictions for Q4ZIL6 made by Effusion. For comparison, predictions made
by BLAST are in Table A.2. The GO terms are filtered to those that are predicted by both
methods.

GO Term

Posterior

Probability In GOA

True Positives

(Bits)

False Positives

(Bits)

GO:0003674 1.000000 ✓ 0.414455 0.000000

GO:0003824 0.998374 ✓ 1.645753 0.000000

GO:0016491 0.985996 ✓ 4.580627 0.000000

GO:0004497 0.917051 ✓ 6.774468 0.000000

GO:0008395 0.363443 ✓ 11.116429 0.000000

GO:0005488 0.235120 ✗ 11.116429 1.475205

GO:0016705 0.211351 ✓ 13.463748 1.475205

GO:0016709 0.166540 ✗ 13.463748 1.940758

GO:0005515 0.154005 ✗ 13.463748 2.957393

GO:0008391 0.118320 ✗ 13.463748 6.180406

GO:0016712 0.105213 ✗ 13.463748 12.223869

GO:0071614 0.102991 ✗ 13.463748 21.014567

GO:0008389 0.101734 ✓ 21.739872 21.014567

GO:0097159 0.091303 ✗ 21.739872 22.277779

GO:1901363 0.088618 ✗ 21.739872 23.563451

GO:0004508 0.062760 ✗ 21.739872 26.181203

GO:0004509 0.059321 ✗ 21.739872 31.335009

GO:0019899 0.043275 ✗ 21.739872 33.466246

GO:0035302 0.024479 ✗ 21.739872 41.348889
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GO Term

Posterior

Probability In GOA

True Positives

(Bits)

False Positives

(Bits)

GO:0008392 0.023916 ✗ 21.739872 41.375201

GO:0008144 0.022433 ✗ 21.739872 48.423917

GO:0019825 0.020329 ✗ 21.739872 58.033484

GO:0046996 0.016909 ✗ 21.739872 65.150414

GO:0018631 0.015712 ✗ 21.739872 76.282914

GO:0072532 0.015700 ✗ 21.739872 87.415414

GO:0097007 0.015683 ✗ 21.739872 98.547914

GO:0097008 0.015683 ✗ 21.739872 109.680413

GO:0047084 0.015680 ✗ 21.739872 120.812913

GO:0072533 0.015641 ✗ 21.739872 130.945413

GO:0052722 0.010906 ✗ 21.739872 139.263127

GO:0046906 0.009599 ✗ 21.739872 144.652214

GO:0016829 0.008688 ✗ 21.739872 149.390134

GO:0016725 0.006943 ✗ 21.739872 155.292879

GO:0032451 0.006759 ✗ 21.739872 163.751381

GO:0008405 0.002005 ✗ 21.739872 170.515146

GO:0008404 0.001913 ✗ 21.739872 177.863874

GO:0047055 0.001685 ✗ 21.739872 182.818071

GO:0072547 0.001561 ✗ 21.739872 182.818071

GO:0072549 0.001558 ✗ 21.739872 182.818071

GO:0072548 0.001553 ✗ 21.739872 182.818071

GO:0072552 0.001526 ✗ 21.739872 182.818071
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GO Term

Posterior

Probability In GOA

True Positives

(Bits)

False Positives

(Bits)

GO:0072551 0.001525 ✗ 21.739872 182.818071

GO:0072550 0.001524 ✗ 21.739872 182.818071

GO:0009055 0.001438 ✗ 21.739872 191.343344

GO:0020037 0.001426 ✗ 21.739872 191.763952

GO:0016830 0.001401 ✗ 21.739872 193.490608

GO:0033695 0.000685 ✗ 21.739872 198.198953

GO:0016832 0.000304 ✗ 21.739872 200.394209

GO:0034875 0.000108 ✗ 21.739872 200.394209

GO:0047442 0.000045 ✗ 21.739872 204.564134
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Table A.2: Predictions for Q4ZIL6 made by BLAST. The GO terms are filtered to those
that are predicted by both methods.

GO Term

Posterior

Probability In GOA

True Positives

(Bits)

False Positives

(Bits)

GO:0003674 0.315330 ✓ 0.414455 0.000000

GO:0005488 0.315299 ✗ 0.414455 1.475205

GO:1901363 0.315267 ✗ 0.414455 2.760877

GO:0097159 0.315267 ✗ 0.414455 4.024089

GO:0046906 0.315236 ✗ 0.414455 9.413176

GO:0020037 0.315204 ✗ 0.414455 9.833784

GO:0009055 0.305691 ✗ 0.414455 18.359057

GO:0003824 0.305691 ✓ 1.645753 18.359057

GO:0032451 0.305661 ✗ 1.645753 26.817559

GO:0019825 0.305661 ✗ 1.645753 36.427125

GO:0016491 0.305661 ✓ 4.580627 36.427125

GO:0005515 0.305661 ✗ 4.580627 37.443760

GO:0019899 0.305630 ✗ 4.580627 39.574997

GO:0016725 0.305630 ✗ 4.580627 45.477743

GO:0016705 0.305630 ✓ 6.927945 45.477743

GO:0004497 0.305630 ✓ 9.121786 45.477743

GO:0033695 0.305599 ✗ 9.121786 50.186088

GO:0016712 0.305599 ✗ 9.121786 56.229552

GO:0034875 0.305569 ✗ 9.121786 56.229552

GO:0071614 0.197727 ✗ 9.121786 65.020249
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GO Term

Posterior

Probability In GOA

True Positives

(Bits)

False Positives

(Bits)

GO:0008391 0.197727 ✗ 9.121786 68.243262

GO:0008392 0.197708 ✗ 9.121786 68.269574

GO:0008405 0.197688 ✗ 9.121786 75.033339

GO:0008404 0.197688 ✗ 9.121786 82.382068

GO:0008395 0.176671 ✓ 13.463748 82.382068

GO:0004509 0.176653 ✗ 13.463748 87.535873

GO:0008144 0.166730 ✗ 13.463748 94.584589

GO:0008389 0.163372 ✓ 21.739872 94.584589

GO:0016709 0.133449 ✗ 21.739872 95.050142

GO:0016829 0.132736 ✗ 21.739872 99.788061

GO:0016830 0.132722 ✗ 21.739872 101.514718

GO:0016832 0.132709 ✗ 21.739872 103.709974

GO:0047442 0.132696 ✗ 21.739872 107.879899

GO:0004508 0.132696 ✗ 21.739872 110.497652

GO:0072533 0.076919 ✗ 21.739872 120.630151

GO:0072532 0.076919 ✗ 21.739872 131.762651

GO:0072552 0.076911 ✗ 21.739872 131.762651

GO:0072551 0.076911 ✗ 21.739872 131.762651

GO:0072550 0.076911 ✗ 21.739872 131.762651

GO:0072549 0.076911 ✗ 21.739872 131.762651

GO:0072548 0.076911 ✗ 21.739872 131.762651

GO:0072547 0.076911 ✗ 21.739872 131.762651
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GO Term

Posterior

Probability In GOA

True Positives

(Bits)

False Positives

(Bits)

GO:0035302 0.076867 ✗ 21.739872 139.645294

GO:0018631 0.061405 ✗ 21.739872 150.777794

GO:0052722 0.058086 ✗ 21.739872 159.095508

GO:0097008 0.057711 ✗ 21.739872 170.228008

GO:0097007 0.057711 ✗ 21.739872 181.360508

GO:0047084 0.057711 ✗ 21.739872 192.493007

GO:0046996 0.056978 ✗ 21.739872 199.609938

GO:0047055 0.056972 ✗ 21.739872 204.564134



APPENDIX A. SUPPLEMENTARY MATERIAL FOR CHAPTER 2 111

Figure A.1: Distribution of time to build the network.
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Figure A.2: Distribution of number of nodes in protein network.
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Figure A.3: Distribution of number of nodes in protein network after directing it, rooting
it, and pruning it.
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Figure A.4: Distribution of number of nodes in protein network with positive evidence.
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(a) WFP vs.ăWTP (b) Precision vs.ăRecall

(c) Weighted Precision vs.ăWeighted Recall (d) Sample-Weighted Weighted Precision
vs.ăSample-Weighted Weighted Recall

Figure A.5: Performance curves showing value of adding unannotated proteins. Evaluated
over treated proteins, using the metrics indicated
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(a) Distribution of maximum number of GO
parents in protein template

(b) Distribution of maximum number of
modeled GO children in protein template

Figure A.6: Distributions for the maximum number of parents or modeled children in the
protein template. The difficulty of the inference problem strongly depends on the number
of GO parents in the top-down model, or GO children in the bottom-up model
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(a) WFP vs.ăWTP (b) Precision vs.ăRecall

(c) Weighted Precision vs.ăWeighted Recall (d) Sample-Weighted Weighted Precision
vs.ăSample-Weighted Weighted Recall

Figure A.7: Performance curves showing value of adding negative evidence. Evaluated
over treated proteins, using the metrics indicated
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Figure A.9: Example comparing top-down model, without and with supplementary nega-
tive evidence, and bottom-up model. The query protein is Q921C5. (a) With the top-down
model, but without supplementary negative evidence, evidence for protein binding increases
the posterior probability for clathrin binding, even though the evidence for protein bind-
ing is explained by Rab GTPase binding. (b) In the top down model, we compensate for
this by adding negative evidence for clathrin binding, because a protein is rarely positively
annotated with clathrin binding when it is positively annotated to sibling enzyme binding.
(c) The bottom up model has factors over each GO term and their child GO terms, so the
probability for clathrin binding is lowered upon observing enzyme binding.
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Table A.3: Predictions for Q921C5 made by Effusion with the top-down model, but without
supplementary negative evidence. The GO terms are filtered to those that are predicted by
all methods.

GO Term

Posterior

Probability In GOA

True Positives

(Bits)

False Positives

(Bits)

GO:0003674 1.000000 ✓ 0.414455 0.000000

GO:0005488 0.999900 ✓ 1.889660 0.000000

GO:0005515 0.999800 ✓ 2.906295 0.000000

GO:0019899 0.999700 ✓ 5.037532 0.000000

GO:0051020 0.999600 ✓ 6.984703 0.000000

GO:0031267 0.999500 ✓ 7.071294 0.000000

GO:0017016 0.999400 ✓ 7.109188 0.000000

GO:0017137 0.999300 ✓ 7.642070 0.000000

GO:0005102 0.504263 ✗ 7.642070 2.625682

GO:0097159 0.388429 ✗ 7.642070 3.888894

GO:1901363 0.376987 ✗ 7.642070 5.174566

GO:0008092 0.349818 ✓ 10.888182 5.174566

GO:0005198 0.311069 ✗ 10.888182 9.722838

GO:0060090 0.280266 ✗ 10.888182 16.635034

GO:0030674 0.275064 ✗ 10.888182 16.796222

GO:0030276 0.264024 ✗ 10.888182 23.120815

GO:0044877 0.236979 ✓ 14.996187 23.120815

GO:0032403 0.229623 ✓ 15.118474 23.120815

GO:0001664 0.209859 ✗ 15.118474 25.202049
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GO Term

Posterior

Probability In GOA

True Positives

(Bits)

False Positives

(Bits)

GO:0003676 0.125381 ✗ 15.118474 25.425997

GO:0008093 0.096530 ✗ 15.118474 26.387523

GO:0034452 0.064105 ✓ 23.107159 26.387523

GO:0003723 0.050614 ✗ 23.107159 27.359985

GO:0005200 0.049353 ✗ 23.107159 31.392109

GO:0032050 0.049330 ✗ 23.107159 34.289929

GO:0031871 0.045123 ✗ 23.107159 42.868437

GO:0070840 0.029559 ✓ 29.211342 42.868437

GO:0003729 0.012855 ✗ 29.211342 45.374533

GO:0000339 0.005552 ✗ 29.211342 51.639895

GO:0017091 0.005322 ✗ 29.211342 59.301416

GO:0003730 0.002745 ✗ 29.211342 61.946893

GO:0048027 0.002030 ✗ 29.211342 66.173285

GO:0098808 0.001400 ✗ 29.211342 69.260747

GO:0030350 0.001339 ✗ 29.211342 77.681517

GO:0035368 0.001335 ✗ 29.211342 83.871990

GO:1990715 0.001331 ✗ 29.211342 93.408237

GO:1990825 0.001302 ✗ 29.211342 101.281519

GO:1903231 0.001296 ✗ 29.211342 101.281521

GO:0035925 0.000014 ✗ 29.211342 101.419025



APPENDIX A. SUPPLEMENTARY MATERIAL FOR CHAPTER 2 122

Table A.4: Predictions for Q921C5 made by Effusion with the top-down model, including
supplementary negative evidence. The GO terms are filtered to those that are predicted by
all methods.

GO Term

Posterior

Probability In GOA

True Positives

(Bits)

False Positives

(Bits)

GO:0003674 1.000000 ✓ 0.414455 0.000000

GO:0005488 0.999900 ✓ 1.889660 0.000000

GO:0005515 0.999800 ✓ 2.906295 0.000000

GO:0019899 0.999700 ✓ 5.037532 0.000000

GO:0051020 0.999600 ✓ 6.984703 0.000000

GO:0031267 0.999500 ✓ 7.071294 0.000000

GO:0017016 0.999400 ✓ 7.109188 0.000000

GO:0017137 0.999300 ✓ 7.642070 0.000000

GO:0005198 0.000000 ✗ 7.642070 4.548272

GO:1901363 0.000000 ✗ 7.642070 5.833944

GO:0097159 0.000000 ✗ 7.642070 7.097156

GO:0060090 0.000000 ✗ 7.642070 14.009352

GO:0044877 0.000000 ✓ 11.750074 14.009352

GO:0005200 0.000000 ✗ 11.750074 18.041477

GO:0032403 0.000000 ✓ 11.872362 18.041477

GO:0030674 0.000000 ✗ 11.872362 18.202665

GO:0030276 0.000000 ✗ 11.872362 24.527259

GO:0008092 0.000000 ✓ 15.118474 24.527259

GO:0005102 0.000000 ✗ 15.118474 27.152940
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GO Term

Posterior

Probability In GOA

True Positives

(Bits)

False Positives

(Bits)

GO:0003676 0.000000 ✗ 15.118474 27.376888

GO:0070840 0.000000 ✓ 21.222658 27.376888

GO:0034452 0.000000 ✓ 29.211342 27.376888

GO:0032050 0.000000 ✗ 29.211342 30.274708

GO:0008093 0.000000 ✗ 29.211342 31.236234

GO:0003723 0.000000 ✗ 29.211342 32.208695

GO:0001664 0.000000 ✗ 29.211342 34.289929

GO:0031871 0.000000 ✗ 29.211342 42.868437

GO:0017091 0.000000 ✗ 29.211342 50.529958

GO:0003729 0.000000 ✗ 29.211342 53.036054

GO:0000339 0.000000 ✗ 29.211342 59.301416

GO:1990825 0.000000 ✗ 29.211342 67.174699

GO:1990715 0.000000 ✗ 29.211342 76.710946

GO:1903231 0.000000 ✗ 29.211342 76.710948

GO:0098808 0.000000 ✗ 29.211342 79.798411

GO:0048027 0.000000 ✗ 29.211342 84.024802

GO:0035368 0.000000 ✗ 29.211342 90.215275

GO:0030350 0.000000 ✗ 29.211342 98.636045

GO:0003730 0.000000 ✗ 29.211342 101.281521

GO:0035925 0.000000 ✗ 29.211342 101.419025
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Table A.5: Predictions for Q921C5 made by Effusion with the bottom-up model. The
bottom-up model does not require supplementary negative evidence. The GO terms are
filtered to those that are predicted by all methods.

GO Term

Posterior

Probability In GOA

True Positives

(Bits)

False Positives

(Bits)

GO:0003674 1.000000 ✓ 0.414455 0.000000

GO:0005488 0.999900 ✓ 1.889660 0.000000

GO:0005515 0.999800 ✓ 2.906295 0.000000

GO:0019899 0.999700 ✓ 5.037532 0.000000

GO:0051020 0.999600 ✓ 6.984703 0.000000

GO:0031267 0.999500 ✓ 7.071294 0.000000

GO:0017016 0.999400 ✓ 7.109188 0.000000

GO:0017137 0.999300 ✓ 7.642070 0.000000

GO:0005198 0.386561 ✗ 7.642070 4.548272

GO:0008092 0.361044 ✓ 10.888182 4.548272

GO:0060090 0.327731 ✗ 10.888182 11.460468

GO:0030674 0.327699 ✗ 10.888182 11.621656

GO:0008093 0.309126 ✗ 10.888182 12.583182

GO:0005200 0.298606 ✗ 10.888182 16.615307

GO:0044877 0.250371 ✓ 14.996187 16.615307

GO:0032403 0.244758 ✓ 15.118474 16.615307

GO:0005102 0.188700 ✗ 15.118474 19.240989

GO:0070840 0.172669 ✓ 21.222658 19.240989

GO:0097159 0.107491 ✗ 21.222658 20.504201
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GO Term

Posterior

Probability In GOA

True Positives

(Bits)

False Positives

(Bits)

GO:0030276 0.106014 ✗ 21.222658 26.828794

GO:1901363 0.099213 ✗ 21.222658 28.114466

GO:0001664 0.098010 ✗ 21.222658 30.195700

GO:0031871 0.072663 ✗ 21.222658 38.774207

GO:0032050 0.067249 ✗ 21.222658 41.672027

GO:0003676 0.058159 ✗ 21.222658 41.895975

GO:0034452 0.053829 ✓ 29.211342 41.895975

GO:0003723 0.045016 ✗ 29.211342 42.868437

GO:0003729 0.045011 ✗ 29.211342 45.374533

GO:0035368 0.021988 ✗ 29.211342 51.565005

GO:0000339 0.007958 ✗ 29.211342 57.830367

GO:0098808 0.007957 ✗ 29.211342 60.917830

GO:1903231 0.002738 ✗ 29.211342 60.917832

GO:1990825 0.002601 ✗ 29.211342 68.791114

GO:1990715 0.002322 ✗ 29.211342 78.327361

GO:0048027 0.001620 ✗ 29.211342 82.553753

GO:0003730 0.001333 ✗ 29.211342 85.199230

GO:0030350 0.001226 ✗ 29.211342 93.620000

GO:0017091 0.000342 ✗ 29.211342 101.281521

GO:0035925 0.000200 ✗ 29.211342 101.419025
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(a) WFP vs.ăWTP (b) Precision vs.ăRecall

(c) Weighted Precision vs.ăWeighted Recall (d) Sample-Weighted Weighted Precision
vs.ăSample-Weighted Weighted Recall

Figure A.10: Performance curves showing value of weighting counts when computing the
parameters. Evaluated over treated proteins, using the metrics indicated
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(a) Network view of predictions for UniProt
P34945 without weighting counts in the con-
tingency tables by the information content
of the sample, colored by GO:0005488

(b) Network view of predictions for UniProt
P34945 with weighting counts in the contin-
gency tables by the information content of
the sample, colored by GO:0005488

Figure A.11: A network view of an example, with and without weighting.
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(a) WFP vs.ăWTP (b) Precision vs.ăRecall

(c) Weighted Precision vs.ăWeighted Recall (d) Sample-Weighted Weighted Precision
vs.ăSample-Weighted Weighted Recall

Figure A.12: Performance curves showing value of adding pseudocounts to the contingency
tables. Evaluated over proteins that had predictions by all methods represented, using the
metrics indicated
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Query Q4ZIL6

Protein with evidence

Protein without evidence

Directed edge in MST

High sequence similarity

Posterior probability of GO:1901681

Legend

Figure A.13: Network view of predictions for UniProt Q6UWY2 without using pseudo-
counts, colored by GO:1901681. GO:1901681 has not often been experimentally observed,
so without pseudocounts, its probability decays more quickly than desired.
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Figure A.14: Legend for Figure A.15.

Table A.6: Table of inference algorithms

Short Name Full Name

ai adaptive inference

ai_cond adaptive inference with conditioning

ai_ijgp_cond adaptive inference with iterative-join-graph propagation and conditioning

bp belief propagation

glc generalized loop correction

ijgp iterative-join-graph propagation

samplesearch SampleSearch

trwbp tree-reweighted belief propagation
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(a) WFP vs.ăWTP (b) Precision vs.ăRecall

(c) Weighted Precision vs.ăWeighted Recall (d) Sample-Weighted Weighted Precision
vs.ăSample-Weighted Weighted Recall

Figure A.15: Plots showing the performance of different inference engines on the top-down
model and the bottom-up model. Evaluated over all proteins, including those for which some
methods failed to make predictions
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Figure B.1: Performance plot comparing Effusion GCA (top-down, ai_cond) and Effusion
(top-down, ai_cond) on UniProt P78334
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Table B.1: Predictions for P78334 made by Effusion GCA (top_down, ai_cond). For
comparison, predictions made by Effusion (top_down, ai_cond) Table B.2. The GO terms
are filtered to those that are predicted by both methods.

GO Term

Posterior

Probability

In

GOA

True Positives

(Bits)

False Positives

(Bits)

GO:0003674 1.000000 ✓ 0.414455 0.000000

GO:0060089 0.999510 ✓ 4.512552 0.000000

GO:0004872 0.998071 ✓ 4.512740 0.000000

GO:0099600 0.995562 ✓ 4.672222 0.000000

GO:0005215 0.994323 ✓ 8.086758 0.000000

GO:0004871 0.993672 ✓ 11.944359 0.000000

GO:0038023 0.993112 ✓ 11.950580 0.000000

GO:0004888 0.989607 ✓ 11.950725 0.000000

GO:0022892 0.973083 ✓ 12.271890 0.000000

GO:0022857 0.971282 ✓ 12.526606 0.000000

GO:0016917 0.968074 ✓ 20.682580 0.000000

GO:0022891 0.953591 ✓ 20.701747 0.000000

GO:0015075 0.937574 ✓ 20.944265 0.000000

GO:0008509 0.854694 ✓ 22.408299 0.000000

GO:0004890 0.774346 ✗ 22.408299 0.703018

GO:0005488 0.622386 ✗ 22.408299 2.178223

GO:0015103 0.524925 ✓ 24.286373 2.178223

GO:0005515 0.438734 ✗ 24.286373 3.194858

GO:0015108 0.290903 ✓ 25.155245 3.194858
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GO Term

Posterior

Probability

In

GOA

True Positives

(Bits)

False Positives

(Bits)

GO:0022803 0.150374 ✓ 26.970277 3.194858

GO:0015267 0.150359 ✓ 26.970442 3.194858

GO:0022838 0.150344 ✓ 27.033732 3.194858

GO:0005216 0.146677 ✓ 27.038145 3.194858

GO:0005253 0.135799 ✓ 27.042008 3.194858

GO:0022836 0.094703 ✓ 27.778316 3.194858

GO:0022834 0.094694 ✓ 27.795363 3.194858

GO:0015276 0.094684 ✓ 27.796507 3.194858

GO:0099095 0.094675 ✓ 28.015148 3.194858

GO:0005254 0.072974 ✓ 28.015148 3.194858

GO:0019904 0.062237 ✗ 28.015148 8.173894

GO:0005230 0.042338 ✓ 29.256364 8.173894

GO:0005237 0.042333 ✗ 29.256364 12.476998

GO:0005231 0.042333 ✗ 29.256364 13.145229

GO:0016933 0.042329 ✗ 29.256364 16.761029

GO:0016934 0.042325 ✗ 29.256364 16.761029
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Table B.2: Predictions for P78334 made by Effusion (top-down, ai_cond). For comparison,
predictions made by Effusion GCA (top-down, ai_cond) are in Table B.1. The GO terms
are filtered to those that are predicted by both methods.

GO Term

Posterior

Probability

In

GOA

True Positives

(Bits)

False Positives

(Bits)

GO:0003674 1.000000 ✓ 0.414455 0.000000

GO:0060089 0.999351 ✓ 4.512552 0.000000

GO:0004871 0.998586 ✓ 8.370153 0.000000

GO:0004872 0.998486 ✓ 8.370341 0.000000

GO:0099600 0.998386 ✓ 8.529823 0.000000

GO:0038023 0.998386 ✓ 8.536044 0.000000

GO:0004888 0.998287 ✓ 8.536189 0.000000

GO:0016917 0.972512 ✓ 16.692164 0.000000

GO:0005215 0.904364 ✓ 20.106700 0.000000

GO:0022892 0.904273 ✓ 20.427865 0.000000

GO:0022857 0.904273 ✓ 20.682580 0.000000

GO:0022891 0.904183 ✓ 20.701747 0.000000

GO:0022803 0.904183 ✓ 22.516779 0.000000

GO:0015267 0.904092 ✓ 22.516943 0.000000

GO:0015075 0.904092 ✓ 22.759461 0.000000

GO:0022838 0.904002 ✓ 22.822751 0.000000

GO:0022836 0.904002 ✓ 23.559060 0.000000

GO:0022834 0.903911 ✓ 23.576107 0.000000

GO:0005216 0.903911 ✓ 23.580520 0.000000
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GO Term

Posterior

Probability

In

GOA

True Positives

(Bits)

False Positives

(Bits)

GO:0015276 0.903821 ✓ 23.581664 0.000000

GO:0005230 0.903730 ✓ 24.822881 0.000000

GO:0005231 0.891673 ✗ 24.822881 0.668232

GO:0016933 0.789369 ✗ 24.822881 4.284031

GO:0004890 0.743026 ✗ 24.822881 4.987050

GO:0005488 0.580448 ✗ 24.822881 6.462255

GO:0005515 0.380296 ✗ 24.822881 7.478890

GO:0008509 0.058065 ✓ 26.286915 7.478890

GO:0019904 0.056282 ✗ 26.286915 12.457925

GO:0005237 0.036488 ✗ 26.286915 16.761029

GO:0015103 0.019908 ✓ 28.164989 16.761029

GO:0005253 0.019906 ✓ 28.168851 16.761029

GO:0099095 0.019904 ✓ 28.387492 16.761029

GO:0015108 0.000953 ✓ 29.256364 16.761029

GO:0005254 0.000953 ✓ 29.256364 16.761029

GO:0016934 0.000953 ✗ 29.256364 16.761029
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Appendix C

Code

Source code is available at https://github.com/babbittlab/effusion.

https://github.com/babbittlab/effusion
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