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Abstract of Dissertation

Surface Quasigeostrophic Vortex Dynamics and Resulting Transport with

Weak Vertical Motion

by

Cecily Keppel Taylor

Doctor of Philosophy in Engineering Science (Engineering Physics)

University of California, San Diego, 2016

Professor Stefan Llewellyn Smith, Chair

The surface quasi-geostrophic (SQG) equations are a model for low-

Rossby number geophysical flows in which the overall dynamics are governed

by buoyancy evolution on the boundary. The model can be used to explore

the transition from two-dimensional to three-dimensional mesoscale geophys-

ical flows. We examine SQG vortices and the resulting flow to first order in

Rossby number, O(Ro). This requires solving an extension to the usual QG

equation to compute the velocity corrections, and we demonstrate this math-

ematical procedure. As we show, it is simple to obtain the vertical velocity,

but difficult to find the O(Ro) horizontal corrections. Chaotic transport due

to three SQG point vortices is studied with Poincaré sections and the Finite

xvii



Time Braiding Exponent (FTBE). This chaotic transport is representative of

the mixing in the flow, and these terms are used interchangeably in this work.

Changes in transport from O(Ro) vertical velocity terms are also examined,

though without O(Ro) horizontal velocities this is not a true solution to the

governing equations. We then consider the SQG elliptic vortex solution de-

veloped by Dritschel (2011), in which all O(Ro) velocities can be calculated.

Results show that SQG point vortices exhibit greater mixing at the surface

than classical point vortices. There appears to be a minimum FTBE near

flow regime boundaries, and generally mixing is greater when the energy of

the system is greater. There is also a critical depth below which the FTBE

decreases sharply. Finally, including vertical velocity in the point vortex

solution increases the observed mixing.
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1 Introduction

Many fields within the fluid dynamics community require a good un-

derstanding of mixing in order to advance in problems such as miniaturizing

biomedical devices [48], improving combustion engines [1, 53], and predicting

how pollutants carried in the ocean or atmosphere will disperse [15, 43, 34].

While mixing is a familiar concept, the particulars of how to define and

measure the extent of mixing in a given flow remains challenging. Mixing

is generally decomposed into two stages, starting with the process of stir-

ring, where diffusion is negligible but advection will stretch material lines

into filaments (see Figure 1.1 from [52]). The second stage begins when the

scales of the filaments are small enough that the advection effects are of the

same order as diffusion, and from there the mixed region will homogenize.

The initial step of stirring was studied by Aref & Pomphrey (1980) under

the name “chaotic motion” in the simplified case of point vortices in two-

dimensional flow [5]. In this case, chaos refers to aperiodic behavior in which

two points in the flow that are initially very near will exhibit very different

trajectories over finite time [4]. The trajectories are a Lagrangian description

of how material will be transported in the flow. Physically, a particle in the

flow that undergoes chaotic advection will, over time, be carried through the

entire region and interact with all of the fluid particles that are bounded by

1
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Figure 1.1: Time series of a set of particles that initially fill a square region
being advected by a flow, reproduced from Welander 1955 [52]. Each particle
follows a different trajectory in time, and the shape is stretched and twisted
into filaments. This is called stirring.

the same material lines. Thus, if dye is introduced into the fluid anywhere in

that region, the dye will eventually spread over the entire region, satisfying

the typical conceptual definition of mixing. This chaotic advection is what

we consider to be mixing in this thesis, where we analyze exact solutions to

equations relevant to flow in the ocean.

In the ocean, flows at different scales will have different characteristics.

Figure 1.2 displays some of these scales, along with approximate horizontal

lengths of geophysical flows to which they apply and relevant equations of

motion. At the largest “basin” width scales, O(1000 km), the equations

are purely planetary geostrophic, where the pressure gradients are balanced

by the Coriolis forces. These scales apply to weather systems. At slightly

smaller “mesoscales,” O(10-100 km), the Quasigeostrophic (QG) equations

of motion apply, where inertial terms are small but not neglected. This is

relevant to the typical scale of gyres in the ocean. At scales smaller yet, called

“submesoscale,” the balance of forces is more complicated and the flows are

not well understood. Finally, small-scale flows do not experience significant

Coriolis forces, and solutions are fully three-dimensional.

At large scales, the ocean can be modeled as a thin body of fluid
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Figure 1.2: Various ocean scales, in decreasing order, with approximate hor-
izontal scales and relevant equations of motion.

spread over a rotating sphere. The fluid is stratified and effectively inviscid

except at very small length scales. The Coriolis forces are strong relative to

local forces, so the Earth’s rotation has a significant effect on dynamics. The

stratification can be expressed in terms of deviations from a stable state

ρ = ρ0(z) + ρ′ .

The Boussinesq approximation assumes that the deviations are small, ρ′/ρ0 �

1, and in the ocean where ρ′/ρ0 = O(10−3) this is valid [33].

The equations of motion can be nondimensionalized using character-

istic scales – velocity U , horizontal length L, vertical length (i.e. height)

H, kinematic viscosity ν, Coriolis frequency f , and buoyancy frequency N

– to find various dimensionless numbers that characterize a regime of mo-

tion. For example, inviscid flow is characterized by high Reynold’s number

Re = UL/ν, and in this regime the viscous stress is negligible away from

solid boundaries. In this thesis we are not concerned with flow at bound-

aries, and so the viscous stresses are neglected. There is also the Rossby

number, Ro = U/fL, comparing the local velocity to the velocity of the

rotating coordinates. It is assumed in the work here that Ro � 1. For

ocean circulation, U = 0.1 m/s and f0 = 10−4 s−1 at mid-latitudes, so for
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the lengths 10-100 km, the Rossby number will be Ro = 10−3 -10−2 [33].

Another dimensionless number is the Burger number, B = NH/fL, which

describes the relative strength of buoyancy forces and Coriolis forces, and

provides a ratio of the effective vertical length scale to the horizontal one.

For the model of interest here, the Burger number is assumed to be not much

smaller than the small Rossby number, specifically Ro
B2 � 1. Typically N = 2

x 10−3 s−1 and H = 4 km, so B = 0.8 -8 for the f0 and length scales given

previously [33]. In the model of interest here, the Burger number is taken to

be unity.

Ocean mesoscale flows are characterized by small Rossby number, so

that planetary motion dominates the flow and dynamics are mostly horizon-

tal: the rapid rotation suppresses vertical motion by the Taylor-Proudman

theorem [7, Section 7.6], and the stratification further minimizes the verti-

cal velocities. Mathematical tools have been developed for studying particle

transport for two-dimensional flows. Some researchers include vertical de-

pendence by allowing z to vary as a parameter in the equations [49]. These

horizontal flows can be described by a streamfunction, ψ, with the veloc-

ities described by a Hamiltonian relation, defined here in the geophysical

convention,

ẋ = −∂ψ
∂y

, ẏ =
∂ψ

∂x
. (1.1)

One can thus utilize properties of Hamiltonian systems to determine proper-

ties of two-dimensional fluid flow [54].

In reality, ocean flow is three-dimensional and cannot be described

by (1.1). However, the vertical velocity is relatively weak compared to the

horizontal velocity, of order Rossby number. As such, the flow still has a
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Hamiltonian relation to leading order, but also has a non-Hamiltonian O(Ro)

perturbation. Figure 1.3 depicts a chart that demonstrates the added com-

plication going from two-dimensional models to three-dimensional models.

Of interest in this thesis are ocean flows that bridge two of these categories,

modeled by QG flow. The two-dimensional O(1) QG model is accurate for

capturing the two-dimensional inherent dynamics of the system, but other

properties of the three-dimensional flow field, such as passive scalar transport,

could be significantly altered by this perturbation. For instance, the weak

vertical flow could interact with vertical shear, and then the small vertical

motion could transport particles into different regimes of motion.

This thesis will examine the effect of this weak vertical velocity on

passive scalar transport by considering the Surface Quasigeostrophic (SQG)

model [27]. This model is a version of the quasigeostrophic equations, and

thus the model lends itself to studying weak vertical velocity effects. By

expanding the variables in this small parameter [41], the motion can be ex-

amined separately at zeroth and first order. The solution is asymptotically

dynamically consistent and allows for the examination of how small vertical

velocity can affect transport or other flow properties. In order to deter-

mine the fundamental effect of vertical velocity, simple exact solutions are

desired; this thesis examines point vortices and elliptic vortices. Vortices

are common in the ocean, and idealized point vortices are well-understood

in two-dimensional flow and straightforward to model at O(1) in SQG. The

elliptic vortex is more complicated, but has the benefit of finite velocities

everywhere in the flow. By using these model problems, the effect of the

O(Ro) corrections on resulting chaotic transport can be isolated.

In order to examine the chaotic motion induced by these vortex solu-
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tions, there must be enough free parameters to allow chaos in the flow. In

their study of two-dimensional point vortices, Aref & Pomphrey found that

three interacting vortices would follow regular trajectories, and four vortices

could follow chaotic trajectories. The four-vortex result also applies to the

analysis of flow surrounding three vortices, because a point in the fluid can

be modeled as a particle that is passively carried by the fluid, equivalent to

a point vortex of zero strength. Thus, by Aref & Pomphrey’s findings, three

point vortices will follow periodic paths but can produce chaotic flow in the

surrounding fluid. In this thesis, then, three SQG point vortex solutions are

considered and their resulting chaotic mixing is examined. In the elliptic vor-

tex case, the additional parameters are expected to induce mixing even for

two vortices. While the interaction of point vortices is straightforward, the

interaction of elliptic vortices requires integrating over all ellipses to include

all contributions to motion. Two methods that approximate this interac-

tion are summarized in Chapter 5. It is found that two elliptic vortices do

not follow regular trajectories as in the point vortex case, and instead are

quasi-periodic.

By examining mixing for simple exact solutions in the SQG model,

this thesis provides insight into a possible driving force of mixing in the ocean

as well as a comparison between these dynamics and those found in classical

two-dimensional chaotic flows. Since vortices are characteristic structures

in the ocean [10, 6], simplified vortices provide an ideal model problem for

studying mixing at the mesoscale.

This thesis is structured as follows. First the SQG model is derived

in Section 2. Computing the O(Ro) corrections to the flow requires inverting

Poisson equations, and this analysis is presented in Section 2.1. Then a short
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review on tools for quantifying mixing is presented in Chapter 3. For the

purposes of comparing different flows, we seek a global measure, and though

there is no ideal choice, we choose the Finite Time Braiding Exponent for

our analysis. The model problems are then presented: the exact solution of

the point vortex flows is derived in Chapter 4 with transport results using a

global mixing diagnostic given in Section 4.4. The exact solution of elliptic

vortex is presented in Chapter 5 with transport results in Section 5.5. Finally,

conclusions are given in Chapter 6.

Chapters 1, 2, 3, 4, and 6, in part, have been submitted for publication

of the material as it may appear in Chaos, 2016, Taylor, C. K. and Stefan G.

Llewellyn Smith. The dissertation author was the primary investigator and

author of this paper.



2 Derivation of SQG

In the SQG model, flow is driven by the buoyancy specified at these

boundaries. Both semi-infinite space z < 0 and a finite layer −D < z < 0 are

of interest as relevant to ocean models, and the boundary z = 0 is considered

the surface (see Figure 2.1). The SQG equations are valid in the low-Rossby

number limit. The governing equations with the Boussinesq and hydrostatic

approximations, given in Vallis (2006) [51], are

D

Dt

 u

v

+ f

 −v
u

 = −

 φx

φy

 , (2.1)

θ = φz, (2.2)

ux + vy + wz = 0, (2.3)

Dθ

Dt
+N2w = 0, (2.4)

with the conventional material derivative

D

Dt
=

∂

∂t
+ ~u · ∇ ,

and where the variables (u, v, w) are the velocities in the (x, y, z) directions,

respectively; φ is the geopotential height; and θ is the buoyancy. Geopotential

height refers to the pressure surface compared to a reference height, usually

9
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! !!!!!evolves!
on!the!surface!
θ = f ∂ψ

∂z

Mo0on!induced!
below!where!q=0!w=O(Ro))

Possible!second!
layer?!

Figure 2.1: A schematic illustrating the Surface Quasigeostrophic (SQG)
model, where flow is governed by potential vorticity which is specified at the
boundary and zero elsewhere.

sea level, given by

φ =
p− p0
ρ0

.

Buoyancy is the force experienced by a fluid parcel due to differences between

its density and the surrounding density,

θ = −g (ρ′ − ρ0)
ρ0

.

The physical constants in the equations of motion are the Coriolis parameter,

f , and the buoyancy frequency, N . In addition, the potential vorticity, q, is

related to the flow by

q = (fk̂ +∇× ~u) · ∇θ. (2.5)

For SQG flow, q = 0 in the interior of the fluid [27]. Thus, the flow is driven

only by the buoyancy distribution at the surface.

The governing equations can be non-dimensionalized using character-
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istic scales and defining the Rossby number

ε =
U

fL
� 1.

We then obtain the equations

ε
Du

Dt
− v = −φx, (2.6)

ε
Dv

Dt
+ u = −φy, (2.7)

θ = φz, (2.8)

ux + vy + εwz = 0, (2.9)

Dθ

Dt
+ w = 0. (2.10)

It is convenient to write the variables in terms of three potentials:


v

−u

θ

 = ∇Φ +∇×


F

G

0

 . (2.11)

Muraki et al. (1999) show that the variables can be expanded to

integer-order in Rossby number (u = u0 + εu1 + · · · ), and thus the equations

above can be further simplified by separating solutions at each order. We

must go up to O(ε) to include the effect of vertical velocity, so the equations
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are expanded to that order.

∇2Φ0 = 0,
(
Φ0
z

)s
=
(
θ0
)s
,

∇2F 1 = 2J(Φ0
z,Φ

0
x),

(
F 1
)s

= 0,

∇2G1 = 2J(Φ0
z,Φ

0
y),

(
G1
)s

= 0,

∇2Φ1 =
∣∣∇Φ0

z

∣∣2 , (
Φ1
z

)s
=
(
θ1
)s
.

(2.12)

The superscript s refers to a condition at the boundary. Note that F 1, G1

have Dirichlet boundary conditions while Φ0, Φ1 have Neumann. Once the

potentials have been found, the physical variables are calculated from

u ∼ −Φ0
y −ε

(
Φ1
y + F 1

z

)
,

v ∼ Φ0
x +ε (Φ1

x −G1
z) ,

θ ∼ Φ0
z +ε

(
Φ1
z +G1

x − F 1
y

)
,

εw ∼ ε
(
F 1
x +G1

y

)
.

(2.13)

2.1 Solving Poisson’s Equation

In 2002 Hakim et al. [23] determined the particular solutions to the

QG+1 potential functions such that their governing equations can be trans-

formed from Poisson equations to Laplace equations:

F 1 = Φ0
yΦ

0
z + F̃ 1 , (2.14)

G1 = −Φ0
xΦ

0
z + G̃1 , (2.15)

Φ1 =
1

2
Φ0
zΦ

0
z + Φ̃1 . (2.16)
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Then

∇2F̃ 1 = 0, F̃ 1s =
(
−Φ0

yΦ
0
z

)s
, (2.17)

∇2G̃1 = 0, G̃1s =
(
Φ0
xΦ

0
z

)s
, (2.18)

∇2Φ̃1 = 0, Φ̃1s
z =

(
−Φ0

zΦ
0
zz

)s
. (2.19)

They also proposed that these Laplace equations could be solved by a 2D

Fourier Transform in the horizontal variables. For a domain defined by the

surface z = 0 and the interior z < 0, the solutions are found to be

ˆ̃F 1 = ˆ̃F 1se|
~k|z , (2.20)

ˆ̃G1 = ˆ̃G1se|
~k|z , (2.21)

ˆ̃Φ1 =
1

|~k|
ˆ̃Φ1s
z e
|~k|z , (2.22)

where the hat ˆ indicates a Fourier transformed function and |~k| is the mag-

nitude of the horizontal wavenumber vector. The transform of the boundary

condition and the inverse transform to obtain the solution in physical space

can be done numerically. In practice, it is the derivatives of these potential

functions that are of interest in computing the O(ε) velocities, and these

derivatives are also calculated in Fourier space. Derivatives are computed

exactly in real space, thus obtaining the O(1) velocities and the particular

solutions to the O(Ro) potentials. If O(Ro) velocities are being calculated,

then the derivatives are computed on a grid around the particle positions

(x, y) at each z with horizontal resolution of about .01. The contributions

of each vortex are summed, then the surface values are Fourier transformed.

From here, ˆ̃F 1, ˆ̃G1, ˆ̃Φ1 and their derivatives are easily calculated in Fourier
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space and reverse transformed, thus obtaining the O(Ro) velocities.

2.1.1 Validation

Because the calculation of O(Ro) velocities requires numerical Fourier

Transforms and derivative calculations in that space, it is necessary to verify

that the solutions are believable. In order to verify the method, an O(1)

piecewise continuous vortex solution is considered, the circular version of

the vortex presented by Dritschel (2011) [20] which is analyzed in detail in

Section 5.

In cylindrical coordinates the governing equations for the circular vor-

tex are

∇2Φ0 = 0,
(
Φ0
z

)s
= β = βm

√
1− r2

a2
H(a− r) , (2.23)

for a radius a and vortex strength βm, where H(x) is the Heaviside function.

The solution comes from (5.2) for the case b = a, which can be given by

Φ0 =



βm
8

(
2− r2

a2

)
z = 0, r ≤ a

−βm
4

[
2 tan−1

(
a√
σ

)(
r2/2− z2

a2
− 1

)

− r2

a2

√
σ/a

1 + σ/a2
+

2z2

a2
a√
σ

] else,

(2.24)

where

σ =
a2

2

r2 + z2

a2
− 1 +

√
4z2

a2
+

(
r2 + z2

a2
− 1

)2
 .

For parameters a = 1, Γ = 2
3
βmπa

2 = 1 and a domain −10 ≤ (x, y) ≤ 10
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with 201 points in each direction, ψ is calculated numerically by two methods,

described here. Buoyancy can be given exactly in Fourier space as

β̂ =
3Γ

a3|~k|3
(

sin |~k|a− |~k|a cos |~k|a
)

for a horizontal wavenumber vector of magnitude |~k|. The inverse Fourier

Transform of this function is compared to the exact buoyancy in real space in

Figure 2.2(a,c). The streamfunction is calculated both from buoyancy given

exactly in Fourier Space, ψ1, and from the buoyancy given exactly in real

space, ψ2, and both of these are compared to the exact streamfunction in

Figure 2.2(b,d).

Although Gibbs’ phenomenon is observed in the inverse transform

of β̂ given in Fourier Space, there are no such problems in the resulting

streamfunction ψ1. The convergence of both streamfunctions to the exact

result for higher resolution and a larger domain is explored for square grids

with

N = {101, 201, 401, 801, 1201, 1601, 2001, 2401, 2801, 3201}

points in each direction, and a domain length of
√
N . Thus resolution and

domain size increase simultaneously. Results are shown in Figure 2.3. Based

on the observed convergence, the algorithm is considered reliable and can be

applied to the more complicated problem of O(Ro) corrections.

The same method is applied to find the potential functions from the

equations given by Hakim et al. (2002) [23] in equations (2.17)-(2.19). For

a = 1, Γ = 1 and the domain −10 ≤ (x, y) ≤ 10 with 401 points in each
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(a) (b)

(c) (d)

Figure 2.2: Comparison of the numerical and analytical solutions for a circu-
lar vortex at the surface z = 0. (a) A comparison of the analytic buoy-
ancy function in real space, β, (blue) and the inverse transform of the
buoyancy function given exactly in Fourier space, β̂, (red) for parameters
a = 1, Γ = 2

3
βmπa

2 = 1 and a domain −10 ≤ (x, y) ≤ 10 with 201 points in
each direction. (c) The difference between the two buoyancy solutions. (b)
A comparison of the exact streamfunction (black), the solution calculated
from the buoyancy function given exactly in Fourier Space (blue), and the
solution calculated from the buoyancy function given exactly in real space
(red). (d) The differences between the two numerical solutions and the exact
one in blue and red, respectively.
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(a)

Figure 2.3: Residue norms of the numerical solutions for the circular vor-
tex. As the resolution and domain size increase simultaneously, the vari-
ous difference norms decrease. The square domain length is

√
N discretized

with N points. In the legend, ψ refers to the exact streamfunction, ψ1 to
the streamfunction numerically calculated from buoyancy given exactly in
Fourier space, β̂, and ψ2 to the streamfunction numerically calculated from
buoyancy given in real space, β. The labels “max” and “mean” respectively
refer to the maximum and mean of the absolute difference between the nu-
merical streamfunctions and the analytic streamfunction. All are computed
at z = 0.
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direction, the O(1) and O(ε) horizontal velocities are compared on planes

z = 0 and z = −∆x = −.05, one meshgrid from the surface, in Figures 2.4-

2.7. All of the expected symmetries for a circular vortex are exhibited and

the singularity at the surface has been eliminated at a depth equal to one

horizontal gridpoint length. Note that the computation method is completely

independent of the resolution in z, so this can be chosen arbitrarily. In

Figure 2.8 the maximum u1 velocity is compared to the maximum u0 velocity

with depth, and it is observed that the two velocities decrease at nearly

the same rate, with u1 slightly slower. Finally, the O(ε) potentials depend

quadratically on the vortex strength βm while O(1) velocities are linear with

this parameter, so this must be chosen carefully so as not to violate the

assumptions of the Ro expansion.

Note that w should be zero everywhere due to symmetry, shown here.

Converting (2.14)-(2.18) to polar coordinates, we can define

F 1 = sin θ E1 , G1 = − cos θ E1 , (2.25)

where

E1 = Φ0
rΦ

0
z + Ẽ1 (2.26)

and

∇2Ẽ1 = 0 , Ẽ1s =
(
−Φ0

rΦ
0
z

)s
. (2.27)

Then

w = F 1
x +G1

y = cos θ sin θ E1
r − cos θ sin θ E1

r = 0 .

This symmetry will be broken when multiple vortices are present.

When w is calculated by taking derivatives of F and G in Fourier
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Figure 2.4: The O(1) and O(ε) horizontal velocities for the circular vortex
with a = 1, Γ = 1 on the z = 0 plane.
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Figure 2.5: The O(1) and O(ε) horizontal velocities for the circular vortex
with a = 1, Γ = 1 on the z = 0 plane through y = 0 for u and x = 0 for v.
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Figure 2.6: The O(1) and O(ε) horizontal velocities for the circular vortex
with a = 1, Γ = 1 on the z = −∆x = −0.05 plane.
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Figure 2.7: The O(1) and O(ε) horizontal velocities for the circular vortex
with a = 1, Γ = 1 on the z = −∆x = −0.05 plane through y = 0 for u and
x = 0 for v.

Figure 2.8: The ratio of the maximum u1 to the maximum u0 with depth.
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space, the Gibbs’ phenomenon is apparent, as seen at the surface and z =

−∆x in Figures 2.9 and 2.10, respectively. Alternatively, we can instead

compute F and G in Fourier space, then take the derivatives in real space by

the MATLAB function gradient. With this analysis, the Gibbs’ phenomenon

does not appear, and w is of O(10−15) at the surface. However, below the

surface, even this method is inaccurate near the edge of the vortex, as seen

in Figure 2.10. In practice, we calculate w by this second method, and look

for chaotic advection in the flow between ellipses, therefore avoiding this

singularity.

2.2 Summary

The Surface Quasigeostrophic (SQG) equations provide an approxi-

mation to large-scale ocean flow. The model has two-dimensional dynamics

due to buoyancy evolving on the surface, but three-dimensional flow. The

governing equations have been expanded about Ro to separate the solution

at each order, and a numerical method has been presented and validated for

calculating O(1) and O(Ro) velocities.

Given model problems to the SQG approximation, some of which will

be presented in Chapters 4 and 5, the next question is how best to study

the effect of vertical velocity on fluid transport. In this system without

diffusion, stirring is the relevant property of interest, but tools to measure

this have mostly been developed for two-dimensional systems. Thus, these

measures must be examined to determine whether they can be applied to

three-dimensional flows and how they can be used to understand the under-

lying geometry of transport. Using an appropriate measure of stirring, the
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(a)

(b)

Figure 2.9: Two calculations of the O(ε) vertical velocity for the circular
vortex with a = 1, Γ = 1 (a) on the z = 0 plane, and (b) through x =
∆x = 0.05 on this plane. The line x = 0 was not chosen because both
functions are computationally zero along that line. On the left the velocities
have been calculated by derivatives of F,G in Fourier space, and on the right
the derivatives have been taken in real space using the MATLAB function
gradient. Note the severe Gibbs’ phenomenon on the left. The velocities on
the right are O(10−15).
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(a)

(b)

Figure 2.10: Two calculations of the O(ε) vertical velocity for the circular
vortex with a = 1, Γ = 1 (a) on the z = −∆x = −0.05 plane, and (b) through
x = ∆x = 0.05 on this plane. The line x = 0 was not chosen because both
functions are computationally zero along that line. On the left the velocities
have been calculated by derivatives of F,G in Fourier space, and on the right
the derivatives have been taken in real space using the MATLAB function
gradient. The Gibbs’ phenomenon has lessened on the left as compared to
Figure 2.9, but the solution on the right is smoother.
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proposed research will examine the fundamental effect of vertical velocity

on fluid transport in simple exact solutions to the Surface Quasigeostrophic

(SQG) model.

Acknowledgements Chapters 1, 2, 3, 4, and 6, in part, have been submit-

ted for publication of the material as it may appear in Chaos, 2016, Taylor, C.

K. and Stefan G. Llewellyn Smith. The dissertation author was the primary

investigator and author of this paper.



3 Tools for Measuring Transport

The purpose of this work is to understand how transport is affected

by a model being perturbed from a two-dimensional Hamiltonian system to

a nearly two-dimensional system with weak vertical motion. The project is

part of the Multidisciplinary University Research Initiative known as Ocean

3D+1, working to understand and predict ocean flow (funded by the Office

of Naval Research). This thesis will contribute to the understanding of the

fundamental effect of adding a third dimension to flow in order to gain in-

sight into how current prediction tools can be adapted from two to three

dimensions.

Poincaré maps are a useful visualization tool that provide qualitative

insight into mixing. For SQG three point vortices (details presented in Chap-

ter 4), the positions of flow particles are strobed at every period of vortex

motion in a co-rotating frome. When a particle samples a large area, chaotic

mixing is occuring. Sample Poincaré maps are shown in Figure 3.1.

It can be seen in Figure 3.1 that, while the dynamics are purely

two-dimensional, the flow has vertical dependence. Even when particles fol-

low regular trajectories (a,b,c), the shapes of those trajectories change with

depth. In the case where mixing is exhibited, the barriers of chaotic mo-

tion seem to be three-dimensional surfaces, and islands are observed at a

27
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(a) H = 0.48, z = 0 (b) H = 0.48, z = −0.25 (c) H = 0.48, z = −0.5

(d) H = 0.54, z = 0 (e) H = 0.54, z = −0.25 (f) H = 0.54, z = −0.5

(g) H = 0.58, z = 0 (h) H = 0.58, z = −0.25 (i) H = 0.58, z = −0.5

Figure 3.1: Poincaré maps for SQG point vortices for two distinct vortex
configurations sampled at three depths. Vortex positions are shown as crosses
at the surface in (a,d,g). The upper row shows a nonmixing case, H = 0.48,
and it is observed that the paths change with depth. The middle row is a case
where three vortices orbit one another, H = 0.54, and this induces mixing,
even at depth, though the chaotic region changes with z. The lowest row is a
case where two vortices orbit while the third stays apart, H = 0.58, and this
also induces mixing, with very little mixing observed at z = −0.5. Compare
the z = 0 plots (a,d,g) to classical solutions in Kuznetsov & Zaslavsky (1998)
[32].
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Figure 3.2: A 3D visualization of the chaotic mixing region of a flow, demon-
strating that the islands in the Poincaré maps extend as surfaces in three
dimensions. This figure was produced by using a set of Poincaré sections to
approximate the three-dimensional chaotic region, then using the MATLAB
function alphavol [35] to produce the surface containing this region.

range of depths. A three-dimensional visualization of the chaotic mixing is

shown in Figure 3.2, and the islands are shown to extend in depth. This

figure was produced by using a set of Poincaré maps over a range of depth

to approximate the three-dimensional chaotic region, and the surface of this

volume was generated using the MATLAB function alphavol [35]. Two is-

lands near (x, y) = (±0.2,−0.5) descend only partway, whereas islands near

(x, y) = (±1, 0) descend at least as far as was sampled here.

In order to analyze quantitatively the effect of changing flow param-

eters, it is necessary to use a single measure that represents the global com-

plexity of a flow. Thus far, tools to quantify stirring have largely been applied

to two-dimensional systems, taking advantage of the Hamiltonian relation

ẋ = −∂H
∂y

, ẏ =
∂H

∂x
.
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Figure 3.3: Examples of flow visualization from other Ocean 3D+1 work
studying contra-rotating swirling rolls [13]. On the left is a map of Lya-
punov exponents, and on the right are horizontal Poincaré sections with
three-dimensional trajectories indicated in color.

In a quasi-two-dimensional system with quasi-Hamiltonian dynamics, how

can these tools be modified? Other stirring quantifiers, such as those related

to Lyapunov exponents, are valid for any number of dimensions, and produce

a scalar field. For a complex three-dimensional field, it is not obvious how

best to visualize the results in order to understand the transport properties

of the flow, and even less straightforward is how to compare the fields of

qualitatively similar but distinct flows. Figure 3.3 shows examples of flow

visualization from work studying two contra-rotating swirling rolls within the

Ocean 3D+1 project [13].

KAM theory [46] examines the stirring that occurs from perturbing a

two-dimensional periodic Hamiltonian system to

H = H0(x, y) + εH1(x, y, t, ε) ,
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and states that most trajectories will remain close to their original peri-

odic orbit, called “quasi-periodic.” This work has been extended to three

dimensions [39, 40], but the equations retain the Hamiltonian relation in the

horizontal. In SQG, the equations themselves are perturbed such that the

Hamiltonian relation does not hold at O(Ro). Is there a similar analysis

for this sort of perturbation? A brief review of current measures and their

applicability to this work is provided here, with a summary in Table 3.1.

3.1 Lagrangian Coherent Structures

Lagrangian Coherent Structures (LCSs) refer to “special surfaces of

fluid trajectories that organize the rest of the flow into ordered patterns”

[25]. As such, they are structures that are barriers to transport. By studying

how these barriers change with time, it is possible to see how far chaotic

stirring regions extend. For example, Figure 3.1(a) indicates that there is

a small LCS surrounding each vortex as well as a larger LCS surrounding

all three, and as such a fluid particle that begins between these LCSs must

always remain there.

3.1.1 Finite-Time Lyapunov Exponents

One classical approach to identifying LCSs is calculating the Finite-

Time Lyapunov Exponent (FTLE) [44]. This essentially involves integrating

a matrix in time using the Jacobian of the velocity field and finding the

largest eigenvalues. This corresponds to how much an infinitesimal area will

stretch in time. Surfaces of local maxima, known as “ridges,” will follow

the LCSs. The main limitations of FTLEs are that they are computation-
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(a) z = 0 (b) z = −0.25 (c) z = −0.5

Figure 3.4: (a-c) FTLEs corresponding to the chaotic Poincaré maps of
Figure 3.1(d-f), respectively. Computed using the software package GAIO
[17]. All plots use the same color axes shown on the right.

ally intensive and dependent on initial conditions, so that for a unique flow,

the FTLE would change based on the initial position of the tracer particle.

Furthermore, the convergence of the FTLE (used to approximate the true

Lyapunov exponent) is point-dependent.

Current available packages use crude finite difference methods to cal-

culate the FTLE by the trajectories resulting from advecting a grid of parti-

cles [47]. Another calculation that may converge faster uses Gram-Schmidt

orthonormalization, calculating the Jacobian of the flow field at each time

step [14]. An example of FTLE calculated by the GAIO package [17] is

shown in Figure 3.4 for a case of three equal strength point vortices. Such a

calculation is computationally intensive, and does not provide a good global

measure of mixing.

Finally, recent work by other Ocean 3D+1 investigators has explored

the approximation of three-dimensional FTLE fields with calculations using

only the horizontal velocities (though including vertical shear), thus reducing

computational cost (Sulman et al. 2013) [49]. They examined a quadrupole

flow with velocities and velocity gradients consistent with ocean conditions

and were able to identify LCS ridges accurately. The FTLEs themselves had
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magnitudes “comparable to exact values.” The approximation is relevant

when the FTLEs between the two-dimensional and three-dimensional flow

differ by several magnitudes. However, for the purpose of this work, we seek

a global measure of mixing, not a local measure such as the FTLE.

3.1.2 Finite-Size Lyapunov Exponents

Another similar calculation is the Finite-Size Lyapunov Exponent

(FSLE), where some separation factor r is specified, and the flow is inte-

grated until two points initially separated by δ are separated by rδ. Karrasch

& Haller (2013) [30] determined that the FSLE does not correspond to LCSs

as well as the FTLE, and this still does not provide a global measure, so

FSLEs are not considered here.

3.1.3 Complexity Measures

Within the Ocean 3D+1 project, Rypina et al. (2011) have developed

complexity measures and examined their predictive capabilities of LCSs [45].

Two measures are defined – the correlation dimension and the ergodicity

defect – which are both measures of the volume covered by a particle trajec-

tory. They show that for a Duffing oscillator, their measures resolve the LCS

better than the conventional FTLE computation (by finite difference meth-

ods) for the same distribution of points. This method is able to quantify

the stirring of a single trajectory, while the conventional FTLE calculation

requires a mesh of trajectories. However, this is still a local rather than a

global measure of mixing.
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3.1.4 Measure M

Jiminéz Madrid & Mancho (2009) [29] formulated a function M that

calculates the arc length of the trajectory in a given integration time. In

2010, Mendoza & Mancho [38] demonstrated that these arc length measures

matched FTLE computations. Furthermore, calculating M is cheaper than

calculating the FTLE because only one point is advected rather than a matrix

or mesh. Again, this is trajectory dependent and does not provide a global

measure.

3.1.5 Minimally Stretching Material Lines

Haller & Beron-Vera (2012) [24] considered an alternative theory for

identifying coherent structures. They seek material lines (a line of particles

advected through the flow) that have minimal stretching in the desired time

interval. They define minimal stretching using the Cauchy-Green strain ten-

sor (identical to the Jacobian of the vector field used to find FTLEs) and

defining a geodesic deviation to find material lines that lie closest to strain-

lines and shearlines. Although the method identifies transport barriers, it

does not seem to provide a measure for the extent of stirring in the flow.

The method has also not yet been extended to three-dimensional flow.

3.1.6 Almost-Invariant Sets

Froyland (2005) [21] has developed a probabilistic approach to study-

ing structures within the flow. By approximating the flow advection by a

transfer operator, he uses its singular vectors to identify regions of the flow

that do not disperse, known as almost-invariant sets. In 2008, Froyland &
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Padberg [22] examined the relationship between LCSs and almost-invariant

sets. It appears that the almost-invariant sets relate to the most important

barriers in the flow, but do not identify all of the structures present.

3.2 Hyperbolic Trajectories

“Hyperbolicity” seems to be the same as the FTLE in Wiggins (2005)

[54]. Hyperbolic regions can be estimated using “instantaneous stagnation

points,” and these ISPs are used to initialize an iterative method that con-

verges on the hyperbolic trajectory. Then, the stable and unstable manifolds

of the trajectory are calculated. Again, the method locates transport barri-

ers, but does not seem to provide a quantification of global stirring.

3.3 Mix-Norm

Mathew et al. (2005) [36] propose a measure of stirring called the

Mix-Norm. They claim that, unlike the Lyapunov exponent, “the Mix-Norm

helps to address the mixing efficacy of a flow with respect to an initial scalar

field or fluid configuration.” The Mix-Norm is calculated by integrating n−1

mapping functions on some n-dimensional torus. While code for computing

the mix-norm is available, this measure requires defining an initial state for

the tracers, thus introducing a parameter independent of the flow.

3.4 Eulerian Symmetry Measures

King et al. (2001) [31] developed Eulerian Symmetry Measures (ESMs)

by analyzing how the Bernoulli function changes throughout the flow. This



37

seems to predict FSLEs, but if these are not useful for predicting flow fea-

tures then their approximations may not be worth exploring. The ESM is

essentially a measure of how some “dynamical” symmetry of the problem

changes in time.

3.5 Topological Entropy

Topological entropy represents the exponential growth of the number

of distinguishable orbits under the repeated iteration of the flow map; the

higher the topological entropy, the more chaotic mixing is present. While this

provides a measure of global complexity, it is difficult to compute given only a

velocity field. However, an approximation of topological entropy exists called

the Finite Time Braiding Exponent (FTBE), and code is readily available

[42, 9].

3.5.1 Finite Time Braiding Exponent

Thiffeault & Budǐsić have recently developed a tool called Braidlab

that, among other functions, calculates the (FTBE), which approximates

topological entropy from particle trajectories [50, 11]. The term “braiding”

comes from visualizing two-dimensional trajectories on the x-y-t axes, as

shown in Figure 3.5 which is reproduced from the Braidlab guide [50]. Over

time, the trajectories will twist around one another, forming a “braid,” and

the complexity of the braid is used as an approximation of the complexity of

the flow, i.e. topological entropy.

The benefit of FTBE over the more commonly used FTLE [44] is that

the FTBE provides a global measure of complexity as opposed to a local one
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Figure 3.5: A schematic of the braid formed from two-dimensional trajecto-
ries traced with time as the vertical axis, reproduced from the Braidlab guide
[50]. The number of twists increases the complexity of the braid and results
in higher FTBE, reflecting chaotic flow.

[2], allowing us to compare quantitatively the extent of stirring exhibited

by different flows and thus explore the parameter space. The FTBE is also

independent of initial conditions, and so a single measure of complexity will

apply to each unique flow, provided the trajectories are all within the same

flow regime, i.e. the regime of chaotic mixing [12]. However, Braidlab can

only calculate FTBE for two-dimensional flows, because braiding does not

have an analogue for three-dimensional trajectories. Despite this constraint,

the FTBE still appears to be the best option for obtaining a global measure

of mixing that independent of initial conditions. In this thesis, the FTBE

is applied to three-dimensional trajectories projected onto the x-y axis. Be-

cause vertical flow is relatively weak, this projection does not result in any

unphysical trajectory crossings.
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3.6 Summary

While Poincaré maps and tools that measure local mixing provide

visualizations of chaotic regions and flow boundaries, a global measure of

complexity that is independent of initial conditions is needed to compare

quantitatively flows with different parameters. The Finite Time Braiding

Exponent (FTBE) is chosen for this thesis, though trajectories must be pro-

jected onto the x-y plane. With this tool, simple model problems will be

presented, and the effect of O(Ro) velocities will be examined.
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4 Point Vortex Model Problem

Due to Coriolis forces, large-scale geophysical flows commonly form

swirling structures, where the fluid exhibits strong circular motion in the

horizontal. These rotating structures are called vortices. In the ocean, these

vortices have physical scales consistent with the Quasigeostrophic assump-

tions. By analyzing simplified versions of vortex flow, the effect of the O(Ro)

vertical velocity on transport can be explored. The simplest form of a vor-

tex is a point vortex, constructed from a mathematical singularity. Classical

(2D Euler) point vortices have been studied extensively in the examination

of regular and chaotic trajectories [4]. The equations of motion are two-

dimensional and inviscid,

D~u

Dt
= 0 , ∇ · ~u = 0 . (4.1)

Written instead in terms of a streamfunction and vorticity (using the geo-

physical convention), the equations become

∇2ψ2D = ω (4.2)

where

ω = ẑ · (∇× ~u) , ∇ψ2D = (v,−u) . (4.3)

40
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In the two-dimensional case, the point vortex is defined by a singular point

of vorticity, and thus the streamfunction is the free-space solution to

∇2ψ2D = −κδ(x− x0)δ(y − y0) (4.4)

for a point vortex of strength (or circulation) κ and position (x0, y0). The

solution is the classical point vortex

ψ2D = − κ

2π
log |~x− ~x0| . (4.5)

For multiple point vortices of strengths κj and positions ~xj, the streamfunc-

tions will combine linearly and the vortices themselves will evolve according

to

(ẋi, ẏi) = − 1

2π

′∑
j

κj
|~xi − ~xj|2

(yi − yj,−xi + xj) , (4.6)

Moving now to three-dimensional equations, the O(1) equations for

SQG from (2.12) are

∇2Φ0 = 0 ,
(
Φ0
z

)s
=
(
θ0
)s

(4.7)

where the superscript s indicates that the variable is evaluated at the surface

of the domain, conventionally z = 0, and the subscript z indicates the z-

derivative.

While the 2D Euler system is governed by the specified vorticity, in

SQG the system is governed instead by the buoyancy at the surface. Thus,
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the analogous point vortex flow in SQG is found from the definition

(
θ0
)s

= κδ(x− x0)δ(y − y0) . (4.8)

The solution is

Φ0 = − κ

2π

1

|~x− ~x0|
, (4.9)

given in Held et al. [27]. Note that, unlike for classical point vortices, this

solution has vertical dependence. For an arbitrary number of vortices with

strengths κj and positions ~xj, i.e.

(
θ0
)s

=
∑
j

κjδ (x− xj) δ (y − yy) ,

the solution is the linear combination

Φ0 = − 1

2π

∑
j

κj
|~x− ~xj|

. (4.10)

The point vortices themselves will be advected by the flow, neglecting the

singular velocity contribution of each point vortex at its own location. From

conservation of energy in (2.10), w is of order ε and as such is neglected

in (4.7). Each vortex then induces only horizontal motion, so the vertical

position of each vortex will remain constant. In this work, we consider one

active surface at z = 0, so the vortices are all constrained to that plane.

The horizontal evolution of a given point vortex is determined by the sum of

contributions of every other vortex in the system, given by

(ẋi, ẏi) = − 1

2π

′∑
j

κj
|~xi − ~xj|3

(yi − yj,−xi + xj) , (4.11)
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where the prime indicates that the self-interaction i = j is ignored.

4.1 Three Equal Strength Vortex Case

As detailed in Aref’s 1983 review [4], for two-dimensional flow, three

point vortices are the minimum number that produces chaotic flow. The

three vortices will evolve in a regular pattern, but a passive particle (which

can be considered as a vortex of strength 0) will follow a chaotic trajectory

for certain vortex and initial particle positions. Aref’s analysis is based solely

on Hamiltonian mechanics, and thus applies to SQG as well. Thus, to study

chaos in SQG, we consider three SQG point vortices.

To analyze the vortex interaction, we follow the analysis of Kuznetsov

& Zaslavsky (1998) [32] for classical point vortices of equal strength. If all vor-

tices have equal strength, the strength can be absorbed into the length scales

and eliminated from the nondimensional equations, i.e. κi = 1. Kuznetsov

& Zaslavksy consider the position of each vortex as a complex number,

zj = xj + iyj, and relocate the origin to the center of vorticity

Z =

∑
j κjzj∑
j κj

.

They then write the vortex positions in terms of action variables Jn, θn.

zj =
1√
3

2∑
n=1

√
2Jn eiθn e−2iπn(j−1)/3 j = 1, . . . , 3. (4.12)
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From here, make another change of variables

I1 = J2 − J1, I2 = J2 + J1,

φ1 = θ2 − θ1, φ2 = θ2 + θ1 .

(4.13)

These new variables I1 and I2 have geometric significance, with

I1 = A/
√

3 , I2 = L2/4 , (4.14)

where A represents the signed area of the triangle formed by the vortex

positions and L2 =
∑
κj|zj|2 is the angular momentum, a constant.

The vortex dynamics can then be analyzed by taking advantage of

the Hamiltonian relations

İ1 =
∂H

∂φ1

, İ2 = −∂H
∂φ2

, (4.15)

where the Hamiltonian H is the energy of the system, a constant of motion.

Here the derivation for SQG deviates from that for classical point vortices as

we use the SQG Hamiltonian,

H =
1

4π

∑
i

′∑
j

κiκj
|zi − zj|

, (4.16)

where the prime indicates that i = j is neglected.

Finally, define the “area variable” as

I =

(
I1
I2

)2

= 16A2/3L4. (4.17)

Because H and I2 are constants, the evolution of I depends only on I. A
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I

0 0.5 1
−
İ
2

-2

-1

0

1

2

H = .47

H = .50

H = .53

Hc = .56

H = .60

H = .63

H = .67

Hc

Figure 4.1: Potential function−İ2(I) showing the evolution of equal strength
vortex motion for various energies, H. Hc = 0.5623 is the critical energy that
divides the two regimes of motion.

potential function is defined as −İ2 such that where this potential is nega-

tive the solution is real, and thus the curves of İ2(I) can be interpreted as

potential wells. These potential curves are shown in Figure 4.1 for various

energies. There are two regimes of motion visible, separated by the critical

energy Hc = 0.5623. In the higher energy regime, two of the vortices are

close enough that they will orbit one another, while the vortex further away

remains separate. In the other regime of motion, all three vortices will orbit

one another.

These potential wells can be used to determine the period of motion

from the integral

T = 2

∫ Imax

Imin

dI

|İ|
, (4.18)

where Imin and Imax refer to the intersections of the well with the −İ2 = 0

axis, and the factor of 2 is needed to account for the return from Imax to Imin

over one cycle. After one cycle I will return to its original value, meaning

the vortex triangle has its original area, but the vortices will be permuted
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among the triangle vertices. This can be seen clearly in the co-rotating frame

(explained below) in Figure 4.3, where in (a) all three vortices orbit and in

(b) only two vortices are orbiting. At time T , the area has returned to its

original value, but the orbiting vortices have changed positions. A higher

energy results from two of the vortices orbiting at close range, so the period

of vortex motion at higher values of H will be the area variable period T

multiplied by an additional factor of 2. Then for lower energies the the three

vortices will permute with one another; thus the period of vortex motion will

be T multiplied by an additional factor of 3.

Tv =


3T if H < Hc

2T if H > Hc.

(4.19)

The dependence of Tv on H across both regimes of motion is shown in Figure

4.4. Note the singularity at the boundary between the two regimes motion,

H = Hc = 0.5623. Referring to Figure 4.1, it can be seen that the Hc

potential well has a decaying approach to Imin = 0, implying that the solution

will take infinitely long to reach this turning point in I and thus resulting in

the singularity in Tv exhibited in Figure 4.4.

Figure 4.2 also reveals that the vortices slowly rotate about their

center of vorticity. The presence of a rotation becomes clear when zj is

written in terms of the new variables.

zj(t) =
L√
6
eiφ2(t)/2

[(
1− I1/2(t)

)1/2
e−2πi(j−1)/3e−iφ1(t)/2

+
(
1 + I1/2(t)

)1/2
e−4πi(j−1)/3eiφ1(t)/2

]
. (4.20)
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(a) (b)

Figure 4.2: Two regimes of motion are observed for equal strength vortices,
(b) lower-energy three-vortex orbits and (a) higher-energy two-vortex orbits.
The points indicate initial positions of vortices and the lines indicate trajec-
tories in time. It is observed that the vortices permute and also rotate in
time, resulting in braid-like trajectories.

(a) (b)

Figure 4.3: Equal strength vortex trajectories in the co-rotating frame (a) up
to and (b) just before time T , demonstrating the necessary factors for com-
puting Tv in (4.19). For (a) the lower-energy three-vortex orbits, a triangle
connecting the vortices at t = 0 (solid) and t = T (dot-dashed) is also shown.
The two triangles are equivalent, but the vortex associated with each vertex
has changed, therefore requiring a factor of 3 to return each vortex to its
original position. For (b) the higher-energy two-vortex orbit, the trajectories
are shown for a time just less than T to more clearly show the dynamics. The
vortex that remains separate is about to return to its original position, but
the two orbiting vortices will have changed positions. Therefore this regime
requires a factor of 2 to return each vortex to its original position.
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Figure 4.4: Period of motion for equal strength vortices Tv vs. H. The
vertical dotted line shows the boundary between the two regimes of motion,
Hc = 0.5623.

Note that the term in the brackets is identical at times t = 0 and t = Tv.

Therefore, at t = Tv, each vortex has returned to its original position with

a rotation about the center of vorticity of φ2(Tv)/2. This rotation can be

calculated in a similar manner to the period of motion. Using

φ̇2 = −∂H
∂I2

, (4.21)

we find

φ2(Tv) = 2

∫ Imax

Imin

φ̇2

|İ|
dI. (4.22)

With this shift, the motion of the vortices is described in its entirety. Vortex

trajectories in the co-rotating frame are shown in Figure 4.5. For these

plots and all equal strength calculations, we have normalized the horizontal

coordinates by L.
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(a) (b) (c)

Figure 4.5: Equal strength vortex trajectories for H = (a) 0.54, (b) 0.56, (c)
0.58 in the co-rotating frame. These demonstrate the two regimes of motion
from (4.19) and Figure 4.1.

4.1.1 Computing Integrals

The integrals of (4.18) and (4.22) are not trivial to calculate. From

the change to action variables In, φn, we obtain

|z1 − z2| =

√
2I2 + 2

√
I22 − I21 sin(φ1 + π/6) , (4.23)

|z1 − z3| =

√
2I2 − 2

√
I22 − I21 sin(φ1 − π/6) , (4.24)

|z2 − z3| =

√
2I2 − 2

√
I22 − I21 cos(φ1) , (4.25)

H =
1

2
√

2πL

[
1

|z1 − z2|
+

1

|z2 − z3|
+

1

|z1 − z3|

]
. (4.26)

In Kuznetsov and Zaslavsky (1998) [32], the Hamiltonian for classical point

vortices was written explicitly in terms of cos 3φ1 Further analysis shows that

the SQG Hamiltonian is also dependent on cos 3φ1 by the more complicated

relation

(
8H2π2L2P123 − 9I22 − 3I21

)2
= 4P123

(
6I2 + 4

√
2HπL

√
P123

)
, (4.27)
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where

P123 = |z1 − z2||z1 − z3||z2 − z3| =
√

2I2 (I22 + 3I21 )− 2 (I22 − I21 )
3/2

cos 3φ1 .

Thus, for a given (I1, I2) and H > 0, there is a unique φ1 bounded by

0 < φ1 < π/3.

We then calculate

İ1 =
∂H

∂φ1

=
1

2
√

2πL

√
I22 − I21

[
− cos(φ1 + π/6)

|z1 − z2|3

+
cos(φ1 − π/6)

|z1 − z3|3
− sinφ1

|z2 − z3|3

]
,

(4.28)

and from here easily find İ = 2I1İ1/I
2
2 .

From the initial conditions of the vortices, the constants of motion

I2 = L2/4 and H are obtained. The Hamiltonian determines the regime of

motion, which determines whether the origin is a zero of İ. The other zeros of

İ are found numerically with MATLAB’s fzero function. Finally, to calculate

(4.18), we must make a final change of variables to avoid the singularities of

calculating 1/|İ| at its zeros. After the change I = Imin+(Imax−Imin) sin2 α,

the integral becomes

T = 2

∫ π/2

0

2(Imax − Imin) sinα cosα

|İ(I)|
dα ,

with the singularity eliminated. In practice, we evaluate the integral from

[10−6, π/2− 10−6].
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The same procedure is followed to evaluate (4.22) using

φ̇2 = −∂H
∂I2

=
1

2
√

2πL

[
1

|z1 − z2|3

(
1 +

I2√
I22 − I21

sin(φ+ π/6)

)

+
1

|z1 − z3|3

(
1− I2√

I22 − I21
sin(φ− π/6)

)

+
1

|z2 − z3|3

(
1− I2√

I22 − I21
cosφ

)] (4.29)

From these integrals, the equal strength vortex period and rotation are cal-

culated, and the flow simulations are transformed into the co-rotating frame.

4.2 Three Arbitrary Strength Vortex Case

Aref (1979) described the motion of three classical vortices of arbitrary

strength by noting that these sums are constants of motion

∑
i

κixi,
∑
i

κiyi,
∑
i

κi(x
2
i + y2i ),

and therefore the sum

1

2

∑
i,j

κiκjl
2
ij, lij = |zi − zj| ,

is constant and independent of the choice of coordinates. Additionally, the

Hamiltonian is a constant. With the convention κ1 ≥ κ2 > 0, the above can

be used to define a constant parameter C such that

κ1κ2l
2
12 + κ2κ3l

2
23 + κ3κ1l

2
31 = 3κ1κ2κ3C .
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C is essentially a time scale for relative motion. Note that L =
∑

i κi(x
2
i +y

2
i ),

and with the origin defined as the center of vorticity,

L = 3

∏
j κj∑
j κj

C ,

so fixing L = 1 in the equal strength case where all κi = 1 is equivalent to

fixing C = 1.

For nonzero C we can define trilinear coordinates

b1 =
l223
κ1C

, b2 =
l213
κ2C

, b3 =
l212
κ3C

,

with

b1 + b2 + b3 = 3 .

Additionally, the physical regime is where the vortex positions can form a

triangle, which in trilinear coordinates is expressed as

(κ1b1)
2 + (κ2b2)

2 + (κ3b3)
2 ≤ 2(κ1κ2b1b2 + κ2κ3b2b3 + κ1κ3b1b3) .

From here, the SQG analysis differs from Aref’s because we introduce

the SQG Hamiltonian

H =
1

4π

′∑
α,β

κακβ
lαβ

.

Rewriting this in terms of trilinear coordinates we find

H =
κ1κ2κ3

2π|C|1/2

(
1

|b1κ1|1/2κ1
+

1

|b2κ2|1/2κ2
+

1

|b3κ3|1/2κ3

)
,

1

|b1κ1|1/2κ1
+

1

|b2κ2|1/2κ2
+

1

|b3κ3|1/2κ3
=

2πH|C|1/2

g3
= θ .
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where g = (κ1κ2κ3)
1/3 is the geometric mean. The second line defines a new

constant of motion θ that specifies the phase trajectory in trilinear coordi-

nates.

A particular set of vortex properties will correspond to a point in the

plane of trilinear coordinates within the physical regime (see Figure 4.6).

As time evolves, the vortices will trace the phase trajectory curve. If the

trajectory goes off to infinity, as in plot (c), the vortices scatter. Intersections

of the trajectories with the physical regime boundary are points where the

vortices are collinear. At the fixed points of the trajectories, which are at

the center of the concentric curves in plots (a) and (b) and at trajectory

intersections in plots (c) and (d), the vortices exhibit rigid motion. As for

classical two-dimensional point vortices, this fixed point is

(b?1, b
?
2, b

?
3) =

1

h

(
1

κ1
,

1

κ2
,

1

κ3

)
, (4.30)

where

h =
1

3

(
1

κ1
+

1

κ2
+

1

κ3

)
is the harmonic mean.

If C is zero, the analysis is much the same with the change

b1 =
l223
κ1
, b2 =

l213
κ2
, b3 =

l212
κ3

,

b1 + b2 + b3 = 0 .

Expressed in terms of only (b1, b2), the trajectories will be given by

1

|b1κ1|1/2κ1
+

1

|b2κ2|1/2κ2
+

1

|(b1 + b2)κ3|1/2κ3
= θ ,
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(a) κ = (1, 1, 1)
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(b) κ = (2, 1, 3)
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0.577
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(c) κ = (1, 1,−1)

0.59

0.83

0.689

1.2

(d) κ = (4, 1,−8)

Figure 4.6: Phase trajectories for various vortex strengths, with the value of
θ for each trajectory indicated. The three axes represent trilinear coordinates
and the black curve shows the physical regime boundary. Compare to Figures
2, 3, and 4 in Aref (1979) [3] .
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(a) κ = (1, 1,−1)
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(b) κ = (6, 4,−1)

Figure 4.7: Phase trajectories for the special case C = 0 and two vortex
strength combinations, with the value of θ for each trajectory indicated. The
axes represent b1, b2 with b3 = −b1−b2, and the black lines show the physical
regime boundary. In the case of (a), the physical regime boundaries lie along
the (b1, b2) axes. Compare to Figures 5 and 6 in Aref (1979) [3].

as shown in Figure 4.7.

Unlike the equal strength case, for arbitrary strength vortices the

period and shift of vortex motion cannot be written explicitly, but they can be

computed from the resulting vortex trajectories. We perform this calculation

by finding where A and its derivative return to their initial values via linear

interpolation between the two nearest time steps. The regime of motion

is determined by observation, and the rotation angle about the center of

vorticity is determined by interpolating the second vortex’s position (chosen

arbitrarily) at time T and comparing this to its initial position. Due to the

possibility of interpolation errors, all resulting vortex trajectories are visually

confirmed to be periodic. Some examples of resulting vortex trajectories are

shown in Figure 4.8. The resulting transport for the O(1) vortex solutions

will be presented in Section 4.4.
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(a) κ = (2, 1, 3), θ = 1.45 (b) κ = (2, 1, 3), θ = 1.62 (c) κ = (2, 1, 3), θ = 2.0

(d) κ = (1, 1,−1), θ = 0 (e) κ = (1, 1,−1), θ = 0.5 (f) κ = (1, 1,−1), θ = 0.577

(g) κ = (4, 1,−8), θ = 0.59 (h) κ = (4, 1,−8), θ = 0.689 (i) κ = (4, 1,−8), θ = 0.83

Figure 4.8: Select examples of vortex trajectories for the three arbitrary
strength point vortex solution.
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4.3 O(Ro) Velocities

The small ε-order, or Ro-order, corrections to the velocities from Mu-

raki et al. (1999) [41] are given in (2.13). The O(Ro) solutions include deriva-

tives of the O(1) solution, and in the point vortex case, where the O(1) so-

lution is singular, these terms are very problematic. However, the vertical

velocity can instead be obtained from the energy conservation equation

Dθ

Dt
+ w = 0.

For the point vortex solution, it is found that

w1 = 3z
∑
j

κj
2π

(
~u− ~̇xj

)
· (~x− ~xj)

|~x− ~xj|5
(4.31)

where

~u− ~̇xi =
′∑
j

κj
2π

[
(−y + yj, x− xj, 0)

|~x− ~xj|3
− (−yi + yj, xi − xj, 0)

|~xi − ~xj|3

]

and the prime on the sum indicates that the i = j term is not considered. It

is thus possible to examine the effect of vertical velocity on mixing, though

in this case the solution is not dynamically consistent because the velocity is

not divergenceless at O(ε).
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(a) H = 0.48, z = 0 (b) H = 0.48, z = −0.25 (c) H = 0.48, z = −0.5

(d) H = 0.54, z = 0 (e) H = 0.54, z = −0.25 (f) H = 0.54, z = −0.5

(g) H = 0.58, z = 0 (h) H = 0.58, z = −0.25 (i) H = 0.58, z = −0.5

Figure 4.9: Poincaré maps for three SQG equal strength point vortices for two
distinct vortex configurations sampled at three depths. Vortex positions are
shown as crosses at the surface in (a,d,g). The upper row shows a nonmixing
case, H = 0.48, and it is observed that the paths change with depth. The
middle row is a case where three vortices orbit one another, H = 0.54, and
this induces mixing, even at depth, though the chaotic region changes with z.
The lowest row is a case where two vortices orbit while the third stays apart,
H = 0.58, and this also induces mixing, with very little mixing observed at
z = −0.5. Compare the z = 0 plots (a,d,g) to classical solutions in Kuznetsov
& Zaslavsky (1998) [32].
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(a) PSD for x component (b) PSD for x component

Figure 4.10: The power spectrum density (PSD) estimated by MATLAB’s
pwelch function for H = 0.54 at z = 0 for (a) the x and (b) y components
of vortex trajectories. The range of energetic frequencies indicates chaotic
trajectories.

4.4 Point Vortex FTBE Results

4.4.1 Three Equal Strength Vortex Case

The presence of mixing can be confirmed by visualizing transport

with Poincaré maps. Select maps for O(1) flow at several depths are given

in Figure 4.9. Trajectory positions are strobed for every period of vortex

motion, and where trajectories cover a large area, there is chaotic mixing.

Chaos can also be confirmed by the range of energetic frequencies in the

power spectrum density (PSD), estimated by MATLAB’s pwelch function

and shown in Figure 4.10 for H = 0.54 at z = 0.

The FTBE is dependent on the number of trajectories, so we fix our

analysis to include 64 trajectories and integrate over 90 periods of vortex

motion. As an estimate, the FTBE also varies slightly according the initial

conditions of the trajectories. To quantify this variation, 13 different sets of

64 trajectories were used to generate a mean FTBE and standard deviation
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Figure 4.11: Sample FTBE calculations over time for both the O(1) and
O(Ro) equal strength point vortex solutions at z = −0.25.

Figure 4.12: The mixing induced by the O(1) solution of equal strength
point vortices across a wide range of energies. The vertical line indicates the
boundary between the two regimes of motion, given by Hc = 0.5623.

for each flow considered. For the equal strength case, we have fixed L = 1,

so the only varying parameter is H. For sample cases of both the O(1) and

O(Ro) equal strength point vortex solutions at z = −0.25, Figure 4.11 shows

that both the mean and standard deviation of the calculated FTBEs converge

well over time.

FTBE vs. H for the O(1) equal strength solution is shown over a wide

range of H in Figure 4.12. There is a minimum Hmin ≈ 0.49 that allows for

mixing. Above this minimum, the level of mixing is relatively constant in
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(c) SQG

Figure 4.13: For three equal strength SQG vortices, the FTBE is calculated
for various vortex configurations characterized by the Hamiltonian, H, plot-
ted (a) at the surface and (c) with depth. For comparison, the FTBE for
three equal strength two-dimensional vortices are shown in (b). Error bars
of the FTBE are determined by statistical analysis of several choices of tra-
jectory subsets. The vertical dotted line indicates the boundary between the
two regimes of vortex motion, which for SQG is Hc = 0.5623 and for 2D is
Hc = log 2

4π
.
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the lower energy regime, then there is a dip in the extent of mixing near the

boundary between regimes of motion. In the higher energy regime, mixing

increases with H up to a maximum, and then falls to zero as the vortex

separation becomes too large to mix effectively. The window around the

regime boundary is further examined and compared to the classical two-

dimensional solution for an analogous regime in Figure 4.13(a,b). For both

solutions the boundary between the two regimes of vortex motion is indicated

with the vertical dotted line, and it seems that both show qualitatively similar

behavior, but the SQG case exhibits higher levels of mixing than the classical

case. Finally, in Figure 4.13(c) the FTBE is calculated at increasing depth,

where the plane of vortex motion is z = 0. While the vortices still produce

mixing at a depth close to the surface, the FTBE falls steeply at depths

below a critical depth of approximately z = −0.25. This is consistent with

qualitatively simpler Poincaré maps generated at depth z = −0.5 shown in

Figure 4.9(f).

Including w

As described in Section 4.3, obtaining the full O(Ro) corrections is not

easily done. However, the vertical velocity is easily found and given in (4.31).

By adding only w to the solution, we do not have a dynamically consistent

flow, but can still obtain some insights into the effect of weak vertical flow

on mixing. FTBE results comparing the O(Ro) and O(1) solutions is shown

in Figure 4.14 for Ro = 0.01, 0.1. At the surface, the solutions are identical,

which follows from the constraint that w = 0 at the surface. At depths below

the surface, including w seems to increase mixing, with larger w (resulting

from larger Ro) producing more mixing. This difference in mixing is also
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(a) z = 0 (b) z = −0.25

(c) z = −0.5

Figure 4.14: Comparison between the O(1) equal strength point vortex so-
lutions and those including w at height (a) z = 0, (b) z = −0.25, and (c)
z = −0.5. Since w = 0 at the surface, it is expected that the solutions
overlap as seen in (a).
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(a) H = 0.54, Ro = 0 (b) H = 0.54, Ro = 0.01 (c) H = 0.54, Ro = 0.1

(d) H = 0.58, Ro = 0 (e) H = 0.58, Ro = 0.01 (f) H = 0.58, Ro = 0.1

Figure 4.15: Poincaré maps of the O(1) equal strength point vortex solutions
and those including w, all at z = −0.25. Representative values H = 0.54 and
H = 0.58 are shown for (a,d) Ro = 0, (b,e) Ro = 0.01, and (c,f) Ro = 0.1.

visualized by Poincaré maps in Figure 4.15. In the case with w, the particle

positions are projected into the x-y plane to obtain the maps. Here it appears

that the area of the islands around each vortex increases with Ro, but the

edge of the outer mixing boundary seems slightly larger in (c,d) for Ro = 0.1.

Statistics of particle depth for the O(Ro) solution are given in Figure

4.16, indicating how particles tend to move between levels. For particles

initiated at z = −0.25 in (a,b), the particles stay generally around their

initial depth, with the statistical spread of particles increasing with Ro. At

the lower initial depth of z = −0.5 in (c,d), the particles trend away from

this initial depth, increasing slightly in the case H = 0.54, Ro = 0.1 and

decreasing notably in the case H = 0.58 , Ro = 0.01, 0.1. Note, however,

that there is negligible mixing at this depth, from 4.14(c).
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(a) H = 0.54, z = −0.25 (b) H = 0.58, z = −0.25

(c) H = 0.54, z = −0.5 (d) H = 0.58, z = −0.5

Figure 4.16: Statistics of particle height over time from the equal strength
point vortex solution including w. Representative values H = 0.54 and
H = 0.58 are shown for particles initially on (a,c) z = −0.25, (b,d) z = −0.5.
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We can also examine how varying parameters Ro as well as L may

vary the trend of FTBE with depth. There is no characteristic vertical length,

but as seen in Figure 4.17(a,c,d), varying the characteristic horizontal length

L will change the critical depth, from approximately z = −0.075 in the

L = 0.1 case to approximately z = −0.75 for L = 10. This relation is

further explored in Figure 4.18, where it can be seen that the critical depth

seems to change according to L1/2. The comparisons of Figure 4.17(a,c,d)

additionally shows that the extent of mixing has decreased, which follows

intuitively from the weaker velocities due to larger vortex spacing. As seen

in Figure 4.17(b), changing Ro does not affect this critical depth, but does

seem to cause a sharper dropoff in FTBE for higher energies. This may be

due to an attraction towards periodic trajectories, so that particles below the

critical depth tend to drift deeper and no longer experience mixing. Note

also that the larger islands with larger Ro in Figure 4.15 seem to also indicate

an attraction toward periodic trajectories. However, the complexity of the

flow still seems to increase in Figure 4.14. More examination is needed to

fully understand this trend.

4.4.2 Three Arbitrary Strength Vortex Case

From the phase trajectories in Figure 4.6, it is clear that 5 constants

must be designated to specify one unique arbitrary strength solution: three

vortex strengths define the phase space, θ specifies a particular phase tra-

jectory, and C defines the time scale of vortex motion evolving along that

trajectory. This parameter space is therefore very large, and as a preliminary

examination only select slices are considered here. The integration time was

also limited to only 60 periods of vortex motion.
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(a) Ro = 0, L = 1 (b) Ro = 0.01, L = 1

(c) Ro = 0, L = 10 (d) Ro = 0, L = 0.1

Figure 4.17: Comparing the O(1) equal strength point vortex solutions of
FTBE vs. depth under changes to (a) L and (b) Ro. These plots show there
is a critical depth beyond which the FTBE decreases sharply. For L = 1
the critical depth appears to be z = −0.25, and increasing Ro increases the
dropoff of FTBE for higher energies. For L = 10, the critical depth has
increased to z = −0.75, and mixing has decreased.
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(a)

Figure 4.18: How the critical depth, below which the FTBE falls steeply,
changes with L in the O(1) equal strength vortex solution. For comparison,
the line of L1/2 is also shown.

In the first case, the three initial distances between vortices are des-

ignated as l13 = l12 = 2l23 = 0.2 and the vortex strengths are constrained

by κ1 = κ2. With this it is possible to solve for both these strengths as well

as the third vortex strength from specifying two constants of motion. The

parameter domain was chosen to be extensive, −100 < θ < 100, −1 < C < 1,

and a grid of 256 samples was examined. For these calculations, horizontal

lengths are not normalized by L, as this results in changing C. All the sim-

ulations exhibited mixing, and the resulting FTBE’s across this course grid

are shown in Figure 4.19. Although only preliminary, the results seem to

indicate a line in θ-C space of maximum FTBE. A more rigorous computa-

tional exploration of the parameter space would be needed to fully uncover

the trends in FTBE.

As a second case, the constant of motion C is fixed as unity as it was

in the equal strength case, and the vortex strengths are constrained by κ1 =

κ2 = 1. Then, the system is determined by the θ-κ3 parameter space. Based

on phase trajectory plots, a representative parameter domain was chosen to
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(a) (b)

Figure 4.19: Course FTBE results for arbitrary vortex strength cases shown
for (a) the θ-C parameter space where the initial configuration is fixed and
κ1 = κ2, and (b) the θ-κ3 parameter space where κ1 = κ2 = 1 and C = 1.
Negative FTBE represent nonphysical solutions, also separated by a black
contour, whereas zero FTBE is physical but not energetic enough to induce
mixing.

be −2 < θ < 5, −8 < κ3 < 8. In this case, many parameter gridpoints did

not have mixing, either because there was not a physical solution (marked

as negative and separated by a black contour in Figure 4.19(b)), or because

the solution resulted in two vortices orbiting so energetically as to dominate

the dynamics, resulting in periodic flow trajectories (marked as zeros).

4.5 Summary

SQG point vortices provide a mathematically simple exact solution for

which the surrounding flow can be given explicity. Both equal and arbitrary

strength solutions of three interaction vortices exhibit regular vortex motion,

and the vortex motion is expressed in terms of a period and slow rotation

about the center of vorticity, which are calculated directly for equal strength

vortices and from vortex trajectories for arbitrary strength. There are two
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regimes of motion, one in which all three vortices orbit one another, and one

in which two vortices set up an orbit and the third vortex remains apart. A

flow is uniquely determined by 5 constants, such as the three vortex strengths,

H or θ, and L or C. Of the O(Ro) corrections, only vertical velocity can be

computed due to the singularities of the O(1) streamfunction.

The three-vortex solution was shown to produce chaotic trajectories

in the surrounding flow, visualized by Poincaré maps and quantified by the

FTBE. The FTBE exhibits a local minimum at the boundary between flow

regimes in the case of equal strength vortices. There is also a critical depth

below which the FTBE falls steeply which is dependent on the constant of

motion L =
∑

i κi|zi|2. Adding O(Ro) vertical velocity increases the FTBE

and results in larger barriers to chaotic mixing surrounding the vortices.

Preliminary results for arbitrary strength vortices indicate a possible ridge

of increased mixing in θ-C space, but additional examination of the multi-

dimensional parameter space is required to make rigorous conclusions.
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5 Elliptic Vortex Model Problem

For a solution that is dynamically consistent, even at O(Ro), a differ-

ent model problem must be used. Harvey & Ambaum (2011) [26] found that

discontinuities in surface buoyancy necessarily result in infinite velocities at

those locations. Thus, a continuous buoyancy distribution is needed. One

such solution was detailed by Dritschel (2011) [19], who considered the ex-

act solution in QG for an ellipsoid containing a region of constant potential

vorticity, which will rotate and maintain its shape (see also Dritschel et al.

(2004) [20]). Dritschel orients this ellipsoid along the z = 0 plane so that

one of its axes is vertical, then takes the limit as that axis length goes to

zero. The potential vorticity is then contained on the boundary, and thus is

an exact solution to SQG. The resulting governing equations are

∆Φ0 = 0 ,
(
Φ0
z

)s
= β(x, y) = βm

√
1− x2

a2
− y2

b2
, (5.1)

where a, b are the semi-major and -minor axis lengths, respectively, aligned

along the Cartesian axes, and βm is a constant designating the strength of the

ellipse. The streamfunction exterior to the ellipsoid was derived by Laplace

(1784) [16], and after taking the vertical axis to zero it becomes

Φ0 = −βm
ab

4

∫ ∞
σ

du√
(u+ a2)(u+ b2)u

(
1− x2

u+ a2
− y2

u+ b2
− z2

u

)
(5.2)

71
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Figure 5.1: An example of a streamfunction induced by a Dritschel elliptic
vortex, shown at the surface and in the rotating reference frame of the ellipse,
from Dritschel (2011) [19]. The ellipse will maintain its shape as it rotates.

where σ is the largest root of

x2

σ + a2
+

y2

σ + b2
+
z2

σ
= 1. (5.3)

Dritschel found that the interior streamfunction of the flattened el-

lipsoid is also given by (5.2) with σ = 0, as well as z = 0 since the ellipse

is at the surface (note that the σ used here is modified from Dritschel’s by

1/ab). A single elliptic vortex will rotate about its center and maintain its

shape. The surrounding flow is shown in Figure 5.1 in the co-rotating frame

on the plane z = 0 reproduced from Dritschel (2011) [19]. Below the surface,

three-dimensional trajectories in the flow will be periodic.

For velocity computations, the streamfunction is evaluated by starting

with σ at the surface, which can be calculated exactly. This is computed for

all (x, y) particle positions. Then, σ is calculated for descending particle

depths z via Newton’s method in order to trace the appropriate root of
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Figure 5.2: A schematic from Melander (1986) [37] displaying the relevant
variables for calculating the relative motion of two elliptic vortices. This
analysis was applied to Dritschel’s ellipses by Bersanelli (2010) [8].

(5.3). With σ thus evaluated for all particle positions (x, y, z), as well as

(x, y, 0), the streamfunction Φ0 and its derivatives are calculated exactly.

The integrals in (5.2) are elliptic and evaluated using MATLAB functions rd

and rf [28].

If multiple vortices are present, they will interact with one another

and lose their elliptic shapes [20]. In this thesis, we are not interested in

solving this interaction exactly, but are looking for a manageable buoyancy

solution that induces mixing in order to examine the effect of O(Ro) velocities

on transport. As such, the vortex interaction is approximated such that the

ellipses will remain ellipses as the flow evolves. Two approximations that

have been developed in the literature are presented here.

5.1 Moment Model

One solution for the interaction of two of Dritchel’s elliptic vortices

was found using a moment model determined by Bersanelli (2010) [8]. He

followed the derivation by Melander et al. (1986) [37], using perturbation
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analysis in the limit that the vortices are widely spaced relative to their own

maximum diameter, and where the vortices are shaped such that their centers

of vorticity are within their respective boundaries (see Figure 5.2 reproduced

from Melander et al. (1986) [37]).

The moment model begins by considering velocities acting on a point

in ellipse k (~x ∈ Ek) induced by ellipse k′

~̇x =

 −∂y
∂x

ψk′
∣∣∣
~x∈Ek

.

For a surface buoyancy distribution (in coordinates aligned with the ellipse

axes)

βk(ξ, η) = βm,k

√
1− ξ2

a2
− η2

b2
, (5.4)

the streamfunction for ellipse k can be given by the Green’s function solution

to

∆ψ = 0 , ψsz = βk ,

which is

ψk(x, y, z) = − 1

2π

∫
Ek

βk(ξ, η)√
(xk + ξ − x)2 + (yk + η − y)2 + z2

dξdη , (5.5)

where ~xk is the center of the ellipse, defined by its center of vorticity

βm,k ~xk =

∫
Ek
βk(ξ, η)~ξ dξdη∫

Ek
βk(ξ, η) dξdη

. (5.6)

For |~x − ~xk| � |~ξ|, i.e. position ~x far from Ek, the binomial expan-
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sion formula is used to approximate ψ to O(d4/R3) for a maximum ellipse

diameter d [37] as

ψk(x, y) ≈ − 1

2π

[
J
(0,0)
k

R
+

1

2

{ [
3(x− xk)2

R5
− 1

R3

]
J
(2,0)
k +

6(x− xk)(y − yk)
R5

J
(1,1)
k +

[
3(y − yk)2

R5
− 1

R3

]
J
(0,2)
k

}]
, (5.7)

where R =
√

(x− xk)2 + (y − yk)2 and J
(m,n)
k are geometric moments given

by

J
(m,n)
k =

∫
Ek

βk(ξ, η) ξm ηn dξdη . (5.8)

The order-zero moment is the circulation

J
(0,0)
k =

∫
Ek

βk(ξ, η) dξdη = Γk =
2

3
Akβm,k , (5.9)

where Ak = πakbk is the area of the ellipse.

The ellipse center will evolve in time according to

~̇xk =
1

Γk

d

dt

∫
Ek

√
1− ξ2

a2k
− η2

b2k
~ξ dξdη , (5.10)

=
1

Γk

∫
Ek

D

Dt

√
1− ξ2

a2k
− η2

b2k
~ξ dξdη , (5.11)

=
1

Γk

∫
Ek

√
1− ξ2

a2k
− η2

b2k
~̇ξ dξdη , (5.12)

where in the last line we have used the fact that by definition

d

dt
Γk =

∫
Ek

βm,k
D

Dt

√
1− ξ2

a2k
− η2

b2k
dξdη = 0 , (5.13)
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so therefore

D

Dt

√
1− ξ2

a2k
− η2

b2k
= 0

everywhere, such that the buoyancy distribution moves with the ellipse.

The velocities are

~̇ξ =

 −∂y
∂x

ψk

∣∣∣
~ξ

+

 −∂y
∂x

ψk′
∣∣∣
~ξ
, (5.14)

but noting that ~xk, the center of vorticity for ellipse k, can only move by the

flow induced by ellipse k′, we neglect the ψk term above.

We Taylor expand the ψk′ terms to second order about the centroid

~xk and obtain

~̇xk ≈
[
1 +

1

2Γk

(
J
(2,0)
k ∂2x + 2J

(1,1)
k ∂x∂y + J

(0,2)
k ∂2y

)] −∂y
∂x

ψk′
∣∣∣
~xk
. (5.15)

Using the approximation for ψ from above, rewriting in polar coordinates

~xk − ~xk′ = R(cos θk,k′ , sin θk,k′), and using symmetry to define θ = θ1,2 =

θ2,1 + π, we obtain

ẋk ≈ (−1)k
Γk′

2π

{
sin θ

R2
−
∑
i=k,k′

3

2R4Γi

[
J
(2,0)
i sin θ

(
1− 5 cos2 θ

)
+2J

(1,1)
i cos θ

(
1− 5 sin2 θ

)
+ J

(0,2)
i sin θ

(
3− 5 sin2 θ

) ]}
, (5.16)

ẏk ≈ (−1)k−1
Γk′

2π

{
cos θ

R2
−
∑
i=k,k′

3

2R4Γi

[
J
(2,0)
i cos θ

(
3− 5 cos2 θ

)
+2J

(1,1)
i sin θ

(
1− 5 cos2 θ

)
+ J

(0,2)
i cos θ

(
1− 5 sin2 θ

) ]}
. (5.17)
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Now, using the geometric relations

(x1 − x2)(ẋ1 − ẋ2) + (y1 − y2)(ẏ1 − ẏ2) = RṘ , (5.18)

(x1 − x2)(ẏ1 − ẏ2)− (y1 − y2)(ẋ1 − ẋ2) = R2θ̇ , (5.19)

we find

θ̇ =
Γ1 + Γ2

2π

{
1

R3
+
∑
i

3

4R5Γi

[
J
(2,0)
i (1 + 3 cos 2θ) + 2J

(1,1)
i (3 sin 2θ)

+J
(0,2)
i (1− 3 cos 2θ)

]}
, (5.20)

Ṙ = −Γ1 + Γ2

2π

∑
i

3

2R4Γi

[
J
(2,0)
i sin 2θ − 2J

(1,1)
i cos 2θ − J (0,2)

i sin 2θ
]
. (5.21)

Now if we evaluate the geometric moments

J
(2,0)
k =

2βm,kA
2
k

15πλk

(
λ2k + (1− λ2k) sin2 φk

)
, (5.22)

J
(0,2)
k =

2βm,kA
2
k

15πλk

(
λ2k + (1− λ2k) cos2 φk

)
, (5.23)

J
(1,1)
k = −βm,kA

2
k

15πλk

(
1− λ2k

)
sin 2φk , (5.24)

where here λk is the aspect ratio ak/bk, the evolution equations become

θ̇ =
Γ1 + Γ2

2πR5

{
R2+

3A1

20πλ1

[
(1 + λ21)− 3(1− λ21) cos 2(φ1 − θ)

]
+

3A2

20πλ2

[
(1 + λ22)− 3(1− λ22) cos 2(φ2 − θ)

]}
,(5.25)

Ṙ = −Γ1 + Γ2

2πR4

{
3A1

10πλ1
(1− λ21) sin 2(φ1 − θ)

+
3A2

10πλ2
(1− λ22) sin 2(φ2 − θ)

}
. (5.26)

These equations describe how the vortex centers evolve in time, and
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next we must derive how each ellipse evolves in time, which is based on the

quantities

Jk = J
(2,0)
k + J

(0,2)
k =

2βm,kA
2
k

15π

1 + λ2k
λk

, (5.27)

Dk = J
(2,0)
k − J (0,2)

k = −2βm,kA
2
k

15π

1− λ2k
λk

cos 2φk . (5.28)

Similarly to the centroid, we need to compute how the geometric moments

evolve. We will explicitly show the analysis for J
(2,0)
k as representative of the

three second-order moments.

J̇
(2,0)
k =

d

dt

∫
Ek

ωξ2 dξdη =

∫
Ek

2ωξ ξ̇ dξdη . (5.29)

In this case the velocity given by (5.14) must include both terms, but if we

separate the self-interaction terms as J̇
(2,0)
?k and Taylor expand the ψk′ terms

to first order, we obtain

J̇
(2,0)
k ≈ J̇

(2,0)
?k −

[
2J

(2,0)
k ∂x∂y + 2J

(1,1)
k ∂2y

]
ψk′
∣∣
~xk
, (5.30)

J̇
(0,2)
k ≈ J̇

(0,2)
?k +

[
2J

(0,2)
k ∂x∂y + 2J

(1,1)
k ∂2x

]
ψk′
∣∣
~xk
, (5.31)

J̇
(1,1)
k ≈ J̇

(1,1)
?k +

[
J
(2,0)
k ∂2x − J

(0,2)
k ∂2y

]
ψk′
∣∣
~xk
. (5.32)

Combining, we get

J̇k = J̇?k −
[
2Dk∂x∂y − 2J

(1,1)
k

(
∂2x − ∂2y

)]
ψ
k′
∣∣
~xk

, (5.33)

Ḋk = Ḋ?k −
[
2Jk∂x∂y + 2J

(1,1)
k

(
∂2x + ∂2y

)]
ψ
k′
∣∣
~xk

, (5.34)
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which we match to the time derivatives of the definitions

J̇k =
2βm,kA

2
k

15π

(λ2k − 1)

λ2k
λ̇k , (5.35)

Ḋk =
2βm,kA

2
k

15π

[
1− λ2k
λk

2 sin 2φk φ̇k +
1 + λ2k
λ2k

cos 2φk λ̇k

]
. (5.36)

The self-interaction terms come from the flow within the ellipse, given in the

frame rotating with the ellipse as a constant rate

ẋ

ak
= −Ωk

y

bk
,

ẏ

bk
= Ωk

x

ak
, (5.37)

Ωk =
βm,k√
akbk

λkRd

(
0, λ−1k , λk

)
− λ−1k Rd

(
0, λk, λ

−1
k

)
3(λk − λ−1k )

, (5.38)

where

Rd(α1, α2, α3) =
3

2

∫ ∞
0

du√
(u+ α1) (u+ α2) (u+ α3)

3
. (5.39)

This is calculated using the MATLAB function rd [28].

Therefore the self-interaction terms are

J̇?k = 0 , Ḋ?k = −4J
(1,1)
k Ωk .

Solving for the time derivatives of (λk, φk) we find

λ̇k = −3Γk′

2π

λk
R3

sin 2(φk − θ) , (5.40)

φ̇k = Ωk −
Γk′

4πR3
+

3Γk′

4πR3

1 + λ2k
1− λ2k

cos 2(φk − θ) . (5.41)
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5.2 Point Vortex Substitution

An alternative to this derivation comes from an approximation by

Dritschel et al. (2004) [20]. In their analysis, the ellipse of continuous buoy-

ancy is replaced by a set of point vortices. The strengths and positions of

each point vortex are calculated such that the geometric moments of the

system of point vortices match those of the original elliptic vortex up to the

desired order.

The moments of an ellipse are given in (5.8). Moments of a set of

point vortices are

J
(m,n)
PV =

∑
j

κjx
m
j y

n
j (5.42)

As Dritschel et al. (2004) show, order m = 2 is sufficient for accurately

calculating vortex motion [20]. They calculated the strengths and positions

of the seven point vortex replacements at this order to be

κj=1,...,6 =
7Γ

60
, κ7 =

3Γ

10

~xj=1,...,6 =

√
4

7
(a cos (jπ/3− π/6) , b sin (jπ/3− π/6)) , ~x7 = 0 .

(5.43)

This approximation was computed using the code 2DHelm developed by

Dritschel et al. (2002) and modified by Poje [18].
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5.3 Comparison

We can compare the evolution of these two approximations for arbi-

trary parameters. I have chosen initial conditions

R = 10, θ = 0, a1 = 2, b1 = 1, a2 = 1.5, b2 = 1,

φ1 = 0, φ2 = 1, βm,1 = 1, βm,2 = 1 ,

and obtained the following results. Note that the accuracy of the moment

model is here O(0.26). Surprisingly, the vortex centers appeared to follow

regular trajectories, though the evolution equations do not obviously lead to

regular behavior. Defining a period of motion as the time when θ returns to

zero, the period was found to be T = 5317, and motion over one period was

considered. Note that the motion is not truly periodic because the ellipse

aspect ratios and orientations do not return to their initial values at this

time.

In all comparisons to follow, the moment model is shown in blue and

the Dritschel approximation is in orange. First the vortex centers’ evolution

over time is examined in Figure 5.3(a), and the approximations essentially

overlap. The orientation angle between ellipses θ also matches nearly exactly

in Figure 5.3(b). Next the distance between the ellipse centers is shown in

Figure 5.4, where the interval T/10 was chosen for illustrative purposes. The

solutions still appear to match very well. Over this interval, the aspect ratios

also match very well (see Figure 5.5), but looking over the entire period shows

a drift away form initial conditions in the Dritschel approximation. Finally,

the orientation angle of ellipse one about its center is given in Figure 5.6, and
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(a) (b)

Figure 5.3: A comparison of the moment model (blue) with the Dritschel
approximation (orange) of the interaction of two elliptic vortices. The evo-
lution of vortex centers is shown on the x-y plane in (a), and the evolution
of the orientation angle between them is shown in (b).

the solutions here also matches well. Note that only the evolution of ellipse

one is shown in Figures 5.5-5.6, but it is representative of both ellipses.

Thus, the approximations appear to agree, with the Dritschel solution

exhibiting a long-time trend of λ deviating from initial conditions. Therefore,

it seems that the moment model is more stable over long time, and this model

will be used for transport calculations.

Figure 5.4: A comparison of the distance between the two vortex centers
calculated from the moment model (blue) with the Dritschel approximation
(orange).
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(a) (b)

Figure 5.5: The aspect ratio of one ellipse over time for the intervals (a)
T/10 and (b) T , the period of vortex center motion, calculated from the
moment model (blue) with the Dritschel approximation (orange). Although
the solutions match well over the shorter interval (a), in (b) the Dritschel
solution exhibits a slow trend away from initial conditions.

Figure 5.6: The orientation angle of ellipse one about its center, calculated
from the moment model (blue) with the Dritschel approximation (orange).
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5.4 O(Ro) Velocities

Details of the calculation have been presented in Section 2.1. Figure

5.7 shows the velocities resulting from the two elliptic vortices considered

above. The vertical velocity should be zero at the surface by (2.12) and

(2.13), and the calculations meet this condition. Interestingly, the O(Ro)

horizontal velocities are of opposite sign to the O(1) velocities, suggesting

that the O(1) model might overestimate the strength of SQG flow.

5.5 Elliptic Vortex FTBE Results

5.5.1 Two Elliptic Vortices

For two elliptic vortices, there appears to be a negligible amount of

mixing. The particle trajectories are quasiperiodic, not chaotic, as shown in

Figure 5.8 in the frame of motion where the ellipses remain on the x-axis.

These trajectories were computed for a time interval of 10,000, over which

ellipse one completed 193 completed rotations about its axis and ellipse two

completed 243 complete rotations. While the trajectories appear to intersect

with the ellipse on the left, this is only the initial position of the ellipse,

and the trajectories had buoyancies exactly equal to zero, confirming that

there was no vortex intrusion. The power spectral density (PSD) of the

trajectories, estimated by pwelch in MATLAB, additionally indicates only

one or two dominant frequencies in Figure 5.9, implying there is no chaos.

Trajectories are additionally examined away from the surface and for

nonzeroRo in Figure 5.10. Differences in the mean particle buoyancy between
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Figure 5.8: Trajectories for 16 particles initiated on z = 0 near (0,0) for
the ellipses shown in Figure 5.7 and a time interval of 10,000 in the frame of
reference where the ellipses remain on the x axis. The initial position of the
ellipses is shown along with the streamfunction. Over time, the ellipse rota-
tion is such that the particles do not intersect the ellipse as the trajectories
appear to show.

(a) PSD for x component (b) PSD for x component

Figure 5.9: The power spectral density (PSD) estimated by MATLAB’s
pwelch function for the ellipses in Figure 5.7 for (a) the x and (b) y compo-
nents of particle trajectories.
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(a) Initial z = −0.2 (b)

Figure 5.10: The (a) mean particle depth and (b) mean buoyancy surface
for the particles shown in Figure 5.8, but initiated at z = 0 and -0.2. In (b)
the buoyancy remains exactly zero for particles initiated at z = 0, confirming
that particles do not intersect with the ellipse. For particles initiated at z =
−0.2, particle depth for nonzero Ro and buoyancy for all Ro show oscillatory
behavior with small amplitude. Buoyancy results are nearly identical for
Ro = 0, 0.01, 0.1.

Ro = 0, 0.01, 0.1 were negligible, of O(10−6), so only one plot is shown. For

particles initiated at z = −0.2, the horizontal trajectories are the same as at

the surface, and buoyancy exhibits oscillatory behavior with small amplitude.

Oscillatory behavior is also seen in the mean particle depth for nonzero Ro,

and the deviation from initial depth scales with Ro, while for Ro = 0 the

depth change is exactly zero.

The results presented here are not meant to provide a rigorous proof

that this flow does not result in chaos, but for the purposes of this thesis

we seek a flow with more immediate mixing. Because we are looking for

the effect of O(Ro) velocities interacting with horizontal mixing, and not

whether O(Ro) velocities alone can induce mixing, the model flow should

exhibit mixing at O(1). Based on the mixing results for point vortices, three

elliptic vortices are considered.
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5.5.2 Three Elliptic Vortices

In an attempt to induce mixing, we introduce a third elliptic vortex.

The interaction follows from that presented in Section 5, resulting in

ẋi ≈ −
′∑
j

Γj
2π

{
yi − yj
|~xi − ~xj|3

−
∑
α=i,j

3

2|~xi − ~xj|5Γα

[
J (2,0)
α (yi − yj)

[
1− 5

(xi − xj)2

|~xi − ~xj|2

]
+2J (1,1)

α (xi − xj)
[
1− 5

(yi − yj)2

|~xi − ~xj|2

]
+J (0,2)

α (yi − yj)
[
3− 5

(yi − yj)2

|~xi − ~xj|2

] ]}
(5.44)

ẏi ≈
′∑
j

Γj
2π

{
xi − xj
|~xi − ~xj|3

−
∑
α=i,j

3

2|~xi − ~xj|5Γα

[
J (2,0)
α (xi − xj)

[
3− 5

(xi − xj)2

|~xi − ~xj|2

]
+2J (1,1)

α (yi − yj)
[
1− 5

(xi − xj)2

|~xi − ~xj|2

]
+J (0,2)

α (xi − xj)
[
1− 5

(yi − yj)2

|~xi − ~xj|2

] ]}
(5.45)

λ̇i =
′∑
j

3Γj
2π

λi
|~xi − ~xj|5

{
2(xi − xj)(yi − yj) cos 2φi

−
[
(xi − xj)2 − (yi − yj)2

]
sin 2φi

}
(5.46)

φ̇i = Ωi −
′∑
j

Γj
4π|~xi − ~xj|3

− 3Γj
4π|~xi − ~xj|5

1 + λ2i
1− λ2i

{
2(xi − xj)(yi − yj) sin 2φi

+
[
(xi − xj)2 − (yi − yj)2

]
cos 2φi

}
(5.47)

These three ellipses follow trajectories like those of the point vortices,
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and their centers are periodic, though the aspect ratios and orientation an-

gles of the ellipses do not return to their initial positions with the vortex

centers. Velocities for three elliptic vortices are shown in Figure 5.11. Be-

cause the O(Ro) velocities are quadratic with the maximum buoyancy, vortex

parameters must be chosen carefully so as not to violate the assumptions of

the small Ro expansion. However, choosing parameters that are similar to

those examined for point vortices is most likely to generate a flow with mix-

ing. Balancing these two objectives, parameters are chosen to be Γ = 1,

a = 0.5, b = 0.25, φ = 0 for all vortices, with positions of (±2,−
√

18/3)

and (0, 2
√

18/3) such that the combined center of vorticity is the origin and

L =
∑

Γ|~xi|2 = 10. The streamfunction here is accurate to O(0.054).

A Poincaré map from 16 particles initiated at z = 0 near (−2,
√

18/3)

and an integration time of 5,000 is shown in Figure 5.12 and compared to

point vortex results. Additionally in (c) the full chaotic mixing region for

the point vortex chase is shown from an integration time of 75,000. The area

spanned by the elliptic vortex map is much smaller than that of the point

vortices. Additionally, while the point vortices produce islands of chaotic

mixing that trajectories cannot penetrate, the elliptic vortex trajectories are

able to pass very close to the vortices. In this particular simulation, the al-

lowed tolerance in the MATLAB stiff ODE solver ode23t was not sufficiently

small, and particles actually intruded the vortex patch (see Figure 5.13),

which is not physically allowed. This error also seems to result in problems

creating a braid from the trajectories, and FTBE could not be calculated.

This simulation alone took approximately 35 hours to run, and attempts to

run simulations at lower error tolerances resulted in software crashes.

The trajectories’ power spectral density is given in Figure 5.14. By
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(a) Elliptic Vortices (b) Point Vortices

(c) Point Vortices: Long Time

Figure 5.12: Poincaré maps from 16 particles initiated at z = 0 near
(−2,

√
18/3) for (a) the ellipses shown in Figure 5.11 and (b) point vor-

tices of the same circulation and positions, for a time interval of 5,000. The
period of motion of the ellipse centers is approximately 250 while the period
of motion of the point vortices is approximately 255. Vortex trajectories and
initial positions are also shown, with ellipses to scale. The Poincaré map for
the point vortices for a longer time interval of 75,000 is given in (c) to show
the entire mixing region.
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Figure 5.13: Calculations of the buoyancy of tracer particles over time. Solid
vertical bars result from rapid oscillations. The buoyancy at the center of
the ellipse is also indicated, and clearly particles are penetrating the vortex,
which is nonphysical.

(a) PSD for x component (b) PSD for x component

Figure 5.14: The power spectral density (PSD) estimated by MATLAB’s
pwelch function for the ellipses in Figure 5.11 for (a) the x and (b) y com-
ponents of particle trajectories.
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the Poincaré map, the three elliptic vortices seem to induce mixing, and

this is confirmed by the power spectral density. However, as this flow is

unphysical, it is not known whether this mixing would also be observed in

accurate trajectories. Physical intuition suggests that, because the elliptic

vortices act as point vortices to first order, mixing will be present for these

solutions. Confirmation of this is left to future work.

5.6 Summary

The elliptic vortex provides an exact solution to the SQG approxima-

tion that has no singularities in the O(1) streamfunction, therefore allowing

for the calculation of complete O(Ro) corrections. A moment model is used

to approximate the interaction between multiple vortices, while flow calcula-

tions are done exactly. Despite the relatively large number of free parameters,

two ellipses do not exhibit mixing. Three ellipses were considered, but the re-

quired computation time was very large, so these results were not thoroughly

examined. The goal of this work was to find a manageable solution to SQG

for which the O(Ro) velocities could be calculated and resulting effects on

transport could be evaluated, but these vortex solutions did not provide such

a model problem and other exact solutions must be considered.



6 Conclusions

The Surface Quasigeostrophic (SQG) approximation provides a model

with horizontal dynamics with weak vertical flow. Simple exact solutions to

this model can provide insight into the effect of this weak vertical velocity

on transport. The Finite Time Braiding Exponent (FTBE) seems to provide

a good measure of global complexity [50, 11], revealing quantitative trends

in mixing based on the flow parameters. While the value of the FTBE is

not meant to be construed as a physical value, it can be used to compare

relative complexity between flows, where a higher FTBE indicates higher

complexity of chaotic mixing. Because the SQG model is applicable for large-

scale ocean flows, understanding mixing in this model will provide insights

into the physical processes behind pollution dispersion or vehicle trajectories.

As a two-dimensional model with vertical dependence, such examination also

shows how tools for studying mixing in two-dimensional flow can be modified

to apply to more complicated, three-dimensional problems.

In order to build model problems for an examination of chaotic trans-

port, this thesis presented a novel analysis of SQG point vortex interactions

as well as an exploration of the surrounding flow properties. As in the clas-

sical two-dimensional case, three vortices follow regular trajectories them-

selves and can induce chaos in the surrounding flow [5]. This mixing has
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been diagnosed using the classical tool of Poincaré maps and the new FTBE

tool. These vortices behave qualitatively in the same way as classical two-

dimensional point vortices, exhibiting the same two regimes of motion in the

equal strength case, and similar phase trajectories in the arbitrary strength

cases. At O(1), the SQG flow is two-dimensional but has vertical dependence.

The first trend observed for O(1) SQG point vortex flows is that the

FTBE is relatively constant in the regime of three orbiting vortices, then

a minimum is found near the regime boundary, and mixing then increases

with energy in the regime of two orbiting vortices until the vortex separation

becomes too great. Also, the SQG case exhibits an overall higher extent of

mixing than the classical two-dimensional case. The second trend is that the

FTBE falls steeply below a critical depth that depends on L. For L = 1

this depth is approximately z = −0.25, and for L = 10 it is approximately

z = −0.75. Larger L also appears to decrease FTBE. A final trend is given

in a preliminary investigation of FTBE for arbitrary vortex strength which

seems to indicate a line in θ-C space that corresponds to maximum mixing.

Attempts to calculate O(Ro) velocities for point vortices proved to be

challenging. However, the vertical velocity can instead be obtained from the

energy conservation equation

w +
Dθ

Dt
= 0.

It is thus possible to examine the effect of vertical velocity on mixing, though

in this case the solution is not dynamically consistent because the velocity is

not divergenceless. Results for the equal strength case show that including

vertical velocity will increase FTBE everywhere but the surface, with more
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mixing for larger Ro. Including Ro also seems to enhance the rate of dropoff

of FTBE with depth below the critical depth, which remains the same. The

direction in which particles will trend in the vertical may depend on the

regime of motion, though more investigation is needed. Visualizations of

trajectories seem to indicate an attraction toward periodic trajectories, such

that particles below the critical depth trend downward and the islands of

mixing around the vortex centers grow with Ro, but more examination is

needed to confirm this trend.

For a dynamically consistent solution, a different model problem must

be used. This work examined elliptic vortices formed by flattened constant-

potential-vorticity ellipsoids, as in Dritschel et al. (2004) [20]. Two vortices

did not appear to induce mixing, while three vortices proved computationally

intensive beyond the scope of this work, and so other models must be cho-

sen to further examine how the complete O(Ro) velocity corrections affect

transport in the SQG approximation.
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