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Abstract of the Thesis

Bayesian Inference on Allele Group Structure

for High Order Interactions in Genome-Wide

Association Studies

by

Albert Wong

Master of Science in Statistics

University of California, Los Angeles, 2013

Professor Qing Zhou, Chair

Sophisticated Bayesian methods are often used to identify a collection of alleles

that are jointly associated with a particular disease. A disease might not be

expressed when only one of these alleles is present, but each associated allele

might interact with each other in a rather complicated way, causing a disease to

be expressed. In investigating a patient’s susceptibility to a disease, it is often

useful to group the collection of associated alleles according to their risk factors.

Our goal is to find the most likely grouping structure of alleles C1, ..., Cm

associated with Rheumatoid Arthritis given a case-control data. The number

of ways to group these m alleles is given by the mth Bell number Bm, defined

recursively by Bm =
∑m−1

k=0

(
m−1
k

)
Bk with B0 = B1 = 1. For 10 alleles, this

translates to 115,975 groupings. For m = 15, we have over a billion ways to group

C1, ..., Cm. Clearly computing the probability for each grouping soon become

intractable. A combination of Metropolis-Hastings and local search algorithm is

proposed to accomplish this task. This strategy is first implemented on simulated

data, with a sufficiently large sample size and a known grouping structure, and

the correct grouping is obtained. Stable results are obtained as the algorithm is

run multiple times on Rheumatoid Arthritis data.
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CHAPTER 1

Introduction

1.1 Relevant Information

Rheumatoid Arthritis (RA) is a common chronic inflammatory autoimmune dis-

ease that leads to a progressive joint destruction. With the advances of genotyping

technology, genetic information associated with RA becomes available from the

Genome-Wide Association Studies (GWAS) data. GWAS is an examination of

common genetic variants in different individuals to determine if any variant is as-

sociated with a trait or disease. In contrast to other studies that usually consider

only one or few genetic locations, GWAS examine each individual’s entire genetic

information.

GWAS typically compare the DNA of two groups: cases and controls. DNA

is the basic information molecule that encodes genetic instructions used in the

development of a living organism. DNA is composed of 4 types of bases: adenine

(A), guanine (G), cytosine (C) and thymine (T). A Single-Nucleotide Polymorhism

(SNP) is a DNA sequence variation caused by a variation in a single nucleotide

found in the members of population. For example, ATC and ATG might have

been found in different individuals and we say that 2 alleles are observed. In

the case when one variant is more common in the people with a trait, we then

associate such variant with the trait.

1



1.2 Structure of the Thesis

The rest of the thesis consists of 6 chapters. Chapter 2 gives an explanation of

the data and some relevant works. Statistical methods used in this thesis are

described in chapter 3. In chapter 4, described statistical methods are applied

first to simulated data and then to RA data. Conclusion of the thesis is found in

chapter 5. Chapter 6 provides a detailed derivation of the posterior computation

described in chapter 3 and lists a few more assumptions that are needed to make

the posterior computation possible.
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CHAPTER 2

Data

GWAS data used in this thesis are obtained from the North American Rheumatoid

Arthritis Consortium (NARAC). Multiple locations in DNA sequence associated

with RA susceptibility have been indentified by genome-wide association studies

(Cornelis, F. et al., 1998, WTCCC, 2007, Plenge, R.M. et al., 2007, Stahl, E.A. et

al., 2010). The presence of a single genetic variant (allele) found in these locations

might not cause RA to be expressed but they might interact with each other in

a complex way, causing RA to be expressed (Manolio, T.A. et al., 2009, Wu, Z.,

Zhao, H., 2009). Many interactions (collections of alleles) associated with RA are

detected by Jing Zhang et al. (2012) who performed the first genome-wide high

order interaction analysis for RA using Bayesian epistasis association mapping

(BEAM and BEAM2) methods (Zhang, Y., Liu, J.S., 2007, Zhang, Y. et al.,

2011). From the 90 SNPs involved in the 319 interactions identified, 18 SNPs

that have good genotype data quality are retreived from the GWAS data from

NARAC. The full version tables of high order interactions representatives and

associated SNP annotations could be found in Jing Zhang et al. (2012).

In this thesis we look at 7 significant high order interactions. A set of 3 SNPs,

each SNP assumes a value of 0, 1 or 2, is associated with each interaction studied.

Every possible configuration of these three SNPs is considered as an allele, giving

each interaction a set of 33 alleles. The goal is to make inference on the most likely

allele grouping structure for each of the 7 interactions. Given C1, ..., C27 alleles

for each interaction, data is read from a 2 by 27 matrix. The first row summarizes

3



the number of patients in the diseased group that have Ci. The second row of

the matrix records the counts from the control group. There are a total of 2,002

subjects (862 cases from the diseased pool and 1,140 from control).

4
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CHAPTER 3

Methods

3.1 Metropolis-Hastings Algorithm

Metropolis-Hastings Algorithm is a Markov Chain Monte Carlo method useful

in generating samples from a complicated probability distribution P (·). This is

achieved by constructing a reversible Markov Chain that has P (·) as its stationary

distribution. In order to govern the movement of the Markov Chain, a transition

probability that is allowed to depend on the current state x is specified and denoted

by q(x, ·). We refer this as the proposal probability for the Metropolis-Hastings

Algorithm. The probability of making the proposed move to y from x is then com-

puted using α(x, y) = min
{
P (y)
P (x)

q(y,x)
q(x,y)

, 1
}

. We refer this as acceptance probability

of the Metropolis-Hastings Algorithm. It is clear that the probability of making

a move from x to y is PMH(x, y) = q(x, y)α(x, y). One could check that detailed

balance condition P (x)PMH(x, y) = P (y)PMH(y, x) holds and the Markov Chain

constructed converges to the distribution P (·).

Even though the constructed Markov Chain converges to the prespecified dis-

tribution, we still need to know from which point on it is safe to consider the

constructed Markov Chain as a genuine sample. Burn-in period is the time it

takes for the constructed Markov Chain to approximately converge. In practice,

burn-in period is often determined by running the algorithm a couple of times.

Every state visited after the burn-in period is a genuine, though correlated, sample

from distribution P (·).

7



Here is the procedure to run Metropolis-Hastings Algorithm with an initial

value x(0). Suppose that we have generated x(t), then:

• Generate y from q(x(t), ·)

• Compute α(x(t), y) = min
{

P (y)
P (x(t))

q(y,x(t))

q(x(t),y)
, 1
}

• Generate u from Uniform(0,1)

• If u ≤ α(x(t), y), set x(t+1) = y

• Else, set x(t+1) = x(t)

3.2 Maximum A Posteriori (MAP) Estimate

We could find the MAP estimate of an unknown parameter when we are working in

Bayesian framework. First we define two common terminologies used in Bayesian

statistics: prior and posterior distributions of parameter being estimated. Let x

be our data and θ be the parameter to be estimated after observing x.

Prior distribution of θ is simply a probability distribution P (θ) assigned to

θ. This assignment of probability distribution P (θ) means that θ is treated as

a random variable, as opposed to a fixed yet unknown constant in frequentists

approach. Prior P (θ) reflects our current knowledge on θ. In the case when we

don’t know any information about θ, we set P (θ) ∝ 1, called uniform prior, re-

flecting our ignorance or lack of information. Posterior distribution of θ is P (θ|x),

i.e. conditional distribution of θ given that data x is observed.

As the name suggests, MAP estimate of the unknown parameter θ is simply

θ∗ such that

θ∗ = arg max
θ∈Θ

P (θ|x)

8



3.3 MAP estimate of allele group structure using Metropolis-

Hastings Algorithm and local search

Consider m alleles C1, ..., Cm that are associated with a disease. For each allele

we have counts from a pool of diseased patients and a pool of control patients.

So we have n1, ..., nm and n′1, ..., n
′
m, where they represent the counts from dis-

eased and control groups, respectively. It is proposed that C1, ..., Cm could be

partitioned into L groups, 1 ≤ L ≤ m. Such a grouping is labeled (S1, ..., SL),

where Si = {Ci1, ..., Ci|Si|} and every allele in Si shares the same risk factor.

Our goal is to make inferences on both L and the grouping (S1, ..., SL) given

the data n1, ..., nm and n′1, ..., n
′
m. In order to achieve this, we draw a bunch of

samples (S1, ..., SL) from the posterior distribution P (·|n1, ..., nm, n
′
1, ..., n

′
m) using

Metropolis-Hastings Algorithm. We then find the grouping that has the maxi-

mum posterior probability among the ones being sampled and do a local search

starting from that point.

In order to run Metropolis-Hastings Algorithm, we need to perform two com-

putations at each iteration. Firstly, we should be able to compute the posterior

probability P (S1, ..., SL|n1, ..., nm, n
′
1, ..., n

′
m) for each grouping (S1, ..., SL) up to

a proportionality constant. Secondly, we also need to specify and compute the

proposal probability that governs the movement from one state to the next. Pro-

posal probability is denoted by q(x, y) where x and y are two particular groupings

of C1, ..., Cm.

Bayesian framework is specified to achieve the first computation. Suppose that

a particular grouping (S1, ..., SL) is fixed. Let nSi
=
∑|Si|

j nij, where |Si| is the

number of alleles in group i, and nij corresponds to the count of allele Cij found

in the patients with disease. n′Si
=
∑|Si|

j n′ij is similarly defined for the control

9



group. We assume the following model is true:

(ni1, ..., ni|Si|) ∼ Multinomial(nSi
, ~θi) (3.1)

(n′i1, ..., n
′
i|Si|) ∼ Multinomial(n′Si

, ~θi) (3.2)

(nS1 , ..., nSL
) ∼ Multinomial(

m∑
i

ni, ~p) (3.3)

(n′S1
, ..., n′SL

) ∼ Multinomial(
m∑
i

n′i, ~p
′) (3.4)

where ~θi = (θi1, ..., θi|Si|), ~p = (p1, ..., pL), and ~p′ = (p′1, ..., p
′
L). The first two

equations suggest that the probability distributions for allele counts within any

group Si are identical in both diseased and control cases. However, we allow the

probability distributions p and p′ for (nS1 , ..., nSL
) and (n′S1

, ..., n′SL
), respectively,

to be different. This assumption makes sense since the presence of certain group,

say Si, might be associated with the presence or absence of the disease in question.

We also need to specify the priors for the parameters ~θi, ~p and ~p′:

~θi|Si ∼ Dirichlet(
1

|Si|
, ...,

1

|Si|
) (3.5)

~p|L, ~p′|L ∼ Dirichlet(α1, ..., αL) (3.6)

where αi = 1
L
, i = 1, ..., L.

At this point, we are ready to compute posterior probability for each grouping.

Applying Bayes’ rule, we get:

P (S1, ..., SL|n1, ..., nm, n
′
1, ..., n

′
m) ∝ P (S1, ..., SL)P (n1, ..., nm, n

′
1, ...n

′
m|S1, ..., SL)

(3.7)

We further assume that P (S1, ..., SL) ∝ γ−L, γ ≥ 1. This means that we penalize

groupings with large L. For convenience however, γ is set to 1 in the algorithm.

By (3.7), it is enough to compute the likelihood P (n1, ..., nm, n
′
1, ..., n

′
m|S1, ..., SL).

10



After integrating ~θi, ~p and ~p′ out, we get:

P (n1, ..., nm, n
′
1, ..., n

′
m|S1, ..., SL)

=
1

Γ(1 + n)

L∏
i=1

Γ(nSi
+ 1

L
)

Γ( 1
L

)
× 1

Γ(1 + n′)

L∏
i=1

Γ(n′Si
+ 1

L
)

Γ( 1
L

)

L∏
i=1

1

Γ(1 + nSi
+ n′Si

)
×

L∏
i=1

|Si|∏
j=1

Γ(nij + n′ij + 1
|Si|)

Γ( 1
|Si|)

(3.8)

where n =
∑L

i=1 nSi
=
∑m

j=1 nj and n′ =
∑L

i=1 n
′
Si

=
∑m

j=1 n
′
j. The full derivation

of the likelihood is shown in the appendix.

Having the formula for computing posterior probability for each grouping, we

still need to specify the proposal probability of the Metropolis-Hastings Algorithm

at each iteration. To simplify our notations, we would write states x = (S1, ..., SL)

and y = (S ′1, ..., S
′
L′) and assume that y is accessible from x everytime we write a

pair (x, y). Let q(x, y) denote the probability of proposing a move to y from x.

Before we could define q(x, y), we first need to introduce three different update

techniques:

• Combine 2 randomly chosen groups: We randomly choose i and j and

collapse Si and Sj into one group. Probability of making such a move is

q1(x, y) = 1

(L
2)

, where L = the number of groups in state x.

• Split a randomly chosen group into two: We first randomly choose one

among the splittable groups in state x. Suppose jth group is selected, and

we then split it randomly. In this case we have q2(x, y) = 1
|{Si:|Si|≥2}|

1

2
|Sj |−2

2

.

Notice that 2|Sj |−2
2

is the total number of ways one could split a group con-

taining |Sj| alleles into two.

• Switch groups of two alleles: First we randomly choose two groups, say

Si and Sj, in x. We then randomly pick 2 alleles, one from each groups,

and swap the two. In this case we notice that q3(x, y) > 0 if and only if

q3(y, x) > 0. Moreover, we also have q3(y,x)
q3(x,y)

= 1.

11



The proposal probability of the Metropolis-Hastings Algorithm q(x, y) is then

defined by:

q(x, y) =
1

k
qj(x, y), k, j = 1, 2, 3 (3.9)

where k = kx = |{l = 1, 2, 3 : there exists yl such that ql(x, yl) > 0}|, i.e. it

denotes how many different update techniques are available if we were at state x.

j = jx,y ∈ {l = 1, 2, 3 : ql(x, y) > 0}. Given the pair (x, y), j is unique since no

two different update techniques would lead x to the same destination y.

We finish the inference on the grouping of C1, ..., Cm by doing a local search

to make sure that the grouping that corresponds to at least a local maximum

of the posterior distribution P (S1, ..., SL|n1, ..., nm, n
′
1, ..., n

′
m) is found. Suppose

that genuine samples from posterior distribution are already obtained by running

Metropolis-Hastings Algorithm, we then can find the grouping with maximal pos-

terior among the ones generated. Starting from this point we can start the local

search by using an algorithm similar to the Metropolis-Hastings. Let q(x, y) de-

note the same proposal probability described above. Acceptance probability is

modified so that a new state is accepted if and only if there is an increase in the

posterior distribution. Once this is done, we would obtain a MAP estimate of the

unknown parameter (S1, ..., SL).

3.3.1 Convergence in distribution of the constructed Markov Chain

to the posterior

In this section, we show the convergence of the constructed Markov Chain to the

posterior distribution by showing that the transition probability of the Metropolis-

Hastings algorithm PMH(x, y) = q(x, y)α(x, y) satisfies detailed balance condition.

As before, we denote any two particular groupings of C1, ..., Cm with x and y.

Furthermore, conditional upon data is assumed throughout and we write posterior

P (x|n1, ..., nm, n
′
1, ..., n

′
m) = π(x). Detailed balance condition for the transition

12



probability of the Metropolis-Hastings Algorithm is then described by:

π(x)q(x, y)α(x, y) = π(y)q(y, x)α(y, x)∀x, y (3.10)

Summing over y on both sides of (3.10) shows that detailed balance implies con-

vergence in distribution to π.

Before showing that detailed balance condition is satisfied, we make two ob-

servations. Firstly, we have π(x) > 0 for any x. This is true by equations (3.7)

and (3.8). The second observation is that q(x, y) > 0 if and only if q(y, x) > 0.

In order to show that this is the case, we assume without loss of generality that

q(x, y) > 0. This implies that there is unique j such that qj(x, y) > 0. This, in

turn, implies that there exists a j′ such that qj′(y, x) > 0. This is true since if y

were obtained from x by collapsing two groups in x into one then x is obtained

from y by splitting that new big group. Following the same logic, x must have

been obtained from y by collapsing if y were obtained from x by splitting. We

have j = j′ = 3 if y were obtained from x by swapping. Hence we have q(y, x) > 0

whenever q(x, y) > 0.

Now we are ready to show that detailed balance condition is satisfied. If

q(x, y) = 0 then there is nothing to show since both sides of equation (3.10) would

be zero by the second observation above. So we assume that q(x, y), and hence

q(y, x), is positive. We further assume that α(x, y) = 1, i.e., π(y)q(y,x)
π(x)q(x,y)

> 1. We

then have the left hand side of (3.10) equal to π(x)q(x, y), while the right hand

side of (3.10) is equal to π(y)q(y, x)α(y, x) = π(y)q(y, x)π(x)q(x,y)
π(y)q(y,x)

= π(x)q(x, y).

The case when α(x, y) < 1 is treated similarly.
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CHAPTER 4

Analysis

4.1 Analysis on Generated Data

In order to test the correctness of the implementation of the algorithm used in

the thesis, we first run it on a simulated data. We would refer the algorithm that

combines Metropolis-Hastings and local search as the MAP algorithm. First we fix

a grouping structure and hope that we could find the correct grouping by running

the MAP algorithm. Equations (3.1)-(3.4) show how data (n1, ..., nm, n
′
1, ..., n

′
m)

is generated given a fixed grouping (S1, ..., SL).

Suppose that we have 10 alleles {C1, ..., C10} and a fixed grouping (S1, ..., S4) =

({C1, C2, C3}, {C4, C5}, {C6, C7, C8}, {C9, C10}). After specifying the total number

of patients for each diseased and control pools, data (n1, ..., n10, n
′
1, ..., n

′
10) is then

generated according to the following frequencies.

Grouping Disease Frequency Control Frequency Allele Distribution

{C1, C2, C3} p1 = 0.5 p′1 = 0.2 θ11 = 0.3, θ12 = 0.3, θ13 = 0.4

{C4, C5} p2 = 0.2 p′2 = 0.1 θ21 = 0.6, θ22 = 0.4

{C6, C7, C8} p3 = 0.1 p′3 = 0.2 θ31 = 0.5, θ32 = 0.2, θ33 = 0.3

{C9, C10} p4 = 0.2 p′4 = 0.5 θ41 = 0.5, θ42 = 0.5

Table 4.1: Parameters ~p, ~p′, ~θi used in data generation

If the MAP algorithm were to be implemented correctly, we should be able

to find the exact grouping ({C1, C2, C3}, {C4, C5}, {C6, C7, C8}, {C9, C10}) when

we have a sufficiently large sample size for both diseased and control pools. The
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algorithm is used only to find the MLE estimate of parameter (S1, ..., SL) as data

(n1, ..., n10, n
′
1, ..., n

′
10) is observed. This is true since (3.7) and P (S1, ..., SL) ∝ 1

imply:

arg max
(S1,...,SL)

P (S1, ..., SL|n1, ..., n10, n
′
1, ..., n

′
10) =

arg max
(S1,...,SL)

P (n1, ..., n10, n
′
1, ..., n

′
10|S1, ..., SL)

We note that the right hand side of the above equation solves for maximum

likelihood estimate of parameter (S1, ..., SL).

Using the model described in (3.1)-(3.4) and parameters in Table 4.1, we gen-

erate three sets of data with total counts of 1000, 10000, and 100000 for each

diseased and control cases. Here is the realization of the counts used in testing

our MAP algorithm:

Counts Pool C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

1,000
diseased 134 138 201 124 77 56 15 25 112 118

control 46 67 78 61 32 97 41 64 283 231

10,000
diseased 1536 1486 1987 1282 797 508 206 272 1022 904

control 624 589 823 598 404 992 408 614 2474 2474

100,000
diseased 1529 15055 19900 12009 7964 4960 2024 3007 9995 9957

control 6111 6015 8192 5999 3992 10035 4043 5919 24869 24865

For each generated data set, we run the Metroplis-Hastings algorithm for

100,000 iterations and remove the first 1,000 samples to allow for the burn-in pe-

riod. Starting from the grouping with maximum posterior among all the groupings

sampled by Metropolis-Hastings algorithm, we then perform a local search with

the same transtition probability. A new grouping is accepted if and only if there

is an increase in posterior distribution. Table 4.2 shows that MAP algorithm finds

the actual grouping (S1, S2, S3, S4) = ({C1, C2, C3}, {C4, C5}, {C6, C7, C8}, {C9, C10})

when we have a decent size of both diseased and control groups.
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In addition to identifying the grouping with maximal posterior for each gen-

erated data set, we also record how many times alleles i and j appear together

among all the groupings sampled by the Metropolis-Hastings algorithm in a 10

by 10 matrix. Diagonal entries are ignored as we should have all ones. Each

entry is either very close to 0 or very close to 1 as we have large iterations and

large total counts. Each entry in this 10 by 10 symmetric matrix (after putting

all the ones in the diagonal) is then mapped into a set of 5 colors. Entries with

high probabilities are mapped to colors with low intensity (white) while entries

with low probabilities are mapped to colors with high intensiy (red). Reordering

of alleles in the heat map is done automatically to facilitate visualization of the

grouping structure.

Finally, we try to construct a grouping from this 10 by 10 matrix and compare

it to the grouping obtained by running the MAP algorithm. A cutoff point of 0.5

is specified. This means that a line is drawn between alleles i and j whenever the

entry in the ith row and jth column is greater than 0.5. Note that each grouping

constructed this way would be different if we were to be stricter by increasing the

cutoff point. For example, if we were to increase the cutoff point to 0.8, then the

grouping with maximal posterior and its reconstruction coincide only when we

have 100,000 samples.
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Count Maximum a posteriori estimate

1,000 {C1, C2, C3, C4, C5}, {C6, C10}, {C7, C8, C9}

10,000 {C1, C2, C3}, {C4, C5}, {C6, C7, C8}, {C9, C10}

100,000 {C1, C2, C3}, {C4, C5}, {C6, C7, C8}, {C9, C10}

Table 4.2: Performance of the algorithm on 3 simulated data with total counts of

1000, 10000, and 10000 in each diseased and control cases generated by (3.1)-(3.4)

and parameters in Table 4.1

0.57 0.74 0.56 0.67 0.00 0.00 0.00 0.00 0.00

0.57 0.61 0.73 0.67 0.00 0.00 0.00 0.00 0.00

0.74 0.61 0.59 0.68 0.00 0.00 0.00 0.00 0.00

0.56 0.73 0.59 0.66 0.00 0.00 0.00 0.00 0.00

0.67 0.67 0.68 0.66 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.54 0.52 0.42 0.76

0.00 0.00 0.00 0.00 0.00 0.54 0.68 0.67 0.54

0.00 0.00 0.00 0.00 0.00 0.52 0.68 0.70 0.53

0.00 0.00 0.00 0.00 0.00 0.42 0.67 0.70 0.45

0.00 0.00 0.00 0.00 0.00 0.76 0.54 0.53 0.45

Table 4.3: A symmetric matrix recording the proportion of times alleles i and j

appear together among all samples generated by the algorithm. Diagonal entries

are all ones. Total counts is 1000 in both diseased and control cases
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0.95 0.93 0.16 0.08 0.00 0.00 0.00 0.00 0.00

0.95 0.94 0.15 0.07 0.00 0.00 0.00 0.00 0.00

0.93 0.94 0.17 0.09 0.00 0.00 0.00 0.00 0.00

0.00 0.15 0.17 0.89 0.00 0.00 0.00 0.00 0.00

0.16 0.07 0.09 0.89 0.00 0.00 0.00 0.00 0.00

0.08 0.00 0.00 0.00 0.00 0.96 0.53 0.03 0.00

0.00 0.00 0.00 0.00 0.00 0.96 0.54 0.05 0.01

0.00 0.00 0.00 0.00 0.00 0.53 0.54 0.47 0.37

0.00 0.00 0.00 0.00 0.00 0.03 0.05 0.47 0.85

0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.37 0.85

Table 4.4: A symmetric matrix recording the proportion of times alleles i and j

appear together among all samples generated by the algorithm. Diagonal entries

are all ones. Total counts is 10000 in both diseased and control cases

0.99 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.99 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.99 0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.99 0.99 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.99 0.99 0.03 0.00

0.00 0.00 0.00 0.00 0.00 0.99 0.99 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.99 0.99 0.00 0.00

0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 1.00

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Table 4.5: A symmetric matrix recording the proportion of times alleles i and j

appear together among all samples generated by the algorithm. Diagona entries

are all ones. Total counts is 100000 in both diseased and control cases
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Figure 4.1: Heat maps capturing the grouping structure of the generated data

with counts of 1000, 10000, and 100000.
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Figure 4.2: Groupings constructed from Tables 4.3 - 4.5 . Sample sizes are 1000

(left), 10000 (right), and 100000 (bottom). Cutoff = 0.5

Figure 4.3: Groupings constructed from Tables 4.4 - 4.5 . Sample sizes are 10000

(left) and 100000 (right). Cutoff = 0.8
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4.2 Analysis on 7 representative interactions found in RA

Now we are ready to apply the algorithm to the 7 interactions shown in Tables

2.1-2.2. The Metropolis Hastings algorithm (followed with local search algorithm)

is run with 100,000 iterations. The first 1,000 generated samples are removed to

allow for the burn-in period. As in the analysis of simulated data we refer the

combination of Metropolis-Hastings and local search as the MAP algorithm.

Conversion table is provided for every interaction. This is needed since alleles

with zero counts for both diseased and control pools are removed before the algo-

rithm is run and hence the number i ∈ {1, ..., 27} would not necessarily correspond

to the same configuration in two different interactions. For each interaction, the

MAP algorithm is run multiple times, with different initial values. Stable result

is obtained for each interaction.

For each interaction, the grouping with maximal posterior is reported. It is

then compared to groupings constructed by computing the proportion of time any

two alleles i and j appear together. The reconstruction of the grouping is done

twice with cutoff points of 0.25 and 0.5. These lower cutoff points were chosen

as the probability of any pair of alleles appear together is generally smaller than

the probability recorded from the generated data. Many entries of this proportion

matrix are very close to zero. Each entry in the matrix is then mapped into a

set of 5 colors. Entries with high probabilities are mapped to colors with low

intensity (white) while entries with low probabilities are mapped to colors with

high intensiy (red). We notice that a heat map is just another way to visualize

the information contained in the two constructed groupings. Comparing the MAP

estimate and the two reconstructed groupings, we notice that some parts of the

grouping structure are captured by its reconstructions.

21



Here is the summary of group counts for grouping structures estimated by

MAP algorithm, 0.25 and 0.5 cutoffs. The group counts for 0.25 and 0.5 cutoffs

are determined by counting the number of connected components.

interaction MAP 0.25 cutoff 0.5 cutoff

26 6 3 2

31 6 3 4

52 5 3 2

180 4 2 3

255 5 3 4

303 5 3 4

307 5 3 2
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4.2.1 Interaction 26

Conversion table for alleles in interaction 26

1 2 3 4 5 6 7 8 9 10 11 12

000 001 002 010 011 012 020 021 100 101 102 110

13 14 15 16 17 18 19 20 21 22 23 24

111 112 120 121 200 201 202 210 211 212 220 221

MAP estimate for int 26

{C6, C10, C16, C18, C24}

{C3, C14, C19, C23}

{C5, C9, C15, C20}

{C1, C4, C12, C17}

{C2, C7, C8, C13, C21}

{C11, C22}
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Groupings with 0.25 (white) and 0.5 (pink) cutoffs
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4.2.2 Interaction 31

Conversion table for alleles in interaction 31

1 2 3 4 5 6 7 8 9 10 11 12

000 001 002 010 011 012 020 021 022 100 101 102

13 14 15 16 17 18 19 20 21 22 23 24

110 111 112 120 121 200 201 202 210 211 220 221

MAP estimate for int 31

{C18, C21, C23}

{C3, C9, C10, C12, C17}

{C1, C5, C6, C8, C15, C24}

{C11, C13, C14, C16}

{C19, C20, C22}

{C2, C4, C7}
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Groupings with 0.25 (white) and 0.5 (pink) cutoffs
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4.2.3 Interaction 52

Conversion table for alleles in interaction 52

1 2 3 4 5 6 7 8 9 10 11 12

000 001 002 010 011 012 020 021 022 100 101 102

13 14 15 16 17 18 19 20 21 22 23

110 111 112 120 121 200 201 202 210 211 212

MAP estimate for int 52

{C12, C19, C20, C22}

{C9, C15, C23}

{C6, C7, C8, C16}

{C4, C5, C13, C14, C18, C21}

{C1, C2, C3, C10, C11, C17}
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Groupings with 0.25 (white) and 0.5 (pink) cutoffs
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4.2.4 Interaction 180

Conversion table for alleles in interaction 180

1 2 3 4 5 6 7 8 9 10 11 12

000 001 002 010 011 012 020 021 022 100 101 102

13 14 15 16 17 18 19 20 21 22 23 24

110 111 112 120 121 122 200 201 202 210 211 220

MAP estimate for int 180

{C6, C10, C11, C15, C19}

{C1, C2, C3, C13, C20, C22}

{C7, C8, C9, C17, C18, C21, C23, C24}

{C4, C5, C12, C14, C16}

27



Groupings with 0.25 (white) and 0.5 (pink) cutoffs
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4.2.5 Interaction 255

Conversion table for alleles in interaction 255

1 2 3 4 5 6 7 8 9 10

000 001 002 010 011 012 020 100 101 102

11 12 13 14 15 16 17 18 19

110 111 112 120 121 210 211 220 221

MAP estimate for int 255

{C8, C9, C10, C16, C17}

{C1, C2, C3, C12}

{C6, C14}

{C4, C7, C15, C19}

{C5, C11, C13, C18}
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Groupings with 0.25 (white) and 0.5 (pink) cutoffs
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4.2.6 Interaction 303

Conversion table for alleles in interaction 303

1 2 3 4 5 6 7 8 9 10 11

000 001 002 010 011 012 020 021 022 100 101

12 13 14 15 16 17 18 19 20 21 22

102 110 111 112 120 121 200 201 202 210 211

MAP estimate for int 303

{C2, C4, C5, C11, C13, C18, C21}

{C3, C6, C7, C8, C9}

{C14, C17, C19, C22}

{C12, C15, C16, C20}

{C1, C10}
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Groupings with 0.25 (white) and 0.5 (pink) cutoffs
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4.2.7 Interaction 307

Conversion table for alleles in interaction 307

1 2 3 4 5 6 7 8 9 10 11 12

000 001 002 010 011 012 020 021 022 100 101 102

13 14 15 16 17 18 19 20 21 22 23

110 111 112 120 121 200 201 202 210 211 212

MAP estimate for int 307

{C6, C9, C20, C22, C23}

{C1, C2, C10, C11}

{C3, C12, C17}

{C4, C5, C13, C14, C18, C21}

{C7, C8, C9, C15, C16}
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Groupings with 0.25 (white) and 0.5 (pink) cutoffs
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Let us take a closer look at interaction 307. Results for other interactions in

this thesis could be studied similarly. The MAP estimate and 0.25 cutoff show

similar grouping structure. However, {C1, C2, C10, C11} and {C3, C17} found by

MAP are collapsed into one big group in 0.25 cutoff. The two cutoff points

allow us to compare the strength of the grouping structure. Some edges, and

hence alleles, are eliminated as stricter cutoff point of 0.5 is chosen. The very

same information could be read from the heat map. We notice lighter blocks

{C1, C2, C10} and {C4, C5, C13} are located within blocks {C1, C2, C3, C10, C11} and

{C4, C5, C13, C14, C18}, respectively. Alleles that are not included in constructed

groupings are shown as individual blocks. We also observe a few cliques in the

connected components of the grouping with 0.25 cutoff. A clique in a graph is

a subcollection of vertices such that any two vertices are connected by an edge.

These cliques suggest that some alleles in one group might be more connected

to each other than the rest of the alleles in the same group. We notice that

{C1, C2, C3, C10, C11} forms a clique in {C1, C2, C3, C10, C11, C17} whereas C17 is

connected to the rest of the alleles only through C3.

We might try to dramatically increase the number of iterations of the Metropolis-

Hastings algorithm, say to 1000,000, in order to check whether we could improve
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the estimate of the grouping stucture for each interaction. This is true since,

assuming that the Markov Chain would not be trapped in a local mode, we let

the constructed Markov Chain to further explore the states and hope that a state

with high posterior probability would be visited. This might take more time but

such experiment is appropriate whenever one has efficient programming facilities.

We might also try to assign a value other than one to γ. A different grouping

stucture might have been found if we were to do this. A value of γ different from

one would induce a change in the computation of the posterior distribution of the

grouping, assigning higher probabilities to the groupings with smaller L.
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CHAPTER 5

Conclusion

The MAP algorithm performs well when it is run on generated data with a suffi-

ciently large total counts. We saw that the algorithm finds the correct grouping

(S1, S2, S3, S4) = ({C1, C2, C3}, {C4, C5}, {C6, C7, C8}, {C9, C10}) as it is applied

to the data with total counts of 10,000 in each diseased and control pools. The

same thing is true when total counts of both pools are increased to 100,000. The

relatively small total counts combined with the randomness in the generation of

the first data set result in a slightly inaccurate identification of the true group-

ing. This defect might be remedied by increasing the number of iterations in the

Metropolis-Hastings algorithm. In the case of the data set with 100,000 total

counts, the MAP estimate is identical to the reconstruction of the grouping even

when a very strict cutof point of 0.95 is chosen.

Stable results are obtained for every interactions found in RA. However, a more

lenient cutoff points of 0.25 and 0.5 are chosen to reconstruct the grouping for each

interaction. Entries in the symmetric proportion matrix are generally smaller than

those of the matrix for simulated data. Even though the grouping found by the

MAP algorithm is not identical to the reconstructed grouping in every interaction,

the reconstructed grouping still captures partial structure of the MAP estimate.

These discrepancies might have been caused by the small counts (less that 1000

patients in both diseased and control pools) in every interaction. Moreover, it

seems that the probability distribution of the allele counts widely vary in every

interaction studied. For instance, we observe 763 diseased counts and 497 control
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counts for allele C1 but many small counts, like 0, 1, and 2, are observed in both

diseased and control pools for many other alleles in interaction 255. Such might

be troublesome since randomness and small probabilities in the assumed model

for data generation could easily disrupt the ratio of diseased and control counts.

It is also possible that the actual data generation in the case of the Rheumatoid

Arthritis slightly departs from our model of data generation.
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CHAPTER 6

Appendix: Mathematical Derivation

In this section, we show the full derivation of the likelihood function shown in

(3.8). We know that:

P (n1, ..., nm, n
′
1, ..., n

′
m|S1, ..., SL)

=

∫
~θ1,...,~θL

P (n1, ..., nm, n
′
1, ..., n

′
m,
~θ1, ..., ~θL|S1, ..., SL)d(~θ1, ..., ~θL)

=

∫
~θ1,...,~θL

P (n1, ..., nm, ~θ1, ..., ~θL|S1, ..., SL)P (n′1, ..., n
′
m,
~θ1, ..., ~θL|S1, ..., SL)

P (~θ1, ..., ~θL|S1, ..., SL)d(~θ1, ..., ~θL)

(6.1)

where the second equality follows from conditional independence between n1, ..., nm,

and n′1, ..., n
′
m given ~θ1, ..., ~θL, S1, ..., SL. We are going to consider each term sep-

arately.

In order to do this, we first need to list several assumptions and consequences

of the model described in chapter 3:

• P (n1, ..., nm, |~p, ~θ1, ..., ~θL, S1, ..., SL) =
∏L

i=1

(
p
nSi
i ×

∏|Si|
j=1 θ

nij

ij

)
We note that this is a consequence of (3.1) - (3.4). It simply says that

the probability of observing n1, ..., nm given the model and a fixed partition

S1, ..., SL is determined by the allele counts within and between the groups.

• P (~θ1, ..., ~θL|S1, ..., SL) =
∏L

i=1 P (~θi|Si)

We assume that, conditional on the grouping S1, ..., SL, the probability dis-

tribution of allele counts within one group is independent from the proba-

bility distribution of allele counts in different group.
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• P (~p|~θ1, ..., ~θL, S1, ..., SL) = P (~p|L)

Given that information about L is known, we don’t need the knowldge of

the exact grouping nor the probability distributions of allele counts in each

group.

We first compute the first term in the equation (6.1). The second term is

computed the same way. Recall that P (~p|L) and P (~p|L) ∼ Dirichlet(α1, ..., αL).

By integrating over ~p (or over ~p′ for the second term) , we have:

P (n1, ..., nm, ~θ1, ..., ~θL|S1, ..., SL)

=

∫
~p

P (n1, ..., nm, |~p, ~θ1, ..., ~θL, S1, ..., SL)P (~p|~θ1, ..., ~θL, S1, ..., SL)d~p

=

∫
~p

L∏
i=1

pnSi
i ×

|Si|∏
j=1

θ
nij

ij

× P (~p|L)d~p

=

∫
~p

L∏
i=1

pnSi
i ×

|Si|∏
j=1

θ
nij

ij

× Γ(
∑L

i=1 αi)∏L
i=1 Γ(αi)

×
L∏
i=1

pαi−1
i d~p

=
Γ(
∑L

i=1 αi)∏L
i=1 Γ(αi)

×
L∏
i=1

 |Si|∏
j=1

θ
nij

ij

× ∫
~p

L∏
i=1

p
nSi

+αi−1

i d~p

=
Γ(
∑L

i=1 αi)

Γ(
∑L

i=1 nSi
+ αi)

×
L∏
i=1

(
Γ(nSi

+ αi)

Γ(αi)

)
×

L∏
i=1

 |Si|∏
j=1

θ
nij

ij



(6.2)

Incorporating P (~θ1, ..., ~θL|S1, ..., SL) =
∏L

i=1 P (~θi|Si), we are ready to finish the
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derivation of the likelihood function.

P (n1, ..., nm, n
′
1, ..., n

′
m|S1, ..., SL)

=
Γ(
∑L

i=1 αi)

Γ(
∑L

i=1 nSi
+ αi)

×
L∏
i=1

Γ(nSi
+ αi)

Γ(αi)
× Γ(

∑L
i=1 αi)

Γ(
∑L

i=1 n
′
Si

+ αi)
×

L∏
i=1

Γ(n′Si
+ αi)

Γ(αi)∫
~θ

L∏
i=1

 |Si|∏
j=1

θ
nij+n′ij
ij

× L∏
i=1

Γ(
∑|Si|

j=1
1
|Si|)∏|Si|

j=1 Γ( 1
|Si|)

|Si|∏
j=1

θ
1
|Si|
−1

ij

 d~θ

=
Γ(
∑L

i=1 αi)

Γ(
∑L

i=1 nSi
+ αi)

×
L∏
i=1

Γ(nSi
+ αi)

Γ(αi)
× Γ(

∑L
i=1 αi)

Γ(
∑L

i=1 n
′
Si

+ αi)
×

L∏
i=1

Γ(n′Si
+ αi)

Γ(αi)

L∏
i=1

(
Γ(
∑|Si|

j=1
1
|Si|)∏|Si|

i=1 Γ( 1
|Si|)

)
×
∫
~θ

L∏
i=1

 |Si|∏
j=1

θ
nij+n′ij+ 1

|Si|
−1

ij

 d~θ

=
Γ(
∑L

i=1 αi)

Γ(
∑L

i=1 nSi
+ αi)

×
L∏
i=1

Γ(nSi
+ αi)

Γ(αi)
× Γ(

∑L
i=1 αi)

Γ(
∑L

i=1 n
′
Si

+ αi)
×

L∏
i=1

Γ(n′Si
+ αi)

Γ(αi)

L∏
i=1

(
Γ(
∑|Si|

j=1
1
|Si|)∏|Si|

i=1 Γ( 1
|Si|)

)
×

L∏
i=1

∫
~θi

 |Si|∏
j=1

θ
nij+n′ij+ 1

|Si|
−1

ij

 d~θi by Fubini

=
Γ(
∑L

i=1 αi)

Γ(
∑L

i=1 nSi
+ αi)

×
L∏
i=1

Γ(nSi
+ αi)

Γ(αi)
× Γ(

∑L
i=1 αi)

Γ(
∑L

i=1 n
′
Si

+ αi)
×

L∏
i=1

Γ(n′Si
+ αi)

Γ(αi)

L∏
i=1

Γ(
∑|Si|

j
1
|Si|)

Γ(
∑|Si|

j nij + n′ij + 1
|Si|)
×

L∏
i=1

 |Si|∏
j=1

Γ(nij + n′ij + 1
|Si|)

Γ( 1
|Si|)


=

1

Γ(1 + n)

L∏
i=1

Γ(nSi
+ 1

L
)

Γ( 1
L

)
× 1

Γ(1 + n′)

L∏
i=1

Γ(n′Si
+ 1

L
)

Γ( 1
L

)

L∏
i=1

1

Γ(1 + nSi
+ n′Si

)
×

L∏
i=1

|Si|∏
j=1

Γ(nij + n′ij + 1
|Si|)

Γ( 1
|Si|)

(6.3)

where the last equality is obtained by letting αi = 1
L

, i.e. we assign uniform prior

for ~θi, ~p, and ~p′.
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