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Abstract 
 Photosynthetic light-harvesting proceeds by the collection and highly efficient 
transfer of energy through a network of pigment-protein complexes.  Inter-chromophore 
electronic couplings and interactions between pigments and the surrounding protein 
determine energy levels of excitonic states and dictate the mechanism of energy flow.  
The excitonic structure (orientation of excitonic transition dipoles) of pigment-protein 
complexes is generally deduced indirectly from x-ray crystallography in combination 
with predictions of transition energies and couplings in the chromophore site basis.  Here, 
we demonstrate that coarse-grained excitonic structural information in the form of 
projection angles between transition dipole moments can be obtained from polarization-
dependent two-dimensional electronic spectroscopy of an isotropic sample, particularly 
when the nonrephasing or free polarization decay signal rather than the photon echo 
signal is considered.  The method provides an experimental link between atomic and 
electronic structure and accesses dynamical information with femtosecond time 
resolution.  In an investigation of the Fenna-Matthews-Olson complex from green sulfur 
bacteria, energy transfer connecting two particular exciton states in the protein is isolated 
as being the primary contributor to a cross peak in the nonrephasing 2D spectrum at 400 
fs under a specific sequence of polarized excitation pulses.  The results suggest the 
possibility of designing experiments using combinations of tailored polarization 
sequences to separate and monitor individual relaxation pathways.           
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Introduction 

 Photosynthesis begins with the harvesting of sunlight by antenna pigments that 

rapidly funnel energy to reaction centers.  The spectral coverage and energy transfer 

characteristics of light-harvesting systems are determined by the structural arrangement 

of pigments and their interactions with the surrounding environment, which is often the 

interior of a protein.  Even among organisms with chlorophyll as the primary light 

absorber, the architecture of antenna systems varies widely in nature.(1)  Investigation of 

these specialized light-harvesting structures, evolved under different light environments 

to fuel photosynthesis with optimal efficiency, could have applications in solar energy 

conversion devices and is increasingly important as we search for clean energy 

alternatives.   

 The Fenna-Matthews-Olson (FMO) pigment-protein complex is found in low-

light adapted green sulfur bacteria, which harvest light primarily in a large antenna 

structure called the chlorosome.  The FMO complex is tasked with transporting energy 

collected in the chlorosome to the reaction center, thereby initiating the photochemistry 

that ultimately leads to the chemical storage of energy.  FMO was the first chlorophyll 

protein structure solved by x-ray crystallography and comprises three identical subunits 

each containing seven bacteriochlorophyll (BChl) pigments nested within beta sheets.(2; 

3)  The closest center-to-center distance between neighboring intrasubunit BChls is 11 Å, 

with the largest coupling energies between them estimated to be on the order of 100 cm-1.   

The closest approach of intersubunit BChls is approximately 24 Å, with corresponding 

coupling energies of < 20 cm-1.(4)  For this reason it has been assumed (and borne out by 

spectroscopic studies) that the exciton wavefunction is rapidly localized on individual 
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subunits upon excitation.(5)  Compared to the highly symmetric ring structures of the 

light-harvesting apparatus in the similarly widely-studied purple photosynthetic bacteria, 

the asymmetric arrangement of the seven pigments in FMO is more reminiscent of light-

harvesting in higher plants.  Because of its lack of symmetry and the early availability of 

x-ray structure information in conjunction with its relatively small size, FMO has been 

considered a model system for investigation of photosynthetic energy transfer.   

 A number of spectroscopic experiments and theoretical studies have contributed 

to a good understanding of the energetic landscape in FMO.(5-7)  The lack of symmetry 

within the FMO subunit has presented a challenge for researchers modeling experimental 

spectra, because each of the seven BChls experiences a different local environment due 

to, for example, the proximity of charged residues or bowing of the BChl macrocycle, 

resulting in variations of Qy site energies (the S0 – S1 transition energy of the 

chromophore) by as much as 600 cm-1.(4)  Adolphs, et al. performed calculations of site 

energies using an electrostatic method that for the first time predicted absorption and 

linear and circular dichroism spectra.(8)  Müh, et al.(9) further incorporated atomic detail 

of the protein including the backbone into quantum chemical/electrostatic calculations of 

excitation energies and discovered a pronounced effect of the alpha-helix dipole on BChl 

site energies.  In this way, the protein itself can direct excitation flow through the 

complex by tuning the site energies.     

 Several time-resolved spectroscopic studies have shown that energy transfer in 

FMO proceeds with time constants ranging from ~100 fs to several ps, with faster 

transfer generally occurring on the blue side of the Qy band.(10)  Two-dimensional (2D) 

electronic spectroscopy is a particularly incisive tool for investigating photosynthetic 
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energy transfer, yielding maps of coupling and dynamical processes of electronic 

transitions.  Recently, Brixner and coworkers(11) identified two major pathways of 

energy flow in FMO using 2D electronic spectroscopy.  The nature of energy transfer 

within the protein has also been investigated, and evidence of quantum coherence in 

fluorescence anisotropy(12) and 2D spectroscopy data(13) implies that quantum 

mechanical wavelike energy transfer rather than purely dissipative “hopping” may 

contribute to the efficiency of light-harvesting by FMO.   

 Excitation energy transfer in photosynthetic complexes is controlled by the 

orientation and spatial extent of exciton states, referred to here as the excitonic structure, 

in addition to the energetic landscape of the protein.  In a multichromophore system, non-

negligible coupling energies give rise to exciton states with transition dipole moments 

distinct from those of the individual chromophores.  The Coulombic couplings 

redistribute electron transition density among the chromophore sites, shifting transition 

energies and reorienting transition dipole moments.  The excitonic structure of 

photosynthetic complexes is generally determined indirectly from estimates of site and 

coupling energies, with the latter often based on the dipole-dipole approximation despite 

the close packing of chromophores.  An experimental method for probing excitonic 

structure directly in order to further understand energy transfer dynamics is therefore 

desirable.    

 In this work, we demonstrate that 2D electronic spectroscopy can be used to 

obtain excitonic structure information in addition to elucidating energetic relaxation 

pathways.  Based on generation of a three-pulse photon echo, analogous to the spin echo 

in NMR, 2D spectroscopy is sensitive to the third order optical polarization of the system.  
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In effect, the technique connects absorption and emission frequencies by interrogating the 

sample with three time-delayed femtosecond laser pulses and monitoring the emitted 

signal.(14)  The frequency-domain signal, collected as a function of the two scanned time 

delays called the ‘coherence’ time, or τ (between the first two pulses), and the 

‘population’ time, or T (between the second two pulses), is Fourier- transformed over τ to 

yield 2D frequency-frequency plots as a function of T.  The ability to overcome phase 

fluctuations has played a key role in making 2D spectroscopy feasible at visible 

wavelengths.  To this end, passively-stabilized 2D setups based on diffractive optics(15; 

16) or actively-stabilized techniques using feedback-controlled optics are employed.(17-

19)  Damrauer, Zanni, and coworkers recently demonstrated phase stable measurement of 

absorptive 2D electronic spectra using pulse shapers.(20) 

 Although 2D spectra contain information often unavailable or obscured in other 

femtosecond laser experiments, broad linewidths can nevertheless complicate 

interpretation of spectra.  Two-dimensional spectra contain signals arising from many 

different energetic processes, and separation of individual contributions is desirable for 

better characterization of excited state dynamics.  This can be achieved in part by rotating 

the polarization of the laser pulses to suppress or enhance particular signals based on the 

relative orientations of transition dipoles in the system.  Polarization conditions for 2D IR 

spectroscopy of an isotropic sample were pioneered by Hochstrasser and coworkers and 

further explored theoretically by Dreyer et al.(21-23)  Sequences have been identified 

that suppress diagonal peaks in 2D spectra, and it has been shown that disentangling 2D 

spectra in this way is also feasible in the electronic regime.(24; 25)  Using cross-

polarized excitation pulses, angles between transition dipole moments have been 
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determined from 2D IR spectra.(26; 27)  These polarization conditions do not require 

aligning the molecules in the sample cell, but rather take advantage of the set relative 

orientations of excited transitions within the molecules.  Here, we use polarization-

dependent 2D femtosecond electronic spectroscopy to probe the excitonic structure and 

dynamics of FMO from P. aestuarii.   

 Separating rephasing (photon echo) and nonrephasing contributions to the signal 

is an additional tool for disentangling the complicated interference pattern that makes up 

a 2D spectrum.  So-called phase-twisted lineshapes with mixed absorptive and dispersive 

character have been identified in 2D NMR and IR spectra when rephasing and 

nonrephasing signals were measured separately, and addition of the two spectra has been 

used to obtain absorptive lineshapes.(28; 29)  Ge et al. discussed separate measurement 

of rephasing and nonrephasing signals for enhanced resolution of closely spaced peaks in 

2D IR spectra.(30)  In rephasing contributions, the system evolves in conjugate 

frequencies during τ and t (the time delay between the last two pulses).  This gives rise to 

a photon echo signal, which reveals the system’s ability to effectively reverse 

inhomogeneous dephasing.  For nonrephasing signals, the phase factors governing 

evolution of coherence during τ and t have the same sign, resulting in free polarization 

decay during t.  Measurement of rephasing and nonrephasing spectra is achieved 

experimentally by reversing the order of arrival of the first two pulses at the sample, and 

the relative amplitude of the two signals is a measure of the degree of inhomogeneous 

broadening in the system.(27)  In this work, we monitor both types of signals separately, 

and observe distinct spectral features in nonrephasing spectra.  Combined with the use of 

specific polarization schemes, the nonrephasing spectra directly reveal information about 
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the excitonic structure, or orientation of excitonic transition dipoles, of the protein 

complex and give a more detailed view of energetic relaxation. 

 

Experimental Methods 

 FMO from P. aestuarii was isolated as described in Li, et al.(31). A Sephacryl S-

300 high resolution gel filtration column was employed as a final purification step. The 

optical density ratio of OD267nm/OD371nm was less than 0.55, indicative of a highly 

purified complex.  The sample was dissolved in a pH 8 buffer solution of 20mM Tris-

HCl and 0.1% of LDAO was added to prevent aggregation.  The sample was then mixed 

with glycerol (30:70 by volume) for formation of a glass in a 200µm-thick quartz cell for 

measurements at 77K.  The sample OD was 0.22 at 805 nm.    

 Details of the experimental apparatus have been described elsewhere.(24; 32)  

Briefly, 45 fs pulses at 805 nm with a spectral bandwidth of 31 nm output from a home-

built Ti:Sapphire regenerative amplifier are used to measure 2D spectra.  The beam is 

split into four by a beamsplitter followed by a diffractive optic optimized for transmission 

of +/-1st orders.  The time delay between the first two pulses (coherence time, τ) is 

scanned by movement of paired glass wedges controlled by a computerized stepper 

motor, and the time delay between the 2nd and 3rd pulses (population time, T) is 

controlled by a retroreflector delay stage.  The beams are focused to a 70 µm spot-size on 

the sample in the boxcar geometry with 4 nJ/pulse in pulses 1,2, and 3.  The 4th pulse is 

attenuated by four orders of magnitude to serve as a local oscillator for heterodyne 

detection, and passes through the sample before the other pulses.  A mask selects signal 

emitted from the sample in the phase-matched direction ks= -k1 + k2 +k3, collinear with 
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beam 4.  The signal is spectrally resolved with a spectrometer and CCD camera.  The 

polarizations of the pulses are controlled by true zero-order half waveplates inserted in 

beams 1 and 2, and in this work the combinations <0º,0º,0º,0º>, <45º,-45º,0º,0º>, and 

<75º,-75º, 0º,0º> are used (with the bracket expressions denoting the linear polarizations 

of pulses <1,2,3,4>, where 4 is the local oscillator).  The measurement is performed by 

scanning the coherence time from -300 to 300 fs, where negative τ corresponds to arrival 

of pulse 2 before pulse 1, for each population time point.  For a given T, Fourier 

transformation is performed using all coherence time points to yield the total 2D spectra, 

while for rephasing and nonrephasing spectra only positive and negative time points are 

Fourier transformed, respectively.     

 

Theoretical Methods 

 Theoretical calculations of 2D spectra are performed based on Zigmantas, et 

al.(33)  In brief, a Frenkel exciton model of the FMO monomer is adopted in which 1-

exciton and 2-exciton manifolds are built from site and coupling energies and Qy 

transitions of the seven BChls, with orientations of site transition dipole moments 

determined from the protein x-ray structure.(34)  Couplings between BChls in different 

monomeric subunits of the protein are neglected, due to their relatively weak strength.  

An overdamped Brownian oscillator model for nuclear motions resulting from interaction 

with the protein environment (electron-phonon coupling) is adopted,(35) with no 

correlation between energetic fluctuations at different sites.  Dynamics between exciton 

states is calculated using modified-Redfield theory in the secular approximation.(36; 37)  

A Gaussian distribution of site energies represents inhomogeneous broadening due to 



 9

slow fluctuations of the protein environment, as determined by the linewidths in the 

spectra and the amplitude ratio of rephasing to nonrephasing spectra.  All model 

parameters are published in Supporting Information.  

 Two-dimensional spectra are calculated using the third order nonlinear response 

function, R(3), described in detail in Mukamel.(35)  The response function describes a 

sum of Liouville energy level pathways contributing to the signal in the phase-matched 

direction assuming the impulsive excitation limit and the rotating wave approximation.  

The 2D spectrum, S2D is then proportional to the response function: 

∫
∞

∞−

−∝ ττωωτωω ττ diTRTS ttD )exp(),,(),,( )3(
2 .   (1) 

The rephasing and nonrephasing spectra are calculated using response pathways 

1
*

32
)3( RRRR RP −+=        (2) 

and 241
)3( ∗−+= RRRR NR ,      (3)  

respectively, in the conventional nomenclature.  Each of these time-domain response 

pathways describes a sequence of promotions and demotions of electrons between states 

of the system stimulated by the laser pulse fields and includes the evolution of the system 

during intervening time periods.  The full form of the response functions can be found 

elsewhere,(23; 35) but here it is useful to note that the contribution to the 2D spectrum by 

each pathway is controlled by a prefactor of the form δγβαδγβα µµµµlkji , where α,β,γ, 

and δ represent transitions connecting pairs of states, δγβα lkji  is the orientationally 

averaged projection of the lab-frame linear polarizations of the laser pulses onto the 

molecular frame transition dipole moments, and αµ  denotes the dipole moment 

magnitude of molecular transition α.    
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Results and Discussion 

 Figure 1 shows the real total, rephasing, and nonrephasing 2D spectra of FMO 

from P. aestuarii at 77K, denoted as S(λτ,T,λt), S(λ+τ,T,λt), and S(λ-τ,T,λt), respectively.  

Features with positive sign are shown in green to red and correspond to stimulated 

emission or bleaching, while blue features are negative, indicating excited state 

absorption.  Peaks in the rephasing and nonrephasing parts tilt along and perpendicular to 

the diagonal, respectively, as is characteristic in 2D spectra from NMR through the 

optical regime.  The total spectrum, which is equivalent to the summation of the two 

signals, is dominated by the rephasing part.  The ratio of rephasing to nonrephasing signal 

amplitudes (all normalized in Fig. 1 for clarity) is 4.7 at T=0 and 3.3 at T=400fs.  The 

rephasing signal decays more quickly than the nonrephasing signal due to rapid 

homogeneous dephasing, or loss of memory, which diminishes the system’s ability to 

emit a photon echo.  As discussed previously by Ernst and Bodenhausen,(28) phase-

twisted lineshapes in separated rephasing and nonrephasing signals give rise to distinctive 

interference effects in the spectra.  Nonrephasing spectra have the advantage that closely 

spaced peaks are easier to distinguish than in rephasing spectra due to their anti-diagonal 

tilt; that is, the diagonal linewidth of an individual transition is narrower in the 

nonrephasing spectrum than in the rephasing spectrum.  In both types of spectra, 

interference can give rise to shifts in the center positions of peaks, obscuring the true 

transition energies.  Adding the two types of signals to obtain the total spectrum serves to 

cancel the dispersive character of peaks in favor of purely absorptive lines.   

 In Figure 1, the T=0 total spectrum is characterized by a strong positive signal 

along the diagonal comprising several overlapping bands, weaker positive off-diagonal 
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features that merge into the diagonal peaks, and excited state absorption above the 

diagonal.  The rephasing and nonrephasing signals are strikingly different.  The T=0 

rephasing spectrum contains almost no features aside from one wide, inhomogeneously 

broadened diagonal band, while the nonrephasing spectrum contains several distinct 

peaks along the diagonal, as well as strong off-diagonal features.  The total spectrum, the 

sum of both signals, retains some of this structure.  In particular, the two most prominent 

diagonal bands of the nonrephasing spectrum give rise to the strong double peak along 

the diagonal in the total spectrum (peaked at 814 nm and 804 nm).  In the second row of 

Figure 1, the T=400 fs spectra show that the nonrephasing spectrum gives a clearer view 

of dynamics.  The rephasing spectrum shows little evolution on this timescale, whereas 

excitation energy migration out of the upper bands (most notably the disappearance of the 

(λτ=804 nm, λt=804 nm) diagonal peak) is clearly visible in the nonrephasing spectrum.   

The rephasing and nonrephasing parts of the third-order polarization are sensitive 

to the same excitation energy transfer dynamics; however, energy transfer is more 

apparent in the nonrephasing spectrum.  This results from the narrower diagonal 

linewidths of nonrephasing signals and from the photon echo effect that gives rise to 

dominant diagonal peaks in rephasing spectra, obscuring off-diagonal peaks which may 

reveal information about energy transfer.  In addition, as discussed in Cheng, et al.,(38) 

Liouville pathways that cause excitonic quantum beating appear off and on the diagonal 

in rephasing and nonrephasing spectra, respectively.  Thus a clearer view of energetic 

relaxation is obtained from the off-diagonal region of nonrephasing spectra.  From Figure 

1 it is clear that splitting the total spectrum into its constituent +τ and –τ parts aids 
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analysis because, although the total spectrum has the advantage of absorptive lineshapes, 

the nonrephasing part shows more clearly the individual excitonic features. 

 Additional separation of signals can be achieved in 2D spectra by the use of 

specific polarization combinations of the excitation pulses.  The polarization conditions 

used in this experiment were chosen because it is theoretically possible to derive φ, the 

projection angle between a pair of exciton states, directly from the ratio of the  

<45º,-45º,0º,0º> and <75º,-75º,0º,0º> spectra (with the exception that it is always 

impossible to distinguish between φ and 180º - φ). This scheme is similar to the cross-

polarized <90º,90º,0º,0º>/<0º,0º,0º,0º> method used previously in 2D IR 

spectroscopy.(26; 27)  The advantage of the sequences used here is that the diagonal peak 

amplitudes are more suppressed compared to those in the cross-polarized experiment, 

which is necessary for gleaning information from 2D electronic spectra with broad 

linewidths and closely spaced states.  Despite the fact that it is still difficult to separate 

individual transitions, which prevents direct acquisition of φ, comparison of the spectra 

measured under these polarization conditions enables deduction of excitonic structural 

information.  

 Figure 2 shows the absolute magnitude 2D spectra of FMO from P. aestuarii 

measured under the two polarization schemes, <45º,-45º,0º,0º> and <75º,-75º, 0º,0º>, at 

T=400fs.  The spectra on the top row are absolute magnitude rephasing, |S(λ+τ,T,λt)|, and 

those on the bottom absolute magnitude nonrephasing, |S(λ-τ,T,λt)|.  In magnitude spectra, 

the diagonal and anti-diagonal tilts of rephasing and nonrephasing peaks become difficult 

to distinguish. The striking aspect of the spectra is that large differences between these 

two different polarization experiments are only readily visible in the nonrephasing 



 13

spectra.  This again points to the utility of isolating the nonrephasing component in order 

to decongest spectra and shows that polarization conditions become particularly powerful 

when combined with separation of the +τ and –τ parts.  The disadvantage to the 

polarization schemes used here is the inability to phase the data using a separate pump-

probe experiment, as is done for the real spectra shown in Figure 1.  Under experimental 

conditions of extremely good phase stability, it is possible to collect 2D spectra with 

reliable phase without the need for an auxiliary experiment, as discussed in Read and 

Engel, et al.(24)  However, as shown by these data, in the absence of sufficient phase 

stability, the absolute magnitude spectra are still valuable. 

 To simulate the spectra, we begin with the full Hamiltonian of the FMO monomer 

published by Müh, et al.,(9) and perform simultaneous fitting of the linear and 2D 

rephasing, nonrephasing, and polarized spectra.  The parameters arrived at after fitting 

are similar to those from Müh, et al.  Because the peaks overlap less, the parameters 

required to model polarized and nonrephasing spectra satisfactorily are more constrained, 

thus the similarity of our fit parameters to those arrived at by pure theory in Müh, et al. 

underscores the robustness of their method.  Theoretical nonrephasing spectra are shown 

on the top row in Figure 3.  The general features of the experimental spectra at 400 fs are 

captured, and the model shows excellent agreement with the experimental rephasing 

spectra as well (not shown).  The upper right panel of Figure 3 shows experimental and 

theoretical linear absorption spectra, along with the spectrum of the laser pulses used to 

measure the 2D spectra.  The pulse spectrum is incorporated in 2D simulations by 

weighting each calculated dipole strength by the experimental laser spectrum, which has 
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the small but noticeable effect on the calculated spectra of enhancing the higher-energy 

peaks. 

 The T=400 fs <45º,-45º,0º,0º> and <75º,-75º,0º,0º> spectra in Figure 3 simulated 

using the full FMO monomer Hamiltonian reproduce the major aspect of the 

corresponding experimental spectra (bottom row): in the <45º,-45º,0º,0º> case at 400 fs 

the spectrum is dominated by a diagonal peak at (λτ=814 nm, λt=814 nm) while in the 

<75º,-75º,0º,0º> spectrum a pronounced cross-peak at (λτ=804 nm, λt=814 nm) is also 

visible.  This cross peak is due primarily to excitonic energy transfer during the 

population time, T.  The simulated <75º, -75º, 0º, 0º> nonrephasing spectrum in Figure 3 

shows complete disappearance of the diagonal peak at 804 nm by 400 fs, whereas the 

experimental spectrum shows that the upper diagonal peak persists on this timescale.  

This may result from an overestimation of the excitation energy transfer rate or from an 

incomplete description of coherence dynamics (expected to contribute strongly to the 

diagonal in nonrephasing spectra) afforded by modified Redfield theory.  However, the 

generally similar experimental and theoretical spectra suggest that the model accurately 

accounts for the energetic and excitonic structure of the FMO complex and the major 

pathways of energy flow. The striking difference between the <45º, -45º, 0º, 0º> and 

<75º, -75º, 0º, 0º> spectra can be explained by the orientational factors δγβα lkji  

controlling peak amplitudes for Liouville pathways corresponding to energy transfer 

between 1-exciton states, as discussed above.  Figure 4a shows the dependence of these 

orientational factors on the projection angle φ between a pair of exciton states for the two 

polarization schemes.  Note that the orientational factors can be positive or negative, 

which we cannot distinguish in the current work due to the incompatibility of the 
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polarization schemes with the auxiliary phasing experiment.  As seen in Figure 4a, the 

amplitude of an energy transfer cross peak in a <45º, -45º, 0º, 0º> spectrum is maximum 

at a projection angle of 0º, and vanishes at 52º, while in a <75º, -75º, 0º, 0º> spectrum it 

increases (in absolute value) monotonically from 0º to 90º.   

 The manifestation of the orientational factor dependence on φ is illustrated in 

Fig4 b and c by simulated nonrephasing 2D spectra of an excitonically coupled dimer 

with coupling energy 40 cm-1, site energies 810 and 802 nm, and an energy transfer time 

constant from the upper to lower exciton states calculated from modified Redfield theory 

to be 350 fs.  The dimer Hamiltonian parameters were chosen to roughly reproduce the 

two most prominent peaks in the FMO spectrum at 814 and 804 nm, in order to illustrate 

the effect of transition dipole orientation on polarization-dependent 2D nonrephasing 

spectra.  Figure 4b shows the T=400 fs spectra calculated for the dimer with φ = 5º, while 

Figure 4c shows the spectra calculated for the same dimer system, but with φ = 40º (the 

dipole strengths are adjusted to give the same relative amplitudes of diagonal peaks).  

The φ = 5º spectra under the <45º,-45º,0º,0º> and <75º,-75º, 0º,0º> polarization schemes 

are nearly indistinguishable, whereas the φ = 40º spectra approximate the behavior we 

observe in the FMO experiment, with a cross peak due to energy transfer appearing 

strongly in the <75º,-75º, 0º,0º> spectrum and only weakly in the <45º,-45º,0º,0º> 

spectrum. Characterization of the observed energetic states and dynamics of FMO 

requires use of the full Hamiltonian taking into account all seven of the BChls, as shown 

in Figure 3.  However, the simplified dimer model of Figure 4 clearly illustrates that the 

origin of the contrast between the <45º,-45º,0º,0º> and <75º,-75º, 0º,0º> nonrephasing 2D 

spectra lies in a relative orientation between prominent transitions near φ = 40º.  
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 The exciton model from the full FMO monomer Hamiltonian determined by 

fitting 2D spectra is consistent with analysis of the φ = 40º dimer.  According to the 

present FMO model, excitons 2 and 4 have the highest dipole strength and are primarily 

responsible for the two strongest bands in the linear and 2D spectra at 814 and 804 nm, 

respectively.  These states are characterized by a projection angle of 38º and a 4-2 energy 

transfer time constant of 440 fs.  Therefore, the φ = 40º dimer spectra at T=400 fs 

generally reproduce the dominant features, resulting from excitons 2 and 4, of the 

corresponding FMO experimental spectra, and the (λτ=804 nm, λt=814 nm) cross-peak is 

mainly due to relaxation from excitons 4 to 2. As discussed above, the exciton transition 

dipoles contribute to the cross-peak through 2
4

2
2 µµ , and the peak is enhanced in the <75º, 

-75º, 0º, 0º> spectrum by a favorable orientational factor.  The positioning of excitonic 

transition dipoles is strongly dependent on the model Hamiltonian parameters, so that 

subtle changes in site and coupling energies have a pronounced effect on φ.  In fitting the 

spectra, input parameters can be identified that produce good fits to rephasing and all-

parallel spectra, but overestimate the amplitude of the cross-peak in the T=400 fs <75º, -

75º, 0º, 0º> nonrephasing spectrum, due to a too-large (too close to 90º) projection angle 

between the dominant transitions.   

 The simulations underscore the fact that the nonrephasing polarized spectra are 

uniquely sensitive to excitonic structure, and can furthermore be used to isolate 

individual energy transfer pathways.  The polarization conditions serve to identify 

particular relative orientations of coupled transitions, and considering the nonrephasing 

spectra, in which fewer Liouville pathways contribute to the off-diagonal region, is useful 

for focusing on energy transfer processes.  Relative amplitudes of energy transfer cross 



 17

peaks under different polarization conditions yield excitonic structural information 

directly.  This point is demonstrated here, in that an estimate of the relative orientation of 

two transition dipoles determined from the orientational factor dependence on φ (as 

illustrated by the dimer model) is borne out by the calculation based on the full FMO 

Hamiltonian.  In other words, even without previously obtained crystallographic or 

spectroscopic data, a coarse-grained view of excitonic structure can be obtained using 

combined polarization sequences in 2D electronic spectroscopy.  This is however only 

feasible when cross peaks can be sufficiently resolved, and therefore the use of 

nonrephasing spectra is particularly powerful in conjunction with polarization-dependent 

2D experiments. 

 The site and exciton basis transition dipole moments predicted by the full FMO 

model are shown in Figure 5.  In the absence of interchromophore interaction, that is 

when the J coupling is 0, the transitions correspond to the Qy transition dipoles localized 

on each BChl, resulting from π- π * excitation within the conjugated plane of the 

molecule parallel to the axis connecting the NB and ND nitrogens (in the Protein 

Databank notation).  The lengths of the transition dipole moments shown in figure 5 are 

proportional to their magnitudes, which are all assumed equal in the site basis (Figure 

5a).  In the absence of coupling, the site and exciton basis pictures are equivalent. When 

interchromophore electronic coupling is introduced (Figure 5b), linear combinations of 

the sites give rise to reoriented transition dipole moments with redistributed dipole 

strength.  The excitons are numbered according to their energies, the site numbering used 

is in accordance with the Protein Databank crystal structure,(34) and the color-coding in 

Figure 5 matches the sites on the left with the exciton states on the right to which they 
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contribute predominantly.  However, the correspondence is only approximate, as some of 

the excitons are delocalized over multiple sites.  Transition dipole moments are 

positioned in Figure 5b according to the site basis coefficients making up the exciton 

states, thereby taking into account the delocalization length of the excitons.  In particular, 

exciton 5 is highly delocalized over sites 4,5,6, and 7, reflected by the pronounced shift in 

position of the green arrow from site 6 to a position spanning sites 4,5,6, and 7 in the 

exciton basis.  In contrast, excitons 1 and 7 are largely localized on sites 3 and 5, 

respectively, as evidenced by the similar positioning of the dipole moments in the site 

and exciton bases.    The energetic ordering of states changes upon moving from the site 

to the exciton basis, reflecting the change in energetic landscape effected by the 

Coulombic coupling.  The dominant transitions corresponding to excitons 2 and 4 are 

shown in red and cyan in Figure 5b, respectively, in the geometry supported by spectral 

fits as discussed above. 

 The orientation of the FMO complex between the chlorosome and reaction center 

has not yet been verified by crystallography, however as discussed by Adolphs et al.,(8) 

the funneling of energy by FMO suggests that the lower energy states are linked to the 

reaction center.  Thus, the most probable conformation for the complex is with BChl sites 

1 and 6 interfacing the chlorosome and sites 3 and 4 close to the reaction center.  Like the 

result of Brixner, et al.(11) on FMO from C. tepidum (a structurally similar but 

spectroscopically distinct complex from a different green sulfur bacterium) and of 

Adolphs, et al.,(8) the present model supports two major energetic pathways through the 

P. aestuarii FMO complex.  In the present model, these pathways correspond generally to 

migration from exciton 7 to 5 to 4 to 2 to 1 and from 6 to 3 to 2 to 1.  As discussed in 
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Brixner et al., the spatial extent of the excitons determines the energy migration pathway, 

rather than the energy levels alone, so that relaxation can skip energetically intermediate 

states.  When sites 1 and 6 are linked to the chlorosome, energy can couple into both of 

the dominant pathways, corresponding generally to the left- and right-hand sides of the 

protein in Figure 5.  The model suggests that at 77K energy equilibrates among the six 

highest exciton states within ~1 ps, and further relaxation occurs only after 3 ps.  That 

energy transfer among the higher states is so much more rapid than transfer to the lowest 

state is apparent in the short-time experimental spectra presented in this work, where 

pronounced relaxation into, but not out of, the 814 nm band (corresponding to excitons 2 

and 3) is visible.  The discrepancy in energy transfer rates is a manifestation of the 

localization of exciton 1 on site 3 due to the pronounced redshift of its site energy relative 

to others, so that little spatial overlap occurs with other exciton states.  The evolutionary 

advantage is most likely the resultant unidirectionality of energy flow, such that once the 

excitation migrates to site 3 it is essentially trapped and directed to the reaction center.   

 

Conclusion 

 Because it has been so widely studied, FMO is a model photosynthetic light-

harvesting protein.  In this work, we demonstrate the use of polarization sequences for 2D 

electronic spectroscopy that, through comparison of nonrephasing spectra, generally 

corroborate the orientation of exciton transitions predicted for FMO previously and allow 

further refinement of Hamiltonian parameters.  In addition, the experiment allows 

identification of a cross-peak dominated by energy transfer coupling two particular states 

in a crowded spectrum.  Rapid energy transfer from exciton 4 to exciton 2 is observed 
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within 400 fs, and the projection angle between the excitons is estimated to be 

approximately 40º by comparison to theoretical spectra.  The technique can be used to 

obtain a coarse-grained view of excitonic structure directly without prior knowledge of a 

system’s structure or energetics, and without alignment of the sample.  When prior 

knowledge is available, specific polarization sequences can be chosen to isolate particular 

energetic pathways.  For example, identifying a polarization scheme under which 

relaxation between states with a known φ disappears allows that process to be essentially 

subtracted out of the spectrum, enabling clearer visualization of other processes.  More 

complex experiments using combinations of polarization sequences, similar to the work 

presented here, could be designed by choosing two polarization schemes with the 

maximum difference between orientational factors for a predicted cross peak.  In this 

way, the subtraction of one type of spectrum from the other would highlight peaks arising 

only from the process of interest.  Extending these techniques using oriented samples, 

one could further suppress unwanted signals and probe individual relaxation pathways.  

The method promises to be especially useful for studies in photosynthesis, allowing 

researchers to tease out underlying states and their dynamics disguised by the spectral 

overlap typical of large multi-chromophore aggregates.  On the complex energetic 

landscape of the photosynthetic light-harvesting apparatus, existing dynamical theories 

are often less than satisfactory owing to high disorder, wide range of coupling energies, 

and poorly understood interactions with the protein environment.  It is therefore 

necessary to employ experimental tools that can probe specific relaxation processes and 

thereby obtain rate constants directly from experiment to be used for calibration of 

dynamical theories.   
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Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-
05CH11231. This work was supported by grant No. DE-AC03-76SF000098 and grant No. DE-FG02-
07ER15902 from the Chemical Sciences, Geosciences and Biosciences Division, Office of Basic Energy 
Sciences, Office of Science, US Department of Energy to GRF and to REB, respectively, and by a grant 
from the NSF to GRF.  GSE thanks the Miller Institute for Basic Research in Science for support. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 21



 22

References 
 
1. Blankenship R. E. 2002. Molecular mechanisms of photosynthesis. Blackwell Science, 
Oxford ; Malden, MA. 
2. Fenna R. E., B. W. Matthews. 1975. Chlorophyll Arrangement in a 
Bacteriochlorophyll Protein from Chlorobium-Limicola. Nature 258(5536):573-577. 
3. Camara-Artigas A., R. E. Blankenship, J. P. Allen. 2003. The structure of the FMO 
protein from Chlorobium tepidum at 2.2 angstrom resolution. Photosynth. Res. 75(1):49-
55. 
4. van Amerongen H., L. Valkunas, R. van Grondelle. 2000. Photosynthetic excitons. 
World Scientific, Singapore ; River Edge, N.J. 
5. Louwe R. J. W., J. Vrieze, A. J. Hoff, T. J. Aartsma. 1997. Toward an integral 
interpretation of the optical steady-state spectra of the FMO-complex of Prosthecochloris 
aestuarii. 2. Exciton simulations. J. Phys. Chem. B 101(51):11280-11287. 
6. Vulto S. I. E., M. A. de Baat, R. J. W. Louwe, H. P. Permentier, T. Neef, M. Miller, H. 
van Amerongen, T. J. Aartsma. 1998. Exciton simulations of optical spectra of the FMO 
complex from the green sulfur bacterium Chlorobium tepidum at 6 K. J. Phys. Chem. B 
102(47):9577-9582. 
7. Wendling M., M. A. Przyjalgowski, D. Gulen, S. I. E. Vulto, T. J. Aartsma, R. van 
Grondelle, H. van Amerongen. 2002. The quantitative relationship between structure and 
polarized spectroscopy in the FMO complex of Prosthecochloris aestuarii: refining 
experiments and simulations. Photosynth. Res. 71(1-2):99-123. 
8. Adolphs J., T. Renger. 2006. How proteins trigger excitation energy transfer in the 
FMO complex of green sulfur bacteria. Biophys. J. 91(8):2778-2797. 
9. Muh F., M. E. A. Madjet, J. Adolphs, A. Abdurahman, B. Rabenstein, H. Ishikita, E. 
W. Knapp, T. Renger. 2007. alpha-Helices direct excitation energy flow in the Fenna-
Matthews-Olson protein. Proc. Natl. Acad. Sci. USA 104(43):16862-16867. 
10. Savikhin S., D. R. Buck, W. S. Struve. 1998. Toward level-to-level energy transfers 
in photosynthesis: The Fenna-Matthews-Olson protein. J. Phys. Chem. B 102(29):5556-
5565. 
11. Brixner T., J. Stenger, H. M. Vaswani, M. Cho, R. E. Blankenship, G. R. Fleming. 
2005. Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature 
434(7033):625-8. 
12. Savikhin S., D. R. Buck, W. S. Struve. 1997. Oscillating anisotropies in a 
bacteriochlorophyll protein: Evidence for quantum beating between exciton levels. 
Chem. Phys. 223(2-3):303-312. 
13. Engel G. S., T. R. Calhoun, E. L. Read, A. T.K., T. Mancal, Y.-C. Chung, R. E. 
Blankenship, G. R. Fleming. 2006. Evidence for wavelike energy transfer through 
quantum coherence in photosynthetic systems. Nature 446:782-786. 
14. Jonas D. M. 2003. Two-dimensional femtosecond spectroscopy. Annual Review of 
Physical Chemistry 54:425-463. 
15. Cowan M. L., J. P. Ogilvie, R. J. D. Miller. 2004. Two-dimensional spectroscopy 
using diffractive optics based phased-locked photon echoes. Chem. Phys. Lett. 386(1-
3):184-189. 
16. Brixner T., T. Manĉal, I. V. Stiopkin, G. R. Fleming. 2004. Phase-stabilized two-
dimensional electronic spectroscopy. Journal of Chemical Physics 121(9):4221-4236. 



 23

17. Hybl J. D., A. W. Albrecht, S. M. G. Faeder, D. M. Jonas. 1998. Two-dimensional 
electronic spectroscopy. Chem. Phys. Lett. 297(3-4):307-313. 
18. Tian P. F., D. Keusters, Y. Suzaki, W. S. Warren. 2003. Femtosecond phase-coherent 
two-dimensional spectroscopy. Science 300(5625):1553-1555. 
19. Zhang T. H., C. N. Borca, X. Q. Li, S. T. Cundiff. 2005. Optical two-dimensional 
Fourier transform spectroscopy with active interferometric stabilization. Opt. Express 
13(19):7432-7441. 
20. Grumstrup E. M., S. H. Shim, M. A. Montgomery, N. H. Damrauer, M. T. Zanni. 
2007. Facile collection of two-dimensional electronic spectra using femtosecond pulse-
shaping technology. Opt. Express 15(25):16681-16689. 
21. Hochstrasser R. M. 2001. Two-dimensional IR-spectroscopy: polarization anisotropy 
effects. Chem. Phys. 266(2-3):273-284. 
22. Zanni M. T., N. H. Ge, Y. S. Kim, R. M. Hochstrasser. 2001. Two-dimensional IR 
spectroscopy can be designed to eliminate the diagonal peaks and expose only the 
crosspeaks needed for structure determination. Proc. Natl. Acad. Sci. USA 98(20):11265-
11270. 
23. Dreyer J., A. M. Moran, S. Mukamel. 2003. Tensor components in three pulse 
vibrational echoes of a rigid dipeptide. Bulletin of the Korean Chemical Society 
24(8):1091-1096. 
24. Read E. L., G. S. Engel, T. R. Calhoun, T. Mancal, T. K. Ahn, R. E. Blankenship, G. 
R. Fleming. 2007. Cross-peak-specific two-dimensional electronic spectroscopy. Proc. 
Natl. Acad. Sci. USA 104(36):14203-14208. 
25. Zhang T. H., I. Kuznetsova, T. Meier, X. C. Li, R. P. Mirin, P. Thomas, S. T. 
Cundiff. 2007. Polarization-dependent optical 2D Fourier transform spectroscopy of 
semiconductors. Proc. Natl. Acad. Sci. USA 104(36):14227-14232. 
26. Woutersen S., P. Hamm. 2000. Structure determination of trialanine in water using 
polarization sensitive two-dimensional vibrational spectroscopy. J. Phys. Chem. B 
104(47):11316-11320. 
27. Khalil M., N. Demirdoven, A. Tokmakoff. 2003. Coherent 2D IR spectroscopy: 
Molecular structure and dynamics in solution. J. Phys. Chem. A 107(27):5258-5279. 
28. Ernst R. R., Bodenhausen, Geoffrey, Wokaun, Alexander. 1987. Principles of Nuclear 
Magentic Resonance in One and Two Dimensions. Rowlinson JS, editor. Oxford Science 
Publications, Oxford. 
29. Khalil M., N. Demirdoven, A. Tokmakoff. 2003. Obtaining absorptive line shapes in 
two-dimensional infrared vibrational correlation spectra. Phys. Rev. Lett. 90(4):-. 
30. Ge N. H., M. T. Zanni, R. M. Hochstrasser. 2002. Effects of vibrational frequency 
correlations on two-dimensional infrared spectra. J. Phys. Chem. A 106(6):962-972. 
31. Li Y. F., W. L. Zhou, R. E. Blankenship, J. P. Allen. 1997. Crystal structure of the 
bacteriochlorophyll a protein from Chlorobium tepidum. Journal of Molecular Biology 
271(3):456-471. 
32. Brixner T., I. V. Stiopkin, G. R. Fleming. 2004. Tunable two-dimensional 
femtosecond spectroscopy. Opt. Lett. 29(8):884-6. 
33. Zigmantas D., E. L. Read, T. Mancal, T. Brixner, A. T. Gardiner, R. J. Cogdell, G. R. 
Fleming. 2006. Two-dimensional electronic spectroscopy of the B800-B820 light-
harvesting complex. Proc. Natl. Acad. Sci. USA 103(34):12672-12677. 



 24

34. Tronrud D. E., M. F. Schmid, B. W. Matthews. 1986. Structure and X-Ray Amino-
Acid-Sequence of a Bacteriochlorophyll-a Protein from Prosthecochloris-Aestuarii 
Refined at 1.9 a Resolution. Journal of Molecular Biology 188(3):443-454. 
35. Mukamel S. 1995. Principles of nonlinear optical spectroscopy. Oxford University 
Press, New York ; Oxford. 
36. Zhang W. M., T. Meier, V. Chernyak, S. Mukamel. 1998. Exciton-migration and 
three-pulse femtosecond optical spectroscopies of photosynthetic antenna complexes. 
Journal of Chemical Physics 108(18):7763-7774. 
37. Yang M. N., G. R. Fleming. 2002. Influence of phonons on exciton transfer 
dynamics: comparison of the Redfield, Forster, and modified Redfield equations. Chem. 
Phys. 275(1-3):355-372. 
38. Cheng Y. C., G. R. Fleming. 2008. Coherence quantum beats in the two-dimensional 
electronic spectroscopy. J. Phys. Chem. A in press. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 25

Figures 
 
Figure 1. 
Real 2D spectra at 77K of FMO from P. aestuarii.  Spectra shown from left to right are 
total, rephasing, and nonrephasing signals at T=0 (top row) and T=400 fs (bottom row).  
All spectra are normalized to unity.  The T=0 nonrephasing spectrum clearly shows 
distinctive diagonal and cross peaks not apparent in the rephasing spectrum, and 
energetic relaxation out of the upper band is visible in the nonrephasing spectrum at 
T=400 fs. 
 
Figure 2. 
Rephasing (top) and nonrephasing (bottom) absolute magnitude 2D spectra of FMO from 
P. aestuarii at T=400 fs measured with polarizations <45º,-45º, 0º, 0º> (left) and <75º,-
75º, 0º, 0º> (right) of laser pulses 1,2,3,and 4, respectively.  The nonrephasing spectra 
show distinct spectral features under the two polarization conditions that can be used to 
obtain excitonic structural information.  The strong cross peak at (λτ=804 nm, λt=814 nm) 
in the <75º, -75º, 0º, 0º> nonrephasing spectrum is indicative of excitation energy 
transfer. 
 
Figure 3. 
Theoretical and experimental nonrephasing spectra of FMO from P. aestuarii at T=400 fs 
and 77K.  Top row, left to right: theoretical <0º, 0º, 0º, 0º>, <45º, -45º, 0º, 0º>, and <75º, 
-75º, 0º, 0º> 2D spectra.  The top right panel shows experimental and theoretical linear 
absorption spectra in black and red, respectively, and the dotted line is the laser spectrum 
of the pulses used to measure 2D spectra.  Bottom row, left to right: experimental <0º, 0º, 
0º, 0º>, <45º, -45º, 0º, 0º>, and <75º, -75º, 0º, 0º> 2D spectra. 
 
Figure 4. 
Energy transfer pathway orientational factor dependence on projection angle between 
exciton states for <45º, -45º, 0º, 0º> and <75º, -75º, 0º, 0º> polarization sequences (a).  
Below, calculated 2D nonrephasing dimer spectra at 400 fs (top to bottom: all parallel, 
<45º, -45º, 0º, 0º> and <75º, -75º, 0º, 0º> polarizations) for a dimer with projection angle 
φ=5º (b) and φ=40º (c).  The spectra in (c) reproduce more closely the behavior seen in 
the FMO polarization-dependent nonrephasing experiment due to the ~40º relative 
orientation of the dominant transition dipoles. 
 
Figure 5. 
Qy transition dipole moments in the site basis (a) and exciton basis (b).  The site basis is 
the case in the limit of negligible inter-chromophore couplings, and the transitions are 
localized on individual BChls.  Coupling between BChls redistributes dipole strength 
among sites, resulting in different positions and orientations of the excitonic transition 
dipoles.  The dominant peaks in the short-time 2D spectra arise from excitons 2 and 4 in 
red and cyan, respectively.   
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 28

Figure 3. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 29

Figure 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 30

Figure 5. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 




