
UCLA
UCLA Electronic Theses and Dissertations

Title
Optimization of Acute Lymphoblastic Leukemia Patient Regimens Using a Phenotypic 
Personalized Medicine Digital Health Platform

Permalink
https://escholarship.org/uc/item/2qq857zq

Author
Kee, Theodore W.

Publication Date
2017
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2qq857zq
https://escholarship.org
http://www.cdlib.org/


 

 

UNIVERSITY OF CALIFORNIA 

Los Angeles 

 

 

Optimization of Acute Lymphoblastic Leukemia  

Patient Regimens Using a Phenotypic Personalized Medicine  

Digital Health Platform 

 

 

A thesis submitted in partial satisfaction 

of the requirements for the degree Master of Science 

in Bioengineering 

 

by 

 

 

Theodore Wonpeum Kee 

 

 

 

 

 

2017 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by 

Theodore Wonpeum Kee 

2017



 

 ii

ABSTRACT OF THE THESIS 

 

Optimization of Acute Lymphoblastic Leukemia  

Patient Regimens Using a Phenotypic Personalized Medicine  

Digital Health Platform 

 

by 

 

Theodore Wonpeum Kee 

 

Master of Science in Bioengineering 

University of California, Los Angeles, 2017 

Professor Dean Ho, Chair 

 

Acute lymphoblastic leukemia (ALL) is a blood cancer that is characterized by overproduction 

of lymphoblasts in the bone marrow. Treatment for ALL typically uses combination 

chemotherapy. However, a major challenge for combination therapy is the inability to pinpoint 

drug doses that are optimized for each patient. To address this challenge, we have developed a 

powerful digital health technology platform based on the field of Phenotypic Personalized 

Medicine (PPM). PPM identifies patient-specific maps that correlate drug inputs with phenotypic 

outputs parabolically. In a disease mechanism-independent fashion, PPM was able to determine 

individualized drug ratios/dosages for 2 ALL patients in this study using a retrospective 

optimization approach. This optimization process demonstrated that dynamically adjusted dosing 
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of combination chemotherapy can enhance treatment outcomes while also substantially reducing 

the amount of chemotherapy that is required. This may lead to shortened maintenance therapy 

regimens that will in turn, reduce the onset of complications following remission. 
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CHAPTER 1:  

OPTIMIZING COMBINATION THERAPY FOR ACUTE 

LYMPHOBLASTIC LEUKEMIA USING A PHENOTYPIC 

PERSONALIZED MEDICINE DIGITAL HEALTH 

PLATFORM: RETROSPECTIVE OPTIMIZATION 

INDIVIDUALIZES PATIENT REGIMENS TO 

MAXIMIZE EFFICACY AND SAFETY 

 

1.1 Introduction 

Treatment for ALL typically consists of multiple stages including remission induction, 

intensification, and maintenance therapy. [1-3] While the drugs and their corresponding utilized 

during these stages are well established, the protocols for administering these therapies are often 

based off of maximum tolerated dosage (MTD) from initial dose escalation studies. In addition, 

disease mechanism or drug targets have been used to select therapies for patient care. [4-8] These 

approaches, while historically important, do not pinpoint drug-dose ratios, implicitly precluding 
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the personalization of care and optimization of treatment outcomes. In fact, intensification of 

therapy, when not optimally administered, may increase the risk of relapse in pediatric ALL. [3] 

This is a challenge that has confronted nearly every discipline of medicine, ranging from 

oncology to infectious diseases and cardiovascular medicine, among many others. Previous 

studies have identified promising approaches towards multi-drug optimization, both in the 

context of drug development as well as individualizing patient treatment. However, these 

approaches often utilize drug pairing to predict the efficacy of multi-drug combinations, which 

precludes absolute and dynamic optimization in patients. To overcome this major barrier, we 

have developed a powerful digital health technology platform based on the field of Phenotypic 

Personalized Medicine (PPM). [9-15] PPM effectively calibrates the patient response to therapy 

to construct a parabolic map that is unique to each patient. PPM does not require algorithms, 

predictive modeling, or machine learning, and is capable of dynamically optimizing therapy for 

the entire duration of care. This is particularly important, since drug synergism and antagonism is 

dose-dependent, and can vary within the same patient over the course of treatment within the 

same patient. [16] This study examined the administration of 4-drug maintenance therapy 

regimens (dexamethasone, vincristine, mercaptopurine (6MP), and methotrexate) in 2 patients. 

The doses of these drugs served as the inputs while maintaining absolute neutrophil count (ANC) 

and platelet counts within target ranges served as the outputs for optimization. We utilized PPM 

to construct personalized parabolic response maps for each patient to retrospectively optimize 

their regimens to successfully eliminate ANC and platelet deviations outside of their respective 

target ranges. PPM is not limited by the number of drugs that can be optimized. Therefore, both 

4-drug and 2-drug (6MP and methotrexate) optimization regimens were identified as a 

demonstration of disease biology and mechanism-independent multi-drug optimization. In 
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addition, patient-specific drug response maps were constructed, revealing individualized drug 

synergism/antagonism that was dose-dependent. Finally, analysis of the contribution of drug-

drug interaction terms (ITA) and second-order (SOT) terms was conducted in parallel with 

clinical and PPM-optimized dosing regimens, revealing the importance of maintaining threshold 

ITA levels to eliminate target ANC and platelet count deviations. These clinical data-backed 

readouts provide actionable guidance to maintain patient-specific and dynamically optimized 

combination therapy regimens for the entire duration of treatment. As such, PPM represents a 

powerful and broadly applicable digital health technology platform to optimize treatment for a 

broad array of disorders. 

 

Figure 1-1. Schematic of Phenotypic Personalized Medicine (PPM). The primary components of 

PPM are the inputs, comprised of the therapies, and the outputs, which are quantifiable indicators 

of treatment efficacy and safety.  
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1.2 Materials and Methods 

1.2.1 Acute Lymphoblastic Leukemia Patient Data 

This study was conducted under approved Institutional Review Board (IRB) protocol number 

IRB#16-000723. Data obtained included drug dosages for dexamethasone, mercaptopurine, 

vincristine, and methotrexate and corresponding time points (e.g. Days 28, 57, 85, 113, 148, 176, 

211, 242, 270, 302, 330). Absolute neutrophil count (ANC) and platelet counts corresponding to 

the respective drug dosing dates were also identified for optimization. 

 

1.2.2 Phenotypic Personalized Medicine (PPM)-Based Optimization 

To identify PPM-optimized chemotherapy dosages, a patient-specific 2nd order polynomial map was 

constructed from linear regression using variables including drug dosages, absolute neutrophil counts 

(ANC), and platelet counts. In addition, individualized second order effects and drug-drug interaction 

terms were assessed in correspondence with measured and PPM-optimized ANC and platelet values. 

PPM 2-D and 3-D drug interaction maps were plotted using MATLAB R2014a (MathWorks, Inc.) with a 

matrix input of drug concentration values correlated to platelet counts or ANC. [16] 

 

1.3 Results and Discussion 

1.3.1 Clinical Optimization of Combination Therapy Using Mechanism-

Independent Digital Health Technology 

 The implementation of PPM is based on the foundation that a patient’s phenotypic 

response (output) to drug treatment (input) can be represented by parabolic response surface. 

Phenotypic responses can include tumor burden, bacterial/viral load, international normalized 

ratio (INR), serum toxicity indicators (e.g. myelosuppression, serum alanine aminotransferase, 
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etc.), or a combination of these readouts. This parabolic response map is defined by patient-

specific constants in a quadratic expression (Figure 1-1). [16] This holds true for all patients and 

all indications. The significance of the parabolic response surface is based on its ability to 

identify exactly where the best dosing parameters exist at any given time during treatment. PPM 

allows this response surface to be continually optimized during care as regimen changes occur, 

or the patient undergoes additional procedures. Furthermore, this phenotypic map implicitly 

incorporates mechanistic components that drive treatment outcomes, such as disease biology, 

genetics, proteomics, and pharmacokinetics. Therefore, explicit knowledge pertaining to these 

elements is not required to mediate continuously optimization.  

 

1.3.2 Dynamic Optimization of Personalized Combination Therapy (4-

drug) 

Conventional maintenance therapy involves the modulation of 6MP and methotrexate in 

order to maintain ANC and platelet levels within target levels. Titration is often used as the 

primary means of adjusting the doses of these two therapies. However, clinical titration has 

shown that the proper dosing of even one drug can be challenging. [16] Therefore, due to barriers 

that prevent rational dosing of multiple drugs, let alone optimized multi-drug administration, a 

technology platform such as PPM may be particularly important for improving response rates in 

oncologic indications.  

Since PPM is not limited by the number of drugs in a regimen, we conducted a 4-drug 

optimization assessment for 2 patients. For patient 1, clinical chemotherapy administration 

resulted in substantial deviation from the ANC target range on day 85, and deviations on days 

242 and 302, and platelet levels that remained within the target range. In contrast, PPM-
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optimized administration of dexamethasone, 6MP, vincristine, and dexamethasone eliminated the 

ANC deviations while also maintaining normal platelet levels (Fig. 1-2). In comparing the 

clinical and PPM-optimized administration of each drug PPM optimization resulted in 

substantially lower dexamethasone administration compared to clinical dosing. In fact, PPM-

optimized dexamethasone and 6MP dosages were approximately 4-fold lower than the clinically 

administered dosages. Initial vincristine dosing was higher for the PPM-optimized regimen 

compared to clinical dosing. However, PPM optimization identified substantially lower dosages 

of vincristine compared to clinical administration starting on day 211 (with the exception of day 

270) through the end of treatment that eliminated ANC deviations. PPM suggested 6MP dosing 

resulted in sharply lower drug dosages compared to clinical administration starting on day 148, 

while PPM-guided methotrexate dosing was sharply lower than clinical dosing parameters on 

day 302.  

In patient 2, clinical chemotherapy resulted in a substantial deviation from the ANC 

target range that spanned from day 148 to 176 while platelet levels remained within the target 

range during the course of treatment. To eliminate this ANC deviation, PPM optimization 

resulted in a steady decrease in dexamethasone dosing over time compared to clinical 

administration that alternated between dosage increases and decreases. PPM-suggested 

vincristine dosages alternated between being higher and lower than clinically-prescribed 

dosages. However, PPM-optimized 6MP and methotrexate dosages were notably lower than the 

clinically administered dosages for virtually the entire duration of care (Fig. 1-3). 

While 4-drug modulation is currently not utilized for ALL maintenance therapy, this 

optimization study demonstrated that PPM is uniquely capable of dynamically personalizing the 
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administration of all 4 drugs to optimize dosing to prevent ANC deviations for the entire 

duration of care. 

 

 

 

Figure 1-2. Patient 1’s Phenotypic Personalized Medicine (PPM)-optimized and clinically 

administered 4-drug regimens. (A) Patient 1 comparison of PPM-optimized and clinical absolute 

neutrophil count. (B) Patient 1 comparison of PPM-optimized and clinical platelet levels. (C) 

Patient 1 comparison of PPM-optimized and clinical dexamethasone dosing regimen. (D) Patient 
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1 comparison of PPM-optimized and clinical vincristine regimen. (E) Patient 1 comparison of 

PPM-optimized and clinical 6MP regimen. (F) Patient 1 comparison of PPM-optimized and 

clinical methotrexate regimen. 

 

Figure 1-3. Patient 2’s Phenotypic Personalized Medicine (PPM)-optimized and clinically 

administered 4-drug regimens. (A) Patient 2 comparison of PPM-optimized and clinical absolute 

neutrophil count. (B) Patient 2 comparison of PPM-optimized and clinical platelet levels. (C) 

Patient 2 comparison of PPM-optimized and clinical dexamethasone dosing regimen. (D) Patient 
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2 comparison of PPM-optimized and clinical vincristine regimen. (E) Patient 2 comparison of 

PPM-optimized and clinical 6MP regimen. (F) Patient 2 comparison of PPM-optimized and 

clinical methotrexate regimen. 

 

1.3.3 Dynamic Optimization of Personalized Combination Therapy (2-

drug) 

A 2-drug PPM optimization study to modulate 6MP and methotrexate was also 

performed. In patient 1, the elimination of ANC deviations was achieved by 6MP doses, that 

with the exception of days 113 and 242 where PPM recommended a higher dose as well as a 

comparable dose at day 270, were notably lower than the clinically-administered dosages. PPM-

determined methotrexate dosages were also notable lower for a vast majority of the treatment 

period (Fig. 1-4). 

 In patient 2, the disparity in dosing recommendations were more apparent between the 

PPM-determined and clinically administered protocols. For both 6MP and methotrexate, the 

PPM-optimized dosages were lower than the clinically administered dose for virtually the entire 

duration of care. In some cases, the PPM-determined dose was approximately 40% lower 

compared to the clinical dose (Fig. 1-4). 
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Figure 1-4. Phenotypic Personalized Medicine (PPM)-optimized and clinically administered 2-

drug regimens. (A) Patient 1 comparison of PPM-optimized and clinical absolute neutrophil 
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count. (B) Patient 1 comparison of PPM-optimized and clinical platelet levels. (C) Patient 1 

comparison of PPM-optimized and clinical 6MP dosing regimen. (D) Patient 1 comparison of 

PPM-optimized and clinical methotrexate regimen. (E) Patient 2 comparison of PPM-optimized 

and clinical absolute neutrophil count. (F) Patient 2 comparison of PPM-optimized and clinical 

platelet levels. (G) Patient 2 comparison of PPM-optimized and clinical 6MP dosing regimen. 

(H) Patient 2 comparison of PPM-optimized and clinical methotrexate regimen.  

 

1.3.4 Drug Interaction Mapping 

Drug interaction mapping was conducted to visually correlated drug dosing with target 

platelet and ANC levels. The substantial variations in drug interactions and resulting outputs 

between the patients are clear indicators of the need to personalize and continuously optimize 

treatment. For both patients, 6MP and methotrexate were correlated with ANC output, with the 

maps clearly showing a clear difference in drug interaction behavior between patients 1 and 2 

(Figs. 1-5). This was a demonstration of the importance of personalizing care in ALL. For patient 

1, a broad range of 6MP doses was capable of maintaining the patient within the ANC target 

range. A narrower range of methotrexate doses resided within the ANC target (Fig. 5A). The 

methotrexate dosing spectrum exhibited a clear dose-dependent fluctuation from the ANC target 

range at the lower and higher dosing domains, further demonstrating the importance of 

pinpointing the right patient-specific doses. For patient 2, a narrow range of doses for both 6MP 

and methotrexate were required to maintain the ANC target range (Fig. 1-5).  
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Figure 1-5. Phenotypic mapping correlating 6MP-methotrexate interactions with absolute 

neutrophil counts. (A) Patient 1 mapping is shown. (B) Patient 2 mapping is shown. 

 

1.3.5 Drug Interaction Analysis  

 Quantitative drug interaction analysis was conducted to assess the contribution of first 

order terms (FOT), drug-drug interaction terms (ITA), and second order terms (SOT) towards 

patient treatment outcomes. Patient 1 interaction analysis was plotted for clinician-guided 

therapy (Fig. 1-6) and PPM-optimized therapy (Fig. 1-7). When ANC levels deviated from the 

target range substantially on day 85 (Fig. 1-6), a noticeable reduction was observed in the drug 

interaction term (ITA), demonstrating the importance of maintaining the ITA at a threshold that 

maintains target ANC levels (Fig. 1-7) 
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Figure 1-6. ITA, FOT, and SOT contributions towards clinically-observed treatment outcomes 

for Patient 1. 
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Figure 1-7. ITA, FOT, and SOT contributions towards PPM-optimized treatment outcomes for 

Patient 1. 

 

For patient 2, a reduction in ITA from days 148-176 was observed that correlated with a 

substantial deviation from the target ANC range under clinician-guided therapy (Fig. 1-8). This 

deviation was notably absent in PPM-guided interaction mapping (Fig. 1-9). This further 

indicates the importance of maintaining a threshold ITA value in order to maintain target ANC 

levels. 
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Figure 1-8. ITA, FOT, and SOT contributions towards clinically-observed treatment outcomes 

for Patient 2. 
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Figure 1-9. ITA, FOT, and SOT contributions towards PPM-optimized treatment outcomes are 

shown for Patient 2. 

 

1.3.6 The Impact of Parabolic Medicine on Optimized Drug 

Development and Personalized Therapy  

The clinical management of combination therapy is challenging, given the infinite dosing 

space in which patient-specific drug administration parameters reside. This further confounds the 

identification of these parameters since patient physiology changes over time as new drug 

regimens are introduced to address co-morbidities, or additional procedures are administered 
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(e.g. bone marrow transplants). These factors have made the optimization of patient-specific 

combination therapy, at a specific timepoint, or during the entire course of care, virtually 

impossible.  

 The inability, until now, to pinpoint drug-dose ratios in combination therapy is a problem 

that spans both drug development and individualized care. In the context of drug development, 

this is due to the fact that optimized dosing parameters can also exist on a universal, or 

population-based scale. This makes population-optimized combination therapy possible. 

However, current drug development strategies preclude the design of population-optimized 

therapy. More specifically, current combination therapy strategies use high throughput screening 

to identify lead compounds. These compounds are then evaluated further to assess efficacy and 

safety. Designing combination therapies or monotherapies subsequently involves dose escalation 

towards maximum tolerated dose (MTD)-based additivity. In addition, drug synergy-based 

prediction serves as a conventional strategy to further enhance treatment outcomes. However, the 

study reported here as well as others based on PPM demonstrate that pinpointing drug dose can 

have a profound impact on drug synergy and antagonism, and that dosing outside of optimal 

ranges can render combinations that were predicted to be synergistic, ineffective. At the same 

time, less effective or ineffective combinations can be rendered maximally efficacious through 

drug-dose optimization. Dose escalation and prediction-based design, therefore implicitly 

preclude the optimization of drug-dose ratios and identification of the best therapeutic 

formulations. This is a major driver of the exorbitant costs and high failure rates of drug 

development. Therefore, PPM demonstrates that drug-dose profoundly impacts drug selection, 

and that both must be optimized simultaneously to optimize therapeutic efficacy and safety in the 

clinic. 
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 As this study and others demonstrate, PPM eliminates the use of brute force to assess 

both the dosing and drug selection space. By substantially reducing bias during the initial drug 

development process, we can interrogate the entire drug-dose and selection space to rapidly 

optimize both attributes that will mediate maximal efficacy and safety. To overcome the burden 

of sub-optimal dosing and combinatorial drug selection, PPM re-optimizes at each stage of 

development, where in vitro optimization refines the list of lead drug combination candidates. 

Drug-dose ratios and drug selection are re-optimized at the preclinical stages, and as this study 

shows, in-patient optimization can be realized as well. In lieu of brute force screening, parabolic 

medicine substantially accelerates these processes. Population and personalized optimization 

collectively provide powerful information into drug-dose ratios that enable dramatic increases in 

efficacy and safety. The implicit validation of these combinations during optimization and re-

optimization has already made major strides towards improving clinical outcomes over 

conventional standards with dramatically accelerated developmental timelines. 

 In the context of personalizing patient regimens, conventional approaches have included 

dosing algorithms, pharmacogenomics, pharmacokinetic modeling, and other strategies. [17-18] 

However, due to substantial changes in patient physiology that are inevitable encountered during 

treatment from regimen changes (e.g. changes in drug dose, formulation from intravenous to oral 

administration, etc.) and other procedures (e.g. bone marrow transplant, etc.), dynamically 

optimized care that is not enabled by these aforementioned modalities is required. To overcome 

this challenge, PPM correlates patient response to therapy in a parabolic fashion that pinpoints, at 

all times, the best possible combination therapy regimen. PPM patient-specific dosing PPM is 

particularly effective at co-optimization of combination chemotherapy and simultaneous 

immunosuppression following bone marrow transplantation as it is not limited by the number of 
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drug inputs. This ability to calibrate optimized and patient-specific regimens makes PPM broadly 

applicable towards oncologic, infectious disease, cardiovascular, wound healing, neurological, 

and a broad spectrum of other indications. 

 

1.4 Conclusion 

Maintenance therapy for ALL administers standardized regimens of dexamethasone, 

vincristine, 6MP, and methotrexate in an effort to maintain treatment efficacy as well as target 

ANC and platelet levels. Using conventional titration, ANC levels often fluctuate outside of the 

target range, and can result in treatment complications. Furthermore, eliminating these 

fluctuations can often be achieved using drug dosages that are substantially lower than those 

given in conventional clinical practice. This opens the doors to possibly reducing acute or long-

term side effects due to the duration of maintenance therapy. Towards this objective, this study 

used PPM to retrospectively optimize combination therapy regimens by modulating all 4 drugs, 

or 6MP and methotrexate (clinical practice). While this was achieved using clinical data that had 

already been collected, prospective PPM can achieve profoundly improved patient outcomes 

based on the acquisition of a modest level of increased serum analysis compared to conventional 

clinical protocols. Therefore, when the prospective clinical procedure is readily adapted to PPM-

based treatment optimization, obtaining the right data will redefine the way that patients are 

treated, forging a path towards substantially improving durable response rates. 
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