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ABSTRACT OF THE DISSERTATION 

 

Low Energy Alkali Ion Scattering From Au Nanoclusters on Oxide Substrates 
 

by 

Christopher Ross Salvo 

Doctor of Philosophy, Graduate Program in Physics 
University of California, Riverside June 2018 

Dr. Jory A. Yarmoff, Chairperson 
 
 

Surface science techniques are used to probe Au nanoclusters in an attempt to 

understand fundamental properties that are related to their unusually high catalytic 

activity. The main technique used is the neutralization probability of low energy alkali 

ion scattering. This is performed on Au nanoclusters supported on either TiO2(110) or 

SiO2.  

Au Nanoclusters are deposited onto TiO2(110) via buffer layer assisted growth in 

ultra-high vacuum, which is a novel process to grow clusters. A thin amorphous solid 

water buffer layer is condensed onto a TiO2(110) single crystal cooled to 100 K. Au 

atoms deposited onto this layer arrange themselves into nanoclusters. The sample is then 

annealed to 320 K to desorb the ASW and enable the clusters to soft-land onto the 

substrate. Time-of-flight low energy ion scattering, using Li+, Na+ and K+ projectiles, 

probes the materials during each step of the procedure to measure the surface 

composition and reveal the details of how the clusters form. The neutralization 

probability of Na+ ions singly scattered from the Au nanoclusters indicates that they 

increase in size after annealing and that the magnitude of the increase is a function of the 
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buffer layer thickness. The adsorption of a thin, incomplete water layer prior to Au 

deposition forms nanoclusters that are possibly even smaller than those produced by 

direct deposition onto the clean substrate. 

The neutralization of low energy Na+ and Li+ ions scattered from Au nanoclusters 

formed by deposition onto oxide surfaces decreases as the cluster size increases. An 

explanation for this behavior is provided, which is based on the notion that the atoms in 

the clusters are not uniformly charged, but that the edge atoms are positively charged 

while the center atoms are nearly neutral, as reported in the literature. This leads to 

upward pointing dipoles at the edge atoms that increase the neutralization probability of 

alkali ions scattered from those atoms. As the clusters increase in size, the number of 

edge atoms relative to the number of center atoms decreases, so that that the average 

neutralization also decreases. Calculations employing this model are compared to 

experimental data and indicate good agreement if the strength of the dipoles at the edge 

atoms are assumed to decrease with cluster size. This model also explains differences in 

the neutralization probabilities of scattered Na+ and Li+.  

Catalytically active Au nanoclusters on SiO2 are exposed to Br2 and then 

measured using 1.5 keV Na+ low energy ion scattering. It is found that Br2 adsorbs on the 

nanoclusters, but not on the substrate nor on bulk Au. These	 results	 show	 that	 the	

clusters	 are	 able	 to	 dissociate	 the	 Br2	 and	 then	 adsorb	 the	 individual	 Br	 atoms.	

Results	from	the	literature	indicate	that	the	catalytic	activity	of	nanoclusters	occurs	

at	the	edges	and	the	work	from	this	dissertation	confirms	that	the	edge	atoms	are	

positively	 charged.	 This	 leads	 to	 the	 conclusion	 that	 the	 outer	 shells	 of	 the	
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electronegative	Br	atoms	become	filled	so	that	they	ionically	bond	to	the	edge	atoms	

of	 the	clusters.	Furthermore,	Br2	 is	a	known	catalytic	poison	and	 this	work	shows	

how	 its	 adsorption	 blocks	 sites	 that	 would	 otherwise	 be	 involved	 in	 a	 surface	

chemical	reaction.		
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Chapter 1 Introduction 

1.1 Surface Science 

Surfaces are of scientific interest due to the different environment that surface 

atoms experience as compared to those in the bulk [1]. This leads to particular atomic 

structures and electronic states that only exist at the surface. At the beginning of 

fundamental surface science research, the most important discoveries involved relaxation, 

reconstruction, and surface states of single crystal materials. Relaxation and 

reconstruction are structural changes that occur for many surfaces due to the abrupt 

ending of the periodic crystal. Relaxation is a movement of the surface atoms from their 

bulk positions in a direction perpendicular to the surface plane, and it occurs generally 

with metal surfaces. Reconstructions are a change of the crystal structure at a surface that 

involves movement parallel to the surface plane and is more prevalent with 

semiconducting materials. One of the most important examples is Si(111), which has a 

reconstruction that produces a two-dimensional unit cell that is 7x7 times larger than the 

bulk unit cell [2]. Surface states are electronic states found on surfaces that do not exist in 

the bulk. For example, this occurs for topological insulator materials in which the surface 

is electrically conductive through two-dimensional surface states while the bulk material 

is an insulator [3].  

A large driving force behind the field of surface science is technological 

applications. Electronic materials and catalysis are two huge areas that rely on surface 

properties. Catalysis has applications in environmental remediation using photocatalysts 

[4] or supported metal nanoclusters [5]. Areas of importance to electronic materials 
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include etching, deposition and plasma processing in semiconductor device manufacture. 

Tribology, colloquially known as lubrication, has technological impact in many areas 

including space vessels and nanomechanical devices. Battery research is an area where 

lots of charge must be stored at a relatively high potential while taking up the smallest 

volume possible. One way to store charge is on the surface and there is a large surface 

area contained in a relatively small volume for nano-sized transition-metal oxides [6].  

It was with the award of the Nobel Prize in chemistry in 1932 to Irving Langmuir 

for his studies in surface chemistry that surface science was initially acknowledged on a 

grand stage. Langmuir may even be referred to as the father of surface science. In 

addition, Gerhard Ertl was awarded the Nobel Prize in Chemistry in 2007 for his studies 

of chemical processes on solid surfaces.  

Studies of surfaces differ from those of bulk materials largely because of the 

difference in number of atoms at a surface. For laboratory experiments investigating the 

bulk, there are commonly on the order of 1023 particles available, whereas roughly only 

1015 particles are present in a square centimeter of a surface, thereby requiring that 

surface techniques be highly precise.  

Surface science experiments are most often conducted in ultra-high vacuum 

(UHV) since the production of surfaces without contamination is vital. To keep surfaces 

free from contamination caused by molecular adsorption of background gasses, a vacuum 

of roughly 1x10-10 Torr is needed. At this pressure, it takes about 104 seconds (2.75 

hours) for each surface atom to interact with one gas molecule. Specialized techniques 

have been developed, however, to monitor surfaces near atmospheric pressure, such as 
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ambient pressure x-ray photoelectron spectroscopy (XPS) [7], which is useful for directly 

monitoring surface chemical reactions that are important in areas such as catalysis and 

environmental science.  

 When a sample is placed in an UHV chamber, it needs to be cleaned in situ to 

remove oxidation, water, hydrocarbons, and other contaminants to produce the natural 

surface structure. A common method to remove impurities is ion bombardment, also 

known as sputtering [8]. Inert noble gas atoms are ionized, accelerated to 500-1000 eV 

and targeted at the sample, which removes atoms from the surface through kinematic 

interactions. This technique has the side effects of disordering the near-surface region and 

imbedding some of the inert atoms in the sample. To restore the crystallinity of the 

surface, it is usually heated for a fixed time in UHV at a temperature that allows the 

atoms to move into their lowest energy configuration, which is referred to as annealing, 

which simultaneously desorbs the embedded insert atoms into the gas phase.  

Surface sensitive experimental techniques began to be developed during 

Langmuir’s time and have continued through today. These techniques allow for the 

elemental composition of surfaces to be ascertained, surface atomic structures to be 

determined, adsorbate-bonding strengths to be identified, and the general comprehension 

of what occurs at the surfaces of materials to be understood at the atomic level. In 

general, multiple techniques must be applied to a given system to generate such a full 

understanding.  

Most of these surface spectroscopies are indirect as they involve scattering of 

various particles from the surfaces, with an analysis of the data used to infer information 
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about the surface. A few such surface science techniques are low energy ion scattering 

(LEIS) which provides the elemental composition of the first few layers of the sample 

and can be used for surface structure analysis [9]. Auger electron spectroscopy (AES) 

provides elemental information of roughly the first 5-10 layers [10]. XPS gives chemical 

bonding information as well as elemental composition with a similar depth sensitivity 

[11]. Low energy electron diffraction (LEED) shows the symmetry of the two-

dimensional crystal structure of the surface in reciprocal space [12]. Temperature 

programmed desorption (TPD) provides adsorbate binding strengths and the products of 

surface chemical reactions [13]. Electron stimulated desorption (ESD) gives information 

about the binding strength of adsorbates and can also determine the bond direction [14].  

Vacuum is needed to conduct most of these spectroscopies, as they involve the collection 

of neutral or charged particles that would collide with atmospheric gasses.  

A huge advance in surface science occurred when scanning tunneling microscopy 

(STM) came to fruition. In STM, electrons quantum mechanically tunnel between the 

surface and a very sharp tip over distances shorter than the atomic spacings. The number 

of electrons that tunnel, i.e., the tunneling current, is related to the distance of the tip from 

electronic states in the surface. This makes it possible to produce three-dimensional 

images of surfaces on the atomic scale by scanning the tip across the surface while 

keeping the tunneling current constant. The images provide the density of filled or empty 

electronic states, which follow the atomic structure in many cases. STM was developed 

by Binnig and Rohrer [15], for which they were awarded the Nobel Prize in Physics in 

1986. This technique made the field of surface science more popular because it 
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effectively makes atoms visible, which directly plays into the human mentality of “seeing 

is believing”. STM and other scanning probe microscopies [16, 17] are fundamentally 

distinct from scattering methods, and are an important class of experimental tools used to 

investigate surfaces.  

 

1.2 Au Nanoclusters 

 Au nanoclusters supported on oxides have been known to be active catalysts for 

roughly the last 30 years [18]. They were initially observed to behave as catalysts by 

Haruta in an exploration for a means to oxidize H2 [18]. Au clusters ranging from a few 

to 1000s of atoms supported on oxide substrates catalyze reactions such as water splitting 

and CO oxidation with high activity [19-21]. Au nanoclusters on an oxide substrate have 

been reported to have catalytic rates that rival those of enzymes [22], contrary to the inert 

nature of bulk Au which does not easily oxidize and can maintain a shiny appearance in 

atmosphere.  

Because of the many imaginable applications of Au nanoclusters, a large amount 

of scientific research has ensued. Many variations of the original Au cluster-oxide 

system, for example Ag, Pt, Ir, Ru, and Rb supported on oxides such as TiO2, SiO2, MgO, 

and Al2O3, also exhibit catalytic activity [5, 22-24]. It has also been found that bimetallic 

clusters [25-27], metals on a substrate other than an oxide, such as graphene [28-30], and 

swapping the materials by growing oxide clusters on a metal substrate [31] can work as 

nanocatalysts. In addition, DNA can bond to Au nanoclusters for gene regulation [32], 
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Au nanoclusters can be used to detect dopamine in fluids [33], and nanoclusters have 

applications in optoelectronics and chemical sensors [34, 35]. 

There are many ways to prepare nanoclusters. They can be grown by physical 

vapor deposition (PVD) [36, 37], chemical vapor deposition (CVD) [38], size selected 

deposition from molecular beams [39], buffer layer assisted growth (BLAG) [40], 

through chemical synthesis [20, 38, 41, 42], lithography [43] or other methods. Chemical 

synthesis is performed in solution without a vacuum, lithography can be performed in a 

clean room, whereas the other methods require UHV.  

The surface science tools commonly used for catalysis studies are well applied to 

nanoclusters, and there has been a vast array of techniques used to study nanoclusters. 

For example, XPS was used to learn about the binding of Ag nanoclusters to a CeO2 

substrate [44]. AES measured the thickness of Au deposited on TiO2 [45]. LEIS 

determined the growth mode of Au on TiO2 [37]. TPD found that the binding strength of 

O on Au nanoclusters is stronger for smaller clusters [46]. Fourier-transform infrared 

spectroscopy (FTIR) found that the reason Cl poisons Pt nanoclusters is because it blocks 

the sites where the catalysis reactions would occur [47]. STM observed the average 

diameter of Au nanoclusters as a function of Au deposition [36, 48]. Atomic force 

microscopy (AFM) monitored the shapes of clusters when depositing multiple metals 

with different stoichiometries [49]. Aberration corrected-high resolution transmission 

electron microscopy (AC-HRTEM) made a measurement of the atomic structure of 

colloidal Au nanoclusters deposited on amorphous carbon. The image is taken before and 

after heating, finding that initially the same crystal structure exists in a cluster but with 
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multiple mirror planes and then after heating to 600° C it forms a (111) structure, 

however there is a lack of information as to which layer of the nanocluster is being 

observed [50]. Effectively the importance of this measurement is to monitor the edge of 

the cluster and not the center atoms, making a connection between the deactivation of 

nanoclusters when the cluster has been heated and a reduction in under coordinated 

atoms. Scanning electron microscopy (SEM) observed Au nanocluster size and 

placement when grown with electron beam lithography [43]. Density functional theory 

(DFT) determined the charge state of each atom in a Au nanocluster supported on TiO2 

[51]. Many of the techniques applied to the study of nanoclusters can be found in review 

articles [22, 23, 52, 53]. Overall, many different surface science techniques have been 

applied to nanoclusters, and they form a body of work that together generates an 

understanding of what is occurring at the atomic level.  

Despite all the research done to this point, however, the reason that small clusters 

are such efficient catalysts is not yet completely understood, although there have been 

many characteristics of the system that have been shown to influence the activity. The 

main characteristics discussed in the literature are quantum-size effects, substrate effects, 

low coordinated atoms, size and shape, and charge state [5, 54]. Some of these properties 

are correlated, such as quantum-size effects and the actual size of the cluster.  

Since the clusters are so small compared to bulk materials, their electrons do not 

create continuous bands, but instead form discrete levels that depend on the cluster size, 

which is referred to as a quantum size effect [55]. Scanning tunneling spectroscopy (STS) 

observed a band gap for specific cluster sizes and that the highest catalytic activity is 
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correlated with the presence of this band gap [56]. The band gap was interpreted to be an 

indicator of the presence of discrete levels and it was therefore concluded that the filled 

quantum levels are largely responsible for the catalytic activity of the nanoclusters and 

causes them to be negatively charged [56]. It was later found through infrared reflection 

adsorption spectroscopy, TPD [57, 58], and DFT [59] that these quantized levels are 

present for both small and large nanoclusters and, since the large nanoclusters are not 

nearly as catalytically active as the small clusters, this quantum size effect is likely 

unrelated to the catalytic activity.  

An optimal cluster diameter of 3.2 nm produces the highest catalytic activity for 

CO oxidation for Au nanoclusters supported on TiO2(110), thus indicating the importance 

of the size of the nanocluster [60]. It was later shown that Pd nanoclusters supported on 

SiO2 also oxidize CO, but optimization of the oxidation performance was correlated with 

facets of the nanocluster [61]. Although it was not specifically reported, this could be 

related to the low coordination of the edge atoms.  

The field is coming to a consensus that the catalytic reactions occur at the edges 

of the clusters, which is where the lowest coordinated atoms are located [50, 51, 62-64]. 

A confirmation of this idea involved monitoring the deactivation of nanoclusters with 

electron microscopy after they are annealed to remove the low coordination sites [50]. 

There are also theoretical papers that point to the catalytic activity occurring at edges of 

the nanocluster [51, 62]. It has also been reported using XPS that there is a synergetic 

effect between the substrate and the nanoclusters that is responsible for the activity, 

implying that the substrate is involved in the reaction at the edge of the nanocluster [63].  
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The charge of the nanocluster may also be related to the high catalytic activity of 

the nanoclusters. Although reports of negatively charged clusters dominated early 

nanocluster research [56, 65-68], it is becoming more agreed upon that they are positively 

charged, or at least contain positively charged atoms [51, 69-73]. Multiple DFT studies 

identify catalytic sites at the edge of the nanocluster and calculate that the edge atoms are 

positively charged, whereas the center atoms are near neutral [51, 74]. In addition, a 

calculation shows that positively charged individual Au atoms on TiO2 are catalytically 

active for CO oxidation [62], which agrees with the findings of an experimental paper 

that showed that single Au atoms on TiO2 are positively charged [70]. These findings 

imply that the charge of the edge atoms may be related to the catalytic activity [51].  

Despite all the research conducted to date, there still exists a need for consistent 

experimental and theoretical work to provide a full understanding of the catalytic 

mechanism for oxide supported metal nanoclusters. For example, the relationship 

between the charge of the nanocluster and the catalytic activity and how changing the 

substrate changes the catalytic performance of the clusters are still open questions.  

 

1.3  Electron Spectroscopy 

Electron spectroscopies are some of the most powerful surface analysis tools for a 

number of reasons. Low energy electrons (~10-3000 eV) only travel short distances in a 

material so that those that escape to be measured have emanated from the near-surface 

region [11]. The kinetic energy of emitted electrons can provide information about the 
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electronic states and chemical composition of a surface. Diffraction of electrons can be 

used to obtain information about the crystallinity and atomic structure of the surface [75].  

As electrons travel through a material, there is a probability that they will have an 

inelastic collision and lose some of their energy [76]. The average distance that an 

electron travels in a solid material without suffering an inelastic collision is known as the 

inelastic mean free path (IMFP), λ. The IMFP is plotted as a function of the electron 

kinetic energy in Fig. 1.1, which shows a minimum at around 40 eV, corresponding to an 

IMFP of ~0.5 nm. The shape of the curve is similar for most materials, but the actual 

values can vary with material.  

 

Figure 1.1 Inelastic mean free path (IMFP) of electrons traveling in a solid as a function 
of their kinetic energy [14].  
 

The probability that an electron suffers an inelastic collision is dependent 

exponentially on the distance traveled through the solid. The following equation is used 
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to determine the probability that an electron travels a distance d through a material and 

escapes without losing any energy due to inelastic collisions 

                                                 𝐼 𝑑 = 𝐼!𝑒!! !(!)      (1.1) 

where I is the final intensity of electrons and I0 is the initial electron intensity. For 

electron spectroscopy in surface science, this equation is commonly used to find the 

probability that an electron will escape from a material without any loss of energy. To get 

an idea of how surface sensitive electrons with roughly 40 eV of energy are, the distance 

d that an electron will travel with a 1% probability of not having an inelastic loss is about 

2.6 nm. In comparison, a 1000 eV electron traveling through the same material will travel 

an average distance of about 10 nm. Thus, this effect allows the majority of the observed 

electrons to emanate from the surface region of a material. 

There are many types of electron spectroscopies; only the ones used in this 

dissertation are introduced here. 

 

1.3.1  X-ray Photoelectron Spectroscopy 

X-ray photoelectron spectroscopy (XPS) [11] is arguably the most powerful and 

widely used electron spectroscopy technique. In 1981, Kai Siegbahn was awarded the 

Nobel Prize in Physics for developing x-ray photoelectron spectroscopy (XPS), which 

has also been referred to as electron spectroscopy for chemical analysis (ESCA). X-ray 

photons are incident on the sample, causing electrons to be ejected by the photoelectric 

effect. Core-level XPS is the most common type of XPS, which involves measuring the 
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electrons emitted from inner shell electronic states. These electrons have a kinetic energy 

(KE) of 

                                                     𝐾𝐸 = ℎ𝜈 − 𝐵𝐸 − 𝜙,     (1.2) 

where BE is binding energy of the electron, hν is the photon energy, and ϕ is the work 

function. The binding energy is the energy needed to excite the bound electron to the 

Fermi energy. Each element has a unique set of inner shell electrons with binding 

energies that allow XPS spectra to provide an elemental distribution of the sample.  

One powerful aspect of this technique is being able to observe a difference in the 

binding energy of any particular core level, which is directly related to the chemical 

environment of the atom(s). A classic example is the Si 2p peak. Pure Si has a 2p binding 

energy of 99.15 eV, while for SiO2 it is 103.4 eV [11]. In general, an electronegative 

atom attached to a metal atom shifts the binding energy up because it removes charge 

surrounding that atom thus causing the core electrons to be more strongly bound. Thus, a 

higher binding energy occurs when an oxide layer is formed.  

 The experimental setup for XPS involves an x-ray source and an electron energy 

analyzer. The three most common methods for x-ray generation are standard sources, 

monochromatic sources, and synchrotron radiation [11]. Standard sources are most 

commonly used as they are on the size scale of most other UHV equipment. They 

produce x-ray radiation by bombarding electrons into an anode with a specific metal 

coated on it. Monochromatic sources use a standard source but have an x-ray 

monochromator that filters out unwanted photon energies to produce a sharper, 

monochromatic x-ray beam. Synchrotrons are large scale particle accelerators that radiate 
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x-rays. These have the highest intensity of photons and the ability to adjust photon 

energy.  

To observe the electrons emitted from a sample after x-ray bombardment as a 

function of energy, either a cylindrical mirror analyzer (CMA) or a hemispherical 

electrostatic analyzer (ESA) are commonly used [11]. Both analyzers create a potential 

difference across the components in the analyzer that allow only a narrow range of 

energies through to the electron multiplier detector, while particles with different energies 

are deflected away. Figure 1.2 is a schematic diagram of a CMA where the curved dashed 

lines represent the path that charged particles with a narrow range of energies will follow 

from the sample (S) to the focus point (F) where the detector is located. This enables a 

spectrum of the number of photoelectrons as a function of energy to be collected by 

ramping the voltage on the elements in the CMA [76]. Similarly, in Fig. 1.3 there is a 

schematic diagram of a hemispherical ESA where the curved lines with arrows represent 

the direction that charged particles of a narrow energy range will take from the entrance 

of the analyzer to the detector, with that energy being dependent on the voltage difference 

between the inner and outer hemispheres [76].  
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Figure 1.2 The CMA is composed of two coaxial cylinders, one within the other, with a 
voltage difference across them as indicated. Note that the indicated electron gun is not 
needed for XPS but will be discussed in section 1.2.2. The figure is a two-dimensional 
cross section along an axis of symmetry.  
 
 

 

Figure 1.3 The hemispherical analyzer is composed of two half spheres, one within the 
other, with a difference of voltage across them as indicated. The figure is a two-
dimensional cross section along an axis of symmetry. 
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1.3.2  Auger Electron Spectroscopy 

Another technique used to identify the elemental composition of a sample’s 

surface is Auger electron spectroscopy (AES) [77-81]. The Auger process involves 4 

electrons: The incoming electron that induces the ejection of a second electron, the 

valence electron that fills the hole, and the Auger electron that is ejected from the valence 

band and measured. The incoming electron typically has a kinetic energy of 3-5 keV, 

which can directly or indirectly induce the removal of a core electron. Once there is a 

vacancy in a core orbital, an electron from a valence shell decays to fill that orbital. Due 

to conservation of energy, the difference in energy between the valence and core level 

must be accounted for by emission of either a photon or an Auger electron. The Auger 

electron will have a kinetic energy equal to the difference in valence and core electrons 

minus the ionization energy. It should be noted that Auger electrons can also show up in 

XPS spectra.  

Similar to XPS, Auger is surface sensitive and can identify elemental composition 

at the surface. The surface sensitivity of the technique again arises from the small IMFP 

of low energy electrons, as shown Fig. 1.1 and used in equation (1.1). The elemental 

composition is obtained because each element has a unique set of core level electrons that 

lead to a unique set of Auger lines.  

The experimental setup for AES commonly uses a CMA with a coaxial electron 

gun leading to normal incidence of the electron beam, as indicated in Fig. 1.2, but AES 

can be performed with an ESA, as well. In addition, the electron beam can be incident 

onto the sample at a grazing angle to provide improved surface sensitivity. The AES 
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setup allows for electrons to be incident on the sample and for the number of electrons 

emitted from the sample to be measured as a function of their kinetic energy. The 

detected signal of Auger electrons is not large, however, due to a background of 

secondary electrons. To make the AES peaks easier to observe above the background, the 

signal is often differentiated electronically by using a sine wave generator on the analyzer 

and a lock-in amplifier to collect the derivative of the current of scattered electrons. Thus, 

AES spectra normally display the derivative of the signal and the vertical axis of an AES 

spectrum has units of dN/dE.  

 

1.3.3  Low Energy Electron Diffraction 

 All solid materials fall into three categories: Single-crystalline, poly-crystalline, 

or amorphous [82]. Crystals show up in nature as a lowest energy state for the 

arrangement of a large number of atoms (on the scale of 1023). There are 14 possible 

arrangements in 3 dimensions, which are referred to as the Bravais lattices. Poly-

crystalline materials simply have multiple crystallites oriented in random directions 

within the sample. Amorphous materials have no repeating pattern in their structure.  

In the case of single crystals, a uniform structure is created that can be labeled by 

Miller indices that indicate directions with respect to the lattice [82]. The surfaces of 

single crystals are notated by the Miller index of the surface normal, followed by notation 

that specifies the symmetry of the surface reconstruction, if any exists. If the crystal has 

cubic symmetry, then the (100) face will be square, the (110) will be rectangular, and the 

(111) face will be have three-fold symmetry.  
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 LEED can be used to observe the symmetry of crystalline surfaces in UHV [75]. 

The physics behind this technique comes from the wave nature of electrons, as given by  

                                                        (1.3) 

where λ is the wavelength, h is Planck’s constant, m is the mass of the particle, and v is 

its velocity. For electrons, the wavelength as a function of energy (E, given in eV) is 

 

                                                      𝜆 = !"#Å!!"
!

.     (1.4) 

For 100 eV electrons, the wavelength is 1.2 Å, which corresponds roughly to the atomic 

spacings in most materials. This allows scattered electrons to interfere with each other 

and create spatial electron diffraction coherencies. Similar to the other electron 

spectroscopies, the IMFP limits the electrons to those that emanate from the near-surface 

region to exit the material and be observed.  

 The experimental set up involves an electron gun and some sort of electron-

fluorescent screen or imaging detector that is large enough to capture the spatial electron 

coherencies. Because this is a diffraction technique, LEED patterns consist of spots at 

certain angles in reciprocal space. A LEED pattern can be visually analyzed to obtain the 

symmetry and orientation of the crystal surface. In addition, quantitative measurements 

of the spot intensity vs. electron energy, called LEED I-V curves, can be used to 

quantitatively obtain the detailed surface atomic structure to high accuracy by 

comparison to calculations for particular structures [75].  

 

λ =
h
mv
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1.4  Ion Scattering Spectroscopy 

 There are three main types of ion scattering spectroscopies in which ions scatter 

from a target and their kinetic energy and/or angular distribution is measured. These 

types of ion spectroscopies are categorized by the kinetic energy of the incoming particle 

into the low (LEIS) [83], medium [84] and high [85] energy regimes. Low energy is 

roughly defined to be in the ~1 keV range, medium energy is in the ~10-100 keV range 

and high energy is ~1 MeV. Rutherford backscattering spectroscopy (RBS) is also 

conducted with use of high-energy ion beams [85]. A further description of low energy 

alkali ion scattering is provided below, as that is the particular technique used in this 

dissertation. 

 When a projectile is incident onto a sample, there are a few possible outcomes [9]. 

The primary one of interest for LEIS is when the projectile elastically scatters from a 

single surface atom. During the scattering process, the surface atom with which it collides 

will recoil, sometimes leaving the sample, therefore disturbing the surface. For this 

reason, ion scattering is a destructive process. It is also possible that the projectile 

undergo multiple collisions with atoms in the solid and either scatter or embed itself in 

the material. The scattered projectile can also exchange charge with the surface and 

become neutralized or form a negative ion during the scattering event. The scattering 

process can also induce excitations in the sample that lead to electron or photon emission.  
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1.4.1  Binary Collision Approximation 

The projectile in LEIS is assumed to interact with only one target atom at a time, 

which is referred to as the binary collision approximation (BCA) [9]. In addition, these 

interactions are primarily elastic which allows for the use of classic mechanics to treat 

each individual collision. Conservation of energy and momentum is used to derive the 

following equation that indicates the kinetic of a projectile after scattering from a given 

target atom,  

        𝐸! = 𝐸!
!"#!± !! !!

!
!!"#! !

!!!! !!

!

                        (1.5) 

where E0 is the initial energy of the projectile, E1 is the final energy of the projectile, mp 

is the mass of the projectile, mt is the mass of the target, and θ is the scattering angle. A 

more in-depth derivation of this equation and more information related to ion scattering 

can be found in Gann’s dissertation [86]. 

 When a projectile undergoes just one collision and is then detected, it is referred 

to as single scattering, which generates a single scattering peak (SSP) in the energy 

spectrum. Since the energy of the scattered particle is a function of the ratio of the target 

to the projectile mass, the elemental composition of the surface can be determined from 

analysis of the SSPs in a LEIS energy spectrum.  

A projectile can also undergo a series of scattering events and then escape the 

sample and be detected. There are many such scenarios that can take place which causes 

multiply scattered particles to have a wide range of energies. In addition, inelastic 

interactions, such as plasmon excitation, reduce the final energy of the scattered particles 
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[83], but those are typically on the order of 100-200 eV and can be ignored for many 

analyses.  

Low energy ion scattering (LEIS) is an extremely surface sensitive technique that 

probes the top few layers of the surface, the specifics of which depend on the surface 

structure of the material and geometry of the ion scattering setup. The reason that ions 

only interact with the top layer(s) is because of shadowing and blocking [87]. Shadowing 

occurs when the upper few layer atoms are physically in the way of the projectile 

reaching deeper layers, analogous to objects creating shadows in light. Blocking occurs 

when a projectile backscatters from an atom below the outermost surface layer and then 

interacts with an atom closer to the surface, thereby being unable to reach the detector. 

Because of shadowing and blocking, a detailed analysis of the angular distribution of 

scattered ions can be used to determine the surface atomic structure [88].  

 

1.4.2  Ion Neutralization  

 There are two primary mechanism responsible for ion neutralization during LEIS, 

Auger neutralization (AN) and resonant charge transfer (RCT). Auger neutralization 

occurs with projectiles that have a large ionization potential which lies below the surface 

conduction band, such as noble gas ions [10]. AN is a generally irreversible process that 

leads to extreme surface sensitivity when using a charged particle analyzer. In contrast, 

RCT occurs for elements with low ionization potentials (such as alkalis or halogens). 

Since alkali ions are used throughout this dissertation, a further explanation of RCT is 

provided.   
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Figure 1.4 is used to graphically describe what occurs electronically when a low 

energy alkali ion scatters from a metal. The horizontal axis is the distance from the 

surface and the vertical axis is energy. The metal target has a work function ϕ defined as 

the amount of energy needed to excite an electron from the top of the Fermi level to the 

vacuum level.  

When the projectile is far from the sample, its ionization energy is below the 

Fermi level of most metals and the vacant s level is sharp, as indicated in Fig. 1.4. As the 

projectile approaches the sample, its s level shifts up in energy because it sees its image 

charge and broadens due to hybridization with other levels in the surface, bringing it into 

resonance with bands in the metal [89].  

As shown in Fig. 1.4, when an alkali projectile is sufficiently close to the metal 

surface, electrons will quantum mechanically tunnel between the vacant ionization level 

and the surface bands. The scattering event occurs on a shorter time scale than the 

tunneling of the electrons, causing the neutralization process to be non-adiabatic. This 

means an equilibrium state of the level is not reached during the scattering process so that 

the charge distribution of the scattered projectiles is frozen in close to the surface. If the 

process were to occur adiabatically, which would be in the limit of low velocity, 

equilibrium would be maintained along the entire trajectory and the level would be 100% 

filled after scattering. Note that for medium and high energy ion scattering, the velocity is 

so fast that no charge is exchanged and the scattered particles retain their initial charge 

state.  
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The freezing distance is considered to be the point at which the overlap of the 

filled states and the broadened and shifted ionization level match what is measured 

experimentally as the neutral fraction (NF). The probability that tunneling occurs is, 

however, actually a decaying exponential function of the distance between the projectile 

and the target [90], so that there is not really a fixed freezing distance. Thus, from a very 

simple point of view, the effective freezing distance can be considered the distance of the 

projectile above the scattering site at which the electrons can no longer tunnel. Since the 

charge transfer is non-adiabatic, the charge state is frozen in along the exit trajectory at 

this point. This distance is commonly on the scale of a few Angstroms and is graphically 

represented in Fig. 1.4 as the distance between the black curve and the surface of the 

metal. Once electrons begin to tunnel in and out of the level, memory of the previous 

charge state of the projectile is lost [91]. Thus, incoming neutral atoms or ions will have 

the same charge distribution after scattering. Further details of these quantum mechanical 

interactions are provided in the calculations of Brako and Newns as well as those of 

Nordlander and Tully [90, 92].  
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Figure 1.4 RCT model represented graphically.  
  

   

Figure 1.4 shows that the NF depends directly on the ϕ at the freezing distance. If 

the ϕ gets larger, then the NF goes down and vice versa. The local electrostatic potential 

(LEP) at the freezing distance above the scattering site, which is sometimes referred to as 

the local work function, is what actually determines the NF when the potential is 

inhomogeneous.  
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1.4.3 LEIS Experimental Setup 

 To collect charged and neutral particles with equal sensitivity as a function of 

energy, a time-of-flight (TOF) setup is used for LEIS. As the name implies, the flight 

time of the particle is measured, which is related to the energy of the particle.  

The ion beam is generated by a thermo-ionic source (Kimball Physics). The ion 

gun contains two sets of deflection plates perpendicular to each other and a 1 mm 

diameter aperture in front of the plates. Voltage pulses are applied to the plates to raster 

the beam in a square pattern. The geometry is such that one side of the square goes 

through the aperture during each cycle, thereby generating a pulse of ions. This means 

that in the time it takes the pulser to go from -200 to +200 V (one of the sides of the 

square), the beam briefly passes across the aperture and ions are emitted. A graphical 

depiction of this is shown in Liu’s dissertation [93]. The pulser is operated between 40 

and 80 kHz, providing a period of 25 to 12.5 µs. The pulse width of the ion beam is 

typically on the order of 50-100 ns.  

This pulse width is much smaller than the projectile travel time, so that all the 

projectiles in a given pulse can be considered as reaching the target at effectively the 

same time, which is defined as time zero. The recorded flight time of a given particle is 

arbitrary, however, as the signal from the pulser does not necessarily correlate with the 

pulse of ions. To determine the actual time zero and produce spectra with accurate flight 

times, an electron or photon peak in the spectrum can be used or a calculation of the 

flight time for a given feature can be made if the TOF leg length is known.  
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After the particles scatter from the sample, they travel down the TOF tube and are 

detected by a triple microchannel plate (MCP) array, which is an 18 mm diameter 

electron multiplier, with the entrance grounded. One advantage of these detectors is that 

they are not sensitive to the charge of the particle, although they are sensitive to the 

energy of the particle, and begin to lose sensitivity as the scattered energies fall below 

about 1 keV [94, 95].  

The arrival times are histogrammed by a TDC (Stanford). The flight time is 

measured by sending a start pulse when a particle is detected and a stop pulse from the 

pulsing electronics that correlates with the next pulse of the ion gun. This is in reverse 

order to not miss any counts because the TDC creates a “dead” period directly following 

the flight time measurement of a detected particle. The beam current is low enough and 

the efficiency of ion scattering is such that a particle is detected roughly once every 10 

cycles so that there is sufficient time for the electronics to recover before the next 

scattered projectile arrives. Note that this causes the raw data to be in units of the period 

minus the flight time, but the data is always corrected before plotting a TOF spectrum.  

A set of deflection plates mounted in the TOF leg are used to differentiate 

between charged and neutral particles. When both plates are grounded, all of the scattered 

particles get through and are detected, generating the total yield. By placing a large 

enough voltage across the plates, however, causes the charged particles to be deflected so 

that only neutral particles are detected, generating the neutral yield. These plates are 

switched on and off once per minute while simultaneously collecting total and neutral 

spectra. This compensates for beam current drifts over long periods of times.  
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Since single scattering generates a SSP at a kinetic energy as calculated by 

equation (6). An example is shown in Fig. 1.5 for Na+ scattered from Au nanoclusters at 

135°, which displays the SSP for Na scattered from Au along with a small multiple 

scattering background. In this figure, the number of particles detected are on the y-axis 

and the energy of those particles is on the x-axis. Although the spectrum is collected as a 

function of time, the axis is converted into energy using the known the distance that the 

particle travels through the TOF leg.  Although the sample contains three elements, Au, 

Ti, and O, the backscattering geometry only allows Na to singly scattered from Au to be 

detected. This is because Na is more massive than Ti or O and thus has insufficient 

energy to be detected by the MCP after backscattering at this angle [9].  
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Figure 1.5 A TOF energy spectrum for Na+ scattered from 0.5 ML of Au on TiO2 at a 
135° scattering angle.   
 

1.5 Outline of the Dissertation 

This original work in the field of nanoclusters attempts to understand the physical 

properties of Au metal nanoclusters that act as catalysts. This is done using a novel form 

of LEIS where the charge of the scattered particles is analyzed along with their energies, 

as explained in section 1.4. From the experimental data, information about the LEP 

around the nanocluster is determined in a way that other experimental techniques are not 
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able to provide. For example, scanning probe techniques such as STS and STM do not 

have the lateral resolution to distinguish between atoms in a cluster. Although differences 

in the LEP has seen at the center and edge of certain nanostructures using Kelvin probe 

force microscopy (KPFM) [96], its spatial resolution is even larger than that of STM 

which limits its ability to probe individual atoms. In addition, these scanning probe 

techniques do not have the elemental resolution of LEIS.  

The work done in this dissertation is fundamental research about the physics of 

nanoclusters. Thus, no actual chemical activity measurements are performed. The 

research largely consists of using alkali LEIS spectra and neutralization probabilities to 

explore various aspects of the nanoclusters. Au nanoclusters are grown by PVD and 

BLAG on either TiO2 or SiO2. The growth mode for all of these systems is Volmer-

Webber, which means that the deposited Au spontaneously forms nanoclusters [36].  

The neutralization probability of low energy alkali ion scattering is used to probe 

the deposition of nanoclusters onto a solid surface via buffer layer assisted growth 

(BLAG) in Chapter 2. A thin amorphous solid water (ASW) buffer layer is grown on a 

TiO2(110) single crystal cooled to 100 K. Au atoms deposited onto this layer arrange 

themselves into nanoclusters. The sample is then annealed to 320 K to desorb the ASW 

and enable the clusters to soft-land onto the substrate. Time-of-flight LEIS, using Li+, 

Na+ and K+ projectiles, probes the materials during each step of the BLAG process to 

measure the surface composition and reveal the details of how the clusters form. The 

neutralization probability of Na+ ions singly scattered from the Au nanoclusters indicates 

that they increase in size after annealing and that the magnitude of the increase is a 



	 29	

function of the buffer layer thickness. The adsorption of a thin, incomplete water layer 

prior to Au deposition forms nanoclusters that are possibly even smaller than those 

produced by direct deposition onto the clean substrate.  

In Chapter 3, an explanation is provided for the decrease in neutralization of low 

energy Na+ and Li+ ions scattered from Au nanoclusters as the cluster size increases. This 

model is based on the notion that the atoms in the clusters are not uniformly charged, 

with the edge atoms being positively charged while the center atoms are neutral. This 

leads to upward pointing dipoles above the edge atoms that increase the neutralization 

probability of scattered alkali ions from those that scatter from a neutral atom. As the 

clusters increase in size, the number of edge atoms relative to the number of center atoms 

decreases, so that that the average neutralization also decreases. Calculations employing 

this model are compared to experimental data and indicate good agreement if the strength 

of the dipoles at the edge atoms are assumed to decrease with cluster size. An explanation 

is also given as to the unexpected neutralization probability of Na+ compared to Li+.  

In Chapter 4, catalytically active Au nanoclusters on SiO2 are exposed to Br2 and 

then measured using 1.5 keV Na+ low energy ion scattering. It is found that Br2 adsorbs 

on the nanoclusters, but not on the substrate nor on bulk Au. The presence of adsorbed Br 

reduces the NF of Na scattered from Au. These results show that the clusters are able to 

dissociate the Br2 molecules so that they adsorb as individual Br adatoms. With many 

reports of catalytic reactions occurring at the edges of nanoclusters and the edge atoms 

being positively charged, this work suggests that the filled shell electronegative Br atom 

is ionically bonded to the positive edge atoms. Furthermore, Br2 is a known catalytic 
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poison and this result shows how its adsorption blocks sites and changes the electronic 

structure that would otherwise be involved in a surface chemical reaction. 
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Chapter 2 A Low Energy Ion Scattering 
Approach for Studying Au Nanoclusters Grown 

on an H2O Buffer Layer 
 

 2.1  Introduction 

Buffer layer assisted growth (BLAG), initially developed by Weaver and 

coworkers, is a novel method for growing nanoclusters onto nearly any substrate [1, 2]. 

BLAG has been used to produce gold (Au), silver (Ag) and germanium (Ge) clusters, Au 

and palladium (Pd) bimetallic clusters, as well as II-VI quantum dots on various 

substrates [1-10]. Although direct deposition of metal atoms spontaneously forms 

nanoclusters on many oxides and other stable surfaces through a Volmer–Weber growth 

mode, only certain combinations of metals and substrates can be used. The materials that 

do not work have either a high surface free energy that favors the formation of a 

dispersed film or they chemically react with the substrate material. An advantage of 

BLAG is that it can be used to synthesize nanomaterials for many systems that would not 

otherwise form such clusters.  

BLAG involves the deposition of metal atoms onto an inert frozen gas buffer 

layer (BL) condensed atop a substrate at cryogenic temperatures. Because the interactions 

between metal atoms are stronger than those between the metal and the BL, they combine 

to form clusters rather than a dispersed film. After metal atom deposition, the sample is 

warmed to desorb the BL while the clusters remain intact and soft-land onto the substrate. 

Nanoclusters produced by BLAG are generally more three-dimensional (3D) in shape 

and larger than those produced by direct deposition onto a clean substrate at room 
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temperature [2, 5]. Xe has most commonly been used as the BL material because it is 

inert and solidifies at a higher temperature than then other noble gasses [2, 8, 10]. 

Molecules, such as CO, CO2, and H2O, have also been used for BLs [4, 6, 11]. The 

ultimate size distribution of the clusters depends on many parameters, including the 

diffusion rate of the newly deposited metal atoms, the quantity of atoms deposited, the 

thickness of the BL and any agglomeration that occurs as the BL is removed.  

It is believed that agglomeration during the warming process often alters the size 

distribution and shapes of the clusters from what they were when originally deposited 

onto the cold BL. Most of the tools previously used to investigate BLAG, such as 

scanning tunneling microscopy (STM) or scanning electron microscopy (SEM), can only 

measure the nanoclusters after the BL is removed and the clusters have landed on the 

substrate. It has been inferred from studies of the cluster sizes and shapes as a function of 

the BL thickness that the nanoclusters can increase in size and change shape as the layer 

is removed by annealing [1-6, 11, 12].  

In previous work, our group used a novel method of low energy ion scattering 

(LEIS) to investigate Au and other metal nanoclusters spontaneously formed by direct 

deposition onto oxide substrates [13-15]. LEIS is an effective technique for investigation 

of nanomaterials as it has excellent surface sensitivity and can easily differentiate 

between the metal nanoclusters and the substrate. The presence of quantum size behavior 

was demonstrated using the neutralization probability of backscattered alkali ions, which 

is dependent on the local electrostatic potential (LEP) above the surface. The LEP above 
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a nanocluster changes as a function of size, which is then reflected in the measured 

neutral fraction (NF).  

The work presented here uses LEIS to interrogate Au nanoclusters grown via 

BLAG onto a TiO2(110) substrate employing an amorphous solid water (ASW) BL. 

Gross et al. used an ASW BL on SiO2 and found that 3D nanoclusters are produced by 

BLAG [5]. LEIS is used here to delineate the details of the BLAG process, including 

monitoring the coverage of the substrate by the BL and the changes in the size 

distributions of the nanoclusters with Au coverage and as the clusters move from atop the 

condensed BL to the TiO2 substrate. It is also shown that pre-adsorption of a sub-

monolayer amount of water may produce nanoclusters that are even smaller than those 

formed by direct deposition. When enough water is adsorbed to create an ASW film, the 

nanoclusters increase in size with BL thickness for a fixed amount of deposited Au, 

which supports the assertion that they agglomerate during the warming process [2, 5]. It 

is demonstrated here that the BLAG protocol provides good control over the size 

distribution of the nanoclusters.  

 

2.2 Experimental Procedure 

The experiments are performed in an ultra-high vacuum (UHV) chamber with a 

base pressure on the order of 1x10-10 Torr. The sample is mounted on a XYZ rotary 

manipulator that enables the sample to access multiple instruments mounted on various 

ports in the chamber. The manipulator includes a cryostat that allows the sample to be 

cooled to 100 K via flowing liquid nitrogen. The instruments available include an ion 
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sputter gun for sample cleaning, a cylindrical mirror analyzer (CMA) for Auger electron 

spectroscopy (AES), and an alkali ion gun, flight tube and detector for performing 

charge-resolved LEIS via time-of-flight (TOF). 

The sample is a polished rutile TiO2(110) single crystal (5x10x1 mm3) purchased 

from the MTI Corporation. It is mounted onto a 5 mm by 15 mm rectangular 0.001” thick 

Ta foil that is spot welded to a sample holder attached to the cryostat at the foot of the 

sample manipulator. The foil is electrically isolated from ground and has contacts on each 

end. Current is run through the foil to heat the sample. A K-type thermocouple is 

mechanically held against the corner of the sample with a small Ta strap to measure the 

temperature of the crystal. The crystal surface is prepared via multiple cycles of 

sputtering and annealing (500 eV Ar+ for 30 min and 1000 K for 2 min) [14]. AES and 

LEIS are used to confirm the cleanliness of the surface.   

The ASW BL is formed on the 100 K TiO2(110) surface from water vapor 

introduced through a sapphire leak valve attached to the UHV chamber. Deionized water, 

stored in an ampule behind the valve, is freeze-pumped twice to ensure high purity of the 

H2O vapor. The H2O exposures are performed using a continuous flow from the leak 

valve into a turbomolecular pump opened to the main UHV chamber. The pressure 

during water exposure ranges between 5x10-9 and 1x10-7 Torr. The H2O pressure is 

measured by an ion gauge, whose sensitivity is set for N2, but the pressures are all 

multiplied by 0.89 in calculating the exposures to account for the sensitivity difference, in 

accordance with the Granville-Phillips manual. Exposures are reported in units of 

Langmuirs (L), where 1 L = 1x10-6 Torr sec [16, 17]. The actual thickness of the ASW 
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layer is not directly measured, but it is proportional to the exposure assuming that the 

sticking coefficient is constant, which is reasonable as it is expected to be near unity at 

100 K [16, 18, 19]. 

There are a few issues that lead to some minimal systematic errors in reporting the 

exposures. For example, there is a rise and then a fall in pressure that occurs over tens of 

seconds caused by opening the leak valve slowly so as to not overshoot the desired 

pressure. Also, the walls of the UHV chamber act as a pump in adsorbing H2O, which 

necessitates constant adjustment of the leak rate due to a changing pumping rate. Also, 

when the leak valve is closed at the end of each exposure, additional H2O can desorb 

from the chamber walls.  

Au atoms are deposited onto the sample by evaporation from Au wire (99.99%) 

wrapped around a W filament (Mathis) that is resistively heated. The rate of evaporation 

is approximately 0.01 ML sec-1 and is calibrated bi-weekly using a quartz crystal 

microbalance (QCM). One monolayer (ML) of Au represents the number of Au atoms 

needed to cover the surface with a closed packed arrangement that is one atom thick.[13]  

The main technique used here is a specialized form of LEIS that measures the 

neutralization probability of scattered alkali ions. There are three Kimball Physics 

thermionic emitter ion guns that generate Li+, Na+ and K+, two of which can be mounted 

in the main chamber at the same time. The ion beams are pulsed by deflection across a 1 

mm diameter aperture using a custom square wave function generator (Avtech) whose 

two outputs oscillate from -100 to +100 V and 0 to +100 V at a rate of 80 kHz. The 

outputs are applied to two perpendicular sets of deflection plates, which allows for a 
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square pattern to be produced where one side of the square passes across the aperture 

during each cycle to produce uniform pulses with widths on the order of 100 ns. The 

scattered particles are analyzed using TOF to determine their velocity distributions. A 

dual microchannelplate (MCP) array located at the end of a 0.62 m long flight tube 

detects the individual scattered and fast recoiled particles. There is a 3 mm aperture at the 

entrance to the flight tube, which leads to an angular acceptance of 0.34°. The flight tube 

is positioned between the two ion guns at an angle of 45° relative to each, which 

corresponds to a 135° scattering angle. The sample faces the flight tube during 

experiments so that the emission is normal to the detector. The sensitivity of the MCP 

detector is independent of the charge state of the particles, but there is a steep drop off in 

absolute sensitivity as the kinetic energy falls below about 1 keV [20].  

TOF spectroscopy allows not only for the collection of the kinetic energy 

distribution of the emitted fast particles, but also for an analysis of the fraction of 

projectiles that neutralize during scattering. A pair of deflection plates mounted in the 

flight tube is used to differentiate between charged and neutral scattered particles. When 

both deflection plates are grounded, all particles reach the detector and the total yield of 

charged and neutral species is measured. When the deflection plates have a 400 V 

potential difference across them, the charged particles are deflected away and only the 

fast neutrals are detected. The deflection plates are automatically switched on and off 

once per minute during data collection, which allows for separate spectra to be collected 

simultaneously and to thus avoid errors caused by long term drifts in the beam current.  
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Ion scattering is a destructive process. It can be assumed that every ion that 

interacts with the surface will knock off on average one surface atom and cause up to 

about 10 other atoms to be displaced [21]. To minimize beam damage, each spectrum is 

collected before 1% of the surface atoms are exposed to the beam. After exposure to a 

fluence beyond 1% of a ML, the sample is re-prepared.  

 

2.3 Results and Discussion 

2.3.1 Surface Composition 

The BLAG process involves three primary steps [2]: (1) The sample is cooled to a 

cryogenic temperature and a BL is condensed onto the substrate. (2) Nanoclusters are 

generated by depositing metal atoms onto the BL. Due to the weak interaction of the 

metal atoms with the BL, the atoms coalesce into clusters rather than forming a dispersed 

film. (3) The BL is desorbed by heating the sample, causing the nanoclusters to soft-land 

onto the substrate where they remain intact although their size and shape may change 

during the BL removal process.  

The experiments reported here use LEIS to ascertain the surface composition 

during all three steps as Au nanoclusters are grown onto rutile TiO2(110) using an ASW 

BL [18]. ASW has been used previously as a BL with a SiO2 substrate [5, 11]. After 

depositing Au on the BL, the sample is heated to 320 K to remove the layer and soft-land 

the nanoclusters onto the TiO2 substrate. This choice of annealing temperature is based 

on temperature programmed desorption (TPD) data for H2O on TiO2(110), which shows 
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a multilayer peak at 170 K followed by a monolayer peak that indicates complete 

removal of H2O by 320 K [22].  

Figure 2.1 shows 3.0 keV Li+ total yield TOF spectra collected following each of 

the three steps in the BLAG process. The spectra are displayed in units of time, rather 

than being converted to an energy scale, as multiple masses are often collected within a 

single spectrum. The spectra are plotted in reverse flight time, as shorter flight times 

correspond to larger kinetic energies. All three spectra contain a broad feature from 

approximately 5 to 3 µs. This feature primarily represents projectiles that have scattered 

from multiple target atoms, but may also include some recoiled surface atoms, as 

discussed below. Multiple scattering occurs when the projectile undergoes a series of 

collisions with several target atoms, which leads to a range of scattered projectile 

energies. Rather than increasing in intensity as the kinetic energy decreases, as would be 

expected for such a cascade-like process, this multiple scattering background has a 

“mound-like” shape caused by the reduction in MCP sensitivity as the kinetic energy falls 

below 1 keV [20]. A scattered Li+ projectile with energy of 1 keV corresponds to a flight 

time of 3.7 µs, beyond which is approximately where the measured yield starts to 

decrease.   
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Figure 2.1 Typical Total Yield TOF spectra of scattered 3.0 keV Li+. The sample probed 
in the upper spectrum was prepared by exposing TiO2(110) at 100 K to 9 L of H2O (step 
1). The middle spectrum was collected after deposition of 0.23 ML Au (step 2). The 
bottom spectrum was collected after the ASW layer was removed by heating to 320 K for 
2 minutes (step 3). The graphic in the upper left is an illustration of Au clusters being 
grown on ASW (step 2) and then deposited onto the substrate (step 3). 

 
 
In addition to the broad background, the middle and lower spectra in Fig. 2.1 

show sharp peaks that result from single scattering. Single scattering occurs when a 

projectile experiences an elastic collision with one target atom such that it backscatters 
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directly into the detector. The energy of a singly scattered projectile can be calculated 

classically from conservation of energy and momentum, and is dependent on the ratio of 

the target atom mass to that of the projectile [21]. LEIS spectra thus reveal a sharp single 

scattering peak (SSP) for each elemental species at the surface that is directly visible to 

both the incident ion beam and the detector, provided that the energy of the scattered 

projectile is sufficient to trigger the MCP. At these large scattering angles, this implies 

that the target atom must be significantly more massive than the projectile. These 

conditions are met for Li scattering from Au and Ti, but not from O. The sharp peaks at 

2.4 and 2.1 µs in the middle and lower spectra result from the scattering of Li projectiles 

from the surface atoms of the Au nanoclusters. The two SSPs represent the two stable 

isotopes of Li in the primary beam. 6Li and 7Li have naturally occurring abundances of 

7.5% and 92.5%, respectively, and the peaks’ relative sizes follow. There are two 

additional SSP’s at 2.9 and 2.6 µs in the bottom spectrum that result from the two Li 

isotopes scattering from Ti atoms that are revealed after the BL desorbs, although the Ti 

SSP due to 6Li is not easily visible above the background. Note that the presence of sharp 

peaks whose flight time does not change with water coverage provides a clear indication 

that sample charging is not a factor in these ion scattering measurements despite ice being 

an insulator.  

The upper panel in Fig. 2.2 displays typical TOF spectra collected with 3.0 keV 

23Na+ projectiles. The sample was grown by depositing 0.10 ML of Au atop an ASW 

layer that was produced via a 45 L H2O exposure at 100 K. The upper spectrum in the top 

panel was collected after the Au was first deposited onto the BL (Au on ASW). The 
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bottom spectrum was collected after the sample was annealed to 320 K. Only one sharp 

feature is observed in these spectra, the Au SSP, as Na has only a single stable isotope. 

Although Na is lighter than Ti, there is no Ti SSP present in the spectrum after removing 

the BL as the energy of 3.0 keV Na scattered from Ti at 135° is too low to be detected by 

the MCP.  There is also a broad feature to the right of the SSP in the spectrum collected 

in the presence of the ASW BL before annealing. Although some multiply scattered 

projectiles may contribute, this feature is primarily attributed to direct recoiling (DR).  
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Figure 2.2 Upper panel: Typical total yield TOF spectra for 3.0 keV Na+ scattered from 
0.10 ML of Au deposited on ASW produced by a 45 L H2O exposure at 100 K (step 2) 
and after annealing to 320 K for 2 minutes (step 3). Lower panel: TOF spectra for 3.0 
keV K+ scattered from 0.23 ML of Au deposited on ASW produced by a 90 L H2O 
exposure before (step 2) and after annealing to 320 K for 2 minutes (step 3). 

 

DR occurs when the projectile knocks light target atoms off the surface through 

simple collisions that impart a large amount of kinetic energy to the emitted atomic 

particles [23]. Recoils can be produced through a single collision in a forward scattering 
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geometry, which forms a distinct peak in the spectrum. When using a backscattering 

geometry as in the present case, however, multiple collisions are needed to remove a 

surface adsorbate via recoiling, which leads to a large range of kinetic energies and a 

broad DR peak. For example, the target atom can be hit by the projectile in such a way 

that it collides with another surface atom and then backscatters into the detector. 

Alternatively, the projectile can backscatter from a second layer atom, and then collide 

with a surface atom to produce a DR. Thus, the recoils measured under backscattering 

conditions result from a plethora of trajectories with the common thread being the 

emission of a fast surface atom. The yield of DR increases when the mass ratio of 

projectile to the recoiled particle increases. Thus, K projectiles produce more recoils than 

Na, which is verified by the data in Fig. 2.2.  Note that Li projectiles produce very little 

DR, so that there is no prominent feature attributed to them in Fig. 2.1.  

The bottom panel of Fig. 2.2 displays TOF spectra collected using 3.0 keV K+ 

after Au was deposited onto the BL and after the sample was annealed to remove the 

layer.  As with the Li, there are two Au SSPs present because K has two stable isotopes.  

The natural abundances of 39K and 41K are 93.26% and 6.73%, respectively, and are 

reflected in the relative sizes of the SSP’s. The smaller SSP at around 7.5 µs is more 

easily seen after the BL is removed. Because K is heavier than Na, the singly scattered 

projectiles travel at a lower velocity, thus taking longer to reach the detector, while the 

heavier K also creates more recoils. Thus, the DR feature is larger and better resolved 

from the SSP when using K projectiles.  
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The composition of the surface throughout the BLAG process is determined by 

analysis of data such as that shown in Figs. 2.1 and 2.2. The absence of a Ti SSP in the 

upper spectrum of Fig. 2.1 verifies that the TiO2 substrate is completely covered by the 

ASW BL. When Au is deposited on the BL, the middle spectrum shows a Au SSP but no 

Ti SSP, which indicates that there is Au atop the ASW and that the deposition did not 

displace a significant amount of water. After annealing, the presence of the Ti SSP in the 

Li+ spectra (Fig. 2.1) and the absence of DR in the Na+ and K+ spectra (Fig. 2.2) confirm 

that the ASW layer is fully removed and the nanoclusters are resident directly on the 

TiO2 substrate.  

 

2.3.2 Electronic Properties of the Nanoclusters  

The neutralization of a scattered alkali ion is dependent on the local electrostatic 

potential (LEP), sometimes referred to as the local work function, directly above the 

target atom. Previous investigations of low energy alkali ions scattered from nanoclusters 

have shown that there is a correlation between the NF and the nanocluster size [13, 24], 

which enables LEIS to provide an indication of the size distribution. This method is 

applied here to investigate the clusters during the latter two BLAG steps.  

The model most often used to describe charge exchange between low energy 

alkali projectiles and a solid metallic surface is resonant charge transfer (RCT) [25]. As 

the projectile approaches the target surface, the alkali ionization level sees its image 

charge in the metal and shifts up in energy. At the same time, the level hybridizes with 

states in the solid causing it to broaden. When the projectile is close to the surface, 
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electrons tunnel between the ionization level and the solid. Since the projectile moves 

quickly on the time scale of electron tunneling, equilibrium is not achieved. Instead, a 

non-adiabatic charge exchange process causes the measured probability for charge 

transfer to be effectively frozen in along the exit trajectory as the projectile passes 

through a particular “freezing” distance above the surface, which is typically on the order 

of 1-3 Å [26, 27]. The measured neutralization probability is dependent on the relative 

positions of the ionization potential of the projectile and the LEP of the solid just above 

the scattering site at the freezing distance. In general, a smaller local work function (LEP) 

leads to a larger NF, and vice versa. This enables neutralization in alkali LEIS to provide 

unique information about the electronic structure of surfaces, such as the inhomogeneity 

of the LEP in the presence of adsorbates [24, 28-32]. 

For scattering from metal nanoclusters adsorbed on insulating substrates, it has 

been shown that the NF directly correlates with the size of the nanoclusters [13, 24]. 

Small clusters have quantum-confined electronic states and the clusters are generally 

thought to be negatively charged [33, 34], so that electrons from these filled states 

efficiently neutralize the scattered alkali ions. In contrast, solid Au has a rather large 

work function compared to the Na and K ionization energies, so that the neutralization 

probability of Na+ and K+ in scattering from bulk Au is near zero [13, 35]. Thus, the NF 

decreases as more Au is deposited and the size of the clusters increases so that the Au 

becomes more bulk-like.  

Representative Au SSPs in total and neutral yield TOF spectra for Na+ scattering 

are shown in the inset to Fig. 2.3 to illustrate how the NFs are calculated. The shape of a 
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SSP is determined by the kinematics of the scattering process and is thus independent of 

the peak size, so that the same background subtraction process can be used for both the 

total and neutral yield spectra. The background is modeled as a straight line with the 

same average slope as the regions on both sides of the peak. The shaded regions in the 

inset of Fig. 2.3 illustrate how the SSP is typically separated from the underlying 

background. After background subtraction, the area under these peaks is integrated to 

find the total intensity of each SSP, and the NF for a specific SSP is then determined by 

dividing the area of the neutral yield by that of the total yield. The error is assumed to be 

purely statistical so that the square root of the total number of counts under each SSP, 

including the background, is used to determine the maximum and minimum NF shown by 

the error bars in subsequent analyses.   
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Figure 2.3 The NF of the Au SSP as a function of Au coverage for deposition onto clean 
TiO2 and after 9 and 18 L water exposures at 100 K, using 3.0 keV 39K+ projectiles.  
Inset: A blowup of the total and neutral yield Au SSPs in TOF spectra collected using 3.0 
keV Na+ scattered from 0.10 ML of Au on ASW produced by a 45 L H2O exposure. The 
shaded regions indicate typical areas used in calculating the NF. 

 

Figure 3 shows the NF of the Au SSP for scattered 3.0 keV 39K+ as a function of 

coverage for Au deposited onto clean TiO2 and for Au deposited onto an ASW BL at 100 

K for two different BL thicknesses. All of the NFs decrease with increasing Au coverage, 

which is expected since increasing coverage corresponds to increasing cluster size [13, 

35]. From STM work in the literature, the average diameter of the Au clusters formed by 
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direct deposition are 2.0 nm for a 0.10 ML coverage and 3.7 nm for a 1.0 ML coverage 

[36].   

A question about the NFs obtained from nanoclusters deposited on ASW concerns 

the contribution of the substrate to the LEP at the surface. If there was a significant 

electronic interaction between the TiO2 and the clusters, then the NF might change with 

BL thickness as the clusters would be positioned further from the substrate. The 

measured NFs are the same over the range of two ASW thicknesses shown in Fig. 3, 

which suggests that there is a negligible electronic interaction between the Au 

nanoclusters and the underlying TiO2 so that proximity to the substrate is not important.  

It is also seen that the NF after deposition onto ASW at any Au coverage is higher 

than for the same amount of Au directly deposited onto TiO2 [35]. This increase in the NF 

is likely due to the change in work function caused by the ASW layer. As H2O adsorbs on 

TiO2, it is known from the literature that the work function decreases linearly until it 

plateaus at 1.1 eV below that of the clean surface [22]. While this suggests that one of the 

main reasons for the difference in NF between clusters on the bare surface and those atop 

the BL is this change in work function, it is also possible that the clusters themselves are 

different, since their size and shape also effect the NF. It is thus critical to separate out 

how the NF is affected by changes in global work function from changes in the LEP due 

to the cluster size.  

To accomplish this, small Au depositions and small H2O exposures up to ~8 L are 

performed in both possible orders to de-convolute the competing effects of work function 

and the size and shape of the clusters. The size of the clusters is not expected to depend 
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on the order for such small BL thicknesses and Au coverages, as the substrate is largely 

bare. In Fig. 2.4, the NF of the Au SSP for K+ scattering from 0.23 ML of deposited Au is 

shown as a function of water exposure for both sequences. Data collected from Au 

nanoclusters deposited on clean TiO2 and then exposed to water are shown as circles. 

Data collected from TiO2 that is first exposed to water and then followed by Au 

deposition, which is the same sequence as step 2 in the BLAG process, are shown as 

squares. The NFs in both cases for small H2O exposures are nearly equal, providing 

evidence that in this coverage regime the cluster sizes are independent of the order in 

which the water and Au are deposited. The presence of H2O on the surfaces prepared in 

either way causes the work function to decrease and the NF to go up, as expected. There 

is a sudden stop to this NF change at around 2 L, which is assumed to correspond to the 

coverage at which the maximum H2O-induced work function change is realized. Thus, 

the increase in NF for water exposures below 2 L must be solely due to the work function 

change caused by the presence of H2O. Note that when H2O is condensed atop the Au 

nanoclusters, Au is no longer visible to the ion beam after an exposure of about 12 L. 

Data is not shown beyond 7 L, however, as the Au signal at that point is very weak so 

that the error bars are extremely large.  
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Figure 2.4 The NF of the Au SSP for 3.0 keV K+ scattered from 0.23 ML of Au 
deposited on TiO2 shown as a function H2O exposure. The squares indicate data collected 
when the Au deposition followed the water exposure, while the circles show data 
collected when the water exposure was performed after the Au deposition. The x-axis is 
plotted on a log scale and the dashed lines are guides to the eye. 

 

Figure 2.5 shows the NF of the Au SSP before and after BL removal as a function 

of water exposure for fixed Au coverages of 0.10 ML and 0.23 ML for Na+ (upper panel) 

and K+ (bottom panel) projectiles, respectively. For every data point collected when the 

Au was resident on the ASW BL (step 2, represented as squares) there is a corresponding 

data point collected after the sample was annealed (step 3, represented as circles). The 

water exposure is plotted on a log scale to aid in visualizing the data. As a reference, the 

horizontal dashed line in the upper panel of Fig. 2.5 shows the Na+ NF for Au 
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nanoclusters grown by directly depositing 0.10 ML of Au atop TiO2. The STM 

measurements of Lai et al. indicated that the diameter of the directly deposited clusters is 

2.0 nm at this coverage [36]. 

Note that the relative size of the error bars depends on the local environment of 

the nanoclusters. In the absence of ASW, the error bars are all approximately equal in 

size. The data collected in the presence of ASW, however, have error bars that increase in 

size with water exposure, which is caused by the overlap in time of the Au SSP and the 

DR particles, as seen in Fig. 2.2. This trend is more apparent with Na projectiles, as the 

Au SSP is better resolved from the recoil signal when using K.  

In order for BLAG to form nanoclusters, at least one full layer of ASW must be 

present on the surface. A question to be asked is what is the minimum water exposure 

needed to create a continuous ASW film that acts as a BL for nanocluster growth. H2O 

deposits as bilayers so that ideally a 2 L exposure would be the minimum required to 

form a continuous ASW layer on the surface [19]. It has also been reported, however, that 

Au penetrates the ASW BL to some extent during deposition which can impact the ability 

to form clusters through BLAG even with a full bilayer of deposited H2O.[37] Au was 

always clearly visible to the ion beam following step 2, however, indicating that the Au 

was either not buried at all or at most only partially buried in the ASW at all coverages.  

Between water exposures of ~0.09 to ~5 L, the NF is slightly reduced when the 

BL is removed. As shown by the analysis of Fig. 4, the change in NF from step 2 to step 

3 in this exposure range is mostly caused by the increase in work function due to the 

removal of H2O. This suggests that the clusters are minimally disturbed and maintain 



	 58	

their size since such a negligible amount of H2O is removed. Note, however, that the 

change in NF for Na+ caused by the presence of H2O is not nearly as large as that for K+. 

The NF for Na+ goes from about 45% with a minimal H2O coverage to 60% (a factor of 

~1.3 increase, Fig. 5), as compared to the NF of K+ which goes from 7% with no H2O to 

25% (a factor of ~3.5 increase, Fig. 2.4). This is due to the ionization energy of K being 

smaller than that of Na making it more sensitive to work function changes in this regime.  

For water exposures below 2 L, the upper panel of Fig. 2.5 shows that the Na+ 

NFs are slightly higher after removal of the BL than for Au directly deposited onto TiO2. 

An ASW film would not be formed following such small H2O exposures, as instead the 

water would be adsorbed, possibly in small islands, leaving bare areas of the substrate. 

The deposited Au can then be considered more as being co-adsorbed with the water, 

rather than atop a BL. The increase in the NFs above those for directly deposited Au 

indicate that the co-adsorbed nanoclusters may be slightly smaller than for the same 

amount of Au deposited onto a clean surface. This could be a consequence of the 

adsorbed water decreasing the ability of the Au atoms to diffuse when deposited and form 

larger clusters. This result suggests that it may be possible to use the BLAG protocol with 

less than a full BL to produce smaller clusters than those formed by direct deposition.  
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Figure 2.5. The NFs of 3.0 keV 23Na+ and 39K+ scattered from 0.10 ML of Au (upper 
panel) and 0.23 ML of Au (lower panel), respectively, plotted as a function of water 
exposure on a log scale. Data collected after Au deposition at 100 K (step 2) are shown 
by squares and data collected after annealing (step 3) are indicated by circles. The 
horizontal dashed line in the upper panel shows the NF of 0.10 ML of Au directly 
deposited onto TiO2 at 100 K. The vertical dashed line represents a 2 L water exposure. 

 

The Au SSP NFs decrease significantly when the BL is removed by annealing for 

H2O exposures greater than 8.9 L. Since these exposures are beyond the point at which 

the work function contribution to the NF has saturated and the magnitude of the change is 

larger than the change due to water adsorption alone, this result implies that the clusters 

increase in size during the BL removal process. In addition, the NF values are below the 
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horizontal dashed line, indicating that the clusters are larger than those formed by direct 

deposition of the same amount of Au.  

This shows that the amount of Au deposited on the BL determines the initial size 

distribution, but agglomeration of the nanoclusters during the warming stage occurs for 

BLs that are thicker than ~5 ML, increasing their size. Palmer et al.[12] proposed that the 

BL desorbs from the surface as a wave, which leads to the clusters mixing at the wave 

front. The utility of the present measurements is that the changes in cluster size from step 

2 to step 3 are monitored as they occur and as a function of the BL thickness.  

In the lower panel of Fig. 2.5, a handful of NFs using K+ projectiles are displayed. 

As previously shown in Fig. 2.3, the NF for K+ scattered from Au deposited directly on 

TiO2 is relatively small, which is due to the fact that the ionization potential of K is 

smaller than the Au work function. Thus, the Au SSP using K+ projectiles has an 

extremely low NF, particularly after removal of the BL, thereby making K less useful for 

observing size changes due to agglomeration [5] during the BLAG process despite the 

large change that results from the work function change associated with the removal of 

water. This suggests that Na is the preferred ion for studying Au nanoclusters despite the 

increased overlap of the SSP and DR.  

Note that another concern about the use of ASW as a BL is the formation of 

pores, which are reported to have diameters between 1.5 and 2 nm and separations of 2.6 

nm (from center to center), that are present even on ASW films as thick as 66 ML [38]. 

Au atoms are smaller than these holes and single atoms can conceivably land inside of a 

pore, which would leave less Au to form clusters atop the BL. This may be happening to 
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a small degree, but it does not appear to be significant as this would lead to an increased 

NF for the Au/H2O/TiO2 data set in Fig. 2.4. When the BL is removed, any Au atoms in 

the pores would have an opportunity to coalesce with the nanoclusters as they soft-land 

onto the substrate and slightly increase the size of the clusters.  

 

2.4 Conclusions 

Nanoclusters form when Au is deposited onto ASW, and the clusters agglomerate 

when the BL is removed and they soft land onto the underlying TiO2 substrate. To the 

best of our knowledge, this is the first time that the relative sizes of the Au nanoclusters 

resident on top of the BL are compared to those after the BL is removed by annealing. 

This comparison is inferred from changes in the neutralization probability of scattered 

low energy alkali ions. The result agrees with previous work in the literature that the 

enhancement of the nanocluster size when the BL is removed increases with BL 

thickness [2-5]. In addition, it is shown that beyond a 2 L water exposure, the NF for a 

given Au deposition is independent of the BL thickness, which implies that the distance 

between the cluster and the oxide substrate does not affect the LEP above the clusters. 

The work presented here indicates that the BLAG technique can be used to 

engineer specific cluster sizes and shapes with more flexibility then with direct deposition 

alone, as BLAG produces a different size distribution. A direct comparison of the height 

differences between clusters formed by direct deposition and BLAG using an ASW BL 

showed that BLAG produces 3D clusters, although ref. [5] did not employ very small 

exposures. It is shown here that for exposures below 2 L, the clusters can actually be 
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smaller than those formed by direct deposition onto TiO2. This is due to the nature of the 

adsorbed water itself, as small exposures do not produce a fully-formed BL thus allowing 

small nanoclusters to be formed directly on the substrate. It is possible that a more porous 

or choppy BL material could exaggerate this behavior and produce even smaller clusters. 

When the H2O exposure is sufficient to form a complete ASW film, the resultant clusters 

are larger than those prepared by direct deposition. Future work will include alkali LEIS 

along with STM or SEM measurements of clusters formed with BLs of various materials 

to more accurately determine the size differences as a function of co-adsorption and BL 

thickness and to compare the clusters to those produced by direct deposition and other 

methods.  
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Chapter 3 Inhomogeneous Charge Distribution 
Across Gold Nanoclusters detected by 

Neutralization of Scattered Low Energy Alkali 
Ions  

 

3.1 Introduction 

Over the past 30 years, a large body of research has been conducted to explore 

and explain the high catalytic activity of gold (Au) nanoclusters supported on oxide 

substrates [1-4]. These clusters are composed of several to hundreds of Au atoms and 

have reaction rates that rival those of enzymes, which is in contrast to bulk Au’s 

extremely inert character. The activity depends on cluster size, with the highest rates for 

the oxidation of CO being those approximately 3.2 nm in diameter [5]. Nanoclusters have 

also found use in other applications such as functionalization capabilities in biology [6, 7] 

and quantum computing [8]. Although it can be said that Au nanoclusters are the “gold 

standard” in nano-catalysts, there are a variety of other metals that also form catalytically 

active nanoclusters when deposited on an oxide support [1, 9-12]. There are many ways 

to fabricate nanoclusters, including physical vapor deposition (PVD), chemical vapor 

deposition, buffer layer assisted growth, size selected deposition, and chemical synthesis 

[13-16].  

 PVD is one of the most popular methods used to grow Au nanoclusters on 

surfaces in ultra-high vacuum (UHV) [3]. Au atoms are deposited randomly onto a 

substrate, via a thermal atomic beam, on which they diffuse to spontaneously form the 

clusters. Au atoms deposited onto an oxide substrate follow a Volmer-Weber growth 
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mode in which they initially coalesce to form flat, single atomic layer clusters and, with 

additional deposition, form multilayer clusters prior to a full monolayer of deposition 

[17]. Such clusters formed by direct deposition onto an oxide surface are flatter than gas 

phase nanoclusters that consist of the same number of atoms [18]. At each coverage of 

Au, there is a narrow distribution of nanocluster sizes on the substrate [19-21]. As more 

Au is deposited, the average size of that distribution increases until enough Au is present 

that the clusters combine into a complete thin film [17]. The detailed internal atomic 

structure of the supported nanoclusters is not well known, however, as techniques such as 

scanning electron or tunneling microscopy cannot image the individual atoms [17, 22].  

Multiple explanations of the high catalytic activity of Au nanoclusters have been 

proposed that include the roles of quantum size effects, increase of low-coordinated 

atoms, cluster morphology, substrate defects, and charge state [23-26]. Much of the 

current consensus is that the catalytic reactions occur at the edges of the nanocluster via 

adsorption to the Au atoms that are directly bonded to oxygen in the substrate [27-29]. 

These edge atoms are presumably positively charged due to electron transfer in bonding 

to oxygen [30, 31]. Note that a good deal of earlier work had suggested that Au 

nanoclusters were overall negatively charged [4, 32-34], while other work has shown that 

the aggregate charge is positive [32, 35-37]. Thus, the overall charge state of deposited 

nanoclusters is not firmly established and may depend on the particular materials 

involved.  

Low energy ion scattering (LEIS) was initially developed in the 1960s as a means 

to provide information about the elemental composition of surfaces [38, 39]. Most LEIS 
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experiments employ noble gas ions as projectiles due their ease of preparation and 

extreme surface sensitivity when using a charged particle detector, which is related to 

their irreversible Auger-type of neutralization [40].  

In contrast, scattered alkali ions neutralize by a resonant charge exchange 

mechanism due to the overlap between their relatively small ionization potentials and the 

surface conduction bands [41]. Studies of scattered alkali ions show that the 

neutralization probability is dependent on the local electrostatic potential (LEP) just 

above the surface. There have been experimental and theoretical investigations of the 

neutralization probability in low energy alkali scattering from surfaces that have non-

uniform local electrostatic potentials created by adsorbing small numbers of adatoms 

onto clean metal surfaces, which changes the overall work function, and then measuring 

different neutralization probabilities for scattering from each type of atom [42-46]. The 

results of these studies showed that the LEP close to the surface can vary leading to 

different neutralization probabilities for scattering from the different elements at the 

surface. In particular, scattering from a positively charged adatom, such as an alkali 

adsorbate at low coverage, has a significantly higher neutralization probability than 

scattering from the substrate due the upward pointing dipole that lowers the LEP above 

the adatom site [45-47].  

Measurements of the neutralization probability of scattered low energy alkali 

projectiles is a useful tool for investigating deposited nanoclusters on oxides. This is 

because the alkali LEIS technique is adept for studying surfaces composed of multiple 

elements and can address questions about the charge state of those elements. Previous 
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results have shown that the ions scattering from Au and Ag nanoclusters on an oxide and 

other substrates have a much higher neutralization probability than those scattered from 

the bulk metal, and that neutralization decreases as the cluster size increases [48-55]. 

Although it is possible that the alkali LEIS neutralization rate and the Au nanocluster 

catalytic activity are related, a satisfactory model has not yet been developed to explain 

the enhanced neutralization so that such a correlation has not been confirmed.  

To explain the unusually high neutralization for alkali ions scattered from small 

Au nanoclusters, a model is developed here based on the notion that the charge associated 

with each Au atom in a cluster can be different. Previously, the charge on the Au clusters 

had been considered in aggregate when analyzing ion neutralization [49-56], but the 

present model is dependent on the differences in charge between the atoms and not on the 

average charge. Density functional theory (DFT) calculations performed for Au 

nanoclusters supported on TiO2 find that the charge associated with the edge atoms of the 

nanocluster are noticeably different from the center atoms [27, 31]. Coincidentally, it is 

those same edge atoms that are the catalytically active sites [29, 30, 57]. A parameterized 

model is developed here to illustrate how the neutralization of singly scattered low 

energy alkali ions can depend on cluster size by combining the relative charge values of 

the center and edge atoms in a nanocluster, as determined from DFT, with the traditional 

paradigm for scattered low energy alkali neutralization. Inter-nanocluster interactions that 

affect the strength of the dipoles on the edge atoms when the clusters are close to each 

other also need to be included in the model to properly reproduce the experimental data. 

The success of this model shows how ion scattering can implicitly discern the presence of 
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an inhomogeneous charge distribution within an individual deposited nanocluster. In 

addition, the neutralization probability differences between low energy Na+ and Li+ ions 

scattered from Au nanoclusters is provided by this model [54].  

 

3.2 Experimental Procedure  

 Experiments are performed in an UHV chamber with a base pressure better than 

5x10-10.  The sample is mounted on the foot of an XYZ rotary manipulator that allows it 

to access all of the sample preparation and surface analysis tools in the chamber. The 

tools include low energy electron diffraction (LEED), x-ray photoelectron spectroscopy 

(XPS) and low energy ion scattering (LEIS).  

The substrate is a polished TiO2(110) single crystal purchased commercially. It is 

prepared in UHV by cycles of sputtering with 500 eV Ar+ and annealing to 975 K for 15 

min [49]. LEED and XPS are used to verify the crystal order and cleanliness. The 

nanoclusters are formed on the crystal surface by PVD using a thermal atomic beam of 

Au. The atomic beam is produced by running current through a W filament (Mathis) with 

Au wire wrapped around it that is mounted inside a Ta case with an aperture facing the 

sample [17, 35]. The evaporation rate is calibrated by a quartz crystal microbalance 

(QCM).  

LEIS is performed using time-of-flight (TOF) spectroscopy to measure both 

neutral and charged particles. Beams of 2.0 keV Li+ and Na+ ions are produced by 

thermionic emission guns (Kimball Physics) that are pulsed at 80 kHz, with a pulse width 

of roughly 100 ns. Once a projectile has scattered from the target, it travels down the 0.46 
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m long TOF leg where it is detected by a series of three microchannel plates (MCP). The 

entrance to the first MCP is grounded so that neutral and charged particles are measured 

with equal sensitivity, although the absolute sensitivity decreases significantly with 

smaller scattered kinetic energies beginning at about 1.5 keV [58-60]. Each gun is 

separated from the TOF leg by 30°, leading to scattering angles of 150°. A set of 

deflection plates in the TOF leg is used to separate the charged and neutral particles. 

When both plates are grounded, all of the scattered particles pass through yielding the 

total counts, while placing 300 V across the plates deflects the ions allowing only neutral 

particles to be collected. Further details of the experimental procedure are found in Liu et 

al. [54].  

The use of Li+ and Na+ ion beams incident on the sample simultaneously enables 

a comparison of data collected from the same surface with different projectiles. Since the 

projectiles have different masses but the same incident kinetic energy, they travel at 

different velocities. The difference in arrival times allows for the separation of features 

due to scattered Na and Li within a single spectrum.  

In addition, the protocol is to never allow more than 1% of the surface atoms to be 

impacted before re-preparing the sample to minimize beam damage so that the data 

always reflect the intact clusters. This is easier when using TOF methods, as opposed to 

electrostatic analysis, because the pulsed beams have a small duty cycle even with two 

ion beams impacting the sample.  
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3.3 Experimental Results 

The LEIS technique is typically employed for the determination of the elemental 

composition of the first few atomic layers of a sample [39]. When TOF is used to 

measure all scattered particle, LEIS is surface sensitive because of shadowing and 

blocking. Shadowing occurs when atoms in the outermost layers prevent ions from the 

incident beam from reaching the deeper layers so that direct scattering cannot occur. 

Blocking occurs when projectiles scatter from a second or deeper layer atom but are 

prevented from reaching the detector because of scattering by a surface atom. Shadowing 

and blocking are often illustrated by calculating the shape of cones, which are the regions 

behind each atom from which the projectiles are excluded. Because of shadowing and 

blocking, the projectiles that are detected are primarily those that scatter from the 

outermost atomic layers, making this technique ideal for studying materials such as 

catalysts where the chemistry takes place on the surface [61, 62]. In analyzing LEIS data, 

it is assumed that the target atoms are located at specific lattice sites, but that they are 

unbound since the projectile energies far exceed the atomic bonding energies. It is 

furthermore assumed that the projectiles interact with one target atom at a time, which is 

the binary collision approximation (BCA).  

Typical TOF-LEIS spectra for Li+ and Na+ scattered from Au nanoclusters are 

shown in Fig. 3.1 with the scattered particle yields on the y-axis and time on the x-axis. 

The x-axis is reversed so that higher energy scattered projectiles are to the right. The 

target is a well-ordered TiO2(110) substrate onto which 0.5 ML of Au is deposited, which 

is a small enough coverage that nanoclusters are formed rather than a Au film.  
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Figure 1. TOF-LEIS spectra of 2.0 keV Li+ and Na+ scattered from 0.5 ML of Au 
deposited on TiO2(110) shown as a function of the flight time from the sample to the 
detector. The upper spectrum (blue online) is the total yield and bottom spectrum (purple 
online) is the neutral yield.   
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A single scatting peak (SSP) occurs when a projectile elastically scatters directly 

into the detector after making a hard collision primarily with one surface target atom. 

With the beam energy (2.0 keV) and scattering angle (150°) held constant, the kinetic 

energy of a singly scattered projectile is dependent primarily on the ratio of the target to 

projectile atomic mass [63]. Note that there is also a small amount of inelastic energy loss 

caused by electron excitations that lower the energy of a SSP, but the magnitude of this 

energy loss is negligible and can be ignored in the present analysis [39]. There are three 

clear SSPs present in both the total and neutral yield spectra due to the single isotope of 

Na and two isotopes of Li scattering from Au atoms. The kinetic energy of 23Na scattered 

from Au is 1290 eV and for 7Li it is 1750 eV (ignoring any inelastic energy losses), 

which correspond to flight times of 4.86 and 2.09 µs, respectively. The SSP for 6Li 

scattering from Au is also visible in the spectra, but its intensity is minimal due to its 

small isotopic abundance. Since Li is less massive than Na, it is scattered at a higher 

velocity, which leads to a shorter flight time. Fortunately, there is clear separation of the 

Na and Li signals so that these scattering events can be analyzed independently.  

Multiple scattering occurs when a projectile interacts with more than one target 

atom, leading to a distribution of energies rather than to a sharply defined SSP. Multiply 

scattered Li particles are observed as a mound to the left of the Li SSP because Li is light 

enough to backscatter into the detector following multiple collisions with Au, Ti and/or O 

atoms and still retain enough kinetic energy to be detected. Fortunately, under the 

conditions of these measurements, the mound is sufficiently narrow that it is clearly 
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separated from the Na SSP. There is no multiple scattering mound for scattered Na 

because it has a larger mass and thus cannot backscatter from the light substrate atoms.  

Although Au is not the only element present on the surface and visible to the ion 

beams, SSPs due to scattering from Ti and O do not appear in the spectra. Na is less 

massive than Ti, but the scattered energy at 150° is 280 eV which is too low to be 

detected by the MCP [58]. Na is more massive than O and will thus not singly scatter at a 

large angle. Li can scatter from O but would have an energy of 350 eV, again being too 

low for detection. Li scatters from Ti with a kinetic energy of 1160 eV, or at a flight time 

of 2.57 µs, which can be observed by the MCP. The Ti signal is not large, however, 

because the Au nanoclusters cover part of the TiO2 surface, the cross section for 7Li 

scattering from Ti is approximately a factor of 3.4 smaller than for scattering from Au 

[63], and the Ti SSP is buried underneath the Li multiple scattering background.  

When alkali ions scatter from a surface, their neutralization probability depends 

on the local electrostatic potential (LEP) above the target atom, the energy and width of 

the ionization s level at a certain distance above the surface and the velocity of the 

projectile along its outgoing trajectory. The model most often used to describe this 

interaction is resonant charge transfer (RCT), which was originally developed for clean 

metal surfaces [41, 64]. In the RCT model, the approaching alkali’s ionization level sees 

its image charge in the conductive metal surface and shifts up in energy. The ionization 

level also hybridizes with the levels in the surface, causing it to broaden. Once the 

projectile is close enough to the surface, charge quantum mechanically tunnels between 

the target conduction band and the broadened and shifted s level because they overlap 
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due to the small ionization energies of alkalis. After the projectile has scattered and is 

sufficiently far from the surface along its exit trajectory, tunneling can no longer occur. In 

the limit of small velocity, the process would be adiabatic and produce 100% 

neutralization since the ionization levels of Li and Na, which are the 2s and 3s, 

respectively, both lie below the Fermi energy. Because the projectile velocities in the low 

energy regime are large on the scale of the electron tunneling rates, however, the charge 

transfer process occurs non-adiabatically, which leads to a measured neutralization 

probability that is frozen in very close to the surface, typically a few Å’s above the 

scattering site [64]. Although this freezing does not actually occur at a specific distance 

since the interaction weakens exponentially, the freezing distance is defined as the 

effective distance above the scattering site at which the overlap of the Fermi energy and 

the broadened and shifted ionization level leads to the measured neutralization 

probability.  

A clean metal surface is a simple case for ion neutralization because of the 

uniform lateral potential that allows the global work function to determine the NF, but the 

process is more complex in the presence of an adsorbate. Because an adsorbate can lead 

to a non-uniform LEP, the neutralization would then depend on the LEP just above the 

scattering site, rather than on the global work function [41, 65]. In this context, the LEP is 

sometimes referred to as the local work function. For example, if an electropositive 

adatom, such as an alkali, is adsorbed on a surface, it donates most of its outer shell 

electron to the surface creating an upward pointing surface dipole at the adatom site [66]. 

The dipole is formed by the positive charge of the alkali adatom and its negative image 



	 77	

charge in the substrate. This upward pointing dipole reduces the LEP directly above the 

adsorbate which, in turn, increases the NF of a low energy alkali ion scattered from that 

adatom. At low alkali adatom coverages, where there are isolated non-interacting dipoles, 

the NF in scattering from the adatoms is larger than from bare areas of the surface, 

indicating that the LEP of the surface is inhomogeneous [47, 65, 67, 68].  

In order to measure neutralization probability, or neutral fraction (NF), in an 

experiment, the neutral and total yield SSPs are integrated and divided. Before 

integration, the background of multiply scattered projectiles is first subtracted from the 

SSP. The background is estimated by fitting the region surrounding each SSP to a linear 

function. The error bars of each SSP area are estimated by taking the square root of the 

total number of counts, including the background counts, which is assuming that the error 

is purely statistical. This error is then propagated to determine the statistical error 

associated with each NF.  

Figure 3.2 presents the NF of Li+ singly scattered from Au on the TiO2 substrate 

shown as a function of the average Au nanocluster size, while Fig. 3.3 shows the NF for 

scattered Na+. The experimental data is shown by the solid circles. The average diameter 

of the nanoclusters was determined by calibration to the scanning tunneling microscopy 

(STM) measurements of Lai et al. using the amount of Au deposited as determined by the 

QCM [17]. It is seen that the NF is on the order of 30% for Li and 50% for Na scattered 

from very small Au nanoclusters, and that it decreases with cluster size until it reaches 

the same value as that for scattering from bulk Au, as reported previously [48, 49, 54]. 
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Note that the figures show experimental data as well as simulations generated by the 

model described in the following section.  

 

 

Figure 2. Experimental and simulated data of the NF of 2.0 keV Li+ singly scattered 
from Au shown as a function of the average nanocluster diameter. The filled circles 
indicate the experimental data, the upper fragmented line (orange) is the simple model 
with NFE = 31%, and the solid line (green) is the modified model with NFE = 33% (see 
text). In all of the simulations, NFC is set to 9%, which is the value for scattering from 
bulk Au as represented by the horizontal dashed line.  
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Figure 3. Experimental and simulated data of the NF of 2.0 keV Na+ singly scattered 
from Au shown as a function of the average nanocluster diameter. The filled circles show 
the experimental data, the fragmented line (gold) is the simple model with NFE = 63%, 
and the solid line (green) is the modified model with NFE = 66% (see text). In all of the 
simulations, NFC is set to 3%, which is the value for scattering from bulk Au as 
represented by the horizontal dashed line.  
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3.4 Model 

The model developed here to explain the change of NF as a function of cluster 

size is based on the notion that all of the atoms in a nanocluster are not electrostatically 

equivalent so that there is a difference in the neutralization probability of a scattered 

alkali projectile depending on the particular atom that is impacted. This assertion is 

supported by DFT calculations that show that the edge atoms of Au clusters deposited 

onto TiO2 are positively charged, with an average charge per atom of about +.0458 e, 

while the center atoms are nearly neutral [27, 31]. This is illustrated schematically in the 

insets to Fig. 3.4, where the edge atoms are labeled with a “+” sign, while the neutral 

center atoms are unlabeled. Photoelectron spectroscopy measurements have suggested 

that Au nanoclusters have some positive charge, which supports the results of the DFT 

calculations, but they were not able to distinguish differences in charge across a 

nanocluster [32, 35]. The positively charged atoms at the edge form upwards pointing 

dipoles leading to a higher LEP above them than the LEP above the nearly neutral 

interior atoms so that alkali ions scattered from the edge atoms of the nanocluster would 

have a higher neutralization.  
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Figure 4. The ratio of edge atoms to center atoms as a function of cluster size used in the 
model is represented as diamonds with respect to the left axis (see text). The average 
distance between the edges of nanoclusters as a function of average size cluster is 
represented by squares with respect to the right axis. The insets show schematic diagrams 
of representative Au nanoclusters that correspond to two cluster sizes: 19 atoms with a 
diameter of 1.6 nm and 37 atoms with a diameter of 2.5 nm. The plus signs indicate the 
positively charged edge atoms. 

 

The clusters are modeled here as being flat and consisting of a single atomic layer 

with a fcc hexagonal packing pattern and a (111) surface orientation. The distance 

between the Au atoms is set to 0.408 nm, which is the interatomic spacing in bulk Au 

metal. Single layer cluster sizes are employed that contain 7 to 217 atoms, which 

correspond to diameters from 0.82 through 6.5 nm. Although no crystalline structure is 
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observed for actual deposited Au nanoclusters, this structure is chosen for the model 

because the (111) face is the low energy surface of fcc metals [17]. Some examples of 

these model nanoclusters are shown as insets in Fig. 3.4. In reality, the nanoclusters are 

not hexagonal (this would have been observed with STM, high resolution scanning 

electron microscopy, or transmission electron microscopy [17, 69, 70]) and the actual 

distance between the Au atoms can change depending on the cluster size and shape and 

the substrate material [17, 71]. Nevertheless, the smallest Au clusters on surfaces are flat 

and one atomic layer thick, so that this approximation is sufficient to illustrate the basic 

physics of how the NF depends on cluster size.  

As the size of the clusters increases, the number of edge atoms relative to center 

atoms decreases so that there are relatively fewer positively charged target atoms. Thus, 

the overall NF should decrease as the cluster size increases. Figure 3.4 shows the ratio of 

edge to center atoms using this approximation for the cluster atomic structure, and the 

ratio does go down as the clusters get larger. A numerical model is presented here to 

show that this idea can reproduce the observed NF vs. cluster size data. 

A simple way to calculate the expected NF for Na+ and Li+ scattered from Au 

nanoclusters using this model is to assign different neutralization probabilities to the edge 

(NFE) and center (NFC) atoms in each cluster. It is further assumed that the LEP above 

the interior atoms is the same as that of neutral bulk Au, which leads to neutralization 

probabilities of NFC = 3% for scattered Na+ and NFC = 9% for Li+, as determined 

experimentally [49, 72]. Since the edge atoms are positively charged, scattering from 

them would produce larger values. NFE, the neutralization probability in scattering from 
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the edge atoms, is thus a parameter in the model that needs to be determined. The overall 

NF generated by the model for a particular cluster size is calculated by averaging the 

individual neutralization probabilities in scattering from each of the Au atoms in the 

simulated clusters as 

 

  (3.1) 

 

where NE and NC are the number of edge and center atoms, respectively, for a given 

nanocluster size.  

Since the placement of the atoms in this model are assumed to be at fcc-like sites, 

while the incident ion beam is normal to the Au(111) face, the incoming ions should be 

able to impact the first 3 atomic layers. When this assumption is used along with allowing 

the clusters to be 3 atomic layers thick and assigning the highest possible value of NFE = 

100% and NFC = 3% for all the other atoms in the top 3 layers, the overall NF at a given 

Au coverage is still much lower than the experimental values for a range of cluster sizes 

when using Na+. Even assuming that the ions see only the top 2 layers produces NFs that 

are smaller than the experimental data. Assuming that scattering only occurs from the 

outermost Au layer, however, generates NFs that better match the experimental data over 

a range of sizes. This was similarly tested for using Li+ by setting NFC = 9% and showing 

that if scattering from second and third layer atoms is included, there is no value for NFE 

that will fit a majority of the data. At best, with NFE set to be near 100%, only a few mid-

NF =
NE × NFE( )+ NC × NFC( )

NE + NC
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range cluster sizes would match the data and the majority of cluster sizes would have an 

overall NF that is too high. If a smaller value is use for NFE, only the smallest cluster 

sizes would match the data until a bulk film is formed.  

For the above reasons, the model only considers single layer clusters. This could 

mean that either in reality the clusters are all just a single atomic layer thick, which is not 

consistent with STM data [9], or more likely that the actual structure of the clusters is 

such that the 2nd layer and deeper lying Au atoms are all shadowed or blocked by the 

outermost Au atoms and do not contribute to the SSP. Shadowing and blocking is likely 

as the structure of the actual clusters is sufficiently different from Au(111) and Au is a 

heavy atom that produces large cones. The shadow cone radii of 2.0 keV Li+ and Na+ 

ions scattered from Au, for example, are calculated to be 1.05 Å and 1.25 Å, respectively, 

at a distance of 4 Å beyond the Au atom [73], which is close to the spacing between Au 

atoms. Since the shadow cone radii for Li+ and Na+ are not too dissimilar, it is likely that 

both projectiles probe close to the same depth. The agreement between the model and 

experimental data, discussed below, shows that the use of single layer hexagonal clusters 

provides a reasonable approximation to the actual structures of the clusters for the 

purposes of the model.  

One strategy to estimate the neutralization probability of Na+ and Li+ ions 

scattered from the edge atoms, NFE, is to calculate the dipole moment and then compare 

it to experimental NF data from another system with a known dipole moment. The dipole 

at the edge atoms is calculated by multiplying the distance d, between the two charges, by 

the absolute charge q of one of them. The charge for the edge atom is taken from the 
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average of all of the edge atoms’ charge as calculated in Ref. [27]. The distance is 

estimated to be two times the bond length of Au-O, which is determined by first principle 

calculations to be 2.08 Å [74]. This is the classic image charge problem, which generates 

an average dipole value for edge atoms directly attached to a substrate oxygen atom of 

18.0±2.7 D. Reference [27] also provides values for the charge on the interior atoms and, 

in a similar manner, these values produce an average dipole moment of 1.4±1.6 D.  

A comparison to previously published data is used to relate the dipole moment at 

an adatom site to the NF. Weare et al. determined that for very low coverages of Cs 

adatoms on Al(100), a dipole moment of 15.2 D is generated by the Cs adatoms [47]. 

Using 2.0 keV Li+ projectiles (same as in the present experiment), a NF of ~70% was 

observed in scattering from Cs. Therefore, the value for Li scattering from the edge atoms 

based solely on the dipole strength would be a bit more than 70%. Although the 

relationship between dipole moment and NF is not linear, a simple extrapolation would 

predict a NFE of 81%. Since Cs and Au are relatively close in mass, any changes in 

neutralization due to differences in their scattered energy are minimal. Note that 

experimental data for the neutralization of Na+ scattered from Cs adatoms are not 

available, so a similar estimate cannot be made. 

If a value of 81% is used for the Li+ NFE, however, the model does not 

numerically match the experimental data, although it does have the same general trend. 

The fact that such an analysis of dipole strength does not work to precisely determine a 

neutralization probability is either due to inaccuracies in the estimate of the dipole 

strength or because there is a distinct difference between edge atoms of nanoclusters on 
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TiO2(110) and isolated Cs adatoms on Al(100). One of these differences could involve 

effects of the substrate on the broadening, shifting, and freezing distance, as these could 

be considerably different for a metal and insulator. Therefore, the neutralization 

probability in scattering from a positively charged Au adatom in a nanocluster is not 

necessarily the same as the NF in scattering from an alkali adatom on a metal.  

Since it is not possible to estimate the neutralization probability for scattering 

from the edge atoms directly from the dipole strength, a simple model is first developed 

in which a best fit of NFE to the experimental data is performed. The results of this 

simulation for Li+ scattering from Au clusters using NFE = 31% and NFC = 9% are shown 

in Fig. 3.2 by the dashed-dotted line labeled “Simple Model”. Correspondingly, the 

results of a simulation for the scattering of Na+ in which NFE = 63% and NFC = 3% are 

shown in Fig. 3.3. Both of these simulations match the experimental data fairly well for 

cluster sizes up to about 3.7 nm, but the simulated NF for larger clusters is too high for 

both projectiles. The fact that the model shows a decrease in NF with cluster size and the 

values agree with the experimental data for both projectiles in the same nanocluster size 

region indicates that the underlying physics of the model is basically sound, at least for 

the smaller clusters.  

The failure of the simulations for larger clusters sizes is likely caused by a change 

in dipole strength with cluster size, which would thereby affect the LEP and thus the 

neutralization probability in scattering from edge atoms. There are two possible ways in 

which this could be explained. First, the charge associated with the edge atoms could 

depend on the cluster size as a fundamental property of the clusters. Second, as the 
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nanoclusters grow in size they become more densely packed and are thus closer together. 

At a certain coverage, the edge atoms would be close enough to those of neighboring 

clusters to interact and depolarize the dipoles so that their strengths reduce, thus 

increasing the LEP above the edge atoms and decreasing NFE. A similar effect is seen for 

high coverages of alkali adatoms on metals surfaces in which the dipole strength reduces 

when the alkali coverage reaches the point at which the adatoms interact with each other 

[47, 65, 67].  

There is no simple physical reason to suggest that the edge atoms’ charge would 

depend on the cluster size independent of neighboring clusters, but it is not impossible. 

The data, however, suggest otherwise since a constant value of NFE works for projectiles 

scattered from nanoclusters less than about 3.0 nm in diameter. If the edge atom charge 

were size dependent, it would be unlikely that this dependency would not affect the 

dipoles at the edge atoms of the smaller clusters.  

Thus, the second idea is used to develop a modified model that incorporates the 

effects of a reducing dipole into the simulation as a consequence of interactions between 

clusters. In this more complete model, the effective neutralization of alkali ions scattered 

from the edge atoms, NFEE, is adjusted as a function of cluster size and NFE is considered 

to be a constant that represents the neutralization probability in scattering from edge 

atoms in non-interacting clusters.  

To use this idea to produce a modified mathematical model that works for any 

cluster size, an equation is developed that depends on the distance between clusters, 

specifically the distance between the edge atoms of the nearest clusters, d. The method 
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adjusts NFEE as a function of d with the aid of a fitting parameter. The average distance 

between the edges is calculated by taking the square root of the inverse density of clusters 

and subtracting the average cluster diameter, both of which are obtained from Lai et al. 

[17]. This generates the average distance between the edges of nearest neighbor clusters d 

in units of nm, which is plotted by the squares in Fig. 3.4. The equation used to determine 

NFEE is  

 

𝑁𝐹!! = (𝑁𝐹! − 𝑁𝐹!)𝑒!
!
! + 𝑁𝐹! , (3.2) 

 

where A is the fitting parameter. An exponential dependence on distance is a reasonable 

approximation of the electrostatic interaction between nearby dipoles. The equation 

reduces to the correct values at the limits when they are infinitely spaced (d = ∞) and 

when the nanoclusters are touching (d = 0). For infinitely spaced nanoclusters, there is no 

interaction between nanoclusters so that the neutralization in scattering from the edge 

atoms NFE is the same as that determined from the simple model. For clusters that are so 

close that their edge atoms are adjacent, they are all now essentially center atoms so that 

the neutralization probability would be NFC.  

The value of A that produces a best fit to the data is found to be 0.55 nm for both 

Li and Na, implying that this effect is related to the nanoclusters and not to the 

projectiles. The value of A is also relatively close to the dipole length of 0.42 nm 

implying that it is physically reasonable. NFE for both projectiles are slightly adjusted 

from the original estimates to NFE = 33% and NFE = 66% for Li+ and Na+, respectively. 
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These neutralization probabilities are slightly higher than those of the simple model, 

which is reasonable since it did not take the inter-cluster effects into account so that the 

best fit resulted in lower values. 

Since the dipole-dipole interactions in this modified model are similar to the 

behavior of alkalis adsorbed on metal surfaces, the distance at which the alkali adatoms 

begin to interact is compared to the value of d at which the NF in scattering from 

nanoclusters is no longer consistent with the simple model. Measurements of the work 

function as a function of coverage for alkalis deposited on metals initially decrease with 

coverage and show a minimum at the point at which the adatoms begin to interact, which 

occurs at a adatom-adatom spacing of roughly 0.91 nm for Na on Al(100) [75]. The 

average size of the nanoclusters beyond which the simple model no longer agrees with 

the experimental data is around 3.9 nm, which corresponds to an average spacing of d = 

1.4 nm. Note that this distance between clusters was calculated for the hexagonal clusters 

employed in the model, but if the same calculation is performed to find the average 

distance between the edges of circular clusters, the distance is 0.89 nm for 3.9 nm 

nanoclusters, which is essentially the same as the distance at which alkali adsorbates 

begin to interact. The data thus support the notion that the interaction between 

nanoclusters is responsible for the reduction in the effective neutralization probability of 

projectiles scattered from the edge atoms with cluster size.  

The results of this modified model are shown in Figs. 3.2 and 3.3 as solid lines 

labeled “Modified Model”, and they reproduce the experimental data fairly well over the 

complete range of cluster sizes. Above a cluster size of 4.5 nm, the clusters begin to 
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agglomerate to eventually form a Au thin film [17] so that the ratio of edge atoms to 

center atoms and the value of d both go to zero, as seen in Fig. 3.4. This is the cause of 

the kink in the modified model at 5.4 nm, as no separated clusters remain at that point. 

Hence, in the limit of large clusters, the NFs of the scattered ions reach the values 

associated with bulk Au.  

Note that the smallest clusters that are considered in the model consist of 7 Au 

atoms, with 6 of them being edge atoms. It is possible to have even smaller clusters in 

which there are no center atoms, with the limit being a single Au adatom. It was shown in 

Ref. [36] that the charge on a single Au adatom on TiO2 is 0.2 e-, which is less than the 

charge on the nanocluster edge atoms calculated by DFT [27]. Thus, the NF in scattering 

from a single Au adatom would be less than that of the smallest clusters considered here. 

This implies the possibility that the NF could drop for extremely small cluster sizes. Such 

a behavior has been observed in low energy alkali ion scattering from Au and Ag 

nanoclusters in Refs. [48, 50, 51], and a decrease of edge atom charge for clusters that are 

smaller than those considered here may be the reason.  

 

3.5 Discussion  

The model presented here is based on assigning different neutralization 

probabilities for scattering from edge and center atoms and showing that such differences 

can explain why the overall NF decreases with cluster size. It uses values for NFC 

measured from bulk Au but does not independently determine the NFEE probabilities 

from experiments, first principle calculations or other methods. Nevertheless, the 
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numbers that are fit to the data do provide a good match between the model and the 

experiment. These values are now examined to determine if they are reasonable within 

the context of the general RCT process.  

Figure 3.5 is a schematic diagram, used as an aid in this endeavor, which 

graphically shows how the energy levels of the projectiles are modified in proximity to 

the substrate. The horizontal axis is Z, the distance between the projectile and the surface, 

and the vertical axis is energy, E, where Evac is the vacuum level. Both the Li and Na s 

levels are shown on the right side at their respective ionization energies as though they 

are infinitely far away and thus very sharp (not drawn to scale). As the projectiles get 

closer to the surface, they shift up in energy and broaden; this process is represented by 

curved dotted lines with arrows at the end that show the sharp s levels becoming broad 

Gaussian functions at their respective freezing distances (numerical values discussed 

below) [41]. To the left of the energy axis are colored areas representing filled levels in 

the surface, although the diagram does not indicate the actual density of states of those 

levels. EFcenter and EFedge are the energies of the highest occupied levels for the center and 

edge atoms of the nanoclusters, respectively, which are not the same because of their 

different LEPs. The neutralization probability for a given scattering event would be the 

fraction of the broadened ionization level below the highest filled level (indicated by the 

horizontal dashed lines) at the freezing distance. An important thing to recognize is that 

magnitudes of both the shifting and the broadening can alter the neutralization probability 

in different directions. The freezing distances, shifting and broadening are now estimated 
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to see if the numbers used for the neutralization of Li+ and Na+ scattered from edge atoms 

used in the model are reasonable.  

 

Figure 5. Schematic energy level diagram of the ion-solid system for Na and Li 
projectiles. Z refers to the atom-surface distance. The atomic s levels for Na and Li are 
shown at the right and labeled with their corresponding ionization energies, while the 
broadened and shifted ionization levels are shown at their freezing distances close to the 
surface (see text). The effective Fermi energies associated with the LEP above edge and 
center atoms are indicated by horizontal lines.  
 

The freezing distance of the projectile is the effective maximum distance above 

the surface at which electrons can tunnel in and out of the ionization level. An equation 

from Kimmel and Cooper is used to estimate the freezing distances, which was derived 

by assuming that the coupling between the atom and metal decays exponentially as the 

atom-surface separation grows [76]. The equation contains parameters that are dependent 

on the particular projectile and target used. The most relevant parameter is the 

perpendicular component of the velocity of the scattered particle, which is calculated for 

Li and Na singly scattered from Au [39]. Another is the level’s half width which depends 
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on the particular target and projectile and was determined for the Li 2s level in scattering 

from Cu(001) by Onufriev and Marston [77]. To the authors’ knowledge, there are no 

explicit calculations for the Na 3s level, so that the values for Li are used to generate 

freezing distances for 2.0 keV Li and Na scattered from Au of 3.7 and 4.2 Å, 

respectively. Furthermore, it is assumed that the freezing distance for a given projectile is 

the same when scattering from an edge or center atom. These distances are indicated on 

the horizontal Z-axis in Fig. 3.5. The accuracy of these values is limited by the above-

mentioned assumptions used in calculating them.  

Since the freezing distance of Li is smaller than that of Na, it is possible to create 

a scenario that satisfies the neutralization probabilities for the two alkali ions when 

scattering from edge atoms in the Au nanoclusters. The purpose here, however, is not 

necessarily to determine the absolute value of each parameter, but to show that 

reasonable values can reproduce the experimental results since an inaccuracy in one 

number can be compensated for by changing another. For example, it is assumed in this 

scenario that the LEP is independent of freezing distance, as the change of LEP with Z is 

unknown. Although it is quite likely that the LEP is not the same at the two freezing 

distances, the effect of including actual LEPs can be compensated for by altering the 

assumed positions of EFedge and EFcenter to produce the same NFs.  

The Li 2s level is assumed to have a width of 0.14 eV at its freezing distance, 

while the Na 3s has a width of 0.049 eV. In addition, it is assumed that the Li 2s shifts up 

0.10 eV more than Na 3s. This leads to a value of NFE of 33% for Li and 66% for Na, 

which are the same as those found by fitting the model to the experimental data. The 
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neutralization values of the levels are obtained by integrating the Gaussian functions at 

the freezing distances down from the effective Fermi energy indicated by EFedge. 

Similarly, the ionization levels of Li and Na are integrated relative to the highest level for 

the center atoms, as defined by EFcenter. In order to match the NF values for ions scattered 

from bulk Au, which is equivalent to scattering from center atoms, EFcenter must be 0.11 

eV lower than EFedge. This generates NFC = 9% and 3% for Li and Na, respectively, 

consistent with the experimental values for scattering from bulk Au that are used in the 

model.  

Within the formalization of the neutralization model presented here and the 

standard RCT process, and using the above values for the freezing distances, the 

difference in the NFs of scattered Li and Na for the smaller nanoclusters are rationalized. 

To see if the values used for broadening and shifting of the Li and Na s levels are 

reasonable, they are compared to numbers obtained from theory in the literature. 

Nordlander and Tully calculated the shifting and broadening for Li 2s and Na 3s when 

scattering from a Jellium surface [78]. For Li and Na at their respective freezing 

distances, the calculations indicate that the broadening of the Li 2s and the Na 3s levels 

are 0.136 and 0.054 eV, respectively. These values are is in good agreement with the 

above scenario, especially considering the difference in substrates. Nordlander and Tully 

find that the width of the Li 2s level is a factor of 2.5 larger than the Na 3s at the freezing 

distances, while a Li 2s width that is a factor of 2.9 larger is needed to model the actual 

data. This ratio of the Li 2s and Na 3s widths is close, indicating that the model is 
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physically realistic, although it should be noted that the ratio of the widths is not as 

important as their actual magnitudes.  

Nordlander and Tully coincidently calculate the same value of 4.35 eV for the 

level shifting at the freezing distances for both the Li 2s and Na 3s, but this would not 

produce the observed differences in Li and Na neutralization. Therefore, there must be a 

small difference in the level shifting for Li and Na ions at their freezing distances. Since 

the Au nanocluster/oxide substrate target is much different than the Jellium surface used 

by Nordlander and Tully, it is not surprising that their calculations do not produce 

precisely correct values in this case, and the difference between the levels of 0.10 eV 

determined here by fitting to experimental data is relatively small. Also, considering the 

fact that Li has a smaller freezing distance and the shifting is modeled as an exponential, 

it is reasonable that the Li 2s would shift up a small amount more than Na 3s. Note that it 

is the difference between the levels that is important and the magnitude of that difference 

is implicitly set to match NFE and NFC for Li 2s and Na 3s.  

Since the Li 2s level in the isolated atom has a lower energy than Na 3s, at first it 

may be expected that scattered Li should always have a higher NF than Na scattered from 

the same target. This is not the case for the small nanoclusters, however, although it is 

true for nanoclusters larger than 4.5 nm, as seen by comparing the experimental data in 

Figs. 3.2 and 3.3 and the data in Ref. [54]. Reference [54] did not, however, provide a 

quantitative explanation for why this is the case. To match the unexpected experimental 

data within the framework of the model presented here, Na must have a higher NF than 

Li when scattering from the edge atoms while Li must have a higher NF when scattering 
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from the center atoms. Such relative neutralization probabilities are produced by the 

model presented here.  

There are other neutralization effects reported in the literature, but they would not 

affect the proposed model. First, a lowering of the ionization level energy is reported for 

projectile-target distances of less than 2.6 Å for Li scattering from HOPG [79], as 

opposed to the exponential upward shift used here [78]. It is calculated above that the 

freezing distance for Li is 3.7 Å, however, which indicates that even if such a downward 

level shifting did occur at those small distances, it would not affect the neutralization 

probability for this system. Second, the parallel component of the velocity of the exiting 

projectiles has been shown to have significant effects on the measured neutralization 

probabilities [80, 81]. Such parallel velocity effects are not important here, however, as 

the emission is along the surface normal.  

 

3.6 Summary 

Au nanoclusters are a nanometer-sized form of solid-state matter with a non-

uniform charge distribution. Since the measured NF of alkali LEIS is the average 

neutralization when scattering from all of the atoms in a nanocluster, differences in the 

LEP above the edge and center atoms due to the charge associated with the individual 

atoms must be considered in interpreting the data. A parameterized model is developed 

here, which is based on the notions that (1) the neutralization in scattering from edge 

atoms is larger than for scattering from center atoms and (2) that the ratio of edge to 

center atoms reduces with cluster size. The modified form of the model includes inter-
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nanocluster effects that act to depolarize the dipoles associated with the edge atoms when 

they are close to each other, and it is found to match the experimental data over all cluster 

sizes. This work shows how ion scattering is sensitive to the non-uniform charge 

distribution within a nanocluster.  

With the use of the parameterized model presented here, the RCT formalization is 

applied to determine the level broadening, shifting, and freezing distance for Li and Na 

scattering from Au nanoclusters. Values for level broadening, shifting, and freezing 

distance are generated to verify that the neutralization probabilities calculated by the 

model for edge and center atoms are reasonable by comparing them to calculations [78]. 

These values also explain the unexpected larger neutralization probability of Na+ 

compared to Li+ when scattering from small Au nanoclusters.  

A difference in the LEP between edge and center atoms in the nanoclusters is 

implicitly determined by experiments that measure the neutralization of scattered alkali 

ions as a function of cluster size. These differences are consistent with the charges on the 

nanoclusters atoms calculated by DFT [27, 31]. To our knowledge, no other experimental 

technique is able to make such a distinction. For example, STM has not been able to 

discern any differences in charge between atoms in a cluster partly due to the large size of 

the tip compared to the size of individual atoms. Kelvin force probe microscopy (KPFM) 

does directly measure the LEP and has seen differences at the edges of certain 

nanostructures [82], but its spatial resolution is even larger than that of STM. 

Furthermore, neither STM nor KPFM have the elemental resolution of LEIS.  
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Finally, this work suggests a correlation between the measured NFs and the 

enhanced catalytic activity of small Au nanoclusters. The measured NFs are explained by 

the increased positive charge of the edge atoms and how the ratio of edge to center atoms 

decreases with cluster size. It is also discussed above how extremely small clusters could 

have a reduced charge. Experiments of catalytic activity vs. cluster size show a maximum 

activity at a rather small cluster size [5]. Also, there is much evidence that the edge atoms 

that are the active sites for catalysis [27, 83-85]. Thus, it is not unreasonable to infer that 

both the catalytic activity and the neutralization of scattered low energy alkali ions 

depend on this same positive charge associated with the edge atoms.  
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Chapter 4 Adsorption of Br2 onto Small Au 
Nanoclusters 

 
 

4.1 Introduction 

The adsorption of a species onto a solid surface is a fundamental, and usually the 

first, step in many chemical and physical processes, particularly in applications such as 

catalysis [1], etching [2, 3] and chemical vapor deposition [4]. Here, the dissociative 

adsorption of Br2, is shown to occur strongly in the presence of small Au nanoclusters 

deposited on an oxide substrate, but not with bulk metal nor on the bare substrate. Small 

metal nanoclusters supported on oxides are extremely effective nanocatalysts, with rates 

that rival those of enzymes in biological systems [5]. This result thus provides a glimpse 

into how metal nanoclusters promote the adsorption of precursor species at the beginning 

of the chemical reaction process. In addition, Br2 is known to poison catalysis with 

nanoclusters [6], so that an understanding of its adsorption also reveals information about 

the inner workings of the catalysis mechanism.  

The surfaces are investigated primarily with low energy ion scattering (LEIS) in 

two different modes. First, LEIS spectra reveal the distribution of elements at the surface 

[7]. Second, a novel application of LEIS in which the neutralization of scattered alkali 

ions is measured provides information on the surface electronic properties of the 

nanoclusters. The neutralization is sensitive to the local electrostatic potential (LEP) on a 

solid surface a few Å’s above the target atom [8, 9] and has been applied to scattering 
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from clean metals [10-12], adsorbates on metals and semiconductors [8, 13, 14] and 

metal nanoclusters [15-20].  

For nanoclusters deposited on oxide substrates, the neutralization probability is 

particularly sensitive to the size of the clusters in that it is high for the smallest clusters 

produced and decreases as the clusters grow larger [15-18]. In recent work, we proposed 

that the high neutralization is due to the fact that the low coordinated edge atoms of the 

nanoclusters are positively charged, while the center atoms are nearly neutral [21]. The 

positively charge creates upward pointing dipoles that decrease the local electrostatic 

potential (LEP) above the edge atoms causing a higher neutralization probability for 

alkali ions scattered from those atoms. In contrast, the ions that scatter from center atoms 

have a low neutralization probability due to the high work function of neutral Au. Since 

the ratio of the number of edge atoms to center atoms decreases with cluster size, the 

overall neutralization probability decreases with cluster size. In addition, it has been 

shown that the edge atoms are the active sites for chemisorption during catalytic reactions 

involving nanoclusters [22], so there is likely a relationship between the charge state of 

these edge atoms and their ability to promote catalytic surface reactions.  

The adsorption of Br2 molecules onto a solid is a dissociative process that 

involves the scission of the Br-Br bond and thus requires a reactive surface [23]. The fact 

that dissociative adsorption readily occurs on small Au nanoclusters, while it does not 

occur on the bare substrate nor readily on the bulk metal, indicates that the nanoclusters 

are directly involved in the Br-Br bond cleavage, which is related to the catalytic 

behavior of small Au nanoclusters. This work shows that the average LEP above the Au 
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atoms decreases in the presence of adsorbed Br.  This leads to the conclusion that Br2 

dissociatively chemisorbs by forming ionic bonds to the positive edge atoms producing 

downward pointing dipoles that reduce the neutralization of ions scattered from those 

atoms. The fact that Br forms such bonds suggests that the charge state of the atoms in a 

nanocatalyst plays a role in the adsorption step of surface chemical reactions involving 

nanoclusters.  

 

4.2  Experimental Procedure 

The experiments are conducted with the sample held at room temperature in an 

ultra-high vacuum (UHV) chamber that has a base pressure less than 1x10-9 Torr. The 

Si(111) substrate is mounted on the foot of an XYZ rotary manipulator, and is electrically 

isolated so that current can be run directly through the wafer for resistive heating. There 

is a load-lock chamber and sample transfer system attached to the chamber so that new 

samples can be quickly introduced for each measurement without breaking vacuum in the 

main sample preparation and analysis chamber. The main chamber includes equipment 

for performing time-of-flight (TOF) LEIS, low energy electron diffraction (LEED) and x-

ray photoelectron spectroscopy (XPS).  

The substrate is 5x5x1 mm3 single crystal Si(111) wafer (n-type, 5-10 Ω cm) onto 

which a SiO2 film is grown in situ. After insertion into the UHV chamber, the Si samples 

are initially degassed by running 0.5 A through them (roughly 250°C) for a minimum of 

30 min to remove adsorbed water and hydrocarbons. The native oxide layer and any more 

strongly bound contaminants are then removed by “flashing” the sample with 9 A. This 
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value is chosen by systematically increasing the current and monitoring the O 1s peak 

with XPS after flashing until there is no longer any oxygen signal present. The surfaces 

cleaned in this manner show no contamination with XPS and display clear 7x7 LEED 

patterns [24]. The oxide layer is then grown by heating the sample to approximately 

700°C under 2x10-5 Torr of flowing O2 for 30 min, which produces a uniform thermal 

oxide layer [25]. Note that the sample is cooled with the O2 still present to avoid the 

formation of pinholes in the film [26]. XPS is used to confirm the growth of the SiO2 

layer and provide its thickness.  

Au is deposited onto the sample via evaporation from a heated tungsten filament 

(Mathis) with Au wire (99.99%) wrapped around it. The Au coverage is calculated by 

calibrating the deposition rate using a quartz crystal microbalance (QCM) with the 

assumption that 1 ML of Au corresponds to a single atomic layer of Au(111) with a 

density of 19.3 g/cm3, which has a height of 2.6 Å [27]. The reported amounts of 

deposited Au correspond to what the thickness of a Au film would be if it grew in a layer-

by-layer mode. Since it actually forms nanoclusters, however, the coverage values are 

useful as a guide to the amount of Au that is deposited, but are not directly related to the 

thickness of the clusters.  

Br2 molecules are produced from a solid-state electrochemical cell based on a 

AgBr pellet affixed to Ag foil [28, 29]. The exposures are given in units of µA-min, 

which refers to the integrated current run through the cell. It had been previously reported 

that a 10 µA-min exposure corresponds approximately to 1 molecule impacting each 



	 108	

surface atom [30], but that estimate is very dependent on the specific cell parameters and 

geometry. No detailed calibration of the exposure was possible in the present setup.  

XPS measurements are made using a Riber CX 700 with a Mg Kα (1253 eV) x-

ray source and line width of 1.10 eV. A cylindrical mirror analyzer (CMA) with 

adjustable resolution is used to measure the energy distribution of the emitted 

photoelectrons. The XPS spectra presented here were collected with a 3.0 eV resolution 

energy.  

TOF-LEIS was performed with 1.5 keV Na+ alkali ions. The Na+ ions are 

generated from a thermionic emission source (Kimball Physics) and incident at 30° 

degrees to the surface normal. The beam is pulsed at 80 kHz by deflecting it across a 1 

mm diameter aperture mounted in front of the gun. The particles emitted along the 

surface normal, which are scattered at a 150° angle, are collected by a triple microchannel 

plate (MCP) array located at the end of the 0.43 m long flight leg. Deflection plates 

mounted in the leg are used to distinguish between scattered neutral and charged 

particles. With both plates grounded, all of the particles pass through to the detector, but 

only the neutral particles pass when 400 V is placed across the plates. “Total” and 

“neutral” yield TOF spectra are collected by switching the deflection plate voltage on and 

off every 60 s during the approximately 15 min it takes to collect a spectrum to avoid any 

effects of long term drift in the ion beam current. The entrance to the MCP is held at 

ground potential so that they are equally sensitive to charged and neutral particles, but 

there is a decrease in absolute sensitivity as the kinetic energy of the scattered projectiles 

falls below about 1 keV [31].  
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4.3 Results 

Figure 4.1 shows XPS spectra used to confirm the sample cleanliness and monitor 

the presence of Au and Br. Spectrum (a) was collected after exposing clean Si(111) to 60 

µA min of Br2, and a clear Br 3d peak is visible. This is expected since Br readily adsorbs 

on clean Si [23, 32]. Spectrum (b) was collected from SiO2 grown on Si(111), which 

confirms the cleanliness of the sample and enables a measurement of the SiO2 film 

thickness. The thickness is determined from the ratio of the SiO2 to the bulk Si 2p 

component in a high-resolution Si 2p spectrum (not shown) to be approximately 0.7 nm 

using 2.5 nm for the photoelectron escape depth [25]. Spectrum (c) was collected after 

0.30 ML of Au was deposited onto the SiO2, which is a coverage that forms Au 

nanoclusters [33], and it shows no features other than those indicative of Si, O and Au. 

The final spectrum (d) was collected after exposure of the Au nanocluster covered-

surface to 40 µA min of Br2. Note that there is a small feature near the position of the Br 

3d peak, but it is also present in the spectrum collected before Br2 exposure and is likely a 

satellite feature associated with the Au 4f level that is commonly seen in XPS due to a 

small amount of higher energy x-rays that are emitted by the Mg Kα source. If there were 

any Br 3d signal, it would be negligible because there is only a submonolayer coverage of 

Br and XPS is not surface sensitive enough to reveal such a small amount.  
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Figure 4.1 Typical XPS spectra collected from (a) Si(111) exposed to 40 µA min of Br2, 
(b) thermally prepared SiO2 (see text), (c) 0.30 ML Au deposited onto SiO2, and (d) that 
surface exposed to 60 µA min of Br2. A vertical line on the right side indicates the 
position of the Br 3d peak.  
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LEIS is an extremely surface sensitive technique [11], even more so than XPS. 

This is due to shadowing and blocking [34, 35], which effectively only allows projectiles 

that are singly scattered from the first few layers to be detected, although multiply 

scattered projectiles can probe deeper into the material. The role of shadowing and 

blocking for a particular surface depends on the geometry of the setup and the crystal 

structure, so that the depth sensitivity is system dependent. Specifically, when Na+ 

scatters from Au nanoclusters, single scattering in LEIS is found to only probe the 

outermost layer of Au atoms in each cluster [21].  

Figure 4.2 shows representative TOF-LEIS spectra of the total scattered yield 

collected from three different samples. The spectra show single scattering peaks (SSPs), 

which are used as an indication of the surface composition. Single scattering occurs when 

a projectile undergoes a hard binary collision with a surface target atom and scatters 

directly into the detector [11, 36]. The energy of the scattered projectile can be calculated 

classically considering only conservation of energy and momentum in an elastic collision 

with an unbound target atom, which predicts that Na will scatter from the heavier Au 

atoms with a higher energy than when scattered from Br. Note that there is also some 

energy lost to inelastic processes, but the amount is small compared to the elastic energy 

loss.  

The bottom spectrum in Fig. 4.2 was collected following exposure of clean SiO2 

to Br2. The absence of Si and O SSPs is expected because their masses are too small to 

produce singly scattered Na at a 150° angle with a large enough energy to be detected. Na 

scattered from Br does have enough energy to be detected, however, so that the absence 
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of a Br SSP in the spectrum indicates that Br2 does not stick to SiO2. XPS spectra 

collected from this sample (not shown) also had no Br signal. The inertness of SiO2 to 

Br2 adsorption is presumably because the amorphous oxide surface does not have reactive 

sites that can break the halogen-halogen molecular bond.  

The middle spectrum in Fig. 4.2 was collected from clean Si(111) exposed to 60 

µA min of Br2. The SSP from Br is clearly seen at 496 eV, indicating that Br readily 

adsorbs on clean Si(111), consistent with the XPS results described above and reports in 

the literature [23, 32, 37]. The dangling bonds on clean Si(111)-7x7 provide the reactive 

sites that break the Br-Br bonds and lead to dissociative chemisorption.  

The top spectrum in Fig. 4.2 was collected from Au nanoclusters on SiO2 

following Br2 exposure. The sample was prepared by deposition of 0.19 ML Au onto 

SiO2, which is a coverage that produces active nanoclusters, and then exposing it to 40 

µA min of Br2. Although the Br SSP signal is much smaller than for brominated Si, it is 

clearly visible. The strongest peak in the spectrum is at 968 eV, which is the Au SSP. 

Note that the MCP sensitivity and differential cross section must be considered when 

comparing the relative sizes of the SSPs to determine the absolute amount of adsorbed 

Br, as quantified below. 
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Figure 4.2 Typical TOF LEIS spectra collected using 1.5 keV Na+ projectiles. The Au 
and Br SSPs are indicated when present. The three spectra were collected after a 30 µA 
min Br2 exposure of a SiO2 film, clean Si(111)-7x7, and 0.53 ML Au deposited on SiO2. 

 
 
In addition, a polycrystalline Au foil was cleaned by Ar+ ion sputtering and then 

exposed to Br2. This foil showed no evidence of Br adsorption with XPS and a very small 
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Br SSP in LEIS (not shown) that indicates approximately 1 Br adatom per 200 Au 

surface atoms (the method used for this calculation is described below). This implies that 

polycrystalline Au is largely inert to reaction with Br2. Although there are reports of Br2 

adsorption in vacuum on Au(100), which has an unusual 5x20 surface unit cell [38, 39],  

there are, to our knowledge, no reports of Br2 adsorption on other signal crystal faces or 

on poly-crystalline Au. There are, however, reports of Cl2 and I2 chemisorption on 

Au(111) [40, 41]. 

The intensities of the SSPs in the total yield spectra are used to determine the 

surface coverages of Br and Au. Each SSP is integrated following subtraction of the 

multiple scattering background, as described elsewhere [8]. The uncertainty in each SSP 

area is assumed to be purely statistical so that the error bars are set to the square root of 

all the counts, including the background. When comparing the Br and Au SSPs, 

corrections also need to be made to account for their relative sensitivities. First, the MCP 

sensitivity of singly scattered Na depends on the scattered energy, which depends on the 

mass of the target atom. The values for the MCP efficiency at the energies used here are 

0.30±0.01 and 0.50±0.01 for the Br and Au SSPs, respectively [31]. Second, Na scattered 

from Br and Au have different scattering cross sections, which are determined using 

Thomas-Fermi theory [42]. Such a calculation shows that the differential cross section for 

1.5 keV Na scattered at 150° from Au is 2.15 times larger than for scattering from Br. 

Thus, when reporting the ratio of Br to Au, the raw ratios of the integrated SSP areas are 

multiplied by 3.58 to compensate for the differences in the MCP sensitivities and 

differential cross sections.  
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It is well established that Au deposited onto SiO2 forms nanoclusters rather than a 

dispersed film [18, 33]. The growth of nanoclusters by direct deposition on an oxide 

surface produces a narrow range of cluster sizes, and the average size increases as more 

Au is deposited [33, 43]. The amount of Au deposited is converted to the average 

diameter of the nanoclusters using STM data from the literature for Au deposited on TiO2 

[43].  

Figure 4.3 plots the ratio of Br to Au atoms at the surface of the nanoclusters as a 

function of the diameter of the clusters following exposures to 30 and 40 µA min of Br2. 

The ratio is generated by dividing the integrated Br and Au SSP’s from the same TOF 

total yield spectrum and correcting for the MCP sensitivities and scattering cross 

sections. The error bars are calculated by propagating the statistical error determined for 

each individual SSP.  

The inset in Fig. 4.3 shows the ratio of surface Br to Au as a function of Br2 

exposure for a fixed Au coverage of 0.30 ML, which corresponds to a 3.0 nm average 

cluster diameter. The data initially increases linearly showing that the sticking coefficient 

is constant until Br occupies all of the adsorption sites. At this point, no more Br2 sticks 

and the surface coverage saturates. For 0.30 ML of Au, this occurs around 50 µA min. 

Although the saturation level is likely to be dependent on the nanocluster size, a 50 uA 

min exposure is assumed to be sufficient to attain saturation for the range of cluster sizes 

studied here.  
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Figure 4.3 The ratio of the total yield Br and Au SSPs shown as a function of the average 
Au nanocluster diameter on SiO2. The data were normalized by the sensitivity of the 
MCP and the scattering cross sections. Inset: The ratio of the Br and Au SSPs of scattered 
1.5 keV Na+ shown as a function of Br2 exposure for 0.30 ML of Au on SiO2, which 
forms 3.0 nm diameter Au clusters.   
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To determine the neutralization probability, i.e. the neutral fraction (NF), of Na+ 

singly scattered from Au, the integrated SSP of the neutral yield spectrum is divided by 

that from the total yield spectrum. The neutralization probability depends on the LEP at a 

particular distance that the projectile is above the target atom along the exit trajectory, the 

ionization level of the projectile, and the kinetic energy and exit angle of the scattered 

particle [10, 13]. When a projectile approaches a surface, its ionization level shifts up as 

it sees its image charge in the surface. At the same time, the sharp s level in the alkali 

projectile begins to hybridize with orbitals in the surface causing the atomic level to 

broaden [12, 44]. The overlap between the broadened s level and the filled states in the 

surface allow electrons to tunnel back and forth once the projectile is close enough to the 

surface. Because the velocity of the projectile is large compared to the electron-tunneling 

rate, the interaction occurs non-adiabatically and the charge distribution of the scattered 

projectiles is determined along the exit trajectory at a “freezing” point that is typically a 

few Å above the surface [45, 46]. This distribution is measured as the NF of the scattered 

alkali projectiles, which increases as the LEP decreases and vice versa.  

When scattering from a homogeneous surface, such as a clean metal, the LEP is 

the same everywhere so that alkali projectiles scattered from any surface site will have 

the same NF, and it can be calculated using the global surface work function [47]. If the 

surface LEP is inhomogeneous, however, then the NF for a particular scattering event 

depends on the LEP above the target atom, which is sometimes referred to as the local 

work function. This point is clearly illustrated in TOF LEIS measurements from metal 

surfaces with alkali adsorbates [8]. When an alkali atom adsorbs onto a metal it creates a 
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local upward pointing dipole at the adatom causing the LEP above that site to decrease 

from that of the surrounding surface. When using alkali LEIS, it is thus possible to 

explicitly differentiate the NF of the adsorbate and substrate by their scattered energies 

[8, 48]. It was found that alkali ions scattered from alkali adatoms have a larger NF than 

for scattering from the substrate when the coverage is small.  

A recent report from this group [21] agrees with work from the literature in that 

the clusters contain positively charged Au atoms [49-53], although others have concluded 

that the clusters are overall negatively charged [54-57]. It was calculated from density 

functional theory (DFT) that the edge atoms of a nanocluster are positively charged [53, 

58] and thus create upward pointing dipoles. These upward pointing dipoles create a 

lower LEP, as with alkali adatoms, which raises the NF of the scattered projectiles. The 

center atoms are near neutral so that alkali ions scattered from them have the low NF 

associated with scattering from Au metal. The average NF obtained from a LEIS 

spectrum is thus larger than for scattering from bulk Au due to reduced LEP above the 

edge atoms. Because the ratio of edge to center atoms decreases with cluster size, the NF 

also decreases with size. The reduction of the NF of the scattered alkali ions with cluster 

size is thus an indication that the edge atoms are positively charged.  

Figure 4.4 shows the NF as a function of Br2 exposure for different amounts of 

Au deposition. As expected, in the absence of Br the NF is highest for the smallest 

clusters, and goes down as the cluster size increases with further Au deposition [16, 18]. 

For all of the Au cluster sizes, the NF decreases as more Br2 is adsorbed. Note that the 

actual Br coverage could not be calculated for a 0.19 ML coverage Au because the Br 
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SSP was too small. As seen in Fig. 4.4, however, the data show a significant drop in NF 

with Br2 exposure, thus indicating that Br adsorbs even on these smallest nanoclusters. In 

addition, the NF does not decrease significantly beyond the limits set by the error bars 

after a Br2 exposure of 40 µA min, indicating that such an exposure is close to saturation 

coverage.  
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Figure 4.4 The neutral fractions of the singly scattered projectiles for 1.5 keV Na+ 
scattered from Au nanoclusters on SiO2 with the indicated average diameters shown as a 
function of Br2 exposure.  
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4.4 Discussion  

With the use of Fig. 4.3, estimates of the number of Br atoms per nanocluster and 

per edge atom are made and provided in Table 1. The accuracy of this calculation is 

limited by a few factors. For example, differences in the cluster formation process 

between the SiO2 substrate used in the present experiment versus the TiO2 substrate used 

by Lai et al. can affect the cluster sizes calculated here. Although the two substrates are 

different, however, it was shown that the average cluster size formed on SiO2 and TiO2 

are very similar for 0.20 ML of deposited Au [59]. Also, the accuracy of the QCM 

calibration of the deposition rate can lead to a systematic error.  

Table 4.1 shows that the number of Br adatoms is much smaller than the number 

of Au atoms at the surfaces of the nanoclusters. This implies that Br does not completely 

cover the nanoclusters in the same way that it covers a Si(111) surface exposed to Br2 

[23]. One explanation for the very small amount of Br adsorption is that the atoms only 

attach at the edges of the clusters, consistent with the current consensus that adsorption in 

catalytic reactions occurs at the edges [60-64].  

The data in Table 4.1 shows that the total number of Br atoms adsorbed per 

cluster is relatively constant for clusters with average diameters in the range of 2.6 to 3.6 

nm. Lemire et al. found that for 2 nm diameter Au nanoclusters on FeO(111), 5 CO 

molecules adsorb per nanocluster and do so at the low coordinated Au edge atoms [64]. 

As calculated in Table 1, between 7 and 10 Br atoms adsorb per nanocluster for 0.19 to 

0.79 ML of Au. Since the number of CO molecules is comparable to that of Br atoms per 

nanocluster, it can be assumed that the Br atoms occupy the same edge sites as adsorbed 
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CO. A drop off in the dipole strength of the nanocluster edge atoms occurs with 1.10 ML 

of Au due to inter-nanocluster effects that occur when the clusters are close to each other, 

as discussed previously [21], thereby reducing the amount of Br that adsorbs.  

 

Au deposited (ML) 0.19 0.30 0.53 0.79 1.10 
Br exposure (µA 

min) 40 40 40 40 60 

Average 
nanocluster 

diameter (nm) 
2.6±0.2 3.0±0.2 3.1±0.2 3.6±0.2 3.7±0.2 

Average outermost 
Au atoms per 

cluster 
58.9±9.5 75.1±14.2 81.0±14.0 113±13.0 119±13.0 

Average Br atoms 
per cluster 9.2±1.6 10.4±1.4 7.3±0.7 7.3±1.0 3.4±0.6 

Average edge Au 
atoms 27.2±2.1 33.5±2.1 34.6±2.1 39.8±2.1 42.0±2.1 

Average Au edge 
atom per Br atom 3.0±0.9 3.2±0.9 4.7±0.8 5.5±0.9 12±0.9 

Au surface 
coverage 13±2% 20±2% 24±3% 40±4% 43±4% 

Br surface 
coverage 2.0±0.2% 2.8±0.2% 2.4±0.3% 2.6±0.4% 1.2±0.1% 

 
 
Table 4.1 The Au surface coverages, Br2 exposures, cluster sizes, number of outermost 
Au and edge atoms per cluster and coverages of Br determined from the LEIS data. The 
cluster sizes and number of edge atoms were determined from Ref. [43] (see text). The 
average numbers of outermost Au atoms per cluster were calculated from the size of the 
Au SSP. The ratio of Br to Au from Fig. 3 was used to determine the average number of 
Br atoms per cluster and the Br surface coverage.  

 

It has been shown that the nanoclusters’ catalytic activity is a function of cluster 

size with a maximum at a particular diameter [61, 63]. For example, Choudhary et al. 

found that Au nanoclusters on TiO2 with an average diameter of 3.2 nm on TiO2 produce 
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the highest turnover frequency for the CO oxidation reaction [65]. Many ideas have been 

proposed to explain the catalytic activity of metal nanoclusters, but there is not a 

complete consensus among researchers that would accompany a full understanding of the 

underlying mechanisms [66-68]. For example, the charge state of the supported 

nanoclusters and the involvement of that charge in surface reactions are still under debate 

[61, 63].  

The first step in a catalytic reaction is the adsorption of a precursor molecule onto 

a surface, such as CO adsorbing onto Au nanoclusters in the oxidation reaction, which 

has been extensively studied [64, 65, 69, 70]. Since it is likely that Br adatoms occupy the 

same sites when adsorbed on a nanocluster, it can be concluded that halogens poison 

nanocatalysts by blocking the active sites. Furthermore, it can be inferred the mechanisms 

responsible for the adsorption of the precursors and the poisons are similar and thus have 

comparable saturation coverages [71]. 

Poisoning can occur by a physical blockage preventing adsorption of the 

precursor molecule which can entail electronic modification of the nearest neighbor 

atoms by that adsorbate, restructuring of the adsorbent surface, or hindering of surface 

diffusion of the adsorbed reactants [72]. Zhu et al. tested the reactivity of Pt nanoclusters 

on TiO2 by oxidizing formaldehyde both before and after exposure to halogens [6]. From 

testing of formaldehyde oxidation using Pt nanoclusters as a catalyst, they found that any 

of the four halogens causes the performance of the nanocatalyst to worsen. In addition 

Gracia et al. demonstrated the deactivation of Pt nanoclusters used for CO oxidation by 

Cl adsorption [73].  
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Br and CO have some similarities when adsorbing onto Au nanoclusters, as 

discussed above, making it reasonable to assume that the Br adsorbs at the edges of the 

nanoclusters. Once Br2 is near enough to the edge of a nanocluster, it is possible that the 

positively charged edge atoms lead to a configuration of adsorbed Br atoms that is lower 

in energy than the Br2 molecule, causing it to dissociate. This is analogous to the 

dissociative chemisorption of halogens on a solid surface, where charge is donated 

locally from the bonding atom to the halogen adatom to form a partially ionic bond [74]. 

Once a Br atom is near enough to the substrate it can gain an electron to form a filled 

shell negative ion with a charge of -1.0 e. Since the average charge of the edge atoms in a 

nanocluster on TiO2 is calculated to be +0.4 e, it is possible that the Br ionically bonds in 

a bridge site between two edge atoms as the magnitude of the charge of two Au edge 

atoms is nearly equal to the magnitude of a single Br negative ion.  

If the Br adatoms were to adsorb ionically, the reduction in the NF can be 

explained in terms of the LEP change induced by the adatoms. An additional downward 

dipole would be formed by the negative Br adatom and the positively charged Au edge 

atom, which would increase the LEP above the edge atoms and therefore decrease the 

neutralization probability of Na+ when scattering from those edge atoms. Since the NF 

for the smaller clusters does not fully decrease to that of Au metal, the saturation Br 

coverage is not sufficient to cover every edge atom, consistent with the data in Table 1.  

If the saturation coverage was determined solely by the availability of positive 

sites along the edge of the nanocluster, this would imply that the saturation coverage 

should correspond to one Br atom per two Au edge atoms. The actual ratios lie between 
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one Br per 3.0 and 5.5 Au edge atoms, however. This could be partially due to the fact 

that the 40 µA min exposures used for some of the data in Table 1 are below what is 

needed to obtain full saturation of Br. Because these exposures are so close to saturation, 

however, there is more likely an intrinsic limit to the coverage due to other effects. For 

example, repulsion between adsorbed neighboring Br negative ions could lead to a 

saturation coverage that is less than one Br atom per two Au edge atoms.  

 

4.5  Conclusions 

It is found that atomic Br readily adsorbs to small Au nanoclusters, implying that 

the Br-Br bond breaks because of the catalytic ability of the clusters. The Br atoms likely 

bond to the nanoclusters at the same sites as CO, which is at the positively charged edge 

atoms [21, 53, 58]. This suggests a dependence of the catalytic activity on both the edge 

atom charge and the nanocluster size [75].  It is further indicated that Br adsorbs onto the 

nanoclusters by forming an ionic bond with the edge atoms, causing a change in the LEP 

and a reduction in the NF for scattered Na+. From previous chemical studies, the catalytic 

activity of the nanoclusters is known to be reduced by halogen adsorption [6, 73]. This is 

directly correlated with the addition of downward pointing dipoles due to the adsorbed Br 

ions that act to oppose the upward pointing dipoles generated by the positively charged 

edge atoms. This implies that the total charge associated with the individual Au edge 

atoms in each cluster plays a role in the first adsorption step of catalytic reactions. This 

work further suggests that the change in NF of scattered alkali ions with cluster size may 

be a good indicator of a nanocluster’s possible catalytic activity.  
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