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Background: Obesity is a major public health problem affecting millions of Americans

and is considered one of the most potent risk factors for type 2 diabetes. Assessing

future disease burden is important for informing policy-decision making for population

health and healthcare.

Objective: The aim of this study was to develop a computer model of a cohort of children

born in Los Angeles County to study the life course incidence and trends of obesity and

its effect on type 2 diabetes mellitus.

Methods: We built the Virtual Los Angeles cohort—ViLA, an agent-based model

calibrated to the population of Los Angeles County. In particular, we developed the

ViLA-Obesity model, a simulation suite within our ViLA platform that integrated trends

in the causes and consequences of obesity, focusing on diabetes as a key obesity

consequence during the life course. Each agent within the model exhibited obesity- and

diabetes-related healthy and unhealthy behaviors such as sugar-sweetened beverage

consumption, physical activity, fast-food consumption, fresh fruits, and vegetable

consumption. In addition, agents could gain or lose weight and develop type 2 diabetes

mellitus with a certain probability dependent on the agent’s socio-demographics, past

behaviors and past weight or type 2 diabetes status. We simulated 98,230 inhabitants

from birth to age 65 years, living in 235 neighborhoods.

Results: The age-specific incidence of obesity generally increased from 10 to 30%

across the life span with two notable peaks at age 6–12 and 30–39 years, while that of

type 2 diabetes mellitus generally increased from <2% at age 18–24 to reach a peak of

25% at age 40–49. The 16-year risks of obesity were 32.1% (95% CI: 31.8%, 32.4%)

for children aged 2–17 and 81% (95% CI: 80.8%, 81.3%) for adults aged 18–65. The

48-year risk of type 2 diabetes mellitus was 53.4% (95% CI: 53.1%, 53.7%) for adults

aged 18–65.

Conclusion: This ViLA-Obesity model provides an insight into the future burden of

obesity and type 2 diabetes mellitus in Los Angeles County, one of the most diverse

places in the United States. It serves as a platform for conducting experiments for

informing evidence-based policy-making.

Keywords: agent-based model, obesity, type 2 diabetes, simulation, prediction

https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://www.frontiersin.org/journals/public-health#editorial-board
https://doi.org/10.3389/fpubh.2022.818816
http://crossmark.crossref.org/dialog/?doi=10.3389/fpubh.2022.818816&domain=pdf&date_stamp=2022-04-05
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org
https://www.frontiersin.org/journals/public-health#articles
https://creativecommons.org/licenses/by/4.0/
mailto:rnianogo@gmail.com
mailto:niaroch@ucla.edu
https://doi.org/10.3389/fpubh.2022.818816
https://www.frontiersin.org/articles/10.3389/fpubh.2022.818816/full


Nianogo and Arah Forecasting Obesity and Diabetes

INTRODUCTION

Obesity is a major public health problem affecting millions
of Americans with two in three adults and one in three
children considered overweight or obese (1). This condition
disproportionately affects lower-income minority and
disadvantaged groups (1) giving rise to health disparities.
Obesity has been on the rise for the past few decades (1, 2)
despite ongoing prevention efforts warranting its description as
a pervasive and complex phenomenon (3, 4). As a result, the
obesity epidemic has been suggested to result from the complex
interplay between individual and environmental factors and
behaviors (3, 4). This complexity is clearly seen when considering
the socio-ecological framework (5) and exemplified by the fact
that our individual behaviors can be influenced by our past
behaviors (6), the neighborhood we live in (7) and the people
around us (8).

Obesity (and overweight) is considered one of the most potent
risk factors for type 2 diabetes (9). Almost 80–90% of type 2
diabetes patients are overweight or obese. This is alarming as
type 2 diabetes is a disabling disease that imposes considerable
burden on individuals, families, communities and the health
system. The total direct medical and indirect expenditures
attributable to diabetes in the U.S. amounted to ∼$245 billion
in 2012 (10).

To model obesity and forecast its future, researchers have
suggested using complex methods (3, 4). One such method is an
agent-based model—a computer representation of the real world
(11, 12) where researchers and policymakers can run experiments
in silico to evaluate the impact of potential interventions by
simulating counterfactual scenarios (13). An example of such
a virtual world is represented by the Coronary Heart Disease
Policy Model developed to forecast and address coronary heart
disease incidence, mortality and cost (14). Another prominent
model is the Archimedes diabetes model (15), which was built
to address clinical problems and questions around diabetes and
modeled after several randomized controlled trials. In the present
study, we chose to model our virtual world after that of Los
Angeles County, California, for its high population density, its
ethnic diversity (16), its rising rates of obesity and its marked
racial/ethnic disparities in obesity (17).

In addition, modeling approaches that provide different and
complementary insights on how changes in individual and
environmental risk factors could affect disease rates in the future
in a recent birth cohort are needed. Therefore, we set up a
discrete-time modeling approach that will incorporate trends
in individual and environmental risk factors in the hopes of
evaluating their joint effects, at critical life stages, on future
obesity or diabetes status in a recent birth cohort (13).

The overarching goal of this study was to develop an agent-
based simulation model of a cohort of children born in Los
Angeles County and followed into adulthood to study the life-
course development of obesity and of its effects on diabetes
mellitus. Specifically, we aimed to forecast and study the life
course incidence and trends of obesity and its effect on type
2 diabetes mellitus risk. This synthetic cohort could serve as
a platform for conducting in silico experiments and testing

hypothetical public health interventions to inform evidence-
based clinical and population-health decision- and policy-
making (13, 18).

METHODS

We developed the ViLA–Obesity model, a stochastic, dynamic,
discrete-time, agent-based model informed by various data
sources and calibrated to the population of Los Angeles County
in California to explore the incidence and trends in obesity and
type 2 diabetes.

Description of the ViLA Simulated
Population and Overview of the
ViLA-Obesity Simulation Model
According to the 2010 US Census, Los Angeles County was
inhabited by 9,818,605 individuals who lived in 2,346 census
tracts (19). In this model, as it is the case in some other studies
(20), we considered a census tract to represent a neighborhood.
We simulated 235 neighborhoods with 418 inhabitants per
neighborhood for a total simulated population of 98,230, which
represented a 100th of the Los Angeles County (LAC) total
population (Supplementary Table 1). Simulated individuals in
the model are referred to as agents. In this closed cohort, each
agent was born in a specific neighborhood and was simulated
from birth (aged 0–1 year, i.e., time = 0) to middle adulthood
(aged 60–65 years, i.e., time = 9) in 10 discrete time steps
representing critical life stages (Supplementary Table 2). At
each time step the agent’s age is simulated using a uniform
distribution bounded within the specific critical life stages
(Supplementary Table 2).

ViLA-Obesity represents a simulation model or suite within
our ViLA platform. It integrates trends in the causes and
consequences of obesity, focusing on diabetes as a key
obesity consequence during the life course. During the
simulation, each agent exhibited obesity- and diabetes-related
healthy and unhealthy behaviors [e.g., sugar-sweetened beverage
consumption (SSB), physical activity, smoking], gained/lost
weight and developed type 2 diabetes with a certain probability
dependent on the agent’s current state (Figures 1–3). We
calculated and reported age-specific incidence, cumulative
incidence, prevalence and average incidence rate of obesity and
diabetes. To calculate the incidence measures, we considered the
first-time diagnosis of obesity or type 2 diabetes among at-risk
individuals. All data preparation and analysis and Monte Carlo
simulation were also done in SAS 9.4 software (Cary, NC).

Data Sources and Parameters
• Proportions, means and standard deviations:

The parameters for the individual-level socio-demographics
and those of the neighborhood-level socio-demographics
were obtained from the American Community Survey (ACS)
(Supplementary Table 4). The individual-level race and income
group were derived respectively from the neighborhood-
specific race percentage and percent below federal poverty level
(FPL). The proportions, means and standard deviations of the
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FIGURE 1 | Conceptual directed acyclic diagram underlying the data-generating process. SSB, sugar-sweetened beverage consumption; BMI, body mass index;

FFV, Fresh fruit and vegetable consumption; T2DM, type 2 diabetes; Ado, Adolescence. T is an index of time. The smaller dotted square represents the neighborhood

variables and the larger dotted square represents the individual level variables.

individual-level exposures and outcomes [breastfeeding, SSB,
physical activity, fast-food consumption and fruit and vegetable
consumption, smoking, alcohol consumption, body mass index
(BMI), type 2 diabetes] were obtained from the California Health
Interview Survey (CHIS) (21), the Centers for Disease Control
and Prevention (CDC) (22), the World Health Organization
(WHO) (Supplementary Table 5).

• Parameters for effect and association measures:

These regression coefficients were taken from various sources
detailed in the Supplementary Table 3. For clarity, we defined
three levels of evidence. “Evidence level 1” parameters are directly
taken, in this order of preference, from published systematic
reviews and meta-analyses, randomized control trial studies or
cohort studies. “Evidence level 2” parameters are directly taken
from cross-sectional studies from the peer-reviewed literature.
“Evidence level 3” parameters are computed (indirectly obtained)
by our research team using merged publicly and privately

available data [e.g., American Community Survey, National
Establishment Time-Series (NETS), Walkscore.com, WHO,
National Health and Nutrition Examination Survey (NHANES)
and the Los Angeles County Health and Nutrition Examination
Survey (LAHANES) (21–25). Ideally, all parameters would be
coming from “evidence level 1” but because most studies do not
report on the relationships between covariates such as age, sex,
race, socio-economic status [SES], and the outcome and between
the covariates and the exposures, we identified other sources of
evidence (Supplementary Tables 6–10).

Model Specification
Agent
Each simulated agent had three domains of attributes. The
first domain was the agent’s socio-demographics [i.e., age,
sex, socio-economic status (SES), race/ethnicity and marital
status] representing the individual’s inherent susceptibility which
was not allowed to change (i.e., time-invariant variables)
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FIGURE 2 | Model initialization diagram of the ViLA-Obesity model. The neighborhood attributes are first initialized at time t=0 and subsequently followed by the

initialization of the agent. The neighborhood food and physical activity attributes are predicted as a function of neighborhood socio-demographics. The individual

time-invariant variables are set to their baseline values or predicted from socio-demographic variables.

with the exception of age. We assumed that individuals
born in a certain SES group will remain in that group
until the end of the simulation (i.e., inherit their parents’
SES) and that agents could only get married after their
18th birthday (Supplementary Table 4). The second domain
was the agent’s behaviors and was divided into: (i) dietary
behaviors (breastfeeding, fast-food consumption, SSB, fresh fruit,
and vegetable consumption); (ii) physical activity behaviors
(moderate-to-vigorous physical activity) and (iii) other behaviors
(smoking, alcohol consumption) (Supplementary Table 5). The
last domain was the agent’s outcomes (BMI, and type 2
diabetes status).

Agents were only allowed to engage in smoking, alcohol
consumption and develop type 2 diabetes after their 18th
birthday. Both behavior and outcome domains were considered
time-varying variables. For children aged 0–19, we defined
overweight and obesity using the WHO BMI Z-score
international child cutoffs (26). We calculated BMI Z-scores

using CDC’s SAS codes (27). Based on the WHO growth
charts, a child with a BMI Z-score (BMIz) <-2 was classified
as underweight; a BMIz ≥ −2 but <1 was classified as normal-
weight; a BMIz ≥ 1 but < + 2 was classified as overweight and a
BMIz ≥ 2 was classified as obese (28).

Similarly, an adult with a BMI < 18.5 was classified as
underweight; a BMI ≥ 18.5 but <25 was classified as normal-
weight; a BMI ≥ 25 but <30 was classified as overweight and a
BMI ≥ 30 was classified as obese (29).

Neighborhood Environment
The neighborhood where the agents dwelled had three domains.
The first domain was the neighborhood socio-demographics
encompassing the proportion of individuals who self-identified
as non-White, the proportion of individuals living below the
federal poverty level (FPL) and the proportion of individuals
who had a bachelor’s degree or higher. The data for this
domain were obtained from the American Community Survey
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FIGURE 3 | Model execution diagram of the ViLA-Obesity model. BMI, body mass index; T2DM, type 2 diabetes; SES, Socio-economic status. Individual behaviors

are predicted based on the agent’s socio-demographics, previous behavior and depending on the behavior neighborhood characteristics. The body mass index and

type 2 diabetes are predicted based on the agent’s socio-demographics, previous behaviors, and previous body mass index in the case of body mass index.

[ACS] (19). The second domain was the neighborhood
physical activity opportunities that comprise the neighborhood
walkability and access to parks. The data for the second

domain were obtained from Walkscore.com (30), the National
Establishment Time-Series (NETS) (31) and Wolch et al. (30).
The third domain was the neighborhood food environment
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comprising the supermarket and the fast-food density. The
data for the third domain were obtained from NETS (31) (see
Supplementary Table 4 for more details).

Conceptual Model, Equations, and Decision Rules
The decision rules underlying this model were mainly based
on mathematical equations. Completely exogenous variables
in this model were few and limited to individual- and
neighborhood-level socio-demographics. Except at birth (time

t = 0), all behavior equations (e.g., SSB, physical activity)

had a common form whereby the dependent variable would

be a function of the following: intercept, lagged version of

the dependent variables and socio-demographics. Likewise,

the outcome equations (e.g., BMI, type 2 diabetes) had in
addition to the previous ones listed all age-specific behaviors

(e.g., SSB, physical activity, and smoking). Linear and logistic

regressions were used for modeling continuous and binary

dependent variables, respectively. Accordingly, the inverse of the

link functions used in the regression modeling were used for

simulation (i.e., identity and expit functions respectively). The

neighborhood environment and its attributes are first simulated,
then agents with their attributes by time period are simulated

within neighborhoods. These will engender a change in BMI and

will subsequently affect diabetes risk. Most endogenous variables

allow for time-dependency (i.e., previous behavior affecting

future behavior). Features of feedback were also allowed. For
instance, when BMI changed, it affected subsequent ability to
exercise which subsequently affected future BMI and so on (32).
A detailed description of the equation structure are presented in
the Supplementary Table 11.

Model Calibration, Verification, and
Validation
We undertook several iterative steps to build the ViLA-Obesity
model. These included calibration, validation, and verification.
Of note, calibration is the process through which we assign input
parameters within themodel and ensure that the predictedmodel
output is close to that of the observed data (ideally using training
data if available or the entire data if not). Evaluating whether
calibration worked within one’s own data could also be seen
as an internal validation procedure. Validation (or sometimes
external validation), on the other hand, strives to ensure that the
predicted model output (ideally using a training data if available
or using the entire data if not) is close that of the observed data
(ideally using a test data or using observed data from a different
period if not). Verification is a process that involves different
techniques such as structured code walk-throughs to check for
model consistency and errors andmakes sure that themodel does
what it is intended to do (33, 34).

Model Verification
In the model verification step, we used structured code walk-
through to check for model consistency and errors throughout
the modeling process in an iterative fashion.

Model Calibration and Internal Validation
We first obtained parameters (i.e., proportions, means, standard
deviations of each variable, and the regression coefficients
relating any two variables) from multiple studies and datasets.
Many commonly used external validation techniques (35) could
not be used here because we did not have a base cohort in
Los Angeles that followed individuals from birth to adulthood
and which studied our exposures and outcomes of interests.
In other words, we could not externally validate our model.
Nevertheless, we used a “calibration-in-the-large” technique to
calibrate and internally validate our model (35). In brief, the
“calibration-in-the-large” is a calibration whereby one ensures
that the mean predicted outcome equals the mean observed
outcome [i.e., mean(Ypredicted) = mean(Yobserved)] through the
fine tuning of the intercept (35), or other coefficient. The
finding of the equalitymean(Ypredicted)=mean(Yobserved) ensured
the internal validity of the model testifying that there was
agreement between the observed data and our model predictions
(i.e., internal validation). From a practical standpoint, after
we have assigned the parameters in our equation models (see
Supplementary Table 11, e.g., relative risks obtained from the
three levels of evidence, etc.), we sought to find and finetune the
remaining parameters, that is, those that could not be otherwise
obtained directly from the literature. There were two such
parameters: intercepts and feedback parameters (i.e., coefficients
reflecting the relationship between current behavior or outcome
to previous behavior and outcome, all else equal). As such, we
defined a calibration objective function as the Mean Absolute
Error (MAE) between the predicted and observed variable mean
or prevalence. Once the objective function has been defined, we
used a grid search strategy to find the appropriate parameters
of interest. Parameter values that minimized the objective
function were selected to parametrize the model. This was done
sequentially starting from birth (aged 0–1 year, i.e., time = 0) to
middle adulthood (aged 60–65 years, i.e., time= 9) in 10 discrete
time steps. Furthermore, after the whole model parametrization,
we evaluated whether our calibration (internal validation) was
successful by (1) plotting our simulated and observed outcome
means and proportions over time for each behavior [e.g., sugar-
sweetened beverage (SSB)] and outcome (e.g., body mass index)
and (2) computing the variance explained, R2, between the
simulated and observed data for each behavior and outcome over
time. As such, we internally validated our model on the basis of
its ability to the predict observed outcomes. To extend the model
to other populations, we could adjust our intercepts to match the
site-specific observed prevalence (35).

RESULTS

Calibration and Internal Validation
Figure 4 shows the simulated and observed means and
proportions by age groups. Our simulation results broadly
matched the age-specific means and proportions from CHIS
2009. However, there were some small but notable departures
from the observed data for physical activity, fresh fruit
and vegetable consumption, smoking and diabetes prevalence.
This can also be seen with the computed R2 which was
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FIGURE 4 | Calibration of the ViLA-Obesity model. This figure depicts the results of the model calibration. It compares the observed (plain lines) to the simulated data

(dotted lines).

high (>0.9) for body mass index, sugar sweetened beverage,
fresh fruits and fast-food consumption and moderate (>0.6)
for fresh fruits and vegetables and physical activity. The
R2 for exclusive breastfeeding, smoking, alcohol and type
2 diabetes could not be computed because of the low
number of data points available (see Supplementary Table 12

for details).

Trends in Obesity and Type 2 Diabetes
Figure 5 depicts the overall and racial subgroup trends (incidence
and prevalence) in obesity and type 2 diabetes over time in the
ViLA-Obesity model.

We found that the obesity age-specific incidence proportion
was generally increasing from about 10% to about 30% across the
individual life span with two notable peaks at age 6–12 and 30–39.
Likewise, the age-specific incidence proportion of type 2 diabetes
increases from <2% at age 18–24 to reach a peak of about 25% at
age 40–49.

The prevalence of obesity was highest in childhood with
about 25% of children considered obese between the age of 6
and 12 years. During adulthood, the prevalence of obesity rose
to reach a maximum of 40% at the end of follow-up at age
60–65 years.

Compared to Whites, the incidence and prevalence of
obesity and type 2 diabetes were generally higher among
the non-White subpopulation. There were marked disparities
in the prevalence of type 2 diabetes compared to that of
obesity. The racial disparity gap in the prevalence of type
2 diabetes was greatest during middle adulthood but that
in the prevalence of obesity was small but more uniform
across ages.

Trends in Drivers of Health Behaviors
Figure 6 shows the overall and racial subgroup trends in
key health behaviors. The consumption of fast-food was
generally high and decreasing with age. It was highest during
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FIGURE 5 | Obesity and type 2 diabetes prevalence (A), cumulative incidence (B), age-specific incidence proportion (C), and annual incidence rates (D) in the

ViLA-Obesity model. The incidence measures were calculated for first-time diagnosis of obesity or type 2 diabetes among at-risk individuals (i.e., without the

diagnosis).

childhood and adolescence with ∼75–85% of children and
adolescents consuming fast-foods more than one time per
week. The consumption of sugar-sweetened beverage was also
generally high and decreasing with age. It was highest during
childhood and adolescence with ∼60–70% of children and
adolescents consuming more than one 12-oz drink of SSB
per day. Engaging in moderate-to-vigorous physical activity
was generally low and decreasing with age. It was lowest
during adolescence with only about 20% of adolescents engaging
in moderate-to-vigorous physical activity. The consumption
of fresh fruits and vegetables was fairly constant over time.
It was lowest during childhood with only about 40–50% of
children aged 6–12 consuming more than five servings of fruit
and vegetables per day. About one out of five individuals
were breastfed for 6 months or longer during their 1st year
of life.

Cumulative Incidence and Average
Incidence Rate of Obesity and Type 2
Diabetes in the ViLA-Obesity Model
Table 1 presents the cumulative incidence and average incidence
rates of obesity and type 2 diabetes in the ViLA-Obesity model.

Type 2 Diabetes
The 48-year risk or cumulative incidence of type 2 diabetes in
the ViLA-Obesity model was 53.4% (95% CI: 0.53.1%, 0.53.7%)
and the average incidence rate of type 2 diabetes was about 13
cases per 1,000 person-years (95% CI: 12.7, 12.9) for adults aged
18–65 years.

Obesity
The 16-year risk or cumulative incidence of obesity was 32.1%
(95% CI: 31.8%, 32.4%) and the average incidence rate of obesity
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FIGURE 6 | Proportion of obesity- and type 2 diabetes-related health behaviors over time in the ViLA-Obesity model. This figure highlights the health behaviors

prevalence across the population.

was about 22 cases per 1,000 person-years (95% CI: 22.0, 22.5)
for children aged 2–17 years. The 48-year risk or cumulative
incidence of obesity was 81% (95% CI: 80.8%, 81.3%) and the
average incidence rate of obesity was about 28 cases per 1,000
person-years (95% CI: 27.8, 28.2) for adults aged 18–65 years.

DISCUSSION

The purpose of this study was to build an agent-based model of a
cohort of children born in Los Angeles County and followed from
birth into adulthood in order to study the life course development
of obesity and of its effects on diabetes mellitus. This virtual
cohort would then serve as a platform for conducting in silico
experiments and testing hypothetical public health interventions
to inform evidence-based clinical decision- and policy-making
(13, 18).

Our findings suggest that the incidence and prevalence of
obesity and type 2 diabetes within the ViLA-Obesity model were

generally high and increasing during the life span. The prevalence

of obesity was highest during childhood and among individuals

in their 30’s while the prevalence of type 2 diabetes started rising

among individuals in their 40’s. In addition, one in three children

and adolescents and four in five adults will become obese before

age 65 and one in two adults will develop type 2 diabetes before

age 65 in the simulated cohort. There were some racial differences
in the prevalence and incidence of obesity and type 2 diabetes.

The non-White subpopulation experienced higher proportions

of individuals who became obese or developed type 2 diabetes

at any point in time throughout the 64-year follow-up compared

their White counterparts. The presence of such racial disparities

in obesity and type 2 diabetes has been well-documented in Los

Angeles (17, 36).
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TABLE 1 | Incidence rates and cumulative incidence of obesity and type 2 diabetes in the ViLA-Obesity model (n = 98,230).

ALL

Obesity (2–65) Obesity childhood (2–17) Obesity adulthood (18–65) Type 2 diabetes adulthood (18–65)

Total number 98,230 98,230 98,230 98,230

Events 87,625 31,544 79,606 52,426

Person-years (py) 3,183,963 1,415,891 2,847,196 4,099,783

Incidence rate (per 1,000 py) 27.5 (27.3, 27.7) 22.3 (22.0, 22.5) 28.0 (27.8, 28.2) 12.8 (12.7, 12.9)

Cumulative incidence 89.2% (89.0%, 89.4%) 32.1% (31.8%, 32.4%) 81.0% (80.8%, 81.3%) 53.4% (53.1%, 53.7%)

Whites

Total number 35,862 35,862 35,862 35,862

Events 31,072 10,023 28,067 14,162

Person-years (py) 1,245,482 523,022 1,090,448 1,571,629

Incidence rate (per 1,000 py) 25.0 (24.7, 25.2) 19.2 (18.8, 19.5) 25.7 (25.4, 26.0) 9.0 (8.9, 9.2)

Cumulative incidence 86.6% (86.3%, 87.0%) 28.0% (27.5%, 28.4%) 78.3% (77.8%, 78.7%) 39.5% (38.9%, 40.0%)

Non-whites

Total number 62,368 62,368 62,368 62,368

Events 56,553 21,521 51,539 38,264

Person-years (py) 1,938,481 892,869 1,756,748 2,528,154

Incidence rate (per 1,000 py) 29.2 (28.9, 29.4) 24.1 (23.8, 24.4) 29.3 (29.1, 29.6) 15.1 (15.0, 15.3)

Cumulative incidence 90.7% (90.4%, 90.9%) 34.5% (34.1%, 34.9%) 82.6% (82.3%, 89.3%) 61.4% (61.0%, 61.7%)

The incidence measures were calculated for first-time diagnosis of obesity or type 2 diabetes among at-risk individuals.

Furthermore, our results also suggested that the proportion
of individuals engaging in moderate-to-vigorous physical activity
and consuming at least five servings of fresh fruit and vegetables
was generally low while the proportion of individuals consuming
fast-food and drinking sugar-sweetened beverages was generally
high within the simulated cohort. There were also some racial
differences among these obesity-related health behaviors. Among
the non-White subpopulation, there was a lower proportion
of individuals who engaged in moderate-to-physical activity,
and a higher proportion of individuals who drank more than
one sugar-sweetened beverage a day compared to their White
counterparts. In contrast, among the White subpopulation,
there was a lower proportion of individuals who ate fresh
fruit and vegetables and a higher proportion of individuals
who ate fast-food more than once per week compared to their
non-White counterparts.

This study provided a unique perspective of the development
of obesity and type 2 diabetes among individuals who would
have been followed from birth into adulthood in Los Angeles.
This approach allowed us to simultaneously appreciate the
aging effect on and forecast the future burden of obesity
and type 2 diabetes within a birth cohort between 2009 and
2074 (i.e., 2009+65), something that has seldom been done
in the literature. In addition, our modeling approach provides
different and complementary insights on how disease rates
will change in the future in a recent birth cohort. Specifically,
our discrete-time modeling approach will allow researchers to
see how current or future obesity or diabetes burden could
reflect the joint and cumulative effects of prior and current
environmental and individual exposures at critical life stages. In
other words, as individual and environmental risk factors change
over time, so will the trends in obesity and diabetes be expected
to change.

Importantly, unless done for calibration purposes, one should
be cautious when comparing our estimates to past and projected
prevalence and incidence of obesity and diabetes. In fact, many
trend estimates are based on cross-sectional data which typically
reflect a given period effect and averaged across several age-
groups and birth cohorts (37, 38). Nevertheless, these past and
projected trends remain important for gauging the current and
potential future state of obesity and diabetes in Los Angeles and
the US. For instance, in 2011, the prevalence of obesity was 22.4%
among children and 23.6% among adults (17) and the prevalence
of diabetes was 9.9% (36) among adults in Los Angeles County.
In the absence of projection studies in Los Angeles County,
one can look to regional and national projection data to better
appreciate the burden of disease attributable to obesity and type
2 diabetes. In fact, the UCLAHealth forecasting tool, a simulation
model that simulated individual life course among California’s
adult population, predicted that the obesity and type 2 diabetes
prevalence will reach 30.8 and 9.93% respectively by 2020 in their
baseline scenario (39). In addition, other projection studies based
on nationally representative data found that the prevalence of
impaired glucose tolerance could reach 15% by 2048 (40) and
that the prevalence of obesity could reach 51.1% by the year 2030
(41). The latter study also predicted that 80, 90, and 100% of
Americans will become obese by the year 2072, 2087, and 2102,
respectively and that the non-White subpopulation may reach
those levels sooner compared to Whites (41). Interestingly, when
using the linear annual rate of increase reported in that study and
the prevalence of obesity among adults in Los Angeles in 2011,
we estimated that the projected prevalence of obesity in 2074
would be ∼67%. A study of the growth trajectory, which used
a simulation model, also found that about 57.3% could become
obese by the age of 35 (42). Lastly, the predicted life-time risk of
diagnosed diabetes from age 20 was estimated to be about 40% for
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men and women in a nationally representative sample (43). All
of these projections reflect similar alarming trends as suggested
by our model and their insights warrant immediate action to
reverse or slow the epidemic in the US and in Los Angeles County
in particular.

This study has several limitations. First, the calibration and
validation of the ViLA-Obesity model were suboptimal in the
absence of a base cohort in Los Angeles that followed individuals
from birth to adulthood and studied our exposures and outcomes
of interests. Nevertheless, we used age-group-specific means and
proportions from publicly available data (i.e., CHIS) representing
whenever available the population of Los Angeles County in
2009. This has some limitations since it does not allow one to
disentangle the cohort/secular trend effects from the age effects.
As such, we have assumed that the cohort/secular trend effect
would be smaller relative to that of the age effect since we are
simulating each individual as they age over time within the
simulated cohort. Our results may reflect at the very least the age
effect but could also reflect age and cohort effects. In addition,
as cross-sectional data typically include people who are more
likely to have chronic conditions such as diabetes, the use of
such data for our calibration could result in the overestimation of
the measures of occurrence within our simulation. Nevertheless,
in the absence of longitudinal data, using age-group specific
data in a specific year appears to be a better alternative than
using repeated cross-sectional data to calibrate our model since
the latter would not allow one to disentangle age and period
effects. Second, while we have incorporated relevant obesity-
related environmental exposures, we did not account for the
possibility of residual social network effect in this iteration of
the model. While there have been some suggestions that obesity
can spread through social networks (i.e., induction or person-to-
person spread) (8), other authors have demonstrated that such
effects may be the result of confounding by contextual exposures
(e.g., food environment, built-environment) (44). These authors
concluded that after properly accounting for environmental
exposures, the social network effects in obesity almost vanished
(44). This finding, however, did not mean that peer support could
not enhance the effectiveness of certain prevention efforts (45).
We hope to explore the added insights gained from incorporating
social network effects in the next iteration of the model. Third,
the ViLA-Obesity model represented a simplified version of the
Los Angeles County population in that the simulated cohort
was closed (that is agents could not drop out, die, experience a
competing risk, beget children, move in and out of the cohort).
This will likely result in an overestimation of the incidence
and prevalence measures. Future iteration of the model will
incorporate competing risk in the data generating process.
Fourth, using larger age categorization for calibration could
result in suboptimal model calibration. We chose this approach
since the regression parameters obtained from internal data
analysis and to some extent from the literature was generally
obtained for similar larger age categorization (most likely because
of sample size consideration). Fifth, it is possible that the
inclusion of large number of parameters and predictors in the
model could add some additional uncertainty in the estimates
produced by the model. We have included information on both

individual factors as well as environmental factors because we
intended to evaluate the impact of several interventions including
single and combined interventions at the individual level and at
environmental level at different critical life stages. Nevertheless,
although the model has recently been used to evaluate impacts
of obesity related-interventions (13), we believe such models
should continue to undergo refinement through continuous
validation and calibration as data and methods improve and
new applications are found. In addition, the model was built to
represent a 100th of the actual population of Los Angeles and
agents were only allowed to engage in certain behaviors (e.g.,
smoking, alcohol consumption, and develop type 2 diabetes) after
their 18th birthday.

Uses of the ViLA Modeling Suite
The current model will be kept up to date to reflect current
trends and changes in trends in individual and environmental
factors over time. In addition, we hope to incorporate additional
outcomes including but not limited to cardiovascular diseases
and cancer. The ViLA-Obesity suite has been used to evaluate
single and combined (i.e., joint and cumulative) impact several
known and hypothetical interventions that target individual
and or environmental factors (13). For instance, the Los
Angeles County Department of Public Health (LAC/DPH)
in collaboration with the Center for Disease Control and
Prevention (CDC) implemented from 2010 to 2012 several
interventions to curb the obesity epidemic such as the
“Community Putting Prevention to Work (CPPW)” with the
RENEW project (Renew Environments for Nutrition, Exercise,
andWellness). The project “sought to implement policy, systems,
and environmental changes to improve nutrition, increase
physical activity, and reduce obesity, especially in disadvantaged
communities” (46). As an initial modeling endeavor, we proposed
to evaluate the long-term effects of individual-level dietary
interventions (e.g., breastfeeding promotion, and reduction
of sugar-sweetened beverages) and environmental physical
activity-related interventions (e.g., increasing access to parks
and recreations and designing pedestrian-friendly communities)
on obesity and diabetes incidence in the ViLA cohort (13).
Generally, to evaluate the effectiveness of an intervention,
we would contrast the projected incidence and prevalence
under say a hypothetical scenario where we would “alter” the
exposure status to the desired level (intervention course) to the
projected incidence and prevalence under the natural course
(no interventions) (13).

CONCLUSION

We developed and validated a virtual cohort representing
Los Angeles County wherein we explored the development of
obesity and diabetes from birth to adulthood. Our findings
suggest that the incidence and prevalence of obesity and type
2 diabetes within the ViLA-Obesity model were generally high
and increasing with age during the individual life span. In
this virtual Los Angeles, one in three children and adolescents
and four in five adults will become obese before age 17
and age 65 respectively and one in two adults will develop
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type 2 diabetes before age 65. We also noted the presence
of racial disparities in obesity, type 2 diabetes, and obesity-
related behaviors. This virtual cohort serves as a platform
for conducting in silico experiments and testing hypothetical
public health interventions to inform evidence-based clinical
decision and policymaking. This study illustrates the usefulness
of simulations like agent-based models in forecasting the burden
of disease within a population over time to support the need for
effective interventions.
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