
UC San Diego
UC San Diego Electronic Theses and Dissertations

Title
Systems and Algorithms for Real-Time Audio Signal Processing

Permalink
https://escholarship.org/uc/item/2p4179ks

Author
Pisha, Louis A

Publication Date
2022

Supplemental Material
https://escholarship.org/uc/item/2p4179ks#supplemental

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/2p4179ks
https://escholarship.org/uc/item/2p4179ks#supplemental
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA SAN DIEGO

Systems and Algorithms for Real-Time Audio Signal Processing

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy

in

Electrical Engineering (Signal and Image Processing)

by

Louis A. Pisha

Committee in charge:

Professor Bhaskar D. Rao, Chair
Professor Shahrokh Yadegari, Co-Chair
Professor Truong Nguyen
Professor Piya Pal
Professor Miller Puckette

2022

Copyright

Louis A. Pisha, 2022

All rights reserved.

The Dissertation of Louis A. Pisha is approved, and it is acceptable in quality and
form for publication on microfilm and electronically.

University of California San Diego

2022

iii

DEDICATION

To every PhD student who endeavors to carefully balance their passions with the constraints of
funding and PI attention.

To my graduate student worker Union siblings at UC San Diego and across the country whose
collective action has won, and will continue to win, improved wages and working conditions for
all of us.

To everyone who works to elevate technology from merely useful to deeply meaningful.

And to J. and the others.

iv

TABLE OF CONTENTS

Dissertation Approval Page . iii

Dedication . iv

Table of Contents . v

List of Figures . ix

List of Tables . xii

List of Supplemental Files . xiii

Acknowledgements . xiv

Vita . xv

Abstract of the Dissertation . xvii

Introduction . 1
0.1 Contributions and Organization of Dissertation . 2
Bibliography . 6

Chapter 1 A Wearable, Extensible, Open-Source Platform for Hearing Healthcare
Research . 9

1.0 Abstract . 9
1.1 Introduction . 10

1.1.1 Related Work . 14
1.2 Wearable Hardware . 16

1.2.1 Form Factor . 16
1.2.2 Choice of Embedded Platform . 17
1.2.3 Adapting Smartphone SoC Audio Hardware . 20
1.2.4 Embedded Operating System . 21
1.2.5 High-Performance BTE-RICs . 23
1.2.6 Custom Digital Interface . 26
1.2.7 Simultaneous Ancillary Sensors . 28

1.3 Simultaneous Multichannel Biopotential Signal Acquisition 29
1.3.1 Background . 29
1.3.2 System Design . 30
1.3.3 Future Work . 33

1.4 Real-Time Master Hearing Aid (RT-MHA) . 33
1.4.1 Baseline Algorithms . 33
1.4.2 Case Study: SLMS . 37

1.5 Embedded Web Server . 38

v

1.5.1 EWS Architecture / Software Stack . 39
1.5.2 Web Apps . 39
1.5.3 Web App Customization . 43

1.6 Results . 44
1.6.1 HA Performance . 44
1.6.2 Embedded Software Performance . 46
1.6.3 FM-ExG Performance . 48
1.6.4 Results Summary . 51

1.7 Conclusion . 51
Bibliography . 55

Chapter 2 Accelerating non-power-of-2 size Fourier transforms with GPU Tensor Cores 60
2.0 Abstract . 60
2.1 Introduction . 61
2.2 Leveraging Tensor Core Data Layouts . 62

2.2.1 Complex Number Representation . 63
2.2.2 The Accordion Algorithm: Odd Size DFTs with Tensor Cores 65
2.2.3 Epilogue Size 2 or 4 Transforms . 69

2.3 Emulating FP32 with TF32 Tensor Cores . 70
2.3.1 Mixed-Precision Arithmetic . 70
2.3.2 Retaining 21-22 Bits from FP32 . 71
2.3.3 TF32 Data Layout . 73
2.3.4 Recovering Additional Precision with Separated Accumulation 75

2.4 Implementations . 77
2.4.1 Cache- and Register-Based Implementation . 77
2.4.2 Streaming- and Shared Memory-Based Implementation 78

2.5 Results . 78
2.5.1 Numerical Accuracy . 78
2.5.2 Performance . 80

2.6 Conclusion . 84
Bibliography . 87

Chapter 3 Approximate Diffraction Modeling for Real-Time Sound Propagation Sim-
ulation . 89

3.0 Abstract . 89
3.1 Introduction . 90
3.2 Past Work . 93

3.2.1 Reducing Complexity of Edge Diffraction . 93
3.2.2 Other Non-Edge Diffraction Models . 94

3.3 VDaT: Approximating BTM . 95
3.3.1 Volumetric Diffraction . 95
3.3.2 Spatial Sampling . 97
3.3.3 Scene transmission . 100
3.3.4 BTM: Filtering by Interference . 100

vi

3.3.5 Approximating BTM . 101
3.3.6 Combining Results Across Rings . 105
3.3.7 Path Length . 108

3.4 VDaT vs. UTD/BTM Results . 110
3.4.1 Half-Plane . 111
3.4.2 Small Objects . 111
3.4.3 Non-Shadowed Diffraction . 113
3.4.4 Other Occluding Objects . 115

3.5 VDaT Implementation . 116
3.5.1 Complexity . 116
3.5.2 Real-Time Implementation: VDaT in Space3D . 117

3.6 Conclusion . 119
Bibliography . 121

Chapter 4 Specular Path Generation and Near-Reflective Diffraction in Interactive
Acoustical Simulations . 124

4.0 Abstract . 124
4.1 Introduction . 125

4.1.1 Stochastic Methods . 128
4.1.2 Acoustics on RTX . 129
4.1.3 Overview of SSNRD algorithms . 130

4.2 Mesh Preprocessing . 131
4.2.1 Connectivity . 131
4.2.2 Reflection Normals . 133

4.3 Path Generation . 136
4.3.1 Ray Tracing . 137
4.3.2 Path Refinement . 139
4.3.3 Radius Search . 140
4.3.4 Path Merging . 143
4.3.5 Path Continuity . 144

4.4 Spatial Sampling . 145
4.5 DNN for Reflection Response . 148

4.5.1 Network Architecture . 149
4.5.2 Training Methodology . 151
4.5.3 Results . 154

4.6 System Results . 155
4.7 Conclusion . 158
Appendix A: SSNRD Reflection Normals Equations . 159

4.8.1 Vertex Normals . 159
4.8.2 Reflection Normals . 162

Appendix B: Proof of Edge Diffraction Symmetry for Convex Planar Geometry 167
4.9.1 First-order diffraction . 170
4.9.2 Second-order diffraction . 172
4.9.3 Non-convex geometry . 174

vii

Bibliography . 176

viii

LIST OF FIGURES

Figure 1.1. A user wearing the OSP wearable platform . 10

Figure 1.2. Block diagram of the OSP PCD . 17

Figure 1.3. Components of the OSP PCD . 18

Figure 1.4. The OSP PCD disassembled . 19

Figure 1.5. The OSP BTE-RICs . 23

Figure 1.6. Block diagram of the OSP BTE-RICs . 25

Figure 1.7. BTE-RIC communication protocol . 27

Figure 1.8. FM-ExG block diagram . 32

Figure 1.9. RT-MHA software block diagram . 32

Figure 1.10. Beamforming software block diagram . 37

Figure 1.11. EWS example screenshots . 40

Figure 1.12. Synchronization results between FM-ExG and audio 49

Figure 1.13. FM-ExG demodulated spectrum . 50

Figure 2.1. Tensor Core instruction warp data layout . 63

Figure 2.2. Mapping of complex numbers to Tensor Core instruction 65

Figure 2.3. Strategies for removing first row and column from DFT matrix 67

Figure 2.4. Layouts of size 3, 5, 7, and 9 Tensor Core DFTs . 68

Figure 2.5. Main FP64 accuracy results . 80

Figure 2.6. Additional FP64 accuracy results . 81

Figure 2.7. Main FP32 accuracy results . 82

Figure 2.8. FP32 accuracy results for different distributions . 83

Figure 2.9. Speed results compared to cuFFT and memcpy . 84

Figure 2.10. Tensor Core speed relative to cuFFT . 85

ix

Figure 2.11. Speed versus batch size . 86

Figure 3.1. Example VDaT soundfield results . 90

Figure 3.2. Relationship between edge diffraction order and geometry detail 96

Figure 3.3. VDaT spatial sampling . 98

Figure 3.4. Example VDaT subpaths . 99

Figure 3.5. Disk diffraction diagram and response . 101

Figure 3.6. BTM amplitude responses in prototypical cases . 103

Figure 3.7. Numerical model example responses . 106

Figure 3.8. VDaT “coherence” heuristic results . 107

Figure 3.9. VDaT path length estimation diagram . 109

Figure 3.10. VDaT path length estimation results . 110

Figure 3.11. BTM vs. VDaT half-plane results . 112

Figure 3.12. BTM vs. VDaT non-shadowed results . 113

Figure 3.13. Small object diffraction results . 114

Figure 3.14. Slit diffraction results . 115

Figure 3.15. Other occluding objects diffraction results . 116

Figure 4.1. Basic BTM vs. SSNRD results example . 126

Figure 4.2. RT core-based connectivity diagram . 132

Figure 4.3. Diagrams of SSNRD normals . 134

Figure 4.4. Diagrams of modifications to normals . 135

Figure 4.5. Visualization of normals on real mesh . 135

Figure 4.6. Visualization of ray distribution sampling . 137

Figure 4.7. SSNRD spatial sampling . 145

Figure 4.8. SSNRD spatial sampling complexities . 147

x

Figure 4.9. SSNRD DNN architecture . 150

Figure 4.10. Example SSNRD DNN training scenarios . 152

Figure 4.11. SSNRD network results for cylinder . 154

Figure 4.12. SSNRD example cases with larger errors . 155

Figure 4.13. Example Space3D output spectrograms showing SSNRD 157

Figure 4.14. BTM edge diffraction cases for planar object . 169

xi

LIST OF TABLES

Table 1.1. OSP ANSI 3.22 test results . 45

Table 1.2. RT-MHA timing statistics . 47

Table 1.3. OSP system current draw . 48

Table 3.1. Parameters for VDaT numerical model . 105

Table 3.2. VDaT timing results . 118

Table 4.1. SSNRD network scene configurations and test set error 153

Table 4.2. Mesh preprocessing performance examples . 155

Table 4.3. Radius search performance examples . 156

Table 4.4. Path generation performance examples . 157

xii

LIST OF SUPPLEMENTAL FILES

File 3.1. VDaT demo video showing example scene

File 3.2. Python source code for offline diffraction simulation, including VDaT

File 4.1. SSNRD examples video, music sound source

File 4.2. SSNRD examples video, pink noise sound source

File 4.3. Python source code for SSNRD training and evaluation

xiii

ACKNOWLEDGEMENTS

I would like to acknowledge Professor Shahrokh Yadegari for the academic, creative, and

emotional support he offered me throughout my time at UC San Diego.

I would also like to acknowledge Research Scientist Harinath Garudadri, Professor

Shahrokh Yadegari, Professor Jules Jaffe, and Professor Bhaskar D. Rao for their financial

support of my studies at UC San Diego.

Chapter 1, in full, is a reprint of the material as it appears in IEEE Access. Pisha, Louis;

Warchall, Julian; Zubatiy, Tamara; Hamilton, Sean; Lee, Ching-Hua; Chockalingam, Ganz;

Mercier, Patrick P; Gupta, Rajesh; Rao, Bhaskar D; Garudadri, Harinath, IEEE, November 2019.

The dissertation author was the primary investigator and author of this paper.

Chapter 2, in full, is a reprint of the material as it appears in the 2021 IEEE International

Parallel and Distributed Processing Symposium (IPDPS). Pisha, Louis; Ligowski, Łukasz, IEEE,

May 2021. The dissertation author was the primary investigator and author of this paper.

Chapter 3, in full, is a reprint of the material as it appears in the Journal of the Acoustical

Society of America (JASA) 148 (4). Pisha, Louis; Atre, Siddharth; Burnett, John; Yadegari,

Shahrokh, The Acoustical Society of America, October 2020. The dissertation author was the

primary investigator and author of this paper.

Chapter 4, in full, has been submitted for publication of the material as it may appear in

IEEE Transactions on Visualization and Computer Graphics. Pisha, Louis; Yadegari, Shahrokh,

IEEE, 2022. The dissertation author was the primary investigator and author of this paper.

xiv

VITA

2013 Bachelor of Arts in Liberal Arts
St. John’s College, Annapolis, MD

2013–2016 Additional undergraduate work in Electrical Engineering
Stony Brook University, NY

2018 Master of Science in Electrical Engineering (Signal and Image Processing)
Department of Electrical & Computer Engineering
University of California San Diego

2022 Doctor of Philosophy in Electrical Engineering (Signal and Image Processing)
Department of Electrical & Computer Engineering
University of California San Diego

PUBLICATIONS

Louis Pisha, Krishna Chaithanya Vastare, Sergio Luna, Tamara Zubatiy, Ganz Chockalingam, and
Harinath Garudadri. “Tools for assessing efficacy of hearing loss compensation” (presentation).
175th Meeting of the Acoustical Society of America, May 2018.

Louis Pisha, Sean Hamilton, Dhiman Sengupta, Ching-Hua Lee, Krishna Chaithanya Vastare,
Sergio Luna, Tamara Zubatiy, Cagri Yalcin, Alex Grant, Mark Stambaugh, Arthur Boothroyd,
Ganz Chockalingam, Rajesh Gupta, Bhaskar D. Rao, and Harinath Garudadri. “A Wearable
Platform for Hearing Aids Research” (poster). 2018 International Hearing Aid Conference
(IHCON).

Louis Pisha, Sean Hamilton, Dhiman Sengupta, Ching-Hua Lee, Krishna Chaithanya Vastare,
Tamara Zubatiy, Sergio Luna, Cagri Yalcin, Alex Grant, Rajesh Gupta, Ganz Chockalingam,
Bhaskar D. Rao, and Harinath Garudadri. “A Wearable Platform for Research in Augmented
Hearing.” 2018 IEEE Asilomar Conference on Signals, Systems, and Computers.

Louis Pisha. “Advancing the State of the Art in Real-Time Acoustic Modeling and Recon-
struction for Source Separation” (presentation). ACTOR (Analysis, Creation, and Teaching of
Orchestration) Project Workshop, July 13, 2019. IRCAM, Paris, France.

Louis Pisha, Julian Warchall, Tamara Zubatiy, Sean Hamilton, Ching-Hua Lee, Ganz Chock-
alingam, Patrick P. Mercier, Rajesh Gupta, Bhaskar D. Rao, and Harinath Garudadri. “A
Wearable, Extensible, Open-Source Platform for Hearing Healthcare Research.” IEEE Access,
October 2019.

Louis Pisha, Siddharth Atre, John Burnett, and Shahrokh Yadegari. “Approximate diffraction

xv

modeling for real-time sound propagation simulation.” Journal of the Acoustical Society of
America (JASA), October 8, 2020. pp. 1922-1933.

Louis Pisha and Łukasz Ligowski. “Accelerating non-power-of-2 size Fourier transforms with
GPU Tensor Cores.” 2021 IEEE International Parallel and Distributed Processing Symposium.

Shahrokh Yadegari, John Burnett, Grady Kestler, and Louis Pisha. “Spatial Audio and Sound
Design in the Context of Games and Multimedia.” Ed. Dr. Newton Lee. In Encyclopedia of
Computer Graphics and Games. Springer Nature Switzerland AG, 2021.

Shahrokh Yadegari, John Burnett, Eito Murakami, Louis Pisha, Francesca Talenti, Juliette
Regimbal, and Yongjae Yoo. “Becoming: An Interactive Musical Journey in VR.” SIGGRAPH
2022 (August), Vancouver BC, Canada.

FIELDS OF STUDY

Major Field: Electrical Engineering (Signal and Image Processing)

Studies in Systems Design for Real-Time, Wearable Audio DSP (Hearing Aids)
Research Scientist Harinath Garudadri

Studies in Systems and Algorithms Design for Real-Time Acoustics & Spatialization
Professor Shahrokh Yadegari

Studies in Deep Neural Network Architectures for Real-Time Speech Processing
Research Scientist Harinath Garudadri and Professor Bhaskar D. Rao

Studies in Algorithms for Underwater Acoustics Simulation
Professor Jules Jaffe

xvi

ABSTRACT OF THE DISSERTATION

Systems and Algorithms for Real-Time Audio Signal Processing

by

Louis A. Pisha

Doctor of Philosophy in Electrical Engineering (Signal and Image Processing)

University of California San Diego, 2022

Professor Bhaskar D. Rao, Chair
Professor Shahrokh Yadegari, Co-Chair

Real-time systems are the canonical class of applications in signal processing. They drive

the development of algorithms for approaching theoretical results within demanding practical

constraints, and provide opportunities for devising clever ways to take advantage of hardware

capabilities. State-of-the-art contributions are presented on three topics in this field.

The first contribution is the hardware, firmware, and software co-design of a wearable

hearing aids research system. The system is open-source, easy to develop for, and much more

powerful than traditional hearing aids. Its audio performance matches that of standard hearing

aids and it can run custom DSP algorithms in usermode with only 2.4 ms of latency. The system

xvii

also includes local web-based user control and wearable electrophysiology.

The second contribution describes using GPU “Tensor Core” matrix multiply hardware

to accelerate the computation of discrete Fourier transforms of sizes which are prime or have

large prime factors. This includes mapping these sizes to the power-of-2-size Tensor Cores and

emulating higher-precision arithmetic with lower-precision floating point numbers. For large

batch sizes and for certain transform sizes which are odd or an odd number times 2 or 4, this

approach produced state-of-the-art Fourier transform throughput.

Finally, two papers on algorithms design in real-time acoustic modeling for an audio

spatialization system are presented. Two perceptually relevant types of diffraction are simulated

with ray-based models of sound propagation. Existing methods have accuracy or performance

limitations, especially in dynamic applications. A set of algorithms called Volumetric Diffraction

and Transmission (VDaT) is introduced to approximate shadowed or near-shadowed diffraction

by an occluding object. Similarly, Spatially Sampled Near-Reflective Diffraction (SSNRD)

handles near-reflective diffraction involving the edges of reflecting objects. Both methods use

ray tracing to spatially sample the scene, approximate ground truth results to within 1–3 dB,

and have fast performance suitable for real-time applications. SSNRD also incorporates path

generation algorithms, uses a small deep neural network (DNN) to compute the response of

each acoustical path, and applies the GPU “RT core” real-time ray tracing hardware to spatial

computing tasks beyond traditional ray tracing.

xviii

Introduction

Real-time applications present a unique set of challenges in systems and algorithms

design. On the one hand, theoretically ideal methods may require far too many computational

resources to be practically usable, requiring the development of clever approximate algorithms

that produce adequate quality results within the performance constraints. On the other hand,

algorithms can be designed to exploit the specific capabilities of the target computing hardware,

accelerating their performance and potentially making an overall system design viable for the

first time. This combination of constraints—designing algorithms to best fit both the application

and the hardware—can make the “optimization problem” difficult, but also rewarding when the

resulting system is able to solve a problem in a way that had never before been possible.

GPUs, especially NVIDIA GPUs with CUDA [1], are a fertile ground for this kind of

work. The hardware is sufficiently different from a CPU to make programming it non-trivial, but

also sufficiently more powerful for the effort to be worthwhile. New features, such as the Tensor

Cores [2] for accelerated matrix multiply-adds and the RT cores [3] for real-time ray tracing, are

added almost every generation, creating ample opportunities for new algorithmic approaches.

Yet, these changes are nearly always made in a backwards-compatible way, and the same code

will run on GPUs of any size or cost, so algorithms created using them are not at risk of being

locked into one specific hardware model.

Audio can be a personally meaningful research field due to its connection to creative

expression, in particular to music and interactive experiences (games, VR, etc.). However, it

is also perhaps the canonical signal processing application, as many abstract concepts in the

field can be made directly perceptible by applying them to audio and listening to the results.

1

Audio systems frequently must run in real time, often with higher update rates, lower latencies,

and lower tolerance for failure to meet real-time constraints as compared to video or graphics.

Furthermore, human hearing is essential to communication and quality of life, and hearing aids

combine key aspects of audio signal processing and system design into a healthcare application

that has real impacts on users’ lives.

0.1 Contributions and Organization of Dissertation

This dissertation discusses systems and algorithms design contributions made across a

range of topics in these areas of audio, accelerated computing, and real-time signal processing.

Each of these contributions has advanced the state of the art in its respective area, and some of

them have already borne fruit in influencing subsequent research.

Chapter 1 discusses the system design of a hearing aids research platform. Hearing aids

are expensive [4], require time-consuming professional adjustment, and often perform poorly

in noisy environments, among other complaints from hearing aid users [5]. The solutions to

these issues—improved signal processing algorithms, self-fitting paradigms [6] [7], and low-

cost off-the-shelf devices [8] [9]—are active research areas. However, this research work is

impeded by hearing aid research systems often being proprietary, not sufficiently powerful,

and not portable enough for easy use in the field. The presented system, called Open Speech

Platform (OSP) [10], is designed to address all of these concerns. It consists of ear-level units

in a traditional hearing aid form factor, wired to a small wearable box containing the battery

and a powerful smartphone chipset. The audio hardware is high-quality but consumer-grade,

and meets or exceeds the performance of off-the-shelf hearing aids on standard metrics. The

system-on-chip runs Linux and can easily be programmed with new DSP algorithms in usermode,

while maintaining extremely low latency of only a few milliseconds. The system also supports

other sensors, including a one-wire wearable electrophysiology (EEG, ECG, etc.) system [11]

which can run simultaneously with the hearing aid processing. The wearable box provides a

2

WiFi hotspot and serves researcher-created web apps which can interact with the hearing aid

processing; the user can connect with their smartphone and do self-fitting, outcomes assessment,

or other tasks while in the field. All of the hardware and software is open-source, and the

platform has been in use by UC San Diego and its research partners to conduct audiological

studies and investigate new hearing aid DSP algorithms. For more details on the OSP system

design, see chapter 1.

Chapter 2 introduces algorithms for computing fast Fourier transforms (FFTs) on Tensor

Core [2] matrix multiply-add hardware in NVIDIA GPUs. The discrete Fourier transform

(DFT) is one of the most fundamental operations in digital signal processing, converting signals

between the time and frequency domains. The Cooley-Tukey FFT algorithm [12] breaks up

the computation of the DFT into steps based on the prime factors of the transform size, with

powers of 2 being the most efficient. As a result, many applications use power-of-2 size signals

in order to benefit from this algorithm, and power-of-2 FFT algorithms are often as fast as merely

copying the data from and to memory. However, some applications [13] cannot arbitrarily choose

the transform size, and may require transforms whose size is prime or has large prime factors.

Tensor Cores accelerate matrix multiply operations, which the DFT is an example of, but their

dimensions are all powers of 2 and they do not support 32-bit floating point computation. The

presented algorithms [14] map DFTs of odd sizes to the Tensor Cores by taking advantage of

the structure of the DFT matrix. Sizes which are an odd number times 2 or times 4 are also

efficiently supported. In addition, algorithms are developed to approximate 32-bit floating point

operations with the lower precision formats supported by the Tensor Core [15], with only a

fraction of a bit of precision lost on average. For certain odd, odd times 2, or odd times 4 sizes,

and for large batch sizes (large numbers of FFTs being computed at the same time), the presented

approach surpasses the throughput of the previous state-of-the-art, becoming the fastest FFT ever

published for these sizes. For more details, see chapter 2.

Chapters 3 and 4 describe algorithms for approximating wave effects when modeling

sound propagation by rays in real-time applications. Many applications which involve a virtual

3

3D environment, from games and VR to architecture, require perceptually accurate simulation

of acoustics in that environment. If the scene is fixed and only sound sources and receivers

move, the acoustics can be accurately precomputed with wavefield methods [16–18], but if

the scene may change dynamically, wavefield simulation requires far too much computation

to do in real time [19]. As a result, methods are used which model the propagation of sound

as rays and attempt to match wavefield results. Diffraction is inherently a wave phenomenon,

and makes significant contributions to our experience of acoustics. It can be divided into two

cases: when sound goes around or passes by an occluding object, and when sound reflects

from a finite object whose size and shape affects the reflected sound. One popular approach to

modeling these phenomena is edge diffraction methods, where ray paths are generated between

the edges of meshes and the response of these paths is modeled. However, it is difficult to

find the relevant set of edge diffraction paths, especially with detailed meshes which can move

dynamically. Furthermore, when modeling the paths’ response, a choice must be made between

the Uniform Theory of Diffraction (UTD) model [20], which is fast but often inaccurate, or the

Biot-Tolstoy-Medwin (BTM) model [21–23], which is accurate but requires a large amount of

computation. The proposed methods, Volumetric Diffraction and Transmission (VDaT) [24] and

Spatially Sampled Near-Reflective Diffraction (SSNRD), are a new type of ray-based approach

to modeling the two cases of diffraction discussed above, with VDaT handling the occlusion

case and SSNRD handling the reflections case. Both methods use spatial sampling—tracing

rays into the scene in a pattern of concentric cylinders, around the path segment or reflection

point respectively—to extract information about the local scene geometry. Then, both methods

process these results through algorithms to produce estimates of the magnitude response of

the diffracting or reflecting path. These algorithms are tuned to match the high-quality BTM

edge-diffraction results within 1–3 dB, but they require much less computation than evaluating

BTM directly. VDaT was developed first and supports sound transmission through obstacles as

well as diffraction around them. It uses a combination of heuristics and a numerically optimized

model to approximate BTM. SSNRD includes a set of algorithms for generating reflection paths

4

as needed for the modeling of diffraction in conjunction with reflections, and uses a small deep

neural network (DNN) [25] to approximate the BTM results. It uses the RT core (real-time ray

tracing hardware in NVIDIA RTX GPUs) [3] for multiple ray tracing steps as well as other spatial

computing tasks beyond traditional ray tracing [26–30], and as a result it is able to handle scenes

with millions of triangles. Together, SSNRD and VDaT can generate and simulate diffraction

on thousands of acoustical paths at interactive rates in fully dynamic virtual scenes. For more

details on VDaT and SSNRD, see chapter 3 and chapter 4 respectively.

5

Bibliography

[1] NVIDIA Corporation. “CUDA C Programming Guide”. In: (2019). (Last viewed Jan. 20,
2019). URL: https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html.

[2] NVIDIA A100 tensor core GPU architecture. Tech. rep. NVIDIA Corporation, 2020. URL:
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-
architecture-whitepaper.pdf.

[3] NVIDIA Corporation. NVIDIA Turing GPU architecture. 2018. URL: https://images.
nvidia . com / aem - dam / en - zz / Solutions / design - visualization / technologies / turing -
architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf.

[4] Annie N Simpson, Lois J Matthews, Christy Cassarly, and Judy R Dubno. “Time from
hearing aid candidacy to hearing aid adoption: a Longitudinal Cohort Study”. In: Ear and
hearing 40.3 (2019), pp. 468–476.

[5] Rebecca J Bennett, Ariane Laplante-Lévesque, Carly J Meyer, and Robert H Eikelboom.
“Exploring hearing aid problems: perspectives of hearing aid owners and clinicians”. In:
Ear and hearing 39.1 (2018), pp. 172–187.

[6] Arthur Boothroyd and Carol Mackersie. “A “Goldilocks” approach to hearing-aid self-
fitting: user interactions”. In: American journal of audiology 26.3S (2017), pp. 430–
435.

[7] Carol Mackersie, Arthur Boothroyd, and Alexandra Lithgow. “A “Goldilocks” approach
to hearing aid self-fitting: ear-canal output and speech intelligibility index”. In: Ear and
hearing 40.1 (2019), pp. 107–115.

[8] SERGEI Kochkin. “MarkeTrak VIII: utilization of PSAPs and direct-mail hearing aids by
people with hearing impairment”. In: Hearing Review 17.6 (2010), pp. 12–16.

[9] Lisa Brody, Yu-Hsiang Wu, and Elizabeth Stangl. “A Comparison of Personal Sound
Amplification Products and Hearing Aids in Ecologically Relevant Test Environments”.
In: American journal of audiology 27.4 (2018), pp. 581–593.

[10] Louis Pisha, Julian Warchall, Tamara Zubatiy, Sean Hamilton, Ching-Hua Lee, Ganz
Chockalingam, Patrick P Mercier, Rajesh Gupta, Bhaskar D Rao, and Harinath Garudadri.
“A wearable, extensible, open-source platform for hearing healthcare research”. In: IEEE
Access 7 (2019), pp. 162083–162101.

6

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf

[11] Julian Warchall, Paul Theilmann, Yuxuan Ouyang, Harinath Garudadri, and Patrick P.
Mercier. “A Rugged Wearable Modular ExG Platform Employing a Distributed Scalable
Multi-Channel FM-ADC Achieving 101dB Input Dynamic Range and Motion-Artifact
Resilience”. In: 2019 IEEE International Solid- State Circuits Conference - (ISSCC)
(2019), pp. 362–363.

[12] James W Cooley and John W Tukey. “An algorithm for the machine calculation of
complex Fourier series”. In: Mathematics of computation 19.90 (1965), pp. 297–301.

[13] Tai-Sung Lee, David S. Cerutti, Dan Mermelstein, Charles Lin, Scott LeGrand, Timothy J.
Giese, Adrian Roitberg, David A. Case, Ross C. Walker, and Darrin M. York. “GPU-
Accelerated Molecular Dynamics and Free Energy Methods in Amber18: Performance
Enhancements and New Features”. In: Journal of Chemical Information and Modeling
58.10 (2018). PMID: 30199633, pp. 2043–2050. DOI: 10.1021/acs.jcim.8b00462. eprint:
https://doi.org/10.1021/acs.jcim.8b00462. URL: https://doi.org/10.1021/acs.jcim.8b00462.

[14] Louis Pisha and Łukasz Ligowski. “Accelerating non-power-of-2 size Fourier transforms
with GPU tensor cores”. In: 2021 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE. 2021, pp. 507–516.

[15] Anumeena Sorna, Xiaohe Cheng, Eduardo D’azevedo, Kwai Won, and Stanimire Tomov.
“Optimizing the fast fourier transform using mixed precision on tensor core hardware”. In:
2018 IEEE 25th International Conference on High Performance Computing Workshops
(HiPCW). IEEE. 2018, pp. 3–7.

[16] Nikunj Raghuvanshi and John Snyder. “Parametric directional coding for precomputed
sound propagation”. In: ACM Transactions on Graphics (TOG) 37.4 (2018), pp. 1–14.

[17] Chakravarty R Alla Chaitanya, Nikunj Raghuvanshi, Keith W Godin, Zechen Zhang, Derek
Nowrouzezahrai, and John M Snyder. “Directional sources and listeners in interactive
sound propagation using reciprocal wave field coding”. In: ACM Transactions on Graphics
(TOG) 39.4 (2020), pp. 44–1.

[18] Microsoft Game Dev. Project Acoustics overview – What is Project Acoustics? May 2022.
URL: https://docs.microsoft.com/en-us/gaming/acoustics/what-is-acoustics.

[19] Jukka Saarelma, Jonathan Califa, and Ravish Mehra. “Challenges of Distributed Real-
Time Finite-Difference Time-Domain Room Acoustic Simulation for Auralization”. In:
Audio Engineering Society Conference: 2018 AES International Conference on Spatial
Reproduction - Aesthetics and Science. July 2018. URL: http://www.aes.org/e-lib/browse.
cfm?elib=19609.

[20] Robert G Kouyoumjian and Prabhakar H Pathak. “A uniform geometrical theory of
diffraction for an edge in a perfectly conducting surface”. In: Proceedings of the IEEE
62.11 (1974), pp. 1448–1461.

[21] Maurice Anthony Biot and Ivan Tolstoy. “Formulation of wave propagation in infinite
media by normal coordinates with an application to diffraction”. In: J. Acoust. Soc. Am.
29.3 (1957), pp. 381–391.

7

https://doi.org/10.1021/acs.jcim.8b00462
https://doi.org/10.1021/acs.jcim.8b00462
https://doi.org/10.1021/acs.jcim.8b00462
https://docs.microsoft.com/en-us/gaming/acoustics/what-is-acoustics
http://www.aes.org/e-lib/browse.cfm?elib=19609
http://www.aes.org/e-lib/browse.cfm?elib=19609

[22] U Peter Svensson, Roger I Fred, and John Vanderkooy. “An analytic secondary source
model of edge diffraction impulse responses”. In: J. Acoust. Soc. Am. 106.5 (1999),
pp. 2331–2344.

[23] Paul T Calamia and U Peter Svensson. “Fast time-domain edge-diffraction calculations
for interactive acoustic simulations”. In: EURASIP J. Applied Signal Proc. 2007.1 (2007),
pp. 186–186.

[24] Louis Pisha, Siddharth Atre, John Burnett, and Shahrokh Yadegari. “Approximate diffrac-
tion modeling for real-time sound propagation simulation”. In: J. Acoust. Soc. Am. 148.4
(2020), pp. 1922–1933.

[25] Stefan Schubert, Peer Neubert, Johannes Pöschmann, and Peter Protzel. “Circular convo-
lutional neural networks for panoramic images and laser data”. In: 2019 IEEE Intelligent
Vehicles Symposium (IV). IEEE. 2019, pp. 653–660.

[26] Nathan Morrical, Ingo Wald, Will Usher, and Valerio Pascucci. “Accelerating unstructured
mesh point location with RT cores”. In: IEEE Transactions on Visualization and Computer
Graphics (2020).

[27] Nate Morrical, Will Usher, Ingo Wald, and Valerio Pascucci. “Efficient space skipping
and adaptive sampling of unstructured volumes using hardware accelerated ray tracing”.
In: 2019 IEEE Visualization Conference (VIS). IEEE. 2019, pp. 256–260.

[28] Nate Morrical and Stefan Zellmann. “Inverse Transform Sampling Using Ray Tracing
Hardware”. In: Ray Tracing Gems II. Springer, 2021, pp. 625–641.

[29] Stefan Zellmann, Martin Weier, and Ingo Wald. “Accelerating force-directed graph draw-
ing with RT cores”. In: 2020 IEEE Visualization Conference (VIS). IEEE. 2020, pp. 96–
100.

[30] I Evangelou, G Papaioannou, K Vardis, and AA Vasilakis. “Fast Radius Search Exploiting
Ray-Tracing Frameworks”. In: Journal of Computer Graphics Techniques Vol 10.1 (2021).

8

Chapter 1

A Wearable, Extensible, Open-Source
Platform for Hearing Healthcare Research

Reprinted from IEEE Access, November 2019, DOI 10.1109/ACCESS.2019.2951145

1.0 Abstract

Hearing loss is one of the most common conditions affecting older adults worldwide.

Frequent complaints from the users of modern hearing aids include poor speech intelligibility

in noisy environments and high cost, among other issues. However, the signal processing and

audiological research needed to address these problems has long been hampered by proprietary

development systems, underpowered embedded processors, and the difficulty of performing

tests in real-world acoustical environments. To facilitate existing research in hearing healthcare

and enable new investigations beyond what is currently possible, we have developed a modern,

open-source hearing research platform, Open Speech Platform (OSP). This paper presents the

system design of the complete OSP wearable platform, from hardware through firmware and

software to user applications. The platform provides a complete suite of basic and advanced

hearing aid features which can be adapted by researchers. It serves web apps directly from a

hotspot on the wearable hardware, enabling users and researchers to control the system in real

time. In addition, it can simultaneously acquire high-quality electroencephalography (EEG) or

other electrophysiological signals closely synchronized to the audio. All of these features are

9

Figure 1.1. A user wearing the OSP wearable platform. The two hardware components
shown are the behind-the-ear receiver-in-canal (BTE-RIC) transducers and the Processing and
Communication Device (PCD).

provided in a wearable form factor with enough battery life for hours of operation in the field.

1.1 Introduction

Hearing is essential for communication, navigation, and quality of life. The healthy ear

is able to operate in a wide variety of environments over a huge dynamic range due to its highly

complex nonlinear, time-varying, and attention-controlled characteristics. As a result, when

hearing impairments occur, they can rarely be corrected by simply amplifying the input sound.

Hearing aids (HAs) have been under development from this starting point for the last forty years,

and now incorporate multi-band processing, dynamic range compression, feedback and noise

management, and other advanced features.

Unfortunately, there is substantial dissatisfaction with many aspects of HAs among the

user community [1]. Key factors underlying this dissatisfaction include the following:

1. Clinical challenges: One example is that the current best practices in HL diagnosis

10

and intervention rely mostly on pure tone audiometry (PTA) [2], which characterize

only the spectral aspects of HL, in clean conditions; the temporal dynamics in human

perception of speech and music in clean and noisy environments are largely ignored. A

different type of challenge is the typical need for users to see an audiologist to have

fitting parameters adjusted; as an alternative, many researchers are investigating self-fitting

procedures, environment-dependent profiles, and other ways to give the user control over

their experience.

2. Technical constraints: HAs must provide sufficient battery power for processing and

communication, in an acceptably small form factor, while introducing no more than 10 ms

of latency [3] [4]. The overall latency requirement presents a significant challenge for

noise mitigation algorithms and other advanced functions such as frequency lowering.

Furthermore, binaural processing in HAs to take advantage of spatial information in

noisy environments is a major challenge, because of the power requirements for wireless

communication of full-band audio signals between the HAs and additional processing for

adaptive beamforming.

3. Research accessibility: There are five major HA manufacturers: Phonak, Oticon, ReSound,

Starkey, and WS Audiology. All of these manufacturers provide audiologists with tools for

HA fitting, which can be used for certain kinds of clinical research. The manufacturers also

sometimes provide their internal platforms for academic research in specific topics, such as

directional microphones, noise management, programs for multiple listening environments,

etc. However, each of these platforms is proprietary and unique, meaning that it is difficult

to generalize research across the platforms, and infeasible to modify or experiment with

the algorithms in ways not intended by the manufacturers.

4. Cost: There is an average 8.9-year delay between HA candidacy and HA adoption, with

the biggest predictor of adoption delay being socioeconomic status [5]. This implies that

the cost of HAs—which is often several thousand dollars—is a significant obstacle to

11

many users. This high cost is partly due to the technology, but also largely due to the

closed ecosystem of medical-grade hearing instruments. In response, a new market in

off-the-shelf hearing assisted devices has emerged [6] [7].

The National Institutes of Health (NIH) conducted a workshop in 2014 on open-source

HA research platforms and published recommendations about their capabilities and features [8].

Our system, Open Speech Platform (OSP) [9], is designed to meet these recommendations,

including the vision of “new types of basic psychophysical research studies beyond what is

widely done today”. OSP is a suite of comprehensive, open-source hardware and software

tools for multidisciplinary research in hearing healthcare. The goals of OSP are to address

the underlying causes behind the challenges described above, to facilitate existing research by

audiologists and DSP engineers, and to enable new kinds of investigations between hearing and

related disciplines.

The OSP hardware is comprised of:

1. a Processing and Communication Device (“PCD”), which is a small wearable box contain-

ing a smartphone chipset performing all the signal processing and wireless communication

functions, plus the battery and supporting hardware

2. “hearing aid”-style audio transducer devices in behind-the-ear receiver-in-canal (“BTE-

RIC”) form factor, which connect to the PCD via a 4-wire cable. They support 4 micro-

phones and one receiver (loudspeaker) per ear, plus an accelerometer/gyroscope (IMU) for

measuring look direction and researching mobility disorders

3. an optional set of active biopotential electrodes for acquiring EEG or other electrophysio-

logical signals, daisy-chained together and connected to acquisition hardware on the PCD

via another 4-wire cable (together called “FM-ExG”)

The OSP software components include:

1. Firmware for FPGAs in the PCD and BTE-RICs

12

2. An embedded Linux distribution running on the CPU within the PCD, including kernel

modifications and custom drivers for the BTE-RICs

3. The OSP real-time master hearing aid (RT-MHA), which is a library of signal processing

modules and a reference C++ program that performs basic and advanced HA signal

processing in real time

4. The Embedded Web Server (EWS), which:

(a) hosts a WiFi hotspot on the PCD

(b) serves web apps to any browser-enabled device which connects to it, such as the

user’s smartphone

(c) controls the RT-MHA parameters live based on user actions in the web apps

Taken together, OSP is a powerful research tool, in which all aspects of the assisted hearing

experience—from the ear-level hardware to the signal processing algorithms to the way the user

interacts with and controls their device—may be customized and used for research in the lab and

in the field. The target audience of OSP is not just audiologists and speech DSP engineers, but

also researchers in neuroscience, healthy aging, human-computer interaction, networking and

edge/cloud processing, wearable electronics, and many other disciplines. Because OSP is open-

source—all the software and hardware design files are released on our website [9]—researchers

may modify and enhance whatever part of the system is relevant to their work, while leveraging

past contributions made by other researchers.

Our development of OSP has resulted in novel developments in embedded systems

design [10], portable electrophysiology [11] [12], adaptive filtering [13] [14], and other areas not

yet published. Yet, the primary novelty of OSP—and its primary value to the community—is in

its system design as a whole, and the capabilities it offers to researchers and users as a result

of this design. As such, this paper describes the engineering design of all portions of the OSP

platform, with an emphasis on how the design choices provide useful and advanced functionality.

13

In particular, we focus on aspects of the hardware that have not been reported on in previous

publications, and we provide updates on continued development of other parts of OSP. Sec. 1.2

discusses the PCD, the software from FPGA through kernel level, the BTE-RICs, and other

included sensors. Sec. 1.3 covers the FM-ExG. Sec. 1.4 reviews the RT-MHA and discusses new

academic research on adaptive filters which has already been enabled by OSP. Sec. 1.5 describes

the software architecture of the embedded web server (EWS) and the current set of provided

web apps for audiologist and user engagement. Finally, Sec. 1.6 gives objective performance

results for the hardware and software, showing its capacity for real-time, low-latency audio

processing, the quality of the recorded electrophysiological signals, and the platform’s usability

for multidisciplinary clinical research.

1.1.1 Related Work

OSP intersects most aspects of the vast field of research on hearing healthcare. Thus, we

will restrict our discussion in this section to systems for hearing research that perform real-time

audio processing and have a portable or wearable component, as this is what OSP is at its core.

The five major HA manufacturers each have their own proprietary systems of this kind, which

they use for research on new clinical and technical challenges as they develop their advanced

digital HAs. However, these systems are difficult to access for the research community at large,

and difficult to modify and to obtain generalizable results from as discussed above.

As of 2014, no non-proprietary HA research system existed which met the needs of the

HA research community, according to the aforementioned NIH workshop on this topic: “The

NIDCD-supported research community has a critical need for an open, extensible, and portable

device that supports acoustic signal processing in real time” [8]. As a result, in 2016 the NIH

awarded six grants for development of open-source hearing aid research tools [15] [16]. Of these

six, four—including OSP—are complete master hearing aid tools for research. The other three

of these tools are:

14

Tympan

[17] includes a wearable processing unit based on Arduino Teensy [18] and a basic

software library for HA processing. The strengths of this platform include flexibility with the

transducers (the unit simply features standard 1/8” jacks) and battery (the user selects their

own portable battery pack), low cost and use of readily available components, small size, easy

development for beginners with the Arduino platform, and fast time-to-market. Its disadvantages

include low audio quality, severely limited processing power, and support for only one input

channel (microphone).

Open-MHA

[19] features an audio expansion board for BeagleBone Black, a Linux-based OS, and an

extensive real-time and offline HA software suite. The advantages of this platform include good-

quality audio, support for six-channel input, the well-documented nature of both BeagleBone

Black and Linux, and the powerful master hearing aid DSP algorithms. Its downsides include

somewhat limited processing power, the fact that its form factor is portable but not wearable,

and the lack of ear-level transducers for users in the field. However, the open-source nature of

these platforms allows the strengths of each to be combined: for instance, the Open-MHA DSP

algorithms could in the future be ported to OSP hardware.

UT Dallas project

[20] is comprised of a cross-platform smartphone app for processing and commercial

Bluetooth-enabled hearing aid transceivers. The advantages of this platform include its advanced

speech enhancement algorithms, the complete absence of special-purpose hardware, the accessi-

bility of smartphone development, and the use of industry-standard ear-level transducers (which

are proven designs and ultimately the target hardware). Its weaknesses include its inability to

process audio in real time (defined as a total microphone-to-loudspeaker delay of less than 10 ms

while HA processing is occurring), the proprietary nature of the ear-level transducers, and the

semi- or fully-closed smartphone operating systems and driver stack which make it difficult to

15

guarantee performance.

1.2 Wearable Hardware

1.2.1 Form Factor

As reported in [21], the software portions of OSP were first implemented on a laptop,

with a studio audio interface and custom analog hardware for interfacing and the ear-level

transducers. The OSP RT-MHA can still run on any Mac or Linux computer using any audio

hardware supported by the respective OS. However, the potential of OSP is much more fully

realized in its new wearable form factor which we initially discussed in [10].

As discussed in the Introduction, the battery size, available processing power, and

communication abilities in commercial HAs are severely limited by the behind-the-ear or in-ear

form factor they typically are available in. These factors in turn contribute to the cost and the

difficulty of development (e.g. fixed-point embedded processors). For a research platform, we

need much higher processing power, substantially improved wireless communication, relatively

low cost, and easy development. These factors are much more important than the entire system

fitting behind the ear, so we compromised on the form factor: we created a design which is still

easily wearable but which is not limited to the space around the ear (Fig. 1.1). The processing,

wireless communication, and battery for the OSP wearable system are housed in the Processing

and Communication Device (PCD), which is a small box that may be worn around the neck or

on a belt. The PCD is attached by wires to the BTE-RICs, which contain the audio transducers,

codecs and interface hardware, and other sensors. Since the PCD processes the audio from both

ears, it can use beamforming and other algorithms to take advantage of binaural information in

the audio, something BTE or in-ear HAs would have to use wireless transmission to achieve.

The aforementioned NIH workshop suggested that the form factor of BTE-RICs wired to a

processing unit would be appropriate for a research system [8].

16

Figure 1.2. Block diagram of the OSP PCD (Processing and Communication Device).

1.2.2 Choice of Embedded Platform

Smartphone chipsets provide best-in-class computational performance per watt, diverse

peripherals, and advanced wireless connectivity, so they are a natural choice for the embedded

platform in the OSP wearable design. However, many smartphone chipsets are difficult to work

with, due to the high degree of proprietary technology in modern smartphones. Furthermore,

embedded systems development for hard-real-time, low-latency applications is typically done at

a very low level. Low-level audio processing would be contrary to the goals of extensibility and

controllability of OSP, but low latency and stability are still mandatory. Thus, the design task

was primarily to (1) select a platform which is capable of high-level real-time processing and has

all the necessary features, and then (2) adapt its hardware and software to the needs of OSP.

We selected the single-board computer system DragonBoard 410c from Arrow, based

on the Snapdragon 410c chipset from Qualcomm. Because of the hobbyist-oriented nature

of this product—it is intended to compete with platforms like Raspberry Pi and BeagleBone

Black—a large support network for this chipset exists, including a well-maintained Debian

branch. Moreover, several companies supply systems-on-module (SoMs) featuring the same

chipset, which allow developers to move to an application-specific design without having to

design a PCB hosting a complex modern system-on-chip (SoC), while maintaining software

17

Figure 1.3. Components of the OSP PCD (Processing and Communication Device): the carrier
board hosting the Snapdragon 410c SoM.

compatibility and most hardware compatibility with the DragonBoard. We chose the DART-

SD410 from Variscite [22] as our SoM because it breaks out all the multichannel inter-IC sound

(MI2S) peripheral lines from the SoC, unlike the DragonBoard and most other SoMs.

The Snapdragon 410c SoC (APQ8016) has four 64-bit ARM A53 cores at 1.2 GHz,

plus DSP and GPU. Not only does a multicore CPU provide more processing power than a

single-core CPU, it allows us to assign real-time portions of the HA processing to dedicated

cores where they will not be interrupted, while the OS and EWS run on a different core (see

Sec. 1.2.4). Key SoC peripherals include two multichannel inter-IC sound (MI2S) ports for

audio I/O to the behind-the-ear receiver-in-canal (BTE-RIC) transducers; several SPI ports for

peripheral control and communication; a microSD card for data logging; and a UART for the

Linux terminal interface. Crucially, the MI2S ports are directly connected to the CPU, unlike

in many smartphone chipsets where they are connected to the DSP. The latter would require

at least some processing to be done on the DSP, which would substantially complicate the

development process compared to running ordinary usermode code on the CPU, or add the

18

Figure 1.4. The OSP PCD disassembled, showing the battery, the back of the carrier board, and
the plastic shell.

additional latency of transfers in each direction. The associated power management IC, PM8916,

includes a separate lower-performance codec which is used to provide two microphones on the

PCD. The SoC and associated wireless chips provide 2.4 GHz WiFi, Bluetooth, and GPS. Paired

with the industry-standard networking software available for Linux, the WiFi can act as an access

point and the system can serve web pages to clients which connect to it (Sec. 1.5).

We designed a carrier board to host the SoM (Fig. 1.3). This board also includes power

supplies, the FPGA (Sec. 1.2.6), the other interface hardware and ports for the BTE-RICs and

the FM-ExG, the microSD card slot and USB ports, and other basic system features. Adjacent

to the carrier board is a 2000 mAh smartphone-type Li-Ion battery, which can be charged from

a microUSB port or swapped out by the user. The carrier board, battery, and WiFi antenna are

enclosed in a plastic case (Fig. 1.4) to form the PCD, which may be worn around the neck or on

a belt. The PCD is roughly 73×55×20 mm and has a mass of roughly 83 grams, representing

a savings of 67% in weight and 72% in volume over the previous “portable” OSP hardware

design [23].

19

1.2.3 Adapting Smartphone SoC Audio Hardware

As discussed above, the 410c platform was chosen for its power efficiency, high per-

formance, wireless capabilities, and product ecosystem. However, the audio subsystem in the

Snapdragon 410c was designed to support the needs of low cost smartphones; it was neither

designed nor documented for general-purpose use. Our needs for audio I/O to the BTE-RICs

in the HA application are substantially different from those of the smartphone applications the

SoC’s audio subsystem was designed for. Nevertheless, we were able to adapt this subsystem

to the needs of OSP through a combination of reverse engineering and analysis of its partial

documentation. Although some of the implementation details discussed here are specific to the

410c SoC, many of them would apply to a variety of single board computers and SoMs based

on ARM processors running Linux. The OSP software comprising the RT-MHA and EWS is

hardware-agnostic, and can run on Linux and OS X systems in addition to the embedded systems

mentioned above.

Specifically, each BTE-RIC has one MI2S data line for microphone data and one for

speaker data. The same speaker data line can be sent to both BTE-RICs, with the left and right

receiver signals in the left and right time-division slots respectively. However, each of the two

microphone data lines must be received by the SoC on separate MI2S data input pins, since

they each already contain two mics’ data. This means a total of two MI2S data input lines and

one MI2S data output line are needed. Due to the design of the MI2S peripheral units in the

SoC and the undocumented multiplexer block which connects them to the SoC’s I/O pins, the

only configuration which provides two MI2S data input lines is using two data lines of one

MI2S unit in “receive” mode, and using a different unit in “transmit” mode for the data output

line. Unfortunately, the Advanced Linux Sound Architecture (ALSA) kernel subsystem assumes

that each codec has a unique data (I2S) port; in our case, two MI2S ports are being shared

by two codecs. So, we had to build a custom ALSA driver for the BTE-RICs which registers

two “virtual” audio devices—one for mics, and one for speakers—connected to the respective

20

MI2S peripherals. Each virtual device has its own “memory map” with registers controlling the

appropriate functions; writes to and reads from these registers are rerouted in the driver to both

codecs’ SPI control ports as necessary. The result is that usermode software sees two devices,

one with only audio inputs and one with only outputs, both of which function on their own or

simultaneously.

1.2.4 Embedded Operating System

The embedded operating system used in OSP is based on the Debian 9 (“stretch”)

distribution of Linux for Snapdragon 410c (ARM64) provided by Linaro. Besides the custom

audio driver mentioned above, we have tailor-built the kernel and configured the environment to

meet the following goals:

1. Stable real-time performance

2. Low power consumption

3. Fast bootup

4. Small memory footprint

5. Security

These goals will be referenced by number in the following paragraphs.

Kernel

The kernel is configured with all core facilities and most drivers as built-in. Building

as much code into the kernel binary rather than modules improves the bootup time (3). In the

current configuration, there are a few drivers that remain modular due to the fact the driver cannot

initialize until after the firmware is initialized and the device is powered up. Future work by our

team and the community will be needed to modify these drivers to enable them to compile as

built-in, which will allow module loading/unloading to be completely disabled. No dynamic

21

loading of kernel-mode code is a desire for security (5) since the kernel cannot be modified as

easily at run-time which will help thwart specific threats, e.g., rootkits.

Any kernel facility that is not used by the system or driver that does not have the

hardware present is not included. This optimization helps to achieve both (3) and (4) along with

the additional benefit of decreasing build time of the kernel. Short build time is not a design

goal but is a desirable metric that is crucial in reducing development and test time. Furthermore,

we hope to show that by removing additional kernel features, the security posture of the system

improves (5) by removing any attack vectors associated with those features.

To address (1), the PREEMPT RT option has been enabled, which enables the kernel to

become preemptable and shortens the critical sections within kernel code.

Environment

systemd has replaced the old sysvinit style init process that becomes PID 1 when the

kernel finishes its boot process, and handles the remaining portions of system boot. systemd is

configured to only run on CPU core 0 through a configuration setting in /etc/systemd/system

.conf. As a result of this configuration the init process and subsequent processes spawned by it

will only run on core 0. This allows CPU cores 1-3 to be reserved for all real-time processing (1);

user code handles their assignment to these cores when they are executed. Similarly, all interrupt

handling is bound to core 0 to avoid interrupting the real-time processes running on cores 1-3.

Unnecessary and unused services are disabled to reduce power consumption (2) and

enhance system security (5). The Bluetooth radio is also disabled by default for the same two

reasons but can be enabled by a user if so desired. As seen in Table 1.3 below in Sec. 1.6, the

idle power consumption is more than half of the total power consumption during full operation,

so it is extremely important to eliminate unnecessary power sinks to improve battery life.

The system configures the WiFi interface as a hotspot after boot to allow for remote

connectivity to the PCD, for the embedded web server (EWS) and for SSH for development. In

conjunction with the hotspot, multicast DNS-Service Discovery (mDNS-SD, a.k.a Bonjour) is

22

enabled and configured to allow a user connected to the hotspot to easily access the EWS or SSH

into the board using the hostname ospboard.local, without needing to know the IP address of

the board. As a fallback for systems that do not support mDNS, e.g. Android, the IP address of

the board is always the same when connected through the hotspot.

1.2.5 High-Performance BTE-RICs

Figure 1.5. The OSP BTE-RICs, together and disassembled.

Along with the PCD, the other key hardware component of OSP is novel ear-level

transducers in a behind-the-ear receiver-in-canal1 (BTE-RIC) form factor (Fig. 1.5). These

units are each connected to the PCD via a four-wire cable, and serve as the primary input and

output for the system. They are composed of a rigid PCB for the electronics, a flex PCB for the

microphones, a custom 3D-printed plastic shell, and a rugged 3D-printed strain relief [9].

Unlike in previous versions, the communication between the BTE-RICs and the PCD is

digital—the codecs are within the BTE-RICs. The low-level digital interface is transparently

facilitated by FPGAs in both the BTE-RICs and the PCD (Sec. 1.2.6). The decision to have digital

communication with the BTE-RICs was made for several reasons. First, analog communication

with the BTE-RICs would require at least six wires—a differential pair each for the microphone
1The output transducer, i.e. the loudspeaker, is called the “receiver” in the telephony and HA communities. This

is typically a small speaker in a long, slender package that is in or just outside the ear canal.

23

and receiver, plus power and ground—plus even more wires for multiple microphones per ear.

As discussed below, multiple audio inputs per ear is crucial for expansion of the hearing-related

research OSP supports. Second, having the codec physically close to the transducers reduces the

opportunity for noise and interference. Finally, the digital interface allows for additional sensors

at the ear—starting with the IMU (Sec. 1.2.7)—without the need for any additional wires, thanks

to the FPGAs.

The codec in each BTE-RIC is the high-performance but consumer-grade Analog Devices

ADAU1372 [24], which provides a differential headphone driver for the receiver and four analog

inputs per ear. By default, these are a front microphone, a rear microphone, an in-ear microphone,

and a voice pick-up (VPU) transducer (Fig. 1.6); while the former two are common on hearing

aids, the latter two are for specialized purposes, and are explained below. The I2S standard

only supports two channels of audio per data line, so currently only two of these four inputs

may be transmitted to the PCD at a time. However, the application may select via ALSA

commands which two inputs these are, and future work will enable simultaneous capture of all

four microphones (Sec. 1.2.6). All inputs and outputs are sampled at 48 kHz 24 bit; the codec

also supports 96 kHz sampling, which will be supported by a future version of OSP for improved

accuracy in beamforming.

Several types of audiological studies require measurement of the sound within the ear

canal while a hearing assisted device is being worn. Purposes include calibration of the acoustics,

Real Ear Insertion Gain (REIG) measurements during HA fitting [25], compensation for occlusion

effects [26], and studying otoacoustic emissions [27] [28]. Typically, this measurement is

performed with a probe placed into the ear canal as the HA is inserted; unfortunately, this method

is time-consuming and precise positioning of the probe can be difficult [25]. To facilitate such

studies, the BTE-RICs support a special receiver in development at Sonion [29] which has a

microphone in the same package, facing into the ear canal. This allows the sound within the ear

canal to be measured and monitored as a normal part of work with the platform—including in the

field, which would normally be prohibitively difficult. The current design uses a CS44 connector

24

for the receivers, with a pinout that is compatible with a variety of regular receivers as well as

with the embedded-mic receiver, thus not increasing costs for users who do not need this feature.

Figure 1.6. Block diagram of the OSP BTE-RICs.

A VPU (voice pick-up) is a bone conduction transducer that picks up the user’s voice,

while being highly immune to background noise (40-50 dB loss to ambient sound compared

to conducted sound [30]). When mounted to a device which is in robust contact with the head,

such as an in-ear hearing assisted device, it picks up the vibrations of the skull—that is, the

user’s voice—without any outside sound. While bone conduction microphones have made

impressive advances, they still have reduced frequency range compared to air microphones, and

their response to vibration is noticeably nonlinear. Thus, the VPU in this system effectively

provides a measurement of the user’s voice which is somewhat distorted but almost completely

free of interference. This signal can be useful in several ways. First, adaptive systems such as

beamforming and speech enhancement rely on accurate estimates of when the user is speaking

(speech presence probability or SPP) in order to estimate the interfering noise. The VPU signal

can provide an improved estimate of the SPP, so that the adaptation can be temporarily disabled

while the user is speaking [31]. Second, other algorithms can be developed to improve the

experience of listening to one’s own voice, which is known to be adversely affected by HAs [26].

These may include reducing the gain while the user is speaking, DSP approaches to correct for

25

the presence of the HA in the canal, etc. Finally, algorithms—especially ones involving deep

neural networks—can be developed to reconstruct an improved signal of the user’s speech from

the VPU signal [32], for purposes like telephony or virtual meeting settings.

In addition to the codec and audio hardware, each BTE-RIC also provides an inertial

measurement unit (IMU), which is discussed in Sec. 1.2.7; separate analog and digital power

supplies for additional noise suppression; and an FPGA, which is discussed next.

1.2.6 Custom Digital Interface

Both the PCD and each BTE-RIC contain an FPGA (Lattice MachXO3 series [33]).

As discussed below, the form factor of the BTE-RICs containing the codecs with processing

in the PCD would not be feasible without the FPGAs. Once they were present, they enabled

additional features, including the FM-ExG (Sec. 1.3), so they have become a key component of

the platform.

The original need for the FPGA came from the observation that the communication

between the BTE-RICs and the PCD would require a large number of signal wires: bit clock,

word clock, microphone data, and receiver data for I2S, and at least two lines for control signals

to and from the codec and IMU (clock and data of I2C). Combined with power and ground wires,

the cable to the BTE-RICs would have to have eight conductors. On top of this, neither I2S nor

I2C are designed for transmission over wires of any significant length; while they would be likely

to work in controlled conditions in the lab, they might not be robust in varying electromagnetic

environments in the field. So, we decided to add an FPGA at each end, and transmit all the

signals with a custom protocol over a single bidirectional twisted pair, reducing the number

of conductors in the cable to four. The physical layer chosen is bus low-voltage differential

signaling (BLVDS) [34] [35], a bidirectional version of the popular LVDS standard [36] used

in many modern serial interfaces such as USB, SATA, and PCI Express. This interface uses

standard CMOS drivers to transmit and analog differential amplifiers to receive; the FPGAs

support this interface natively, only needing a few external resistors at each end to match the

26

impedance of the cable. Because the signal transmitted is differential, it is nearly immune to

common-mode noise and interference; and since the cable is shielded and the conductors are

twisted, there is very little opportunity for differential interference. As a result, this interface is

perfect for high-speed communication over the roughly 1 m cable between the BTE-RIC and the

PCD.

Figure 1.7. BLVDS protocol for communication between the PCD and BTE-RICs. 8 bits of I2S
audio data are transmitted in each direction, plus a number of control signals, during the same
time as 8 I2S bit clocks occur.

We created a custom communication protocol over BLVDS, designed to allow the SoC

to transparently interact within the codec and IMU within each BTE-RIC (Fig. 1.7). There are

three categories of signals which are multiplexed and packetized for transmission over LVDS:

high-speed data, low-speed control, and clock. The microphone and receiver I2S data is the

high-speed data; this is transmitted 8 bits at a time in each direction within each communication

packet. The SPI control lines for the codec and IMU are the low-speed signals; the states of

these signals are transmitted once per packet. Finally, the protocol allows the I2S bit clock in the

BTE-RIC to be synchronized with that in the PCD, to correct for drift between the oscillators

in the two devices. The FPGA in the BTE-RIC adjusts the sub-cycle timing of its I2S bit clock

to match a known rising edge in the data stream from the PCD. Since the BTE-RIC sends

back its own rising edge in its half of the packet, each FPGA can determine if the other is

connected and properly responding, which allows for deterministic behavior at startup or any

time communication is interrupted.

27

In future work, the FPGAs will also enable simultaneous capture from all four micro-

phones on each BTE-RIC. The codec supports an extension to I2S called TDM which allows for

four channels per data line. The SoC’s I2S subsystem does not support this, but it does support

two channels at twice the sample rate, which is the same data bitrate. For this mode, the FPGA

in the PCD will send a “fake” word clock signal to the SoC which matches its expectations and

“trick” it into accepting the data. The FPGA will also annotate the channel numbers in the lower,

unused bits of the audio data—each sample is 32 bits but the ADC is only 24 bit—so that the

application can distinguish them.

1.2.7 Simultaneous Ancillary Sensors

As described below, the OSP hardware platform currently supports three additional types

of sensing capabilities, not traditionally associated with hearing aids research. Since OSP is

designed to be a tool for new kinds of research beyond what is currently possible, these sensors

may be used in conjunction with the audio transducers for new work in fields related to hearing,

or on their own with OSP acting as a wearable acquisition and processing system. Furthermore,

OSP can serve as a baseline open-source wearable hardware design, which can be modified by

researchers who would like to add their own sensors for investigations into lifestyle, healthy

aging, and many other health-related fields.

IMUs in BTE-RICs and PCD

Both the BTE-RICs and the PCD contain a Bosch BMI160 inertial measurement unit

(IMU), which is a three-axis accelerometer plus three-axis gyroscope. The gyroscope data from

the BTE-RICs provides reasonably accurate information about changes in head orientation.

Assuming that target sound sources and interferers move much more slowly or rarely than the

user’s head, this allows changes in the user’s look direction to be corrected for in algorithms

which model the spatial positions of audio sources such as beamforming-based source separation

or noise suppression. This has the potential to dramatically improve their convergence speed and

28

reduce their error rate, providing a better user experience.

In addition, there is another related healthcare application for the IMU data. Ability to

maintain mobility—broadly defined as movement within one’s environment—is an essential

component of healthy aging, because it underlies many of the functions necessary for indepen-

dence [37] [38]. In this context, gait disturbances are usually due to a combination of decreased

physiological reserves and increased multisystem dysfunction [39]. The IMUs allow researchers

to assess gait speed and monitor for unexplained gait disturbances during activities of daily living.

Physical activity monitoring software could be developed to run in parallel with the hearing aid

software and provide appropriate feedback to the user or researchers.

GPS

The SoM includes the radio hardware to support GPS-based location acquisition. Future

work will focus on enabling GPS in software and acquiring useful data from it without disrupting

real-time audio processing or consuming too much power.

FM-ExG hardware in PCD

The PCD’s carrier board also includes a hardware subsystem for simultaneous biopoten-

tial acquisition. This consists of a fast-sampling ADC controlled by the on-board FPGA, which

relays the data to the Snapdragon SoC via SPI. This system is discussed in the section below.

1.3 Simultaneous Multichannel Biopotential Signal Acquisi-
tion

1.3.1 Background

Acquisition and processing of biopotential or elecrophysiological signals—which we call

“ExG”, for EEG (electroencephalography), ECG/EKG (electrocardiography), EMG (electromyo-

graphy), etc.—is a major field of study in emerging healthcare research. Simultaneous EEG and

HA audio processing is of particular interest in pre-lingual pediatric hearing loss management,

29

as it could assist clinicians in fitting hearing aids to infants who are unable to self-report the

efficacy of their hearing aid prescription, leading to a dramatic improvement in their quality

of life [40]. Furthermore, in the future the process of HA tuning could be done adaptively via

machine learning systems, which would monitor the experience of the user as measured by

their EEG patterns. Unfortunately, EEG typically requires many electrodes with an independent

wire for each, making acquisition systems large, expensive, and difficult to use especially in

pediatric applications. While devices capable of concurrent hearing aid tuning and EEG do

exist [41], to our knowledge no wearable or easily-portable devices of this kind are available to

the research community. Other applications of wearable biopotential acquisition systems include

monitoring conditions of concern such as heart ailments (ECG), muscle degeneration (EMG),

or the progression of neurological disorders (EEG) such as Alzheimer’s disease and Parkin-

son’s [42]. In addition, there is emerging evidence that neurofeedback from EEG can be helpful

as an intervention in many disease conditions [43] including epilepsy [44] and ADHD [45].

1.3.2 System Design

OSP incorporates a wearable biopotential acquisition system, which can run alongside

the HA processing, and which only requires one small four-wire cable from the electrodes

to the PCD. The design of this system is based upon the distributed FM-ADC architecture

in [12]. The active electrodes feature high input dynamic range of around 100dB and no

input gain stage. This allows them to support wet or dry electrodes, and they can be used for

ECG, EMG, and EEG simply by changing the position of the electrodes on the body. In each

active electrode, the biopotential signal at baseband is bandwidth-expanded into a frequency-

modulated (FM) band centered at a unique carrier frequency. This upconversion is performed

in an application-specific integrated circuit (ASIC) and the resultant FM signals are all driven

onto a single signal wire, each FM signal occupying a distinct area of spectrum for frequency

domain multiplexing (FDM). The electrodes are daisy-chained in any order and connected to

the PCD via a 4-wire cable (the remaining three wires being power, ground, and a reference

30

voltage). The aggregate signal content of the single composite FM-FDM wire is sampled by an

analog-to-digital converter (ADC) in the PCD. The data can then be streamed using WiFi for

off-body processing or processed locally in multi-modal signal processing applications. In either

case, after demodulation, the original biopotential signals can be recovered.

The benefits of such a biopotential acquisition system strategy include: power efficiency

intrinsic to the distributed FM-ADC architecture, ruggedization against inertial motion artifacts,

reduced system weight due to reduced wiring burden, and frequency up-conversion which

eliminates baseband coupling artifacts in the signal wire. Its high input dynamic range ensures

that the acquisition hardware does not saturate and lose signal for large motion artifacts at the

input; combined with the IMUs in the BTE-RICs, OSP could in the future support IMU-based

motion artifact removal as demonstrated in [46].

As presented in [11], the FM modulation allows for an increased effective signal-to-noise

ratio (SNRFM) compared to the SNR of the ADC at the carrier frequency, called carrier-to-noise

ratio (CNR). The overall SNR of the system depends on the bandwidth expansion ratio D [47] as

follows:

SNRFM = 10log10(
3
2

D2)+CNR

The CNR of an ideal 12-bit ADC (i.e. 12 effective number of bits or ENoB) is 72 dB, so we

chose D = 20 to give a theoretical 28+ 72 = 100 dB SNR for each FM channel. Assuming

EEG signals have a maximum frequency of 500 Hz, D = 20 leads to a 10 kHz FM frequency

deviation. The actual FM bandwidth may be computed two different ways: by the empirical

Carson’s Rule, giving 2×(10kHz+500Hz) = 21 kHz, or by including all side tones with greater

than 1% of the unmodulated carrier amplitude, giving 3.2×10kHz = 32 kHz [47]. Based on

these two estimates of the bandwidth and the desire for ≈ 10 kHz guard bands between channels,

we space the channels 40 kHz apart. With a sampling frequency of 1 MHz, 12 ExG channels can

be supported.

An overview of the hardware included on the PDC to realize this is shown in Fig. 1.8.

31

Figure 1.8. Block diagram of FM-ExG hardware in the OSP PCD. The FPGA converts between
parallel and SPI data formats and stores samples in a FIFO queue for batched access by the SoC.
Note that the FM sample clock is derived from the same MEMS oscillator as the I2S audio is, so
the ExG and audio streams remain permanently synchronized.

The Analog Devices AD9235 [48] was chosen for its parallel interface, 12-bit resolution, and

supported sampling rates up to 60 MHz. The ADC is clocked by the FPGA with a 1.024 MHz

clock signal generated by dividing the 12.288 MHz clock from the MEMS oscillator driving the

I2S by 12. The ADC’s parallel data interface connects to the FPGA, which contains a simple

FIFO queue to store the samples until they are ready to be retrieved by the SoC via SPI. A

level-based signal is sent to the SoC when more than 1024 samples (1 ms of data) are available;

the SoC polls this signal and then performs an SPI transfer of 1536 bytes, which covers the 1024

Figure 1.9. RT-MHA software block diagram with signal flows. Audio I/O operates at 48 kHz
and all HA processing is carried out at 32 kHz. The baseline HA functions provided include
adaptive beamforming (BF), subband decomposition, speech enhancement (SE), wide dynamic
range compression (WDRC), and adaptive feedback cancellation (AFC). See Fig. 1.10 for an
enlarged picture of the beamforming block.

32

12-bit samples. Since the SPI clock runs at 50 MHz—which could theoretically transfer 6250

bytes per ms if the clock ran continuously—there is sufficient timing slack for transfers to be

stable.

When FM-ExG streaming is running, CPU core 3 is dedicated to the FM-ExG thread. It

runs at the highest real-time priority and is the only thread permitted to run on this core. It polls

the “data ready” signal described above, performs the SPI transfers, and executes a callback to

user code for each 1 ms (1024 samples) of data received. Any processing or transmission of the

data for any research application would occur during this callback. We created two programs

which implement this callback to collect results as described in Sec. 1.6.3: one which measures

the time between rising edges of a pulse wave for the sync measurements, and one which saves 10

seconds of data to RAM and then to disk. In the latter case, we performed digital demodulation

offline using MATLAB.

1.3.3 Future Work

Our first goal for future work with FM-ExG is to enable demodulated data to be streamed

via WiFi from the PCD. This will require creating a real-time implementation of the demodulator,

ensuring its performance is high enough to run in the callback without disrupting the data capture,

and implementing both the local and remote side of the WiFi streaming system. Once this

is accomplished, we are excited to begin exploring clinical uses of FM-ExG, particularly in

pediatric hearing loss research.

1.4 Real-Time Master Hearing Aid (RT-MHA)

1.4.1 Baseline Algorithms

We provide a full set of baseline implementations of common HA algorithms in the RT-

MHA, to facilitate basic HA research with the platform and to provide a reference implementation

for engineers to build from. An overview of the RT-MHA signal flow is shown in Fig. 1.9.

33

These algorithms are essential components of any HA, and can be categorized into “basic” and

“advanced” functions. The basic HA functions necessary for amplification are:

1. Subband decomposition

2. Wide dynamic range compression (WDRC)

3. Adaptive feedback cancellation (AFC)

Many commercial HAs include advanced features to improve speech perception in realistic

situations such as in a noisy environment. The RT-MHA implements two advanced functions for

improving conversation in noise:

4. Speech enhancement (SE)

5. Microphone array processing (or beamforming)

In the following we briefly describe the role and our baseline implementation of each of these

five algorithms.

Subband decomposition

Hearing loss is typically highly frequency dependent; it is common for loss to be worse

at high frequencies, but loss curves vary widely among individuals. Hence, gain and other

processing must be applied differently at different frequencies, motivating the decomposition

of the input signal into frequency bands. In the RT-MHA, this decomposition is implemented

as a bank of 6 finite impulse response (FIR) filters, where the bandwidths and upper and

lower cutoff frequencies of these filters are based on Kates’s MATLAB master hearing aid

implementation [49].

WDRC

Both healthy hearing and hearing loss are known to be nonlinear in amplitude, with

these nonlinearities varying over frequency. Therefore, a gain control mechanism that enables a

34

frequency-dependent, nonlinear gain adjustment is needed for modern HAs. This is carried out

by the wide dynamic range compressor (WDRC), which is one of the essential building blocks

of a HA [50]. The WDRC amplifies soft sounds while limiting the gain of loud sounds, with the

aim of improving audibility without introducing discomfort. Typically, WDRC amplifies quiet

sounds (40-50 dB SPL), attenuates loud sounds (85-100 dB SPL), and applies a variable gain

for everything in between. The basic WDRC system described in [51] comprises an envelope

detector for estimating the input signal power and a compression rule to realize nonlineaer

amplification based on the estimated power level. Primary control parameters of the basic

WDRC system are: attack time (AT), release time (RT), compression ratio (CR), gain at 65 dB

input (G65), and upper and lower kneepoints (Kup and Klow) [51]. The AT or RT is the time the

envelope detector takes to recover the output signal level to its steady state when a sudden rise or

drop takes place in the input signal level, respectively. The amount of gain to apply will then be

determined based on a compression rule as a function of the estimated input power level given

by the envelope detector. The CR, G65, AT, RT, Kup, and Klow are the control parameters for

characterizing the compression rule. In the RT-MHA, the above WDRC is implemented in a

6-channel system [51], where gain control is realized independently in each subband, enabled by

selecting different parameters to specify the compression rule. The outputs of all the subbands

after applying the WDRC are combined together to produce the HA output signal.

AFC

Feedback due to acoustic coupling between the microphone and receiver is a very well-

known problem in HAs [51]. There are many methods to alleviate this phenomenon [52]. Among

them, adaptive feedback cancellation (AFC) has become the most common technique because of

its ability to track the variations in the acoustic feedback path and cancel the feedback signal

accordingly. The AFC generates an estimate of the feedback path using an adaptive finite impulse

response (FIR) filter that continuously adjusts its filter coefficients to emulate the feedback path

impulse response. Typically the AFC can provide 5-12 dB added stable gain (ASG) [14]

35

depending on the adaptive filtering algorithms used. The RT-MHA implements the least mean

square (LMS) based algorithms and features the sparsity promoting LMS (SLMS) [13] which

is an advanced adaptive filtering algorithm developed by the OSP team and discussed below

(Sec. 1.4.2).

SE

In a quiet environment, the above features of HAs are enough to help the user better

understand speech. However, in a noisy environment such as a cafeteria or a restaurant, the

HA might not be able to improve conversations without any noise reduction mechanism—for

example, WDRC may amplify noise components along with soft sounds. It is therefore essential

to have reliable and robust speech enhancement (SE) systems implemented in the HA. A baseline

SE module, based on a version of the SE systems investigated in [53], has been added to the

RT-MHA. The SE module performs denoising in the subband domain, between the subband

decomposition and the WDRC blocks.

Microphone array processing

To improve speech intelligibility in noisy environments, RT-MHA implements a baseline

left/right two-microphone adaptive beamforming (BF) system. This baseline system described

in [54] realizes the generalized sidelobe canceller (GSC) implementation [55] of the linearly

constrained minimum variance (LCMV) beamformer [56]. Fig. 1.10 depicts the BF block

diagram. For the adaptation, an adaptive filter using the (modified) LMS [57] is used to

continuously estimate the interference signal components. In addition, adaptation-mode-control

and norm-constrained adaptation schemes have also been incorporated to improve robustness [58],

i.e., to mitigate misadjustment of the BF due to array misalignment, head movement and shadow

effect, room reverberation, etc. Based on simulation with one target and one interference speech

signal, the baseline 2-mic beamformer improves the Signal-to-Interference Ratio (SIR) from 1.6

dB to 15.8 dB, and the Hearing-Aid Speech Quality Index (HASQI) from 0.21 to 0.43 over the

36

system with only one microphone (i.e., no beamformer). In informal subjective assessments,

the listeners were given a web app for turning the beamforming on/off. All listeners reported a

perceived reduction in the interfering speech and background noise with beamforming enabled.

Figure 1.10. The two-microphone adaptive beamforming system in the RT-MHA. Adaptive
filtering algorithms are utilized to generate interference estimates based on the left and right
channel inputs, which are used to enhance the target signal.

1.4.2 Case Study: SLMS

One of the purposes of OSP is to provide a platform for academic research in DSP with

easy prototyping, high-quality real-time I/O, and a strong connection to the clinical research

community. As an example of such research already performed with this platform, we briefly

describe the sparsity promoting LMS (SLMS) algorithm [13] used in several of the adaptive

filters on the platform. The SLMS is an adaptive filtering algorithm that takes advantage of the

sparsity of the underlying system response—which is present in many HA DSP applications—

for improved convergence behavior when adapting the filter coefficients. In testing on early

versions of OSP, we have found the SLMS to be useful in the AFC and the adaptive beamforming

subsystems. In the AFC, typical feedback path impulse responses are (quasi) sparse in nature,

which means they contain many zero or near-zero coefficients and few large ones. It has been

shown in [13] that a proper p value of the SLMS parameter leads to a performance improvement.

We reported 5 dB improvement in added stable gain with a p of 1.5 for the SLMS over the

37

conventional methods. For adaptive beamforming, the two-microphone GSC system of [54]

also benefits from using the SLMS for the filter coefficient adaptation. We have found that

improvement in signal-to-interference ratio (SIR) can be achieved for a p of 1.3 ∼ 1.5. For

reference, p = 1 in SLMS results in the ℓ1 norm similarly used in the well-known proportionate

normalized LMS (PNLMS) [59] and p = 2 results in the ℓ2 norm which yields the standard LMS.

1.5 Embedded Web Server

Most commercial HAs provide smartphone apps for the user to control various aspects of

their HA. Recent evidence suggests that adults with hearing loss who have access to smartphone-

based tools feel more empowered, autonomous, and in control of their hearing loss [60]. While

smartphone apps hold much promise for both professionals and patients, a significant amount of

research is needed in terms of assessment and guidance for informed, aware, and safe adoption

of such apps by the community [61]. In order to fulfill the visions of the NIH workshop [8],

we undertook development of multiple classes of such apps aimed at users (people with HL

controlling their HAs), researchers (clinicians engaged in hearing healthcare research and

translation), and engineers (those contributing to OSP and the open source initiative).

Most modern mobile-oriented applications fall into two categories: native apps and web

apps. Web apps would typically require a remote server and guaranteed availability of an Internet

connection, and thus be unsuitable for a wearable system to be used in the field. However,

due to the processing power and wireless connectivity of the Snapdragon 410c SoC and the

well-developed web software infrastructure on Linux, we are able to host a WiFi hotspot and a

web server directly on the PCD. Thus, any browser-enabled device (such as a smartphone or a

tablet) can connect to the PCD without the need for any external hardware or connection. As a

result, the design decision of native apps versus web apps remained. Native apps can have better

hardware integration and certain aspects of user experience, while web apps have the benefits that

they do not require installation, they are operating system and form-factor agnostic, and they are

38

easier for programmers to modify and extend [62]. For these reasons and especially due to the

ability to rapidly prototype with web apps, we adopted web apps and developed the Embedded

Web Server (EWS) subsystem of OSP to support them. All together, the EWS comprises (i) a

WiFi hotspot for browser-enabled devices to connect to, (ii) a web server running on the PCD,

(iii) bidirectional communication between the web server and the RT-MHA for monitoring and

control, and (iv) a suite of web apps hosted on the web server. Researchers can customize these

apps to enable a broader range of research in hearing healthcare.

1.5.1 EWS Architecture / Software Stack

The EWS on OSP is implemented using the LAMP stack (Linux OS, Apache web server,

MySQL database, and PHP scripting language) [63]. The web apps themselves are coded using

HTML, CSS, and JavaScript. We have chosen SQLite as the database and a test server provided

by the PHP framework as the web server. The choice of SQLite and PHP test server were guided

by the fact that they do not require complex configuration steps like Apache and MySQL do. In

addition, they are very lightweight from processing load and memory footprint perspectives. In

the context of realtime monitoring and control of RT-MHA from a browser enabled device, we

have a limited number of connections and many of the features of Apache and MySQL are not

relevant.

The RT-MHA serializes OSP parameters between a binary representation in memory and

a JSON string format for communication with EWS over a TCP/IP socket. All the RT-MHA

parameter states are stored in the SQLite database for persistency and use by the web apps.

1.5.2 Web Apps

In order to expedite web app development, OSP provides Laravel and Node.js frameworks.

Web apps in OSP present a graphical user interface (GUI) to the user via their device’s browser.

Based on the user’s interactions with the GUI, the apps’ control logic may modify the RT-

MHA parameters, play back audio to the user through the BTE-RICs, record audio from the

39

Figure 1.11. Screenshots of the main EWS page and the 4AFC task, taken from a smartphone
connected to the WiFi hotspot of an OSP PCD. After powering on the PCD and connecting the
smartphone to the new “ospboard-*” WiFi hotspot, the user simply enters “ospboard.local” or
“192.168.8.1:8000” into a web browser and receives the page on the left. Clicking on the “4AFC”
button and logging in returns the page on the right, which is a fully-functional web app that
interfaces with the RT-MHA state in real time.

microphones, store information in the SQLite database or in logs, or take other actions. In this

section, we describe the current suite of web apps, which showcase the functionality of the EWS

and OSP as a whole and which serve as templates to be modified and extended for specific

investigations.

Researcher App

The “Researcher App” is used to manipulate any of the exposed RT-MHA parameters.

The main tab of this app includes all the WDRC parameters in each subband. Researchers can

save different configurations in named files and load them from the GUI. A Transmit button

sets the RT-MHA to the parameters displayed in the GUI. The researcher can individually

control the right ear channel or the left ear channel, or both at the same time. The Noise

Management tab has the parameters associated with noise management algorithms described in

40

Secs. 1.4.1 and 1.4.1. It enables researchers to experiment with various parameters and provide

configurations such as aggressive, mild and no noise suppression in studies with human subjects.

Similarly, the Feedback Management tab allows the researcher to optimize AFC parameters for

specific investigations. This app is suitable for “audiologist fit” research by entering the user’s

initial prescription from a fitting such as NAL-NL2, DSL, etc. [64] and then optimising the HA

for user comfort. The researcher app, like the other apps, requires a researcher ID and user ID to

access, allowing user profiles to be easily loaded for clinical studies in which one system is used

sequentially by multiple users.

Self-Fitting Apps

There has been a lot of interest in self-fitting research, wherein the user is able to choose

the HA parameters with the help of apps. The recent passage of the Over-the-Counter (OTC)

Hearing Aid Act of 2016 was aimed at easing the financial burden of owning HAs, at least for

some users with mild to moderate hearing loss. The use of OTC HAs will require users to be

able to independently control the HAs in multiple listening environments without professional

assistance.

We have implemented baseline web apps for two self-fitting paradigms. First, for the lab

based OSP system [21], we initially implemented a native Android version of the Goldilocks

explore-and-select self fitting protocol proposed in [65] [66]. For the wearable system [10]

aimed at field studies, we transitioned to web apps for the ease of rapid prototyping and ported

Goldilocks as a web app.

Second, we created an AB app in which the user can switch between hearing an A or B

set of RT-MHA parameters for the same stimulus, and then select the one that they prefer. For

the baseline implementation, the app performs a binary search over the overall gain parameter,

allowing the user to narrow in on the gain they most prefer. This is intended as a proof-of-concept

for researchers to incorporate other HA parameters in their self-fitting research.

This AB app, like several others described below, relies on the audio file I/O module

41

included in OSP. This module, under control of the EWS, can play audio files (typically speech

content) stored on the PCD to the user, with or without the RT-MHA processing. This capability

allows researchers to provide stimuli to the user in a repeatable and reproducible manner. The

file I/O module can also record the raw or processed microphone audio to audio files on the PCD,

as described below.

Monitoring user and environment state

We have created an Ecological Momentary Assessment (EMA) web app, which is

designed to help researchers understand more about the user’s actions in the context of an experi-

ment or a self-fitting adjustment. It does so by collecting information about the environmental

state that elicited the user’s behavior along with the user’s behavior itself. The EMA web app has

two components. First, it displays a brief survey through the GUI which asks the user qualitative

questions about their experience and environment. Researchers can edit the survey questions

by changing the contents of the JSON file associated with the EMA web app. Second, the app

records microphone audio in order to characterize the user’s auditory environment. This works

with a circular buffer that temporarily keeps the last few seconds of microphone audio. When

the EMA is started, the previous buffer is saved, and the audio continues to be saved while

the user completes the survey and for a certain time after leaving the app. In the future, the

information gathered from the EMA web app could be used to create machine learning models

that dynamically update their parameters depending on environmental factors.

Outcomes assessment

This class of apps is aimed at assessing the benefits to the user of a proposed hearing

loss intervention (such as a particular fitting or an entire self-fitting paradigm). In these apps,

researchers define a series of questions in which the user hears pre-recorded sound stimuli

(typically speech) and indicates their preference among them or attempts to distinguish between

them. The stimuli are processed through specific HA parameter sets during playback, so they

42

can be used to assess the effectiveness of these fitting parameters for the user. The environment

audio recording described above may also optionally be enabled in these apps.

In the 4-Alternative Forced Choice (4AFC) app (Fig. 1.11), each question has a playable

prompt stimulus and four written words, one of which matches the stimulus. The words are

themselves also playable, and any errors in the user’s choices can inform the researcher about

what improvements may be needed in the user’s HA fitting. The app can easily be modified to

create N-alternative forced choice tests.

In the outcomes assessment AB app, the user hears two different stimuli A and B, and

rates their preference for B relative to A on a Likert scale. At the researcher’s option, A and B

may be different audio files played through the same set of RT-MHA parameters, or the same

audio played through different parameter sets. In the latter case, the audio may be from a file or

it may be the live real-world sound from the user’s environment.

Finally, in the ABX app, the user is presented with a target stimulus X, and then two

stimuli A and B where one is identical to X and the other is typically very similar. The user

selects the one they believe is identical; errors imply that the user could not hear the difference

between A and B. This approach has strong discriminative power; its uses include optimizing

signal processing (for example, whether the user can detect distortions introduced by approximate

computations to save battery power), determining just noticeable differences between parameter

settings, etc.

1.5.3 Web App Customization

The current suite of web apps are meant to function as baseline, reference implemen-

tations for the development of new web apps. Some web apps can be reconfigured for new

users and new trials by the researchers without modifying the software. For example, in the

case of the outcomes assessment web apps (Sec. 1.5.2), the researchers can specify the contents

of the questions which will be shown to the user. In the case of 4AFC, for one question, the

researcher needs to specify the audio file for the prompt, as well as the text and audio files of

43

the four choices. The researcher can encode these choices by editing the text-based JSON file

that accompanies the app. The audio files themselves are stored in a specific hierarchical file

structure, so that a researcher can easily track which files are associated with which question,

and have a consistent scheme to document the files referenced in the JSON file. Similarly, the

AB and ABX web apps also have JSON files that are used to specify which sound files should be

played for which question, which can also be edited with a text editor.

It is also possible to combine aspects of different web apps to create new apps for novel

investigations. This requires familiarity with HTML, JavaScript, and PHP. When new HA

parameters are exposed by the RT-MHA signal processing, they can also be easily integrated in

the web apps with appropriate changes to the HTML and JavaScript (for the modified GUI) and

the PHP (for the HA parameter control logic).

1.6 Results

Initial results about the performance of the wearable OSP system were reported in [10].

This section summarizes those results and includes updated results based on the current internal

development versions of the OSP hardware and software (a version of which will become Release

2019b). In addition, the results relating to the FM-ExG are reported here for the first time.

1.6.1 HA Performance

Latency

Latency plays an important role in users’ comfort with their devices [3] [4], and most

commercial HAs have under 10 ms latency [67]. In the OSP wearable system, with the RT-MHA

algorithms disabled and the software set to simply pass through an amplified copy of the front

microphone input signal to each receiver, the microphone-to-loudspeaker latency is about 2.4 ms.

This delay is caused by input and output buffers of 1 ms each allocated by the audio subsystem

(ALSA / PortAudio), plus additional delays due to resampling filters within the codec. With the

RT-MHA enabled without beamforming, it measures at about 4.6 ms, with this 2.2 ms difference

44

Table 1.1. ANSI 3.22 test results for OSP system configurations as measured by Audioscan
Verifit 2, as compared to results from four commercial HAs.

Metric Units Commercial HAs OSP Lab Sys. OSP Wearable
A B C D X Y X Y

Average Gain dB 40 40 25 35 40 40 35 38
Max OSPL90 dB SPL 107 112 110 111 121 130 119 129

Average OSPL90 dB SPL 106 109 108 106 112 126 111 125
Average Gain @ 50 dB dB 37 39 25 35 35 41 34 38

Low Cutoff kHz 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
High Cutoff kHz 5 6 5 6.73 8 6.3 8 6.73

Equivalent Input Noise dB SPL 27 26 30 27 29 28 28 27
Distortion @ 500 Hz % THD 1 1 0 0 2 1 5 1
Distortion @ 800 Hz % THD 1 1 0 0 3 2 5 1

Distortion @ 1600 Hz % THD 0 0 0 0 1 1 2 0

X: with high-bandwidth Knowles receiver [70]
Y: with high-power Knowles receiver [71]

being due to the FIR filters within the audio processing. With beamforming enabled and set to

5 ms delay, the latency is measured to be 9.6 ms as expected. Thus, our full-featured baseline

implementation meets the 10 ms target maximum latency for a HA system. While the latency

due to hardware and firmware (2.4 ms) is not user-adjustable, the latencies due to the steps of

HA processing are determined by the parameters of that processing (e.g. the length of the FIR

filters), which will vary as researchers tweak the baseline algorithms and implement their own.

The latency “budget” of 7.6 ms for all HA processing allows for a wide range of experimentation

and research.

ANSI 3.22 Test Results

ANSI 3.22 [68] is a standard test protocol for HAs, the results of which are available for

commercial HAs. We measured the OSP wearable system, as well as the previous OSP laptop-

based system, with the Audioscan Verifit 2 test unit [69], for comparison with four anonymous

commercial HAs.

The OSP wearable system meets or exceeds the performance of the commercial HAs on

45

most metrics. With the high-power (bandwidth-limited) receiver, it provides higher OSPL90

(loudness) with gain, bandwidth, noise, and distortion figures which are comparable to the best of

the commercial HAs. With the high-bandwidth receiver, it has similar performance with slightly

reduced gain, but with higher distortion. Reducing the gain from 35 to 25 dB (not shown in the

table) did reduce the distortion to 1% or less in all bands. We believe this distortion is due to

impedance differences between the two receivers: the codec’s output voltage swing is limited by

its 3.3V supply rail, which will lead to distortion at a lower power with the higher-impedance

(high-bandwidth) [70] receiver than with the lower-impedance (high-power) [71] receiver. Future

BTE-RIC designs could add a boost regulator and additional power amplifier to increase the gain

with the high-bandwidth receiver; nevertheless, the OSP wearable system meets its performance

goals with the high-power receiver.

1.6.2 Embedded Software Performance

CPU Usage

Each audio channel (left and right ear) is processed by a separate thread so most of the

computation can be done simultaneously on two CPU cores. Three of the four cores are assigned

to the RT-MHA process at the OS level with the remaining core left for all OS functions and other

non-realtime processes. The RT-MHA process is also given maximum CPU and I/O priority.

The RT-MHA processes audio in 1 ms frames (48 samples), which means the system has less

than 1 ms of real time to complete the processing of each frame. Thus, we report the real time

required for each step of the RT-MHA processing.

As shown in Table 1.2, on average the processing completes with some time to spare. In

addition, while most of the processing is being done by two cores (one per ear), there are three

cores available for the RT-MHA as long as the FM-ExG is not in use. In this case, a substantial

amount of additional processing could be added on a third thread provided that it could be done

in parallel. Between 2018c and the current version, the subband and AFC filter lengths were

reduced somewhat to free up CPU and latency budget for the addition of beamforming. In

46

Table 1.2. RT-MHA real-time processing performance statistics for Release 2018c and the
current test version. Wall-clock time taken to perform each processing step on 1 ms audio
buffers.

Average Time (µs) Maximum Time (µs)
Operation 2018c Current 2018c Current

Downsampling 32 25 91 52
Beamforming N/A 81 N/A 121

Subband filtering 282 193 822 408
Speech Enhancement 12 12 408 120

Peak detection 30 33 384 228
WDRC 18 14 384 180

AFC 190 142 3661 168
Global MPO N/A 11 N/A 35
Upsampling 33 25 91 54

Total L or R* 597 536 5841 1366
Overall HA† 694 580 4635 953

*The sum of the above rows; for maximum time, this does not necessarily represent a single real
frame, since it is the sum of the maximum values ever recorded for each operation
†The measured total time of the audio processing callback, including sending work to the
threads for the left and right channels and waiting for them to complete

addition, the “maximum time” values, which effectively measure the algorithms’ stability in

terms of CPU usage, have dramatically reduced. This is partly due to stability and performance

improvements in the OS, and partly due to improved initialization in the RT-MHA. However, it

is also partly an artefact of measurement changes: in 2018c, we measured average and maximum

times beginning as soon as the RT-MHA started, whereas now we begin timing measurements

after the RT-MHA has initialized and run for about a second. Thus, previously the “maximum

times” included initialization, whereas now they only measure timing variation in steady state.

Battery Life

We measured the current draw of the wearable system in several conditions, and computed

the battery life from these assuming a 2000 mAh battery:

As seen in Table 1.3, both system and RT-MHA efficiency have been improved since last

reported. Note that due to battery capacity not being fully exhaustible and other factors that may

47

Table 1.3. Current draw (at nominal 3.7 VDC) and battery life (assuming 2000 mAh Li-ion
battery) for common system use cases.

Avg. Current (mA) (±5) Battery Life (h)
Test Conditions 2018c Current 2018c Current
Idle (WiFi off) 243 220 8.2 9.1
Idle 284 259 7.0 7.7
HA audio loopback 317 289 6.3 6.9
RT-MHA, no BF 440 370 4.5 5.4
RT-MHA + BF N/A 390 N/A 5.1

make the usable energy of a battery less than its rated capacity, actual usage times may be lower

than reported here. Still, these results indicate that the system should provide at least 4 hours of

full-featured operation per charge.

1.6.3 FM-ExG Performance

Simultaneous Acquisition

Several metrics are important in characterizing the performance of simultaneous audio

and FM-ExG capture on the OSP hardware/software platform. First is the stability of the

simultaneous capture—how frequently data is lost in either stream while the system is streaming

them both. We tested this by running simultaneous capture from both streams into a simple utility

which validated whether and when samples were lost. Over a 90-minute test, no samples were

lost on FM-ExG (about 5.5 billion consecutive samples received correctly), and only one incident

occurred where a few ms of audio samples were lost. Second is the long-term drift or relative

inaccuracy in the sample rate of both streams. This is guaranteed to be zero by design: both the

1.024 MHz FM sample clock and all the audio clocks are derived from the same 12.288 MHz

MEMS oscillator which drives the FPGA, so any drift or inaccuracy in this oscillator will be

reflected uniformly in the two data streams.

Finally, a key metric for simultaneous capture is how closely the two streams can be

synchronized in time. We use the term skew to refer to the time difference between the audio and

EEG sampled data streams. Since any known skew can be corrected for by simply re-aligning

48

the two data streams, the metric of interest is the variability of the skew over different runs. To

help synchronize the two streams, we created a “sync” feature in the OSP FM-ExG API, which

signals the FPGA to insert about 1 ms worth of zeros into both the FM-ExG data stream and all

microphone audio data streams. Then, a utility detects this period of exactly zero data (which is

virtually impossible to occur naturally due to system noise) and marks the end of this period as

corresponding to the same time in both streams. To determine the remaining skew and the skew

variability after this offset was corrected for, we used a signal generator to input a pulse wave

into both the FM-ExG and microphone inputs, and in software measured the timing of the rising

edges relative to the sync zeros period. Fig. 1.12 shows the resulting skew over 32 trials.

Figure 1.12. Comparing 32 trials of the measured skew between OSP’s FM-ExG and audio
streams with the audio sample period. Since the measurements only vary over about two audio
sample periods, OSP can perform simultaneous FM-ExG and audio streaming synchronized to
within about 2 audio sample periods, or about 40 µs.

The FM-ExG signal path should theoretically have a delay of about 4-5 samples due to

the pipelined ADC, which accounts for about 4-5 µs; the audio signal path should have a delay

of about 4-8 samples due to the resampling filters in the codec, which accounts for 80-160 µs.

The measured average skew of 135 µs meets our expectations. More importantly, the standard

deviation of the skew is about half the audio sample period; of course, it is not possible to identify

the timing of a step signal from a sampled representation with better precision than the sample

period. Since this uncertainty holds for both the sync zeros period and the pulse wave edges,

and the subsample positioning of each of these are presumably uncorrelated, we expect a spread

49

of about
√

2 times the audio sample period, which closely matches the data. Hence we claim

that OSP allows for simultaneous FM-ExG and audio streaming synchronized to within about 2

audio sample periods, or about 40 µs.

Analog Performance

Figure 1.13. Example spectrum of demodulated FM-ExG output, for a 100 Hz sinusoidal signal
as data. The FM waveform (250 kHz carrier, 20× bandwidth expansion) was generated in
software and played into the OSP PCD’s analog FM-ExG input via a NI DAQ test device. The
sampled signal was recorded on the PCD and demodulated in MATLAB.

To evaluate the analog performance of the FM-ExG signal acquisition system, a 100Hz

test sine wave modulating a 250 kHz center frequency FM carrier with bandwidth expansion of

20 (to fit the FM bandplan outlined in Sec. 1.3.2) was generated by MATLAB’s fmmod() function

and driven into the FM-ExG ADC introduced in Section III.B. by a National Instruments USB-

6361 DAQ Multifunction Analog/Digital I/O Device. After being sampled and recorded by the

PCD, the data was copied to a computer where it was demodulated using MATLAB’s fmdemod()

to recover the original test signal. Fig. 1.13 depicts the frequency domain representation of

the result of this process, which demonstrates 94dB of signal-to-noise ratio (SNR). Compare

this to the theoretical 100dB described in Sec. 1.3.2. While this is more than enough SNR for

the target application, we believe this measurement may have been partially limited by the test

50

equipment. The DAQ test device mentioned above has a timing resolution of 10 ns, which limits

the precision with which the FM carrier wave’s instantaneous frequency could be generated, and

thus the resolution with which the message signal could be encoded on the carrier wave.

1.6.4 Results Summary

OSP meets or exceeds the performance of four representative commercial HAs on

the ANSI 3.22 test protocol with an appropriate receiver. OSP also matches the latency of

commercial systems with its baseline algorithms (< 10 ms), although its latency will vary as

researchers reconfigure it with optimized or additional algorithms. Its capabilities for wireless

control, monitoring, and user interaction via the EWS enable rapid prototyping for clinical

investigations that may not be possible with most commercial systems. The CPU occupancy

reported in Table 1.2 and current draw reported in Table 1.3 are only partially optimized, and may

be improved further by the open-source community. The addition of 6 DOF IMUs at ear level

and the capability of acquiring multi-channel EEG synchronized with auditory stimuli with about

40 µs are expected to facilitate phychophysical investigations beyond what is currently possible.

In conclusion, OSP meets the requirements of the community as a HA research platform; it is

not a form-factor-accurate HA, in the sense of commercial HAs.

1.7 Conclusion

Open Speech Platform (OSP) is a comprehensive hardware and software platform for

research in hearing healthcare and related fields. It is designed to facilitate lab and field studies

in speech processing algorithms, human sound perception, HA fitting procedures, and much

more, while also enabling new kinds of research which were never before possible.

The OSP PCD hardware contains the quad-core Snapdragon 410c smartphone chipset

running a custom-optimized Debian Linux OS. The PCD software comprises basic and baseline

advanced binaural HA audio processing algorithms, which run in real time with CPU resources

to spare. The total microphone-to-loudspeaker latency due to hardware and OS is about 2.4 ms.

51

Currently, basic HA processing adds 2.2 ms of latency and beamforming adds an additional

5 ms, for a total latency of 9.6 ms. The PCD is packaged in a small, light plastic case, roughly

73×55×20 mm with a mass of roughly 83 grams. It contains enough battery power for at least

4 hours of operation with all features enabled.

OSP includes custom ear-level transducers in BTE-RIC form factor. They support up to

four microphones per ear, including special-purpose in-ear and VPU microphones, and sample

all inputs and outputs at 48 kHz 24 bit with hardware support for 96 kHz. They also contain

an six-axis IMU for measuring look direction, assessing balance, and other physical activity

research. The BTE-RICs communicate with the PCD via a custom packetized protocol over

LVDS facilitated by FPGAs at either end, which transmits high-speed audio, control, and clock

information over a single differential pair in a thin four-wire cable.

The OSP PCD is also the gateway for FM-ExG, a low-power wearable biopotential

signal acquisition system for collecting EEG, ECG/EKG and EMG signals. The PCD includes

a high-speed ADC and interface logic in the FPGA, to enable acquisition of 12 channels of

biopotential signals with a measured SNR of 94 dB. FM-ExG can run while the HA processing

is occurring, for simultaneous acquisition of audio and EEG synchronized to within 40 µs and

with no long-term drift.

Finally, the PCD hosts a WiFi hotspot and web server which users and researchers can

connect to with any browser-enabled device. The OSP software framework serves web apps

from the PCD which allow users to interact with the parameters of the HA processing in real

time. The web apps provided with the current release of OSP include apps for direct monitoring

and control of all HA parameters, self-fitting, collecting data about the user’s environment, and

assessing HA performance. The web apps use a popular software stack and are easy to modify

and extend, so that researchers can adapt them or design new web apps to conduct novel studies

and field trials.

OSP has been architected to fulfill the vision set out by the NIH workshop [8] for an

open, extensible research tool for hearing healthcare and related fields. OSP meets all of the

52

basic requirements presented there—portable hardware, real-time signal processing, advanced

processing power, wireless controllability, a reference HA implementation, and open-source

hardware and software releases. It further meets many of the advanced or optional suggestions:

wearability, use of an FPGA in the signal chain, binaural processing, and incorporation of sensing

paradigms not traditionally associated with hearing aids, such as FM-ExG and the IMUs. OSP

is a powerful set of tools which promote the open initiative for collaborative work on research

hardware and software, towards new discoveries in hearing-related healthcare research.

Acknowledgments

This work is supported by the National Institute of Health, NIH / NIDCD grants

R21DC015046, R33DC015046, “Self-fitting of Amplification: Methodology and Candidacy,”

and R01DC015436, “A Real-time, Open, Portable, Extensible Speech Lab,” awards to University

of California, San Diego; by the U.S. Army Research Laboratory under Contract W911QX-16-

C-0003; and by the National Science Foundation Graduate Research Fellowship under Grant

DGE-1144086, and grant IIS-1838830 from the Division of Information & Intelligent Systems,

“A Framework for Optimizing Hearing Aids In Situ Based on Patient Feedback, Auditory Context,

and Audiologist Input.”

Support from Sonion for providing emerging ear level transducers (in-ear microphone

integrated in the speaker module and “VPU” bone conduction microphone), traditional BTE-RIC

transducers, and other electromechanical components is greatly appreciated.

Chapter 1 is published under the Creative Commons Attribution 4.0 International (CC BY

4.0) license. IEEE is not the copyright holder of this material. Copyright © 2019 The Regents of

the University of California. Some rights reserved.

Chapter 1, in full, is a reprint of the material as it appears in IEEE Access. Pisha, Louis;

Warchall, Julian; Zubatiy, Tamara; Hamilton, Sean; Lee, Ching-Hua; Chockalingam, Ganz;

Mercier, Patrick P; Gupta, Rajesh; Rao, Bhaskar D; Garudadri, Harinath, IEEE, November 2019.

53

The dissertation author was the primary investigator and author of this paper.

54

Bibliography

[1] Rebecca J Bennett, Ariane Laplante-Lévesque, Carly J Meyer, and Robert H Eikelboom.
“Exploring hearing aid problems: perspectives of hearing aid owners and clinicians”. In:
Ear and hearing 39.1 (2018), pp. 172–187.

[2] American Speech-Language-Hearing Association et al. Guidelines for manual pure-tone
threshold audiometry. Tech. rep. ASHA, 2005.

[3] Jeremy Agnew and Jeffrey M Thornton. “Just noticeable and objectionable group delays
in digital hearing aids”. In: Journal of the American Academy of Audiology 11.6 (2000),
pp. 330–336.

[4] Michael A Stone and Brian CJ Moore. “Tolerable hearing aid delays. I. Estimation of
limits imposed by the auditory path alone using simulated hearing losses”. In: Ear and
Hearing 20.3 (1999), pp. 182–192.

[5] Annie N Simpson, Lois J Matthews, Christy Cassarly, and Judy R Dubno. “Time from
hearing aid candidacy to hearing aid adoption: a Longitudinal Cohort Study”. In: Ear and
hearing 40.3 (2019), pp. 468–476.

[6] SERGEI Kochkin. “MarkeTrak VIII: utilization of PSAPs and direct-mail hearing aids by
people with hearing impairment”. In: Hearing Review 17.6 (2010), pp. 12–16.

[7] Lisa Brody, Yu-Hsiang Wu, and Elizabeth Stangl. “A Comparison of Personal Sound
Amplification Products and Hearing Aids in Ecologically Relevant Test Environments”.
In: American journal of audiology 27.4 (2018), pp. 581–593.

[8] Roger L. Miller and Amy Donahue. Open Speech Signal Processing Platform Workshop.
Tech. rep. Bethesda, MD: National Institutes of Health, Oct. 2014.

[9] THE Lab at UC San Diego. Open Speech Platform. http://openspeechplatform.ucsd.edu/.
2019.

[10] Louis Pisha, Sean Hamilton, Dhiman Sengupta, Ching-Hua Lee, Krishna Chaithanya
Vastare, et al. “A Wearable Platform for Research in Augmented Hearing”. In: 2018 52nd
Asilomar Conference on Signals, Systems, and Computers 52 (2018).

[11] Julian Warchall, Shiva Kaleru, Nidhi Jayapalan, Bijoor Nayak, Harinath Garudadri, and
Patrick P Mercier. “A 678 uW Frequency-Modulation-Based ADC With 104 dB Dynamic
Range in 44 kHz Bandwidth”. In: IEEE Transactions on Circuits and Systems II: Express
Briefs 65.10 (2018), pp. 1370–1374.

55

http://openspeechplatform.ucsd.edu/

[12] Julian Warchall, Paul Theilmann, Yuxuan Ouyang, Harinath Garudadri, and Patrick P.
Mercier. “A Rugged Wearable Modular ExG Platform Employing a Distributed Scalable
Multi-Channel FM-ADC Achieving 101dB Input Dynamic Range and Motion-Artifact
Resilience”. In: 2019 IEEE International Solid- State Circuits Conference - (ISSCC)
(2019), pp. 362–363.

[13] C.-H. Lee, B. D. Rao, and H. Garudadri. “Sparsity promoting LMS for adaptive feedback
cancellation”. In: Proc. Europ. Signal Process. Conf. (EUSIPCO). 2017, pp. 226–230.

[14] C.-H. Lee, J. M. Kates, B. D. Rao, and H. Garudadri. “Speech quality and stable gain
trade-offs in adaptive feedback cancellation for hearing aids”. In: J. Acoust. Soc. Am.
142.4 (2017), EL388–EL394.

[15] Roger L Miller. Open Design Tools for Speech Signal Processing (R01). Tech. rep.
National Institutes of Health, National Institute on Deafness, and Other Communication
Disorders, 2015.

[16] Roger L Miller. Open Design Tools for Speech Signal Processing (R43/R44). Tech. rep.
National Institutes of Health, National Institute on Deafness, and Other Communication
Disorders, 2015.

[17] Odile Clavier, Chip Audette, Daniel Rasetshwane, Stephen Neely, et al. Tympan. https:
//tympan.org/. 2019.

[18] Paul Stoffregen. Teensy USB Development Board. https://www.pjrc.com/teensy/. 2019.

[19] Christopher Obbard, Daniel James, Tobias Herzke, Hendrik Kayser, et al. Open community
platform for hearing aid algorithm research. http://www.openmha.org/. 2019.

[20] Issa Panahi, Nasser Kehtarnavaz, Linda Thibodeau, et al. Smartphone-Based Open Re-
search Platform for Hearing Improvement Studies. https://www.utdallas.edu/ssprl/hearing-
aid-project/. 2019.

[21] Harinath Garudadri, Arthur Boothroyd, Ching-Hua Lee, Swaroop Gadiyaram, Justyn
Bell, Dhiman Sengupta, Sean Hamilton, Krishna Chaithanya Vastare, Rajesh Gupta, and
Bhaskar D Rao. “A realtime, open-source speech-processing platform for research in
hearing loss compensation”. In: 2017 51st Asilomar Conference on Signals, Systems, and
Computers. IEEE. 2018, pp. 1900–1904.

[22] Variscite. DART-SD410: Qualcomm Snapdragon 410. https://www.variscite.com/product/
system-on-module-som/cortex-a53-krait/dart-sd410-qualcomm-snapdragon-410/. 2019.

[23] Louis Pisha, Sean Hamilton, Dhiman Sengupta, Ching-Hua Lee, Krishna Chaithanya
Vastare, Sergio Luna, Tamara Zubatiy, Cagri Yalcin, Alex Grant, Mark Stambaugh, Arthur
Boothroyd, Ganz Chockalingam, Rajesh Gupta, Bhaskar Rao, and Harinath Garudadri. “A
Wearable Platform for Hearing Aids Research”. In: International Hearing Aid Research
Conference (IHCON). 2018.

[24] Analog Devices, Inc. ADAU1372 Data Sheet. https://www.analog.com/media/en/technical-
documentation/data-sheet/ADAU1372.pdf. 2014.

[25] Ruth Bentler, H Gustav Mueller, and Todd A Ricketts. Modern hearing aids: verification,
outcome measures, and follow-up. Plural Publishing, 2016.

56

https://tympan.org/
https://tympan.org/
https://www.pjrc.com/teensy/
http://www.openmha.org/
https://www.utdallas.edu/ssprl/hearing-aid-project/
https://www.utdallas.edu/ssprl/hearing-aid-project/
https://www.variscite.com/product/system-on-module-som/cortex-a53-krait/dart-sd410-qualcomm-snapdragon-410/
https://www.variscite.com/product/system-on-module-som/cortex-a53-krait/dart-sd410-qualcomm-snapdragon-410/
https://www.analog.com/media/en/technical-documentation/data-sheet/ADAU1372.pdf
https://www.analog.com/media/en/technical-documentation/data-sheet/ADAU1372.pdf

[26] Francis Kuk, Denise Keenan, and Chi-chuen Lau. “Vent configurations on subjective
and objective occlusion effect”. In: Journal of the American Academy of Audiology 16.9
(2005), pp. 747–762.

[27] David T Kemp. “Stimulated acoustic emissions from within the human auditory system”.
In: The Journal of the Acoustical Society of America 64.5 (1978), pp. 1386–1391.

[28] P Sergi, G Pastorino, P Ravazzani, G Tognola, and F Grandori. “A hospital based universal
neonatal hearing screening programme using click-evoked otoacoustic emissions”. In:
Scandinavian Audiology 30.1 (2001), pp. 18–20.

[29] Sonion. Sonion. https://www.sonion.com/. 2019.

[30] Sonion. VPU14AA01 Tentative Data Sheet. Private communication. 2018.

[31] Ching-Hua Lee, Bhaskar D. Rao, and Harinath Garudadri. “Bone-Conduction Sensor
Assisted Noise Estimation for Improved Speech Enhancement”. In: Proc. Interspeech
2018. 2018, pp. 1180–1184. DOI: 10.21437/Interspeech.2018-1046. URL: http://dx.doi.
org/10.21437/Interspeech.2018-1046.

[32] Volodymyr Kuleshov, S Zayd Enam, and Stefano Ermon. “Audio super resolution using
neural networks”. In: arXiv preprint arXiv:1708.00853 (2017).

[33] Lattice Semiconductor. MachXO3: futureproof your control PLD and bridging designs.
https://www.latticesemi.com/Products/FPGAandCPLD/MachXO3. 2019.

[34] John Goldie. The Many Flavors of LVDS (SNLA184). Tech. rep. Texas Instruments, 2011.

[35] Michael Peffers. Introduction to M-LVDS (TIA/EIA-899). Tech. rep. Texas Instruments,
Feb. 2002.

[36] Syed B. Huq and John Goldie. Application Note 971: an Overview of LVDS Technology.
Tech. rep. National Semiconductor, July 1998.

[37] Susan E Lord, Mark Weatherall, and Lynn Rochester. “Community ambulation in older
adults: which internal characteristics are important?” In: Archives of physical medicine
and rehabilitation 91.3 (2010), pp. 378–383.

[38] Thomas R Prohaska, Lynda A Anderson, Steven P Hooker, Susan L Hughes, and Basia
Belza. “Mobility and aging: transference to transportation”. In: Journal of Aging Research
2011 (2011).

[39] Nancye M Peel, Suzanne S Kuys, and Kerenaftali Klein. “Gait speed as a measure
in geriatric assessment in clinical settings: a systematic review”. In: The Journals of
Gerontology Series A: Biological Sciences and Medical Sciences 68.1 (2013), pp. 39–46.

[40] Jareen Meinzen-Derr, Lynne H.Y. Lim, Daniel I. Choo, Samantha Buyniski, and Susan
Wiley. “Pediatric hearing impairment caregiver experience: impact of duration of hearing
loss on parental stress”. In: International Journal of Pediatric Otorhinolaryngology 72.11
(2008), pp. 1693–1703. ISSN: 0165-5876. DOI: https://doi.org/10.1016/j.ijporl.2008.08.
005. URL: http://www.sciencedirect.com/science/article/pii/S0165587608003819.

57

https://www.sonion.com/
https://doi.org/10.21437/Interspeech.2018-1046
http://dx.doi.org/10.21437/Interspeech.2018-1046
http://dx.doi.org/10.21437/Interspeech.2018-1046
https://www.latticesemi.com/Products/FPGAandCPLD/MachXO3
https://doi.org/https://doi.org/10.1016/j.ijporl.2008.08.005
https://doi.org/https://doi.org/10.1016/j.ijporl.2008.08.005
http://www.sciencedirect.com/science/article/pii/S0165587608003819

[41] Christian Bech Christensen, Renskje K Hietkamp, James M Harte, Thomas Lunner, and
Preben Kidmose. “Toward EEG-Assisted Hearing Aids: objective Threshold Estimation
Based on Ear-EEG in Subjects With Sensorineural Hearing Loss”. In: Trends in hearing
22 (2018), p. 2331216518816203.

[42] V. Mihajlović, B. Grundlehner, R. Vullers, and J. Penders. “Wearable, Wireless EEG Solu-
tions in Daily Life Applications: what are we Missing?” In: IEEE Journal of Biomedical
and Health Informatics 19.1 (Jan. 2015), pp. 6–21. ISSN: 2168-2194. DOI: 10.1109/JBHI.
2014.2328317.

[43] Karli Kondo, Katherine M Noonan, Michele Freeman, Chelsea Ayers, Benjamin J Morasco,
and Devan Kansagara. “Efficacy of Biofeedback for Medical Conditions: an Evidence
Map”. In: Journal of general internal medicine (2019), pp. 1–11.

[44] M. Barry Sterman and Tobias Egner. “Foundation and Practice of Neurofeedback for the
Treatment of Epilepsy”. In: Applied Psychophysiology and Biofeedback 31.1 (Apr. 2006),
p. 21. ISSN: 1573-3270. DOI: 10.1007/s10484-006-9002-x. URL: https://doi.org/10.1007/
s10484-006-9002-x.

[45] Stefanie Enriquez-Geppert, Diede Smit, Miguel Garcia Pimenta, and Martijn Arns. “Neu-
rofeedback as a Treatment Intervention in ADHD: current Evidence and Practice”. In:
Current psychiatry reports 21.6 (2019), p. 46.

[46] B. H. Kim, J. Chun, and S. Jo. “Dynamic motion artifact removal using inertial sensors for
mobile BCI”. In: 2015 7th International IEEE/EMBS Conference on Neural Engineering
(NER) (Apr. 2015), pp. 37–40. ISSN: 1948-3546. DOI: 10.1109/NER.2015.7146554.

[47] Simon Haykin. Communication systems. John Wiley & Sons, 2008.

[48] Analog Devices, Inc. AD9235 12-Bit, 20/40/65 MSPS 3 V A/D converter. https://www.
analog.com/media/en/technical-documentation/data-sheets/AD9235.pdf. 2012.

[49] J. M. Kates. Master hearing aid implementation in MATLAB. Private communication.
2016.

[50] J. M. Kates. “Principles of digital dynamic-range compression”. In: Trends in Amplification
9.2 (2005), pp. 45–76.

[51] J. M. Kates. Digital hearing aids. Plural publishing, 2008.

[52] T. van Waterschoot and M. Moonen. “Fifty years of acoustic feedback control: atate of
the art and future challenges”. In: Proc. IEEE 99.2 (2011), pp. 288–327.

[53] J. M. Kates. “Modeling the effects of single-microphone noise-suppression”. In: Speech
Commun. 90 (2017), pp. 15–25.

[54] J. E. Greenberg and P. M. Zurek. “Evaluation of an adaptive beamforming method for
hearing aids”. In: J. Acoust. Soc. Am. 91.3 (1992), pp. 1662–1676.

[55] L. J. Griffiths and C. W. Jim. “An alternative approach to linearly constrained adaptive
beamforming”. In: IEEE Trans. Antennas Propag. 30.1 (1982), pp. 27–34.

[56] O. L. Frost. “An algorithm for linearly constrained adaptive array processing”. In: Proc.
the IEEE 60.8 (1972), pp. 926–935.

58

https://doi.org/10.1109/JBHI.2014.2328317
https://doi.org/10.1109/JBHI.2014.2328317
https://doi.org/10.1007/s10484-006-9002-x
https://doi.org/10.1007/s10484-006-9002-x
https://doi.org/10.1007/s10484-006-9002-x
https://doi.org/10.1109/NER.2015.7146554
https://www.analog.com/media/en/technical-documentation/data-sheets/AD9235.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/AD9235.pdf

[57] J. E. Greenberg. “Modified LMS algorithms for speech processing with an adaptive noise
canceller”. In: IEEE Trans. Speech Audio Process. 6.4 (1998), pp. 338–351.

[58] Osamu Hoshuyama and Akihiko Sugiyama. “Robust adaptive beamforming”. In: Micro-
phone arrays: signal processing techniques and applications. Springer, 2001, pp. 87–
109.

[59] D. L. Duttweiler. “Proportionate normalized least-mean-squares adaptation in echo can-
celers”. In: IEEE Trans. Speech Audio Process. 8.5 (2000), pp. 508–518.

[60] David W Maidment, Yasmin HK Ali, and Melanie A Ferguson. “Applying the COM-B
Model to Assess the Usability of Smartphone-Connected Listening Devices in Adults
with Hearing Loss”. In: Journal of the American Academy of Audiology 30.5 (2019),
pp. 417–430.

[61] Alessia Paglialonga, Gabriella Tognola, and Francesco Pinciroli. “Apps for hearing science
and care”. In: American Journal of Audiology 24.3 (2015), pp. 293–298.

[62] A Charl and B LeRoux. Web apps are cheaper to develop and deploy than native apps,
but can they match the native user experience?, communications of the acm, 54 (5), 49
Gartner Inc.,(2013). 2011.

[63] Lee and Brent Ware. Open Source Development with LAMP: Using Linux, Apache, MySQL
and PHP. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2002. ISBN:
020177061X.

[64] Gitte Keidser, Harvey Dillon, Matthew Flax, Teresa Ching, and Scott Brewer. “The
NAL-NL2 prescription procedure”. In: Audiology research 1.1 (2011).

[65] Arthur Boothroyd and Carol Mackersie. “A “Goldilocks” approach to hearing-aid self-
fitting: user interactions”. In: American journal of audiology 26.3S (2017), pp. 430–
435.

[66] Carol Mackersie, Arthur Boothroyd, and Alexandra Lithgow. “A “Goldilocks” approach
to hearing aid self-fitting: ear-canal output and speech intelligibility index”. In: Ear and
hearing 40.1 (2019), pp. 107–115.

[67] Harvey Dillon, Gitte Keidser, Anna O’Brien, and Heidi Silberstein. “Sound quality
comparisons of advanced hearing aids”. In: The hearing journal 56.4 (2003), pp. 30–32.

[68] American National Standards Institute. Specification of Hearing Aid Characteristics (ANSI
3.22-2014). ANSI New York, 2014.

[69] Audioscan Verifit 2. https://www.audioscan.com/verifit2. Audioscan / Etymonic Design
Inc., 2014.

[70] Knowles Electronics. RVA-90020-NXX Datasheet. 2009.

[71] Knowles Electronics. RVA-90080-NXX Datasheet. 2014.

59

Chapter 2

Accelerating non-power-of-2 size Fourier
transforms with GPU Tensor Cores

Reprinted from 2021 IEEE International Parallel and Distributed Processing Symposium, May

2021, DOI 10.1109/IPDPS49936.2021.00059

2.0 Abstract

Fourier transforms whose sizes are powers of two or have only small prime factors have

been extensively studied, and optimized implementations are typically memory-bound. However,

handling arbitrary transform sizes—which may be prime or have large prime factors—is difficult.

Direct discrete Fourier transform (DFT) implementations involve extra computation, while

fast Fourier transform (FFT)-style factorized decompositions introduce additional overheads in

register use, multiprocessor occupancy, and memory traffic. Tensor Cores are hardware units

included in modern GPUs which perform matrix multiply-adds at a much higher throughput than

normal GPU floating-point instructions. Because of their higher throughput and better uniformity

across sizes, DFT/FFT implementations using Tensor Cores can surpass the performance of

existing DFT/FFT implementations for difficult sizes. We present key insights in this approach,

including complex number representation, efficient mapping of odd sizes to Tensor Cores (whose

dimensions are all powers of 2), and adding a size 2 or size 4 epilogue transform at very low cost.

Furthermore, we describe a method for emulating FP32 precision while using lower-precision

60

Tensor Cores to accelerate the computation. For large batch sizes, our fastest Tensor Core

implementation per size is at least 10% faster than the state-of-the-art cuFFT library in 49% of

supported sizes for FP64 (double) precision and 42% of supported sizes for FP32 precision. The

numerical accuracy of the results matches that of cuFFT for FP64 and is degraded by only about

0.3 bits on average for emulated FP32. To our knowledge, this is the first application of Tensor

Cores to FFT computation which meets the accuracy and exceeds the speed of the state of the art.

2.1 Introduction

Power-of-2 size Fourier transforms are extremely popular, in large part because of the

availability of the O(n logn)-complexity Cooley-Tukey fast Fourier transform (FFT) algorithm

[1]. However, FFT libraries must provide implementations for all transform sizes, including

sizes which are prime or have large prime factors. While sub-O(n2) algorithms such as Bluestein

[2] do exist for these cases, these approaches have a large overhead, and direct computation of

the discrete Fourier transform (DFT) is often faster despite being O(n2). However, the latter is

heavily reliant on compute performance, unlike Cooley-Tukey which is typically memory-bound

for sizes which can be factorized into small prime numbers. As a result, we looked to Tensor

Cores to improve performance in these cases.

Tensor Cores (TCs) are hardware arithmetic units in the GPU designed to perform

accelerated matrix multiply-add operations for deep learning and linear algebra applications.

They were introduced by NVIDIA in the Volta GPU architecture in 2017 [3] and were enhanced

with the subsequent Turing [4] and Ampere [5] GPU architectures. Other GPU hardware

manufacturers have indicated plans for similar hardware in their GPUs [6].

A previous paper by Sorna et. al. [7] introduced the notion of using TCs to accelerate

FFT computation, and provided the basic approach to mixed-precision computation which we

build on. However, their implementation was unable to reach either the speed or the numerical

accuracy of cuFFT in FP32, and was limited to a small number of power-of-2 sizes for which

61

cuFFT was already memory-bound. In contrast, we use TCs for sizes on which they are likely

to provide the most benefit, and we exploit the capabilities of the new third-generation TCs in

the NVIDIA Ampere A100 GPU. As a result, we are able to match the accuracy and exceed the

performance of cuFFT.

The remainder of this paper is organized as follows. Section 2.2 introduces our strategies

for making efficient use of the data layouts imposed by the TCs, including representation of

complex numbers, computing odd size transforms with power-of-two size TC operations, and

efficiently performing size 2 or size 4 transforms after the main odd size transform. Section

2.3 describes how we use mixed-precision arithmetic to produce FP32 results with very little

loss of accuracy. Section 2.4 discusses two implementations of these strategies with different

I/O and resource usage patterns. Finally, section 2.5 presents the speed and accuracy results of

these implementations, and compares them to the cuFFT library (state-of-the-art baseline) and to

memory copies (ideal baseline).

2.2 Leveraging Tensor Core Data Layouts

The TCs can be directly accessed via special inline assembly (PTX) instructions within

a CUDA program [8], as well as indirectly by CUDA C++ functions. They are warp-wide

instructions, in that each thread within the warp supplies input data in registers for different

elements of the input matrices, and receives output data corresponding to different elements

of the output matrix. For example, for FP64 (double precision), the DMMA (double-precision

matrix multiply-accumulate) instruction performs the operation

D = AB+C (2.1)

where A ∈D8×4, B ∈D4×8, C,D ∈D8×8, and D is the space of IEEE FP64 floating point values.

The layout of the input and output operands in the threads within the warp is shown in Figure 2.1.

The main advantage of using TCs as opposed to traditional fused multiply-add (FMA)

62

Figure 2.1. TC instructions are warp-wide, meaning that the elements of the input and output
matrices are distributed over the threads of a warp (thread index shown by number). The layout
of the DMMA (double-precision matrix multiply-accumulate) instruction from NVIDIA Ampere
A100 is shown here. © 2021 IEEE

instructions is increased throughput, meaning increased total number of floating-point operations

completed in a given time. On A100, TCs for FP64 have twice the throughput compared to

traditional FP64 arithmetic, and TCs for TF32 have eight times the throughput compared to

traditional FP32 arithmetic [5]. As described below in section 2.3, four operations are required

to emulate FP32 precision with TF32 arithmetic, so the overall throughput of TC emulated FP32

is up to twice that of traditional FP32.

2.2.1 Complex Number Representation

The DFT is fundamentally the multiplication of a complex signal vector x⃗ ∈ CN by the

fixed complex DFT matrix W ∈ CN×N , [W]k,n = exp
(
−2π j kn

N

)
,

y⃗ =Wx⃗ (2.2)

(In this paper, we focus only on the forward transform; the inverse transform may be easily

obtained by replacing W with W H =W ∗ and, depending on the definition, optionally multiplying

by 1/N.) As such, the only arithmetic operations involved are complex multiply operations and

complex add operations. One complex multiply-add s = pq+ r requires four real multiplies and

63

four real adds:

p = a+ jb, q = c+ jd, r = e+ j f

s = pq+ r = (ac−bd + e)+ j(ad +bc+ f)

= ℜ(s)+ jℑ(s)

(2.3)

One approach to mapping these operations to the TCs is to simply perform four DMMA

operations, on inputs that are the same size as the DMMA, as:

ℜ(S) = (−B)D+(AC+E)

ℑ(S) = BC+(AD+F)

(2.4)

where A,B ∈ D8×4, C,D ∈ D4×8, E,F,ℜ(S),ℑ(S) ∈ D8×8. This approach has the advantage

that the real and imaginary components of a number are always held by the same thread within

the warp.

However, we instead map the elements of the complex multiply to subsets of the elements

of the DMMA instruction, performing only one DMMA operation and reducing the effective

size of that instruction by four times. The complex multiply can be rewritten as

[
a b

] c d

−d c

+[e f

]
=

[
ℜ(s) ℑ(s)

]
(2.5)

These four submatrices are tiled in 8×2, 2×4, 8×4, and 8×4 patterns respectively to fill up the

DMMA. This effectively results in a 8×2×4 “complex DMMA instruction” (Figure 2.2). This

smaller size is critical to the algorithm described below in subsection 2.2.2. A further benefit

of this approach is that each thread holds exactly one complex r and s value, although the data

layout of the p and q values is more complicated.

64

Figure 2.2. The layout of the components of complex numbers within a DMMA instruction,
shown in terms of the real components (left) and as the equivalent complex numbers with a
smaller tile size (right). The numbers represent the index within each matrix. The colors highlight
two out of the 64 complex multiply-adds performed. © 2021 IEEE

2.2.2 The Accordion Algorithm: Odd Size DFTs with Tensor Cores

The basic concept for using TCs to accelerate Fourier transforms is to take a batch of M

signals X ∈ DN×M and multiply this matrix by the DFT matrix W to obtain Y ∈ DN×M, a batch

of transformed signals. If this matrix multiply can be efficiently broken up into tiles that match

the dimensions of the DMMA instruction, the TCs can be used. As explained in the Introduction,

we are interested in sizes that are prime or have large prime factors, so we first focus on odd-size

transforms (which includes all prime numbers besides 2).

Unfortunately, all three dimensions of all TC operations are power-of-two sizes; this

remains the case for our 8 × 2 × 4 complex DMMA introduced above in subsection 2.2.1.

Fortunately, the DFT matrix has structure that can be exploited to solve this problem: the first

row and first column of the matrix are all equal to 1. The fact that the first row is all 1 means that

the first output element is the sum of all input elements:

y0 =
N−1

∑
n=0

xn (2.6)

Conversely, the fact that the first column is all 1 means that each of the output elements is the

65

sum of the first input element, plus complex multiples of the other input elements:

yk = x0 +
N−1

∑
n=1

exp
(
−2π j

kn
N

)
xn, k ∈ [1,N −1] (2.7)

Each of these equations contains N −1 pure complex adds, i.e. with complex multiplies by 1

omitted. Thus, the TC can be used for the nontrivial complex multiply-adds making up the bulk

of the DFT matrix—which, with the first row and first column removed, is now even in size—and

these extra sums can be computed separately. We proceed to detail this process for each case.

To remove the first column of the DFT matrix (Figure 2.3 top), we observe that the

operation of the TC is always a matrix multiply-add, while the DFT operation is merely a

matrix multiply (the “add” input is zero). Thus, there is an extra add available at no extra cost.

We simply initialize each element of the output vector to the first element of the input vector,

yk = x0,k ∈ [0,N −1], and then perform the multiply-add using the truncated DFT matrix with

this pre-initialized y⃗ as the initial “add” input. For odd sizes, this reduces one dimension of the

DFT matrix N = 2k+1,k ∈ Z to a multiple of 2. As a result, this dimension of the DFT matrix

always fits in the inner dimension of the B matrix of the complex DMMA.

To remove the first row of the DFT matrix (Figure 2.3 bottom), we simply compute the

sum of the input elements according to Equation 2.6 with normal floating-point add instructions.

In implementations where the input data is loaded incrementally or streamed (section 2.4),

whenever input data is loaded to registers for use with the TCs, it is also added to a separate

per-thread accumulator, and the accumulators are added across the threads as appropriate at the

end of the computation. However, this process is only peformed for FFT sizes N = 4n+1, n ∈ Z,

i.e. for odd sizes 5, 9, etc. This is because in these cases, removing the first row causes the DFT

matrix to be a multiple of 4 size which matches the TCs. Conversely, in the other odd cases

N = 4n−1, removing the first row would cause the size to be 4n−2, which does not match the

TCs. In these cases, we instead leave the first row of the DFT matrix intact and add an extra row

at the bottom containing zero values which do not contribute to the result (Figure 2.4 bottom

66

Figure 2.3. The strategies for removing the first column and first row of the DFT matrix, which
are all 1s. For the first column, the accumulators are initialized with the first input signal sample.
For the first row, all the samples are added. In the case shown here, the DFT matrix is thus
reduced from size 9× 9 to 8× 8, which fits perfectly into four DMMA instructions. © 2021
IEEE

left). This has the cost of discarding one quarter of the TC’s computation in the last tile, but it

brings the size to a multiple of 4 in all odd cases. Thus, in both of these cases, this dimension of

the DFT matrix always fits in the column dimension of the B matrix of the complex DMMA. It

also fits in the row dimension when the size is a multiple of 8, i.e. for transform sizes 7, 9, 15,

17, etc., as shown in Figure 2.3 for size 9.

The final dimension of the complex DMMA, 4 or 8 depending on which is occupied by

the DFT matrix, signifies the minimum batch size (i.e. the minimum number of signals). The

67

Figure 2.4. The layouts of size 3, 5, 7, and 9 transforms, which take 1, 2, 3, and 4 DMMA
instructions respectively. Blue denotes input signals, yellow is DFT matrices, and pink is output
signals. Note the initialization in all cases and the extra adds for size 5 and 9. © 2021 IEEE

matrix can be tiled in that direction to accommodate multiples of 4 or 8 signals.

As a result of these operations, for example, two 8×2×4 complex DMMAs, tiled as 2

inner × 1 column for a total size of 8×4×4, would normally accommodate a 4-element DFT

of eight signals. However, this layout can be expanded to perform a 5-element DFT of eight

signals, or contracted to perform a 3-element DFT of eight signals (using one fewer DMMA)

(Figure 2.4 top). Similarly, four complex DMMAs, tiled as 4 inner × 1 row for a total size of

8×8×8, would normally perform an 8-element DFT of eight signals, but this layout can be

expanded to perform 9-element DFTs or contracted to perform 7-element DFTs (requiring only

three complex DMMAs) (Figure 2.4 bottom). With further tiling, any odd-number size can be

covered. Because each odd size alternately expands and contracts the effective DMMA size, this

approach was nicknamed “the accordion algorithm”, after the instrument that similarly expands

and contracts.

68

2.2.3 Epilogue Size 2 or 4 Transforms

With the above approach, transforms of four or eight signals are always computed in

parallel by the threads of a warp. Regardless of whether the implementation computes and stores

each segment of the output signals before moving on to the next or whether it has the entire batch

of output signals in registers at the end of the process, at any given time the kth element of all

four or eight output signals is present in registers at once. Furthermore, due to the data layout

of the 8×2×4 complex MMA, each thread holds exactly one complex output signal sample.

These conditions are ideal for the addition of an epilogue Fourier transform of size 2 or 4 “across”

the signals. This allows the overall Fourier transform size to be that of an odd number times

2 or times 4, on half or one quarter as many signals. (An epilogue transform of size 8 is also

possible, but due to the increased complexity of the size 8 coefficients and the incompatibility of

this approach with the case of only four signals per DMMA, it was not implemented.)

These epilogue transforms are accomplished as follows:

1. The signals are initially loaded in an interleaved pattern, such that consecutive samples are

distributed among what would otherwise be two or four signal slots.

2. The main (odd-size) transform is performed using TCs as described in subsection 2.2.2.

3. The samples are pointwise multiplied by a twiddle matrix, according to the Cooley-Tukey

algorithm [1].

4. The size 2 DFT or size 4 FFT is computed by exchanging values among the threads

in the warp (with “shuffle” instructions) and performing complex adds using normal

floating-point instructions. For both size 2 and size 4, all coefficients are ±1 or ± j, so

only exchanges and adds are needed.

5. The output signals are stored to memory in the same layout as if the epilogue transform

was not performed. The size 2 or 4 transform being “across” the signals effectively

accomplishes the interleaving needed both before and after that transform.

69

This process only requires a small number of floating-point add operations and a few

shuffles, and introduces no new memory operations. (The twiddle matrix can be preloaded and

used for many batches, and the interleaved signal loading represents the same set of loads, just to

different threads, which is handled efficiently by the GPU memory subsystem.) As a result, the

cost of these epilogue transforms is very low. Conversely, if cuFFT encounters a size which is a

prime number times 2 or times 4, in many cases it launches one kernel to perform the prime size

and then another to perform the size 2 or 4 transform. The intermediate results must be written

out to memory, doubling the needed bandwidth and requiring an additional intermediate data

array the same size as the input and output.

2.3 Emulating FP32 with TF32 Tensor Cores

2.3.1 Mixed-Precision Arithmetic

The use of lower-precision arithmetic in computation of higher-precision results is a

popular approach to accelerating high-performance computing and linear algebra applications

[9] [10]. For example, FP32 computations can be used to initialize iterative solvers which

eventually produce FP64 results [11]. The aforementioned paper by Sorna et. al. [7] introduced

the mixed-precision approach of representing a FP32 value as the sum of two FP16 values,

performing the linear FFT operation on the FP16 values, and then adding the results to FP32 at

the end. This 2× FP16 representation provides maximum precision when the first, “big”, value

is the closest FP16 number to the true FP32 value, and the second “small” value is the closest

FP16 representation of the error in the “big” value. However, due to the limited range of FP16

values, this approach required rescaling throughout the computations.

With the Ampere GPU architecture, NVIDIA introduced a new floating-point format

for the TCs: TF32 (TensorFloat-32) [12]. This format is stored and processed as IEEE FP32

everywhere except at the input to the multipliers in the TC, where the mantissa is truncated to

10 bits (discarding 13 bits with no rounding). Once the inputs have been reduced to this size,

70

the multipliers and adders within the TC have no loss of precision, and the result is rounded

to FP32 after each multiply-add step [8]. Thus, TF32 can be thought of as a 19-bit floating

point format with 1 sign bit, 8-bit exponent, and 10-bit mantissa—the same range as FP32, and

the same precision as FP16—which is used just at the input to the TCs. Since true FP32 TCs

are not available, and the TF32 TCs have eight times the throughput of traditional FP32 fused

multiply-add (FFMA) instructions, emulating FP32 arithmetic using TF32 TCs is an attractive

option.

The conversion from FP32 to 2× TF32 is performed as:

1. Round the input value v to TF32 as b, the resulting “big” value.

2. Subtract b from v to get s′.

3. Round s′ to TF32 as s, the resulting “small” value.

We follow the FP32-to-TF32 rounding scheme introduced by the open-source CUDA linear

algebra library CUTLASS [13], except that we assume input values are finite to save instructions

on this critical path. As a result, the rounding is merely an integer add of 0x1000 to the 32-bit

register containing the floating-point value, and then a logical-and mask setting the lower 13 bits

to zero. (This mask is omitted in the case of s, as the TC itself truncates the value.)

2.3.2 Retaining 21-22 Bits from FP32

While it might seem that the representation of a FP32 value (23 bits of precision) by two

TF32 values (each with 10 bits of precision) would produce a total of 20 bits, leading to 3 bits

being lost, in fact more precision than that is retained. Consider the case when the floating-point

exponent of v is 10, i.e. when the least-significant bit in the TF32 representation (the tenth most

significant bit in FP32) represents a value of 1. In this case, b, rounded to this position, has a

maximum error of 0.5, since if it had a larger error than that the next largest or next smallest

value could be chosen and the error would be reduced. The error v−b is encoded by s, which

71

therefore must represent a value between −0.5 and 0.5. If just the sign bit of s was provided,

that range would be halved again (either [−0.5,0] or [0,0.5]), meaning one bit of precision is

encoded in the sign bit of s. Put another way, the exponent of s is at most −1, which is at least

11 less than the exponent of b, so the mantissa bits of s are shifted by at least 11 bits from v.

However, we need not stop there. Assuming the mantissa bits of v are independent and

uniformly distributed, there is a 50% chance s ∈ [−0.5,−0.25] or [0.25,0.5], and a 50% chance

s ∈ [−0.25,0.25]. In the latter case, the exponent of s is now at least 12 less than the exponent of

b—another bit has been gained. Similarly, there is a 25% chance |s|< 0.125 and two extra bits

are gained, and so on. These extra bits are being encoded in the difference between the exponent

of b and s: in the base case it is −11, but it may be −12 and so on. The expected value E of the

number of extra bits can be written as the sum of the probability of each case, times the number

of extra bits in each case, or:

E = ∑2−(n+1)n (2.8)

If this series is summed to infinity, the result is 1 extra bit on average [14]. In reality, the sum

stops at 12, as extra bits are only meaningful when they correspond to bits present in the original

FP32 value. However, whenever there are at least 2 extra bits, the 20 mantissa bits between

b and s plus the sign bit of s plus the ≥ 2 extra bits gives ≥ 23 bits, which is sufficient to

perfectly represent the original FP32 value. So, the situation is actually slightly better than in the

infinite-bits case.

In summary, the representation of an FP32 value by two TF32s results in 21 bits of

precision deterministically plus about 1 additional bit stochastically under certain assumptions.

Note that this discussion is about the precision with which typical FP32 values can be represented;

certain very large or very small values cannot be represented by this method. For instance, if the

exponent of v is the maximum finite value and the mantissa is at least 0x7FF000, rounding it

to TF32 will round up to infinity, causing information to be lost. Similarly, if the exponent of

v is so small that s with an exponent 11 less than it would become denormalized, precision is

72

again lost. However, given the relatively large range of FP32, these cases are rare in practice;

furthermore, designers should avoid numbers close to the bounds of the floating-point range in

any algorithm due to the risk of overflow and underflow. This algorithm merely requires wider

safety margins due to the low-precision representations.

2.3.3 TF32 Data Layout

As discussed above in subsection 2.2.1, the only arithmetic operations needed for Fourier

transform computation are complex multiplies and adds, which are expressed in terms of real

multiply-adds performed in the TCs and extra real adds performed with normal floating-point

operations. Only the multiply portion of the TC operations are done with reduced TF32 precision;

the adds in the TCs and the extra adds are all done at FP32 precision. Thus, the only operation

which we need to emulate with TF32 precision is a multiply.

If the two values v1,v2 ∈F are decomposed as v1 ≈ b1+s1, v2 ≈ b2+s2, b1,b2,s1,s2 ∈T,

where F and T are the space of FP32 and TF32 values respectively, and bi and si are “big” and

“small” values respectively, then multiplication is performed as:

v1 × v2 ≈ (b1 + s1)× (b2 + s2) = b1b2 +b1s2 + s1b2 + s1s2 (2.9)

That is, the product of FP32 values can be approximated as the sum of the four products of the

TF32 numbers making up their representations.

For TF32 TC operations, there are two tile sizes available: 16× 4× 8 and 16× 8× 8.

These two forms have the same floating-point throughput (the twice-as-large size is issued half

as often), but the smaller size has greater pressure on register file communication, which can

become a bottleneck in some cases. To avoid this, we use the 16× 8× 8 size. This tile size

is twice as large in the “rows” and “inner” dimensions compared to DMMA, so writing the

73

16×8×8 operation in terms of 8×4×8 tiles looks like:

A0 A2

A1 A3

B0

B1

+
C0

C1

=

D0

D1

 (2.10)

where A ∈ T4×8, B ∈ T8×4, C,D ∈ F8×8, i.e. A,B,C,D are tiles the same size as in the DMMA

instruction.

Similar to how we mapped complex numbers to groups of values within the DMMA

layout in subsection 2.2.1, we map these subtiles to the decomposed values in the mixed-precision

representation: b1 b1

s1 s1

b2

s2

=

b1b2 +b1s2

s1b2 + s1s2

 (2.11)

An extra addition step at the end is needed to add the D0 and D1 values to give v1 × v2 ≈

b1b2 +b1s2 + s1b2 + s1s2; this requires two floating-point add instructions, as each thread holds

two values each from D0 and D1.

Thus, the process for emulating an FP32 TC operation is:

1. Convert the input A and B values to 2× TF32 as described in subsection 2.3.1.

2. Perform one 16× 8× 8 TF32 TC instruction with the big and small values laid out as

shown in Equation 2.11.

3. Perform two extra floating-point adds per thread.

This results in a pseudo-“FMMA” (FP32 matrix multiply-accumulate) with the same tile size

and data layout as the DMMA instruction. Crucially, this means that the complex number format

described in subsection 2.2.1—and therefore the algorithms dependent on the 8×2×4 complex

MMA tile size in subsection 2.2.2—remain the same, as does the code for loading the input data

and so on. Furthermore, since the TF32 TC operation has eight times the throughput of normal

FP32 multiply-add instructions, but four multiplies within this instruction are needed to emulate

74

each FP32, the overall throughput is up to twice that of normal FP32 operations. The extra add

instructions and the instructions needed for the conversion are performed by floating-point and

integer hardware units, which run in parallel with the TCs, so their presence may or may not

reduce the overall throughput. The results in section 2.5 indicate slightly lower performance

gains for emulated FP32 as compared to FP64, but this may be for a variety of reasons besides the

conversion, so it is not clear the conversion is to blame. Furthermore, as discussed in section 2.4,

some of our implementations perform the conversions less often than indicated in this section,

reducing their potential performance impact.

2.3.4 Recovering Additional Precision with Separated Accumulation

There remains one problem with this pseudo-FMMA operation: one to two bits are lost

in the conversion from FP32 to 2× TF32. If one of the inputs is the identity matrix, for instance,

it is clear that the lost bits in the other input translate to the same lost bits at the output. When

both matrices have lost bits, such as in the Fourier transform case where one matrix contains DFT

coefficients and the other contains arbitrary input data, the error in the product can be another

one to two bits larger.

However, floating-point error accumulates in any floating-point computations, not just

those with TF32. Each Fourier transform output sample yk can be viewed as the dot product

of a row of the DFT matrix W with the input signal x⃗. The length of this dot product is the

transform size N. If this dot product is implemented as a loop over the pairs of elements, with

fused multiply-add instructions used for each step, the results are still rounded to FP32 after each

fused multiply-add. Thus, assuming the input signals are on average uniformly distributed, the

sum gets larger and larger each step, while the product remains the same size. For every power

of two the sum becomes larger than the product by, one bit from the product is effectively lost.

So, even with a straightforward FP32 DFT implementation, two or three bits will be lost in most

of the products for any transform sizes larger than 8 or 16.

This type of error does not add to the error due to the 2× TF32 representation; instead, it

75

obscures that error. Suppose the “add” input is four times the size of the product, so that two bits

of the product are effectively lost; and suppose the last two bits of the product are incorrect due

to the TF32 representation. It is those incorrect bits which will be lost due to the adding; with

the exception of effects due to rounding, the result will have the same accuracy as if the product

was completely correct. To maximize the chance that these rounding effects are favorable, and to

halve the accuracy penalty for the dot product accumulation, we employ the following strategy.

All TC operations are matrix multiply-accumulate operations, D = AB+C. However, the

operation is not performed as written, with a multiply first and then an add. Instead, each element

of D is computed as the dot product of a row of A with a column of B, with fused multiply-add

operations used for each of the elements of that dot product. The corresponding element of

C is used as the “add” input to the first fused multiply-add. Put another way, C contains the

initial state of the accumulator, which is repeatedly added to. When performing multiple TC

operations to produce longer dot products, this corresponds to the situation described above,

where precision is lost in the products when the “add” input value is larger.

To improve accuracy, we instead use the TC to perform the operation D = AB+0, and

add C to D afterwards with normal floating-point instructions (two instructions per thread, as

each thread holds two values in these matrices). This improves accuracy in two ways. First, since

the 8×2×4 complex matrix multiply tile being performed as a result of this whole process has

an inner dimension of 2, that means we are grouping the overall dot product sum in pairs. Each

pair of values is added independently, and the results of these pairs are added serially, for half the

number of serial additions and hence roughly half the error (again with appropriate assumptions

about uniformity of inputs). Second, the sums within the TC are adding “big×big”, “big×small”,

and “small×small” values, which are all at different size scales. For the rounding to be most

accurate, these values should be added in order from smallest to largest. While the order of

the adds within the TC cannot be guaranteed, we can at least guarantee that the addition to the

overall dot product accumulator—which is most likely the largest value of them all—is done last.

As a result, the intermediate rounding is more favorable with this approach than if we had used

76

the C input to the TC operation.

2.4 Implementations

Several implementations with a variety of hyperparameter settings were tested. We

present the two implementations with the best overall performance for both FP64 and emulated

FP32.

In all our implementations, due to the TCs’ warp-wide nature, each warp performs the

transform of a batch of signals at once. The total number of signals being transformed must be a

multiple of the batch size. However, the strategies for loading the DFT coefficients and signal

data, and the organization of the warps, differ between the implementations.

2.4.1 Cache- and Register-Based Implementation

Our first implementation closely follows the design described in subsection 2.2.2. The

DFT matrix and signals swap positions between the A and B matrices of the TC after every two

odd sizes, and there is an optional batch size multiplier for how many signals are processed at

once (i.e. the original batch size is 4 or 8 depending on transform size, but this can be optionally

multiplied by 2 or 4 for a total batch size b). Besides the ×2 and ×4 epilogue transforms, we

implement a two-way factorized transform: composite odd FFT sizes are broken once into a pair

of factors p and q, as close in magnitude to each other as possible. The b×q size-p transforms

and the b× p size-q transforms are performed sequentially by the same kernel, with intermediate

results stored in shared memory.

For small transform sizes (up to around 33), the entire DFT matrix is loaded into registers

at the beginning, and then each warp sequentially processes many batches of transforms without

having to load any DFT coefficients again. For larger transform sizes where there are not enough

registers, instead DFT coefficients are loaded from memory as they are used. This approach

relies on the L1 cache to keep the DFT coefficients close to the execution units.

77

2.4.2 Streaming- and Shared Memory-Based Implementation

Our second implementation is simpler in its use of the TCs: a batch of 8 signals is always

in the A matrix, and the DFT coefficients are always in the B matrix. The ×2 and ×4 epilogue

transforms are implemented, but the two-way factorized transforms are not, due to complexity

and shared memory use.

The DFT matrix is loaded to shared memory, and for FP32 also converted to 2× TF32,

at the beginning of the kernel. For DFT sizes that are too large to fit in shared memory (even

with the extended shared memory up to 160 KiB available in the A100), the transforms are split

up among multiple thread blocks, where each computes a subset of the output samples (and

therefore requires only a portion of the DFT matrix). Multiple warps are run per block, which

share the same DFT matrix in shared memory, and these warps iterate over the signal batches to

further increase the reuse of the DFT coefficients. Finally, signals are loaded either normally

from global memory via the L1 cache, or using the new pipelined asynchronous memory copies

introduced in Ampere [15]. As the latter copies large chunks of data directly from the L2 cache

to shared memory via a dedicated, high-bandwidth pipeline, it is typically faster for sizes where

it is used. However, it also consumes a large shared memory footprint when many warps are

running per block, so it is only an efficient approach for smaller sizes.

2.5 Results

All results are measured on one NVIDIA Ampere A100-PCIE-40GB (250W) GPU. The

GPU graphics clocks are locked to 1410 MHz while the memory clocks are locked to 1215 MHz.

2.5.1 Numerical Accuracy

All approaches are compared to ground truth results computed on the CPU in FP128

(quad) precision and then rounded to the target datatype. In each case, we compute the root-

mean-square (RMS) error between the output of the algorithm in question and the ground truth.

78

Relative bit errors are computed as ε = log2(RMSTC/RMScuFFT), where RMSTC and RMScuFFT

are the error in the present TC implementation and in cuFFT respectively. Except where stated

below, signal samples are independent, uniformly distributed random floating-point numbers in

the range [−0.5,0.5). The reference algorithms used for comparison are: cuFFT [16] version

10.3 (CUDA toolkit 11.1), FFTW [17] version 3.4, and two basic DFT implementations in the

target datatype on the CPU: one using DFT coefficients computed in the target precision, and

one using DFT coefficients computed in quad precision and rounded to the target precision.

CPU math for the reference computations is performed on the SSE path only (not x87) with all

compiler optimizations that may affect floating-point precision disabled.

The accuracy results do not differ significantly between the implementations described

in section 2.4, with two exceptions. First, a factorized FFT typically has lower error than a DFT

of the same size. Because cuFFT uses two-way or three-way factorized transforms whenever

possible, for fair comparison we use the two-way TC implementation for those sizes. Second, by

default we use separated accumulation (subsection 2.3.4) for both FP64 and emulated FP32; we

show an example below (Figure 2.6) with it disabled to demonstrate the accuracy impact.

FP64 precision

Figure 2.5 shows FP64 accuracy results for the present TC implementation and the four

reference implementations discussed above. For the uniformly distributed input data pictured,

the present implementation matches the accuracy of cuFFT, beating it by 0.07 bits. For the two

other types of input data described in the caption of Figure 2.8, the average differences are 0.10

and 0.02 bits again in slight favor of the present implementation (not pictured). However, as

discussed above, the DFT has higher (and more consistent) error than the factorized transforms,

and separated accumulation has a substantial impact on the error (Figure 2.6).

79

Figure 2.5. FP64 numerical accuracy of five Fourier transform implementations for uniformly
distributed input data. The present TC implementation slightly exceeds the accuracy of cuFFT,
by an average of 0.07 bits. © 2021 IEEE

Emulated FP32 precision

As a result of the techniques described in section 2.3, most of the precision of FP32

is retained when emulated by 2× TF32 with TCs. The precision is only degraded by an

average of 0.26 bits for uniformly distributed data (Figure 2.7) and 0.31 and 0.33 bits for

other data distributions (Figure 2.8). Note also that the present implementation matches or

exceeds the accuracy (except for certain small sizes) of a CPU-based DFT implementation using

high-precision DFT coefficients, and substantially exceeds the accuracy of a purely-FP32 DFT

implementation.

2.5.2 Performance

We compare the performance of the present TC implementations to cuFFT and to a

memory copy of the input data to the output. For each FFT size N, we measure the execution

time for 32 Mi input signal samples rounded up to the batch size, or S = b
⌈32×1024×1024

b×N

⌉
signals. Execution time is measured with CUDA events and averaged over 100 runs in each case.

Caches are not forcibly cleared between runs for any of the implementations (including cuFFT

and memcpy); due to the repeated runs, all measurements are effectively in “hot cache” state.

80

Figure 2.6. (FP64) Both the present TC implementation and cuFFT have lower error for com-
posite sizes where two-way or three-way factorized transforms are used (compare blue and green
to yellow). When separated accumulation is disabled, the error in the present implementation
rises (red). © 2021 IEEE

Execution times are converted into equivalent floating-point operations per second (equivalent

FLOPS) with the simplified definition of 5N log2 N FLOPS needed for an FFT of size N, as:

f =
S×5N log2 N

t ×106 (2.12)

where f is in equivalent GFLOPS and t is in milliseconds. Note that this metric does not represent

the actual number of floating-point operations performed in any of the implementations, and it is

even applied to memcpy which of course does not perform any floating-point operations at all.

Performance is measured for various TC implementations with different settings at each

transform size, and the best result per-size is presented. However, settings regarding accuracy

remain the same as presented in subsection 2.5.1 (except when otherwise specified).

Compared to memcpy

Figure 2.9 shows the absolute performance of the fastest TC implementation and cuFFT

compared to memory copies for FP64 and FP32. The TC implementation exceeds the per-

formance of cuFFT in a similar set of sizes in both cases. This appears to be for two main

81

Figure 2.7. Numerical accuracy of five Fourier transform implementations, for FP32 precision
computation and with uniformly distributed input data. In this case, the present TC implemen-
tation using emulated FP32 with TF32 (blue) is on average only 0.26 bits worse than cuFFT
(green). It also meets or exceeds the precision of a basic DFT implementation with ideal DFT
coefficients (purple) for all but small sizes. © 2021 IEEE

reasons. First, prime sizes are computed with the DFT by both the present implementation and

cuFFT, which is a highly compute-dependent problem. Both the FP64 TCs and the emulated

“pseudo-FMMA” (subsection 2.3.3) have twice the throughput on A100 compared to normal

arithmetic, so these cases can be accelerated up to 2× or until some other bottleneck sets in.

Second, as is visible in Figure 2.9, cuFFT runs at about half the performance of memcpy for

a number of sizes. These are presumably the sizes where it runs two kernels for a factorized

transform, and therefore requires twice the memory traffic. In contrast, the TC implementations

are all single kernel, and therefore do not have this bottleneck.

Compared to cuFFT

Figure 2.10 shows the relative performance of the present TC implementation compared

to cuFFT. The fastest TC implementation is at least 10% faster than cuFFT in 49% of the

supported Fourier transform sizes for FP64 and 42% of these sizes for emulated FP32. For FP64,

gains reach and exceed 2× in a few cases; for emulated FP32, gains even reach 2.5×.

82

Figure 2.8. Average absolute RMS error in cuFFT and the present TC implementation, for
two other types of IID input data. Top (“bigsmall”): 1 in 8 chance of uniform distribution
[−50,50), otherwise uniform distribution [−0.5,0.5). Bottom (“exp”): Exponential distribution
p(x) = 2e−2x, x > 0. The average degredation of the emulated FP32 results compared to cuFFT
is only 0.31 and 0.33 bits respectively for these two cases. © 2021 IEEE

Over batch size

Figure 2.11 shows performance results as a function of the batch size (i.e. number of

transforms), from 32 to as many as will fit in global memory, for fixed transform size 11. The

sharp drop in the middle is where the input and output data no longer fit entirely within the L2

cache. Note that the relative performance of the different implementations is stable over larger

batch sizes.

Impact of separated accumulation

When separated accumulation is disabled, as shown above in Figure 2.6, accuracy is

reduced. However, some applications may not be sensitive to this, and prefer to disable separated

accumulation to increase performance. For FP64, the average performance gain for the fastest TC

implementation per-size when disabling separated accumulation is 10.9%. In this configuration,

the fastest TC implementations beat cuFFT by at least 10% in 59% of supported sizes, up from

49% with separated accumulation enabled. However, disabling separated accumulation for

83

Figure 2.9. FP64 (top) and FP32 (bottom) performance of cuFFT and the fastest TC imple-
mentations compared to the ideal baseline of memory copies. The visible green is where the
TC implementation exceeds the performance of cuFFT. The visible light blue is where cuFFT
exceeds the performance of the TC implementation. The fact that the FFT implementations
sometimes slightly exceed the performance of memcpy is not a misprint. © 2021 IEEE

emulated FP32 precision provides only 1.7% extra performance on average, and does not change

the set of sizes which exceed the performance of cuFFT.

2.6 Conclusion

We have introduced a set of algorithms for computing discrete Fourier transforms on

Tensor Core GPU hardware. Our approach has the same or nearly the same accuracy as the

state-of-the-art cuFFT and FFTW libraries, and exceeds the performance of cuFFT by at least

10% on 49% and 42% of supported sizes for FP64 and FP32 respectively. The supported

sizes are odd numbers or odd numbers times 2 or times 4, which includes prime numbers

84

Figure 2.10. FP64 (top) and FP32 (bottom) performance of the fastest TC implementation
relative to cuFFT, with gains in green and losses in red. The TC implementation exceeds the
performance of cuFFT by at least 10% in 49% (FP64, top) and 42% (FP32, bottom) of these
cases (odd, ×2, and ×4 sizes). © 2021 IEEE

and numbers with large prime factors. The computation of Fourier transforms of these sizes

is more compute-dependent than that of powers of 2 or other sizes with small prime factors,

so existing implementations are often slower. The insights behind these algorithms include

methods for mapping complex numbers and odd sizes to the Tensor Cores, and strategies for

using lower-precision TF32 Tensor Cores to emulate FP32 arithmetic.

The implementations described in this paper are expected to be integrated into a future

release of cuFFT. We also plan to extend the TC approach to cover additional FFT sizes and

types in the future.

85

Figure 2.11. FP64 (top) and FP32 (bottom) performance versus batch size, for fixed size 11.
© 2021 IEEE

Acknowledgments

In reference to IEEE copyrighted material which is used with permission in this thesis,

the IEEE does not endorse any of UC San Diego’s products or services. Internal or personal

use of this material is permitted. If interested in reprinting/republishing IEEE copyrighted

material for advertising or promotional purposes or for creating new collective works for resale

or redistribution, please go to http://www.ieee.org/publications standards/publications/rights/

rights link.html to learn how to obtain a License from RightsLink. If applicable, University

Microfilms and/or ProQuest Library, or the Archives of Canada may supply single copies of the

dissertation.

Chapter 2, in full, is a reprint of the material as it appears in the 2021 IEEE International

Parallel and Distributed Processing Symposium (IPDPS). Pisha, Louis; Ligowski, Łukasz, IEEE,

May 2021. The dissertation author was the primary investigator and author of this paper.

86

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html

Bibliography

[1] James W Cooley and John W Tukey. “An algorithm for the machine calculation of
complex Fourier series”. In: Mathematics of computation 19.90 (1965), pp. 297–301.

[2] Leo Bluestein. “A linear filtering approach to the computation of discrete Fourier trans-
form”. In: IEEE Transactions on Audio and Electroacoustics 18.4 (1970), pp. 451–455.

[3] NVIDIA Tesla V100 GPU accelerator. Tech. rep. NVIDIA Corporation, 2017. URL:
https://images.nvidia.com/content/technologies/volta/pdf/tesla-volta-v100-datasheet-
letter-fnl-web.pdf.

[4] NVIDIA T4 tensor core GPU. Tech. rep. NVIDIA Corporation, 2018. URL: https://www.
nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-datasheet-
951643.pdf.

[5] NVIDIA A100 tensor core GPU architecture. Tech. rep. NVIDIA Corporation, 2020. URL:
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-
architecture-whitepaper.pdf.

[6] Intel Corporation. Architecture Day 2020. Aug. 2020. URL: https://newsroom.intel.com/
press-kits/architecture-day-2020/.

[7] Anumeena Sorna, Xiaohe Cheng, Eduardo D’azevedo, Kwai Won, and Stanimire Tomov.
“Optimizing the fast fourier transform using mixed precision on tensor core hardware”. In:
2018 IEEE 25th International Conference on High Performance Computing Workshops
(HiPCW). IEEE. 2018, pp. 3–7.

[8] CUDA Parallel Thread Execution ISA Version 8.0: Warp Level Matrix Multiply-
Accumulate Instructions. NVIDIA Corporation. URL: https://docs.nvidia.com/cuda/
parallel-thread-execution/index.html#warp-level-matrix-instructions.

[9] Ahmad Abdelfattah, Hartwig Anzt, Erik G Boman, Erin Carson, Terry Cojean, Jack
Dongarra, Mark Gates, Thomas Grützmacher, Nicholas J Higham, Sherry Li, et al. “A
Survey of Numerical Methods Utilizing Mixed Precision Arithmetic”. In: arXiv preprint
arXiv:2007.06674 (2020).

[10] Geetika Gupta. What’s the Difference Between Single-, Double-, Multi- and Mixed-
Precision Computing? Tech. rep. NVIDIA Corporation, Nov. 2019. URL: https://blogs.
nvidia.com/blog/2019/11/15/whats-the-difference-between-single-double-multi-and-
mixed-precision-computing/.

87

https://images.nvidia.com/content/technologies/volta/pdf/tesla-volta-v100-datasheet-letter-fnl-web.pdf
https://images.nvidia.com/content/technologies/volta/pdf/tesla-volta-v100-datasheet-letter-fnl-web.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-datasheet-951643.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-datasheet-951643.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/tesla-t4/t4-tensor-core-datasheet-951643.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://newsroom.intel.com/press-kits/architecture-day-2020/
https://newsroom.intel.com/press-kits/architecture-day-2020/
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-instructions
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html#warp-level-matrix-instructions
https://blogs.nvidia.com/blog/2019/11/15/whats-the-difference-between-single-double-multi-and-mixed-precision-computing/
https://blogs.nvidia.com/blog/2019/11/15/whats-the-difference-between-single-double-multi-and-mixed-precision-computing/
https://blogs.nvidia.com/blog/2019/11/15/whats-the-difference-between-single-double-multi-and-mixed-precision-computing/

[11] Alfredo Buttari, Jack Dongarra, Julie Langou, Julien Langou, Piotr Luszczek, and Jakub
Kurzak. “Mixed precision iterative refinement techniques for the solution of dense linear
systems”. In: The International Journal of High Performance Computing Applications
21.4 (2007), pp. 457–466.

[12] Paresh Kharya and NVIDIA Corporation. TensorFloat-32 in the A100 GPU accelerates
AI training, HPC up to 20x. May 2020. URL: https://blogs.nvidia.com/blog/2020/05/14/
tensorfloat-32-precision-format/.

[13] NVIDIA Corporation. CUTLASS: CUDA Templates for Linear Algebra Subroutines. 2020.
URL: https://github.com/NVIDIA/cutlass.

[14] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathematics: A
Foundation for Computer Science. 2nd. USA: Addison-Wesley Longman Publishing Co.,
Inc., 1994. ISBN: 0201558025.

[15] Asynchronously Copy Data from Global to Shared Memory. NVIDIA Corporation. 2020.
URL: https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#async-copy.

[16] NVIDIA Corporation. cuFFT: Fast Fourier Transforms for NVIDIA GPUs. 2020. URL:
https://developer.nvidia.com/cufft.

[17] Matteo Frigo and Steven G Johnson. “The design and implementation of FFTW3”. In:
Proceedings of the IEEE 93.2 (2005), pp. 216–231.

© 2021 IEEE. Reprinted, with permission, from Pisha, Louis; Ligowski, Łukasz. “Accelerating
non-power-of-2 size Fourier transforms with GPU Tensor Cores.” 2021 IEEE International
Parallel and Distributed Processing Symposium. IEEE, May 2021.

88

https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://github.com/NVIDIA/cutlass
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#async-copy
https://developer.nvidia.com/cufft

Chapter 3

Approximate Diffraction Modeling for
Real-Time Sound Propagation Simulation

Reprinted from the Journal of the Acoustical Society of America (JASA) 148 (4), pp. 1922-1933

(2020), DOI 10.1121/10.0002115

3.0 Abstract

Convincing simulation of diffraction around obstacles is critical in modeling sound

propagation in virtual environments. Due to the computational complexity of large-scale wave-

field simulations, ray-based models of diffraction are used in real-time interactive multimedia

applications. Among popular diffraction models, the Biot-Tolstoy-Medwin (BTM) edge diffrac-

tion model is the most accurate, but it suffers from high computational complexity and hence

is difficult to apply in real time. This paper introduces an alternative ray-based approach to

approximating diffraction, called Volumetric Diffraction and Transmission (VDaT). VDaT is a

volumetric diffraction model, meaning it performs spatial sampling of paths along which sound

can traverse the scene around obstacles. VDaT uses the spatial sampling results to estimate the

BTM edge-diffraction amplitude response and path length, with a much lower computational

cost than computing BTM directly. On average, VDaT matches BTM results within 1–3 dB

over a wide range of size scales and frequencies in basic cases, and VDaT can handle small

objects and gaps better than comparable state-of-the-art real-time diffraction implementations.

89

Figure 3.1. Real part of the VDaT-simulated soundfield showing diffraction around a large
planar occluder (black line), at ∼ 600 and ∼ 2850 Hz respectively. For clarity, reflections from
the occluder are disabled. Note how the diffracted waves emanate from the diffracting edge,
despite the VDaT algorithm involving neither waves nor edges.

A GPU-parallelized implementation of VDaT is shown to be capable of simulating diffraction

on thousands of direct and specular reflection path segments in small-to-medium-size scenes,

within strict real-time constraints and without any precomputed scene information.

3.1 Introduction

Diffraction of sound is a readily perceptible phenomenon in any environment that includes

objects which can occlude sound. As such, it is a key element of any acoustical simulation.

Diffraction can be modeled more-or-less exactly in a large-scale wavefield simulation of the

acoustical space [1, 2]. However, since human perception of sound spans roughly 10 octaves, and

the shortest wavelengths of interest (about 2 cm) are orders of magnitude smaller than the scale

of typical environments (2-20 m or possibly more), wavefield simulations require a very large

number of points and therefore a vast amount of computing power. As a result, these methods

are typically unsuitable for real-time applications.

Instead, we consider methods from geometrical acoustics (GA), in which the propagation

of sound is simulated by ray tracing techniques, and effects such as reflection and diffraction

are modeled through transformation of these rays. GA methods are efficient and have been

90

used in real-time audio systems for decades, from experimental systems in the ’90s [3] to major

commercial software packages today [4–6]. The two most popular GA-based diffraction models

are the Uniform Theory of Diffraction (UTD) [7] and the Biot-Tolstoy-Medwin model (BTM)

[8–10]. UTD is derived from the leading terms of an expansion of the wavefield result for

an infinite wedge [7]; it is reasonably fast to compute for each diffraction path, and it can be

evaluated at a coarse set of frequencies to approximate the amplitude response with reduced

computation. However, it has some error at low frequencies when the source or receiver are

close to the edge [10, 11], and even more error is introduced when it is used on practical scenes

with small edges, violating its assumption of infinite edges (subsection 3.4.2).

BTM is a theoretically superior model which handles finite edges correctly. It has been

shown to satisfy the wave equation for the infinite wedge, and it is conjectured to do so for all

scenes if diffraction is simulated to infinite order [10]. While computation of the discrete-time

impulse response for BTM [10, 12, 13] involves finite sample rates and numerical integration,

the sample rate and integration quality can be raised arbitrarily to (presumably) approximate the

wavefield result as closely as desired. However, due to the numerical integration, BTM suffers

from high computational complexity even with the minimum parameter settings, so its utility in

real-time applications has been limited to small-scale examples [14].

Both UTD and BTM are edge diffraction models: they model the filtering of sound on a

path that goes around one or more edges of objects in the scene. Exhaustively considering all

sets of edges for diffraction is of polynomial complexity in the number of edges:

Cedge ∝

No

∑
o=1

[s ·ηo · ((o+1)I(t)+CD(o))] (3.1)

where No is the maximum order, s is the number of source-receiver pairs (assuming no reflections),

η is the number of edges (typically about (3/2)t), t is the number of triangles, I(t) is the cost

of determining whether a given segment intersects any triangle in the scene or not (O(t), using

hierarchical structures O(log t) or better [15]), and CD(o) is the cost of the o-order diffraction

91

computation itself. Assuming that higher-order diffraction has the same computational cost as

repeated first-order diffraction, and dropping smaller terms, the complexity is at least

Capprox
edge > s · tNo ·No · (log t +CD(No)) (3.2)

As a result, this approach cannot be used in real-time simulation of scenes of nontrivial complexity.

Published approaches to circumventing this complexity (subsection 3.2.1) include pre-computing

edge visibility information [16], which restricts live changes to the scene, and Monte Carlo

sampling techniques [17], which raises questions about consistency of quality. In the course of

creating our own real-time GA audio spatialization system, we needed a diffraction model that

was suitable for fully dynamic, real-time scenes, while being as accurate as possible over the

wide range of scenes that are likely to be encountered in interactive multimedia applications.

Thus, as an alternative to edge diffraction, we have experimented with volumetric

diffraction modeling—a ray-based sampling of the empty space around obstacles, relative

to the occluded direct path or path segment through the obstacles. This approach has significant

advantages: its computational complexity is largely decoupled from the scene complexity

(subsection 3.5.1); it can simulate non-shadowed diffraction, where the direct path is not occluded,

with little additional cost (subsection 3.4.3); and it natively incorporates modeling of sound

transmission through obstacles, including on higher-order reflection and diffraction path segments

(subsection 3.3.3). The challenge was to use this volumetric sampling approach to create

reasonably accurate diffraction amplitude response and path length results over a wide range

of scene configurations. With a combination of theoretical analysis, numerical simulation, and

heuristic experimentation, we have developed a volumetric diffraction model, called VDaT

(Volumetric Diffraction and Transmission), which approximates the behavior of the BTM model

but has a much lower computational complexity. In typical scene configurations, there is a small

reduction in accuracy, as a trade-off for the large reduction in computation. However, like BTM,

VDaT does not exhibit the errors of UTD for small edge lengths (subsection 3.4.2), and in certain

92

cases VDaT can produce results which are objectively superior to those of comparable real-time

implementations of UTD or BTM (subsection 3.4.3). Thus, we present VDaT as an alternative

method for approximating diffraction in acoustical simulations, and argue that it has substantial

advantages over the existing models in many real-time applications.

The remainder of this paper is organized as follows. In section 3.2, we review existing

approaches to diffraction modeling, with a focus on approaches suitable for real-time applica-

tions. In section 3.3, we derive VDaT and discuss how its spatial sampling results are used to

approximate BTM. In section 3.4, we present simulated results for many scene configurations at

several size scales. Finally, in section 3.5, we discuss the computational complexity and real-time

performance of VDaT as integrated into a real-time audio spatialization system.

3.2 Past Work

3.2.1 Reducing Complexity of Edge Diffraction

Pre-computing edge visibility; computing diffraction separately from reflections

Reference [16] precomputes which edges in the scene are visible to each other, i.e. not

occluded by other objects, and stores this information in a graph structure. Traversing this graph

at run time substantially reduces the number of sets of edges which need to be considered for

higher-order diffraction. However, any precomputation on the scene requires the precomputed

elements—the diffracting edges—to be in fixed relative positions at runtime. Reference [16]

partly avoids this problem by separately computing edge visibility for objects which are internally

static but may move relative to each other, such as buildings and vehicles; unfortunately, this

approach omits any diffraction paths which would involve more than one of these objects.

Reference [16] also processes diffraction paths separately from specular reflection paths, to

reduce the number of path segments needing diffraction computation. Of course, not allowing

reflection paths to experience diffraction means these reflection paths cut in and out as the scene

elements move, often causing audible discontinuities in the output.

93

Monte Carlo or beam tracing

Reference [17] traces rays through the scene from the receiver on Monte Carlo trajectories,

computing UTD edge diffraction around the triangles they intersect. This approach successfully

decouples the computational complexity from the scene complexity, and simulates diffraction on

higher-order reflection paths. However, because Monte Carlo does not guarantee that important

reflection or diffraction paths are found, there may be quality issues. Reference [17] ameliorates

this problem by introducing a caching scheme, which allows the ray tracing complexity to be

effectively amortized over many frames, improving the quality of long, slow-moving sounds

every frame. Reference [18] performs a similar technique, except tracing adaptively-subdivided

frusta (polygonal convex conical beams) through the scene instead of individual rays. This is a

promising general approach, as it retains the advantages of the above approach while eliminating

the quality issues. However, the reported performance was barely real-time on the simplest

scenes, due to the higher complexity of the frustum computation.

Culling low-amplitude diffraction paths

Reference [19] presents a procedure for culling diffraction paths which are likely to

be low in amplitude and hence only make small contributions to the overall output. This

approach appears to be successful at reducing the computational burden of simulating audio

along insignificant paths, but it does not reduce the complexity of generating the diffraction paths

in the first place.

3.2.2 Other Non-Edge Diffraction Models

Fresnel zones

Fresnel zones are ellipsoidal, wavelength-dependent spatial volumes around the direct

path which represent the region in which most of the sound at each frequency propagates. As an

early real-time diffraction system, Reference [20] rasterizes the triangles of occluding objects

from a camera behind the source, to approximate what portion of each Fresnel zone around the

path segment is blocked. Reference [21] uses Fresnel zones in reflection computations, plus

94

a basic approximate diffraction attenuation factor, for estimating environmental noise in large,

outdoor scenes.

Neural networks

Reference [22] trains a neural network to estimate filter parameters which approximate

the edge-diffraction results for a basic occluding object. The results are reasonably accurate and

are shown to be perceptually acceptable to listeners; however, it is not clear how this approach

generalizes to arbitrary geometries.

Uncertainty relation

Reference [23] investigates a way of incorporating diffraction into purely ray-traced sound

propagation, in which rays that pass by close to edges contribute to the diffraction total. This

model was extended to 3D [24] and produced good results when compared to real measurements

[25]. However, due to the large number of Monte Carlo rays needed to achieve good accuracy,

simulation times were measured in minutes, not milliseconds.

3.3 VDaT: Approximating BTM

3.3.1 Volumetric Diffraction

The notion of modeling diffraction by examining the empty space around obstacles, as

opposed to examining the obstacles’ edges, arose from the combination of a simple acoustical

observation and an implementation consideration. The observation is as follows: Consider

any real-world situation where diffraction has a noticeable effect, such as listening to someone

speak while walking around a corner. It is immediately apparent that the high frequencies are

attenuated by the obstacle more quickly than the low frequencies when the obstacle begins to

occlude the direct path. It is as if the obstacle acts as a low-pass filter, with the cutoff dependent

on how far the obstacle has cut through the direct path. (In fact, some rudimentary real-time

diffraction simulators simply apply a generic low-pass filter when the direct path is occluded

[26].) Geometrically, it is as if the high-frequency sound mostly travels in a small region around

95

Figure 3.2. For this object and source/receiver positions, edge diffraction must be simulated to
at least third order, or the diffraction path will be completely absent. If the object’s curvature
was approximated by more polygons, the edge diffraction order would have to be raised even
further to avoid dropouts.

the direct path, and thus is blocked more fully by a small amount of occlusion, whereas the

low-frequency sound occupies a larger volume around the direct path and therefore requires

more occlusion to be affected. The concept of Fresnel zones [20] is one formalization of this

notion; we take the notion in a somewhat different direction below.

Along with these observations, VDaT was also inspired by an implementation considera-

tion: it is desirable, both computationally and theoretically, for the diffraction modeling to be

decoupled from the amount of detail in the object meshes. On the one hand, the amount of mesh

detail has a huge impact on the computational performance of an edge diffraction model. Not

only is the computational complexity polynomial in the number of edges for a given diffraction

order (section 3.1), the diffraction order must be raised as the meshes become more complex.

If the algorithm is not able to traverse around the outside of the obstacles in the limited steps

available, important diffraction paths will be simply omitted (Figure 3.2). On the other hand,

as 3D meshes become more detailed, the acoustical role of each edge typically diminishes, as

most edges are contributing to the approximation of smooth surfaces or adding small-scale detail.

Only when many edges are considered together does the acoustical behavior of the whole object

emerge. This can still be simulated with high-order edge diffraction, but it is no longer clear that

the edges per se play a privileged role in determining the acoustical behavior of the object.

As a result of these considerations, we developed the volumetric diffraction approach

96

which became VDaT. At a high level, it operates as follows:

• Spatially sample the scene around the occluded direct path at many size scales, using ray

tracing.

• Use the results to estimate the predominant shape of the object meshes near the direct path.

• Compute the diffraction amplitude response and path length, based on how BTM typically

behaves for the estimated objects.

The spatial sampling is the only place the algorithm interacts with the scene objects, and it does

so in a highly efficient, parallelizable way (subsection 3.5.1). The remainder of the algorithm

uses the spatial sampling results to approximate BTM edge-diffraction results, without needing

any numerical integration as in BTM.

Note that while in our discussions below we typically use the example where the direct

path is occluded, we also apply VDaT to non-occluded paths, to simulate non-shadowed edge

diffraction (subsection 3.4.3). Also note that we apply VDaT to every segment of every high-order

specular reflection path.

3.3.2 Spatial Sampling

VDaT samples the space around an original direct or specular reflection path segment,

according to the following hierarchy.

• Several “rings” (quantity Nr) are constructed around the original path segment, each with

a different radius r. One of these rings is shown in Figure 3.3.

• For each ring, a number of angles ψ (quantity Na) are taken, uniformly spaced in [0,2π).

Eight angles are shown in Figure 3.3.

• At each angle, a number of “subpaths” (quantity Nsp) are constructed. Each subpath begins

at one end of the original path segment and ends at the other end, representing a discretized

97

Figure 3.3. The main features of VDaT spatial sampling.

approximation of a path sound could travel around obstacles. Only one subpath per angle

is shown in Figure 3.3; additional subpaths are shown in Figure 3.4.

• Each subpath is composed of a number of straight “subsegments”. For example, each

subpath shown in Figure 3.3 has three subsegments. Each subsegment is checked for

intersection with all the triangles in the scene, to determine whether the subpath it belongs

to is blocked by obstacles or not. Some of the subpaths share subsegments for a reduction

in computation, so Nss refers to the total number of unique subsegments traced per angle,

across all the subpaths.

The equations describing this process are as follows:

Ξ(r) =
1

Na

Na−1

∑
a=0

Ξa(pi, pd,r,
2πa
Na

) (3.3)

Ξa(pi, pd,λ ,ψ) =
1

Nsp
∑

subpaths
Ξsp(pi,qi,qd, pd) (3.4)

Ξsp = ∏
subsegments

Ξss (3.5)

where Ξ represents “transmission” (Ξa, Ξsp, and Ξss are the transmission for one angle, one

98

Figure 3.4. Example VDaT subpaths. The choice of subpaths balances performance (subseg-
ments can be reused in multiple subpaths) with robustness (more subpaths means more ways
sound waves could traverse the scene around obstacles).

subpath, and one subsegment respectively), pi and pd are the two ends of the original path

segment, and qi and qd are the outer points at each angle as indicated in Figure 3.4. These latter

two points are constructed as follows. Planes are constructed through pi and pd perpendicular

to pi pd . Orthonormal vectors b1, b2 are constructed in these planes, in a way that is consistent

between frames and that changes smoothly when pi and pd are moved. The points u of the ring

are constructed from these vectors, and if pi or pd are reflections, they are projected onto the

reflecting triangles parallel to the original path segment:

b1,b2 : ∥b1∥2 = ∥b2∥2 = 1, {b1 ⊥ b2} ⊥ pi pd (3.6)

u(p,r,ψ) = p+b1r cos(ψ)+b2r sin(ψ) (3.7)

q(p,r,ψ) =

 proj∥pi pd
tp (u) if p on triangle tp

u if p source/receiver
(3.8)

qi = q(pi,r,ψ), qd = q(pd,r,ψ) (3.9)

Note that as a type of spatial sampling, VDaT is bound to the sampling theorem: it can

only consistently resolve physical features of similar or larger size than the sampling. However,

99

the multiscale approach of VDaT ensures the scene is sampled more finely near the direct path,

where small features have more acoustical impact. In other words, unlike UTD, VDaT has no

trouble handling a scene with a 5 cm square object where the source and receiver are close to it

on both sides. Meanwhile, unlike BTM, VDaT will completely ignore that small object when

processing other path segments which are several meters away from the object.

3.3.3 Scene transmission

In the simplest case, a subsegment which intersects at least one triangle has a transmission

Ξss = 0, and a subsegment which does not intersect any triangle has Ξss = 1. However, VDaT

supports optional modeling of sound transmission through obstacles. Triangles have transmission

coefficients X(t) ∈ [0,1], and the subsegment’s transmission is the product of the transmission

coefficients of each triangle the subsegment intersects.

Ξss(a,b) = ∏
t∈Ti(a,b)

X(t) (3.10)

Ti =
{

t | t intersects ab
}

(3.11)

3.3.4 BTM: Filtering by Interference

Before we can introduce how VDaT approximates BTM, we must develop one point

about the operation of BTM itself.

BTM is a “discrete Huygens”[27] / “secondary source” [10] model: it models diffraction

as if there are an infinite number of secondary sources on the edge, which re-emit an impulse

as soon as they receive it. In other words, there are an infinite number of diffraction paths

around each edge. Each of these paths contributes one impulse to the overall impulse response,

with different amplitudes due to the diffracting angles and different delays due to the path

lengths. This implies that the filtering which is the hallmark of diffraction is actually a result of

interference between these infinite diffracting paths around the edge. If all of these paths had

100

Figure 3.5. (Left) A random disk with linear edges, between the sizes r0/2 and r0. (Right) The
BTM amplitude response of that particular disk, and the average amplitude response of 300
random disks constructed similarly.

the same length—for instance, in the case of a thin circular disk with the source and receiver

on-axis—the impulse response would be a single scaled impulse, i.e. a flat frequency response,

since all the impulses would arrive at exactly the same time. However, this case is a singularity.

In most cases, the diffracting paths around the edge are of different lengths—in fact, the use of

point sources and straight edges of finite triangles guarantees it. That is, in scenes composed

of triangle-based meshes, diffraction filtering is caused by the existence of secondary-source

diffraction paths with lengths ranging continuously within certain bounds. The operations below

are effectively using the spatial sampling to estimate those bounds, and fill in the amplitude

response based on typical BTM behavior.

3.3.5 Approximating BTM

Consider the case where Ξ(r) = 0, ∀r ≤ r0/2 and Ξ(r) = 1, ∀r ≥ r0. That is, we have

performed spatial sampling at radii separated by powers of two, and found that all the subpaths

were blocked up to a certain radius, but they are all open starting at the next largest radius. This

means that there must be one or more obstacles in the scene, blocking the direct path, whose size

is between those two radii. We do not know their exact shape, nor how close to the source or

receiver they are, but we do know that they are no smaller than r0/2 and no larger than r0 (at least,

101

we are sure of that if Na approaches infinity). If we project these obstacles onto a normal plane

midway between the source and receiver, which corresponds to how subpath 0 performs spatial

sampling, they will become a disk with jagged, linear edges (Figure 3.5 left). Crucially, the

lengths of the BTM secondary source diffraction paths around these edges are bounded by ℓ1 and

ℓ2, which are directly determined by r0. We construct hundreds of arbitrary jagged disks between

r0/2 and r0, compute the true BTM amplitude response for each, and average them (Figure 3.5

right). While each individual amplitude response displays severe interference effects due to

the summing of the main BTM diffraction paths around the edges, their average is the familiar

lowpass shape which we expect from diffraction around an obstacle. This filter is effectively

constant up to a certain knee value k, and then has a rolloff of 10 dB/decade, corresponding to

a2/a1 = 1/
√

f2/ f1.

Of course, the obstacles are unlikely to be such a disk shape—on average they would

be uniformly distributed along the length of the direct path. Thus, to effectively sample the

other extreme of their possible distribution, we also project the obstacles onto a normal plane

which is 99% along the length of the direct path, right next to either the source or the receiver.

(Both BTM and VDaT are symmetrical—the source and receiver can be swapped with identical

results.) This results in changes to ℓ1 and ℓ2, as well as to the angle-dependent terms in BTM.

However, the results differ only modestly; for example for ls = 2 m and r0 = 0.8 m (Figure 3.6),

they differ by 1.7 dB FW-LSD (error metric given in Equation 3.25).

There is one more case we consider at this stage: that of non-shadowed diffraction

through a hole or gap between obstacles. This is the case where the spatial sampling results

are the reverse of the above: fully open (Ξ(r) = 1) at small radii (∀r ≤ r0/2), and fully blocked

above that (Ξ(r) = 0, ∀r ≥ r0). We construct hundreds of jagged holes in infinite planes midway

between the source and receiver, and compute and average the BTM amplitude responses to first

order as above. In this case, the BTM results (Figure 3.6 and Figure 3.7 bottom) are that of an

attenuating low shelving filter; the sloped section is now 20 dB/decade.

Since these averaged BTM amplitude responses depend on the length of the original path

102

Figure 3.6. Average BTM amplitude responses over 300 random geometries in each of the three
cases considered, for ls = 2 m and r0 = 0.8 m.

segment ∥pi pd∥= ls, which may be any continuous value, it is not feasable to precompute and

store them. We instead model them (Eqns. 3.12–3.14) by the shapes described above: a flat

response and then a 10 dB/decade rolloff for the two disk cases, and two flat segments with a 20

dB/decade sloped section in between for the hole case.

Ddisk(ω) = ad min

(
1,

1
2
√

ω/k

)
(3.12)

Dhole(ω) = max(min(Ddω/k,Dd) ,ah) (3.13)

Dd = 1/ls (3.14)

where Ddisk and Dhole are diffraction amplitude responses in frequency ω , and Dd is the amplitude

response for the original direct path segment with no diffraction. We observe that the knee for

the two filter shapes in each case are in roughly the same location, so we use a single knee value

k for both. The other two needed parameters are ad , the low-frequency amplitude for the disk

cases, and ah, the low-frequency amplitude for the hole. The three parameters {k,ad,ah} can

103

only be functions of the radius r0 and ls; they cannot depend on the position of the obstacles

between the source and receiver, as the spatial sampling does not provide that information. Of

course, the BTM results do depend on that information; so the best we can hope for is an estimate

of {k,ad,ah} given {r0, ls}, that produces as little error as possible over the range of relevant

conditions.

To approach this optimization problem, we began by plotting and observing the values of

each of these parameters as r0 and ls were varied, and attempting to write equations that matched

their behavior. Once we had developed a general form for these equations, we created a parameter

optimization system which uses a random walk to jointly fine-tune their parameters. We

considered the three cases discussed above, each for three size scales (ls = {20 cm, 2 m, 20 m}),

and for ten radii spaced in powers of two from 16.384 m to 3.2 cm, to roughly cover the range

of wavelengths of human hearing. The optimization objective was the ℓ1 distance between the

averaged BTM amplitude response and the VDaT amplitude response, in the range 20 Hz–20 kHz.

This process produced the following model, where {k1, . . . ,k6,d1, . . . ,d5,h1} are the optimized

parameters given in Table 3.1.

k̂ = exp10

(
k1(bk − k5)

k2 + k3bk + k4

)
(3.15)

bk = log10
c(ls/2)k6

r0
(3.16)

âd =
1+(d4ls/r0)

d5√
l2
s + r2

0

(
d2 +

d3

x+1/x

)
(3.17)

x = d1ls/r0 (3.18)

âh = min
(

h1r0

l2
s

, Dd

)
(3.19)

From Figure 3.7 top, it is evident that much of the resulting error is due to the “bump”

near the knee in the BTM amplitude response, which seems to be caused by the first sidelobe

104

Table 3.1. Numerically optimized parameter results for Eqns. 3.15–3.19.

Param Value Param Value Param Value
k1 0.7735 k2 1.0446 k3 0.7991
k4 -1.0501 k5 0.6817 k6 0.3453
d1 1.4430 d2 0.9190 d3 -0.3280
d4 1.3076 d5 -0.3378 h1 1.5829

lining up at the same frequency over all realizations rather than being randomly distributed. We

experimented with modeling this “bump”, but while doing so led to lower errors in this step, it

worsened the performance in the next section. Future work may investigate alternative approaches

to modeling the average BTM amplitude response, from a purely analytical standpoint or with a

fully machine-learning implementation (see Reference [22] in subsection 3.2.2).

3.3.6 Combining Results Across Rings

We now consider how the estimated BTM amplitude responses above are combined for

the general case of partial transmission on multiple rings. First, we initialize the amplitude

response to zero if the original direct path segment is blocked, or to the direct-path amplitude

response if it is open:

D0(ω) =

 Dd if Ξ(0) = 1

0 otherwise
(3.20)

Next, we iterate over the rings, and use the difference in transmission between the current ring

and the next smallest ring as a weighting on the estimated BTM amplitude response between

those two radii. This ensures the responses computed above are used without modification if the

spatial sampling results are the special cases considered above, and it provides an interpolation

between the responses in all other cases. If the difference is negative, we use the “hole” amplitude

105

Figure 3.7. Two of the nine cases used in the parameter optimization: disks with small ls, and
holes with medium ls. On the left, the curved lines are BTM amplitude responses, and the
piecewise linear lines are the VDaT approximations. The ten cases shown in each subplot are ten
radii, r0 = 16.384 m to 3.2 cm by powers of 2 from left to right. The light vertical lines are the
values of k.

response, as this corresponds to the larger ring being more blocked than the smaller ring.

Di(ω) = Di−1(ω)+(Ξ(ri)−Ξ(ri−1))D∆ (3.21)

D∆ =

 Ddisk(ω) if Ξ(ri)≥ Ξ(ri−1)

Dd −Dhole(ω) otherwise
(3.22)

The results for the large occluder in subsection 3.4.1 demonstrate the effectiveness of this

accumulation / interpolation scheme.

Finally, we apply one more heuristic to improve the results. Often, the set of angles which

are blocked on consecutive rings are the same or similar, for instance when there is a large object

106

Figure 3.8. Example VDaT results with and without the “coherence” heuristic.

occluding the direct path only slightly. We observed that in these cases, the BTM amplitude

response has a higher value at low frequencies than expected (Figure 3.8). We conjecture that this

is because in these cases, the low frequencies that diffract around the portions of the edge in one

range (say [r1,2r1]) are coherent with the low frequencies diffracting around the portions of the

edge in the next range ([2r1,4r1]). The two ranges have low-frequency amplitude responses that

are quite similar, but in reality they interfere constructively. Because we are effectively averaging

the amplitude responses instead of adding them, we correct for this by creating a “coherence”

metric such that coherence in all rings together would result in doubling the amplitude response

at low frequencies. For each consecutive pair of partially-blocked rings with radii r1 and r1/2,

there is coherence if |Ξ(r1)−Ξ(r1/2)|< 1/Na, meaning that the number of angles blocked for

each is the same. The frequencies corresponding to wavelengths of these radii are computed,

ω1 = c/r1 and 2ω1 respectively, to form a frequency band. In each frequency band which has

coherence, the gain is interpolated down from 21/Nr at ω1 to 1 at 2ω1, linearly in the log-log

amplitude-frequency domain. The use of base-2 logarithms and power-of-2 radii allows this

expression to be greatly simplified (Equation 3.24). Note that DNr is the result of combining Nr

rings from Equation 3.21, and DVDaT is the final VDaT amplitude response.

107

DVDaT(ω) = DNr ∏
ω1 coher.

κ(ω1) (3.23)

κ(ω1) = clip

(
1,
(

2ω1

ω

)1/Nr

,21/Nr

)
(3.24)

3.3.7 Path Length

In addition to amplitude response estimation, any diffraction model must estimate the

delay of the diffracted sound, which is represented by the diffraction path length. As VDaT does

not compute edge diffraction paths, VDaT modifies the path length of the original direct path

segment if it is occluded. In simple cases with only one edge diffraction path, VDaT produces

path length results that roughly match the existing models over a wide range of positions

(Figure 3.10), as will be explained presently. In more complicated scenes, in which the existing

models would produce many diffraction paths, VDaT estimates the shortest secondary-source

edge diffraction path through the scene, to represent the first arrival of sound.

Each VDaT subpath that is unblocked represents a way, albeit an angular one, that

sound can get through the scene from the source to the receiver. Since unblocked subpaths

are effectively coarse overestimates of the true shortest secondary-source diffraction path, the

shortest unblocked subpaths—i.e. at the minimum radius—will provide the most accurate

information. For example, if only one single subpath is unblocked on the smallest ring r1 that

has any unblocked subpaths, that subpath is very likely to traverse the scene near the true shortest

secondary-source edge diffraction path. The length of the true path can be easily estimated from

the subpath (Figure 3.9 left). If using subpath 0, an assumption must be made about where the

occluder is along the direct path segment, but the worst-case error—when the occluder is assumed

in the middle of the direct path segment, while it is actually at one end, and when ls = 2r1—is

only 14.4%. For other geometries, the error is lower, and the use of multiple subpaths can impose

tighter bounds on the length estimate, reducing the error further.

108

Figure 3.9. Estimating the minimum edge diffraction path length from a single unblocked
subpath (left) or a range of consecutive unblocked subpaths (right).

When there are multiple individual unblocked subpaths at isolated angles on a given ring,

there is no additional information beyond the case of a single subpath above. However, when

there are unblocked subpaths at consecutive angles, this implies the edges of the obstacles are

somewhere inside the ring in that region. Assuming that the edges of the obstacles are straight

on average, we connect the ends of the unblocked arc with a straight line, and estimate that the

shortest edge diffraction path goes around the center of this line (Figure 3.9 right). When this

assumption of straight edges is correct, such as for convex objects whose edge lengths are ≳ r1,

this approach is quite accurate (Figure 3.10). When it is not, such as for concave objects in

particular orientations, the error can be larger, but it is bounded by the estimated length around

the next smallest ring.

The VDaT path length estimation system is essential to accurately model delay and

phase in static simulations such as sound field intensity plots and room impulse responses.

However, because its estimates change discretely as subpaths are blocked or unblocked, we

disable diffraction path length estimation in dynamic scenes; future work may instead smooth

these results over time. While VDaT does not model the true direction diffracted sound arrives

to the listener from (instead using the original direct path segment), this typically does not

introduce much inaccuracy in the applications we are interested in. For a small obstacle, there

are typically multiple edge-diffraction paths of similar lengths around the obstacle, so the sum

109

Figure 3.10. BTM edge diffraction path length vs. VDaT path length estimates, for the symmet-
rical case, over a wide range of distances to the edge.

of them is usually perceived as sound coming from behind the obstacle (which matches how

VDaT models it). Conversely, large objects such as room walls often have a non-negligible

transmission component, and due to the precedence effect [28], the perception of direction is

usually dominated by the sound with the shortest path delay (which is the transmitted sound).

3.4 VDaT vs. UTD/BTM Results

The results in this section are from a set of Python scripts (File 3.2) which compute VDaT,

BTM, and other diffraction models for definable 2D and 3D scenes. Note that our implementation

of the edge diffraction models is limited to first-order diffraction; the second-order diffraction

results for the thick object in Figure 3.15 are computed with Reference [29]. In all examples

in this section, VDaT uses nine rings, 64 angles, and subpath 0 only (Nr = 9, Na = 64, Nsp = 1,

Nss = 3). Our error metric is frequency-weighted log spectral distance (FW-LSD) (Equation 3.25)

in the 20 Hz–20 kHz range, as compared to the BTM amplitude response. This metric ensures

that error is weighted the same over each octave, rather than over linear frequency as in standard

110

LSD.

FW-LSD(a1(ω),a2(ω)) =

√√√√√∑ω

(
20log10

a1(ω)
a2(ω)

)2

ω

∑ω
1
ω

(3.25)

3.4.1 Half-Plane

We first consider an infinite half-plane, which stands in for any thin object with long

edges. Figs. 3.11 and 3.12 show results for normal and non-shadowed diffraction over two orders

of magnitude each of ls, the direct path length, and x, the distance from the diffracting edge to

the direct path.

For shadowed diffraction, the average error in the VDaT amplitude response as compared

to BTM is 1.8 dB FW-LSD (Figure 3.11). For non-shadowed diffraction, the results are even

better (Figure 3.12). The worst cases, with up to 3.4 dB FW-LSD, are for high frequencies in the

large, asymmetrical case (upper right), which VDaT does not distinguish from the symmetrical

case (upper left).

3.4.2 Small Objects

As discussed in section 3.1, the UTD diffraction model, which is the most popular for

real-time systems, assumes all edges are of infinite length. As a result, its amplitude response

results have substantial error for small objects. Figure 3.13 shows two such cases, in which the

direct path is obliquely and non-symmetrically occluded by small thin plates of different sizes

and shapes. In both, VDaT approximates the BTM results (FW-LSD 2.6 dB top / 2.5 dB bottom)

much more closely than UTD does (4.3 dB top / 10.0 dB bottom), while retaining a much lower

computational complexity (subsection 3.5.1). Furthermore, if the mesh moves such that the apex

point of one of the UTD edge diffraction paths moves outside the bounds of its edge, UTD will

abruptly delete that path, and there will be a discontinuity in the output. Neither BTM nor VDaT

exhibit such discontinuities with moving small objects.

As mentioned in subsection 3.3.5, BTM produces sharp interference effects as a result of

111

Figure 3.11. BTM and VDaT amplitude responses of diffraction by an infinite half-plane. The
three rows are three different size scales; the two columns are the symmetrical and asymmetrical
cases of placement of the half-plane along the direct path (subsection 3.3.5). The seven cases
shown in each plot are for the half-plane cutting the direct path by [0.02, 0.05, 0.1, 0.2, 0.5, 1.0,
and 2.0] m, from top to bottom.

the diffraction paths around the different edges being summed. VDaT does not attempt to model

this interference, instead producing a smooth response designed to approximate the average BTM

result. This characteristic can be considered both a shortcoming and an advantage of VDaT. If the

simulated occluding object was constructed in the real world—infinitely sharp edges, completely

rigid, in a perfectly anechoic environment—the measured diffraction amplitude response would

indeed include interference effects, matching BTM. However, most real-world environments

112

Figure 3.12. BTM and VDaT amplitude responses of non-shadowed diffraction by an infinite
half-plane, for the symmetrical case with ls = 2 m. x is the distance from the direct path to the
diffracting edge. This is a case VDaT handles well; the average FW-LSD for these three cases is
0.34 dB.

are much more complex, and this complexity tends to perform an averaging effect like VDaT.

Since real situations where sharp interference effects are audible are very rare, these effects in an

acoustical simulation may sound “wrong”, especially when objects are moving and the peaks

sweep across frequency. VDaT avoids this situation and may better match users’ perceptual

expectations.

3.4.3 Non-Shadowed Diffraction

In GA edge diffraction models, as long as an edge is visible to the source and receiver,

diffraction is occurring, regardless of the position of the source and receiver. The GA diffrac-

tion term additively “corrects for” the discontinuity when the direct path becomes occluded

on one side (the shadow boundary), and the discontinuity when the specular reflection path

becomes invalid on the other side. VDaT is designed to handle cases on both sides of the

shadow boundary—both shadowed and non-shadowed diffraction—but it does not handle the

effects of diffraction near the specular reflection boundary. (The uncertainty model [23, 24]

in subsection 3.2.2 is another model with these same characteristics.) Future work [chapter 4]

is planned to validate and characterize a spatial sampling model similar to VDaT to handle

113

Figure 3.13. Diffraction amplitude responses around two small objects (3D plots in meters), as
simulated by UTD, BTM, and VDaT. VDaT matches the overall shape of the BTM response,
without the interference effects. UTD assumes the objects’ edges are infinite, resulting in large
error.

near-reflection cases.

However, in addition to omitting diffraction effects near reflections, most real-time edge

diffraction implementations ignore all non-shadowed diffraction [16–18], as non-shadowed

diffraction vastly expands the number of edges which must be considered at each step of higher-

order edge diffraction. Instead they use a heuristic [30] which adjusts the level of the diffracted

field in the shadow region so that its amplitude is continuous with the direct sound at the

shadow boundary. However, non-shadowed diffraction—especially non-shadowed higher-order

diffraction—plays an important role when there is a small gap or hole in a large occluder. If

non-shadowed diffraction is ignored, the sound will always be fully open (unfiltered) when

the direct path is open, or receive diffraction filtering based on the closer edge, regardless of

114

Figure 3.14. Most real-time edge diffraction (ED) systems, based on UTD or BTM, ignore
non-shadowed diffraction edges. For this slit, they ignore the right edge, meaning the amplitude
response does not change as the slit shrinks to zero. In contrast, the VDaT amplitude response
correctly falls to zero as the slit shrinks to zero.

the size of the gap or hole. This leads to the absurd result of the sound remaining constant

while the gap or hole is shrinking to zero (Figure 3.14). In contrast, as VDaT does handle

non-shadowed diffraction near the shadow boundary, VDaT can produce sensible results in these

cases. (Note that even BTM does not compute correct results for the small gap or hole without

additional considerations [31]; to the authors’ knowledge no general edge-diffraction simulation

system exists which gives theoretically verifiable results for arbitrary non-convex geometry.

Consequently, instead of comparing the VDaT results to a reference, we merely point out that

its asymptotic behavior is qualitatively correct, unlike the existing real-time implementations

discussed above.)

3.4.4 Other Occluding Objects

Figure 3.15 shows three examples of other types of objects occluding the direct path: a

plane A at 45° to the direct path, a wedge W with a 90° inner angle, and a 2 m thick object T

undergoing second-order diffraction. When using only subpath 0, the same set of subpaths is

blocked in each of these cases, so VDaT cannot distinguish among them. Nevertheless, the BTM

results for these cases are similar, and the VDaT results fall among them, resulting in errors

115

Figure 3.15. The direct path (ls = 10 m) is occluded by x = 0.4 m by four different objects:
plane P, angled plane A, wedge W , and thick object T . VDaT produces the same result for all of
these cases, as its spatial sampling does not distinguish among them. Nevertheless, the BTM
results for each case are similar, so VDaT is only in error by 1.6–2.5 dB FW-LSD in these cases.

below 3 dB FW-LSD. However, if the wedge angle or the object thickness increases so far that

the source and receiver approach the surfaces, the BTM amplitude response changes substantially

especially at low frequencies and VDaT no longer approximates it well. This is because the

wedge approaches a plane, and the edge diffraction path approaches a specular reflection path,

which VDaT does not directly model (see subsection 3.4.3). Future work may use information

about where triangle intersections occurred along subsegments, as well as comparisons between

transmissions over different subpaths, to provide more refined estimates of the shape of the

objects near the direct path.

3.5 VDaT Implementation

3.5.1 Complexity

As a result of the spatial sampling hierarchy in subsection 3.3.2, it is immediately

clear that the cost of computing the VDaT spatial sampling for one original path segment is

Nr ·Na ·Nss · I(t), where I(t) is the cost of determining which triangles in the scene intersect a

given line segment (which can be O(log t) or better [15]). The remaining operations in VDaT

116

are all of constant complexity per original path segment, regardless of the scene complexity, so

the overall complexity of VDaT is

CVDaT ∝ s · I(t) ·NrNaNss (3.26)

where s is the number of original path segments (direct paths plus segments of specular reflection

paths). Compare this to Eqns. 3.1 and 3.2; in VDaT the power-law term ηo is missing, and the

“quality” parameters Nr, Na, and Nss in VDaT only affect the performance linearly as opposed to

exponentially in No. Note also that since each of the subsegments in VDaT is independent of the

others, the ray tracing can be parallelized across all of them.

The only manner in which VDaT performance has a disadvantage compared to the

existing models is that the generation of direct and/or reflected paths as the input to VDaT must

always generate transmission paths through obstacles, effectively treating all objects as partially

transparent to sound even if they are supposed to be fully opaque. This is because VDaT operates

on existing path segments, particularly ones which are occluded by scene objects. However, in

reality many solid objects (such as building walls) do perceptibly transmit sound, especially at

low frequencies. As a result, transmission paths will have to be computed for many objects for

realistic results using any model, so the penalty of computing transmission paths for all objects

for VDaT may not be very high.

3.5.2 Real-Time Implementation: VDaT in Space3D

VDaT was created as the model for diffraction and transmission in the real-time audio

spatialization and acoustical simulation system Space3D. This system is being developed (based

on previous work [32, 33]) to deliver high-quality spatialization results over speaker arrays or

headphones, and simulate high-order reflections, diffraction and transmission, material properties,

directional sound sources, Doppler, and more in fully dynamic scenes. Space3D performs all

geometry and audio processing on GPUs using NVIDIA CUDA [34]. Our implementation

117

Table 3.2. VDaT timing on real-time scenes.

Scene Complexity Time (ms)
Name t No S/K P s VDaT Total
Shoebox 12 6 1/1 377 2183 4.7 8.2
Cathedral2 34 4 2/1 635 2797 6.8 10.1
Hall1 50 4 2/1 220 941 3.4 10.2
Cathedral1 190 3 1/1 158 570 5.2 8.6
BasicCity 1024 2 2/1 100 278 9.9 11.2

S/K = number of sources/receivers; P = number of paths;
s = number of direct + reflection path segments
Conditions: Nr = 9, Na = 32, Nsp = 1 (Nss = 3), 512 spl buffers @ 44.1 kHz → 11.6 ms/frame,
NVIDIA GTX 1080

recomputes all paths, and performs all audio processing, in 11.6 ms by default (frame length of

512 spls @ 44.1 kHz); much longer frames than this start leading to perceptible delays between

audio and visuals. Approaches such as caching schemes [17] or lower scene update frame rates

[3] can be very effective at amortizing the computational load across multiple frames, but these

approaches limit how dynamic the scene can be, so we do not use them.

We assume that a low-complexity mesh, like the type typically used for computing

collisions in interactive multimedia applications, is used for the GA audio processing. This mesh

may be created by the artist, or automatically generated in a preprocessing step by simplification

of a visual mesh [16] for static portions of the scene. Note that unlike UTD, we do not require

that the simplified mesh have no small edges or small objects; the goal is to eliminate any detail

that is not acoustically relevant.

Table 3.2 demonstrates the efficiency of VDaT on small-to-medium-size scenes1. Note

that P represents the number of actual, valid paths having audio simulated along them, which in

our example real-time scenes ranges from 100 to 635. In contrast, Monte Carlo implementations

[16, 17] typically trace on the order of 1000 visibility paths per frame, and can handle tens or

1The demonstrated scene complexity is primarily limited by our reflection path generation system, which uses
the exponential-complexity image source method, as well as by our use of a parallelized but not hierarchical
implementation for checking segment-triangle intersections. Future work is planned to improve both of these
elements.

118

hundreds of thousands of triangles, but often produce only a handful of resulting acoustical

paths (between 4.4 and 21.4 in Reference [17]). Furthermore, VDaT simulates diffraction

and transmission on every one of the hundreds or thousands of segments of these paths, still

in real time and with no precomputation. In the Cathedral2 case, this represents a total of

s ·Nr ·Na ·Nss = 2.41 million VDaT subsegments and 82.2×106 segment-triangle intersections—

all completed in 6.8 ms.

Figure 3.1 shows the real part of the soundfield simulated with Space3D and VDaT

for diffraction around a large object, so the simulated sound waves are visible. The fact that

they appear to emanate from the diffracting edge is evidence of the success of VDaT’s path

length estimation algorithm. File 3.12 shows a demo of Space3D and VDaT in action in a

prototypical real-time scene, designed for comparison purposes to be similar to the city scene

used to demonstrate the diffraction model in Reference [16].

3.6 Conclusion

Edge-diffraction models, especially the more accurate BTM model, suffer from high

computational complexity, severely limiting their use in real-time applications. Volumetric

Diffraction and Transmission (VDaT) is proposed as an alternative model for approximating

diffraction. It operates by spatially sampling the scene around the direct or reflected path segment,

and using the results to estimate the BTM edge-diffraction amplitude response and path length for

that scene. Its results match BTM to within 1–3 dB over a wide range of scales in basic cases, and

it can handle small objects and gaps in obstacles better than existing real-time diffraction systems.

Furthermore, its performance is high enough that it can simulate diffraction for thousands of

higher-order reflection path segments in a handful of milliseconds on consumer-grade GPU

hardware, without needing any precomputed information about the scene. As a result, VDaT

is a strong choice for diffraction simulation in hard real-time applications with arbitrary, fully

2Video caption for File 3.1: A demo of Space3D and VDaT in an example real-time scene. Compare to the
video in Reference [16].

119

dynamic scenes, such as virtual reality and other interactive multimedia.

Acknowledgements

Reproduced from Louis Pisha, Siddharth Atre, John Burnett, Shahrokh Yadegari, “Ap-

proximate Diffraction Modeling for Real-Time Sound Propagation Simulation”, Journal of

the Acoustical Society of America (JASA) 148 (4), pp. 1922-1933, The Acoustical Society of

America, October 2020, with the permission of the Acoustical Society of America.

Chapter 3, in full, is a reprint of the material as it appears in the Journal of the Acoustical

Society of America (JASA) 148 (4). Pisha, Louis; Atre, Siddharth; Burnett, John; Yadegari,

Shahrokh, The Acoustical Society of America, October 2020. The dissertation author was the

primary investigator and author of this paper.

120

Bibliography

[1] Damian Murphy, Antti Kelloniemi, Jack Mullen, and Simon Shelley. “Acoustic modeling
using the digital waveguide mesh”. In: IEEE Signal Processing Magazine 24.2 (2007),
pp. 55–66.

[2] Dick Botteldooren. “Finite-difference time-domain simulation of low-frequency room
acoustic problems”. In: J. Acoust. Soc. Am. 98.6 (1995), pp. 3302–3308.

[3] Thomas Funkhouser, Patrick Min, and Ingrid Carlbom. “Real-time acoustic modeling
for distributed virtual environments”. In: Proceedings of the 26th annual conference on
Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing
Co. 1999, pp. 365–374.

[4] NVIDIA Corporation. “NVIDIA VRWorks – Audio”. In: (2019). (Last viewed Feb. 19,
2019). URL: https://developer.nvidia.com/vrworks/vrworks-audio.

[5] Valve Corporation. “A benchmark in immersive audio solutions for games and VR”. In:
(2019). (Last viewed May 23, 2019). URL: https://valvesoftware.github.io/steam-audio/.

[6] Dear Reality GmbH. “DearVR: Ultimate tools for immersive 3D audio production”. In:
(2019). (Last viewed May 14, 2019). URL: https://www.dearvr.com.

[7] Robert G Kouyoumjian and Prabhakar H Pathak. “A uniform geometrical theory of
diffraction for an edge in a perfectly conducting surface”. In: Proceedings of the IEEE
62.11 (1974), pp. 1448–1461.

[8] Maurice Anthony Biot and Ivan Tolstoy. “Formulation of wave propagation in infinite
media by normal coordinates with an application to diffraction”. In: J. Acoust. Soc. Am.
29.3 (1957), pp. 381–391.

[9] Herman Medwin. “Shadowing by finite noise barriers”. In: J. Acoust. Soc. Am. 69.4 (1981),
pp. 1060–1064.

[10] U Peter Svensson, Roger I Fred, and John Vanderkooy. “An analytic secondary source
model of edge diffraction impulse responses”. In: J. Acoust. Soc. Am. 106.5 (1999),
pp. 2331–2344.

[11] T Kawai. “Sound diffraction by a many-sided barrier or pillar”. In: J. Sound and Vibration
79.2 (1981), pp. 229–242.

[12] U Peter Svensson and Paul T Calamia. “Edge-diffraction impulse responses near specular-
zone and shadow-zone boundaries”. In: Acta acustica united with acustica 92.4 (2006),
pp. 501–512.

121

https://developer.nvidia.com/vrworks/vrworks-audio
https://valvesoftware.github.io/steam-audio/
https://www.dearvr.com

[13] Paul T Calamia and U Peter Svensson. “Fast time-domain edge-diffraction calculations
for interactive acoustic simulations”. In: EURASIP J. Applied Signal Proc. 2007.1 (2007),
pp. 186–186.

[14] Lakulish Antani, Anish Chandak, Micah Taylor, and Dinesh Manocha. “Fast geometric
sound propagation with finite edge diffraction”. In: Technical Report TR10-011, University
of North Carolina at Chapel Hill (2010).

[15] László Szirmay-Kalos and Gábor Márton. “Worst-case versus average case complexity of
ray-shooting”. In: Computing 61.2 (1998), pp. 103–131.

[16] Carl Schissler, Ravish Mehra, and Dinesh Manocha. “High-order diffraction and diffuse
reflections for interactive sound propagation in large environments”. In: ACM Transactions
on Graphics (TOG) 33.4 (2014), p. 39.

[17] Carl Schissler and Dinesh Manocha. “Gsound: Interactive sound propagation for games”.
In: Audio Engineering Society Conference: 41st International Conference: Audio for
Games. Audio Engineering Society. 2011.

[18] Anish Chandak, Christian Lauterbach, Micah Taylor, Zhimin Ren, and Dinesh Manocha.
“Ad-frustum: Adaptive frustum tracing for interactive sound propagation”. In: IEEE
Transactions on Visualization and Computer Graphics 14.6 (2008), pp. 1707–1722.

[19] Paul T Calamia, Benjamin E Markham, and U Peter Svensson. “Diffraction culling for
virtual-acoustic simulations”. In: Acta Acustica United with Acustica 94.6 (2008), pp. 907–
920.

[20] Nicolas Tsingos and Jean-Dominique Gascuel. “Soundtracks for Computer Animation :
Sound Rendering in Dynamic Environments with Occlusions”. In: Graphics Interface ’97.
Kelowna, Canada, 1997. URL: https://hal.inria.fr/inria-00510105.

[21] Erik Salomons, Dirk Van Maercke, Jérôme Defrance, and Foort de Roo. “The Harmonoise
sound propagation model”. In: Acta acustica united with acustica 97.1 (2011), pp. 62–74.

[22] Ville Pulkki and U Peter Svensson. “Machine-learning-based estimation and rendering of
scattering in virtual reality”. In: J. Acoust. Soc. Am. 145.4 (2019), pp. 2664–2676.

[23] Uwe M Stephenson. “An energetic approach for the simulation of diffraction within ray
tracing based on the uncertainty relation”. In: Acta Acustica united with Acustica 96.3
(2010), pp. 516–535.

[24] Uwe M Stephenson. “Simulation of multiple Sound Particle Diffraction based on the
Uncertainty Relation-a revolution in noise im-mission prognosis; Part I: Principle and
Method”. In: Proc. of Euronoise (2018).

[25] Stefan Weigand, Uwe M Stephenson, and Jochen Schaal. “Simulation of multiple Sound
Particle Diffraction based on the Uncertainty Relation-a revolution in noise immission
prognosis; Part II: Evaluation by Measurements”. In: Proc. of Euronoise (2018).

[26] Google. “Resonance Audio: fundamental concepts”. In: (2017). (Last viewed June 4,
2020). URL: https://resonance-audio.github.io/resonance-audio/discover/concepts.html.

122

https://hal.inria.fr/inria-00510105
https://resonance-audio.github.io/resonance-audio/discover/concepts.html

[27] Herman Medwin, Emily Childs, and Gary M Jebsen. “Impulse studies of double diffrac-
tion: A discrete Huygens interpretation”. In: J. Acoust. Soc. Am. 72.3 (1982), pp. 1005–
1013.

[28] Ruth Y Litovsky, H Steven Colburn, William A Yost, and Sandra J Guzman. “The
precedence effect”. In: J. Acoust. Soc. Am. 106.4 (1999), pp. 1633–1654.

[29] Peter Svensson. “EDtoolbox: edge diffraction Matlab toolbox”. In: (1999). (Last viewed
June 11, 2020). URL: https://github.com/upsvensson/Edge-diffraction-Matlab-toolbox.

[30] Nicolas Tsingos, Thomas Funkhouser, Addy Ngan, and Ingrid Carlbom. “Modeling
acoustics in virtual environments using the uniform theory of diffraction”. In: Proceedings
of the 28th annual conference on Computer graphics and interactive techniques. ACM.
2001, pp. 545–552.

[31] Jason E Summers. “Inaccuracy in the treatment of multiple-order diffraction by secondary-
edge-source methods”. In: J. Acoust. Soc. Am. 133.6 (2013), pp. 3673–3676.

[32] F Richard Moore. “A general model for spatial processing of sounds”. In: Computer
Music Journal 7.3 (1983), pp. 6–15.

[33] S. Yadegari. “Inner Room Extension of a General Model for Spatial Processing of Sounds”.
In: Proc. International Computer Music Conference. Barcelona, Spain, Sept. 2005, pp. 1–
4.

[34] NVIDIA Corporation. CUDA Zone. 2022. URL: https://developer.nvidia.com/cuda-zone.

123

https://github.com/upsvensson/Edge-diffraction-Matlab-toolbox
https://developer.nvidia.com/cuda-zone

Chapter 4

Specular Path Generation and
Near-Reflective Diffraction in Interactive
Acoustical Simulations

Submitted to IEEE Transactions on Visualization and Computer Graphics, June 2022; returned

for revisions August 2022; resubmitted with revisions November 2022

4.0 Abstract

Most systems for simulating sound propagation in a virtual environment for interactive

applications use ray- or path-based models of sound. With these models, the “early” (low-order)

specular reflection paths play a key role in defining the “sound” of the environment. However, the

wave nature of sound, and the fact that smooth objects are approximated by triangle meshes, pose

challenges for creating realistic approximations of the reflection results. Existing methods which

produce accurate results are too slow to be used in most interactive applications with dynamic

scenes. This paper presents a method for reflections modeling called spatially sampled near-

reflective diffraction (SSNRD), based on an existing approximate diffraction model, Volumetric

Diffraction and Transmission (VDaT). The SSNRD model addresses the challenges mentioned

above, produces results accurate to within 1–2 dB on average compared to edge diffraction,

and is fast enough to generate thousands of paths in a few milliseconds in large scenes. This

method encompasses scene geometry processing, path trajectory generation, spatial sampling for

124

diffraction modeling, and a small deep neural network (DNN) to produce the final response of

each path. All steps of the method are GPU-accelerated, and NVIDIA RTX real-time ray tracing

hardware is used for spatial computing tasks beyond just traditional ray tracing.

4.1 Introduction

Interactive simulation of acoustics in virtual environments is a central component of

audio systems in applications such as games and VR. In particular, the accurate simulation

of “early reflections”—sound bouncing once or a small number of times off of objects in the

environment—is crucial in giving the listener a perceptual experience of presence in that specific

environment. Wavefield simulations of sound propagation [1] [2] can be very accurate; effects

such as diffraction and reflections arise naturally from the wave equation at the boundaries. In

applications where the scene is fixed and only sources and receivers move, detailed acoustical

profiles precomputed with wavefield methods can be used [3] [4] [5]; and in applications

where the scene can be sufficiently approximated in 2D, real-time wavefield methods are on the

horizon [6]. However, for large-scale, non-trivial 3D acoustical environments which may change

dynamically, wavefield methods require far too much computation to run in real time [7].

To practically simulate acoustics interactively, ray- or path-based models of sound

propagation are used, and algorithms are developed to approximate the results of wave effects

using these models. These approximations help produce accurate frequency-dependent results

in static configurations, but more importantly, if they are absent, acoustical paths will appear

and disappear as the sources, receivers, and objects move. This leads to discontinuities in the

output audio, which are often audible and perceptually distracting. There are two types of

discontinuities, corresponding to the appearance or disappearance of direct paths and specular

reflection paths respectively. In the first case, a direct path becomes occluded by an object, or

conversely the occlusion ceases; this is called shadowed diffraction while the occlusion is present,

or near-shadowed diffraction when the occluding object is near the direct path but not blocking it.

125

Figure 4.1. Changing magnitude response of a reflection path as the reflection point moves past
the edge of the object. The sound source and receiver are colocated and move as shown in the
upper diagram. SSNRD (right), the method described in this paper, closely matches the results
of the BTM edge-diffraction model (left). © 2022 IEEE

Similarly, the second case, which will be called near-reflective diffraction (Figure 4.1), happens

when an object moves so that a specular reflection path off of it “falls off” its edge and ceases to

exist, or conversely moves in the opposite direction so that the specular reflection path comes

into existence. In reality, not only does the sound smoothly fade at these boundaries, but this

behavior is frequency-dependent, changing more quickly near the edge at high frequencies than

at low frequencies.

The need for a model for shadowed diffraction is widely recognized; even basic im-

plementations apply a generic low-pass filter when the direct path is occluded [8]. More

sophisticated implementations based on edge diffraction (ED) models, typically the Uniform

Theory of Diffraction (UTD) [9], have been in use for two decades [10] [11]. Unfortunately,

UTD suffers from accuracy issues on detailed meshes with edges which are short compared

to the wavelength, in contrast to the accurate but much more computationally intensive Biot-

Tolstoy-Medwin (BTM) [12] [13] [14] edge diffraction model. Furthermore, a major challenge in

these approaches is finding a set of relevant ED paths out of what is sometimes an astronomical

126

number of possible paths, with many approaches relying on precomputation and/or path caching

[15]. Recently, Schissler et. al. developed an efficient ray tracing based algorithm for finding

shadowed edge-diffraction paths in dynamic scenes [16]. For performance reasons, most ED

implementations ignore near-shadowed diffraction. One non-ED model which supports shad-

owed and near-shadowed diffraction is the “uncertainty relation” model [17] [18], which traces

rays around diffracting edges according to a stochastic distribution. In 2020, the present authors

introduced the Volumetric Diffraction and Transmission (VDaT) model [19], which also handles

shadowed and near-shadowed diffraction. This model spatially samples the scene around path

segments with ray tracing, to determine where sound can traverse around obstacles, and then

uses this data to approximate the BTM results with a numerical model.

In contrast to shadowed diffraction (and to a lesser extent, near-shadowed diffraction),

near-reflective diffraction has received little attention. There are two additional challenges in

simulating near-reflective diffraction besides avoiding discontinuities at edges. First, the size

and shape of the meshes around the reflection affects the power and frequency content of the

reflection. This information cannot be merely “baked” into the material properties if the meshes

might move; for example, the reflection from a brick should sound very different based on

whether it is alone in space or is part of a wall (which might be built dynamically at runtime).

Second, smooth surfaces are approximated by triangle meshes, and geometric acoustics (GA)

specular reflection paths may not exist for angles between adjacent triangle planes. The reflection

normals can be interpolated between the triangles, like in Gouraud shading [20] in computer

graphics, but there are some subtleties in applying this to acoustics which will be discussed

below.

ED models can address all of these challenges, but only if near-reflective ED paths are

generated. Because the overall reflection sound is produced in ED models from the sum of all

the ED paths involving all the edges comprising a surface, a great number of these paths may

be necessary if the meshes are detailed. Presumably because of the performance implications

of this, it is not clear that there is any published acoustical simulation system designed for

127

interactive use which actually generates near-reflective edge diffraction paths. Furthermore,

even if these paths were generated, the responses would have to be computed with the UTD

model, which can be highly inaccurate for fine meshes, or the BTM model, which is very

computationally intensive. Models based on stochastic diffuse reflections may also be able

to handle near-reflective diffraction (see subsection 4.1.1), but again it is not clear that any

implementation actually operates in this way.

This paper applies the principles from VDaT—spatial sampling and approximating

BTM results—to near-reflective diffraction, creating a model called Spatially Sampled Near-

Reflective Diffraction (SSNRD). SSNRD also expands upon VDaT in three respects. First,

SSNRD includes a set of algorithms for efficiently generating specular reflection paths with

the necessary properties for near-reflective diffraction modeling. Second, while VDaT uses a

heuristic-based numerical model for approximating BTM responses from the spatial sampling

results, SSNRD uses a small deep neural network (DNN) for the corresponding task. Finally,

SSNRD is designed to take advantage of the real-time ray tracing hardware called “RT cores” in

NVIDIA RTX GPUs [21], and uses this hardware for spatial computing tasks beyond traditional

ray tracing. All other processing is also done on the GPU with CUDA [22]. Together, SSNRD

and VDaT form a complete system for interactively simulating the wave properties of acoustics

by means of spatial sampling instead of edge diffraction.

4.1.1 Stochastic Methods

Another possible approach to the challenges of near-reflective diffraction is to ignore

specular paths entirely and instead trace large numbers of diffuse paths with Monte Carlo

sampling [23]. The distribution of reflection angles (BRDF) could give more weight to near-

specular reflections, and this distribution could be frequency-dependent so that low frequencies

are scattered more widely and high frequencies are more focused, potentially producing realistic

behavior near edges. Generating diffuse paths by Monte Carlo has been widely discussed [24]

[25] [15], but it is not clear that this technique has been used in order to address the challenges

128

with near-reflective diffraction described above. In particular, because scattering behavior would

need to be frequency-dependent, the diffuse path tracing would have to be done separately for

each frequency band, which does not appear to be typically done in practice.

This approach was not pursued for the present work for two main reasons. First, it is

not clear a priori whether enough Monte Carlo samples could be made in real time to achieve

sufficient accuracy without any perceptible artefacts from constantly varying sets of paths [26],

especially for the critical early reflections. Dealing with this sort of noise in the output is a

well-known challenge in Monte Carlo ray tracing for computer graphics. Path caching [15]

is a viable option when the scene does not change quickly, but having the quality drop when

things move quickly or when sound sources are first spawned is not ideal. Second, even given

an arbitrarily large number of samples, this method would merely produce a room impulse

response for the whole environment, every time the acoustics are simulated (typically once

every 10–30 ms). A system could interpolate between these impulse responses between each

pair of frames to produce continuous audio output, but this is not equivalent to simulation of

individual continuously changing acoustical paths. The latter is needed for realistic phases and

Doppler, especially on early reflections, and identifying paths uniquely across frames is not

generally possible with Monte Carlo diffuse reflections. With that said, stochastic methods

can be complementary to SSNRD, and used to accumulate late reflections for simulation of

reverberation.

4.1.2 Acoustics on RTX

RT cores were introduced in 2018 in the Turing generation of NVIDIA RTX GPUs [27],

primarily to bring real-time ray tracing to graphical rendering for games. NVIDIA developed

VRWorks Audio [28] [29], which included RTX-based real-time acoustic modeling of virtual

scenes. However, this software quickly stopped receiving support, and a full description of

the algorithms involved was never published. To the authors’ knowledge, the present paper is

the first complete published method for interactive acoustical simulation using dedicated ray

129

tracing hardware in GPUs. Note that in many interactive applications, GPU resources are mostly

occupied by graphics, and there are technical challenges in sharing GPU resources between

graphics and non-graphics compute tasks. However, GPU compute, especially for AI tasks, is

becoming increasingly important in gaming, and real-time ray tracing performance is always

growing, so the authors expect these challenges will be solved in the coming years.

4.1.3 Overview of SSNRD algorithms

The algorithms comprising SSNRD are interdependent, and their design was influenced

by the capabilities of the GPU and RT cores they were designed for. Nevertheless, leaving the

implementation details aside, SSNRD operates as follows.

First, reflection normals are modeled to smoothly transition around convex edges of

meshes, even if those edges represent real, sharp edges in the object being modeled. This enables

reflection paths to be found at angles between the flat faces’ typical normals. Conversely, concave

edges are modeled as disconnected. Computing these normals involves information extracted

from the meshes in fast, real-time compatible preprocessing (section 4.2).

Second (section 4.3), candidate reflection paths are traced from audio receivers, reflecting

off objects according to the normals above, until they hit large virtual objects around audio

sources. Then, these paths are iteratively refined to actually hit their point source. Path candidates

are merged into discrete specular reflection paths, and linked to the corresponding paths which

existed in the previous frame for continuity. These algorithms are able to generate thousands of

acoustical paths in a few milliseconds in scenes with millions of triangles (section 4.6).

Third, to sample the space around each reflection point, rays are traced “into” the

reflecting object in a pattern of concentric cylinders (section 4.4). The distance each of these rays

travels before hitting the reflecting object (or any nearby meshes) provides information about

those meshes’ local size, shape, and the distance from any edges.

Finally, a small DNN is trained (section 4.5), whose input is the array of spatial sampling

distances at a particular reflection point, and whose output is an estimate of the frequency-domain

130

magnitude response of the acoustical path at that reflection point. The ground truth which the

network is trained to approximate is the magnitude response for a reflection off of the same object

as simulated by the BTM edge diffraction model, which is often the sum of many near-reflective

edge diffraction paths. The DNN approximation of BTM is typically accurate to within 1–2 dB

(subsection 4.5.3).

4.2 Mesh Preprocessing

The method described in this paper, SSNRD, is the path generation system for Space3D,

a real-time acoustic modeling and audio spatialization system for interactive applications such

as VR and games. Space3D is designed to be used in game engines as an audio plugin, so it

is essential to be able to quickly handle typical dynamic scene data from these applications.

Furthermore, the game engine may arbitrarily deform objects, such as for skeletal animation,

and submit the updated vertex positions to Space3D. In these cases, any preprocessing which

is dependent on vertex positions must be repeated every frame, which excludes many types of

processing-intensive mesh simplification techniques [15]. Fortunately, mesh simplification is not

needed, as NVIDIA RTX real-time ray tracing is extremely fast even in very large scenes [30],

and all the algorithms in the present method which interact with unknown parts of meshes do so

via RTX. Whenever the game engine modifies the mesh vertices, two sets of data are calculated

about each mesh for the use of the SSNRD path generation: mesh connectivity (subsection 4.2.1)

and specialized vertex normals (subsection 4.2.2).

4.2.1 Connectivity

Connectivity is an integer, for each edge of each triangle, stating which triangle it is

connected to, or −1 if it is not connected to any triangle. Triangles are assumed to be single-

sided; mesh topologies where more than two triangles share an edge, or an edge of one triangle

is coincident with only part of an edge or the face of another triangle, are not properly supported

and will be considered not connected.

131

Figure 4.2. To identify which triangle, if any, is connected to triangle A along edge PQ, a
triangular pattern of three rays (magenta) around the center of that edge is traced as shown here.
Rays are directional and the mesh triangles are set as one-sided (red arrows), so at least one of
these three rays will intersect triangle B, and none of them will intersect triangle A. The three
rays slightly overlap at the ends (exaggerated here) to avoid possibly missing a triangle due to
floating-point precision issues. © 2022 IEEE

Connectivity information is internally used by some 3D editor programs [31], but is

not present in most mesh file formats or either Unreal Engine or Unity. Therefore, it must be

extracted from the mesh when instantiated. Connectivity not only depends on the mesh indices

(an array stating which number vertices compose each triangle); many applications use “split

vertices”, where there are multiple vertices with the same position but different normals or texture

coordinates. SSNRD must detect connected triangles regardless of whether they use the same or

split vertices, meaning it must take into account the vertex positions. It must also detect whether

the edges are intended to be “smooth” or “sharp” based on the normals if present (although these

graphical normals are not used for the acoustic reflections, see subsection 4.2.2).

Since the OptiX / RTX acceleration structures [32] for the mesh are created anyway for

the later ray tracing, a method was developed which uses the RT core to compute the mesh

connectivity. (See subsection 4.3.3 for more background on similar topics, and section 4.6

for a performance comparison to a more traditional approach.) A small pattern of three rays

(Figure 4.2) is traced around every edge of every triangle. Because triangles are one-sided,

these rays are drawn in directions such that they will not hit the current triangle, but will hit any

triangle connected to it with the normals pointed in the appropriate direction. Triangles hit with

this method are checked to make sure they share two vertex positions with the current triangle.

132

The “radius” of this pattern of rays should be upper bounded by the minimum size of any detail

in the mesh, and lower bounded by floating point precision considerations; the default radius is

about 1 mm. Traversal by one ray of a triangle mesh in a bounding volume hierarchy (BVH)

is typically O(log t), but due to the efficiency of the RT core and the extremely small length of

the rays, the time taken for launching and processing results from rays is almost always longer

than the actual acceleration structure traversal. Thus, this algorithm in practice appears to run

in O(1) time per ray, or O(t) time for the whole mesh, which is extremely desirable for mesh

preprocessing.

4.2.2 Reflection Normals

Vertex normals are widely used in computer graphics, and simply represent a unit normal

vector to the mesh at each vertex. These normals can be interpolated at any point on a triangle

to produce smooth (Gouraud) shading [20]. SSNRD precomputes the vertex normals of each

mesh, but the normal at each vertex is stored per-triangle, as the normal at a given vertex may be

different for each triangle sharing the same vertex. This is because, in SSNRD, concave edges

are treated like disconnected edges (subsubsection 4.2.2). To compute the vertex normal for a

particular triangle, the triangles sharing that vertex are iterated around in both directions until

the iteration arrives at a concave or disconnected edge (or returns to the original triangle). The

resulting convex group of triangles all contribute to a vertex normal according to their area and

angle. If there are concave or disconnected edges, the tangent at these edges also contributes to

the vertex normal. For details, see Appendix A or the source code in File 4.3.

Concave edges

Disconnected edges of a mesh are treated as if their normals are pointing outward, tangent

to the triangle. (The final reflection normals used are not this extreme, see subsubsection 4.2.2.)

This is so that reflection paths can be found pointing outwards near the edge, which is needed so

that reflection paths do not sharply appear or disappear at the edge. Concave edges are treated

133

Figure 4.3. (a) Edge-on view of normals at a concave edge. (b) A continuous range of specular
reflection paths may exist off a smooth, concave surface. (c) A reflection path is generated off
the top face in this configuration because the normals curve outwards at the concave edge. If the
normals were perpendicular to the face, this reflection path would disappear at the edge. (d) The
spatial sampling (section 4.4) for one face of a concave surface only “sees” that face, not the
neighboring ones. © 2022 IEEE

the same way (Figure 4.3a). This is because on a surface with smooth, concave normals, specular

reflection paths are not unique (Figure 4.3b), and therefore candidate paths cannot be refined into

unique specular paths to be linked to “the same” paths in the next frame for continuity. With this

method, there may only be one specular reflection path per convex portion of the mesh (e.g. per

triangle), separated by concave edges. This produces expected results in concave spaces such as

rooms, and also allows obtuse corners in these spaces to have smooth edge behavior (Figure 4.3c).

Furthermore, as the triangles of a concave mesh get smaller, more specular paths may be found,

but each one will have a frequency response reduced in magnitude at lower frequencies, as

the triangles will appear to be smaller independent reflectors to the spatial sampling algorithm

(Figure 4.3d). This avoids the total reflection energy growing as the mesh gets more detailed.

134

Figure 4.4. (a) The edge normal is adjusted—made more perpendicular—so that a reflection
path cannot continue into the plane of the triangle. (b) The “curvature” of the normals around an
edge is locally reduced as the receiver approaches the triangle. © 2022 IEEE

Figure 4.5. Visualization of normals computed at various points on the surface of a mesh. Note
that the normals smoothly curve around the convex edge A, angle slightly outwards from each
face at the concave edges B-C, and are continuous at the flat edges D-G, even though all these
edges share the same vertex. © 2022 IEEE

Computing final reflection normals

When a ray intersects a triangle of a mesh, the normal is computed at that point. The

algorithm for computing the normals is a set of heuristics, designed to achieve the following

goals. First, the normals computed on two triangles sharing a convex edge must approach the

same values from both sides of the edge, so that the normals are continuous around the edge

(Figure 4.5). This is accomplished by computing an “edge normal”, at the point on each edge

closest to the reflection point, and in such a way that each triangle computes the same edge

135

normals for a shared edge. The normal at the original reflection point within the triangle is then

interpolated from the three edge normals. Second, for rays hitting the triangle on the edge, the

reflecting ray must not continue into the plane of the triangle. If it would, the edge normal is

rotated toward the incoming ray until the reflecting ray is in the plane of the triangle (Figure 4.4a).

Finally, as the ray origin approaches a triangle, the curvature of the triangle is reduced locally

near the ray origin, but the triangle still remains curved near its edge (Figure 4.4b). This allows

meshes to appear more flat for sources and receivers near them, and simultaneously appear more

curved for paths traveling larger distances. See Appendix A or the source code in File 4.3 for the

exact set of operations performed to compute the normals.

4.3 Path Generation

Generating specular reflection paths may seem to be a trivial process: trace some rays

from1 a sound receiver (e.g. microphone), reflect them off scene geometry, and see if they hit

the sound source(s). Yet path generation is far from simple in SSNRD; at a high level, this is

mainly for three reasons. First, in order for specular paths not to appear or disappear at edges

of objects as described in section 4.1, these paths must be generated even “past” the edges of

objects. Second, also as described in section 4.1, the spatialization algorithm in Space3D requires

that paths exist over multiple consecutive frames, with their parameters possibly changing. So

for example, if the scene does not change, the same set of specular paths must be found in this

frame as in the previous frame; and if the scene changes slightly, some of the paths might move

or change slightly but must still be identifiable as the corresponding paths in the previous frame.

Finally, as many specular paths as possible should be found within the tight real-time constraints,

including paths reflecting near the receiver and paths far from it.

There are four main steps of path generation: ray tracing (subsection 4.3.1), refining

1The propagation of sound can be simulated from source to receiver or receiver to source with theoretically
identical results. However, in most VR and games applications, there are fewer receivers than sources. In this
case, tracing rays from receivers allows those rays to be shared among the sources, and provides more detailed
information about the scene acoustics near the receiver(s).

136

Figure 4.6. A white dot is drawn everywhere a ray intersects the mesh. The density of these rays
on the mesh per unit surface area is roughly uniform, despite some parts of the mesh being much
farther from the receiver (blue) than others. The visible pattern of nonuniformities in this density
is due to the spherical pattern of ray distribution bins around the receiver. © 2022 IEEE

candidate paths (subsection 4.3.2), merging candidate paths with others nearby (subsection 4.3.4),

and linking each path with the corresponding path in the previous frame for continuity (sub-

section 4.3.5). Path merging and path continuity both utilize a radius search algorithm (subsec-

tion 4.3.3).

4.3.1 Ray Tracing

First, the scene data structures required by the RT core are built or updated. NVIDIA

OptiX 7 [33] accessed via OWL [34] provides the interface to the RT core and data structure setup.

Meshes have BVH acceleration structures built, and are instantiated with their transformation

matrices (as determined by the game engine or other program hosting Space3D). There are two

top-level scenes created: one containing just meshes, for all the auxiliary ray tracing steps, and

one containing both meshes and sources (described below) for the main path generation ray

tracing. Also, a temporary top-level scene is created for each individual mesh when computing

its connectivity (subsection 4.2.1).

Next, ray distribution sampling is performed. The goal of this step is to make the

irradiance (density of rays per unit surface area) on scene geometry, by rays from the receivers

during the main path generation ray tracing step below, roughly uniform (Figure 4.6). For

137

example, if a receiver is close to one wall in a room, and the rays from the receiver were

distributed uniformly, many more rays will reflect off the nearby wall than the far wall, and

so reflection paths involving the near wall will be much more likely to be found. In contrast,

if the irradiance on all walls is roughly uniform, reflection paths anywhere in the room would

have a more even chance of being found. To accomplish this, rays are traced from the receivers

according to a uniform spherical distribution, and the average distance to a mesh intersection is

computed in each of 384 bins of roughly equal angular surface area. Then, the inverse of the

irradiance over these bins is used as the distribution of rays from that source for the ray tracing

below. This step is computationally cheap and helps avoid missed paths in areas farther from the

receiver as well as wasted computation on duplicated paths near the receiver. The RT core has

been used for adaptive spatial sampling in other applications [35] [36].

Finally, the main path generation ray tracing is performed. Rays are emitted from

receivers, with the direction of each ray determined by hashing its index within its bin and its bin

number. This hash and therefore the ray direction does not depend on the number of rays per

bin, so that the ray distribution sampling adds or removes some rays but does not change the

trajectories of most of the rays every frame. Rays may intersect meshes or sources; in either case

the OptiX anyhit (AH) program for that type of geometry is run.

Each ray emitted from the receiver is actually a “bundle” of nB (e.g. 8 or 16) rays

which are initially identical. When these rays intersect a mesh, half of them according to their

index continue through (are transmitted), and the other half reflect according to the local mesh

normal (subsection 4.2.2). If the bundle only contains one ray, because several reflections or

transmissions have already occurred, the ray continues to do whatever it did more often in its

history: a ray which has mostly reflected before will continue to reflect, and a ray which has

mostly transmitted before will continue to transmit. Even if the meshes are not intended to

have significant acoustical transmission, these transmission rays are essential for the VDaT

diffraction algorithm [19]. This algorithm approximates diffraction around obstacles by spatially

sampling the scene around an existing transmission path through the obstacle, and then applying

138

appropriate filtering to the path.

Sources are represented by OptiX “custom primitives” [32], which are effectively axis-

aligned bounding boxes (AABBs) which the RT core reports ray intersections with. When an

intersection occurs, the minimum distance the ray approaches the point source is computed, and

the intersection is ignored if it is greater than a radius r, effectively modeling the source as a

sphere. This source radius is computed on a per-ray basis as r(d) = 1
2

√
nT/ρ, ρ = nR/(4πd2),

where nT is a target number of rays to hit each source, nR is the total number of rays traced from

the receiver, d is the total distance (including reflections) along the ray, and ρ is the effective

ray density at this distance. The goal is to have roughly nT (e.g. 25) rays hit each source, with

this parameter adjustable to trade off between computation and probability of finding paths. ρ

will be an accurate estimate of the ray density if all reflections are planar; practically when most

reflections are from curved surfaces, the true ray density is lower. While r differs for every ray,

the boxes must be set up in advance, and may be intersected by rays of various lengths d and

orders o. Because of this, box sizes are computed based on estimated maximum path lengths

of each order rbox(o) = r(d̂max(o)), and one box for each reflection order is instantiated at each

source. Ray visibility masks are used to ensure that only rays of the appropriate order intersect

each sized source box. When a ray intersects the source box and successfully passes the distance

check, the path including this ray is saved to memory as a candidate path, and the ray continues

through the source.

4.3.2 Path Refinement

The path refinement step converts candidate paths from the ray tracing, which approach a

source within a certain minimum distance described above, to paths which directly hit the point

source. If all reflections were off planes whose normals were all parallel, the exact reflection

points needed to hit the source could be computed via the image source method [37]. However,

since reflecting objects are usually “curved” based on their normals (and not curved according to

a simple analytical function), direct computation is infeasible and an iterative method is used.

139

The ray from the receiver is perturbed slightly in two perpendicular angular directions. In

each of these new directions, a path is traced, intersecting the same triangles at slightly different

positions (with slightly different normals). These paths eventually approach the point source

again, and intersect a plane through the point source which is normal to the original path segment

that approached the point source. The offsets of these two new intersection points are computed

and converted to multipliers on the original two perturbations, to compute a new perturbation

which “should” exactly hit the point source according to this first-order approximation. A new

path is traced in this direction, and its reflection points are now allowed to “slide” to connected

triangles if they exit the bounds of the original triangles. Then, a new perturbation is computed

and the process is repeated a small number of times. If the resulting position does not converge

to within a distance δ within this number of steps, or if a valid path fails to be generated at any

step, the path candidate is discarded. δ is set to half the path merging distance (see below) for

the current order, ensuring that paths which do converge will be properly merged.

4.3.3 Radius Search

Both the path merging subsection 4.3.4 and path continuity subsection 4.3.5 steps below

require performing a radius search: for each point in set A, find all points in set B which are

within a certain distance according to a certain norm. In path merging, sets A and B are the

same, and the goal is to find clusters of nearby points. In path continuity, A and B are paths

in the current and previous frame respectively, and the goal is to find the nearest path in the

previous frame to each path in the current frame. In both of these cases, the radius search must

be done independently for every combination of source, receiver, and path order. The data being

compared for each path is the coordinates of all of the reflection points of that path, which

can be viewed as a single point in 3o-dimensional space where o is the reflection order. Three

algorithms to perform these radius searches are implemented, tested, and compared.

First, a brute force comparison of all pairs of inputs is implemented. This is the least

efficient theoretically, but has almost no overhead, unlike the other approaches. Furthermore, this

140

can be parallelized over both A and B, whereas both of the approaches below are only parallelized

over A and each thread does O(log(|B|)) operations. If |A| ≪ Nt where Nt is the number of

threads the GPU can execute in parallel, the approaches only parallelized over A are unlikely to

be efficient.

Second, a traditional radius search based on Morton numbers is implemented [38] [39]. A

Morton number is a single large integer, here up to 96 bits, which encodes integer coordinates of

a point in two or more dimensions by interleaving the bits of each coordinate. First, a bounding

box containing all the paths is computed. Next, each path is assigned its own Morton number,

and these numbers are sorted. Finally, the radius search is performed, which searches the list and

returns all points within a specified ℓ∞ norm ball (hypercube) of the queried location. (Since the

ℓ2 norm is desired, all of the returned points are checked again based on their ℓ2 distance.) Due to

the structure of the Morton numbers, this search is possible in O(log(|B|)) time per search point

in A. However, the overhead is large because multiple GPU kernels are run to set up the data

(though each one is O(|B|) or O(|B| log(|B|)). Also, the search itself involves a large number of

bit manipulation operations, which the GPU has lower throughput for compared to floating-point

operations.

Finally, the RT core was leveraged to implement a faster radius search. Since the Turing

GPU architecture introduced RT cores in 2018 [27], the RT core’s ability to traverse a BVH

very efficiently in hardware has been applied to several types of problems outside traditional

ray tracing [40] [35] [36]. The algorithm discussed here is an extension of the radius search

introduced in [41] and [42] to higher-dimensional data. In the basic radius search, points B are

converted into bounding boxes in a scene, centered at their point locations and with a radius

equal to the search radius. Extremely short rays at each query point A are traced, and the RT

core returns all boxes from B which are within the radius according to the ℓ∞ norm. Like with

the Morton numbers approach above, the actual paths are then checked for ℓ2 distance.

The RT core only handles 3D data, but as discussed above the points here may be of

dimension 3, 6, 9, etc. Furthermore, independent searches must be done for paths of each order,

141

source, and receiver, but it is not desirable to set up and ray trace independent scenes for each of

these combinations, as this would lead to them all being processed serially. Instead, for each

path p, the order o(p), source index s(p), receiver index r(p), and all reflection points xi(p) are

encoded into a single 3D point v:

v(p) = voo(p)+ vrr(p)+ vss(p)+
o

∑
i=1

Mixi(p) (4.1)

vo, vs, vr, and Mi are arbitrary, constant values used for all paths. vo, vs, and vr are large vectors

used to move the paths for each order, source, and receiver spatially away from each other.

Their magnitude should be larger than the typical expected scene size but not so large that the

floating-point precision is significantly reduced when farther from the origin. Mi are orthonormal

(rotation) matrices, and one of them (e.g. M1) can be the identity matrix. Their role is to

break symmetries which may exist in the scene geometry, and are more likely to exist along

the coordinate axes than at random rotations. They must be orthonormal to avoid changing the

scale of the paths relative to the radius being searched. The search radius ρ(o) for each order is

slightly increased:

ρ
′(o) =

√
oρ(o) (4.2)

as up to o orthogonal components of the input 3o-dimensional point are additively combined into

one component of v. In the worst case, these components are all equal to some value a, so their

norm is a
√

o but the length of their sum is ao. Therefore the ℓ∞ search radius must be increased

by a factor of
√

o in order to ensure the point is found.

This projection from 3o to o dimensions can be considered a linear, scale-preserving

spatial hash. Hash collisions—two widely separated paths which map to nearby 3D points—are

rare due to the relatively small radius search distance compared to typical scene size. When

these collisions do occur, these pairs of paths are discarded when their ℓ2 distance is checked, so

the final results are still correct.

142

4.3.4 Path Merging

The path merging step has the simple function of combining nearby path candidates into

single paths. From a given receiver, reflecting off any ordered set of convex submeshes, to a

given source, there will only be at most one possible specular reflection path. Therefore, any

candidates traversing this set of geometry should coincide with each other after refinement, to a

degree of accuracy which can be as high as desired at the cost of more computation. Since the

merge distance and refinement tolerance are related, the chances of incorrect merging of paths

can be theoretically reduced as far as desired. Also, for incorrect merging to occur, not only do

separate convex submeshes need to be very close to each other, but their normals also need to be

very similar, because otherwise the paths would diverge substantially after reflecting from the

different normals.

The three radius search algorithms in subsection 4.3.3 are used to find nearby paths. For

the brute force approach, the paths are still assigned Morton numbers, and this list is sorted

and culled, so that paths which are so similar that they get the same Morton number are culled.

The brute force search replaces only the expensive radius search step. With any of the three

algorithms, a disjoint set data structure representing path “adjacency”—sets of paths which

are all near enough to each other to be merged—is formed. Since this data structure is being

generated by thousands of threads in parallel, it must be built exclusively using atomic operations.

The implementation is similar to [43], but somewhat simpler in that the “union” and “find”

operations do not overlap, and that the “find” operation need not simplify the graph due to the

expected small sizes of disjoint sets. The reflection positions of each path which is not the

representative element of any disjoint set are averaged into those of its representative element.

The representative elements then become the final set of paths for the current frame.

143

4.3.5 Path Continuity

The role of the “path continuity” step is to link paths generated in the previous frame to

“the same” paths in the current frame. Formally, given a method for generating specular paths

which is continuous almost everywhere with respect to movement of the scene contents (sources,

meshes, and receivers), the scene is assumed to move continuously from its state in one frame to

its state in the next frame, and as such almost all the paths will morph continuously from one

frame to the next. When changes which are inherently not continuous occur, such as adding or

removing sources or meshes, then the paths involving these items do not have corresponding

paths in the other frame, and the path continuity system must flag this for those paths.

Both the Morton number radius search and the RT core search (subsection 4.3.3) were

implemented. Here also the identity of the receivers and sources are taken into account: for

example, if source 0 was removed, then paths involving source 1 last frame will involve source

0 this frame. As a query path from the current frame finds nearby paths from the previous

frame, it keeps track of which not-yet-linked path is the closest in ℓ2 distance. When the query is

finished, it atomically tries to link to this path, and if the path has already been “claimed” by this

time, the query is repeated. This method is not guaranteed to produce consistent results when

the distance paths move between frames is similar to or greater than the separation between

different paths in the same frame, in which case the assignments may be random depending

on GPU thread scheduling. Fortunately, these cases are not very common in practice, and the

details of reflections off small objects of sound from fast-moving sources may not matter in

many applications. In principle, this problem can be solved by reducing the audio buffer size and

simulating the scene more frequently, until the rate of change of path reflection positions per

frame is as small as needed.

144

Figure 4.7. SSNRD spatial sampling. Rays are traced into the scene, in a pattern of concentric
cylinders around the reflection point. The distance each of these rays travels until it hits an object
is measured. © 2022 IEEE

4.4 Spatial Sampling

Once reflection paths are generated, the frequency response for each path must be

computed. There are several factors which contribute to this in Space3D, including shadowed

or near-shadowed diffraction as modeled by VDaT [19], but in this paper only the reflection

response due to the geometry shape is considered. This is the equivalent of the sum of all

near-reflective BTM edge diffraction paths involving the reflecting obstacle, plus the geometrical

acoustics reflection path if it exists. For simplicity, this response is modeled separately at each

reflection point and combined additively in dB. Space3D also applies material-dependent filtering

at each reflection point, with the materials defined at each vertex and interpolated between them

according to the reflection point. These filters can be measured from real examples of the

material, or synthesized typically as low-pass filters. This filtering can be seen as converting

the response of a single specular reflection path into the sum of one specular plus many diffuse

reflections from the same object, though this is not strictly accurate for reflections above first

order.

The concept of modeling diffraction by spatial sampling was introduced in the Volumetric

145

Diffraction and Transmission (VDaT) model [19], which was designed to approximate BTM

results for shadowed and near-shadowed diffraction. Briefly, the motivation behind spatial

sampling is that high frequencies traverse the scene in a narrow volumetric region around the ray

path, and low frequencies spread out over a larger region. These regions can be sampled by tracing

rays in a pattern of concentric cylinders, where each cylinder radius roughly corresponds to a

frequency band. In VDaT, which rays are blocked provides information about what frequencies

of sound are able to diffract around obstacles and reach the receiver. In SSNRD, the distance

each ray travels before it hits (and therefore reflects from) an obstacle provides information about

the local size and shape of the meshes, as discussed below.

If the occluding / reflecting object is planar, the BTM edge diffraction response is odd

symmetric over the plane (see Appendix B for more details). As a result, the possibility was

investigated of modeling near-reflective diffraction by running the VDaT algorithm on paths

through the reflecting object and inverting the results. This was partially successful in some

cases, but the inversion of the results often amplified small errors in the VDaT modeling. For

example, if the (linear) amplitude response at some frequency for a shadowed diffraction case

should be 0.99 and VDaT returns 1.0, that is a very accurate result; but if the amplitude in

the corresponding near-reflective case should be 0.01 and VDaT returns 0.0, the error in dB is

infinite. Furthermore, this model was not able to handle reflective geometry with obtuse angles

like the example in Figure 4.7, as all VDaT paths are blocked and it returns a result of perfect

reflections (which is incorrect).

To better model reflections, the spatial sampling approach has been modified from VDaT,

and the processing of the spatial sampling results to estimate the reflection response is now

accomplished with a small DNN (section 4.5) instead of a heuristic-based model. A set of

concentric cylinders of rays, usually centered at the reflection point (see subsubsection 4.4), is

traced into the scene, in the opposite direction of the reflection normal at the reflection point

(Figure 4.7). The distance each ray travels before intersecting any triangle is computed by the RT

core hardware and stored to memory, and this set of distances along all the rays is provided as

146

Figure 4.8. (a) The start points of spatial sampling rays are moved back to slightly behind the
plane of the reflecting triangle (p), so that they will start outside the object. However, distance is
measured with zero at the plane perpendicular to the reflection normal (horizontal dashed line),
so for example the length of the leftmost ray is returned as d. (b) If the edge is sharp, the SSNRD
rays are traced with a center and direction as if the intersecting triangle was an infinite, flat plane.
© 2022 IEEE

the main input to the DNN. The radii of the cylinders are chosen to span the sound wavelengths

of interest; here, nine cylinders are traced with power-of-2 spacing, plus there is one central ray.

Each radius is

ri = c/ fi (4.3)

where c is the speed of sound in air and fi = 40 ·2i Hz; the central ray corresponds to 20480 Hz.

The number of rays traced around each cylinder is an arbitrary quality parameter, here set to 64.

Both the number and spacing of the radii and the number of rays per cylinder could be changed,

but this would require changing the input size of the DNN and retraining it.

The starting point of each ray is moved backwards until it is slightly behind the plane of

the triangle with the intersection, or the plane perpendicular to the reflection normal, whichever

is farther “back” (Figure 4.8a). This is to ensure that the rays do not miss the reflecting object

when the reflection normal is not perpendicular to the triangle. However, the distance along the

ray before it intersects an object is considered zero where the ray crosses the plane perpendicular

to the reflection normal, and this reflection distance is clamped to zero at minimum, so any

intersections behind that plane are also considered at zero distance.

147

SSNRD center point

For triangles with smooth edges, the center point of the cylinder of rays is the reflection

point, and the normal is the reflection normal (Figure 4.7 and Figure 4.8a). However, for triangles

with sharp (due to split vertices), concave, or disconnected edges, the center point is the reflection

point off the triangle’s flat plane, even if this point is outside of the triangle itself (Figure 4.8b).

Similarly, the normal (which the rays are traced in the opposite direction of) is the triangle’s

face normal vector. If a triangle has a mixture of smooth and “sharp” edges, these two cases

are interpolated based on the distance of the flat reflection point to each vertex. This is done

so that the spatial sampling can distinguish between reflections near smooth edges, which are

supposed to approximate underlying smooth objects, and sharp edges, which are actually present

in the acoustical scene. Note that in the sharp case, the path reflection point is not moved to this

new position; it is only used for the spatial sampling. This is because the length (delay) of the

reflection path should be based on the sound reflecting from the actual triangle, not a virtual

extension of it.

4.5 DNN for Reflection Response

A small (about 38k parameters) feed-forward deep neural network (DNN) is used to

estimate the magnitude response of each path at each reflection point based on the spatial

sampling results (section 4.4). More precisely, given a source, receiver, and a single convex mesh

in a position where it is reflecting sound from the source to the receiver, the DNN is trying to

estimate the total magnitude response in dB from source to receiver, excluding the direct path. In

this paper, the DNN is trained based on the BTM edge-diffraction results—that is, the sum of

all the edge-diffraction paths involving all the edges of the convex mesh, plus the geometrical

acoustics specular reflection path if it exists. Alternatively, the DNN could be trained with data

obtained from offline wavefield simulations or physical measurements. There are three reasons

the mesh is assumed convex for the DNN. First, separate reflection paths are generated involving

148

each convex mesh or convex section thereof, and the response of each of these paths must be

modeled separately. Second, higher-order reflection paths often exist between separate convex

(sub)meshes, and for simplicity each reflection point on a path is modeled separately. Finally,

BTM is not fully accurate on non-convex geometry [44], so it could not be used for generating

ground truth training results in these cases.

The output format of the network is ten scalar values, representing magnitudes in dB

at each of ten frequencies spanning the audible spectrum (the same ten frequencies used for

the radii of the spatial sampling cylinders in section 4.4). The final magnitude response of the

reflection is piecewise linearly interpolated between these points. BTM magnitude responses

of individual edges are smooth and can be approximated this way with minimal error. Sums

of BTM responses for multiple edges usually contain interference, but it is infeasible to model

the exact interference pattern (other than by computing the BTM results), and for interactive

applications a smooth response may be desirable, as interference patterns can lead to audible

comb filtering when objects move.

4.5.1 Network Architecture

The primary input data to the network—the distance along each spatial sampling ray

d(r,θ)—is organized in two dimensions, where one (angle θ) is a circular dimension and the

other (radius r) is a linear dimension. Thus, a circular convolutional network architecture [45]

was selected. This is similar to a traditional convolutional neural network, except that in any

circular dimensions in the input space, the input is circularly padded before the convolution,

enabling the convolutional kernel to wrap around from the end to the start and vice versa.

The range of these input distances is [0,∞), so they are converted to a more usable range

(−1,1] for the network:

d′(r,θ) = 2−d(r,θ)/r ·2−1 (4.4)

149

Figure 4.9. SSNRD DNN architecture. (a) The convolutional kernel of a circular convolutional
layer. (b) One layer of the network. (c) The overall network structure, showing the data tensor
sizes after each operation. © 2022 IEEE

Five side channel inputs are also provided:

s(r,θ) =

ln(ls + lr)

∆ℓ= ls
ls+lr

·2−1

cos(φ)

sin(θ)

cos(θ)

(4.5)

where ls and lr are the length of the source and receiver segments respectively and φ is the angle

between the reflection normal and the source segment. The side channel inputs are concatenated

along the channel dimension with the output of the previous layer (or d′ for the first layer) as an

input to each convolutional layer. Each convolutional layer has 16 output channels and a kernel

size of 3 in r with “replicate” padding. The first convolutional layer has a kernel size of 3 in θ

and a stride of 1, and all subsequent convolutional layers have a kernel size of 5 and a stride of 2,

so that the size in the θ dimension is halved by these layers. These layers are repeated until the

θ dimension is 1 (Figure 4.9).

150

After the convolutional portion of the network, the tensor dimensionality is m×16×nr.

This is put through a linear layer which maps 16×nr to 4×nr, across all the radii (frequency

bands). Finally, the tensor is put through a 1×1 convolutional layer which maps 4 channels to 1

using the same weights for each band. All of the convolutional and linear layers are preceded by

batch normalization [46] and followed by the exponential linear unit (ELU) activation function

[47], except that ELU is omitted at the very end of the network.

The output y(r) is mapped to a change in magnitude response by the function

∆m̂(r) =

ln(y+1), y ≥ 0

y, y < 0
(4.6)

which is intended to permit small increases but large decreases compared to the pure GA

reflection response. The changes in magnitude at each reflection point are accumulated into the

path’s final estimated magnitude response

m̂(r) = 20log
(

1
∑

o
i=0 lo

)
+

o

∑
i=1

∆m̂i(r) (4.7)

for order o and segment lengths lo. Again, these ten r (radius) values map to octave frequency

bands according to Equation 4.3.

4.5.2 Training Methodology

The training and test data for the DNN was generated by a set of Python scripts (File

4.3) which simulate SSNRD spatial sampling and BTM edge diffraction in randomly generated

scenes of certain types. Four scene configurations were used (Figure 4.10):

1. A sharp wedge, of a random angle between 1 and 179 degrees, with the edge length much

larger than the longest wavelength of interest. The reflection point is uniformly distributed

between 2 meters before and 2 meters after the edge.

151

Figure 4.10. Example cases of the four scenarios used for training the SSNRD DNN. The
diagrams for Convex Disk and Icosphere are 3D front views; the others are 2D “edge-on” top
views. The SSNRD sampling locations and 3D BTM edge diffraction paths are simplified for
clarity. © 2022 IEEE

2. A random, convex polygon disk, with a rough “radius” between 0.1 and 5 meters. The

reflection point is a random distance (dependent on the radius) in a random direction from

one of the edges.

3. An “icosphere” [48] (polygonal approximation to a sphere), with the reflection point on

one of its faces.

4. A “smooth edge”, see below.

In all cases the path length is uniformly distributed between 0.1 and 10 meters, and ∆ℓ ∈

[−0.8,0.8] (see Equation 4.5) except in case 4 where ∆ℓ = 0. Also, the direction from the

intersection point to the source is random, with a weighting so that closer to perpendicular to the

surface is more common.

The “smooth edge” scenario is intended to reflect the way that SSNRD path generation

handles reflections smoothly interpolating around edges (subsection 4.2.2). A smooth edge in

SSNRD is intended to approximate a curved surface, so it should be trained to match BTM

results for the curved surface, not BTM results for a single edge. Thus, the spatial sampling

results in this scenario are generated from a wedge mesh with a single smooth edge (section 4.4),

but the BTM results are generated from a mesh with a polygonal “curved” surface consisting of

152

Table 4.1. SSNRD Network Scene Configurations and Test Set Error

Scene
Training MAE (dB) over 1000 Test
Set Size Mean Q1 Med Q3

Sharp Wedge 4000 1.50 0.26 0.54 1.26
Convex Disk 16000 1.94 0.75 1.18 2.05

Icosphere 1600 1.75 0.51 0.88 2.27
Smooth Edge 4000 1.21 0.21 0.77 1.85

a few segments where the original edge was (Figure 4.10 lower right).

Training, validation, and test data were all generated from these scripts, with the quantities

of each type in the training set shown in Table 4.1. Because all the examples were randomly

generated, the training and test sets are disjoint. Furthermore, validation sets were used when

adjusting the network architecture and hyperparameters; only once the final network was settled

on and trained was the test set generated and evaluated, with no parameters adjusted after that

time.

The loss function is mean absolute error (MAE) between the estimated path magnitude

response Equation 4.7 at the ten frequencies f and the BTM magnitude response “near” those

frequencies, obtained by convolving the BTM magnitude response aBTM(ω) with Gaussians as

aBTM(f) =
Nω−1

∑
ω=0

aBTM(ω) e−
1
2 (log2 ω−log2 f)2

(4.8)

For the BTM ground truth, the sum of the geometrical reflection path if present plus all first-order

BTM paths was used. Second-order BTM was implemented and tried, but it typically made a

negligible contribution to the overall results while taking much more time to generate, so it was

not used.

The network was trained with a minibatch size of 128, learning rate of l(e) = 0.01 ·0.97e

for epoch e for 300 epochs, and the Adam optimizer with weight decay of 10−5. Training took

roughly an hour on one NVIDIA GeForce RTX 3080 GPU, using TensorFloat-32 computations

[49] for the convolutional and linear layers. For inference, the network was hand-implemented

153

Figure 4.11. Example SSNRD network results for a reflection off a 1 m radius cylinder, with
1.3 dB mean absolute error compared to the BTM result. The training set did not include any
cylinders. © 2022 IEEE

in CUDA as a single kernel, to avoid the performance penalty of copying data to memory

between kernels performing individual operations in the network, and to avoid introducing a

dependency on the very large libtorch library [50]. Unfortunately, this implementation does not

take advantage of the Tensor Cores present in recent NVIDIA GPU architectures [27], so when

there are more than a few hundred reflection points, the DNN inference becomes a bottleneck for

the system’s real-time performance. Integrating optimized Tensor Core matrix multiply routines

into a single-kernel DNN implementation is out of scope of this paper and is planned as future

work.

4.5.3 Results

Test set results, averaged over 1000 examples of each of the four trained scene configura-

tions, are shown in Table 4.1. The mean absolute error (MAE) between the SSNRD and BTM

results is less than 2 dB on average for all four types of scenes. The error tends to be largest

when the source or receiver is close to the reflection plane, for example in the cases shown in

Figure 4.12. The right plot in Figure 4.1 shows the SSNRD results as the source and receiver are

moved past the edge, showing good agreement with the BTM results as well as smooth behavior

as the inputs change. Figure 4.11 shows example results from SSNRD and BTM for a reflection

154

Figure 4.12. Example cases with larger errors as compared to BTM results. (a) As φ increases,
the geometry transitions from a near-reflective diffraction case to more like a near-shadowed
diffraction case. The latter would be handled better by VDaT than SSNRD. (b) For a wedge with
a small angle and edge set to sharp, as the source/receiver approach the plane, the BTM response
drops substantially but the SSNRD response does not. The error can be substantially reduced by
setting the edge to smooth, though SSNRD still tends to overestimate the response. © 2022 IEEE

Table 4.2. Mesh Preprocessing Performance Examples

Scene # Tris
Connectivity Vertex

RT Core Edge hash Normals
Kitchen 2 135k 830 µs 1.1 ms 681 µs

Bedroom 3 945k 2.5 ms 4.7 ms 1.3 ms
Kitchen 3 1.62M 5.7 ms 8.8 ms 3.7 ms
Office 8 3.08M 9.6 ms 16.7 ms 5.7 ms

from a cylinder, which is a type of scene the network never saw during training. Nevertheless,

the error in the SSNRD results is only 1.3 dB.

4.6 System Results

All timing results are measured on one NVIDIA GeForce RTX 3080 GPU. Table 4.2

shows the time taken to preprocess some large meshes (section 4.2). The algorithms are fast

enough to be run every frame when meshes are deformed, and the time appears to scale linearly

with the scene size after an initial overhead. The RT core based connectivity method outperforms

a method based on hashing triangle edges, similar to an existing approach [51]. The edge hash

implementation is parallelized over all edges; multiple sets of hash table parameters were tested

155

Table 4.3. Radius Search Performance Examples

Time for Algorithm, ±20 µs / ±3%

Scenario
Morton cull + Morton cull +

RT Core
Brute force Morton search

Path Merge, # candidates → # paths
577 → 172 235 µs 957 µs 773 µs

1956 → 667 395 µs 1108 µs 835 µs
4741 → 1941 638 µs 1202 µs 842 µs
Path Continuity, # cur frame to last frame links

161 – 322 µs 568 µs
673 – 843 µs 613 µs

1848 – 2108 µs 689 µs

and the fastest were used. Note that any hashing implementation pays the memory and time cost

of allocating a hash table, whereas the acceleration structures for the RT core implementation

were already created for the main ray tracing and thus are not counted as a cost.

Table 4.3 shows example results for the three radius search algorithms in subsection 4.3.3.

Except for small problem sizes, the RT Core implementation outperforms the Morton number

based radius search, because the traversal of the scene structure is done in hardware. Table 4.4

shows example timing results for various processing steps discussed above in three medium-to-

large scenes. The timings can change substantially depending on the scene geometry, source and

receiver placement, and quality parameters. Nevertheless, these results are representative of the

performance of each of these algorithms in real-world use: they are fast enough to be used in

interactive applications, and only mildly dependent on the scene size.

Figure 4.13 shows three cases of Space3D system output: passing the edge of a plane,

passing a cube, and in front of a rotating icosphere. In the first two cases, note that the response

smoothly fades at the edges, with the high frequencies changing over a shorter distance than the

low frequencies. In the icosphere case, note that the high frequency response changes depending

on how close the reflection is to the center of a face versus an edge. Nevertheless, these changes

are smooth as the mesh rotates, and at low frequencies where the wavelength is large compared

to the size of the sphere, there is relatively little reflection energy. See Files 4.1 and 4.2 for videos

156

Table 4.4. Path Generation Performance Examples

Scene Sibenik Sponza Living Room 3
Tris 76.6k 262k 1.42M

Order, # Srcs 5, 1 3, 8 6, 2
nR, nB, d̂max(1) 40k, 16, 50 80k, 8, 13.1 40k, 32, 13.1

Path Cand. 3269 10569 8020
Paths 316 2655 1389

BVH / setup 185 µs 217 µs 216 µs
Ray Tracing 1665 µs 1447 µs 3630 µs
Refinement 487 µs 325 µs 570 µs
Path Merge 270 µs 495 µs 438 µs

Spat. Sampl. 196 µs 693 µs 602 µs
VDaT 585 µs 2931 µs 2192 µs

Path Contin. 470 µs 552 µs 550 µs
All cases: d̂max({2,3,4,5,6}) = {1.5,2,2.5,3,3.5} · d̂max(1),

nT = 49. See subsection 4.3.1 for explanations of params.

Figure 4.13. Spectrograms of Space3D output for white noise input, colocated source and
receiver, and a single first-order reflection path off three different meshes. Top: Source and
receiver move past the edge of a large plane (same as Figure 4.1). Middle: Source and receiver
move past a cube. Bottom: A 1 m radius icosphere rotates in front of the source and receiver.
© 2022 IEEE

showing additional examples of real-time system output.

157

4.7 Conclusion

A method for generating and simulating the response of specular reflection paths in

acoustical scenes is presented. This method is able to smoothly fade the magnitude response of

reflection paths as they cross edges, take into account the size and shape of nearby geometry at

a reflection point, and distinguish polygonal meshes representing smooth surfaces from those

representing real edges. It achieves these goals through a combination of specific path generation

methods, spatially sampling the scene with rays around reflection points, and approximating

ground-truth edge diffraction results to within 1-2 dB with a DNN. The algorithms are fast

enough to be used in interactive applications, partly thanks to NVIDIA’s RT core, which is used

for radius search and computing mesh connectivity in addition to traditional ray tracing.

Acknowledgements

The authors would like to acknowledge Valen Chang for assistance with creating the

demo videos (Files 4.1 and 4.2).

In reference to IEEE copyrighted material which is used with permission in this thesis,

the IEEE does not endorse any of UC San Diego’s products or services. Internal or personal

use of this material is permitted. If interested in reprinting/republishing IEEE copyrighted

material for advertising or promotional purposes or for creating new collective works for resale

or redistribution, please go to http://www.ieee.org/publications standards/publications/rights/

rights link.html to learn how to obtain a License from RightsLink. If applicable, University

Microfilms and/or ProQuest Library, or the Archives of Canada may supply single copies of the

dissertation.

Chapter 4, in full, has been submitted for publication of the material as it may appear in

IEEE Transactions on Visualization and Computer Graphics. Pisha, Louis; Yadegari, Shahrokh,

IEEE, 2022. The dissertation author was the primary investigator and author of this paper.

158

http://www.ieee.org/publications_standards/publications/rights/rights_link.html
http://www.ieee.org/publications_standards/publications/rights/rights_link.html

Appendix A: SSNRD Reflection Normals Equations

The code for the computation of normals as described in this Appendix is provided in

File 4.3. The variable names shown here are chosen to generally match the code.

There are two main steps to computing normals in SSNRD. First, the mesh vertex normals

are computed as a preprocessing step. These are computed and stored per-triangle: for a mesh

with nt triangles, there are 3nt vertex normals. For a fully connected convex mesh, the vertex

normals for each vertex shared by multiple triangles will be the same in each triangle; but for

a mesh with concave or disconnected edges, a vertex may have different normals in different

triangles. Note that vertex normals are often used in 3D graphics, and graphical vertex normals

may already exist for meshes being processed by SSNRD. Nevertheless, due to differences in

how disconnected, sharp, and concave edges are handled in SSNRD, graphical normals are not

directly used by SSNRD, and the vertex normals are always computed as described here. Second,

when a ray intersects the mesh during ray tracing, the reflection normal at that intersection

point is computed, based on the triangle’s vertex normals and other information. Both of these

steps use precomputed mesh connectivity information, which is an integer for each edge of each

triangle, stating what triangle index it is connected to or -1 if it is not connected.

4.8.1 Vertex Normals

The process described here is performed (on the GPU, in parallel) for each vertex index

v ∈ [0,2] for each triangle t ∈ [0,nt). First, the triangle vertices v0,v1,v2 are loaded and “rotated”

(circularly swapped) so that v0 holds vertex v, v1 holds vertex (v+1) mod 3, and so on. Two

vectors which will be accumulated into are initialized: the vertex normal nv =C(v0,v1,v2), and

the tangent sum σ = 0. The contribution C(·) of any vertex to the current vertex normal is

159

directly proportional to the angle at the vertex, and inversely proportional to the triangle area:

C(v0,v1,v2) = n fCangle/Carea (4.9)

Cangle = arccos
(v1 − v0) · (v2 − v0)

∥v1 − v0∥∥v2 − v0∥
(4.10)

Carea = ∥nraw∥+10−6 (4.11)

n f = Nr(nraw) (4.12)

nraw = (v1 − v0)× (v2 − v0) (4.13)

where n f is the “face normal” and Nr(x) = x/∥x∥ is the normalize function. Because nv will

be normalized at the end after the contributions from all triangles are added, this process is

computing the weighted average of the face normals of each of the triangles, based on the

angle and area weightings in Equation 4.9. Weighting by angle is unremarkable—triangles

which occupy a larger angular range around the vertex should influence the normal more—but

weighting by the inverse of area may be surprising. The reason is that when a mesh represents

an underlying smooth surface, the face normals of small triangles are more likely to accurately

represent the normal of the surface at the vertex than the face normals of large triangles, because

the small triangles themselves represent the surface better. From another perspective, assuming

the local surface curvature is roughly uniform, more of that curvature will occur where there are

larger triangles, so the normals should more closely match those of the smaller triangles.

Two iterations are performed around v0, one in each direction—one starting over each

of the two edges of t connected to v0. Each iteration traverses over an edge connected to v0

to the next triangle, based on the connectivity. Each iteration terminates when the edge is not

connected to any triangle, when it is a concave edge, or when the iteration has reached the

original triangle t again. (If the first iteration around v0 in one direction reaches the original

triangle, the second iteration is skipped, as all the triangles have been taken into account.) At

each step of the iteration, the new triangle is loaded as v0b,v1b,v2b, and rotated as above so that

160

v0b is v0 and so that the correct edge is in place for the next step of the iteration. The contribution

from this triangle C(v0b,v1b,v2b) is added to nv.

If the next edge is disconnected or concave, besides the iteration terminating, the edge’s

tangent vector τ is added to the tangent sum σ :

τpre(v0,v1,v2) = Nr(n f × (v1 − v0)) (4.14)

τ(v0,v1,v2) =

−τpre ifτpre · (v2 − v0)> 0

τpre otherwise
(4.15)

The edge is considered concave if, for triangles a and b and edge e, (τ(e|a) ·n f (b))<−0.001,

i.e. the face normal of the next triangle is partly pointing in the opposite direction of the edge

tangent. It is also considered concave if ∥n f (a)+ n f (b)∥ < 0.003, i.e. the face normals are

pointing in nearly opposite directions, which occurs for connected triangles forming opposite

sides of the same flat surface. It is indeterminate whether the triangles are both facing outwards

or both facing inwards, so it is important that this relatively common edge case be handled in a

consistent manner rather than be subject to floating-point precision problems. Note that edges

being smooth versus sharp is not taken into account; sharp edges do not affect the normals or

path generation in SSNRD at all, only the spatial sampling step.

Once both iterations are complete, all the triangles surrounding v0 via convex edges

have made their contributions to nv, and if there are disconnected edges, the tangents of the two

disconnected edges have been added together in σ . The final vertex normal is computed as:

nv;final = Nr(Nr(nv)+5σ) (4.16)

The constant 5 was chosen heuristically; the goal is to have the vertex normal almost in the

“outward” direction as indicated by the tangents of the disconnected or concave edges, if present.

However, some component of the regular vertex normal nv must be included, or else the reflection

161

normal algorithm below may not be able to determine which way to interpolate the normals

along the edges. If there are no disconnected or concave edges, Equation 4.16 reduces to the

weighted average of the face normals as discussed above.

4.8.2 Reflection Normals

When a ray from origin o hits a mesh triangle at intersection point i, the reflection

normal nr must be computed at that point so that the direction of the reflecting ray can be

computed. The barycentric coordinates b = (bx,by) of the intersection point are returned by

the RT core. Barycentric coordinates are a coordinate system in the plane of the triangle, not

generally orthonormal, such that vertex 0 is at (0,0), vertex 1 is at (1,0), and vertex 2 is at (0,1).

The triangle vertices v0, v1, v2, the vertex normals nv0, nv1, nv2, and connectivity are

loaded, and the face normal n f , edge vectors e0 =Nr(v1−v0), e1 =Nr(v2−v1), e2 =Nr(v0−v2),

and tangent vectors τ0 = e0 ×n f , τ1 = e1 ×n f , τ2 = e2 ×n f are computed. Next, for each edge

k, the “edge reference point” ηk and “ratio” rk are computed, representing the closest point on

that edge to the reflection and how far along the edge it is:

ny = e0 · (i− v0) (4.17)

η0 = v0 +nye0 (4.18)

r0 = clamp
(

ny

∥v1 − v0∥
,0,1

)
(4.19)

and similarly for η1,r1 and η2,r2. The clamping is needed both because triangles may contain

obtuse angles and η may be outside the triangle, and because during the path refinement step

(which this code is also used for), the intersection point i itself may move outside the triangle.

Edge Normals

Next, the edge normal ne for each edge at its respective reference point is computed. The

equations are only shown for edge 0 but the corresponding operations are done for the other

162

edges as well. This is a multi-step process.

Interpolation between vertex normals

The edge normal is “circularly” interpolated between the vertex normals at each end

of the edge, subject to some additional checks. First, each vertex normal is clamped to being

“outwards” relative to the edge’s extent, i.e. any component along the edge towards the opposite

end is removed:

n′v0 =

Nr(nv0 − e0(nv0 · e0)) ifnv0 · e0 > 0

nv0 otherwise
(4.20)

n′v1 =

Nr(nv1 − e0(nv1 · e1)) ifnv1 · e1 < 0

nv1 otherwise
(4.21)

Next, the axis of rotation α is computed. If n′v0 and n′v1 point in nearly the same direction

(∥n′v0 −n′v1∥ < 10−4), it doesn’t matter which way the interpolation is done, so set α = τ0. If

n′v0 and n′v1 point in nearly opposite directions (∥n′v0 + n′v1∥ < 10−4), then an estimate of the

edge normal in the middle of the edge m is needed, and α = e0 ×m. If the edge is concave, the

interpolation should happen in the plane of the triangle outwards from it, so m = τ0; otherwise,

the interpolation should happen towards the face normal, so m = n f . Finally, if neither of the

above conditions on n′v0 and n′v1 hold, the interpolation occurs in the plane defined by the two

vertex normals, so α = n′v0 ×n′v1.

Next, the actual circular interpolation is performed. First, a third orthonormal basis vector

163

z, besides n′v0 and α , is constructed:

zpre = Nr(n′v0 ×α) (4.22)

z =

−zpre ifz ·n′v1 < 0

zpre otherwise
(4.23)

Next, the total angle between the normals is computed:

θtotal = arccos
(
clamp(n′v0 ·n′v1,−1,1)

)
(4.24)

The angle based on the ratio along the edge is computed:

θ = θtotalr0 (4.25)

Finally, the edge normal is computed:

ne0;A = Nr(n′v0 cosθ + zsinθ) (4.26)

Finally, if this normal is “backwards” relative to the plane of the triangle, it is clamped to

the plane of the triangle:

ne0;B =

Nr(ne0;A −n f (ne0;A ·n f)) ifne0;A ·n f < 0

ne0;A otherwise
(4.27)

For clarity, the notation ne0;B means “edge normal for edge 0, step B in the process of computing

it”.

164

Adjustment for outgoing ray direction

Next, the angle of the normal is reduced so that a reflecting ray does not continue into

the plane of the triangle. This part of the algorithm assumes that the intersection point is η0.

Effectively, rays from a given origin which hit the triangle along its edges may reflect outward,

in the plane of the triangle; and because of the interpolation between edge normals described

below, rays which hit within the area of the triangle reflect at smaller angles and may cover the

whole space above the triangle. Of course, if the original vertex normals are closer to the face

normal than this, the range of possible reflecting angles will be smaller.

The incoming and outgoing rays are computed as:

vin = o− i (4.28)

vout = 2(ne0;B · vin)ne0;B − vin (4.29)

If vout ·n f ≥ 0, the outgoing ray is in or above the plane of the triangle, so this step is skipped and

ne0;C = ne0;B. Otherwise, the new outgoing ray is brought up to be in the plane of the triangle,

and then the new normal is computed to be halfway between the incoming and outgoing rays:

x = Nr(vin ×ne0;B) (4.30)

vout;new = x×n f (4.31)

ne0;C = Nr(Nr(vout;new)+Nr(vin)) (4.32)

Adjustment for distance to plane of triangle

The final adjustment to the edge normal causes the triangle to appear more flat near its

middle as the ray origin is closer to it. This adjustment is performed in order to take into account

the scale of the reflecting object relative to the acoustical paths. For example, consider a cube

with 30 cm edges; by default its reflection normals stick out in all directions, as if the normals of

a sphere had been mapped onto its faces. For an acoustical path starting several meters away, this

165

is likely the desired behavior: it reflects sound in all directions (with the exact amount in each

direction determined by the spatial sampling). However, if the source and receiver are both near

each other, 5 cm from the middle of one of the cube’s faces, that face should be considered flat

near the source and receiver, as it is indeed flat when considered on the spatial scale of the paths.

This step is skipped, ne0;final = ne0;C, if the intersection point is on the outside side of the

edge, τ0 · (i−η0)≥ 0. Otherwise:

di = ∥o− i∥ (4.33)

de = ∥i−η0∥ (4.34)

c =

1 ifdi < 0.001

min(de/di,1) otherwise
(4.35)

ne0;final = Nr(cn f +(1− c)ne0;C) (4.36)

The “curve factor” c varies between 0, when the edge normal is as computed above and thus the

curvature is maximum, and 1, when the face normal is used instead. When the distance from

the origin to the intersection point, di, is less than or equal to the distance between the reflection

point and the edge, de, the face normal is used. As the distance to the intersection point increases,

i.e. as the origin gets farther away from the triangle, the result will approach the original edge

normal. Note also that as the intersection point approaches the edge for a fixed di, the result also

approaches the original edge normal. In the example above with the cube, this means that rays

hitting near the cube’s edges still reflect at larger angles, even though the cube is now “flat” near

the source and receiver.

Combining Edge Normal Results

Once the edge normals ne0 = ne0;final, ne1, ne2 are computed, they are interpolated between

based on the inverse of the distance from the reflection point to each edge w0, w1, w2, which is

166

derived from the barycentric coordinates b:

bw = 1−bx −by (4.37)

w0 = 1/by (4.38)

w1 = 1/bw (4.39)

w2 = 1/bx (4.40)

nr;pre = Nr
(

ne0w0 +ne1w1 +ne2w2

w0 +w1 +w2

)
(4.41)

nr =

ne2 ifbx ≤ 10−5

ne0 ifby ≤ 10−5

ne1 ifbw ≤ 10−5

nr;pre otherwise

(4.42)

The clamping here avoids divide-by-zero and supports cases when the intersection point is

outside the triangle during path refinement. nr is then returned as the final reflection normal at

the given intersection point.

Appendix B: Proof of Edge Diffraction Symmetry for Convex
Planar Geometry

In general terms, according to the Biot-Tolstoy-Medwin (BTM) edge diffraction model

[12] [13] [14], the total impulse response (IR) h̄(τ) is equal to the geometrical acoustics (GA)

167

components plus the BTM diffraction component:

(1) h̄shd = hBTM,shd (4.43)

(2) h̄nsd = hdir +hBTM,nsd (4.44)

(3) h̄nrd = hBTM,nrd (4.45)

(4) h̄rfd = hrefl +hBTM,rfd (4.46)

corresponding to the numbered cases in Figure 4.14 for shadowed diffraction, near-shadowed

diffraction, near-reflective diffraction without a reflection path, and near-reflective diffraction

with a reflection path. It is assumed that the object has rigid surfaces and does not have any

absorption or transmission.

The claim is, roughly, that the pattern of energy removed from the field behind the

occluder—i.e. the IR without the occluder, minus the diffraction IR—is equal to the pattern of

the specularly reflected energy. When the reflection receiver is at the image of the diffraction

receiver, the conditions for shadowed diffraction for one edge are the same as the conditions for

a valid GA specular reflection path (Figure 4.14), so there are only two cases, (1) and (4) or (2)

and (3):

hdir − h̄shd
?
= h̄rfd (4.47)

hdir − h̄nsd
?
= h̄nrd (4.48)

hdir when the occluder is not present is equal to hrefl when the occluder is present, as both are GA

paths of the same length without any modified frequency response, and the reflection from the

rigid surface does not introduce a phase inversion. Substituting Equations 4.43–4.46, Equations

168

Figure 4.14. Four cases of BTM edge diffraction around a planar object. © 2022 IEEE

4.47 and 4.48 reduce to:

hBTM,shd
?
=−hBTM,rfd (4.49)

−hBTM,nsd
?
= hBTM,nrd (4.50)

or more generally

hBTM,diff
?
=−hBTM,refl (4.51)

where hBTM,diff is the BTM impulse response (without GA components) on the diffraction side,

and hBTM,refl is the corresponding response for an appropriate position on the reflection side.

It can be shown that Equation 4.51 is not true for non-planar geometry, regardless of the

choice of receiver positions. However, it is conjectured that:

Conjecture 1 If the occluder is planar and the reflection receiver is at the image of the diffraction

receiver (i.e. reflected across the plane), Equation 4.51 holds.

Conjecture 1 is proved below for general first-order diffraction (subsection 4.9.1) and for second-

order diffraction from convex occluders (subsection 4.9.2). It is conjectured to also hold for all

higher orders of BTM edge diffraction and for non-convex planar occluders (subsection 4.9.3).

169

4.9.1 First-order diffraction

Infinite half-plane

The BTM IR for the infinite wedge is given in [13] as

hBTM(τ) =− cν

2π

β (τ)

rSrR sinhη(τ)
H(τ − τ0) (4.52)

η(τ) = cosh−1 c2τ2 − (r2
S + r2

R + z2
R)

2rSrR
(4.53)

β (τ) = β++(τ)+β+−(τ)+β−+(τ)+β−−(τ) (4.54)

β±±(τ) =
sin(ν(π ±1 θS ±2 θR))

cosh(νη(τ))− cos(ν(π ±1 θS ±2 θR))
(4.55)

where H is the Heaviside step function, ν = π/θW is the “wedge index”, and θW is the open

angle of the wedge. The only term here which is dependent on θS and θR, the source and receiver

angles, is β (τ). For clarity we write

β±±(τ) =
N

C+M
(4.56)

C = cosh(νη(τ)) (4.57)

N

M
=

sin

−cos

(
π

(
π

θW
±1

θS

θW
±2

θR

θW

))
(4.58)

since most of the manipulations will be analogous on numerator and denominator.

For a planar “wedge”, θW = 2π so

N

M
=

sin

−cos

(
π

2
±1

θS

2
±2

θR

2

)
(4.59)

=
cos

sin

(
±1

θS

2
±2

θR

2

)
(4.60)

170

These equations are valid for any source and receiver points. We now assume that R is the

reflection receiver, whose impulse response contains β term βrefl, and D is the diffraction receiver

with β term βdiff. The position D is R reflected over the plane, so θD = 2π −θR. Substituting:

ND

MD

=
cos

sin

(
±1

θS

2
±2

2π

2
∓2

θR

2

)

=
−cos

−sin

(
±1

θS

2
∓2

θR

2

)

=
−cos

−sin

(
−
(
∓1

θS

2
±2

θR

2

))

=
−cos

sin

(
∓1

θS

2
±2

θR

2

)

βdiff;±± =
−cos(∓1θS/2±2 θR/2)

C+ sin(∓1θS/2±2 θR/2)

=−βrefl;∓±

Since all four combinations of the ±1±2 terms are summed, swapping the first ± simply swaps

the additions, giving the same result. So, βdiff =−βrefl. Since β contributes multiplicitavely to

hBTM and no other term depends on θR,

hBTM;diff =−hBTM;refl (4.61)

Finite and non-straight edges

[13] gives different expressions for the diffracted pressure p(t) from a finite edge which

need not be straight, depending on whether integration is performed in time or along the edge.

For example,

p(t) =
−ν

4π

∫ z2

z1

q
[

t − m(z)+ l(z)
c

]
β

m(z)l(z)
dz (4.62)

171

where q(t) is the source signal. This uses a different form of β , β (α(z),γ(z),θS,θR), but this

change only affects the C term from Equation 4.57, not the terms containing θS and θR. So, the

analysis above remains valid; βdiff =−βrefl, and since the negative sign can still be pulled out

from β to the result, Equation 4.61 still holds.

4.9.2 Second-order diffraction

[13] gives a general equation for second-order diffraction, which is similar to Equa-

tion 4.62 but too long to reproduce here in full. This equation is valid whenever the diffraction

path between the two edges lies along a surface, which is always true for convex objects (whether

planar or not). This equation contains the terms

β (α1(z1),γ1(z1,z2),θS,0)β (α2(z1,z2),γ2(z2),0,θR) (4.63)

which, like in Equation 4.62, multiplicitavely contribute to the result, and there are no other terms

which depend on θS or θR. As an aside, this expression may be slightly incorrect. As pointed out

in the caption of Fig. 4 in [13], the angles are θS1,θw1 for edge 1 and 0,θw2 −θR2 for edge 2, so

the expression in Equation 4.63 should be β (...,θS1,θw1)β (...,0,θw2 −θR2). Compared to the

published expression, this produces an extra factor of π which swaps the signs of the sin and cos

terms in the numerators and denominators. The signs in the numerators cancel out, but the signs

in the denominators do not. Computing the expression with one or both of the angles defined in

the opposite direction leads to the same result. However, since in this appendix the reflection and

diffraction results are being compared, this sign change would appear in both results, leading to

the same conclusion regardless of which version of the equations is correct. The below proceeds

with the seemingly corrected version of the equations.

β±±;n(τ) =
Nn

Cn +Mn
(4.64)

172

C1 = cosh(νη(α1(z1),γ1(z1,z2))) (4.65)

C2 = cosh(νη(α2(z1,z2),γ2(z2))) (4.66)

N1

M1

=
sin

−cos

(
π

(
π

θW1
±1

θS1

θW1
±2

θW1

θW1

))
(4.67)

=
−sin

cos

(
π

(
π

θW1
±1

θS1

θW1

))
(4.68)

N2

M2

=
sin

−cos

(
π

(
π

θW2
±1

0
θW2

±2
θW2 −θR2

θW2

))
(4.69)

=
−sin

cos

(
π

(
π

θW2
∓2

θR2

θW1

))
(4.70)

Given that the obstacle is planar, θW1 = θW2 = 2π , so

N1

M1

=
−sin

cos

(
π

(
1
2
±1

θS1

2π

))
(4.71)

=
−cos

−sin

(
±1

θS1

2

)
(4.72)

and similarly

N2

M2

=
−cos

−sin

(
∓2

θR2

2

)
(4.73)

Now we assume the receiver R2 is at the end of a near-reflective diffraction path, i.e. on

the same side of the obstacle as source S1. We compare the IR to that of the diffraction path with

receiver D2, corresponding to R2 reflected over the plane, so θD2 = 2π −θR2. The N1, M1, and

β±±;1 terms do not change, so

173

N2;diff

M2;diff

=
−cos

−sin

(
∓2

2π −θR2

2

)
(4.74)

=
cos

sin

(
±2

θR2

2

)
(4.75)

=
cos

−sin

(
∓2

θR2

2

)
(4.76)

N2;diff =−N2;refl (4.77)

M2;diff = M2;refl (4.78)

Since the numerators are negated and the denominators are the same for all of the ± combi-

nations being summed, β±±;2;diff = −β±±;2;refl. Like for first-order diffraction, β contributes

multiplicitavely to the final IR, and no other terms in the IR depend on θR2, so

pBTM;diff;2nd(t) =−pBTM;refl;2nd(t) (4.79)

(second order) given the same source signal q(t) and any convex planar occluder.

4.9.3 Non-convex geometry

[44] shows that, compared to the analytical solution and measurement results, the BTM

secondary source formulation omits components in certain cases where the diffraction path

travels from one edge to another not along a surface. This can only happen in second or higher

order diffraction in a non-convex scene. More specifically, BTM predicts that for a gap in a planar

occluder, the first-order diffraction from one edge has a zero magnitude at the other edge, so there

is no second or higher order diffraction. However, this first-order diffracted component violates

174

the boundary condition on the plane forming the other edge, so there must be a higher-order

component to compensate for this. This is a limitation of BTM, but this does not mean that

Conjecture 1 is necessarily violated for this non-convex geometry, just that BTM cannot model

this case.

175

Bibliography

[1] Damian Murphy, Antti Kelloniemi, Jack Mullen, and Simon Shelley. “Acoustic modeling
using the digital waveguide mesh”. In: IEEE Signal Processing Magazine 24.2 (2007),
pp. 55–66.

[2] Dick Botteldooren. “Finite-difference time-domain simulation of low-frequency room
acoustic problems”. In: J. Acoust. Soc. Am. 98.6 (1995), pp. 3302–3308.

[3] Nikunj Raghuvanshi and John Snyder. “Parametric directional coding for precomputed
sound propagation”. In: ACM Transactions on Graphics (TOG) 37.4 (2018), pp. 1–14.

[4] Chakravarty R Alla Chaitanya, Nikunj Raghuvanshi, Keith W Godin, Zechen Zhang, Derek
Nowrouzezahrai, and John M Snyder. “Directional sources and listeners in interactive
sound propagation using reciprocal wave field coding”. In: ACM Transactions on Graphics
(TOG) 39.4 (2020), pp. 44–1.

[5] Microsoft Game Dev. Project Acoustics overview – What is Project Acoustics? May 2022.
URL: https://docs.microsoft.com/en-us/gaming/acoustics/what-is-acoustics.

[6] Matthew Rosen, Keith W Godin, and Nikunj Raghuvanshi. “Interactive sound propagation
for dynamic scenes using 2D wave simulation”. In: Computer Graphics Forum. Vol. 39. 8.
Wiley Online Library. 2020, pp. 39–46.

[7] Jukka Saarelma, Jonathan Califa, and Ravish Mehra. “Challenges of Distributed Real-
Time Finite-Difference Time-Domain Room Acoustic Simulation for Auralization”. In:
Audio Engineering Society Conference: 2018 AES International Conference on Spatial
Reproduction - Aesthetics and Science. July 2018. URL: http://www.aes.org/e-lib/browse.
cfm?elib=19609.

[8] Google. “Resonance Audio: fundamental concepts”. In: (2017). (Last viewed June 4,
2020). URL: https://resonance-audio.github.io/resonance-audio/discover/concepts.html.

[9] Robert G Kouyoumjian and Prabhakar H Pathak. “A uniform geometrical theory of
diffraction for an edge in a perfectly conducting surface”. In: Proceedings of the IEEE
62.11 (1974), pp. 1448–1461.

[10] Nicolas Tsingos, Thomas Funkhouser, Addy Ngan, and Ingrid Carlbom. “Modeling
acoustics in virtual environments using the uniform theory of diffraction”. In: Proceedings
of the 28th annual conference on Computer graphics and interactive techniques. ACM.
2001, pp. 545–552.

176

https://docs.microsoft.com/en-us/gaming/acoustics/what-is-acoustics
http://www.aes.org/e-lib/browse.cfm?elib=19609
http://www.aes.org/e-lib/browse.cfm?elib=19609
https://resonance-audio.github.io/resonance-audio/discover/concepts.html

[11] Carl Schissler and Dinesh Manocha. “Gsound: Interactive sound propagation for games”.
In: Audio Engineering Society Conference: 41st International Conference: Audio for
Games. Audio Engineering Society. 2011.

[12] Maurice Anthony Biot and Ivan Tolstoy. “Formulation of wave propagation in infinite
media by normal coordinates with an application to diffraction”. In: J. Acoust. Soc. Am.
29.3 (1957), pp. 381–391.

[13] U Peter Svensson, Roger I Fred, and John Vanderkooy. “An analytic secondary source
model of edge diffraction impulse responses”. In: J. Acoust. Soc. Am. 106.5 (1999),
pp. 2331–2344.

[14] Paul T Calamia and U Peter Svensson. “Fast time-domain edge-diffraction calculations
for interactive acoustic simulations”. In: EURASIP J. Applied Signal Proc. 2007.1 (2007),
pp. 186–186.

[15] Carl Schissler, Ravish Mehra, and Dinesh Manocha. “High-order diffraction and diffuse
reflections for interactive sound propagation in large environments”. In: ACM Transactions
on Graphics (TOG) 33.4 (2014), p. 39.

[16] Carl Schissler, Gregor Mückl, and Paul Calamia. “Fast diffraction pathfinding for dynamic
sound propagation”. In: ACM Transactions on Graphics (TOG) 40.4 (2021), pp. 1–13.

[17] Uwe M Stephenson. “An energetic approach for the simulation of diffraction within ray
tracing based on the uncertainty relation”. In: Acta Acustica united with Acustica 96.3
(2010), pp. 516–535.

[18] Alexander Pohl. “Simulation of diffraction based on the uncertainty relation”. PhD thesis.
HafenCity Universität Hamburg, 2013.

[19] Louis Pisha, Siddharth Atre, John Burnett, and Shahrokh Yadegari. “Approximate diffrac-
tion modeling for real-time sound propagation simulation”. In: J. Acoust. Soc. Am. 148.4
(2020), pp. 1922–1933.

[20] Henri Gouraud. “Continuous shading of curved surfaces”. In: IEEE Trans. Comput. 100.6
(1971), pp. 623–629.

[21] NVIDIA Corporation. NVIDIA RTX platform. 2022. URL: https://developer.nvidia.com/rtx.

[22] NVIDIA Corporation. CUDA Zone. 2022. URL: https://developer.nvidia.com/cuda-zone.

[23] Lauri Savioja and U Peter Svensson. “Overview of geometrical room acoustic modeling
techniques”. In: The Journal of the Acoustical Society of America 138.2 (2015), pp. 708–
730.

[24] Jean-Jacques Embrechts. “Broad spectrum diffusion model for room acoustics ray-tracing
algorithms”. In: The Journal of the Acoustical Society of America 107.4 (2000), pp. 2068–
2081.

[25] Lakulish Antani, Anish Chandak, Lauri Savioja, and Dinesh Manocha. “Interactive sound
propagation using compact acoustic transfer operators”. In: ACM Transactions on Graph-
ics (TOG) 31.1 (2012), pp. 1–12.

177

https://developer.nvidia.com/rtx
https://developer.nvidia.com/cuda-zone

[26] Chunxiao Cao, Zhong Ren, Carl Schissler, Dinesh Manocha, and Kun Zhou. “Interactive
sound propagation with bidirectional path tracing”. In: ACM Transactions on Graphics
(TOG) 35.6 (2016), pp. 1–11.

[27] NVIDIA Corporation. NVIDIA Turing GPU architecture. 2018. URL: https://images.
nvidia . com / aem - dam / en - zz / Solutions / design - visualization / technologies / turing -
architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf.

[28] NVIDIA Corporation. VRWorks – audio. 2018. URL: https : / /developer.nvidia .com/
vrworks/vrworks-audio.

[29] NVIDIA Corporation. VRWorks Audio SDK in-depth. May 2017. URL: https://developer.
nvidia.com/vrworks-audio-sdk-depth.

[30] Ingo Wald. The elephant on RTX - first light, or: ray tracing Disney’s Moana Island using
RTX, OptiX, and OWL. 2020. URL: https://ingowald.blog/2020/10/26/moana-on-rtx-first-
light/.

[31] Blender community. BMesh design document. 2020. URL: https://wiki.blender.org/wiki/
Source/Modeling/BMesh/Design.

[32] NVIDIA Corporation. NVIDIA OptiX 7.4 Programming Guide: Acceleration structures.
2022. URL: https://raytracing-docs.nvidia.com/optix7/guide/index.html#acceleration
structures.

[33] NVIDIA Corporation. NVIDIA OptiX ray tracing engine. 2022. URL: https://developer.
nvidia.com/rtx/ray-tracing/optix.

[34] Ingo Wald, Nathan Morrical, Dylan Lacewell, Louis Pisha, Jefferson Amstutz, Stefan
Zellmann, et al. OWL: a node graph “wrapper” library for OptiX 7. 2022. URL: https:
//github.com/owl-project/owl.

[35] Nate Morrical, Will Usher, Ingo Wald, and Valerio Pascucci. “Efficient space skipping
and adaptive sampling of unstructured volumes using hardware accelerated ray tracing”.
In: 2019 IEEE Visualization Conference (VIS). IEEE. 2019, pp. 256–260.

[36] Nate Morrical and Stefan Zellmann. “Inverse Transform Sampling Using Ray Tracing
Hardware”. In: Ray Tracing Gems II. Springer, 2021, pp. 625–641.

[37] Jont B Allen and David A Berkley. “Image method for efficiently simulating small-room
acoustics”. In: The Journal of the Acoustical Society of America 65.4 (1979), pp. 943–950.

[38] Guy M Morton. A computer oriented geodetic data base and a new technique in file
sequencing. 1966.

[39] Herbert Tropf and Helmut Herzog. “Multidimensional Range Search in Dynamically
Balanced Trees.” In: ANGEWANDTE INFO. 2 (1981), pp. 71–77.

[40] Nathan Morrical, Ingo Wald, Will Usher, and Valerio Pascucci. “Accelerating unstructured
mesh point location with RT cores”. In: IEEE Transactions on Visualization and Computer
Graphics (2020).

178

https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.com/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://developer.nvidia.com/vrworks/vrworks-audio
https://developer.nvidia.com/vrworks/vrworks-audio
https://developer.nvidia.com/vrworks-audio-sdk-depth
https://developer.nvidia.com/vrworks-audio-sdk-depth
https://ingowald.blog/2020/10/26/moana-on-rtx-first-light/
https://ingowald.blog/2020/10/26/moana-on-rtx-first-light/
https://wiki.blender.org/wiki/Source/Modeling/BMesh/Design
https://wiki.blender.org/wiki/Source/Modeling/BMesh/Design
https://raytracing-docs.nvidia.com/optix7/guide/index.html#acceleration_structures
https://raytracing-docs.nvidia.com/optix7/guide/index.html#acceleration_structures
https://developer.nvidia.com/rtx/ray-tracing/optix
https://developer.nvidia.com/rtx/ray-tracing/optix
https://github.com/owl-project/owl
https://github.com/owl-project/owl

[41] Stefan Zellmann, Martin Weier, and Ingo Wald. “Accelerating force-directed graph draw-
ing with RT cores”. In: 2020 IEEE Visualization Conference (VIS). IEEE. 2020, pp. 96–
100.

[42] I Evangelou, G Papaioannou, K Vardis, and AA Vasilakis. “Fast Radius Search Exploiting
Ray-Tracing Frameworks”. In: Journal of Computer Graphics Techniques Vol 10.1 (2021).

[43] Richard J Anderson and Heather Woll. “Wait-free parallel algorithms for the union-find
problem”. In: Proceedings of the twenty-third annual ACM symposium on Theory of
computing. 1991, pp. 370–380.

[44] Jason E Summers. “Inaccuracy in the treatment of multiple-order diffraction by secondary-
edge-source methods”. In: J. Acoust. Soc. Am. 133.6 (2013), pp. 3673–3676.

[45] Stefan Schubert, Peer Neubert, Johannes Pöschmann, and Peter Protzel. “Circular convo-
lutional neural networks for panoramic images and laser data”. In: 2019 IEEE Intelligent
Vehicles Symposium (IV). IEEE. 2019, pp. 653–660.

[46] Sergey Ioffe and Christian Szegedy. “Batch normalization: Accelerating deep network
training by reducing internal covariate shift”. In: International conference on machine
learning. PMLR. 2015, pp. 448–456.

[47] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. “Fast and accurate deep
network learning by exponential linear units (ELUs)”. In: arXiv preprint arXiv:1511.07289
(2015).

[48] Volodymyr Agafonkin. Fast icosphere mesh. 2019. URL: https : / /observablehq .com/
@mourner/fast-icosphere-mesh.

[49] Paresh Kharya and NVIDIA Corporation. TensorFloat-32 in the A100 GPU accelerates
AI training, HPC up to 20x. May 2020. URL: https://blogs.nvidia.com/blog/2020/05/14/
tensorfloat-32-precision-format/.

[50] Stephen McDowell and PyTorch Contributors. PyTorch C++ API. 2019. URL: https :
//pytorch.org/cppdocs/.

[51] Jan Hradek, Martin Kuchař, and Vaclav Skala. “Hash functions and triangular mesh
reconstruction”. In: Computers & geosciences 29.6 (2003), pp. 741–751.

© 2022 IEEE. Reprinted, with permission, from Pisha, Louis; Yadegari, Shahrokh. “Specular
Path Generation and Near-Reflective Diffraction in Interactive Acoustical Simulations.” IEEE
Transactions on Visualization and Computer Graphics. IEEE, 2022. [Note: At time of submission
of this dissertation, this material was submitted to but not yet published in the above journal, and
copyright was not yet transferred to IEEE. Nevertheless, this specific copyright language was
required by IEEE.]

179

https://observablehq.com/@mourner/fast-icosphere-mesh
https://observablehq.com/@mourner/fast-icosphere-mesh
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format/
https://pytorch.org/cppdocs/
https://pytorch.org/cppdocs/

	Dissertation Approval Page
	Dedication
	Table of Contents
	List of Figures
	List of Tables
	List of Supplemental Files
	Acknowledgements
	Vita
	Abstract of the Dissertation
	Introduction
	Contributions and Organization of Dissertation
	Bibliography

	A Wearable, Extensible, Open-Source Platform for Hearing Healthcare Research
	Abstract
	Introduction
	Related Work

	Wearable Hardware
	Form Factor
	Choice of Embedded Platform
	Adapting Smartphone SoC Audio Hardware
	Embedded Operating System
	High-Performance BTE-RICs
	Custom Digital Interface
	Simultaneous Ancillary Sensors

	Simultaneous Multichannel Biopotential Signal Acquisition
	Background
	System Design
	Future Work

	Real-Time Master Hearing Aid (RT-MHA)
	Baseline Algorithms
	Case Study: SLMS

	Embedded Web Server
	EWS Architecture / Software Stack
	Web Apps
	Web App Customization

	Results
	HA Performance
	Embedded Software Performance
	FM-ExG Performance
	Results Summary

	Conclusion
	Bibliography

	Accelerating non-power-of-2 size Fourier transforms with GPU Tensor Cores
	Abstract
	Introduction
	Leveraging Tensor Core Data Layouts
	Complex Number Representation
	The Accordion Algorithm: Odd Size DFTs with Tensor Cores
	Epilogue Size 2 or 4 Transforms

	Emulating FP32 with TF32 Tensor Cores
	Mixed-Precision Arithmetic
	Retaining 21-22 Bits from FP32
	TF32 Data Layout
	Recovering Additional Precision with Separated Accumulation

	Implementations
	Cache- and Register-Based Implementation
	Streaming- and Shared Memory-Based Implementation

	Results
	Numerical Accuracy
	Performance

	Conclusion
	Bibliography

	Approximate Diffraction Modeling for Real-Time Sound Propagation Simulation
	Abstract
	Introduction
	Past Work
	Reducing Complexity of Edge Diffraction
	Other Non-Edge Diffraction Models

	VDaT: Approximating BTM
	Volumetric Diffraction
	Spatial Sampling
	Scene transmission
	BTM: Filtering by Interference
	Approximating BTM
	Combining Results Across Rings
	Path Length

	VDaT vs. UTD/BTM Results
	Half-Plane
	Small Objects
	Non-Shadowed Diffraction
	Other Occluding Objects

	VDaT Implementation
	Complexity
	Real-Time Implementation: VDaT in Space3D

	Conclusion
	Bibliography

	Specular Path Generation and Near-Reflective Diffraction in Interactive Acoustical Simulations
	Abstract
	Introduction
	Stochastic Methods
	Acoustics on RTX
	Overview of SSNRD algorithms

	Mesh Preprocessing
	Connectivity
	Reflection Normals

	Path Generation
	Ray Tracing
	Path Refinement
	Radius Search
	Path Merging
	Path Continuity

	Spatial Sampling
	DNN for Reflection Response
	Network Architecture
	Training Methodology
	Results

	System Results
	Conclusion
	Appendix A: SSNRD Reflection Normals Equations
	Vertex Normals
	Reflection Normals

	Appendix B: Proof of Edge Diffraction Symmetry for Convex Planar Geometry
	First-order diffraction
	Second-order diffraction
	Non-convex geometry

	Bibliography

