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Precipitation as an essential component of the hydrologic cycle has a great importance to be 

measured accurately due to various applications such as hydrologic modeling, extreme weather 

analysis, and water resources management. Among different methods, meteorological satellites 

are one of the instruments that are widely used for precipitation estimation in fine spatial and 

temporal resolution. Precipitation Estimation from Remotely Sensed Imagery using Artificial 

Neural Network Cloud Classification System (PERSIANN-CCS) uses infrared (IR) data from 

Geostationary Earth Orbit (GEO) satellites to retrieve precipitation based on relationship 

between clout top temperature (Tb) and rainfall rate (RR) using a neural network technique.  The 

complexity of Tb-RR relationship for estimating precipitation causes uncertainty in PERSIANN-

CCS rainfall product. This research is focused on improving PERSIANN-CCS rainfall retrieval 

using several approaches:  

1) Bias adjustment of PERSIANN-CCS rainfall estimates using PMW satellite rainfall 

data: Using multi satellite data can enhance the quality of rainfall estimation considerably; in 
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this research we have combined the rainfall data from PERSIANN-CCS and PMW rainfall to 

enhance the bias of PERSIANN-CCS precipitation estimates. The results showed improvement 

of rainfall estimation during summer and winter time.   

2) Increasing the rainfall detection by including warm clouds rainfall: PERSIANN-CCS 

currently cannot detect rainfall from clouds with temperature warmer than 253 K. This study 

explores the impacts of increasing the temperature threshold on precipitation estimation. The 

results show that increasing the threshold level can improve the PERSIANN-CCS rainfall 

detection.  

3) Generating a probabilistic framework for precipitation retrieval: The current version of 

PERSIANN-CCS retrieves precipitation based on the exponential function fitted to Tb-RR. The 

major assumption behind this relationship is that the heavier rainfalls are associated with colder 

clouds which cause underestimation of warmer clouds and overestimation of colder clouds 

rainfall. The probabilistic approach uses the corresponding sample relationship between cloud 

temperature and rainfall rate. The model is evaluated during a full summer season which showed 

improvement in both detection and estimation of rainfall in compare with the current 

PERSIANN-CCS algorithm. 
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CHAPTER 1: Introduction to current global precipitation estimation products 

 

1.1. Importance of precipitation estimation 

Wherever there is life there is a need for water. Many parts of the world are facing water 

problems caused by human and environmental impacts on water resources. Increasing population 

rates are leading to an increased demand for water. Also, water pollution is a huge problem that 

is caused by different factors such as a weak sewage system and discharging industrial waste that 

contaminate water resources. Climate change and variability have altered weather patterns 

around the world, resulting in changing precipitation patterns. Some regions such as California in 

the past few years received less precipitation as compared with the normal precipitation amounts, 

resulting in severe drought and water shortages. Analysis of precipitation observation also show 

that the frequency and amount of heavy precipitation has increased over most of the United 

States in the past several decades, resulting in increased flooding and human loss and 

infrastructure damages. Recognizing the importance of precipitation as a key component of 

hydrologic cycle and most important input for modeling of the rainfall-runoff process, this 

dissertation focuses on improving the precipitation estimation from satellites. Knowing the 

intensity and location of the precipitation can improve the water resources planning and 

management. 

1.2. Precipitation estimation/measurement 

There are a number of approaches and instruments in use for measuring precipitation. Rain 

gauges are one of the primary methods in measuring the rain depth. Even though, rain gauges 

provide a direct measurement of precipitation reaching the ground, they contain uncertainties due 

to different factors (Yilmaz et al. 2005). The sparse distribution of rain gauges does not provide a 
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good representation for areal precipitation especially over mountainous regions since most 

gauges are located in lower elevation sites. Other factors such as wind, evaporation, and 

recording errors can increase the bias of gauge measurement (Groisman and Legates 1994, 

Legates and DeLiberty 1993).  

Ground-based radars are available and provide in high spatial and temporal resolution for 

different hydrological applications. Radars measure precipitation from the backscattered signal 

from raindrops. Radar rainfall estimates are not available over mountains due to beam blockage 

and typically have biases due to the uncertainty between rainfall and radar reflectivity (Morin et 

al. 2003 and Kirstetter et al. 2010). In addition, radar data are not available over oceans.  

The limitations of rain gauges and ground-based radars pave the way for a new generation of 

remote sensing instruments for global rainfall measurement with high spatial and temporal 

accuracy. The history of measuring precipitation from meteorological satellites goes back to 

1960 (Barret 2001). Meteorological satellites carry different sensors that can measure different 

climatological parameters from the space. Global Precipitation Measurement (GPM) mission is 

one major improvement in measuring rainfall and snowfall from space to improve our 

understanding from Earth’s water and energy cycle (Hou et al. 2014). 

Although many efforts have been made to improve the satellite data quality so far, the mission of 

enhancing the quality of precipitation from satellites will be continuing.  

1.3. Satellite-based precipitation estimation 

Geostationary Earth Orbit (GEO) and Low Earth Orbit (LEO) are the two main types of satellite 

instruments being used for hydrometeorological applications. GEO satellites is an earth orbiting 

satellite, placed into an orbit with approximately 36,000 km altitude that rotates in the same 

direction that earth rotates to maintain a fixed position relative to a point on the ground. GEO 
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satellites carry sensors with spectral wavelengths from visible (VIS) to longwave infrared (IR) 

which are relevant to albedo and cloud top temperature with spatial resolution of 1-4 km and 

temporal resolution of 15-30 minutes covering up to 60° latitudes (Sorooshian et al. 2000).  

LEO satellites are located between 300 and 800 km with less sampling frequency compare to 

GEO satellites. Although having lower spatial and temporal sampling frequency and resolution, 

Passive Microwave (PMW) sensors from LEO satellites can measure thermal emissions which 

are attenuated by raindrops (Marzano et al. 2004; Tapiador 2008; Behrangi et al. 2009).  

In the past several decades GEO and LEO satellites have been frequently used for precipitation 

analysis (Ebert and Manton 1998). Griffith et al. (1978) used IR and VIS data to estimate 

convective rainfall using radar data as a reference. Wu et al. (1985) implemented a pattern 

recognition technique to develop a model for identifying rainfall based on textural and radiance 

features from IR and VIS images. Scofield (1987) estimated the half hourly rainfall from 

convective clouds based on information such as cloud top temperature, overshooting tops, and 

saturated environment from GOES satellites. Adler and Negri (1988) used IR data to estimate 

both tropical convective and stratiform precipitation. The minimum of brightness temperature 

was assigned to the convective center and rainfall estimation was completed based on mode 

temperature of thunderstorm anvils. Arkin and Xie (1994) used the relationship between 

fractional coverage and rainfall to estimate precipitation over Japanese Island.  Vicente at al. 

(1998) uses GOES-IR data to compute real time precipitation using power law regression that 

has many applications for flash fool forecasting, numerical modeling, and operational hydrology. 

Weng et al. (1994) showed the precipitation estimation analysis over land and ocean by using 

Special Sensor Microwave Imager (SSM/I). Ferraro and Marks (1995) used radar data over the 
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United States, Japan, and the United Kingdom to retrieve precipitation based on both linear and 

non-linear relationship using SSM/I.  

1.4. Research Motivation  

Precipitation estimation with appropriate time and space resolution is crucial for different 

hydrometeorological applications such as flash flood warning, climate extreme analysis, and 

weather forecasting. Sparse gauge distribution over land and radar beam blockage due to 

mountain regions as well as unavailability of rain gauges and radars over ocean makes 

precipitation data inaccessible over different regions especially over water bodies. Some events 

such as hurricanes form over the large water bodies and bring heavy rain to land depending on 

location and strength which can be trackable with remote sensing technology. Therefore, satellite 

remotely sensed data provide feasibility of measuring different climatological parameters such as 

precipitation in high spatial and temporal resolution over land and oceans. GEO based satellite 

precipitation estimation based on VIS/IR imageries contains uncertainty due to the complication 

of retrieving rainfall from cloud top temperature and albedo. PMW sensors from polar orbiting 

satellites can detect hydrometeor information in clouds and collect information about water and 

ice content of the clouds formations based on emissions of cloud water which is more correlated 

with rainfall estimation. While PMW rainfall algorithms are more reliable measurements, the 

high spatial and temporal resolution of GEO based algorithms (15 min/4 km) is highly preferred 

compared to PMW resolution (3-6 h/15 km) for instantaneous and near real time precipitation 

analysis. Building upon the success of TRMM which operated from November 1997 to April of 

2015, the Global Precipitation Measurement (GPM) satellite was launched in February 2014. 

Integrated Multi-SatellitE Retrievals for GPM (IMERG) is a concept based on using the 
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available LEO-PMW satellite data and adding GEO-IR based precipitation data to provide global 

precipitation estimation at near real time (Huffman et al 2015a, Liu 2015).  

The research motivation leading to this dissertation is improving precipitation estimation using 

PERSIANN-CCS algorithm that can be beneficial for the IMERG algorithm and other 

operational use. In specific, Integrated Multi-satellitE Retrievals for GPM (IMERG) uses all 

LEO-satellites rainfall samples and then filling the gaps using GEO-based precipitation 

algorithm called Precipitation Estimation using Remotely Sensed Imagery Artificial Neural 

Network Cloud Classification System (PERSIANN-CCS) to generate a precipitation map at fine 

spatial and temporal resolution. While the high spatial and temporal resolution of CCS that 

makes it a very popular algorithm for operational use, it has some limitations. PERSIANN-CCS 

computes precipitation based on IR information from GOES satellites based on the relationship 

between cloud top temperature and rainfall rate relationship assuming that the rainfall intensities 

are greater for deeper cloud formations. This assumption is associated with convective clouds but 

cannot be applied for other types of clouds such cirrus, stratiform, and orographic. The current 

version of CCS also assumes a threshold level for cloud brightness temperature that assumes 

zero rainfall for clouds with warmer than certain threshold resulting in missing rainfall from 

warm clouds.  In addition, in order to link a cloud top brightness temperature (Tb) and Rainfall 

Rate (RR), the PERSIANN-CCS algorithm uses an exponential function to fit a Tb-RR data 

based on the training data. A key assumption for using this exponential function is that the 

heavier rainfall should be associated with colder clouds that cause losing the actual relationship 

between IR and RR data. The results reported in this dissertation have been obtained from the 

research focused on overcoming some of the above listed limitations of the PERSIANN-CCS 

algorithm that can be beneficial for IMERG and other operational use. 
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1.5. Objectives of this dissertation 

Global Precipitation Mission (GPM) is a joint collaboration between NASA and JAXA to 

enhance scientific understandings of the Earth’s water and energy cycle as well as producing 

near real-time data for a variety of meteorological applications such as climate prediction, 

extreme weather analysis, soil moisture, and flood forecasting. 

One key dataset from the NASA GPM program is the Integrated Multi-satellitE Retrievals for 

GPM (IMERG). IMERG integrates both low earth orbital (LEO) and geostationary earth orbital 

(GEO) satellite information and surface precipitation gauge analysis to provide global 

precipitation (Huffman et al., 2015a,b).  The satellite-based estimation of IMERG is a merged 

retrieval using algorithms developed from three groups, including (1) TRMM Multi-satellite 

Precipitation Analysis (TMPA) from NASA Godard Flight Center, (2) Climate Prediction Center 

Morphing with Kalman Filter (CMORPH-KF) from NOAA CPC, and (3) microwave-calibrated 

PERSIANN-CCS from the University of California, Irvine, Center for Hydrometeorology and 

Remote Sensing (CHRS) (Huffman et al., 2007; Joyce and Xie 2011; Hong et al. 2004). IMERG 

has been developed to provide better quality and shorter time latency for global precipitation 

monitoring at 0.1
o
x0.1

o
 and half-hourly samples. The time latency of the data products is around 

4 hours and 12 hours from observation time for the “Early” and “Late” near real-time multi-

satellite products. The “final” satellite-gauge merged product is available around 2-months after 

observation time (Huffman et al., 2015a,b). The aim of this research is to accomplish some 

improvements in PERSIANN-CCS rainfall algorithm component of IMERG, focusing on the 

following aspects: 
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 Using multi- satellite data and combining GEO-based and LEO-based satellite estimate to 

improve precipitation derived from PERSIANN-CCS algorithm over the globe. How much 

improvement is achieved by combining PERSIANN-CCS and PMW satellite data over 

different regions and seasons knowing that PMW sensors retrieve precipitation more 

accurately? 

 

 PERSIANN-CCS algorithm estimates precipitation up to certain brightness temperature 

threshold. This causes that PERSIANN-CCS to miss rainfall from clouds with temperature 

higher than 253 K.  This issue is investigated to see how much precipitation can PERSIANN-

CCS capture if we raise the temperature threshold to higher levels. 

 

 PERSIANN-CCS algorithm retrieves precipitation based on the exponential relationship 

between Tb-RR (cloud top temperature and rainfall intensity). The rational for using the 

exponential relationship is that the heavier rainfalls rates are associated with colder clouds. 

Two potential issues arise: 1) falsely estimate precipitation from non-precipitating cold 

clouds (cirrus clouds and) 2) missing rainfall from warm clouds (Behrangi et al. 2010a). In 

this research the degree of improvement which can be achieved for implementing a 

probabilistic rainfall estimation model based on the actual Tb-RR relationship is explored. 
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CHAPTER 2: PERSIANN-CCS precipitation algorithm 

2.1.Algorithm framework 

Precipitation Estimation from Remotely Sensed Information Using Artificial Neural Networks 

(PERSIANN) was developed employing the Artificial Neural Network (ANN) machine learning 

modeling framework and using IR images to fit the pixel brightness temperature and its neighbor 

temperature textures, in terms of means and standard deviations, to calculate pixel rain rates at 

0.25x0.25 degree spatial resolution (Hsu et al. 1997). PERSIANN rainfall estimate is 

continuously adjusted using PMW rainfall data (Sorooshian et al. 2000). PERSIANN Cloud 

Classification System (PERSIANN-CCS) is a transition for pixel based rainfall estimates of 

PERSIANN to patch based estimation for improving the precipitation retrievals as well as 

improving the spatial resolution to 0.04x0.04 degree. PERSIANN-CCS is an object-based 

algorithm that uses cloud coverage areas under defined IR temperature thresholds to estimate 

rainfall. The algorithm uses the longwave IR channel (10.7 µm) to classify cloud images based 

on the IR brightness temperature segmentation and then extract features for the cloud patches at 

three levels (220 K, 235 K, and 253 K). The rain estimation from PERSIANN-CCS is based on 

calibrating the cloud top temperature and rainfall (Tb-R) relationships for the classified cloud 

groups, initially using gauge corrected radar hourly rainfall data from the Next-Generation 

Weather Radar (NEXRAD) network when the algorithm was first developed over the CONUS 

(Hong et al. 2004; Hsu et al. 2007). The current operational PERSIANN-CCS algorithm was 

trained using one full year of (MWCOMB) rainfall data, obtained from the NOAA Climate 

Prediction Center (CPC) for a near global 60N to 60S and 180W to 180E coverage, with 

separately trained 24 overlapping subareas to account for latitude and terrain variability over the 

globe. Figure 2.1 demonstrates the PERSIANN-CCS algorithm structure.  
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2.2.Algorithm strengths and potentials for improvement  

PERSIANN-CCS retrieves precipitation from IR data at spatial resolution 0.04x0.04 degree and 

temporal resolution 30 min. Although IR sensors on board of the GEO satellites provide high 

spatial and temporal observation, the cloud top brightness temperature is not always related to 

microphysical properties of clouds and cloud morphology to estimate rainfall intensity. 
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PERSIANN-CCS algorithm estimates precipitation based on the exponential relationship 

between Tb-RR assuming that the heavier rainfalls are associated with colder clouds at higher 

altitudes. This assumption is more valid for convective clouds and less valid for other types of 

clouds such as cirrus, stratiform, and orographic clouds causing underestimation and 

overestimation depending on region and season. Improving PERSIANN-CCS can be considered 

from different prospective: 

1) Enhancing the rainfall estimation from PERSIANN-CCS by combining the algorithm with 

other satellites data and benefit from multi-satellite product instead of using a single channel. 

2) PERSIANN-CCS captures rainfall from the clouds with the brightness temperature up to 

253-K. Increasing the temperature threshold can enhance the ability of PERSIANN-CCS to 

capture the rainfall from warm clouds. 

3)  The pixel based rainfall estimation for PERSIANN-CCS is based on fitting a nonlinear 

exponential function to the redistributed pixels for each cloud groups. The improvement in 

rainfall retrieval from PERSIANN-CCS can be achieved by fitting a function on the actual 

Tb-RR distribution.  
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CHAPTER 3: Using PMW precipitation data to reduce the bias of PERSIANN-CCS 

estimation 

 

3.1. The role of multi-satellite data in precipitation algorithms   

As mentioned in the previous chapters, GEO satellites equipped with IR and VIS channels and 

LEO satellites with PMW sensors are two major satellites used for precipitation estimation. 

Despite the high spatial and temporal resolution of IR and VIS sensors, they measure cloud top 

brightness temperature and cloud albedo which are less physically related to rain rate. PMW 

sensors has less frequent sampling which is not sufficient to capture precipitation variability, but 

offer more accurate rainfall estimation in compare with GEO satellites. To take advantage of the 

ability of both types of satellites in measuring precipitation, different approaches have been used 

in order to combine rainfall data from different sensors to retrieve precipitation more accurately 

at a fine spatial and temporal resolution (Levizzani et al. 1996; Turk et al. 2003). Effectively 

integrating estimations from LEO-PMW and GEO-VIS/IR information provides an option for 

improving precipitation at high spatial and temporal resolution. Using multi-spectral 

precipitation analysis was the research topic in the past two decades and a lot of improvements 

have made through this concept. Adler et al. (1993) used IR data from geosynchronous satellite 

combined with microwave sensors on board the Defense Meteorological Satellite Program 

(DMSP) to calculate the mean monthly rainfall. Another technique used to overcome the PMW 

poor sampling was using coincident microwave and infrared observation. For model calibration, 

Kummerow et al. (1995) used infrared temperature threshold that corresponds to an area equal to 

the raining area in a coincident observed microwave image. The mean conditional rainfall rate 

was assigned to pixels colder than the certain threshold in infrared images. This approach was 

compared with fixed threshold equal to 235-K for monthly accumulated rainfall.  
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More recently, Huffman et al. (2001) used Threshold-Matched Precipitation Index (TMPI) to 

estimate precipitation from 3-hourly IR data histograms from GEO satellites to fill the gaps for 

LEO satellites data for estimating global daily precipitation. Also, Probability Matching Method 

(PMM) was used to estimate the rainfall based on the distribution of rainfall from microwave 

sensors and IR brightness temperature (Turk et al 2000).Microwave Infrared Rainfall Algorithm 

(MIRA) (Todd et al. 2001) uses PMW and IR data for rainfall estimation assuming that PMW 

sensors have more accurate estimates of instantaneous rainfall. The Self-Calibrating Multivariate 

Precipitation Retrieval (SCaMPR) algorithm estimates rainfall at a fine temporal resolution using 

PMW and GEO satellites. SCaMPR uses Special Microwave Sensor Imager (SSM/I) data to 

distinguish between rain/no-rain pixels, and then uses Geostationary Operational Environmental 

Satellites (GOES) data to calibrate the relationship between Tb-RR via linear regression for the 

precipitating pixels (Kuligowski 2002 & 2009). Kidd (2003) used the histogram matching 

technique between PMW rainfall data and IR cloud-top temperature to estimate rainfall over 

Africa during a four month calibration period. Hong et al. (2005) used Tropical Rainfall 

Measurement Mission Microwave Imager (TMI) for bias adjustment of PERSIANN algorithm 

using coincident rainfall data derived from these two dataset.  In addition to using IR and PMW 

rainfall data combined to enhance the quality of precipitation, some researches have done to take 

advantage of high spatial and temporal resolution of IR data and track the cloud motions and 

evolution to estimate the rainfall based on the available PMW rainfall data for one time step. The 

Climate Prediction Center morphing method (CMORPH) uses motion advection vectors from 

dynamic GEO-IR images to fill the temporal gaps between two available PMW rainfall estimates 

(Joyce et al. 2004).  Bellerby et al. (2009) used single-band IR data on board of GOES satellites 

to compute the cloud motions and growth using Lagrangian Model (LMODEL) and estimated 
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the precipitation from PMW data using a Kalman filter method. Behrangi et al. (2010b) 

developed Rain Estimation using Forward-Adjusted advection of Microwave Estimates 

(REFAME) to use GEO-IR data for generating cloud motion vectors and estimate precipitation 

based on the previous PMW overpass for the time PMW rainfall estimates are not available. 

Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 

combined precipitation estimates from multiple satellites, as well as gauges where feasible to 

generate rainfall data with a 0.25x0.25 degree resolution every 3 hours. In continue of improving 

the rainfall accuracy at fine spatial and temporal resolution using multi-satellite data, GPM is the 

latest improvement toward this approach. As discussed earlier in more detail, IMERG uses 

PERSIANN-CCS to fill the gaps for global rainfall coverage when PMW observations are not 

available. In this chapter we explain the methodology and results of bias adjusting PERSIANN-

CCS using PMW data which leads to IMERG data quality enhancement. 

 

3.2. Methodology 

This study explores the use of LEO satellite microwave precipitation data for bias adjustment of 

GEO-based satellite estimates from the PERSIANN-CCS algorithm. The PMW precipitation 

dataset (MWCOMB), obtained from the NOAA Climate Prediction Center (CPC), was used in 

this study.  MWCOMB is a blended precipitation data from multiple sensors and orbits, such as 

DMSP SSM/I, NOAA AMSU-B, and TRMM TMI (Ferraro et al. 1994, Kummerow et al. 2001, 

and Weng et al. 2003; Huffman et al., 2007). The Probability Matching Method (PMM) is used 

to match PERSIANN-CCS precipitation estimation toward MWCOMB data from LEO satellites. 

PMM looks at the relationship between two variables based on their marginal distribution 

without considering their joint distribution (Ciach et al. 1997). PMM was developed in 1987 
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(Calherios and Zawadzki; 1986) and has since been extended to meteorological applications 

Piman et al. (2007). Krajewski et al. (1991) and Rosenfeld et al. (1994) used PMM to improve 

the radar rainfall estimation using gauge measurements by assuming that the radar observed 

reflectivity has the same probability of occurrence as the gauge measured rain intensity. In this 

study the rainfall distribution estimated from PERSIANN-CCS is processed to match LEO-

PMW rainfall data for their concurrent samples. Figure 3.1 explains how the precipitation from 

PERSIANN-CCS can be adjusted with PMW rainfall estimates based on the Cumulative 

Distributed Function (CDF) computed from the Probability Distribution Function (PDF). Figure 

3.1.a describes the PDFs for PMW (solid line) and PERSIANN-CCS (dashed line) calculated 

based on the concurrent samples of climatology data showing the probability of rainfall rate. 

Figure 3.1.b is the CDF function calculated based on the PDFs of PMW and PERSIANN-CCS 

data. This figure explains how the bias adjustment is done using the PMM method. As the arrow 

shows on the right figure the rainfall rate from PERSIANN-CCS will be replaced by the PMW 

estimate for the same CDF value. Equations 1, 2, and 3 explain how the PDF and CDF are 

calculated. 
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∫ 𝑝(𝑅𝐶𝐶𝑆)𝑑𝑅𝐶𝐶𝑆

𝑅𝐶𝐶𝑆(𝑖)

0

=  ∫ 𝑝(𝑅𝑃𝑀𝑊) 𝑑𝑅𝑃𝑀𝑊 
𝑅𝑃𝑀𝑊(𝑖)

0

   (1) 

  

𝐹(𝑅𝐶𝐶𝑆) =  ∫ 𝑝(𝑅𝐶𝐶𝑆) 𝑑𝑅𝐶𝐶𝑆

𝑅𝐶𝐶𝑆(𝑖)

0

      (2) 

  

𝐹(𝑅𝑃𝑀𝑊) =  ∫ 𝑝(𝑅𝑃𝑀𝑊) 𝑑𝑅𝑃𝑀𝑊

𝑅𝑃𝑀𝑊(𝑖)

0

       (3) 

 

In equations (1), (2), and (3) RCCS represents the precipitation from PERSIANN-CCS and RPMW 

is the precipitation from LEO PMW estimates; p(RCCS) and p(RPMW) are the probability density 

functions of RCCS and RPMW.  The PDFs of RCCS and RPMW are calculated from concurrent 

samples of historical data assuming that precipitation estimates RPMW and RCCS follow the same 

distribution each year. 

 

RR RPMW RCCS 
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PERSIANN-CCS 

PMW PERSIANN-CCS PMW 
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F(RR) 
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(a) (b) 

Figure 3.1: Matching rainfall from PERSIANN-CCS algorithm with the rainfall from PMW 

sensors using PMM 
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3.3.Model Training 

For model calibration we have used 4 years of climatology data for training (2008-2001). 

PMM can also be estimated from PDFs calculated based on more recent data within a fixed time 

period window and dynamically adjusted over time when new data are available. Bias 

adjustment of PERSIANN-CCS can also be processed based on this approach of using both 

climatology and recent data adjustment. In this study, PMM based on climatology data only is 

presented. The concurrent data samples were collected each month separately for a four year 

period (2008-2011). Precipitation estimation from PERSIANN-CCS is at a 0.04ºx0.04º spatial 

resolution every 0.5 hour, while PMW precipitation from MWCOMB is at 0.25ºx0.25º. The 

Cumulative Distribution Functions (CDFs) of both datasets are calculated from the concurrent 

samples at the same spatial resolution. Therefore, PERSIANN-CCS is regridded to 0.25ºx0.25º 

spatial resolution. Meanwhile, to cover the regional and seasonal variability, the PDFs are 

calculated for each 5ºx5º subarea of the global coverage and each month separately to include a 

sufficient number of samples for model calibration. A lookup table is used for rainfall adjustment 

for each month and subarea. Figure 3.2 explains the PMM details discussed above briefly in one 

chart. 
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Figure 3.3 demonstrates the frequency map for each 5x5 degree subareas for 3 winter months 

and 3 summer months during the calibration period based on climatology data. During January, 

February, and December, which is the winter season over the northern hemisphere, regions 

located between 30N to 60N, do not have enough concurrent samples over land due to data 

flagging. PMW data exhibit high uncertainty when representing rain pixels over snow and ice 

surfaces, with flags for those pixels that are possible ice or cold ground during the cold seasons. 

Also, some areas in the Southern Hemisphere such as Australia have fewer concurrent samples 

compared with other regions in summer and winter due to some inconsistent GEO satellite 

coverage used to generate PERSIANN-CCS.  For the bins with lower sample counts, the CDFs 

for PMW and CCS contain uncertainty, which means more data are required for CDF generation.  

Figure 3.2: PERSIANN-CCS rainfall data adjustment using PMW and Probability 

Matching Method (PMM) 

 

Figure 3.2: PERSIANN-CCS rainfall data adjustment using PMW and Probability 

Matching Method (PMM) 

CCS rainfall est. 0.04°x0.04°  

Lat/Lon 

Up-scale CCS rainfall est.  

0.25°x0.25°  

Lat/Lon 

Separate whole study area into  

5°x5° area coverage 

Collect co-located sample  

(location and time) each month  

and 5°x5° coverage 

Rain prob. distribution of  

CCS & PMW rain by  

month and 5°x5° coverage 

  

Map CCS rain to PMW rain  

(Prob. Matching Method) 

  

Lookup table CCS ≠ PMW rain 

(0.25°x0.25° ; 5°x5° coverage) 
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Figure 3.4 displays the empirical CDFs calculated based on climatology data during the 

calibration period. Subareas I to V are selected from different regions to compare the CDFs. 

Subareas I, II, and V are located in high latitude areas, showing that the rainfall distribution from 

PERSIANN-CCS and PMW is significantly different in these areas during winter and summer. 

Subareas III and IV are selected from tropical regions. The CDF comparison for subareas III and 

IV implies that the rainfall distribution for PMW and PERSIANN-CCS are more similar for 

tropical and near tropical regions; especially during January and February there is no significant 

difference between PERSIANN-CCS and PMW CDFs. Based on CDF comparison calculated 

from 4 years of climatology data we expect more adjustment for regions located in high latitude 

areas and less adjustment for regions located in tropical regions during summer and winter. 
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Figure 3.3: Frequency map for 5x5 degree subareas calculated based on the climatology data.  

Sample counts map for 3 summer months and 3 winter months. Blue areas have low number of samples. 
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IV 

January February June July 

    

IV 

January February June July 

    

 

Figure 3.4: CDF comparison between PERSIANN-CCS & PMW based on climatology data. Solid blue 

line represents CDF for PMW data and dashed red line represents CDF for PERSIANN-CCS data.  

 

 

3.4. Results and Discussion 

After training the model based on the PERSIANN-CCS and PMW data from 2008 through 2011, 

the look up tables for each month contain PERSIANN-CCS and corresponding PMW rainfall 

values for bias adjustment that can be applied to PERSIANN-CCS data during any year for 

validation. In this section we discuss the validations that are done to evaluate the model 

performance. In section 3.4.1 we explain the CDF comparison between PERSIANN-CCS, PMW, 

and Microwave Adjusted PERSIANN-CCS (here after MA-PERSIANN-CCS) for validation 

year 2012 during winter and summer at the subareas I to V that was discussed in Figure 3.4. The 

global validation is performed using concurrent PMW, PERSIANN-CCS, MA-PERSIANN-CCS 

to explore how the bias adjustment improves the rainfall estimates from PERSIANN-CCS. The 

results for global validation during summer and winter 2012 are discussed in section 3.4.2. Also, 

the PMM model is evaluated over the CONUS using ground based radar in 2012. In section 
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3.4.3, we discuss the results regarding evaluation of PERSIANN-CCS and MA-PERSIANN-

CCS against radar Q2 over the CONUS during summer and winter 2012. The lookup table for 

each subarea is calculated based on the concurrent samples of PMW and PERSIANN-CCS for 

the entire month. So, the global validation and CONUS validation is done over the monthly data 

to see the improvement in monthly scale.  

3.4.1. Evaluating the cumulative distribution function during validation year 

Figure 3.5 shows the empirical CDFs for subareas I to V during validation year 2012 for    

summer and winter. Subarea I is selected from high latitude areas in northern hemisphere. As we 

discussed earlier in Figure 3.4, PERSIANN-CCS overestimates rainfall during winter and 

underestimate rainfall during summer for bin I. In figure 3.5, Bin I also has the same pattern 

during summer and winter, while the CDF for MA-PERSIANN-CCS has shifted toward PMW 

CDF for summer and winter. Subarea II selected from mid-latitude in northern hemisphere. 

During January and February 2012, PERSIANN-CCS overestimates the rainfall for Bin II while 

MA-PERSIANN-CCS displays a similar rainfall distribution to PMW during these two months. 
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Figure 3.5: CDF comparison between PERSIANN-CCS & PMW and MA-PERSIANN-CCS during 

validation year 2012. Blue solid line represents CDF for PMW data, red dashed line represents CDF for 

PERSIANN-CCS data, and green solid line represents CDF for microwave-adjusted PERSIANN-CCS 
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Also, as was expected from CDF comparison during calibration years for June, PMW and 

PERSIANN-CCS CDFs are close to each other and no significant adjustment happened during 

validation year, so all three CDFs for Bin II are very close to each other during June 2012. 

During July 2012 PERSIANN-CCS overestimates rainfall for Bin II, while the CDF for MA-

PERSIANN-CCS is well matched with the PMW CDF. For evaluation of the PMM model over a 

tropical region, subareas III and IV are chosen over tropical area. During January and February 

2012, PERSIANN-CCS, MA-PERSIANN-CCS, and PMW CDFs are very close to each other 

and no significant adjustment is observed during winter season for tropical regions. Bins III and 

IV show an overestimation of rainfall from PERSIANN-CCS during June and July 2012, while 

the rainfall distributions are very similar to PMW after PMM application for these Bins. Subarea 

V is selected from high latitude regions in the southern hemisphere. As discussed earlier in 

Figure 3.4, PERSIANN-CCS overestimates rainfall for Bin V during summer and winter. The 

evaluation of CDFs for validation year 2012 shows improvement in the rainfall distribution of 

Bin V for both winter and summer. In summary, the PMM approach uses a rainfall distribution 

based on the concurrent samples of PMW and PERSIANN-CCS to match the rainfall based on 

rainfall probability from two different datasets. As was expected, the rainfall distribution of MA-

PERSIANN-CCS is similar to PMW rainfall distribution, with more significant adjustment over 

high latitude regions. Regions located in tropical areas show more adjustment during summer 

time than winter time, since the PMW and PERSIANN-CCS CDFs are very similar during 

summer for this area.  

3.4.2. Validation over the globe 

The validation is done at global scale using PMW data to see how PMM can improve the 

PERSIANN-CCS rainfall estimate toward PMW data in different regions during warm and cold 
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seasons. Figure 3.6 displays the concurrent sample counts for each pixel during 3 winter months 

and 3 summer months during validation year 2012. During winter time (January, February and 

December) regions between 60N to 40N, 0 to 120E and 120W to 60W have low sample counts 

due to PMW data uncertainty. Also, some areas between 0 to 60S and 120E to 60W have lower 

sample counts because of unavailability of GEO satellite data for rainfall estimation. Since this 

method is calibrated based on the CDF of climatology data, providing a sufficient number of 

samples for each year, validation and calibration, is essential. For statistical validation the area 

was divided to 8 longitudinal regions to make sure the study areas have enough samples and 

frozen lands can be excluded from other regions with sufficient sample counts. To evaluate the 

consistency of results one year of calibration and one year of validation is tested using statistical 

parameters. Figure 3.7 shows the average monthly rainfall map during winter 2011 over the 

globe. Some areas are highlighted with black circles to visualize the improvement. Circles A and 

B in Figure 3.7 display some areas where PERISIANN-CCS overestimates of rainfall, while 

MA-PERSIANN-CCS estimates are better matched with PMW data. Figure 3.8 is shows the 

average monthly rainfall during summer 2011 which is included in calibration period. 

PERSIANN-CCS overestimates rainfall in area C and underestimates it in area D during summer 

2011. Figure 3.8.a displays MA-PERSIANN-CCS average monthly rainfall which gives rainfall 

estimates close to PMW as is highlighted in areas C and D. 
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Figure 3.6: Number of available concurrent data samples for each pixel for winter 2012  

(December, January, February) and Summer 2012 (June, July, August) 
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Figure c 

Figure b 

Figure a 

B 

A 

Figure 3.7: Average monthly rainfall calculated based on the concurrent samples from PMW and  

PERSIANN-CCS data during winter 2011 (mm/month-December, January, February). 

(a) PERSIANN-CCS (b MA-PERSIANN-CCS (c) PMW 
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Figure a 

Figure b 

Figure c 

C 

D 

Figure 3.8: Average monthly rainfall calculated based on the concurrent samples from PMW and 

PERSIANN-CCS data during summer 2011 (mm/month-June, July, August). 

(a) PERSIANN-CCS (b MA-PERSIANN-CCS (c) PMW 
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We also validate performance on 2012, both summer and winter to evaluate PMM approach.  

Figure 3.9 shows the monthly average precipitation during winter 2012.  The areas marked A 

and B are selected to illustrate a comparison between PERSIANN-CCS, MA-PERSIANN-CCS, 

and the PMW data. PERSIANN-CCS overestimates rainfall in regions A and B while MA-

PERSIANN-CCS shows better correspondence with PMW rainfall data. Figure 3.10 displays 

monthly average rainfall during summer 2012. Regions C and D which were also selected in 

Figure 3.8 are selected in Figure 3.10 as well. PERSIANN-CCS overestimates rainfall over 

region C and underestimates it over region D, but MA-PERSIANN-CCS shows improved 

estimation in compared with PMW data.  

In summary, based on visual comparison, PMM improves the rainfall estimation over different 

parts of the globe, and the results appear consistent during validation and calibration year over 

both summer and winter. A more significant adjustment is observed over high latitude regions, 

while tropical regions have less significant adjustment.  

To quantify the PERSIANN-CCS, MA-PERSIANN-CCS, and PMW evaluation, the statistical 

parameters such as relative bias, correlation coefficient, and Root Mean Squared Error (RMSE) 

are calculated for 8 latitudinal zones over the globe in average monthly scale (see appendix A for 

the equations). Tables 3.1 and 3.2 display statistical parameters calculated for 8 zones during 

winter and summer 2011 respectively.  To make sure that during evaluation we only consider 

regions with reliable data counts and quality, we concentrate over the southern hemisphere 

during winter and the northern hemisphere during summer. According to Table 3.1, zones 

located in southern hemisphere have improved relative bias, correlation coefficient, and RMSE 

after using bias adjustment. Also, MA-PERSIANN-CCS has better relative bias, correlation 
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coefficient, and RMSE than PERSIANN-CCS in comparison with PMW data during summer 

over the southern hemisphere (see table 3.2). 
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Type equation here. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure a 

Figure b 

Figure c 

A 

B 

Figure 3.9: Average monthly rainfall calculated based on the concurrent samples from PMW and 

PERSIANN-CCS data during winter 2012 (mm/month-December, January, February). 

(a) PERSIANN-CCS (b) MA-PERSIANN-CCS (c) PMW 
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Figure a 

Figure b 

Figure c 

C 

D 

Figure 3.10: Average monthly rainfall calculated based on the concurrent samples from PMW and 

PERSIANN-CCS data during summer 2012 (mm/month-June, July, August). 

(a) PERSIANN-CCS (b) MA- PERSIANN-CCS (c) PMW 
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Table 3-1: Statistical parameters used for global validation based on average monthly rainfall. 

Parameters are calculated  for 8 zones comparing with PMW data (December, January, and February 

2011) 

 

 

Table 3-2: Statistical parameters used for global validation based average monthly rainfall. Parameters 

are calculated for 8 zones comparing with PMW data (June, July, and August 2011) 

 

  
 

Winter-2011 

  
 
 

PERSIANN-CCS MA-PERSIANN-CCS 

zone Relative Bias Corr. 
RMSE 

(mm/month) 
Relative Bias Corr. 

RMSE 

(mm/month) 

60N-45N 0.96 0.69 17.87 -0.11 0.91 6.38 

45N-30N 0.37 0.78 16.81 -0.06 0.93 8.75 

30N-15N -0.29 0.46 13.74 -0.30 0.70 10.99 

15N-0 -0.05 0.86 17.51 -0.08 0.93 11.88 

0-15S 0.28 0.91 22.64 -0.05 0.94 11.66 

15S-30S 0.1 0.88 17.57 -0.08 0.94 9.79 

30S-45S -0.52 0.71 16.91 -0.31 0.87 11.15 

45S-60S -0.62 0.66 13.08 -0.51 0.8 11 

  Summer-2011 

  PERSIANN-CCS MA-PERSIANN-CCS 

zone Relative Bias Corr. 
RMSE 

(mm/month) 
Relative Bias Corr. 

RMSE 

(mm/month) 

60N-45N -0.50 0.43 18.54 -0.23 0.66 12.57 

45N-30N -0.23 0.79 15.67 -0.09 0.91 9.99 

30N-15N 0.11 0.91 14.89 -0.07 0.94 11 

15N-0 0.02 0.86 22.72 -0.06 0.93 15.54 

0-15S -0.19 0.93 7.90 -0.17 0.95 6.78 

15S-30S -0.39 0.84 9.43 -0.23 0.90 7.40 

30S-45S -0.07 0.66 12.27 -0.1 0.87 7.27 

45S-60S 0.72 0.55 13.76 -0.07 0.76 6.06 



  

34 
 

 

The statistical parameters for comparing PERSIANN-CCS and MA-PERSIANN-CCS with 

PMW data are calculated for winter and summer 2012 as well. Table 3.3 displays the comparison 

over 8 latitudinal zones during winter 2012. The results imply relative bias, correlation 

coefficient, and RMSE for MA-PERSIANN-CCS are significantly improved over the southern 

hemisphere during winter time. Also, statistical calculations during summer 2012 are shown in 

Table 3.4 which, shows improvement by MA-PESIANN-CCS compared with PERSIANN-CCS 

during summer 2012 over northern hemisphere. 

 

Table 3-3: Statistical parameters used for global validation based on average monthly rainfall. 

Parameters are calculated for 8 zones comparing with PMW data (December, January, and February 

2012 

 

  Winter-2012 

  PERSIANN-CCS MA-PERSIANN-CCS 

zone Relative Bias Corr. 
RMSE 

(mm/month) 
Relative Bias Corr. 

RMSE 

(mm/month) 

60N-45N 0.72 0.61 14.16 -0.23 0.86 6.62 

45N-30N 0.26 0.71 15.28 -0.13 0.89 9.60 

30N-15N -0.13 0.38 11.58 -0.19 0.68 8.96 

15N-0 -0.06 0.83 12.12 -0.05 0.92 8.63 

0-15S 0.27 0.90 18.63 0.0008 0.94 9.32 

15S-30S 0.08 0.87 13.72 -0.08 0.92 8.53 

30S-45S -0.39 0.79 11.83 -0.12 0.86 9.32 

45S-60S -0.51 0.69 8.71 -0.37 0.80 6.97 
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Table 3-4: Statistical parameters used for global validation based on average monthly rainfall. 

Parameters are calculated for 8 zones comparing with PMW 

 (June, July, and August 2012) 

 

  Summer-2012 

  PERSIANN-CCS MA-PERSIANN-CCS 

zone Relative Bias Corr. 
RMSE 

(mm/month) 
Relative Bias Corr. 

RMSE 

(mm/month) 

60N-45N -0.50 0.52 13.95 -0.23 0.71 9.34 

45N-30N -0.25 0.80 12.29 -0.11 0.89 8.96 

30N-15N 0.06 0.91 13.24 -0.08 0.94 10 

15N-0 0.05 0.87 16.55 -0.01 0.93 12.11 

0-15S -0.07 0.91 7.36 -0.04 0.93 6.79 

15S-30S -0.44 0.86 7.79 -0.28 0.88 6.49 

30S-45S -0.25 0.70 11.81 -0.29 0.85 9.55 

45S-60S 0.32 0.5 10.15 -0.30 0.72 7.08 

 

3.4.3. Validation of the CONUS 

In this section, we used ground based radar data over the CONUS to evaluate satellite data 

precipitation estimates. Radar rainfall estimation from the next generation QPE (Q2) project, a 

joint initiative between NOAA/National Severe Storm Laboratory (NSSL), the Salt River Project 

(SRP), and the Federal Aviation Administration's Aviation Weather Research Program (Chen et. 

al 2012 and Zhang et al. 2011), is used in the evaluation of PERSIANN-CCS rainfall estimates 

before and after the adjustment. Radar Q2 uses NEXRAD and rain gauge observations for 

rainfall estimation at 1-km resolution every 5 minutes. At this time, NSSL is developing 

quantitative precipitation estimation which produces a 3D radar mosaic grid from the 

precipitation (Q3) over CONUS.  In this study, Q2 estimation is processed to 0.25x0.25 degree 

resolution, 0.5-hourly, for PERSIANN-CCS rainfall evaluation after and before adjustment 
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during validation year 2012.  Figure 3.11 shows the average monthly rainfall during the winter 

season over the US based on the concurrent samples of PERSIANN-CCS, PMW, and radar Q2 

for 2012 (December, January, and February). As shown in the figure, PERSIANN-CCS 

overestimates the rainfall over western areas and underestimates over southern regions during the 

winter season of 2012 over the CONUS, while MA-PERSIANN-CCS shows closer estimates to 

PMW. Comparing average monthly rainfall during winter from PERSIANN-CCS, MA-

PERSIANN-CCS, and PMW with radar Q2 rainfall data, it can be seen that PERSIANN-CCS 

and MA-PERSIANN-CCS underestimate the rainfall events over the southern regions of the U.S. 

MA-PERSIANN-CCS does not show improved rainfall estimation as compared with radar Q2 

because PMW and radar Q2 rain estimation are not well-matched during the winter season. The 

dissimilarity between PMW and radar Q2 is a result of the performance of PMW sensors over 

high latitude regions during the winter time. PMW sensors not only have lower sample counts 

but also fail to catch rainfall during the cold season in high latitudes (Behrangi et al. 2014). 

Figure 3.12 shows the monthly average precipitation during the summer season 2012 (June, July, 

and August) over the CONUS for PERSIANN-CCS, MA-PERSIANN-CCS, PMW and Radar 

Q2. According to Figure 3.12, PERSIANN-CCS underestimates the rainfall over the U.S. 

particularly over the northeast and eastern parts compared with PMW and Radar Q2 during 

summer season 2012. Figure 3.12-b displays the MA-PERSIANN-CCS which has rainfall values 

more similar with PMW and radar Q2. For evaluating the performance of  PERSIANN-CCS and 

MA-PERSIANN-CCS in comparison with PMW and radar Q2, statistical parameters such as 

relative bias, correlation coefficient and, root mean square error (RMSE) are calculated for 

winter and summer 2012 (Tables 3.5 and 3.6). Table 3.5 gives the statistical results for 

PERSIANN-CCS and MA-PERSIANN-CCS compared to PMW and Table 3.6 shows the 
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statistical performance of PERSIANN-CCS, MA-PERSIANN-CCS, and PMW against radar data 

as ground truth. During winter 2012, relative bias, correlation coefficient and RMSE between 

MA-PERSIANN-CCS and PMW shows improvement over those from PERSIANN-CCS and 

PMW. This implies that implementation of climatology data over the validation year 2012 has 

shifted the PERSIANN-CCS rainfall estimation toward PMW rainfall data. However, MA-

PERSIANN-CCS doesn’t show any improvement in terms of rainfall estimation for winter time 

compared with radar Q2. The statistical parameters show that the relative bias value of -0.37 

between PERSIANN-CCS and radar data decreased to -0.69 (more underestimation) between 

MA-PERSIANN-CCS and radar Q2. The reason for this is due to inconsistencies between PMW 

and radar Q2 data. Statistical validation results for summer are also exhibited in Tables 3.5 and 

3.6. As expected, all the statistics for MA-PERSIANN-CCS show improvement from 

PERSIANN-CCS compared with PMW. When compared to radar Q2, MA-PERSIANN-CCS 

shows improvement in relative bias by 53% during the summer season with no significant 

changes in the other two statistics.   

In summary we have provided a systematic approach for reducing the bias between the GEO-

based PERSIANN-CCS and PMW estimates. The next step towards further improvement will be 

focused on increasing the population of PMW samples over high latitude and cold seasons. The 

use of CLOUDSAT and ground-based radars covering the higher latitudes are currently under 

study.     
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Figure 3.11: Monthly average rainfall calculated based on the concurrent samples during winter 2012. 

 (a) PERSIANN-CCS (b) MA- PERSIANN-CCS (c) PMW (d) Radar Q-2 
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Figure 3.12: Monthly average rainfall calculated based on the concurrent samples in summer 2012. 

(a) PERSIANN-CCS (b MA-PERSIANN-CCS (c) PMW (d) Radar Q-2 
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Table 3-5: Comparison between PERSIANN-CCS and MA-PERSIANN-CCS with PMW satellite data over 

CONUS during winter and summer 2012. Parameters are calculated based on average monthly rainfall. 
 

 
 CONUS year 2012 

 
PERSIANN-CCS MA-PERSIANN-CCS 

 

Relative 

Bias 
Corr. 

RMSE 

(mm/month) 

Relative 

Bias 
Corr. 

RMSE 

(mm/month) 

Winter 0.59 0.61 8.35 -0.23 0.86 4.86 

Summer -0.25 0.8 13.51 -0.07 0.84 10.93 

 

 

Table 3-6: Comparison between PERSIANN-CCS, MA-PERSIANN-CCS, and PMW with Q2 ground 

based radar over CONUS during winter and summer 2012. Parameters are calculated based on average 

monthly rainfall. 

 

CONUS year 2012 

 

PERSIANN-CCS MA-PERSIANN-CCS PMW 

 

Relative 

Bias 
Corr. 

RMSE 

(mm/month) 

Relative 

Bias 
Corr. 

RMSE 

(mm/month) 

Relative 

Bias 
Corr. 

RMSE 

(mm/month) 

Winter -0.37 0.67 13.78 -0.69 0.7 16.83 -0.6 0.76 14.86 

Summer -0.3 0.82 14.41 -0.14 0.72 14.75 -0.07 0.8 12.95 
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CHAPTER 4: Improving warm-clouds rainfall detection in PERSIANN-CCS 

 

4.1. Introduction 

The PERSIANN-CCS algorithm relies on cloud brightness temperature from an IR channel for 

precipitation estimation, which increases the uncertainty of rainfall analysis. Also, PERSIANN-

CCS can estimate rainfall from clouds with certain top temperature which misses the rainfall 

from warmer clouds. Some previous studies have been done to improve PERSIANN-CCS 

precipitation estimates. Behrangi et al. (2010a) combines infrared and visible channels to 

enhance the ability of PERSIANN-CCS to capture warm cloud rainfall and distinguish thin 

cirrus clouds without rain. Mahrooghi et al. (2013) used lightning data as an extra feature in 

addition to the extracted features from IR data for PERSIANN CCS. Using co-located lightning 

data with the segmented cloud patches and categorizing clouds to electrified patches and non-

electrified patches improved the rainfall identification during winter and fall and also enhanced 

the quantitative estimation during all the seasons in terms of bias, correlation coefficient, and 

RMSE. Also Mahrooghi et al (2012) used wavelet and selected features (WSF), median merging 

(MM), and selected curve-fitting (SCF) techniques to improve the PERSIANN-CCS 

precipitation estimation. In this chapter, we discuss the impacts of raising the cloud temperature 

threshold to warmer temperature in order to capture the rainfall from warm clouds as well. 

4.2.Extending cloud top brightness temperature 

PERSIANN-CCS estimates the rainfall based on three temperature thresholds (220, 235, and 

253K). In this research we extended the threshold up to 300 K to include the warm clouds as 

well. Figure 4.1 displays the infrared image for one time step and the corresponding 

segmentations for maximum temperature threshold equal to 253 K and 300 K. From Figure 4.1, 
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we see that by increasing the temperature threshold, we obtained more cloud patches which 

result in more potential for detecting precipitation. The details of training the PERSIANN-CCS 

algorithm will be explained in the next section. 

 

 

 

 

 

 

 

        

 

 

 

 

 

 

 

 

4.3. Training the algorithm 

For training the algorithm, we have used IR data from GOES satellite and corresponding 

precipitation data from MRMS over the CONUS. The training period is selected from June to 

September 2014 since the warm cloud rainfall is more common during summer season. The first 

part of the training is cloud segmentation. The temperature threshold for the cloud segmentation 

(a) 

(b) (c) 

Figure 4.1: IR image and segmentation based on temperature threshold maximum equal to 253 K 

and 300 K. (a) IR image for September 09, 2014, UTC 17:30 (b) Segmentation based on Tb=253K 

for September 09, 2014, UTC 17:30 (c) Segmentation based on Tb = 300 K for September 09, 

2014, UTC 17:30 
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is raised up to 300 K. After the segmentation, PERSIANN-CCS extracts coldness, geometry, and 

texture features from cloud patches. We also define similar features to PERSIANN-CCS and add 

a few more for the new threshold level. The original PERSIANN-CCS algorithm uses 12 

different features from cloud patches. In this dissertation research we have increased the number 

of features to 22 to cover cloud patches up to 300 K. Given defined features, PERSIANN-CCS 

uses these features to classify cloud patches to a number of groups based on a neural network 

technique. We used k-means method to cluster the cloud patches into different groups. K-means 

clustering is a classical unsupervised learning methods that groups a data set by following 

iterative process 1) Assuming a value for k, the number of cluster, choose cluster centroids 

randomly; 2) Compute the Euclidean distance from the centroids and assign each element to the 

closest centroid 3) Re-compute the centroids based on the assignments from the previous step 

and repeat step 2 and 3 until clusters converge. Figure 4.2 shows the K-means clustering method 

procedure. In this study we selected k = 200 clusters for cloud classification. After selecting the 

number of groups that we want to divide the cloud patches into, we use the k-means algorithm to 

cluster cloud patches based on the defined features. K-means algorithm classifies cloud patches 

based on minimizing the squared error function defined in equation 1: 

 

                               𝑧𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛 ‖𝑥𝑖 − 𝜇𝑐‖2                           ∀𝑖   (1)               

                                     ∀𝑐            𝜇𝑐 =  
1

𝑁𝑐
∑ 𝑥𝑖𝑖∈𝑆𝑐

                                    𝑆𝑐 =  {𝑖 ∶ 𝑧𝑖 = 𝑐}, 𝑁𝑐 =  |𝑆𝑐|  

where: 

𝜇𝑐  is the mean of all assigned data to each cluster 

𝑥𝑖 is/are the features of data i
th
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After classifying clouds to 200 groups, we estimate pixels rainfall based on the cloud patches and 

corresponding rainfall rate in each group. In order to define a relationship between rainfall and 

cloud top temperature we assume that colder clouds are associated with heavier precipitation so 

we redistribute the Tb-RR relationship and assign heavier rainfalls to colder clouds. The 

redistributed pixels are fitted with a nonlinear exponential function defined in equation 2 for each 

patch group using least square regression method. For cluster j, the Tb-RR relationship is 

specified as: 

 

𝑅𝑗 =  𝑣6
𝑗

+ 𝑣2
𝑗
. 𝑒𝑥𝑝 [𝑣3

𝑗
. (𝑇𝑏 + 𝑣4

𝑗
)𝑣5

𝑗

]                      (2) 

 

Figure 4.3 demonstrates the Tb-RR relationship for 200 clusters based on the maximum cloud 

temperature threshold equal to(Tb)max =  253 K and Figure 4.4 shows the Tb-RR relationship 

calibrated based on the maximum cloud temperature threshold equal to 300 K. 

http://humble-developer.blogspot.com/2011/01/kmeans-clustering-algorithm-part-1.html 

Figure 4.2: K-means clustering method procedure 
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4.4.Results and Discussion 

For model evaluation, we validate the PERSIANN-CCS algorithm during training and testing 

period against MRMS data. The training data is consists of 4 samples per day from June to 

September 2014.  Figure 4.5 shows the total accumulated rainfall over the US during training 

Figure 4.3: The calibrated cloud-rainfall relationships (Tb-RR) from the PERSIANN-CCS algorithm 

using IR and radar data. Each curve referring to a cloud cluster in the K-means classification for 

maximum temperature threshold 253 K. 

 

Figure 4.4: The calibrated cloud-rainfall relationships (Tb-RR) from the PERSIANN-CCS algorithm 

using IR and radar data. Each curve referring to a cloud cluster in the K-means classification for 

maximum temperature threshold 300 K 
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period from PERSIANN-CCS (Tb)max = 253 K and (Tb)max = 300 K) and MRMS data. Based on 

statistical parameters displayed in Table 4.1, increasing the brightness temperature threshold 

improves rainfall estimation and decreases the relative bias from -0.27 to -0.10. No significant 

change is observed for correlation and RMSE. 

The impact of extending the cloud top brightness temperature threshold in the PERSIANN-CCS 

algorithm is also evaluated during the validation period, from June to September 2015, over the 

US. Figure 4.6 shows average monthly rainfall during the validation period (June-September 

2015). Based on Table 4.2, the statistical parameters calculated for monthly average rainfall 

during the validation period show that the average relative bias improves for PERSIANN-CCS 

after increasing the cloud top brightness temperature threshold, while average correlation 

coefficient and average RMSE do not change significantly. 
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Table 4-1: Statistical evaluation during training period (June to September 2014). The numbers are 

average of relative bias, correlation coefficient and RMSE over the entire training data 

 

 

 

 

 

 
Relative Bias Correlation 

RMSE 

(mm/hr) 

Tbmax = 253K -0.27 0.24 1.50 

Tbmax = 300K -0.1 0.24 1.53 

(a) (b) 

(c) 

Figure 4.5: Accumulated rainfall from training data (June-September 2014). (a) PERSIANN-CCS 

(Tb = 253K); (b) PERSIANN-CCS (Tb = 300K); (c) MRMS radar data. (mm) 
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Table 4-2: Statistical evaluation during validation period (June to September 2015). The numbers are 

average of relative bias, correlation coefficient and RMSE over the entire validation data 

 

 
Relative Bias Correlation 

RMSE 

(mm/hr) 

Tbmax = 253K -0.15 0.23 1.43 

Tbmax = 300K 0.06 0.23 1.48 

 

Figure 4.6: monthly average rainfall during validation period (June-September 2015). (a) PERSIANN-

CCS (Tb = 253 K); (b) PERSIANN-CCS (Tb = 300 K); (c) MRMS radar data. (mm) 

 

(a) (b)

) 

 (a) 

(c) 
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CHAPTER 5: Improving rainfall estimation of PERSIANN-CCS using probabilistic 

approach 

 

5.1. PERSIANN-CCS rainfall estimation method 

As discussed in Chapter 2, the pixel based rainfall estimation for PERSIANN-CCS is based on 

fitting a nonlinear exponential function to redistributed precipitation rate (RR) and brightness 

temperatures (Tb) for each cloud group. The redistribution of data is based on assuming that the 

heavier rainfalls are associated with colder clouds. This assumption causes missing rainfall from 

warm clouds and false alarms from non-precipitating cold clouds, since we assign the rainfall to 

cold clouds.  Figure 5.1 shows the MRMS rainfall rate as a function of the corresponding cloud 

brightness temperature from the IR channel. The distribution of rainfall shifts to higher rates with 

colder clouds. However, they are many clouds with warmer temperature that also have positive 

rain rate. 

 

Figure 5.1: Dispersion in the relation Tb (IR)-RR, including rain/no-rain and positive values for 

one cluster 
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Figure 5.2 displays the Tb-RR relationship after redistributing the precipitation rates and 

brightness temperature to fit the nonlinear exponential function for the same cluster shown in 

Figure 5.1. After the redistribution all the rainy pixels are assigned to the coldest brightness 

temperatures and all the zero rain rates are assigned to brightness temperatures greater than 247 

K. This brightness temperature threshold depends on the proportion of zero values in the rainfall 

rate dataset. In the retrieval, any clouds with temperature warmer than 247 K will be assigned a 

zero rain rate. Although the cloud temperature threshold has been extended to 300K, the 

redistribution of data assigns the positive rainfall rates to colder clouds. For this reason we 

cannot fully improve the rainfall detection from PERSIANN-CCS with the current rain retrieval 

method. The brightness temperature versus rainfall rate relation needs to be redesigned. In the 

next section, we introduce the new method for rainfall estimation based on the actual Tb-RR 

relationship. 

247 

Figure 5.2: Redistribution of rainfall and cloud top temperature from one cloud cluster (black); 

The red line separates the zero rates and the positive rates in the redistributed data; the actual 

rainfall associated with brightness temperatures are shown in grey. 
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5.2. Using probabilistic estimation instead of exponential regression model 

In this section we introduce the new method that is used to retrieve precipitation from IR data. 

Kirstetter et al. (2015) used a probabilistic precipitation approach to estimate rainfall using 

ground-based radar observation. The surface reflectivity factor Z is related to a distribution of 

true precipitation rates that accounts for influential meteorological and observational factors. A 

similar approach is used here to improve the precipitation retrieval. 

 

5.3. Methodology 

The structure of this algorithm is very similar to what we have used to retrieve warm cloud 

precipitation from PERSIANN-CCS, except that instead of using a nonlinear exponential 

function, a probabilistic model of the Tb-RR relation is used for precipitation estimation. In this 

model we use the cloud top temperature from the infrared channel and the corresponding rainfall 

data from MRMS data. In the first step we perform cloud segmentation using the Incremental 

Threshold Technique (ITT) to define cloud patches at five different temperature thresholds (220, 

235, 253, 273, and 300 K). Then we extract geometric, coldness, and textural features from cloud 

patches and classify cloud patches to a number of clusters using a K-means clustering method. 

Each cluster contains cloud top brightness temperature and the corresponding rainfall rate from 

ground based radar. For each cluster we use a two stage probabilistic model based on the actual 

relationship of Tb-RR. The empirical probability of precipitation is defined to be the portion of 

positive rainfall values relative to portion of zero rainfall conditioned on brightness temperature. 

For positive precipitation rate values we fit a lognormal distribution conditioned to brightness 

temperature, from which we extract various quantiles. Figure 5.3 displays various conditional 

quantiles of precipitation rates and the probability of precipitation (POP) for each cloud 
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temperature for the cluster shown in Figure 5.1. Based on the analyses we have done for 

precipitation rate estimation, the best value for precipitation rate would be the expected value of 

precipitation multiply by probability of precipitation conditioned on the brightness temperature. 

As the Figure 5.3 on the right shows, the probability of rainfall is higher for colder clouds and it 

decreases by increasing cloud temperature. In this model we use two stages for precipitation 

retrieval. In the first stage the precipitation value is estimated as the expected value of the 

probabilistic model for different temperatures multiply by POP, and in the second stage false 

alarms are removed based on the probability of precipitation (POP). Equation 1 defines the 

model for estimating precipitation: 

𝑅𝑅 =  
∑ 𝑟𝑟

𝑁
=  

∑ 𝑟𝑟+

𝑁
=  

∑ 𝑟𝑟+

𝑁
×

𝑁+

𝑁+
= 𝑚𝑒𝑎𝑛(+𝑟𝑟) × 𝑃𝑂𝑃               (1) 

Where RR is the final rainfall retrieved for each pixel based training the probabilistic model ; rr 

is the rainfall values for each brightness temperature; N stands for the total number of pixels 

either with rainfall or zero rainfall for each brightness temperature; N
+  

is the total number of 

pixels with rainfall value greater than zero for each brightness temperature; and POP is the 

probability of precipitation. 
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5.4.Algorithm Training 

The algorithm was trained over the CONUS. The data we used are infrared data from the GOES 

satellite and the corresponding MRMS rainfall data from June to September 2014. As discussed 

in the methodology, we used IR data for cloud segmentation and defined cloud patches. Then we 

extract different features from cloud patches to classify the patches into 200 groups using K-

means clustering method. The result of the clustering method is 200 groups of IR data and 

corresponding rain rate values. For each cluster, a model of the probability of precipitation and a 

conditional lognormal distribution of the rain are fitted to the data. The conditional expected 

value of the distribution is then used for the precipitation retrieval for each cloud temperature. As 

displayed in Figure 5.3, while the probability of precipitation is lower for warmer clouds, the 

rainy pixels are very diverse ranging from cold clouds to warm clouds indicating that the portion 

of rainfall associated to warm clouds is not negotiable. The retrieval would then assign positive 

%10 

%25 

%50 

%75 

%90 

mean 

Figure 5.3: Probabilistic precipitation identification and estimation 
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although small precipitation rates everywhere. In order to remove the possible false alarms from 

the model, we define a threshold for the probability of precipitation based on maximizing the 

Heidke Skill Score (HSS) relative to MRMS for all the time steps in training data. Figure 5.4 

demonstrates the process for removing false alarm based on training data. During the training 

period for each data sample we find the probability of precipitation threshold that maximizes the 

HSS. In the retrieval, the threshold is used to replace by zero value the rainy pixels with 

probability of precipitation less than the threshold. Figure 5.4 (bottom) shows the histogram of 

the probability of precipitation thresholds corresponding to maximum HSS values for all the 

training data. As we can see in the histogram the probability of precipitation corresponding to 

maximum HSS for most of the samples ranges between 30% and 50%. The threshold that we set 

for running this algorithm is 35% based on the histogram. In the retrieval, this threshold is used 

to replace by zero value the rainy pixels with probability of precipitation less than threshold. 
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5.5.Results and discussions 

To verify the model we chose an additional year not covered in the training period. The time 

between June to September 2015 was chosen as a validation period and the precipitation 

retrieved from the new model was evaluated against PERSIANN-CCS considering MRMS data 

as a ground truth over the CONUS during validation and calibration period to make sure the 

results are consistent. Figure 5.5 displays the time series of binary analysis for training data (see 

appendix A for the equations). To enhance the visualization of the time series analysis, the 

difference between binary parameters calculated for probabilistic model and PERSIANN-CCS 

Figure 5.4: Calculating POP values for maximum HSS during training period 

for identifying the POP threshold 
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are showed in Figure 5.7 (values for Probabilistic model subtracted from PERSIANN-CCS 

parameter values for all the parameters). According to Figure 5.7 Probability Of Detection 

(POD) difference is positive in all time steps meaning that the POD is higher in probabilistic 

model than PERSIANN-CCS in all the samples. The difference amounts for False Alarm Ratio 

are positive for majority of time steps but the difference rate is lower than POD difference rate 

meaning that the FAR does not increase as much as POD increases. Also we have calculated the 

Heidke Skill Score (HSS) that is a measurement for the model performance in terms of POD and 

FAR. According to Figure 5.7 the HSS difference amount is positive for almost all the time steps 

indicating that the total performance of the probabilistic model in terms of rain detection is better 

than PERSIANN-CCS. Also, the model was evaluated based on calculating relative bias, 

correlation coefficient, and RMSE during training period (see appendix A for the equations). 

Figure 5.6 shows the relative bias, correlation coefficient, and RMSE for each time step during 

training period. In Figure 5.8 we have plotted the difference amounts for the parameters 

calculated in Figure 5.6. As the Figure 5.8 displays, the relative bias difference is negative for 

majority of time steps meaning that the relative bias value is lower for probabilistic model. Also 

the correlation coefficient difference is positive cases and RMSE is negative for almost all the 

time steps indicating the probabilistic model outperforms PERSIANN-CCS algorithm. In 

addition to time series analysis, we evaluated the precipitation measured from the new model 

based on the monthly total rainfall during validation and calibration period. Image 5.9 shows the 

total accumulated rainfall during training period estimated from Probabilistic model, 

PERSIANN-CCS, and MRMS data. The figure shows that the new model can capture some 

portion of rainfall that PERSIANN-CCS is not capturing over the North and South East of the 

US. As the results show in Table 5.1, the statistical parameters are calculated to evaluate the total 



  

57 
 

performance of the probabilistic model and compare it with PERSIANN-CCS against MRMS 

data during training period. As is displayed in the table, the statistical parameters are improved 

for the probabilistic model comparing to PERSIANN-CCS. The average relative bias, average 

correlation coefficient, and average RMSE are improved by 67%, 36%, and 18% respectively. In 

the next section we evaluate the model further to verify that the results during the training and 

testing periods are consistent. 

 

 

Table 5-1: Statistical evaluation of probabilistic model and PERSIANN-CCS using MRMS data during 

training period. Numbers are calculated based on averaging over entire month. 

 

 
CCS Probabilistic model 

 
Relative Bias Corr. 

RMSE 

(mm/hr) 
Relative Bias Corr. 

RMSE 

(mm/hr) 

Training data -0.29 0.25 1.48 -0.1 0.34 1.22 
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Figure 5.5: Time series of binary analysis of probabilistic model and PERSIANN-CCS 

during training period (June-September 2014). Blue dashed line represent values for 

PERSIANN-CCS and red solid line represents values for probabilistic model. 
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Figure 5.6: Time series of relative bias, correlation coefficient, and RMSE of  Probabilistic 

model and PERSIANN-CCS during training period (June to September 2014). Blue dashed 

line represent values for PERSIANN-CCS and red solid line represents values for 

Probabilistic model. 
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Figure 5.7: Difference between POD, FAR, and HSS values of probabilistic model and 

PERSIANN-CCS during training period (June-September 2014).  
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Figure 5.8: Difference between relative bias, correlation coefficient, and RMSE values of 

probabilistic model and PERSIANN-CCS during training period (June-September 2014).  
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Figure 5.9: Total accumulated rainfall during training period (mm) 
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In addition to the training period, the model is evaluated during July, August, and September 

2015 over the CONUS as well. Figures 5.10, 5.11, and 5.12 display the time series of binary 

analysis during July, August and September 2015 and Figures 5.16, 5.17, and 5.18 show the 

difference between binary parameters calculated for probabilistic model and PERSIANN-

CCS algorithm. As it shown in the figures the POD values are better for all the time steps 

during validation period since the difference amount is positive. The FAR difference rate is 

also positive for most of the cases indicating that the FAR values are greater for probabilistic 

model however the FAR does not increase as much as POD increases. The performance of 

the model in detecting rainfall (in terms of true and false detection) can be measured by HSS. 

As is shown in Figures 5.16, 5.17, and 5.18, the HSS is improved for almost all time steps 

([HSSprobabilistic – HSSPERSIANN-CCS] > 0), which indicates that the ability of the probabilistic 

model at detecting rainfall in terms of true and false detection is improved. In addition to 

binary analysis, we evaluated the performance of the model by calculating the statistical 

parameters such as average relative bias, average correlation coefficient, and average RMSE. 

Figures 5.13, 5.14, and 5.15 show, the average relative bias, average correlation coefficient, 

and average RMSE calculated for time steps during July, August, and September 2015. 

According to Figure 5.19, 5.20, and 5.21 the statistical parameters are improved for 

probabilistic model since the difference between relative bias, correlation coefficient and 

RMSE indicate the better performance of the probabilistic model. Also, we validated the 

model in the monthly scale over the CONUS during July, August, and September 2015. 

Figure 5.22 through 5.24 demonstrate the total monthly rainfall during validation period. The 

statistical parameters calculated to evaluate the probabilistic model are shown in table 5.2. 
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During July 2015 the average of relative bias did not change significantly, but the average 

correlation coefficient and average RMSE are improved. Also, during August and September 

2015 the average relative bias, average correlation coefficient, and average RMSE are 

improved, showing that the probabilistic model performs better than PERSIANN-CCS for 

the validation period. 
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Figure 5.10: Time series of binary analysis of probabilistic model and PERSIANN-CCS 

model during validation period (July 2015). Blue dashed line represents values for 

PERSIANN-CCS and red solid line represents values for probabilistic model. 
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Figure 5.11: Time series of binary analysis of probabilistic model and PERSIANN-CCS 

during training period (August 2015). Blue dashed line represents values for 

PERSIANN-CCS and red solid line represents values for probabilistic model. 
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Figure 5.12: Time series of binary analysis of probabilistic model and PERSIANN-CCS 

model during validation period (September 2015). Blue dashed line represents values for 

PERSIANN-CCS and red solid line represents values for probabilistic model. 
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 Figure 5.13: Time series of relative bias, correlation coefficient, and RMSE of Probabilistic 

model and PERSIANN-CCS during validation period (July 2015). Blue dashed line represents 

values for PERSIANN-CCS and red solid line represents values for Probabilistic model. 
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Figure 5.14: Time series of relative bias, correlation coefficient, and RMSE of Probabilistic 

model and PERSIANN-CCS during validation period (August 2015). Blue dashed line 

represents values for PERSIANN-CCS and red solid line represents values for Probabilistic 

model. 
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Figure 5.15: Time series of relative bias, correlation coefficient, and RMSE of 

Probabilistic model and PERSIANN-CCS during validation period (September 2015). 

Blue dashed line represents values for PERSIANN-CCS and red solid line represents 

values for Probabilistic model. 
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Figure 5.16: Difference between POD, FAR, and HSS values of probabilistic model and 

PERSIANN-CCS during validation period (July 2015).  
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Figure 5.17: Difference between POD, FAR, and HSS values of probabilistic model and 

PERSIANN-CCS during validation period (August 2015).  
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 Figure 5.18: Difference between POD, FAR, and HSS values of probabilistic model and 

PERSIANN-CCS during validation period (September 2015).  
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Figure 5.19: Difference between relative bias, correlation coefficient, and RMSE values 

of probabilistic model and PERSIANN-CCS during validation period (July 2015).  
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 Figure 5.20: Difference between relative bias, correlation coefficient, and RMSE values of 

probabilistic model and PERSIANN-CCS during validation period (August 2015).  
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Figure 5.21: Difference between relative bias, correlation coefficient, and RMSE values of 

probabilistic model and PERSIANN-CCS during validation period (September 2015).  
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 Figure 5.22: Total accumulated rainfall during validation period (July 2015-mm) 
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Figure 5.23: Total accumulated rainfall during validation period (August 2015-mm) 
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Figure 5.24: Total accumulated rainfall during validation period (September 2015-mm) 



  

80 
 

 

Table 5-2: Statistical evaluation of probabilistic model and PERSIANN-CCS using MRMS data during 

validation period. Numbers are calculated based on averaging over entire month. 

 

 
CCS Probabilistic model 

 
Relative Bias Corr. 

RMSE 

(mm/hr) 
Relative Bias Corr. 

RMSE 

(mm/hr) 

July -0.04 0.24 1.68 0.03 0.31 1.31 

August -0.17 0.23 1.36 0.01 0.31 1.09 

September -0.23 0.22 1.12 -0.006 0.32 0.86 

 

In addition to estimated rainfall comparison during training and testing period, the rainfall 

distribution from PERSIANN-CCS, PMW and probabilistic PERSIANN-CCS is calculated 

during July through September 2015. Figure 5.25 shows the CDFs for 4 selected Bins over the 

US. Based on CDF comparison we can conclude the probabilistic model cannot detect extreme 

rainfall values due to considering the expected value for rainfall retrieval. 
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I 

July August September 

   

II 

July August September 

   

III 

July August September 

  

 

  

 

IV 

July August September 

   

 

Figure 5.25: CDF comparison between PERSIANN-CCS & PMW and probabilistic model during 

validation year 2015. Blue solid line represents CDF for PMW data, red dashed line represents CDF for 

PERSIANN-CCS data, and green solid line represents CDF for probabilistic model. 
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CHAPETR 6: Summary, Conclusion and Future work 

 

6.1. Summary and Conclusions 

In the recent years precipitation estimation from satellites has become very popular. Many 

researches are ongoing to enhance the quality of rainfall retrieval from satellites. This 

research is mainly done in support of GPM project. PERSIANN-CCS as an IR only based 

algorithm in combination with PMW satellite data provides rainfall estimation at fine spatial 

and temporal resolution through the IMERG algorithm. The PERSIANN-CCS is a patch 

based algorithm that for estimating precipitation relies on IR data from GEO satellites. This 

algorithm retrieves precipitation based on a maximum temperature threshold level equal to 

253K which causes missing rainfall from warm clouds and falsely identifies rainfall for non-

precipitating cold clouds. Another limitation of this algorithm is due to the method for pixel 

based rainfall estimation from patch based cloud classification. PERSIANN-CCS classifies 

cloud patches into 400 groups, for which each cloud group has a specific Tb-RR relationship 

based on fitting an exponential function to data. By fitting a nonlinear exponential function to 

the data of each group, we assume that the heavier rainfall rates are associated with clouds 

with lower brightness temperature. In order to make the data match this assumption we 

redistribute the data in a way that colder clouds contain more rainfall. The redistribution of 

data loses the actual relationship which results in increasing the error of rainfall measurement 

from PERSIANN-CCS. In order to improve the PERSIANN-CCS we have addressed three 

approaches in this research, which in summary achieved the following results in this 

research. 
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 Using multi- satellite data and combining GEO and LEO based satellite estimates to 

improve precipitation derived from PERSIANN-CCS algorithm over the globe. How 

much improvement is achieved by combing PERSIANN-CCS and PMW satellite data 

over different regions and seasons knowing that PMW sensors retrieve precipitation 

more accurately? 

GEO satellites have high spatial and temporal resolution but the precipitation estimation from 

this type of satellites is less reliable due to the information from IR, VIS, and water vapor 

channels are indirectly related to rainfall rate. On the other hand, PMW satellites have 

coarser temporal resolution but the information collected from PMW sensors are associated 

with physical cloud properties which results in more reliable precipitation estimates. To 

benefit from high spatial and temporal resolution of GEO-based data and also reliable 

estimation of LEO satellites, we combined the data from PERSIANN-CCS with PMW-

COMB based on a statistical framework to reduce the bias in PERSIANN-CCS rainfall 

estimates. The methodology is based on Probability Matching Method (PMM). The lookup 

tables are built based on 4 years of climatological data from PERSIANN-CCS and PMW 

data for 5x5 degree sample size. The model is validated over the globe and also US for 3 

winter month and 3 summer month during 2012. The results are evaluated by calculating 

statistical parameters such as bias, correlation coefficient, and RMSE. The results show that 

all three parameters are improved during summer and winter time over the globe. However, 

due to sample size problem from PMW data over high latitude regions during winter time we 

only rely on the improvement during summer time over high latitude regions. Also, 

PERSIANN-CCS and MA-PERSIANN-CCS are compared with radar data over the CONUS. 

The results show that the bias is improved for MA-PERSIANN-CCS during summer time but 
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there is no significant improvement for other parameters. During winter time, no significant 

improvement is observed since the PMW and radar data are not very well matched over the 

US. 

 

 PERSIANN-CCS algorithm estimates precipitation up to certain brightness 

temperature threshold. This causes that PERSIANN-CCS to miss rainfall from clouds 

with temperature higher than 253 K.  This issue is investigated to see how much 

precipitation can PERSIANN-CCS capture if we raise the temperature threshold to 

higher levels. 

The PERSIANN-CCS algorithm is a patch based algorithm that defines cloud patches based 

on segmentation technique. After the segmentation we extract coldness, textural, and 

geometrical features at 3 different threshold levels 220, 235, and 253. This means that 

technically, PERSIANN-CCS algorithm does not consider clouds with temperature higher 

than 253K resulting in underestimation of rainfall. To overcome the underestimation of the 

PERSIANN-CCS algorithm, we extended the temperature threshold up too 300K to be able 

to enhance the rainfall identification. The data was trained during summer time of 2014 and 

was tested during summer 2015. The results indicate that the bias is improved after extending 

the threshold but no significant improvement for correlation coefficient and RMSE. This is 

because PERSIANN-CCS assigns the rainfall to the coldest part of the clouds which is not 

always the correct locations. In addition to this, the fundamental assumption behind this 

model is colder clouds contain heavier rainfalls which cause underestimation of warm clouds 

rainfall even after raising the threshold to 300K.  
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 PERSIANN-CCS algorithm retrieves precipitation based on the exponential 

relationship between Tb-RR (cloud top temperature and rainfall intensity). The 

rational for using the exponential relationship is that the heavier rainfalls rates are 

associated with colder clouds. Two potential issues arise: 1) falsely estimate 

precipitation from non-precipitating cold clouds (cirrus clouds and) 2) missing rainfall 

from warm clouds (Behrangi et al. 2010a). In this research the degree of improvement 

which can be achieved for implementing a probabilistic rainfall estimation model 

based on the actual Tb-RR relationship is explored. 

As discussed earlier, PERSIANN-CCS estimates rainfall based on the Tb-RR relationship. 

The fundamental assumption for PERSIANN-CCS precipitation retrieval is that the cold 

clouds contain heavier rainfall so that non-linear exponential function can be defined for 

calculating rainfall rate from cloud brightness temperature. To fit the non-linear exponential 

function, we redistribute the data in such a way that assign higher intensity of rainfall to 

colder clouds. The redistribution of rainfall cause distorting the actual Tb-RR relationship 

and results in underestimation of rainfall for warmer clouds and overestimation of rainfall for 

colder clouds. To improve the capability of PERSIANN-CCS in rainfall estimation and also 

considering the actual Tb-RR relationship, we developed a probabilistic framework for 

rainfall estimation. The probabilistic model is generated based on the fitting a lognormal 

distribution to the data for each brightness temperature and using the conditional mean 

rainfall rate as the predicted value for each cloud temperature. The performance of the model 

was evaluated over a validation period. The binary and quantitative analysis shows that the 

probabilistic model works better than the current PERSIANN-CCS. 
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6.2. Future Work 

The following suggestions can be used for future work towards improving precipitation 

estimation from remotely sensed data. 

1. In order to improve the PERSIANN-CCS over high latitude regions during winter time we 

should increase the number of samples. Considering more climatology data as well as 

extending the sample size instead of 5x5 degree to 15x15 can improve the bias over high 

latitude regions during winter. 

2. GOES-R is the next generation of GOES satellites that has significantly improved detection 

and observation of meteorological parameters. The satellite is equipped with advanced 

imaging with higher spatial and temporal resolution than current GOES satellite. The new 

data from the GOES-R can be used for developing GEO bases precipitation algorithm using 

multi-channel data.  
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APPENDIX A 

 

Binary evaluation equations: 

1) Probability Of Detection (POD) 

𝑃𝑂𝐷 =  
𝐻𝑖𝑡

𝐻𝑖𝑡 + 𝑀𝑖𝑠𝑠
 

Range: 0-1; Perfect Score = 1; 

 

 

2) False Alarm Ratio (FAR) 

𝐹𝐴𝑅 =  
𝐹𝑎𝑙𝑠𝑒

𝐻𝑖𝑡 + 𝐹𝑙𝑎𝑠𝑒
 

Range: 0-1; Perfect Score = 0; 

 

 

3) Heidke Skill Score (HSS) 

𝐻𝑆𝑆 =  
2 × [(𝐻𝑖𝑡 × 𝑅𝑒𝑗𝑒𝑐𝑡) − (𝐹𝑎𝑙𝑠𝑒 × 𝑀𝑖𝑠𝑠)]

(𝐻𝑖𝑡 + 𝑀𝑖𝑠𝑠) × (𝑀𝑖𝑠𝑠 + 𝑅𝑒𝑗𝑒𝑐𝑡) + (𝐻𝑖𝑡 + 𝐹𝑎𝑙𝑠𝑒) × (𝐹𝑎𝑙𝑠𝑒 + 𝑅𝑒𝑗𝑒𝑐𝑡)
 

Range: 0-1; Perfect Score = 1 

 

Hit= Number of pixels correctly identified as rain; 

Miss = Number of pixels incorrectly identified as no rain; 

False= Number of Pixels incorrectly identified as rain; 

Reject= Number of pixels correctly identified as no rain; 

 

Precipitation amount verification equations: 

1) Relative Bias 

∑ 𝑆𝐼𝑀 −  ∑ 𝑂𝐵𝑆

∑ 𝑂𝐵𝑆
 

Range: −∞ 𝑡𝑜 + ∞; Perfect Value = 0; 

 

2) Correlation Coefficient 

∑(𝑆𝐼𝑀𝑖 − 𝑆𝐼𝑀̅̅ ̅̅ ̅)(𝑂𝐵𝑆𝑖 − 𝑂𝐵𝑆̅̅ ̅̅ ̅̅ )

√∑(𝑆𝐼𝑀𝑖 − 𝑆𝐼𝑀̅̅ ̅̅ ̅)2 √∑(𝑂𝐵𝑆𝑖 − 𝑂𝐵𝑆̅̅ ̅̅ ̅̅ )2
 

Range: -1 to 1; Perfect Value = 1; 
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3) Root Mean Square Error (RMSE) 

√
1

𝑁
∑(𝑆𝐼𝑀𝑖 − 𝑂𝐵𝑆𝑖)2 

Range: 0 to ∞; Perfect Value = 0; 

 

SIM = Simulation; OBS = Observation 
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