UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Improving Non-Volatile Memory Lifetime through Temporal Wear-Limiting

Permalink
https://escholarship.org/uc/item/2mf1f983

Author
Neely, Brian

Publication Date
2014

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/2mf1f983
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Santa Barbara

Improving Non-Volatile Memory Lifetime through Temporal Wear-Limiting

A Thesis submitted in partial satisfaction of the

requirements for the degree Master of Science

in Electrical and Computer Engineering

Brian Kenneth Neely

Committee in charge:
Professor Frederic Chong, Chair
Professor Dmitri Strukov

Dr. Diana Franklin, Lecturer

June 2014

The thesis of Brian Kenneth Neely is approved.

Diana Franklin

Dmitri Strukov

Frederic Chong, Committee Chair

June 2014

ABSTRACT

Improving Non-Volatile Memory Lifetime through Temporal Wear-Limiting

by

Brian Kenneth Neely

Non-volatile memory technologies provide a low-power, high-density alternative
to traditional DRAM main memories, yet all suffer from some degree of lim-
ited write endurance. The non-uniformity of write traffic exacerbates this lim-
ited endurance, causing write-induced wear to concentrate on a few specific lines.
Wear-leveling attempts to mitigate this issue by distributing write-induced wear
uniformly across the memory. Orthogonally, wear-limiting attempts to increase
memory lifetime by directly reducing wear. In this paper, we present the concept
of temporal wear-limiting, in which we exploit the trade-off between write latency
and memory lifetime. Using a history of the slack between per-bank write opera-
tions, we predict future write latency, allowing for up to a 1.5x memory lifetime
improvement. We present two extensions for improving the effectiveness of this
history-based mechanism: a method for dynamically determining the optimum
history size, and a method for increasing lifetime improvement through address

prediction.

1l

Contents

1 Introduction

2 Background
2.1 Latency/Lifetime Trade-off

2.2 Performance of Reads and Writes
2.3 Exploiting Write Slack o000

3 Experimental Methodology

3.1 Configuration e
32 Workloads
33 Figureof Merit

4 Temporal Wear-Limiting

4.1 Perfect Wear-Limiting with an Oracle

4.2 Approximating the Oracle

4.3 Shortcomings of the min Heuristic
43.1 Performance
432 Lifetime. oo

S Bank Configuration Sensitivity
6 Future Work

7 Conclusion

v

14
14
15
16

20
20
23
26
26
29

33

36

40

Chapter 1

Introduction

The proliferation of chip-multiprocessors places an increasing burden on tradi-
tional memory systems. Increasing the number of concurrently executing pro-
cesses raises the number of working sets that must be maintained in memory,
thus increasing memory pressure and causing performance degradation [1]. All
of these factors accelerate the demand for faster, denser main memories. The
rise of energy-sensitive devices such as smartphones compounds the problem, re-
quiring memories that are not only fast and dense, but also low-energy. These
factors—speed, density, and energy—are accelerating the search for new memory
technologies that exceed the capabilities of traditional DRAM.

Several non-volatile memory technologies exist as promising candidates for a
main memory replacement. Two of these, Phase Change Memory (PCM) and
Redox Memory (Memristors) are poised to meet or exceed the capabilities of

DRAM within the next 12 years. Table 1.1 shows selected data from the 2013

International Technology Roadmap for Semiconductors (ITRS). The 2026 projec-
tions for PCM show a write energy that is half that of DRAM and a cell area that
is roughly 80% that of DRAM. The best projections for Redox, an emerging tech-
nology, show a write energy that is 20x less than that of DRAM and a cell area
that is one third that of DRAM. While PCM suffers from being 5x slower than

DRAM, Redox memories are anticipated to be 10x faster.

ITRS Parameter DRAM (2026) PCM (2026) Redox
(Best Projected)
Cell Area (nm?) 324 256 100
Write Time (ns) <10 <50 <1
Write Cycles >lel6 1e9 >lell
Write/Read Voltage (V) 1.5/15 <3/<1 <0.5/<0.2
Write Energy (J/bit) 2e-15 le-15 le-16

Table 1.1: Select ITRS data for DRAM, PCM, and Redox technologies [2]

While non-volatile technologies are projected to meet or exceed the speed,
density, and low-energy capabilities of DRAM, all fall short in one category: write
endurance. PCM has several orders of magnitude less endurance than DRAM (see
Table 1.1), as does Redox memory. Under ideal conditions, such limited write en-
durance is insignificant. For our baseline system in Section 3, an §GB PCM mem-
ory with 1e9 write endurance per cell has an expected lifetime of roughly 60 years,
assuming 4GBps write traffic and uniform writes to each cell. However most
systems exhibit non-uniform write behavior, which significantly reduces memory
lifetime by concentrating writes to specific regions of the memory. Once a cell

reaches its endurance limit, it may fail to change state. This potentially results

in data errors, making write endurance a serious challenge for architecting non-
volatile memory systems.

To combat this non-uniformity issue, most systems employ some form of
wear-leveling. Wear-leveling attempts to make non-uniform write traffic uni-
form by remapping heavily written lines to less frequently written lines. Various
schemes exist. Table-based methods, used primarily in Flash-based Solid State
Drives (SSDs), track write counts associated with each line and remap lines to
achieve uniform wear-out. Shift-based methods use an algebraic relationship to
map logical addresses to physical addresses. This results in a significantly smaller
overhead compared to the table-based approaches. Start-Gap [3], a novel shift-
based approach, is able to achieve a memory lifetime that is 95% of ideal with
only 8 bytes of storage overhead. Other wear-leveling schemes exist, such as ran-
domizing address mappings within a bank [4], shifting cache lines with a page [5],
and shifting bits in a line, or lines in a segment [6]. All follow a similar theme:
each takes a fixed amount of wear and distributes it uniformly across the entire
memory.

An orthogonal concept to wear-leveling is wear-limiting. Wear-limiting at-
tempts to reduce—rather than distribute—the amount of wear on the memory sys-
tem. Well-known techniques such as DRAM buffering [5] can be used to this
effect. Others, such as Flip-N-Write [7], exploit specific properties of the data
being written to reduce the number of writes on a per-cell basis. Error Correcting
Pointers [8] uses in-memory pointer indirection to correct failed cells, removing

the extra wear induced by Error Correcting Codes (ECC). All such techniques can

be classified as physical techniques, in that they alter the actual contents of the
memory in order to reduce wear.

Largely unexplored, however, is the use of temporal wear-limiting. By in-
creasing the duration of the write pulse to a PCM cell (or other non-volatile mem-
ory technology), the write voltage can be reduced proportionally. This decrease in
write voltage results in an exponential reduction in the wear caused by the write
operation. Thus by lengthening or shortening the write pulse (and proportionally,
the write voltage), we can directly control the amount of wear to the memory cell.
As this is done temporally, there is no spatial overhead—no encoding of data, no
pointer indirection, no additional buffering.

It is well known that several design trade-offs exist in the development of non-
volatile technologies. The authors in [9] show that by relaxing the retention time
requirement of STT-RAM, latency and energy can be reduced. Temporal wear-
limiting provides yet another design knob for non-volatile memories. The ability
to vary the write voltage and latency at run-time affords flexibility in deciding
when lifetime matters, and when performance matters. Energy, performance, and
lifetime are no longer part of a fixed relationship created at design time. Rather,
the relationship is determined dynamically, on a system-by-system basis. This
dynamic relationship greatly widens the design space, allowing a larger set of
memory technologies to be both high performance and long lifetime.

In this paper, we show that using temporal wear-limiting can improve memory
lifetime by a factor of 1.5x. We show that system performance is not immune to

arbitrary memory write latencies, however, and that care must be taken in deciding

when, and how slow, to perform these writes. We present a novel technique for
determining this, based on the slack between previous per-bank write operations.
This paper is divided as follows: Section 2 describes our physical model for the
write latency / lifetime trade-off, as well as our calculation for write slack. Section
3 describes our experimental methodology, including our simulation setup and
figure of merit. Section 4 introduces and analyzes our temporal wear-limiting
mechanism. Section 5 details a bank configuration sensitivity analysis for our

mechanism, and Section 6 outlines future work in this area. Section 7 concludes.

Chapter 2

Background

2.1 Latency/Lifetime Trade-off

Non-volatile memory devices require strong nonlinearity in switching kinetics
with respect to the applied write stimulus (typically a voltage). This is neces-
sary to achieve long retention time, while allowing for small write latency [10].
For example, the retention time / write latency ratio is more than 10 orders of
magnitude for NOR/NAND flash memories (e.g. 10 years of retention with mi-
crosecond/millisecond write time), while it is less than 6 orders of magnitude
for DRAM (e.g. tens of milliseconds of retention with tens of nanoseconds write
time) [2]. Given this strong nonlinearity, a natural way to decrease write latency in
non-volatile memories is to apply a larger stimulus (voltage). However this stimu-
lus is harmful for device lifetime (endurance) as it enhances the same mechanisms

that lead to device failure.

We argue that this write latency / lifetime trade-off holds for all non-volatile
technologies, both emerging and established, because a similar failure mecha-
nism can be found in all. For flash memory, [11] shows that increasing write
(program/erase) voltage exponentially increases the probability of creating and/or
filling existing deep traps—a primary source for limited lifetime in these memories.
In phase change memories, switching speed is exponentially dependent upon the
applied electric field and temperature [12]. This is similarly true for magnetore-
sistive, ferroelectric, and electrochemical/thermochemical (i.e. memristor) mem-
ories, due to the thermally-activated nature of their switching operation. Studies
into the failure mechanisms of memristive devices have thus far been limited,
however preliminary evidence shows that it is related to excessive stressing of the
device upon each write operation [10]. High temperatures combined with a high
electric field cause melting of the electrode material, causing permanent failure.
It is reasonable to assume that this thermally-activated failure mechanism will be
found in all technologies with thermally-activated switching mechanisms. Thus
it follows that device lifetime will decrease exponentially with increased write
stimulus.

As there are no published results describing the write latency / lifetime trade-
off (to the best of our knowledge), we assume a model based loosely on the model
presented in [13]. This model is derived for metal oxide memristive devices, but
should be applicable to different non-volatile memory technologies because of the
similar physics of their failure mechanisms. For example, it predicts the quanti-

tatively experimentally observed trade-off in floating gate memories reported in

[14]. Assuming a thermally activated mechanism with activation energy Uy, tem-
perature 7', and constant electric field, switching speed can be approximated as:
where v, is the speed of ions, k is the Boltzmann constant, ¢ is an elementary
charge, f is the frequency of escape attempts, and a is an average hopping dis-
tance [13]. Temperature 7 is linearly proportional to the dissipated power. The
failure mechanism is assumed to be caused by the thermally activated motion of
ions across the same distance d but with higher activation energy Uy, such that
the average time to failure of the device is:

tr ~ % S %e%e—z‘%ﬁ
Using the above equations, lifetime L (the number of times a device can be switched

before failure) is proportional to the ratio of failure time to switching time:

Calculating this write latency / lifetime trade-off for various temperature-voltage
dependencies shows that the trade-off is mostly dependent upon the magnitude

of the Z—f ratio (i.e. it is insensitive to any particular law of temperature-voltage

Urp _

dependence). For T 2, latency decrease is linearly proportional to lifetime

. Ur _
decrease. The relationship is approximately quadratic and cubic for Ts = 3 and

Ur

Oe = 4, respectively. Therefore, for a relatively small electric field (Vga <<

2dUy), lifetime is approximated as:

Up _
L~ (%)%, wherety = 2
In this study, we chose to model a quadratic write latency / lifetime trade-off.
For consistency with JEDEC timing symbols, we define lifetime in terms of the
write pulse width, tW P (note that this is equivalent to the switching time zg). Thus

our lifetime model becomes:

o (IWP N2
L~ (tWPo

2.2 Performance of Reads and Writes

The central concept of temporal wear-limiting is maximizing the latency of writes
without impacting performance. Doing so requires understanding how write la-
tency impacts CPU performance, and therefore requires an understanding of the
memory system organization itself. Figure 2.1 gives an overview of a basic mem-
ory system, containing one read buffer, one write buffer, one controller, two ranks,
and two banks per rank. Memory requests from the CPU are placed in the read
or write buffer, depending on the memory operation. The controller selects one

command from one of the queues per cycle. This selection is dependent upon the

memory controller scheduling algorithm. In this study we use a First-Ready, First-
Come, First-Serve algorithm, in which the controller prioritizes commands that
can issue immediately. The memory controller dequeues the selected command
and sends the appropriate bank the series of commands required to complete the
memory access. This series is dependent upon the active row in the bank. Once
a bank is issued a series of commands, it cannot accept any new commands until

the series completes.

Rank O
Bank Q
| |-Bank 0
Memory Controller
Bank Q
Read Buffer D:D:D_Bank ql
Write Buffer Rank 1
| > Bank Q
Bank 0
Bank Q
Bank 1

Figure 2.1: A simple memory system

Bank reads and writes are performed by first issuing an activate command,
which reads the contents of a bank row into set of sense amplifiers, also known as
a row buffer. Reads simply read the contents of this buffer, while writes overwrite
its contents and (in a write-through scheme) write the data to the memory array.
To complete a read/write command a precharge command is issued, which clears
the sense amplifiers and readies them to read the another row. This is known
as closing the row. Reads and writes to different rows must follow this Activate

— Read/Write — Precharge sequence. However, reads and writes to the same

10

row can operate repeatedly on the row buffer, omitting the Activate and Precharge
commands. This optimization for row buffer hits is known as the open page policy,
as the memory controller does not close a row until it is certain it must activate
another.

Reads and writes have different effects on CPU performance. A CPU cannot
retire a read instruction until the data is actually read into a register (from cache
or from memory). Any time elapsed from when the CPU requests the data and
when it receives it is a performance penalty. Unlike reads, writes are not on the
critical path for retiring a CPU instruction. Once a write is received by the memory
(or cache), the instruction is retired. At this point, the write is fulfilled from the
perspective of the CPU. Writes can only stall the CPU if the memory cannot accept
the command, i.e. the write buffer is full. Thus, a temporal wear-limiting scheme
must not cause additional write buffer stalls, as this impacts write performance.

More subtle, however, is the impact of writes on read performance. As men-
tioned above, one memory command is issued to and processed by each bank at
a time. A write can stall a read if a write occupies the bank at the time when a
read is requested on that bank. Writes also stall writes in this manner, and both
are known as bank conflicts. Bank conflicts are a precursor to buffer stalls. Reads
or writes that cannot be issued cannot be removed from the queue, causing the
queue to fill. Thus, any temporal scheme that attempts to minimize write buffer

stalls must first minimize bank conflicts.

11

2.3 Exploiting Write Slack

The measure of a good temporal wear-limiting scheme is its ability to maximize
write latency without causing bank conflicts. This implies that it must quantify
the amount of time available between a write operation on a bank and the next op-
eration (write or read) scheduled for that bank: the slack between requests. Slack

is simple to calculate:

SlaCk = Tnext - (Tcurrent + Tlatency)

where T.,.ns 15 the bank issue cycle of the current write command, 7.,, is the
issue cycle of the next command, and T4y 18 the latency of the write command.

Tatency 18 equally simple to calculate. It depends on both the current bank state
and the next command issued. If the write command is a row buffer hit, T ency
is simply T,,i: the latency of the write command. However if the command is
a row buffer miss, Tiuency = (Tprecharge + Tactivate + Twrire): the time to precharge
the previous row, activate the new one, and write the data. The latency of T, 1s
dependent upon the next command issued to the bank. Table 2.1 details the timing
values used in our simulations. These values were obtained from [15].

The difficulty in calculating write slack lies in determining 7,,,,. It must be
calculated at time 7., but is only known for certain at time 7',,,,. For a temporal
wear-limiting scheme to be perfect, it must know 7T',.,; at Ty rens, OF predict it with

perfect accuracy.

12

Parameter | Next Cmd | Timing Value

Tprecharge N/ A TRP

Tactivare N/A Trep — Tar

Tyrite Read Tewp + Tpurst + Twrr + Twp
Tyrire Write MAX(Tgyrst, Tcep) + Twe

Tyvrire Precharge | Twg + Tar + Tcwp + Taurst + Twe

Table 2.1: Memory simulation timing parameters

13

Chapter 3

Experimental Methodology

3.1 Configuration

<_>
<_>
8GB PCM
L= Main Memory
<_>

4-core CMP

Figure 3.1: Baseline system

Figure 3.1 gives an overview of our baseline system. We model a four-core
Intel Core 17 system, the details of which are shown in Table 3.1. An aggressive

8-issue out-of-order CPU model is used, as we wish to eliminate CPU bandwidth

14

from affecting our study. Each core contains a private L1 and L2 cache, and all
share an 8MB L3 cache. The memory system is an 8GB PCM with one channel,
four ranks per channel, and four banks per rank. A single channel (single memory
controller) is used in order to maximize memory pressure. The controller uses a
First-Ready First-Come First-Serve scheduling policy with a 32-entry write buffer,
and an open-page row-buffer management policy. Read bank hits are optimized by
servicing them immediately from the bank queue, if possible. For simulation we
use the gem5 simulator [16] in conjunction with NVMain [15], a timing-accurate

simulator for non-volatile memory technologies.

Target System | Intel Core i7

CPU 4-core 000 CMP, 2 GHz, 8-issue, Alpha ISA
L1 Cache (I/D) | (32kB / 4-way) / (32kB / 8-way), private
L2 Cache 256kB / 8-way, private
L3 Cache 8MB / 16-way, shared
Main Memory | 8GB PCM
Channels: 1

Ranks: 4 per channel

Banks: 4 per rank

Controller: FRFCFS Scheduler
Write Buffer: 32-entry, 64B entries

Table 3.1: Baseline configuration

3.2 Workloads

Table 3.2 outlines the set of benchmarks used in this paper, all of which are
memory-intensive applications. The set of benchmarks from the SPEC CPU2006

benchmark suite (astar, GemsFDTD, Ibm, milc) are single-threaded applications

15

which we execute on a single-core simulation with a 2MB L3 cache. The Vips
benchmark from PARSEC is a 16-thread image processing pipeline. GUPS (Giga-
updates per second) executes updates to random 64-byte words across a 4GB
memory region. The SPEC benchmarks and GUPS are simulated for 8 billion
CPU cycles (4 seconds) with a 2-second cache warm-up period. Vips is simu-
lated for 8 billion cycles, starting from the benchmark region of interest (ROI), as

outlined in [17].

Name Package Category

astar SPEC CPU2006 | 2D path-finding
GemsFDTD | SPEC CPU2006 | Comp. Electromagnetics
Ibm SPEC CPU2006 | Comp. Fluid Dynamics
milc SPEC CPU2006 | Quantum Chromodynamics
vips PARSEC Image processing pipeline
GUPS GUPS [18] N/A

Table 3.2: Workloads

3.3 Figure of Merit

A figure of merit for any wear-limiting scheme is memory lifetime. Temporal
wear-limiting requires a second metric, however, as it can impact system perfor-
mance through its ability to increase or decrease write latency. We therefore use
two metrics in this paper: memory lifetime and Instructions per Cycle (IPC).

To obtain IPC, we use the values reported by our simulator. For simulations

involving multiple CPUs, we use combined IPC (total number of instructions for

16

all cores, total number of cycles for all cores).

In this study we define memory lifetime as the number of iterations of a sin-
gle benchmark if the benchmark were to execute repeatedly until memory fail-
ure. Memory lifetime is therefore proportional to W%WT where wearr 1s the total
amount of wear induced on the memory system by write operations during the
benchmark’s execution. From the lifetime equation given in Section 2.1, it fol-

lows that the wear induced by an individual write, wear;, at a constant write pulse

tWP; is equal to 1, or equivalently

_ 1
wear; = m
tWP

To broaden the applicability our study we choose not to define wear and lifetime
in terms of a specific technology. Instead we define it generically as unit wear, in
which a write performed with the minimum write pulse width tWP,,;,, induces 1
unit of wear. To obtain unit wear for a given write pulse width tW P; we normalize
tWP; to tWP,,;,, resulting in the wear equation:

2

_ 1
wear; = WPy

where tWPy; = t‘;,”;,P L, the normalized write pulse width for width tWP;. The
total unit wear induced for a benchmark is the sum of the unit wear induced by

individual write operations:

17

— tWPNmax ;2 .
wearr = 3, ey Qi

where Q; is the quantity of writes performed at a specified normalized write pulse
tWPy;, and tW Py, 1s the maximum normalized write pulse. Therefore, the life-

time metric for a given benchmark can be described as:

1

WPNmax 12 X
oy " Gy 90

Lifetime o

To characterize the performance and lifetime of our various implementations, we
compare them against an oracle. Our oracle captures the amount of slack avail-
able to write operations in each benchmark. We define slack as the time between
memory requests at the bank-level. Because the oracle only records timing infor-
mation, it cannot not affect the timing—and scheduling—of memory operations. It
therefore is an indicator of the best memory lifetime possible without affecting
performance. In this paper we list our results as fractional lifetime and fractional
performance, compared against the oracle.

The slack values our oracle reports are often large to be used as write pulse
widths (e.g. 10°x tWP,,;,). Therefore, we cap the maximum write pulse width,
tWP,.., at 100x tWP,,;,. Slack,,, is therefore capped at tWP,,,, — tWP,,,,. For
our simulation configuration tWP,,;, = 60 cycles and therefore tWP,,,, = 6000
cycles.

For equal comparison of different implementations, our lifetime metric re-

quires the number of write operations performed in each iteration of a benchmark

18

to be the same as that of the oracle. Because we modify the latency of write op-
erations, it is possible for a given simulation to execute less write operations in
the allotted simulation time. To account for this, we assign the minimum write
pulse—and maximum wear—to any un-issued writes, and then include this value in

the lifetime calculation.

19

Chapter 4

Temporal Wear-Limiting

4.1 Perfect Wear-Limiting with an Oracle

Our oracle allows us to simulate a perfect wear-limiting scheme. It does so by
calculating write slack in hindsight: it observes T, ey at time T, and deduces
the slack that could have been exploited by the write at 7, ¢, It is important to
note that this observes the slack in the system as-is and performs no optimizations
to increase slack. Therefore, it serves as a baseline for any wear-limiting scheme,
not as an indication of the absolute maximum lifetime.

Table 4.1 shows the lifetime improvement the oracle achieves for the six bench-
marks we simulate. The range of improvements is wide: from 1.02x to 7.37x.
These values are a direct indication of the amount of write slack available in
each benchmark, and therefore the amount of lifetime improvement available to

any wear-limiting scheme we develop. It is important to understand not only

20

the amount of lifetime improvement available with the oracle, but also how this
lifetime is attained. Figure 4.1 shows the cumulative percentage of the oracle’s
lifetime contributed by each write pulse width. These distributions highlight the
write pulse widths that have the greatest impact on the oracle’s lifetime. Again,
we see that the results vary. For benchmarks like GemsFDTD, milc, and vips,
the contributions are spread across the entire pulse width range. For others, a
small set contributes a majority of the lifetime. In astar, for example, the maxi-
mum write pulse width contributes roughly 40% of the lifetime. This data gives
insight into the requirements of any wear-limiting scheme that approximates the
oracle. It shows which oracle write pulse widths a scheme must accurately predict
in order to achieve the largest fraction of the oracle’s lifetime. For benchmarks
such as astar, it must predict the maximum width accurately. For benchmarks like

GemsFDTD, however, it must predict the entire range accurately.

Benchmark | Improvement
astar 2.36x
GemsFDTD | 1.02x
Ibm 1.60x
milc 1.15x
vips 1.20x
GUPS 7.37x

Table 4.1: Oracle lifetime improvement over baseline

21

% Oracle Lifetime

% Oracle Lifetime
Cooo0ooo00o0or
OHNWARUOONOWOO

000000000 OH
oRrNwWhPUON®DLO

1000 2000 3000 4000 5000 6000 1000 2000 3000 4000 5000 6000 7
Write Pulse Width (Mem Cycles) Write Pulse Width (Mem Cycles)

Ibm milc

% Oracle Lifetime

% Oracle Lifetime
Oo0o0o000000O0OH
OFHNWARUONWOWOO

Oo0o0o0o0o0o0o00Oor
oRrNwWhULON®DLO

1000 2000 3000 4000 5000 6000 1000 2000 3000 4000 5000 6000 7
Write Pulse Width (Mem Cycles) Write Pulse Width (Mem Cycles)

vips gups

% Oracle Lifetime

% Oracle Lifetime
000000000 OH
OHNWARUOONOWOO

000000000 OH
oRrNwWhPUON®DLO

1000 2000 3000 4000 5000 6000 7000 1000 2000 3000 4000 5000 6000 7000
Write Pulse Width (Mem Cycles) Write Pulse Width (Mem Cycles)

Figure 4.1: Cumulative distribution of oracle lifetime, per write pulse width

22

4.2 Approximating the Oracle

It is impossible to exactly model the oracle by knowing the value of 7,,,, ahead of
time. The best any wear-limiting scheme can do is predict 7,,; using information
available at time T,,,.,;- Thus, our task becomes developing a predictor for T,
that accurately models the oracle. A first-order approximation of 7., can be
derived from historical values of T,..,, resulting in a steady-state, history-based
predictor. Using the last n values of 7,,,;, we predict the current value. In doing
so we assume that history is indicative of the present, i.e. T,., has reached a
steady-state. For implementations in which n > 1, a heuristic must be used to
interpret the set of history values. Many solutions are possible: using the mean,
median, or mode of the histories, extrapolating the next value using a least-squares
regression, a combination of these methods, etc.

In our simulations, we calculate the value of T),,; as the arrival time of CPU-
to-memory requests. Because we intend to capture the rate at which the CPU
requests a specific bank, we capture the arrival time on a per-bank basis and do so
regardless of if the request is queued or blocked by the controller. For each write
operation, the amount of slack available is calculated as outlined in Section 2.3.
If slack is calculated to be zero or negative (i.e. T, is anticipated to occur on or
before the fastest write can finish), we cap the value at zero. If slack is calculated
to be larger than Slack,,, (see Section 3.3), we cap it at this maximum value.
Thus the write pulse width for a write is simply tWP = tWP,,;, + S lack.

For history length n > 1 we evaluate two heuristics: min, which selects the

23

minimum of the n histories, and slope, which selects between the arithmetic mean
and the minimum of the histories. To implement slope we calculate a linear best-
fit line for the n histories. The slope of this line is indicative of the trend of
T,...- A positive slope indicates a decreasing rate of requests, while a negative
slope indicates an increasing rate. For an increasing rate we select a conservative
estimate of 7,,,: the minimum of the histories. For a constant or decreasing rate
we select the average. We choose slope because it represents an opportunistic
approach for determining slack, as compared to the conservative approach of min.

Figures 4.2a and 4.2b show the results of evaluating our six benchmarks for
the min and slope heuristics, respectively. We simulate each for history sizes
n = 2,4,8,16,32. For comparison we include the results for n = 1, but this
is neither a min nor slope heuristic. Each figure depicts the performance and
lifetime of the heuristic as a percentage of the oracle IPC and lifetime. A few
key observations can be made from these figures. First, we notice that min does
as well or better than slope in both performance and lifetime for small values
of n (n = 2,4), with >95% of oracle IPC and 60% to 98% of oracle lifetime.
For larger values of n, slope fairs better in terms of lifetime. However this lifetime
improvement comes at the cost of performance degradation, resulting in anywhere
from 45% to 84% smaller IPC for some benchmarks. In contrast, performance is
relatively insensitive to the min heuristic (for n > 1). Given these results, we argue
that min is clearly the better heuristic.

The exception in this comparison is GUPS, which shows no performance

degradation but also no lifetime improvement when using the min heuristic for

24

astar GemsFDTD lbm
1.0abA—A—Aa——A {1 1.0 A A % 1 1.0r 1
0.9F 1 09 1 09 1
0.8 1 0.8 1 0.8f 1
0.7F 1 0.7 1 0.7p 1
0.6 1 0.6 1 0.6 1
0.5 1 05 1 0.5p 1
0.4F 1 04 1 0.4r 1
0.3r 1 03 1 0.3 1
0.2 1 0.2 1 0.2F 1
0.1F 1 0.1p 1 0.1p 1
0.0 - - - - - - 0.0 - - - - - - 0.0 - - - - - -
0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35 0 5 10 15 20 25 30 35
History Size History Size History Size
milc vips gups
1.0r & & 4 1 1.0 1 lLOma—A—At—A
0.9>‘E 1 0.9F 1 0.9 1
0.8[4 1 oasf 1 oasf 1
0.7F 1 0.7f 1 0.7p 1
0.6 1 0.6f 1 0.6f 1
0.5 1 0.5f 1 0.5f 1
0.4F 1 0.4r 1 0.4r 1
0.3 1 0.3f 1 0.3 1
0.2} 1 0.2F 1 0.2 1
0.1F 1 0.1p 1 0.1 1
0'00 5 10 15 20 25 30 35 O'CO 5 10 15 20 25 30 35 0'CO 5 10 15 20 25 30 35
History Size History Size History Size
(a) min
astar GemsFDTD lbm
1.0faa4 4 4 1 1.0 1 1l.0f 1
0.9F 1 o9 1 o.%[@;:&ﬁ 1
0.8 1 0.8 1 0.8f 1
0.7 | 07 {1 o7t 1
0.6 1 06 1 0.6f 1
0.5 1 05 1 0.5f 1
0.4F 1 04 1 0.4f 1
0.3F 1 03 1 0.3 1
0.2} 1 0.2 1 0.2F 1
0.1F 1 0.1p 1 0.1p 1
0'00 5 10 15 20 25 30 35 O'CO 5 10 15 20 25 30 35 0'00 5 10 15 20 25 30 35
History Size History Size History Size
milc vips gups
1.0r 1 1.0} 1 1.0 1
0.9 1 0.9r 1 09 1
0.8 1 0.8f 1 0.8 1
0.7 1 0.7f, 1 0.7 1
0.6 1 0.6 1 0.6 1
0.5 1 0.5 1 05 1
0.4 1 0.4f 1 04 1
0.3 1 0.3 1 03 1
0.2} 1 0.2F 1 0.2 a1
0.1r 1 0.1p 1 0.1f 1
0'00 5 10 15 20 25 30 35 0'CO 5 10 15 20 25 30 35 0'CO 5 10 15 20 25 30 35
History Size History Size History Size

(b) slope

Figure 4.2: Fraction of oracle IPC and lifetime attained by the min and slope
heuristics. The triangle marker indicates IPC. The X marker indicates lifetime.

25

n > 1. GUPS generates random memory accesses and therefore randomizes write
slack. We expect that any history-based predictor cannot capitalize on random
slack. However it is imperative that in such no-gain scenarios a predictor has no

impact on performance. The min heuristic demonstrates this behavior exactly.

4.3 Shortcomings of the min Heuristic

4.3.1 Performance

The results in Section 4.2 demonstrate that for small values of n, min is a appropri-
ate heuristic because it preserves oracle performance while attaining a significant
portion of oracle lifetime. However, we cannot say that a specific small value of
n is best for all benchmarks. The smallest n always results in the best lifetime,
because the result of the min operation can only decrease with each larger history
size. Conversely, a smaller n can result in worse performance. For a small n,
individual variations in 7., have a larger impact on the min operation. Our re-
sults show that the degree to which a small » impacts performance is application-
dependent. For the set of SPEC benchmarks (astar, GemsFDTD, Ibm, milc) and
GUPS, n has little to no impact on performance. However for the PARSEC bench-
mark Vips, IPC decreases with a smaller n: from 94% for n = 4 to 89% for n = 2.

Because performance is sensitive to n on an application-by-application basis,
we cannot determine # statically as done in the previous section. Instead, we must
do so dynamically. Doing so requires the use of a feedback mechanism: the ability

to know when n is either too small or too large. Too small a value of n results in

26

performance degradation. We can easily measure this through performance mis-
predictions, in which min predicts a slack value larger than what the oracle shows
to be correct. Too large a value of n is measured by the absence of performance
mispredictions, in which min consistently predicts slack values too far below the
oracle’s values. Using these observations we can construct a feedback mechanism
that dynamically adjusts the history size, n, as the application executes.

To do so, we simulate the oracle and our min heuristic simultaneously for
the Vips benchmark. Min predicts a slack value at time T,,,.,, Which the oracle
validates at time 7,,,, from which we obtain the magnitude of the performance
misprediction. By counting the number of performance mispredictions within a
given period, we can determine if n should be modified. Determining this requires
defining four additional parameters: the magnitude of mispredicted slack that con-
stitutes a performance misprediction, S lack,,;s, the period between recalibrations
of n, Tyecar, the number of performance mispredictions in 7., above which n is
increased, Miss;,., and the number of performance mispredictions in 7'..,; below
which 7 is decreased, Miss ..

For our simulation, we define S lack,,;,, as twice tWP,,;,. We define T,y in
terms of the number of write requests enqueued by the memory controller and
set its value to T,..; = 10000 writes. For the Vips results presented in Section
4.2, min achieves the best lifetime for n = 2 and the best performance for n =
4. Tt follows that in each period T,..,, any feedback mechanism should select
between these two values of n, depending on the performance requirements of

the application at that time. In our simulation we deliberately choose values for

27

Miss;,. and Miss,,. that cause min to select between n = 2 and n = 4, namely

Miss;,. = 255 and Missg.. = 63.

vips

w
Ul

N N W
o Ul O
T T T
I I I

History Size
|_I
ul

=
o
T

TN TSR T W TR
0 500 1000 1500 2000 2500
Recalibration Periods Elapsed

o u

Figure 4.3: History size (n) selected by the feedback mechanism per recalibration
period T..4, for the Vips benchmark.

Figure 4.3 shows our feedback mechanism’s selection of n per recalibration
period T'..,;. We initially set n to its maximum value n = 32, as this is the least
likely to impact performance. The results indicate that the feedback mechanism
quickly decreases 7 to its optimum values, n = 4 and n = 2, within three recalibra-
tion periods or 0.15% of the write operations for the Vips benchmark. Figure 4.4
compares the lifetime and performance results of our mechanism against the static
scheme used in Section 4.2. The red circle marks fractional performance, while
the teal circle marks fractional lifetime. We notice that performance is slightly
better than statically choosing n = 2, and lifetime is slightly better than statically
choosing n = 4. These results indicate that our feedback mechanism is success-

ful. It correctly identifies the steady-state values of n = 2 and n = 4 for best

28

vips

cooooooooor
OFRNWP,APUIONOOWOO
T
‘

5 10 15 20 25 30 35
History Size

o

Figure 4.4: Comparison of selecting n dynamically vs. statically. The red circle
marks the dynamic method’s performance. The teal circle marks lifetime.

performance and lifetime in the Vips benchmark.

4.3.2 Lifetime

The degree to which min achieves the oracle lifetime varies from benchmark to
benchmark. In GemsFDTD min achieves 98% of oracle lifetime, while in astar it
achieves only 66%. This gap between min lifetime and oracle lifetime is essen-
tially due to lifetime mispredictions—we predict a slack value smaller than what
the oracle shows to be correct. To close the lifetime gap we must decrease the
number of lifetime mispredictions.

To quantify the impact of lifetime mispredictions, we simulate the oracle and
our min heuristic simultaneously as done in the above section. Min predicts a slack
value at time 7',,,.n;» and the oracle validates it at time 7,,,. Figure 4.5 shows the
cumulative amount of memory wear introduced for each lifetime misprediction

magnitude, for each benchmark. We notice that for astar, GemsFDTD, and milc,

29

astar
: :

GemsFDTD

0000000000
oRrNwhUoN®DLO

1000 2000 3000 4000 5000

Misprediction Amount (Mem Cycles)

Ibm

6000

cooooooooor
OFRNWRARUIOONOWOO

70

1000

2000 3000 4000 5000
Misprediction Amount (Mem Cycles)

milc
:

6000

7000

OHEHNWAUONOOVO

Cooo00o0000O0OH
o

1000 2000 3000 4000 5000

Misprediction Amount (Mem Cycles)

6000

cooooocoocoor
OFHNWRARUONOWOO

70

1000

2000 3000 4000 5000
Misprediction Amount (Mem Cycles)

6000

7000

vips gups

1.0
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0.0,

cooooooooor
OFHNWRARUIOONOWOO

1000 2000 3000 4000 5000

Misprediction Amount (Mem Cycles)

6000 7000 1000 2000 3000 4000 5000 6000 7000

Misprediction Amount (Mem Cycles)

Figure 4.5: Cumulative distribution of additional wear due to lifetime mispredic-
tions, per write pulse width.

roughly 50% of the wear results from lifetime mispredictions of 5940 cycles (i.e.
Slack,,,). Thus, 50% of the additional wear is contributed by writes that min
issued with tWP = tWP,,;,, that should have been issued with tWP = tWP,,,,.
We argue that the misprediction behavior seen in astar, GemsFDTD, and milc
is indicative of end-of-burst conditions. For access patterns composed of bursts of
high-rate accesses followed by long periods of quiescence, any time-based history
mechanism is a poor predictor. This is because access time history (the burst) is

in no way indicative of the future (quiescence). Therefore, we must look to other

30

mechanisms to predict this end-of-burst condition.

One such mechanism is access location prediction, i.e. address prediction. Be-
cause GemsFDTD and milc are scientific applications, it is reasonable to assume
that memory accesses within either application follow some well-defined pattern,
such as the stride between elements in a matrix. It follows that mispredictions,
which correspond to specific accesses within the application, should adhere to the
same pattern or stride. Furthermore, any unique stride between mispredictions in
an application is observable because we can observe exactly when a misprediction
occurs.

To validate this claim, we again simulate our oracle and min heuristic together,
recording the stride in bytes between lifetime mispredictions of size 5940. Table
4.2 shows the prominent strides in each of the three benchmarks. As suggested
above, both GemsFDTD and milc have a single prominent stride value: 8192
bytes. Thus given an address for an initial lifetime misprediction of size 5940, we
can accurately predict 93% of lifetime mispredictions of this type in GemsFDTD

and 43% of this type in milc.

Benchmark | Stride | Freq.
astar 64B 0.25%
GemsFDTD | 8192B | 93%
milc 8192B | 43%

Table 4.2: Prominent strides in the astar, GemsFDTD, and milc benchmarks.

Address prediction cannot predict the end-of-burst conditions in astar, how-

ever, as shown by its lack of a prominent stride value. This is unfortunate, as

31

astar has the most to gain from lifetime improvement of any of the benchmarks.
Indeed, the lifetime improvement generated by our address prediction mechanism
for GemsFDTD and milc is insignificant: 0.8% for GemsFDTD and 2% for milc.

It is important to note that these results are not necessarily indicative of all
address prediction mechanisms, however, or all access location mechanisms. The
complexity of the memory system provides a wealth of options to explore: access
prediction on a per-bank basis, access prediction using access history, etc. Such

explorations are outside the scope of this paper and are the subject of future work.

32

Chapter 5

Bank Configuration Sensitivity

In using arrival time per bank as an indication of T,,,,, our implementation natu-
rally becomes sensitive to the timing and location of bank accesses. This itself is
sensitive to the memory configuration, because the mapping of addresses to banks
determines which banks service which accesses at what time. This makes our im-
plementation potentially sensitive to bank configuration, i.e. the number of banks
in a memory and their size.

To determine the magnitude of this sensitivity, we reevaluate our min heuristic
using six different bank configurations for the 8GB PCM: 32 256MB banks, 16
512MB banks (the baseline configuration), 8 1GB banks, 4 2GB banks, 2 4GB
banks, and 1 8GB bank. We divide the banks among the four ranks used in the
baseline configuration, except for the 4GB and 8GB bank configurations which
use 2 ranks and 1 rank, respectively. In each simulation, we use the optimal

history size determined in Section 4.2. Because maximum write slack is sensitive

33

astar GemsFDTD

T
A A—————————A

=}

K

—om___

cocooooco0o000mn
ORNWARUIONWWO
cocooooo0o000mn
ORNWARUIONWOWOWO
coooooo0o000mn
O NWAU OO

"0 2000 4000 6000 800010000 'O 2000 4000 6000 800010000 "0 2000 4000 6000 8000 10000
Bank Size (MB) Bank Size (MB) Bank Size (MB)

milc gups vips

=}

cooooooooor
OFRNWPAPRULONOWOO
cooooooooor
OFRNWPARUIONOWOWO
coooooooook
O NWAUO WO

0 2000 4000 6000 800010000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Bank Size (MB) Bank Size (MB) Bank Size (MB)

Figure 5.1: Fraction of oracle IPC and lifetime attained by the min heuristic for
various bank sizes, using the optimal history size.

to bank configuration, it is necessary to reevaluate the oracle for each of bank
configuration as well.

Figure 5.1 shows the results of this sensitivity analysis. For all benchmarks
(except GUPS) it is clear that the performance of min is relatively insensitive to
bank size. In each, the fraction of oracle IPC is >90%. Lifetime, however, is
sensitive to bank size, in that the fraction of oracle lifetime increases as bank
size increases. This does not necessarily indicate that the lifetime improvement
over the baseline improves, however. This is because as bank size increases, bank
count decreases. This increases the memory pressure per bank, as less banks must
service the same number of requests, which in turn equates to less write slack
available (as reported by the oracle). Based on these observations, these results

demonstrate two important features of the min heuristic. First, for decreasing

34

write slack reported by the oracle, min is still able to achieve a large fraction of
this slack. Second, min can adapt to varying degrees of memory pressure. Per-
formance does not degrade with increasing bank size, showing that min correctly
predicts the slack (or lack thereof) in each simulation.

The exception to these observations is, again, GUPS. For a bank size of 256MB,
min achieves only 29% of oracle IPC. This performance degradation is the result
of a poorly chosen history size, n = 2. We argue that performance degradation,
unlike lifetime degradation, can always be corrected by increasing the value of
n. Figure 5.2 validates this claim. It shows the lifetime/performance analysis for
a 256MB bank size with statically selected history sizes n = 2,4,8,16,32. We
notice that for n = 8, min achieves roughly 99% of oracle IPC. This underscores
the need for a dynamically selected history size, as demonstrated in Section 4.3.1.
Using a dynamic scheme, min can select an appropriate value of n not just for a

specific application, but for a specific memory configuration as well.

gups

A
A A

cooooocooook
OFRNWPAPUIONOOOO

5 10 15 20 25 30 35
History Size

o

Figure 5.2: Fraction of oracle IPC and lifetime attained by the min heuristic using
a 256MB bank size, for the GUPS benchmark.

35

Chapter 6

Future Work

The work presented in this thesis represents only an initial study of temporal wear-
limiting. Indeed there are several extensions of the topics discussed in this thesis
that should be studied, as well as several new ideas to be explored. First, fur-
ther analysis should be performed on the dynamic history size concept discussed
in Section 4.3.1. In this section we statically determine the threshold values that
change the history size (Miss;,. and Missg..). As these values are most likely
application-specific, this defeats the intent of our idea: a completely dynamic im-
plementation. Further analysis should be done to determine if these static values
are acceptable across all benchmarks, or if they must be determined dynamically.

A second extension of this thesis is in regard to our lifetime metric. In this
study we do not analyze the spatial distribution of wear for our various imple-
mentations. We argue that a good wear-leveling scheme should take any spatial

wear distribution we create and spread it evenly across the memory. Thus memory

36

lifetime in this study is proportional the the total wear, not the wear on a line-by-
line basis. Determining absolute lifetime requires simulating our min heuristic in
conjunction with a state-of-the-art wear-leveling scheme such as Start-Gap [3].
As absolute lifetime is defined as the number of writes performed before a single
memory line fails, our simulations must be executed until line failure. This is an
intractable problem for our timing-accurate simulator, requiring the simulation of
billions or likely trillions of total write operations.

We can approximate this timing-accurate simulation as follows: For each of
our benchmarks, we capture a trace of the wear induced by writes to specific
lines (rows) in memory. We then replay this trace successively and accumulate
the per-line wear until an individual line fails. To do so, first we divide the 8GB
memory into 64MB Start-Gap regions. Traditionally, Start-Gap defines a region
as a set of logically adjacent 256B memory lines. Because swapping adjacent
lines will interfere with bank write timing (and therefore bank write slack), we
cannot use this method. Instead we define a region as a 64MB set of lines within
a bank, thus preserving bank timing information. Because Start-Gap shifts the
initial offset of a region for each gap rotation, we cannot simply record the wear
induced per-line in a benchmark and then accumulate this information until line
failure. Instead, we simulate a benchmark and capture a per-line wear trace for
each region. We write out the wear information for every gap rotation in a region,
or 26,214,400 writes (average of 100 writes per line in the 64MB region). We then
replay and accumulate this per-rotation wear information successively, ensuring

that we account for the change in region offset for each gap rotation. This replay

37

method may take many iterations to reach line failure. We optimize this further
by replaying the traces only until the region offset reaches 0 again, for a total of
262,144 trace replays (64MB region / 256B per region). The wear accumulated in
this “super” trace can then be accumulated successively with no need to account
for the region offset.

The traces can be obtained using the timing-accurate simulation infrastructure
described in this thesis and are recorded as (address, wear) tuples. The replay
of these traces can be done offline by simply taking address and calculating the
correct line within a region using the current region offset. Accumulating the wear
for each gap rotation trace requires 262,144 operations (262,144 lines per region).
Accumulating the wear for the super trace requires 262,144 gap rotation traces,
for a total of approximately 68 billion operations. The number of super trace
replays is dependent on the application. One super trace replay requires 262,144
operations.

A third extension of this thesis is exploring alternate methods to quantify and
exploit write slack. Section 4.3.2 discusses several possible extensions for de-
creasing the number of lifetime mispredictions using access location prediction.
As lifetime mispredictions are mostly attributed to end-of-burst conditions, it is
essential to find prediction mechanisms outside the temporal realm. However, it
is also important to look beyond simple prediction mechanisms. In this thesis we
do not explore the possibility of reordering memory operations to achieve greater
write slack. It is conceivable that with knowledge of memory operation priority, a

memory controller could buffer and reorder operations to achieve more slack than

38

our oracle reports. Thus exploiting write slack adds yet another dimension to the

complex task of scheduling memory operations.

39

Chapter 7

Conclusion

Non-volatile memory technologies provide a low-power, high-density alternative
to traditional DRAM main memories. However, all non-volatile technologies suf-
fer from some degree of limited write endurance. The non-uniformity of write
traffic exacerbates this limited endurance, causing write-induced wear to con-
centrate on a few specific lines. Wear-leveling attempts to mitigate this issue
be distributing write-induced wear uniformly across the memory. Orthogonally,
wear-limiting attempts to increase memory lifetime by directly reducing wear. To
our knowledge, this paper is the first to introduce the concept of temporal wear-

limiting. With it, we make the following contributions:

e We provide an analysis of the physical mechanism that allows for temporal
wear-limiting. Specifically, we quantify the trade-off between write latency

and memory lifetime.

e We implement a mechanism for exploiting this trade-off. Our min heuristic

40

predicts future write latency using a history of per-bank write slack. We
show that min is able to achieve roughly 70% to 90% of maximum write

slack available per application.

e We show that performance is sensitive to the min history size, and provide

a mechanism for dynamically determining the optimum size.

e We show that the lifetime improvement unattainable with our min heuris-
tic is due to end-of-burst conditions, and make an initial study into using

address prediction to identify these conditions.

The write latency / lifetime trade-off we explore in this paper provides yet
another design knob for non-volatile technologies. Traditionally, limited memory
lifetime is an artifact of the design process. It is a result of having a fixed latency
/ lifetime ratio. Our min heuristic allows lifetime to be defined on a system-by-
system basis. By measuring the slack between write operations, we can increase
write latency when an application does not demand high memory performance.
This performance/lifetime trade-off affords greater flexibility to system designers,

opening non-volatile technologies for use in a wider set of applications.

41

Bibliography

[1]

(2]

[3]

[4]

[5]

[6]

E. Ebrahimi, R. Miftakhutdinov, C. Fallin, C. J. Lee, J. A. Joao, O. Mutlu,
and Y. N. Patt, “Parallel application memory scheduling,” in Proceedings of
the 44th Annual IEEE/ACM International Symposium on Microarchitecture,
MICRO-44, (New York, NY, USA), pp. 362-373, ACM, 2011.

“International technology roadmap for semiconductors,” 2013.
http://www.itrs.net/.

M. K. Qureshi, J. Karidis, M. Franceschini, V. Srinivasan, L. Lastras, and
B. Abali, “Enhancing lifetime and security of pcm-based main memory with
start-gap wear leveling,” in Proceedings of the 42Nd Annual IEEE/ACM In-
ternational Symposium on Microarchitecture, MICRO 42, (New York, NY,
USA), pp. 14-23, ACM, 2009.

N. H. Seong, D. H. Woo, and H.-H. S. Lee, “Security refresh: Prevent ma-
licious wear-out and increase durability for phase-change memory with dy-
namically randomized address mapping,” in Proceedings of the 37th Annual
International Symposium on Computer Architecture, ISCA 10, (New York,

NY, USA), pp. 383-394, ACM, 2010.

M. K. Qureshi, V. Srinivasan, and J. A. Rivers, “Scalable high performance
main memory system using phase-change memory technology,” in Proceed-
ings of the 36th Annual International Symposium on Computer Architecture,

ISCA °09, (New York, NY, USA), pp. 24-33, ACM, 2009.

P. Zhou, B. Zhao, J. Yang, and Y. Zhang, “A durable and energy efficient
main memory using phase change memory technology,” in Proceedings of

the 36th Annual International Symposium on Computer Architecture, ISCA
’09, (New York, NY, USA), pp. 14-23, ACM, 20009.

42

[7] S. Cho and H. Lee, “Flip-n-write: A simple deterministic technique to im-
prove pram write performance, energy and endurance,” in Microarchitec-
ture, 2009. MICRO-42. 42nd Annual IEEE/ACM International Symposium
on, pp. 347-357, Dec 20009.

[8] S. Schechter, G. H. Loh, K. Straus, and D. Burger, “Use ecp, not ecc, for
hard failures in resistive memories,” in Proceedings of the 37th Annual In-
ternational Symposium on Computer Architecture, ISCA ’10, (New York,
NY, USA), pp. 141-152, ACM, 2010.

[9] C. Smullen, V. Mohan, A. Nigam, S. Gurumurthi, and M. Stan, ‘“Relaxing
non-volatility for fast and energy-efficient stt-ram caches,” in High Perfor-
mance Computer Architecture (HPCA), 2011 IEEE 17th International Sym-
posium on, pp. 50-61, Feb 2011.

[10] J.J. Yang, D. B. Strukov, and D. R. Stewart, “Memristive devices for com-
puting,” Nature Nanotechnology, vol. 8, pp. 13-24, Jan 2013.

[11] J. McPherson, J.-Y. Kim, A. Shanware, and H. Mogul, “Thermochemical
description of dielectric breakdown in high dielectric constant materials,”
Applied Physics Letters, vol. 82, no. 13, pp. 2121-2123, 2003.

[12] V. G. Karpov, Y. A. Kryukov, I. V. Karpov, and M. Mitra, “Field-induced
nucleation in phase change memory,” Phys. Rev. B, vol. 78, p. 052201, Aug
2008.

[13] D. B. Strukov and R. S. Williams, “Exponential ionic drift: fast switching
and low volatility ofthin-film memristors,” Applied Physics A, vol. 94, no. 3,
pp- 515-519, 2009.

[14] K. K. Likharev, “Layered tunnel barriers for nonvolatile memory devices,”
Applied Physics Letters, vol. 73, no. 15, pp. 2137-2139, 1998.

[15] M. Poremba and Y. Xie, “Nvmain: An architectural-level main memory sim-
ulator for emerging non-volatile memories,” in VLSI (ISVLSI), 2012 IEEE
Computer Society Annual Symposium on, pp. 392-397, Aug 2012.

[16] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood, “The gem5 simulator,”
SIGARCH Comput. Archit. News, vol. 39, pp. 1-7, Aug. 2011.

43

[17] M. Gebhart, J. Hestness, E. Fatehi, P. Gratz, and S. W. Keckler, “Running
parsec 2.1 on m5,” tech. rep., The University of Texas at Austin, Department
of Computer Science, October 2009.

[18] “Gups,” n.d. http://www.dgate.org/ brg/files/dis/gups/.

44

