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Abstract

Epidemiological data demonstrate that patients with diabetes have an augmented risk of
developing various types of cancers, accompanied by higher mortality. A number of mechanisms
for this connection have been hypothesized, such as insulin resistance, hyperinsulinemia,
hyperglycemia, and increased inflammatory processes. Apart from these potential mechanisms,
several diabetes-associated dysregulated cytokines might be implicated in the link between
diabetes and cancer. In fact, some inflammatory cytokines, e.g. TNF-a, IL-6 and leptin, have been
revealed to play important roles in both initiation and progression of tumor. Here, we depict the
role of these cytokines in key events of carcinogenesis and cancer development, including their
capability to induce oxidative stress, inflammation, their participation in epithelial mesenchymal
transition (EMT), angiogenesis, and metastasis. Finally, we will also highlight the existing
knowledge in terms of the involvement of these cytokines in different cancer types and comment
on potential significances for future clinical applications.
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Introduction

Diabetes mellitus (DM), the 12t leading cause of death worldwide [1], is a severe and
chronic health problem worldwide that disturbs human body's ability to utilize the energy in
food. It can be classified into three major types: type 1, type 2, and gestational diabetes. DM
can cause serious acute and chronic complications that adversely impact the quality of life
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and survival of the majority of people with this disease. Cancer is the 2nd primary cause of
death globally [1]. A growing number of studies demonstrate a positive link between DM
and the risk of cancer and cancer-related mortality [2]. Currently, the number of people lives
with diabetes worldwide is 250 million and this figure anticipated to reach 380 million in 20
years. Accordingly, one can assume that even a slight increase in the cancer risk associated
with diabetes may have significant consequences at the population level.

The association between diabetes and cancer was first hypothesized more than 70 years ago
and identified in the 1960s in population-based studies [3]. More recently, a number of
studies [4] indicate that some type of cancers develop more frequently in patients with
diabetes (primarily type 2 DM), whereas others such as prostate cancer happens less often in
patients with diabetes. Diabetes imparts the highest relative risks (about 2-fold or higher) for
liver, pancreas, and endometrium cancer, and lower risks (about 1.2-1.5-fold) for colon and
rectum, breast, and bladder cancer [3]. Lung cancer does not seem to be associated with an
augmented risk in diabetes, and the evidence for kidney cancer and non-Hodgkin lymphoma
is indecisive. At present, few studies have investigated links between type 1 DM and cancer

3.

Despite their important clinical significance, the potential biologic links between these two
diseases are poorly understood [3,5], which elicits a tremendous challenge for patient care.
Some perplexing factors that have common or site-specific relevance make it hard to
precisely evaluate cancer risk in patients with diabetes. These factors comprise diabetes
duration, diverse therapeutic drugs, variable levels of metabolic control, and the potential
existence of chronic complications. Currently, the mainstream view proposes that the
relationship may be attributed to the direct effects of diabetes, i.e. hyperglycaemia [3,6] or
alterations in fundamental metabolic conditions including insulin resistance and
hyperinsulinaemia [3]. Hyperglycemia may contribute to increased cancer risk in diabetes
via augmented oxidative stress and DNA damage [7,8]. Studies of the relationship between
hyperglycemia and cancer risk have been conducted for a long time, nonetheless the
underlying mechanisms remain unconvincing. Insulin is a growth factor with important
metabolic and mitogenic actions, and its effect on cancer cells is advanced by multiple
mechanisms acting at the receptor or post-receptor levels. Hence, hyperinsulinemia,
exogenous insulin or insulin analogs [9-13] most probably favors cancer in patients with
diabetes. However, Mink et al. [14] found no relationship between insulin levels and breast
cancer (BC) incidence. Moreover, Kabat and colleagues demonstrated that baseline levels of
insulin and the insulin resistance index do not correlate with an elevated risk of colorectal/
colon cancer [15]. In addition, elevated levels of insulin-like growth factor (IGF), steroid and
peptide hormones, and inflammatory markers seem to play an important role in the
association between these two heterogeneous and multifactorial diseases [2].

Recently, more and more attention has been given to the role of cytokine dysregulation in
cancer initiation and progression. Cytokines are low-molecular-weight proteins synthesized
by immune and stromal cells in response to several stimuli [16]. They mediate cell-to-cell
communication and control differentiation, proliferation, immune cell activation, cell
survival, cell migration, as well as cell death [16]. High blood glucose plays a pivotal role in
the immune activation of diabetes, thus intensely enhances circulating cytokine levels via an
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oxidative mechanism, and this effect is more prominent in patients with impaired glucose
tolerance (IGT) [17]. Esposito et al. suggest that the IGT subjects have fasting plasma
interleukin 6 (IL-6) and tumor necrosis factor (TNF-) levels much higher than control
subjects [17]. A study evaluating the serum levels of cytokines, chemokines and adipokines
simultaneously with BioPlex assay by Costantini et a/. [18] reveals that IL-1a, IL-2R, 1L-12,
IL-18, MIF, insulin, leptin, PAI-1, HGF, glucagon, resistin and adipsin are elevated while
ghrelin is declined in T2 DM patients versus healthy controls. TNF-a and IL-6 are possibly
the best characterized pro-tumorigenic cytokines. They were originally suspected to be
implicated in cancer due to activation of the oncogenic transcription factors NF-xB,
activator protein 1 (AP-1) and signal transducer and activator of transcription 3, also known
as STATS3 in epithelial cells [19-22]. Afterwards, numerous other cytokines and stimuli were
revealed to have pro-tumorigenic effects. In relation to diabetes-associated cancer initiation
and progression, the current review discusses the involvement of dysregulated cytokines
under the diabetic condition in carcinogenesis and cancer development, for future
therapeutic purposes.

TNF-a and Interleukin-6 (IL-6)

Previous studies have revealed augmented circulating levels of inflammatory cytokines
TNF- and IL-6 in patients with diabetes [23-27]. The plasma TNF- and IL-6 are probably
produced by activated leukocytes and adipocytes and vascular endothelial cells. TNF- and
IL-6 are typical pro-inflammatory cytokines with a pro-tumorigenic effect.

It is well known that unsolved inflammation can result in cancer. TNF-a is a pro-
inflammatory cytokine involved in carcinogenesis [28]. Persistent exposure to low
concentration of TNF-a can prompt a tumor phenotype [29]. TNF-a facilitates
tumorigenesis and cancer development via activating nuclear factor-kB [30] and increasing
reactive oxygen species (ROS) and reactive nitrogen species (RNS) formation, which can
trigger DNA damage [31]. TNF-a has more significant impact in the early stage of
carcinogenesis, e.g. angiogenesis and invasion [19,30]. Kwong et a/. incubated normal
human ovarian epithelial cells with a sustained TNF-a dose and revealed emergence of a
precancerous-like phenotype with structural and functional alterations, including
overexpression of cancer markers, tissue disorganization and cell invasion [32]. In addition,
persistent TNF-a. exposure can promote tumor-forming sphere ability and expression of
stem cell-transcription factors, thus inducing cancer stem cell phenotypes in oral squamous
cell carcinoma [33].

Raised serum levels of 1L-6 can be detected in patients with prostate cancer, colorectal
adenomas, breast cancer, B-cell lymphoma, and myeloma [34,35]. IL-6 signaling is an
imperative regulator of breast cancer stem cells, driving the malignant phenotype via
differentiation and development of therapeutic resistance [36]. In addition, IL-6 strongly
stimulates proliferation and growth of various cancer cell lines or primary tumors [37-39].
Notably, it has emerged as a biomarker for distinct inflammatory conditions and also a
malignancy predictor, with sensitivity and specificity of approximately 60-70% and 58-90%,
respectively [40,41]. Generally, tumor-bearing patients or animals with increased levels of
IL-6 in serum or tissue have a poor prognosis [21,42-44]. Diminution of I1L-6 signaling
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pathway during tumor induction contributes to a reduction in tumor multiplicity and growth
[45,46].

IL-6 binds to its receptor IL-6Ra and co-receptor gp130 (glycoprotein 130), hence
stimulating the JAK/STAT signaling pathway [47]. A number of studies have underlined the
role of the IL-6/JAK/STAT pathway in tumor initiation and progression because STATS are
transcription factors directly involved in tumorigenic processes [48,49]. Moreover, IL-6 may
prompt tumorigenesis by hypermethylating tumor suppressor genes and hypomethylating
long interspersed nuclear element-1 (LINE-1) in oral squamous cancer cell lines [50]. In
addition, IL-6 converts noncancer cells into cancer stem cells, promoting tumor invasion and
expansion. Particularly, Kim et al. suggest that noncancer stem cells can secrete 1L-6, which
activate the IL-6R/JAK/STAT3 pathway, leading to increase in Oct4 gene expression [51].

According to aforementioned studies, IL-6 can be used as a therapeutic target for cancer
treatment. Several antibodies against IL-6/IL-6R are presently evaluated in phase I/11 clinical
trials aimed to develop of therapeutic substitutions. An anti-IL-6 monoclonal antibody,
Siltuximab (CNTO 328), has presented hopeful outcomes for ovarian cancer, prostate
cancer, non-small cell lung cancer (NSCLC) and multiple myeloma [52-56]. Tocilizumab, a
humanized recombinant monoclonal I1L-6 receptor (IL-6R) antibody has been analyzed in
NSCLC cells by Kim et al. Western analyses demonstrated stimulation of the NFxB
pathway by tocilizumab. Their data suggest that tocilizumab has a potent anticancer
effectiveness through apoptosis induction, proposing that this anti-IL-6R antibody may be
employed as a novel targeting molecule for NSCLC treatment [57].

Leptin is an imperative pro-inflammatory cytokine mainly produced by white adipose tissue
and implicated in pathophysiological mechanisms associated with diabetes and its
complications [58]. Leptin levels are elevated in overweight or obese people [59]. A study
examining the link between plasma leptin levels and diabetes mellitus demonstrate that
higher plasma leptin concentrations are associated with diabetes mellitus but not
independently associated with diabetes mellitus after adjustment for body mass index (BMI)
[60]. Leptin can adjust energy homeostasis through modulating food intake and energy
expenditure via its effect on the hypothalamus; alternatively, it also induces cell growth,
migration, and invasion [61]. Thus, leptin may play an important etiologic role in triggering
malignant transformation or tumor development. For instance, preclinical evidence has
revealed that leptin stimulates esophageal, colorectal, prostate and breast cancer cell
proliferation [62-66] and is responsible for the association between diabetes and prostate
cancer [67]. The leptin-receptor might predict poor prognosis in patient with advanced
gastric cancer (AGC) [68]. In addition, a pooled analysis from three cohorts by Stolzenberg-
Solomon et al. supports an relationship between enhancing leptin levels and pancreatic
cancer [69]. The role of leptin in promoting cancer development has also been substantiated
by in vivo studies. Actually, leptin-deficient and -resistant mice (ob/ob and db/db mice) do
not develop transgene-triggered mammary cancers [70,71].
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The mechanisms underlying leptin-related cancer development have been extensive studied.
Leptin enhances the synthesis and release of cytokines by macrophages and proangiogenic
factors, including fibroblast growth factor 2 (FGF2), vascular endothelial growth factor
(VEGF), and matrix metalloproteases 2 and 9 (MMP-2/9) [72], which can prompt
neoangiogenesis or further promote cancer cells [73]. Leptin has also been shown to
significantly augment endothelial cell (EC) growth via a BCL2-dependent mechanism
[74-77]. Leptin can elevate estrogen synthesis via activation of aromatase, thus promoting
cancer growth in breast and endometrial cancer [78]. Recently, Chang et a/. demonstrate that
leptin stimulates STAT3 and G9a histone methyltransferase to silence miR-200c, a genetic
program of epithelial homeostasis in breast cancer stem-like cells (CSC) that induces
malignant development [79]. In addition, leptin is able to activate STAT3 in colitis-
associated colon cancer (CAC) cells [80-84]. A recent study suggest that leptin can induce
EMT in BC cells and this involves IL-8 activation via the PI3K/Akt signaling pathway [85].

Plasminogen activator inhibitor-1 (PAI-1)

Extracellular proteases regulate various physiological and pathological processes, e.g. organ
development, inflammation, tissue injury/repair, and cancer [86,87]. The urokinase
plasminogen activator (uUPA)-plasmin is one of the most explored protease systems [88-90].
The serine protease UPA is activated when binding to its receptor uPAR on the cell surface
[91]. The proteolytic activity of uPA is explicitly regulated by plasminogen activator
inhibitor-1 (PAI-1), a glycoprotein of roughly 50 kDa, which upon combining with uPA
facilitates the swift endocytosis of the trimolecular uPA/PAI-1/uPAR complex [92,93]. PAI-1
is synthesized by vasculature-surrounding cells such as endothelial cells and platelets. Its
circulating active form is comparatively unstable. Nevertheless, PAI-1 is stabilized by
vitronectin (VN) in blood circulation and extracellular matrix. This abundant glycoprotein is
involved in thromboembolic diseases, atherosclerosis, fibrosis, cell migration, cell invasion,
cell proliferation, cancer, and tissue remodeling [94]. PAI-1 expression can be regulated by
multiple factors, such as TGF-B1 [95], inflammatory factors [96], lipids [97-100], glucose
and insulin [101-103], p53 and the cell cycle [104-106], phorbol ester [107,108], hypoxia
[109,110] and cell adhesion [111-114].

In the last two decades, increasing evidence suggest that an elevated level of PAI-1 protein in
human primary tumors represents one of the most helpful biochemical markers of an
unfavorable prognosis in a number of human cancer types. This observation has given the
motivation to substantial research on the role of PAI-1 in cancer growth, invasion, and
metastasis [115]. Recently, Buta ef a/. propose that tumor size and PAI-1 can be used in
combination as prognostic and predictive phenotypes in node-negative, postmenopausal BC
patients bearing histological grade Il tumors with ER/PR expression [116]. Positive stroma
PAI-1 protein expression in the human epidermal growth factor receptor 2 (HER2)-negative
patients is related to lower risk of death, hence it might identify a subgroup of HER2-
negative advanced BC patients who may benefit from trastuzumab treatment [117] and can
be securely spared the toxicity and expenses of adjuvant chemotherapy [118]. Both PAI-1
and uPA stimulate cancer development and metastasis. Increased uPA and PAI-1 in BC
tissue are independent and effective predictors of unfavorable outcome of BC patients,
including patients with lymph node-negative disease. Apart from being prognostic
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biomarkers, overexpression of uPA and PAI-1 is capable of predicting benefit from adjuvant
chemotherapy in early BC patients [118]. In addition, Suh et a/. demonstrated that
upregulation of PAI-1 is associated with aggressive lymph node metastasis in AGC [119].

The first evidence illuminating the link of PAI-1 to more aggressive cancers came from the
observation that PAI-1 possesses a proangiogenic property via its anti-protease and
vitronectin-binding functions facilitating the detachment of endothelial cells from
vitronectin and their movement to fibronectin rich tissues [120,121]. Nonetheless, this
angiogenesis activity is dose-dependent with a stimulatory activity at physiologic levels
[120,122] and a suppressive activity at pharmacologic levels [123]. PAI-1 hinders
spontaneous apoptosis in tumor cells via various mechanisms. It suppresses Fas/Fas-L-
mediated apoptosis in a number of human cancer cells via regulating pericellular plasmin
activity [124,125]. Moreover, extracellular PAI-1 affects intrinsic (mitochondria-dependent)
apoptosis through inhibiting the initiator caspase-9 in cancer cells [126]. Intracellular PAI-1
supports cell survival and protects cancer cells from chemotherapy-triggered apoptosis via
suppressing caspase-3 [127].

Since PAI-1 expression is increased in a number of cancer types, it has been anticipated to
be a possible target for cancer treatment. However, the role of PAI-1 in tumorgenesis still
remains controversial. PAI-1 at physiological level might promote angiogenesis and cancer
growth [123,128-132]. Angiogenesis and cancer do not develop under PAI-1-deficient
condition [129,133]. Nevertheless, substantial studies suggest that PAI-1 at pharmacological
levels hinders cancer growth and angiogenesis [123,128,130,131,134-137]. The suppression
of PAI-1 by Tiplaxtinin (PAI-039), a specific inhibitor of PAI-1, or siRNA can inhibit tumor-
initiating cells within head and neck cancer cell lines via downregulating the sex-
determining region Y-box 2 (Sox2) [138]. Some studies reveal that antibodies against PAI-1
may inhibit human cancer cell metastasis in mouse xenograft models [139-141].
Furthermore, the researchers have screened a number of small molecule PAI-1 inhibitors
[142-144], trying to develop some novel cancer therapeutic agents.

Resistin, a signaling molecule secreted by adipocytes and monocytes, belongs to cysteine-
rich protein family named “resistin-like molecules” [145,146]. It is up-regulated in obesity
and participates in the pathogenesis of insulin resistance [146,147], type 2 diabetes
[148-150] and metabolic syndrome (MS) [151]. Accumulating evidence shows that resistin
plays an imperative controlling role in inflammatory disease [152,153]. Resistin expression
at mRNA level is significantly augmented by pro-inflammatory cytokines [154,155].
Clinically, resistin concentrations are related to inflammatory markers obviously
independent of BMI and can be used as a predictive factor for coronary atherosclerosis
[152,156,157].

Sun et al. [158] and Dalamaga et a/. [159] demonstrate that patients with breast cancer (BC)
have strikingly enhanced resistin levels when compared with control subjects and patients
with benign breast lesions (BBL). Additionally, the biological gradient of BC risk by plasma
resistin concentrations still exists following adjustment for measurers of adiposity. The dose-

Integr Cancer Sci Ther. Author manuscript; available in PMC 2018 June 19.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Wu et al.

Page 7

dependent relationship between resistin levels and BC risk is remarkably prominent in
female with superfluous exposure to estrogens. Thus, resistin might have an adiposity-
independent role in BC pathogenesis. High resistin levels in BC tissue are related to a more
malignant pathological status and unfavorable patient survival [160]. Thus, resistin might be
potentially employed as a prognosis predictor for BC, a marker for hormone treatment
stratification, as well as a possible therapeutic target. Moreover, resistin has been discovered
to associate with other cancer types such as prostatic, colorectal, gastroesophageal and
endometrial cancer [161-168]. In cancer patients, resistin is dramatically related to tumor
markers, cancer stage, tumor size, grade and lymph node invasion [159,169].

Resistin's effects on cancer progression involve multiple mechanisms. Deshmukh et al.
substantiate that resistin stimulates growth and aggressiveness of BC cells, and these effects
are mediated by STAT3 activation [170]. In addition, resistin advances chondrosarcoma
metastasis and expression of MMP-2 via activating the AMP-activated protein kinase
(AMPK)/p38 mitogen-activated protein kinase (MAPK) pathway and downregulating
miR-519d expression. Hence, resistin might represent a latent new therapeutic target in
chondrosarcoma metastasis [171]. Hsieh Y'Y et al. demonstrate that resistin promotes
stromal cell-derived factor-1 (SDF-1) expression by Toll-like receptor 4 (TLR4) and
stimulation of p38 MAPK/NF«xB pathway in gastric cancer cells, which could explain a
novel role of resistin in the association between obesity and gastric cancer [172].

In addition to aforementioned diabetes-associated dysregulated cytokines, other diabetes-
related cytokines involved in cancer initiation and progression include C-X-C chemokine
ligand 16 (CXCL16) [173-183], IL-1 [184-187], IL-10 [188-192], IL-12 [193-195], IL-18
[196-198], macrophage migration inhibitory factor (MIF) [199-202], and hepatocyte growth
factor (HGF) [203-207].

Concluding comments

Diabetes, especially T2DM, and diabetes risk factors might be related to cancer. Robust and
conceivable evidence propose associations between diabetes and cancer; nonetheless, the
underlying mechanisms are poorly understood and there is little applicable clinical
management of patients presenting with these diseases concomitantly. Accordingly, a
multidisciplinary method is required to reveal the mechanisms underlying the links between
diabetes and cancer, eventually improve clinical outcomes.

Currently, increasing attention has been given to the role of cytokine in cancer initiation and
progression. Diabetes-associated cytokine dysregulation may be an important pathogenesis
responsible for diabetes-related cancer. The important role of cytokines has been described,
as a diagnostic or prognostic marker for tumor. For instance, the measurement of the serum
concentrations of cytokines, e.g. resistin, IL-6 and IL-10, may have guiding significance for
tumorigenic process or prognosis [40,208]. While various cytokines prompt carcinogenesis,
their pro-tumoral roles rely on the equilibrium of distinct inflammatory mediators and the
stage of cancer development. Therefore, investigating the roles of these mediators in various
cancers or stages of development is indispensable for designing novel personalized
managements by means of these latent therapeutic targets.
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Although advancement has been made in the comprehension of the mechanisms of diabetes-
associated dysregulated cytokines in tumorigenesis and cancer development, establishing a
correlation between cytokines regulation and disease progression, as well as response to
treatment still remains a challenge.
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AGC Advanced Gastric Cancer

AMPK AMP-Activated Protein Kinase

AP-1 Activator Protein 1

BBL Benign Breast Lesions

BC Breast Cancer

BMI Body Mass Index

CAC Colitis-Associated Colon Cancer

CXCL16 C-X-C Chemokine Ligand 16

DM Diabetes mellitus

EC Endothelial Cell

EMT Epithelial Mesenchymal Transition

FGF2 Fibroblast Growth Factor 2

HER2 Human Epidermal Growth Factor Receptor 2
HGF Hepatocyte Growth Factor

IGF Insulin-Like Growth Factor

IGT Impaired Glucose Tolerance

IL-6 Interleukin 6

LINE-1 Long Interspersed Nuclear Element-1
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PAI-1

RNS

ROS

SDF-1

STAT3

TLR4

TNF

uPA

VEGF
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p38 Mitogen-Activated Protein Kinase
Macrophage Migration Inhibitory Factor
Matrix Metalloproteases

Metabolic Syndrome

Non-Small Cell Lung Cancer
Plasminogen Activator Inhibitor-1
Reactive Nitrogen Species

Reactive Oxygen Species

Stromal Cell-Derived Factor-1

Signal Transducer and Activator of Transcription 3
Toll-like Receptor 4

Tumor Necrosis Factor

Urokinase Plasminogen Activator
Vascular Endothelial Growth Factor

Vitronectin
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