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Abstract 31 

Time series of wetland methane fluxes measured by eddy covariance require gap-filling to 32 

estimate daily, seasonal, and annual emissions. Gap-filling methane fluxes is challenging 33 

because of high variability and complex responses to multiple drivers. To date, there is no 34 

widely established gap-filling standard for wetland methane fluxes, with regards both to the best 35 

model algorithms and predictors. This study synthesizes results of different gap-filling methods 36 

systematically applied at 17 wetland sites spanning boreal to tropical regions and including all 37 

major wetland classes and two rice paddies. Procedures are proposed for: 1) creating realistic 38 

artificial gap scenarios, 2) training and evaluating gap-filling models without overstating 39 

performance, and 3) predicting half-hourly methane fluxes and annual emissions with realistic 40 

uncertainty estimates. Performance is compared between a conventional method (marginal 41 

distribution sampling) and four machine learning algorithms. The conventional method achieved 42 

similar median performance as the machine learning models but was worse than the best 43 

machine learning models and relatively insensitive to predictor choices. Of the machine learning 44 

models, decision tree algorithms performed the best in cross-validation experiments, even with 45 

a baseline predictor set, and artificial neural networks showed comparable performance when 46 

using all predictors. Soil temperature was frequently the most important predictor whilst water 47 

table depth was important at sites with substantial water table fluctuations, highlighting the value 48 

of data on wetland soil conditions. Raw gap-filling uncertainties from the machine learning 49 

models were underestimated and we propose a method to calibrate uncertainties to 50 

observations. The python code for model development, evaluation, and uncertainty estimation is 51 

publicly available. This study outlines a modular and robust machine learning workflow and 52 

makes recommendations for, and evaluates an improved baseline of, methane gap-filling 53 

models that can be implemented in multi-site syntheses or standardized products from regional 54 

and global flux networks (e.g., FLUXNET).55 

56 

57 
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Main Text  58 

1 Introduction  59 

Globally, wetlands emit 102-200 teragrams (Tg) of the greenhouse gas methane (CH4) to the 60 

atmosphere and the scarcity of wetland CH4 flux data has hindered efforts to better constrain 61 

emission uncertainties (Saunois et al. 2020). Eddy covariance-based measurements of CH4 62 

fluxes have increased rapidly over the last two decades, leading to the release of the first global 63 

compilation of CH4 flux data from 81 sites in 2020 (FLUXNET-CH4 community product Version 64 

1.0; Knox et al. 2019; Delwiche et al. 2021). The growth in available CH4 data can help improve 65 

bottom-up estimates of regional-to-global wetland CH4 sources (Treat et al. 2018; Peltola et al. 66 

2019; Rosentreter et al. 2021) but this requires data processing standards that ensure eddy 67 

covariance CH4 flux data products are of the same quality and provenance as carbon dioxide 68 

(CO2) and energy fluxes (e.g., FLUXNET2015; Pastorello et al. 2020). Gap-filling is a 69 

particularly important step during data processing as it impacts estimates of ecosystem carbon 70 

balance and net ecosystem radiative forcing at individual sites, due to the potency of CH4 as a 71 

greenhouse gas (Neubauer and Megonigal 2015; Hemes et al. 2019; Günther et al. 2020), and 72 

can alter upscaled predictions in data driven CH4 flux models (Turetsky et al. 2014; Treat et al. 73 

2018; Peltola et al. 2019). Comprehensive evaluations of gap-filling methods for CH4 fluxes 74 

across many wetland sites are still lacking and needed in order to advance existing methods 75 

(Nemitz et al. 2018; Mammarella et al. 2020). 76 

 77 

Gaps of various lengths arise in time series of eddy covariance CH4 fluxes because of system 78 

failure (including signal degradation due to sensor soiling), insufficient turbulent mixing, extreme 79 

weather conditions, irregular maintenance, and wind direction filtering, among other reasons. 80 

Technical challenges remain in precise and accurate measurement of eddy covariance CH4 81 

fluxes (Morin 2019; Knox et al. 2019) despite recent technological advances in spectra-based 82 

gas analyzers (Nemitz et al. 2018). After filtering, annual data coverage can be low for CH4 (25-83 

40%; Delwiche et al. 2021). Therefore gap-filling procedures are required to construct the 84 

continuous time series for quantifying continuous daily, seasonally, and annually integrated CH4 85 

emission estimates. Gap-filling techniques used to impute half-hourly eddy covariance fluxes at 86 

individual sites include look-up tables (Reichstein et al. 2005), machine learning and genetic 87 

algorithms (Ooba et al. 2006; Moffat et al. 2007; Kim et al. 2019), multiple imputation (Hui et al. 88 

2004; Vitale et al. 2018), and process models (Oikawa et al. 2017). Any bias tied to a given 89 
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method propagates to seasonal and annual CH4 emissions and can therefore impact CH4 90 

emission estimates at regional to global scales (Falge et al. 2001; Moffat et al. 2007; Peltola et 91 

al. 2019; Vitale et al. 2019).  92 

93 

Marginal distribution sampling (MDS) (Reichstein et al. 2005; Moffat et al. 2007; Pastorello et al. 94 

2020) and machine-learning (ML) have become the standard gap-filling methods for CO2 fluxes 95 

in the eddy covariance community (Wutzler et al. 2018), while no similar standard has yet been 96 

established for CH4 fluxes. MDS is a multi-step sampling scheme, akin to a complex decision 97 

tree, and uses look-up tables to identify similar predictor conditions within a given time window, 98 

which conservatively expands around the gap, only as is necessary. MDS is an efficient gap-99 

filling method that supplements the look-up tables with diurnal cycle interpolation, allowing it to 100 

function when there are gaps in predictors. However, MDS performance can be limited by the 101 

number of permissible predictors and current predictor choices are optimized for CO2, not CH4 102 

fluxes (Falge et al. 2001). Moreover, unlike CO2 fluxes, CH4 fluxes at many sites appear to lack 103 

a consistent diel cycle and display different diel patterns (Bansal et al. 2018). In contrast, ML is 104 

well suited to high-dimensional datasets and can capture nonlinear relationships between 105 

predictors and fluxes (Tramontana et al. 2016; Bodesheim et al. 2018) albeit they generally 106 

need more time to train and evaluate. A summary of some of the methodological considerations 107 

for MDS and four different ML algorithms considered in this study are shown in Table 1. 108 

109 

110 

Table 1 An overview of marginal distribution sampling and potential machine learning 111 
algorithms for gap-filling of CH4 flux in wetlands. 112 

113 

Method Marginal 
Distribution 
Sampling 
(MDS) 

Lasso 
Regression 
(Lasso) 

Artificial Neural 
Network (ANN) 

Random Forest 
(RF) 

XGBoost 

Justification Simple 
alternative to 
ML 

Interpretable 
baseline 

Most common 
current method 

Fast and 
promising for 
tabular data 

Strong in other 
ML applications 
with tabular data 

Class Multi-step 
sampling 
scheme 

Linear 
regression 

Regression Regression 
(Decision tree) 

Regression 
(Decision tree) 

Algorithm Multi-step look-
up table with 
backup of 
diurnal cycle 
interpolation 

Least squares 
regression with 
regularization 
penalty on 
coefficients to 
"shrink" 

Layers of nodes 
performing linear 
transformations 
with nonlinear 
transfer 
functions 

Ensemble of 
decision trees 
learned 
independently on 
randomly 
bagged data 

Similar to random 
forest but 
decision trees 
learn iteratively 
using gradient 
boosting 
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unimportant 
coefficients to 
zero 

subsets 

Pre-processing Predictor choice 
(combinations 
of 3) 

Imputation Normalization & 
imputation 

Imputation None (Imputation 
optional) 

Hyperparameter 
Tuning 

None Yes (minimal) Yes Yes Yes (few) 

Interpretability  Low High 
(coefficients) 

Low High 
(importances) 

High 
(importances) 

Uncertainty Variance of 
observations  

Bootstrap 
ensembles 

Bootstrap 
ensembles 

Bootstrap 
ensembles 

Bootstrap 
ensembles 

References (Falge et al. 
2001; 
Reichstein et al. 
2005) 

(Tibshirani 1996) (Rojas 2013) 
 
 

(Breiman 2001) (Chen and 
Guestrin 2016) 
 
 

 114 

To date, artificial neural networks (ANN) have been found to be effective for gap-filling CH4 115 

fluxes across six high-latitude wetlands (Dengel et al. 2013). ANN have since been used across 116 

a variety of eddy covariance sites at natural, rewetted, and urban wetlands (Morin et al. 2014; 117 

Goodrich et al. 2015; Rey-Sanchez et al. 2018; Hemes et al. 2019; Li et al. 2020; Koebsch et al. 118 

2020), tidal salt marshes (Vázquez-Lule and Vargas 2021), and rice paddies (Knox et al. 2016; 119 

Runkle et al. 2019), as well as in a FLUXNET-CH4 synthesis and the FLUXNET-CH4 community 120 

product Version 1.0 (Knox et al. 2019; Delwiche et al. 2021). However, the ANN algorithms 121 

developed by Dengel et al. (2013) and Moffat et al. (2007) were only inter-compared in detail 122 

among six high-latitude sites and were only evaluated on single site-growing-seasons of data. 123 

More recently, random forests (RF) were found to match or outperform both MDS and ANN at 124 

five wetlands and rice paddies, with strengths in predicting interannual variability from a single 125 

multi-year model (Kim et al. 2019). Overall, although some important insights into CH4 gap-filling 126 

strategies with ML have been made at individual, or small sets of sites, comprehensive 127 

experiments are still needed to identify the best approaches across the global distribution of 128 

wetlands.  129 

 130 

In addition to algorithm choice, investigators need to consider the causes of spatial and 131 

temporal variability and the effects of biases between training and test data. The complexity of 132 

wetland CH4 production, consumption, and transport processes can lead to high temporal and 133 

spatial variability in fluxes across flux tower footprints. Relationships between biophysical 134 

drivers and CH4 flux can be nonlinear and obscured by lags and asynchronicity (Sturtevant et al. 135 
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2016). Additionally, the temporal signals in CH4 flux time series are observed across a broad 136 

range of hourly, multi-day, and seasonal timescales (Knox et al. 2019; Knox et al. 2021), and 137 

can lack a clear diel cycle as observed for CO2 (Moffat et al. 2007). Challenges also arise for 138 

standardization due to site uniqueness (Bridgham et al. 2013; Trifunovic et al. 2020). For 139 

example, Knox et al. (2019) showed that variation in water table depth, a well-established 140 

control on wetland CH4 fluxes, only measurably affected CH4 flux at sites where its range 141 

extended across the soil surface. Similarly, the spatial mosaic of inundation and vegetation 142 

varies both within and across wetland classes and affects wetland CH4 flux via substrate supply 143 

and gas transport processes (Matthes et al. 2014; McNicol et al. 2017; Rey-Sanchez et al. 144 

2018). This high spatial heterogeneity creates a wind direction (footprint) dependency rarely 145 

observed for CO2 fluxes (Tuovinen et al. 2019). To be able to explain the complex dynamics of 146 

wetland CH4 emissions, models need information on water table position, soil oxygen and 147 

moisture, and soil temperature (Bridgham et al. 2013). Other issues include biases in training 148 

observations introduced by low turbulence (friction velocity, USTAR) filters (Göckede et al. 149 

2019) which might make gap-filling models more prone to errors during imputation of CH4 flux 150 

from higher-to-lower turbulence conditions (Dengel et al. 2013), as is observed at some sites for 151 

daytime-to-nighttime imputation of CO2 flux (Moffat et al. 2007). Conditions that lead to 152 

exceptional but short-lived fluxes (e.g., ebullition events) may also be less easy to capture in 153 

training and test data (Ueyama et al. 2020b; Taoka et al. 2020). In sum, the combination of high 154 

temporal variability of CH4 flux within and across sites (Knox et al. 2019), high spatial variation 155 

of fluxes in some wetlands (Morin et al. 2017), and the sensitivity of fluxes to a suite of drivers at 156 

different timescales (Sturtevant et al. 2016), requires a thorough evaluation of CH4 flux gap-157 

filling models across a broad range of possible gap lengths.  158 

 159 

This study provides a systematic evaluation of MDS and four ML algorithms for gap-filling CH4 160 

fluxes at 17 FLUXNET-CH4 sites. The 17 sites cover a wide range of wetland types, and climate 161 

and gap conditions (i.e., length and distribution). Collectively, these sites provide a large and 162 

fairly standard set of predictors, allowing for a robust across-site comparison of model 163 

performance and predictor importance. The overall ML workflow from artificial gap generation, 164 

to cross validation and testing, and to prediction uncertainty estimation, is robust and 165 

reproducible (Pastorello et al. 2020; Nemitz et al. 2018) and designed to be general and 166 

applicable to a wide range of gap-filling scenarios across terrestrial wetland ecosystems. The 167 

data and code are made public [https://github.com/stanfordmlgroup/methane-gapfill-ml]. 168 
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2 Materials and Methods 169 

2.1 Site Data 170 

Seventeen managed agricultural (i.e., rice paddies) and natural wetlands were selected from 171 

Version 1 of the FLUXNET-CH4 database (Delwiche et al. 2021) for the comparison of gap-172 

filling methods (Table 2). Selection criteria of the sites included: 1) at least one calendar year of 173 

measured fluxes; and 2) a complete set of measured physical and biological predictors, 174 

including soil temperature and water-table depth (Table A.1). Although FLUXNET-CH4 contains 175 

other ecosystem types, including several upland cover types, lakes, and mangroves, these 176 

ecosystems were beyond the scope of the present study. 177 

 178 

Table 2: Site information and data references for 17 wetland FLUXNET-CH4 sites. Sites 179 

are arranged in order of increasing mean of observed CH4 flux (which is also sensitive to 180 

differences in temporal coverage between sites) and days refers to the number of days with 181 

some observed CH4 fluxes. Data are the same as those published in the FLUXNET-CH4 182 

community product Version 1.0 (https://fluxnet.org/data/fluxnet-ch4-community-product/) 183 

(Delwiche et al. 2021). Mean annual temperature and precipitation were extracted from 184 

respective WorldClim 2.0 gridded products at site locations (Fick and Hijmans 2017).  185 

 186 

Site ID Climate 
Zone 

Mean Annual 
Temp. 

 °C 

Mean 
Annual 
Precip.  

mm 

Mean 
FCH4, 

nmol m-2 s-1 

Days,  
n 

Site DOI 

US-Uaf Boreal -2.8 298 2.7 2922 (Iwata et al. 
2020b) 

US-Los Temperate 4.1 833 18.4 1826 (Desai 2020) 

SE-Deg Boreal 1.7 620 31.7 1826 (Nilsson and 
Peichl 2020) 

FI-Sii Boreal 3.2 666 35.4 2191 (Vesala et al. 
2020b) 

US-Twt Temperate 15.2 372 37.7 3016 (Knox et al. 
2020) 

FI-Si2 Boreal 3.2 664 46.1 1827 (Vesala et al. 
2020a) 



9 
 

CA-SCB Boreal -2.8 414 46.3 1417 (Sonnentag 
and Helbig 
2020) 

NZ-Kop Temperate 13.9 1343 47.0 1461 (Campbell 
and 
Goodrich 
2020) 

FI-Lom Boreal -0.4 484 49.7 1826 (Lohila et al. 
2020) 

JP-Mse Temperate 14.1 1305 59.4 366 (Iwata 
2020a) 

JP-BBY Temperate 6.7 1153 65.0 1461 (Ueyama et 
al. 2020a) 

BR-Npw Tropical 25.2 1318 69.7 1122 (Vourlitis et 
al. 2020) 

US-Tw4 Temperate 15.4 370 97.5 2191 (Eichelmann 
et al. 2020) 

US-WPT Temperate 9.9 881 127.6 1096 (Chen and 
Chu 2020) 

US-Myb Temperate 15.4 346 142.8 3287 (Matthes et 
al. 2020) 

US-Tw1 Temperate 15.4 371 166.7 2922 (Valach et al. 
2020) 

US-
OWC 

Temperate 9.9 898 627.3 669 (Bohrer et al. 
2020) 

 187 

The 17 sites span tropical to boreal climates and diverse and representative wetland types 188 

(Figure 1), including bogs (5), marshes (5), fens (4), a tropical swamp (1), and rice paddies (2). 189 

Altogether, 32.4 site-years of CH4 flux data were used for gap-filling model development and 190 

validation, collected during 2010-2018. Data pre-processing steps prior to  gap-filling were the 191 

same as described in (Delwiche et al. 2021). Each site was classified into a wetland class based 192 

on site investigator self-reporting. 193 
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 194 

Figure 1: (a) Map of the 17 wetland sites used for the gap-filling experiment and (b) 195 

average daily data coverage (%) at each site. The average daily data coverage was 196 

computed at each site as the proportion of available to total (48) half-hourly flux periods 197 

per day, averaging across available years of data. In addition to spanning a wide 198 

geographic and climatic range, the temporal distribution of gaps and their lengths varied 199 
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greatly across sites providing a large range of conditions for model testing and 200 

evaluation. 201 

2.2 Predictor Variables 202 

For each site, four different combinations of input predictors were tested (Table 3). The simple 203 

“temporal set” consisted of two variables that mimic a generic seasonal cycle (sine and cosine 204 

functions with yearly wavelengths and amplitude equal to 1) and decimal day of year (delta). 205 

The “meteorological set” included four variables (air temperature (TA), incoming shortwave 206 

radiation (SW_IN), wind speed (WS), and atmospheric pressure (PA)) measured at eddy 207 

covariance towers that were gap-filled using atmospheric reanalysis products (ERA-Interim 208 

reanalysis data; Vuichard and Papale 2015). The “baseline set” combined the temporal and 209 

meteorological sets, for a total of 7 predictors. These predictors were chosen as the baseline for 210 

comparison for their consistent availability as core eddy covariance measurements and were 211 

used to gap-fill the FLUXNET-CH4 Version 1.0 dataset (Knox et al. 2019; Delwiche et al. 2021).  212 

 213 

Beyond the baseline predictors of Knox et al. (2019), the use of all predictors at each site was 214 

also tested, providing a large and comparable predictor set that always included soil 215 

temperature, and soil moisture, and/or water table position, among others (Table 3). Although 216 

availability of these additional predictors varied widely across other FLUXNET-CH4 sites, for 217 

these 17 sites, the additional predictors constituting the all-predictor set were highly consistent. 218 

Missing predictor data were mean-imputed and “imputed flag” predictors were created, which is 219 

standard in ML.  220 

 221 

Table 3: Input predictor subsets with variables and their abbreviations used in the 222 

text and figures. Further details for predictors are provided in Table A.1.  223 

 224 

Predictor Subset  Predictor Variables 

Temporal Yearly sine 
Yearly cosine  
Delta (decimal day of year) 

Meteorological Air temperature (TA) 
Incoming shortwave radiation (SW_IN)  
Wind speed (WS)  
Atmospheric pressure (PA) 
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Baseline  
Applied in (Knox et al. 2019) 
and FLUXNET-CH4 Version 
1.0 (Delwiche et al. 2021) 

Temporal + Meteorological 

All Baseline + all other available eddy covariance 
measurements, including: 
Soil 
Soil temperature (TS) 
Water table depth (WTD) 
Soil water content (SWC) 
Carbon fluxes  
Net ecosystem exchange (NEE) 
Ecosystem respiration (RECO – day-and-night methods)* 
Gross primary productivity (GPP – day-and-night methods)  
Energy fluxes 
Latent heat (LE) 
Sensible heat (H) 
Soil heat (G) 
Additional meteorology  
Radiation fluxes (SW_OUT, LW_IN/OUT, NETRAD)  
Friction velocity (USTAR)  
Vapor pressure deficit (VPD) 
Precipitation (P) 
Relative humidity (RH) 
Snow depth (SD) 
Photosynthetic photon flux density (PPFD_IN/OUT) 
Wind direction (WD) 

*Both conventional nighttime temperature extrapolation method (Reichstein et al. 2005) and 
more recent daytime method (Lasslop et al. 2010) variables were included. 

 225 

2.3 Machine Learning Model Training Procedure 226 

Four ML algorithms were trained with each of the four subsets of input predictors (Table 3), 227 

leading to a total of 16 algorithm-predictor combinations per site, which were evaluated using a 228 

nested cross validation procedure (Figure 2). In each algorithm-by-predictor set experiment, the 229 

following steps were repeated for each site. Firstly, artificial gaps were introduced which 230 

constituted a single, held-out test set. The test set was only used after model training and 231 

selection to evaluate the gap-filling performance of the selected models. Secondly, following 232 

Moffat et al. (2007), 10 additional pairs of training and validation sets of artificial gaps were 233 

created with several independent samples of artificial gaps to mitigate potential bias in model 234 

performance for any particular gap sequence. Thirdly, for each algorithm-by-predictor 235 

combination, a model was trained on each of the 10 training sets and the best ML 236 
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hyperparameters were selected based on average model performance during 5-fold cross-237 

validation. Cross-validation involved creating 5 random subsets (folds) of each training set, 238 

training the model multiple times with a broad hyperparameter grid search on 4 folds, and 239 

evaluating the models on one held-out fold. This hyperparameter search was repeated 5 times, 240 

changing the held-out fold each time. The best hyperparameters across all folds were then used 241 

to refit the model on the full training set, resulting in 10 trained models for each algorithm-by-242 

predictor combination. Fourthly, each of the 10 models was evaluated using the corresponding 243 

validation set, and the mean and variance of model scores for the 10 validation sets were used 244 

to compare algorithm classes with different input predictor groups. Finally, the 10 models of the 245 

algorithm classes that scored highest on the validation sets were ensembled and the ensemble 246 

mean prediction was evaluated against the test set. 247 

 248 

 249 

 250 

 251 

(a) Creating data (training, validation, and test) splits with artificial gaps 252 

 253 

 254 

 255 
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 256 

 257 
 258 

(b) Model development and validation procedure 259 

 260 

Figure 2: Artificial gap generation and evaluation procedure. (a) Artificial gaps are 261 

introduced to create the test set, which is set aside, followed by several alternative validation 262 

sets. (b) One model is trained on each validation set, including a 5-fold cross validation step 263 

to tune hyperparameters. The validation set performance can be compared across the 264 

different algorithms. Then, for select algorithms (best on validation set), the 10-model 265 

ensemble is run on the test set to fill in gaps and mean predictions are used to obtain a final 266 

score while prediction variance is used to parameterized uncertainty distributions. With this 267 

procedure, no model tuning or predictor selection is performed on the test set. 268 

2.4 Gap-filling Methods 269 

Marginal Distribution Sampling and four ML algorithms were used for gap-filling, including lasso 270 

regression, artificial neural networks, random forests, and gradient boosted decision trees. Each 271 

ML algorithm was trained using the four different predictor subsets at each site. The “xgboost” 272 

package (Chen and Guestrin 2016) was used to implement the gradient boosted decision tree 273 

models and the “scikit-learn” package (Pedregosa et al. 2011) in python (Van Rossum and 274 

Drake 2009) was used to implement lasso regression, artificial neural networks, and random 275 

forests. 276 

2.4.1 MDS 277 

The Marginal Distribution Sampling method originally proposed by (Reichstein et al. 2005) is 278 

based on the construction of a look-up table around each single gap (half hour). The method 279 

considers three possible drivers, one identified as the main driver and the other two as 280 

additional drivers. For each driver, a threshold value is set to define the similarity conditions. For 281 
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each gap, the missing value is replaced with the average of the measurements found in the time 282 

window around the gap with similar meteorological conditions (i.e., similar value of the drivers). 283 

The algorithm first tries to use all three drivers for a window which is kept as short as possible to 284 

avoid the confounding effects of other slow-changing drivers such as phenology. If no similar 285 

conditions are found, the window size is increased and only the main driver is considered, or 286 

alternatively, and as a last option, the mean diurnal cycle within adjacent days is used. More 287 

details on the overall strategy and compromise between having a larger window or only one 288 

driver included can be found in the appendix of (Reichstein et al. 2005). The original method, 289 

designed for CO2 fluxes, uses SW_IN as the main driver, and TA, and VPD as additional 290 

drivers. In the current application of the method to wetland CH4 fluxes, however, seven different 291 

driver combinations were tested as reported in Table 4.  292 

 293 

Table 4: Driver combinations used for the MDS method. SW_IN = Incoming 294 

shortwave radiation (W m-2), TA = air temperature (°C), PA = air pressure (hP), WTD = 295 

water table depth (m), WS = wind speed (m s-1), RECO = ecosystem respiration (µmol 296 

CO2 m-2 s-1). The values in parenthesis are the thresholds used to define similar 297 

conditions (i.e., value ± threshold). In case of SW_IN, as in the original formulation of the 298 

method in (Reichstein et al. 2005), the thresholds are two (20, 50): similar conditions for 299 

a measured value V are considered in the range  V ± 50 if V > 50, V ± 20 if V < 20 and V 300 

± V for values of V between 20 and 50.  301 

 302 

Combination Main driver (threshold) Secondary driver 1 
(threshold) 

Secondary driver 2 
(threshold) 

1 SW_IN (20, 50) TA (2.5) PA (0.2) 

2 TA (2.5) SW_IN (20, 50) PA (0.2) 

3 TA (2.5) SW_IN (20, 50) RECO (1) 

4 TA (2.5) SW_IN (20, 50) WTD (0.02) 

5 TA (2.5) SW_IN (20, 50) TS (1) 

6 TA (2.5) WS (1) PA (0.2) 

7 TA (2.5) SW_IN (20, 50) WS (1) 

 303 

 304 
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2.4.2 ML Algorithms 305 

Serving as an interpretable and simple baseline model, penalized linear regression was tested 306 

for flux gap-filling, referred to here as Least Absolute Shrinkage and Selection Operator (Lasso; 307 

Tibshirani 1996). Lasso regression penalizes the sum of the absolute value of coefficients 308 

leading to a sparse selection of variables. The regularization coefficient (penalty) was selected 309 

during cross validation. Predictors were standardized after imputation by subtracting the mean 310 

and dividing by the standard deviation which is necessary for methods that are not scale-311 

invariant such as Lasso which are sensitive to predictor data ranges. 312 

 313 

Artificial neural networks (ANN, i.e., shallow multilayer perceptrons) were tested and have been 314 

used in previous works for CO2 and CH4 fluxes (Goodrich et al. 2015; Dengel et al. 2013; Knox 315 

et al. 2016; Hemes et al. 2019; Li et al. 2020). Neural networks consist of a few layers, with 316 

each layer containing different numbers of nodes that sequentially apply linear transformations 317 

with parameters that are learned during model training. These layers are separated by nonlinear 318 

activation functions that enable the neural network to model more complex functions. During 319 

training, the parameters of each layer’s transformation were adjusted to minimize the squared 320 

loss between the predicted and observed flux values. Hyperparameters tuned during cross 321 

validation included the optimization method for adjusting parameters (LBFGS or Adam), 322 

learning rate (0.01, 0.001, 0.0001), the nonlinear activation function (hyperbolic tangent or 323 

rectified linear unit), the numbers of hidden layers (1 or 2; Knox et al. 2019), and the number of 324 

nodes per layer (5-30). Normalization was the same as Lasso. 325 

 326 

Random forests have been commonly used to model tabular data and have recently emerged 327 

for gap-filling CH4 fluxes (Kim et al. 2019). Random forests are an ensemble of decision trees 328 

which are each learned independently on bootstrapped data (Breiman 2001). The mean of the 329 

predictions across the ensemble of trees is taken as the final prediction. Hyperparameters tuned 330 

during cross validation included the number of trees (50-500), the maximum depth per tree (10-331 

110, as well as no maximum depth), the number of predictors considered at each split (n or 332 

square-root of n), the minimum number of samples required to split a node (2, 5, or 10), the 333 

minimum number of samples required at each leaf node (1, 2, or 4), and whether to bootstrap 334 

the data when building trees. Normalization is not required for RF. Predictor importance was 335 

computed as reduction in Gini impurity (Breiman 2001). 336 

 337 
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Boosting enables decision trees to be grown iteratively based on the mistakes of prior trees 338 

(Freund and Schapire 1999). XGBoost was tested as a widely used and efficient gradient 339 

boosted decision tree framework that builds decision trees sequentially (Chen and Guestrin 340 

2016) and has demonstrated success in a wide variety of ML applications. A squared loss was 341 

used as the objective function with the default learning rate of 0.1. The number of decision 342 

trees, the maximum depth per tree, and the minimum number of samples required to split a 343 

node used the same ranges as RF. Other hyperparameters tuned included the proportion of the 344 

training data to subsample prior to growing trees (0.75, 0.85, or 0.95), the minimum loss 345 

reduction required to split a leaf node (0, 0.2, or 0.4), and the fraction of predictors that were 346 

randomly selected for the construction of each tree (0.6, 0.7, 0.8, or 0.9). XGBoost handles 347 

predictor imputation during training using sparsity-aware split finding, which provides a default 348 

direction on each node in the decision tree and allows for skipping over missing values (Chen 349 

and Guestrin 2016). Normalization is not required for XGBoost. 350 

2.5 Artificial Gap Generation  351 

Different gap lengths occur naturally in the time series of eddy covariance flux measurements, 352 

for reasons that include instrument malfunction, power outages, seasonal changes (winter), and 353 

data QA/QC (Moffat et al. 2007). Introducing artificial gaps into the flux data, across this range 354 

of observed gap lengths is necessary to provide scorable validation and test cases. Previous 355 

studies have achieved this by evaluating models on different artificial gap-length scenarios. In 356 

each scenario, gaps of a limited range of lengths (e.g., 1-8 half-hours) are introduced and model 357 

performance is compared among the different gap-length scenarios (Moffat et al. 2007; Kim et 358 

al. 2019). This approach ensures gaps of all lengths are evaluated because it relies on sampling 359 

gaps randomly or uniformly within fixed gap length scenarios. However, the resulting gap 360 

distributions also become skewed when longer gaps form due to artificial gaps merging with 361 

observed gaps. This may incorrectly favor models that perform better on longer gaps which are 362 

less common in eddy covariance flux data.  363 

 364 

To retain the observed gap length distribution, a new artificial gap generation procedure was 365 

developed. The new procedure takes into account the locations of the observed gaps when 366 

generating artificial gaps of varying lengths, such that the observed plus artificial gap length 367 

distribution resembles the observed distribution. Formally, the artificial gap generation 368 

procedure finds a distribution q of artificial gap lengths for each site such that the true empirical 369 

distribution p of gap lengths at that site is approximated by the union of q and p, which is 370 
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denoted r = q ∪ p.  In order to obtain a distribution r which is close to p, a method is proposed 371 

for finding q. Intuitively, the histogram of q should look “compressed” compared to the histogram 372 

of p; that is, it places more weight on shorter gap lengths and has lighter tails: while shorter gap 373 

lengths will be sampled more from q, longer gaps will still form from the merging that occurs 374 

between newly sampled and observed existing gaps. A detailed description and 375 

parameterization of the artificial gap generation algorithm are provided in Appendix B. 376 

 377 

The proposed method thus maintains a similar distribution of gap lengths to the observed 378 

distribution, aiming to strike a balance between having enough scorable (artificial) gaps for 379 

model training and ensuring the distribution of gaps input to the model is similar to that of the 380 

observed data. As this method does not use prescribed gap scenarios, it is important to inspect 381 

the resulting artificial gap distributions. For this study, site-specific gap sampling details and gap 382 

length distributions are provided in Appendix C. 383 

2.6 Evaluation 384 

For each site, MDS-and the ML algorithm-predictor combinations were compared by evaluating 385 

predictive performance on the 10 validation sets. The best two algorithms and their ensemble 386 

performance were then evaluated on the test set using both baseline and all predictors to: 1) 387 

measure absolute improvements over previously implemented standards (ANN plus baseline 388 

predictors; Knox et al. 2019); 2) understand how each algorithm benefited (if at all) from using 389 

all, rather than only baseline, predictors; and 3) measure the effect that the different algorithm 390 

predictions had on cumulative annual and growing season CH4 emissions estimates for each 391 

site, and associated uncertainties. 392 

2.6.1 Performance Measures 393 

Model performance was measured using the coefficient of determination (R2), mean absolute 394 

error normalized by the standard deviation of CH4 flux (nMAE), mean bias (Bias), root mean 395 

squared error (RMSE), and standard deviation. R2 was used to measure the ability of the gap-396 

filling model to reproduce the time series pattern, after confirming that Pearson correlations 397 

were all positive (Taylor 1990). nMAE was used to measure the difference between predictions 398 

from observations regardless of the direction of the error; the normalization allows us to 399 

compare across sites despite large differences in flux variability. Finally, Bias was used to 400 

measure the average direction of error, which will have the largest consequence on site 401 
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emission sums. The nonparametric basic bootstrap with 5,000 bootstrap replicates was used to 402 

compute variability around the performance metrics on the test set (Efron and Tibshirani 1994); 403 

and 95% confidence intervals for each measure were reported. Taylor diagrams were used to 404 

visually compare the performance of each of the models with different input predictors. Taylor 405 

diagrams provide a visually intuitive way of displaying the performance of each model in terms 406 

of three metrics: R2, root mean squared error (RMSE), and standard deviation (Taylor, 2001). 407 

Finally, nMAE and Bias were used to assess the performance of the models across different 408 

gap lengths similar to Moffat et al. (2007), Nemitz et al. (2018), Kim et al. (2019), and Knox et al. 409 

(2019): very short gaps (1 half hour), short gaps (2-8 half hours), medium gaps (9-64 half hours, 410 

i.e., 1.5 days), long gaps (1.5-12 consecutive days), and extremely long gaps (> 12 consecutive 411 

days).  412 

2.6.2 Statistical Analysis  413 

Validation set performance was evaluated coarsely using differences in median model metrics 414 

and was only used to select models for the more detailed statistical comparison on the test set. 415 

Then, for each site, the test set performance of the best two algorithms was compared (RF, as 416 

the faster of the two decision tree algorithms, and ANN) with two predictor sets (baseline and 417 

all). The performance metrics showed significant non-normality across the 17 sites according to 418 

the Shapiro-Wilk test. As a result, the Friedman test followed by post hoc Nemenyi was used for 419 

evaluating pairwise comparisons. This pair of tests is the nonparametric equivalent of the one-420 

way ANOVA with repeated measures (followed by Tukey’s test) and is the standard procedure 421 

when the assumptions of ANOVA are not met (normality in this case; Derrac et al. 2011; 422 

Schuurmans 2006). Performance metric comparisons were implemented in R (R Core Team 423 

2019) using the PMCMR package (Pohlert 2014).  424 

 425 

To evaluate whether the gap-filling performance is related to the characteristics of CH4 flux, 426 

Pearson correlation coefficient between the best model performance metrics (RF and all 427 

predictors) and the annual mean and variance of the fluxes were analyzed. Correlation analyses 428 

were performed in Python using the ‘scipy’ package (Virtanen et al. 2020). 429 

2.6.3 Evaluating Systematic USTAR Bias  430 

Filtering to remove eddy covariance CH4 fluxes during low turbulence conditions (using friction 431 

velocity, USTAR, as a measure of turbulence) may introduce a systematic bias into ML training 432 

because the efficiency of CH4 gas transport mechanisms such as plant mediated flow can 433 
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increase with wind speed (Laanbroek 2010). To approximate an evaluation of biases introduced 434 

from low USTAR filtering, the amount of filtered data across each site was quantified (0-21%) 435 

and the same fraction of high USTAR conditions (top percentile) was removed from each paired 436 

training and validation set. The original and high-USTAR-filtered model performance was then 437 

evaluated on the scorable gaps created with the high USTAR filter. Although an imperfect 438 

analogue, this test therefore simulated model extrapolation to very low USTAR conditions by 439 

evaluating performance during extrapolations to high USTAR conditions. 440 

2.7 Uncertainty Estimation 441 

2.7.1 Uncertainty Evaluation 442 

Machine learning model (gap-filling) uncertainty for each half-hour flux prediction was estimated 443 

using the variation of the model ensemble predictions. For each input, the mean and variance of 444 

the ensemble predictions were used to parameterize a double exponential distribution (a 445 

probabilistic prediction) (Hollinger and Richardson 2005). The confidence intervals of the 446 

specified confidence level are computed using this full distribution. Similar to Richardson and 447 

Hollinger (2007), Lasslop et al. (2008), Richardson et al. (2012), Menzer et al. (2013), Vitale et 448 

al. (2019), the model ensemble uncertainty was used to approximate random flux uncertainty. It 449 

is acknowledged, however, that because the contribution of missing values in input predictors is 450 

not taken into account, the derived uncertainties only approximate the total random 451 

uncertainties that can be better accounted for with alternative multiple imputation methods 452 

(Vitale et al. 2018). The described method focuses on providing a method to robustly evaluate 453 

gap-filling uncertainties in a manner suitable for ML ensemble workflows. 454 

 455 

The consistency of the uncertainty estimates was evaluated using standard probabilistic 456 

forecasting evaluation measures, namely calibration and sharpness (Gneiting et al. 2007). 457 

Calibration captures the consistency between probabilistic forecasts and observations, and 458 

measures whether predicted distributions correctly capture confidence levels as validated 459 

against observed data. A well-calibrated model produces predictive distributions such that P% 460 

confidence interval (CI) contains the observations P% of the time. A model can be well 461 

calibrated only at specific percentiles (e.g., 95%) or across multiple percentiles. At a minimum, 462 

models should be well calibrated at the specific desired percentile before uncertainty estimates 463 

at that percentile can be reliably used. Once models are shown to be well calibrated, they can 464 

be compared using sharpness - a property that measures the concentration of the predictive 465 
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distributions. The approach of maximizing sharpness subject to calibration is widely adopted in 466 

meteorology (Gneiting and Katzfuss 2014). Model improvement is captured by increasing 467 

sharpness, subject to calibration. For each site, performance was evaluated at the 95% CI. 468 

Calibration was measured by computing the proportion of the observed values within the 95% 469 

CIs and measured sharpness using the mean width of the 95% CIs across the test set. A 470 

normalized sharpness metric is reported by dividing by the standard deviation of flux to account 471 

for the differing flux variance at each site. 472 

2.7.2 Uncertainty Interval Scaling 473 

Models that produce predictive distributions, such as the ML ensemble in the present study, are 474 

not necessarily well calibrated by default. Several techniques have been proposed to calibrate 475 

models after they are trained (post-processing calibration), most often using Platt scaling (Platt 476 

1999) and isotonic regression (Zadrozny and Elkan 2002). In this work, Platt scaling is adopted 477 

to calibrate the ensemble predictions. Platt scaling learns a scaling parameter that is used to 478 

scale the variance uniformly for every input. This parameter is learned by assuming a 479 

distribution (e.g., double exponential) and using maximum likelihood estimation to derive a value 480 

from observed data. A double exponential distribution was assumed and derived a closed-form 481 

expression for the scaling parameter (see Appendix D for derivation). Following this calibration 482 

procedure, the probabilistic predictions of different models were compared by measuring the 483 

sharpness of the calibrated distributions. 484 

2.8 Annual and Growing Season Emissions 485 

Annual CH4 emissions were computed as the mean cumulative sum of the 10 gap-filled flux time 486 

series, predicted by each ML model ensemble. To account for the uncertainty calibration 487 

procedure, ensemble predictions were rescaled (spread out) around the mean in proportion to 488 

the Platt scaling value. Annual sums and uncertainties (uncalibrated and calibrated) were 489 

quantified from the mean and variance of the cumulative sums, respectively. As is standard for 490 

CO2 gap-filling, site-years with a gap of 60 days or longer during the growing or shoulder 491 

seasons were excluded (Richardson and Hollinger 2007; Richardson et al. 2012), except for 492 

US-Uaf, which only had one site-year available, and for US-OWC, which had large shoulder or 493 

growing season gaps during both available years. Additional date thresholds were applied for 494 

the two rice paddies (US-Twt and JP-Mse) to only sum fluxes during the rice growing season 495 

based on rice management information (Knox et al. 2016; Miyata et al. 2000). All other gap-filled 496 

values for gap lengths < 60 days were included. Annual or growing season CH4 emissions 497 



22 
 

estimates were also computed for each of the seven MDS models (different predictor sets) as 498 

the cumulative sum of the gap-filled time series. Similar to ML, summed uncertainties were 499 

taken as the variance of the sums from the seven MDS models, however no calibration method 500 

was applied. 501 

 502 

  503 
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3 Results  504 

3.1 Scorable Gap Conditions 505 

In addition to their wide geographical distribution (Figure 1a), the 17 wetland sites also 506 

covered a wide range of biophysical conditions. Across all sites, water table depth (WTD) 507 

ranged from < -1 m to > 1 m relative to the soil surface, while gross primary production 508 

(GPP) ranged from zero in winter to > 40 µmol m-2 s-1 (Figure 3a). Unlike GPP, within site 509 

variation in WTD was small relative to across site variation, with the WTD range at some 510 

sites being either above (e.g., US-Myb) or below (e.g., US-Uaf) the soil surface. Rice 511 

paddies and one tropical swamp (i.e., JP-Mse, US-Tw1, US-Twt, and BR-Npw) showed 512 

larger fluctuations that crossed the soil surface (± 50 cm or more). In addition, soil 513 

temperature (TS) spanned from -10 °C to > 40 °C across sites, and CH4 fluxes ranged 514 

across 5 orders of magnitude from < 0.01 to > 1,000 nmol m-2 s-1 (Figure 3c). Sites tended 515 

to overlap more in their range of TS and CH4 flux (FCH4), but more distinctive in WTD and 516 

GPP. The biophysical conditions for scorable test conditions introduced as artificial gaps in 517 

the test set (Figure 3b, d) displayed a similar range, indicating that models were evaluated 518 

on the full range of observed data conditions. 519 

 520 
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 521 

Figure 3: The coverage of training and test data for select predictor and CH4 flux 522 

conditions. All observations (a, c), and scorable gaps (b, d) spanned a wide range of (a, 523 

b) water table depth and gross primary production (GPP), and (c, d) CH4 flux (FCH4) 524 

and soil temperature (TS).  525 
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3.2 Performance Patterns on the Validation Set 526 

Median MDS performance (R2 = 0.65; nMAE = 0.35; Bias = -0.03 nmol m-2 s-1) was better than 527 

median ML performance (R2 = 0.56; nMAE = 0.39; Bias = 0.01 nmol m-2 s-1). However, predictor 528 

subsets had little effect on MDS performance (Figure 4a, c, e). Only slight improvements were 529 

seen over baseline meteorological predictors (i.e., SW_IN, TA, and PA) when one of the CH4-530 

centric predictors (i.e., WTD, TS, RECO, or WS) was included. Overall, the best performing 531 

predictor combination for MDS was TA, PA, and WS (R2 = 0.66; nMAE = 0.34; Bias = -0.07 532 

nmol m-2 s-1), which was used subsequently to compute annual and growing season sums and 533 

uncertainties. 534 

 535 

There was a larger spread in performance across the ML (Figure 4b, d, f). Median performance 536 

increased from Lasso (R2 = 0.37; nMAE = 0.51; Bias = 0.10 nmol m-2 s-1), to ANN (R2 = 0.58; 537 

nMAE = 0.39; Bias = 0.06 nmol m-2 s-1), to XGBoost (R2 = 0.65; nMAE = 0.35; Bias = -0.11 nmol 538 

m-2 s-1) and RF (R2 = 0.67; nMAE = 0.32; Bias = 0.01 nmol m-2 s-1). Unlike MDS, ML 539 

performance was strongly dependent on the predictor set. Using all predictors was consistently 540 

the best choice across all sites and all classes of models, while using the meteorological subset 541 

alone performed the worst. Median model performance ranged from R2 of 0.27, nMAE of 0.60, 542 

and mean Bias of 0.08 nmol m-2 s-1 for Lasso model class with the meteorological predictors 543 

only, to R2 of 0.79, nMAE of 0.26, and Bias of 0.12 nmol m-2 s-1 for the RF model class with all 544 

predictors. Notably, decision tree models using the baseline predictor set (e.g., RF R2 = 0.75; 545 

nMAE = 0.29; Bias = 0.02 nmol m-2 s-1) still outperformed ANN using all predictors (R2 = 0.70; 546 

nMAE = 0.31; Bias = 0.05 nmol m-2 s-1). For both decision tree and ANN models, the temporal 547 

set was much more important for baseline performance than the meteorological set. As the 548 

temporal set can be created for any CH4 gap-filling effort, the meteorological set is unlikely to be 549 

used alone in practice and is therefore only distinguished here to understand its relative 550 

contribution to the baseline set. 551 

 552 

 553 

 554 
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 555 

Figure 4: Boxplots illustrating 10 validation set performance metrics for each of 556 

the models (Lasso regression (Lasso), artificial neural networks (ANN), random 557 

forests (RF), and gradient boosted decision trees (XGBoost)) and predictor 558 

subsets across the 17 sites: (a, b) R2, (c, d) normalized mean absolute error 559 

(nMAE), (e, f) bias, where the left column is Marginal Distribution Sampling and 560 

the right column is machine learning. Each colored box shows the quartiles of the 561 

performance metrics and the whiskers show the rest of the distribution, excluding points 562 

determined to be outliers that are presented individually. 563 

 564 
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3.3 Test Set Performance Patterns 565 

The ANN and RF (as the faster of the two decision tree algorithms) achieved the best 566 

performance on the validation set and were then evaluated on the test set for each site. Test set 567 

performance patterns were similar to the validation set, confirming that the models were not 568 

over-fit. Median performance on the test set was better overall for RF (R2 = 0.79; nMAE = 0.27; 569 

Bias = 0.24 nmol m-2 s-1) than ANN (R2 = 0.73; nMAE = 0.30; Bias = 0.18 nmol m-2 s-1). Median 570 

nMAE and R2 both improved when ANN used all rather than baseline predictors (p = 0.0007 and 571 

p = 0.0004, respectively). Similarly, median nMAE and R2 both improved when RF used all 572 

rather than baseline predictors (p = 0.0031 and p = 0.0050, respectively). Test set evaluation 573 

also provided some evidence of RF outperforming ANN in general. Using all predictors, median 574 

nMAE for the RF was smaller than that of the ANN (p = 1.40e-8) although there was no 575 

significant difference between the median R2 of RF and ANN (p = 0.191). Similarly, on baseline 576 

predictors, median nMAE for the RF was smaller than that of the ANN (p = 0.0078) but there 577 

was no significant difference between the median R2 of RF and ANN (p = 0.056).  578 

 579 

A large spread in performance was observed within most wetland classes, suggesting a high 580 

level of site uniqueness, rather than generalizability, within a particular wetland class (Figure 5). 581 

The large spread was especially apparent for bogs and fens, whereas marshes and the two rice 582 

paddies were clustered at intermediate to high performance. To better understand the patterns 583 

of performance within and among wetland classes, correlations were examined between best 584 

model performance metrics and the annual mean and variance of the fluxes. There was no 585 

significant relationship between model performance and the annual mean of site CH4 fluxes, 586 

however, there was a clear negative relationship between performance and the coefficient of 587 

variation of CH4 fluxes (p = 0.001; ρ = 0.72) and an even stronger negative correlation with the 588 

flux variance at short (hourly) timescales (p = 1.44e-6; ρ = 0.89) (Figure E.1). 589 

 590 

 591 

 592 

 593 

 594 
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 595 

 596 

Figure 5: Taylor diagram visualizing artificial neural network (ANN) and random 597 

forest (RF) performance improvements on the test set between the baseline and 598 

all predictor sets for each of the 17 primary sites. The baseline set metrics for each 599 

algorithm are shown in small grey circle symbols and the all predictor set metrics are 600 

shown in larger color-filled symbols. Model improvements can be measured in the Taylor 601 

diagram in proportion to 2D shifts towards the black star at (1, 0). Taylor diagrams 602 

display the ratio of the standard deviation of predictions to observations on the x and y 603 

axes, the correlation of predictions to the observed temporal pattern on the curved right 604 

axis, and the root mean square error of predictions on the diagram surface as concentric 605 

(orange) circles around the origin.  606 

 607 

ANN performance showed larger improvements when all predictors were used rather than only 608 

baseline predictors (Figure 6) and RF performance showed small or negligible improvements. 609 

However, absolute RF performance was already relatively high using only the baseline 610 

predictors. Overall, the largest ANN and RF performance improvements were observed in 611 

marshes, with exceptionally large gains at one site (US-OWC). Several other bog, rice paddy 612 

and swamp sites achieved moderate improvements from the additional predictors (i.e., 0.1 to 613 

0.2 increase in R2), whereas only small improvements were observed at fens, with less than a 614 

0.05 increase in R2.  615 
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 616 

Figure 6: Improvements in test set performance metrics for the artificial neural 617 

network (ANN) and random forest (RF) algorithms between the baseline and all 618 

predictor sets on the 17 wetland sites. Vertical error bars show the 95% confidence 619 

interval around the improvement, computed using the nonparametric basic bootstrap 620 

with 5,000 replicates. Sites are plotted in order of the total of R2 and nMAE improvement. 621 

 622 

Across all very short (1 half-hour), short (2-8 half-hours), medium (9-64 half-hours), and long 623 

(65-576 half-hours) gap lengths, bias was low for both the ANN and RF models. Errors (nMAE) 624 

and biases were typically smaller for RF than ANN, and biases were generally larger at marshes 625 

and the swamp (Figure 7). For the longest gaps (577+ half-hours), RF and ANN performance 626 

was less consistent and the largest biases were introduced at marsh sites when using RF. 627 

 628 

 629 
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 630 

Figure 7: Performance of the two best algorithms (ANN+All and RF+All) on the test 631 

sets, broken down by gap length for the 17 primary sites. Swamp values on long 632 

gaps (> 65 half-hours) are not shown here as the R2 is not well-defined on single 633 

samples. Gap length values indicate merged gap lengths after test gap generation. 634 

 635 

Finally, an exploratory evaluation of errors that may be introduced due to USTAR filtering was 636 

conducted. The test set was used with the best model formulations (RF and all predictors). 637 

Model performance showed a slight reduction in performance when extrapolating to high 638 

USTAR conditions (Table E.2), suggesting that similar extrapolations to low USTAR conditions 639 

may introduce small but non-negligible errors. Average Bias across all 17 sites increased by 640 

9%, average nMAE by 10%, and R2 decreased by 8%. 641 
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3.4 Predictor Importance 642 

Variable importance rankings are readily retrievable from RF models. The most important 643 

predictors of the RF model (in order) across all 17 sites were temporal, TS, radiation (aggregate 644 

of SW_IN, SW_OUT, LW_IN, LW_OUT, and NETRAD), and RECO (Figure 8), with TS being 645 

the single most important predictor for many sites. Air temperature (TA) and turbulence (WS 646 

and USTAR), GPP and NEE, and WTD were useful for some sites, but not universally. Wind 647 

direction (WD) was important at 2 sites (US-OWC and US-Myb). Generally, there were few 648 

strong patterns within bogs, fens and marshes (which were the only classes with at least 4 649 

representative sites), suggesting that predictor groups are not necessarily tied to wetland 650 

classification, although TS was important at all of the bogs. Notably, the baseline set captured 651 

several of the key predictors and all of the important meteorological predictors, except wind 652 

direction. Of the two partitioning methods for RECO and GPP (nighttime and daytime), the 653 

nighttime method ranked higher at 15 and 13 (of 17 total) sites, respectively.  654 

                     655 
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  656 

        657 

Figure 8: Predictor importance of the best model (RF+All) on each of the 17 658 

primary sites. Darker color indicates higher importance assigned to that predictor for 659 

that site. The predictors within each group were arranged in descending order by the 660 

sum of the importance values across the sites. Note that all radiation predictors were 661 

grouped (e.g., incoming shortwave radiation (SW_IN), outgoing shortwave radiation 662 
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(SW_OUT), net radiation (NETRAD), etc.), as were air turbulence (friction velocity 663 

(USTAR) and wind speed (WS)). Similarly, predictors with alternative methods (e.g., 664 

daytime/nighttime partitioning) were grouped as were those with multiple depths of 665 

measurement (e.g. soil temperature (TS)). For full details please refer to Table A.1.  666 

3.5 Uncertainty Estimation  667 

The gap-filling prediction uncertainties for the two best ML algorithms (ANN and RF) were 668 

evaluated with respect to the concepts of calibration and sharpness. For ANN, the baseline 669 

predictor set model ensemble was evaluated because it most closely approximates a previously 670 

described method (Knox et al. 2019) which was used to gap-fill the FLUXNET-CH4 Version 1.0 671 

community product (Delwiche et al. 2021). The prediction uncertainties of both the ANN and RF 672 

were not well-calibrated by default (Figure 9). In other words, without calibration by scaling, the 673 

95% CI of the estimates for both models contained significantly less than 95% of the observed 674 

values (56.6% on average for ANN, 28.4% on average for RF), indicating that the models 675 

produced overly tight uncertainties across all sites. The ANN produced wider (less sharp) 676 

uncertainty estimates than the RF without calibration.  677 

 678 

At all sites, both ANN and RF model prediction uncertainties were well-calibrated after 679 

performing the calibration step (Figure 9). In other words, the 95% CI of the estimates 680 

contained close to 95% of the observed values in the test set (95.6% on average for ANN, 681 

95.2% on average for RF). Notably, once calibrated, the RF model made sharper predictions 682 

across all of the sites than the ANN model. The sites where predictions remained the widest 683 

(least sharp) after normalizing by the standard deviation of flux were US-Uaf, US-Twt, US-OWC, 684 

BR-Npw, and US-Los, which were the sites with the worst performance in terms of R2 on the 685 

test set. These sites had one or more of a site-specific combination of low seasonality and/or 686 

extremely long gaps and/or highly variable fluxes. Similarly, the sites whose predictions were 687 

the sharpest corresponded to the sites with the best performance on the test set. Examples of 688 

pre- and post-calibration uncertainty ranges are shown in Figure E.3. 689 

  690 
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 691 

 692 

 693 

Figure 9. Per-site calibration and sharpness for the baseline model 694 

(ANN+Baseline) and best model (RF+All) before and after Platt scaling on the test 695 

set. The results without scaling (filled bar) represent the previous way of constructing 696 

uncertainty estimates, by training an ensemble of models and using the variation of the 697 

predictions without any adjustment, which leads to overly sharp confidence intervals 698 

measured by coverage. The results with scaling (hashed bar) incorporate a scaling 699 

factor which is learned from the data to adjust the ensemble uncertainty estimates and 700 
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yield calibrated uncertainties. Sharpness was measured as the mean width of the 95% 701 

uncertainty estimates on the test set normalized by the standard deviation of flux at the 702 

site. 703 

3.6 Annual and Growing Season Emissions 704 

A total of 30.4 site years were gap-filled with MDS with best (TA, WS, and PA) predictors, and 705 

the baseline ML (ANN plus baseline predictors) and best ML (RF plus all predictors) models and 706 

summed for annual or growing season CH4 emissions. Note that reported uncertainties around 707 

summed emissions reflect only gap-filling uncertainties and exclude additional random 708 

uncertainties which, though tending to be small, can be considered separately (Knox et al. 709 

2019) or in an integrated manner (Vitale et al. 2018).   710 

 711 

Annual and growing season emissions did not differ significantly (measured by overlapping 95% 712 

CI) at any of the sites when comparing the two ML gap-filling methods (Table 5). Calibrated 713 

prediction uncertainties for ANN and RF resulted in less sharp, but more plausible, 95% CI 714 

around the annual sum. For all sites except US-OWC and BR-Npw, emissions from the best ML 715 

model (RF and All) fell within the unscaled 95% CI of the baseline model (ANN and Baseline; 716 

approximating Knox et al. 2019), supporting a generally high level of accuracy for the baseline 717 

method under the majority of site and gap conditions in this analysis. At the highly variable US-718 

OWC marsh and BR-Npw swamp sites, the best model predictions fell outside the unscaled but 719 

within the scaled baseline CI, which underscores the implausible sharpness of unscaled ML 720 

ensemble predictions but does not support greater accuracy of RF than ANN. Uncertainties 721 

around MDS were much sharper (median 95% CI was ± 3% of annual emissions) than the 722 

scaled ML methods for ANN (± 38%) and RF (± 18%). The sharp uncertainties resulted in small 723 

but significant differences between annual and growing season sums from MDS and one ML 724 

model (e.g., JP-BBY, BR-Npw, US-Tw1) or both ML models (e.g., CA-SCB, US-Los). 725 

 726 

Table 5: Mean annual and growing season emissions estimates for three methods 727 

(MDS, ANN, and RF) and their uncalibrated and calibrated uncertainties (95% CI) 728 

across the 17 sites. Calibration is only applicable to ML model ensemble methods and 729 

therefore cannot be reported for MDS. 730 

 731 

 
Site 

Annual or Growing 
Season Date Ranges 

 
Mean Annual or Growing Season Methane Emissions ± Gap-
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(class) (Annual means only 
computed on years 

with good or 
comparable data 

coverage) 

Filling Uncertainty (95% CI) 
(g CH4-C m-2 y-1) 

Best MDS,  
(TA, WS, PA) 

Unc. not scaled 

ANN+Baseline,  
(as in Knox et al. 

2019) 
Unc. not scaled  

Calibrated (lower) 

RF+All,  
Best model 

Unc. not scaled  
Calibrated (lower) 

JP-BBY 
(bog) 

March 2016 - 
 December 2017 

17.84 ± 0.29 18.15 ± 0.86  
18.22 ± 3.93 

17.65 ± 0.13  
 17.65 ± 1.75 

NZ-Kop 
(bog) 

January 2012 - 
December 2014 

17.57 ± 0.38 15.39 ± 1.78  
17.97 ± 9.57 

17.98 ± 0.28  
17.98 ± 3.22 

CA-SCB 
(bog) 

April 2014 -  
November 2014 

March 2016 -  
December 2016 

March 2017 -  
November 2017 

11.33 ± 0.24  11.21 ± 0.60  
11.61 ± 2.82 

11.60 ± 0.16  
11.71 ± 2.05 

US-Uaf 
(bog) 

April 2011 -  
October 2011 
May - October, 

2012 - 2017 
May 2018 -  

November 2018 

0.57 ± 0.03 0.50 ± 0.09  
0.57 ± 0.58 

0.54 ± 0.03  
0.56 ± 0.40 

FI-Si2  
(bog) 

April - November,  
2012 - 2013 

11.36 ± 0.56 12.33 ± 1.23  
12.60 ± 8.63 

11.68 ± 0.91  
11.81 ± 8.35 

FI-Lom 
(fen) 

January 2006 - 
December 2010 

15.61 ± 0.16  15.75 ± 0.74  
15.76 ± 3.83  

15.63 ± 0.09  
15.63 ± 1.12 

FI-Sii  
(fen) 

January 2013 - 
November 2014 

March 2016 -  
December 2018 

12.09 ± 0.36 12.47 ± 0.80 
12.52 ± 2.9 

12.07 ± 0.25  
12.10 ± 2.12 

SE-Deg 
(fen) 

January 2014 - 
December 2016  
January 2018 - 
December 2018 

11.63 ± 0.14  11.44 ± 0.68 
11.58 ± 2.18 

11.30 ± 0.05  
11.31 ± 0.60 

US-Los 
(fen) 

January 2014 - 
December 2018 

6.56 ± 0.49  6.25 ± 1.29 
7.79 ± 10.09  

6.28 ± 0.20  
6.63 ± 3.2 

US-Myb 
(marsh) 

January 2011 -  
December 2018 

49.18 ± 0.79  47.97 ± 3.76 
48.43 ± 16.71 

49.14 ± 0.29  
49.15 ± 4.44 

US-OWC 
(marsh) 

April 2016 -  
October 2016 

116.85 ± 2.15 117.09 ± 7.56 
120.07 ± 46.19 

131.69 ± 7.97  
132.44 ± 60.2 

US-Tw1 January 2013 - 47.42 ± 2.09  44.81 ± 6.62 44.88 ± 0.87  
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(marsh) December 2018 46.14 ± 32.2 44.89 ± 7.52 

US-Tw4 
(marsh) 

January 2014 - 
December 2018 

32.86 ± 0.70 32.32 ± 2.81 
32.66 ± 13.87 

32.63 ± 0.23  
32.64 ± 3.05 

US-WPT 
(marsh) 

March 2011 -  
December 2013 

50.45 ± 1.55 48.88 ± 3.02 
49.21 ± 14.17 

52.28 ± 0.66  
52.27 ± 8.61 

US-Twt 
(rice paddy) 

April - October,  
2010 - 2016 

7.90 ± 0.44 8.06 ± 1.96  
8.58 ± 8.41 

8.44 ± 0.66  
8.56 ± 5.07 

JP-Mse 
(rice paddy) 

May 2012 -  
September 2012 

9.39 ± 0.44 8.88 ± 0.66 
8.99 ± 1.75 

9.51 ± 0.17  
9.51 ± 1.57 

BR-Npw 
(swamp) 

January 2014 - 
December 2016 

25.90 ± 1.61 19.22 ± 2.52 
21.85 ± 14.23 

24.73 ± 0.63  
25.01 ± 8.01 

     

4 Discussion 732 

4.1 Methods & Algorithms 733 

The gap-filling approach outlined in this study optimizes for the training and evaluation of ML 734 

gap-filling models. A new technique is proposed for generating artificial gap scenarios that 735 

resemble the true observed gap distributions. This is important to ensure that ML models are 736 

trained and scored on unbiased distributions of gap lengths. Using this artificial gap generation 737 

procedure, one can generate many site-specific scenarios and reliably evaluate models on their 738 

ability to fill data gaps. There are trade-offs between this approach and the introduction of 739 

uniform gap-length scenarios (e.g., (Moffat et al. 2007), which alternatively ensures a consistent 740 

number of scorable gaps (even extremely long gaps) at the expense of unbiased training 741 

conditions. However, the proposed method is recommended for ML-focused studies given that 742 

the gap-filling of extremely long gaps (e.g., multiple months) is much less reliable, regardless of 743 

the method used, and are best avoided entirely, if possible. 744 

 745 

Decision tree-based models (RF and XGBoost) showed better performance than ANN and 746 

Lasso models across the majority of the 17 wetland and rice paddy sites. This is consistent with 747 

recent work on CH4 gap-filling which demonstrated that a RF gap-filling model outperformed 748 

both ANN and support vector regression models across five wetland and rice paddy sites 749 

(Nemitz et al. 2018; Kim et al. 2019; Knox et al. 2019). RF models are also relatively easy to 750 

tune, fast to train even on large datasets, and require little preprocessing. Furthermore, 751 
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decision-tree-based models are more interpretable (presently) than ANN (Russell and Norvig 752 

1995), which enables analysis of important predictors. In comparison to ML approaches, MDS 753 

was tested as an easy and fast method that makes use of only three predictors. MDS scored 754 

highly on average although still much lower than the best ML models. Kim et al. (2019) also 755 

found that MDS more frequently introduced statistical bias in annual sums than ML models. 756 

 757 

Although RF and ANN models are recommended ML methods, there is still room to improve 758 

their gap-filling performance, especially on long gaps. Recent deep neural network architectures 759 

have shown impressive results in modeling long sequences in natural language processing, 760 

particularly recurrent neural network variants (Lipton et al. 2015) and Transformers (Vaswani et 761 

al. 2017). These models have the potential to reproduce highly nonlinear variable interactions 762 

using large datasets including half-hourly time series flux data and may be able to capture 763 

lagged relationships between predictors and CH4 flux without further manual revision. However, 764 

representing non-stationary conditions such as pulse events has proven to be challenging for 765 

ML approaches (Vargas et al. 2018). Future work could explore the effectiveness of deep neural 766 

network architectures for gap-filling CH4. It is likely, however, that problems of non-stationarity 767 

during long gaps will apply for CH4 as they do for CO2 imputation (Richardson and Hollinger 768 

2007) and are best handled during data collection.  769 

4.2 Methane Predictors 770 

The inclusion of soil temperature (TS) and ecosystem carbon flux predictors (NEE, RECO, and 771 

GPP) improved gap-filling performance over the baseline set (three temporal, plus TA, PA, 772 

SW_IN, and WS), in broad agreement with known controls by temperature (Yvon-Durocher et 773 

al. 2014) and substrate availability (Whiting and Chanton 1993; Matthes et al. 2014; McNicol et 774 

al. 2020; Laanbroek 2010). Soil temperature was the single most important additional predictor 775 

over the baseline set at most sites, followed by RECO. While TS was available at all sites in this 776 

study, it is not available across all FLUXNET sites. Although NEE and its component ecosystem 777 

carbon fluxes (GPP and RECO) are highly correlated, the consistent favoring of RECO 778 

suggests they are not perfectly interchangeable for gap-filling performance, and RECO and CH4 779 

flux are both largely the result of microbial metabolism, and are similarly affected by 780 

environmental drivers (Morin et al. 2014), However, partitioned fluxes (RECO and GPP) are 781 

overall less practical than measured NEE as predictors because they are typically partitioned 782 

from NEE as a function of TS, and thus its importance may largely reflect its correlation with TS 783 
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(Reichstein et al. 2005; Keenan et al. 2019) while RECO is limited in its ability to represent 784 

respiration fluxes across different ecosystems (Barba et al. 2018). 785 

 786 

Water table depth, a proxy for the balance of anaerobic CH4-producing and aerobic CH4-787 

consuming soil volumes (Bridgham et al. 2013), was an important predictor at rice and swamp 788 

sites that undergo larger changes in seasonal inundation (Dalmagro et al. 2018; Muramatsu et 789 

al. 2017), but not at other wetland types. Although WTD has been found to be important in bogs 790 

and fens (Moore et al. 2011; Goodrich et al. 2015; Koebsch et al. 2020), it was only an 791 

important gap-filling predictor at one of the five bogs in this study. This is consistent with prior 792 

work showing that WTD becomes important when its range is large and/or crosses above and 793 

below the soil surface (Knox et al. 2019; Alekseychik et al. 2021; Knox et al. 2021). Moreover, in 794 

some wetlands, WTD is only a coarse proxy for anaerobic volume activity due to the presence 795 

of anaerobic microsites in drained layers and anaerobic methane oxidation in saturated layers 796 

(Yang et al. 2017). Although WTD was available at all 17 sites, it is only currently reported for 797 

half of wetland sites in FLUXNET-CH4 (Knox et al. 2019). The moderate importance of WTD 798 

measurements as a predictor in many sites, and high importance in some, suggests it should be 799 

widely collected and reported to ensure optimal CH4 gap-filling when using ML models. The 800 

predictor experiments also allowed us to investigate the usefulness of broad classes of 801 

predictors. As “fuzzy” temporal predictors (cosine year, sine year, and delta) (Moffat et al. 2007), 802 

can be computed, they are always recommended for gap-filling. It was also confirmed that the 803 

most useful meteorological predictors (TA, SW_IN, WS and PA) were already included in the 804 

baseline model of a recent synthesis (Knox et al. 2019).  805 

 806 

The performance improvements using all predictors in this study suggests a moderate amount 807 

of predictor redundancy does not harm ML performance and predictor curation may be less 808 

important for ML than in other modeling approaches. Kim et al. (2019) similarly showed that ML 809 

models can benefit from a large predictor set that includes soil variables and that dimension-810 

reduction via principal component analysis was not necessary to achieve good performance. 811 

However, site uniqueness may also necessitate the tailoring of models for optimal performance 812 

at individual sites, illustrated in this study by the ranges in 1) observed CH4 fluxes, 2) model 813 

performance, and 3) predictor importance within bog, fen, and marsh classes. For instance, 814 

despite high spatial variability in CH4 fluxes at some wetlands (Rey-Sanchez et al. 2018; 815 

Matthes et al. 2014), WD (which determines the flux footprint) was only an important predictor at 816 

one marsh site (US-OWC), which has very high spatial variation in flux between different cover 817 



40 
 

types (Rey-Sanchez et al. 2018). The site-specificity of WD for heterogeneous sites was also 818 

reported in a recent study that used a ML approach to partition NEE (Tramontana et al. 2020). 819 

Entirely new predictors may also be necessary at some sites, such as salinity, which is likely an 820 

important predictor for gap-filling at estuaries or other coastal locations with a (tidal) salinity 821 

influence (Holmquist et al. 2018; Poffenbarger et al. 2011). Although not prioritized in the 822 

present study, a more parsimonious predictor set may be identified via a combination of site-823 

specific and process knowledge, as well as automated feature selection methods (Kumar and 824 

Minz 2014). Curated predictor sets should, however, be reevaluated when gap-filling new data 825 

(e.g., site-years, or across multiple sites) as past models may be overfit with respect to new 826 

data conditions. 827 

 828 

Future work could also explore the use of led or lagged predictors, which could be used to 829 

engineer predictors with greater coherence with CH4 flux (Vitale et al. 2018). For example, 830 

recent syntheses have demonstrated that the timing and seasonality of CH4 fluxes lags TS 831 

across several FLUXNET-CH4 sites (Delwiche et al. 2021), leading to an apparent hysteretic 832 

dependency (Chang et al. 2021), and therefore using lagged TS predictors may improve ML 833 

gap-filling performance. More sophisticated feature selection methods are possible, such as 834 

information theory, which can be used to first identify the predictor and timescale of the lag (or 835 

lead), and then curate a more parsimonious predictor set (e.g., Sturtevant et al. 2016; Knox et 836 

al. 2021). Overall, improvements in the measurement and coverage of key soil predictors, 837 

especially high-quality soil temperature and water table depth data, is recommended.  838 

4.3 Integrated Emissions & Uncertainties 839 

Computing annual or growing season CH4 emissions requires gap-filling because filtering of EC 840 

data and other acquisition issues typically creates gaps of a wide variety of lengths, and 841 

especially an abundance of short gaps (Table C2). Gaps are not normally distributed in time 842 

and therefore FCH4 observations are likely to be biased, which will propagate to the time-843 

integrated flux. However, the investigator must decide: 1) which gap-filled values are likely to be 844 

of sufficient accuracy to be retained, and 2) whether the retained gap-filled plus observed values 845 

are sufficient to integrate emissions over an annual, seasonal, or other timeframe. As a rough 846 

guide, filled values should be treated with greater scrutiny as they become longer and less 847 

frequent in the scorable dataset. The most abundant scorable gaps of length one half-hour to 848 

approximately 12 days can be filled confidently, given performance metric checks as described 849 

in this study. Investigators should, however, be aware that episodic fluxes, perhaps due to 850 
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ebullition events, may not always be captured and instead may be filled with average fluxes for 851 

the most comparable conditions (e.g., FCH4 and MAE spikes in Figure E.2). Greater scrutiny of 852 

evaluation metrics is recommended for gaps longer than approximately 12 days, but less than 853 

multiple months, whereas, filled values in gaps of multiple months (> 60 days) should generally 854 

be excluded, as is done in CO2 gap-filling (Wutzler et al. 2018). The exception may be very long 855 

(decadal) datasets where the monthly-scale gap occurs in a season with ample data from other 856 

sites-years and can be reasonably evaluated. After determining which filled values to retain, the 857 

coverage of filled plus observed fluxes should be considered with respect to the integration 858 

period. For rice paddies (e.g., US-Twt, JP-Mse), and sites with low winter season fluxes due to 859 

frozen soils (US-OWC or US-Uaf), it may be adequate and interesting to report a growing 860 

season flux as is done in this study and the FLUXNET-CH4 synthesis (Delwiche et al. 2021). 861 

Time-integrated uncertainties from ML gap-filling methods will also widen significantly as more 862 

gap-filling is required and should always be reported alongside long-term sums. 863 

 864 

The improvement in performance gained by using ML over MDS, and all predictors over 865 

baseline predictors, did not have a significant effect on annual CH4 emissions estimates at most 866 

sites. However, seemingly minor changes in CH4 fluxes can have disproportionate impacts 867 

when calculating greenhouse gas emissions due to the high radiative forcing effects of CH4 or 868 

when sparsely distributed sites are used in data-driven regional or global upscaling efforts 869 

(Tramontana et al. 2016; Roberts et al. 2017). Specifically, absolute differences in annual 870 

emissions among the gap-filling methods were larger at high-emitting sites which could lead to 871 

larger upscaling errors in high-emitting tropical regions that account for > 60% of global wetland 872 

sources (Wania et al. 2013; Bloom et al. 2017; Saunois et al. 2020). These results therefore 873 

highlight the need for robust methods for estimating and propagating uncertainty from flux gap-874 

filling to upscaling.  875 

 876 

Machine learning model-generated uncertainties around both half-hourly predictions and annual 877 

emissions have been underestimated. A scaling procedure (Platt scaling) which expands the 878 

uncertainty estimates can be used to produce well-calibrated predictions. Well-calibrated 879 

models can be compared using the sharpness of their predictions, where sharper predictions 880 

corresponded to better models. Using this method, sharper uncalibrated RF (compared to ANN) 881 

prediction uncertainties were retained post-calibration, indicating greater precision of 882 

predictions. However, the frequent overlap between uncalibrated and calibrated for both 883 

algorithms means a firm conclusion about algorithm differences in accuracy is not possible. It is 884 



42 
 

also acknowledged that this uncertainty does not capture all sources of uncertainty that could 885 

arise from random measurement errors, unseen events, uncertainties in the predictors, or other 886 

systematic bias, among others. However, calibrating predictive ML models to avoid 887 

underestimating gap-filling uncertainties is strongly recommended. 888 

 889 

Other calibration methods have the potential to achieve calibration while producing sharper 890 

predictions (Kuleshov et al. 2018). Furthermore, probabilistic models like Gaussian processes or 891 

multiple imputation methods may be able to produce well-calibrated models without the need for 892 

post-processing calibration procedures (Vitale et al. 2018; Camps-Valls et al. 2019). Recently, a 893 

method for producing uncertainty estimates from any gradient boosting model was introduced 894 

which may enable decision tree models to produce well-calibrated, probabilistic predictions 895 

without requiring a model ensemble or post-processing calibration (Duan et al. 2019). Finally, 896 

deep learning models can capture highly nonlinear relationships in large datasets and make 897 

probabilistic predictions which have the potential to outperform other gap-filling methods.  898 

5 Conclusions 899 

This study outlines a robust and reproducible ML workflow for CH4 gap-filling models that can be 900 

applied at individual wetland sites or in multi-site syntheses. Specifically, the study advances 901 

CH4 gap-filling in wetlands using ML by: 1) introducing a thorough gap-filling model development 902 

and validation procedure that reliably generates gaps and splits the data into training, validation, 903 

and test sets; 2) experimentally evaluating conventional MDS (with drivers adapted for wetland 904 

CH4 fluxes) against combinations of ML algorithms and predictor sets; and 3) proposing a model 905 

calibration method to estimate, evaluate, and calibrate model uncertainties. This study also 906 

provides insights into methodological choices. Decision tree algorithms (RF and XGBoost) offer 907 

the best performance on average; using all predictors (or best set for MDS), median nMAE 908 

followed the order Lasso (0.42) > MDS (0.34) > ANN (0.31) > RF/XGBoost (0.26), and median 909 

R2 followed the order Lasso (0.57) < MDS (0.66) < ANN (0.70) < RF/XGBoost (0.79). Overall, 910 

RF is recommended as it benefits from less pre-processing and faster run-time than XGBoost. 911 

ANN predictions had less bias when filling the longest gaps and performance improved when 912 

using all rather than baseline predictors, suggesting ANN may benefit from additional predictor 913 

curation and feature engineering. Using all available variables collected at eddy covariance 914 

towers as predictors is also fast, effective, and reasonable, given the large ratio of observations 915 

to predictors (favorable data dimensionality). Conventional MDS also proved to be a fast 916 
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method that provides reasonable performance when CH4 predictors (air temperature, air 917 

pressure, and wind speed) are selected, however, the lack of post-calibration results in 918 

uncertainties that are very sharp (unrealistic). ML prediction uncertainties, in contrast, can be 919 

calibrated to observations using Platt scaling. Finally, based on variable importance results, it is 920 

recommended that soil temperature and water table depth are measured at all wetland eddy 921 

covariance sites. The python code for developing gap-filling methods, comparing predictions, 922 

and calibrating uncertainties is available [https://github.com/stanfordmlgroup/methane-gapfill-923 

ml]. For future evaluations at wetlands and other ecosystems, this code can provide a 924 

foundation for the development of standardized eddy covariance CH4 processing by different 925 

teams and Regional Flux Networks which can also be tested on nitrous oxide fluxes as longer 926 

time series become available (Papale 2020).  927 

 928 
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